Internal variability of a 3-D ocean model
Directory of Open Access Journals (Sweden)
Bjarne Büchmann
2016-11-01
Full Text Available The Defence Centre for Operational Oceanography runs operational forecasts for the Danish waters. The core setup is a 60-layer baroclinic circulation model based on the General Estuarine Transport Model code. At intervals, the model setup is tuned to improve ‘model skill’ and overall performance. It has been an area of concern that the uncertainty inherent to the stochastical/chaotic nature of the model is unknown. Thus, it is difficult to state with certainty that a particular setup is improved, even if the computed model skill increases. This issue also extends to the cases, where the model is tuned during an iterative process, where model results are fed back to improve model parameters, such as bathymetry.An ensemble of identical model setups with slightly perturbed initial conditions is examined. It is found that the initial perturbation causes the models to deviate from each other exponentially fast, causing differences of several PSUs and several kelvin within a few days of simulation. The ensemble is run for a full year, and the long-term variability of salinity and temperature is found for different regions within the modelled area. Further, the developing time scale is estimated for each region, and great regional differences are found – in both variability and time scale. It is observed that periods with very high ensemble variability are typically short-term and spatially limited events.A particular event is examined in detail to shed light on how the ensemble ‘behaves’ in periods with large internal model variability. It is found that the ensemble does not seem to follow any particular stochastic distribution: both the ensemble variability (standard deviation or range as well as the ensemble distribution within that range seem to vary with time and place. Further, it is observed that a large spatial variability due to mesoscale features does not necessarily correlate to large ensemble variability. These findings bear
Internal variables in thermoelasticity
Berezovski, Arkadi
2017-01-01
This book describes an effective method for modeling advanced materials like polymers, composite materials and biomaterials, which are, as a rule, inhomogeneous. The thermoelastic theory with internal variables presented here provides a general framework for predicting a material’s reaction to external loading. The basic physical principles provide the primary theoretical information, including the evolution equations of the internal variables. The cornerstones of this framework are the material representation of continuum mechanics, a weak nonlocality, a non-zero extra entropy flux, and a consecutive employment of the dissipation inequality. Examples of thermoelastic phenomena are provided, accompanied by detailed procedures demonstrating how to simulate them.
Internal and external North Atlantic Sector variability in the Kiel climate model
Energy Technology Data Exchange (ETDEWEB)
Latif, Mojib; Park, Wonsun; Ding, Hui; Keenlyside, Noel S. [Leibniz-Inst. fuer Meereswissenschaften, Kiel (Germany)
2009-08-15
The internal and external North Atlantic Sector variability is investigated by means of a multimillennial control run and forced experiments with the Kiel Climate Model (KCM). The internal variability is studied by analyzing the control run. The externally forced variability is investigated in a run with periodic millennial solar forcing and in greenhouse warming experiments with enhanced carbon dioxide concentrations. The surface air temperature (SAT) averaged over the Northern Hemisphere simulated in the control run displays enhanced variability relative to the red background at decadal, centennial, and millennial timescales. Special emphasis is given to the variability of the Meridional Overturning Circulation (MOC). The MOC plays an important role in the generation of internal climate modes. Furthermore, the MOC provides a strong negative feedback on the Northern Hemisphere SAT in both the solar and greenhouse warming experiments, thereby moderating the direct effects of the external forcing in the North Atlantic. The implications of the results for decadal predictability are discussed. (orig.)
Strobach, Ehud
2015-01-01
Decadal climate predictions, which are initialized with observed conditions, are characterized by two main sources of uncertainties--internal and model variabilities. Using an ensemble of climate model simulations from the CMIP5 decadal experiments, we quantified the total uncertainty associated with these predictions and the relative importance of each source. Annual and monthly averages of the surface temperature and wind components were considered. We show that different definitions of the anomaly results in different conclusions regarding the variance of the ensemble members. However, some features of the uncertainty are common to all the measures we considered. We found that over decadal time scales, there is no considerable increase in the uncertainty with time. The model variability is more sensitive to the annual cycle than the internal variability. This, in turn, results in a maximal uncertainty during the winter in the northern hemisphere. The uncertainty of the surface temperature prediction is dom...
Directory of Open Access Journals (Sweden)
A. Gelfan
2015-02-01
Full Text Available An approach is proposed to assess hydrological simulation uncertainty originating from internal atmospheric variability. The latter is one of three major factors contributing to the uncertainty of simulated climate change projections (along with so-called "forcing" and "climate model" uncertainties. Importantly, the role of the internal atmospheric variability is the most visible over the spatial–temporal scales of water management in large river basins. The internal atmospheric variability is represented by large ensemble simulations (45 members with the ECHAM5 atmospheric general circulation model. The ensemble simulations are performed using identical prescribed lower boundary conditions (observed sea surface temperature, SST, and sea ice concentration, SIC, for 1979–2012 and constant external forcing parameters but different initial conditions of the atmosphere. The ensemble of the bias-corrected ECHAM5-outputs as well as ensemble averaged ECHAM5-output are used as the distributed input for ECOMAG and SWAP hydrological models. The corresponding ensembles of runoff hydrographs are calculated for two large rivers of the Arctic basin: the Lena and the Northern Dvina rivers. A number of runoff statistics including the mean and the SD of the annual, monthly and daily runoff, as well as the annual runoff trend are assessed. The uncertainties of runoff statistics caused by the internal atmospheric variability are estimated. It is found that the uncertainty of the mean and SD of the runoff has a distinguished seasonal dependence with maximum during the periods of spring-summer snowmelt and summer-autumn rainfall floods. A noticeable non-linearity of the hydrological models' response to the ensemble ECHAM5 output is found most strongly expressed for the Northern Dvine River basin. It is shown that the averaging over ensemble members effectively filters stochastic term related to internal atmospheric variability. The simulated trends are close to
Institute of Scientific and Technical Information of China (English)
BAI Yefei; SONG Jinbao
2006-01-01
A two-dimensional, depth-integrated model proposed by Lynett and Liu (2002) was checked carefully, and several misprints in the model were corrected after detailed examination on both the theory and the numerical program. Several comparisons were made on wave profile, system energy and maximum wave amplitude. It is noted that the modified model can simulate the propagation of the internal solitary waves over variable bathymetry more reasonably to a certain degree, and the wave profiles obtained based on the modified model can better fit the experiment data reported by Helfrich (1992)than those from original model.
Generation and transfer of internal variability in a regional climate model
Directory of Open Access Journals (Sweden)
Thorsten Simon
2013-12-01
Full Text Available There is a strong need for tools allowing the comparison between the performance of a regional climate model (RCM and the corresponding model providing lateral boundary conditions (LBC for the RCM, which is a global general circulation model (GCM in most cases. A method is presented to investigate the temporal scales on which a RCM is able to generate internal variability on its own and on which variability is copied from the driving model. This is implemented by a cross-spectral analysis between the RCM output and a bi-linearly interpolated version of the driving model, leading to an estimate of the coherence spectrum. Applying the aforementioned technique to surface temperature and temperature and specific humidity at 850 hPa from the RCM COSMO-CLM East Asia with a horizontal resolution of 50 km and its driving model ECHAM5, it was found that features in the spatial distribution of coherence are related to atmospheric dynamics in East Asia, e.g. monsoons and inter-tropical convergence zone (ITCZ. A further application to a double-nesting approach, where COSMO-CLM East Asia is the driving model for two domains – namely the Haihe catchment and the Poyang catchment – each with a horizontal resolution of 7 km, shows that the frequencies on which internal variability is generated by the driven model are much higher compared to the first nesting step. Concluding RCMs can produce a considerable variability on the respective temporal scales. This implies that a dynamical downscaling with a re-analysis as LBC is conceptually different to a regional re-analysis, i.e. data assimilation on the regional scale.
Lovenduski, Nicole S.; McKinley, Galen A.; Fay, Amanda R.; Lindsay, Keith; Long, Matthew C.
2016-09-01
We quantify and isolate the sources of projection uncertainty in annual-mean sea-air CO2 flux over the period 2006-2080 on global and regional scales using output from two sets of ensembles with the Community Earth System Model (CESM) and models participating in the 5th Coupled Model Intercomparison Project (CMIP5). For annual-mean, globally-integrated sea-air CO2 flux, uncertainty grows with prediction lead time and is primarily attributed to uncertainty in emission scenario. At the regional scale of the California Current System, we observe relatively high uncertainty that is nearly constant for all prediction lead times, and is dominated by internal climate variability and model structure, respectively in the CESM and CMIP5 model suites. Analysis of CO2 flux projections over 17 biogeographical biomes reveals a spatially heterogenous pattern of projection uncertainty. On the biome scale, uncertainty is driven by a combination of internal climate variability and model structure, with emission scenario emerging as the dominant source for long projection lead times in both modeling suites.
Hingray, Benoit; Saïd, Mériem; Lafaysse, Matthieu; Gailhlard, Joël; Mezghani, Abdelkader
2014-05-01
A simple and robust framework was proposed by Hingray and Mériem (2013) for the partitioning of the different components of internal variability and model uncertainty in a multireplicate multimodel ensemble (MRMME) of climate projections obtained for a suite of statistical downscaling models (SDMs) and global climate models (GCMs). It is based on the quasi-ergodic assumption for transient climate simulations. Model uncertainty components are estimated from the noise-free signals of each modeling chain using a two-way ANOVA framework. The residuals from the noise-free signal are used to estimate the large and small scale internal variability (IV) components associated with each considered GCM/SDM configuration. This framework makes it possible to take into account all runs and replicates available from any climate ensemble of opportunity. This quasi-ergodic ANOVA framework was applied to the MRMME of hydrometeorological simulations produced for the Upper Durance River basin (French Alps) over the 1860-2100 period within the RIWER2030 research project (http://www.lthe.fr/RIWER2030/). The different uncertainty sources were quantified as a function of lead time for projected changes in temperature, precipitation, evaporation losses, snow cover and discharges (Lafaysse et al., 2013). For temperature, GCM uncertainty prevails and, as opposed to IV, SDM uncertainty is non-negligible. Significant warming and in turn significant changes are predicted for evaporation, snow cover and seasonality of discharges. For precipitation, GCM and SDM uncertainty components are of the same order. Despite high model uncertainty, the non-zero climate change response of simulation chains is significant and annual precipitation is expected to decrease. However, high values are obtained for the large and small scale components of IV, inherited respectively from the GCMs and the different replicates of a given SDM. The same applies for annual discharge. The uncertainty in values that could
Institute of Scientific and Technical Information of China (English)
2008-01-01
There exists an interaction between microstructural evolution and deformation behavior in high temperature deformation of titanium alloys. And the microstruc- ture of titanium alloys is very sensitive to the process parameters of plastic de- formation process. In this paper, on the basis of plastic deformation mechanism of metals and alloys, a microstructural model including dislocation density rate equa- tion and grain growth rate equation is established with the dislocation density rate being an internal state variable. Applying the model to the high temperature de- formation process of Ti60 titanium alloy, the average relative errors of grain sizes between the experiments and the predictions are 9.47% for sampled data, and 13.01% for non-sampled data.
Institute of Scientific and Technical Information of China (English)
LUO Jiao; LI MiaoQuan; LI XiaoLi
2008-01-01
There exists an interaction between microstructural evolution and deformation behavior in high temperature deformation of titanium alloys. And the microstruc-ture of titanium alloys is very sensitive to the process parameters of plastic de-formation process. In this paper, on the basis of plastic deformation mechanism of metals and alloys, a microstructural model including dislocation density rate equa-tion and grain growth rate equation is established with the dislocation density rate being an internal state variable. Applying the model to the high temperature de-formation process of Ti60 titanium alloy, the average relative errors of grain sizes between the experiments and the predictions are 9.47% for sampled data, and 13.01% for non-sampled data.
Sea Ice Trends in the AO-UMUKCA model: Interplay of Forcing and Internal Variability
Jrrar, Amna; Abraham, Luke; Holland, David; Pyle, John
2016-04-01
While Arctic Sea is showing a declining trend particularly in summer. Antarctic sea is showing a modest increase, a very controversial observation in a warming climate. Several studies have attributed these changes to internal variability. Hence in this paper we investigate sea ice trends in both hemispheres as simulated in a version of the Atmosphere-Ocean coupled chemistry climate model AO-UMUKCA under two different atmospheric forcing scenarios. One simulation is a pre-industrial control, where atmospheric forcing is fixed at 1850 level. The second simulation is also a time slice experiment but forced with the year 2000 atmospheric forcing (TS2000). The model simulates a significant reduction in NH Sea Ice Extent (SIE) under the TS2000 scenario, but shows negligible difference in SH SIE between the two scenarios. In agreement with observational studies, we find that NH SIE and distribution are connected to the Arctic Oscillation and the Dipole Anomaly in both simulations, particularly in summer time. While SH winter SIE shows a high correlation with zonal wave-3 pattern and the Pacific South American mode, particularly in TS2000. Connections between SIE and oceanic modes of variability in both hemispheres are also detected. Total NH SIE shows significant correlation with Atlantic Multidecadal Oscillation (AMO) on interannual and decadal timescales, but shows significant correlation with the Inter Pacific Decadal Oscillation (IPO) on multi-decadal timescale only. However, total SH SIE shows significant correlation only with IPO on decadal and multi-decadal scales. The SIE response to oceanic modes is comparable in both simulations.
Singular vector decomposition of the internal variability of the Canadian Regional Climate Model
Energy Technology Data Exchange (ETDEWEB)
Diaconescu, Emilia Paula; Laprise, Rene [University of Quebec at Montreal (UQAM), Department of Earth and Atmospheric Sciences, Canadian Network for Regional Climate Modelling and Diagnostics, P.O. Box 8888, Montreal, QC (Canada); Centre ESCER (Etude et Simulation du Climat a l' Echelle Regionale), Montreal, QC (Canada); Zadra, Ayrton [University of Quebec at Montreal (UQAM), Department of Earth and Atmospheric Sciences, Canadian Network for Regional Climate Modelling and Diagnostics, P.O. Box 8888, Montreal, QC (Canada); Environment Canada, Meteorological Research Division, Montreal, QC (Canada); Centre ESCER (Etude et Simulation du Climat a l' Echelle Regionale), Montreal, QC (Canada)
2012-03-15
Previous studies have shown that Regional Climate Models (RCM) internal variability (IV) fluctuates in time depending on synoptic events. This study focuses on the physical understanding of episodes with rapid growth of IV. An ensemble of 21 simulations, differing only in their initial conditions, was run over North America using version 5 of the Canadian RCM (CRCM). The IV is quantified in terms of energy of CRCM perturbations with respect to a reference simulation. The working hypothesis is that IV is arising through rapidly growing perturbations developed in dynamically unstable regions. If indeed IV is triggered by the growth of unstable perturbations, a large proportion of the CRCM perturbations must project onto the most unstable singular vectors (SVs). A set of ten SVs was computed to identify the orthogonal set of perturbations that provide the maximum growth with respect to the dry total-energy norm during the course of the CRCM ensemble of simulations. CRCM perturbations were then projected onto the subspace of SVs. The analysis of one episode of rapid growth of IV is presented in detail. It is shown that a large part of the IV growth is explained by initially small-amplitude unstable perturbations represented by the ten leading SVs, the SV subspace accounting for over 70% of the CRCM IV growth in 36 h. The projection on the leading SV at final time is greater than the projection on the remaining SVs and there is a high similarity between the CRCM perturbations and the leading SV after 24-36 h tangent-linear model integration. The vertical structure of perturbations revealed that the baroclinic conversion is the dominant process in IV growth for this particular episode. (orig.)
Goosse, Hugues; Renssen, Hans; Timmermann, Axel; Bradley, Raymond S.
2005-07-01
A three-dimensional climate model was used to perform 25 simulations over the last millennium, which are driven by the main natural and anthropogenic forcing. The results are compared to available reconstructions in order to evaluate the relative contribution of internal and forced variability during this period. At hemispheric and nearly hemispheric scale, the impact of the forcing is clear in all the simulations and knowing the forced response provides already a large amount of information about the behaviour of the climate system. Besides, at regional and local scales, the forcing has only a weak contribution to the simulated variability compared to internal variability. This result could be used to refine our conception of Medieval Warm Period and Little Ice Age (MWP and LIA). They were hemispheric-scale phenomena, since the temperature averaged over the Northern Hemisphere was, respectively generally higher/lower during those periods because of a stronger/weaker external forcing at that time. Nevertheless, at local-scale, the sign of the internal temperature variations determines to what extent the forced response will be actually visible or even masked by internal noise. Because of this role of internal variability, synchronous peak temperatures during the MWP or LIA between different locations are unlikely.
Directory of Open Access Journals (Sweden)
Fazle R. Ahad
2013-01-01
Full Text Available We used a physically motivated internal state variable plasticity/damage model containing a mathematical length scale to idealize the material response in finite element simulations of a large-scale boundary value problem. The problem consists of a moving striker colliding against a stationary hazmat tank car. The motivations are (1 to reproduce with high fidelity finite deformation and temperature histories, damage, and high rate phenomena that may arise during the impact accident and (2 to address the material postbifurcation regime pathological mesh size issues. We introduce the mathematical length scale in the model by adopting a nonlocal evolution equation for the damage, as suggested by Pijaudier-Cabot and Bazant in the context of concrete. We implement this evolution equation into existing finite element subroutines of the plasticity/failure model. The results of the simulations, carried out with the aid of Abaqus/Explicit finite element code, show that the material model, accounting for temperature histories and nonlocal damage effects, satisfactorily predicts the damage progression during the tank car impact accident and significantly reduces the pathological mesh size effects.
Analysis of damage in MMC components using an internal state variable model
Arya, V. K.
1989-01-01
A metal-matrix composite (MMC) model was developed which includes the concept of damage evolution. The evolution of damage is assumed to be governed by a Kachanov-type equation. This viscoplastic damage model was implemented in the finite element code, MARC. Both uniaxial (creep) and multiaxial (an internally pressurized thick-walled cylinder) problems were analyzed using this implementation. Some preliminary results are presented which consider monotonic (constant) loadings. The creep curves including damage for four fiber orientations are presented. As expected, the minimum creep occurs when load is applied in a direction parallel to the fibers. The tangential strains at the inner radius of a thick-walled MMC-cylinder for four fiber orientations are shown with damage included. The cylinder exhibits the maximum creep resistance when the fibers are oriented in the circumferential direction, perpendicular to the axis of the cylinder. Time-to-failure for the thick-walled cylinder for the same fiber orientation angles is also shown. As expected, the life of the cylinder can be increased by orientating the fibers in the circumferential direction, perpendicular to the axis of the cylinder. The results, although qualitative, indicate that significant benefits in creep-resistance and service life can be achieved by using MMC materials as structural materials for high-temperature design.
Directory of Open Access Journals (Sweden)
T. Friedrich
2010-08-01
Full Text Available The mechanism triggering centennial-to-millennial-scale variability of the Atlantic Meridional Overturning Circulation (AMOC in the earth system model of intermediate complexity LOVECLIM is investigated. It is found that for several climate boundary conditions such as low obliquity values (~22.1° or LGM-albedo, internally generated centennial-to-millennial-scale variability occurs in the North Atlantic region. Stochastic excitations of the density-driven overturning circulation in the Nordic Seas can create regional sea-ice anomalies and a subsequent reorganization of the atmospheric circulation. The resulting remote atmospheric anomalies over the Hudson Bay can release freshwater pulses into the Labrador Sea and significantly increase snow fall in this region leading to a subsequent reduction of convective activity. The millennial-scale AMOC oscillations disappear if LGM bathymetry (with closed Hudson Bay is prescribed or if freshwater pulses are suppressed artificially. Furthermore, our study documents the process of the AMOC recovery as well as the global marine and terrestrial carbon cycle response to centennial-to-millennial-scale AMOC variability.
Use of internal variable models to predict the high temperature behaviour of a 6xxx industrial alloy
Energy Technology Data Exchange (ETDEWEB)
Gehanno, H. [Centre de Recherches du Groupe Pechiney, 38 - Voreppe (France); Brechet, Y. [Ecole Nationale Superieure d`Electrochimie et d`Electrometallurgie, 38 - Saint-Martin-d`Heres (France); Bechet, D. [Centre de Recherches du Groupe Pechiney, 38 - Voreppe (France); Louchet, F. [Ecole Nationale Superieure d`Electrochimie et d`Electrometallurgie, 38 - Saint-Martin-d`Heres (France)
1996-12-01
In this study, we have used the internal variables models in the case of an industrial 6063 alloy. The alloy has been studied in two different conditions (T5 and overaged) and at three different temperatures: 175 C, 250 C and 300 C. The microstructure of the alloy has been thoroughly studied and especially the precipitation state. Then the mechanical behaviour at high temperature has been characterised using different types of tests (creep tests, strain-rate jumps tests and tensile tests at constant strain-rate). With this method, it is possible to study the high temperature steady state behaviour over a wide range of strain-rates. We were also able to describe the transient behaviours and to predict creep curves from tensile tests data with no adjustable parameters. (orig.)
Directory of Open Access Journals (Sweden)
Francesco Oliveri
2016-01-01
Full Text Available The exploitation of second law of thermodynamics for a mixture of two fluids with a scalar internal variable and a first order nonlocal state space is achieved by using the extended Liu approach. This method requires to insert as constraints in the entropy inequality either the field equations or their gradient extensions. Consequently, the thermodynamic restrictions imposed by the entropy principle are derived without introducing extra terms neither in the energy balance equation nor in the entropy inequality.
Modeling Pacific Decadal Variability
Schneider, N.
2002-05-01
Hypotheses for decadal variability rely on the large thermal inertia of the ocean to sequester heat and provide the long memory of the climate system. Understanding decadal variability requires the study of the generation of ocean anomalies at decadal frequencies, the evolution of oceanic signals, and the response of the atmosphere to oceanic perturbations. A sample of studies relevant for Pacific decadal variability will be reviewed in this presentation. The ocean integrates air-sea flux anomalies that result from internal atmospheric variability or broad-band coupled processes such as ENSO, or are an intrinsic part of the decadal feedback loop. Anomalies of Ekman pumping lead to deflections of the ocean thermocline and accompanying changes of the ocean circulation; perturbations of surface layer heat and fresh water budgets cause anomalies of T/S characteristics of water masses. The former process leads to decadal variability due to the dynamical adjustment of the mid latitude gyres or thermocline circulation; the latter accounts for the low frequency climate variations by the slow propagation of anomalies in the thermocline from the mid-latitude outcrops to the equatorial upwelling regions. Coupled modeling studies and ocean model hindcasts suggest that the adjustment of the North Pacific gyres to variation of Ekman pumping causes low frequency variations of surface temperature in the Kuroshio-Oyashio extension region. These changes appear predictable a few years in advance, and affect the local upper ocean heat budget and precipitation. The majority of low frequency variance is explained by the ocean's response to stochastic atmospheric forcing, the additional variance explained by mid-latitude ocean to atmosphere feedbacks appears to be small. The coupling of subtropical and tropical regions by the equator-ward motion in the thermocline can support decadal anomalies by changes of its speed and path, or by transporting water mass anomalies to the equatorial
Energy Technology Data Exchange (ETDEWEB)
Stetzel, KD; Aldrich, LL; Trimboli, MS; Plett, GL
2015-03-15
This paper addresses the problem of estimating the present value of electrochemical internal variables in a lithium-ion cell in real time, using readily available measurements of cell voltage, current, and temperature. The variables that can be estimated include any desired set of reaction flux and solid and electrolyte potentials and concentrations at any set of one-dimensional spatial locations, in addition to more standard quantities such as state of charge. The method uses an extended Kalman filter along with a one-dimensional physics-based reduced-order model of cell dynamics. Simulations show excellent and robust predictions having dependable error bounds for most internal variables. (C) 2014 Elsevier B.V. All rights reserved.
Bügelmayer-Blaschek, Marianne; Roche, Didier M.; Renssen, Hans; Andrews, John T.
2016-04-01
The climate of the Holocene, the current interglacial covering the past 11,700 years, has been relatively stable compared to previous periods. Nevertheless, repeating occurrence of rapid natural climate changes that challenged human society are seen in proxy reconstructions. Ocean sediment cores for example display prominent peaks of enhanced ice rafted debris (IRD) during the Holocene with a multi-decadal to millennial scale periodicity. Different mechanisms were proposed that caused these enhanced IRD events, for example variations in the incoming total solar irradiance (TSI), volcanic eruptions and the combination of internal climate variability and external forcings. We investigate the probable mechanisms causing the occurrence of IRD-events over the past 6000 years using a fully coupled climate - ice-sheet - iceberg model (iLOVECLIM). We performed 19 experiments that differ in the applied forcings (TSI, volcanic) and the initial atmospheric conditions. To explore internal ice sheet variability one further experiment was done with fixed climate conditions. All the model runs displayed prominent peaks of enhanced iceberg melt flux (IMF), independent of the chosen experimental set-up. The spectral analysis of the experiments with the ice-sheet - climate model coupled displays significant peaks at 2000, 1000 years in all the experiments and at 500 years in most runs. The experiment with fixed climate conditions displays one significant peak of about 1500 years related to internal ice sheet variability. This frequency is modulated to 2000 and 1000 years in all the experiments with a coupled climate - ice sheet due to interactions between the climate components. We further investigate the impact of minimum TSI events on the timing and occurrence of enhanced IMF. In the experimental set-up that was forced with idealized sinusoidal TSI variations (±4 Wm-2), we find a significant occurrence of an increased iceberg melt flux about 60 years after the minimum TSI value
Models of international entrepreneurship
DEFF Research Database (Denmark)
Rask, Morten; Servais, Per
2012-01-01
on International Entrepreneurship, and specifically but not exclusively, International New Ventures (INVs). The three resulting ‘meta-models’ depict the activities and loci of such firms (Figure 1), the motivating factors that give rise to such firms (Figure 2) and their growth modalities and strategies (Figure 3......The purpose with this article is to review models used to describe and explain the establishment and development of international new ventures in order to investigate how and why international new ventures are established and developed. This article attempts an integration of extant theory......). These models reflect the merger of entrepreneurship and international business into the field of international entrepreneurship. Managers in international entrepreneurial firms and students in international business and entrepreneurship can use the models as framework for understanding international...
Models of international entrepreneurship
DEFF Research Database (Denmark)
Rask, Morten; Servais, Per
2012-01-01
). These models reflect the merger of entrepreneurship and international business into the field of international entrepreneurship. Managers in international entrepreneurial firms and students in international business and entrepreneurship can use the models as framework for understanding international......The purpose with this article is to review models used to describe and explain the establishment and development of international new ventures in order to investigate how and why international new ventures are established and developed. This article attempts an integration of extant theory...... on International Entrepreneurship, and specifically but not exclusively, International New Ventures (INVs). The three resulting ‘meta-models’ depict the activities and loci of such firms (Figure 1), the motivating factors that give rise to such firms (Figure 2) and their growth modalities and strategies (Figure 3...
Models og International Entrepreneurship
DEFF Research Database (Denmark)
Rask, Morten; Servais, Per
2015-01-01
on International Entrepreneurship, and specifically but not exclusively, International New Ventures (INVs). The three resulting ‘meta-models’ depict the activities and loci of such firms, the motivating factors that give rise to such firms and their growth modalities and strategies. These models reflect the merger......The purpose with this article is to review models used to describe and explain the establishment and development of international new ventures in order to investigate how and why international new ventures are established and developed. This article attempts an integration of extant theory...
Energy Technology Data Exchange (ETDEWEB)
Ivanova, Kristinka
2008-04-24
The purpose of this proposal is to gain a better understanding of the space-time correlations of atmospheric fluctuations in clouds through application of methods from statistical physics to high resolution, continuous data sets of cloud observations available at the Department of Energy Atmospheric Radiation Measurement Program archive. In this report we present the accomplishments achieved during the four year period. Starting with the most recent one, we report on two break-throughs in our research that make the fourth year of the project exceptionally successful and markedly outperforming the objectives. The first break-through is on characterization of the structure of cirrus radiative properties at large, intermediate and small, generating cells scales by applying the Fokker-Planck equation method and other methods to ARM millimeter wavelength radar observations collected at the Southern Great Plains site. The second break-through is that we show that different characterizations of the cirrus radiative properties are obtained for different synoptic scale environments. We outline a stochastic approach to investigate the internal structure of radiative properties of cirrus clouds based on empirical modeling and draw conclusions about cirrus dynamical properties in the context of the synoptic environment. Results on the structure of cirrus dynamical properties are consistent with the structure of cirrus based on aircraft in situ measurements, with results from ground-based Raman lidar, and with results from model studies. These achievements would not have been possible without the accomplishments from the previous years on a number of problems that involve application of methods of analysis such as the Fokker-Planck equation approach, Tsallis nonextensive statistical mechanics, detrended fluctuation analysis, and others. These include stochastic analysis of neutrally stratified cirrus layers, internal variability and turbulence in cirrus, dynamical model and
Internal solitary waves propagating through variable background hydrology and currents
Liu, Z.; Grimshaw, R.; Johnson, E.
2017-08-01
Large-amplitude, horizontally-propagating internal wave trains are commonly observed in the coastal ocean, fjords and straits. They are long nonlinear waves and hence can be modelled by equations of the Korteweg-de Vries type. However, typically they propagate through regions of variable background hydrology and currents, and over variable bottom topography. Hence a variable-coefficient Korteweg-de Vries equation is needed to model these waves. Although this equation is now well-known and heavily used, a term representing non-conservative effects, arising from dissipative or forcing terms in the underlying basic state, has usually been omitted. In particular this term arises when the hydrology varies in the horizontal direction. Our purpose in this paper is to examine the possible significance of this term. This is achieved through analysis and numerical simulations, using both a two-layer fluid model and a re-examination of previous studies of some specific ocean cases.
Modeling Shared Variables in VHDL
DEFF Research Database (Denmark)
Madsen, Jan; Brage, Jens P.
1994-01-01
A set of concurrent processes communicating through shared variables is an often used model for hardware systems. This paper presents three modeling techniques for representing such shared variables in VHDL, depending on the acceptable constraints on accesses to the variables. Also a set of guide......A set of concurrent processes communicating through shared variables is an often used model for hardware systems. This paper presents three modeling techniques for representing such shared variables in VHDL, depending on the acceptable constraints on accesses to the variables. Also a set...
Influence of internal variability on population exposure to hydroclimatic changes
Mankin, Justin S.; Viviroli, Daniel; Mekonnen, Mesfin M.; Hoekstra, Arjen Y.; Horton, Radley M.; E Smerdon, Jason; Diffenbaugh, Noah S.
2017-04-01
Future freshwater supply, human water demand, and people’s exposure to water stress are subject to multiple sources of uncertainty, including unknown future pathways of fossil fuel and water consumption, and ‘irreducible’ uncertainty arising from internal climate system variability. Such internal variability can conceal forced hydroclimatic changes on multi-decadal timescales and near-continental spatial-scales. Using three projections of population growth, a large ensemble from a single Earth system model, and assuming stationary per capita water consumption, we quantify the likelihoods of future population exposure to increased hydroclimatic deficits, which we define as the average duration and magnitude by which evapotranspiration exceeds precipitation in a basin. We calculate that by 2060, ∽31%-35% of the global population will be exposed to >50% probability of hydroclimatic deficit increases that exceed existing hydrological storage, with up to 9% of people exposed to >90% probability. However, internal variability, which is an irreducible uncertainty in climate model predictions that is under-sampled in water resource projections, creates substantial uncertainty in predicted exposure: ∽86%-91% of people will reside where irreducible uncertainty spans the potential for both increases and decreases in sub-annual water deficits. In one population scenario, changes in exposure to large hydroclimate deficits vary from -3% to +6% of global population, a range arising entirely from internal variability. The uncertainty in risk arising from irreducible uncertainty in the precise pattern of hydroclimatic change, which is typically conflated with other uncertainties in projections, is critical for climate risk management that seeks to optimize adaptations that are robust to the full set of potential real-world outcomes.
On the role of "internal variability" on soil erosion assessment
Kim, Jongho; Ivanov, Valeriy; Fatichi, Simone
2017-04-01
Empirical data demonstrate that soil loss is highly non-unique with respect to meteorological or even runoff forcing and its frequency distributions exhibit heavy tails. However, all current erosion assessments do not describe the large associated uncertainties of temporal erosion variability and make unjustified assumptions by relying on central tendencies. Thus, the predictive skill of prognostic models and reliability of national-scale assessments have been repeatedly questioned. In this study, we attempt to reveal that the high variability in soil losses can be attributed to two sources: (1) 'external variability' referring to the uncertainties originating at macro-scale, such as climate, topography, and land use, which has been extensively studied; (2) 'geomorphic internal variability' referring to the micro-scale variations of pedologic properties (e.g., surface erodibility in soils with multi-sized particles), hydrologic properties (e.g., soil structure and degree of saturation), and hydraulic properties (e.g., surface roughness and surface topography). Using data and a physical hydraulic, hydrologic, and erosion and sediment transport model, we show that the geomorphic internal variability summarized by spatio-temporal variability in surface erodibility properties is a considerable source of uncertainty in erosion estimates and represents an overlooked but vital element of geomorphic response. The conclusion is that predictive frameworks of soil erosion should embed stochastic components together with deterministic assessments, if they do not want to largely underestimate uncertainty. Acknowledgement: This study was supported by the Basic Science Research Program of the National Research Foundation of Korea funded by the Ministry of Education (2016R1D1A1B03931886).
Rainfall variability modelling in Rwanda
Nduwayezu, E.; Kanevski, M.; Jaboyedoff, M.
2012-04-01
Support to climate change adaptation is a priority in many International Organisations meetings. But is the international approach for adaptation appropriate with field reality in developing countries? In Rwanda, the main problems will be heavy rain and/or long dry season. Four rainfall seasons have been identified, corresponding to the four thermal Earth ones in the south hemisphere: the normal season (summer), the rainy season (autumn), the dry season (winter) and the normo-rainy season (spring). The spatial rainfall decreasing from West to East, especially in October (spring) and February (summer) suggests an «Atlantic monsoon influence» while the homogeneous spatial rainfall distribution suggests an «Inter-tropical front » mechanism. The torrential rainfall that occurs every year in Rwanda disturbs the circulation for many days, damages the houses and, more seriously, causes heavy losses of people. All districts are affected by bad weather (heavy rain) but the costs of such events are the highest in mountains districts. The objective of the current research is to proceed to an evaluation of the potential rainfall risk by applying advanced geospatial modelling tools in Rwanda: geostatistical predictions and simulations, machine learning algorithm (different types of neural networks) and GIS. The research will include rainfalls variability mapping and probabilistic analyses of extreme events.
MODELING SUPPLY CHAIN PERFORMANCE VARIABLES
Directory of Open Access Journals (Sweden)
Ashish Agarwal
2005-01-01
Full Text Available In order to understand the dynamic behavior of the variables that can play a major role in the performance improvement in a supply chain, a System Dynamics-based model is proposed. The model provides an effective framework for analyzing different variables affecting supply chain performance. Among different variables, a causal relationship among different variables has been identified. Variables emanating from performance measures such as gaps in customer satisfaction, cost minimization, lead-time reduction, service level improvement and quality improvement have been identified as goal-seeking loops. The proposed System Dynamics-based model analyzes the affect of dynamic behavior of variables for a period of 10 years on performance of case supply chain in auto business.
Structure and Variability of Internal Tides in Luzon Strait
2016-09-14
Sponsor ON R. (I) .2- 2,6— approval obtained yes X no Title of Parer or Presentation Structure and Variability of Internal Tides in Luzon Strait...ision, Div v Author, Code HQ-NRL 55118 (Rev. 12-98) (e) THIS FORM CANCELS AND SUPERSEDES ALL PREVIOUS VERSIONS Structure and Variability of Internal ... internal tides that radiate westward into the South China Sea and eastward into the western Pacific. Intrusions of the Kuroshio and strong mesoscale
Assessment and interpretation of internal doses: uncertainty and variability.
Paquet, F; Bailey, M R; Leggett, R W; Harrison, J D
2016-06-01
Internal doses are calculated on the basis of knowledge of intakes and/or measurements of activity in bioassay samples, typically using reference biokinetic and dosimetric models recommended by the International Commission on Radiological Protection (ICRP). These models describe the behaviour of the radionuclides after ingestion, inhalation, and absorption to the blood, and the absorption of the energy resulting from their nuclear transformations. They are intended to be used mainly for the purpose of radiological protection: that is, optimisation and demonstration of compliance with dose limits. These models and parameter values are fixed by convention and are not subject to uncertainty. Over the past few years, ICRP has devoted a considerable amount of effort to the revision and improvement of models to make them more physiologically realistic. ICRP models are now sufficiently sophisticated for calculating organ and tissue absorbed doses for scientific purposes, and in many other areas, including toxicology, pharmacology and medicine. In these specific cases, uncertainties in parameters and variability between individuals need to be taken into account.
Internal variability of a dynamically downscaled climate over North America
Wang, Jiali; Bessac, Julie; Kotamarthi, Rao; Constantinescu, Emil; Drewniak, Beth
2017-09-01
This study investigates the internal variability (IV) of a regional climate model, and considers the impacts of horizontal resolution and spectral nudging on the IV. A 16-member simulation ensemble was conducted using the Weather Research Forecasting model for three model configurations. Ensemble members included simulations at spatial resolutions of 50 and 12 km without spectral nudging and simulations at a spatial resolution of 12 km with spectral nudging. All the simulations were generated over the same domain, which covered much of North America. The degree of IV was measured as the spread between the individual members of the ensemble during the integration period. The IV of the 12 km simulation with spectral nudging was also compared with a future climate change simulation projected by the same model configuration. The variables investigated focus on precipitation and near-surface air temperature. While the IVs show a clear annual cycle with larger values in summer and smaller values in winter, the seasonal IV is smaller for a 50-km spatial resolution than for a 12-km resolution when nudging is not applied. Applying a nudging technique to the 12-km simulation reduces the IV by a factor of two, and produces smaller IV than the simulation at 50 km without nudging. Applying a nudging technique also changes the geographic distributions of IV in all examined variables. The IV is much smaller than the inter-annual variability at seasonal scales for regionally averaged temperature and precipitation. The IV is also smaller than the projected changes in air-temperature for the mid- and late twenty-first century. However, the IV is larger than the projected changes in precipitation for the mid- and late twenty-first century.
Hybrid Unifying Variable Supernetwork Model
Institute of Scientific and Technical Information of China (English)
LIU; Qiang; FANG; Jin-qing; LI; Yong
2015-01-01
In order to compare new phenomenon of topology change,evolution,hybrid ratio and network characteristics of unified hybrid network theoretical model with unified hybrid supernetwork model,this paper constructed unified hybrid variable supernetwork model(HUVSM).The first layer introduces a hybrid ratio dr,the
The propagation of internal undular bores over variable topography
Grimshaw, R.; Yuan, C.
2016-10-01
In the coastal ocean, large amplitude, horizontally propagating internal wave trains are commonly observed. These are long nonlinear waves and can be modelled by equations of the Korteweg-de Vries type. Typically they occur in regions of variable bottom topography when the variable-coefficient Korteweg-de Vries equation is an appropriate model. Of special interest is the situation when the coefficient of the quadratic nonlinear term changes sign at a certain critical point. This case has been widely studied for a solitary wave, which is extinguished at the critical point and replaced by a train of solitary waves of the opposite polarity to the incident wave, riding on a pedestal of the original polarity. Here we examine the same situation for an undular bore, represented by a modulated periodic wave train. Numerical simulations and some asymptotic analysis based on Whitham modulation equations show that the leading solitary waves in the undular bore are destroyed and replaced by a developing rarefaction wave supporting emerging solitary waves of the opposite polarity. In contrast the rear of the undular bore emerges with the same shape, but with reduced wave amplitudes, a shorter overall length scale and moves more slowly.
Decadal modulation of global surface temperature by internal climate variability
Dai, Aiguo; Fyfe, John C.; Xie, Shang-Ping; Dai, Xingang
2015-06-01
Despite a steady increase in atmospheric greenhouse gases (GHGs), global-mean surface temperature (T) has shown no discernible warming since about 2000, in sharp contrast to model simulations, which on average project strong warming. The recent slowdown in observed surface warming has been attributed to decadal cooling in the tropical Pacific, intensifying trade winds, changes in El Niño activity, increasing volcanic activity and decreasing solar irradiance. Earlier periods of arrested warming have been observed but received much less attention than the recent period, and their causes are poorly understood. Here we analyse observed and model-simulated global T fields to quantify the contributions of internal climate variability (ICV) to decadal changes in global-mean T since 1920. We show that the Interdecadal Pacific Oscillation (IPO) has been associated with large T anomalies over both ocean and land. Combined with another leading mode of ICV, the IPO explains most of the difference between observed and model-simulated rates of decadal change in global-mean T since 1920, and particularly over the so-called `hiatus' period since about 2000. We conclude that ICV, mainly through the IPO, was largely responsible for the recent slowdown, as well as for earlier slowdowns and accelerations in global-mean T since 1920, with preferred spatial patterns different from those associated with GHG-induced warming or aerosol-induced cooling. Recent history suggests that the IPO could reverse course and lead to accelerated global warming in the coming decades.
Concomitant variables in finite mixture models
Wedel, M
The standard mixture model, the concomitant variable mixture model, the mixture regression model and the concomitant variable mixture regression model all enable simultaneous identification and description of groups of observations. This study reviews the different ways in which dependencies among
Zheng, Xiao-Tong; Hui, Chang; Yeh, Sang-Wook
2017-08-01
El Niño-Southern Oscillation (ENSO) is the dominant mode of variability in the coupled ocean-atmospheric system. Future projections of ENSO change under global warming are highly uncertain among models. In this study, the effect of internal variability on ENSO amplitude change in future climate projections is investigated based on a 40-member ensemble from the Community Earth System Model Large Ensemble (CESM-LE) project. A large uncertainty is identified among ensemble members due to internal variability. The inter-member diversity is associated with a zonal dipole pattern of sea surface temperature (SST) change in the mean along the equator, which is similar to the second empirical orthogonal function (EOF) mode of tropical Pacific decadal variability (TPDV) in the unforced control simulation. The uncertainty in CESM-LE is comparable in magnitude to that among models of the Coupled Model Intercomparison Project phase 5 (CMIP5), suggesting the contribution of internal variability to the intermodel uncertainty in ENSO amplitude change. However, the causations between changes in ENSO amplitude and the mean state are distinct between CESM-LE and CMIP5 ensemble. The CESM-LE results indicate that a large ensemble of 15 members is needed to separate the relative contributions to ENSO amplitude change over the twenty-first century between forced response and internal variability.
Internal modes of multidecadal variability in the Arctic Ocean
L. M. Frankcombe; H. A. Dijkstra
2010-01-01
Observations of sea ice extent and atmospheric temperature in the Arctic, although sparse, indicate variability on multidecadal time scales. A recent analysis of one of the global climate models [the Geophysical Fluid Dynamics Laboratory Climate Model, version 2.1 (CM2.1)] in the Fourth Assessment Report (AR4) of the Intergovernmental Panel on Climate Change has indicated that Arctic Ocean variability on these time scales is associated with changes in basin-wide salinity patterns. In this pap...
International Consensus Document (ICON): Common Variable Immunodeficiency Disorders
Bonilla, Francisco A.; Barlan, Isil; Chapel, Helen; Costa-Carvalho, Beatriz T.; Cunningham-Rundles, Charlotte; de la Morena, M. Teresa; Espinosa-Rosales, Francisco J.; Hammarström, Lennart; Nonoyama, Shigeaki; Quinti, Isabella; Routes, John M.; Tang, Mimi L.K.; Warnatz, Klaus
2016-01-01
The International Collaboration in Asthma, Allergy and Immunology initiated an international coalition among the American Academy of Allergy, Asthma & Immunology; the European Academy of Allergy and Clinical Immunology; the World Allergy Organization; and the American College of Allergy, Asthma & Immunology on common variable immunodeficiency. An author group was formed and then divided into individual committees. Within the committee, teams of authors were subgrouped to generate content for specific sections of the document. Content was derived from literature searches, relevant published guidelines, and clinical experience. After a draft of the document was assembled, it was collectively reviewed and revised by the authors. Where evidence was lacking or conflicting, the information presented represents the consensus expert opinion of the group. The full document was then independently reviewed by 5 international experts in the field, none of whom was among the authors of the original. The comments of these reviewers were incorporated before submission for publication. PMID:26563668
The International Space University's variable gravity research facility design
Bailey, Sheila G.; Chiaramonte, Francis P.; Davidian, Kenneth J.
1991-01-01
A manned mission to Mars will require long travel times between Earth and Mars. However, exposure to long-duration zero gravity is known to be harmful to the human body. Some of the harmful effects are loss of heart and lung capacity, inability to stand upright, muscular weakness and loss of bone calcium. A variable gravity research facility (VGRF) that would be placed in low Earth orbit (LEO) was designed by students of the International Space University 1989 Summer Session held in Strasbourg, France, to provide a testbed for conducting experiments in the life and physical sciences in preparation for a mission to Mars. This design exercise was unique because it addressed all aspects concerning a large space project. The VGRF design was described which was developed by international participants specializing in the following areas: the politics of international cooperation, engineering, architecture, in-space physiology, material and life science experimentation, data communications, business, and management.
Internal modes of multidecadal variability in the Arctic Ocean
Frankcombe, L.M.; Dijkstra, H.A.
2010-01-01
Observations of sea ice extent and atmospheric temperature in the Arctic, although sparse, indicate variability on multidecadal time scales. A recent analysis of one of the global climate models [the Geophysical Fluid Dynamics Laboratory Climate Model, version 2.1 (CM2.1)] in the Fourth Assessment R
A Model for International Relations
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
Since the end of the Cold War, the new international environment has required a new model of relationship between major countries. The basis of the new relations is to safeguard one's own national interests while respecting the national interests of the other country. The process of establishing such rela-
Directory of Open Access Journals (Sweden)
J. J. Gómez-Navarro
2011-08-01
Full Text Available In this study we analyse the role of internal variability in regional climate simulations through a comparison of two regional paleoclimate simulations for the last millennium. They share the same external forcings and model configuration, differing only in the initial condition used to run the driving global model simulation. A comparison of these simulations allows us to study the role of internal variability in climate models at regional scales, and how it affects the long-term evolution of climate variables such as temperature and precipitation. The results indicate that, although temperature is homogeneously sensitive to the effect of external forcings, the evolution of precipitation is more strongly governed by random and unpredictable internal dynamics. There are, however, some areas where the role of internal variability is lower than expected, allowing precipitation to respond to the external forcings, and we explore the underlying physical mechanisms responsible. We find that special attention should be paid when comparing the evolution of simulated precipitation with proxy reconstructions at regional scales. In particular, this study identifies areas, depending on the season, in which this comparison would be meaningful, but also other areas where good agreement between model simulations and reconstructions should not be expected even if both are perfect.
Limited dependent variable models for panel data
Charlier, E.
1997-01-01
Many economic phenomena require limited variable models for an appropriate treatment. In addition, panel data models allow the inclusion of unobserved individual-specific effects. These models are combined in this thesis. Distributional assumptions in the limited dependent variable models are
BEYOND SEM: GENERAL LATENT VARIABLE MODELING
National Research Council Canada - National Science Library
Muthén, Bengt O
2002-01-01
This article gives an overview of statistical analysis with latent variables. Using traditional structural equation modeling as a starting point, it shows how the idea of latent variables captures a wide variety of statistical concepts...
Imbers, Jara
2014-05-01
The Intergovernmental Panel on Climate Change\\'s (IPCC) "very likely" statement that anthropogenic emissions are affecting climate is based on a statistical detection and attribution methodology that strongly depends on the characterization of internal climate variability. In this paper, the authors test the robustness of this statement in the case of global mean surface air temperature, under different representations of such variability. The contributions of the different natural and anthropogenic forcings to the global mean surface air temperature response are computed using a box diffusion model. Representations of internal climate variability are explored using simple stochastic models that nevertheless span a representative range of plausible temporal autocorrelation structures, including the short-memory first-order autoregressive [AR(1)] process and the long-memory fractionally differencing process. The authors find that, independently of the representation chosen, the greenhouse gas signal remains statistically significant under the detection model employed in this paper. The results support the robustness of the IPCC detection and attribution statement for global mean temperature change under different characterizations of internal variability, but they also suggest that a wider variety of robustness tests, other than simple comparisons of residual variance, should be performed when dealing with other climate variables and/or different spatial scales. © 2014 American Meteorological Society.
Cardinality-dependent Variability in Orthogonal Variability Models
DEFF Research Database (Denmark)
Mærsk-Møller, Hans Martin; Jørgensen, Bo Nørregaard
2012-01-01
During our work on developing and running a software product line for eco-sustainable greenhouse-production software tools, which currently have three products members we have identified a need for extending the notation of the Orthogonal Variability Model (OVM) to support what we refer to as car......During our work on developing and running a software product line for eco-sustainable greenhouse-production software tools, which currently have three products members we have identified a need for extending the notation of the Orthogonal Variability Model (OVM) to support what we refer...
Dispersive internal long wave models
Energy Technology Data Exchange (ETDEWEB)
Camassa, R.; Choi, W.; Holm, D.D. [Los Alamos National Lab., NM (United States); Levermore, C.D.; Lvov, Y. [Univ. of Arizona, Tucson, AZ (United States)
1998-11-01
This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). This work is a joint analytical and numerical study of internal dispersive water wave propagation in a stratified two-layer fluid, a problem that has important geophysical fluid dynamics applications. Two-layer models can capture the main density-dependent effects because they can support, unlike homogeneous fluid models, the observed large amplitude internal wave motion at the interface between layers. The authors have derived new model equations using multiscale asymptotics in combination with the method they have developed for vertically averaging velocity and vorticity fields across fluid layers within the original Euler equations. The authors have found new exact conservation laws for layer-mean vorticity that have exact counterparts in the models. With this approach, they have derived a class of equations that retain the full nonlinearity of the original Euler equations while preserving the simplicity of known weakly nonlinear models, thus providing the theoretical foundation for experimental results so far unexplained.
Brese, Falk; Jung, Michael; Mirazchiyski, Plamen; Schulz, Wolfram; Zuehlke, Olaf
2011-01-01
This supplement contains documentation on all the derived variables contained in the International Civic and Citizenship Education Study (ICCS) 2009 data files that are based on survey variables. These variables were used to report data in the ICCS 2009 international reports, and are made available as part of the ICCS 2009 International Database…
Variable Fidelity Aeroelastic Toolkit - Structural Model Project
National Aeronautics and Space Administration — The proposed innovation is a methodology to incorporate variable fidelity structural models into steady and unsteady aeroelastic and aeroservoelastic analyses in...
Modeling the internal combustion engine
Zeleznik, F. J.; Mcbride, B. J.
1985-01-01
A flexible and computationally economical model of the internal combustion engine was developed for use on large digital computer systems. It is based on a system of ordinary differential equations for cylinder-averaged properties. The computer program is capable of multicycle calculations, with some parameters varying from cycle to cycle, and has restart capabilities. It can accommodate a broad spectrum of reactants, permits changes in physical properties, and offers a wide selection of alternative modeling functions without any reprogramming. It readily adapts to the amount of information available in a particular case because the model is in fact a hierarchy of five models. The models range from a simple model requiring only thermodynamic properties to a complex model demanding full combustion kinetics, transport properties, and poppet valve flow characteristics. Among its many features the model includes heat transfer, valve timing, supercharging, motoring, finite burning rates, cycle-to-cycle variations in air-fuel ratio, humid air, residual and recirculated exhaust gas, and full combustion kinetics.
Handbook of latent variable and related models
Lee, Sik-Yum
2011-01-01
This Handbook covers latent variable models, which are a flexible class of models for modeling multivariate data to explore relationships among observed and latent variables.- Covers a wide class of important models- Models and statistical methods described provide tools for analyzing a wide spectrum of complicated data- Includes illustrative examples with real data sets from business, education, medicine, public health and sociology.- Demonstrates the use of a wide variety of statistical, computational, and mathematical techniques.
A Core Language for Separate Variability Modeling
DEFF Research Database (Denmark)
Iosif-Lazăr, Alexandru Florin; Wasowski, Andrzej; Schaefer, Ina
2014-01-01
Separate variability modeling adds variability to a modeling language without requiring modifications of the language or the supporting tools. We define a core language for separate variability modeling using a single kind of variation point to define transformations of software artifacts in object...... hierarchical dependencies between variation points via copying and flattening. Thus, we reduce a model with intricate dependencies to a flat executable model transformation consisting of simple unconditional local variation points. The core semantics is extremely concise: it boils down to two operational rules...
Experimental falsification of Leggett's nonlocal variable model.
Branciard, Cyril; Ling, Alexander; Gisin, Nicolas; Kurtsiefer, Christian; Lamas-Linares, Antia; Scarani, Valerio
2007-11-23
Bell's theorem guarantees that no model based on local variables can reproduce quantum correlations. Also, some models based on nonlocal variables, if subject to apparently "reasonable" constraints, may fail to reproduce quantum physics. In this Letter, we introduce a family of inequalities, which use a finite number of measurement settings, and which therefore allow testing Leggett's nonlocal model versus quantum physics. Our experimental data falsify Leggett's model and are in agreement with quantum predictions.
Decision variables analysis for structured modeling
Institute of Scientific and Technical Information of China (English)
潘启树; 赫东波; 张洁; 胡运权
2002-01-01
Structured modeling is the most commonly used modeling method, but it is not quite addaptive to significant changes in environmental conditions. Therefore, Decision Variables Analysis(DVA), a new modelling method is proposed to deal with linear programming modeling and changing environments. In variant linear programming , the most complicated relationships are those among decision variables. DVA classifies the decision variables into different levels using different index sets, and divides a model into different elements so that any change can only have its effect on part of the whole model. DVA takes into consideration the complicated relationships among decision variables at different levels, and can therefore sucessfully solve any modeling problem in dramatically changing environments.
Using Enthalpy as a Prognostic Variable in Atmospheric Modelling with Variable Composition
2016-04-14
tories, and the equation of state p = ∑ i pi = ∑ i ρiRiT = ρRT . (4) Here Ri = kB/mi are individual gas constants for each species and kB is the...relation between the mass, pressure, and temperature fields via the equation of state (4). The use of virtual temperature in Equation (11) implies that...internal energy equation as a convenient prognostic thermodynamic variable for atmospheric modelling with variable composition, including models of
Internal shock model for Microquasars
Kaiser, C R; Spruit, H C; Kaiser, Christian R.; Sunyaev, Rashid; Spruit, Henk C.
2000-01-01
We present a model for the radio outbursts of microquasars based on the assumption of quasi-continuous jet ejection. The jets are `lit up' by shock fronts traveling along the jets during outbursts. The observed comparatively flat decay light curves combined with gradually steepening spectral slopes are explained by a superposition of the radiation of the aging relativistic particle population left behind by the shocks. This scenario is the low energy, time-resolved equivalent to the internal shock model for GRBs. We show that this model predicts energy contents of the radiating plasma similar to the plasmon model. At the same time, the jet model relaxes the severe requirements on the central source in terms of the rate at which this energy must be supplied to the jet. Observations of `mini-bursts' with flat spectral slopes and of infrared emission far from the source centre suggest two different states of jet ejections: (i) A `mini-burst' mode with relatively stable jet production and weak radio emission with...
Generalized latent variable modeling multilevel, longitudinal, and structural equation models
Skrondal, Anders
2004-01-01
METHODOLOGY THE OMNI-PRESENCE OF LATENT VARIABLES Introduction 'True' variable measured with error Hypothetical constructs Unobserved heterogeneity Missing values and counterfactuals Latent responses Generating flexible distributions Combining information Summary MODELING DIFFERENT RESPONSE PROCESSES Introduction Generalized linear models Extensions of generalized linear models Latent response formulation Modeling durations or survival Summary and further reading CLASSICAL LATENT VARIABLE MODELS Introduction Multilevel regression models Factor models and item respons
Effect of Flux Adjustments on Temperature Variability in Climate Models
Energy Technology Data Exchange (ETDEWEB)
Duffy, P.; Bell, J.; Covey, C.; Sloan, L.
1999-12-27
It has been suggested that ''flux adjustments'' in climate models suppress simulated temperature variability. If true, this might invalidate the conclusion that at least some of observed temperature increases since 1860 are anthropogenic, since this conclusion is based in part on estimates of natural temperature variability derived from flux-adjusted models. We assess variability of surface air temperatures in 17 simulations of internal temperature variability submitted to the Coupled Model Intercomparison Project. By comparing variability in flux-adjusted vs. non-flux adjusted simulations, we find no evidence that flux adjustments suppress temperature variability in climate models; other, largely unknown, factors are much more important in determining simulated temperature variability. Therefore the conclusion that at least some of observed temperature increases are anthropogenic cannot be questioned on the grounds that it is based in part on results of flux-adjusted models. Also, reducing or eliminating flux adjustments would probably do little to improve simulations of temperature variability.
A Non-Gaussian Spatial Generalized Linear Latent Variable Model
Irincheeva, Irina
2012-08-03
We consider a spatial generalized linear latent variable model with and without normality distributional assumption on the latent variables. When the latent variables are assumed to be multivariate normal, we apply a Laplace approximation. To relax the assumption of marginal normality in favor of a mixture of normals, we construct a multivariate density with Gaussian spatial dependence and given multivariate margins. We use the pairwise likelihood to estimate the corresponding spatial generalized linear latent variable model. The properties of the resulting estimators are explored by simulations. In the analysis of an air pollution data set the proposed methodology uncovers weather conditions to be a more important source of variability than air pollution in explaining all the causes of non-accidental mortality excluding accidents. © 2012 International Biometric Society.
Random Effect and Latent Variable Model Selection
Dunson, David B
2008-01-01
Presents various methods for accommodating model uncertainty in random effects and latent variable models. This book focuses on frequentist likelihood ratio and score tests for zero variance components. It also focuses on Bayesian methods for random effects selection in linear mixed effects and generalized linear mixed models
Sampling Weights in Latent Variable Modeling
Asparouhov, Tihomir
2005-01-01
This article reviews several basic statistical tools needed for modeling data with sampling weights that are implemented in Mplus Version 3. These tools are illustrated in simulation studies for several latent variable models including factor analysis with continuous and categorical indicators, latent class analysis, and growth models. The…
THE INTERNAL CONTROL MODELS IN ROMANIA
2015-01-01
Internal control is indissolubly linked to business and accounting. Throughout history, domestic and international trade has grown exponentially, which has led to an increasing complexity of internal control, to new methods and techniques to control the business. The literature has presented the first models of internal control in the Sumerian period (3600 - 3200 BC), and the emergence and development of internal control in Egypt, Persia, Greek and Roman Empire, in the Middle Ages...
THE INTERNAL CONTROL MODELS IN ROMANIA
TEODORESCU CRISTIAN DRAGOS
2015-01-01
Internal control is indissolubly linked to business and accounting. Throughout history, domestic and international trade has grown exponentially, which has led to an increasing complexity of internal control, to new methods and techniques to control the business. The literature has presented the first models of internal control in the Sumerian period (3600 - 3200 BC), and the emergence and development of internal control in Egypt, Persia, Greek and Roman Empire, in the Middle Ages till modern...
A Model for Positively Correlated Count Variables
DEFF Research Database (Denmark)
Møller, Jesper; Rubak, Ege Holger
2010-01-01
An α-permanental random field is briefly speaking a model for a collection of non-negative integer valued random variables with positive associations. Though such models possess many appealing probabilistic properties, many statisticians seem unaware of α-permanental random fields and their poten......An α-permanental random field is briefly speaking a model for a collection of non-negative integer valued random variables with positive associations. Though such models possess many appealing probabilistic properties, many statisticians seem unaware of α-permanental random fields...
THE INTERNAL CONTROL MODELS IN ROMANIA
Directory of Open Access Journals (Sweden)
TEODORESCU CRISTIAN DRAGOȘ
2015-06-01
Full Text Available Internal control is indissolubly linked to business and accounting. Throughout history, domestic and international trade has grown exponentially, which has led to an increasing complexity of internal control, to new methods and techniques to control the business. The literature has presented the first models of internal control in the Sumerian period (3600 - 3200 BC, and the emergence and development of internal control in Egypt, Persia, Greek and Roman Empire, in the Middle Ages till modern times. The purpose of this article is to present the models of internal control in Romania, starting from the principles of the classical model of internal control (COSO model. For a better understanding of the implication of internal control in terms of public and private sector, I have structured the article in the following parts: (a the definition of internal control in the literature; (b the presentation of the COSO model; (c internal control and internal audit in public institutions; (d internal control issues in accounting regulations on the individual and consolidated annual financial statements; (e internal / managerial control; (f conclusions.
Integrating models that depend on variable data
Banks, A. T.; Hill, M. C.
2016-12-01
Models of human-Earth systems are often developed with the goal of predicting the behavior of one or more dependent variables from multiple independent variables, processes, and parameters. Often dependent variable values range over many orders of magnitude, which complicates evaluation of the fit of the dependent variable values to observations. Many metrics and optimization methods have been proposed to address dependent variable variability, with little consensus being achieved. In this work, we evaluate two such methods: log transformation (based on the dependent variable being log-normally distributed with a constant variance) and error-based weighting (based on a multi-normal distribution with variances that tend to increase as the dependent variable value increases). Error-based weighting has the advantage of encouraging model users to carefully consider data errors, such as measurement and epistemic errors, while log-transformations can be a black box for typical users. Placing the log-transformation into the statistical perspective of error-based weighting has not formerly been considered, to the best of our knowledge. To make the evaluation as clear and reproducible as possible, we use multiple linear regression (MLR). Simulations are conducted with MatLab. The example represents stream transport of nitrogen with up to eight independent variables. The single dependent variable in our example has values that range over 4 orders of magnitude. Results are applicable to any problem for which individual or multiple data types produce a large range of dependent variable values. For this problem, the log transformation produced good model fit, while some formulations of error-based weighting worked poorly. Results support previous suggestions fthat error-based weighting derived from a constant coefficient of variation overemphasizes low values and degrades model fit to high values. Applying larger weights to the high values is inconsistent with the log
Intern Performance in Three Supervisory Models
Womack, Sid T.; Hanna, Shellie L.; Callaway, Rebecca; Woodall, Peggy
2011-01-01
Differences in intern performance, as measured by a Praxis III-similar instrument were found between interns supervised in three supervisory models: Traditional triad model, cohort model, and distance supervision. Candidates in this study's particular form of distance supervision were not as effective as teachers as candidates in traditional-triad…
First International Workshop on Variability in Software Architecture (VARSA 2011)
Galster, Matthias; Avgeriou, Paris; Weyns, Danny; Mannisto, Tomi
2011-01-01
Variability is the ability of a software artifact to be changed for a specific context. Mechanisms to accommodate variability include software product lines, configuration wizards and tools in commercial software, configuration interfaces of software components, or the dynamic runtime composition of
Second International Workshop on Variability in Software Architecture
Galster, Matthias; Avgeriou, Paris; Weyns, Danny; Becker, Martin
2012-01-01
Variability is the ability of a software system or artifact to be adapted for specific contexts, in a preplanned manner. Many of today's software systems are built with variability in mind, e.g., product lines and families, self-adaptive systems, open platforms, or service-based systems that support
First International Workshop on Variability in Software Architecture (VARSA 2011)
Galster, Matthias; Avgeriou, Paris; Weyns, Danny; Männistö, Tomi
2011-01-01
Variability is the ability of a software artifact to be changed for a specific context. Mechanisms to accommodate variability include software product lines, configuration wizards and tools in commercial software, configuration interfaces of software components, or the dynamic runtime composition of
Gait variability: methods, modeling and meaning
Directory of Open Access Journals (Sweden)
Hausdorff Jeffrey M
2005-07-01
Full Text Available Abstract The study of gait variability, the stride-to-stride fluctuations in walking, offers a complementary way of quantifying locomotion and its changes with aging and disease as well as a means of monitoring the effects of therapeutic interventions and rehabilitation. Previous work has suggested that measures of gait variability may be more closely related to falls, a serious consequence of many gait disorders, than are measures based on the mean values of other walking parameters. The Current JNER series presents nine reports on the results of recent investigations into gait variability. One novel method for collecting unconstrained, ambulatory data is reviewed, and a primer on analysis methods is presented along with a heuristic approach to summarizing variability measures. In addition, the first studies of gait variability in animal models of neurodegenerative disease are described, as is a mathematical model of human walking that characterizes certain complex (multifractal features of the motor control's pattern generator. Another investigation demonstrates that, whereas both healthy older controls and patients with a higher-level gait disorder walk more slowly in reduced lighting, only the latter's stride variability increases. Studies of the effects of dual tasks suggest that the regulation of the stride-to-stride fluctuations in stride width and stride time may be influenced by attention loading and may require cognitive input. Finally, a report of gait variability in over 500 subjects, probably the largest study of this kind, suggests how step width variability may relate to fall risk. Together, these studies provide new insights into the factors that regulate the stride-to-stride fluctuations in walking and pave the way for expanded research into the control of gait and the practical application of measures of gait variability in the clinical setting.
The role of internal variability for decadal carbon uptake anomalies in the Southern Ocean
Spring, Aaron; Hi, Hongmei; Ilyina, Tatiana
2017-04-01
The Southern Ocean is a major sink for anthropogenic CO2 emissions and hence it plays an essential role in modulating global carbon cycle and climate change. Previous studies based on observations (e.g., Landschützer et al. 2015) show pronounced decadal variations of carbon uptake in the Southern Ocean in recent decades and this variability is largely driven by internal climate variability. However, due to limited ensemble size of simulations, the variability of this important ocean sink is still poorly assessed by the state-of-the-art earth system models (ESMs). To assess the internal variability of carbon sink in the Southern Ocean, we use a large ensemble of 100 member simulations based on the Max Planck Institute-ESM (MPI-ESM). The large ensemble of simulations is generated via perturbed initial conditions in the ocean and atmosphere. Each ensemble member includes a historical simulation from 1850 to 2005 with an extension until 2100 under Representative Concentration Pathway (RCP) 4.5 future projections. Here we use model simulations from 1980-2015 to compare with available observation-based dataset. We found several ensemble members showing decadal decreasing trends in the carbon sink, which are similar to the trend shown in observations. This result suggests that MPI-ESM large ensemble simulations are able to reproduce decadal variation of carbon sink in the Southern Ocean. Moreover, the decreasing trends of Southern Ocean carbon sink in MPI-ESM are mainly contributed by region between 50-60°S. To understand the internal variability of the air-sea carbon fluxes in the Southern Ocean, we further investigate the variability of underlying processes, such as physical climate variability and ocean biological processes. Our results indicate two main drivers for the decadal decreasing trend of carbon sink: i) Intensified winds enhance upwelling of old carbon-rich waters, this leads to increase of the ocean surface pCO2; ii) Primary production is reduced in area
Gaussian mixture model of heart rate variability.
Directory of Open Access Journals (Sweden)
Tommaso Costa
Full Text Available Heart rate variability (HRV is an important measure of sympathetic and parasympathetic functions of the autonomic nervous system and a key indicator of cardiovascular condition. This paper proposes a novel method to investigate HRV, namely by modelling it as a linear combination of Gaussians. Results show that three Gaussians are enough to describe the stationary statistics of heart variability and to provide a straightforward interpretation of the HRV power spectrum. Comparisons have been made also with synthetic data generated from different physiologically based models showing the plausibility of the Gaussian mixture parameters.
Bayesian variable selection for latent class models.
Ghosh, Joyee; Herring, Amy H; Siega-Riz, Anna Maria
2011-09-01
In this article, we develop a latent class model with class probabilities that depend on subject-specific covariates. One of our major goals is to identify important predictors of latent classes. We consider methodology that allows estimation of latent classes while allowing for variable selection uncertainty. We propose a Bayesian variable selection approach and implement a stochastic search Gibbs sampler for posterior computation to obtain model-averaged estimates of quantities of interest such as marginal inclusion probabilities of predictors. Our methods are illustrated through simulation studies and application to data on weight gain during pregnancy, where it is of interest to identify important predictors of latent weight gain classes.
Makedonska, Nataliia; Hyman, Jeffrey D.; Karra, Satish; Painter, Scott L.; Gable, Carl W.; Viswanathan, Hari S.
2016-08-01
The apertures of natural fractures in fractured rock are highly heterogeneous. However, in-fracture aperture variability is often neglected in flow and transport modeling and individual fractures are assumed to have uniform aperture distribution. The relative importance of in-fracture variability in flow and transport modeling within kilometer-scale field-scale fracture networks has been under a matter of debate for a long time because the flow in each single fracture is controlled not only by in-fracture variability but also by boundary conditions. Computational limitations have previously prohibited researchers from investigating the relative importance of in-fracture variability in flow and transport modeling within large-scale fracture networks. We address this question by incorporating internal heterogeneity of individual fractures into flow simulations within kilometer scale three-dimensional fracture networks, where fracture intensity, P32 (ratio between total fracture area and domain volume) is between 0.027 and 0.031 [1/m]. A recently developed discrete fracture network (DFN) simulation capability, dfnWorks, is used to generate DFNs that include in-fracture aperture variability represented by a stationary log-normal stochastic field with various correlation lengths and variances. The Lagrangian transport parameters, non-reacting travel time and cumulative retention, are calculated along particles streamlines. It is observed that due to local flow channeling early particle travel times are more sensitive to in-fracture variability than the tails of travel time distributions, where no significant effect of the in-fracture transmissivity variations and spatial correlation length is observed.
Soluble Boltzmann equations for internal state and Maxwell models
Futcher, E.; Hoare, M.R.; Hendriks, E.M.; Ernst, M.H.
1980-01-01
We consider a class of scalar nonlinear Boltzmann equations describing the evolution of a microcanonical ensemble in which sub-systems exchange internal energy ‘randomly’ in binary interactions. In the continuous variable version these models can equally be interpreted as Boltzmann equations for Ma
Modelling variability in hospital bed occupancy.
Harrison, Gary W; Shafer, Andrea; Mackay, Mark
2005-11-01
A stochastic version of the Harrison-Millard multistage model of the flow of patients through a hospital division is developed in order to model correctly not only the average but also the variability in occupancy levels, since it is the variability that makes planning difficult and high percent occupancy levels increase the risk of frequent overflows. The model is fit to one year of data from the medical division of an acute care hospital in Adelaide, Australia. Admissions can be modeled as a Poisson process with rates varying by day of the week and by season. Methods are developed to use the entire annual occupancy profile to estimate transition rate parameters when admission rates are not constant and to estimate rate parameters that vary by day of the week and by season, which are necessary for the model variability to be as large as in the data. The final model matches well the mean, standard deviation and autocorrelation function of the occupancy data and also six months of data not used to estimate the parameters. Repeated simulations are used to construct percentiles of the daily occupancy distributions and thus identify ranges of normal fluctuations and those that are substantive deviations from the past, and also to investigate the trade-offs between frequency of overflows and the percent occupancy for both fixed and flexible bed allocations. Larger divisions can achieve more efficient occupancy levels than smaller ones with the same frequency of overflows. Seasonal variations are more significant than day-of-the-week variations and variable discharge rates are more significant than variable admission rates in contributing to overflows.
Long-Term Internal Variability Effects on Centennial Dynamic Sea Level Projections
Hadi Bordbar, Mohammad; Martin, Thomas; Park, Wonsun; Latif, Mojib
2015-04-01
The Earth's surface is warming in response to anthropogenic emissions of greenhouse gases, especially carbon dioxide (CO2). Sea level rise is one of the most pressing aspects of global warming with far-reaching consequences for coastal societies. However, sea level rise did and will strongly vary from coast to coast. Here we investigate the long-term internal variability effects on centennial projections of dynamic sea level (DSL), the local departure from the globally averaged sea level. A large ensemble of global warming integrations was conducted with a climate model, where each ensemble member was forced by identical CO2-increase but started from different atmospheric and oceanic initial conditions taken from an unforced millennial control run. In large parts of the mid- and high latitudes, the ensemble spread of the projected centennial DSL trends is of the same order of magnitude as the globally averaged steric sea level rise, suggesting internal variability cannot be ignored when assessing 21st century DSL changes. This conclusion is also supported by analyzing projections with other climate models. The ensemble spread is strongly reduced in the mid- to high latitudes if only the atmospheric initial conditions are perturbed; suggesting uncertainty in the projected centennial DSL trends there is largely due to the lack of ocean information. Thus climate model projections of regional sea level would benefit from ocean initialization.
Internal ocean-atmosphere variability drives megadroughts in Western North America
Coats, S.; Smerdon, J. E.; Cook, B. I.; Seager, R.; Cook, E. R.; Anchukaitis, K. J.
2016-09-01
Multidecadal droughts that occurred during the Medieval Climate Anomaly represent an important target for validating the ability of climate models to adequately characterize drought risk over the near-term future. A prominent hypothesis is that these megadroughts were driven by a centuries-long radiatively forced shift in the mean state of the tropical Pacific Ocean. Here we use a novel combination of spatiotemporal tree ring reconstructions of Northern Hemisphere hydroclimate to infer the atmosphere-ocean dynamics that coincide with megadroughts over the American West and find that these features are consistently associated with 10-30 year periods of frequent cold El Niño-Southern Oscillation conditions and not a centuries-long shift in the mean of the tropical Pacific Ocean. These results suggest an important role for internal variability in driving past megadroughts. State-of-the-art climate models from the Coupled Model Intercomparison Project Phase 5, however, do not simulate a consistent association between megadroughts and internal variability of the tropical Pacific Ocean, with implications for our confidence in megadrought risk projections.
Interpolation of climate variables and temperature modeling
Samanta, Sailesh; Pal, Dilip Kumar; Lohar, Debasish; Pal, Babita
2012-01-01
Geographic Information Systems (GIS) and modeling are becoming powerful tools in agricultural research and natural resource management. This study proposes an empirical methodology for modeling and mapping of the monthly and annual air temperature using remote sensing and GIS techniques. The study area is Gangetic West Bengal and its neighborhood in the eastern India, where a number of weather systems occur throughout the year. Gangetic West Bengal is a region of strong heterogeneous surface with several weather disturbances. This paper also examines statistical approaches for interpolating climatic data over large regions, providing different interpolation techniques for climate variables' use in agricultural research. Three interpolation approaches, like inverse distance weighted averaging, thin-plate smoothing splines, and co-kriging are evaluated for 4° × 4° area, covering the eastern part of India. The land use/land cover, soil texture, and digital elevation model are used as the independent variables for temperature modeling. Multiple regression analysis with standard method is used to add dependent variables into regression equation. Prediction of mean temperature for monsoon season is better than winter season. Finally standard deviation errors are evaluated after comparing the predicted temperature and observed temperature of the area. For better improvement, distance from the coastline and seasonal wind pattern are stressed to be included as independent variables.
Modeling Variability in Immunocompetence and Immunoresponsiveness
Ask, B.; Waaij, van der E.H.; Bishop, S.C.
2008-01-01
The purposes of this paper were to 1) develop a stochastic model that would reflect observed variation between animals and across ages in immunocompetence and responsiveness; and 2) illustrate consequences of this variability for the statistical power of genotype comparisons and selection. A stochas
Frequency content of sea surface height variability from internal gravity waves to mesoscale eddies
Savage, Anna C.; Arbic, Brian K.; Richman, James G.; Shriver, Jay F.; Alford, Matthew H.; Buijsman, Maarten C.; Thomas Farrar, J.; Sharma, Hari; Voet, Gunnar; Wallcraft, Alan J.; Zamudio, Luis
2017-03-01
High horizontal-resolution (1/12.5° and 1/25°) 41-layer global simulations of the HYbrid Coordinate Ocean Model (HYCOM), forced by both atmospheric fields and the astronomical tidal potential, are used to construct global maps of sea surface height (SSH) variability. The HYCOM output is separated into steric and nonsteric and into subtidal, diurnal, semidiurnal, and supertidal frequency bands. The model SSH output is compared to two data sets that offer some geographical coverage and that also cover a wide range of frequencies—a set of 351 tide gauges that measure full SSH and a set of 14 in situ vertical profilers from which steric SSH can be calculated. Three of the global maps are of interest in planning for the upcoming Surface Water and Ocean Topography (SWOT) two-dimensional swath altimeter mission: (1) maps of the total and (2) nonstationary internal tidal signal (the latter calculated after removing the stationary internal tidal signal via harmonic analysis), with an average variance of 1.05 and 0.43 cm2, respectively, for the semidiurnal band, and (3) a map of the steric supertidal contributions, which are dominated by the internal gravity wave continuum, with an average variance of 0.15 cm2. Stationary internal tides (which are predictable), nonstationary internal tides (which will be harder to predict), and nontidal internal gravity waves (which will be very difficult to predict) may all be important sources of high-frequency "noise" that could mask lower frequency phenomena in SSH measurements made by the SWOT mission.
Long-term Internal Variability of the Tropical Pacific Atmosphere-Ocean System
Hadi Bordbar, Mohammad; Martin, Thomas; Park, Wonsun; Latif, Mojib
2016-04-01
The tropical Pacific has featured some remarkable trends during the recent decades such as an unprecedented strengthening of the Trade Winds, a strong cooling of sea surface temperatures (SST) in the eastern and central part, thereby slowing global warming and strengthening the zonal SST gradient, and highly asymmetric sea level trends with an accelerated rise relative to the global average in the western and a drop in the eastern part. These trends have been linked to an anomalously strong Pacific Walker Circulation, the major zonal atmospheric overturning cell in the tropical Pacific sector, but the origin of the strengthening is controversial. Here we address the question as to whether the recent decadal trends in the tropical Pacific atmosphere-ocean system are within the range of internal variability, as simulated in long unforced integrations of global climate models. We show that the recent trends are still within the range of long-term internal decadal variability. Further, such variability strengthens in response to enhanced greenhouse gas concentrations, which may further hinder detection of anthropogenic climate signals in that region.
Internal variability of the wind-driven ocean circulation
Katsman, C.A.
2001-01-01
The ocean circulation is known to vary on a multitude of time and spatial scales. Due to the large heat capacity of the oceans, variations in its circulation have a profound impact on climate. Therefore, understanding the origin of this variability and its sensitivity to physical parameters is an
Understanding and forecasting polar stratospheric variability with statistical models
Directory of Open Access Journals (Sweden)
C. Blume
2012-02-01
Full Text Available The variability of the north-polar stratospheric vortex is a prominent aspect of the middle atmosphere. This work investigates a wide class of statistical models with respect to their ability to model geopotential and temperature anomalies, representing variability in the polar stratosphere. Four partly nonstationary, nonlinear models are assessed: linear discriminant analysis (LDA; a cluster method based on finite elements (FEM-VARX; a neural network, namely a multi-layer perceptron (MLP; and support vector regression (SVR. These methods model time series by incorporating all significant external factors simultaneously, including ENSO, QBO, the solar cycle, volcanoes, etc., to then quantify their statistical importance. We show that variability in reanalysis data from 1980 to 2005 is successfully modeled. FEM-VARX and MLP even satisfactorily forecast the period from 2005 to 2011. However, internal variability remains that cannot be statistically forecasted, such as the unexpected major warming in January 2009. Finally, the statistical model with the best generalization performance is used to predict a vortex breakdown in late January, early February 2012.
Forced response and internal variability of summer climate over western North America
Kamae, Youichi; Shiogama, Hideo; Imada, Yukiko; Mori, Masato; Arakawa, Osamu; Mizuta, Ryo; Yoshida, Kohei; Takahashi, Chiharu; Arai, Miki; Ishii, Masayoshi; Watanabe, Masahiro; Kimoto, Masahide; Xie, Shang-Ping; Ueda, Hiroaki
2016-09-01
Over the past decade, anomalously hot summers and persistent droughts frequented over the western United States (wUS), the condition similar to the 1950s and 1960s. While atmospheric internal variability is important for mid-latitude interannual climate variability, it has been suggested that anthropogenic external forcing and multidecadal modes of variability in sea surface temperature, namely, the Pacific Decadal Oscillation (PDO) and Atlantic Multidecadal Oscillation (AMO), also affect the occurrence of droughts and hot summers. In this study, 100-member ensemble simulations for 1951-2010 by an atmospheric general circulation model were used to explore relative contributions of anthropogenic warming, atmospheric internal variability, and atmospheric response to PDO and AMO to the decadal anomalies over the wUS. By comparing historical and sensitivity simulations driven by observed sea surface temperature, sea ice, historical forcing agents, and non-warming counterfactual climate forcing, we found that large portions of recent increases in mean temperature and frequency of hot summers (66 and 82 %) over the wUS can be attributed to the anthropogenic global warming. In contrast, multidecadal change in the wUS precipitation is explained by a combination of the negative PDO and the positive AMO after the 2000s. Diagnostics using a linear baroclinic model indicate that AMO- and PDO-related diabatic heating anomalies over the tropics contribute to the anomalous atmospheric circulation associated with the droughts and hot summers over wUS on multidecadal timescale. Those anomalies are not robust during the periods when PDO and AMO are in phase. The prolonged PDO-AMO antiphase period since the late twentieth century resulted in the substantial component of multidecadal anomalies in temperature and precipitation over the wUS.
Computer simulations for internal dosimetry using voxel models.
Kinase, Sakae; Mohammadi, Akram; Takahashi, Masa; Saito, Kimiaki; Zankl, Maria; Kramer, Richard
2011-07-01
In the Japan Atomic Energy Agency, several studies have been conducted on the use of voxel models for internal dosimetry. Absorbed fractions (AFs) and S values have been evaluated for preclinical assessments of radiopharmaceuticals using human voxel models and a mouse voxel model. Computational calibration of in vivo measurement system has been also made using Japanese and Caucasian voxel models. In addition, for radiation protection of the environment, AFs have been evaluated using a frog voxel model. Each study was performed by using Monte Carlo simulations. Consequently, it was concluded that these data of Monte Carlo simulations and voxel models could adequately reproduce measurement results. Voxel models were found to be a significant tool for internal dosimetry since the models are anatomically realistic. This fact indicates that several studies on correction of the in vivo measurement efficiency for the variability of human subjects and interspecies scaling of organ doses will succeed.
Internal Branding Implementation: Developing a Conceptual Model
Katja Terglav; Robert Kase; Maja Konecnik Ruzzier
2012-01-01
Internal branding is the process, which enables balanced view of the brand at all company levels. Its significance is aligning values and behaviors of employees with brand values and brand promises. In the article, we focus mainly on its implementation, which requires coordination of different functions in the company, for instance, internal marketing and human resource management. Based on findings of qualitative research, we present a conceptual model of internal branding implementation. Re...
Spacecraft Internal Acoustic Environment Modeling
Chu, S. Reynold; Allen, Chris
2009-01-01
The objective of the project is to develop an acoustic modeling capability, based on commercial off-the-shelf software, to be used as a tool for oversight of the future manned Constellation vehicles. The use of such a model will help ensure compliance with acoustic requirements. Also, this project includes modeling validation and development feedback via building physical mockups and conducting acoustic measurements to compare with the predictions.
A model of international financial crises
Kaizoji, Taisei
2001-10-01
This paper proposes a model of international financial crises that is based on the statistical mechanics. In our model the international stock market is composed of two groups of traders mutually influencing each other with respect to their decision behavior, and financial contagion between markets occurs as a result of attempts by traders in the domestic market to imitate the behavior of traders who participate into exchange in a foreign market. This provides a channel through which a crisis in one market such as contemporaneous stock market crashes can be transmitted to other markets. We show that the model can explain the stylized facts characterizing periods of recent international financial crises.
Variable compression ratio device for internal combustion engine
Maloney, Ronald P.; Faletti, James J.
2004-03-23
An internal combustion engine, particularly suitable for use in a work machine, is provided with a combustion cylinder, a cylinder head at an end of the combustion cylinder and a primary piston reciprocally disposed within the combustion cylinder. The cylinder head includes a secondary cylinder and a secondary piston reciprocally disposed within the secondary cylinder. An actuator is coupled with the secondary piston for controlling the position of the secondary piston dependent upon the position of the primary piston. A communication port establishes fluid flow communication between the combustion cylinder and the secondary cylinder.
Decadal Variability of Clouds and Comparison with Climate Model Simulations
Su, H.; Shen, T. J.; Jiang, J. H.; Yung, Y. L.
2014-12-01
An apparent climate regime shift occurred around 1998/1999, when the steady increase of global-mean surface temperature appeared to hit a hiatus. Coherent decadal variations are found in atmospheric circulation and hydrological cycles. Using 30-year cloud observations from the International Satellite Cloud Climatology Project, we examine the decadal variability of clouds and associated cloud radiative effects on surface warming. Empirical Orthogonal Function analysis is performed. After removing the seasonal cycle and ENSO signal in the 30-year data, we find that the leading EOF modes clearly represent a decadal variability in cloud fraction, well correlated with the indices of Pacific Decadal Oscillation (PDO) and Atlantic Multidecadal Oscillation (AMO). The cloud radiative effects associated with decadal variations of clouds suggest a positive cloud feedback, which would reinforce the global warming hiatus by a net cloud cooling after 1998/1999. Climate model simulations driven by observed sea surface temperature are compared with satellite observed cloud decadal variability. Copyright:
International Universities: Misunderstandings and Emerging Models?
Knight, Jane
2015-01-01
Internationalization has transformed higher education institutions and systems but there is much confusion as to what an international, binational, transnational, cosmopolitan, multinational, or global university actually means. There is no standardized model for an international university, nor should there be, but a deeper understanding of…
Simple nonlinear models suggest variable star universality
Lindner, John F; Kia, Behnam; Hippke, Michael; Learned, John G; Ditto, William L
2015-01-01
Dramatically improved data from observatories like the CoRoT and Kepler spacecraft have recently facilitated nonlinear time series analysis and phenomenological modeling of variable stars, including the search for strange (aka fractal) or chaotic dynamics. We recently argued [Lindner et al., Phys. Rev. Lett. 114 (2015) 054101] that the Kepler data includes "golden" stars, whose luminosities vary quasiperiodically with two frequencies nearly in the golden ratio, and whose secondary frequencies exhibit power-law scaling with exponent near -1.5, suggesting strange nonchaotic dynamics and singular spectra. Here we use a series of phenomenological models to make plausible the connection between golden stars and fractal spectra. We thereby suggest that at least some features of variable star dynamics reflect universal nonlinear phenomena common to even simple systems.
Dissecting magnetar variability with Bayesian hierarchical models
Huppenkothen, D; Hogg, D W; Murray, I; Frean, M; Elenbaas, C; Watts, A L; Levin, Y; van der Horst, A J; Kouveliotou, C
2015-01-01
Neutron stars are a prime laboratory for testing physical processes under conditions of strong gravity, high density, and extreme magnetic fields. Among the zoo of neutron star phenomena, magnetars stand out for their bursting behaviour, ranging from extremely bright, rare giant flares to numerous, less energetic recurrent bursts. The exact trigger and emission mechanisms for these bursts are not known; favoured models involve either a crust fracture and subsequent energy release into the magnetosphere, or explosive reconnection of magnetic field lines. In the absence of a predictive model, understanding the physical processes responsible for magnetar burst variability is difficult. Here, we develop an empirical model that decomposes magnetar bursts into a superposition of small spike-like features with a simple functional form, where the number of model components is itself part of the inference problem. The cascades of spikes that we model might be formed by avalanches of reconnection, or crust rupture afte...
International Symposia on Scale Modeling
Ito, Akihiko; Nakamura, Yuji; Kuwana, Kazunori
2015-01-01
This volume thoroughly covers scale modeling and serves as the definitive source of information on scale modeling as a powerful simplifying and clarifying tool used by scientists and engineers across many disciplines. The book elucidates techniques used when it would be too expensive, or too difficult, to test a system of interest in the field. Topics addressed in the current edition include scale modeling to study weather systems, diffusion of pollution in air or water, chemical process in 3-D turbulent flow, multiphase combustion, flame propagation, biological systems, behavior of materials at nano- and micro-scales, and many more. This is an ideal book for students, both graduate and undergraduate, as well as engineers and scientists interested in the latest developments in scale modeling. This book also: Enables readers to evaluate essential and salient aspects of profoundly complex systems, mechanisms, and phenomena at scale Offers engineers and designers a new point of view, liberating creative and inno...
Towards an integrated model of international migration
Directory of Open Access Journals (Sweden)
Douglas S. MASSEY
2012-12-01
Full Text Available Demographers have yet to develop a suitable integrated model of international migration and consequently have been very poor at forecasting immigration. This paper outlines the basic elements of an integrated model and surveys recent history to suggest the key challenges to model construction. A comprehensive theory must explain the structural forces that create a supply of people prone to migrate internationally, the structural origins of labour demand in receiving countries, the motivations of those who respond to these forces by choosing to migrate internationally, the growth and structure of transnational networks that arise to support international movement, the behaviour states in response to immigrant flows, and the influence of state actions on the behaviour of migrants. Recent history suggests that a good model needs to respect the salience of markets, recognize the circularity of migrant flows, appreciate the power of feedback effects, and be alert unanticipated consequences of policy actions.
Soil internal drainage: temporal stability and spatial variability in succession bean-black oat
Salvador, M. M. S.; Libardi, P. L.; Moreira, N. B.; Sousa, H. H. F.; Neiverth, C. A.
2012-04-01
. During the period when the water flow in soil is higher, there is strong temporal stability in the depth of 0.40 m, which is the opposite for the periods of drying. The lowest relative difference and standard deviation for the internal drainage obtained during the cultivation of beans and depth of 0.40 m confirm the hypothesis that the research carried out during periods of soil water recharge have less variability than those in the drying period. Temporal stability was due to the topographic position of selected points, since the points chosen for the depth of 0.40 m in both growing seasons, are located on the lower portion of the relief, and the nominees for the depth of 0,80 m, the highest portion. There were differences in the spatial pattern of water flow in the soil along the crop succession, i.e. the seasonal demand for water by plants and evaporation from the soil at the time of drying, changed their distribution model with internal drainage phases and stages capillary rise.
Freight modelling: an overview of international experiences
Tavasszy, L.A.
2008-01-01
Compared to passenger transportation modelling, the field of freight modelling is relatively young and developing quickly into different directions all over the world. The objective of this paper is to summarize the international state of the art in freight modelling, with a focus on developments in
Spectra and fast multi-wavelength variability of compact jets powered by internal shocks
Directory of Open Access Journals (Sweden)
Malzac Julien
2013-12-01
Full Text Available The emission of steady compact jets observed in the hard spectral state of X-ray binaries is likely to be powered by internal shocks caused by fluctuations of the outflow velocity. The dynamics of the internal shocks and the resulting spectral energy distribution (SED of the jet is very sensitive to the shape of the Power Spectral Density (PSD of the fluctuations of the jet Lorentz factor. I used both Monte-Carlo simulations and semi-analytical methods to investigate this dependence. It turns out that Lorentz factor fluctuations injected at the base of the jet with a flicker noise power spectrum (i.e. P(f 1/f naturally produce the canonical flat SED observed from radio to IR band in X-ray binary systems in the hard state. This model also predicts a strong, wavelength dependent, variability that resembles the observed one. In particular, strong sub-second variability is predicted in the infrared and optical bands. The complex timing correlations observed between the IR/optical light curves and the X-rays can then be used to probe the accretion/ejection connection on short time-scales.
Spacecraft Internal Acoustic Environment Modeling
Chu, SShao-sheng R.; Allen, Christopher S.
2009-01-01
Acoustic modeling can be used to identify key noise sources, determine/analyze sub-allocated requirements, keep track of the accumulation of minor noise sources, and to predict vehicle noise levels at various stages in vehicle development, first with estimates of noise sources, later with experimental data. In FY09, the physical mockup developed in FY08, with interior geometric shape similar to Orion CM (Crew Module) IML (Interior Mode Line), was used to validate SEA (Statistical Energy Analysis) acoustic model development with realistic ventilation fan sources. The sound power levels of these sources were unknown a priori, as opposed to previous studies that RSS (Reference Sound Source) with known sound power level was used. The modeling results were evaluated based on comparisons to measurements of sound pressure levels over a wide frequency range, including the frequency range where SEA gives good results. Sound intensity measurement was performed over a rectangular-shaped grid system enclosing the ventilation fan source. Sound intensities were measured at the top, front, back, right, and left surfaces of the and system. Sound intensity at the bottom surface was not measured, but sound blocking material was placed tinder the bottom surface to reflect most of the incident sound energy back to the remaining measured surfaces. Integrating measured sound intensities over measured surfaces renders estimated sound power of the source. The reverberation time T6o of the mockup interior had been modified to match reverberation levels of ISS US Lab interior for speech frequency bands, i.e., 0.5k, 1k, 2k, 4 kHz, by attaching appropriately sized Thinsulate sound absorption material to the interior wall of the mockup. Sound absorption of Thinsulate was modeled in three methods: Sabine equation with measured mockup interior reverberation time T60, layup model based on past impedance tube testing, and layup model plus air absorption correction. The evaluation/validation was
Yang, Y.
2015-12-01
This study evaluates the relative contributions to the Indian Ocean Dipole (IOD) mode of interannual variability from the El Niño-Southern Oscillation (ENSO) forcing and ocean-atmosphere feedbacks internal to the Indian Ocean. The ENSO forcing and internal variability is extracted by conducting a 10-member coupled simulation for 1950-2012 where sea surface temperature (SST) is restored to the observed anomalies over the tropical Pacific but interactive with the atmosphere over the rest of the world ocean. In these experiments, the ensemble mean is due to ENSO forcing and the inter-member difference arises from internal variability of the climate system independent of ENSO. These elements contribute one third and two thirds of the total IOD variance, respectively. Both types of IOD variability develop into an east-west dipole pattern due to Bjerknes feedback and peak in September-November. The ENSO forced and internal IOD modes differ in several important ways. The forced IOD mode develops in August with a broad meridional pattern, and eventually evolves into the Indian Ocean Basin mode; while the internal IOD mode grows earlier in June, is more confined to the equator and decays rapidly after October. The internal IOD mode is more skewed than the ENSO forced response. The destructive interference of ENSO forcing and internal variability can explain early-terminating IOD events, referred to IOD-like perturbations that fail to grow during boreal summer. Our results have implications for predictability. Internal variability, as represented by pre-season sea surface height anomalies off Sumatra, contributes to predictability considerably. Including this indicator of internal variability, together with ENSO, improves the predictability of IOD.
Climate variability and campylobacter infection: an international study
Sari Kovats, R.; Edwards, Sally J.; Charron, Dominique; Cowden, John; D'Souza, Rennie M.; Ebi, Kristie L.; Gauci, Charmaine; Gerner-Smidt, Peter; Hajat, Shakoor; Hales, Simon; Hernández Pezzi, Gloria; Kriz, Bohumir; Kutsar, Kuulo; McKeown, Paul; Mellou, Kassiani; Menne, Bettina; O'Brien, Sarah; Pelt, Wilfrid; Schmid, Hans
2005-03-01
Campylobacter is among the most important agents of enteritis in developed countries. We have described the potential environmental determinants of the seasonal pattern of infection with campylobacter in Europe, Canada, Australia and New Zealand. Specifically, we investigated the role of climate variability on laboratory-confirmed cases of campylobacter infection from 15 populations. Regression analysis was used to quantify the associations between timing of seasonal peaks in infection in space and time. The short-term association between weekly weather and cases was also investigated using Poisson regression adapted for time series data. All countries in our study showed a distinct seasonality in campylobacter transmission, with many, but not all, populations showing a peak in spring. Countries with milder winters have peaks of infection earlier in the year. The timing of the peak of infection is weakly associated with high temperatures 3 months previously. Weekly variation in campylobacter infection in one region of the UK appeared to be little affected by short-term changes in weather patterns. The geographical variation in the timing of the seasonal peak suggests that climate may be a contributing factor to campylobacter transmission. The main driver of seasonality of campylobacter remains elusive and underscores the need to identify the major serotypes and routes of transmission for this disease.
Margaret S. Devall; Elaine K. Sutherland
2008-01-01
The 7th International Conference on Dendrochronology - Cultural Diversity, Environmental Variability was held in Beijing, China from 11 to 17 June 2006. The conference was organized and hosted by the Institute of Botany, Chinese Academy of Sciences (IB_CAS) in conjunction with the International Union of Forest Research Organizations (IUFRO) Working Group 5.01.07 (Tree-...
Sparse modeling of spatial environmental variables associated with asthma.
Chang, Timothy S; Gangnon, Ronald E; David Page, C; Buckingham, William R; Tandias, Aman; Cowan, Kelly J; Tomasallo, Carrie D; Arndt, Brian G; Hanrahan, Lawrence P; Guilbert, Theresa W
2015-02-01
Geographically distributed environmental factors influence the burden of diseases such as asthma. Our objective was to identify sparse environmental variables associated with asthma diagnosis gathered from a large electronic health record (EHR) dataset while controlling for spatial variation. An EHR dataset from the University of Wisconsin's Family Medicine, Internal Medicine and Pediatrics Departments was obtained for 199,220 patients aged 5-50years over a three-year period. Each patient's home address was geocoded to one of 3456 geographic census block groups. Over one thousand block group variables were obtained from a commercial database. We developed a Sparse Spatial Environmental Analysis (SASEA). Using this method, the environmental variables were first dimensionally reduced with sparse principal component analysis. Logistic thin plate regression spline modeling was then used to identify block group variables associated with asthma from sparse principal components. The addresses of patients from the EHR dataset were distributed throughout the majority of Wisconsin's geography. Logistic thin plate regression spline modeling captured spatial variation of asthma. Four sparse principal components identified via model selection consisted of food at home, dog ownership, household size, and disposable income variables. In rural areas, dog ownership and renter occupied housing units from significant sparse principal components were associated with asthma. Our main contribution is the incorporation of sparsity in spatial modeling. SASEA sequentially added sparse principal components to Logistic thin plate regression spline modeling. This method allowed association of geographically distributed environmental factors with asthma using EHR and environmental datasets. SASEA can be applied to other diseases with environmental risk factors.
Model-based internal wave processing
Energy Technology Data Exchange (ETDEWEB)
Candy, J.V.; Chambers, D.H.
1995-06-09
A model-based approach is proposed to solve the oceanic internal wave signal processing problem that is based on state-space representations of the normal-mode vertical velocity and plane wave horizontal velocity propagation models. It is shown that these representations can be utilized to spatially propagate the modal (dept) vertical velocity functions given the basic parameters (wave numbers, Brunt-Vaisala frequency profile etc.) developed from the solution of the associated boundary value problem as well as the horizontal velocity components. Based on this framework, investigations are made of model-based solutions to the signal enhancement problem for internal waves.
Variable structure control of nonlinear systems through simplified uncertain models
Sira-Ramirez, Hebertt
1986-01-01
A variable structure control approach is presented for the robust stabilization of feedback equivalent nonlinear systems whose proposed model lies in the same structural orbit of a linear system in Brunovsky's canonical form. An attempt to linearize exactly the nonlinear plant on the basis of the feedback control law derived for the available model results in a nonlinearly perturbed canonical system for the expanded class of possible equivalent control functions. Conservatism tends to grow as modeling errors become larger. In order to preserve the internal controllability structure of the plant, it is proposed that model simplification be carried out on the open-loop-transformed system. As an example, a controller is developed for a single link manipulator with an elastic joint.
Generalized linear models for categorical and continuous limited dependent variables
Smithson, Michael
2013-01-01
Introduction and OverviewThe Nature of Limited Dependent VariablesOverview of GLMsEstimation Methods and Model EvaluationOrganization of This BookDiscrete VariablesBinary VariablesLogistic RegressionThe Binomial GLMEstimation Methods and IssuesAnalyses in R and StataExercisesNominal Polytomous VariablesMultinomial Logit ModelConditional Logit and Choice ModelsMultinomial Processing Tree ModelsEstimation Methods and Model EvaluationAnalyses in R and StataExercisesOrdinal Categorical VariablesModeling Ordinal Variables: Common Practice versus Best PracticeOrdinal Model AlternativesCumulative Mod
Methodology Aspects of Quantifying Stochastic Climate Variability with Dynamic Models
Nuterman, Roman; Jochum, Markus; Solgaard, Anna
2015-04-01
The paleoclimatic records show that climate has changed dramatically through time. For the past few millions of years it has been oscillating between ice ages, with large parts of the continents covered with ice, and warm interglacial periods like the present one. It is commonly assumed that these glacial cycles are related to changes in insolation due to periodic changes in Earth's orbit around Sun (Milankovitch theory). However, this relationship is far from understood. The insolation changes are so small that enhancing feedbacks must be at play. It might even be that the external perturbation only plays a minor role in comparison to internal stochastic variations or internal oscillations. This claim is based on several shortcomings in the Milankovitch theory: Prior to one million years ago, the duration of the glacial cycles was indeed 41,000 years, in line with the obliquity cycle of Earth's orbit. This duration changed at the so-called Mid-Pleistocene transition to approximately 100,000 years. Moreover, according to Milankovitch's theory the interglacial of 400,000 years ago should not have happened. Thus, while prior to one million years ago the pacing of these glacial cycles may be tied to changes in Earth's orbit, we do not understand the current magnitude and phasing of the glacial cycles. In principle it is possible that the glacial/interglacial cycles are not due to variations in Earth's orbit, but due to stochastic forcing or internal modes of variability. We present a new method and preliminary results for a unified framework using a fully coupled Earth System Model (ESM), in which the leading three ice age hypotheses will be investigated together. Was the waxing and waning of ice sheets due to an internal mode of variability, due to variations in Earth's orbit, or simply due to a low-order auto-regressive process (i.e., noise integrated by system with memory)? The central idea is to use the Generalized Linear Models (GLM), which can handle both
Quantifying Numerical Model Accuracy and Variability
Montoya, L. H.; Lynett, P. J.
2015-12-01
The 2011 Tohoku tsunami event has changed the logic on how to evaluate tsunami hazard on coastal communities. Numerical models are a key component for methodologies used to estimate tsunami risk. Model predictions are essential for the development of Tsunami Hazard Assessments (THA). By better understanding model bias and uncertainties and if possible minimizing them, a more accurate and reliable THA will result. In this study we compare runup height, inundation lines and flow velocity field measurements between GeoClaw and the Method Of Splitting Tsunami (MOST) predictions in the Sendai plain. Runup elevation and average inundation distance was in general overpredicted by the models. However, both models agree relatively well with each other when predicting maximum sea surface elevation and maximum flow velocities. Furthermore, to explore the variability and uncertainties in numerical models, MOST is used to compare predictions from 4 different grid resolutions (30m, 20m, 15m and 12m). Our work shows that predictions of particular products (runup and inundation lines) do not require the use of high resolution (less than 30m) Digital Elevation Maps (DEMs). When predicting runup heights and inundation lines, numerical convergence was achieved using the 30m resolution grid. On the contrary, poor convergence was found in the flow velocity predictions, particularly the 1 meter depth maximum flow velocities. Also, runup height measurements and elevations from the DEM were used to estimate model bias. The results provided in this presentation will help understand the uncertainties in model predictions and locate possible sources of errors within a model.
Energy Technology Data Exchange (ETDEWEB)
Fatichi, S., E-mail: simone.fatichi@ifu.baug.ethz.ch; Rimkus, S.; Burlando, P.; Bordoy, R.
2014-09-15
Projections of climate change effects in streamflow are increasingly required to plan water management strategies. These projections are however largely uncertain due to the spread among climate model realizations, internal climate variability, and difficulties in transferring climate model results at the spatial and temporal scales required by catchment hydrology. A combination of a stochastic downscaling methodology and distributed hydrological modeling was used in the ACQWA project to provide projections of future streamflow (up to year 2050) for the upper Po and Rhone basins, respectively located in northern Italy and south-western Switzerland. Results suggest that internal (stochastic) climate variability is a fundamental source of uncertainty, typically comparable or larger than the projected climate change signal. Therefore, climate change effects in streamflow mean, frequency, and seasonality can be masked by natural climatic fluctuations in large parts of the analyzed regions. An exception to the overwhelming role of stochastic variability is represented by high elevation catchments fed by glaciers where streamflow is expected to be considerably reduced due to glacier retreat, with consequences appreciable in the main downstream rivers in August and September. Simulations also identify regions (west upper Rhone and Toce, Ticino river basins) where a strong precipitation increase in the February to April period projects streamflow beyond the range of natural climate variability during the melting season. This study emphasizes the importance of including internal climate variability in climate change analyses, especially when compared to the limited uncertainty that would be accounted for by few deterministic projections. The presented results could be useful in guiding more specific impact studies, although design or management decisions should be better based on reliability and vulnerability criteria as suggested by recent literature. - Highlights:
Wave resource variability: Impacts on wave power supply over regional to international scales
Smith, Helen; Fairley, Iain; Robertson, Bryson; Abusara, Mohammad; Masters, Ian
2017-04-01
The intermittent, irregular and variable nature of the wave energy resource has implications for the supply of wave-generated electricity into the grid. Intermittency of renewable power may lead to frequency and voltage fluctuations in the transmission and distribution networks. A matching supply of electricity must be planned to meet the predicted demand, leading to a need for gas-fired and back-up generating plants to supplement intermittent supplies, and potentially limiting the integration of intermittent power into the grid. Issues relating to resource intermittency and their mitigation through the development of spatially separated sites have been widely researched in the wind industry, but have received little attention to date in the less mature wave industry. This study analyses the wave resource over three different spatial scales to investigate the potential impacts of the temporal and spatial resource variability on the grid supply. The primary focus is the Southwest UK, a region already home to multiple existing and proposed wave energy test sites. Concurrent wave buoy data from six locations, supported by SWAN wave model hindcast data, are analysed to assess the correlation of the resource across the region and the variation in wave power with direction. Power matrices for theoretical nearshore and offshore devices are used to calculate the maximum step change in generated power across the region as the number of deployment sites is increased. The step change analysis is also applied across national and international spatial scales using output from the European Centre for Medium-range Weather Forecasting (ECMWF) ERA-Interim hindcast model. It is found that the deployment of multiple wave energy sites, whether on a regional, national or international scale, results in both a reduction in step changes in power and reduced times of zero generation, leading to an overall smoothing of the wave-generated electrical power. This has implications for the
Quantum Internal Model Principle: Decoherence Control
Ganesan, Narayan; 10.1109/CDC.2007.4434706
2010-01-01
In this article, we study the problem of Decoherence Control for quantum systems by employing a novel construction termed "the bait" and with techniques from geometric control theory, in order to successfully and completely decouple an open quantum system from its environment. We re-formulate the problem of Decoherence Control as a disturbance rejection scheme which also leads us to the idea of Internal Model Principle for quantum control systems which is first of its kind in the literature. Classical internal model principle provides the guidelines for designing linear controllers for perfect tracking in the presence of external disturbances, with the help of the internal model of the disturbance generator. The theory of Disturbance Decoupling of the output from external noises is another problem that is well studied for classical systems. The two problems focus on different aspects viz. perfect output tracking and complete decoupling of output in the presence of the noise respectively. However for quantum s...
VizieR Online Data Catalog: AAVSO International Variable Star Index VSX (Watson+, 2006-2014)
Watson, C.; Henden, A. A.; Price, A.
2017-03-01
This file contains Galactic stars known or suspected to be variable. It lists all stars that have an entry in the AAVSO International Variable Star Index (VSX; http://www.aavso.org/vsx). The database consisted initially of the General Catalogue of Variable Stars (GCVS) and the New Catalogue of Suspected Variables (NSV) and was then supplemented with a large number of variable star catalogues, as well as individual variable star discoveries or variables found in the literature. Effort has also been invested to update the entries with the latest information regarding position, type and period and to remove duplicates. The VSX database is being continually updated and maintained. For historical reasons some objects outside of the Galaxy have been included. (3 data files).
Kumar, Devashish
2016-01-01
Climate models are thought to solve boundary value problems unlike numerical weather prediction, which is an initial value problem. However, climate internal variability (CIV) is thought to be relatively important at near-term (0-30 year) prediction horizons, especially at higher resolutions. The recent availability of significant numbers of multi-model (MME) and multi-initial condition (MICE) ensembles allows for the first time a direct sensitivity analysis of CIV versus model response variability (MRV). Understanding the relative agreement and variability of MME and MICE ensembles for multiple regions, resolutions, and projection horizons is critical for focusing model improvements, diagnostics, and prognosis, as well as impacts, adaptation, and vulnerability studies. Here we find that CIV (MICE agreement) is lower (higher) than MRV (MME agreement) across all spatial resolutions and projection time horizons for both temperature and precipitation. However, CIV dominates MRV over higher latitudes generally an...
Hydration level is an internal variable for computing motivation to obtain water rewards in monkeys.
Minamimoto, Takafumi; Yamada, Hiroshi; Hori, Yukiko; Suhara, Tetsuya
2012-05-01
In the process of motivation to engage in a behavior, valuation of the expected outcome is comprised of not only external variables (i.e., incentives) but also internal variables (i.e., drive). However, the exact neural mechanism that integrates these variables for the computation of motivational value remains unclear. Besides, the signal of physiological needs, which serves as the primary internal variable for this computation, remains to be identified. Concerning fluid rewards, the osmolality level, one of the physiological indices for the level of thirst, may be an internal variable for valuation, since an increase in the osmolality level induces drinking behavior. Here, to examine the relationship between osmolality and the motivational value of a water reward, we repeatedly measured the blood osmolality level, while 2 monkeys continuously performed an instrumental task until they spontaneously stopped. We found that, as the total amount of water earned increased, the osmolality level progressively decreased (i.e., the hydration level increased) in an individual-dependent manner. There was a significant negative correlation between the error rate of the task (the proportion of trials with low motivation) and the osmolality level. We also found that the increase in the error rate with reward accumulation can be well explained by a formula describing the changes in the osmolality level. These results provide a biologically supported computational formula for the motivational value of a water reward that depends on the hydration level, enabling us to identify the neural mechanism that integrates internal and external variables.
Croon, Marcel A.; van Veldhoven, Marc J. P. M.
2007-01-01
In multilevel modeling, one often distinguishes between macro-micro and micro-macro situations. In a macro-micro multilevel situation, a dependent variable measured at the lower level is predicted or explained by variables measured at that lower or a higher level. In a micro-macro multilevel situation, a dependent variable defined at the higher…
Modeling variability in porescale multiphase flow experiments
Energy Technology Data Exchange (ETDEWEB)
Ling, Bowen; Bao, Jie; Oostrom, Mart; Battiato, Ilenia; Tartakovsky, Alexandre M.
2017-07-01
Microfluidic devices and porescale numerical models are commonly used to study multiphase flow in biological, geological, and engineered porous materials. In this work, we perform a set of drainage and imbibition experiments in six identical microfluidic cells to study the reproducibility of multiphase flow experiments. We observe significant variations in the experimental results, which are smaller during the drainage stage and larger during the imbibition stage. We demonstrate that these variations are due to sub-porescale geometry differences in microcells (because of manufacturing defects) and variations in the boundary condition (i.e.,fluctuations in the injection rate inherent to syringe pumps). Computational simulations are conducted using commercial software STAR-CCM+, both with constant and randomly varying injection rate. Stochastic simulations are able to capture variability in the experiments associated with the varying pump injection rate.
Modeling variability in porescale multiphase flow experiments
Ling, Bowen; Bao, Jie; Oostrom, Mart; Battiato, Ilenia; Tartakovsky, Alexandre M.
2017-07-01
Microfluidic devices and porescale numerical models are commonly used to study multiphase flow in biological, geological, and engineered porous materials. In this work, we perform a set of drainage and imbibition experiments in six identical microfluidic cells to study the reproducibility of multiphase flow experiments. We observe significant variations in the experimental results, which are smaller during the drainage stage and larger during the imbibition stage. We demonstrate that these variations are due to sub-porescale geometry differences in microcells (because of manufacturing defects) and variations in the boundary condition (i.e., fluctuations in the injection rate inherent to syringe pumps). Computational simulations are conducted using commercial software STAR-CCM+, both with constant and randomly varying injection rates. Stochastic simulations are able to capture variability in the experiments associated with the varying pump injection rate.
An internal-variable theory of thermo-viscoelastic constitutive relations at finite strain
Institute of Scientific and Technical Information of China (English)
黄筑平; 陈建康; 王文标
2000-01-01
Based on the nonequilibrium thermodynamic theory, a new thermo-viscoelastic relation at finite strain is proposed. Under the assumption that the specific heat at a fixed strain and fixed internal variables can be regarded as a constant, a new expression for the free energy which decouples the mechanical and the thermal effects is derived. Through an analysis of the mesoscopic deformation mechanism of solid polymers, a set of internal variables is introduced, and an internal-variable consti-tutive theory in thermo-viscoelasticity at finite strain is formulated. An explicit expression of a thermo-viscoelastic constitutive relation is obtained for solid polymers in the case where their molecular network has a randomly oriented distribution function at reference configuration. Moreover, the relationship be-tween the relaxation time and the temperature is also discussed. The viscoelastic constitutive theory proposed in reference is only a linear approximation of the present theory.
An internal-variable theory of thermo-viscoelastic constitutive relations at finite strain
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
Based on the nonequilibrium thermodynamic theory,a new thermo-viscoelastic relation at finite strain is proposed.Under the assumption that the specific heat at a fixed strain and fixed internal variables can be regarded as a constant,a new expression for the free energy which decouples the mechanical and the thermal effects is derived.Through an analysis of the mesoscopic deformation mechanism of solid polymers,a set of internal variables is introduced,and an internal-variable constitutive theory in thermo-viscoelasticity at finite strain is formulated.An explicit expression of a thermo-viscoelastic constitutive relation is obtained for solid polymers in the case where their molecular network has a randomly oriented distribution function at reference configuration.Moreover,the relationship between the relaxation time and the temperature is also discussed.The viscoelastic constitutive theory proposed in reference is only a linear approximation of the present theory.
Li, Qiang; Wang, Bing; Chen, Xu; Chen, Xueen; Park, Jae-Hun
2016-04-01
Long-term observations of nonlinear internal waves in the South China Sea reveal seasonal to interannual variability. During two selected segments of inverted echo sounder observations, tidal forcing in Luzon Strait is almost identical, but the observed amplitudes of nonlinear internal waves in the South China Sea are very different. The effects of the Kuroshio and mesoscale eddies, reproduced by HYbrid Cooridnate Ocean Model (HYCOM) reanalysis simulation, are then investigated. The Kuroshio can enhance the zonal tilt of the thermocline and induce intruding flow in Luzon Strait. During the two selected segments, different thermocline slopes did not significantly change the internal tide generation, but the intruding flow may result in a 11% difference in the amplitude of generated M2 internal tides. During the two selected segments, mesoscale eddies appeared on the path of internal wave propagation, a cold eddy in one case and a warm one in the other. The eddies changed local stratification and induced additional background currents, thus affecting the nonlinear evolution of internal tides. In addition, wave front steering due to the mesoscale eddies dramatically affected the observed amplitude changes of the nonlinear internal waves: the edge, rather than the center, of the nonlinear internal wave front passed through the observational stations, resulting in reduced amplitude in the observations.
Alber, Hans-Dieter
1998-01-01
This book contributes to the mathematical theory of systems of differential equations consisting of the partial differential equations resulting from conservation of mass and momentum, and of constitutive equations with internal variables. The investigations are guided by the objective of proving existence and uniqueness, and are based on the idea of transforming the internal variables and the constitutive equations. A larger number of constitutive equations from the engineering sciences are presented. The book is therefore suitable not only for specialists, but also for mathematicians seeking for an introduction in the field, and for engineers with a sound mathematical background.
Bayesian modeling of measurement error in predictor variables
Fox, Gerardus J.A.; Glas, Cornelis A.W.
2003-01-01
It is shown that measurement error in predictor variables can be modeled using item response theory (IRT). The predictor variables, that may be defined at any level of an hierarchical regression model, are treated as latent variables. The normal ogive model is used to describe the relation between
On the Temporal Variability of Low-Mode Internal Tides in the Deep Ocean
Ray, Richard D.; Zaron, E. D.
2010-01-01
In situ measurements of internal tides are typically characterized by high temporal variability, with strong dependence on stratification, mesoscale eddies, and background currents commonly observed. Thus, it is surprising to find phase-locked internal tides detectable by satellite altimetry. An important question is how much tidal variability is missed by altimetry. We address this question in several ways. We subset the altimetry by season and find only very small changes -- an important exception being internal tides in the South China Sea where we observe strong seasonal dependence. A wavenumber-domain analysis confirms that throughout most of the global ocean there is little temporal variability in altimetric internal-tide signals, at least in the first baroclinic mode, which is the mode that dominates surface elevation. The analysis shows higher order modes to be significantly more variable. The results of this study have important practical implications for the anticipated SWOT wide-swath altimeter mission, for which removal of internal tide signals is critical for observing non-tidal submesoscale phenomena.
Comparaison de deux modèles de comportement viscoplastique à variables internes
Lévêque, E.; Delobelle, P.
1994-02-01
The aim of this paper is about the comparison between two unified models with internal variables which have been established with 17-12MoSPH austenitic stainless steel experimental results. One is developed at the National Office of Aerospatial Research and Studies, the other, at the Applied Mechanical Laboratory of Besançon. The study proved their validity when applicated to a well known experimental loadings at high temperature, 500-600 °C. The two models report correctly the phenomena corresponding to classical loadings like monotonic traction, creep and cyclic hardening. However, there are important differences about transient creep and cyclic hardening under stress control. In the present state of the models, the progressive strain under uni or bidirectional loading (1D and 2D ratchet) is strongly overestimated. However, it is shown that it is possible to correctly describe the two types of progressive strain after taking into account a few modifications in the definition of the evolutionary laws for the tensorial variables of kinematical hardenings. Finally, the comparison does not allow to prefer one of the two models. Il s'agit dans cet article de comparer deux modèles viscoplastiques unifiés à variables internes établis à partir de résultats expérimentaux concernant l'acier austénitique inoxydable 17-12MoSPH ; l'un développé à l'Office National d'Etudes et Recherches Aérospatiales, l'autre au Laboratoire de Mécanique Appliquée de Besançon. L'étude a permis la validation des deux modèles par rapport à une base de données expérimentales aux températures élevées, 550 et 600 °C. Les deux modèles traduisent correctement les phénomènes inhérents à des chargements, classiques de traction monotone, fluage et d'écrouissage cyclique à déformation imposée. Par contre, on note des différences importantes en ce qui concerne l'hésitation au fluage et les essais cycliques à contrainte imposée. Dans leur version initiale les deux mod
Sahly, Jennifer; Shaffer, Thomas W; Erdberg, Philip; O'Toole, Siobhan
2011-11-01
This study examines the intercoder reliability of Rorschach Comprehensive System (CS; Exner, 2001) protocol-level variables. A large international sample was combined to obtain intercoder agreement for 489 Rorschach protocols coded using the CS. Intercoder agreement was calculated using an Iota coefficient, a statistical coefficient similar to kappa that is corrected for chance. Iota values for the variables analyzed ranged from .31 to 1.00, with 2 in the poor range of agreement, 4 in the fair range, 25 in the good range, and 116 in the excellent range of agreement. Discrepancies between variables are discussed.
Fatichi, S; Rimkus, S; Burlando, P; Bordoy, R
2014-09-15
Projections of climate change effects in streamflow are increasingly required to plan water management strategies. These projections are however largely uncertain due to the spread among climate model realizations, internal climate variability, and difficulties in transferring climate model results at the spatial and temporal scales required by catchment hydrology. A combination of a stochastic downscaling methodology and distributed hydrological modeling was used in the ACQWA project to provide projections of future streamflow (up to year 2050) for the upper Po and Rhone basins, respectively located in northern Italy and south-western Switzerland. Results suggest that internal (stochastic) climate variability is a fundamental source of uncertainty, typically comparable or larger than the projected climate change signal. Therefore, climate change effects in streamflow mean, frequency, and seasonality can be masked by natural climatic fluctuations in large parts of the analyzed regions. An exception to the overwhelming role of stochastic variability is represented by high elevation catchments fed by glaciers where streamflow is expected to be considerably reduced due to glacier retreat, with consequences appreciable in the main downstream rivers in August and September. Simulations also identify regions (west upper Rhone and Toce, Ticino river basins) where a strong precipitation increase in the February to April period projects streamflow beyond the range of natural climate variability during the melting season. This study emphasizes the importance of including internal climate variability in climate change analyses, especially when compared to the limited uncertainty that would be accounted for by few deterministic projections. The presented results could be useful in guiding more specific impact studies, although design or management decisions should be better based on reliability and vulnerability criteria as suggested by recent literature.
A Logical Model of Private International Law
Dung, Phan Minh; Sartor, Giovanni
We provide a logical analysis of private international law, the body of law establishing when courts of a country should decide a case (jurisdiction) and what legal system they should apply to this purpose (choice of law). A formal model of the resulting interaction among multiple legal systems is proposed based on modular argumentation. It is argued that this model may be useful for understanding this rather esoteric, but increasingly important, domain of the law. Moreover, it might be useful for modelling the way in which interactions between heterogeneous agents, belonging to different and differently regulated virtual societies, can be governed without recourse to a central regulatory agency.
Internal models direct dragonfly interception steering.
Mischiati, Matteo; Lin, Huai-Ti; Herold, Paul; Imler, Elliot; Olberg, Robert; Leonardo, Anthony
2015-01-15
Sensorimotor control in vertebrates relies on internal models. When extending an arm to reach for an object, the brain uses predictive models of both limb dynamics and target properties. Whether invertebrates use such models remains unclear. Here we examine to what extent prey interception by dragonflies (Plathemis lydia), a behaviour analogous to targeted reaching, requires internal models. By simultaneously tracking the position and orientation of a dragonfly's head and body during flight, we provide evidence that interception steering is driven by forward and inverse models of dragonfly body dynamics and by models of prey motion. Predictive rotations of the dragonfly's head continuously track the prey's angular position. The head-body angles established by prey tracking appear to guide systematic rotations of the dragonfly's body to align it with the prey's flight path. Model-driven control thus underlies the bulk of interception steering manoeuvres, while vision is used for reactions to unexpected prey movements. These findings illuminate the computational sophistication with which insects construct behaviour.
The Variability of Internal Tides in the Northern South China Sea
2013-08-27
yields a difference of about 15 % (Fig. 3a). The difference for the baroclinic D1 HKE is about 10 % (Fig. 3b). The temporal variations in baro - tropic...variability of internal tides 629 123 Ko DS, Martin PJ, Rowley CD, Preller RH (2008) A real-time coastal ocean prediction experiment for MREA04. J Mar Syst
Energy Technology Data Exchange (ETDEWEB)
Corre, L.; Terray, L.; Weaver, A. [Cerfacs-CNRS, Toulouse (France); Balmaseda, M. [E.C.M.W.F, Reading (United Kingdom); Ribes, A. [CNRM-GAME, Meteo France-CNRS, Toulouse (France)
2012-03-15
A multivariate analysis of the upper ocean thermal structure is used to examine the recent long-term changes and decadal variability in the upper ocean heat content as represented by model-based ocean reanalyses and a model-independent objective analysis. The three variables used are the mean temperature above the 14 C isotherm, its depth and a fixed depth mean temperature (250 m mean temperature). The mean temperature above the 14 C isotherm is a convenient, albeit simple, way to isolate thermodynamical changes by filtering out dynamical changes related to thermocline vertical displacements. The global upper ocean observations and reanalyses exhibit very similar warming trends (0.045 C per decade) over the period 1965-2005, superimposed with marked decadal variability in the 1970s and 1980s. The spatial patterns of the regression between indices (representative of anthropogenic changes and known modes of internal decadal variability), and the three variables associated with the ocean heat content are used as fingerprint to separate out the different contributions. The choice of variables provides information about the local heat absorption, vertical distribution and horizontal redistribution of heat, this latter being suggestive of changes in ocean circulation. The discrepancy between the objective analysis and the reanalyses, as well as the spread among the different reanalyses, are used as a simple estimate of ocean state uncertainties. Two robust findings result from this analysis: (1) the signature of anthropogenic changes is qualitatively different from those of the internal decadal variability associated to the Pacific Interdecadal Oscillation and the Atlantic Meridional Oscillation, and (2) the anthropogenic changes in ocean heat content do not only consist of local heat absorption, but are likely related with changes in the ocean circulation, with a clear shallowing of the tropical thermocline in the Pacific and Indian oceans. (orig.)
Threats to internal validity in exercise science: a review of overlooked confounding variables.
Halperin, Israel; Pyne, David B; Martin, David T
2015-10-01
Internal validity refers to the degree of control exerted over potential confounding variables to reduce alternative explanations for the effects of various treatments. In exercise and sports-science research and routine testing, internal validity is commonly achieved by controlling variables such as exercise and warm-up protocols, prior training, nutritional intake before testing, ambient temperature, time of testing, hours of sleep, age, and gender. However, a number of other potential confounding variables often do not receive adequate attention in sports physiology and performance research. These confounding variables include instructions on how to perform the test, volume and frequency of verbal encouragement, knowledge of exercise endpoint, number and gender of observers in the room, influence of music played before and during testing, and the effects of mental fatigue on performance. In this review the authors discuss these variables in relation to common testing environments in exercise and sports science and present some recommendations with the goal of reducing possible threats to internal validity.
Internal Model Based Active Disturbance Rejection Control
Pan, Jinwen; Wang, Yong
2016-01-01
The basic active disturbance rejection control (BADRC) algorithm with only one order higher extended state observer (ESO) proves to be robust to both internal and external disturbances. An advantage of BADRC is that in many applications it can achieve high disturbance attenuation level without requiring a detailed model of the plant or disturbance. However, this can be regarded as a disadvantage when the disturbance characteristic is known since the BADRC algorithm cannot exploit such informa...
Modeling Interconnect Variability Using Efficient Parametric Model Order Reduction
Li, Peng; Li, Xin; Pileggi, Lawrence T; Nassif, Sani R
2011-01-01
Assessing IC manufacturing process fluctuations and their impacts on IC interconnect performance has become unavoidable for modern DSM designs. However, the construction of parametric interconnect models is often hampered by the rapid increase in computational cost and model complexity. In this paper we present an efficient yet accurate parametric model order reduction algorithm for addressing the variability of IC interconnect performance. The efficiency of the approach lies in a novel combination of low-rank matrix approximation and multi-parameter moment matching. The complexity of the proposed parametric model order reduction is as low as that of a standard Krylov subspace method when applied to a nominal system. Under the projection-based framework, our algorithm also preserves the passivity of the resulting parametric models.
The matrix model, a driven state variables approach to non-equilibrium thermodynamics
Jongschaap, R.J.J.
2001-01-01
One of the new approaches in non-equilibrium thermodynamics is the so-called matrix model of Jongschaap. In this paper some features of this model are discussed. We indicate the differences with the more common approach based upon internal variables and the more sophisticated Hamiltonian and GENERIC
Variable Relation Parametric Model on Graphics Modelon for Collaboration Design
Institute of Scientific and Technical Information of China (English)
DONG Yu-de; ZHAO Han; LI Yan-feng
2005-01-01
A new approach to variable relation parametric model for collaboration design based on the graphic modelon has been put forward. The paper gives a parametric description model of graphic modelon, and relating method for different graphic modelon based on variable constraint. At the same time, with the aim of engineering application in the collaboration design, the autonmous constraint in modelon and relative constraint between two modelons are given. Finally, with the tool of variable and relation dbase, the solving method of variable relating and variable-driven among different graphic modelon in a part, and doubleacting variable relating parametric method among different parts for collaboration are given.
Binary outcome variables and logistic regression models
Institute of Scientific and Technical Information of China (English)
Xinhua LIU
2011-01-01
Biomedical researchers often study binary variables that indicate whether or not a specific event,such as remission of depression symptoms,occurs during the study period.The indicator variable Y takes two values,usually coded as one if the event (remission) is present and zero if the event is not present(non-remission).Let p be the probability that the event occurs ( Y =1),then 1-p will be the probability that the event does not occur ( Y =0).
Variable cluster analysis method for building neural network model
Institute of Scientific and Technical Information of China (English)
王海东; 刘元东
2004-01-01
To address the problems that input variables should be reduced as much as possible and explain output variables fully in building neural network model of complicated system, a variable selection method based on cluster analysis was investigated. Similarity coefficient which describes the mutual relation of variables was defined. The methods of the highest contribution rate, part replacing whole and variable replacement are put forwarded and deduced by information theory. The software of the neural network based on cluster analysis, which can provide many kinds of methods for defining variable similarity coefficient, clustering system variable and evaluating variable cluster, was developed and applied to build neural network forecast model of cement clinker quality. The results show that all the network scale, training time and prediction accuracy are perfect. The practical application demonstrates that the method of selecting variables for neural network is feasible and effective.
International migration network: topology and modeling.
Fagiolo, Giorgio; Mastrorillo, Marina
2013-07-01
This paper studies international migration from a complex-network perspective. We define the international migration network (IMN) as the weighted-directed graph where nodes are world countries and links account for the stock of migrants originated in a given country and living in another country at a given point in time. We characterize the binary and weighted architecture of the network and its evolution over time in the period 1960-2000. We find that the IMN is organized around a modular structure with a small-world binary pattern displaying disassortativity and high clustering, with power-law distributed weighted-network statistics. We also show that a parsimonious gravity model of migration can account for most of observed IMN topological structure. Overall, our results suggest that socioeconomic, geographical, and political factors are more important than local-network properties in shaping the structure of the IMN.
International migration: concepts, models and state policies
Directory of Open Access Journals (Sweden)
J.A. A. Cebrián
2016-10-01
Full Text Available The intensification of international migratory flows in recent years has provoked much thinking as to what might be an appropriate national migratory policy. Following this tendency, in this article we present several considerations relating to the ethical implications of migratory policies. Our point of departure for this discussion consists in the analysis of two concepts, which we believe differ in meaning. We refer to the terms solidarity and citizenship, whose function and meaning in «politically correct» discourse (undefined and undefinable we study in this article. Following this we deal with the different models of the state in the Western world. In this way the understanding of the cultural and political factors of international migration which we analyse in the final section of the article is made easier.
USING STRUCTURAL EQUATION MODELING TO INVESTIGATE RELATIONSHIPS AMONG ECOLOGICAL VARIABLES
This paper gives an introductory account of Structural Equation Modeling (SEM) and demonstrates its application using LISRELmodel utilizing environmental data. Using nine EMAP data variables, we analyzed their correlation matrix with an SEM model. The model characterized...
Kim, Minseok; Pangle, Luke A.; Cardoso, Charléne; Lora, Marco; Volkmann, Till H. M.; Wang, Yadi; Harman, Ciaran J.; Troch, Peter A.
2016-09-01
Transit times through hydrologic systems vary in time, but the nature of that variability is not well understood. Transit times variability was investigated in a 1 m3 sloping lysimeter, representing a simplified model of a hillslope receiving periodic rainfall events for 28 days. Tracer tests were conducted using an experimental protocol that allows time-variable transit time distributions (TTDs) to be calculated from data. Observed TTDs varied with the storage state of the system, and the history of inflows and outflows. We propose that the observed time variability of the TTDs can be decomposed into two parts: "internal" variability associated with changes in the arrangement of, and partitioning between, flow pathways; and "external" variability driven by fluctuations in the flow rate along all flow pathways. These concepts can be defined quantitatively in terms of rank StorAge Selection (rSAS) functions, which is a theory describing lumped transport dynamics. Internal variability is associated with temporal variability in the rSAS function, while external is not. The rSAS function variability was characterized by an "inverse storage effect," whereby younger water is released in greater proportion under wetter conditions than drier. We hypothesize that this effect is caused by the rapid mobilization of water in the unsaturated zone by the rising water table. Common approximations used to model transport dynamics that neglect internal variability were unable to reproduce the observed breakthrough curves accurately. This suggests that internal variability can play an important role in hydrologic transport dynamics, with implications for field data interpretation and modeling.
A Data Flow Behavior Constraints Model for Branch Decisionmaking Variables
Directory of Open Access Journals (Sweden)
Lu Yan
2012-06-01
Full Text Available In order to detect the attacks to decision-making variable, this paper presents a data flow behavior constraint model for branch decision-making variables. Our model is expanded from the common control flow model, itemphasizes on the analysis and verification about the data flow for decision-making variables, so that to ensure the branch statement can execute correctly and can also detect the attack to branch decision-making variableeasily. The constraints of our model include the collection of variables, the statements that the decision-making variables are dependent on and the data flow constraint with the use-def relation of these variables. Our experimental results indicate that it is effective in detecting the attacks to branch decision-making variables as well as the attacks to control-data.
Internal quantum efficiency modeling of silicon photodiodes.
Gentile, T R; Brown, S W; Lykke, K R; Shaw, P S; Woodward, J T
2010-04-01
Results are presented for modeling of the shape of the internal quantum efficiency (IQE) versus wavelength for silicon photodiodes in the 400 nm to 900 nm wavelength range. The IQE data are based on measurements of the external quantum efficiencies of three transmission optical trap detectors using an extensive set of laser wavelengths, along with the transmittance of the traps. We find that a simplified version of a previously reported IQE model fits the data with an accuracy of better than 0.01%. These results provide an important validation of the National Institute of Standards and Technology (NIST) spectral radiant power responsivity scale disseminated through the NIST Spectral Comparator Facility, as well as those scales disseminated by other National Metrology Institutes who have employed the same model.
Simulation and Analyis of a Continuous Variable Cam Phasing Internal Combustion Engine
Hammarlund, Pär
2008-01-01
The development of fuel efficient internal combustion engines (ICE)have resulted in a variety of different solutions. One of those are the variable valve timing and an implemenation of such is the Continuous Variable Cam Phasing (CVCP). This thesis have used a simulation package, psPack, for the simulation of the gas exchange process for an ICE with CVCP. The purpose of the simulations was to investigate what kind of design parameters, e.g. the length of an intake pipe or the duration of comb...
They just don't get enough! Variable intern experience in bedside procedural skills.
Boots, R J; Egerton, W; McKeering, H; Winter, H
2009-04-01
Medical school and resident training programmes offer different learning opportunities and outcomes. The aim of the study was to assess medical student and intern experience in common clinical procedures. Interns employed in a metropolitan teaching hospital from 2000 to 2004 completed a survey of experience and confidence in clinical procedures at the beginning and end of their intern year. Attendance at and the contribution to procedural confidence of a voluntary procedural skill-training programme were examined. For the 314 interns, clinical experience before and during internship varied for each procedure and between year cohorts as did training programme attendance (44-84%). Student procedural confidence was predicted by pre-intern experience either on patients or by simulation (beta = 0.17, 95% confidence interval (CI) 0.02-0.21, P = 0.03) and age >30 years on commencing internship (beta = 8.44, 95%CI 3.03-14.06, P = 0.003. Adjusted R(2) = 0.08, P = 0.002). Intern procedural confidence by year's end was predicted by attendance at the training programme (beta = 0.48, 95%CI 0.34-0.62, P intern experience with patient procedures (beta = 0.34, 95%CI 0.21-0.47, P Interns and students receive variable experience to carry out procedural skills on patients. This makes designing training programmes difficult as training needs vary each year. Both mandatory supervision of key skills and opportunities to supplement limited experience are needed during the intern year to ensure a uniform experience.
Numerical implementation of a state variable model for friction
Energy Technology Data Exchange (ETDEWEB)
Korzekwa, D.A. [Los Alamos National Lab., NM (United States); Boyce, D.E. [Cornell Univ., Ithaca, NY (United States)
1995-03-01
A general state variable model for friction has been incorporated into a finite element code for viscoplasticity. A contact area evolution model is used in a finite element model of a sheet forming friction test. The results show that a state variable model can be used to capture complex friction behavior in metal forming simulations. It is proposed that simulations can play an important role in the analysis of friction experiments and the development of friction models.
Stochastic modeling of interannual variation of hydrologic variables
Dralle, David; Karst, Nathaniel; Müller, Marc; Vico, Giulia; Thompson, Sally E.
2017-07-01
Quantifying the interannual variability of hydrologic variables (such as annual flow volumes, and solute or sediment loads) is a central challenge in hydrologic modeling. Annual or seasonal hydrologic variables are themselves the integral of instantaneous variations and can be well approximated as an aggregate sum of the daily variable. Process-based, probabilistic techniques are available to describe the stochastic structure of daily flow, yet estimating interannual variations in the corresponding aggregated variable requires consideration of the autocorrelation structure of the flow time series. Here we present a method based on a probabilistic streamflow description to obtain the interannual variability of flow-derived variables. The results provide insight into the mechanistic genesis of interannual variability of hydrologic processes. Such clarification can assist in the characterization of ecosystem risk and uncertainty in water resources management. We demonstrate two applications, one quantifying seasonal flow variability and the other quantifying net suspended sediment export.
A NUI Based Multiple Perspective Variability Modelling CASE Tool
Bashroush, Rabih
2010-01-01
With current trends towards moving variability from hardware to \\ud software, and given the increasing desire to postpone design decisions as much \\ud as is economically feasible, managing the variability from requirements \\ud elicitation to implementation is becoming a primary business requirement in the \\ud product line engineering process. One of the main challenges in variability \\ud management is the visualization and management of industry size variability \\ud models. In this demonstrat...
Internal kinematics of isolated modelled disk galaxies
Kapferer, W; Schindler, S; Böhm, A; Ziegler, B L
2005-01-01
We present a systematic investigation of rotation curves (RCs) of fully hydrodynamically simulated galaxies, including cooling, star formation with associated feedback and galactic winds. Applying two commonly used fitting formulae to characterize the RCs, we investigate systematic effects on the shape of RCs both by observational constraints and internal properties of the galaxies. We mainly focus on effects that occur in measurements of intermediate and high redshift galaxies. We find that RC parameters are affected by the observational setup, like slit misalignment or the spatial resolution and also depend on the evolution of a galaxy. Therefore, a direct comparison of quantities derived from measured RCs with predictions of semi-analytic models is difficult. The virial velocity V_c, which is usually calculated and used by semi-analytic models can differ significantly from fit parameters like V_max or V_opt inferred from RCs. We find that V_c is usually lower than typical characteristic velocities derived ...
International Space Station Radiation Shielding Model Development
Qualls, G. D.; Wilson, J. W.; Sandridge, C.; Cucinotta, F. A.; Nealy, J. E.; Heinbockel, J. H.; Hugger, C. P.; Verhage, J.; Anderson, B. M.; Atwell, W.
2001-01-01
The projected radiation levels within the International Space Station (ISS) have been criticized by the Aerospace Safety Advisory Panel in their report to the NASA Administrator. Methods for optimal reconfiguration and augmentation of the ISS shielding are now being developed. The initial steps are to develop reconfigurable and realistic radiation shield models of the ISS modules, develop computational procedures for the highly anisotropic radiation environment, and implement parametric and organizational optimization procedures. The targets of the redesign process are the crew quarters where the astronauts sleep and determining the effects of ISS shadow shielding of an astronaut in a spacesuit. The ISS model as developed will be reconfigurable to follow the ISS. Swapping internal equipment rack assemblies via location mapping tables will be one option for shield optimization. Lightweight shield augmentation materials will be optimally fit to crew quarter areas using parametric optimization procedures to minimize the augmentation shield mass. The optimization process is being integrated into the Intelligence Synthesis Environment s (ISE s) immersive simulation facility at the Langley Research Center and will rely on High Performance Computing and Communication (HPCC) for rapid evaluation of shield parameter gradients.
Multi-Wheat-Model Ensemble Responses to Interannual Climate Variability
Ruane, Alex C.; Hudson, Nicholas I.; Asseng, Senthold; Camarrano, Davide; Ewert, Frank; Martre, Pierre; Boote, Kenneth J.; Thorburn, Peter J.; Aggarwal, Pramod K.; Angulo, Carlos
2016-01-01
We compare 27 wheat models' yield responses to interannual climate variability, analyzed at locations in Argentina, Australia, India, and The Netherlands as part of the Agricultural Model Intercomparison and Improvement Project (AgMIP) Wheat Pilot. Each model simulated 1981e2010 grain yield, and we evaluate results against the interannual variability of growing season temperature, precipitation, and solar radiation. The amount of information used for calibration has only a minor effect on most models' climate response, and even small multi-model ensembles prove beneficial. Wheat model clusters reveal common characteristics of yield response to climate; however models rarely share the same cluster at all four sites indicating substantial independence. Only a weak relationship (R2 0.24) was found between the models' sensitivities to interannual temperature variability and their response to long-termwarming, suggesting that additional processes differentiate climate change impacts from observed climate variability analogs and motivating continuing analysis and model development efforts.
ABOUT PSYCHOLOGICAL VARIABLES IN APPLICATION SCORING MODELS
Directory of Open Access Journals (Sweden)
Pablo Rogers
2015-01-01
Full Text Available The purpose of this study is to investigate the contribution of psychological variables and scales suggested by Economic Psychology in predicting individuals’ default. Therefore, a sample of 555 individuals completed a self-completion questionnaire, which was composed of psychological variables and scales. By adopting the methodology of the logistic regression, the following psychological and behavioral characteristics were found associated with the group of individuals in default: a negative dimensions related to money (suffering, inequality and conflict; b high scores on the self-efficacy scale, probably indicating a greater degree of optimism and over-confidence; c buyers classified as compulsive; d individuals who consider it necessary to give gifts to children and friends on special dates, even though many people consider this a luxury; e problems of self-control identified by individuals who drink an average of more than four glasses of alcoholic beverage a day.
Fox, Eric W; Hill, Ryan A; Leibowitz, Scott G; Olsen, Anthony R; Thornbrugh, Darren J; Weber, Marc H
2017-07-01
Random forest (RF) modeling has emerged as an important statistical learning method in ecology due to its exceptional predictive performance. However, for large and complex ecological data sets, there is limited guidance on variable selection methods for RF modeling. Typically, either a preselected set of predictor variables are used or stepwise procedures are employed which iteratively remove variables according to their importance measures. This paper investigates the application of variable selection methods to RF models for predicting probable biological stream condition. Our motivating data set consists of the good/poor condition of n = 1365 stream survey sites from the 2008/2009 National Rivers and Stream Assessment, and a large set (p = 212) of landscape features from the StreamCat data set as potential predictors. We compare two types of RF models: a full variable set model with all 212 predictors and a reduced variable set model selected using a backward elimination approach. We assess model accuracy using RF's internal out-of-bag estimate, and a cross-validation procedure with validation folds external to the variable selection process. We also assess the stability of the spatial predictions generated by the RF models to changes in the number of predictors and argue that model selection needs to consider both accuracy and stability. The results suggest that RF modeling is robust to the inclusion of many variables of moderate to low importance. We found no substantial improvement in cross-validated accuracy as a result of variable reduction. Moreover, the backward elimination procedure tended to select too few variables and exhibited numerous issues such as upwardly biased out-of-bag accuracy estimates and instabilities in the spatial predictions. We use simulations to further support and generalize results from the analysis of real data. A main purpose of this work is to elucidate issues of model selection bias and instability to ecologists interested in
A Sequence of Relaxations Constraining Hidden Variable Models
Steeg, Greg Ver
2011-01-01
Many widely studied graphical models with latent variables lead to nontrivial constraints on the distribution of the observed variables. Inspired by the Bell inequalities in quantum mechanics, we refer to any linear inequality whose violation rules out some latent variable model as a "hidden variable test" for that model. Our main contribution is to introduce a sequence of relaxations which provides progressively tighter hidden variable tests. We demonstrate applicability to mixtures of sequences of i.i.d. variables, Bell inequalities, and homophily models in social networks. For the last, we demonstrate that our method provides a test that is able to rule out latent homophily as the sole explanation for correlations on a real social network that are known to be due to influence.
Usability Evaluation of Variability Modeling by means of Common Variability Language
Directory of Open Access Journals (Sweden)
Jorge Echeverria
2015-12-01
Full Text Available Common Variability Language (CVL is a recent proposal for OMG's upcoming Variability Modeling standard. CVL models variability in terms of Model Fragments. Usability is a widely-recognized quality criterion essential to warranty the successful use of tools that put these ideas in practice. Facing the need of evaluating the usability of CVL modeling tools, this paper presents a Usability Evaluation of CVL applied to a Modeling Tool for firmware code of Induction Hobs. This evaluation addresses the configuration, scoping and visualization facets. The evaluation involved the end users of the tool whom are engineers of our Induction Hob industrial partner. Effectiveness and efficiency results indicate that model configuration in terms of model fragment substitutions is intuitive enough but both scoping and visualization require improved tool support. Results also enabled us to identify a list of usability problems which may contribute to alleviate scoping and visualization issues in CVL.
Variable Temperature Blackbodies via Variable Conductance: Thermal Design, Modelling and Testing
Melzack, N.; Jones, E.; Peters, D. M.; Hurley, J. G.; Watkins, R. E. J.; Fok, S.; Sawyer, C.; Marchetaux, G.; Acreman, A.; Winkler, R.; Lowe, D.; Theocharous, T.; Montag, V.; Gibbs, D.; Pearce, A. B.; Bishop, G.; Newman, E.; Keen, S.; Stokes, J.; Pearce, A.; Stamper, R.; Cantell-Hynes, A.
2017-02-01
This paper presents the overall design for large (˜ 400 mm aperture) reference blackbody cavities currently under development at the Science and Technology Facilities Council Rutherford Appleton Laboratory Space Department (STFC RAL Space), in collaboration with the National Physical Laboratory (NPL). These blackbodies are designed to operate in vacuum over a temperature range from 160 K to 370 K, with an additional capability to operate at ˜ 100 K as a point of near-zero radiance. This is a challenging problem for a single blackbody. The novel thermal design presented in this paper enables one target that can physically achieve and operate successfully at both thermal extremes, whilst also meeting stringent temperature gradient requirements. The overall blackbody design is based upon a helium gas-gap heat switch and modified to allow for variable thermal conductance. The blackbody design consists of three main concentric cylinder components—an inner cavity (aluminium alloy), a radiation shield (aluminium) and an outer liquid nitrogen (LN2) jacket (stainless steel). The internal surface of the cavity is the effective radiating surface. There is a helium gas interspace surrounding the radiation shield and enclosed by the LN2 jacket and the inner cavity. The blackbodies are now at a mature stage of development. In this paper, the overall design, focusing upon the thermal design solution, is detailed. This paper will also concern the full-scale prototype breadboard model, for which results on thermal stability, spatial gradients and other sensitivities will be presented.
Forced and internal modes of variability of the East Asian summer monsoon
Directory of Open Access Journals (Sweden)
J. Liu
2008-05-01
Full Text Available The modern instrumental record (1979–2006 is analyzed in an attempt to reveal the dynamical structure and origins of the major modes of interannual variability of East Asian summer monsoon (EASM and to elucidate their fundamental differences with the major modes of seasonal variability. These differences are instrumental in understanding of the forced (say orbital and internal (say interannual modes of variability in EASM. We show that the leading mode of interannual variation, which accounts for about 39% of the total variance, is primarily associated with decaying phases of major El Nino, whereas the second mode, which accounts for 11.3% of the total variance, is associated with the developing phase of El Nino/La Nina. The EASM responds to ENSO in a nonlinear fashion with regard to the developing and decay phases of El Nino. The two modes are determined by El Nino/La Nina forcing and monsoon-warm ocean interaction, or essentially driven by internal feedback processes within the coupled climate system. For this internal mode, the intertropical convergence zone (ITCZ and subtropical EASM precipitations exhibit an out-of-phase variations; further, the Meiyu in Yangtze River Valley is also out-of-phase with the precipitation in the central North China.
In contrast, the slow and fast annual cycles forced by the solar radiation show an in-phase correlation between the ITCZ and subtropical EASM precipitation. Further, the seasonal march of precipitation displays a continental-scale northward advance of a rain band (that tilts in a southwest-northeastward direction over the entire Indian and East Asian summer monsoon from mid-May toward the end of July. This uniformity in seasonal advance suggests that the position of the northern edge of the summer monsoon or the precipitation over the central North China may be an adequate measure of the monsoon intensity for the forced mode, while the intensity of the internal mode of EASM variability
Deser, Clara; Guo, Ruixia; Lehner, Flavio
2017-08-01
The recent slowdown in global mean surface temperature (GMST) warming during boreal winter is examined from a regional perspective using 10-member initial-condition ensembles with two global coupled climate models in which observed tropical Pacific sea surface temperature anomalies (TPAC SSTAs) and radiative forcings are specified. Both models show considerable diversity in their surface air temperature (SAT) trend patterns across the members, attesting to the importance of internal variability beyond the tropical Pacific that is superimposed upon the response to TPAC SSTA and radiative forcing. Only one model shows a close relationship between the realism of its simulated GMST trends and SAT trend patterns. In this model, Eurasian cooling plays a dominant role in determining the GMST trend amplitude, just as in nature. In the most realistic member, intrinsic atmospheric dynamics and teleconnections forced by TPAC SSTA cause cooling over Eurasia (and North America), and contribute equally to its GMST trend.
Basic relations for the period variation models of variable stars
Mikulášek, Zdeněk; Gráf, Tomáš; Zejda, Miloslav; Zhu, Liying; Qian, Shen-Bang
2012-01-01
Models of period variations are basic tools for period analyzes of variable stars. We introduce phase function and instant period and formulate basic relations and equations among them. Some simple period models are also presented.
Fixed transaction costs and modelling limited dependent variables
Hempenius, A.L.
1994-01-01
As an alternative to the Tobit model, for vectors of limited dependent variables, I suggest a model, which follows from explicitly using fixed costs, if appropriate of course, in the utility function of the decision-maker.
Methods for Handling Missing Variables in Risk Prediction Models
Held, Ulrike; Kessels, Alfons; Aymerich, Judith Garcia; Basagana, Xavier; ter Riet, Gerben; Moons, Karel G. M.; Puhan, Milo A.
2016-01-01
Prediction models should be externally validated before being used in clinical practice. Many published prediction models have never been validated. Uncollected predictor variables in otherwise suitable validation cohorts are the main factor precluding external validation.We used individual patient
Defining a Family of Cognitive Diagnosis Models Using Log-Linear Models with Latent Variables
Henson, Robert A.; Templin, Jonathan L.; Willse, John T.
2009-01-01
This paper uses log-linear models with latent variables (Hagenaars, in "Loglinear Models with Latent Variables," 1993) to define a family of cognitive diagnosis models. In doing so, the relationship between many common models is explicitly defined and discussed. In addition, because the log-linear model with latent variables is a general model for…
The Properties of Model Selection when Retaining Theory Variables
DEFF Research Database (Denmark)
Hendry, David F.; Johansen, Søren
Economic theories are often fitted directly to data to avoid possible model selection biases. We show that embedding a theory model that specifies the correct set of m relevant exogenous variables, x{t}, within the larger set of m+k candidate variables, (x{t},w{t}), then selection over the second...
Coevolution of variability models and related software artifacts
DEFF Research Database (Denmark)
Passos, Leonardo; Teixeira, Leopoldo; Dinztner, Nicolas
2015-01-01
models coevolve with other artifact types, we study a large and complex real-world variant-rich software system: the Linux kernel. Specifically, we extract variability-coevolution patterns capturing changes in the variability model of the Linux kernel with subsequent changes in Makefiles and C source...
Tensor Decompositions for Learning Latent Variable Models
2012-12-08
Isotropic PCA and affine-invariant clustering. In FOCS, 2008. [Car91] J.-F. Cardoso . Super-symmetric decomposition of the fourth-order cumulant tensor...3109–3112. IEEE, 1991. [Car94] J.-F. Cardoso . Perturbation of joint diagonalizers. ref# 94d027. Technical report, Télécom Paris, 1994. [Cat44] R. B...CC96] J.-F. Cardoso and Pierre Comon. Independent component analysis, a survey of some algebraic methods. In IEEE International Symposium on Circuits
Vinogradova, Nadya; Buckley, Martha
2017-04-01
Over the past few decades, surface waters in the subpolar North Atlantic have experienced substantial fluctuations, including periods of rapid cooling and freshening alternating with the periods of enhanced warming, salinification, and decreased circulation of the gyre. Since these waters feed the North Atlantic thermohaline circulation, such changes have the potential to impact the global ocean circulation and future climate states. A number of potential causes for the observed changes have been suggested, including those related to the strength of the ocean circulation and heat transports, as well as other factors, such as anthropogenic aerosol forcing or changes in surface fluxes. Here we assess how the observed warming/salinification events fit into the long-term picture, focusing on variations in upper-ocean salinity. Salinification of the subpolar North Atlantic may seem counter-intuitive to the reported long-term increase in freshwater supply to the region from river discharge and ice melting, sparking debates about whether the freshening of the subpolar gyre has ceased, and whether the recent salinification, if continued, will be able to forestall the projected slowdown of the overturning circulation. Using a suite of in situ salinity observations spanning the last 60 years, modern satellite salinity observations from Aquarius and SMOS missions, and multi-decadal realizations from global climate models, we estimate the likelihood of such salinity changes in the context of the historical record, contemporary estimates, and future projections. Results are discussed in terms of the probability of occurrence of a decade-long salinification in the presence of the background freshening in response to anthropogenic forcing. In particular, computed probabilities suggest that such "unusual" salinification events are plausible under the strong influence of internal, decadal-to-interdecadal variability.
Energy Technology Data Exchange (ETDEWEB)
Beddy, P. [Department of Radiology, The Adelaide and Meath Hospital, Tallaght, Dublin 24 (Ireland)]. E-mail: pbeddy@eircom.net; Geoghegan, T. [Department of Radiology, The Adelaide and Meath Hospital, Tallaght, Dublin 24 (Ireland); Ramesh, N. [Department of Radiology, The Adelaide and Meath Hospital, Tallaght, Dublin 24 (Ireland); Buckley, O. [Department of Radiology, The Adelaide and Meath Hospital, Tallaght, Dublin 24 (Ireland); O' Brien, J. [Department of Radiology, The Adelaide and Meath Hospital, Tallaght, Dublin 24 (Ireland); Colville, J. [Department of Radiology, The Adelaide and Meath Hospital, Tallaght, Dublin 24 (Ireland); Torreggiani, W.C. [Department of Radiology, The Adelaide and Meath Hospital, Tallaght, Dublin 24 (Ireland)
2006-05-15
Purpose: Central venous cannulation via the common femoral vein is an important starting point for many interventions. The purpose of this study was to determine the optimum conditions for cannulation of the femoral vein and to compare these with the relative changes in the internal jugular vein. Methods: High-resolution 2D ultrasound was utilised to determine variability of the calibre of the femoral and internal jugular veins in 10 healthy subjects. Venous diameter was assessed during the Valsalva manoeuvre and in different degrees of the Trendelenburg position. Results: The Valsalva manoeuvre significantly increased the size of the femoral and internal jugular veins. There was a relatively greater increase in femoral vein diameter when compared with the internal jugular vein of 40 and 29%, respectively. Changes in body inclination (Trendelenburg position) did not significantly alter the luminal diameter of the femoral vein. However, it significantly increased internal jugular vein diameter. Conclusions: Femoral vein cannulation is augmented by the Valsalva manoeuvre but not significantly altered by the gravitational position of the subject.
Establishing an International Soil Modelling Consortium
Vereecken, Harry; Schnepf, Andrea; Vanderborght, Jan
2015-04-01
-change-feedback processes, bridge basic soil science research and management, and facilitate the communication between science and society . To meet these challenges an international community effort is required, similar to initiatives in systems biology, hydrology, and climate and crop research. We therefore propose to establish an international soil modelling consortium with the aims of 1) bringing together leading experts in modelling soil processes within all major soil disciplines, 2) addressing major scientific gaps in describing key processes and their long term impacts with respect to the different functions and ecosystem services provided by soil, 3) intercomparing soil model performance based on standardized and harmonized data sets, 4) identifying interactions with other relevant platforms related to common data formats, protocols and ontologies, 5) developing new approaches to inverse modelling, calibration, and validation of soil models, 6) integrating soil modelling expertise and state of the art knowledge on soil processes in climate, land surface, ecological, crop and contaminant models, and 7) linking process models with new observation, measurement and data evaluation technologies for mapping and characterizing soil properties across scales. Our consortium will bring together modelers and experimental soil scientists at the forefront of new technologies and approaches to characterize soils. By addressing these aims, the consortium will contribute to improve the role of soil modeling as a knowledge dissemination instrument in addressing key global issues and stimulate the development of translational research activities. This presentation will provide a compelling case for this much-needed effort, with a focus on tangible benefits to the scientific and food security communities.
Fujikawa, Kazuo
2013-01-01
Hidden-variables models are critically reassessed. It is first examined if the quantum discord is classically described by the hidden-variable model of Bell in the Hilbert space with $d=2$. The criterion of vanishing quantum discord is related to the notion of reduction and, surprisingly, the hidden-variable model in $d=2$, which has been believed to be consistent so far, is in fact inconsistent and excluded by the analysis of conditional measurement and reduction. The description of the full contents of quantum discord by the deterministic hidden-variables models is not possible. We also re-examine CHSH inequality. It is shown that the well-known prediction of CHSH inequality $|B|\\leq 2$ for the CHSH operator $B$ introduced by Cirel'son is not unique. This non-uniqueness arises from the failure of linearity condition in the non-contextual hidden-variables model in $d=4$ used by Bell and CHSH, in agreement with Gleason's theorem which excludes $d=4$ non-contextual hidden-variables models. If one imposes the l...
A Spline Regression Model for Latent Variables
Harring, Jeffrey R.
2014-01-01
Spline (or piecewise) regression models have been used in the past to account for patterns in observed data that exhibit distinct phases. The changepoint or knot marking the shift from one phase to the other, in many applications, is an unknown parameter to be estimated. As an extension of this framework, this research considers modeling the…
Spatial Patterns of Sea Level Variability Associated with Natural Internal Climate Modes
Han, Weiqing; Meehl, Gerald A.; Stammer, Detlef; Hu, Aixue; Hamlington, Benjamin; Kenigson, Jessica; Palanisamy, Hindumathi; Thompson, Philip
2017-01-01
Sea level rise (SLR) can exert significant stress on highly populated coastal societies and low-lying island countries around the world. Because of this, there is huge societal demand for improved decadal predictions and future projections of SLR, particularly on a local scale along coastlines. Regionally, sea level variations can deviate considerably from the global mean due to various geophysical processes. These include changes of ocean circulations, which partially can be attributed to natural, internal modes of variability in the complex Earth's climate system. Anthropogenic influence may also contribute to regional sea level variations. Separating the effects of natural climate modes and anthropogenic forcing, however, remains a challenge and requires identification of the imprint of specific climate modes in observed sea level change patterns. In this paper, we review our current state of knowledge about spatial patterns of sea level variability associated with natural climate modes on interannual-to-multidecadal timescales, with particular focus on decadal-to-multidecadal variability. Relevant climate modes and our current state of understanding their associated sea level patterns and driving mechanisms are elaborated separately for the Pacific, the Indian, the Atlantic, and the Arctic and Southern Oceans. We also discuss the issues, challenges and future outlooks for understanding the regional sea level patterns associated with climate modes. Effects of these internal modes have to be taken into account in order to achieve more reliable near-term predictions and future projections of regional SLR.
Directory of Open Access Journals (Sweden)
Kim Myung K
2011-09-01
Full Text Available Abstract Background Total internal reflection fluorescence microscopy (TIRFM is a powerful tool for observing fluorescently labeled molecules on the plasma membrane surface of animal cells. However, the utility of TIRFM in plant cell studies has been limited by the fact that plants have cell walls, thick peripheral layers surrounding the plasma membrane. Recently, a new technique known as variable-angle epifluorescence microscopy (VAEM was developed to circumvent this problem. However, the lack of a detailed analysis of the optical principles underlying VAEM has limited its applications in plant-cell biology. Results Here, we present theoretical and experimental evidence supporting the use of variable-angle TIRFM in observations of intact plant cells. We show that when total internal reflection occurs at the cell wall/cytosol interface with an appropriate angle of incidence, an evanescent wave field of constant depth is produced inside the cytosol. Results of experimental TIRFM observations of the dynamic behaviors of phototropin 1 (a membrane receptor protein and clathrin light chain (a vesicle coat protein support our theoretical analysis. Conclusions These findings demonstrate that variable-angle TIRFM is appropriate for quantitative live imaging of cells in intact tissues of Arabidopsis thaliana.
Spatial Patterns of Sea Level Variability Associated with Natural Internal Climate Modes
Han, Weiqing; Meehl, Gerald A.; Stammer, Detlef; Hu, Aixue; Hamlington, Benjamin; Kenigson, Jessica; Palanisamy, Hindumathi; Thompson, Philip
2016-10-01
Sea level rise (SLR) can exert significant stress on highly populated coastal societies and low-lying island countries around the world. Because of this, there is huge societal demand for improved decadal predictions and future projections of SLR, particularly on a local scale along coastlines. Regionally, sea level variations can deviate considerably from the global mean due to various geophysical processes. These include changes of ocean circulations, which partially can be attributed to natural, internal modes of variability in the complex Earth's climate system. Anthropogenic influence may also contribute to regional sea level variations. Separating the effects of natural climate modes and anthropogenic forcing, however, remains a challenge and requires identification of the imprint of specific climate modes in observed sea level change patterns. In this paper, we review our current state of knowledge about spatial patterns of sea level variability associated with natural climate modes on interannual-to-multidecadal timescales, with particular focus on decadal-to-multidecadal variability. Relevant climate modes and our current state of understanding their associated sea level patterns and driving mechanisms are elaborated separately for the Pacific, the Indian, the Atlantic, and the Arctic and Southern Oceans. We also discuss the issues, challenges and future outlooks for understanding the regional sea level patterns associated with climate modes. Effects of these internal modes have to be taken into account in order to achieve more reliable near-term predictions and future projections of regional SLR.
Steinman, B. A.; Mann, M. E.; Miller, S. K.; Emanuel, K.
2013-12-01
The Atlantic Multidecadal Oscillation (AMO) is a mode of North Atlantic sea surface temperature (SST) variability that has substantial impacts on Northern Hemisphere precipitation and temperature patterns, as well as Atlantic hurricane activity. Climate models and paleoclimate data suggest that the warm AMO phase can enhance drought in the American mid- and southwest, increase rainfall intensity and amounts in North Eastern Brazil and the African Sahel region, and increase the number of severe Atlantic hurricanes. While models and instrumental data provide some support for the AMO as an internal climate ';oscillation', questions remain regarding the proportion of AMO variability resulting from internal and external forcing, and more specifically, how much of the recent (i.e. late 20th century) north Atlantic warming is anthropogenically forced. Several studies have addressed these issues and proposed various methods for diagnosing the AMO using historical climate model simulations (e.g. from CMIP3) and instrumental data. Here we present results from analyses of the North Atlantic region in historical simulations from Climate Model Intercomparison Project 5 (CMIP5). Our approach involves (1) analyzing a grand ensemble mean based on averaging realizations of all available models, such that random, internal variability components cancel and only a forced component remains; (2) for all models with at least four realizations, estimating a forced component by averaging multiple realizations and estimating internal variability components from the residual series of individual realizations and (3) analyzing control simulations for the corresponding models to assess whether or not there is evidence of enhanced AMO-like internal variability.
Analytical model of internally coupled ears
DEFF Research Database (Denmark)
Vossen, Christine; Christensen-Dalsgaard, Jakob; Leo van Hemmen, J
2010-01-01
, data demonstrating an asymmetrical spatial pattern of membrane vibration. As the analytical calculations show, the internally coupled ears increase the directional response, appearing in large directional internal amplitude differences (iAD) and in large internal time differences (iTD). Numerical...... simulations of the eigenfunctions in an exemplary, realistically reconstructed mouth cavity further estimate the effects of its complex geometry....
Linear latent variable models: the lava-package
DEFF Research Database (Denmark)
Holst, Klaus Kähler; Budtz-Jørgensen, Esben
2013-01-01
An R package for specifying and estimating linear latent variable models is presented. The philosophy of the implementation is to separate the model specification from the actual data, which leads to a dynamic and easy way of modeling complex hierarchical structures. Several advanced features...... are implemented including robust standard errors for clustered correlated data, multigroup analyses, non-linear parameter constraints, inference with incomplete data, maximum likelihood estimation with censored and binary observations, and instrumental variable estimators. In addition an extensive simulation...
Modeling, estimation and identification of stochastic systems with latent variables
Bottegal, Giulio
2013-01-01
The main topic of this thesis is the analysis of static and dynamic models in which some variables, although directly influencing the behavior of certain observables, are not accessible to measurements. These models find applications in many branches of science and engineering, such as control systems, communications, natural and biological sciences and econometrics. It is well-known that models with unaccessible - or latent - variables, usually suffer from a lack of uniqueness of representat...
Using an Altimeter-Derived Internal Tide Model to Remove Tides from in Situ Data
Zaron, Edward D.; Ray, Richard D.
2017-01-01
Internal waves at tidal frequencies, i.e., the internal tides, are a prominent source of variability in the ocean associated with significant vertical isopycnal displacements and currents. Because the isopycnal displacements are caused by ageostrophic dynamics, they contribute uncertainty to geostrophic transport inferred from vertical profiles in the ocean. Here it is demonstrated that a newly developed model of the main semidiurnal (M2) internal tide derived from satellite altimetry may be used to partially remove the tide from vertical profile data, as measured by the reduction of steric height variance inferred from the profiles. It is further demonstrated that the internal tide model can account for a component of the near-surface velocity as measured by drogued drifters. These comparisons represent a validation of the internal tide model using independent data and highlight its potential use in removing internal tide signals from in situ observations.
Modelling internal boundary-layer development in a region with a complex coastline
DEFF Research Database (Denmark)
Batchvarova, E.; Cai, X.; Gryning, Sven-Erik
1999-01-01
The purpose of this paper is to test the ability of two quite different models to simulate the combined spatial and temporal variability of the internal boundary layer in an area of complex terrain and coastline during one day. The simple applied slab model of Gryning and Batchvarova, and the Col...
Oberer, Nicole; Gashaj, Venera; Roebers, Claudia M
2017-04-01
The present study aimed to contribute to the discussion about the relation between motor coordination and executive functions in preschool children. Specifically, the relation between gross and fine motor skills and executive functions as well as the relation to possible background variables (SES, physical activity) were investigated. Based on the data of N=156 kindergarten children the internal structure of motor skills was investigated and confirmed the theoretically assumed subdivision of gross and fine motor skills. Both, gross and fine motor skills correlated significantly with executive functions, whereas the background variables seemed to have no significant impact on the executive functions and motor skills. Higher order control processes are discussed as an explanation of the relation between executive functions and motor skills. Copyright © 2017 Elsevier B.V. All rights reserved.
Testing and analysis of internal hardwood log defect prediction models
R. Edward. Thomas
2011-01-01
The severity and location of internal defects determine the quality and value of lumber sawn from hardwood logs. Models have been developed to predict the size and position of internal defects based on external defect indicator measurements. These models were shown to predict approximately 80% of all internal knots based on external knot indicators. However, the size...
A Polynomial Term Structure Model with Macroeconomic Variables
Directory of Open Access Journals (Sweden)
José Valentim Vicente
2007-06-01
Full Text Available Recently, a myriad of factor models including macroeconomic variables have been proposed to analyze the yield curve. We present an alternative factor model where term structure movements are captured by Legendre polynomials mimicking the statistical factor movements identified by Litterman e Scheinkmam (1991. We estimate the model with Brazilian Foreign Exchange Coupon data, adopting a Kalman filter, under two versions: the first uses only latent factors and the second includes macroeconomic variables. We study its ability to predict out-of-sample term structure movements, when compared to a random walk. We also discuss results on the impulse response function of macroeconomic variables.
Gaussian Process Structural Equation Models with Latent Variables
Silva, Ricardo
2010-01-01
In a variety of disciplines such as social sciences, psychology, medicine and economics, the recorded data are considered to be noisy measurements of latent variables connected by some causal structure. This corresponds to a family of graphical models known as the structural equation model with latent variables. While linear non-Gaussian variants have been well-studied, inference in nonparametric structural equation models is still underdeveloped. We introduce a sparse Gaussian process parameterization that defines a non-linear structure connecting latent variables, unlike common formulations of Gaussian process latent variable models. An efficient Markov chain Monte Carlo procedure is described. We evaluate the stability of the sampling procedure and the predictive ability of the model compared against the current practice.
Modelling and forecasting electricity price variability
Energy Technology Data Exchange (ETDEWEB)
Haugom, Erik
2012-07-01
The liberalization of electricity sectors around the world has induced a need for financial electricity markets. This thesis is mainly focused on calculating, modelling, and predicting volatility for financial electricity prices. The four first essays examine the liberalized Nordic electricity market. The purposes in these papers are to describe some stylized properties of high-frequency financial electricity data and to apply models that can explain and predict variation in volatility. The fifth essay examines how information from high-frequency electricity forward contracts can be used in order to improve electricity spot-price volatility predictions. This essay uses data from the Pennsylvania-New Jersey-Maryland wholesale electricity market in the U.S.A. Essay 1 describes some stylized properties of financial high-frequency electricity prices, their returns and volatilities at the Nordic electricity exchange, Nord Pool. The analyses focus on distribution properties, serial correlation, volatility clustering, the influence of extreme events and seasonality in the various measures. The objective of Essay 2 is to calculate, model, and predict realized volatility of financial electricity prices for quarterly and yearly contracts. The total variation is also separated into continuous and jump variation. Various market measures are also included in the models in order potentially to improve volatility predictions. Essay 3 compares day-ahead predictions of Nord Pool financial electricity price volatility obtained from a GARCH approach with those obtained using standard time-series techniques on realized volatility. The performances of a total of eight models (two representing the GARCH family and six representing standard autoregressive models) are compared and evaluated. Essay 4 examines whether predictions of day-ahead and week-ahead volatility can be improved by additionally including volatility and covariance effects from related financial electricity contracts
Coevolution of variability models and related software artifacts
DEFF Research Database (Denmark)
Passos, Leonardo; Teixeira, Leopoldo; Dinztner, Nicolas;
2015-01-01
to the evolution of different kinds of software artifacts, it is not surprising that industry reports existing tools and solutions ineffective, as they do not handle the complexity found in practice. Attempting to mitigate this overall lack of knowledge and to support tool builders with insights on how variability...... models coevolve with other artifact types, we study a large and complex real-world variant-rich software system: the Linux kernel. Specifically, we extract variability-coevolution patterns capturing changes in the variability model of the Linux kernel with subsequent changes in Makefiles and C source......Variant-rich software systems offer a large degree of customization, allowing users to configure the target system according to their preferences and needs. Facing high degrees of variability, these systems often employ variability models to explicitly capture user-configurable features (e...
The International Reference Ionosphere: Model Update 2016
Bilitza, Dieter; Altadill, David; Reinisch, Bodo; Galkin, Ivan; Shubin, Valentin; Truhlik, Vladimir
2016-04-01
The International Reference Ionosphere (IRI) is recognized as the official standard for the ionosphere (COSPAR, URSI, ISO) and is widely used for a multitude of different applications as evidenced by the many papers in science and engineering journals that acknowledge the use of IRI (e.g., about 11% of all Radio Science papers each year). One of the shortcomings of the model has been the dependence of the F2 peak height modeling on the propagation factor M(3000)F2. With the 2016 version of IRI, two new models will be introduced for hmF2 that were developed directly based on hmF2 measurements by ionosondes [Altadill et al., 2013] and by COSMIC radio occultation [Shubin, 2015], respectively. In addition IRI-2016 will include an improved representation of the ionosphere during the very low solar activities that were reached during the last solar minimum in 2008/2009. This presentation will review these and other improvements that are being implemented with the 2016 version of the IRI model. We will also discuss recent IRI workshops and their findings and results. One of the most exciting new projects is the development of the Real-Time IRI [Galkin et al., 2012]. We will discuss the current status and plans for the future. Altadill, D., S. Magdaleno, J.M. Torta, E. Blanch (2013), Global empirical models of the density peak height and of the equivalent scale height for quiet conditions, Advances in Space Research 52, 1756-1769, doi:10.1016/j.asr.2012.11.018. Galkin, I.A., B.W. Reinisch, X. Huang, and D. Bilitza (2012), Assimilation of GIRO Data into a Real-Time IRI, Radio Science, 47, RS0L07, doi:10.1029/2011RS004952. Shubin V.N. (2015), Global median model of the F2-layer peak height based on ionospheric radio-occultation and ground-based Digisonde observations, Advances in Space Research 56, 916-928, doi:10.1016/j.asr.2015.05.029.
Fractional Langevin model of gait variability
Directory of Open Access Journals (Sweden)
Latka Miroslaw
2005-08-01
Full Text Available Abstract The stride interval in healthy human gait fluctuates from step to step in a random manner and scaling of the interstride interval time series motivated previous investigators to conclude that this time series is fractal. Early studies suggested that gait is a monofractal process, but more recent work indicates the time series is weakly multifractal. Herein we present additional evidence for the weakly multifractal nature of gait. We use the stride interval time series obtained from ten healthy adults walking at a normal relaxed pace for approximately fifteen minutes each as our data set. A fractional Langevin equation is constructed to model the underlying motor control system in which the order of the fractional derivative is itself a stochastic quantity. Using this model we find the fractal dimension for each of the ten data sets to be in agreement with earlier analyses. However, with the present model we are able to draw additional conclusions regarding the nature of the control system guiding walking. The analysis presented herein suggests that the observed scaling in interstride interval data may not be due to long-term memory alone, but may, in fact, be due partly to the statistics.
Chen, Xiaolong; Zhou, Tianjun
2017-08-01
The Yangtze River valley (YRV), located in central-eastern China, has witnessed increased numbers of heat waves in the summer since 1951. Knowing what factors control and affect the interannual variability of heat waves, especially distinguishing the contributions of anomalous sea surface temperature (SST) forcings and those of internal modes of variability, is important to improving heat wave prediction. After evaluating 70 members of the atmospheric model intercomparison project (AMIP) experiments from the 25 models that participated in the coupled model intercomparison project phase 5 (CMIP5), 13 high-skill members (HSMs) are selected to estimate the SST-forced variability. The results show that approximately 2/3 of the total variability of the July-August heat waves in the YRV during 1979-2008 can be attributed to anomalous SST forcings, whereas the other 1/3 are due to internal variability. Within the SST-forced component, one-half of the influence is from the impact of the El Niño-Southern Oscillation (ENSO) and the other half is from non-ENSO related SST forcings, specifically, the SST anomalies in the North Pacific and the North Atlantic. Both the decaying El Niño and developing La Niña accompanied by a warm Indian Ocean and cold central Pacific, respectively, are favorable to hotter summers in the YRV because these patterns strengthen and extend the western North Pacific Subtropical High (WNPSH) westwards, for which the decaying ENSO plays a dominant role. The internal variability shows a circumglobal teleconnection in which Rossby waves propagate southeastwards over the Eurasian Continent and strengthen the WNPSH. Atmospheric model sensitivity experiments confirm that non-ENSO SST forcings can modulate the WNPSH and heat wave variability by projecting their influences onto the internal mode.
Modeling and design of energy efficient variable stiffness actuators
Visser, L.C.; Carloni, Raffaella; Ünal, Ramazan; Stramigioli, Stefano
In this paper, we provide a port-based mathematical framework for analyzing and modeling variable stiffness actuators. The framework provides important insights in the energy requirements and, therefore, it is an important tool for the design of energy efficient variable stiffness actuators. Based
A model for variability design rationale in SPL
Galvao, I.; van den Broek, P.M.; Aksit, Mehmet
2010-01-01
The management of variability in software product lines goes beyond the definition of variations, traceability and configurations. It involves a lot of assumptions about the variability and related models, which are made by the stakeholders all over the product line but almost never handled explicit
Variable Selection in the Partially Linear Errors-in-Variables Models for Longitudinal Data
Institute of Scientific and Technical Information of China (English)
Yi-ping YANG; Liu-gen XUE; Wei-hu CHENG
2012-01-01
This paper proposes a new approach for variable selection in partially linear errors-in-variables (EV) models for longitudinal data by penalizing appropriate estimating functions.We apply the SCAD penalty to simultaneously select significant variables and estimate unknown parameters.The rate of convergence and the asymptotic normality of the resulting estimators are established.Furthermore,with proper choice of regularization parameters,we show that the proposed estimators perform as well as the oracle procedure.A new algorithm is proposed for solving penalized estimating equation.The asymptotic results are augmented by a simulation study.
Modeling Candle Flame Behavior In Variable Gravity
Alsairafi, A.; Tien, J. S.; Lee, S. T.; Dietrich, D. L.; Ross, H. D.
2003-01-01
The burning of a candle, as typical non-propagating diffusion flame, has been used by a number of researchers to study the effects of electric fields on flame, spontaneous flame oscillation and flickering phenomena, and flame extinction. In normal gravity, the heat released from combustion creates buoyant convection that draws oxygen into the flame. The strength of the buoyant flow depends on the gravitational level and it is expected that the flame shape, size and candle burning rate will vary with gravity. Experimentally, there exist studies of candle burning in enhanced gravity (i.e. higher than normal earth gravity, g(sub e)), and in microgravity in drop towers and space-based facilities. There are, however, no reported experimental data on candle burning in partial gravity (g model of the candle flame, buoyant forces were neglected. The treatment of momentum equation was simplified using a potential flow approximation. Although the predicted flame characteristics agreed well with the experimental results, the model cannot be extended to cases with buoyant flows. In addition, because of the use of potential flow, no-slip boundary condition is not satisfied on the wick surface. So there is some uncertainty on the accuracy of the predicted flow field. In the present modeling effort, the full Navier-Stokes momentum equations with body force term is included. This enables us to study the effect of gravity on candle flames (with zero gravity as the limiting case). In addition, we consider radiation effects in more detail by solving the radiation transfer equation. In the previous study, flame radiation is treated as a simple loss term in the energy equation. Emphasis of the present model is on the gas-phase processes. Therefore, the detailed heat and mass transfer phenomena inside the porous wick are not treated. Instead, it is assumed that a thin layer of liquid fuel coated the entire wick surface during the burning process. This is the limiting case that the mass
Multi-wheat-model ensemble responses to interannual climatic variability
DEFF Research Database (Denmark)
Ruane, A C; Hudson, N I; Asseng, S
2016-01-01
evaluate results against the interannual variability of growing season temperature, precipitation, and solar radiation. The amount of information used for calibration has only a minor effect on most models' climate response, and even small multi-model ensembles prove beneficial. Wheat model clusters reveal...... common characteristics of yield response to climate; however models rarely share the same cluster at all four sites indicating substantial independence. Only a weak relationship (R2 ≤ 0.24) was found between the models' sensitivities to interannual temperature variability and their response to long...
A new approach to model the variability of karstic recharge
Directory of Open Access Journals (Sweden)
A. Hartmann
2012-02-01
Full Text Available In karst systems, surface near dissolution carbonate rock results in a high spatial and temporal variability of groundwater recharge. To adequately represent the dominating recharge processes in hydrological models is still a challenge, especially in data scare regions. In this study, we developed a recharge model that is based on a perceptual model of the epikarst. It represents epikarst heterogeneity as a set of system property distributions to produce not only a single recharge time series, but a variety of time series representing the spatial recharge variability. We tested the new model with a unique set of spatially distributed flow and tracer observations in a karstic cave at Mt. Carmel, Israel. We transformed the spatial variability into statistical variables and apply an iterative calibration strategy in which more and more data was added to the calibration. Thereby, we could show that the model is only able to produce realistic results when the information about the spatial variability of the observations was included into the model calibration. We could also show that tracer information improves the model performance if data about the variability is not included.
Geometrically nonlinear creeping mathematic models of shells with variable thickness
Directory of Open Access Journals (Sweden)
V.M. Zhgoutov
2012-08-01
Full Text Available Calculations of strength, stability and vibration of shell structures play an important role in the design of modern devices machines and structures. However, the behavior of thin-walled structures of variable thickness during which geometric nonlinearity, lateral shifts, viscoelasticity (creep of the material, the variability of the profile take place and thermal deformation starts up is not studied enough.In this paper the mathematical deformation models of variable thickness shells (smoothly variable and ribbed shells, experiencing either mechanical load or permanent temperature field and taking into account the geometrical nonlinearity, creeping and transverse shear, were developed. The refined geometrical proportions for geometrically nonlinear and steadiness problems are given.
Boolean Variables in Economic Models Solved by Linear Programming
Directory of Open Access Journals (Sweden)
Lixandroiu D.
2014-12-01
Full Text Available The article analyses the use of logical variables in economic models solved by linear programming. Focus is given to the presentation of the way logical constraints are obtained and of the definition rules based on predicate logic. Emphasis is also put on the possibility to use logical variables in constructing a linear objective function on intervals. Such functions are encountered when costs or unitary receipts are different on disjunct intervals of production volumes achieved or sold. Other uses of Boolean variables are connected to constraint systems with conditions and the case of a variable which takes values from a finite set of integers.
Using structural equation modeling to investigate relationships among ecological variables
Malaeb, Z.A.; Kevin, Summers J.; Pugesek, B.H.
2000-01-01
Structural equation modeling is an advanced multivariate statistical process with which a researcher can construct theoretical concepts, test their measurement reliability, hypothesize and test a theory about their relationships, take into account measurement errors, and consider both direct and indirect effects of variables on one another. Latent variables are theoretical concepts that unite phenomena under a single term, e.g., ecosystem health, environmental condition, and pollution (Bollen, 1989). Latent variables are not measured directly but can be expressed in terms of one or more directly measurable variables called indicators. For some researchers, defining, constructing, and examining the validity of latent variables may be the end task of itself. For others, testing hypothesized relationships of latent variables may be of interest. We analyzed the correlation matrix of eleven environmental variables from the U.S. Environmental Protection Agency's (USEPA) Environmental Monitoring and Assessment Program for Estuaries (EMAP-E) using methods of structural equation modeling. We hypothesized and tested a conceptual model to characterize the interdependencies between four latent variables-sediment contamination, natural variability, biodiversity, and growth potential. In particular, we were interested in measuring the direct, indirect, and total effects of sediment contamination and natural variability on biodiversity and growth potential. The model fit the data well and accounted for 81% of the variability in biodiversity and 69% of the variability in growth potential. It revealed a positive total effect of natural variability on growth potential that otherwise would have been judged negative had we not considered indirect effects. That is, natural variability had a negative direct effect on growth potential of magnitude -0.3251 and a positive indirect effect mediated through biodiversity of magnitude 0.4509, yielding a net positive total effect of 0
Design strategies for the International Space University's variable gravity research facility
Bailey, Sheila G.; Chiaramonte, Francis P.; Davidian, Kenneth J.
1990-01-01
A variable gravity research facility named 'Newton' was designed by 58 students from 13 countries at the International Space University's 1989 summer session at the Universite Louis Pasteur, Strasbourge, France. The project was comprehensive in scope, including a political and legal foundation for international cooperation, development and financing; technical, science and engineering issues; architectural design; plausible schedules; and operations, crew issues and maintenance. Since log-term exposure to zero gravity is known to be harmful to the human body, the main goal was to design a unique variable gravity research facility which would find a practical solution to this problem, permitting a manned mission to Mars. The facility would not duplicate other space-based facilities and would provide the flexibility for examining a number of gravity levels, including lunar and Martian gravities. Major design alternatives included a truss versus a tether based system which also involved the question of docking while spinning or despinning to dock. These design issues are described. The relative advantages or disadvantages are discussed, including comments on the necessary research and technology development required for each.
Estimation in the polynomial errors-in-variables model
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
Estimators are presented for the coefficients of the polynomial errors-in-variables (EV) model when replicated observations are taken at some experimental points. These estimators are shown to be strongly consistent under mild conditions.
Study of Observer Variability in Modern Display Colorimetry: An Analysis of CIE 2006 Model
Sarkar, Abhijit; Blonde, Laurent; Le Callet, Patrick; Autrusseau, Florent; Stauder, Jürgen; Morvan, Patrick
2009-01-01
International audience; CIE 2006 model presents a convenient framework for calculating the cone fundamentals, and thus the color matching functions, for various ages of an average observer. CIE 2006 model incorporates three major physiological factors affecting observer variability, namely optical densities for the ocular media absorption, macular pigment absorption, and visual pigments in the outer segments of the photoreceptors. However, it does not have a provision for a peak-wavelength sh...
Bayesian Network Models for Local Dependence among Observable Outcome Variables
Almond, Russell G.; Mulder, Joris; Hemat, Lisa A.; Yan, Duanli
2009-01-01
Bayesian network models offer a large degree of flexibility for modeling dependence among observables (item outcome variables) from the same task, which may be dependent. This article explores four design patterns for modeling locally dependent observations: (a) no context--ignores dependence among observables; (b) compensatory context--introduces…
The relationship between cub and loglinear models with latent variables
Oberski, D. L.; Vermunt, J. K.
2015-01-01
The "combination of uniform and shifted binomial"(cub) model is a distribution for ordinal variables that has received considerable recent attention and specialized development. This article notes that the cub model is a special case of the well-known loglinear latent class model, an observation tha
Multi-wheat-model ensemble responses to interannual climate variability
Ruane, Alex C.; Hudson, Nicholas I.; Asseng, Senthold; Camarrano, Davide; Ewert, Frank; Martre, Pierre; Boote, Kenneth J.; Thorburn, Peter J.; Aggarwal, Pramod K.; Angulo, Carlos; Basso, Bruno; Bertuzzi, Patrick; Biernath, Christian; Brisson, Nadine; Challinor, Andrew J.; Doltra, Jordi; Gayler, Sebastian; Goldberg, Richard; Grant, Robert F.; Heng, Lee; Hooker, Josh; Hunt, Leslie A.; Ingwersen, Joachim; Izaurralde, Roberto C.; Kersebaum, Kurt Christian; Kumar, Soora Naresh; Müller, Christoph; Nendel, Claas; O'Leary, Garry; Olesen, Jørgen E.; Osborne, Tom M.; Palosuo, Taru; Priesack, Eckart; Ripoche, Dominique; Rötter, Reimund P.; Semenov, Mikhail A.; Shcherbak, Iurii; Steduto, Pasquale; Stöckle, Claudio O.; Stratonovitch, Pierre; Streck, Thilo; Supit, Iwan; Tao, Fulu; Travasso, Maria; Waha, Katharina; Wallach, Daniel; White, Jeffrey W.; Wolf, Joost
2016-01-01
We compare 27 wheat models' yield responses to interannual climate variability, analyzed at locations in Argentina, Australia, India, and The Netherlands as part of the Agricultural Model Intercomparison and Improvement Project (AgMIP) Wheat Pilot. Each model simulated 1981-2010 grain yield, and
Total Variability Modeling using Source-specific Priors
DEFF Research Database (Denmark)
Shepstone, Sven Ewan; Lee, Kong Aik; Li, Haizhou
2016-01-01
In total variability modeling, variable length speech utterances are mapped to fixed low-dimensional i-vectors. Central to computing the total variability matrix and i-vector extraction, is the computation of the posterior distribution for a latent variable conditioned on an observed feature...... sequence of an utterance. In both cases the prior for the latent variable is assumed to be non-informative, since for homogeneous datasets there is no gain in generality in using an informative prior. This work shows in the heterogeneous case, that using informative priors for com- puting the posterior......, can lead to favorable results. We focus on modeling the priors using minimum divergence criterion or fac- tor analysis techniques. Tests on the NIST 2008 and 2010 Speaker Recognition Evaluation (SRE) dataset show that our proposed method beats four baselines: For i-vector extraction using an already...
A variable-order fractal derivative model for anomalous diffusion
Directory of Open Access Journals (Sweden)
Liu Xiaoting
2017-01-01
Full Text Available This paper pays attention to develop a variable-order fractal derivative model for anomalous diffusion. Previous investigations have indicated that the medium structure, fractal dimension or porosity may change with time or space during solute transport processes, results in time or spatial dependent anomalous diffusion phenomena. Hereby, this study makes an attempt to introduce a variable-order fractal derivative diffusion model, in which the index of fractal derivative depends on temporal moment or spatial position, to characterize the above mentioned anomalous diffusion (or transport processes. Compared with other models, the main advantages in description and the physical explanation of new model are explored by numerical simulation. Further discussions on the dissimilitude such as computational efficiency, diffusion behavior and heavy tail phenomena of the new model and variable-order fractional derivative model are also offered.
Linear latent variable models: the lava-package
DEFF Research Database (Denmark)
Holst, Klaus Kähler; Budtz-Jørgensen, Esben
2013-01-01
An R package for specifying and estimating linear latent variable models is presented. The philosophy of the implementation is to separate the model specification from the actual data, which leads to a dynamic and easy way of modeling complex hierarchical structures. Several advanced features are...... interface covering a broad range of non-linear generalized structural equation models is described. The model and software are demonstrated in data of measurements of the serotonin transporter in the human brain....
Instrumental Variable Bayesian Model Averaging via Conditional Bayes Factors
Karl, Anna; Lenkoski, Alex
2012-01-01
We develop a method to perform model averaging in two-stage linear regression systems subject to endogeneity. Our method extends an existing Gibbs sampler for instrumental variables to incorporate a component of model uncertainty. Direct evaluation of model probabilities is intractable in this setting. We show that by nesting model moves inside the Gibbs sampler, model comparison can be performed via conditional Bayes factors, leading to straightforward calculations. This new Gibbs sampler is...
Modeling and Simulation For A Variable Sprayerrate System
Shi, Yan; Liang, Anbo; Yuan, Haibo; Zhang, Chunmei; Li, Junlong
Variable spraying technology is an important content and developing direction in current plant protection machinery, which can effectively save pesticide and lighten burden of ecological environment in agriculture according to characteristic of spraying targets and speed of aircraft crew. Paper established mathematic model and delivery function of variable spraying system based on designed hardware of variable spraying machine, making use of PID controlling algorithm to simulate in MATLAB. Simulating result explained that the model can conveniently control gushing amounts and can arrive at satisfied controlling.
Santiago, Brandon G.; Campbell, Matthew T.; Glish, Gary L.
2017-10-01
Differential ion mobility spectrometry (DIMS) devices separate ions on the basis of differences in ion mobility in low and high electric fields, and can be used as a stand-alone analytical method or as a separation step before further analysis. As with other ion mobility separation techniques, the ability of DIMS separations to retain the structural characteristics of analytes has been of concern. For DIMS separations, this potential loss of ion structure originates from the fact that the separations occur at atmospheric pressure and the ions, during their transit through the device, undergo repeated collisions with the DIMS carrier gas while being accelerated by the electric field. These collisions have the ability to increase the internal energy distribution of the ions, which can cause isomerization or fragmentation. The increase in internal energy of the ions is based on a number of variables, including the dispersion field and characteristics of the carrier gas such as temperature and composition. The effects of these parameters on the intra-DIMS fragmentation of multiply charged ions of the peptides bradykinin (RPPGFSPFR) and GLISH are discussed herein. Furthermore, similarities and differences in the internal energy deposition that occur during collisional activation in tandem mass spectrometry experiments are discussed, as the fragmentation pathways accessed by both are similar. [Figure not available: see fulltext.
Modeling the variability of firing rate of retinal ganglion cells.
Levine, M W
1992-12-01
Impulse trains simulating the maintained discharges of retinal ganglion cells were generated by digital realizations of the integrate-and-fire model. If the mean rate were set by a "bias" level added to "noise," the variability of firing would be related to the mean firing rate as an inverse square root law; the maintained discharges of retinal ganglion cells deviate systematically from such a relationship. A more realistic relationship can be obtained if the integrate-and-fire mechanism is "leaky"; with this refinement, the integrate-and-fire model captures the essential features of the data. However, the model shows that the distribution of intervals is insensitive to that of the underlying variability. The leakage time constant, threshold, and distribution of the noise are confounded, rendering the model unspecifiable. Another aspect of variability is presented by the variance of responses to repeated discrete stimuli. The variance of response rate increases with the mean response amplitude; the nature of that relationship depends on the duration of the periods in which the response is sampled. These results have defied explanation. But if it is assumed that variability depends on mean rate in the way observed for maintained discharges, the variability of responses to abrupt changes in lighting can be predicted from the observed mean responses. The parameters that provide the best fits for the variability of responses also provide a reasonable fit to the variability of maintained discharges.
Disentangling Pleiotropy along the Genome using Sparse Latent Variable Models
DEFF Research Database (Denmark)
Janss, Luc
Bayesian models are described that use atent variables to model covariances. These models are flexible, scale up linearly in the number of traits, and allow separating covariance structures in different components at the trait level and at the genomic level. Multi-trait version of the BayesA (MT......-BA) and Bayesian LASSO (MT-BL) are described that model heterogeneous variance and covariance over the genome, and a model that directly models multiple genomic breeding values (MT-MG), representing different genomic covariance structures. The models are demonstrated on a mouse data set to model the genomic...
Reduced Order Internal Models in the Frequency Domain
Laakkonen, Petteri; Paunonen, Lassi
2016-01-01
The internal model principle states that all robustly regulating controllers must contain a suitably reduplicated internal model of the signal to be regulated. Using frequency domain methods, we show that the number of the copies may be reduced if the class of perturbations in the problem is restricted. We present a two step design procedure for a simple controller containing a reduced order internal model achieving robust regulation. The results are illustrated with an example of a five tank...
Modelling of variability of the chemically peculiar star phi Draconis
Prvák, Milan; Krtička, Jiří; Mikulášek, Zdeněk; Lüftinger, T
2015-01-01
Context: The presence of heavier chemical elements in stellar atmospheres influences the spectral energy distribution (SED) of stars. An uneven surface distribution of these elements, together with flux redistribution and stellar rotation, are commonly believed to be the primary causes of the variability of chemically peculiar (CP) stars. Aims: We aim to model the photometric variability of the CP star PHI Dra based on the assumption of inhomogeneous surface distribution of heavier elements and compare it to the observed variability of the star. We also intend to identify the processes that contribute most significantly to its photometric variability. Methods: We use a grid of TLUSTY model atmospheres and the SYNSPEC code to model the radiative flux emerging from the individual surface elements of PHI Dra with different chemical compositions. We integrate the emerging flux over the visible surface of the star at different phases throughout the entire rotational period to synthesise theoretical light curves of...
Energy Technology Data Exchange (ETDEWEB)
Rizzoni, G. (Michigan Univ., Ann Arbor, MI (USA). Dept. of Electrical Engineering and Computer Science)
1989-08-01
In-cylinder gas pressure has long been recognized as a fundamental measure of performance in the internal combustion engine. Among the issues that have been the subject of research in recent years is the study of the effects cyclic combustion variability has on the cycle-to-cycle and cylinder-to-cylinder fluctuations in combustion pressures. Some of the research problems pertaining to cyclic combustion variability are to reformulate from a perspective markedly different from the fluid dynamic and thermodynamic models which traditionally characterize this research: a system viewpoint is embraced to construct a stochastic model for the indicated pressure process and the dynamics of the internal combustion engine. First a deterministic model for the dynamics of the engine is described; then a stochastic model is proposed for the cylinder pressure process. The deterministic model and the stochastic representation are then tied together in a Kalman filter model. Experimental results are discussed to validate the models.
Model and Variable Selection Procedures for Semiparametric Time Series Regression
Directory of Open Access Journals (Sweden)
Risa Kato
2009-01-01
Full Text Available Semiparametric regression models are very useful for time series analysis. They facilitate the detection of features resulting from external interventions. The complexity of semiparametric models poses new challenges for issues of nonparametric and parametric inference and model selection that frequently arise from time series data analysis. In this paper, we propose penalized least squares estimators which can simultaneously select significant variables and estimate unknown parameters. An innovative class of variable selection procedure is proposed to select significant variables and basis functions in a semiparametric model. The asymptotic normality of the resulting estimators is established. Information criteria for model selection are also proposed. We illustrate the effectiveness of the proposed procedures with numerical simulations.
Saleeb, Atef F.; Li, Wei
1995-01-01
This two-part report is concerned with the development of a general framework for the implicit time-stepping integrators for the flow and evolution equations in generalized viscoplastic models. The primary goal is to present a complete theoretical formulation, and to address in detail the algorithmic and numerical analysis aspects involved in its finite element implementation, as well as to critically assess the numerical performance of the developed schemes in a comprehensive set of test cases. On the theoretical side, the general framework is developed on the basis of the unconditionally-stable, backward-Euler difference scheme as a starting point. Its mathematical structure is of sufficient generality to allow a unified treatment of different classes of viscoplastic models with internal variables. In particular, two specific models of this type, which are representative of the present start-of-art in metal viscoplasticity, are considered in applications reported here; i.e., fully associative (GVIPS) and non-associative (NAV) models. The matrix forms developed for both these models are directly applicable for both initially isotropic and anisotropic materials, in general (three-dimensional) situations as well as subspace applications (i.e., plane stress/strain, axisymmetric, generalized plane stress in shells). On the computational side, issues related to efficiency and robustness are emphasized in developing the (local) interative algorithm. In particular, closed-form expressions for residual vectors and (consistent) material tangent stiffness arrays are given explicitly for both GVIPS and NAV models, with their maximum sizes 'optimized' to depend only on the number of independent stress components (but independent of the number of viscoplastic internal state parameters). Significant robustness of the local iterative solution is provided by complementing the basic Newton-Raphson scheme with a line-search strategy for convergence. In the present first part of the
Li, Wei; Saleeb, Atef F.
1995-01-01
This two-part report is concerned with the development of a general framework for the implicit time-stepping integrators for the flow and evolution equations in generalized viscoplastic models. The primary goal is to present a complete theoretical formulation, and to address in detail the algorithmic and numerical analysis aspects involved in its finite element implementation, as well as to critically assess the numerical performance of the developed schemes in a comprehensive set of test cases. On the theoretical side, the general framework is developed on the basis of the unconditionally-stable, backward-Euler difference scheme as a starting point. Its mathematical structure is of sufficient generality to allow a unified treatment of different classes of viscoplastic models with internal variables. In particular, two specific models of this type, which are representative of the present start-of-art in metal viscoplasticity, are considered in applications reported here; i.e., fully associative (GVIPS) and non-associative (NAV) models. The matrix forms developed for both these models are directly applicable for both initially isotropic and anisotropic materials, in general (three-dimensional) situations as well as subspace applications (i.e., plane stress/strain, axisymmetric, generalized plane stress in shells). On the computational side, issues related to efficiency and robustness are emphasized in developing the (local) interative algorithm. In particular, closed-form expressions for residual vectors and (consistent) material tangent stiffness arrays are given explicitly for both GVIPS and NAV models, with their maximum sizes 'optimized' to depend only on the number of independent stress components (but independent of the number of viscoplastic internal state parameters). Significant robustness of the local iterative solution is provided by complementing the basic Newton-Raphson scheme with a line-search strategy for convergence. In the present second part of
A Model of Internal Communication in Adaptive Communication Systems.
Williams, M. Lee
A study identified and categorized different types of internal communication systems and developed an applied model of internal communication in adaptive organizational systems. Twenty-one large organizations were selected for their varied missions and diverse approaches to managing internal communication. Individual face-to-face or telephone…
Martin, Janice E.; And Others
This study evaluated whether or not locus of control mediates rational-irrational beliefs. Data were generated investigating the impact of an internal-external orientation and selected demographic variables (age, race, gender, education, and occupation) on rational-irrational beliefs. Independent variables were locus of control and demographic…
Drappeau, S; Belmont, J; Gandhi, P; Corbel, S
2014-01-01
In recent years, compact jets have been playing a growing role in the understanding of accreting black hole engines. In the case of X-ray binary systems, compact jets are usually associated with the hard state phase of a source outburst. Recent observations of GX 339-4 have demonstrated the presence of a variable synchrotron spectral break in the mid-infrared band that was associated with its compact jet. In the model used in this study, we assume that the jet emission is produced by electrons accelerated in internal shocks driven by rapid fluctuations of the jet velocity. The resulting spectral energy distribution (SED) and variability properties are very sensitive to the Fourier power spectrum density (PSD) of the assumed fluctuations of the jet Lorentz factor. These fluctuations are likely to be triggered by the variability of the accretion flow which is best traced by the X-ray emission. Taking the PSD of the jet Lorentz factor fluctuations to be identical to the observed X-ray PSD, our study finds that t...
Financial applications of a Tabu search variable selection model
Directory of Open Access Journals (Sweden)
Zvi Drezner
2001-01-01
Full Text Available We illustrate how a comparatively new technique, a Tabu search variable selection model [Drezner, Marcoulides and Salhi (1999], can be applied efficiently within finance when the researcher must select a subset of variables from among the whole set of explanatory variables under consideration. Several types of problems in finance, including corporate and personal bankruptcy prediction, mortgage and credit scoring, and the selection of variables for the Arbitrage Pricing Model, require the researcher to select a subset of variables from a larger set. In order to demonstrate the usefulness of the Tabu search variable selection model, we: (1 illustrate its efficiency in comparison to the main alternative search procedures, such as stepwise regression and the Maximum R2 procedure, and (2 show how a version of the Tabu search procedure may be implemented when attempting to predict corporate bankruptcy. We accomplish (2 by indicating that a Tabu Search procedure increases the predictability of corporate bankruptcy by up to 10 percentage points in comparison to Altman's (1968 Z-Score model.
Variability in a Community-Structured SIS Epidemiological Model.
Hiebeler, David E; Rier, Rachel M; Audibert, Josh; LeClair, Phillip J; Webber, Anna
2015-04-01
We study an SIS epidemiological model of a population partitioned into groups referred to as communities, households, or patches. The system is studied using stochastic spatial simulations, as well as a system of ordinary differential equations describing moments of the distribution of infectious individuals. The ODE model explicitly includes the population size, as well as the variability in infection levels among communities and the variability among stochastic realizations of the process. Results are compared with an earlier moment-based model which assumed infinite population size and no variance among realizations of the process. We find that although the amount of localized (as opposed to global) contact in the model has little effect on the equilibrium infection level, it does affect both the timing and magnitude of both types of variability in infection level.
A 3-mode, Variable Velocity Jet Model for HH 34
Raga, A.; Noriega-Crespo, A.
1998-01-01
Variable ejection velocity jet models can qualitatively explain the appearance of successive working surfaces in Herbig-Haro (HH) jets. This paper presents an attempt to explore which features of the HH 34 jet can indeed be reproduced by such a model.
Manifest Variable Granger Causality Models for Developmental Research: A Taxonomy
von Eye, Alexander; Wiedermann, Wolfgang
2015-01-01
Granger models are popular when it comes to testing hypotheses that relate series of measures causally to each other. In this article, we propose a taxonomy of Granger causality models. The taxonomy results from crossing the four variables Order of Lag, Type of (Contemporaneous) Effect, Direction of Effect, and Segment of Dependent Series…
An Alternative Approach for Nonlinear Latent Variable Models
Mooijaart, Ab; Bentler, Peter M.
2010-01-01
In the last decades there has been an increasing interest in nonlinear latent variable models. Since the seminal paper of Kenny and Judd, several methods have been proposed for dealing with these kinds of models. This article introduces an alternative approach. The methodology involves fitting some third-order moments in addition to the means and…
Modeling, analysis and control of a variable geometry actuator
Evers, W.J.; Knaap, A. van der; Besselink, I.J.M.; Nijmeijer, H.
2008-01-01
A new design of variable geometry force actuator is presented in this paper. Based upon this design, a model is derived which is used for steady-state analysis, as well as controller design in the presence of friction. The controlled actuator model is finally used to evaluate the power consumption u
Modelling avalanche danger and understanding snow depth variability
2010-01-01
This thesis addresses the causes of avalanche danger at a regional scale. Modelled snow stratigraphy variables were linked to [1] forecasted avalanche danger and [2] observed snowpack stability. Spatial variability of snowpack parameters in a region is an additional important factor that influences the avalanche danger. Snow depth and its change during individual snow fall periods are snowpack parameters which can be measured at a high spatial resolution. Hence, the spatial distribution of sn...
Analysis models for variables associated with breastfeeding duration.
dos S Neto, Edson Theodoro; Zandonade, Eliana; Emmerich, Adauto Oliveira
2013-09-01
OBJECTIVE To analyze the factors associated with breastfeeding duration by two statistical models. METHODS A population-based cohort study was conducted with 86 mothers and newborns from two areas primary covered by the National Health System, with high rates of infant mortality in Vitória, Espírito Santo, Brazil. During 30 months, 67 (78%) children and mothers were visited seven times at home by trained interviewers, who filled out survey forms. Data on food and sucking habits, socioeconomic and maternal characteristics were collected. Variables were analyzed by Cox regression models, considering duration of breastfeeding as the dependent variable, and logistic regression (dependent variables, was the presence of a breastfeeding child in different post-natal ages). RESULTS In the logistic regression model, the pacifier sucking (adjusted Odds Ratio: 3.4; 95%CI 1.2-9.55) and bottle feeding (adjusted Odds Ratio: 4.4; 95%CI 1.6-12.1) increased the chance of weaning a child before one year of age. Variables associated to breastfeeding duration in the Cox regression model were: pacifier sucking (adjusted Hazard Ratio 2.0; 95%CI 1.2-3.3) and bottle feeding (adjusted Hazard Ratio 2.0; 95%CI 1.2-3.5). However, protective factors (maternal age and family income) differed between both models. CONCLUSIONS Risk and protective factors associated with cessation of breastfeeding may be analyzed by different models of statistical regression. Cox Regression Models are adequate to analyze such factors in longitudinal studies.
Dondeynaz, C.; Lopez-Puga, J.; Carmona-Moreno, C.
2012-04-01
Improving Water and Sanitation Services (WSS), being a complex and interdisciplinary issue, passes through collaboration and coordination of different sectors (environment, health, economic activities, governance, and international cooperation). This inter-dependency has been recognised with the adoption of the "Integrated Water Resources Management" principles that push for the integration of these various dimensions involved in WSS delivery to ensure an efficient and sustainable management. The understanding of these interrelations appears as crucial for decision makers in the water sector in particular in developing countries where WSS still represent an important leverage for livelihood improvement. In this framework, the Joint Research Centre of the European Commission has developed a coherent database (WatSan4Dev database) containing 29 indicators from environmental, socio-economic, governance and financial aid flows data focusing on developing countries (Celine et al, 2011 under publication). The aim of this work is to model the WatSan4Dev dataset using probabilistic models to identify the key variables influencing or being influenced by the water supply and sanitation access levels. Bayesian Network Models are suitable to map the conditional dependencies between variables and also allows ordering variables by level of influence on the dependent variable. Separated models have been built for water supply and for sanitation because of different behaviour. The models are validated if complying with statistical criteria but either with scientific knowledge and literature. A two steps approach has been adopted to build the structure of the model; Bayesian network is first built for each thematic cluster of variables (e.g governance, agricultural pressure, or human development) keeping a detailed level for interpretation later one. A global model is then built based on significant indicators of each cluster being previously modelled. The structure of the
International Business Models Developed Through Brokerage Knowledge and Value Creation
DEFF Research Database (Denmark)
Petersen, Nicolaj Hannesbo; Rasmussen, Erik Stavnsager
This paper highlights theoretically and empirically international business model decisions in networks with knowledge sharing and value creation. The paper expands the conceptual in-ternational business model framework for technology-oriented companies to include the focal firm’s network role...
Cosmological Models with Variable Deceleration Parameter in Lyra's Manifold
Pradhan, A; Singh, C B
2006-01-01
FRW models of the universe have been studied in the cosmological theory based on Lyra's manifold. A new class of exact solutions has been obtained by considering a time dependent displacement field for variable deceleration parameter from which three models of the universe are derived (i) exponential (ii) polynomial and (iii) sinusoidal form respectively. The behaviour of these models of the universe are also discussed. Finally some possibilities of further problems and their investigations have been pointed out.
Estimation of the Heteroskedastic Canonical Contagion Model with Instrumental Variables
2016-01-01
Knowledge of contagion among economies is a relevant issue in economics. The canonical model of contagion is an alternative in this case. Given the existence of endogenous variables in the model, instrumental variables can be used to decrease the bias of the OLS estimator. In the presence of heteroskedastic disturbances this paper proposes the use of conditional volatilities as instruments. Simulation is used to show that the homoscedastic and heteroskedastic estimators which use them as instruments have small bias. These estimators are preferable in comparison with the OLS estimator and their asymptotic distribution can be used to construct confidence intervals. PMID:28030628
The Properties of Model Selection when Retaining Theory Variables
DEFF Research Database (Denmark)
Hendry, David F.; Johansen, Søren
Economic theories are often fitted directly to data to avoid possible model selection biases. We show that embedding a theory model that specifies the correct set of m relevant exogenous variables, x{t}, within the larger set of m+k candidate variables, (x{t},w{t}), then selection over the second...... set by their statistical significance can be undertaken without affecting the estimator distribution of the theory parameters. This strategy returns the theory-parameter estimates when the theory is correct, yet protects against the theory being under-specified because some w{t} are relevant....
Efficient family-based model checking via variability abstractions
DEFF Research Database (Denmark)
Dimovski, Aleksandar; Al-Sibahi, Ahmad Salim; Brabrand, Claus
2016-01-01
variational models using the standard version of (single-system) Spin. The variability abstractions are first defined as Galois connections on semantic domains. We then show how to use them for defining abstract family-based model checking, where a variability model is replaced with an abstract version of it......Many software systems are variational: they can be configured to meet diverse sets of requirements. They can produce a (potentially huge) number of related systems, known as products or variants, by systematically reusing common parts. For variational models (variational systems or families...... of related systems), specialized family-based model checking algorithms allow efficient verification of multiple variants, simultaneously, in a single run. These algorithms, implemented in a tool Snip, scale much better than ``the brute force'' approach, where all individual systems are verified using...
Mathematical modeling of variables involved in dissolution testing.
Gao, Zongming
2011-11-01
Dissolution testing is an important technique used for development and quality control of solid oral dosage forms of pharmaceutical products. However, the variability associated with this technique, especially with USP apparatuses 1 and 2, is a concern for both the US Food and Drug Administration and pharmaceutical companies. Dissolution testing involves a number of variables, which can be divided into four main categories: (1) analyst, (2) dissolution apparatus, (3) testing environment, and (4) sample. Both linear and nonlinear models have been used to study dissolution profiles, and various mathematical functions have been used to model the observed data. In this study, several variables, including dissolved gases in the dissolution medium, off-center placement of the test tablet, environmental vibration, and various agitation speeds, were modeled. Mathematical models including Higuchi, Korsmeyer-Peppas, Weibull, and the Noyes-Whitney equation were employed to study the dissolution profile of 10 mg prednisone tablets (NCDA #2) using the USP paddle method. The results showed that the nonlinear models (Korsmeyer-Peppas and Weibull) accurately described the entire dissolution profile. The results also showed that dissolution variables affected dissolution rate constants differently, depending on whether the tablets disintegrated or dissolved.
Zanchettin, D.; Bothe, O.; Rubino, A.; Jungclaus, J. H.
2016-08-01
We assess internally-generated climate variability expressed by a multi-model ensemble of unperturbed climate simulations. We focus on basin-scale annual-average sea surface temperatures (SSTs) from twenty multicentennial pre-industrial control simulations contributing to the fifth phase of the Coupled Model Intercomparison Project. Ensemble spatial patterns of regional modes of variability and ensemble (cross-)wavelet-based phase-frequency diagrams of corresponding paired indices summarize the ensemble characteristics of inter-basin and regional-to-global SST interactions on a broad range of timescales. Results reveal that tropical and North Pacific SSTs are a source of simulated interannual global SST variability. The North Atlantic-average SST fluctuates in rough co-phase with the global-average SST on multidecadal timescales, which makes it difficult to discern the Atlantic Multidecadal Variability (AMV) signal from the global signal. The two leading modes of tropical and North Pacific SST variability converge towards co-phase in the multi-model ensemble, indicating that the Pacific Decadal Oscillation (PDO) results from a combination of tropical and extra-tropical processes. No robust inter- or multi-decadal inter-basin SST interaction arises from our ensemble analysis between the Pacific and Atlantic oceans, though specific phase-locked fluctuations occur between Pacific and Atlantic modes of SST variability in individual simulations and/or periods within individual simulations. The multidecadal modulation of PDO by the AMV identified in observations appears to be a recurrent but not typical feature of ensemble-simulated internal variability. Understanding the mechanism(s) and circumstances favoring such inter-basin SST phasing and related uncertainties in their simulated representation could help constraining uncertainty in decadal climate predictions.
Match and Game Performance Structure Variables in Elite and Youth International Badminton Players
National Research Council Canada - National Science Library
Kah Loon Leong; Oleksandr Krasilshchikov
2016-01-01
...) and Youth International under 19 years of age (U-19) International badminton players. A total of 14 matches including semi-finals and finals of International tournaments were selected for the analysis...
Rosenberger, Kurt J.; Storlazzi, Curt D.; Cheriton, Olivia M.
2016-06-01
A 6-month deployment of instrumentation from April to October 2012 in 90 m water depth near the outer edge of the mid-shelf mud belt in southern Monterey Bay, California, reveals the importance regional upwelling on water column density structure, potentially accounting for the majority of the variability in internal tidal energy flux across the shelf. Observations consisted of time-series measurements of water-column currents, temperature and salinity, and near-bed currents and suspended matter. The internal tide accounted for 15-25% of the water-column current variance and the barotropic tide accounted for up to 35%. The subtidal flow showed remarkably little shear and was dominated by the 7-14 day band, which is associated with relaxations in the dominant equatorward winds typical of coastal California in the spring and summer. Upwelling and relaxation events resulted in strong near-bed flows and accounted for almost half of the current stress on the seafloor (not accounting for wave orbital velocities), and may have driven along-shelf geostrophic flow during steady state conditions. Several elevated suspended particulate matter (SPM) events occurred within 3 m of the bed and were generally associated with higher, long-period surface waves. However, these peaks in SPM did not coincide with the predicted resuspension events from the modeled combined wave-current shear stress, indicating that the observed SPM at our site was most likely resuspended elsewhere and advected along-isobath. Sediment flux was almost equal in magnitude in the alongshore and cross-shore directions. Instances of wave-current shear stress that exceeded the threshold of resuspension for the silty-clays common at these water depths only occurred when near-bed orbital velocities due to long-period surface waves coincided with vigorous near-bed currents associated with the internal tide or upwelling/relaxation events. Thus upwelling/relaxation dynamics are primarily responsible for variability
Rosenberger, Kurt; Storlazzi, Curt; Cheriton, Olivia
2016-01-01
A 6-month deployment of instrumentation from April to October 2012 in 90 m water depth near the outer edge of the mid-shelf mud belt in southern Monterey Bay, California, reveals the importance regional upwelling on water column density structure, potentially accounting for the majority of the variability in internal tidal energy flux across the shelf. Observations consisted of time-series measurements of water-column currents, temperature and salinity, and near-bed currents and suspended matter. The internal tide accounted for 15–25% of the water-column current variance and the barotropic tide accounted for up to 35%. The subtidal flow showed remarkably little shear and was dominated by the 7–14 day band, which is associated with relaxations in the dominant equatorward winds typical of coastal California in the spring and summer. Upwelling and relaxation events resulted in strong near-bed flows and accounted for almost half of the current stress on the seafloor (not accounting for wave orbital velocities), and may have driven along-shelf geostrophic flow during steady state conditions. Several elevated suspended particulate matter (SPM) events occurred within 3 m of the bed and were generally associated with higher, long-period surface waves. However, these peaks in SPM did not coincide with the predicted resuspension events from the modeled combined wave–current shear stress, indicating that the observed SPM at our site was most likely resuspended elsewhere and advected along-isobath. Sediment flux was almost equal in magnitude in the alongshore and cross-shore directions. Instances of wave–current shear stress that exceeded the threshold of resuspension for the silty-clays common at these water depths only occurred when near-bed orbital velocities due to long-period surface waves coincided with vigorous near-bed currents associated with the internal tide or upwelling/relaxation events. Thus upwelling/relaxation dynamics are primarily responsible for
Computational Model for Internal Relative Humidity Distributions in Concrete
Directory of Open Access Journals (Sweden)
Wondwosen Ali
2014-01-01
Full Text Available A computational model is developed for predicting nonuniform internal relative humidity distribution in concrete. Internal relative humidity distribution is known to have a direct effect on the nonuniform drying shrinkage strains. These nonuniform drying shrinkage strains result in the buildup of internal stresses, which may lead to cracking of concrete. This may be particularly true at early ages of concrete since the concrete is relatively weak while the difference in internal relative humidity is probably high. The results obtained from this model can be used by structural and construction engineers to predict critical drying shrinkage stresses induced due to differential internal humidity distribution. The model uses finite elment-finite difference numerical methods. The finite element is used to space discretization while the finite difference is used to obtain transient solutions of the model. The numerical formulations are then programmed in Matlab. The numerical results were compared with experimental results found in the literature and demonstrated very good agreement.
Internal models for interpreting neural population activity during sensorimotor control.
Golub, Matthew D; Yu, Byron M; Chase, Steven M
2015-01-01
To successfully guide limb movements, the brain takes in sensory information about the limb, internally tracks the state of the limb, and produces appropriate motor commands. It is widely believed that this process uses an internal model, which describes our prior beliefs about how the limb responds to motor commands. Here, we leveraged a brain-machine interface (BMI) paradigm in rhesus monkeys and novel statistical analyses of neural population activity to gain insight into moment-by-moment internal model computations. We discovered that a mismatch between subjects' internal models and the actual BMI explains roughly 65% of movement errors, as well as long-standing deficiencies in BMI speed control. We then used the internal models to characterize how the neural population activity changes during BMI learning. More broadly, this work provides an approach for interpreting neural population activity in the context of how prior beliefs guide the transformation of sensory input to motor output.
Composite Pressure Vessel Variability in Geometry and Filament Winding Model
Green, Steven J.; Greene, Nathanael J.
2012-01-01
Composite pressure vessels (CPVs) are used in a variety of applications ranging from carbon dioxide canisters for paintball guns to life support and pressurant storage on the International Space Station. With widespread use, it is important to be able to evaluate the effect of variability on structural performance. Data analysis was completed on CPVs to determine the amount of variation that occurs among the same type of CPV, and a filament winding routine was developed to facilitate study of the effect of manufacturing variation on structural response.
Modeling variability and trends in pesticide concentrations in streams
Vecchia, A.V.; Martin, J.D.; Gilliom, R.J.
2008-01-01
A parametric regression model was developed for assessing the variability and long-term trends in pesticide concentrations in streams. The dependent variable is the logarithm of pesticide concentration and the explanatory variables are a seasonal wave, which represents the seasonal variability of concentration in response to seasonal application rates; a streamflow anomaly, which is the deviation of concurrent daily streamflow from average conditions for the previous 30 days; and a trend, which represents long-term (inter-annual) changes in concentration. Application of the model to selected herbicides and insecticides in four diverse streams indicated the model is robust with respect to pesticide type, stream location, and the degree of censoring (proportion of nondetections). An automatic model fitting and selection procedure for the seasonal wave and trend components was found to perform well for the datasets analyzed. Artificial censoring scenarios were used in a Monte Carlo simulation analysis to show that the fitted trends were unbiased and the approximate p-values were accurate for as few as 10 uncensored concentrations during a three-year period, assuming a sampling frequency of 15 samples per year. Trend estimates for the full model were compared with a model without the streamflow anomaly and a model in which the seasonality was modeled using standard trigonometric functions, rather than seasonal application rates. Exclusion of the streamflow anomaly resulted in substantial increases in the mean-squared error and decreases in power for detecting trends. Incorrectly modeling the seasonal structure of the concentration data resulted in substantial estimation bias and moderate increases in mean-squared error and decreases in power. ?? 2008 American Water Resources Association.
Modeling heart rate variability including the effect of sleep stages
Soliński, Mateusz; Gierałtowski, Jan; Żebrowski, Jan
2016-02-01
We propose a model for heart rate variability (HRV) of a healthy individual during sleep with the assumption that the heart rate variability is predominantly a random process. Autonomic nervous system activity has different properties during different sleep stages, and this affects many physiological systems including the cardiovascular system. Different properties of HRV can be observed during each particular sleep stage. We believe that taking into account the sleep architecture is crucial for modeling the human nighttime HRV. The stochastic model of HRV introduced by Kantelhardt et al. was used as the initial starting point. We studied the statistical properties of sleep in healthy adults, analyzing 30 polysomnographic recordings, which provided realistic information about sleep architecture. Next, we generated synthetic hypnograms and included them in the modeling of nighttime RR interval series. The results of standard HRV linear analysis and of nonlinear analysis (Shannon entropy, Poincaré plots, and multiscale multifractal analysis) show that—in comparison with real data—the HRV signals obtained from our model have very similar properties, in particular including the multifractal characteristics at different time scales. The model described in this paper is discussed in the context of normal sleep. However, its construction is such that it should allow to model heart rate variability in sleep disorders. This possibility is briefly discussed.
Robust Structural Equation Modeling with Missing Data and Auxiliary Variables
Yuan, Ke-Hai; Zhang, Zhiyong
2012-01-01
The paper develops a two-stage robust procedure for structural equation modeling (SEM) and an R package "rsem" to facilitate the use of the procedure by applied researchers. In the first stage, M-estimates of the saturated mean vector and covariance matrix of all variables are obtained. Those corresponding to the substantive variables…
Optical Test of Local Hidden-Variable Model
Institute of Scientific and Technical Information of China (English)
WU XiaoHua; ZONG HongShi; PANG HouRong
2001-01-01
An inequality is deduced from local realism and a supplementary assumption. This inequality defines an experiment that can be actually performed with the present technology to test local hidden-variable models, and it is violated by quantum mechanics with a factor 1.92, while it can be simplified into a form where just two measurements are required.``
Environmental Concern and Sociodemographic Variables: A Study of Statistical Models
Xiao, Chenyang; McCright, Aaron M.
2007-01-01
Studies of the social bases of environmental concern over the past 30 years have produced somewhat inconsistent results regarding the effects of sociodemographic variables, such as gender, income, and place of residence. The authors argue that model specification errors resulting from violation of two statistical assumptions (interval-level…
Multiple Imputation of Predictor Variables Using Generalized Additive Models
de Jong, Roel; van Buuren, Stef; Spiess, Martin
2016-01-01
The sensitivity of multiple imputation methods to deviations from their distributional assumptions is investigated using simulations, where the parameters of scientific interest are the coefficients of a linear regression model, and values in predictor variables are missing at random. The performanc
Modern Gravity Models of Internal Migration. The Case of Romania
Directory of Open Access Journals (Sweden)
Daniela BUNEA
2012-04-01
Full Text Available Internal migration, although less investigated than international migration, is a key mechanism for adjustment to regional economic shocks, especially when other tools prove useless. But this process has very complex factors of determination which can be economic, social, demographic, environmental, etc. Based on previous international studies, in the case of Romania the robust variables proved to be the population size, the per capita gross domestic product, the road density, an amenity index and the crime rate from a static perspective, and the previous migration, the population size and the amenity index from a dynamic perspective. The techniques I have employed in making this study are the Least Square Dummy Variables (LSDV, or the fixed effects method and the Generalized Method of Moments (GMM, or the dynamic method both applied to panel data.
Identification and modeling of internal waves
Digital Repository Service at National Institute of Oceanography (India)
Murty, T.V.R.; Sadhuram, Y.; Rao, M.M.M.; SujithKumar, S.; Maneesha, K.; Sandhya, K.S.; Prakash, S.S.; Chandramouli, P.; Murthy, K.S.R.
,salanity,density,Bruntvaisala frequencyandsoundvelocityunderdifferentseasons 2.2 Currents 2.3 IdentificationofInternalWaves 2.4 CharactersticsofInternalwavesfromCTDandSpectrumanalysis 2.5 Internalwavefieldgeneration 2.6 ModellingofInternalwaves 2.7 Internalwavesimulation 3. Conclusion Contributors to the project 1.... Dr.T.V.Ramana Murty Co-investigator 2. Dr.Y.Sadhuram Member 3. Dr.M.M.Malleswara Rao Member 4. Mr.S.Sujith Kumar Member 5. Mr.S.Surya Prakash Member 6. Mr...
Model isothermal internal erosion of soil
Papin, A. A.; Sibin, A. N.
2016-06-01
The process of internal erosion in a three-phase saturated soil is studied. The problem is described by the equations of mass conservation, Darcy's law and the equation of capillary pressure. The original system of equations is reduced to a system of two equations for porosity and water saturation. In general, the equation of water saturation is degenerate. The degenerate problem in a one-dimensional domain and one special case of the problem in a two-dimensional domain are solved numerically using a finite-difference method. Existence and uniqueness of a classical solution of a nondegenerate problem is proved.
Modeling quasi-static magnetohydrodynamic turbulence with variable energy flux
Verma, Mahendra K
2014-01-01
In quasi-static MHD, experiments and numerical simulations reveal that the energy spectrum is steeper than Kolmogorov's $k^{-5/3}$ spectrum. To explain this observation, we construct turbulence models based on variable energy flux, which is caused by the Joule dissipation. In the first model, which is applicable to small interaction parameters, the energy spectrum is a power law, but with a spectral exponent steeper than -5/3. In the other limit of large interaction parameters, the second model predicts an exponential energy spectrum and flux. The model predictions are in good agreement with the numerical results.
Five-Dimensional Cosmological Model with Variable G and Λ
Institute of Scientific and Technical Information of China (English)
H. Baysal; (I). Yilmaz
2007-01-01
@@ Einstein's field equations with G and Λ both varying with time are considered in the presence of a perfect fluid for five-dimensional cosmological model in a way which conserves the energy momentum tensor of the matter content. Several sets of explicit solutions in the five-dimensional Kaluza-Klein type cosmological models with variable G and Λ are obtained. The diminishment of extra dimension with the evolution of the universe for the five-dimensional model is exhibited. The physical properties of the models are examined.
Hidden variable models for quantum mechanics can have local parts
Larsson, Jan-Ake
2009-01-01
We present an explicit nonlocal nonsignaling model which has a nontrivial local part and is compatible with quantum mechanics. This model constitutes a counterexample to Colbeck and Renner's statement [Phys. Rev. Lett. 101, 050403 (2008)] that "any hidden variable model can only be compatible with quantum mechanics if its local part is trivial". Furthermore, we examine Colbeck and Renner's definition of "local part" and find that, in the case of models reproducing the quantum predictions for the singlet state, it is a restriction equivalent to the conjunction of nonsignaling and trivial local part.
Stability Analysis of a Variable Meme Transmission Model
Reem Al-Amoudi; Salma Al-Tuwairqi; Sarah Al-Sheikh
2014-01-01
Memes propagation is a usual form of social interaction. Understanding the dynamics of memes transmission enables one to find the conditions that leads to persistence or disappearance of memes. In this paper we analyze qualitatively a mathematical model of variable meme transmission. Two equilibrium points of the model are examined: meme free equilibrium and meme existence equilibrium. The reproduction number R₀ that generates new memes is found. Local and global stability of the equilibrium ...
Variable bit rate video traffic modeling by multiplicative multifractal model
Institute of Scientific and Technical Information of China (English)
Huang Xiaodong; Zhou Yuanhua; Zhang Rongfu
2006-01-01
Multiplicative multifractal process could well model video traffic. The multiplier distributions in the multiplicative multifractal model for video traffic are investigated and it is found that Gaussian is not suitable for describing the multipliers on the small time scales. A new statistical distribution-symmetric Pareto distribution is introduced. It is applied instead of Gaussian for the multipliers on those scales. Based on that, the algorithm is updated so that symmetric pareto distribution and Gaussian distribution are used to model video traffic but on different time scales. The simulation results demonstrate that the algorithm could model video traffic more accurately.
Forced and internal variability in temperature simulations and reconstructions of the Common Era
Fernández-Donado, Laura; Fidel González-Rouco, J.; Garcia-Bustamante, Elena; Smerdon, Jason S.; Luterbacher, Juerg; Raible, Christoph C.
2016-04-01
The relatively short ranges of external forcing variability within the CE represent a challenge in as much as the consistency between simulations and reconstructions can be affected by the large uncertainties in their respective responses to the external forcings. One of the core questions within this work relates therefore the extent to which a straight response to the external forcing can be identified during the period under study and whether this signal is common to simulated and reconstructed temperature. This study is based on an exhaustive compilation, analysis and intercomparison of the available hemispherical and global temperature reconstructions as well as a complete ensemble of simulations including both PMIP3/CMIP5 and non-PMIP3 model experiments. In addition, the various external forcing configurations applied to the models are characterized and a Total External Forcing, including all the individual forcing contributors, is developed for each experiment. Based on the linear relationship found at multidecadal and longer timescales during the last millennium between the temperature and the total external forcing, a quantitative metric of the ratio of response, the so-called Last Millennium Transient Climate Response (LMTCR), is obtained and compared for simulations and reconstructions. Within the LMTCR context, a significant quantitative consistency between the simulations and reconstructions is addressed. This work also offers a discussion about the impact that a range of generally accepted methodological approaches might have on the reconstructed ensemble uncertainties and their influences on model-data comparison exercises. A segregation among the various existing spatial targets within the NH, based on the different level of temperatura variability observed in the series, suggests a lower level of model-data consistency during the MCA than previously reported.
A metric for attributing variability in modelled streamflows
Shoaib, Syed Abu; Marshall, Lucy; Sharma, Ashish
2016-10-01
Significant gaps in our present understanding of hydrological systems lead to enhanced uncertainty in key modelling decisions. This study proposes a method, namely "Quantile Flow Deviation (QFD)", for the attribution of forecast variability to different sources across different streamflow regimes. By using a quantile based metric, we can assess the change in uncertainty across individual percentiles, thereby allowing uncertainty to be expressed as a function of magnitude and time. As a result, one can address selective sources of uncertainty depending on whether low or high flows (say) are of interest. By way of a case study, we demonstrate the usefulness of the approach for estimating the relative importance of model parameter identification, objective functions and model structures as sources of stream flow forecast uncertainty. We use FUSE (Framework for Understanding Structural Errors) to implement our methods, allowing selection of multiple different model structures. Cross-catchment comparison is done for two different catchments: Leaf River in Mississippi, USA and Bass River of Victoria, Australia. Two different approaches to parameter estimation are presented that demonstrate the statistic- one based on GLUE, the other one based on optimization. The results presented in this study suggest that the determination of the model structure with the design catchment should be given priority but that objective function selection with parameter identifiability can lead to significant variability in results. By examining the QFD across multiple flow quantiles, the ability of certain models and optimization routines to constrain variability for different flow conditions is demonstrated.
Alternative cokriging model for variable-fidelity surrogate modeling
DEFF Research Database (Denmark)
Han, Zhong Hua; Zimmermann, Ralf; Goertz, Stefan
2012-01-01
to construct global approximation models of the aerodynamic coefficients as well as the drag polar of an RAE 2822 airfoil. The kriging and cokriging models for the moment coefficient show that the poor space-filling properties of the quasi Monte Carlo sampling of the RANS simulations leaves a noticeable gap...
Directory of Open Access Journals (Sweden)
Fernanda Daniela Serralvo
2015-05-01
Full Text Available Introduction: The efficacy and safety in treatment with oral anticoagulants are dependent on the monitoring of the effect of anticoagulants by the prothrombin time (PT. The system INR (International Normalized Ratio was developed to minimize the variability in the PT, mainly because of the thromboplastin reagent used. Objective: Compare the results of INR employing six thromboplastins and plasmas of patients using oral anticoagulants. Materials and Methods: For this study, 96 patients using oral anticoagulants and that had TP collected for monitoring anticoagulants were selected randomly. INR values were determined using six commercially available thromboplastin brands. Results and Discussion: Of the 96 patients, 29 were with the INR between 2 and 3 when used reagents Dade-Behring®, Human do Brasil® and Diagnostica Stago®. Regardless of the range of INR, the results obtained with the reagent Labtest® were statistically different from the Dade-Behring®, from Diagnostica Stago®, Trinity Biotech and Bios Diagnostica®. With INR between 2 and 3 only differences were observed between the results of brands and Bios Diagnostica® Labtest®. With INR above 3, the results of Labtest® were different from the Dade-Behring®, from Diagnostica Stago®, Trinity Biotech® and Bios Diagnostica®. Conclusion: Despite the establishment of INR, there are still significant differences in INR results depending on the thromboplastin brand used, which can interfere with the therapeutic approach in relation to oral anticoagulants.
GENERAL CONSTITUTIVE EQUATIONS OF AN ER SUSPENSION BASED ON THE INTERNAL VARIABLE THEORY
Institute of Scientific and Technical Information of China (English)
王彪; 肖忠民
2001-01-01
A microstructural constitutive theory of ER suspensions was formulated in this investigation. The framework was based on the internal variable theory and the mechanism analysis. The ER suspension consists of fine particles with high dielectric constant and the supporting fluid. Under the action of the electric field, the polarized particles will aggregate together to form the chain-like structures along the direction of the electric field.As the size and orientation of the particle aggregates are volatile, and they adjust according to the applied electric field and strain rate, the energy conservation equation and the force equilibrium equation were thus established to determine the orientation and size of the aggregates. Following that, a three-dimensional, explicit form of the constitutive equation was derived based on the interaction energy and the dissipation function of the system. The response of the system under the action of a simple shearing load was considered and discussed in detail. It is found that the shear-thinning viscosity of an ER suspension is well approximated by the power-law ∞ (Mn) -0.82
DEFF Research Database (Denmark)
Panduro, Toke Emil; Thorsen, Bo Jellesmark
2014-01-01
Hedonic models in environmental valuation studies have grown in terms of number of transactions and number of explanatory variables. We focus on the practical challenge of model reduction, when aiming for reliable parsimonious models, sensitive to omitted variable bias and multicollinearity. We...
Analysis models for variables associated with breastfeeding duration
Directory of Open Access Journals (Sweden)
Edson Theodoro dos S. Neto
2013-09-01
Full Text Available OBJECTIVE To analyze the factors associated with breastfeeding duration by two statistical models. METHODS A population-based cohort study was conducted with 86 mothers and newborns from two areas primary covered by the National Health System, with high rates of infant mortality in Vitória, Espírito Santo, Brazil. During 30 months, 67 (78% children and mothers were visited seven times at home by trained interviewers, who filled out survey forms. Data on food and sucking habits, socioeconomic and maternal characteristics were collected. Variables were analyzed by Cox regression models, considering duration of breastfeeding as the dependent variable, and logistic regression (dependent variables, was the presence of a breastfeeding child in different post-natal ages. RESULTS In the logistic regression model, the pacifier sucking (adjusted Odds Ratio: 3.4; 95%CI 1.2-9.55 and bottle feeding (adjusted Odds Ratio: 4.4; 95%CI 1.6-12.1 increased the chance of weaning a child before one year of age. Variables associated to breastfeeding duration in the Cox regression model were: pacifier sucking (adjusted Hazard Ratio 2.0; 95%CI 1.2-3.3 and bottle feeding (adjusted Hazard Ratio 2.0; 95%CI 1.2-3.5. However, protective factors (maternal age and family income differed between both models. CONCLUSIONS Risk and protective factors associated with cessation of breastfeeding may be analyzed by different models of statistical regression. Cox Regression Models are adequate to analyze such factors in longitudinal studies.
Solutions of two-factor models with variable interest rates
Li, Jinglu; Clemons, C. B.; Young, G. W.; Zhu, J.
2008-12-01
The focus of this work is on numerical solutions to two-factor option pricing partial differential equations with variable interest rates. Two interest rate models, the Vasicek model and the Cox-Ingersoll-Ross model (CIR), are considered. Emphasis is placed on the definition and implementation of boundary conditions for different portfolio models, and on appropriate truncation of the computational domain. An exact solution to the Vasicek model and an exact solution for the price of bonds convertible to stock at expiration under a stochastic interest rate are derived. The exact solutions are used to evaluate the accuracy of the numerical simulation schemes. For the numerical simulations the pricing solution is analyzed as the market completeness decreases from the ideal complete level to one with higher volatility of the interest rate and a slower mean-reverting environment. Simulations indicate that the CIR model yields more reasonable results than the Vasicek model in a less complete market.
Two-step variable selection in quantile regression models
Directory of Open Access Journals (Sweden)
FAN Yali
2015-06-01
Full Text Available We propose a two-step variable selection procedure for high dimensional quantile regressions,in which the dimension of the covariates, pn is much larger than the sample size n. In the first step, we perform l1 penalty, and we demonstrate that the first step penalized estimator with the LASSO penalty can reduce the model from an ultra-high dimensional to a model whose size has the same order as that of the true model, and the selected model can cover the true model. The second step excludes the remained irrelevant covariates by applying the adaptive LASSO penalty to the reduced model obtained from the first step. Under some regularity conditions, we show that our procedure enjoys the model selection consistency. We conduct a simulation study and a real data analysis to evaluate the finite sample performance of the proposed approach.
ASYMPTOTICS OF MEAN TRANSFORMATION ESTIMATORS WITH ERRORS IN VARIABLES MODEL
Institute of Scientific and Technical Information of China (English)
CUI Hengjian
2005-01-01
This paper addresses estimation and its asymptotics of mean transformation θ = E[h(X)] of a random variable X based on n iid. Observations from errors-in-variables model Y = X + v, where v is a measurement error with a known distribution and h(.) is a known smooth function. The asymptotics of deconvolution kernel estimator for ordinary smooth error distribution and expectation extrapolation estimator are given for normal error distribution respectively. Under some mild regularity conditions, the consistency and asymptotically normality are obtained for both type of estimators. Simulations show they have good performance.
Multiple Discrete Endogenous Variables in Weakly-Separable Triangular Models
Directory of Open Access Journals (Sweden)
Sung Jae Jun
2016-02-01
Full Text Available We consider a model in which an outcome depends on two discrete treatment variables, where one treatment is given before the other. We formulate a three-equation triangular system with weak separability conditions. Without assuming assignment is random, we establish the identification of an average structural function using two-step matching. We also consider decomposing the effect of the first treatment into direct and indirect effects, which are shown to be identified by the proposed methodology. We allow for both of the treatment variables to be non-binary and do not appeal to an identification-at-infinity argument.
Validation of an internal hardwood log defect prediction model
R. Edward. Thomas
2011-01-01
The type, size, and location of internal defects dictate the grade and value of lumber sawn from hardwood logs. However, acquiring internal defect knowledge with x-ray/computed-tomography or magnetic-resonance imaging technology can be expensive both in time and cost. An alternative approach uses prediction models based on correlations among external defect indicators...
A New Conceptual Model for Understanding International Students' College Needs
Alfattal, Eyad
2016-01-01
This study concerns the theory and practice of international marketing in higher education with the purpose of exploring a conceptual model for understanding international students' needs in the context of a four-year college in the United States. A transcendental phenomenological design was employed to investigate the essence of international…
A Review of Variable Slicing in Fused Deposition Modeling
Nadiyapara, Hitesh Hirjibhai; Pande, Sarang
2016-06-01
The paper presents a literature survey in the field of fused deposition of plastic wires especially in the field of slicing and deposition using extrusion of thermoplastic wires. Various researchers working in the field of computation of deposition path have used their algorithms for variable slicing. In the study, a flowchart has also been proposed for the slicing and deposition process. The algorithm already been developed by previous researcher will be used to be implemented on the fused deposition modelling machine. To demonstrate the capabilities of the fused deposition modeling machine a case study has been taken. It uses a manipulated G-code to be fed to the fused deposition modeling machine. Two types of slicing strategies, namely uniform slicing and variable slicing have been evaluated. In the uniform slicing, the slice thickness has been used for deposition is varying from 0.1 to 0.4 mm. In the variable slicing, thickness has been varied from 0.1 in the polar region to 0.4 in the equatorial region Time required and the number of slices required to deposit a hemisphere of 20 mm diameter have been compared with that using the variable slicing.
THREE-DIMENSIONAL VARIABLES ALLOCATION IN MESOSCALE MODELS
Institute of Scientific and Technical Information of China (English)
刘宇迪; 陆汉城
2004-01-01
Forecasts and simulations are varied owing to different allocation of 3-dimensional variables in mesoscale models. No attempts have been made to address the issue of optimizing the simulation with a 3-dimensional variables distribution that should come to be. On the basis of linear nonhydrostatic anelastic equations, the paper hereby compares, mainly graphically, the computational dispersion with analytical solutions for four kinds of 3-dimensional meshes commonly found in mesoscale models, in terms of frequency, horizontal and vertical group velocities. The result indicates that the 3-D mesh C/CP has the best computational dispersion, followed by Z/LZ and Z/LY, with the C/L having the worst performance. It is then known that the C/CP mesh is the most desirable allocation in the design of nonhydrostatic baroclinic models. The mesh has, however, larger errors when dealing with shorter horizontal wavelengths. For the simulation of smaller horizontal scales, the horizontal grid intervals have to be shortened to reduce the errors. Additionally, in view of the dominant use of C/CP mesh in finite-difference models, it should be used in conjunction with the Z/LZ or Z/LY mesh if variables are allocated in spectral models.
Nonlinear Dynamical Modeling and Forecast of ENSO Variability
Feigin, Alexander; Mukhin, Dmitry; Gavrilov, Andrey; Seleznev, Aleksey; Loskutov, Evgeny
2017-04-01
New methodology of empirical modeling and forecast of nonlinear dynamical system variability [1] is applied to study of ENSO climate system. The methodology is based on two approaches: (i) nonlinear decomposition of data [2], that provides low-dimensional embedding for further modeling, and (ii) construction of empirical model in the form of low dimensional random dynamical ("stochastic") system [3]. Three monthly data sets are used for ENSO modeling and forecast: global sea surface temperature anomalies, troposphere zonal wind speed, and thermocline depth; all data sets are limited by 30 S, 30 N and have horizontal resolution 10x10 . We compare results of optimal data decomposition as well as prognostic skill of the constructed models for different combinations of involved data sets. We also present comparative analysis of ENSO indices forecasts fulfilled by our models and by IRI/CPC ENSO Predictions Plume. [1] A. Gavrilov, D. Mukhin, E. Loskutov, A. Feigin, 2016: Construction of Optimally Reduced Empirical Model by Spatially Distributed Climate Data. 2016 AGU Fall Meeting, Abstract NG31A-1824. [2] D. Mukhin, A. Gavrilov, E. Loskutov , A.Feigin, J.Kurths, 2015: Principal nonlinear dynamical modes of climate variability, Scientific Reports, rep. 5, 15510; doi: 10.1038/srep15510. [3] Ya. Molkov, D. Mukhin, E. Loskutov, A. Feigin, 2012: Random dynamical models from time series. Phys. Rev. E, Vol. 85, n.3.
A model for international border management systems.
Energy Technology Data Exchange (ETDEWEB)
Duggan, Ruth Ann
2008-09-01
To effectively manage the security or control of its borders, a country must understand its border management activities as a system. Using its systems engineering and security foundations as a Department of Energy National Security Laboratory, Sandia National Laboratories has developed such an approach to modeling and analyzing border management systems. This paper describes the basic model and its elements developed under Laboratory Directed Research and Development project 08-684.
Variable Star Signature Classification using Slotted Symbolic Markov Modeling
Johnston, Kyle B
2016-01-01
With the advent of digital astronomy, new benefits and new challenges have been presented to the modern day astronomer. No longer can the astronomer rely on manual processing, instead the profession as a whole has begun to adopt more advanced computational means. This paper focuses on the construction and application of a novel time-domain signature extraction methodology and the development of a supporting supervised pattern classification algorithm for the identification of variable stars. A methodology for the reduction of stellar variable observations (time-domain data) into a novel feature space representation is introduced. The methodology presented will be referred to as Slotted Symbolic Markov Modeling (SSMM) and has a number of advantages which will be demonstrated to be beneficial; specifically to the supervised classification of stellar variables. It will be shown that the methodology outperformed a baseline standard methodology on a standardized set of stellar light curve data. The performance on ...
Environmental versus demographic variability in stochastic predator-prey models
Dobramysl, U.; Täuber, U. C.
2013-10-01
In contrast to the neutral population cycles of the deterministic mean-field Lotka-Volterra rate equations, including spatial structure and stochastic noise in models for predator-prey interactions yields complex spatio-temporal structures associated with long-lived erratic population oscillations. Environmental variability in the form of quenched spatial randomness in the predation rates results in more localized activity patches. Our previous study showed that population fluctuations in rare favorable regions in turn cause a remarkable increase in the asymptotic densities of both predators and prey. Very intriguing features are found when variable interaction rates are affixed to individual particles rather than lattice sites. Stochastic dynamics with demographic variability in conjunction with inheritable predation efficiencies generate non-trivial time evolution for the predation rate distributions, yet with overall essentially neutral optimization.
The Key Variables for the Development of a Care Model for Stroke
Directory of Open Access Journals (Sweden)
Stavrianopoulos T.
2011-10-01
Full Text Available Introduction Stroke is a major cause of death, threatened and reduced health, and a patient’s dependence on support after the acute phase. The increase in knowledge of neurological recovery after a stroke has led to new treatment strategies, where the importance of the physical environment and rehabilitation is on par with the importance of the medical treatment. It is crucial that the whole stroke team is involved in assessing, planning, and evaluating the care provided. Aim The presentation of the variables that are needed for the development of a general model of care for stroke. Material and Methods Method was used is to search electronic databases (MEDLINE, CINAHL for a review of international literature to 2009 and became selection of books, articles and studies from libraries. The search was done the December of 2010. Results The key variables to develop a model of care are: the care planning, the team culture, the care culture, the professional knowledge, the quality of space, the observation and assessment, the patient participation and the inter-professional teamwork. Conclusions The model presents stroke care as a complex system, with many feedback relationships between key variables for care. The development of the model, with the contributions of existing literature, enables further tests in practice and improvements in stroke care and further refinement of variables which include the model of care.
Foy, Pierre, Ed.; Arora, Alka, Ed.; Stanco, Gabrielle M., Ed.
2013-01-01
This supplement contains documentation on all the derived variables contained in the TIMSS 2011 data files that are based on background questionnaire variables. These variables were used to report background data in the TIMSS 2011 International Results in Mathematics and TIMSS 2011 International Results in Science reports, and are made available…
Dynamic model for the internal combustion engine
Energy Technology Data Exchange (ETDEWEB)
Rizzoni, G.
1986-01-01
Over the last decade there has been increasing interest in the application of control theory to passenger vehicles: stringent governmental regulations constraining fuel consumption and exhaust emissions have required a shift to integrated electronics controls. Unfortunately, the lack of robust global models for the dynamics of the IC engine has limited the application of the tools of control theory in this areas. This dissertation is devoted to the formulation of a robust model for the dynamics of the IC engine. The engine is viewed as a system with inputs given by cylinder pressure and net engine torque, and output corresponding to crankshaft angular acceleration. The model is well suited to closed loop engine and transmission control applications. The deterministic model provides a powerful tool for estimating average and instantaneous net engine torque based on a noncontacting measurement of crankshaft acceleration. The stochastic model explains cyclic pressure variations by an additive Gaussian WSS vector noise process. Further, it demonstrates that by means of a suitable linear transformation-invariant with load and RPM-, the noise process may be expressed in terms of a three-dimensional uncorrelated vector random process.
A new approach for modelling variability in residential construction projects
Directory of Open Access Journals (Sweden)
Mehrdad Arashpour
2013-06-01
Full Text Available The construction industry is plagued by long cycle times caused by variability in the supply chain. Variations or undesirable situations are the result of factors such as non-standard practices, work site accidents, inclement weather conditions and faults in design. This paper uses a new approach for modelling variability in construction by linking relative variability indicators to processes. Mass homebuilding sector was chosen as the scope of the analysis because data is readily available. Numerous simulation experiments were designed by varying size of capacity buffers in front of trade contractors, availability of trade contractors, and level of variability in homebuilding processes. The measurements were shown to lead to an accurate determination of relationships between these factors and production parameters. The variability indicator was found to dramatically affect the tangible performance measures such as home completion rates. This study provides for future analysis of the production homebuilding sector, which may lead to improvements in performance and a faster product delivery to homebuyers.
A new approach for modelling variability in residential construction projects
Directory of Open Access Journals (Sweden)
Mehrdad Arashpour
2013-06-01
Full Text Available The construction industry is plagued by long cycle times caused by variability in the supply chain. Variations or undesirable situations are the result of factors such as non-standard practices, work site accidents, inclement weather conditions and faults in design. This paper uses a new approach for modelling variability in construction by linking relative variability indicators to processes. Mass homebuilding sector was chosen as the scope of the analysis because data is readily available. Numerous simulation experiments were designed by varying size of capacity buffers in front of trade contractors, availability of trade contractors, and level of variability in homebuilding processes. The measurements were shown to lead to an accurate determination of relationships between these factors and production parameters. The variability indicator was found to dramatically affect the tangible performance measures such as home completion rates. This study provides for future analysis of the production homebuilding sector, which may lead to improvements in performance and a faster product delivery to homebuyers.
Modeling temporal and spatial variability of crop yield
Bonetti, S.; Manoli, G.; Scudiero, E.; Morari, F.; Putti, M.; Teatini, P.
2014-12-01
In a world of increasing food insecurity the development of modeling tools capable of supporting on-farm decision making processes is highly needed to formulate sustainable irrigation practices in order to preserve water resources while maintaining adequate crop yield. The design of these practices starts from the accurate modeling of soil-plant-atmosphere interaction. We present an innovative 3D Soil-Plant model that couples 3D hydrological soil dynamics with a mechanistic description of plant transpiration and photosynthesis, including a crop growth module. Because of its intrinsically three dimensional nature, the model is able to capture spatial and temporal patterns of crop yield over large scales and under various climate and environmental factors. The model is applied to a 25 ha corn field in the Venice coastland, Italy, that has been continuously monitored over the years 2010 and 2012 in terms of both hydrological dynamics and yield mapping. The model results satisfactorily reproduce the large variability observed in maize yield (from 2 to 15 ton/ha). This variability is shown to be connected to the spatial heterogeneities of the farmland, which is characterized by several sandy paleo-channels crossing organic-rich silty soils. Salt contamination of soils and groundwater in a large portion of the area strongly affects the crop yield, especially outside the paleo-channels, where measured salt concentrations are lower than the surroundings. The developed model includes a simplified description of the effects of salt concentration in soil water on transpiration. The results seem to capture accurately the effects of salt concentration and the variability of the climatic conditions occurred during the three years of measurements. This innovative modeling framework paves the way to future large scale simulations of farmland dynamics.
On the modeling of internal parameters in hyperelastic biological materials
Giantesio, Giulia
2016-01-01
This paper concerns the behavior of hyperelastic energies depending on an internal parameter. First, the situation in which the internal parameter is a function of the gradient of the deformation is presented. Second, two models where the parameter describes the activation of skeletal muscle tissue are analyzed. In those models, the activation parameter depends on the strain and it is important to consider the derivative of the parameter with respect to the strain in order to capture the proper behavior of the stress.
SME International Business Models: The Role of Context and Experience
DEFF Research Database (Denmark)
Child, John; Hsieh, Linda; Elbanna, Said
2017-01-01
models that SMEs follow? Three distinct international business models (traditional market-adaptive, technology exploiter, and ambidextrous explorer) are found among the SMEs studied. The likelihood of SMEs adopting one business model rather than another is to a high degree predictable with reference...
Ellis, Jules L
2014-04-01
It is shown that a unidimensional monotone latent variable model for binary items implies a restriction on the relative sizes of item correlations: The negative logarithm of the correlations satisfies the triangle inequality. This inequality is not implied by the condition that the correlations are nonnegative, the criterion that coefficient H exceeds 0.30, or manifest monotonicity. The inequality implies both a lower bound and an upper bound for each correlation between two items, based on the correlations of those two items with every possible third item. It is discussed how this can be used in Mokken's (A theory and procedure of scale-analysis, Mouton, The Hague, 1971) scale analysis.
Intraseasonal Variability in an Aquaplanet General Circulation Model
Directory of Open Access Journals (Sweden)
Adam H Sobel
2010-04-01
Full Text Available An aquaplanet atmospheric general circulation model simulation with a robust intraseasonal oscillation is analyzed. The SST boundary condition resembles the observed December-April average with continents omitted, although with the meridional SST gradient reduced to be one-quarter of that observed poleward of 10 ̊ latitude. Slow, regular eastward propagation at 5 m s21 in winds and precipitation with amplitude greater than that in the observed MJO is clearly identified in unfiltered fields. Local precipitation rate is a strongly non-linear and increasing function of column precipitable water, as in observations. The model intraseasonal oscillation resembles a moisture mode that is destabilized by wind-evaporation feedback, and that propagates eastward through advection of anomalous humidity by the sum of perturbation winds and mean westerly flow. A series of sensitivity experiments are conducted to test hypothesized mechanisms. A mechanism denial experiment in which intraseasonal latent heat flux variability is removed largely eliminates intraseasonal wind and precipitation variability. Reducing the lower-troposphere westerly flow in the warm pool by reducing the zonal SST gradient slows eastward propagation, supporting the importance of horizontal advection by the low-level wind to eastward propagation. A zonally symmetric SST basic state produces weak and unrealistic intraseasonal variability between 30 and 90 day timescales, indicating the importance of mean low-level westerly winds and hence a realistic phase relationship between precipitation and surface flux anomalies for producing realistic tropical intraseasonal variability.
York, Sherril L.; Kimura, Iris F.
1987-01-01
A photographic analysis of racing wheelchairs used by cerebral palsy class four athletes and amputee athletes at the 1984 International Games for the Disabled was undertaken in order to analyze seven wheelchair construction variables in relation to performance outcome, distance raced, and type of disability of the user. (Author/MT)
Lipschitz-Elhawi, Racheli; Itzhaky, Haya; Michal, Hefetz
2008-01-01
The article deals with the contribution of background variables (gender, years of residence in a treatment center, and family status), internal resource (self-esteem), and external resources (peer, family and significant other support, sense of belonging to the community) to life satisfaction among adolescents living in residential treatment…
Lipschitz-Elhawi, Racheli; Itzhaky, Haya; Michal, Hefetz
2008-01-01
The article deals with the contribution of background variables (gender, years of residence in a treatment center, and family status), internal resource (self-esteem), and external resources (peer, family and significant other support, sense of belonging to the community) to life satisfaction among adolescents living in residential treatment…
The International Reference Ionosphere 2012 – a model of international collaboration☆
Directory of Open Access Journals (Sweden)
Bilitza Dieter
2014-02-01
Full Text Available The International Reference Ionosphere (IRI project was established jointly by the Committee on Space Research (COSPAR and the International Union of Radio Science (URSI in the late sixties with the goal to develop an international standard for the specification of plasma parameters in the Earth’s ionosphere. COSPAR needed such a specification for the evaluation of environmental effects on spacecraft and experiments in space, and URSI for radiowave propagation studies and applications. At the request of COSPAR and URSI, IRI was developed as a data-based model to avoid the uncertainty of theory-based models which are only as good as the evolving theoretical understanding. Being based on most of the available and reliable observations of the ionospheric plasma from the ground and from space, IRI describes monthly averages of electron density, electron temperature, ion temperature, ion composition, and several additional parameters in the altitude range from 60 km to 2000 km. A working group of about 50 international ionospheric experts is in charge of developing and improving the IRI model. Over time as new data became available and new modeling techniques emerged, steadily improved editions of the IRI model have been published. This paper gives a brief history of the IRI project and describes the latest version of the model, IRI-2012. It also briefly discusses efforts to develop a real-time IRI model. The IRI homepage is at http://IRImodel.org.
Classification criteria of syndromes by latent variable models
DEFF Research Database (Denmark)
Petersen, Janne
2010-01-01
The thesis has two parts; one clinical part: studying the dimensions of human immunodeficiency virus associated lipodystrophy syndrome (HALS) by latent class models, and a more statistical part: investigating how to predict scores of latent variables so these can be used in subsequent regression...... analyses. Part 1: HALS engages different phenotypic changes of peripheral lipoatrophy and central lipohypertrophy. There are several different definitions of HALS and no consensus on the number of phenotypes. Many of the definitions consist of counting fulfilled criteria on markers and do not include...... patient's characteristics. These methods may erroneously reduce multiplicity either by combining markers of different phenotypes or by mixing HALS with other processes such as aging. Latent class models identify homogenous groups of patients based on sets of variables, for example symptoms. As no gold...
Explicit estimating equations for semiparametric generalized linear latent variable models
Ma, Yanyuan
2010-07-05
We study generalized linear latent variable models without requiring a distributional assumption of the latent variables. Using a geometric approach, we derive consistent semiparametric estimators. We demonstrate that these models have a property which is similar to that of a sufficient complete statistic, which enables us to simplify the estimating procedure and explicitly to formulate the semiparametric estimating equations. We further show that the explicit estimators have the usual root n consistency and asymptotic normality. We explain the computational implementation of our method and illustrate the numerical performance of the estimators in finite sample situations via extensive simulation studies. The advantage of our estimators over the existing likelihood approach is also shown via numerical comparison. We employ the method to analyse a real data example from economics. © 2010 Royal Statistical Society.
International variability in diet and requirements of manganese: Causes and consequences.
Freeland-Graves, Jean H; Mousa, Tamara Y; Kim, Sangyoung
2016-12-01
Manganese (Mn) is an essential trace element that is critical for human health and development. At the turn of the century when diets were based on whole grains, cereals and other traditional foods, Mn intakes (8-9mg/d) were much greater than that prevalent today (2mg/d). As societies have developed, diets have shifted as part of a nutrition transition, to those that are high in processed foods, fat, and sugar. These foods are virtually devoid of Mn. Thus, dietary Mn has declined substantially throughout the world, as confirmed by several wide-scale, total diet studies. International variability in dietary Mn is considerable, due to tremendous diversity in food and culture. In countries where fruit and vegetable intake may be limited, i.e. the United Kingdom, populations may ingest much lower levels of Mn (1.4mg/d) as compared to Asian cultures (4mg/d) which have an abundance of plant foods in their food supply and cuisine. The bioavailability of Mn must be considered, including chemical form, oxidation state, mineral-mineral interactions, presence of dietary components and traditional food processing techniques (milling, germination, malting, fermentation). Manganese toxicity is a public health problem that results from exposure to a naturally high water source or contaminated environment of the soil and/or drinking water. In contrast, inadequate intake is associated with adverse health effects such as diabetes, metabolic syndrome, poor birth outcomes and possibly, cancer. Future studies are recommended to set dietary standards for this mineral in countries that lack recommendations to help achieve optimal health. Copyright © 2016 Elsevier GmbH. All rights reserved.
Cardoso Dos Santos, Marcelina; Vézy, Cyrille; Jaffiol, Rodolphe
2016-02-01
Total Internal Reflection Fluorescence Microscopy (TIRFM) is a widespread technique to study cellular process occurring near the contact region with the glass substrate. In this field, determination of the accurate distance from the surface to the plasma membrane constitutes a crucial issue to investigate the physical basis of cellular adhesion process. However, quantitative interpretation of TIRF pictures regarding the distance z between a labeled membrane and the substrate is not trivial. Indeed, the contrast of TIRF images depends on several parameters more and less well known (local concentration of dyes, absorption cross section, angular emission pattern…). The strategy to get around this problem is to exploit a series of TIRF pictures recorded at different incident angles in evanescent regime. This technique called variable-angle TIRF microscopy (vaTIRFM), allowing to map the membrane-substrate separation distance with a nanometric resolution (10-20 nm). vaTIRFM was developed by Burmeister, Truskey and Reichert in the early 1990s with a prism-based TIRF setup [Journal of Microscopy 173, 39-51 (1994)]. We propose a more convenient prismless setup, which uses only a rotatable mirror to adjust precisely the laser beam on the back focal plane of the oil immersion objective (no azimuthal scanning is needed). The series of TIRF images permit us to calculate accurately membrane-surface distances in each pixel. We demonstrate that vaTIRFM are useful to quantify the adhesion of living cells for specific and unspecific membrane-surface interactions, achieved on various functionalized substrates with polymers (BSA, poly-L-lysin) or extracellular matrix proteins (collagen and fibronectin).
Self-organized Criticality Model for Ocean Internal Waves
Institute of Scientific and Technical Information of China (English)
WANG Gang; LIN Min; QIAO Fang-Li; HOU Yi-Jun
2009-01-01
In this paper, we present a simple spring-block model for ocean internal waves based on the self-organized criticality (SOC). The oscillations of the water blocks in the model display power-law behavior with an exponent of-2 in the frequency domain, which is similar to the current and sea water temperature spectra in the actual ocean and the universal Garrett and Munk deep ocean internal wave model [Geophysical Fluid Dynamics 2 (1972) 225; J. Geophys. Res. 80 (1975) 291]. The influence of the ratio of the driving force to the spring coefficient to SOC behaviors in the model is also discussed.
Predictive modeling and reducing cyclic variability in autoignition engines
Energy Technology Data Exchange (ETDEWEB)
Hellstrom, Erik; Stefanopoulou, Anna; Jiang, Li; Larimore, Jacob
2016-08-30
Methods and systems are provided for controlling a vehicle engine to reduce cycle-to-cycle combustion variation. A predictive model is applied to predict cycle-to-cycle combustion behavior of an engine based on observed engine performance variables. Conditions are identified, based on the predicted cycle-to-cycle combustion behavior, that indicate high cycle-to-cycle combustion variation. Corrective measures are then applied to prevent the predicted high cycle-to-cycle combustion variation.
Random spatial processes and geostatistical models for soil variables
Lark, R. M.
2009-04-01
Geostatistical models of soil variation have been used to considerable effect to facilitate efficient and powerful prediction of soil properties at unsampled sites or over partially sampled regions. Geostatistical models can also be used to investigate the scaling behaviour of soil process models, to design sampling strategies and to account for spatial dependence in the random effects of linear mixed models for spatial variables. However, most geostatistical models (variograms) are selected for reasons of mathematical convenience (in particular, to ensure positive definiteness of the corresponding variables). They assume some underlying spatial mathematical operator which may give a good description of observed variation of the soil, but which may not relate in any clear way to the processes that we know give rise to that observed variation in the real world. In this paper I shall argue that soil scientists should pay closer attention to the underlying operators in geostatistical models, with a view to identifying, where ever possible, operators that reflect our knowledge of processes in the soil. I shall illustrate how this can be done in the case of two problems. The first exemplar problem is the definition of operators to represent statistically processes in which the soil landscape is divided into discrete domains. This may occur at disparate scales from the landscape (outcrops, catchments, fields with different landuse) to the soil core (aggregates, rhizospheres). The operators that underly standard geostatistical models of soil variation typically describe continuous variation, and so do not offer any way to incorporate information on processes which occur in discrete domains. I shall present the Poisson Voronoi Tessellation as an alternative spatial operator, examine its corresponding variogram, and apply these to some real data. The second exemplar problem arises from different operators that are equifinal with respect to the variograms of the
Connolly, Joseph W.; Friedlander, David; Kopasakis, George
2015-01-01
This paper covers the development of an integrated nonlinear dynamic simulation for a variable cycle turbofan engine and nozzle that can be integrated with an overall vehicle Aero-Propulso-Servo-Elastic (APSE) model. A previously developed variable cycle turbofan engine model is used for this study and is enhanced here to include variable guide vanes allowing for operation across the supersonic flight regime. The primary focus of this study is to improve the fidelity of the model's thrust response by replacing the simple choked flow equation convergent-divergent nozzle model with a MacCormack method based quasi-1D model. The dynamic response of the nozzle model using the MacCormack method is verified by comparing it against a model of the nozzle using the conservation element/solution element method. A methodology is also presented for the integration of the MacCormack nozzle model with the variable cycle engine.
A MAD model for gamma-ray burst variability
Lloyd-Ronning, Nicole M.; Dolence, Joshua C.; Fryer, Christopher L.
2016-09-01
We present a model for the temporal variability of long gamma-ray bursts (GRBs) during the prompt phase (the highly variable first 100 s or so), in the context of a magnetically arrested disc (MAD) around a black hole. In this state, sufficient magnetic flux is held on to the black hole such that it stalls the accretion near the inner region of the disc. The system transitions in and out of the MAD state, which we relate to the variable luminosity of the GRB during the prompt phase, with a characteristic time-scale defined by the free-fall time in the region over which the accretion is arrested. We present simple analytic estimates of the relevant energetics and time-scales, and compare them to GRB observations. In particular, we show how this model can reproduce the characteristic one second time-scale that emerges from various analyses of the prompt emission light curve. We also discuss how our model can accommodate the potentially physically important correlation between a burst quiescent time and the duration of its subsequent pulse.
A MAD Model for Gamma-Ray Burst Variability
,
2016-01-01
We present a model for the temporal variability of long gamma-ray bursts during the prompt phase (the highly variable first 100 seconds or so), in the context of a magnetically arrested disk (MAD) around a black hole. In this state, sufficient magnetic flux is held on to the black hole such that it stalls the accretion near the inner region of the disk. The system transitions in and out of the MAD state, which we relate to the variable luminosity of the GRB during the prompt phase, with a characteristic timescale defined by the free fall time in the region over which the accretion is arrested. We present simple analytic estimates of the relevant energetics and timescales, and compare them to gamma-ray burst observations. In particular, we show how this model can reproduce the characteristic one second time scale that emerges from various analyses of the prompt emission light curve. We also discuss how our model can accommodate the potentially physically important correlation between a burst quiescent time and...
Attributing Sources of Variability in Regional Climate Model Experiments
Kaufman, C. G.; Sain, S. R.
2008-12-01
Variability in regional climate model (RCM) projections may be due to a number of factors, including the choice of RCM itself, the boundary conditions provided by a driving general circulation model (GCM), and the choice of emission scenario. We describe a new statistical methodology, Gaussian Process ANOVA, which allows us to decompose these sources of variability while also taking account of correlations in the output across space. Our hierarchical Bayesian framework easily allows joint inference about high probability envelopes for the functions, as well as decompositions of total variance that vary over the domain of the functions. These may be used to create maps illustrating the magnitude of each source of variability across the domain of the regional model. We use this method to analyze temperature and precipitation data from the Prudence Project, an RCM intercomparison project in which RCMs were crossed with GCM forcings and scenarios in a designed experiment. This work was funded by the North American Regional Climate Change Assessment Program (NARCCAP).
Modeling and assessing international climate financing
Wu, Jing; Tang, Lichun; Mohamed, Rayman; Zhu, Qianting; Wang, Zheng
2016-06-01
Climate financing is a key issue in current negotiations on climate protection. This study establishes a climate financing model based on a mechanism in which donor countries set up funds for climate financing and recipient countries use the funds exclusively for carbon emission reduction. The burden-sharing principles are based on GDP, historical emissions, and consumptionbased emissions. Using this model, we develop and analyze a series of scenario simulations, including a financing program negotiated at the Cancun Climate Change Conference (2010) and several subsequent programs. Results show that sustained climate financing can help to combat global climate change. However, the Cancun Agreements are projected to result in a reduction of only 0.01°C in global warming by 2100 compared to the scenario without climate financing. Longer-term climate financing programs should be established to achieve more significant benefits. Our model and simulations also show that climate financing has economic benefits for developing countries. Developed countries will suffer a slight GDP loss in the early stages of climate financing, but the longterm economic growth and the eventual benefits of climate mitigation will compensate for this slight loss. Different burden-sharing principles have very similar effects on global temperature change and economic growth of recipient countries, but they do result in differences in GDP changes for Japan and the FSU. The GDP-based principle results in a larger share of financial burden for Japan, while the historical emissions-based principle results in a larger share of financial burden for the FSU. A larger burden share leads to a greater GDP loss.
Modeling KIC10684673 and KIC12216817 as Single Pulsating Variables
Turner, Garrison
2016-01-01
The raw light curves of both KIC 10684673 and KIC 12216817 show variability. Both are listed in the Kepler Eclipsing Binary Catalog (hereafter KEBC), however both are flagged as uncertain in nature. In the present study we show their light curves can be modeled by considering each target as a single, multi-modal delta Scuti pulsator. While this does not exclude the possibility of eclipsing systems, we argue, while spectroscopy on the systems is still lacking, the delta Scuti model is a simpler explanation and therefore more probable.
Viscous Dark Energy Models with Variable G and Λ
Institute of Scientific and Technical Information of China (English)
Arbab I. Arbab
2008-01-01
We consider a cosmological model with bulk viscosity η and variable cosmological Λ∝ρ-α, alpha =const and gravitational G constants. The model exhibits many interesting cosmological features. Inflation proceeds du to the presence of bulk viscosity and dark energy without requiring the equation of state p = -ρ. During the inflationary era the energy density ρ does not remain constant, as in the de-Sitter type. Moreover, the cosmological and gravitational constants increase exponentially with time, whereas the energy density and viscosity decrease exponentially with time. The rate of mass creation during inflation is found to be very huge suggesting that all matter in the universe is created during inflation.
Comparison of multiaxial fatigue damage models under variable amplitude loading
Energy Technology Data Exchange (ETDEWEB)
Chen, Hong; Shang, De Guang; Tian, Yu Jie [Beijing Univ. of Technology, Beijing (China); Liu, Jian Zhong [Beijing Institute of Aeronautical Materials, Beijing (China)
2012-11-15
Based on the cycle counting method of Wang and Brown and on the linear accumulation damage rule of Miner, four multiaxial fatigue damage models without any weight factors proposed by Pan et al., Varvani Farahani, Shang and Wang, and Shang et al. are used to compute fatigue damage. The procedure is evaluated using the low cycle fatigue experimental data of 7050 T7451 aluminum alloy and En15R steel under tension/torsion variable amplitude loading. The results reveal that the procedure is convenient for engineering design and application, and that the four multiaxial fatigue damage models provide good life estimates.
Modeling Surgery: A New Way Toward Understanding Earth Climate Variability
Institute of Scientific and Technical Information of China (English)
WU Lixin; LIU Zhengyu; Robert Gallimore; Michael Notaro; Robert Jacob
2005-01-01
A new modeling concept, referred to as Modeling Surgery, has been recently developed at University of Wisconsin-Madison. It is specifically designed to diagnose coupled feedbacks between different climate components as well as climatic teleconnections within a specific component through systematically modifying the coupling configurations and teleconnective pathways. It thus provides a powerful means for identifying the causes and mechanisms of low-frequency variability in the Earth's climate system. In this paper, we will give a short review of our recent progress in this new area.
A model for Faraday pilot-waves over variable topography
Faria, Luiz
2016-11-01
In 2005 Yves Couder and co-workers discovered that droplets walking on a vibrating bath posses certain features previously thought to be exclusive to quantum systems. These millimetric droplets synchronize with their Faraday wavefield, creating a macroscopic pilot-wave system. In this talk we exploit the fact that the waves generated are nearly monochromatic and propose a hydrodynamic model capable of capturing the interaction between bouncing drops and a variable topography. We show that our model is able to reproduce some important experiments involving the drop-topography interaction, such as non-specular reflection and single-slit diffraction.
A model for Faraday pilot waves over variable topography
Faria, Luiz M.
2017-01-01
Couder and Fort discovered that droplets walking on a vibrating bath possess certain features previously thought to be exclusive to quantum systems. These millimetric droplets synchronize with their Faraday wavefield, creating a macroscopic pilot-wave system. In this paper we exploit the fact that the waves generated are nearly monochromatic and propose a hydrodynamic model capable of quantitatively capturing the interaction between bouncing drops and a variable topography. We show that our reduced model is able to reproduce some important experiments involving the drop-topography interaction, such as non-specular reflection and single-slit diffraction.
Sensitivity Analysis of the ALMANAC Model's Input Variables
Institute of Scientific and Technical Information of China (English)
XIE Yun; James R.Kiniry; Jimmy R.Williams; CHEN You-min; LIN Er-da
2002-01-01
Crop models often require extensive input data sets to realistically simulate crop growth. Development of such input data sets can be difficult for some model users. The objective of this study was to evaluate the importance of variables in input data sets for crop modeling. Based on published hybrid performance trials in eight Texas counties, we developed standard data sets of 10-year simulations of maize and sorghum for these eight counties with the ALMANAC (Agricultural Land Management Alternatives with Numerical Assessment Criteria) model. The simulation results were close to the measured county yields with relative error only 2.6%for maize, and - 0.6% for sorghum. We then analyzed the sensitivity of grain yield to solar radiation, rainfall, soil depth, soil plant available water, and runoff curve number, comparing simulated yields to those with the original, standard data sets. Runoff curve number changes had the greatest impact on simulated maize and sorghum yields for all the counties. The next most critical input was rainfall, and then solar radiation for both maize and sorghum, especially for the dryland condition. For irrigated sorghum, solar radiation was the second most critical input instead of rainfall. The degree of sensitivity of yield to all variables for maize was larger than for sorghum except for solar radiation. Many models use a USDA curve number approach to represent soil water redistribution, so it will be important to have accurate curve numbers, rainfall, and soil depth to realistically simulate yields.
Disambiguating Seesaw Models using Invariant Mass Variables at Hadron Colliders
Dev, P S Bhupal; Mohapatra, Rabindra N
2015-01-01
We propose ways to distinguish between different mechanisms behind the collider signals of TeV-scale seesaw models for neutrino masses using kinematic endpoints of invariant mass variables. We particularly focus on two classes of such models widely discussed in literature: (i) Standard Model extended by the addition of singlet neutrinos and (ii) Left-Right Symmetric Models. Relevant scenarios involving the same "smoking-gun" collider signature of dilepton plus dijet with no missing transverse energy differ from one another by their event topology, resulting in distinctive relationships among the kinematic endpoints to be used for discerning them at hadron colliders. These kinematic endpoints are readily translated to the mass parameters of the on-shell particles through simple analytic expressions which can be used for measuring the masses of the new particles. A Monte Carlo simulation with detector effects is conducted to test the viability of the proposed strategy in a realistic environment. Finally, we dis...
Modelling of W UMa-type variable stars
Directory of Open Access Journals (Sweden)
P. L. Skelton
2010-01-01
Full Text Available W Ursae Majoris (W UMa-type variable stars are over-contact eclipsing binary stars. To understand how these systems form and evolve requires observations spanning many years, followed by detailed models of as many of them as possible. The All Sky Automated Survey (ASAS has an extensive database of these stars. Using the ASAS V band photometric data, models of W UMatype stars are being created to determine the parameters of these stars. This paper discusses the classification of eclipsing binary stars, the methods used to model them as well as the results of the modelling of ASAS 120036–3915.6, an over-contact eclipsing binary star that appears to be changing its period.
Comparative Analysis of Visco-elastic Models with Variable Parameters
Directory of Open Access Journals (Sweden)
Silviu Nastac
2010-01-01
Full Text Available The paper presents a theoretical comparative study for computational behaviour analysis of vibration isolation elements based on viscous and elastic models with variable parameters. The changing of elastic and viscous parameters can be produced by natural timed evolution demo-tion or by heating developed into the elements during their working cycle. It was supposed both linear and non-linear numerical viscous and elastic models, and their combinations. The results show the impor-tance of numerical model tuning with the real behaviour, as such the characteristics linearity, and the essential parameters for damping and rigidity. Multiple comparisons between linear and non-linear simulation cases dignify the basis of numerical model optimization regarding mathematical complexity vs. results reliability.
Voigt, C.; Denker, H.; Timmen, L.
2016-12-01
The latest generation of optical atomic clocks is approaching the level of one part in 1018 in terms of frequency stability and uncertainty. For clock comparisons and the definition of international time scales, a relativistic redshift effect of the clock frequencies has to be taken into account at a corresponding uncertainty level of about 0.1 m2 s-2 and 0.01 m in terms of gravity potential and height, respectively. Besides the predominant static part of the gravity potential, temporal variations must be considered in order to avoid systematic frequency shifts. Time-variable gravity potential components induced by tides and non-tidal mass redistributions are investigated with regard to the level of one part in 1018. The magnitudes and dominant time periods of the individual gravity potential contributions are investigated globally and for specific laboratory sites together with the related uncertainty estimates. The basics of the computation methods are presented along with the applied models, data sets and software. Solid Earth tides contribute by far the most dominant signal with a global maximum amplitude of 4.2 m2 s-2 for the potential and a range (maximum-to-minimum) of up to 1.3 and 10.0 m2 s-2 in terms of potential differences between specific laboratories over continental and intercontinental scales, respectively. Amplitudes of the ocean tidal loading potential can amount up to 1.25 m2 s-2, while the range of the potential between specific laboratories is 0.3 and 1.1 m2 s-2 over continental and intercontinental scales, respectively. These are the only two contributors being relevant at a 10-17 level. However, several other time-variable potential effects can particularly affect clock comparisons at the 10-18 level. Besides solid Earth pole tides, these are non-tidal mass redistributions in the atmosphere, the oceans and the continental water storage.
ORGANIZING SCENARIO VARIABLES BY APPLYING THE INTERPRETATIVE STRUCTURAL MODELING (ISM
Directory of Open Access Journals (Sweden)
Daniel Estima de Carvalho
2009-10-01
Full Text Available The scenario building method is a thought mode - taken to effect in an optimized, strategic manner - based on trends and uncertain events, concerning a large variety of potential results that may impact the future of an organization.In this study, the objective is to contribute towards a possible improvement in Godet and Schoemaker´s scenario preparation methods, by employing the Interpretative Structural Modeling (ISM as a tool for the analysis of variables.Given this is an exploratory theme, bibliographical research with tool definition and analysis, examples extraction from literature and a comparison exercise of referred methods, were undertaken.It was verified that ISM may substitute or complement the original tools for the analysis of variables of scenarios per Godet and Schoemaker’s methods, given the fact that it enables an in-depth analysis of relations between variables in a shorter period of time, facilitating both structuring and construction of possible scenarios.Key-words: Strategy. Future studies. Interpretative Structural Modeling.
G. SARENS; I. DE BEELDE
2004-01-01
Following the recommendation made by Rittenberg (1999), this study encompasses the broader nature of internal auditing that is evolving in practice and confirmed by the revised definition of internal auditing and the new Professional Practices Framework, both issued by the IIA in 1999. This study, based on six extended case studies, attempts to contribute to the literature by studying contemporary internal auditing practices in Belgium (assurance and / or consulting oriented), refining the in...
G. SARENS; I. DE BEELDE
2004-01-01
Following the recommendation made by Rittenberg (1999), this study encompasses the broader nature of internal auditing that is evolving in practice and confirmed by the revised definition of internal auditing and the new Professional Practices Framework, both issued by the IIA in 1999. This study, based on six extended case studies, attempts to contribute to the literature by studying contemporary internal auditing practices in Belgium (assurance and / or consulting oriented), refining the in...
GEOCHEMICAL MODELING OF F AREA SEEPAGE BASIN COMPOSITION AND VARIABILITY
Energy Technology Data Exchange (ETDEWEB)
Millings, M.; Denham, M.; Looney, B.
2012-05-08
From the 1950s through 1989, the F Area Seepage Basins at the Savannah River Site (SRS) received low level radioactive wastes resulting from processing nuclear materials. Discharges of process wastes to the F Area Seepage Basins followed by subsequent mixing processes within the basins and eventual infiltration into the subsurface resulted in contamination of the underlying vadose zone and downgradient groundwater. For simulating contaminant behavior and subsurface transport, a quantitative understanding of the interrelated discharge-mixing-infiltration system along with the resulting chemistry of fluids entering the subsurface is needed. An example of this need emerged as the F Area Seepage Basins was selected as a key case study demonstration site for the Advanced Simulation Capability for Environmental Management (ASCEM) Program. This modeling evaluation explored the importance of the wide variability in bulk wastewater chemistry as it propagated through the basins. The results are intended to generally improve and refine the conceptualization of infiltration of chemical wastes from seepage basins receiving variable waste streams and to specifically support the ASCEM case study model for the F Area Seepage Basins. Specific goals of this work included: (1) develop a technically-based 'charge-balanced' nominal source term chemistry for water infiltrating into the subsurface during basin operations, (2) estimate the nature of short term and long term variability in infiltrating water to support scenario development for uncertainty quantification (i.e., UQ analysis), (3) identify key geochemical factors that control overall basin water chemistry and the projected variability/stability, and (4) link wastewater chemistry to the subsurface based on monitoring well data. Results from this study provide data and understanding that can be used in further modeling efforts of the F Area groundwater plume. As identified in this study, key geochemical factors
Application of Self-Modeling to Externalizing and Internalizing Disorders
Madaus, Melissa Root; Ruberto, Laura M.
2012-01-01
The self-modeling intervention has been studied for more than 40 years, most often through single-subject research design. This article evaluates the use of the intervention with behaviors associated with both externalizing and internalizing disorders. It compares and summarizes the use of the self-modeling intervention with behaviors such as:…
National Research Council Canada - National Science Library
Vera Silva Carlos; Ricardo Gouveia Rodrigues
2012-01-01
... to address these issues is essential. Our main objective is to analyse the relationships between internal market orientation and job satisfaction, organisational commitment, organisational citizenship behaviour and performance...
Bayesian nonparametric centered random effects models with variable selection.
Yang, Mingan
2013-03-01
In a linear mixed effects model, it is common practice to assume that the random effects follow a parametric distribution such as a normal distribution with mean zero. However, in the case of variable selection, substantial violation of the normality assumption can potentially impact the subset selection and result in poor interpretation and even incorrect results. In nonparametric random effects models, the random effects generally have a nonzero mean, which causes an identifiability problem for the fixed effects that are paired with the random effects. In this article, we focus on a Bayesian method for variable selection. We characterize the subject-specific random effects nonparametrically with a Dirichlet process and resolve the bias simultaneously. In particular, we propose flexible modeling of the conditional distribution of the random effects with changes across the predictor space. The approach is implemented using a stochastic search Gibbs sampler to identify subsets of fixed effects and random effects to be included in the model. Simulations are provided to evaluate and compare the performance of our approach to the existing ones. We then apply the new approach to a real data example, cross-country and interlaboratory rodent uterotrophic bioassay.
Beskin, G.; Karpov, S.; Bondar, S.; Greco, G.; Guarnieri, A.; Bartolini, C.; Piccioni, A.
2010-08-01
We imaged the position of the naked-eye burst, GRB080319B, before, during, and after its gamma-ray activity with sub-second temporal resolution using the TORTORA wide-field camera. The burst optical prompt emission, which reached 5.3 mag, has been detected, and its periodic optical variability has been discovered in the form of four equidistant flashes with a duration of several seconds. We also detected a strong correlation (r ≈ 0.82) between optical and gamma-ray light curves with a 2 s delay of the optical emission with respect to the gamma-ray emission. The revealed temporal structure of the optical light curve in comparison with the gamma-ray light curve can be interpreted in the framework of the model of shell collisions in the ejecta containing a significant neutron component. All observed emission features reflect the non-stationary behavior of the burst internal engine—supposedly, a hyperaccreting solar-mass black hole formed in the collapse of a massive stellar core.
Shared Variable Oriented Parallel Precompiler for SPMD Model
Institute of Scientific and Technical Information of China (English)
无
1995-01-01
For the moment,commercial parallel computer systems with distributed memory architecture are usually provided with parallel FORTRAN or parallel C compliers,which are just traditional sequential FORTRAN or C compilers expanded with communication statements.Programmers suffer from writing parallel programs with communication statements. The Shared Variable Oriented Parallel Precompiler (SVOPP) proposed in this paper can automatically generate appropriate communication statements based on shared variables for SPMD(Single Program Multiple Data) computation model and greatly ease the parallel programming with high communication efficiency.The core function of parallel C precompiler has been successfully verified on a transputer-based parallel computer.Its prominent performance shows that SVOPP is probably a break-through in parallel programming technique.
Crack simulation models in variable amplitude loading - a review
Directory of Open Access Journals (Sweden)
Luiz Carlos H. Ricardo
2016-02-01
Full Text Available This work presents a review of crack propagation simulation models considering plane stress and plane strain conditions. It is presented also a chronological different methodologies used to perform the crack advance by finite element method. Some procedures used to edit variable spectrum loading and the effects during crack propagation processes, like retardation, in the fatigue life of the structures are discussed. Based on this work there is no consensus in the scientific community to determine the best way to simulate crack propagation under variable spectrum loading due the combination of metallurgic and mechanical factors regarding, for example, how to select and edit the representative spectrum loading to be used in the crack propagation simulation.
Modeling SEPs and Their Variability in the Inner Heliosphere
Mays, M. L.; Luhmann, J. G.; Odstrcil, D.; Schwadron, N.; Gorby, M.; Bain, H. M.; Mewaldt, R. A.; Gold, R. E.
2015-12-01
In preparation for Solar Probe Plus and Solar Orbiter we consider a series of SEP modeling experiments based on the global MHD WSA-ENLIL model. The models include the Solar Energetic Particle Model (SEPMOD) (Luhmann et al., 2007; 2010) and the Earth-Moon-Mars Radiation Environment Module (EMMREM) (Schwadron et al., 2010)). WSA-ENLIL provides a time-dependent background heliospheric description including CME-like clouds which can generate shocks during their propagation. SEPMOD makes use of the ENLIL-provided magnetic topologies of observer-connected magnetic field lines and all plasma and shock properties along those field lines. The model injects protons onto a sequence observer field lines at intensities dependent on the connected shock source strength which are then integrated at the observer to approximate the proton flux. EMMREM couples with MHD models such as ENLIL and computes energetic particle distributions based on the focused transport equation along a Lagrangian grid of nodes that propagate out with the solar wind. In this presentation we compare SEP modeling results with data, and consider SEP variability in longitude and latitude. Additionally we study the relative importance of observer-connectivity to the solar source and shock locations, as derived from ENLIL. We evaluate the shock geometry and compare model-derived shock parameters with those observed. Finally, we test the effect of the seed population on the resulting profiles.
Toward an Internal Gravity Wave Spectrum in Global Ocean Models
2015-05-14
Davis Highway, Suite 1204, Arlington VA 22202-4302 Respondents should be aware that notwithstanding any other provision of law , no person shall be...14 MAY 2015 2. REPORT TYPE 3. DATES COVERED 00-00-2015 to 00-00-2015 4. TITLE AND SUBTITLE Toward an Internal Gravity Wave Spectrum in Global...resolution global ocean models forced by atmospheric fields and tides are beginning to display realistic internal gravity wave spectra, especially as
Testing biomechanical models of human lumbar lordosis variability.
Castillo, Eric R; Hsu, Connie; Mair, Ross W; Lieberman, Daniel E
2017-05-01
Lumbar lordosis (LL) is a key adaptation for bipedalism, but factors underlying curvature variations remain unclear. This study tests three biomechanical models to explain LL variability. Thirty adults (15 male, 15 female) were scanned using magnetic resonance imaging (MRI), a standing posture analysis was conducted, and lumbar range of motion (ROM) was assessed. Three measures of LL were compared. The trunk's center of mass was estimated from external markers to calculate hip moments (Mhip ) and lumbar flexion moments. Cross-sectional areas of lumbar vertebral bodies and trunk muscles were measured from scans. Regression models tested associations between LL and the Mhip moment arm, a beam bending model, and an interaction between relative trunk strength (RTS) and ROM. Hip moments were not associated with LL. Beam bending was moderately predictive of standing but not supine LL (R(2) = 0.25). Stronger backs and increased ROM were associated with greater LL, especially when standing (R(2) = 0.65). The strength-flexibility model demonstrates the differential influence of RTS depending on ROM: individuals with high ROM exhibited the most LL variation with RTS, while those with low ROM showed reduced LL regardless of RTS. Hip moments appear constrained suggesting the possibility of selection, and the beam model explains some LL variability due to variations in trunk geometry. The strength-flexibility interaction best predicted LL, suggesting a tradeoff in which ROM limits the effects of back strength on LL. The strength-flexibility model may have clinical relevance for spinal alignment and pathology. This model may also suggest that straight-backed Neanderthals had reduced lumbar mobility. © 2017 Wiley Periodicals, Inc.
Influence of climate model variability on projected Arctic shipping futures
Stephenson, Scott R.; Smith, Laurence C.
2015-11-01
Though climate models exhibit broadly similar agreement on key long-term trends, they have significant temporal and spatial differences due to intermodel variability. Such variability should be considered when using climate models to project the future marine Arctic. Here we present multiple scenarios of 21st-century Arctic marine access as driven by sea ice output from 10 CMIP5 models known to represent well the historical trend and climatology of Arctic sea ice. Optimal vessel transits from North America and Europe to the Bering Strait are estimated for two periods representing early-century (2011-2035) and mid-century (2036-2060) conditions under two forcing scenarios (RCP 4.5/8.5), assuming Polar Class 6 and open-water vessels with medium and no ice-breaking capability, respectively. Results illustrate that projected shipping viability of the Northern Sea Route (NSR) and Northwest Passage (NWP) depends critically on model choice. The eastern Arctic will remain the most reliably accessible marine space for trans-Arctic shipping by mid-century, while outcomes for the NWP are particularly model-dependent. Omitting three models (GFDL-CM3, MIROC-ESM-CHEM, and MPI-ESM-MR), our results would indicate minimal NWP potential even for routes from North America. Furthermore, the relative importance of the NSR will diminish over time as the number of viable central Arctic routes increases gradually toward mid-century. Compared to vessel class, climate forcing plays a minor role. These findings reveal the importance of model choice in devising projections for strategic planning by governments, environmental agencies, and the global maritime industry.
Dynamic response of thin-walled structures by variable kinematic one-dimensional models
Carrera, E.; Varello, A.
2012-11-01
This paper investigates the accuracy capabilities of using variable kinematic modeling in compact and thin-walled beam-like structures with dynamic loadings. Carrera Unified Formulation (CUF) is employed to introduce refined one-dimensional (1D) models with a variable order of expansion for the displacement unknowns over the beam cross-section. Classical Euler-Bernoulli and Timoshenko beam theories are obtained as particular cases of these variable kinematic models while a higher order expansion permits the detection of in-plane cross-section deformation, since it leads to shell-like solutions. Finite element (FE) method is used to provide numerical results and the Newmark method is implemented as a time integration scheme. Some assessments with closed form solutions are discussed and comparisons with shell-type results obtained with commercial FE software are made. Further analyses address both compact and thin-walled cross-sections. In particular, the case of a deformable thin-walled cylinder loaded by time-dependent internal forces is discussed. The results clearly show that finite elements which are formulated in the CUF framework do not introduce additional numerical problems with respect to classical beam theories. Comparisons with elasticity solutions prove that the present 1D CUF model offers an accuracy in analyzing thin-walled structures which is typical of shell or three-dimensional models with a remarkable reduction in the computational cost required.
Niche variability and its consequences for species distribution modeling.
Directory of Open Access Journals (Sweden)
Matt J Michel
Full Text Available When species distribution models (SDMs are used to predict how a species will respond to environmental change, an important assumption is that the environmental niche of the species is conserved over evolutionary time-scales. Empirical studies conducted at ecological time-scales, however, demonstrate that the niche of some species can vary in response to environmental change. We use habitat and locality data of five species of stream fishes collected across seasons to examine the effects of niche variability on the accuracy of projections from Maxent, a popular SDM. We then compare these predictions to those from an alternate method of creating SDM projections in which a transformation of the environmental data to similar scales is applied. The niche of each species varied to some degree in response to seasonal variation in environmental variables, with most species shifting habitat use in response to changes in canopy cover or flow rate. SDMs constructed from the original environmental data accurately predicted the occurrences of one species across all seasons and a subset of seasons for two other species. A similar result was found for SDMs constructed from the transformed environmental data. However, the transformed SDMs produced better models in ten of the 14 total SDMs, as judged by ratios of mean probability values at known presences to mean probability values at all other locations. Niche variability should be an important consideration when using SDMs to predict future distributions of species because of its prevalence among natural populations. The framework we present here may potentially improve these predictions by accounting for such variability.
Reinisch, Guillaume; Leyssale, Jean-Marc; Vignoles, Gérard L.
2010-10-01
We present an extension of some popular hindered rotor (HR) models, namely, the one-dimensional HR (1DHR) and the degenerated two-dimensional HR (d2DHR) models, allowing for a simple and accurate treatment of internal rotations. This extension, based on the use of a variable kinetic function in the Hamiltonian instead of a constant reduced moment of inertia, is extremely suitable in the case of rocking/wagging motions involved in dissociation or atom transfer reactions. The variable kinetic function is first introduced in the framework of a classical 1DHR model. Then, an effective temperature and potential dependent constant is proposed in the cases of quantum 1DHR and classical d2DHR models. These methods are finally applied to the atom transfer reaction SiCl3+BCl3→SiCl4+BCl2. We show, for this particular case, that a proper accounting of internal rotations greatly improves the accuracy of thermodynamic and kinetic predictions. Moreover, our results confirm (i) that using a suitably defined kinetic function appears to be very adapted to such problems; (ii) that the separability assumption of independent rotations seems justified; and (iii) that a quantum mechanical treatment is not a substantial improvement with respect to a classical one.
Multi-Variable Model-Based Parameter Estimation Model for Antenna Radiation Pattern Prediction
Deshpande, Manohar D.; Cravey, Robin L.
2002-01-01
A new procedure is presented to develop multi-variable model-based parameter estimation (MBPE) model to predict far field intensity of antenna. By performing MBPE model development procedure on a single variable at a time, the present method requires solution of smaller size matrices. The utility of the present method is demonstrated by determining far field intensity due to a dipole antenna over a frequency range of 100-1000 MHz and elevation angle range of 0-90 degrees.
Variability modes in core flows inverted from geomagnetic field models
Pais, Maria A; Schaeffer, Nathanaël
2014-01-01
We use flows that we invert from two geomagnetic field models spanning centennial time periods (gufm1 and COV-OBS), and apply Principal Component Analysis and Singular Value Decomposition of coupled fields to extract the main modes characterizing their spatial and temporal variations. The quasi geostrophic flows inverted from both geomagnetic field models show similar features. However, COV-OBS has a less energetic mean flow and larger time variability. The statistical significance of flow components is tested from analyses performed on subareas of the whole domain. Bootstrapping methods are also used to extract robust flow features required by both gufm1 and COV-OBS. Three main empirical circulation modes emerge, simultaneously constrained by both geomagnetic field models and expected to be robust against the particular a priori used to build them. Mode 1 exhibits three large robust vortices at medium/high latitudes, with opposite circulation under the Atlantic and the Pacific hemispheres. Mode 2 interesting...
Estimation in the polynomial errors-in-variables model
Institute of Scientific and Technical Information of China (English)
ZHANG; Sanguo
2002-01-01
［1］Kendall, M. G., Stuart, A., The Advanced Theory of Statistics, Vol. 2, New York: Charles Griffin, 1979.［2］Fuller, W. A., Measurement Error Models, New York: Wiley, 1987.［3］Carroll, R. J., Ruppert D., Stefanski, L. A., Measurement Error in Nonlinear Models, London: Chapman & Hall, 1995.［4］Stout, W. F., Almost Sure Convergence, New York: Academic Press, 1974,154.［5］Petrov, V. V., Sums of Independent Random Variables, New York: Springer-Verlag, 1975, 272.［6］Zhang, S. G., Chen, X. R., Consistency of modified MLE in EV model with replicated observation, Science in China, Ser. A, 2001, 44(3): 304-310.［7］Lai, T. L., Robbins, H., Wei, C. Z., Strong consistency of least squares estimates in multiple regression, J. Multivariate Anal., 1979, 9: 343-362.
Initial CGE Model Results Summary Exogenous and Endogenous Variables Tests
Energy Technology Data Exchange (ETDEWEB)
Edwards, Brian Keith [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Boero, Riccardo [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Rivera, Michael Kelly [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2017-08-07
The following discussion presents initial results of tests of the most recent version of the National Infrastructure Simulation and Analysis Center Dynamic Computable General Equilibrium (CGE) model developed by Los Alamos National Laboratory (LANL). The intent of this is to test and assess the model’s behavioral properties. The test evaluated whether the predicted impacts are reasonable from a qualitative perspective. This issue is whether the predicted change, be it an increase or decrease in other model variables, is consistent with prior economic intuition and expectations about the predicted change. One of the purposes of this effort is to determine whether model changes are needed in order to improve its behavior qualitatively and quantitatively.
Variability of internal frontal bore breaking above Opouawe Bank methane seep area (New Zealand)
van Haren, H.; Greinert, J.
2013-01-01
Large internal wave breaking is observed exceeding a vertical array of 61 high-resolution temperature sensors at 1 m intervals between 7 and 67 m above the bottom. The array was moored for 5 days at 969 m of Opouawe Bank, New Zealand, a known methane seep area. As breaking internal waves dominate se
National Research Council Canada - National Science Library
Hyeon Woo LEE
2011-01-01
AN APPLICATION OF LATENT VARIABL AN APPLICATION OF LATENT VARIABLE STRUCTURAL EQUATION MODELING FOR EXPERIMENTAL RESEARCH IN EDUCATIONAL TECHNOLOGY As the technology-enriched learning environments...
Directory of Open Access Journals (Sweden)
V.J. Chalker
2015-09-01
Full Text Available Typing of Mycoplasma pneumoniae by multiple-locus variable-number tandem repeat analysis (MLVA is increasingly in use. However, no specific internationally agreed guidance is available. Thirty M. pneumoniae DNA samples including serial dilutions of a type strain were sent to six international laboratories to perform MLVA and results were compared. Good correlation was observed, indicating that this methodology can be robustly performed in multiple sites. However, differences due to interpretation of fragment size, repeat sequence identification and repeat numbering led to inconsistency in the final profiles assigned by laboratories. We propose guidelines for interpreting M. pneumoniae MLVA typing and assigning the number of repeats.
Salmonella Typhimurium internalization is variable in leafy vegetables and fresh herbs.
Golberg, Dana; Kroupitski, Yulia; Belausov, Eduard; Pinto, Riky; Sela, Shlomo
2011-01-31
Despite washing and decontamination, outbreaks linked to consumption of fresh or minimally-processed leafy greens have been increasingly reported in recent years. In order to assure the safety of produce it is necessary to gain knowledge regarding the exact routes of contamination. Leaf internalization through stomata was previously reported as a potential route of contamination, which renders food-borne pathogens protected from washing and disinfection by sanitizers. In the present study we have examined the incidence (percentage of microscopic fields harboring ≥ 1 GFP-tagged bacteria) of Salmonella Typhimurium on the surface and underneath the epidermis in detached leaves of seven vegetables and fresh herbs. The incidence of internalized Salmonella varied considerably among the different plants. The highest incidence was observed in iceberg lettuce (81 ± 16%) and arugula leaves (88 ± 16%), while romaine (16 ± 16%) and red-lettuce (20 ± 15%), showed significantly lower incidence (P < 0.05). Internalization incidence in fresh basil was 46 ± 12%, while parsley and tomato leaves demonstrated only marginal internalization (1.9 ± 3.3% and 0.56 ± 1.36%, respectively). Internalization of Salmonella in iceberg lettuce largely varied (0-100%) through a 2 year survey, with a higher incidence occurring mainly in the summer. These results imply that Salmonella internalization occurs in several leafy vegetables and fresh herbs, other than iceberg lettuce, yet the level of internalization largely varies among plants and within the same crop. Since internalized bacteria may evade disinfection, it is of great interest to identify plants which are more susceptible to bacterial internalization, as well as plant and environmental factors that affect internalization.
Efficiency of a new internal combustion engine concept with variable piston motion
Directory of Open Access Journals (Sweden)
Dorić Jovan Ž.
2014-01-01
Full Text Available This paper presents simulation of working process in a new IC engine concept. The main feature of this new IC engine concept is the realization of variable movement of the piston. With this unconventional piston movement it is easy to provide variable compression ratio, variable displacement and combustion during constant volume. These advantages over standard piston mechanism are achieved through synthesis of the two pairs of non-circular gears. Presented mechanism is designed to obtain a specific motion law which provides better fuel consumption of IC engines. For this paper Ricardo/WAVE software was used, which provides a fully integrated treatment of time-dependent fluid dynamics and thermodynamics by means of onedimensional formulation. The results obtained herein include the efficiency characteristic of this new heat engine concept. The results show that combustion during constant volume, variable compression ratio and variable displacement have significant impact on improvement of fuel consumption.
Modeling intraindividual variability with repeated measures data methods and applications
Hershberger, Scott L
2013-01-01
This book examines how individuals behave across time and to what degree that behavior changes, fluctuates, or remains stable.It features the most current methods on modeling repeated measures data as reported by a distinguished group of experts in the field. The goal is to make the latest techniques used to assess intraindividual variability accessible to a wide range of researchers. Each chapter is written in a ""user-friendly"" style such that even the ""novice"" data analyst can easily apply the techniques.Each chapter features:a minimum discussion of mathematical detail;an empirical examp
Estimation and variable selection for generalized additive partial linear models
Wang, Li
2011-08-01
We study generalized additive partial linear models, proposing the use of polynomial spline smoothing for estimation of nonparametric functions, and deriving quasi-likelihood based estimators for the linear parameters. We establish asymptotic normality for the estimators of the parametric components. The procedure avoids solving large systems of equations as in kernel-based procedures and thus results in gains in computational simplicity. We further develop a class of variable selection procedures for the linear parameters by employing a nonconcave penalized quasi-likelihood, which is shown to have an asymptotic oracle property. Monte Carlo simulations and an empirical example are presented for illustration. © Institute of Mathematical Statistics, 2011.
Grassmann Variables and the Jaynes-Cummings Model
Dalton, Bryan J; Jeffers, John; Barnett, Stephen M
2012-01-01
This paper shows that phase space methods using a positive P type distribution function involving both c-number variables (for the cavity mode) and Grassmann variables (for the two level atom) can be used to treat the Jaynes-Cummings model. Although it is a Grassmann function, the distribution function is equivalent to six c-number functions of the two bosonic variables. Experimental quantities are given as bosonic phase space integrals involving the six functions. A Fokker-Planck equation involving both left and right Grassmann differentiation can be obtained for the distribution function, and is equivalent to six coupled equations for the six c-number functions. The approach used involves choosing the canonical form of the (non-unique) positive P distribution function, where the correspondence rules for bosonic operators are non-standard and hence the Fokker-Planck equation is also unusual. Initial conditions, such as for initially uncorrelated states, are used to determine the initial distribution function...
Rheological modelling of physiological variables during temperature variations at rest
Vogelaere, P.; de Meyer, F.
1990-06-01
The evolution with time of cardio-respiratory variables, blood pressure and body temperature has been studied on six males, resting in semi-nude conditions during short (30 min) cold stress exposure (0°C) and during passive recovery (60 min) at 20°C. Passive cold exposure does not induce a change in HR but increases VO 2, VCO 2 Ve and core temperature T re, whereas peripheral temperature is significantly lowered. The kinetic evolution of the studied variables was investigated using a Kelvin-Voigt rheological model. The results suggest that the human body, and by extension the measured physiological variables of its functioning, does not react as a perfect viscoelastic system. Cold exposure induces a more rapid adaptation for heart rate, blood pressure and skin temperatures than that observed during the rewarming period (20°C), whereas respiratory adjustments show an opposite evolution. During the cooling period of the experiment the adaptative mechanisms, taking effect to preserve core homeothermy and to obtain a higher oxygen supply, increase the energy loss of the body.
Analytic Thermoelectric Couple Modeling: Variable Material Properties and Transient Operation
Mackey, Jonathan A.; Sehirlioglu, Alp; Dynys, Fred
2015-01-01
To gain a deeper understanding of the operation of a thermoelectric couple a set of analytic solutions have been derived for a variable material property couple and a transient couple. Using an analytic approach, as opposed to commonly used numerical techniques, results in a set of useful design guidelines. These guidelines can serve as useful starting conditions for further numerical studies, or can serve as design rules for lab built couples. The analytic modeling considers two cases and accounts for 1) material properties which vary with temperature and 2) transient operation of a couple. The variable material property case was handled by means of an asymptotic expansion, which allows for insight into the influence of temperature dependence on different material properties. The variable property work demonstrated the important fact that materials with identical average Figure of Merits can lead to different conversion efficiencies due to temperature dependence of the properties. The transient couple was investigated through a Greens function approach; several transient boundary conditions were investigated. The transient work introduces several new design considerations which are not captured by the classic steady state analysis. The work helps to assist in designing couples for optimal performance, and also helps assist in material selection.
Variable Star Signature Classification using Slotted Symbolic Markov Modeling
Johnston, K. B.; Peter, A. M.
2017-01-01
With the advent of digital astronomy, new benefits and new challenges have been presented to the modern day astronomer. No longer can the astronomer rely on manual processing, instead the profession as a whole has begun to adopt more advanced computational means. This paper focuses on the construction and application of a novel time-domain signature extraction methodology and the development of a supporting supervised pattern classification algorithm for the identification of variable stars. A methodology for the reduction of stellar variable observations (time-domain data) into a novel feature space representation is introduced. The methodology presented will be referred to as Slotted Symbolic Markov Modeling (SSMM) and has a number of advantages which will be demonstrated to be beneficial; specifically to the supervised classification of stellar variables. It will be shown that the methodology outperformed a baseline standard methodology on a standardized set of stellar light curve data. The performance on a set of data derived from the LINEAR dataset will also be shown.
Quantifying uncertainty, variability and likelihood for ordinary differential equation models
LENUS (Irish Health Repository)
Weisse, Andrea Y
2010-10-28
Abstract Background In many applications, ordinary differential equation (ODE) models are subject to uncertainty or variability in initial conditions and parameters. Both, uncertainty and variability can be quantified in terms of a probability density function on the state and parameter space. Results The partial differential equation that describes the evolution of this probability density function has a form that is particularly amenable to application of the well-known method of characteristics. The value of the density at some point in time is directly accessible by the solution of the original ODE extended by a single extra dimension (for the value of the density). This leads to simple methods for studying uncertainty, variability and likelihood, with significant advantages over more traditional Monte Carlo and related approaches especially when studying regions with low probability. Conclusions While such approaches based on the method of characteristics are common practice in other disciplines, their advantages for the study of biological systems have so far remained unrecognized. Several examples illustrate performance and accuracy of the approach and its limitations.
Etemadi, H.; Samadi, S.; Sharifikia, M.
2014-06-01
Regression-based statistical downscaling model (SDSM) is an appropriate method which broadly uses to resolve the coarse spatial resolution of general circulation models (GCMs). Nevertheless, the assessment of uncertainty propagation linked with climatic variables is essential to any climate change impact study. This study presents a procedure to characterize uncertainty analysis of two GCM models link with Long Ashton Research Station Weather Generator (LARS-WG) and SDSM in one of the most vulnerable international wetland, namely "Shadegan" in an arid region of Southwest Iran. In the case of daily temperature, uncertainty is estimated by comparing monthly mean and variance of downscaled and observed daily data at a 95 % confidence level. Uncertainties were then evaluated from comparing monthly mean dry and wet spell lengths and their 95 % CI in daily precipitation downscaling using 1987-2005 interval. The uncertainty results indicated that the LARS-WG is the most proficient model at reproducing various statistical characteristics of observed data at a 95 % uncertainty bounds while the SDSM model is the least capable in this respect. The results indicated a sequences uncertainty analysis at three different climate stations and produce significantly different climate change responses at 95 % CI. Finally the range of plausible climate change projections suggested a need for the decision makers to augment their long-term wetland management plans to reduce its vulnerability to climate change impacts.
Modelling and prediction of pig iron variables in the blast furnace
Energy Technology Data Exchange (ETDEWEB)
Saxen, H.; Laaksonen, M.; Waller, M. [Aabo Akademi, Turku (Finland). Heat Engineering Lab.
1996-12-31
The blast furnace, where pig iron for steelmaking is produced, is an extremely complicated process, with heat and mass transfer and chemical reactions between several phases. Very few direct measurements on the internal state are available in the operation of the process. A main problem in on-line analysis and modelling is that the state of the furnace may undergo spontaneous changes, which alter the dynamic behaviour of the process. Moreover, large internal disturbances frequently occur, which affect the product quality. The work in this research project focuses on a central problem in the control of the blast furnace process, i.e., short-term prediction of pig iron variables. The problem is of considerable importance for fuel economy, product quality, and for an optimal decision making in integrated steel plants. The operation of the blast furnace aims at producing a product (hot metal) with variables maintained on a stable level (close to their setpoints) without waste of expensive fuel (metallurgical coke). The hot metal temperature and composition affect the downstream (steelmaking) processes, so fluctuations in the pig iron quality must be `corrected` in the steel plant. The goal is to develop a system which predicts the evolution of the hot metal variables (temperature, chemical composition) during the next few taps, and that can be used for decision-making in the operation of the blast furnace. Because of the complicated behaviour of the process, it is considered important to include both deterministic and stochastic components in the modelling: Mathematical models, which on the basis of measurements describe the physical state of the process, and statistical (black-box) models will be combined in the system. Moreover, different models will be applied in different domains in order to capture structural changes in the dynamics of the process SULA 2 Research Programme; 17 refs.
Modeling the dynamics of intense internal waves on the shelf
Talipova, T. G.; Pelinovsky, E. N.; Kurkin, A. A.; Kurkina, O. E.
2014-11-01
The transformation of the internal wave packet during its propagation over the shelf of Portugal was studied in the international experiment EU MAST II MORENA in 1994. This paper presents the results of modeling of the dynamics of this packet under hydrological conditions along the pathway of its propagation. The modeling was performed on the basis of the generalized Gardner-Ostrovskii equation, including inhomogeneous hydrological conditions, rotation of the Earth, and dissipation in the bottom boundary layer. We also discuss the results of the comparison of the observed and simulated forms and phases of individual waves in a packet at reference points.
Sensitivity analysis of a forest gap model concerning current and future climate variability
Energy Technology Data Exchange (ETDEWEB)
Lasch, P.; Suckow, F.; Buerger, G.; Lindner, M.
1998-07-01
The ability of a forest gap model to simulate the effects of climate variability and extreme events depends on the temporal resolution of the weather data that are used and the internal processing of these data for growth, regeneration and mortality. The climatological driving forces of most current gap models are based on monthly means of weather data and their standard deviations, and long-term monthly means are used for calculating yearly aggregated response functions for ecological processes. In this study, the results of sensitivity analyses using the forest gap model FORSKA{sub -}P and involving climate data of different resolutions, from long-term monthly means to daily time series, including extreme events, are presented for the current climate and for a climate change scenario. The model was applied at two sites with differing soil conditions in the federal state of Brandenburg, Germany. The sensitivity of the model concerning climate variations and different climate input resolutions is analysed and evaluated. The climate variability used for the model investigations affected the behaviour of the model substantially. (orig.)
Global assemblages and structural models of International Relations
DEFF Research Database (Denmark)
Corry, Olaf
2014-01-01
Rather than consigning assemblages to the micro-politics of international relations, the chapter argues that assemblages can also be seen to play a role in the ‘grand’ structures of international relations. Structural IR theory normally only considers how subjects are ordered – hierarchically......, anarchically, in core-periphery relations or in terms of networks. However, not only subjects but also assemblages – the bringing together of previously unconnected elements into novel constellations – play a critical role in structuring international relations. More specifically, one sub......-category of assemblages – those constructed as malleable and governable which I call ‘governance-objects’ – is central to structure in international relations. The chapter begins with standard definitions of what structures are – patterns of interaction between elements – and briefly covers the range of models currently...
Ozone Concentration Prediction via Spatiotemporal Autoregressive Model With Exogenous Variables
Kamoun, W.; Senoussi, R.
2009-04-01
Forecast of environmental variables are nowadays of main concern for public health or agricultural management. In this context a large literature is devoted to spatio-temporal modelling of these variables using different statistical approaches. However, most of studies ignored the potential contribution of local (e.g. meteorological and/or geographical) covariables as well as the dynamical characteristics of observations. In this study, we present a spatiotemporal short term forecasting model for ozone concentration based on regularly observed covariables in predefined geographical sites. Our driving system simply combines a multidimensional second order autoregressive structured process with a linear regression model over influent exogenous factors and reads as follows: 2 q j Z (t) = A (Î&,cedil;D )Ã- [ αiZ(t- i)]+ B (Î&,cedil;D )Ã- [ βjX (t)]+ É(t) i=1 j=1 Z(t)=(Z1(t),â¦,Zn(t)) represents the vector of ozone concentration at time t of the n geographical sites, whereas Xj(t)=(X1j(t),â¦,Xnj(t)) denotes the jth exogenous variable observed over these sites. The nxn matrix functions A and B account for the spatial relationships between sites through the inter site distance matrix D and a vector parameter Î&.cedil; Multidimensional white noise É is assumed to be Gaussian and spatially correlated but temporally independent. A covariance structure of Z that takes account of noise spatial dependences is deduced under a stationary hypothesis and then included in the likelihood function. Statistical model and estimation procedure: Contrarily to the widely used choice of a {0,1}-valued neighbour matrix A, we put forward two more natural choices of exponential or power decay. Moreover, the model revealed enough stable to readily accommodate the crude observations without the usual tedious and somewhat arbitrarily variable transformations. Data set and preliminary analysis: In our case, ozone variable represents here the daily maximum ozone
Separation of variables for integrable spin-boson models
Amico, Luigi; Osterloh, Andreas; Wirth, Tobias
2010-01-01
We formulate the functional Bethe ansatz for bosonic (infinite dimensional) representations of the Yang-Baxter algebra. The main deviation from the standard approach consists in a half infinite 'Sklyanin lattice' made of the eigenvalues of the operator zeros of the Bethe annihilation operator. By a separation of variables, functional TQ equations are obtained for this half infinite lattice. They provide valuable information about the spectrum of a given Hamiltonian model. We apply this procedure to integrable spin-boson models subject to both twisted and open boundary conditions. In the case of general twisted and certain open boundary conditions polynomial solutions to these TQ equations are found and we compute the spectrum of both the full transfer matrix and its quasi-classical limit. For generic open boundaries we present a two-parameter family of Bethe equations, derived from TQ equations that are compatible with polynomial solutions for Q. A connection of these parameters to the boundary fields is stil...
Viscous Dark Energy Models with Variable G and A
Arbab, Arbab I.
2008-10-01
We consider a cosmological model with bulk viscosity η and variable cosmological A α ρ -α, alpha = const and gravitational G constants. The model exhibits many interesting cosmological features. Inflation proceeds du to the presence of bulk viscosity and dark energy without requiring the equation of state p = —ρ. During the inflationary era the energy density ρ does not remain constant, as in the de-Sitter type. Moreover, the cosmological and gravitational constants increase exponentially with time, whereas the energy density and viscosity decrease exponentially with time. The rate of mass creation during inflation is found to be very huge suggesting that all matter in the universe is created during inflation.
Variable variance Preisach model for multilayers with perpendicular magnetic anisotropy
Franco, A. F.; Gonzalez-Fuentes, C.; Morales, R.; Ross, C. A.; Dumas, R.; Åkerman, J.; Garcia, C.
2016-08-01
We present a variable variance Preisach model that fully accounts for the different magnetization processes of a multilayer structure with perpendicular magnetic anisotropy by adjusting the evolution of the interaction variance as the magnetization changes. We successfully compare in a quantitative manner the results obtained with this model to experimental hysteresis loops of several [CoFeB/Pd ] n multilayers. The effect of the number of repetitions and the thicknesses of the CoFeB and Pd layers on the magnetization reversal of the multilayer structure is studied, and it is found that many of the observed phenomena can be attributed to an increase of the magnetostatic interactions and subsequent decrease of the size of the magnetic domains. Increasing the CoFeB thickness leads to the disappearance of the perpendicular anisotropy, and such a minimum thickness of the Pd layer is necessary to achieve an out-of-plane magnetization.
Constrained variability of modeled T:ET ratio across biomes
Fatichi, Simone; Pappas, Christoforos
2017-07-01
A large variability (35-90%) in the ratio of transpiration to total evapotranspiration (referred here as T:ET) across biomes or even at the global scale has been documented by a number of studies carried out with different methodologies. Previous empirical results also suggest that T:ET does not covary with mean precipitation and has a positive dependence on leaf area index (LAI). Here we use a mechanistic ecohydrological model, with a refined process-based description of evaporation from the soil surface, to investigate the variability of T:ET across biomes. Numerical results reveal a more constrained range and higher mean of T:ET (70 ± 9%, mean ± standard deviation) when compared to observation-based estimates. T:ET is confirmed to be independent from mean precipitation, while it is found to be correlated with LAI seasonally but uncorrelated across multiple sites. Larger LAI increases evaporation from interception but diminishes ground evaporation with the two effects largely compensating each other. These results offer mechanistic model-based evidence to the ongoing research about the patterns of T:ET and the factors influencing its magnitude across biomes.
Energy Technology Data Exchange (ETDEWEB)
2014-10-01
Many countries--reflecting very different geographies, markets, and power systems--are successfully managing high levels of variable renewable energy (RE) on the grid. Australia (South Australia), Denmark, Germany, Ireland, Spain, and the United States (Colorado and Texas), for example, have effectively integrated variable RE utilizing diverse approaches. Analysis of the results from these case studies reveals a wide range of mechanisms that can be used to accommodate high penetrations of variable RE (e.g., from new market designs to centralized planning). Nevertheless, the myriad approaches collectively suggest that governments can best enable variable RE grid integration by implementing best practices in five areas of intervention: lead public engagement, particularly for new transmission; coordinate and integrate planning; develop rules for market evolution that enable system flexibility; expand access to diverse resources and geographic footprint of operations; and improve system operations.
Multivariate models of inter-subject anatomical variability.
Ashburner, John; Klöppel, Stefan
2011-05-15
This paper presents a very selective review of some of the approaches for multivariate modelling of inter-subject variability among brain images. It focusses on applying probabilistic kernel-based pattern recognition approaches to pre-processed anatomical MRI, with the aim of most accurately modelling the difference between populations of subjects. Some of the principles underlying the pattern recognition approaches of Gaussian process classification and regression are briefly described, although the reader is advised to look elsewhere for full implementational details. Kernel pattern recognition methods require matrices that encode the degree of similarity between the images of each pair of subjects. This review focusses on similarity measures derived from the relative shapes of the subjects' brains. Pre-processing is viewed as generative modelling of anatomical variability, and there is a special emphasis on the diffeomorphic image registration framework, which provides a very parsimonious representation of relative shapes. Although the review is largely methodological, excessive mathematical notation is avoided as far as possible, as the paper attempts to convey a more intuitive understanding of various concepts. The paper should be of interest to readers wishing to apply pattern recognition methods to MRI data, with the aim of clinical diagnosis or biomarker development. It also tries to explain that the best models are those that most accurately predict, so similar approaches should also be relevant to basic science. Knowledge of some basic linear algebra and probability theory should make the review easier to follow, although it may still have something to offer to those readers whose mathematics may be more limited. Copyright © 2010 Elsevier Inc. All rights reserved.
Reduced models of extratropical low-frequency variability
Strounine, Kirill
Low-frequency variability (LFV) of the atmosphere refers to its behavior on time scales of 10-100 days, longer than the life cycle of a mid-latitude cyclone but shorter than a season. This behavior is still poorly understood and hard to predict. It has been helpful in gaining understanding that might improve prediction to use various simplified models. The present study compares and contrasts various mode reduction strategies that help derive systematically such simplified models of LFV. Three major strategies have been applied to reduce a fairly realistic, high-dimensional, quasi-geostrophic, 3-level (QG3) atmospheric model to lower dimensions: (i) a purely empirical, multi-level regression procedure, which specifies the functional form of the reduced model and finds the model coefficients by multiple polynomial regression; (ii) an empirical-dynamical method, which retains only a few components in the projection of the full QG3 model equations onto a specified basis (the so-called bare truncation), and finds the linear deterministic and additive stochastic corrections empirically; and (iii) a dynamics-based technique, employing the stochastic mode reduction strategy of Majda et al. (2001; MTV). Subject to the assumption of significant time-scale separation in the physical system under consideration, MTV derives the form of the reduced model and finds its coefficients with minimal statistical fitting. The empirical-dynamical and dynamical reduced models were further improved by sequential parameter estimation and benchmarked against multi-level regression models; the extended Kalman filter (EKF) was used for the parameter estimation. In constructing the reduced models, the choice of basis functions is also important. We considered as basis functions a set of empirical orthogonal functions (EOFs). These EOFs were computed using (a) an energy norm; and (b) a potential-enstrophy norm. We also devised a method, using singular value decomposition of the full-model
Adding Missing-Data-Relevant Variables to FIML-Based Structural Equation Models
Graham, John W.
2003-01-01
Conventional wisdom in missing data research dictates adding variables to the missing data model when those variables are predictive of (a) missingness and (b) the variables containing missingness. However, it has recently been shown that adding variables that are correlated with variables containing missingness, whether or not they are related to…
Attitudes of International Students toward the Western News Model.
Harbor, Kingsley O.
A study employed Q-methodology to determine the attitudinal structure of international (Third World) students in regard to the western news model (defined as the criteria for news evaluation and selection adopted by the western democracies). Thirty-two respondents were purposively selected, eight each from Africa, Asia, Latin America, and the…
Proceedings Second International Worshop on Computational Models for Cell Processes
Back, Ralph-Johan; de Vink, Erik
2009-01-01
The second international workshop on Computational Models for Cell Processes (ComProc 2009) took place on November 3, 2009 at the Eindhoven University of Technology, in conjunction with Formal Methods 2009. The workshop was jointly organized with the EC-MOAN project. This volume contains the final versions of all contributions accepted for presentation at the workshop.
Instability properties under a model mode-1 internal tide
John, S.; Peter, D.
2016-11-01
The instability properties of the bottom boundary layer (BBL) under a model mode-1 internal tide in linearly stratified finite-depth water are studied, using 2-D direct numerical simulations (DNS) based on a spectral multidomain penalty method model. This model internal tide is a proxy for its lower-mode oceanic counterpart which is generated when stratified water is forced over topography by barotropic tidal currents. Such low-mode internal tidal waves tend to propagate long distances from the point of generation, carrying with them large amounts of energy. One mechanism through which this energy is dissipated is through wave-BBL interactions, where strong shear layers develop along the bed, leading to focused instabilities which are precursors for localized turbulent events. Such events in the BBL can cause sediment resuspension and drive benthic nutrient fluxes, playing a crucial role in ecosystem balances. In the model problem, the stability response of the time-dependent BBL is examined by introducing low-amplitude perturbations near the bed. The corresponding time-evolving BBL-integrated perturbation energy growth rates are then computed, by comparing both the perturbed and unperturbed cases. When an instability actually occurs, its vorticity structure and preferred location is identified. Ultimately, a stability boundary is constructed as a function of perturbation amplitude and internal wave steepness, aspect ration and Reynolds number.
International Space Station Alpha (ISSA) Integrated Traffic Model
Gates, R. E.
1995-01-01
The paper discusses the development process of the International Space Station Alpha (ISSA) Integrated Traffic Model which is a subsystem analyses tool utilized in the ISSA design analysis cycles. Fast-track prototyping of the detailed relationships between daily crew and station consumables, propellant needs, maintenance requirements and crew rotation via spread sheets provide adequate benchmarks to assess cargo vehicle design and performance characteristics.
A Management Model for International Participation in Space Exploration Missions
George, Patrick J.; Pease, Gary M.; Tyburski, Timothy E.
2005-01-01
This paper proposes an engineering management model for NASA's future space exploration missions based on past experiences working with the International Partners of the International Space Station. The authors have over 25 years of combined experience working with the European Space Agency, Japan Aerospace Exploration Agency, Canadian Space Agency, Italian Space Agency, Russian Space Agency, and their respective contractors in the design, manufacturing, verification, and integration of their elements electric power system into the United States on-orbit segment. The perspective presented is one from a specific sub-system integration role and is offered so that the lessons learned from solving issues of technical and cultural nature may be taken into account during the formulation of international partnerships. Descriptions of the types of unique problems encountered relative to interactions between international partnerships are reviewed. Solutions to the problems are offered, taking into consideration the technical implications. Through the process of investigating each solution, the important and significant issues associated with working with international engineers and managers are outlined. Potential solutions are then characterized by proposing a set of specific methodologies to jointly develop spacecraft configurations that benefits all international participants, maximizes mission success and vehicle interoperability while minimizing cost.
Desirable role in an international duopoly model with tariffs
Ferreira, Fernanda A.; Ferreira, Flávio
2012-09-01
In this paper, we study an international market model in which the home government imposes a tariff on the imported goods. The model has two stages. In the first stage, the home government chooses an import tariff to maximize a function that cares about the home firm's profit and the total revenue. Then, the firms engage in a Cournot or in a Stackelberg competition. We compare the results obtained in the three different ways of moving on the decision make of the firms.
International Jobs and Economic Development Impacts (I-JEDI) Model
Energy Technology Data Exchange (ETDEWEB)
2016-09-01
International Jobs and Economic Development Impacts (I-JEDI) is a freely available economic model that estimates gross economic impacts from wind, solar, biomass, and geothermal energy projects. Building on a similar model for the United States, I-JEDI was developed by the National Renewable Energy Laboratory under the U.S. government's Enhancing Capacity for Low Emission Development Strategies (EC-LEDS) program to support partner countries in assessing economic impacts of LEDS actions in the energy sector.
A Simplified Model of the Internal Combustion Engine
Directory of Open Access Journals (Sweden)
Christofer Neff
2013-01-01
Full Text Available This project further investigates a model of a simplified internal combustion engine considered by Kranc in 1977. Using Euler’s method for ordinary differential equations, we modeled the interaction between the engine’s flywheel and thermodynamic power cycle. Approximating with sufficiently small time intervals (0.001 seconds over a period of 12 seconds reproduced Kranc’s results with the engine having an average angular velocity of 72/sec.
Support vector regression-based internal model control
Institute of Scientific and Technical Information of China (English)
HUANG Yan-wei; PENG Tie-gen
2007-01-01
This paper proposes a design of internal model control systems for process with delay by using support vector regression (SVR). The proposed system fully uses the excellent nonlinear estimation performance of SVR with the structural risk minimization principle. Closed-system stability and steady error are analyzed for the existence of modeling errors. The simulations show that the proposed control systems have the better control performance than that by neural networks in the cases of the training samples with small size and noises.
Disambiguating seesaw models using invariant mass variables at hadron colliders
Energy Technology Data Exchange (ETDEWEB)
Dev, P.S. Bhupal [Consortium for Fundamental Physics, School of Physics and Astronomy,University of Manchester, Manchester M13 9PL (United Kingdom); Physik-Department T30d, Technische Univertität München,James-Franck-Straße 1, 85748 Garching (Germany); Kim, Doojin [Department of Physics, University of Florida,Gainesville, FL 32611 (United States); Mohapatra, Rabindra N. [Maryland Center for Fundamental Physics and Department of Physics,University of Maryland,College Park, Maryland 20742 (United States)
2016-01-19
We propose ways to distinguish between different mechanisms behind the collider signals of TeV-scale seesaw models for neutrino masses using kinematic endpoints of invariant mass variables. We particularly focus on two classes of such models widely discussed in literature: (i) Standard Model extended by the addition of singlet neutrinos and (ii) Left-Right Symmetric Models. Relevant scenarios involving the same “smoking-gun” collider signature of dilepton plus dijet with no missing transverse energy differ from one another by their event topology, resulting in distinctive relationships among the kinematic endpoints to be used for discerning them at hadron colliders. These kinematic endpoints are readily translated to the mass parameters of the on-shell particles through simple analytic expressions which can be used for measuring the masses of the new particles. A Monte Carlo simulation with detector effects is conducted to test the viability of the proposed strategy in a realistic environment. Finally, we discuss the future prospects of testing these scenarios at the √s=14 and 100 TeV hadron colliders.
Mixed-model Regression for Variable-star Photometry
Dose, Eric
2016-05-01
Mixed-model regression, a recent advance from social-science statistics, applies directly to reducing one night's photometric raw data, especially for variable stars in fields with multiple comparison stars. One regression model per filter/passband yields any or all of: transform values, extinction values, nightly zero-points, rapid zero-point fluctuations ("cirrus effect"), ensemble comparisons, vignette and gradient removal arising from incomplete flat-correction, check-star and target-star magnitudes, and specific indications of unusually large catalog magnitude errors. When images from several different fields of view are included, the models improve without complicating the calculations. The mixed-model approach is generally robust to outliers and missing data points, and it directly yields 14 diagnostic plots, used to monitor data set quality and/or residual systematic errors - these diagnostic plots may in fact turn out to be the prime advantage of this approach. Also presented is initial work on a split-annulus approach to sky background estimation, intended to address the sensitivity of photometric observations to noise within the sky-background annulus.
Effectiveness of International Surgical Program Model to Build Local Sustainability
Directory of Open Access Journals (Sweden)
William P. Magee
2012-01-01
Full Text Available Background. Humanitarian medical missions may be an effective way to temporarily overcome limitations and promote long-term solutions in the local health care system. Operation Smile, an international medical not-for-profit organization that provides surgery for patients with cleft lip and palate, not only provides surgery through short-term international missions but also focuses on developing local capacity. Methods. The history of Operation Smile was evaluated globally, and then on a local level in 3 countries: Colombia, Bolivia, and Ethiopia. Historical data was assessed by two-pronged success of (1 treating the surgical need presented by cleft patients and (2 advancing the local capacity to provide primary and ongoing care to patients. Results. The number of patients treated by Operation Smile has continually increased. Though it began by using only international teams to provide care, by 2012, this had shifted to 33% of patients being treated by international teams, while the other 67% received treatment from local models of care. The highest level of sustainability was achieved in Columbia, where two permanent centers have been established, followed by Bolivia and lastly Ethiopia. Conclusions. International missions have value because of the patients that receive surgery and the local sustainable models of care that they promote.
Directory of Open Access Journals (Sweden)
Yaghoub Hossainee
2012-06-01
Full Text Available Employees are one of the most critical elements of service organizations. They play an important role in delivering service to customers. Implementing an internal marketing plan leads to training, motivating and directing personnel and their higher satisfaction. Therefore, they can be able to provide higher quality of services to customers. They ultimately enhance performance in service organizations. This subject is critically important and therefore, it this research an attempt has been made to determine main elements of internal marketing and to investigate its influence on organizational performance. For this purpose, a questionnaire has been developed and distributed to 72 managers and employees of travel agencies. The collected data has been analyzed using Structural Equation Modeling and Amos software. In this research, internal marketing is the independent variable and organizational performance is the dependent variable. Findings of research confirm the conceptual model. Findings indicate that internal marketing has direct and positive influence on organizational performance.
Directory of Open Access Journals (Sweden)
Seyed Yaghoub Hosseini
2012-01-01
Full Text Available Employees are one of the most critical elements of service organizations. They play an important role in delivering service to customers. Implementing an internal marketing plan leads to training, motivating and directing personnel and their higher satisfaction. Therefore, they can be able to provide higher quality of services to customers. They ultimately enhance performance in service organizations. This subject is critically important and therefore, it this research an attempt has been made to determine main elements of internal marketing and to investigate its influence on organizational performance. For this purpose, a questionnaire has been developed and distributed to 72 managers and employees of travel agencies. The collected data has been analyzed using Structural Equation Modeling and Amos software. In this research, internal marketing is the independent variable and organizational performance is the dependent variable. Findings of research confirm the conceptual model. Findings indicate that internal marketing has direct and positive influence on organizational performance.
DEFF Research Database (Denmark)
Panduro, Toke Emil; Thorsen, Bo Jellesmark
2014-01-01
evaluate two common model reduction approaches in an empirical case. The first relies on a principal component analysis (PCA) used to construct new orthogonal variables, which are applied in the hedonic model. The second relies on a stepwise model reduction based on the variance inflation index and Akaike......’s information criteria. Our empirical application focuses on estimating the implicit price of forest proximity in a Danish case area, with a dataset containing 86 relevant variables. We demonstrate that the estimated implicit price for forest proximity, while positive in all models, is clearly sensitive...
Resolving structural variability in network models and the brain.
Directory of Open Access Journals (Sweden)
Florian Klimm
2014-03-01
Full Text Available Large-scale white matter pathways crisscrossing the cortex create a complex pattern of connectivity that underlies human cognitive function. Generative mechanisms for this architecture have been difficult to identify in part because little is known in general about mechanistic drivers of structured networks. Here we contrast network properties derived from diffusion spectrum imaging data of the human brain with 13 synthetic network models chosen to probe the roles of physical network embedding and temporal network growth. We characterize both the empirical and synthetic networks using familiar graph metrics, but presented here in a more complete statistical form, as scatter plots and distributions, to reveal the full range of variability of each measure across scales in the network. We focus specifically on the degree distribution, degree assortativity, hierarchy, topological Rentian scaling, and topological fractal scaling--in addition to several summary statistics, including the mean clustering coefficient, the shortest path-length, and the network diameter. The models are investigated in a progressive, branching sequence, aimed at capturing different elements thought to be important in the brain, and range from simple random and regular networks, to models that incorporate specific growth rules and constraints. We find that synthetic models that constrain the network nodes to be physically embedded in anatomical brain regions tend to produce distributions that are most similar to the corresponding measurements for the brain. We also find that network models hardcoded to display one network property (e.g., assortativity do not in general simultaneously display a second (e.g., hierarchy. This relative independence of network properties suggests that multiple neurobiological mechanisms might be at play in the development of human brain network architecture. Together, the network models that we develop and employ provide a potentially useful
Temperature variability caused by internal tides in the coral reef ecosystem of Hanauma bay, Hawai'i
Smith, Katharine A.; Rocheleau, Greg; Merrifield, Mark A.; Jaramillo, Sergio; Pawlak, Geno
2016-03-01
Hanauma Bay Nature Preserve is a shallow bay (15 m depth) become dominated by large semidiurnal variations (up to 2.7 °C) that are attributed to the internal tide. These temperature drops caused by the internal tide occur consistently twice a day under summer stratification at depths as shallow as 15 m, while smaller temperature drops (up to 1.8 °C) occur occasionally at 5 m. Although semidiurnal band temperatures vary seasonally, semidiurnal band currents exhibit similar magnitudes in spring and summer. This suggests that the weak temperature fluctuations in spring are due to the bay residing entirely in the upper mixed layer at this time of year, while internal tide energy continues to influence currents. Observations made along a cross-shore/vertical transect at the center of the bay with an autonomous underwater vehicle highlight the structure of cold intrusions that fill a large portion of the bay as well as the relationship between temperature, salinity, chlorophyll, and backscatter. Near-bottom, advective heat flux estimates at the mouth of the bay indicate that the internal tide tends to advect cold water into the bay primarily on the northeast side of the bay entrance, with cold water outflow on the opposite side. The observations highlight the role of the internal tide along with seasonal changes in stratification in temperature variability in shallow ecosystems, particularly those close to generation sites.
Foy, Pierre, Ed.; Drucker, Kathleen T., Ed.
2013-01-01
This supplement contains documentation on all the derived variables contained in the PIRLS and prePIRLS 2011 data files that are based on background questionnaire variables. These variables were used to report background data in the PIRLS 2011 International Results in Reading report, and are made available as part of this database to be used in…
Modeling anger and aggressive driving behavior in a dynamic choice-latent variable model.
Danaf, Mazen; Abou-Zeid, Maya; Kaysi, Isam
2015-02-01
This paper develops a hybrid choice-latent variable model combined with a Hidden Markov model in order to analyze the causes of aggressive driving and forecast its manifestations accordingly. The model is grounded in the state-trait anger theory; it treats trait driving anger as a latent variable that is expressed as a function of individual characteristics, or as an agent effect, and state anger as a dynamic latent variable that evolves over time and affects driving behavior, and that is expressed as a function of trait anger, frustrating events, and contextual variables (e.g., geometric roadway features, flow conditions, etc.). This model may be used in order to test measures aimed at reducing aggressive driving behavior and improving road safety, and can be incorporated into micro-simulation packages to represent aggressive driving. The paper also presents an application of this model to data obtained from a driving simulator experiment performed at the American University of Beirut. The results derived from this application indicate that state anger at a specific time period is significantly affected by the occurrence of frustrating events, trait anger, and the anger experienced at the previous time period. The proposed model exhibited a better goodness of fit compared to a similar simple joint model where driving behavior and decisions are expressed as a function of the experienced events explicitly and not the dynamic latent variable.
Richard, Jacques C.
1995-01-01
This paper presents a dynamic model of an internal combustion engine coupled to a variable pitch propeller. The low-order, nonlinear time-dependent model is useful for simulating the propulsion system of general aviation single-engine light aircraft. This model is suitable for investigating engine diagnostics and monitoring and for control design and development. Furthermore, the model may be extended to provide a tool for the study of engine emissions, fuel economy, component effects, alternative fuels, alternative engine cycles, flight simulators, sensors, and actuators. Results show that the model provides a reasonable representation of the propulsion system dynamics from zero to 10 Hertz.
Mataczynski, Lisa
2013-01-01
Guided by the work of Hurtado and Carter (1997) as an alternative to Tinto's theory of student departure (1993), the purpose of this quantitative study was to explore the relationship of institutional and cultural factors to satisfaction with academic advising, sense of belonging to campus and retention among international undergraduate…
Creed, Peter A.; Patton, Wendy; Bartrum, Dee
2004-01-01
One hundred and thirty final year high school students were administered scales tapping optimism/pessimism, self-esteem, external career barriers, career decision-making self-efficacy, career focus and career indecision. It was hypothesised, first, that cognitive style optimism/pessimism) would predict both internal (self-esteem) and external…
Multi-messenger light curves from gamma-ray bursts in the internal shock model
Bustamante, Mauricio; Winter, Walter
2016-01-01
Gamma-ray bursts (GRBs) are promising as sources of neutrinos and cosmic rays. In the internal shock scenario, blobs of plasma emitted from a central engine collide within a relativistic jet and form shocks, leading to particle acceleration and emission. Motivated by present experimental constraints and sensitivities, we improve the predictions of particle emission by investigating time-dependent effects from multiple shocks. We produce synthetic light curves with different variability timescales that stem from properties of the central engine. For individual GRBs, qualitative conclusions about model parameters, neutrino production efficiency, and delays in high-energy gamma rays can be deduced from inspection of the gamma-ray light curves. GRBs with fast time variability without additional prominent pulse structure tend to be efficient neutrino emitters, whereas GRBs with fast variability modulated by a broad pulse structure tend to be inefficient neutrino emitters and produce delayed high-energy gamma-ray s...
Hsieh, C.; Lazzarini, S.G.; Nickerson, J.A.; Laurini, M.
2010-01-01
A firm often must ensure that products or services it produces match customer expectations. We define variability as any deviation in a production process yielding products or services whose attributes differ from the firm's stated target specifications. Firms pursuing products marked by low
Guzeller, Cem Oktay; Akin, Ayca
2014-01-01
The purpose of this study is to determine the predicting power of mathematics achievement from ICT variables including the Internet/entertainment use (IEU), program/software use (PRGUSE), confidence in internet tasks (INTCONF) and confidence in ICT high level tasks (HIGHCONF) based on PISA 2006 data. This study indicates that the ICT variables…
Examples of EOS Variables as compared to the UMM-Var Data Model
Cantrell, Simon; Lynnes, Chris
2016-01-01
In effort to provide EOSDIS clients a way to discover and use variable data from different providers, a Unified Metadata Model for Variables is being created. This presentation gives an overview of the model and use cases we are handling.
Modelling variability in black hole binaries: linking simulations to observations
Ingram, Adam
2011-01-01
Black hole accretion flows show rapid X-ray variability. The Power Spectral Density (PSD) of this is typically fit by a phenomenological model of multiple Lorentzians for both the broad band noise and Quasi-Periodic Oscillations (QPOs). Our previous paper (Ingram & Done 2011) developed the first physical model for the PSD and fit this to observational data. This was based on the same truncated disc/hot inner flow geometry which can explain the correlated properties of the energy spectra. This assumes that the broad band noise is from propagating fluctuations in mass accretion rate within the hot flow, while the QPO is produced by global Lense-Thirring precession of the same hot flow. Here we develop this model, making some significant improvements. Firstly we specify that the viscous frequency (equivalently, surface density) in the hot flow has the same form as that measured from numerical simulations of precessing, tilted accretion flows. Secondly, we refine the statistical techniques which we use to fit...
Preface: International Reference Ionosphere - Progress in Ionospheric Modelling
Bilitza Dieter; Reinisch, Bodo
2010-01-01
The international reference ionosphere (lRI) is the internationally recommended empirical model for the specification of ionospheric parameters supported by the Committee on Space Research (COSPAR) and the International Union of Radio Science (URSI) and recognized by the International Standardization Organization (ISO). IRI is being continually improved by a team of international experts as new data become available and better models are being developed. This issue chronicles the latest phase of model updates as reported during two IRI-related meetings. The first was a special session during the Scientific Assembly of the Committee of Space Research (COSPAR) in Montreal, Canada in July 2008 and the second was an IRI Task Force Activity at the US Air Force Academy in Colorado Springs in May 2009. This work led to several improvements and additions of the model which will be included in the next version, IRI-201O. The issue is divided into three sections focusing on the improvements made in the topside ionosphere, the F-peak, and the lower ionosphere, respectively. This issue would not have been possible without the reviewing efforts of many individuals. Each paper was reviewed by two referees. We thankfully acknowledge the contribution to this issue made by the following reviewers: Jacob Adeniyi, David Altadill, Eduardo Araujo, Feza Arikan, Dieter Bilitza, Jilijana Cander, Bela Fejer, Tamara Gulyaeva, Manuel Hermindez-Pajares, Ivan Kutiev, John MacDougal, Leo McNamara, Bruno Nava, Olivier Obrou, Elijah Oyeyemi, Vadym Paznukhov, Bodo Reinisch, John Retterer, Phil Richards, Gary Sales, J.H. Sastri, Ludger Scherliess, Iwona Stanislavska, Stamir Stankov, Shin-Yi Su, Manlian Zhang, Y ongliang Zhang, and Irina Zakharenkova. We are grateful to Peggy Ann Shea for her final review and guidance as the editor-in-chief for special issues of Advances in Space Research. We thank the authors for their timely submission and their quick response to the reviewer comments and humbly
Latent Variable Models, Cognitive Modelling, and Working Memory: a Meeting Point
Rodríguez-Villagra, Odir Antonio
2015-01-01
Latent variable models and formal cognitive models share some elements of their object of study, variousphilosophical aspects, and some parts of their methodology. Nevertheless, little communication exists between their theories and findings. In order to highlight similarities and differences, this study implemented and tested a formal model proposing that interference among representations is a mechanism limiting working memory capacity (i.e., the interference model of Oberauer & Kliegl, 200...
A conflict model for the international hazardous waste disposal dispute
Energy Technology Data Exchange (ETDEWEB)
Hu Kaixian, E-mail: k2hu@engmail.uwaterloo.ca [Department of Systems Design Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1 (Canada); Hipel, Keith W., E-mail: kwhipel@uwaterloo.ca [Department of Systems Design Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1 (Canada); Fang, Liping, E-mail: lfang@ryerson.ca [Department of Mechanical and Industrial Engineering, Ryerson University, 350 Victoria Street, Toronto, Ontario, M5B 2K3 (Canada)
2009-12-15
A multi-stage conflict model is developed to analyze international hazardous waste disposal disputes. More specifically, the ongoing toxic waste conflicts are divided into two stages consisting of the dumping prevention and dispute resolution stages. The modeling and analyses, based on the methodology of graph model for conflict resolution (GMCR), are used in both stages in order to grasp the structure and implications of a given conflict from a strategic viewpoint. Furthermore, a specific case study is investigated for the Ivory Coast hazardous waste conflict. In addition to the stability analysis, sensitivity and attitude analyses are conducted to capture various strategic features of this type of complicated dispute.
A comprehensive gaze stabilization controller based on cerebellar internal models
DEFF Research Database (Denmark)
Vannucci, Lorenzo; Falotico, Egidio; Tolu, Silvia
2017-01-01
based on the coordination of VCR and VOR and OKR. The model, inspired by neuroscientific cerebellar theories, is provided with learning and adaptation capabilities based on internal models. We present the results for the gaze stabilization model on three sets of experiments conducted on the SABIAN robot...... and on the iCub simulator, validating the robustness of the proposed control method. The first set of experiments focused on the controller response to a set of disturbance frequencies along the vertical plane. The second shows the performances of the system under three-dimensional disturbances. The last set...
International Conference on Computational Intelligence, Cyber Security, and Computational Models
Ramasamy, Vijayalakshmi; Sheen, Shina; Veeramani, C; Bonato, Anthony; Batten, Lynn
2016-01-01
This book aims at promoting high-quality research by researchers and practitioners from academia and industry at the International Conference on Computational Intelligence, Cyber Security, and Computational Models ICC3 2015 organized by PSG College of Technology, Coimbatore, India during December 17 – 19, 2015. This book enriches with innovations in broad areas of research like computational modeling, computational intelligence and cyber security. These emerging inter disciplinary research areas have helped to solve multifaceted problems and gained lot of attention in recent years. This encompasses theory and applications, to provide design, analysis and modeling of the aforementioned key areas.
Directory of Open Access Journals (Sweden)
T. Friedrich
2009-07-01
Full Text Available The effect of orbital variations on simulated millennial-scale variability of the Atlantic Meridional Overturning Circulation (AMOC is studied using the earth system model of intermediate complexity LOVECLIM. It is found that for present-day topographic boundary conditions low obliquity values (~22.1° favor the triggering of internally generated millennial-scale variability in the North Atlantic region. Reducing the obliquity leads to changes of the pause-pulse ratio of the corresponding AMOC oscillations. Stochastic excitations of the density-driven overturning circulation in the Nordic Seas can create regional sea-ice anomalies and a subsequent reorganization of the atmospheric circulation. The resulting remote atmospheric anomalies over the Hudson Bay can release freshwater pulses into the Labrador Sea leading to a subsequent reduction of convective activity. The millennial-scale AMOC oscillations disappear if LGM bathymetry (with closed Hudson Bay is prescribed. Furthermore, our study documents the marine and terrestrial carbon cycle response to millennial-scale AMOC variability. Our model results support the notion that stadial regimes in the North Atlantic are accompanied by relatively high levels of oxygen in thermocline and intermediate waters off California – in agreement with paleo-proxy data.
DEFF Research Database (Denmark)
Lucantoni, C; Krishnan, R G; Gehrchen, P M
2016-01-01
STUDY DESIGN: Intra- and interrater reliability study for radiological variables of the International Spinal Cord Injury (SCI) Spinal Column Injury Basic Data Set. OBJECTIVES: To test reliability of the radiological variables in the International SCI Spinal Column Injury Basic Data Set and compare...... it with the Arbeitsgemeinschaft für Osteosynthesefragen (AO) classification. SETTING: The database of Eastern Denmark Regional SCI Referral Center, Copenhagen, Denmark. METHODS: Ratings of the International SCI Spinal Column Injury Basic Data Set radiological variables and AO classification were obtained by two international...... injuries, the intra- and interrater reliability for the individual radiological variables of the International SCI Spinal Column Injury Basic Data Set was at least substantial (κ=0.67-0.97 for interrater, κ=0.79-0.89 for the intrarater agreement). For the AO classification, intrarater reliability...
Bayesian modeling of measurement error in predictor variables using item response theory
Fox, Jean-Paul; Glas, Cees A.W.
2003-01-01
It is shown that measurement error in predictor variables can be modeled using item response theory (IRT). The predictor variables, that may be defined at any level of an hierarchical regression model, are treated as latent variables. The normal ogive model is used to describe the relation between t
Lamont, A.E.; Vermunt, J.K.; Van Horn, M.L.
2016-01-01
Regression mixture models are increasingly used as an exploratory approach to identify heterogeneity in the effects of a predictor on an outcome. In this simulation study, we tested the effects of violating an implicit assumption often made in these models; that is, independent variables in the
Directory of Open Access Journals (Sweden)
Cem Oktay GÜZELLER
2016-12-01
Full Text Available The aim of this study was to analyze some of the variables that affect Turkish students’ success in science using data from the PISA 2009 student survey. The universe for the investigation comprised 15-year-old Turkish students who were completing their compulsory education. The sample consisted of 4996 students who were selected through stratified sampling from this universe. Missing data were examined before analysis commenced and missing data were excluded from the analysis. The final sample comprised 4388 students. Independent t-tests, analysis of variance (ANOVA and multiple comparisons were used in accordance with the purpose of the study. The results showed that there was a significant difference between students’ success in science and a number of variables, namely, gender, school type, region, pre-school education, parents' education level.
Caja Costarricense de Seguro Social: Internal Variables that Perpetuates its Crisis
Badilla Solano, Andrey; Díaz González, Pablo
2013-01-01
This article discusses the current crisis Costa Rican Social Security Fund (CCSS) undergoes. It starts with a short background of this institution and how it has evolved over the years paying attention to the different studies regarding its current condition. Having done this, it states the variables that have been pointed out as responsible for its crisis -both the origin and permanence of this crisis-. Having as reference points the following: The liquidity of the Health Insurance (Seguro d...
Modelling the internal boundary layer over the lower fraser valley, British Columbia
Energy Technology Data Exchange (ETDEWEB)
Batchvarova, E. [National Inst. of Meteorology and Hydrology, Sofia (Bulgaria); Steyn, D. [Univ. of British Columbia, Dept. of Geography, Vancouver (Canada); Cai, X. [Univ. of Birmingham, School of Geography, Edgbaston (United Kingdom); Gryning, S.E. [Risoe National Lab., Roskilde (Denmark); Baldi, M. [Inst. for Atmospheric Physics, IFA-CNR, Rome (Italy)
1997-10-01
In this study we use the very extensive data-set on temporal and spatial structure of the internal boundary layer on the Lower Faser Valley, Canada, collected during the so-called Pacific `93 field campaign, to study the ability of the simple applied model by Gryning and Batchvarova (1996) and the CSU-RAMS meso-scale model summarised in Pielke et al. (1992) to describe the development and variability of the internal boundary layer depth during the course of a day. Given the complexity of topography, coastline and land-use in the Lower Fraser Valley region, both models perform remarkably well. The simple applied model performs extremely well, given its simplicity. It is clear that correct specification of spatially resolved surface sensible heat flux and wind field are crucial to the success of this model which can be operated at very fine spatial resolution. The 3D model performs extremely well, though it too must capture the local wind field correctly for complete success. Its limited horizontal resolution results in strongly smoothed internal boundary layer height fields. (LN)
Energy Technology Data Exchange (ETDEWEB)
Cochran, J.; Bird, L.; Heeter, J.; Arent, D. A.
2012-04-01
Many countries -- reflecting very different geographies, markets, and power systems -- are successfully managing high levels of variable renewable energy on the electric grid, including that from wind and solar energy. This study documents the diverse approaches to effective integration of variable renewable energy among six countries -- Australia (South Australia), Denmark, Germany, Ireland, Spain, and the United States (Western region-Colorado and Texas)-- and summarizes policy best practices that energy ministers and other stakeholders can pursue to ensure that electricity markets and power systems can effectively coevolve with increasing penetrations of variable renewable energy. Each country has crafted its own combination of policies, market designs, and system operations to achieve the system reliability and flexibility needed to successfully integrate renewables. Notwithstanding this diversity, the approaches taken by the countries studied all coalesce around five strategic areas: lead public engagement, particularly for new transmission; coordinate and integrate planning; develop rules for market evolution that enable system flexibility; expand access to diverse resources and geographic footprint of operations; and improve system operations. The ability to maintain a broad ecosystem perspective, to organize and make available the wealth of experiences, and to ensure a clear path from analysis to enactment should be the primary focus going forward.
Modes of climate variability under different background conditions: concepts, data, modelling
Lohmann, G.
2011-12-01
Through its nonlinear dynamics and involvement in past abrupt climate shifts the thermohaline circulation represents a key element for the understanding of rapid climate changes. By applying various statistical techniques on surface temperature data, several variability modes on decadal to millenial timescales are identified. The distinction between the modes provides a frame for interpreting past abrupt climate changes. Abrupt shifts associated to the ocean circulation are detected around 1970 and the last millenium, i.e. the medieval warm period. Such oscillations are analyzed for longer time scales covering the last glacial-interglacial cycle. During the Holocene such events seem to be Poisson distributed indicating for an internal mode. Statistical-conceptual and dynamical model concepts are proposed and tested for millenial to orbital time scales, showing the dominant role of the ocean circulation. New GCM model results indicate a strong sensitivity of long-term variability on background conditions. A transition from full glacial (with a strongly stratified ocean) to interglacial conditions is attempted. Finally, climate sensitivity on glacial-interglacial and shorter time scales will be evaluated using SST Alkenone data and GCM simulations. It is shown that the models underestimate the climate sensitivity as compared to the data by a factor of 3. It is argued that the models possibly underestimate the response to obliquity forcing.
Haliah, Hamid,Irdam
2015-01-01
in general, this research is intended to investigate factors that effect quality of report of local government in west Sulawesi province, Indonesia. Human resource competence and quality of services of internal auditor have indirect effect through the effectiveness of internal control to the quality of the report. These results indicate that the effectiveness of internal control serves as an intervening variable on the relationship of competence of human resources and internal auditor service...
Modeling first impressions from highly variable facial images.
Vernon, Richard J W; Sutherland, Clare A M; Young, Andrew W; Hartley, Tom
2014-08-12
First impressions of social traits, such as trustworthiness or dominance, are reliably perceived in faces, and despite their questionable validity they can have considerable real-world consequences. We sought to uncover the information driving such judgments, using an attribute-based approach. Attributes (physical facial features) were objectively measured from feature positions and colors in a database of highly variable "ambient" face photographs, and then used as input for a neural network to model factor dimensions (approachability, youthful-attractiveness, and dominance) thought to underlie social attributions. A linear model based on this approach was able to account for 58% of the variance in raters' impressions of previously unseen faces, and factor-attribute correlations could be used to rank attributes by their importance to each factor. Reversing this process, neural networks were then used to predict facial attributes and corresponding image properties from specific combinations of factor scores. In this way, the factors driving social trait impressions could be visualized as a series of computer-generated cartoon face-like images, depicting how attributes change along each dimension. This study shows that despite enormous variation in ambient images of faces, a substantial proportion of the variance in first impressions can be accounted for through linear changes in objectively defined features.
Separation of variables for integrable spin-boson models
Energy Technology Data Exchange (ETDEWEB)
Amico, Luigi, E-mail: lamico@dmfci.unict.i [CNR-IMM MATIS and Dipartimento di Metodologie Fisiche e Chimiche (DMFCI), Universita di Catania, viale A. Doria 6, I-95125 Catania (Italy); Frahm, Holger, E-mail: frahm@itp.uni-hannover.d [Institut fuer Theoretische Physik, Leibniz Universitaet Hannover, Appelstr. 2, D-30167 Hannover (Germany); Osterloh, Andreas, E-mail: andreas.osterloh@uni-due.d [Fakultaet fuer Physik, Universitaet Duisburg-Essen, Campus Duisburg, Lotharstr. 1, D-47048 Duisburg (Germany)] [Institut fuer Theoretische Physik, Leibniz Universitaet Hannover, Appelstr. 2, D-30167 Hannover (Germany); Wirth, Tobias, E-mail: tobias.wirth@itp.uni-hannover.d [Institut fuer Theoretische Physik, Leibniz Universitaet Hannover, Appelstr. 2, D-30167 Hannover (Germany)
2010-11-11
We formulate the functional Bethe ansatz for bosonic (infinite dimensional) representations of the Yang-Baxter algebra. The main deviation from the standard approach consists in a half infinite Sklyanin lattice made of the eigenvalues of the operator zeros of the Bethe annihilation operator. By a separation of variables, functional TQ-equations are obtained for this half infinite lattice. They provide valuable information about the spectrum of a given Hamiltonian model. We apply this procedure to integrable spin-boson models subject to both twisted and open boundary conditions. In the case of general twisted and certain open boundary conditions polynomial solutions to these TQ-equations are found and we compute the spectrum of both the full transfer matrix and its quasi-classical limit. For generic open boundaries we present a two-parameter family of Bethe equations, derived from TQ-equations that are compatible with polynomial solutions for Q. A connection of these parameters to the boundary fields is still missing.
Energy Technology Data Exchange (ETDEWEB)
Kukudzhanov, V, E-mail: kukudz@ipmnet.r [Ishlinsky Institute for Problems in Mechanics of the Russian Academy of Sciences, prospekt Vernadskogo 101-1, Moscow (Russian Federation)
2009-08-01
Integration of the constitutive equations of ductile fracture models is analyzed in this paper. The splitting method is applied to the Gurson's and Kukudzhanov's models. The analysis of validity of this method is done. It was shown that Kukudzhanov's model describes a large variety of materials since it involves residual stress and viscosity.
Kukudzhanov, V.
2009-08-01
Integration of the constitutive equations of ductile fracture models is analyzed in this paper. The splitting method is applied to the Gurson's and Kukudzhanov's models. The analysis of validity of this method is done. It was shown that Kukudzhanov's model describes a large variety of materials since it involves residual stress and viscosity.
Error model identification of inertial navigation platform based on errors-in-variables model
Institute of Scientific and Technical Information of China (English)
Liu Ming; Liu Yu; Su Baoku
2009-01-01
Because the real input acceleration cannot be obtained during the error model identification of inertial navigation platform, both the input and output data contain noises. In this case, the conventional regression model and the least squares (LS) method will result in bias. Based on the models of inertial navigation platform error and observation error, the errors-in-variables (EV) model and the total least squares (TLS) method are proposed to identify the error model of the inertial navigation platform. The estimation precision is improved and the result is better than the conventional regression model based LS method. The simulation results illustrate the effectiveness of the proposed method.
Modeling Complex Nesting Structures in International Business Research
DEFF Research Database (Denmark)
Nielsen, Bo Bernhard; Nielsen, Sabina
2013-01-01
International business (IB) phenomena often involve complex relationships between factors at different levels. Multinational corporations (MNCs) are influenced both by different country and industry environments which may have independent as well as interactive effects on MNC performance. While...... of analysis may yield novel insights to IB research. The results have implications for IB research in its pursuit of an integrative approach to understanding the multilevel determinants of firm internationalization and performance. The paper further illustrates the importance of adequately modeling crossed...
DEFF Research Database (Denmark)
Fraser, Diane P.; Zuckermann, Martin J.; Mouritsen, Ole G.
1991-01-01
A two-dimensional Monte Carlo simulation method based on the NpT ensemble and the Voronoi tesselation, which was previously developed for single-species hard-disk systems, is extended, along with a version of scaled-particle theory, to many-component mixtures. These systems are unusual in the sense...... that their composition is not fixed, but rather determined by a set of internal degeneracies assigned to the differently sized hard disks, where the larger disks have the higher degeneracies. Such systems are models of monolayers of molecules with internal degrees of freedom. The combined set of translational...... and internal degrees of freedom leads to a rich phase structure that includes solid-liquid transitions (governed by the translational variables) as well as transitions involving changes in average disk size (governed by the internal variables). The relationship between these two types of transitions is studied...
Internal Variability Versus Anthropogenic Forcing on Sea Level and Its Components
Marcos, Marta; Marzeion, Ben; Dangendorf, Sönke; Slangen, Aimée B. A.; Palanisamy, Hindumathi; Fenoglio-Marc, Luciana
2016-05-01
In this paper we review and update detection and attribution studies in sea level and its major contributors during the past decades. Tide gauge records reveal that the observed twentieth-century global and regional sea level rise is out of the bounds of its natural variability, evidencing thus a human fingerprint in the reported trends. The signal varies regionally, and it partly depends on the magnitude of the background variability. The human fingerprint is also manifested in the contributors of sea level for which observations are available, namely ocean thermal expansion and glaciers' mass loss, which dominated the global sea level rise over the twentieth century. Attribution studies provide evidence that the trends in both components are clearly dominated by anthropogenic forcing over the second half of the twentieth century. In the earlier decades, there is a lack of observations hampering an improved attribution of causes to the observed sea level rise. At certain locations along the coast, the human influence is exacerbated by local coastal activities that induce land subsidence and increase the risk of sea level-related hazards.
Directory of Open Access Journals (Sweden)
STOJNIĆ, Srdjan
2010-01-01
Full Text Available In this study, the variability of physiological parameters of five provenances of Europeanbeech (Fagus sylvatica, which were planted at two locations with different ecological conditions atFruška Gora and Debeli Lug, was estimated. Provenance trials were established in the framework ofCOST Action E52: "Evaluation of Beech Genetic Resources for Sustainable Forestry". 2-3 years oldseedlings originating from Croatia, Germany, Bosnia, Austria and Serbia were planted in blocks offifty plants with a spacing of 2 x 1 m. Physiological parameters such as net photosynthesis, rate oftranspiration and stomatal conductance were measured with a portable gas analysis system. Generally,provenances from Fruška Gora Mountain showed higher intensity of all physiological parameters thanprovenances located at site Debeli Lug. High correlations among rates of net photosynthesis andtranspiration, on one side, and stomatal conductance, on the other side, were found. ANOVA testindicates that variability of net photosynthesis, transpiration and stomatal conductance of investigatedprovenances, at the two locations, was influenced both by environmental conditions of sites andgenetic constitution of provenances.
Energy Technology Data Exchange (ETDEWEB)
Zhang, J.; Hodge, B. M.; Gomez-Lazaro, E.; Lovholm, A. L.; Berge, E.; Miettinen, J.; Holttinen, H.; Cutululis, N.; Litong-Palima, M.; Sorensen, P.; Dobschinski, J.
2013-10-01
One of the critical challenges of wind power integration is the variable and uncertain nature of the resource. This paper investigates the variability and uncertainty in wind forecasting for multiple power systems in six countries. An extensive comparison of wind forecasting is performed among the six power systems by analyzing the following scenarios: (i) wind forecast errors throughout a year; (ii) forecast errors at a specific time of day throughout a year; (iii) forecast errors at peak and off-peak hours of a day; (iv) forecast errors in different seasons; (v) extreme forecasts with large overforecast or underforecast errors; and (vi) forecast errors when wind power generation is at different percentages of the total wind capacity. The kernel density estimation method is adopted to characterize the distribution of forecast errors. The results show that the level of uncertainty and the forecast error distribution vary among different power systems and scenarios. In addition, for most power systems, (i) there is a tendency to underforecast in winter; and (ii) the forecasts in winter generally have more uncertainty than the forecasts in summer.
Energy Technology Data Exchange (ETDEWEB)
Cochran, Jaquelin [National Renewable Energy Lab. (NREL), Golden, CO (United States); Bird, Lori [National Renewable Energy Lab. (NREL), Golden, CO (United States); Heeter, Jenny [National Renewable Energy Lab. (NREL), Golden, CO (United States); Arent, Douglas J. [National Renewable Energy Lab. (NREL), Golden, CO (United States)
2012-04-30
Many countries—reflecting very different geographies, markets, and power systems—are successfully managing high levels of variable renewable energy on the electric grid, including that from wind and solar energy. This document summarizes policy best practices that energy ministers and other stakeholders can pursue to ensure that electricity markets and power systems can effectively coevolve with increasing penetrations of variable renewable energy. There is no one-size-fits-all approach; each country studied has crafted its own combination of policies, market designs, and system operations to achieve the system reliability and flexibility needed to successfully integrate renewables. Notwithstanding this diversity, the approaches taken by the countries studied all coalesce around five strategic areas: lead public engagement, particularly for new transmission; coordinate and integrate planning; develop rules for market evolution that enable system flexibility; expand access to diverse resources and geographic footprint of operations; and improve system operations. This study also emphatically underscores the value of countries sharing their experiences. The more diverse and robust the experience base from which a country can draw, the more likely that it will be able to implement an appropriate, optimized, and system-wide approach.
Energy Technology Data Exchange (ETDEWEB)
Cochran, J.; Bird, L.; Heeter, J.; Arent, D. A.
2012-04-01
Many countries -- reflecting very different geographies, markets, and power systems -- are successfully managing high levels of variable renewable energy on the electric grid, including that from wind and solar energy. This document summarizes policy best practices that energy ministers and other stakeholders can pursue to ensure that electricity markets and power systems can effectively coevolve with increasing penetrations of variable renewable energy. There is no one-size-fits-all approach; each country studied has crafted its own combination of policies, market designs, and system operations to achieve the system reliability and flexibility needed to successfully integrate renewables. Notwithstanding this diversity, the approaches taken by the countries studied all coalesce around five strategic areas: lead public engagement, particularly for new transmission; coordinate and integrate planning; develop rules for market evolution that enable system flexibility; expand access to diverse resources and geographic footprint of operations; and improve system operations. This study also emphatically underscores the value of countries sharing their experiences. The more diverse and robust the experience base from which a country can draw, the more likely that it will be able to implement an appropriate, optimized, and system-wide approach.
Energy Technology Data Exchange (ETDEWEB)
Cochran, Jaquelin [National Renewable Energy Lab. (NREL), Golden, CO (United States); Bird, Lori [National Renewable Energy Lab. (NREL), Golden, CO (United States); Heeter, Jenny [National Renewable Energy Lab. (NREL), Golden, CO (United States); Arent, Douglas J. [National Renewable Energy Lab. (NREL), Golden, CO (United States)
2012-04-30
Many countries - reflecting very different geographies, markets, and power systems - are successfully managing high levels of variable renewable energy on the electric grid, including that from wind and solar energy. This document summarizes policy best practices that energy ministers and other stakeholders can pursue to ensure that electricity markets and power systems can effectively coevolve with increasing penetrations of variable renewable energy. There is no one-size-fits-all approach; each country studied has crafted its own combination of policies, market designs, and system operations to achieve the system reliability and flexibility needed to successfully integrate renewables. Notwithstanding this diversity, the approaches taken by the countries studied all coalesce around five strategic areas: lead public engagement, particularly for new transmission; coordinate and integrate planning; develop rules for market evolution that enable system flexibility; expand access to diverse resources and geographic footprint of operations; and improve system operations. This study also emphatically underscores the value of countries sharing their experiences. The more diverse and robust the experience base from which a country can draw, the more likely that it will be able to implement an appropriate, optimized, and system-wide approach.
Numerical simulation for SI model with variable-order fractional
Directory of Open Access Journals (Sweden)
mohamed mohamed
2016-04-01
Full Text Available In this paper numerical studies for the variable-order fractional delay differential equations are presented. Adams-Bashforth-Moulton algorithm has been extended to study this problem, where the derivative is defined in the Caputo variable-order fractional sense. Special attention is given to prove the error estimate of the proposed method. Numerical test examples are presented to demonstrate utility of the method. Chaotic behaviors are observed in variable-order one dimensional delayed systems.
Investigation of international energy economics. [Use of econometric model EXPLOR
Energy Technology Data Exchange (ETDEWEB)
Deonigi, D.E.; Clement, M.; Foley, T.J.; Rao, S.A.
1977-03-01
The Division of International Affairs of the Energy Research and Development Administration is assessing the long-range economic effects of energy research and development programs in the U.S. and other countries, particularly members of the International Energy Agency (IEA). In support of this effort, a program was designed to coordinate the capabilities of five research groups--Rand, Virginia Polytechnic Institute, Brookhaven National Laboratory, Lawrence Livermore Laboratory, and Pacific Northwest Laboratory. The program could evaluate the international economics of proposed or anticipated sources of energy. This program is designed to be general, flexible, and capable of evaluating a diverse collection of potential energy (nuclear and nonnuclear) related problems. For example, the newly developed methodology could evaluate the international and domestic economic impact of nuclear-related energy sources, but also existing nonnuclear and potential energy sources such as solar, geothermal, wind, etc. Major items to be included would be the cost of exploration, cost of production, prices, profit, market penetration, investment requirements and investment goods, economic growth, change in balance of payments, etc. In addition, the changes in cost of producing all goods and services would be identified for each new energy source. PNL developed (1) a means of estimating the demands for major forms of energy by country, and (2) a means of identifying results or impacts on each country. The results for each country were then to be compared to assess relative advantages. PNL relied on its existing general econometric model, EXPLOR, to forecast the demand for energy by country. (MCW)
Directory of Open Access Journals (Sweden)
Khober Limanto Genius
2017-01-01
Full Text Available We investigate the association between related party transactions (RPT and real earnings management (REM. We also investigate the role of internal governance mechanism through the effectiveness of board of commissioner and audit committee in mitigating the association between RPT and REM. Our research sample consists of 386 firm-years of manufacturing firms listed in Indonesian Stock Exchange (IDX from year 2010 - 2014. Using linear regression, we find evidence that RPT has positive association with REM, only when the firm has higher RPT but not in the lower RPT. We find a contradictory result that board of commissioners strengthen the positive association between RPT and REM. Finally, we find evidence that the effectiveness of audit committees weaken the positive association between RPT and REM, both in full sample and in high RPT sample.
Modeling Variable Phanerozoic Oxygen Effects on Physiology and Evolution.
Graham, Jeffrey B; Jew, Corey J; Wegner, Nicholas C
2016-01-01
Geochemical approximation of Earth's atmospheric O2 level over geologic time prompts hypotheses linking hyper- and hypoxic atmospheres to transformative events in the evolutionary history of the biosphere. Such correlations, however, remain problematic due to the relative imprecision of the timing and scope of oxygen change and the looseness of its overlay on the chronology of key biotic events such as radiations, evolutionary innovation, and extinctions. There are nevertheless general attributions of atmospheric oxygen concentration to key evolutionary changes among groups having a primary dependence upon oxygen diffusion for respiration. These include the occurrence of Devonian hypoxia and the accentuation of air-breathing dependence leading to the origin of vertebrate terrestriality, the occurrence of Carboniferous-Permian hyperoxia and the major radiation of early tetrapods and the origins of insect flight and gigantism, and the Mid-Late Permian oxygen decline accompanying the Permian extinction. However, because of variability between and error within different atmospheric models, there is little basis for postulating correlations outside the Late Paleozoic. Other problems arising in the correlation of paleo-oxygen with significant biological events include tendencies to ignore the role of blood pigment affinity modulation in maintaining homeostasis, the slow rates of O2 change that would have allowed for adaptation, and significant respiratory and circulatory modifications that can and do occur without changes in atmospheric oxygen. The purpose of this paper is thus to refocus thinking about basic questions central to the biological and physiological implications of O2 change over geological time.
VAM2D: Variably saturated analysis model in two dimensions
Energy Technology Data Exchange (ETDEWEB)
Huyakorn, P.S.; Kool, J.B.; Wu, Y.S. (HydroGeoLogic, Inc., Herndon, VA (United States))
1991-10-01
This report documents a two-dimensional finite element model, VAM2D, developed to simulate water flow and solute transport in variably saturated porous media. Both flow and transport simulation can be handled concurrently or sequentially. The formulation of the governing equations and the numerical procedures used in the code are presented. The flow equation is approximated using the Galerkin finite element method. Nonlinear soil moisture characteristics and atmospheric boundary conditions (e.g., infiltration, evaporation and seepage face), are treated using Picard and Newton-Raphson iterations. Hysteresis effects and anisotropy in the unsaturated hydraulic conductivity can be taken into account if needed. The contaminant transport simulation can account for advection, hydrodynamic dispersion, linear equilibrium sorption, and first-order degradation. Transport of a single component or a multi-component decay chain can be handled. The transport equation is approximated using an upstream weighted residual method. Several test problems are presented to verify the code and demonstrate its utility. These problems range from simple one-dimensional to complex two-dimensional and axisymmetric problems. This document has been produced as a user's manual. It contains detailed information on the code structure along with instructions for input data preparation and sample input and printed output for selected test problems. Also included are instructions for job set up and restarting procedures. 44 refs., 54 figs., 24 tabs.
Variable Neighborhood Simplex Search Methods for Global Optimization Models
Directory of Open Access Journals (Sweden)
Pongchanun Luangpaiboon
2012-01-01
Full Text Available Problem statement: Many optimization problems of practical interest are encountered in various fields of chemical, engineering and management sciences. They are computationally intractable. Therefore, a practical algorithm for solving such problems is to employ approximation algorithms that can find nearly optimums within a reasonable amount of computational time. Approach: In this study the hybrid methods combining the Variable Neighborhood Search (VNS and simplexs family methods are proposed to deal with the global optimization problems of noisy continuous functions including constrained models. Basically, the simplex methods offer a search scheme without the gradient information whereas the VNS has the better searching ability with a systematic change of neighborhood of the current solution within a local search. Results: The VNS modified simplex method has a better searching ability for optimization problems with noise. The VNS modified simplex method also outperforms in average on the characteristics of intensity and diversity during the evolution of design point moving stage for the constrained optimization. Conclusion: The adaptive hybrid versions have proved to obtain significantly better results than the conventional methods. The amount of computation effort required for successful optimization is very sensitive to the rate of noise decrease of the process yields. Under circumstances of constrained optimization and gradually increasing the noise during an optimization the most preferred approach is the VNS modified simplex method.
Modelling and Internal Fuzzy Model Power Control of a Francis Water Turbine
Directory of Open Access Journals (Sweden)
Klemen Nagode
2014-02-01
Full Text Available This paper presents dynamic modelling of a Francis turbine with a surge tank and the control of a hydro power plant (HPP. Non-linear and linear models include technical parameters and show high similarity to measurement data. Turbine power control with an internal model control (IMC is proposed, based on a turbine fuzzy model. Considering appropriate control responses in the entire area of turbine power, the model parameters of the process are determined from a fuzzy model, which are further included in the internal model controller. The results are compared to a proportional-integral (PI controller tuned with an integral absolute error (IAE objective function, and show an improved response of internal model control.
Effects of temporal variability on HBV model calibration
Directory of Open Access Journals (Sweden)
Steven Reinaldo Rusli
2015-10-01
Full Text Available This study aimed to investigate the effect of temporal variability on the optimization of the Hydrologiska Byråns Vattenbalansavedlning (HBV model, as well as the calibration performance using manual optimization and average parameter values. By applying the HBV model to the Jiangwan Catchment, whose geological features include lots of cracks and gaps, simulations under various schemes were developed: short, medium-length, and long temporal calibrations. The results show that, with long temporal calibration, the objective function values of the Nash-Sutcliffe efficiency coefficient (NSE, relative error (RE, root mean square error (RMSE, and high flow ratio generally deliver a preferable simulation. Although NSE and RMSE are relatively stable with different temporal scales, significant improvements to RE and the high flow ratio are seen with longer temporal calibration. It is also noted that use of average parameter values does not lead to better simulation results compared with manual optimization. With medium-length temporal calibration, manual optimization delivers the best simulation results, with NSE, RE, RMSE, and the high flow ratio being 0.563 6, 0.122 3, 0.978 8, and 0.854 7, respectively; and calibration using average parameter values delivers NSE, RE, RMSE, and the high flow ratio of 0.481 1, 0.467 6, 1.021 0, and 2.784 0, respectively. Similar behavior is found with long temporal calibration, when NSE, RE, RMSE, and the high flow ratio using manual optimization are 0.525 3, −0.069 2, 1.058 0, and 0.980 0, respectively, as compared with 0.490 3, 0.224 8, 1.096 2, and 0.547 9, respectively, using average parameter values. This study shows that selection of longer periods of temporal calibration in hydrological analysis delivers better simulation in general for water balance analysis.
Matias-Guiu, Pau; Rodríguez-Bencomo, Juan José; Orriols, Ignacio; Pérez-Correa, José Ricardo; López, Francisco
2016-12-15
The organoleptic quality of wine distillates depends on raw materials and the distillation process. Previous work has shown that rectification columns in batch distillation with fixed reflux rate are useful to obtain distillates or distillate fractions with enhanced organoleptic characteristics. This study explores variable reflux rate operating strategies to increase the levels of terpenic compounds in specific distillate fractions to emphasize its floral aroma. Based on chemical and sensory analyses, two distillate heart sub-fractions obtained with the best operating strategy found, were compared with a distillate obtained in a traditional alembic. Results have shown that a drastic reduction of the reflux rate at an early stage of the heart cut produced a distillate heart sub-fraction with a higher concentration of terpenic compounds and lower levels of negative aroma compounds. Therefore, this sub-fraction presented a much more noticeable floral aroma than the distillate obtained with a traditional alembic. Copyright © 2016 Elsevier Ltd. All rights reserved.
Buzzelli, Christopher; Doering, Peter H.; Wan, Yongshan; Sun, Detong; Fugate, David
2014-12-01
Variations in freshwater inflow have ecological consequences for estuaries ranging among eutrophication, flushing and transport, and high and low salinity impacts on biota. Predicting the potential effects of the magnitude and composition of inflow on estuaries over a range of spatial and temporal scales requires reliable mathematical models. The goal of this study was to develop and test a model of ecosystem processes with variable freshwater inflow to the sub-tropical Caloosahatchee River Estuary (CRE) in southwest Florida from 2002 to 2009. The modeling framework combined empirically derived inputs of freshwater and materials from the watershed, daily predictions of salinity, a box model for physical transport, and simulation models of biogeochemical and seagrass dynamics. The CRE was split into 3 segments to estimate advective and dispersive transport of water column constituents. Each segment contained a sub-model to simulate changes in the concentrations of organic nitrogen and phosphorus (ON and OP), ammonium (NH4+), nitrate-nitrite (NOx-), ortho-phosphate (PO4-3), phytoplankton chlorophyll a (CHL), and sediment microalgae (SM). The seaward segment also had sub-models for seagrasses (Halodule wrightii and Thalassia testudinum). The model provided realistic predictions of ON in the upper estuary during wet conditions since organic nitrogen is associated with freshwater inflow and low salinity. Although simulated CHL concentrations were variable, the model proved to be a reliable predictor in time and space. While predicted NOx- concentrations were proportional to freshwater inflow, NH4+ was less predictable due to the complexity of internal cycling during times of reduced freshwater inflow. Overall, the model provided a representation of seagrass biomass changes despite the absence of epiphytes, nutrient effects, or sophisticated translocation in the formulation. The model is being used to investigate the relative importance of colored dissolved organic
Hydrological variability in a comprehensive Earth System Model simulation of the past 2,000 years
Wagner, S.; Zorita, E.
2015-12-01
The focus of climate reconstructions at large-scales has been so far placed on temperature (cf. PAGES2k, PMIP3) and particularly over the last millennium. Here, we present new global simulations with an Earth System Model covering the past 2,000 years and more specifically investigate the hydrological changes over southwestern North America (sNADA), and the European continent. On a global scale, changes in soil wetness are negatively correlated to changes in (local) temperature with the strongest correlations over the tropical and subtropical non-desert covered areas. Long term-trends over the full simulation period indicate increases for NH summer soil wetness over central NA, central Europe, whereas southern NA and southwestern Europe show drying tendencies. The evolution of the modelled and the reconstructed sNADA and soil wetness, respectively, over southwestern North America show only very little coherence, even on multi-decadal time scales. One explanation may be the high amount of internal variability and deficiencies in both model and reconstruction. An interesting second analysis pertains to the hydrological changes over the European continent in comparison with southwestern North America. Here, results indicate that on multi-decadal time scale those regions, especially the European Mediterranean, share common variance at lower frequencies on top of the millennial-scale trends. The prominent volcanic eruption in 528 AD produces an immediate increase of soil wetness over southwestern Europe and western North America. However, on a global scale this pattern is not robust, as in the 2nd ensemble member the same eruption produces a different pattern, especially in tropical areas pointing to the high degree of internal variability involved despite pronounced changes in volcanic activity.
Marginal Maximum Likelihood Estimation of a Latent Variable Model with Interaction
Cudeck, Robert; Harring, Jeffrey R.; du Toit, Stephen H. C.
2009-01-01
There has been considerable interest in nonlinear latent variable models specifying interaction between latent variables. Although it seems to be only slightly more complex than linear regression without the interaction, the model that includes a product of latent variables cannot be estimated by maximum likelihood assuming normality.…
Stratified flows with variable density: mathematical modelling and numerical challenges.
Murillo, Javier; Navas-Montilla, Adrian
2017-04-01
Stratified flows appear in a wide variety of fundamental problems in hydrological and geophysical sciences. They may involve from hyperconcentrated floods carrying sediment causing collapse, landslides and debris flows, to suspended material in turbidity currents where turbulence is a key process. Also, in stratified flows variable horizontal density is present. Depending on the case, density varies according to the volumetric concentration of different components or species that can represent transported or suspended materials or soluble substances. Multilayer approaches based on the shallow water equations provide suitable models but are not free from difficulties when moving to the numerical resolution of the governing equations. Considering the variety of temporal and spatial scales, transfer of mass and energy among layers may strongly differ from one case to another. As a consequence, in order to provide accurate solutions, very high order methods of proved quality are demanded. Under these complex scenarios it is necessary to observe that the numerical solution provides the expected order of accuracy but also converges to the physically based solution, which is not an easy task. To this purpose, this work will focus in the use of Energy balanced augmented solvers, in particular, the Augmented Roe Flux ADER scheme. References: J. Murillo , P. García-Navarro, Wave Riemann description of friction terms in unsteady shallow flows: Application to water and mud/debris floods. J. Comput. Phys. 231 (2012) 1963-2001. J. Murillo B. Latorre, P. García-Navarro. A Riemann solver for unsteady computation of 2D shallow flows with variable density. J. Comput. Phys.231 (2012) 4775-4807. A. Navas-Montilla, J. Murillo, Energy balanced numerical schemes with very high order. The Augmented Roe Flux ADER scheme. Application to the shallow water equations, J. Comput. Phys. 290 (2015) 188-218. A. Navas-Montilla, J. Murillo, Asymptotically and exactly energy balanced augmented flux
Numerical modeling on the interaction of internal solitary wave with slope-shelf and modal analysis
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
On the basis of a nonhydrostatic numerical model, the interaction of internal solitary wave with slope-shelf was studied. The breaking and polarity transformation were analyzed. A "kink" structure, due to shoaling topography and higher nonlinear effect, was found to be generated by the leading wave before breaking. Coherent vortex shedding behind the leading wave was presented. The evolution characteristics of the modal structure were analyzed based on the empirical orthogonal function method. The modal structure was complicated due to the effect of the variable topography, especially when breaking occurred. In the performed experiments, the contributions to the total variance from higher mode jumped from no more than 20% to over 40%.
Estimating net present value variability for deterministic models
van Groenendaal, W.J.H.
1995-01-01
For decision makers the variability in the net present value (NPV) of an investment project is an indication of the project's risk. So-called risk analysis is one way to estimate this variability. However, risk analysis requires knowledge about the stochastic character of the inputs. For large, long
Modelling and Internal Fuzzy Model Power Control of a Francis Water Turbine
Klemen Nagode; Igor Škrjanc
2014-01-01
This paper presents dynamic modelling of a Francis turbine with a surge tank and the control of a hydro power plant (HPP). Non-linear and linear models include technical parameters and show high similarity to measurement data. Turbine power control with an internal model control (IMC) is proposed, based on a turbine fuzzy model. Considering appropriate control responses in the entire area of turbine power, the model parameters of the process are determined from a fuzzy model, which are furthe...
Carsey, F. D.; Behar, A. E.; Holt, B. M.
2003-12-01
At the present time sea ice thickness distribution is understood to be a crucial variable that is descriptive of polar climate in a complex, integrative sense such that its determination over time is a significant priority. As it happens, the sea ice distribution is also a challenging determination given ideal circumstances of platforms and instrumentation, and these circumstances are not reliably extant. The standard approaches to sea ice information, ice-capable ships and satellites, do not at this time provide a workable strategy; ships cannot supply the coverage and satellites have not been equipped with proper instrumentation, which is in fact just now entering development phase. A strategy with promise for obtaining sea ice thickness in addition to other significant surface variables is the deployment of instrumented robotic vehicles; a particularly useful vehicle design is the Inflatable Rover under consideration for use on Mars. These vehicles can travel a 1-3 kilometers per hour powered by solar energy and can thus accomplish a major traverse in a 100-day deployment. The program we put forward calls for an international fleet of suitably designed rovers, each measuring useful variables relating to ice, snow, atmosphere, radiation, etc. In addition the rovers could collaborate in such tasks as monitoring each others activities, aiding in calibration and maintenance, and the like. Each rover could involve 2-3 co-investigators from different institutions and countries. Rover data would be satellite linked allowing K-12 monitoring of progress of the fleet. This IPY4 project integrates new technology into polar science, would engage the public and schoolchildren, could serve as a means of international cooperation, and all the while collects valuable climate change data. This work performed under contract to NASA.
Fahimi, Farzad; Yaseen, Zaher Mundher; El-shafie, Ahmed
2017-05-01
Since the middle of the twentieth century, artificial intelligence (AI) models have been used widely in engineering and science problems. Water resource variable modeling and prediction are the most challenging issues in water engineering. Artificial neural network (ANN) is a common approach used to tackle this problem by using viable and efficient models. Numerous ANN models have been successfully developed to achieve more accurate results. In the current review, different ANN models in water resource applications and hydrological variable predictions are reviewed and outlined. In addition, recent hybrid models and their structures, input preprocessing, and optimization techniques are discussed and the results are compared with similar previous studies. Moreover, to achieve a comprehensive view of the literature, many articles that applied ANN models together with other techniques are included. Consequently, coupling procedure, model evaluation, and performance comparison of hybrid models with conventional ANN models are assessed, as well as, taxonomy and hybrid ANN models structures. Finally, current challenges and recommendations for future researches are indicated and new hybrid approaches are proposed.
Fahimi, Farzad; Yaseen, Zaher Mundher; El-shafie, Ahmed
2016-02-01
Since the middle of the twentieth century, artificial intelligence (AI) models have been used widely in engineering and science problems. Water resource variable modeling and prediction are the most challenging issues in water engineering. Artificial neural network (ANN) is a common approach used to tackle this problem by using viable and efficient models. Numerous ANN models have been successfully developed to achieve more accurate results. In the current review, different ANN models in water resource applications and hydrological variable predictions are reviewed and outlined. In addition, recent hybrid models and their structures, input preprocessing, and optimization techniques are discussed and the results are compared with similar previous studies. Moreover, to achieve a comprehensive view of the literature, many articles that applied ANN models together with other techniques are included. Consequently, coupling procedure, model evaluation, and performance comparison of hybrid models with conventional ANN models are assessed, as well as, taxonomy and hybrid ANN models structures. Finally, current challenges and recommendations for future researches are indicated and new hybrid approaches are proposed.
Webb, Jennifer B; Hardin, Abigail S
2016-07-01
The present study extended the weight stigma and well-being process model (Tylka et al., 2014) by examining three affect regulation pathways that may help simultaneously explain the predicted inverse association between internalized weight bias and intuitive eating. A weight-diverse sample of 333 college women completed an online survey assessing internalized weight stigma, intuitive eating, body shame, body image flexibility, and self-compassion. Self-reported height and weight were used to calculate body mass index (BMI). Non-parametric bootstrap resampling procedures were computed to ascertain the presence of the indirect effects of internalized weight bias on intuitive eating via the three hypothesized mediators controlling for BMI in a combined model. Results demonstrated that body image flexibility significantly and self-compassion marginally contributed unique variance in accounting for this relationship. Our preliminary cross-sectional findings contribute to a nascent body of scholarship seeking to provide a theoretically-driven understanding of how negative and positive forms of experiencing and relating to the body may co-occur within individuals. Results also point to potential target variables to consider incorporating in later-stage efforts to promote more adaptive ways of eating amidst internalized weight stigma.
Bourbeau, J; Ernst, P
1988-01-01
Although there are published data concerning reader variability in the assessment of parenchymal pneumoconiotic changes using the ILO Classification of Radiographs, nothing has been published on reader variability with regard to pleural abnormalities. Therefore, in the context of an epidemiologic study, we assessed between- and within-reader variability in the reading of chest radiographs for pleural abnormality using the ILO 1980 International Classification of Radiographs of Pneumoconioses. Chest radiographs of 182 insulation workers interspersed with 24 subjects without documented exposure to asbestos were assembled and read blindly by two readers, reading separately on two occasions, 1 week apart. The results of this study suggest that confident separation of pleural plaques and diffuse pleural thickening may be difficult to achieve using the present guidelines of the ILO 1980 classification. In the evaluation of the width of chest wall pleural abnormality, within-reader agreement improves as the width increases, while between-reader agreement was much less satisfactory. Excellent agreement is obtained in the evaluation of other sites, especially costophrenic angle obliteration and the presence of pleural calcification.
Modeling the Spatial Dynamics of International Tuna Fleets
2016-01-01
We developed an iterative sequential random utility model to investigate the social and environmental determinants of the spatiotemporal decision process of tuna purse-seine fishery fishing effort in the eastern Pacific Ocean. Operations of the fishing gear mark checkpoints in a continuous complex decision-making process. Individual fisher behavior is modeled by identifying diversified choices over decision-space for an entire fishing trip, which allows inclusion of prior and current vessel locations and conditions among the explanatory variables. Among these factors are vessel capacity; departure and arrival port; duration of the fishing trip; daily and cumulative distance travelled, which provides a proxy for operation costs; expected revenue; oceanographic conditions; and tons of fish on board. The model uses a two-step decision process to capture the probability of a vessel choosing a specific fishing region for the first set and the probability of switching to (or staying in) a specific region to fish before returning to its landing port. The model provides a means to anticipate the success of marine resource management, and it can be used to evaluate fleet diversity in fisher behavior, the impact of climate variability, and the stability and resilience of complex coupled human and natural systems. PMID:27537545
Directory of Open Access Journals (Sweden)
A.H.Srinivasa,
2016-02-01
Full Text Available This paper presents a study of MHD free convection flow of an electrically conducting incompressible fluid with variable viscosity about an isothermal truncated cone in the presence of heat generation or absorption. The fluid viscosity is assumed to vary as a inverse linear function of temperature. The non-linear coupled partial differential equations governing the flow and heat transfer have been solved numerically by using an implicit finite - difference scheme along with quasilinearization technique. The non-similar solutions have been obtained for the problem, overcoming numerical difficulties near the leading edge and in the downstream regime. Results indicate that skin friction and heat transfer are strongly affected by, both, viscosity-variation parameter and magnetic field. In fact, the transverse magnetic field influences the momentum and thermal fields, considerably. Further, skin friction is found to decrease and heat transfer increases near the leading edge. Also, it is found that the direction of heat transfer gets reversed during heat generation.
Ireland, M J; Wood, P R
2008-01-01
We describe the Cool Opacity-sampling Dynamic EXtended (CODEX) atmosphere models of Mira variable stars, and examine in detail the physical and numerical approximations that go in to the model creation. The CODEX atmospheric models are obtained by computing the temperature and the chemical and radiative states of the atmospheric layers, assuming gas pressure and velocity profiles from Mira pulsation models, which extend from near the H-burning shell to the outer layers of the atmosphere. Although the code uses the approximation of Local Thermodynamic Equilibrium (LTE) and a grey approximation in the dynamical atmosphere code, many key observable quantities, such as infrared diameters and low-resolution spectra, are predicted robustly in spite of these approximations. We show that in visible light, radiation from Mira variables is dominated by fluorescence scattering processes, and that the LTE approximation likely under-predicts visible-band fluxes by a factor of two.
Method of Running Sines: Modeling Variability in Long-Period Variables
Andronov, Ivan L
2013-01-01
We review one of complementary methods for time series analysis - the method of "Running Sines". "Crash tests" of the method include signals with a large period variation and with a large trend. The method is most effective for "nearly periodic" signals, which exhibit "wavy shape" with a "cycle length" varying within few dozen per cent (i.e. oscillations of low coherence). This is a typical case for brightness variations of long-period pulsating variables and resembles QPO (Quasi-Periodic Oscillations) and TPO (Transient Periodic Oscillations) in interacting binary stars - cataclysmic variables, symbiotic variables, low-mass X-Ray binaries etc. General theory of "running approximations" was described by Andronov (1997A &AS..125..207A), one of realizations of which is the method of "running sines". The method is related to Morlet-type wavelet analysis improved for irregularly spaced data (Andronov, 1998KFNT...14..490A, 1999sss..conf...57A), as well as to a classical "running mean" (="moving average"). The ...
VARIABLE SELECTION BY PSEUDO WAVELETS IN HETEROSCEDASTIC REGRESSION MODELS INVOLVING TIME SERIES
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
A simple but efficient method has been proposed to select variables in heteroscedastic regression models. It is shown that the pseudo empirical wavelet coefficients corresponding to the significant explanatory variables in the regression models are clearly larger than those nonsignificant ones, on the basis of which a procedure is developed to select variables in regression models. The coefficients of the models are also estimated. All estimators are proved to be consistent.
We examine the effects of internal variability and model response in projections of climate impacts on U.S. ground-level ozone across the 21st century using integrated global system modeling and global atmospheric chemistry simulations. The impact of climate change on air polluti...
Deng, Chenhui; Plan, Elodie L; Karlsson, Mats O
2016-06-01
Parameter variation in pharmacometric analysis studies can be characterized as within subject parameter variability (WSV) in pharmacometric models. WSV has previously been successfully modeled using inter-occasion variability (IOV), but also stochastic differential equations (SDEs). In this study, two approaches, dynamic inter-occasion variability (dIOV) and adapted stochastic differential equations, were proposed to investigate WSV in pharmacometric count data analysis. These approaches were applied to published count models for seizure counts and Likert pain scores. Both approaches improved the model fits significantly. In addition, stochastic simulation and estimation were used to explore further the capability of the two approaches to diagnose and improve models where existing WSV is not recognized. The results of simulations confirmed the gain in introducing WSV as dIOV and SDEs when parameters vary randomly over time. Further, the approaches were also informative as diagnostics of model misspecification, when parameters changed systematically over time but this was not recognized in the structural model. The proposed approaches in this study offer strategies to characterize WSV and are not restricted to count data.
Do we have an internal model of the outside world?
Land, Michael F
2014-01-01
Our phenomenal world remains stationary in spite of movements of the eyes, head and body. In addition, we can point or turn to objects in the surroundings whether or not they are in the field of view. In this review, I argue that these two features of experience and behaviour are related. The ability to interact with objects we cannot see implies an internal memory model of the surroundings, available to the motor system. And, because we maintain this ability when we move around, the model must be updated, so that the locations of object memories change continuously to provide accurate directional information. The model thus contains an internal representation of both the surroundings and the motions of the head and body: in other words, a stable representation of space. Recent functional MRI studies have provided strong evidence that this egocentric representation has a location in the precuneus, on the medial surface of the superior parietal cortex. This is a region previously identified with 'self-centred mental imagery', so it seems likely that the stable egocentric representation, required by the motor system, is also the source of our conscious percept of a stable world.
Energy Technology Data Exchange (ETDEWEB)
Conway, D. [University of East Anglia, Norwich (United Kingdom). School of Development Studies
2005-07-01
Egypt is almost totally dependent upon water that originates from the upstream headwaters of the Nile in the humid Ethiopian and East African highlands. Analysis of rainfall and river flow records during the 20th century demonstrates high levels of interannual and interdecadal variability. This is experienced locally and regionally in the headwater regions of the Nile and internationally through its effects on downstream Nile flows in Sudan and Egypt. Examples of climate variability are presented from areas in the basin where it exerts a strong influence on society; the Ethiopian highlands (links with food security), Lake Victoria (management of non-stationary lake levels) and Egypt (exposure to interdecadal variability of Nile flows). These examples reveal adaptations across various scales by individuals and institutions acting alongside other social and economic considerations. Water resources management in the downstream riparian Egypt has involved institutional level reactive adaptations to prolonged periods of low and high Nile flows. Observed responses include the establishment of more robust contingency planning and early warning systems alongside strategic assessment of water use and planning in response to low flows during the 1980s. In the 1990s high flows have enabled Egypt to pursue opportunistic policies to expand irrigation. These policies are embedded in wider socio-political and economic considerations but increase Egypt's exposure and sensitivity to climate driven fluctuations in Nile flows. Analysis of climate change projections for the region shows there is no clear indication of how Nile flows will be affected because of uncertainty about future rainfall patterns in the basin. In many instances the most appropriate entry point for adaptation to climate change will be coping with climate variability and will play out against the certainty of looming national water scarcity in Egypt due to rapid population growth and its possible exacerbation
Mulpuri, Kishore; Schaeffer, Emily K; Kelley, Simon P; Castañeda, Pablo; Clarke, Nicholas M P; Herrera-Soto, Jose A; Upasani, Vidyadhar; Narayanan, Unni G; Price, Charles T
2016-05-01
Little information exists concerning the variability of presentation and differences in treatment methods for developmental dysplasia of the hip (DDH) in children Hip Dysplasia Institute to establish the need to consider the center as a key variable in multicenter studies. (1) How do patient demographics differ across participating centers at presentation? (2) How do patient diagnoses (severity and laterality) differ across centers? (3) How do initial treatment approaches differ across participating centers? A multicenter prospective hip dysplasia study database was analyzed from 2010 to April 2015. Patients younger than 6 months of age at diagnosis were included if at least one hip was completely dislocated, whereas patients between 6 and 18 months of age at diagnosis were included with any form of DDH. Participating centers (academic, urban, tertiary care hospitals) span five countries across three continents. Baseline data (patient demographics, diagnosis, swaddling history, baseline International Hip Dysplasia Institute classification, and initial treatment) were compared among all nine centers. A total of 496 patients were enrolled with site enrolment ranging from 10 to 117. The proportion of eligible patients who were enrolled and followed at the nine participating centers was 98%. Patient enrollment rates were similar across all sites, and data collection/completeness for relevant variables at initial presentation was comparable. In total, 83% of all patients were female (410 of 496), and the median age at presentation was 2.2 months (range, 0-18 months). Breech presentation occurred more often in younger (Hip Dysplasia Institute classification), which included 58% (51 of 88) of all classified dislocated hips. Splintage was the primary initial treatment of choice at 80% (395 of 496), but was far more likely in younger compared with older patients (94% [309 of 328] versus 18% [17 of 93]; p < 0.001). With the lack of strong prognostic indicators for DDH
A Scaling Model for the Anthropocene Climate Variability with Projections to 2100
Hébert, Raphael; Lovejoy, Shaun
2017-04-01
The determination of the climate sensitivity to radiative forcing is a fundamental climate science problem with important policy implications. We use a scaling model, with a limited set of parameters, which can directly calculate the forced globally-average surface air temperature response to anthropogenic and natural forcings. At timescales larger than an inner scale τ, which we determine as the ocean-atmosphere coupling scale at around 2 years, the global system responds, approximately, linearly, so that the variability may be decomposed into additive forced and internal components. The Ruelle response theory extends the classical linear response theory for small perturbations to systems far from equilibrium. Our model thus relates radiative forcings to a forced temperature response by convolution with a suitable Green's function, or climate response function. Motivated by scaling symmetries which allow for long range dependence, we assume a general scaling form, a scaling climate response function (SCRF) which is able to produce a wide range of responses: a power-law truncated at τ. This allows us to analytically calculate the climate sensitivity at different time scales, yielding a one-to-one relation from the transient climate response to the equilibrium climate sensitivity which are estimated, respectively, as 1.6+0.3-0.2K and 2.4+1.3-0.6K at the 90 % confidence level. The model parameters are estimated within a Bayesian framework, with a fractional Gaussian noise error model as the internal variability, from forcing series, instrumental surface temperature datasets and CMIP5 GCMs Representative Concentration Pathways (RCP) scenario runs. This observation based model is robust and projections for the coming century are made following the RCP scenario 2.6, 4.5 and 8.5, yielding in the year 2100, respectively : 1.5 +0.3)_{-0.2K, 2.3 ± 0.4 K and 4.0 ± 0.6 K at the 90 % confidence level. For comparison, the associated projections from a CMIP5 multi-model
Selecting candidate predictor variables for the modelling of post ...
African Journals Online (AJOL)
more formal methods such as focus group discussions, questionnaires and ... statistics, methodology, epidemiology, computer engineering and infectious dis- eases. .... ed on their lack of knowledge of wealth scoring tools. Variables exhibiting ...
Quasilinear Extreme Learning Machine Model Based Internal Model Control for Nonlinear Process
Directory of Open Access Journals (Sweden)
Dazi Li
2015-01-01
Full Text Available A new strategy for internal model control (IMC is proposed using a regression algorithm of quasilinear model with extreme learning machine (QL-ELM. Aimed at the chemical process with nonlinearity, the learning process of the internal model and inverse model is derived. The proposed QL-ELM is constructed as a linear ARX model with a complicated nonlinear coefficient. It shows some good approximation ability and fast convergence. The complicated coefficients are separated into two parts. The linear part is determined by recursive least square (RLS, while the nonlinear part is identified through extreme learning machine. The parameters of linear part and the output weights of ELM are estimated iteratively. The proposed internal model control is applied to CSTR process. The effectiveness and accuracy of the proposed method are extensively verified through numerical results.
International Symposium on Technology Management: Modeling, Simulation, and Optimization
Li, Yiming
2007-12-01
This symposium provides a forum for scientists and researchers from academia and industry to exchange knowledge, ideas and results in computational aspects of social and management science. This symposium will cover theory and practice of computational methods, models and empirical analysis for decision making and forecasting in economics, finance, management, transportation, and related aspects of information and system engineering. Welcome to this interdisciplinary symposium in International Conference of Computational Methods in Sciences and Engineering (ICCMSE 2007). Look forward to seeing you in Corfu, Greece!
Exact solutions to a nonlinear dispersive model with variable coefficients
Energy Technology Data Exchange (ETDEWEB)
Yin Jun [Department of Applied Mathematics, Southwestern University of Finance and Economics, Chengdu 610074 (China); Lai Shaoyong [Department of Applied Mathematics, Southwestern University of Finance and Economics, Chengdu 610074 (China)], E-mail: laishaoy@swufe.edu.cn; Qing Yin [Department of Applied Mathematics, Southwestern University of Finance and Economics, Chengdu 610074 (China)
2009-05-15
A mathematical technique based on an auxiliary differential equation and the symbolic computation system Maple is employed to investigate a prototypical and nonlinear K(n, n) equation with variable coefficients. The exact solutions to the equation are constructed analytically under various circumstances. It is shown that the variable coefficients and the exponent appearing in the equation determine the quantitative change in the physical structures of the solutions.
RISK ASSESSMENT ACTIVITIES IN COSO INTERNAL CONTROL MODEL
Directory of Open Access Journals (Sweden)
Hasan TÜREDİ
2016-08-01
Full Text Available The companies pursue their goals and operate their activities in an environment full of risks and uncertainties. One of the major principles in accounting is that the companies to continue indefinitely, which is called “the going concern assumption”. Any company, surrounded by many risks must adapt to the rapidly changing conditions of the business environment, realize and manage those risks and build some core competencies to continue as a going concern. COSO internal control, having practical application tools for companies is one of the generally accepted frameworks that aims enabling the companies to build, manage and develop an internal control structure as a tool to reach sustainable success. One of the five COSO components is “risk assessment” covering the recognition and assessment of the potential risks that the company faces and manage those risk considering their materiality. This study aims to explain the COSO internal control model with its five components as well as stressing the assessment of risks component supported by some examples.
Biologic data, models, and dosimetric methods for internal emitters
Energy Technology Data Exchange (ETDEWEB)
Weber, D.A.
1990-01-01
The absorbed radiation dose from internal emitters has been and will remain a pivotal factor in assessing risk and therapeutic utility in selecting radiopharmaceuticals for diagnosis and treatment. Although direct measurements of absorbed dose and dose distributions in vivo have been and will continue to be made in limited situations, the measurement of the biodistribution and clearance of radiopharmaceuticals in human subjects and the use of this data is likely to remain the primary means to approach the calculation and estimation of absorbed dose from internal emitters over the next decade. Since several approximations are used in these schema to calculate dose, attention must be given to inspecting and improving the application of this dosimetric method as better techniques are developed to assay body activity and as more experience is gained in applying these schema to calculating absorbed dose. Discussion of the need for considering small scale dosimetry to calculate absorbed dose at the cellular level will be presented in this paper. Other topics include dose estimates for internal emitters, biologic data mathematical models and dosimetric methods employed. 44 refs.
Xu, Lei; Johnson, Timothy D.; Nichols, Thomas E.; Nee, Derek E.
2010-01-01
Summary The aim of this work is to develop a spatial model for multi-subject fMRI data. There has been extensive work on univariate modeling of each voxel for single and multi-subject data, some work on spatial modeling of single-subject data, and some recent work on spatial modeling of multi-subject data. However, there has been no work on spatial models that explicitly account for inter-subject variability in activation locations. In this work, we use the idea of activation centers and model the inter-subject variability in activation locations directly. Our model is specified in a Bayesian hierarchical frame work which allows us to draw inferences at all levels: the population level, the individual level and the voxel level. We use Gaussian mixtures for the probability that an individual has a particular activation. This helps answer an important question which is not addressed by any of the previous methods: What proportion of subjects had a significant activity in a given region. Our approach incorporates the unknown number of mixture components into the model as a parameter whose posterior distribution is estimated by reversible jump Markov Chain Monte Carlo. We demonstrate our method with a fMRI study of resolving proactive interference and show dramatically better precision of localization with our method relative to the standard mass-univariate method. Although we are motivated by fMRI data, this model could easily be modified to handle other types of imaging data. PMID:19210732
Modeling and designing of variable-period and variable-pole-number undulator
Directory of Open Access Journals (Sweden)
I. Davidyuk
2016-02-01
Full Text Available The concept of permanent-magnet variable-period undulator (VPU was proposed several years ago and has found few implementations so far. The VPUs have some advantages as compared with conventional undulators, e.g., a wider range of radiation wavelength tuning and the option to increase the number of poles for shorter periods. Both these advantages will be realized in the VPU under development now at Budker INP. In this paper, we present the results of 2D and 3D magnetic field simulations and discuss some design features of this VPU.
Colfescu, Ioana; Schneider, Edwin K.
2017-09-01
The statistical characteristics of the atmospheric internal variability (hereafter internal atmospheric noise) for surface pressure (PS) in twentieth century simulations of a coupled general circulation model are documented. The atmospheric noise is determined from daily post-industrial (1871-1998) Community Climate System Model 3 simulations by removing the SST and externally forced responses from the total fields. The forced responses are found from atmosphere-only simulations forced by the SST and external forcing of the coupled runs. However, we do not address the influence of the SST variability on the synoptic scale high frequency weather noise.The spatial patterns of the main seasonal modes of atmospheric noise variability are found for boreal winter and summer from empirical orthogonal function analyses performed globally and for various regions, including the North Atlantic, the North Pacific, and the equatorial Pacific. The temporal characteristics of the modes are illustrated by power spectra and probability density functions (PDF) of the principal components (PC). Our findings show that, for two different realizations of noise, the variability is dominated by large scale spatial structures of the atmospheric noise that resemble observed patterns, and that their relative amplitudes in the CGCM and AGCM simulations are very similar. The regional expression of the dominant global mode, a seasonally dependent AO-like or AAO-like pattern is also found in the regional analyses, with similar time dependence. The PCs in the CGCM and the corresponding SST forced AGCM simulations are uncorrelated, but the spectra and PDFs of the CGCM and AGCM PCs are similar.The temporal structures of the noise PCs are white at timescales larger than few months, so that these modes can be thought of as stochastic forcings (in time) for the climate system. The PDFs of the noise PCs are not statistically distinguishable from Gaussian distributions with the same standard deviation
Internal Behavioral Modeling of Embedded Systems through State Box Structures
Directory of Open Access Journals (Sweden)
V. Chandra Prakash
2011-05-01
Full Text Available Clean Room Software Engineering (CRSE methodology is intended for the development of high quality systems. The methodology is centered on three structures which include Black Box (BB, State Box (SB and Clear Box (CB and it assures high quality through implementation of Verification and Validation models at every stage of development. The models, suggested earlier, are built using the Mathematics for implementing the formalism which is needed to assure high quality. The mathematical way of implementing the formalism has been proved to be complex, unwieldy and impracticable. The Verification and Validation methods suggested are classical and do not support formalism which is the key element of CRSE. In this paper, three UML models and the associated algorithms have been proposed that help developing state box structures in more formal way and also to automate the process of generating State Box Structures. The refined CRSE model incorporating the suggested models is also presented. The models are used to develop the internal behavior of a Pilot Project called “Temperature Monitoring and Controlling of Nuclear Reactor System” (TMCNRS which is an embedded system designed in more formal and automated way.
Exploring Factor Model Parameters across Continuous Variables with Local Structural Equation Models.
Hildebrandt, Andrea; Lüdtke, Oliver; Robitzsch, Alexander; Sommer, Christopher; Wilhelm, Oliver
2016-01-01
Using an empirical data set, we investigated variation in factor model parameters across a continuous moderator variable and demonstrated three modeling approaches: multiple-group mean and covariance structure (MGMCS) analyses, local structural equation modeling (LSEM), and moderated factor analysis (MFA). We focused on how to study variation in factor model parameters as a function of continuous variables such as age, socioeconomic status, ability levels, acculturation, and so forth. Specifically, we formalized the LSEM approach in detail as compared with previous work and investigated its statistical properties with an analytical derivation and a simulation study. We also provide code for the easy implementation of LSEM. The illustration of methods was based on cross-sectional cognitive ability data from individuals ranging in age from 4 to 23 years. Variations in factor loadings across age were examined with regard to the age differentiation hypothesis. LSEM and MFA converged with respect to the conclusions. When there was a broad age range within groups and varying relations between the indicator variables and the common factor across age, MGMCS produced distorted parameter estimates. We discuss the pros of LSEM compared with MFA and recommend using the two tools as complementary approaches for investigating moderation in factor model parameters.
Shi, Tuo; Lu, Bingheng; Shi, Shihong; Meng, Weidong; Fu, Geyan
2017-02-01
In this study, a hollow-laser beam with internal powder feeding (HLB-IPF) head is applied to achieve non-horizontal cladding and deposition of overhanging structure. With the features of this head such as uniform scan energy distribution, thin and straight spraying of the powder beam, the deposition in spatial variable orientation is conducted using a 6-axis robot. During the deposition process the head keeps tangential to the growth direction of the part. In the experiment, a "vase" shaped metal part with overhanging structure is successfully deposited, and the largest overhanging angle achieves 80° to the vertical direction. The "step effect" between cladding layers is completely eliminated with the best surface roughness of Ra=3.864 μm. Cross section of cladding layers with unequal height are deposited for angle change. Test results indicate that the formed part has uniform wall thickness, fine microstructure and high microhardness.
Resplandy, L.; Séférian, R.; Bopp, L.
2015-01-01
carbon uptake and oxygen content estimates over the past decades suggest that the anthropogenic carbon sink has changed and that the oxygen concentration in the ocean interior has decreased. Although these detected changes appear consistent with those expected from anthropogenic forced climate change, large uncertainties remain in the contribution of natural variability. Using century-long simulations (500-1000 years) of unforced natural variability from six Earth System Models (ESMs), we examine the internally driven natural variability of carbon and oxygen fluxes from interannual to multidecadal time scales. The intensity of natural variability differs between the ESMs, in particular, decadal variability locally accounts for 10-50% of the total variance. Although the variability is higher in all regions with strong climate modes (North Atlantic, North Pacific, etc.), we find that only the Southern Ocean and the tropical Pacific significantly modulate the global fluxes. On (multi)decadal time scales, deep convective events along the Antarctic shelf drive the global fluxes variability by transporting deep carbon-rich/oxygen-depleted waters to the surface and by reducing the sea-ice coverage. On interannual time scales, the global flux is modulated by (1) variations of the upwelling of circumpolar deep waters associated with the southern annular mode in the subpolar Southern Ocean and (2) variations of the equatorial/costal upwelling combined with changes in the solubility-driven fluxes in response to El Niño Southern Oscillation (ENSO) in the tropical Pacific. We discuss the challenges of measuring and detecting long-term trends from a few decade-long records influenced by internal variability.
Materials with internal structure multiscale and multifield modeling and simulation
2016-01-01
The book presents a series of concise papers by researchers specialized in various fields of continuum and computational mechanics and of material science. The focus is on principles and strategies for multiscale modeling and simulation of complex heterogeneous materials, with periodic or random microstructure, subjected to various types of mechanical, thermal, chemical loadings and environmental effects. A wide overview of complex behavior of materials (plasticity, damage, fracture, growth, etc.) is provided. Among various approaches, attention is given to advanced non-classical continua modeling which, provided by constitutive characterization for the internal and external actions (in particular boundary conditions), is a very powerful frame for the gross mechanical description of complex material behaviors, able to circumvent the restrictions of classical coarse–graining multiscale approaches.
Models and Rules of Evaluation in International Accounting
Directory of Open Access Journals (Sweden)
Liliana Feleaga
2006-06-01
Full Text Available The accounting procedures cannot be analyzed without a previous evaluation. Value is in general a very subjective issue, usually the result of a monetary evaluation made to a specific asset, group of assets or entities, or to some rendered services. Within the economic sciences, value comes from its very own deep history. In accounting, the concept of value had a late and fragile start. The term of value must not be misinterpreted as being the same thing with cost, even though value is frequently measured through costs. At the origin of the international accounting standards lays the framework for preparing, presenting and disclosing the financial statements. The framework stays as a reference matrix, as a standard of standards, as a constitution of financial accounting. According to the international framework, the financial statements use different evaluation basis: the hystorical cost, the current cost, the realisable (settlement value, the present value (the present value of cash flows. Choosing the evaluation basis and the capital maintenance concept will eventually determine the accounting evaluation model used in preparing the financial statements of a company. The multitude of accounting evaluation models differentiate themselves one from another through various relevance and reliable degrees of accounting information and therefore, accountants (the prepares of financial statements must try to equilibrate these two main qualitative characteristics of financial information.
Models and Rules of Evaluation in International Accounting
Directory of Open Access Journals (Sweden)
Niculae Feleaga
2006-04-01
Full Text Available The accounting procedures cannot be analyzed without a previous evaluation. Value is in general a very subjective issue, usually the result of a monetary evaluation made to a specific asset, group of assets or entities, or to some rendered services. Within the economic sciences, value comes from its very own deep history. In accounting, the concept of value had a late and fragile start. The term of value must not be misinterpreted as being the same thing with cost, even though value is frequently measured through costs. At the origin of the international accounting standards lays the framework for preparing, presenting and disclosing the financial statements. The framework stays as a reference matrix, as a standard of standards, as a constitution of financial accounting. According to the international framework, the financial statements use different evaluation basis: the hystorical cost, the current cost, the realisable (settlement value, the present value (the present value of cash flows. Choosing the evaluation basis and the capital maintenance concept will eventually determine the accounting evaluation model used in preparing the financial statements of a company. The multitude of accounting evaluation models differentiate themselves one from another through various relevance and reliable degrees of accounting information and therefore, accountants (the prepares of financial statements must try to equilibrate these two main qualitative characteristics of financial information.
Lyu, Kewei; Zhang, Xuebin; Church, John A.; Hu, Jianyu
2015-11-01
The Earth's climate evolves because of both internal variability and external forcings. Using Coupled Model Intercomparison Project Phase 5 (CMIP5) models, here we quantify the ratio of externally forced variance to total variance on interannual and longer time scales for regional surface air temperature (SAT) and sea level, which depends on the relative strength of externally forced signal compared to internal variability. The highest ratios are found in tropical areas for SAT but at high latitudes for sea level over the historical period when ocean dynamics and global mean thermosteric contributions are considered. Averaged globally, the ratios over a fixed time interval (e.g., 30 years) are projected to increase during the 21st century under the business-as-usual scenario (RCP8.5). In contrast, under two mitigation scenarios (RCP2.6 and RCP4.5), the ratio declines sharply by the end of the 21st century for SAT, but only declines slightly or stabilizes for sea level, indicating a slower response of sea level to climate mitigation.
The Model Checking Problem for Propositional Intuitionistic Logic with One Variable is AC1-Complete
Weiss, Martin Mundhenk And Felix
2010-01-01
We investigate the complexity of the model checking problem for propositional intuitionistic logic. We show that the model checking problem for intuitionistic logic with one variable is complete for logspace-uniform AC1, and for intuitionistic logic with two variables it is P-complete. For superintuitionistic logics with one variable, we obtain NC1-completeness for the model checking problem and for the tautology problem.
A Variable Refrigerant Flow Heat Pump Computer Model in EnergyPlus
Energy Technology Data Exchange (ETDEWEB)
Raustad, Richard A. [Florida Solar Energy Center
2013-01-01
This paper provides an overview of the variable refrigerant flow heat pump computer model included with the Department of Energy's EnergyPlusTM whole-building energy simulation software. The mathematical model for a variable refrigerant flow heat pump operating in cooling or heating mode, and a detailed model for the variable refrigerant flow direct-expansion (DX) cooling coil are described in detail.
An International Model of World-Class Education: The International Baccalaureate
Hill, Ian
2012-01-01
This article posits that world-class education is international education, as defined by UNESCO, and presents International Baccalaureate (IB) programmes as examples of this phenomenon. It begins with the IB's 1960s origins in international schools, which educated the children of globally mobile parents who worked principally in the UN and its…
Winska, M.
2016-12-01
The hydrological contribution to decadal, inter-annual and multi-annual suppress polar motion derived from climate model as well as from GRACE (Gravity Recovery and Climate Experiment) data is discussed here for the period 2002.3-2016.0. The data set used here are Earth Orientation Parameters Combined 04 (EOP C04), Flexible Global Ocean-Atmosphere-Land System Model: Grid-point Version 2 (FGOAL-g2) and Global Land Data Assimilation System (GLDAS) climate models and GRACE CSR RL05 data for polar motion, hydrological and gravimetric excitation, respectively. Several Hydrological Angular Momentum (HAM) functions are calculated here from the selected variables: precipitation, evaporation, runoff, soil moisture, accumulated snow of the FGOALS and GLDAS climate models as well as from the global mass change fields from GRACE data provided by the International Earth Rotation and Reference System Service (IERS) Global Geophysical Fluids Center (GGFC). The contribution of different HAM excitation functions to achieve the full agreement between geodetic observations and geophysical excitation functions of polar motion is studied here.
Validation of a Solid Rocket Motor Internal Environment Model
Martin, Heath T.
2017-01-01
In a prior effort, a thermal/fluid model of the interior of Penn State University's laboratory-scale Insulation Test Motor (ITM) was constructed to predict both the convective and radiative heat transfer to the interior walls of the ITM with a minimum of empiricism. These predictions were then compared to values of total and radiative heat flux measured in a previous series of ITM test firings to assess the capabilities and shortcomings of the chosen modeling approach. Though the calculated fluxes reasonably agreed with those measured during testing, this exercise revealed means of improving the fidelity of the model to, in the case of the thermal radiation, enable direct comparison of the measured and calculated fluxes and, for the total heat flux, compute a value indicative of the average measured condition. By replacing the P1-Approximation with the discrete ordinates (DO) model for the solution of the gray radiative transfer equation, the radiation intensity field in the optically thin region near the radiometer is accurately estimated, allowing the thermal radiation flux to be calculated on the heat-flux sensor itself, which was then compared directly to the measured values. Though the fully coupling the wall thermal response with the flow model was not attempted due to the excessive computational time required, a separate wall thermal response model was used to better estimate the average temperature of the graphite surfaces upstream of the heat flux gauges and improve the accuracy of both the total and radiative heat flux computations. The success of this modeling approach increases confidence in the ability of state-of-the-art thermal and fluid modeling to accurately predict SRM internal environments, offers corrections to older methods, and supplies a tool for further studies of the dynamics of SRM interiors.
Poulain, V.; Bekki, S.; Marchand, M.; Chipperfield, M. P.; Khodri, M.; Lefèvre, F.; Dhomse, S.; Bodeker, G. E.; Toumi, R.; De Maziere, M.; Pommereau, J.-P.; Pazmino, A.; Goutail, F.; Plummer, D.; Rozanov, E.; Mancini, E.; Akiyoshi, H.; Lamarque, J.-F.; Austin, J.
2016-07-01
The variability of stratospheric chemical composition occurs on a broad spectrum of timescales, ranging from day to decades. A large part of the variability appears to be driven by external forcings such as volcanic aerosols, solar activity, halogen loading, levels of greenhouse gases (GHG), and modes of climate variability (quasi-biennial oscillation (QBO), El Niño-Southern Oscillation (ENSO)). We estimate the contributions of different external forcings to the interannual variability of stratospheric chemical composition and evaluate how well 3-D chemistry-climate models (CCMs) can reproduce the observed response-forcing relationships. We carry out multivariate regression analyses on long time series of observed and simulated time series of several traces gases in order to estimate the contributions of individual forcings and unforced variability to their internannual variability. The observations are typically decadal time series of ground-based data from the international Network for the Detection of Atmospheric Composition Change (NDACC) and the CCM simulations are taken from the CCMVal-2 REF-B1 simulations database. The chemical species considered are column O3, HCl, NO2, and N2O. We check the consistency between observations and model simulations in terms of the forced and internal components of the total interannual variability (externally forced variability and internal variability) and identify the driving factors in the interannual variations of stratospheric chemical composition over NDACC measurement sites. Overall, there is a reasonably good agreement between regression results from models and observations regarding the externally forced interannual variability. A much larger fraction of the observed and modelled interannual variability is explained by external forcings in the tropics than in the extratropics, notably in polar regions. CCMs are able to reproduce the amplitudes of responses in chemical composition to specific external forcings
On Fitting Nonlinear Latent Curve Models to Multiple Variables Measured Longitudinally
Blozis, Shelley A.
2007-01-01
This article shows how nonlinear latent curve models may be fitted for simultaneous analysis of multiple variables measured longitudinally using Mx statistical software. Longitudinal studies often involve observation of several variables across time with interest in the associations between change characteristics of different variables measured…
Institute of Scientific and Technical Information of China (English)
Peixin ZHAO
2013-01-01
In this paper,we consider the variable selection for the parametric components of varying coefficient partially linear models with censored data.By constructing a penalized auxiliary vector ingeniously,we propose an empirical likelihood based variable selection procedure,and show that it is consistent and satisfies the sparsity.The simulation studies show that the proposed variable selection method is workable.
Reimer, Janet J.; Cai, Wei-Jun; Xue, Liang; Vargas, Rodrigo; Noakes, Scott; Hu, Xinping; Signorini, Sergio R.; Mathis, Jeremy T.; Feely, Richard A.; Sutton, Adrienne J.; Sabine, Christopher; Musielewicz, Sylvia; Chen, Baoshan; Wanninkhof, Rik
2017-08-01
Marine carbonate system monitoring programs often consist of multiple observational methods that include underway cruise data, moored autonomous time series, and discrete water bottle samples. Monitored parameters include all, or some of the following: partial pressure of CO2 of the water (pCO2w) and air, dissolved inorganic carbon (DIC), total alkalinity (TA), and pH. Any combination of at least two of the aforementioned parameters can be used to calculate the others. In this study at the Gray's Reef (GR) mooring in the South Atlantic Bight (SAB) we: examine the internal consistency of pCO2w from underway cruise, moored autonomous time series, and calculated from bottle samples (DIC-TA pairing); describe the seasonal to interannual pCO2w time series variability and air-sea flux (FCO2), as well as describe the potential sources of pCO2w variability; and determine the source/sink for atmospheric pCO2. Over the 8.5 years of GR mooring time series, mooring-underway and mooring-bottle calculated-pCO2w strongly correlate with r-values > 0.90. pCO2w and FCO2 time series follow seasonal thermal patterns; however, seasonal non-thermal processes, such as terrestrial export, net biological production, and air-sea exchange also influence variability. The linear slope of time series pCO2w increases by 5.2 ± 1.4 μatm y-1 with FCO2 increasing 51-70 mmol m-2 y-1. The net FCO2 sign can switch interannually with the magnitude varying greatly. Non-thermal pCO2w is also increasing over the time series, likely indicating that terrestrial export and net biological processes drive the long term pCO2w increase.
Modelling and Multi-Variable Control of Refrigeration Systems
DEFF Research Database (Denmark)
Larsen, Lars Finn Slot; Holm, J. R.
2003-01-01
In this paper a dynamic model of a 1:1 refrigeration system is presented. The main modelling effort has been concentrated on a lumped parameter model of a shell and tube condenser. The model has shown good resemblance with experimental data from a test rig, regarding as well the static as the dyn......In this paper a dynamic model of a 1:1 refrigeration system is presented. The main modelling effort has been concentrated on a lumped parameter model of a shell and tube condenser. The model has shown good resemblance with experimental data from a test rig, regarding as well the static...
Model Criticism of Bayesian Networks with Latent Variables.
Williamson, David M.; Mislevy, Robert J.; Almond, Russell G.
This study investigated statistical methods for identifying errors in Bayesian networks (BN) with latent variables, as found in intelligent cognitive assessments. BN, commonly used in artificial intelligence systems, are promising mechanisms for scoring constructed-response examinations. The success of an intelligent assessment or tutoring system…
Quantifying strain variability in modeling growth of Listeria monocytogenes
Aryani, D.; Besten, den H.M.W.; Hazeleger, W.C.; Zwietering, M.H.
2015-01-01
Prediction of microbial growth kinetics can differ from the actual behavior of the target microorganisms. In the present study, the impact of strain variability on maximum specific growth rate (µmax) (h- 1) was quantified using twenty Listeria monocytogenes strains. The µmax was determined as functi
A Latent-Variable Causal Model of Faculty Reputational Ratings.
King, Suzanne; Wolfle, Lee M.
A reanalysis was conducted of Saunier's research (1985) on sources of variation in the National Research Council (NRC) reputational ratings of university faculty. Saunier conducted a stepwise regression analysis using 12 predictor variables. Due to problems with multicollinearity and because of the atheoretical nature of stepwise regression,…
Robots with Internal Models: A Route to Self-Aware and Hence Safer Robots
Winfield, Alan F. T.
The following sections are included: * Introduction * Internal Models and Self-Awareness * Internal Model-Based Architecture for Robot Safety * The Internal Model * The Consequence Evaluator * The Object Tracker-Localizer * Towards an Ethical Robot * Challenges and Open Questions * Discussion: The Way Forward * Summary and Conclusions
Oracle Efficient Variable Selection in Random and Fixed Effects Panel Data Models
DEFF Research Database (Denmark)
Kock, Anders Bredahl
, we prove that the Marginal Bridge estimator can asymptotically correctly distinguish between relevant and irrelevant explanatory variables. We do this without restricting the dependence between covariates and without assuming sub Gaussianity of the error terms thereby generalizing the results...... and irrelevant variables and the asymptotic distribution of the estimators of the coefficients of the relevant variables is the same as if only these had been included in the model, i.e. as if an oracle had revealed the true model prior to estimation. In the case of more explanatory variables than observations...... of Huang et al. (2008). Furthermore, the number of relevant variables is allowed to be larger than the sample size....
Modelling the global tropospheric ozone budget: exploring the variability in current models
Directory of Open Access Journals (Sweden)
O. Wild
2007-02-01
Full Text Available What are the largest uncertainties in modelling ozone in the troposphere, and how do they affect the calculated ozone budget? Published chemistry-transport model studies of tropospheric ozone differ significantly in their conclusions regarding the importance of the key processes controlling the ozone budget: influx from the stratosphere, chemical processing and surface deposition. This study surveys ozone budgets from previous studies and demonstrates that about two thirds of the increase in ozone production seen between early assessments and more recent model intercomparisons can be accounted for by increased precursor emissions. Model studies using recent estimates of emissions compare better with ozonesonde measurements than studies using older data, and the tropospheric burden of ozone is closer to that derived here from measurement climatologies, 335±10 Tg. However, differences between individual model studies remain large and cannot be explained by surface precursor emissions alone; cross-tropopause transport, wet and dry deposition, humidity, and lightning make large contributions to the differences seen between models. The importance of these processes is examined here using a chemistry-transport model to investigate the sensitivity of the calculated ozone budget to different assumptions about emissions, physical processes, meteorology and model resolution. The budget is particularly sensitive to the magnitude and location of lightning NO_{x} emissions, which remain poorly constrained; the 3–8 TgN/yr range in recent model studies may account for a 10% difference in tropospheric ozone burden and a 1.4 year difference in CH_{4} lifetime. Differences in humidity and dry deposition account for some of the variability in ozone abundance and loss seen in previous studies, with smaller contributions from wet deposition and stratospheric influx. At coarse model resolutions stratospheric influx is systematically overestimated
Scalar Dark Matter Models with Significant Internal Bremsstrahlung
Giacchino, Federica; Tytgat, Michel H G
2013-01-01
There has been interest recently on particle physics models that may give rise to sharp gamma ray spectral features from dark matter annihilation. Because dark matter is supposed to be electrically neutral, it is challenging to build weakly interacting massive particle models that may accommodate both a large cross section into gamma rays at, say, the Galactic center, and the right dark matter abundance. In this work, we consider the gamma ray signatures of a class of scalar dark matter models that interact with Standard Model dominantly through heavy vector-like fermions (the vector-like portal). We focus on a real scalar singlet S annihilating into lepton-antilepton pairs. Because this two-body final-state annihilation channel is d-wave suppressed in the chiral limit, we show that virtual internal bremsstrahlung emission of a gamma ray gives a large correction, both today and at the time of freeze-out. For the sake of comparison, we confront this scenario to the familiar case of a Majorana singlet annihilat...
Yun Chen; Hui Yang
2016-01-01
In the era of big data, there are increasing interests on clustering variables for the minimization of data redundancy and the maximization of variable relevancy. Existing clustering methods, however, depend on nontrivial assumptions about the data structure. Note that nonlinear interdependence among variables poses significant challenges on the traditional framework of predictive modeling. In the present work, we reformulate the problem of variable clustering from an information theoretic pe...
Towards a detailed soot model for internal combustion engines
Energy Technology Data Exchange (ETDEWEB)
Mosbach, Sebastian; Celnik, Matthew S.; Raj, Abhijeet; Kraft, Markus [Department of Chemical Engineering and Biotechnology, University of Cambridge, Pembroke Street, Cambridge CB2 3RA (United Kingdom); Zhang, Hongzhi R. [Department of Chemical Engineering, University of Utah, 1495 East 100 South, Kennecott Research Building, Salt Lake City, UT 84112 (United States); Kubo, Shuichi [Frontier Research Center, Toyota Central R and D Labs., Inc., Nagakute, Aichi 480-1192 (Japan); Kim, Kyoung-Oh [Higashifuji Technical Center, Toyota Motor Corporation, Mishuku 1200, Susono, Shizuoka 480-1193 (Japan)
2009-06-15
In this work, we present a detailed model for the formation of soot in internal combustion engines describing not only bulk quantities such as soot mass, number density, volume fraction, and surface area but also the morphology and chemical composition of soot aggregates. The new model is based on the Stochastic Reactor Model (SRM) engine code, which uses detailed chemistry and takes into account convective heat transfer and turbulent mixing, and the soot formation is accounted for by SWEEP, a population balance solver based on a Monte Carlo method. In order to couple the gas-phase to the particulate phase, a detailed chemical kinetic mechanism describing the combustion of Primary Reference Fuels (PRFs) is extended to include small Polycyclic Aromatic Hydrocarbons (PAHs) such as pyrene, which function as soot precursor species for particle inception in the soot model. Apart from providing averaged quantities as functions of crank angle like soot mass, volume fraction, aggregate diameter, and the number of primary particles per aggregate for example, the integrated model also gives detailed information such as aggregate and primary particle size distribution functions. In addition, specifics about aggregate structure and composition, including C/H ratio and PAH ring count distributions, and images similar to those produced with Transmission Electron Microscopes (TEMs), can be obtained. The new model is applied to simulate an n-heptane fuelled Homogeneous Charge Compression Ignition (HCCI) engine which is operated at an equivalence ratio of 1.93. In-cylinder pressure and heat release predictions show satisfactory agreement with measurements. Furthermore, simulated aggregate size distributions as well as their time evolution are found to qualitatively agree with those obtained experimentally through snatch sampling. It is also observed both in the experiment as well as in the simulation that aggregates in the trapped residual gases play a vital role in the soot
Principal component and factor analytic models in international sire evaluation
Directory of Open Access Journals (Sweden)
Jakobsen Jette
2011-09-01
Full Text Available Abstract Background Interbull is a non-profit organization that provides internationally comparable breeding values for globalized dairy cattle breeding programmes. Due to different trait definitions and models for genetic evaluation between countries, each biological trait is treated as a different trait in each of the participating countries. This yields a genetic covariance matrix of dimension equal to the number of countries which typically involves high genetic correlations between countries. This gives rise to several problems such as over-parameterized models and increased sampling variances, if genetic (covariance matrices are considered to be unstructured. Methods Principal component (PC and factor analytic (FA models allow highly parsimonious representations of the (covariance matrix compared to the standard multi-trait model and have, therefore, attracted considerable interest for their potential to ease the burden of the estimation process for multiple-trait across country evaluation (MACE. This study evaluated the utility of PC and FA models to estimate variance components and to predict breeding values for MACE for protein yield. This was tested using a dataset comprising Holstein bull evaluations obtained in 2007 from 25 countries. Results In total, 19 principal components or nine factors were needed to explain the genetic variation in the test dataset. Estimates of the genetic parameters under the optimal fit were almost identical for the two approaches. Furthermore, the results were in a good agreement with those obtained from the full rank model and with those provided by Interbull. The estimation time was shortest for models fitting the optimal number of parameters and prolonged when under- or over-parameterized models were applied. Correlations between estimated breeding values (EBV from the PC19 and PC25 were unity. With few exceptions, correlations between EBV obtained using FA and PC approaches under the optimal fit were
Realistic MHD Modelling of Cataclysmic Variable Spin-Down
Lascelles, Alex; Garraffo, Cecilia; Drake, Jeremy J.; Cohen, Ofer
2017-01-01
The orbital evolution of cataclysmic variables with periods above the "period gap" (>3 hrs) is governed by angular momentum loss via the magnetized wind of the unevolved secondary star. The usual prescription to study such systems takes into account only the magnetic field of the secondary and assumes its field is dipolar. It has been shown that introduction of the white dwarf and its magnetic field can significantly impact the wind’s structure, leading to a change in angular momentum loss rate and evolutionary timescale by an order of magnitude. Furthermore, the complexity of the magnetic field can drastically alter stellar spin-down rates. We explore the effects of orbital separation and magnetic field configuration on mass and angular momentum loss rates through 3-D magnetohydrodynamic simulations. We present the results of a study of cataclysmic variable orbital evolution including these new ingredients.
Chen, Yun; Yang, Hui
2016-12-01
In the era of big data, there are increasing interests on clustering variables for the minimization of data redundancy and the maximization of variable relevancy. Existing clustering methods, however, depend on nontrivial assumptions about the data structure. Note that nonlinear interdependence among variables poses significant challenges on the traditional framework of predictive modeling. In the present work, we reformulate the problem of variable clustering from an information theoretic perspective that does not require the assumption of data structure for the identification of nonlinear interdependence among variables. Specifically, we propose the use of mutual information to characterize and measure nonlinear correlation structures among variables. Further, we develop Dirichlet process (DP) models to cluster variables based on the mutual-information measures among variables. Finally, orthonormalized variables in each cluster are integrated with group elastic-net model to improve the performance of predictive modeling. Both simulation and real-world case studies showed that the proposed methodology not only effectively reveals the nonlinear interdependence structures among variables but also outperforms traditional variable clustering algorithms such as hierarchical clustering.
Chen, Yun; Yang, Hui
2016-12-14
In the era of big data, there are increasing interests on clustering variables for the minimization of data redundancy and the maximization of variable relevancy. Existing clustering methods, however, depend on nontrivial assumptions about the data structure. Note that nonlinear interdependence among variables poses significant challenges on the traditional framework of predictive modeling. In the present work, we reformulate the problem of variable clustering from an information theoretic perspective that does not require the assumption of data structure for the identification of nonlinear interdependence among variables. Specifically, we propose the use of mutual information to characterize and measure nonlinear correlation structures among variables. Further, we develop Dirichlet process (DP) models to cluster variables based on the mutual-information measures among variables. Finally, orthonormalized variables in each cluster are integrated with group elastic-net model to improve the performance of predictive modeling. Both simulation and real-world case studies showed that the proposed methodology not only effectively reveals the nonlinear interdependence structures among variables but also outperforms traditional variable clustering algorithms such as hierarchical clustering.
Latent variable modeling%建立隐性变量模型
Institute of Scientific and Technical Information of China (English)
蔡力
2012-01-01
@@ A latent variable model, as the name suggests,is a statistical model that contains latent, that is, unobserved, variables.Their roots go back to Spearman's 1904 seminal work[1] on factor analysis,which is arguably the first well-articulated latent variable model to be widely used in psychology, mental health research, and allied disciplines.Because of the association of factor analysis with early studies of human intelligence, the fact that key variables in a statistical model are, on occasion, unobserved has been a point of lingering contention and controversy.The reader is assured, however, that a latent variable,defined in the broadest manner, is no more mysterious than an error term in a normal theory linear regression model or a random effect in a mixed model.
A holistic model of behavioural branding: The role of employee behaviours and internal branding
DEFF Research Database (Denmark)
Mazzei, Alessandra; Ravazzani, Silvia
2015-01-01
consistent meaning during the interaction with customers. It reviews the literature about behavioural branding and its antecedents, mediating variables and consequences in order to develop a holistic model of the inside-out brand building process, rooted in the theoretical perspectives of proactive......Understanding employee behaviours is a growing concern in all kinds of companies and across disciplines because such behaviours are critical determinants of organizational success. This paper elaborates on the concept of behavioural branding, which refers to employee behaviours that convey brand...... behaviours, hierarchy of effects and planned behaviour. The paper concludes with a reflection on the role of internal branding in eliciting and managing employee brand consistent behaviours, and with avenues for future empirical research aimed to verify the model, its constructs and related measures....
Directory of Open Access Journals (Sweden)
Andrés Honrubia-Escribano
2016-12-01
Full Text Available Considerable efforts are currently being made by several international working groups focused on the development of generic, also known as simplified or standard, wind turbine models for power system stability studies. In this sense, the first edition of International Electrotechnical Commission (IEC 61400-27-1, which defines generic dynamic simulation models for wind turbines, was published in February 2015. Nevertheless, the correlations of the IEC generic models with respect to specific wind turbine manufacturer models are required by the wind power industry to validate the accuracy and corresponding usability of these standard models. The present work conducts the validation of the two topologies of variable speed wind turbines that present not only the largest market share, but also the most technological advances. Specifically, the doubly-fed induction machine and the full-scale converter (FSC topology are modeled based on the IEC 61400-27-1 guidelines. The models are simulated for a wide range of voltage dips with different characteristics and wind turbine operating conditions. The simulated response of the IEC generic model is compared to the corresponding simplified model of a wind turbine manufacturer, showing a good correlation in most cases. Validation error sources are analyzed in detail, as well. In addition, this paper reviews in detail the previous work done in this field. Results suggest that wind turbine manufacturers are able to adjust the IEC generic models to represent the behavior of their specific wind turbines for power system stability analysis.
Institute of Scientific and Technical Information of China (English)
Zheng-yan Lin; Yu-ze Yuan
2012-01-01
Semiparametric models with diverging number of predictors arise in many contemporary scientific areas. Variable selection for these models consists of two components: model selection for non-parametric components and selection of significant variables for the parametric portion.In this paper,we consider a variable selection procedure by combining basis function approximation with SCAD penalty.The proposed procedure simultaneously selects significant variables in the parametric components and the nonparametric components.With appropriate selection of tuning parameters,we establish the consistency and sparseness of this procedure.
Quantitative Risk Modeling of Fire on the International Space Station
Castillo, Theresa; Haught, Megan
2014-01-01
The International Space Station (ISS) Program has worked to prevent fire events and to mitigate their impacts should they occur. Hardware is designed to reduce sources of ignition, oxygen systems are designed to control leaking, flammable materials are prevented from flying to ISS whenever possible, the crew is trained in fire response, and fire response equipment improvements are sought out and funded. Fire prevention and mitigation are a top ISS Program priority - however, programmatic resources are limited; thus, risk trades are made to ensure an adequate level of safety is maintained onboard the ISS. In support of these risk trades, the ISS Probabilistic Risk Assessment (PRA) team has modeled the likelihood of fire occurring in the ISS pressurized cabin, a phenomenological event that has never before been probabilistically modeled in a microgravity environment. This paper will discuss the genesis of the ISS PRA fire model, its enhancement in collaboration with fire experts, and the results which have informed ISS programmatic decisions and will continue to be used throughout the life of the program.
ROBUST INTERNAL MODEL CONTROL STRATEGY BASED PID CONTROLLER FOR BLDCM
Directory of Open Access Journals (Sweden)
A.PURNA CHANDRA RAO
2010-11-01
Full Text Available All the closed loop control system requires the controller for improvement of transient response of the error signal. Though the tuning of PID controller in real time is bit difficult and moreover it lacks the disturbance rejection capability. This paper presents a tuning of PID parameters based on internal model strategy. The advantageous of the proposed control strategy is well described in the paper. To test the validity of the proposed control, it is implemented in brushless dc motor drive. The mathematical model of brushless dc motor (BLDC is presented for control design. In addition the robustness of the control strategy is discussed. The proposed control strategy possesses good transient responses and good load disturbance response. In addition, the proposed control strategy possesses good tracking ability. To test the effectiveness of the proposed strategy, the BLDC is represented in transfer function model and later implemented in test system. The results are presented to validate the proposed control strategy for BLDC drive.
Modeling urban expansion by using variable weights logistic cellular automata
Shu, Bangrong; Bakker, Martha M.; Zhang, Honghui; Li, Yongle; Qin, Wei; Carsjens, Gerrit J.
2017-01-01
Simulation models based on cellular automata (CA) are widely used for understanding and simulating complex urban expansion process. Among these models, logistic CA (LCA) is commonly adopted. However, the performance of LCA models is often limited because the fixed coefficients obtained from binary
SELECTION OF VARIABLES FOR THE CROATIAN MUNICIPAL SOLID WASTE GENERATION MODEL
Directory of Open Access Journals (Sweden)
Anamarija Grbeš
2017-01-01
Full Text Available The MSW generation models are important elements of the waste management planning. This paper gives the findings of the second part of the research on Croatian MSW generation mechanism. The correlations of 17 variables are shown. The relationships between the variables are discussed. In the conclusion, independent variables to be hypothesised and tested in a model for the next part of the research are proposed.