Internal variability in a regional climate model over West Africa
Energy Technology Data Exchange (ETDEWEB)
Vanvyve, Emilie; Ypersele, Jean-Pascal van [Universite catholique de Louvain, Institut d' astronomie et de geophysique Georges Lemaitre, Louvain-la-Neuve (Belgium); Hall, Nicholas [Laboratoire d' Etudes en Geophysique et Oceanographie Spatiales/Centre National d' Etudes Spatiales, Toulouse Cedex 9 (France); Messager, Christophe [University of Leeds, Institute for Atmospheric Science, Environment, School of Earth and Environment, Leeds (United Kingdom); Leroux, Stephanie [Universite Joseph Fourier, Laboratoire d' etude des Transferts en Hydrologie et Environnement, BP53, Grenoble Cedex 9 (France)
2008-02-15
Sensitivity studies with regional climate models are often performed on the basis of a few simulations for which the difference is analysed and the statistical significance is often taken for granted. In this study we present some simple measures of the confidence limits for these types of experiments by analysing the internal variability of a regional climate model run over West Africa. Two 1-year long simulations, differing only in their initial conditions, are compared. The difference between the two runs gives a measure of the internal variability of the model and an indication of which timescales are reliable for analysis. The results are analysed for a range of timescales and spatial scales, and quantitative measures of the confidence limits for regional model simulations are diagnosed for a selection of study areas for rainfall, low level temperature and wind. As the averaging period or spatial scale is increased, the signal due to internal variability gets smaller and confidence in the simulations increases. This occurs more rapidly for variations in precipitation, which appear essentially random, than for dynamical variables, which show some organisation on larger scales. (orig.)
Internal variables in thermoelasticity
Berezovski, Arkadi
2017-01-01
This book describes an effective method for modeling advanced materials like polymers, composite materials and biomaterials, which are, as a rule, inhomogeneous. The thermoelastic theory with internal variables presented here provides a general framework for predicting a material’s reaction to external loading. The basic physical principles provide the primary theoretical information, including the evolution equations of the internal variables. The cornerstones of this framework are the material representation of continuum mechanics, a weak nonlocality, a non-zero extra entropy flux, and a consecutive employment of the dissipation inequality. Examples of thermoelastic phenomena are provided, accompanied by detailed procedures demonstrating how to simulate them.
Intercomparison of model response and internal variability across climate model ensembles
Kumar, Devashish; Ganguly, Auroop R.
2017-10-01
Characterization of climate uncertainty at regional scales over near-term planning horizons (0-30 years) is crucial for climate adaptation. Climate internal variability (CIV) dominates climate uncertainty over decadal prediction horizons at stakeholders' scales (regional to local). In the literature, CIV has been characterized indirectly using projections of climate change from multi-model ensembles (MME) instead of directly using projections from multiple initial condition ensembles (MICE), primarily because adequate number of initial condition (IC) runs were not available for any climate model. Nevertheless, the recent availability of significant number of IC runs from one climate model allows for the first time to characterize CIV directly from climate model projections and perform a sensitivity analysis to study the dominance of CIV compared to model response variability (MRV). Here, we measure relative agreement (a dimensionless number with values ranging between 0 and 1, inclusive; a high value indicates less variability and vice versa) among MME and MICE and find that CIV is lower than MRV for all projection time horizons and spatial resolutions for precipitation and temperature. However, CIV exhibits greater dominance over MRV for seasonal and annual mean precipitation at higher latitudes where signals of climate change are expected to emerge sooner. Furthermore, precipitation exhibits large uncertainties and a rapid decline in relative agreement from global to continental, regional, or local scales for MICE compared to MME. The fractional contribution of uncertainty due to CIV is invariant for precipitation and decreases for temperature as lead time progresses towards the end of the century.
Determination of internal state variables and constitutive modeling for Type 316 stainless steel
International Nuclear Information System (INIS)
Taguchi, Kosei; Uno, Tetsuro
1993-01-01
The purpose of this study is to develop an approach for unified constitutive modeling based on experimentally determined back stress and overstress. Back stress and overstress were experimentally determined for Type 316 stainless steel at 600deg C, by analyzing the unloading curve for the stress-strain response of cyclic strain tests. The result has indicated that the cyclic strain hardening behavior is mainly caused by hardening in the back stress. A phenomenological unified constitutive model in which the back stress and drag stress are taken as the internal state variables is proposed, and has been shown that this model is able to simulate the cyclic inelastic behavior. (orig.)
International Nuclear Information System (INIS)
Malmberg, T.
1993-09-01
The objective of this study is to derive and investigate thermodynamic restrictions for a particular class of internal variable models. Their evolution equations consist of two contributions: the usual irreversible part, depending only on the present state, and a reversible but path dependent part, linear in the rates of the external variables (evolution equations of ''mixed type''). In the first instance the thermodynamic analysis is based on the classical Clausius-Duhem entropy inequality and the Coleman-Noll argument. The analysis is restricted to infinitesimal strains and rotations. The results are specialized and transferred to a general class of elastic-viscoplastic material models. Subsequently, they are applied to several viscoplastic models of ''mixed type'', proposed or discussed in the literature (Robinson et al., Krempl et al., Freed et al.), and it is shown that some of these models are thermodynamically inconsistent. The study is closed with the evaluation of the extended Clausius-Duhem entropy inequality (concept of Mueller) where the entropy flux is governed by an assumed constitutive equation in its own right; also the constraining balance equations are explicitly accounted for by the method of Lagrange multipliers (Liu's approach). This analysis is done for a viscoplastic material model with evolution equations of the ''mixed type''. It is shown that this approach is much more involved than the evaluation of the classical Clausius-Duhem entropy inequality with the Coleman-Noll argument. (orig.) [de
Generation and transfer of internal variability in a regional climate model
Directory of Open Access Journals (Sweden)
Thorsten Simon
2013-12-01
Full Text Available There is a strong need for tools allowing the comparison between the performance of a regional climate model (RCM and the corresponding model providing lateral boundary conditions (LBC for the RCM, which is a global general circulation model (GCM in most cases. A method is presented to investigate the temporal scales on which a RCM is able to generate internal variability on its own and on which variability is copied from the driving model. This is implemented by a cross-spectral analysis between the RCM output and a bi-linearly interpolated version of the driving model, leading to an estimate of the coherence spectrum. Applying the aforementioned technique to surface temperature and temperature and specific humidity at 850 hPa from the RCM COSMO-CLM East Asia with a horizontal resolution of 50 km and its driving model ECHAM5, it was found that features in the spatial distribution of coherence are related to atmospheric dynamics in East Asia, e.g. monsoons and inter-tropical convergence zone (ITCZ. A further application to a double-nesting approach, where COSMO-CLM East Asia is the driving model for two domains – namely the Haihe catchment and the Poyang catchment – each with a horizontal resolution of 7 km, shows that the frequencies on which internal variability is generated by the driven model are much higher compared to the first nesting step. Concluding RCMs can produce a considerable variability on the respective temporal scales. This implies that a dynamical downscaling with a re-analysis as LBC is conceptually different to a regional re-analysis, i.e. data assimilation on the regional scale.
The Influence of Internal Model Variability in GEOS-5 on Interhemispheric CO2 Exchange
Allen, Melissa; Erickson, David; Kendall, Wesley; Fu, Joshua; Ott, Leslie; Pawson, Steven
2012-01-01
An ensemble of eight atmospheric CO2 simulations was completed employing the National Aeronautics and Space Administration (NASA) Goddard Earth Observation System, Version 5 (GEOS-5) for the years 2000-2001, each with initial meteorological conditions corresponding to different days in January 2000 to examine internal model variability. Globally, the model runs show similar concentrations of CO2 for the two years, but in regions of high CO2 concentrations due to fossil fuel emissions, large differences among different model simulations appear. The phasing and amplitude of the CO2 cycle at Northern Hemisphere locations in all of the ensemble members is similar to that of surface observations. In several southern hemisphere locations, however, some of the GEOS-5 model CO2 cycles are out of phase by as much as four months, and large variations occur between the ensemble members. This result indicates that there is large sensitivity to transport in these regions. The differences vary by latitude-the most extreme differences in the Tropics and the least at the South Pole. Examples of these differences among the ensemble members with regard to CO2 uptake and respiration of the terrestrial biosphere and CO2 emissions due to fossil fuel emissions are shown at Cape Grim, Tasmania. Integration-based flow analysis of the atmospheric circulation in the model runs shows widely varying paths of flow into the Tasmania region among the models including sources from North America, South America, South Africa, South Asia and Indonesia. These results suggest that interhemispheric transport can be strongly influenced by internal model variability.
Gutmann, E. D.; Ikeda, K.; Deser, C.; Rasmussen, R.; Clark, M. P.; Arnold, J. R.
2015-12-01
The uncertainty in future climate predictions is as large or larger than the mean climate change signal. As such, any predictions of future climate need to incorporate and quantify the sources of this uncertainty. One of the largest sources comes from the internal, chaotic, variability within the climate system itself. This variability has been approximated using the 30 ensemble members of the Community Earth System Model (CESM) large ensemble. Here we examine the wet and dry end members of this ensemble for cool-season precipitation in the Colorado Rocky Mountains with a set of high-resolution regional climate model simulations. We have used the Weather Research and Forecasting model (WRF) to simulate the periods 1990-2000, 2025-2035, and 2070-2080 on a 4km grid. These simulations show that the broad patterns of change depicted in CESM are inherited by the high-resolution simulations; however, the differences in the height and location of the mountains in the WRF simulation, relative to the CESM simulation, means that the location and magnitude of the precipitation changes are very different. We further show that high-resolution simulations with the Intermediate Complexity Atmospheric Research model (ICAR) predict a similar spatial pattern in the change signal as WRF for these ensemble members. We then use ICAR to examine the rest of the CESM Large Ensemble as well as the uncertainty in the regional climate model due to the choice of physics parameterizations.
Cho, H. E.; Horstemeyer, M. F.; Baumgardner, J. R.
2017-12-01
In this study, we present an internal state variable (ISV) constitutive model developed to model static and dynamic recrystallization and grain size progression in a unified manner. This method accurately captures temperature, pressure and strain rate effect on the recrystallization and grain size. Because this ISV approach treats dislocation density, volume fraction of recrystallization and grain size as internal variables, this model can simultaneously track their history during the deformation with unprecedented realism. Based on this deformation history, this method can capture realistic mechanical properties such as stress-strain behavior in the relationship of microstructure-mechanical property. Also, both the transient grain size during the deformation and the steady-state grain size of dynamic recrystallization can be predicted from the history variable of recrystallization volume fraction. Furthermore, because this model has a capability to simultaneously handle plasticity and creep behaviors (unified creep-plasticity), the mechanisms (static recovery (or diffusion creep), dynamic recovery (or dislocation creep) and hardening) related to dislocation dynamics can also be captured. To model these comprehensive mechanical behaviors, the mathematical formulation of this model includes elasticity to evaluate yield stress, work hardening in treating plasticity, creep, as well as the unified recrystallization and grain size progression. Because pressure sensitivity is especially important for the mantle minerals, we developed a yield function combining Drucker-Prager shear failure and von Mises yield surfaces to model the pressure dependent yield stress, while using pressure dependent work hardening and creep terms. Using these formulations, we calibrated against experimental data of the minerals acquired from the literature. Additionally, we also calibrated experimental data for metals to show the general applicability of our model. Understanding of realistic
Milinski, S.; Bader, J.; Jungclaus, J. H.; Marotzke, J.
2017-12-01
There is some consensus on mean state changes of rainfall under global warming; changes of the internal variability, on the other hand, are more difficult to analyse and have not been discussed as much despite their importance for understanding changes in extreme events, such as droughts or floodings. We analyse changes in the rainfall variability in the tropical Atlantic region. We use a 100-member ensemble of historical (1850-2005) model simulations with the Max Planck Institute for Meteorology Earth System Model (MPI-ESM1) to identify changes of internal rainfall variability. To investigate the effects of global warming on the internal variability, we employ an additional ensemble of model simulations with stronger external forcing (1% CO2-increase per year, same integration length as the historical simulations) with 68 ensemble members. The focus of our study is on the oceanic Atlantic ITCZ. We find that the internal variability of rainfall over the tropical Atlantic does change due to global warming and that these changes in variability are larger than changes in the mean state in some regions. From splitting the total variance into patterns of variability, we see that the variability on the southern flank of the ITCZ becomes more dominant, i.e. explaining a larger fraction of the total variance in a warmer climate. In agreement with previous studies, we find that changes in the mean state show an increase and narrowing of the ITCZ. The large ensembles allow us to do a statistically robust differentiation between the changes in variability that can be explained by internal variability and those that can be attributed to the external forcing. Furthermore, we argue that internal variability in a transient climate is only well defined in the ensemble domain and not in the temporal domain, which requires the use of a large ensemble.
Singular vector decomposition of the internal variability of the Canadian Regional Climate Model
Energy Technology Data Exchange (ETDEWEB)
Diaconescu, Emilia Paula; Laprise, Rene [University of Quebec at Montreal (UQAM), Department of Earth and Atmospheric Sciences, Canadian Network for Regional Climate Modelling and Diagnostics, P.O. Box 8888, Montreal, QC (Canada); Centre ESCER (Etude et Simulation du Climat a l' Echelle Regionale), Montreal, QC (Canada); Zadra, Ayrton [University of Quebec at Montreal (UQAM), Department of Earth and Atmospheric Sciences, Canadian Network for Regional Climate Modelling and Diagnostics, P.O. Box 8888, Montreal, QC (Canada); Environment Canada, Meteorological Research Division, Montreal, QC (Canada); Centre ESCER (Etude et Simulation du Climat a l' Echelle Regionale), Montreal, QC (Canada)
2012-03-15
Previous studies have shown that Regional Climate Models (RCM) internal variability (IV) fluctuates in time depending on synoptic events. This study focuses on the physical understanding of episodes with rapid growth of IV. An ensemble of 21 simulations, differing only in their initial conditions, was run over North America using version 5 of the Canadian RCM (CRCM). The IV is quantified in terms of energy of CRCM perturbations with respect to a reference simulation. The working hypothesis is that IV is arising through rapidly growing perturbations developed in dynamically unstable regions. If indeed IV is triggered by the growth of unstable perturbations, a large proportion of the CRCM perturbations must project onto the most unstable singular vectors (SVs). A set of ten SVs was computed to identify the orthogonal set of perturbations that provide the maximum growth with respect to the dry total-energy norm during the course of the CRCM ensemble of simulations. CRCM perturbations were then projected onto the subspace of SVs. The analysis of one episode of rapid growth of IV is presented in detail. It is shown that a large part of the IV growth is explained by initially small-amplitude unstable perturbations represented by the ten leading SVs, the SV subspace accounting for over 70% of the CRCM IV growth in 36 h. The projection on the leading SV at final time is greater than the projection on the remaining SVs and there is a high similarity between the CRCM perturbations and the leading SV after 24-36 h tangent-linear model integration. The vertical structure of perturbations revealed that the baroclinic conversion is the dominant process in IV growth for this particular episode. (orig.)
Modelling of the fuel mechanical behavior: from creep laws to internal variable models
International Nuclear Information System (INIS)
Leclercq, S.
1998-01-01
Creep laws such as that of Bohaboy are commonly used to simulate the fuel pellet response to the demands placed upon it during its use. These laws are sufficient for describing the base operating conditions (where only creep appears), but they require improvement for describing power ramp conditions (where hardening and relaxation appear). The aim of the present paper is to develop a framework in which it will be possible to build models that are more representative of the fuel pellet in pile conditions. The approach presented here is based on the thermodynamics of irreversible processes and continuum mechanics. It is postulated that the material is made of a mixture of porous and 'sound' material. The evolution of porosity is deduced from experimental results in order to be consistent with the second law of thermodynamics. This implies the assumption of a threshold value for the existence of densification and swelling. (orig.)
Directory of Open Access Journals (Sweden)
Fazle R. Ahad
2013-01-01
Full Text Available We used a physically motivated internal state variable plasticity/damage model containing a mathematical length scale to idealize the material response in finite element simulations of a large-scale boundary value problem. The problem consists of a moving striker colliding against a stationary hazmat tank car. The motivations are (1 to reproduce with high fidelity finite deformation and temperature histories, damage, and high rate phenomena that may arise during the impact accident and (2 to address the material postbifurcation regime pathological mesh size issues. We introduce the mathematical length scale in the model by adopting a nonlocal evolution equation for the damage, as suggested by Pijaudier-Cabot and Bazant in the context of concrete. We implement this evolution equation into existing finite element subroutines of the plasticity/failure model. The results of the simulations, carried out with the aid of Abaqus/Explicit finite element code, show that the material model, accounting for temperature histories and nonlocal damage effects, satisfactorily predicts the damage progression during the tank car impact accident and significantly reduces the pathological mesh size effects.
Energy Technology Data Exchange (ETDEWEB)
McAnulty, Michael J., E-mail: mcanulmj@id.doe.gov [Department of Energy, 1955 Fremont Avenue, Idaho Falls, ID 83402 (United States); Potirniche, Gabriel P. [Mechanical Engineering Department, University of Idaho, Moscow, ID 83844 (United States); Tokuhiro, Akira [Mechanical Engineering Department, University of Idaho, Idaho Falls, ID 83402 (United States)
2012-09-15
Highlights: Black-Right-Pointing-Pointer An internal state variable approach is used to predict the plastic behavior of irradiated metals. Black-Right-Pointing-Pointer The model predicts uniaxial tensile test data for irradiated 304L stainless steel. Black-Right-Pointing-Pointer The model is implemented as a user-defined material subroutine in the finite element code ABAQUS. Black-Right-Pointing-Pointer Results are compared for the unirradiated and irradiated specimens loaded in uniaxial tension. - Abstract: Neutron irradiation of metals results in decreased fracture toughness, decreased ductility, increased yield strength and increased ductile-to-brittle transition temperature. Designers use the most limiting material properties throughout the reactor vessel lifetime to determine acceptable safety margins. To reduce analysis conservatism, a new model is proposed based on an internal state variable approach for the plastic behavior of unirradiated ductile materials to support its use for analyzing irradiated materials. The proposed modeling addresses low temperature irradiation of 304L stainless steel, and predicts uniaxial tensile test data of irradiated experimental specimens. The model was implemented as a user-defined material subroutine (UMAT) in the finite element software ABAQUS. Results are compared between the unirradiated and irradiated specimens subjected to tension tests.
International Nuclear Information System (INIS)
McAnulty, Michael J.; Potirniche, Gabriel P.; Tokuhiro, Akira
2012-01-01
Highlights: ► An internal state variable approach is used to predict the plastic behavior of irradiated metals. ► The model predicts uniaxial tensile test data for irradiated 304L stainless steel. ► The model is implemented as a user-defined material subroutine in the finite element code ABAQUS. ► Results are compared for the unirradiated and irradiated specimens loaded in uniaxial tension. - Abstract: Neutron irradiation of metals results in decreased fracture toughness, decreased ductility, increased yield strength and increased ductile-to-brittle transition temperature. Designers use the most limiting material properties throughout the reactor vessel lifetime to determine acceptable safety margins. To reduce analysis conservatism, a new model is proposed based on an internal state variable approach for the plastic behavior of unirradiated ductile materials to support its use for analyzing irradiated materials. The proposed modeling addresses low temperature irradiation of 304L stainless steel, and predicts uniaxial tensile test data of irradiated experimental specimens. The model was implemented as a user-defined material subroutine (UMAT) in the finite element software ABAQUS. Results are compared between the unirradiated and irradiated specimens subjected to tension tests.
Ahad, Fazle Rabbi
To enhance material performance at different length scales, this study strives to develop a reliable analytical and computational tool with the help of internal state variables spanning micro and macro-level behaviors. First, the practical relevance of a nonlocal damage integral added to an internal state variable (BCJ) model is studied to alleviate numerical instabilities associated within the post-bifurcation regime. The characteristic length scale in the nonlocal damage, which is mathematical in nature, can be calibrated using a series of notch tensile tests. Then the same length scale from the notch tests is used in solving the problem of a high-velocity (between 89 and 107 m/s) rigid projectile colliding against a 6061-T6 aluminum-disk. The investigation indicates that incorporating a characteristic length scale to the constitutive model eliminates the pathological mesh-dependency associated with material instabilities. In addition, the numerical calculations agree well with experimental data. Next, an effort is made rather to introduce a physically motivated length scale than to apply a mathematical-one in the deformation analysis. Along this line, a dislocation based plasticity model is developed where an intrinsic length scale is introduced in the forms of spatial gradients of mobile and immobile dislocation densities. The spatial gradients are naturally invoked from balance laws within a consistent kinematic and thermodynamic framework. An analytical solution of the model variables is derived at homogenous steady state using the linear stability and bifurcation analysis. The model qualitatively captures the formation of dislocation cell-structures through material instabilities at the microscopic level. Finally, the model satisfactorily predicts macroscopic mechanical behaviors - e.g., multi-strain rate uniaxial compression, simple shear, and stress relaxation - and validates experimental results.
Das, Arghya; Tengattini, Alessandro; Nguyen, Giang D.; Viggiani, Gioacchino; Hall, Stephen A.; Einav, Itai
2014-10-01
We study the mechanical failure of cemented granular materials (e.g., sandstones) using a constitutive model based on breakage mechanics for grain crushing and damage mechanics for cement fracture. The theoretical aspects of this model are presented in Part I: Tengattini et al. (2014), A thermomechanical constitutive model for cemented granular materials with quantifiable internal variables, Part I - Theory (Journal of the Mechanics and Physics of Solids, 10.1016/j.jmps.2014.05.021). In this Part II we investigate the constitutive and structural responses of cemented granular materials through analyses of Boundary Value Problems (BVPs). The multiple failure mechanisms captured by the proposed model enable the behavior of cemented granular rocks to be well reproduced for a wide range of confining pressures. Furthermore, through comparison of the model predictions and experimental data, the micromechanical basis of the model provides improved understanding of failure mechanisms of cemented granular materials. In particular, we show that grain crushing is the predominant inelastic deformation mechanism under high pressures while cement failure is the relevant mechanism at low pressures. Over an intermediate pressure regime a mixed mode of failure mechanisms is observed. Furthermore, the micromechanical roots of the model allow the effects on localized deformation modes of various initial microstructures to be studied. The results obtained from both the constitutive responses and BVP solutions indicate that the proposed approach and model provide a promising basis for future theoretical studies on cemented granular materials.
Generalized instrumental variable models
Andrew Chesher; Adam Rosen
2014-01-01
This paper develops characterizations of identified sets of structures and structural features for complete and incomplete models involving continuous or discrete variables. Multiple values of unobserved variables can be associated with particular combinations of observed variables. This can arise when there are multiple sources of heterogeneity, censored or discrete endogenous variables, or inequality restrictions on functions of observed and unobserved variables. The models g...
Internal variability of the thermohaline ocean circulation
Raa, Lianke Alinda te
2003-01-01
Variations in the ocean circulation can strongly influence climate due to the large heat transport by the ocean currents. Variability of the thermohaline ocean circulation, the part of the ocean circulation driven by density gradients, occurs typically on (inter)decadal and longer time scales and is an important issue in present-day climate research. Although there are many indications from observations and numerical modeling studies that internal variability of the thermohaline circulation m...
Classifying variability modeling techniques
Sinnema, Marco; Deelstra, Sybren
Variability modeling is important for managing variability in software product families, especially during product derivation. In the past few years, several variability modeling techniques have been developed, each using its own concepts to model the variability provided by a product family. The
Directory of Open Access Journals (Sweden)
T. Friedrich
2010-08-01
Full Text Available The mechanism triggering centennial-to-millennial-scale variability of the Atlantic Meridional Overturning Circulation (AMOC in the earth system model of intermediate complexity LOVECLIM is investigated. It is found that for several climate boundary conditions such as low obliquity values (~22.1° or LGM-albedo, internally generated centennial-to-millennial-scale variability occurs in the North Atlantic region. Stochastic excitations of the density-driven overturning circulation in the Nordic Seas can create regional sea-ice anomalies and a subsequent reorganization of the atmospheric circulation. The resulting remote atmospheric anomalies over the Hudson Bay can release freshwater pulses into the Labrador Sea and significantly increase snow fall in this region leading to a subsequent reduction of convective activity. The millennial-scale AMOC oscillations disappear if LGM bathymetry (with closed Hudson Bay is prescribed or if freshwater pulses are suppressed artificially. Furthermore, our study documents the process of the AMOC recovery as well as the global marine and terrestrial carbon cycle response to centennial-to-millennial-scale AMOC variability.
Directory of Open Access Journals (Sweden)
Francesco Oliveri
2016-01-01
Full Text Available The exploitation of second law of thermodynamics for a mixture of two fluids with a scalar internal variable and a first order nonlocal state space is achieved by using the extended Liu approach. This method requires to insert as constraints in the entropy inequality either the field equations or their gradient extensions. Consequently, the thermodynamic restrictions imposed by the entropy principle are derived without introducing extra terms neither in the energy balance equation nor in the entropy inequality.
Friedrich, T.; Timmermann, A.; Menviel, L.; Elison Timm, O.; Mouchet, A.; Roche, D.M.V.A.P.
2010-01-01
The mechanism triggering centennial-to-millennial-scale variability of the Atlantic Meridional Overturning Circulation (AMOC) in the earth system model of intermediate complexity LOVECLIM is investigated. It is found that for several climate boundary conditions such as low obliquity values (∼22.1 )
Variable importance in latent variable regression models
Kvalheim, O.M.; Arneberg, R.; Bleie, O.; Rajalahti, T.; Smilde, A.K.; Westerhuis, J.A.
2014-01-01
The quality and practical usefulness of a regression model are a function of both interpretability and prediction performance. This work presents some new graphical tools for improved interpretation of latent variable regression models that can also assist in improved algorithms for variable
Within the context of the Air Quality Model Evaluation International Initiative phase 2 (AQMEII2) project, this part II paper performs a multi-model assessment of major column abundances of gases, radiation, aerosol, and cloud variables for 2006 and 2010 simulations with three on...
Models og International Entrepreneurship
DEFF Research Database (Denmark)
Rask, Morten; Servais, Per
2015-01-01
on International Entrepreneurship, and specifically but not exclusively, International New Ventures (INVs). The three resulting ‘meta-models’ depict the activities and loci of such firms, the motivating factors that give rise to such firms and their growth modalities and strategies. These models reflect the merger...... of entrepreneurship and international business into the field of international entrepreneurship....
Models of international entrepreneurship
DEFF Research Database (Denmark)
Rask, Morten; Servais, Per
2012-01-01
The purpose with this article is to review models used to describe and explain the establishment and development of international new ventures in order to investigate how and why international new ventures are established and developed. This article attempts an integration of extant theory...... on International Entrepreneurship, and specifically but not exclusively, International New Ventures (INVs). The three resulting ‘meta-models’ depict the activities and loci of such firms (Figure 1), the motivating factors that give rise to such firms (Figure 2) and their growth modalities and strategies (Figure 3......). These models reflect the merger of entrepreneurship and international business into the field of international entrepreneurship. Managers in international entrepreneurial firms and students in international business and entrepreneurship can use the models as framework for understanding international...
Modeling Shared Variables in VHDL
DEFF Research Database (Denmark)
Madsen, Jan; Brage, Jens P.
1994-01-01
A set of concurrent processes communicating through shared variables is an often used model for hardware systems. This paper presents three modeling techniques for representing such shared variables in VHDL, depending on the acceptable constraints on accesses to the variables. Also a set of guide......A set of concurrent processes communicating through shared variables is an often used model for hardware systems. This paper presents three modeling techniques for representing such shared variables in VHDL, depending on the acceptable constraints on accesses to the variables. Also a set...
Models og International Entrepreneurship
DEFF Research Database (Denmark)
Rask, Morten; Servais, Per
2015-01-01
The purpose with this article is to review models used to describe and explain the establishment and development of international new ventures in order to investigate how and why international new ventures are established and developed. This article attempts an integration of extant theory...... on International Entrepreneurship, and specifically but not exclusively, International New Ventures (INVs). The three resulting ‘meta-models’ depict the activities and loci of such firms, the motivating factors that give rise to such firms and their growth modalities and strategies. These models reflect the merger...... of entrepreneurship and international business into the field of international entrepreneurship....
SME International Business Models
DEFF Research Database (Denmark)
Child, John; Hsieh, Linda; Elbanna, Said
2017-01-01
This paper addresses two questions through a study of 180 SMEs located in contrasting industry and home country contexts. First, which business models for international markets prevail among SMEs and do they configure into different types? Second, which factors predict the international business...... models that SMEs follow? Three distinct international business models (traditional market-adaptive, technology exploiter, and ambidextrous explorer) are found among the SMEs studied. The likelihood of SMEs adopting one business model rather than another is to a high degree predictable with reference...... to a small set of factors: industry, level of home economy development, and decision-maker international experience....
Impact of internal variability on projections of Sahel precipitation change
Monerie, Paul-Arthur; Sanchez-Gomez, Emilia; Pohl, Benjamin; Robson, Jon; Dong, Buwen
2017-11-01
The impact of the increase of greenhouse gases on Sahelian precipitation is very uncertain in both its spatial pattern and magnitude. In particular, the relative importance of internal variability versus external forcings depends on the time horizon considered in the climate projection. In this study we address the respective roles of the internal climate variability versus external forcings on Sahelian precipitation by using the data from the CESM Large Ensemble Project, which consists of a 40 member ensemble performed with the CESM1-CAM5 coupled model for the period 1920-2100. We show that CESM1-CAM5 is able to simulate the mean and interannual variability of Sahel precipitation, and is representative of a CMIP5 ensemble of simulations (i.e. it simulates the same pattern of precipitation change along with equivalent magnitude and seasonal cycle changes as the CMIP5 ensemble mean). However, CESM1-CAM5 underestimates the long-term decadal variability in Sahel precipitation. For short-term (2010-2049) and mid-term (2030-2069) projections the simulated internal variability component is able to obscure the projected impact of the external forcing. For long-term (2060-2099) projections external forcing induced change becomes stronger than simulated internal variability. Precipitation changes are found to be more robust over the central Sahel than over the western Sahel, where climate change effects struggle to emerge. Ten (thirty) members are needed to separate the 10 year averaged forced response from climate internal variability response in the western Sahel for a long-term (short-term) horizon. Over the central Sahel two members (ten members) are needed for a long-term (short-term) horizon.
Modeling Internal Radiation Therapy
van den Broek, Egon; Schouten, Theo E.; Pellegrini, M.; Fred, A.; Filipe, J.; Gamboa, H.
2011-01-01
A new technique is described to model (internal) radiation therapy. It is founded on morphological processing, in particular distance transforms. Its formal basis is presented as well as its implementation via the Fast Exact Euclidean Distance (FEED) transform. Its use for all variations of internal
MODELING SUPPLY CHAIN PERFORMANCE VARIABLES
Directory of Open Access Journals (Sweden)
Ashish Agarwal
2005-01-01
Full Text Available In order to understand the dynamic behavior of the variables that can play a major role in the performance improvement in a supply chain, a System Dynamics-based model is proposed. The model provides an effective framework for analyzing different variables affecting supply chain performance. Among different variables, a causal relationship among different variables has been identified. Variables emanating from performance measures such as gaps in customer satisfaction, cost minimization, lead-time reduction, service level improvement and quality improvement have been identified as goal-seeking loops. The proposed System Dynamics-based model analyzes the affect of dynamic behavior of variables for a period of 10 years on performance of case supply chain in auto business.
Quinn, T. M.; Partin, J. W.; Thirumalai, K.; Maupin, C. R.; Vara, M. A.; Shen, C. C.; Taylor, F. W.
2014-12-01
ENSO variability is manifest in the western Pacific through heat and moisture exchanges associated with the Western Pacific Warm Pool (WPWP) and the South Pacific Convergence Zone (SPCZ). Forward modeling (pseudoproxy analysis) results and published coral proxy records from the tropical Pacific indicate that in addition to the central and eastern Pacific regions, corals from the WPWP and SPCZ regions skillfully record ENSO variability. Some studies suggest that precessional forcing directly reduces/enhances ENSO variability. Other studies suggest that internal variability is the primary control on Holocene ENSO changes. Herein, we use coral proxy records from the tropical Pacific and numerical simulations to better understand the response of ENSO to precessional forcing and internal variability. We extend the coral record of ENSO variability using a new modern coral record from the Solomon Islands (1716-2008 CE) and a select suite of Holocene fossil coral records from the WPWP. The new modern coral record captures large ENSO events with considerable skill, providing new evidence for potential large ENSO events during the early 18th and 19th centuries, events that are not represented in current coral and/or multi-proxy reconstructions. We also note that long periods of reduced ENSO activity can occur during intervals with near constant precessional forcing at modern values. The fossil coral records provide discrete time windows into ENSO variability over the Holocene. These records provide evidence of similar patterns of ENSO activity during intervals with different precessional configurations. The modern and fossil coral records imply a strong influence of internal variability in the modulation of ENSO, which may make it difficult to establish a direct control of precessional forcing on ENSO variability over the Holocene.
The influence of internal climate variability on heatwave frequency trends
E Perkins-Kirkpatrick, S.; Fischer, E. M.; Angélil, O.; Gibson, P. B.
2017-04-01
Understanding what drives changes in heatwaves is imperative for all systems impacted by extreme heat. We examine short- (13 yr) and long-term (56 yr) heatwave frequency trends in a 21-member ensemble of a global climate model (Community Earth System Model; CESM), where each member is driven by identical anthropogenic forcings. To estimate changes dominantly due to internal climate variability, trends were calculated in the corresponding pre-industrial control run. We find that short-term trends in heatwave frequency are not robust indicators of long-term change. Additionally, we find that a lack of a long-term trend is possible, although improbable, under historical anthropogenic forcing over many regions. All long-term trends become unprecedented against internal variability when commencing in 2015 or later, and corresponding short-term trends by 2030, while the length of trend required to represent regional long-term changes is dependent on a given realization. Lastly, within ten years of a short-term decline, 95% of regional heatwave frequency trends have reverted to increases. This suggests that observed short-term changes of decreasing heatwave frequency could recover to increasing trends within the next decade. The results of this study are specific to CESM and the ‘business as usual’ scenario, and may differ under other representations of internal variability, or be less striking when a scenario with lower anthropogenic forcing is employed.
Influence of internal variability on population exposure to hydroclimatic changes
Mankin, Justin S.; Viviroli, Daniel; Mekonnen, Mesfin M.; Hoekstra, Arjen Y.; Horton, Radley M.; E Smerdon, Jason; Diffenbaugh, Noah S.
2017-04-01
Future freshwater supply, human water demand, and people’s exposure to water stress are subject to multiple sources of uncertainty, including unknown future pathways of fossil fuel and water consumption, and ‘irreducible’ uncertainty arising from internal climate system variability. Such internal variability can conceal forced hydroclimatic changes on multi-decadal timescales and near-continental spatial-scales. Using three projections of population growth, a large ensemble from a single Earth system model, and assuming stationary per capita water consumption, we quantify the likelihoods of future population exposure to increased hydroclimatic deficits, which we define as the average duration and magnitude by which evapotranspiration exceeds precipitation in a basin. We calculate that by 2060, ∽31%-35% of the global population will be exposed to >50% probability of hydroclimatic deficit increases that exceed existing hydrological storage, with up to 9% of people exposed to >90% probability. However, internal variability, which is an irreducible uncertainty in climate model predictions that is under-sampled in water resource projections, creates substantial uncertainty in predicted exposure: ∽86%-91% of people will reside where irreducible uncertainty spans the potential for both increases and decreases in sub-annual water deficits. In one population scenario, changes in exposure to large hydroclimate deficits vary from -3% to +6% of global population, a range arising entirely from internal variability. The uncertainty in risk arising from irreducible uncertainty in the precise pattern of hydroclimatic change, which is typically conflated with other uncertainties in projections, is critical for climate risk management that seeks to optimize adaptations that are robust to the full set of potential real-world outcomes.
Variability in shell models of GRBs
Sumner, M. C.; Fenimore, E. E.
1997-01-01
Many cosmological models of gamma-ray bursts (GRBs) assume that a single relativistic shell carries kinetic energy away from the source and later converts it into gamma rays, perhaps by interactions with the interstellar medium or by internal shocks within the shell. Although such models are able to reproduce general trends in GRB time histories, it is difficult to reproduce the high degree of variability often seen in GRBs. The authors investigate methods of achieving this variability using a simplified external shock model. Since the model emphasizes geometric and statistical considerations, rather than the detailed physics of the shell, it is applicable to any theory that relies on relativistic shells. They find that the variability in GRBs gives strong clues to the efficiency with which the shell converts its kinetic energy into gamma rays.
Influence of internal variability on population exposure to hydroclimatic changes
Mankin, Justin S.; Viviroli, Daniel; Mekonnen, Mesfin; Hoekstra, Arjen Ysbert; Horton, Radley M.; Smerdon, Jason E.; Diggenbaugh, Noah S.
2017-01-01
Future freshwater supply, human water demand, and people's exposure to water stress are subject to multiple sources of uncertainty, including unknown future pathways of fossil fuel and water consumption, and 'irreducible' uncertainty arising from internal climate system variability. Such internal
Internal variability of the thermohaline ocean circulation
Raa, Lianke Alinda te
2003-01-01
Variations in the ocean circulation can strongly influence climate due to the large heat transport by the ocean currents. Variability of the thermohaline ocean circulation, the part of the ocean circulation driven by density gradients, occurs typically on (inter)decadal and longer time scales and is
Concomitant variables in finite mixture models
Wedel, M
The standard mixture model, the concomitant variable mixture model, the mixture regression model and the concomitant variable mixture regression model all enable simultaneous identification and description of groups of observations. This study reviews the different ways in which dependencies among
Variable camshaft timing for internal combustion engine
Energy Technology Data Exchange (ETDEWEB)
Butterfield, R.P.; Smith, F.R.; Dembosky, S.K.
1991-09-10
This patent describes an internal combustion engine. It comprises a rotatable crankshaft; a camshaft, the camshaft being rotatable about its longitudinal central axis and being subject to a unidirectionally acting torque during the rotation thereof; first means mounted on the camshaft, the first means being oscillatable with respect to the camshaft about the longitudinal central axis of the camshaft at least through a limited arc; second means keyed to the camshaft for rotation therewith; rotary movement transmitting means interconnecting the crankshaft and one of the first means and the second means for transmitting rotary movement from the crankshaft to the camshaft; a first hydraulic cylinder having a body end pivotably attached to one of the first means and the second means and a piston end pivotably attached to the other of the first means and the second means; a second hydraulic cylinder having a body end pivotably attached to the one of the first means and the second means and a piston end pivotably attached to the other of the first means and the second means, the second hydraulic cylinder and the first hydraulic cylinder being disposed to act in opposite directions.
Synchronization Model for Pulsating Variables
Takahashi, S.; Morikawa, M.
2013-12-01
A simple model is proposed, which describes the variety of stellar pulsations. In this model, a star is described as an integration of independent elements which interact with each other. This interaction, which may be gravitational or hydrodynamic, promotes the synchronization of elements to yield a coherent mean field pulsation provided some conditions are satisfied. In the case of opacity driven pulsations, the whole star is described as a coupling of many heat engines. In the case of stochastic oscillation, the whole star is described as a coupling of convection cells, interacting through their flow patterns. Convection cells are described by the Lorentz model. In both models, interactions of elements lead to various pulsations, from irregular to regular. The coupled Lorenz model also describes a light curve which shows a semi-regular variability and also shows a low-frequency enhancement proportional to 1/f in its power spectrum. This is in agreement with observations (Kiss et al. 2006). This new modeling method of ‘coupled elements’ may provide a powerful description for a variety of stellar pulsations.
Effect of Flux Adjustments on Temperature Variability in Climate Models
International Nuclear Information System (INIS)
Duffy, P.; Bell, J.; Covey, C.; Sloan, L.
1999-01-01
It has been suggested that ''flux adjustments'' in climate models suppress simulated temperature variability. If true, this might invalidate the conclusion that at least some of observed temperature increases since 1860 are anthropogenic, since this conclusion is based in part on estimates of natural temperature variability derived from flux-adjusted models. We assess variability of surface air temperatures in 17 simulations of internal temperature variability submitted to the Coupled Model Intercomparison Project. By comparing variability in flux-adjusted vs. non-flux adjusted simulations, we find no evidence that flux adjustments suppress temperature variability in climate models; other, largely unknown, factors are much more important in determining simulated temperature variability. Therefore the conclusion that at least some of observed temperature increases are anthropogenic cannot be questioned on the grounds that it is based in part on results of flux-adjusted models. Also, reducing or eliminating flux adjustments would probably do little to improve simulations of temperature variability
Internally generated natural variability of global-mean temperatures
International Nuclear Information System (INIS)
Wigley, T.M.L.; Raper, S.C.B.
1990-01-01
Quantitative frequency-domain and time-domain estimates are made of an important aspect of natural variability of global-mean temperatures, namely, passive internal variability resulting from the modulation of atmospheric variability by the ocean. The results are derived using an upwelling-diffusion, energy-balance climate model. In the frequency domain, analytical spectral results show a transition from a high-frequency region in which the response is determined by the mixed-layer heat capacity and is independent of the climate sensitivity (time scales less than around 10 years), to a low-frequency region in which the response depends only on the climate sensitivity. In the former region the spectral power is proportional to f -2 , where f is the frequency, while in the latter the power is independent of frequency. The range of validity of these results depends on the components of the climate system that are included in the model. In this case these restrict the low-frequency results to time scales less than about 1,000 years. A qualitative extrapolation is presented in an attempt to explain the observed low-frequency power spectra from deep-sea-core δ 18 O time series. The spectral results are also used to estimate the effective heat capacity of the ocean as a function of frequency. At low frequencies, this can range up to 50 times greater than the heat capacity of the mixed layer. Results in the time domain are obtained by solving the model equations numerically
Tsai, C. Y.; Forest, C. E.; Pollard, D.
2017-12-01
The Antarctic ice sheet (AIS) has the potential to be a major contributor to future sea-level rise (SLR). Current projections of SLR due to AIS mass loss remain highly uncertain. Better understanding of how ice sheets respond to future climate forcing and variability is essential for assessing the long-term risk of SLR. However, the predictability of future climate is limited by uncertainties from emission scenarios, model structural differences, and the internal variability that is inherently generated within the fully coupled climate system. Among those uncertainties, the impact of internal variability on the AIS changes has not been explicitly assessed. In this study, we quantify the effect of internal variability on the AIS evolutions by using climate fields from two large-ensemble experiments using the Community Earth System Model to force a three-dimensional ice sheet model. We find that internal variability of climate fields, particularly atmospheric fields, among ensemble members leads to significantly different AIS responses. Our results show that the internal variability can cause about 80 mm differences of AIS contribution to SLR by 2100 compared to the ensemble-mean contribution of 380-450 mm. Moreover, using ensemble-mean climate fields as the forcing in the ice sheet model does not produce realistic simulations of the ice loss. Instead, it significantly delays the onset of retreat of the West Antarctic Ice Sheet for up to 20 years and significantly underestimates the AIS contribution to SLR by 0.07-0.11 m in 2100 and up to 0.34 m in the 2250's. Therefore, because the uncertainty caused by internal variability is irreducible, we seek to highlight a critical need to assess the role of internal variability in projecting the AIS loss over the next few centuries. By quantifying the impact of internal variability on AIS contribution to SLR, policy makers can obtain more robust estimates of SLR and implement suitable adaptation strategies.
Variable Selection in Model-based Clustering: A General Variable Role Modeling
Maugis, Cathy; Celeux, Gilles; Martin-Magniette, Marie-Laure
2008-01-01
The currently available variable selection procedures in model-based clustering assume that the irrelevant clustering variables are all independent or are all linked with the relevant clustering variables. We propose a more versatile variable selection model which describes three possible roles for each variable: The relevant clustering variables, the irrelevant clustering variables dependent on a part of the relevant clustering variables and the irrelevant clustering variables totally indepe...
A Core Language for Separate Variability Modeling
DEFF Research Database (Denmark)
Iosif-Lazăr, Alexandru Florin; Wasowski, Andrzej; Schaefer, Ina
2014-01-01
Separate variability modeling adds variability to a modeling language without requiring modifications of the language or the supporting tools. We define a core language for separate variability modeling using a single kind of variation point to define transformations of software artifacts in object...... models. Our language, Featherweight VML, has several distinctive features. Its architecture and operations are inspired by the recently proposed Common Variability Language (CVL). Its semantics is considerably simpler than that of CVL, while remaining confluent (unlike CVL). We simplify complex......, which makes it suitable to serve as a specification for implementations of trustworthy variant derivation. Featherweight VML offers insights in the execution of other variability modeling languages such as the Orthogonal Variability Model and Delta Modeling. To the best of our knowledge...
Modeling the Variable Heliopause Location
Hensley, Kerry
2018-03-01
In 2012, Voyager 1 zipped across the heliopause. Five and a half years later, Voyager 2 still hasnt followed its twin into interstellar space. Can models of the heliopause location help determine why?How Far to the Heliopause?Artists conception of the heliosphere with the important structures and boundaries labeled. [NASA/Goddard/Walt Feimer]As our solar system travels through the galaxy, the solar outflow pushes against the surrounding interstellar medium, forming a bubble called the heliosphere. The edge of this bubble, the heliopause, is the outermost boundary of our solar system, where the solar wind and the interstellar medium meet. Since the solar outflow is highly variable, the heliopause is constantly moving with the motion driven by changes inthe Sun.NASAs twin Voyager spacecraft were poisedto cross the heliopause after completingtheir tour of the outer planets in the 1980s. In 2012, Voyager 1 registered a sharp increase in the density of interstellar particles, indicating that the spacecraft had passed out of the heliosphere and into the interstellar medium. The slower-moving Voyager 2 was set to pierce the heliopause along a different trajectory, but so far no measurements have shown that the spacecraft has bid farewell to oursolar system.In a recent study, ateam of scientists led by Haruichi Washimi (Kyushu University, Japan and CSPAR, University of Alabama-Huntsville) argues that models of the heliosphere can help explain this behavior. Because the heliopause location is controlled by factors that vary on many spatial and temporal scales, Washimiand collaborators turn to three-dimensional, time-dependent magnetohydrodynamics simulations of the heliosphere. In particular, they investigate how the position of the heliopause along the trajectories of Voyager 1 and Voyager 2 changes over time.Modeled location of the heliopause along the paths of Voyagers 1 (blue) and 2 (orange). Click for a closer look. The red star indicates the location at which Voyager
Zheng, Xiao-Tong; Hui, Chang; Yeh, Sang-Wook
2017-08-01
El Niño-Southern Oscillation (ENSO) is the dominant mode of variability in the coupled ocean-atmospheric system. Future projections of ENSO change under global warming are highly uncertain among models. In this study, the effect of internal variability on ENSO amplitude change in future climate projections is investigated based on a 40-member ensemble from the Community Earth System Model Large Ensemble (CESM-LE) project. A large uncertainty is identified among ensemble members due to internal variability. The inter-member diversity is associated with a zonal dipole pattern of sea surface temperature (SST) change in the mean along the equator, which is similar to the second empirical orthogonal function (EOF) mode of tropical Pacific decadal variability (TPDV) in the unforced control simulation. The uncertainty in CESM-LE is comparable in magnitude to that among models of the Coupled Model Intercomparison Project phase 5 (CMIP5), suggesting the contribution of internal variability to the intermodel uncertainty in ENSO amplitude change. However, the causations between changes in ENSO amplitude and the mean state are distinct between CESM-LE and CMIP5 ensemble. The CESM-LE results indicate that a large ensemble of 15 members is needed to separate the relative contributions to ENSO amplitude change over the twenty-first century between forced response and internal variability.
Cardinality-dependent Variability in Orthogonal Variability Models
DEFF Research Database (Denmark)
Mærsk-Møller, Hans Martin; Jørgensen, Bo Nørregaard
2012-01-01
During our work on developing and running a software product line for eco-sustainable greenhouse-production software tools, which currently have three products members we have identified a need for extending the notation of the Orthogonal Variability Model (OVM) to support what we refer...
Handbook of latent variable and related models
Lee, Sik-Yum
2011-01-01
This Handbook covers latent variable models, which are a flexible class of models for modeling multivariate data to explore relationships among observed and latent variables.- Covers a wide class of important models- Models and statistical methods described provide tools for analyzing a wide spectrum of complicated data- Includes illustrative examples with real data sets from business, education, medicine, public health and sociology.- Demonstrates the use of a wide variety of statistical, computational, and mathematical techniques.
Energy Technology Data Exchange (ETDEWEB)
Andrieux, S.; Joussemet, M.; Lorentz, E.
1996-12-31
When they are subjected to excessive loads, some materials may exhibit a softening behaviour resulting from the deterioration of their mechanical properties. To idealize such behaviours, constitutive relations with softening are introduced, for which the size of the domain of reversibility in the stress-space decreases. These models feature a strain localization within the material, in agreement with experiments, but cannot predict the subsequent behaviour because they lead to shear bands the width of which is equal to zero, physically unacceptable and numerically troublesome. It has been proposed in the literature to overcome these difficulties by adding to the list of internal variable the spatial gradients of some of them. This procedure suffers from lack of firm methodological basis. Although, some quantitative justification have been advanced relying on some kind of microscopic analysis. Therefore, we propose to extend the classical (local) models by introducing the internal state variable first gradients. Given local model within the framework of standard generalized materials, consistent homogenization procedure is put forward to derive macroscopic free energy and dissipation potentials. The standard generalized character is preserved, with an extended set of state variables, containing not only the strain and the internal variables but also the internal variable derivatives. Nevertheless, when dealing with the whole structure, the independence between the new state variables is lost. We propose then to generalize the constitutive relations, leading to a new variational principle that ensures the Clausius-Duhem inequality at the structure scale. (authors). 9 refs.
International Nuclear Information System (INIS)
Andrieux, S.; Joussemet, M.; Lorentz, E.
1996-01-01
When they are subjected to excessive loads, some materials may exhibit a softening behaviour resulting from the deterioration of their mechanical properties. To idealize such behaviours, constitutive relations with softening are introduced, for which the size of the domain of reversibility in the stress-space decreases. These models feature a strain localization within the material, in agreement with experiments, but cannot predict the subsequent behaviour because they lead to shear bands the width of which is equal to zero, physically unacceptable and numerically troublesome. It has been proposed in the literature to overcome these difficulties by adding to the list of internal variable the spatial gradients of some of them. This procedure suffers from lack of firm methodological basis. Although, some quantitative justification have been advanced relying on some kind of microscopic analysis. Therefore, we propose to extend the classical (local) models by introducing the internal state variable first gradients. Given local model within the framework of standard generalized materials, consistent homogenization procedure is put forward to derive macroscopic free energy and dissipation potentials. The standard generalized character is preserved, with an extended set of state variables, containing not only the strain and the internal variables but also the internal variable derivatives. Nevertheless, when dealing with the whole structure, the independence between the new state variables is lost. We propose then to generalize the constitutive relations, leading to a new variational principle that ensures the Clausius-Duhem inequality at the structure scale. (authors)
Generalized latent variable modeling multilevel, longitudinal, and structural equation models
Skrondal, Anders; Rabe-Hesketh, Sophia
2004-01-01
This book unifies and extends latent variable models, including multilevel or generalized linear mixed models, longitudinal or panel models, item response or factor models, latent class or finite mixture models, and structural equation models.
Internal modes of multidecadal variability in the Arctic Ocean
Frankcombe, L.M.; Dijkstra, H.A.
2010-01-01
Observations of sea ice extent and atmospheric temperature in the Arctic, although sparse, indicate variability on multidecadal time scales. A recent analysis of one of the global climate models [the Geophysical Fluid Dynamics Laboratory Climate Model, version 2.1 (CM2.1)] in the Fourth Assessment
Becker, M.; Karpytchev, M.; Hu, A.; Deser, C.; Lennartz-Sassinek, S.
2017-12-01
Today, the Climate models (CM) are the main tools for forecasting sea level rise (SLR) at global and regional scales. The CM forecasts are accompanied by inherent uncertainties. Understanding and reducing these uncertainties is becoming a matter of increasing urgency in order to provide robust estimates of SLR impact on coastal societies, which need sustainable choices of climate adaptation strategy. These CM uncertainties are linked to structural model formulation, initial conditions, emission scenario and internal variability. The internal variability is due to complex non-linear interactions within the Earth Climate System and can induce diverse quasi-periodic oscillatory modes and long-term persistences. To quantify the effects of internal variability, most studies used multi-model ensembles or sea level projections from a single model ran with perturbed initial conditions. However, large ensembles are not generally available, or too small, and computationally expensive. In this study, we use a power-law scaling of sea level fluctuations, as observed in many other geophysical signals and natural systems, which can be used to characterize the internal climate variability. From this specific statistical framework, we (1) use the pre-industrial control run of the National Center for Atmospheric Research Community Climate System Model (NCAR-CCSM) to test the robustness of the power-law scaling hypothesis; (2) employ the power-law statistics as a tool for assessing the spread of regional sea level projections due to the internal climate variability for the 21st century NCAR-CCSM; (3) compare the uncertainties in predicted sea level changes obtained from a NCAR-CCSM multi-member ensemble simulations with estimates derived for power-law processes, and (4) explore the sensitivity of spatial patterns of the internal variability and its effects on regional sea level projections.
The International Space University's variable gravity research facility design
Bailey, Sheila G.; Chiaramonte, Francis P.; Davidian, Kenneth J.
1991-09-01
A manned mission to Mars will require long travel times between Earth and Mars. However, exposure to long-duration zero gravity is known to be harmful to the human body. Some of the harmful effects are loss of heart and lung capacity, inability to stand upright, muscular weakness and loss of bone calcium. A variable gravity research facility (VGRF) that would be placed in low Earth orbit (LEO) was designed by students of the International Space University 1989 Summer Session held in Strasbourg, France, to provide a testbed for conducting experiments in the life and physical sciences in preparation for a mission to Mars. This design exercise was unique because it addressed all aspects concerning a large space project. The VGRF design was described which was developed by international participants specializing in the following areas: the politics of international cooperation, engineering, architecture, in-space physiology, material and life science experimentation, data communications, business, and management.
On the derivation of thermodynamic restrictions for materials with internal state variables
International Nuclear Information System (INIS)
Malmberg, T.
1987-07-01
Thermodynamic restrictions for the constitutive relations of an internal variable model are derived by evaluating the Clausius-Duhem entropy inequality with two different approaches. The classical Coleman-Noll argumentation of Rational Thermodynamics applied by Coleman and Gurtin to an internal variable model is summarized. This approach requires an arbitrary modulation of body forces and heat supply in the interior of the body which is subject to criticism. The second approach applied in this presentation is patterned after a concept of Mueller and Liu, originally developed within the context of a different entropy inequality and different classes of constitutive models. For the internal variable model the second approach requires only the modulation of initial values on the boundary of the body. In the course of the development of the second approach certain differences to the argumentation of Mueller and Liu become evident and are pointed out. Finally, the results demonstrate that the first and second approach give the same thermodynamic restrictions for the internal variable model. The derived residual entropy inequality requires further analysis. (orig.) [de
International Nuclear Information System (INIS)
Andrieux, S.; Joussemet, M.; Lorentz, E.
1996-01-01
A general framework for deriving and using a class of constitutive laws incorporating spatial gradients of internal variables is presented. It uses two basic ingredients: a derivation of such models by homogenization techniques and a reformulation of the evolution equation at the scale of the whole structure. (orig.)
A Non-Gaussian Spatial Generalized Linear Latent Variable Model
Irincheeva, Irina
2012-08-03
We consider a spatial generalized linear latent variable model with and without normality distributional assumption on the latent variables. When the latent variables are assumed to be multivariate normal, we apply a Laplace approximation. To relax the assumption of marginal normality in favor of a mixture of normals, we construct a multivariate density with Gaussian spatial dependence and given multivariate margins. We use the pairwise likelihood to estimate the corresponding spatial generalized linear latent variable model. The properties of the resulting estimators are explored by simulations. In the analysis of an air pollution data set the proposed methodology uncovers weather conditions to be a more important source of variability than air pollution in explaining all the causes of non-accidental mortality excluding accidents. © 2012 International Biometric Society.
Imbers, Jara
2014-05-01
The Intergovernmental Panel on Climate Change\\'s (IPCC) "very likely" statement that anthropogenic emissions are affecting climate is based on a statistical detection and attribution methodology that strongly depends on the characterization of internal climate variability. In this paper, the authors test the robustness of this statement in the case of global mean surface air temperature, under different representations of such variability. The contributions of the different natural and anthropogenic forcings to the global mean surface air temperature response are computed using a box diffusion model. Representations of internal climate variability are explored using simple stochastic models that nevertheless span a representative range of plausible temporal autocorrelation structures, including the short-memory first-order autoregressive [AR(1)] process and the long-memory fractionally differencing process. The authors find that, independently of the representation chosen, the greenhouse gas signal remains statistically significant under the detection model employed in this paper. The results support the robustness of the IPCC detection and attribution statement for global mean temperature change under different characterizations of internal variability, but they also suggest that a wider variety of robustness tests, other than simple comparisons of residual variance, should be performed when dealing with other climate variables and/or different spatial scales. © 2014 American Meteorological Society.
Solvency ii. partial internal model
Baltrėnas, Rokas
2016-01-01
Solvency II. Partial Internal Model Solvency is one of the most important characteristics of the insurance company. Sufficient solvency ratio ensures long–term performance of the company and the necessary protection of policyholders. The new solvency assessment framework (Solvency II) came into force across the EU on 1 January 2016. It is based on a variety of risk evaluation modules, so it better reflects the real state of the company’s solvency. Under the Solvency II insurance company’s sol...
Integrating models that depend on variable data
Banks, A. T.; Hill, M. C.
2016-12-01
Models of human-Earth systems are often developed with the goal of predicting the behavior of one or more dependent variables from multiple independent variables, processes, and parameters. Often dependent variable values range over many orders of magnitude, which complicates evaluation of the fit of the dependent variable values to observations. Many metrics and optimization methods have been proposed to address dependent variable variability, with little consensus being achieved. In this work, we evaluate two such methods: log transformation (based on the dependent variable being log-normally distributed with a constant variance) and error-based weighting (based on a multi-normal distribution with variances that tend to increase as the dependent variable value increases). Error-based weighting has the advantage of encouraging model users to carefully consider data errors, such as measurement and epistemic errors, while log-transformations can be a black box for typical users. Placing the log-transformation into the statistical perspective of error-based weighting has not formerly been considered, to the best of our knowledge. To make the evaluation as clear and reproducible as possible, we use multiple linear regression (MLR). Simulations are conducted with MatLab. The example represents stream transport of nitrogen with up to eight independent variables. The single dependent variable in our example has values that range over 4 orders of magnitude. Results are applicable to any problem for which individual or multiple data types produce a large range of dependent variable values. For this problem, the log transformation produced good model fit, while some formulations of error-based weighting worked poorly. Results support previous suggestions fthat error-based weighting derived from a constant coefficient of variation overemphasizes low values and degrades model fit to high values. Applying larger weights to the high values is inconsistent with the log
Uncertainty in Indian Ocean Dipole response to global warming: the role of internal variability
Hui, Chang; Zheng, Xiao-Tong
2018-01-01
The Indian Ocean Dipole (IOD) is one of the leading modes of interannual sea surface temperature (SST) variability in the tropical Indian Ocean (TIO). The response of IOD to global warming is quite uncertain in climate model projections. In this study, the uncertainty in IOD change under global warming, especially that resulting from internal variability, is investigated based on the community earth system model large ensemble (CESM-LE). For the IOD amplitude change, the inter-member uncertainty in CESM-LE is about 50% of the intermodel uncertainty in the phase 5 of the coupled model intercomparison project (CMIP5) multimodel ensemble, indicating the important role of internal variability in IOD future projection. In CESM-LE, both the ensemble mean and spread in mean SST warming show a zonal positive IOD-like (pIOD-like) pattern in the TIO. This pIOD-like mean warming regulates ocean-atmospheric feedbacks of the interannual IOD mode, and weakens the skewness of the interannual variability. However, as the changes in oceanic and atmospheric feedbacks counteract each other, the inter-member variability in IOD amplitude change is not correlated with that of the mean state change. Instead, the ensemble spread in IOD amplitude change is correlated with that in ENSO amplitude change in CESM-LE, reflecting the close inter-basin relationship between the tropical Pacific and Indian Ocean in this model.
modelling relationship between rainfall variability and yields
African Journals Online (AJOL)
yield models should be used for planning and forecasting the yield of millet and sorghum in the study area. Key words: modelling, rainfall, yields, millet, sorghum. INTRODUCTION. Meteorological variables, such as rainfall parameters, temperature, sunshine hours, relative humidity, and wind velocity and soil moisture are.
Evaluation of internal noise methods for Hotelling observer models
International Nuclear Information System (INIS)
Zhang Yani; Pham, Binh T.; Eckstein, Miguel P.
2007-01-01
The inclusion of internal noise in model observers is a common method to allow for quantitative comparisons between human and model observer performance in visual detection tasks. In this article, we studied two different strategies for inserting internal noise into Hotelling model observers. In the first strategy, internal noise was added to the output of individual channels: (a) Independent nonuniform channel noise, (b) independent uniform channel noise. In the second strategy, internal noise was added to the decision variable arising from the combination of channel responses. The standard deviation of the zero mean internal noise was either constant or proportional to: (a) the decision variable's standard deviation due to the external noise, (b) the decision variable's variance caused by the external noise, (c) the decision variable magnitude on a trial to trial basis. We tested three model observers: square window Hotelling observer (HO), channelized Hotelling observer (CHO), and Laguerre-Gauss Hotelling observer (LGHO) using a four alternative forced choice (4AFC) signal known exactly but variable task with a simulated signal embedded in real x-ray coronary angiogram backgrounds. The results showed that the internal noise method that led to the best prediction of human performance differed across the studied model observers. The CHO model best predicted human observer performance with the channel internal noise. The HO and LGHO best predicted human observer performance with the decision variable internal noise. The present results might guide researchers with the choice of methods to include internal noise into Hotelling model observers when evaluating and optimizing medical image quality
Anticommuting variables, internal degrees of freedom, and the Wilson loop
International Nuclear Information System (INIS)
Barducci, A.; Casalbuoni, R.; Lusanna, L.
1981-01-01
In this paper we show that is possible to give a real physical meaning to theories in which internal degrees of freedom are described by Grassmann variables. The physical theory is defined by means of an averaging procedure in terms of a distribution function in the Grassmann restricted space satisfying all the physical requirements. If we use this result for a scalar particle with inner degrees of freedom (electric charge, colour, ...) interacting with Yang-Mills gauge fields, it turns out that we can define two different classical theories. Taking the average of the coupled particle-field equations of motion, we recover the usual classical theory. Taking instead the average of the solution of such equations we get a theory which is free from all the classical infinities (and so of the causal defects, like runaway solution or pre-acceleration) but also of all the effects of the same order in the charges (like radiation). The main point is that the processes of averaging and integrating the equations of motion do not commute. Then for the case of colour degrees of freedom we study the quantization of the theory by the path-integral method and we show that the functional integration can be done for an arbitrary gluon field simply by using the classical solution. As a result we obtain an expression for the Wilson loop as a functional integral for the internal fermionic degrees of freedom. (orig.)
Modeling the internal combustion engine
Zeleznik, F. J.; Mcbride, B. J.
1985-01-01
A flexible and computationally economical model of the internal combustion engine was developed for use on large digital computer systems. It is based on a system of ordinary differential equations for cylinder-averaged properties. The computer program is capable of multicycle calculations, with some parameters varying from cycle to cycle, and has restart capabilities. It can accommodate a broad spectrum of reactants, permits changes in physical properties, and offers a wide selection of alternative modeling functions without any reprogramming. It readily adapts to the amount of information available in a particular case because the model is in fact a hierarchy of five models. The models range from a simple model requiring only thermodynamic properties to a complex model demanding full combustion kinetics, transport properties, and poppet valve flow characteristics. Among its many features the model includes heat transfer, valve timing, supercharging, motoring, finite burning rates, cycle-to-cycle variations in air-fuel ratio, humid air, residual and recirculated exhaust gas, and full combustion kinetics.
Gait variability: methods, modeling and meaning
Directory of Open Access Journals (Sweden)
Hausdorff Jeffrey M
2005-07-01
Full Text Available Abstract The study of gait variability, the stride-to-stride fluctuations in walking, offers a complementary way of quantifying locomotion and its changes with aging and disease as well as a means of monitoring the effects of therapeutic interventions and rehabilitation. Previous work has suggested that measures of gait variability may be more closely related to falls, a serious consequence of many gait disorders, than are measures based on the mean values of other walking parameters. The Current JNER series presents nine reports on the results of recent investigations into gait variability. One novel method for collecting unconstrained, ambulatory data is reviewed, and a primer on analysis methods is presented along with a heuristic approach to summarizing variability measures. In addition, the first studies of gait variability in animal models of neurodegenerative disease are described, as is a mathematical model of human walking that characterizes certain complex (multifractal features of the motor control's pattern generator. Another investigation demonstrates that, whereas both healthy older controls and patients with a higher-level gait disorder walk more slowly in reduced lighting, only the latter's stride variability increases. Studies of the effects of dual tasks suggest that the regulation of the stride-to-stride fluctuations in stride width and stride time may be influenced by attention loading and may require cognitive input. Finally, a report of gait variability in over 500 subjects, probably the largest study of this kind, suggests how step width variability may relate to fall risk. Together, these studies provide new insights into the factors that regulate the stride-to-stride fluctuations in walking and pave the way for expanded research into the control of gait and the practical application of measures of gait variability in the clinical setting.
Gaussian mixture model of heart rate variability.
Directory of Open Access Journals (Sweden)
Tommaso Costa
Full Text Available Heart rate variability (HRV is an important measure of sympathetic and parasympathetic functions of the autonomic nervous system and a key indicator of cardiovascular condition. This paper proposes a novel method to investigate HRV, namely by modelling it as a linear combination of Gaussians. Results show that three Gaussians are enough to describe the stationary statistics of heart variability and to provide a straightforward interpretation of the HRV power spectrum. Comparisons have been made also with synthetic data generated from different physiologically based models showing the plausibility of the Gaussian mixture parameters.
Internal gravity wave contributions to global sea surface variability
Savage, A.; Arbic, B. K.; Richman, J. G.; Shriver, J. F.; Buijsman, M. C.; Zamudio, L.; Wallcraft, A. J.; Sharma, H.
2016-02-01
High-resolution (1/12th and 1/25th degree) 41-layer simulations of the HYbrid Coordinate Ocean Model (HYCOM), forced by both atmospheric fields and the astronomical tidal potential, are used to construct global maps of sea-surface height (SSH). The HYCOM output has been separated into steric, non-steric, and total sea-surface height and the maps display variance in subtidal, tidal, and supertidal bands. Two of the global maps are of particular interest in planning for the upcoming Surface Water and Ocean Topography (SWOT) wide-swath satellite altimeter mission; (1) a map of the nonstationary tidal signal (estimated after removing the stationary tidal signal via harmonic analysis), and (2) a map of the steric supertidal contributions, which are dominated by the internal gravity wave continuum. Both of these maps display signals of order 1 cm2, the target accuracy for the SWOT mission. Therefore, both non-stationary internal tides and non-tidal internal gravity waves are likely to be important sources of "noise" that must be accurately removed before examination of lower-frequency phenomena can take place.
International Nuclear Model personal computer (PCINM): Model documentation
International Nuclear Information System (INIS)
1992-08-01
The International Nuclear Model (INM) was developed to assist the Energy Information Administration (EIA), U.S. Department of Energy (DOE) in producing worldwide projections of electricity generation, fuel cycle requirements, capacities, and spent fuel discharges from commercial nuclear reactors. The original INM was developed, maintained, and operated on a mainframe computer system. In spring 1992, a streamlined version of INM was created for use on a microcomputer utilizing CLIPPER and PCSAS software. This new version is known as PCINM. This documentation is based on the new PCINM version. This document is designed to satisfy the requirements of several categories of users of the PCINM system including technical analysts, theoretical modelers, and industry observers. This document assumes the reader is familiar with the nuclear fuel cycle and each of its components. This model documentation contains four chapters and seven appendices. Chapter Two presents the model overview containing the PCINM structure and process flow, the areas for which projections are made, and input data and output reports. Chapter Three presents the model technical specifications showing all model equations, algorithms, and units of measure. Chapter Four presents an overview of all parameters, variables, and assumptions used in PCINM. The appendices present the following detailed information: variable and parameter listings, variable and equation cross reference tables, source code listings, file layouts, sample report outputs, and model run procedures. 2 figs
Confounding of three binary-variables counterfactual model
Liu, Jingwei; Hu, Shuang
2011-01-01
Confounding of three binary-variables counterfactual model is discussed in this paper. According to the effect between the control variable and the covariate variable, we investigate three counterfactual models: the control variable is independent of the covariate variable, the control variable has the effect on the covariate variable and the covariate variable affects the control variable. Using the ancillary information based on conditional independence hypotheses, the sufficient conditions...
DISSECTING MAGNETAR VARIABILITY WITH BAYESIAN HIERARCHICAL MODELS
Energy Technology Data Exchange (ETDEWEB)
Huppenkothen, Daniela; Elenbaas, Chris; Watts, Anna L.; Horst, Alexander J. van der [Anton Pannekoek Institute for Astronomy, University of Amsterdam, Postbus 94249, 1090 GE Amsterdam (Netherlands); Brewer, Brendon J. [Department of Statistics, The University of Auckland, Private Bag 92019, Auckland 1142 (New Zealand); Hogg, David W. [Center for Data Science, New York University, 726 Broadway, 7th Floor, New York, NY 10003 (United States); Murray, Iain [School of Informatics, University of Edinburgh, Edinburgh EH8 9AB (United Kingdom); Frean, Marcus [School of Engineering and Computer Science, Victoria University of Wellington (New Zealand); Levin, Yuri [Monash Center for Astrophysics and School of Physics, Monash University, Clayton, Victoria 3800 (Australia); Kouveliotou, Chryssa, E-mail: daniela.huppenkothen@nyu.edu [Astrophysics Office, ZP 12, NASA/Marshall Space Flight Center, Huntsville, AL 35812 (United States)
2015-09-01
Neutron stars are a prime laboratory for testing physical processes under conditions of strong gravity, high density, and extreme magnetic fields. Among the zoo of neutron star phenomena, magnetars stand out for their bursting behavior, ranging from extremely bright, rare giant flares to numerous, less energetic recurrent bursts. The exact trigger and emission mechanisms for these bursts are not known; favored models involve either a crust fracture and subsequent energy release into the magnetosphere, or explosive reconnection of magnetic field lines. In the absence of a predictive model, understanding the physical processes responsible for magnetar burst variability is difficult. Here, we develop an empirical model that decomposes magnetar bursts into a superposition of small spike-like features with a simple functional form, where the number of model components is itself part of the inference problem. The cascades of spikes that we model might be formed by avalanches of reconnection, or crust rupture aftershocks. Using Markov Chain Monte Carlo sampling augmented with reversible jumps between models with different numbers of parameters, we characterize the posterior distributions of the model parameters and the number of components per burst. We relate these model parameters to physical quantities in the system, and show for the first time that the variability within a burst does not conform to predictions from ideas of self-organized criticality. We also examine how well the properties of the spikes fit the predictions of simplified cascade models for the different trigger mechanisms.
Non equilibrium thermodynamics with internal variables in Kluitenberg's theory
Directory of Open Access Journals (Sweden)
Ciancio, Vincenzo
2008-02-01
Full Text Available We show a method to verify experimentally some inequalities which occur for phenomenological coefficients in the thermodynamical model for dielectric relaxation and viscoanelastic media developed in the ambit of non-equilibrium thermodynamic Kluitenberg's theory. In particular, for dielectric relaxation we assume a sinusoidal form for induction vector (extensive variable: cause, the electric field (intensive variable: effect inside the system, which depends on unknown phenomenological coefficients, has been obtained by integration. Then we compare it with a similar form of the electric field obtained by experimental considerations, where well known experimentally determinable coefficients appear. We carry out dielectric measurements on PMMA and PVC at different frequencies and fixed temperature in order to obtain the phenomenological coefficients as functions of the frequency. For viscoanelastic media we consider the relative rheological equation and we compare the solution of this equation with a well known expression of the stress obtained, by experimentally considerations, in the linear response theory. This comparison will be able to determine the phenomenological an state coefficients as function of frequency dependent quantities experimentally measurable. This method will be applied to polymeric materials as Polyisobutilene.
Peters, Kay; Albers, Sönke; Kumar, V.
2008-01-01
Companies employ international diffusion models to assess the local market potential and local diffusion speed to support their decision making on market entry. After their entry into a country, they use the model forecasts for their performance controlling. To this end, empirical applications of international diffusion models aim to link differential diffusion patterns across countries to various exogenous drivers. In the literature, macro- and socioeconomic variables like population charact...
Natural climate variability in a coupled model
International Nuclear Information System (INIS)
Zebiak, S.E.; Cane, M.A.
1990-01-01
Multi-century simulations with a simplified coupled ocean-atmosphere model are described. These simulations reveal an impressive range of variability on decadal and longer time scales, in addition to the dominant interannual el Nino/Southern Oscillation signal that the model originally was designed to simulate. Based on a very large sample of century-long simulations, it is nonetheless possible to identify distinct model parameter sensitivities that are described here in terms of selected indices. Preliminary experiments motivated by general circulation model results for increasing greenhouse gases suggest a definite sensitivity to model global warming. While these results are not definitive, they strongly suggest that coupled air-sea dynamics figure prominently in global change and must be included in models for reliable predictions
Constraint-Led Changes in Internal Variability in Running
Haudum, Anita; Birklbauer, Jürgen; Kröll, Josef; Müller, Erich
2012-01-01
We investigated the effect of a one-time application of elastic constraints on movement-inherent variability during treadmill running. Eleven males ran two 35-min intervals while surface EMG was measured. In one of two 35-min intervals, after 10 min of running without tubes, elastic tubes (between hip and heels) were attached, followed by another 5 min of running without tubes. To assess variability, stride-to-stride iEMG variability was calculated. Significant increases in variability (36 % ...
Next-Generation Model-based Variability Management: Languages and Tools
Acher , Mathieu; Heymans , Patrick; Collet , Philippe; Lahire , Philippe
2012-01-01
International audience; Variability modelling and management is a key activity in a growing number of software engineering contexts, from software product lines to dynamic adaptive systems. Feature models are the defacto standard to formally represent and reason about commonality and variability of a software system. This tutorial aims at presenting next generation of feature modelling languages and tools, directly applicable to a wide range of model-based variability problems and application...
Multimodal Similarity Gaussian Process Latent Variable Model.
Song, Guoli; Wang, Shuhui; Huang, Qingming; Tian, Qi
2017-09-01
Data from real applications involve multiple modalities representing content with the same semantics from complementary aspects. However, relations among heterogeneous modalities are simply treated as observation-to-fit by existing work, and the parameterized modality specific mapping functions lack flexibility in directly adapting to the content divergence and semantic complicacy in multimodal data. In this paper, we build our work based on the Gaussian process latent variable model (GPLVM) to learn the non-parametric mapping functions and transform heterogeneous modalities into a shared latent space. We propose multimodal Similarity Gaussian Process latent variable model (m-SimGP), which learns the mapping functions between the intra-modal similarities and latent representation. We further propose multimodal distance-preserved similarity GPLVM (m-DSimGP) to preserve the intra-modal global similarity structure, and multimodal regularized similarity GPLVM (m-RSimGP) by encouraging similar/dissimilar points to be similar/dissimilar in the latent space. We propose m-DRSimGP, which combines the distance preservation in m-DSimGP and semantic preservation in m-RSimGP to learn the latent representation. The overall objective functions of the four models are solved by simple and scalable gradient decent techniques. They can be applied to various tasks to discover the nonlinear correlations and to obtain the comparable low-dimensional representation for heterogeneous modalities. On five widely used real-world data sets, our approaches outperform existing models on cross-modal content retrieval and multimodal classification.
International Nuclear Information System (INIS)
Blanc, V.; Barbie, L.; Masson, R.
2011-01-01
Homogenization of linear viscoelastic heterogeneous media is here extended from two phase inclusion-matrix media to three phase inclusion-matrix media. Each phase obeying to a compressible Maxwellian behaviour, this analytic method leads to an equivalent elastic homogenization problem in the Laplace-Carson space. For some particular microstructures, such as the Hashin composite sphere assemblage, an exact solution is obtained. The inversion of the Laplace-Carson transforms of the overall stress-strain behaviour gives in such cases an internal variable formulation. As expected, the number of these internal variables and their evolution laws are modified to take into account the third phase. Moreover, evolution laws of averaged stresses and strains per phase can still be derived for three phase media. Results of this model are compared to full fields computations of representative volume elements using finite element method, for various concentrations and sizes of inclusion. Relaxation and creep test cases are performed in order to compare predictions of the effective response. The internal variable formulation is shown to yield accurate prediction in both cases. (authors)
THE INTERNAL CONTROL MODELS IN ROMANIA
Directory of Open Access Journals (Sweden)
TEODORESCU CRISTIAN DRAGOȘ
2015-06-01
Full Text Available Internal control is indissolubly linked to business and accounting. Throughout history, domestic and international trade has grown exponentially, which has led to an increasing complexity of internal control, to new methods and techniques to control the business. The literature has presented the first models of internal control in the Sumerian period (3600 - 3200 BC, and the emergence and development of internal control in Egypt, Persia, Greek and Roman Empire, in the Middle Ages till modern times. The purpose of this article is to present the models of internal control in Romania, starting from the principles of the classical model of internal control (COSO model. For a better understanding of the implication of internal control in terms of public and private sector, I have structured the article in the following parts: (a the definition of internal control in the literature; (b the presentation of the COSO model; (c internal control and internal audit in public institutions; (d internal control issues in accounting regulations on the individual and consolidated annual financial statements; (e internal / managerial control; (f conclusions.
First International Workshop on Variability in Software Architecture (VARSA 2011)
Galster, Matthias; Avgeriou, Paris; Weyns, Danny; Mannisto, Tomi
2011-01-01
Variability is the ability of a software artifact to be changed for a specific context. Mechanisms to accommodate variability include software product lines, configuration wizards and tools in commercial software, configuration interfaces of software components, or the dynamic runtime composition of
Constraint-led changes in internal variability in running.
Haudum, Anita; Birklbauer, Jürgen; Kröll, Josef; Müller, Erich
2012-01-01
We investigated the effect of a one-time application of elastic constraints on movement-inherent variability during treadmill running. Eleven males ran two 35-min intervals while surface EMG was measured. In one of two 35-min intervals, after 10 min of running without tubes, elastic tubes (between hip and heels) were attached, followed by another 5 min of running without tubes. To assess variability, stride-to-stride iEMG variability was calculated. Significant increases in variability (36 % to 74 %) were observed during tube running, whereas running without tubes after the tube running block showed no significant differences. Results show that elastic tubes affect variability on a muscular level despite the constant environmental conditions and underline the nervous system's adaptability to cope with somehow unpredictable constraints since stride duration was unaltered.
An empirical model of decadal ENSO variability
Energy Technology Data Exchange (ETDEWEB)
Kravtsov, S. [University of Wisconsin-Milwaukee, Department of Mathematical Sciences, Atmospheric Sciences Group, P. O. Box 413, Milwaukee, WI (United States)
2012-11-15
This paper assesses potential predictability of decadal variations in the El Nino/Southern Oscillation (ENSO) characteristics by constructing and performing simulations using an empirical nonlinear stochastic model of an ENSO index. The model employs decomposition of global sea-surface temperature (SST) anomalies into the modes that maximize the ratio of interdecadal-to-subdecadal SST variance to define low-frequency predictors called the canonical variates (CVs). When the whole available SST time series is so processed, the leading canonical variate (CV-1) is found to be well correlated with the area-averaged SST time series which exhibits a non-uniform warming trend, while the next two (CV-2 and CV-3) describe secular variability arguably associated with a combination of Atlantic Multidecadal Oscillation (AMO) and Pacific Decadal Oscillation (PDO) signals. The corresponding ENSO model that uses either all three (CVs 1-3) or only AMO/PDO-related (CVs 2 and 3) predictors captures well the observed autocorrelation function, probability density function, seasonal dependence of ENSO, and, most importantly, the observed interdecadal modulation of ENSO variance. The latter modulation, and its dependence on CVs, is shown to be inconsistent with the null hypothesis of random decadal ENSO variations simulated by multivariate linear inverse models. Cross-validated hindcasts of ENSO variance suggest a potential useful skill at decadal lead times. These findings thus argue that decadal modulations of ENSO variability may be predictable subject to our ability to forecast AMO/PDO-type climate modes; the latter forecasts may need to be based on simulations of dynamical models, rather than on a purely statistical scheme as in the present paper. (orig.)
a Variable Resolution Global Spectral Model.
Hardiker, Vivek Manohar
A conformal transformation suggested by F. Schimdt is followed to implement a global spectral model with variable horizontal resolution. A conformal mapping is defined between the real physical sphere (Earth) to a transformed (Computational) sphere. The model equations are discretized on the computational sphere and the conventional spectral technique is applied to solve the model equations. There are two types of transformations used in the present study, namely, the Stretching transformation and the Rotation of the horizontal grid points. Application of the stretching transformation results in finer resolution along the meridional direction. The stretching is controlled by a parameter C. The rotation transformation can be used to relocate the North Pole of the model to any point on the geographic sphere. The idea is now to rotate the pole to the area of interest and refine the resolution around the new pole by applying the stretching transformation. The stretching transformation can be applied alone without the rotation. A T-42 Spectral Shallow-Water model is transformed by applying the stretching transformation alone as well as the two transformations together. A T-42 conventional Spectral Shallow-Water model is run as the control experiment and a conventional T-85 Spectral Shallow-Water model run is treated as the benchmark (Truth) solution. RMS error analysis for the geopotential field as well as the wind field is performed to evaluate the forecast made by the transformed model. It is observed that the RMS error of the transformed model is lower than that of the control run in a latitude band, for the case of stretching transformation alone, while for the total transformation (rotation followed by stretching), similar results are obtained for a rectangular domain. A multi-level global spectral model is designed from the current FSU global spectral model in order to implement the conformal transformation. The transformed T-85 model is used to study Hurricane
Hidden Markov latent variable models with multivariate longitudinal data.
Song, Xinyuan; Xia, Yemao; Zhu, Hongtu
2017-03-01
Cocaine addiction is chronic and persistent, and has become a major social and health problem in many countries. Existing studies have shown that cocaine addicts often undergo episodic periods of addiction to, moderate dependence on, or swearing off cocaine. Given its reversible feature, cocaine use can be formulated as a stochastic process that transits from one state to another, while the impacts of various factors, such as treatment received and individuals' psychological problems on cocaine use, may vary across states. This article develops a hidden Markov latent variable model to study multivariate longitudinal data concerning cocaine use from a California Civil Addict Program. The proposed model generalizes conventional latent variable models to allow bidirectional transition between cocaine-addiction states and conventional hidden Markov models to allow latent variables and their dynamic interrelationship. We develop a maximum-likelihood approach, along with a Monte Carlo expectation conditional maximization (MCECM) algorithm, to conduct parameter estimation. The asymptotic properties of the parameter estimates and statistics for testing the heterogeneity of model parameters are investigated. The finite sample performance of the proposed methodology is demonstrated by simulation studies. The application to cocaine use study provides insights into the prevention of cocaine use. © 2016, The International Biometric Society.
Sparse modeling of spatial environmental variables associated with asthma.
Chang, Timothy S; Gangnon, Ronald E; David Page, C; Buckingham, William R; Tandias, Aman; Cowan, Kelly J; Tomasallo, Carrie D; Arndt, Brian G; Hanrahan, Lawrence P; Guilbert, Theresa W
2015-02-01
Geographically distributed environmental factors influence the burden of diseases such as asthma. Our objective was to identify sparse environmental variables associated with asthma diagnosis gathered from a large electronic health record (EHR) dataset while controlling for spatial variation. An EHR dataset from the University of Wisconsin's Family Medicine, Internal Medicine and Pediatrics Departments was obtained for 199,220 patients aged 5-50years over a three-year period. Each patient's home address was geocoded to one of 3456 geographic census block groups. Over one thousand block group variables were obtained from a commercial database. We developed a Sparse Spatial Environmental Analysis (SASEA). Using this method, the environmental variables were first dimensionally reduced with sparse principal component analysis. Logistic thin plate regression spline modeling was then used to identify block group variables associated with asthma from sparse principal components. The addresses of patients from the EHR dataset were distributed throughout the majority of Wisconsin's geography. Logistic thin plate regression spline modeling captured spatial variation of asthma. Four sparse principal components identified via model selection consisted of food at home, dog ownership, household size, and disposable income variables. In rural areas, dog ownership and renter occupied housing units from significant sparse principal components were associated with asthma. Our main contribution is the incorporation of sparsity in spatial modeling. SASEA sequentially added sparse principal components to Logistic thin plate regression spline modeling. This method allowed association of geographically distributed environmental factors with asthma using EHR and environmental datasets. SASEA can be applied to other diseases with environmental risk factors. Copyright © 2014 Elsevier Inc. All rights reserved.
Soluble Boltzmann equations for internal state and Maxwell models
Futcher, E.; Hoare, M.R.; Hendriks, E.M.; Ernst, M.H.
We consider a class of scalar nonlinear Boltzmann equations describing the evolution of a microcanonical ensemble in which sub-systems exchange internal energy ‘randomly’ in binary interactions. In the continuous variable version these models can equally be interpreted as Boltzmann equations for
The Figure 8 Model of International Relations
National Research Council Canada - National Science Library
Sibayan, Jerome T
2008-01-01
.... The Figure 8 Model is presented first in a Cartesian format and then in geometrical form. This model is an intuitive idea based on a particular reading of history rather than a new international relations theory...
Internal variability of the wind-driven ocean circulation
Katsman, C.A.
2001-01-01
The ocean circulation is known to vary on a multitude of time and spatial scales. Due to the large heat capacity of the oceans, variations in its circulation have a profound impact on climate. Therefore, understanding the origin of this variability and its sensitivity to physical parameters is an
Internal climate variability and projected future regional steric and dynamic sea level rise.
Hu, Aixue; Bates, Susan C
2018-03-14
Observational evidence points to a warming global climate accompanied by rising sea levels which impose significant impacts on island and coastal communities. Studies suggest that internal climate processes can modulate projected future sea level rise (SLR) regionally. It is not clear whether this modulation depends on the future climate pathways. Here, by analyzing two sets of ensemble simulations from a climate model, we investigate the potential reduction of SLR, as a result of steric and dynamic oceanographic affects alone, achieved by following a lower emission scenario instead of business-as-usual one over the twenty-first century and how it may be modulated regionally by internal climate variability. Results show almost no statistically significant difference in steric and dynamic SLR on both global and regional scales in the near-term between the two scenarios, but statistically significant SLR reduction for the global mean and many regions later in the century (2061-2080). However, there are regions where the reduction is insignificant, such as the Philippines and west of Australia, that are associated with ocean dynamics and intensified internal variability due to external forcing.
Modeling variability in porescale multiphase flow experiments
Energy Technology Data Exchange (ETDEWEB)
Ling, Bowen; Bao, Jie; Oostrom, Mart; Battiato, Ilenia; Tartakovsky, Alexandre M.
2017-07-01
Microfluidic devices and porescale numerical models are commonly used to study multiphase flow in biological, geological, and engineered porous materials. In this work, we perform a set of drainage and imbibition experiments in six identical microfluidic cells to study the reproducibility of multiphase flow experiments. We observe significant variations in the experimental results, which are smaller during the drainage stage and larger during the imbibition stage. We demonstrate that these variations are due to sub-porescale geometry differences in microcells (because of manufacturing defects) and variations in the boundary condition (i.e.,fluctuations in the injection rate inherent to syringe pumps). Computational simulations are conducted using commercial software STAR-CCM+, both with constant and randomly varying injection rate. Stochastic simulations are able to capture variability in the experiments associated with the varying pump injection rate.
Modeling variability in porescale multiphase flow experiments
Ling, Bowen; Bao, Jie; Oostrom, Mart; Battiato, Ilenia; Tartakovsky, Alexandre M.
2017-07-01
Microfluidic devices and porescale numerical models are commonly used to study multiphase flow in biological, geological, and engineered porous materials. In this work, we perform a set of drainage and imbibition experiments in six identical microfluidic cells to study the reproducibility of multiphase flow experiments. We observe significant variations in the experimental results, which are smaller during the drainage stage and larger during the imbibition stage. We demonstrate that these variations are due to sub-porescale geometry differences in microcells (because of manufacturing defects) and variations in the boundary condition (i.e., fluctuations in the injection rate inherent to syringe pumps). Computational simulations are conducted using commercial software STAR-CCM+, both with constant and randomly varying injection rates. Stochastic simulations are able to capture variability in the experiments associated with the varying pump injection rate.
International Variability in Ages at Menarche, First Livebirth, and Menopause
Morabia, Alfredo; Costanza, Michael C.
2017-01-01
The occurrences and timing of reproduction-related events, such as menarche, first birth, and menopause, play major roles in a woman's life. There is a lack of comparative information on the overall patterns of the ages at and the timing between these events among different populations of the world. This study describes the variability in reproductive factors across populations in Europe, the Americas, Asia, Australia, and Africa. The study sample consisted of 18,997 women from 13 centers in ...
Variable compression ratio device for internal combustion engine
Maloney, Ronald P.; Faletti, James J.
2004-03-23
An internal combustion engine, particularly suitable for use in a work machine, is provided with a combustion cylinder, a cylinder head at an end of the combustion cylinder and a primary piston reciprocally disposed within the combustion cylinder. The cylinder head includes a secondary cylinder and a secondary piston reciprocally disposed within the secondary cylinder. An actuator is coupled with the secondary piston for controlling the position of the secondary piston dependent upon the position of the primary piston. A communication port establishes fluid flow communication between the combustion cylinder and the secondary cylinder.
Bayesian modeling of measurement error in predictor variables
Fox, Gerardus J.A.; Glas, Cornelis A.W.
2003-01-01
It is shown that measurement error in predictor variables can be modeled using item response theory (IRT). The predictor variables, that may be defined at any level of an hierarchical regression model, are treated as latent variables. The normal ogive model is used to describe the relation between
Growth models with internal competition
International Nuclear Information System (INIS)
Ausloos, M.; Vandewalle, N.
1996-01-01
Combined statistical physics and computation modelling give new instruments for the study of non-equilibrium systems. We briefly review generalized Eden and Diffusion-Limited Aggregation models as applied to spreading phenomena. We indicate the occurrence of non-universal behaviors. (author)
Structure and Variability of Internal Tides in Luzon Strait
2016-09-14
hypothesis that shifting of this gradient is responsible for the lower coherence, we also examined the standard deviation of the baroclinic phase (not... Standard Form 298 (Rev. 8/98) REPORT DOCUMENTATION PAGE Prescribed by ANSI Std. Z39.18 Form Approved OMB No. 0704-0188 The public reporting... statistical data analysis model. The model derives its ocean bottom topography from the Digital Bathyme- try Data Base with 2-min resolution. Open
International Symposia on Scale Modeling
Ito, Akihiko; Nakamura, Yuji; Kuwana, Kazunori
2015-01-01
This volume thoroughly covers scale modeling and serves as the definitive source of information on scale modeling as a powerful simplifying and clarifying tool used by scientists and engineers across many disciplines. The book elucidates techniques used when it would be too expensive, or too difficult, to test a system of interest in the field. Topics addressed in the current edition include scale modeling to study weather systems, diffusion of pollution in air or water, chemical process in 3-D turbulent flow, multiphase combustion, flame propagation, biological systems, behavior of materials at nano- and micro-scales, and many more. This is an ideal book for students, both graduate and undergraduate, as well as engineers and scientists interested in the latest developments in scale modeling. This book also: Enables readers to evaluate essential and salient aspects of profoundly complex systems, mechanisms, and phenomena at scale Offers engineers and designers a new point of view, liberating creative and inno...
International Universities: Misunderstandings and Emerging Models?
Knight, Jane
2015-01-01
Internationalization has transformed higher education institutions and systems but there is much confusion as to what an international, binational, transnational, cosmopolitan, multinational, or global university actually means. There is no standardized model for an international university, nor should there be, but a deeper understanding of…
Hu, A.; Bates, S. C.
2017-12-01
Observations indicate that the global mean surface temperature is rising, so does the global mean sea level. Sea level rise (SLR) can impose significant impacts on island and coastal communities, especially when SLR is compounded with storm surges. Here, via analyzing results from two sets of ensemble simulations from the Community Earth System Model version 1, we investigate how the potential SLR benefits through mitigating the future emission scenarios from business as usual to a mild-mitigation over the 21st Century would be affected by internal climate variability. Results show that there is almost no SLR benefit in the near term due to the large SLR variability due to the internal ocean dynamics. However, toward the end of the 21st century, the SLR benefit can be as much as a 26±1% reduction of the global mean SLR due to seawater thermal expansion. Regionally, the benefits from this mitigation for both near and long terms are heterogeneous. They vary from just a 11±5% SLR reduction in Melbourne, Australia to a 35±6% reduction in London. The processes contributing to these regional differences are the coupling of the wind-driven ocean circulation with the decadal scale sea surface temperature mode in the Pacific and Southern Oceans, and the changes of the thermohaline circulation and the mid-latitude air-sea coupling in the Atlantic.
Combustion modeling in internal combustion engines
Zeleznik, F. J.
1976-01-01
The fundamental assumptions of the Blizard and Keck combustion model for internal combustion engines are examined and a generalization of that model is derived. The most significant feature of the model is that it permits the occurrence of unburned hydrocarbons in the thermodynamic-kinetic modeling of exhaust gases. The general formulas are evaluated in two specific cases that are likely to be significant in the applications of the model.
Structural Modeling of Institutional Variables and Undergraduates ...
African Journals Online (AJOL)
Peer influence and facilities for research were the major exogenous variables while students' perception of their supervisors' commitment to research supervision was a critical variable that influences their attitude towards research projects. We suggest that research supervisors be firm and discreet in the supervision and ...
Spacecraft Internal Acoustic Environment Modeling
Chu, SShao-sheng R.; Allen, Christopher S.
2009-01-01
Acoustic modeling can be used to identify key noise sources, determine/analyze sub-allocated requirements, keep track of the accumulation of minor noise sources, and to predict vehicle noise levels at various stages in vehicle development, first with estimates of noise sources, later with experimental data. In FY09, the physical mockup developed in FY08, with interior geometric shape similar to Orion CM (Crew Module) IML (Interior Mode Line), was used to validate SEA (Statistical Energy Analysis) acoustic model development with realistic ventilation fan sources. The sound power levels of these sources were unknown a priori, as opposed to previous studies that RSS (Reference Sound Source) with known sound power level was used. The modeling results were evaluated based on comparisons to measurements of sound pressure levels over a wide frequency range, including the frequency range where SEA gives good results. Sound intensity measurement was performed over a rectangular-shaped grid system enclosing the ventilation fan source. Sound intensities were measured at the top, front, back, right, and left surfaces of the and system. Sound intensity at the bottom surface was not measured, but sound blocking material was placed tinder the bottom surface to reflect most of the incident sound energy back to the remaining measured surfaces. Integrating measured sound intensities over measured surfaces renders estimated sound power of the source. The reverberation time T6o of the mockup interior had been modified to match reverberation levels of ISS US Lab interior for speech frequency bands, i.e., 0.5k, 1k, 2k, 4 kHz, by attaching appropriately sized Thinsulate sound absorption material to the interior wall of the mockup. Sound absorption of Thinsulate was modeled in three methods: Sabine equation with measured mockup interior reverberation time T60, layup model based on past impedance tube testing, and layup model plus air absorption correction. The evaluation/validation was
Seasonal variability of Internal tide energetics in the western Bay of Bengal
Mohanty, S.; Rao, A. D.
2017-12-01
The Internal Waves (IWs) are generated by the flow of barotropic tide over the rapidly varying and steep topographic features like continental shelf slope, seamounts, etc. These waves are an important phenomena in the ocean due to their influence on the density structure and energy transfer into the region. Such waves are also important in submarine acoustics, underwater navigation, offshore structures, ocean mixing and biogeochemical processes, etc. over the shelf-slope region. The seasonal variability of internal tides in the western Bay of Bengal is examined by using three-dimensional MITgcm model. The numerical simulations are performed for different periods covering August-September, 2013; November-December, 2013 and March-April, 2014 representing monsoon, post-monsoon and pre-monsoon seasons respectively during which high temporal resolution observed data sets are available. The model is initially validated through the spectral estimate of density and the baroclinic velocities. From the estimate, it is found that its peak is associated with the semi-diurnal frequency at all the depths in both observations and model simulations for November-December and March-April. However in August, the estimate is found to be maximum near the inertial frequency at all available depths. EOF analysis suggests that about 70-80% of the total variance comes from Mode-1 semi-diurnal internal tide in both observations as well as in the model simulations. The phase speed, group speed and wavelength are found to be maximum for post-monsoon season compared to other two seasons. To understand the generation and propagation of internal tides over this region, barotropic-to-baroclinic M2 tidal energy conversion and energy flux are examined. The barotropic-to-baroclinic conversion occurs intensively along the shelf-slope regions and propagate towards the coast. The model simulated energy dissipation rate infers that its maximum occurs at the generation sites and hence the local mixing
Analytical model of internally coupled ears
DEFF Research Database (Denmark)
Vossen, Christine; Christensen-Dalsgaard, Jakob; Leo van Hemmen, J
2010-01-01
differences in the tympanic membrane vibrations. Both cues show strong directionality. The work presented herein sets out the derivation of a three dimensional analytical model of internally coupled ears that allows for calculation of a complete vibration profile of the membranes. The analytical model...... additionally provides the opportunity to incorporate the effect of the asymmetrically attached columella, which leads to the activation of higher membrane vibration modes. Incorporating this effect, the analytical model can explain measurements taken from the tympanic membrane of a living lizard, for example......, data demonstrating an asymmetrical spatial pattern of membrane vibration. As the analytical calculations show, the internally coupled ears increase the directional response, appearing in large directional internal amplitude differences (iAD) and in large internal time differences (iTD). Numerical...
Margaret S. Devall; Elaine K. Sutherland
2008-01-01
The 7th International Conference on Dendrochronology - Cultural Diversity, Environmental Variability was held in Beijing, China from 11 to 17 June 2006. The conference was organized and hosted by the Institute of Botany, Chinese Academy of Sciences (IB_CAS) in conjunction with the International Union of Forest Research Organizations (IUFRO) Working Group 5.01.07 (Tree-...
Modeling sea-surface temperature and its variability
Sarachik, E. S.
1985-01-01
A brief review is presented of the temporal scales of sea surface temperature variability. Progress in modeling sea surface temperature, and remaining obstacles to the understanding of the variability is discussed.
BIOMOVS: an international model validation study
International Nuclear Information System (INIS)
Haegg, C.; Johansson, G.
1988-01-01
BIOMOVS (BIOspheric MOdel Validation Study) is an international study where models used for describing the distribution of radioactive and nonradioactive trace substances in terrestrial and aquatic environments are compared and tested. The main objectives of the study are to compare and test the accuracy of predictions between such models, explain differences in these predictions, recommend priorities for future research concerning the improvement of the accuracy of model predictions and act as a forum for the exchange of ideas, experience and information. (author)
BIOMOVS: An international model validation study
International Nuclear Information System (INIS)
Haegg, C.; Johansson, G.
1987-01-01
BIOMOVS (BIOspheric MOdel Validation Study) is an international study where models used for describing the distribution of radioactive and nonradioactive trace substances in terrestrial and aquatic environments are compared and tested. The main objectives of the study are to compare and test the accuracy of predictions between such models, explain differences in these predictions, recommend priorities for future research concerning the improvement of the accuracy of model predictions and act as a forum for the exchange of ideas, experience and information. (orig.)
Generalized Network Psychometrics : Combining Network and Latent Variable Models
Epskamp, S.; Rhemtulla, M.; Borsboom, D.
2017-01-01
We introduce the network model as a formal psychometric model, conceptualizing the covariance between psychometric indicators as resulting from pairwise interactions between observable variables in a network structure. This contrasts with standard psychometric models, in which the covariance between
International Nuclear Information System (INIS)
Fatichi, S.; Rimkus, S.; Burlando, P.; Bordoy, R.
2014-01-01
Projections of climate change effects in streamflow are increasingly required to plan water management strategies. These projections are however largely uncertain due to the spread among climate model realizations, internal climate variability, and difficulties in transferring climate model results at the spatial and temporal scales required by catchment hydrology. A combination of a stochastic downscaling methodology and distributed hydrological modeling was used in the ACQWA project to provide projections of future streamflow (up to year 2050) for the upper Po and Rhone basins, respectively located in northern Italy and south-western Switzerland. Results suggest that internal (stochastic) climate variability is a fundamental source of uncertainty, typically comparable or larger than the projected climate change signal. Therefore, climate change effects in streamflow mean, frequency, and seasonality can be masked by natural climatic fluctuations in large parts of the analyzed regions. An exception to the overwhelming role of stochastic variability is represented by high elevation catchments fed by glaciers where streamflow is expected to be considerably reduced due to glacier retreat, with consequences appreciable in the main downstream rivers in August and September. Simulations also identify regions (west upper Rhone and Toce, Ticino river basins) where a strong precipitation increase in the February to April period projects streamflow beyond the range of natural climate variability during the melting season. This study emphasizes the importance of including internal climate variability in climate change analyses, especially when compared to the limited uncertainty that would be accounted for by few deterministic projections. The presented results could be useful in guiding more specific impact studies, although design or management decisions should be better based on reliability and vulnerability criteria as suggested by recent literature. - Highlights:
Energy Technology Data Exchange (ETDEWEB)
Fatichi, S., E-mail: simone.fatichi@ifu.baug.ethz.ch; Rimkus, S.; Burlando, P.; Bordoy, R.
2014-09-15
Projections of climate change effects in streamflow are increasingly required to plan water management strategies. These projections are however largely uncertain due to the spread among climate model realizations, internal climate variability, and difficulties in transferring climate model results at the spatial and temporal scales required by catchment hydrology. A combination of a stochastic downscaling methodology and distributed hydrological modeling was used in the ACQWA project to provide projections of future streamflow (up to year 2050) for the upper Po and Rhone basins, respectively located in northern Italy and south-western Switzerland. Results suggest that internal (stochastic) climate variability is a fundamental source of uncertainty, typically comparable or larger than the projected climate change signal. Therefore, climate change effects in streamflow mean, frequency, and seasonality can be masked by natural climatic fluctuations in large parts of the analyzed regions. An exception to the overwhelming role of stochastic variability is represented by high elevation catchments fed by glaciers where streamflow is expected to be considerably reduced due to glacier retreat, with consequences appreciable in the main downstream rivers in August and September. Simulations also identify regions (west upper Rhone and Toce, Ticino river basins) where a strong precipitation increase in the February to April period projects streamflow beyond the range of natural climate variability during the melting season. This study emphasizes the importance of including internal climate variability in climate change analyses, especially when compared to the limited uncertainty that would be accounted for by few deterministic projections. The presented results could be useful in guiding more specific impact studies, although design or management decisions should be better based on reliability and vulnerability criteria as suggested by recent literature. - Highlights:
Wave resource variability: Impacts on wave power supply over regional to international scales
Smith, Helen; Fairley, Iain; Robertson, Bryson; Abusara, Mohammad; Masters, Ian
2017-04-01
The intermittent, irregular and variable nature of the wave energy resource has implications for the supply of wave-generated electricity into the grid. Intermittency of renewable power may lead to frequency and voltage fluctuations in the transmission and distribution networks. A matching supply of electricity must be planned to meet the predicted demand, leading to a need for gas-fired and back-up generating plants to supplement intermittent supplies, and potentially limiting the integration of intermittent power into the grid. Issues relating to resource intermittency and their mitigation through the development of spatially separated sites have been widely researched in the wind industry, but have received little attention to date in the less mature wave industry. This study analyses the wave resource over three different spatial scales to investigate the potential impacts of the temporal and spatial resource variability on the grid supply. The primary focus is the Southwest UK, a region already home to multiple existing and proposed wave energy test sites. Concurrent wave buoy data from six locations, supported by SWAN wave model hindcast data, are analysed to assess the correlation of the resource across the region and the variation in wave power with direction. Power matrices for theoretical nearshore and offshore devices are used to calculate the maximum step change in generated power across the region as the number of deployment sites is increased. The step change analysis is also applied across national and international spatial scales using output from the European Centre for Medium-range Weather Forecasting (ECMWF) ERA-Interim hindcast model. It is found that the deployment of multiple wave energy sites, whether on a regional, national or international scale, results in both a reduction in step changes in power and reduced times of zero generation, leading to an overall smoothing of the wave-generated electrical power. This has implications for the
VizieR Online Data Catalog: AAVSO International Variable Star Index VSX (Watson+, 2006-2014)
Watson, C.; Henden, A. A.; Price, A.
2018-04-01
This file contains Galactic stars known or suspected to be variable. It lists all stars that have an entry in the AAVSO International Variable Star Index (VSX; http://www.aavso.org/vsx). The database consisted initially of the General Catalogue of Variable Stars (GCVS) and the New Catalogue of Suspected Variables (NSV) and was then supplemented with a large number of variable star catalogues, as well as individual variable star discoveries or variables found in the literature. Effort has also been invested to update the entries with the latest information regarding position, type and period and to remove duplicates. The VSX database is being continually updated and maintained. For historical reasons some objects outside of the Galaxy have been included. (3 data files).
VizieR Online Data Catalog: AAVSO International Variable Star Index VSX (Watson+, 2006-2014)
Watson, C.; Henden, A. A.; Price, A.
2017-05-01
This file contains Galactic stars known or suspected to be variable. It lists all stars that have an entry in the AAVSO International Variable Star Index (VSX; http://www.aavso.org/vsx). The database consisted initially of the General Catalogue of Variable Stars (GCVS) and the New Catalogue of Suspected Variables (NSV) and was then supplemented with a large number of variable star catalogues, as well as individual variable star discoveries or variables found in the literature. Effort has also been invested to update the entries with the latest information regarding position, type and period and to remove duplicates. The VSX database is being continually updated and maintained. For historical reasons some objects outside of the Galaxy have been included. (3 data files).
Predictor variable resolution governs modeled soil types
Soil mapping identifies different soil types by compressing a unique suite of spatial patterns and processes across multiple spatial scales. It can be quite difficult to quantify spatial patterns of soil properties with remotely sensed predictor variables. More specifically, matching the right scale...
International Nuclear Information System (INIS)
Giorgi, F.; Molteni, F.
2002-01-01
The Physics of Weather and Climate Section at the Abdus Salam International Centre for Theoretical Physics, established in 1998, is currently performing research on different aspects of climate variability, dealing with both natural and anthropogenic aspects of climate changes. In addition to performing diagnostic work on multi-decadal observational datasets and climate simulations carried out in major research centres, the PWC section has been developing its own climate modeling capability, which is focused on three main areas: a) modeling of regional climate change; b) seasonal forecasting at global and regional scale; c) development of simplified models of the general circulation. On topic a), research on different aspects of anthropogenic climate change is being carried out using the Regional Climate (RegCM) developed by Giorgi and collaborators at the National Centre for Atmospheric Research. Time-slice experiments with a high-resolution atmospheric GCM, comparing current climate conditions with future climate scenarios in selected decades, are also planned for the near future. On topic b), a strategy based on ensembles of high-resolution simulations with atmospheric GCM's, using sea surface temperature anomalies predicted by lower-resolution coupled models from other institutions, is currently under experimentation. A one-way nesting of RegCM into the GCM simulations will also be tested. On item c), a 5-layer atmospheric GCM with simplified physical parameterizations has been developed. This model has a very small computational cost compared with state-of-the-art GCMs, and is suitable for studies of natural climate variability on inter-decadal and intercentennial time scales. It is planned to couple this model to simplified ocean models of different complexity, from a simple, static mixed layer model, to simplified models of the tropical Pacific circulation suited to the simulation of the El Nino phenomenon. A joint project with the IAEA-MEL Laboratory in
The Matrix model, a driven state variables approach to non-equilibrium thermodynamics
Jongschaap, R.J.J.
2001-01-01
One of the new approaches in non-equilibrium thermodynamics is the so-called matrix model of Jongschaap. In this paper some features of this model are discussed. We indicate the differences with the more common approach based upon internal variables and the more sophisticated Hamiltonian and GENERIC
Variable Fidelity Aeroelastic Toolkit - Structural Model, Phase I
National Aeronautics and Space Administration — The proposed innovation is a methodology to incorporate variable fidelity structural models into steady and unsteady aeroelastic and aeroservoelastic analyses in...
Multi-wheat-model ensemble responses to interannual climatic variability
DEFF Research Database (Denmark)
Ruane, A C; Hudson, N I; Asseng, S
2016-01-01
We compare 27 wheat models' yield responses to interannual climate variability, analyzed at locations in Argentina, Australia, India, and The Netherlands as part of the Agricultural Model Intercomparison and Improvement Project (AgMIP) Wheat Pilot. Each model simulated 1981–2010 grain yield, and ......-term warming, suggesting that additional processes differentiate climate change impacts from observed climate variability analogs and motivating continuing analysis and model development efforts.......We compare 27 wheat models' yield responses to interannual climate variability, analyzed at locations in Argentina, Australia, India, and The Netherlands as part of the Agricultural Model Intercomparison and Improvement Project (AgMIP) Wheat Pilot. Each model simulated 1981–2010 grain yield, and we...... evaluate results against the interannual variability of growing season temperature, precipitation, and solar radiation. The amount of information used for calibration has only a minor effect on most models' climate response, and even small multi-model ensembles prove beneficial. Wheat model clusters reveal...
Sroka, S.; Lermusiaux, P. F. J.; Haley, P. J., Jr.
2016-02-01
Internal tides and waves are important drivers of mixing and transport in the coastal ocean. In this work, we investigate the spatial variability, temporal variability, and intermittency of internal tides using non-hydrostatic simulations at idealized steep topographies. In particular, we study the sensitivity of internal tide generation and propagation to variability in the external forcing and background state. Examples of such variability include variations in the remote barotropic and internal tides forcing, background stratification, background flow, and surface wave forcing. To complete such studies, we employ a novel probabilistic global dynamical analysis using the stochastic Dynamically Orthogonal (DO) non-hydrostatic Boussinesq equations. These equations, where the stochasticity is introduced through the remote forcing, surface forcing, and background state, evolve in a fully coupled way the mean flow, density, and waves, as well as the statistical, spatial, and temporal characteristics of the stochastic fluctuations. The resulting global analysis also allows the study of nonlinear energy transfers and of the degree to which internal tides respond to specific variable forcing.
ABOUT PSYCHOLOGICAL VARIABLES IN APPLICATION SCORING MODELS
Directory of Open Access Journals (Sweden)
Pablo Rogers
2015-01-01
Full Text Available The purpose of this study is to investigate the contribution of psychological variables and scales suggested by Economic Psychology in predicting individuals’ default. Therefore, a sample of 555 individuals completed a self-completion questionnaire, which was composed of psychological variables and scales. By adopting the methodology of the logistic regression, the following psychological and behavioral characteristics were found associated with the group of individuals in default: a negative dimensions related to money (suffering, inequality and conflict; b high scores on the self-efficacy scale, probably indicating a greater degree of optimism and over-confidence; c buyers classified as compulsive; d individuals who consider it necessary to give gifts to children and friends on special dates, even though many people consider this a luxury; e problems of self-control identified by individuals who drink an average of more than four glasses of alcoholic beverage a day.
Multi-Wheat-Model Ensemble Responses to Interannual Climate Variability
Ruane, Alex C.; Hudson, Nicholas I.; Asseng, Senthold; Camarrano, Davide; Ewert, Frank; Martre, Pierre; Boote, Kenneth J.; Thorburn, Peter J.; Aggarwal, Pramod K.; Angulo, Carlos
2016-01-01
We compare 27 wheat models' yield responses to interannual climate variability, analyzed at locations in Argentina, Australia, India, and The Netherlands as part of the Agricultural Model Intercomparison and Improvement Project (AgMIP) Wheat Pilot. Each model simulated 1981e2010 grain yield, and we evaluate results against the interannual variability of growing season temperature, precipitation, and solar radiation. The amount of information used for calibration has only a minor effect on most models' climate response, and even small multi-model ensembles prove beneficial. Wheat model clusters reveal common characteristics of yield response to climate; however models rarely share the same cluster at all four sites indicating substantial independence. Only a weak relationship (R2 0.24) was found between the models' sensitivities to interannual temperature variability and their response to long-termwarming, suggesting that additional processes differentiate climate change impacts from observed climate variability analogs and motivating continuing analysis and model development efforts.
Stochastic modeling of interannual variation of hydrologic variables
Dralle, David; Karst, Nathaniel; Müller, Marc; Vico, Giulia; Thompson, Sally E.
2017-07-01
Quantifying the interannual variability of hydrologic variables (such as annual flow volumes, and solute or sediment loads) is a central challenge in hydrologic modeling. Annual or seasonal hydrologic variables are themselves the integral of instantaneous variations and can be well approximated as an aggregate sum of the daily variable. Process-based, probabilistic techniques are available to describe the stochastic structure of daily flow, yet estimating interannual variations in the corresponding aggregated variable requires consideration of the autocorrelation structure of the flow time series. Here we present a method based on a probabilistic streamflow description to obtain the interannual variability of flow-derived variables. The results provide insight into the mechanistic genesis of interannual variability of hydrologic processes. Such clarification can assist in the characterization of ecosystem risk and uncertainty in water resources management. We demonstrate two applications, one quantifying seasonal flow variability and the other quantifying net suspended sediment export.
Generalized continuous linear model of international trade
Directory of Open Access Journals (Sweden)
Kostenko Elena
2014-01-01
Full Text Available The probability-based approach to the linear model of international trade based on the theory of Markov processes with continuous time is analysed. A generalized continuous model of international trade is built, in which the transition of the system from state to state is described by linear differential equations. The methodology of how to obtain the intensity matrices, which are differential in nature, is shown, and the same is done for their corresponding transition matrices for processes of purchasing and selling. In the process of the creation of the continuous model, functions and operations of matrices were used in addition to the Laplace transform, which gave the analytical form of the transition matrices, and therefore the expressions for the state vectors of the system. The obtained expressions simplify analysis and calculations in comparison to other methods. The values of the continuous transition matrices include in themselves the results of discrete model of international trade at moments in time proportional to the time step. The continuous model improves the quality of planning and the effectiveness of control of international trade agreements.
Variable selection in Logistic regression model with genetic algorithm.
Zhang, Zhongheng; Trevino, Victor; Hoseini, Sayed Shahabuddin; Belciug, Smaranda; Boopathi, Arumugam Manivanna; Zhang, Ping; Gorunescu, Florin; Subha, Velappan; Dai, Songshi
2018-02-01
Variable or feature selection is one of the most important steps in model specification. Especially in the case of medical-decision making, the direct use of a medical database, without a previous analysis and preprocessing step, is often counterproductive. In this way, the variable selection represents the method of choosing the most relevant attributes from the database in order to build a robust learning models and, thus, to improve the performance of the models used in the decision process. In biomedical research, the purpose of variable selection is to select clinically important and statistically significant variables, while excluding unrelated or noise variables. A variety of methods exist for variable selection, but none of them is without limitations. For example, the stepwise approach, which is highly used, adds the best variable in each cycle generally producing an acceptable set of variables. Nevertheless, it is limited by the fact that it commonly trapped in local optima. The best subset approach can systematically search the entire covariate pattern space, but the solution pool can be extremely large with tens to hundreds of variables, which is the case in nowadays clinical data. Genetic algorithms (GA) are heuristic optimization approaches and can be used for variable selection in multivariable regression models. This tutorial paper aims to provide a step-by-step approach to the use of GA in variable selection. The R code provided in the text can be extended and adapted to other data analysis needs.
Modeling Domain Variability in Requirements Engineering with Contexts
Lapouchnian, Alexei; Mylopoulos, John
Various characteristics of the problem domain define the context in which the system is to operate and thus impact heavily on its requirements. However, most requirements specifications do not consider contextual properties and few modeling notations explicitly specify how domain variability affects the requirements. In this paper, we propose an approach for using contexts to model domain variability in goal models. We discuss the modeling of contexts, the specification of their effects on system goals, and the analysis of goal models with contextual variability. The approach is illustrated with a case study.
Usability Evaluation of Variability Modeling by means of Common Variability Language
Directory of Open Access Journals (Sweden)
Jorge Echeverria
2015-12-01
Full Text Available Common Variability Language (CVL is a recent proposal for OMG's upcoming Variability Modeling standard. CVL models variability in terms of Model Fragments. Usability is a widely-recognized quality criterion essential to warranty the successful use of tools that put these ideas in practice. Facing the need of evaluating the usability of CVL modeling tools, this paper presents a Usability Evaluation of CVL applied to a Modeling Tool for firmware code of Induction Hobs. This evaluation addresses the configuration, scoping and visualization facets. The evaluation involved the end users of the tool whom are engineers of our Induction Hob industrial partner. Effectiveness and efficiency results indicate that model configuration in terms of model fragment substitutions is intuitive enough but both scoping and visualization require improved tool support. Results also enabled us to identify a list of usability problems which may contribute to alleviate scoping and visualization issues in CVL.
Defining a Family of Cognitive Diagnosis Models Using Log-Linear Models with Latent Variables
Henson, Robert A.; Templin, Jonathan L.; Willse, John T.
2009-01-01
This paper uses log-linear models with latent variables (Hagenaars, in "Loglinear Models with Latent Variables," 1993) to define a family of cognitive diagnosis models. In doing so, the relationship between many common models is explicitly defined and discussed. In addition, because the log-linear model with latent variables is a general model for…
Coevolution of variability models and related software artifacts
DEFF Research Database (Denmark)
Passos, Leonardo; Teixeira, Leopoldo; Dinztner, Nicolas
2015-01-01
models coevolve with other artifact types, we study a large and complex real-world variant-rich software system: the Linux kernel. Specifically, we extract variability-coevolution patterns capturing changes in the variability model of the Linux kernel with subsequent changes in Makefiles and C source...
Alber, Hans-Dieter
1998-01-01
This book contributes to the mathematical theory of systems of differential equations consisting of the partial differential equations resulting from conservation of mass and momentum, and of constitutive equations with internal variables. The investigations are guided by the objective of proving existence and uniqueness, and are based on the idea of transforming the internal variables and the constitutive equations. A larger number of constitutive equations from the engineering sciences are presented. The book is therefore suitable not only for specialists, but also for mathematicians seeking for an introduction in the field, and for engineers with a sound mathematical background.
A Model of International Communication Media Appraisal and Exposure: A Comprehensive Test in Belize.
Johnson, J. David; Oliveira, Omar Souki
A study constituted the fifth phase of a programmatic research effort designed to develop and test a model of international communications media exposure and appraisal. The model posits that three variables--editorial tone, communication potential, and utility--have positive determinant effects on these dependent variables. Research was carried…
International Planetary Data Alliance (IPDA) Information Model
Hughes, John Steven; Beebe, R.; Guinness, E.; Heather, D.; Huang, M.; Kasaba, Y.; Osuna, P.; Rye, E.; Savorskiy, V.
2007-01-01
This document is the third deliverable of the International Planetary Data Alliance (IPDA) Archive Data Standards Requirements Identification project. The goal of the project is to identify a subset of the standards currently in use by NASAs Planetary Data System (PDS) that are appropriate for internationalization. As shown in the highlighted sections of Figure 1, the focus of this project is the Information Model component of the Data Architecture Standards, namely the object models, a data dictionary, and a set of data formats.
On the Temporal Variability of Low-Mode Internal Tides in the Deep Ocean
Ray, Richard D.; Zaron, E. D.
2010-01-01
In situ measurements of internal tides are typically characterized by high temporal variability, with strong dependence on stratification, mesoscale eddies, and background currents commonly observed. Thus, it is surprising to find phase-locked internal tides detectable by satellite altimetry. An important question is how much tidal variability is missed by altimetry. We address this question in several ways. We subset the altimetry by season and find only very small changes -- an important exception being internal tides in the South China Sea where we observe strong seasonal dependence. A wavenumber-domain analysis confirms that throughout most of the global ocean there is little temporal variability in altimetric internal-tide signals, at least in the first baroclinic mode, which is the mode that dominates surface elevation. The analysis shows higher order modes to be significantly more variable. The results of this study have important practical implications for the anticipated SWOT wide-swath altimeter mission, for which removal of internal tide signals is critical for observing non-tidal submesoscale phenomena.
Fox, Eric W; Hill, Ryan A; Leibowitz, Scott G; Olsen, Anthony R; Thornbrugh, Darren J; Weber, Marc H
2017-07-01
Random forest (RF) modeling has emerged as an important statistical learning method in ecology due to its exceptional predictive performance. However, for large and complex ecological data sets, there is limited guidance on variable selection methods for RF modeling. Typically, either a preselected set of predictor variables are used or stepwise procedures are employed which iteratively remove variables according to their importance measures. This paper investigates the application of variable selection methods to RF models for predicting probable biological stream condition. Our motivating data set consists of the good/poor condition of n = 1365 stream survey sites from the 2008/2009 National Rivers and Stream Assessment, and a large set (p = 212) of landscape features from the StreamCat data set as potential predictors. We compare two types of RF models: a full variable set model with all 212 predictors and a reduced variable set model selected using a backward elimination approach. We assess model accuracy using RF's internal out-of-bag estimate, and a cross-validation procedure with validation folds external to the variable selection process. We also assess the stability of the spatial predictions generated by the RF models to changes in the number of predictors and argue that model selection needs to consider both accuracy and stability. The results suggest that RF modeling is robust to the inclusion of many variables of moderate to low importance. We found no substantial improvement in cross-validated accuracy as a result of variable reduction. Moreover, the backward elimination procedure tended to select too few variables and exhibited numerous issues such as upwardly biased out-of-bag accuracy estimates and instabilities in the spatial predictions. We use simulations to further support and generalize results from the analysis of real data. A main purpose of this work is to elucidate issues of model selection bias and instability to ecologists interested in
Modelling internal migration in Kenya: an econometric analysis with limited data.
Barber, G M; Milne, W J
1988-09-01
"In this paper the determinants of internal migration in Kenya are analyzed on the basis of a human capital model. Explanatory variables included in the specification are both economic (wage rates and employment rates) and noneconomic (for example, population density and educational attainment). Also incorporated are variables which reflect intervening opportunities.... The econometric results show that destination variables are important determinants of internal migration, as is distance between the districts. Further, the variables for the intervening opportunities add significantly to the explanatory power of the model." excerpt
Models and phantoms for internal dose assessment
International Nuclear Information System (INIS)
Giussani, Augusto
2015-01-01
Radiation doses delivered by incorporated radionuclides cannot be directly measured, and they are assessed by means of biokinetic and dosimetric models and computational phantoms. For emitters of short-range radiation like alpha-particles or Auger electrons, the doses at organ levels, as they are usually defined in internal dosimetry, are no longer relevant. Modelling the inter- and intra-cellular radiation transport and the local patterns of deposition at molecular or cellular levels are the challenging tasks of micro- and nano-dosimetry. With time, the physiological and anatomical realism of the models and phantoms have increased. However, not always the information is available that would be required to characterise the greater complexity of the recent models. Uncertainty studies in internal dose assessment provide here a valuable contribution for testing the significance of the new dose estimates and of the discrepancies from the previous values. Some of the challenges, limitations and future perspectives of the use of models and phantoms in internal dosimetry are discussed in the present manuscript. (authors)
International Space Station Model Correlation Analysis
Laible, Michael R.; Fitzpatrick, Kristin; Hodge, Jennifer; Grygier, Michael
2018-01-01
This paper summarizes the on-orbit structural dynamic data and the related modal analysis, model validation and correlation performed for the International Space Station (ISS) configuration ISS Stage ULF7, 2015 Dedicated Thruster Firing (DTF). The objective of this analysis is to validate and correlate the analytical models used to calculate the ISS internal dynamic loads and compare the 2015 DTF with previous tests. During the ISS configurations under consideration, on-orbit dynamic measurements were collected using the three main ISS instrumentation systems; Internal Wireless Instrumentation System (IWIS), External Wireless Instrumentation System (EWIS) and the Structural Dynamic Measurement System (SDMS). The measurements were recorded during several nominal on-orbit DTF tests on August 18, 2015. Experimental modal analyses were performed on the measured data to extract modal parameters including frequency, damping, and mode shape information. Correlation and comparisons between test and analytical frequencies and mode shapes were performed to assess the accuracy of the analytical models for the configurations under consideration. These mode shapes were also compared to earlier tests. Based on the frequency comparisons, the accuracy of the mathematical models is assessed and model refinement recommendations are given. In particular, results of the first fundamental mode will be discussed, nonlinear results will be shown, and accelerometer placement will be assessed.
Variable amplitude fatigue, modelling and testing
International Nuclear Information System (INIS)
Svensson, Thomas.
1993-01-01
Problems related to metal fatigue modelling and testing are here treated in four different papers. In the first paper different views of the subject are summarised in a literature survey. In the second paper a new model for fatigue life is investigated. Experimental results are established which are promising for further development of the mode. In the third paper a method is presented that generates a stochastic process, suitable to fatigue testing. The process is designed in order to resemble certain fatigue related features in service life processes. In the fourth paper fatigue problems in transport vibrations are treated
Energy Technology Data Exchange (ETDEWEB)
Corre, L.; Terray, L.; Weaver, A. [Cerfacs-CNRS, Toulouse (France); Balmaseda, M. [E.C.M.W.F, Reading (United Kingdom); Ribes, A. [CNRM-GAME, Meteo France-CNRS, Toulouse (France)
2012-03-15
A multivariate analysis of the upper ocean thermal structure is used to examine the recent long-term changes and decadal variability in the upper ocean heat content as represented by model-based ocean reanalyses and a model-independent objective analysis. The three variables used are the mean temperature above the 14 C isotherm, its depth and a fixed depth mean temperature (250 m mean temperature). The mean temperature above the 14 C isotherm is a convenient, albeit simple, way to isolate thermodynamical changes by filtering out dynamical changes related to thermocline vertical displacements. The global upper ocean observations and reanalyses exhibit very similar warming trends (0.045 C per decade) over the period 1965-2005, superimposed with marked decadal variability in the 1970s and 1980s. The spatial patterns of the regression between indices (representative of anthropogenic changes and known modes of internal decadal variability), and the three variables associated with the ocean heat content are used as fingerprint to separate out the different contributions. The choice of variables provides information about the local heat absorption, vertical distribution and horizontal redistribution of heat, this latter being suggestive of changes in ocean circulation. The discrepancy between the objective analysis and the reanalyses, as well as the spread among the different reanalyses, are used as a simple estimate of ocean state uncertainties. Two robust findings result from this analysis: (1) the signature of anthropogenic changes is qualitatively different from those of the internal decadal variability associated to the Pacific Interdecadal Oscillation and the Atlantic Meridional Oscillation, and (2) the anthropogenic changes in ocean heat content do not only consist of local heat absorption, but are likely related with changes in the ocean circulation, with a clear shallowing of the tropical thermocline in the Pacific and Indian oceans. (orig.)
Linear latent variable models: the lava-package
DEFF Research Database (Denmark)
Holst, Klaus Kähler; Budtz-Jørgensen, Esben
2013-01-01
An R package for specifying and estimating linear latent variable models is presented. The philosophy of the implementation is to separate the model specification from the actual data, which leads to a dynamic and easy way of modeling complex hierarchical structures. Several advanced features...... are implemented including robust standard errors for clustered correlated data, multigroup analyses, non-linear parameter constraints, inference with incomplete data, maximum likelihood estimation with censored and binary observations, and instrumental variable estimators. In addition an extensive simulation...
Directory of Open Access Journals (Sweden)
G N Kameneva
2014-12-01
Full Text Available The article is devoted to the analysis of the peculiarities of the relations of the variables of diligence as a personality trait and socio-psychological adaptation of students. The presented results of an empirical study show both general and specific relationships for Russian and international students.
Neural correlates of internal-model loading.
Bursztyn, Lulu L C D; Ganesh, G; Imamizu, Hiroshi; Kawato, Mitsuo; Flanagan, J Randall
2006-12-19
Skilled object manipulation requires knowledge, or internal models, of object dynamics relating applied force to motion , and our ability to handle myriad objects indicates that the brain maintains multiple models . Recent behavioral studies have shown that once learned, an internal model of an object with novel dynamics can be rapidly recruited and derecruited as the object is grasped and released . We used event-related fMRI to investigate neural activity linked to grasping an object with recently learned dynamics in preparation for moving it after a delay. Subjects also performed two control tasks in which they either moved without the object in hand or applied isometric forces to the object. In all trials, subjects received a cue indicating which task to perform in response to a go signal delivered 5-10 s later. We examined BOLD responses during the interval between the cue and go and assessed the conjunction of the two contrasts formed by comparing the primary task to each control. The analysis revealed significant activity in the ipsilateral cerebellum and the contralateral and supplementary motor areas. We propose that these regions are involved in internal-model recruitment in preparation for movement execution.
The Air Quality Model Evaluation International Initiative ...
This presentation provides an overview of the Air Quality Model Evaluation International Initiative (AQMEII). It contains a synopsis of the three phases of AQMEII, including objectives, logistics, and timelines. It also provides a number of examples of analyses conducted through AQMEII with a particular focus on past and future analyses of deposition. The National Exposure Research Laboratory (NERL) Computational Exposure Division (CED) develops and evaluates data, decision-support tools, and models to be applied to media-specific or receptor-specific problem areas. CED uses modeling-based approaches to characterize exposures, evaluate fate and transport, and support environmental diagnostics/forensics with input from multiple data sources. It also develops media- and receptor-specific models, process models, and decision support tools for use both within and outside of EPA.
A Polynomial Term Structure Model with Macroeconomic Variables
Directory of Open Access Journals (Sweden)
José Valentim Vicente
2007-06-01
Full Text Available Recently, a myriad of factor models including macroeconomic variables have been proposed to analyze the yield curve. We present an alternative factor model where term structure movements are captured by Legendre polynomials mimicking the statistical factor movements identified by Litterman e Scheinkmam (1991. We estimate the model with Brazilian Foreign Exchange Coupon data, adopting a Kalman filter, under two versions: the first uses only latent factors and the second includes macroeconomic variables. We study its ability to predict out-of-sample term structure movements, when compared to a random walk. We also discuss results on the impulse response function of macroeconomic variables.
Selecting candidate predictor variables for the modelling of post ...
African Journals Online (AJOL)
Selecting candidate predictor variables for the modelling of post-discharge mortality from sepsis: a protocol development project. Afri. Health Sci. .... Initial list of candidate predictor variables, N=17. Clinical. Laboratory. Social/Demographic. Vital signs (HR, RR, BP, T). Hemoglobin. Age. Oxygen saturation. Blood culture. Sex.
Variable-Structure Control of a Model Glider Airplane
Waszak, Martin R.; Anderson, Mark R.
2008-01-01
A variable-structure control system designed to enable a fuselage-heavy airplane to recover from spin has been demonstrated in a hand-launched, instrumented model glider airplane. Variable-structure control is a high-speed switching feedback control technique that has been developed for control of nonlinear dynamic systems.
An International Model for Antibiotics Regulation.
Aguirre, Emilie
We face a global antibiotics resistance crisis. Antibiotic drugs are rapidly losing their effectiveness, potentially propelling us toward a post-antibiotic world. The largest use of antibiotics in the world is in food-producing animals. Food producers administer these drugs in routine, low doses—the types of doses that are incidentally the most conducive to breeding antibiotic resistance. In general, individual countries have been too slow to act in regulating misuse and overuse of antibiotics in foodproducing animals. This problem will only worsen with the significant projected growth in meat consumption and production expected in emerging economies in the near future. Although individual countries regulating antibiotics can have important effects, one country alone cannot insulate itself entirely from the effects of antibiotic resistance, nor can one country solve the crisis for itself or for the world. The global nature of the food system and the urgency of the problem require immediate global solutions. Adapting a democratic experimentalist approach at the international level can help achieve this goal. Using an international democratic experimentalist framework in conjunction with the World Organization for Animal Health (OIE) would provide for increased systematized data collection and lead to heightened, scientifically informed OIE standards, enforceable by the World Trade Organization (WTO), which could have a significant impact on the reduction of subtherapeutic use of antibiotics internationally. International democratic experimentalism addresses the global intricacy, time sensitivity, context- and culture-specificity, and knowledgeintensiveness of this problem. By encouraging more countries to experiment to solve this problem, the democratic experimentalist model would help develop a larger database of solutions to enable more meaningful cross-country comparisons across a wider range of contexts. This approach maintains democratic governance and
Interdecadal variability in a global coupled model
International Nuclear Information System (INIS)
Storch, J.S. von.
1994-01-01
Interdecadal variations are studied in a 325-year simulation performed by a coupled atmosphere - ocean general circulation model. The patterns obtained in this study may be considered as characteristic patterns for interdecadal variations. 1. The atmosphere: Interdecadal variations have no preferred time scales, but reveal well-organized spatial structures. They appear as two modes, one is related with variations of the tropical easterlies and the other with the Southern Hemisphere westerlies. Both have red spectra. The amplitude of the associated wind anomalies is largest in the upper troposphere. The associated temperature anomalies are in thermal-wind balance with the zonal winds and are out-of-phase between the troposphere and the lower stratosphere. 2. The Pacific Ocean: The dominant mode in the Pacific appears to be wind-driven in the midlatitudes and is related to air-sea interaction processes during one stage of the oscillation in the tropics. Anomalies of this mode propagate westward in the tropics and the northward (southwestward) in the North (South) Pacific on a time scale of about 10 to 20 years. (orig.)
Using Enthalpy as a Prognostic Variable in Atmospheric Modelling with Variable Composition
2016-04-14
InterScience (www.interscience.wiley.com) DOI: 10.1002/qj.345 Using enthalpy as a prognostic variable in atmospheric modelling with variable composition† R...Maryland, USA cNow at NOAA/NCEP, Space Weather Prediction Centre, Boulder, Colorado, USA ABSTRACT: Specific enthalpy emerges from a general form of the...trajectories depend- ing on sources, sinks, and fluxes of individual tracers. Specific enthalpy , h = cpT , (1) where cp is the specific heat capacity at
Spatial variability and parametric uncertainty in performance assessment models
International Nuclear Information System (INIS)
Pensado, Osvaldo; Mancillas, James; Painter, Scott; Tomishima, Yasuo
2011-01-01
The problem of defining an appropriate treatment of distribution functions (which could represent spatial variability or parametric uncertainty) is examined based on a generic performance assessment model for a high-level waste repository. The generic model incorporated source term models available in GoldSim ® , the TDRW code for contaminant transport in sparse fracture networks with a complex fracture-matrix interaction process, and a biosphere dose model known as BDOSE TM . Using the GoldSim framework, several Monte Carlo sampling approaches and transport conceptualizations were evaluated to explore the effect of various treatments of spatial variability and parametric uncertainty on dose estimates. Results from a model employing a representative source and ensemble-averaged pathway properties were compared to results from a model allowing for stochastic variation of transport properties along streamline segments (i.e., explicit representation of spatial variability within a Monte Carlo realization). We concluded that the sampling approach and the definition of an ensemble representative do influence consequence estimates. In the examples analyzed in this paper, approaches considering limited variability of a transport resistance parameter along a streamline increased the frequency of fast pathways resulting in relatively high dose estimates, while those allowing for broad variability along streamlines increased the frequency of 'bottlenecks' reducing dose estimates. On this basis, simplified approaches with limited consideration of variability may suffice for intended uses of the performance assessment model, such as evaluation of site safety. (author)
Multiple Imputation of Predictor Variables Using Generalized Additive Models
de Jong, Roel; van Buuren, Stef; Spiess, Martin
2016-01-01
The sensitivity of multiple imputation methods to deviations from their distributional assumptions is investigated using simulations, where the parameters of scientific interest are the coefficients of a linear regression model, and values in predictor variables are missing at random. The
Higher-dimensional cosmological model with variable gravitational ...
Indian Academy of Sciences (India)
com. MS received 9 February 2004; revised 19 June 2004; accepted 12 August 2004. Abstract. We have studied five-dimensional homogeneous cosmological models with variable G and bulk viscosity in Lyra geometry. Exact solutions for the field ...
Higher-dimensional cosmological model with variable gravitational ...
Indian Academy of Sciences (India)
We have studied five-dimensional homogeneous cosmological models with variable and bulk viscosity in Lyra geometry. Exact solutions for the field equations have been obtained and physical properties of the models are discussed. It has been observed that the results of new models are well within the observational ...
Towards multi-resolution global climate modeling with ECHAM6-FESOM. Part II: climate variability
Rackow, T.; Goessling, H. F.; Jung, T.; Sidorenko, D.; Semmler, T.; Barbi, D.; Handorf, D.
2018-04-01
This study forms part II of two papers describing ECHAM6-FESOM, a newly established global climate model with a unique multi-resolution sea ice-ocean component. While part I deals with the model description and the mean climate state, here we examine the internal climate variability of the model under constant present-day (1990) conditions. We (1) assess the internal variations in the model in terms of objective variability performance indices, (2) analyze variations in global mean surface temperature and put them in context to variations in the observed record, with particular emphasis on the recent warming slowdown, (3) analyze and validate the most common atmospheric and oceanic variability patterns, (4) diagnose the potential predictability of various climate indices, and (5) put the multi-resolution approach to the test by comparing two setups that differ only in oceanic resolution in the equatorial belt, where one ocean mesh keeps the coarse 1° resolution applied in the adjacent open-ocean regions and the other mesh is gradually refined to 0.25°. Objective variability performance indices show that, in the considered setups, ECHAM6-FESOM performs overall favourably compared to five well-established climate models. Internal variations of the global mean surface temperature in the model are consistent with observed fluctuations and suggest that the recent warming slowdown can be explained as a once-in-one-hundred-years event caused by internal climate variability; periods of strong cooling in the model (`hiatus' analogs) are mainly associated with ENSO-related variability and to a lesser degree also to PDO shifts, with the AMO playing a minor role. Common atmospheric and oceanic variability patterns are simulated largely consistent with their real counterparts. Typical deficits also found in other models at similar resolutions remain, in particular too weak non-seasonal variability of SSTs over large parts of the ocean and episodic periods of almost absent
A variable-order fractal derivative model for anomalous diffusion
Directory of Open Access Journals (Sweden)
Liu Xiaoting
2017-01-01
Full Text Available This paper pays attention to develop a variable-order fractal derivative model for anomalous diffusion. Previous investigations have indicated that the medium structure, fractal dimension or porosity may change with time or space during solute transport processes, results in time or spatial dependent anomalous diffusion phenomena. Hereby, this study makes an attempt to introduce a variable-order fractal derivative diffusion model, in which the index of fractal derivative depends on temporal moment or spatial position, to characterize the above mentioned anomalous diffusion (or transport processes. Compared with other models, the main advantages in description and the physical explanation of new model are explored by numerical simulation. Further discussions on the dissimilitude such as computational efficiency, diffusion behavior and heavy tail phenomena of the new model and variable-order fractional derivative model are also offered.
Classification criteria of syndromes by latent variable models
DEFF Research Database (Denmark)
Petersen, Janne
2010-01-01
are shown to be superior depending on whether the latent variable is a dependent or an independent variable. Both these types of scores are extended to the situation of differential item functioning. Analytically I have showed that the scores result in consistent estimates when used properly in subsequent...... of the syndrome. Thus, the results suggested that peripheral lipoatrophy and central lipohypertophy are interrelated phenotypes rather than two independent phenotypes. Part 2: Latent class regression relates explanatory variables to latent classes. In this model no measure of the latent class variable is obtained......The thesis has two parts; one clinical part: studying the dimensions of human immunodeficiency virus associated lipodystrophy syndrome (HALS) by latent class models, and a more statistical part: investigating how to predict scores of latent variables so these can be used in subsequent regression...
Kim, Minseok; Pangle, Luke A.; Cardoso, Charléne; Lora, Marco; Volkmann, Till H. M.; Wang, Yadi; Harman, Ciaran J.; Troch, Peter A.
2016-09-01
Transit times through hydrologic systems vary in time, but the nature of that variability is not well understood. Transit times variability was investigated in a 1 m3 sloping lysimeter, representing a simplified model of a hillslope receiving periodic rainfall events for 28 days. Tracer tests were conducted using an experimental protocol that allows time-variable transit time distributions (TTDs) to be calculated from data. Observed TTDs varied with the storage state of the system, and the history of inflows and outflows. We propose that the observed time variability of the TTDs can be decomposed into two parts: "internal" variability associated with changes in the arrangement of, and partitioning between, flow pathways; and "external" variability driven by fluctuations in the flow rate along all flow pathways. These concepts can be defined quantitatively in terms of rank StorAge Selection (rSAS) functions, which is a theory describing lumped transport dynamics. Internal variability is associated with temporal variability in the rSAS function, while external is not. The rSAS function variability was characterized by an "inverse storage effect," whereby younger water is released in greater proportion under wetter conditions than drier. We hypothesize that this effect is caused by the rapid mobilization of water in the unsaturated zone by the rising water table. Common approximations used to model transport dynamics that neglect internal variability were unable to reproduce the observed breakthrough curves accurately. This suggests that internal variability can play an important role in hydrologic transport dynamics, with implications for field data interpretation and modeling.
Bayesian approach to errors-in-variables in regression models
Rozliman, Nur Aainaa; Ibrahim, Adriana Irawati Nur; Yunus, Rossita Mohammad
2017-05-01
In many applications and experiments, data sets are often contaminated with error or mismeasured covariates. When at least one of the covariates in a model is measured with error, Errors-in-Variables (EIV) model can be used. Measurement error, when not corrected, would cause misleading statistical inferences and analysis. Therefore, our goal is to examine the relationship of the outcome variable and the unobserved exposure variable given the observed mismeasured surrogate by applying the Bayesian formulation to the EIV model. We shall extend the flexible parametric method proposed by Hossain and Gustafson (2009) to another nonlinear regression model which is the Poisson regression model. We shall then illustrate the application of this approach via a simulation study using Markov chain Monte Carlo sampling methods.
Model and Variable Selection Procedures for Semiparametric Time Series Regression
Directory of Open Access Journals (Sweden)
Risa Kato
2009-01-01
Full Text Available Semiparametric regression models are very useful for time series analysis. They facilitate the detection of features resulting from external interventions. The complexity of semiparametric models poses new challenges for issues of nonparametric and parametric inference and model selection that frequently arise from time series data analysis. In this paper, we propose penalized least squares estimators which can simultaneously select significant variables and estimate unknown parameters. An innovative class of variable selection procedure is proposed to select significant variables and basis functions in a semiparametric model. The asymptotic normality of the resulting estimators is established. Information criteria for model selection are also proposed. We illustrate the effectiveness of the proposed procedures with numerical simulations.
Interdecadal variability of the meridional overturning circulation as an ocean internal mode
Energy Technology Data Exchange (ETDEWEB)
Zhu, Xiuhua [Universitaet Hamburg, Meteorologisches Institut, Hamburg (Germany); Jungclaus, Johann [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany)
2008-11-15
The meridional overturning circulation (MOC) in the coupled ECHAM5/MPIOM exhibits variability at periods of near 30 years and near 60 years. The 30-year variability, referred to as interdecadal variability (IDV), exist in an ocean model driven by climatological atmospheric forcing, suggesting that it is maintained by ocean dynamics; the 60-year variability, the multidecadal variability (MDV), is only observed in the fully coupled model and therefore is interpreted as an atmosphere-ocean coupled mode. The coexistence of the 30-year IDV and the 60-year MDV provides a possible explanation for the widespread time scales observed in climate variables. Further analyses of the climatologically forced ocean model shows that, the IDV is related to the interplay between the horizontal temperature-dominated density gradients and the ocean circulation: temperature anomalies move along the cyclonic subpolar gyre leading to fluctuations in horizontal density gradients and the subsequent weakening and strengthening of the MOC. This result is consistent with that from less complex models, indicating the robustness of the IDV. We further show that, along the North Atlantic Current path, the sea surface temperature anomalies are determined by the slow LSW advection at the intermediate depth. (orig.)
Sparse modeling of spatial environmental variables associated with asthma
Chang, Timothy S.; Gangnon, Ronald E.; Page, C. David; Buckingham, William R.; Tandias, Aman; Cowan, Kelly J.; Tomasallo, Carrie D.; Arndt, Brian G.; Hanrahan, Lawrence P.; Guilbert, Theresa W.
2014-01-01
Geographically distributed environmental factors influence the burden of diseases such as asthma. Our objective was to identify sparse environmental variables associated with asthma diagnosis gathered from a large electronic health record (EHR) dataset while controlling for spatial variation. An EHR dataset from the University of Wisconsin’s Family Medicine, Internal Medicine and Pediatrics Departments was obtained for 199,220 patients aged 5–50 years over a three-year period. Each patient’s ...
Financial applications of a Tabu search variable selection model
Directory of Open Access Journals (Sweden)
Zvi Drezner
2001-01-01
Full Text Available We illustrate how a comparatively new technique, a Tabu search variable selection model [Drezner, Marcoulides and Salhi (1999], can be applied efficiently within finance when the researcher must select a subset of variables from among the whole set of explanatory variables under consideration. Several types of problems in finance, including corporate and personal bankruptcy prediction, mortgage and credit scoring, and the selection of variables for the Arbitrage Pricing Model, require the researcher to select a subset of variables from a larger set. In order to demonstrate the usefulness of the Tabu search variable selection model, we: (1 illustrate its efficiency in comparison to the main alternative search procedures, such as stepwise regression and the Maximum R2 procedure, and (2 show how a version of the Tabu search procedure may be implemented when attempting to predict corporate bankruptcy. We accomplish (2 by indicating that a Tabu Search procedure increases the predictability of corporate bankruptcy by up to 10 percentage points in comparison to Altman's (1968 Z-Score model.
International energy market dynamics: a modelling approach. Tome 2
International Nuclear Information System (INIS)
Nachet, S.
1996-01-01
This work is an attempt to model international energy market and reproduce the behaviour of both energy demand and supply. Energy demand was represented using sector versus source approach. For developing countries, existing link between economic and energy sectors were analysed. Energy supply is exogenous for energy sources other than oil and natural gas. For hydrocarbons, exploration-production process was modelled and produced figures as production yield, exploration effort index, ect. The model build is econometric and is solved using a software that was constructed for this purpose. We explore the energy market future using three scenarios and obtain projections by 2010 for energy demand per source and oil and natural gas supply per region. Economic variables are used to produce different indicators as energy intensity, energy per capita, etc. (author). 378 refs., 26 figs., 35 tabs., 11 appends
International energy market dynamics: a modelling approach. Tome 1
International Nuclear Information System (INIS)
Nachet, S.
1996-01-01
This work is an attempt to model international energy market and reproduce the behaviour of both energy demand and supply. Energy demand was represented using sector versus source approach. For developing countries, existing link between economic and energy sectors were analysed. Energy supply is exogenous for energy sources other than oil and natural gas. For hydrocarbons, exploration-production process was modelled and produced figures as production yield, exploration effort index, etc. The model built is econometric and is solved using a software that was constructed for this purpose. We explore the energy market future using three scenarios and obtain projections by 2010 for energy demand per source and oil natural gas supply per region. Economic variables are used to produce different indicators as energy intensity, energy per capita, etc. (author). 378 refs., 26 figs., 35 tabs., 11 appends
Variable selection for mixture and promotion time cure rate models.
Masud, Abdullah; Tu, Wanzhu; Yu, Zhangsheng
2016-11-16
Failure-time data with cured patients are common in clinical studies. Data from these studies are typically analyzed with cure rate models. Variable selection methods have not been well developed for cure rate models. In this research, we propose two least absolute shrinkage and selection operators based methods, for variable selection in mixture and promotion time cure models with parametric or nonparametric baseline hazards. We conduct an extensive simulation study to assess the operating characteristics of the proposed methods. We illustrate the use of the methods using data from a study of childhood wheezing. © The Author(s) 2016.
Interacting ghost dark energy models with variable G and Λ
Sadeghi, J.; Khurshudyan, M.; Movsisyan, A.; Farahani, H.
2013-12-01
In this paper we consider several phenomenological models of variable Λ. Model of a flat Universe with variable Λ and G is accepted. It is well known, that varying G and Λ gives rise to modified field equations and modified conservation laws, which gives rise to many different manipulations and assumptions in literature. We will consider two component fluid, which parameters will enter to Λ. Interaction between fluids with energy densities ρ1 and ρ2 assumed as Q = 3Hb(ρ1+ρ2). We have numerical analyze of important cosmological parameters like EoS parameter of the composed fluid and deceleration parameter q of the model.
Model for expressing leaf photosynthesis in terms of weather variables
African Journals Online (AJOL)
A theoretical mathematical model for describing photosynthesis in individual leaves in terms of weather variables is proposed. The model utilizes a series of efficiency parameters, each of which reflect the fraction of potential photosynthetic rate permitted by the different environmental elements. These parameters are useful ...
Simple model for crop photosynthesis in terms of weather variables ...
African Journals Online (AJOL)
A theoretical mathematical model for describing crop photosynthetic rate in terms of the weather variables and crop characteristics is proposed. The model utilizes a series of efficiency parameters, each of which reflect the fraction of possible photosynthetic rate permitted by the different weather elements or crop architecture.
Bayesian variable order Markov models: Towards Bayesian predictive state representations
Dimitrakakis, C.
2009-01-01
We present a Bayesian variable order Markov model that shares many similarities with predictive state representations. The resulting models are compact and much easier to specify and learn than classical predictive state representations. Moreover, we show that they significantly outperform a more
Modeling, analysis and control of a variable geometry actuator
Evers, W.J.; Knaap, A. van der; Besselink, I.J.M.; Nijmeijer, H.
2008-01-01
A new design of variable geometry force actuator is presented in this paper. Based upon this design, a model is derived which is used for steady-state analysis, as well as controller design in the presence of friction. The controlled actuator model is finally used to evaluate the power consumption
Deser, Clara; Guo, Ruixia; Lehner, Flavio
2017-08-01
The recent slowdown in global mean surface temperature (GMST) warming during boreal winter is examined from a regional perspective using 10-member initial-condition ensembles with two global coupled climate models in which observed tropical Pacific sea surface temperature anomalies (TPAC SSTAs) and radiative forcings are specified. Both models show considerable diversity in their surface air temperature (SAT) trend patterns across the members, attesting to the importance of internal variability beyond the tropical Pacific that is superimposed upon the response to TPAC SSTA and radiative forcing. Only one model shows a close relationship between the realism of its simulated GMST trends and SAT trend patterns. In this model, Eurasian cooling plays a dominant role in determining the GMST trend amplitude, just as in nature. In the most realistic member, intrinsic atmospheric dynamics and teleconnections forced by TPAC SSTA cause cooling over Eurasia (and North America), and contribute equally to its GMST trend.
Modeling the international competitiveness of Botswana's coal
Fichani, Khaulani
Botswana has vast proven deposits of steam coal, which for a long time it has wanted to develop but without much success. The main objectives of this study are: (1) to analyze the time schedule of coal exports likely to be forthcoming from Botswana and the land routes for these exports; (2) to determine the competitiveness of Botswana's coal in the world steam coal markets and (3) to make recommendations on the appropriate policy for the exploitation of this coal. To accomplish these objectives, we construct a model of the seaborne steam coal trade consisting of exporters and importers with a substantial share in this trade. We econometrically estimate the long run marginal cost functions for net exporters and employ these to construct a spatial and dynamic model of the world steam coal trade with elastic supply and inelastic demand. This model is applied to simulate Botswana's competitiveness in this trade over the period 1995 to 2010 from a 1990 base year with a decision criterion that minimizes the sum of discounted capital costs of mine development, variable supply costs, rail and maritime transportation costs. Finally, we employ the model to forecast the likely optimal size of mine, timing of production capacity and choice of export port for Botswana's coal for the years 2005 and 2010. The base year for the forecast is 2000. The simulation results indicate that Botswana's coal would have been competitive in the steam coal markets of Western Europe and Asia. The forecast results indicate that Botswana's coal would also be competitive in these markets in the future. These results are least sensitive to changes in rail transportation and variable supply costs but are sensitive to capital costs for mine development.
Response of subassembly model with internals
International Nuclear Information System (INIS)
Kennedy, J.M.; Belytschko, T.
1977-01-01
Analytical tools have been developed and validated by controlled sets of experiments to understand the response of an accident and/or single subassembly in an LMFBR reasonably well. They have been subjected to a variety of loadings and boundary environments. Some large subassembly cluster experiments have been performed, however little analytical work has accompanied them because of the lack of suitable analytical tools. Reported are analytical approaches to: (1) development of more sophisiticated models for the subassembly internals, that is, the fuel pins and coolant; (2) development of models for representing three dimensional effects in subassemblies adjacent to the accident subassembly. These analytical developments will provide feasible capabilities for doing economical three-dimensional analysis not previously available
Understanding and forecasting polar stratospheric variability with statistical models
Directory of Open Access Journals (Sweden)
C. Blume
2012-07-01
Full Text Available The variability of the north-polar stratospheric vortex is a prominent aspect of the middle atmosphere. This work investigates a wide class of statistical models with respect to their ability to model geopotential and temperature anomalies, representing variability in the polar stratosphere. Four partly nonstationary, nonlinear models are assessed: linear discriminant analysis (LDA; a cluster method based on finite elements (FEM-VARX; a neural network, namely the multi-layer perceptron (MLP; and support vector regression (SVR. These methods model time series by incorporating all significant external factors simultaneously, including ENSO, QBO, the solar cycle, volcanoes, to then quantify their statistical importance. We show that variability in reanalysis data from 1980 to 2005 is successfully modeled. The period from 2005 to 2011 can be hindcasted to a certain extent, where MLP performs significantly better than the remaining models. However, variability remains that cannot be statistically hindcasted within the current framework, such as the unexpected major warming in January 2009. Finally, the statistical model with the best generalization performance is used to predict a winter 2011/12 with warm and weak vortex conditions. A vortex breakdown is predicted for late January, early February 2012.
Vinogradova, Nadya; Buckley, Martha
2017-04-01
Over the past few decades, surface waters in the subpolar North Atlantic have experienced substantial fluctuations, including periods of rapid cooling and freshening alternating with the periods of enhanced warming, salinification, and decreased circulation of the gyre. Since these waters feed the North Atlantic thermohaline circulation, such changes have the potential to impact the global ocean circulation and future climate states. A number of potential causes for the observed changes have been suggested, including those related to the strength of the ocean circulation and heat transports, as well as other factors, such as anthropogenic aerosol forcing or changes in surface fluxes. Here we assess how the observed warming/salinification events fit into the long-term picture, focusing on variations in upper-ocean salinity. Salinification of the subpolar North Atlantic may seem counter-intuitive to the reported long-term increase in freshwater supply to the region from river discharge and ice melting, sparking debates about whether the freshening of the subpolar gyre has ceased, and whether the recent salinification, if continued, will be able to forestall the projected slowdown of the overturning circulation. Using a suite of in situ salinity observations spanning the last 60 years, modern satellite salinity observations from Aquarius and SMOS missions, and multi-decadal realizations from global climate models, we estimate the likelihood of such salinity changes in the context of the historical record, contemporary estimates, and future projections. Results are discussed in terms of the probability of occurrence of a decade-long salinification in the presence of the background freshening in response to anthropogenic forcing. In particular, computed probabilities suggest that such "unusual" salinification events are plausible under the strong influence of internal, decadal-to-interdecadal variability.
Cross-country transferability of multi-variable damage models
Wagenaar, Dennis; Lüdtke, Stefan; Kreibich, Heidi; Bouwer, Laurens
2017-04-01
Flood damage assessment is often done with simple damage curves based only on flood water depth. Additionally, damage models are often transferred in space and time, e.g. from region to region or from one flood event to another. Validation has shown that depth-damage curve estimates are associated with high uncertainties, particularly when applied in regions outside the area where the data for curve development was collected. Recently, progress has been made with multi-variable damage models created with data-mining techniques, i.e. Bayesian Networks and random forest. However, it is still unknown to what extent and under which conditions model transfers are possible and reliable. Model validations in different countries will provide valuable insights into the transferability of multi-variable damage models. In this study we compare multi-variable models developed on basis of flood damage datasets from Germany as well as from The Netherlands. Data from several German floods was collected using computer aided telephone interviews. Data from the 1993 Meuse flood in the Netherlands is available, based on compensations paid by the government. The Bayesian network and random forest based models are applied and validated in both countries on basis of the individual datasets. A major challenge was the harmonization of the variables between both datasets due to factors like differences in variable definitions, and regional and temporal differences in flood hazard and exposure characteristics. Results of model validations and comparisons in both countries are discussed, particularly in respect to encountered challenges and possible solutions for an improvement of model transferability.
Mediterranean climate modelling: variability and climate change scenarios
International Nuclear Information System (INIS)
Somot, S.
2005-12-01
Air-sea fluxes, open-sea deep convection and cyclo-genesis are studied in the Mediterranean with the development of a regional coupled model (AORCM). It accurately simulates these processes and their climate variabilities are quantified and studied. The regional coupling shows a significant impact on the number of winter intense cyclo-genesis as well as on associated air-sea fluxes and precipitation. A lower inter-annual variability than in non-coupled models is simulated for fluxes and deep convection. The feedbacks driving this variability are understood. The climate change response is then analysed for the 21. century with the non-coupled models: cyclo-genesis decreases, associated precipitation increases in spring and autumn and decreases in summer. Moreover, a warming and salting of the Mediterranean as well as a strong weakening of its thermohaline circulation occur. This study also concludes with the necessity of using AORCMs to assess climate change impacts on the Mediterranean. (author)
Classification criteria of syndromes by latent variable models
DEFF Research Database (Denmark)
Petersen, Janne
2010-01-01
analyses. Part 1: HALS engages different phenotypic changes of peripheral lipoatrophy and central lipohypertrophy. There are several different definitions of HALS and no consensus on the number of phenotypes. Many of the definitions consist of counting fulfilled criteria on markers and do not include......, although this is often desired. I have proposed a new method for predicting class membership that, in contrast to methods based on posterior probabilities of class membership, yields consistent estimates when regressed on explanatory variables in a subsequent analysis. There are four different basic models...... within latent variable models: factor analysis, latent class analysis, latent profile analysis and latent trait analysis. I have given a general overview of how to predict scores of latent variables so these can be used in subsequent regression models. Two different principles of predicting scores...
Plasticity models of material variability based on uncertainty quantification techniques
Energy Technology Data Exchange (ETDEWEB)
Jones, Reese E. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Rizzi, Francesco [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Boyce, Brad [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Templeton, Jeremy Alan [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Ostien, Jakob [Sandia National Lab. (SNL-CA), Livermore, CA (United States)
2017-11-01
The advent of fabrication techniques like additive manufacturing has focused attention on the considerable variability of material response due to defects and other micro-structural aspects. This variability motivates the development of an enhanced design methodology that incorporates inherent material variability to provide robust predictions of performance. In this work, we develop plasticity models capable of representing the distribution of mechanical responses observed in experiments using traditional plasticity models of the mean response and recently developed uncertainty quantification (UQ) techniques. Lastly, we demonstrate that the new method provides predictive realizations that are superior to more traditional ones, and how these UQ techniques can be used in model selection and assessing the quality of calibrated physical parameters.
TIMING SIGNATURES OF THE INTERNAL-SHOCK MODEL FOR BLAZARS
International Nuclear Information System (INIS)
Boettcher, M.; Dermer, C. D.
2010-01-01
We investigate the spectral and timing signatures of the internal-shock model for blazars. For this purpose, we develop a semi-analytical model for the time-dependent radiative output from internal shocks arising from colliding relativistic shells in a blazar jet. The emission through synchrotron and synchrotron-self Compton radiation as well as Comptonization of an isotropic external radiation field are taken into account. We evaluate the discrete correlation function (DCF) of the model light curves in order to evaluate features of photon-energy-dependent time lags and the quality of the correlation, represented by the peak value of the DCF. The almost completely analytic nature of our approach allows us to study in detail the influence of various model parameters on the resulting spectral and timing features. This paper focuses on a range of parameters in which the γ-ray production is dominated by Comptonization of external radiation, most likely appropriate for γ-ray bright flat-spectrum radio quasars (FSRQs) or low-frequency peaked BL Lac objects (LBLs). In most cases relevant for FSRQs and LBLs, the variability of the optical emission is highly correlated with the X-ray and high-energy (HE: > 100 MeV) γ-ray emission. Our baseline model predicts a lead of the optical variability with respect to the higher-energy bands by 1-2 hr and of the HE γ-rays before the X-rays by about 1 hr. We show that variations of certain parameters may lead to changing signs of inter-band time lags, potentially explaining the lack of persistent trends of time lags in most blazars.
Establishing an International Soil Modelling Consortium
Vereecken, Harry; Schnepf, Andrea; Vanderborght, Jan
2015-04-01
-change-feedback processes, bridge basic soil science research and management, and facilitate the communication between science and society . To meet these challenges an international community effort is required, similar to initiatives in systems biology, hydrology, and climate and crop research. We therefore propose to establish an international soil modelling consortium with the aims of 1) bringing together leading experts in modelling soil processes within all major soil disciplines, 2) addressing major scientific gaps in describing key processes and their long term impacts with respect to the different functions and ecosystem services provided by soil, 3) intercomparing soil model performance based on standardized and harmonized data sets, 4) identifying interactions with other relevant platforms related to common data formats, protocols and ontologies, 5) developing new approaches to inverse modelling, calibration, and validation of soil models, 6) integrating soil modelling expertise and state of the art knowledge on soil processes in climate, land surface, ecological, crop and contaminant models, and 7) linking process models with new observation, measurement and data evaluation technologies for mapping and characterizing soil properties across scales. Our consortium will bring together modelers and experimental soil scientists at the forefront of new technologies and approaches to characterize soils. By addressing these aims, the consortium will contribute to improve the role of soil modeling as a knowledge dissemination instrument in addressing key global issues and stimulate the development of translational research activities. This presentation will provide a compelling case for this much-needed effort, with a focus on tangible benefits to the scientific and food security communities.
Modeling internal ballistics of gas combustion guns.
Schorge, Volker; Grossjohann, Rico; Schönekess, Holger C; Herbst, Jörg; Bockholdt, Britta; Ekkernkamp, Axel; Frank, Matthias
2016-05-01
Potato guns are popular homemade guns which work on the principle of gas combustion. They are usually constructed for recreational rather than criminal purposes. Yet some serious injuries and fatalities due to these guns are reported. As information on the internal ballistics of homemade gas combustion-powered guns is scarce, it is the aim of this work to provide an experimental model of the internal ballistics of these devices and to investigate their basic physical parameters. A gas combustion gun was constructed with a steel tube as the main component. Gas/air mixtures of acetylene, hydrogen, and ethylene were used as propellants for discharging a 46-mm caliber test projectile. Gas pressure in the combustion chamber was captured with a piezoelectric pressure sensor. Projectile velocity was measured with a ballistic speed measurement system. The maximum gas pressure, the maximum rate of pressure rise, the time parameters of the pressure curve, and the velocity and path of the projectile through the barrel as a function of time were determined according to the pressure-time curve. The maximum gas pressure was measured to be between 1.4 bar (ethylene) and 4.5 bar (acetylene). The highest maximum rate of pressure rise was determined for hydrogen at (dp/dt)max = 607 bar/s. The muzzle energy was calculated to be between 67 J (ethylene) and 204 J (acetylene). To conclude, this work provides basic information on the internal ballistics of homemade gas combustion guns. The risk of injury to the operator or bystanders is high, because accidental explosions of the gun due to the high-pressure rise during combustion of the gas/air mixture may occur.
The Properties of Model Selection when Retaining Theory Variables
DEFF Research Database (Denmark)
Hendry, David F.; Johansen, Søren
Economic theories are often fitted directly to data to avoid possible model selection biases. We show that embedding a theory model that specifies the correct set of m relevant exogenous variables, x{t}, within the larger set of m+k candidate variables, (x{t},w{t}), then selection over the second...... set by their statistical significance can be undertaken without affecting the estimator distribution of the theory parameters. This strategy returns the theory-parameter estimates when the theory is correct, yet protects against the theory being under-specified because some w{t} are relevant....
Modeling of Fluctuating Mass Flux in Variable Density Flows
So, R. M. C.; Mongia, H. C.; Nikjooy, M.
1983-01-01
The approach solves for both Reynolds and Favre averaged quantities and calculates the scalar pdf. Turbulent models used to close the governing equations are formulated to account for complex mixing and variable density effects. In addition, turbulent mass diffusivities are not assumed to be in constant proportion to turbulent momentum diffusivities. The governing equations are solved by a combination of finite-difference technique and Monte-Carlo simulation. Some preliminary results on simple variable density shear flows are presented. The differences between these results and those obtained using conventional models are discussed.
CMAQ Involvement in Air Quality Model Evaluation International Initiative
Description of Air Quality Model Evaluation International Initiative (AQMEII). Different chemical transport models are applied by different groups over North America and Europe and evaluated against observations.
SST Diurnal Variability: Regional Extent & Implications in Atmospheric Modelling
DEFF Research Database (Denmark)
Karagali, Ioanna; Høyer, Jacob L.
2013-01-01
The project Sea Surface Temperature Diurnal Variability: Regional Extent and Implications in Atmospheric Modeling (SSTDV: R.EX.- IM.A.M.) was initiated within the framework of the European Space Agency's Support to Science Element (ESA STSE). The main focus is twofold: i) to characterize...... and quantify regional diurnal warming from the experimental MSG/SEVIRI hourly SST fields, for the period 2006-2012. ii) To investigate the impact of the increased SST temporal resolution in the atmospheric model WRF, in terms of modeled 10-m winds and surface heat fluxes. Withing this context, 3 main tasks...... SST variability on atmospheric modeling is the prime goal of the third and final task. This will be examined by increasing the temporal resolution of the SST initial conditions in WRF and by evaluating the WRF included diurnal scheme. Validation of the modeled winds will be performed against 10m ASAR...
Dondeynaz, C.; Lopez-Puga, J.; Carmona-Moreno, C.
2012-04-01
Improving Water and Sanitation Services (WSS), being a complex and interdisciplinary issue, passes through collaboration and coordination of different sectors (environment, health, economic activities, governance, and international cooperation). This inter-dependency has been recognised with the adoption of the "Integrated Water Resources Management" principles that push for the integration of these various dimensions involved in WSS delivery to ensure an efficient and sustainable management. The understanding of these interrelations appears as crucial for decision makers in the water sector in particular in developing countries where WSS still represent an important leverage for livelihood improvement. In this framework, the Joint Research Centre of the European Commission has developed a coherent database (WatSan4Dev database) containing 29 indicators from environmental, socio-economic, governance and financial aid flows data focusing on developing countries (Celine et al, 2011 under publication). The aim of this work is to model the WatSan4Dev dataset using probabilistic models to identify the key variables influencing or being influenced by the water supply and sanitation access levels. Bayesian Network Models are suitable to map the conditional dependencies between variables and also allows ordering variables by level of influence on the dependent variable. Separated models have been built for water supply and for sanitation because of different behaviour. The models are validated if complying with statistical criteria but either with scientific knowledge and literature. A two steps approach has been adopted to build the structure of the model; Bayesian network is first built for each thematic cluster of variables (e.g governance, agricultural pressure, or human development) keeping a detailed level for interpretation later one. A global model is then built based on significant indicators of each cluster being previously modelled. The structure of the
Analytical model of reactive transport processes with spatially variable coefficients.
Simpson, Matthew J; Morrow, Liam C
2015-05-01
Analytical solutions of partial differential equation (PDE) models describing reactive transport phenomena in saturated porous media are often used as screening tools to provide insight into contaminant fate and transport processes. While many practical modelling scenarios involve spatially variable coefficients, such as spatially variable flow velocity, v(x), or spatially variable decay rate, k(x), most analytical models deal with constant coefficients. Here we present a framework for constructing exact solutions of PDE models of reactive transport. Our approach is relevant for advection-dominant problems, and is based on a regular perturbation technique. We present a description of the solution technique for a range of one-dimensional scenarios involving constant and variable coefficients, and we show that the solutions compare well with numerical approximations. Our general approach applies to a range of initial conditions and various forms of v(x) and k(x). Instead of simply documenting specific solutions for particular cases, we present a symbolic worksheet, as supplementary material, which enables the solution to be evaluated for different choices of the initial condition, v(x) and k(x). We also discuss how the technique generalizes to apply to models of coupled multispecies reactive transport as well as higher dimensional problems.
ZMOTTO- MODELING THE INTERNAL COMBUSTION ENGINE
Zeleznik, F. J.
1994-01-01
The ZMOTTO program was developed to model mathematically a spark-ignited internal combustion engine. ZMOTTO is a large, general purpose program whose calculations can be established at five levels of sophistication. These five models range from an ideal cycle requiring only thermodynamic properties, to a very complex representation demanding full combustion kinetics, transport properties, and poppet valve flow characteristics. ZMOTTO is a flexible and computationally economical program based on a system of ordinary differential equations for cylinder-averaged properties. The calculations assume that heat transfer is expressed in terms of a heat transfer coefficient and that the cylinder average of kinetic plus potential energies remains constant. During combustion, the pressures of burned and unburned gases are assumed equal and their heat transfer areas are assumed proportional to their respective mass fractions. Even the simplest ZMOTTO model provides for residual gas effects, spark advance, exhaust gas recirculation, supercharging, and throttling. In the more complex models, 1) finite rate chemistry replaces equilibrium chemistry in descriptions of both the flame and the burned gases, 2) poppet valve formulas represent fluid flow instead of a zero pressure drop flow, and 3) flame propagation is modeled by mass burning equations instead of as an instantaneous process. Input to ZMOTTO is determined by the model chosen. Thermodynamic data is required for all models. Transport properties and chemical kinetics data are required only as the model complexity grows. Other input includes engine geometry, working fluid composition, operating characteristics, and intake/exhaust data. ZMOTTO accommodates a broad spectrum of reactants. The program will calculate many Otto cycle performance parameters for a number of consecutive cycles (a cycle being an interval of 720 crankangle degrees). A typical case will have a number of initial ideal cycles and progress through levels
Modeling heart rate variability including the effect of sleep stages
Soliński, Mateusz; Gierałtowski, Jan; Żebrowski, Jan
2016-02-01
We propose a model for heart rate variability (HRV) of a healthy individual during sleep with the assumption that the heart rate variability is predominantly a random process. Autonomic nervous system activity has different properties during different sleep stages, and this affects many physiological systems including the cardiovascular system. Different properties of HRV can be observed during each particular sleep stage. We believe that taking into account the sleep architecture is crucial for modeling the human nighttime HRV. The stochastic model of HRV introduced by Kantelhardt et al. was used as the initial starting point. We studied the statistical properties of sleep in healthy adults, analyzing 30 polysomnographic recordings, which provided realistic information about sleep architecture. Next, we generated synthetic hypnograms and included them in the modeling of nighttime RR interval series. The results of standard HRV linear analysis and of nonlinear analysis (Shannon entropy, Poincaré plots, and multiscale multifractal analysis) show that—in comparison with real data—the HRV signals obtained from our model have very similar properties, in particular including the multifractal characteristics at different time scales. The model described in this paper is discussed in the context of normal sleep. However, its construction is such that it should allow to model heart rate variability in sleep disorders. This possibility is briefly discussed.
Modeling mud flocculation using variable collision and breakup efficiencies
Strom, K.; Keyvani, A.
2013-12-01
Solution of the Winterwerp (1998) floc growth and breakup equation yields time dependent median floc size as an outcome of collision driven floc growth and shear induced floc breakage. The formulation is quite nice in that it is an ODE that yields fast solution for median floc size and can be incorporated into sediment transport models. The Winterwerp (1998) floc size equation was used to model floc growth and breakup data from laboratory experiments conducted under both constant and variable turbulent shear rate (Keyvani 2013). The data showed that floc growth rate starts out very high and then reduces with size to asymptotically approach an equilibrium size. In modeling the data, the Winterwerp (1998) model and the Son and Hsu (2008) variant were found to be able to capture the initial fast growth phase and the equilibrium state, but were not able to well capture the slow growing phase. This resulted in flocs reaching the equilibrium state in the models much faster than the experimental data. The objective of this work was to improve the ability of the general Winterwerp (1998) formulation to better capture the slow growth phase and more accurately predict the time to equilibrium. To do this, a full parameter sensitivity analysis was conducted using the Winterwerp (1998) model. Several modifications were tested, including the variable fractal dimension and yield strength extensions of Son and Hsu (2008, 2009). The best match with the in-house data, and data from the literature, was achieved using floc collision and breakup efficiency coefficients that decrease with floc size. The net result of the decrease in both of these coefficients is that floc growth slows without modification to the equilibrium size. Inclusion of these new functions allows for substantial improvement in modeling the growth phase of flocs in both steady and variable turbulence conditions. The improvement is particularly noticeable when modeling continual growth in a decaying turbulence field
Efficient family-based model checking via variability abstractions
DEFF Research Database (Denmark)
Dimovski, Aleksandar; Al-Sibahi, Ahmad Salim; Brabrand, Claus
2016-01-01
Many software systems are variational: they can be configured to meet diverse sets of requirements. They can produce a (potentially huge) number of related systems, known as products or variants, by systematically reusing common parts. For variational models (variational systems or families...... with the abstract model checking of the concrete high-level variational model. This allows the use of Spin with all its accumulated optimizations for efficient verification of variational models without any knowledge about variability. We have implemented the transformations in a prototype tool, and we illustrate...
Directory of Open Access Journals (Sweden)
Marcelina Cardoso Dos Santos
2017-06-01
Full Text Available We propose a new strategy to evaluate adhesion strength at the single cell level. This approach involves variable-angle total internal reflection fluorescence microscopy to monitor in real time the topography of cell membranes, i.e. a map of the membrane/substrate separation distance. According to the Boltzmann distribution, both potential energy profile and dissociation energy related to the interactions between the cell membrane and the substrate were determined from the membrane topography. We have highlighted on glass substrates coated with poly-L-lysine and fibronectin, that the dissociation energy is a reliable parameter to quantify the adhesion strength of MDA-MB-231 motile cells.
Viscous cosmological models with a variable cosmological term ...
African Journals Online (AJOL)
Einstein's field equations for a Friedmann-Lamaitre Robertson-Walker universe filled with a dissipative fluid with a variable cosmological term L described by full Israel-Stewart theory are considered. General solutions to the field equations for the flat case have been obtained. The solution corresponds to the dust free model ...
Appraisal and Reliability of Variable Engagement Model Prediction ...
African Journals Online (AJOL)
The variable engagement model based on the stress - crack opening displacement relationship and, which describes the behaviour of randomly oriented steel fibres composite subjected to uniaxial tension has been evaluated so as to determine the safety indices associated when the fibres are subjected to pullout and with ...
Modelling internal boundary-layer development in a region with a complex coastline
DEFF Research Database (Denmark)
Batchvarova, E.; Cai, X.; Gryning, Sven-Erik
1999-01-01
The purpose of this paper is to test the ability of two quite different models to simulate the combined spatial and temporal variability of the internal boundary layer in an area of complex terrain and coastline during one day. The simple applied slab model of Gryning and Batchvarova, and the Col...
Forced and internal modes of variability of the East Asian summer monsoon
Directory of Open Access Journals (Sweden)
J. Liu
2008-11-01
Full Text Available The modern instrumental record (1979–2006 is analyzed in an attempt to reveal the dynamical structure and origins of the major modes of interannual variability of East Asian summer monsoon (EASM and to elucidate their fundamental differences with the major modes of seasonal variability. These differences are instrumental in understanding of the forced (say orbital and internal (say interannual modes of variability in EASM. We show that the leading mode of interannual variation, which accounts for about 39% of the total variance, is primarily associated with decaying phases of major El Nino, whereas the second mode, which accounts for 11.3% of the total variance, is associated with the developing phase of El Nino/La Nina. The EASM responds to ENSO in a nonlinear fashion with regard to the developing and decay phases of El Nino. The two modes are determined by El Nino/La Nina forcing and monsoon-warm ocean interaction, or essentially driven by internal feedback processes within the coupled climate system. For this internal mode, the intertropical convergence zone (ITCZ and subtropical EASM precipitations exhibit an out-of-phase variations; further, the Meiyu in Yangtze River Valley is also out-of-phase with the precipitation in the central North China.
In contrast, the annual cycle forced by the solar radiation shows an in-phase variation between the ITCZ and the subtropical EASM precipitation. Further, the seasonal march of precipitation displays a continental-scale northward advance of a southwest-northeastward tilted rainband from mid-May toward the end of July. This coherent seasonal advance between Indian and East Asian monsoons suggests that the position of the northern edge of the summer monsoon over the central North China may be an adequate measure of the monsoon intensity for the forced mode. Given the fact that the annual modes share the similar external forcing with orbital variability, the difference between the annual
Directory of Open Access Journals (Sweden)
Mathieu Valcke
2010-11-01
Full Text Available The objective of this study was to evaluate inter-individual variability in absorbed and internal doses after multi-route exposure to drinking water contaminants (DWC in addition to the corresponding variability in equivalent volumes of ingested water, expressed as liter-equivalents (LEQ. A multi-route PBPK model described previously was used for computing the internal dose metrics in adults, neonates, children, the elderly and pregnant women following a multi-route exposure scenario to chloroform and to tri- and tetra-chloroethylene (TCE and PERC. This scenario included water ingestion as well as inhalation and dermal contact during a 30-min bathroom exposure. Monte Carlo simulations were performed and distributions of internal dose metrics were obtained. The ratio of each of the dose metrics for inhalation, dermal and multi-route exposures to the corresponding dose metrics for the ingestion of drinking water alone allowed computation of LEQ values. Mean BW-adjusted LEQ values based on absorbed doses were greater in neonates regardless of the contaminant considered (0.129–0.134 L/kg BW, but higher absolute LEQ values were obtained in average adults (3.6–4.1 L, elderly (3.7–4.2 L and PW (4.1–5.6 L. LEQ values based on the parent compound’s AUC were much greater than based on the absorbed dose, while the opposite was true based on metabolite-based dose metrics for chloroform and TCE, but not PERC. The consideration of the 95th percentile values of BW-adjusted LEQ did not significantly change the results suggesting a generally low intra-subpopulation variability during multi-route exposure. Overall, this study pointed out the dependency of the LEQ on the dose metrics, with consideration of both the subpopulation and DWC.
A metric for attributing variability in modelled streamflows
Shoaib, Syed Abu; Marshall, Lucy; Sharma, Ashish
2016-10-01
Significant gaps in our present understanding of hydrological systems lead to enhanced uncertainty in key modelling decisions. This study proposes a method, namely ;Quantile Flow Deviation (QFD);, for the attribution of forecast variability to different sources across different streamflow regimes. By using a quantile based metric, we can assess the change in uncertainty across individual percentiles, thereby allowing uncertainty to be expressed as a function of magnitude and time. As a result, one can address selective sources of uncertainty depending on whether low or high flows (say) are of interest. By way of a case study, we demonstrate the usefulness of the approach for estimating the relative importance of model parameter identification, objective functions and model structures as sources of stream flow forecast uncertainty. We use FUSE (Framework for Understanding Structural Errors) to implement our methods, allowing selection of multiple different model structures. Cross-catchment comparison is done for two different catchments: Leaf River in Mississippi, USA and Bass River of Victoria, Australia. Two different approaches to parameter estimation are presented that demonstrate the statistic- one based on GLUE, the other one based on optimization. The results presented in this study suggest that the determination of the model structure with the design catchment should be given priority but that objective function selection with parameter identifiability can lead to significant variability in results. By examining the QFD across multiple flow quantiles, the ability of certain models and optimization routines to constrain variability for different flow conditions is demonstrated.
Composite Pressure Vessel Variability in Geometry and Filament Winding Model
Green, Steven J.; Greene, Nathanael J.
2012-01-01
Composite pressure vessels (CPVs) are used in a variety of applications ranging from carbon dioxide canisters for paintball guns to life support and pressurant storage on the International Space Station. With widespread use, it is important to be able to evaluate the effect of variability on structural performance. Data analysis was completed on CPVs to determine the amount of variation that occurs among the same type of CPV, and a filament winding routine was developed to facilitate study of the effect of manufacturing variation on structural response.
Changes in Southern Hemisphere circulation variability in climate change modelling experiments
International Nuclear Information System (INIS)
Grainger, Simon; Frederiksen, Carsten; Zheng, Xiaogu
2007-01-01
Full text: The seasonal mean of a climate variable can be considered as a statistical random variable, consisting of a signal and noise components (Madden 1976). The noise component consists of internal intraseasonal variability, and is not predictable on time-scales of a season or more ahead. The signal consists of slowly varying external and internal variability, and is potentially predictable on seasonal time-scales. The method of Zheng and Frederiksen (2004) has been applied to monthly time series of 500hPa Geopotential height from models submitted to the Coupled Model Intercomparison Project (CMIP3) experiment to obtain covariance matrices of the intraseasonal and slow components of covariability for summer and winter. The Empirical Orthogonal Functions (EOFs) of the intraseasonal and slow covariance matrices for the second half of the 20th century are compared with those observed by Frederiksen and Zheng (2007). The leading EOF in summer and winter for both the intraseasonal and slow components of covariability is the Southern Annular Mode (see, e.g. Kiladis and Mo 1998). This is generally reproduced by the CMIP3 models, although with different variance amounts. The observed secondary intraseasonal covariability modes of wave 4 patterns in summer and wave 3 or blocking in winter are also generally seen in the models, although the actual spatial pattern is different. For the slow covariabilty, the models are less successful in reproducing the two observed ENSO modes, with generally only one of them being represented among the leading EOFs. However, most models reproduce the observed South Pacific wave pattern. The intraseasonal and slow covariances matrices of 500hPa geopotential height under three climate change scenarios are also analysed and compared with those found for the second half of the 20th century. Through aggregating the results from a number of CMIP3 models, a consensus estimate of the changes in Southern Hemisphere variability, and their
Using an Altimeter-Derived Internal Tide Model to Remove Tides from in Situ Data
Zaron, Edward D.; Ray, Richard D.
2017-01-01
Internal waves at tidal frequencies, i.e., the internal tides, are a prominent source of variability in the ocean associated with significant vertical isopycnal displacements and currents. Because the isopycnal displacements are caused by ageostrophic dynamics, they contribute uncertainty to geostrophic transport inferred from vertical profiles in the ocean. Here it is demonstrated that a newly developed model of the main semidiurnal (M2) internal tide derived from satellite altimetry may be used to partially remove the tide from vertical profile data, as measured by the reduction of steric height variance inferred from the profiles. It is further demonstrated that the internal tide model can account for a component of the near-surface velocity as measured by drogued drifters. These comparisons represent a validation of the internal tide model using independent data and highlight its potential use in removing internal tide signals from in situ observations.
Testing and analysis of internal hardwood log defect prediction models
R. Edward. Thomas
2011-01-01
The severity and location of internal defects determine the quality and value of lumber sawn from hardwood logs. Models have been developed to predict the size and position of internal defects based on external defect indicator measurements. These models were shown to predict approximately 80% of all internal knots based on external knot indicators. However, the size...
Analysis models for variables associated with breastfeeding duration
Directory of Open Access Journals (Sweden)
Edson Theodoro dos S. Neto
2013-09-01
Full Text Available OBJECTIVE To analyze the factors associated with breastfeeding duration by two statistical models. METHODS A population-based cohort study was conducted with 86 mothers and newborns from two areas primary covered by the National Health System, with high rates of infant mortality in Vitória, Espírito Santo, Brazil. During 30 months, 67 (78% children and mothers were visited seven times at home by trained interviewers, who filled out survey forms. Data on food and sucking habits, socioeconomic and maternal characteristics were collected. Variables were analyzed by Cox regression models, considering duration of breastfeeding as the dependent variable, and logistic regression (dependent variables, was the presence of a breastfeeding child in different post-natal ages. RESULTS In the logistic regression model, the pacifier sucking (adjusted Odds Ratio: 3.4; 95%CI 1.2-9.55 and bottle feeding (adjusted Odds Ratio: 4.4; 95%CI 1.6-12.1 increased the chance of weaning a child before one year of age. Variables associated to breastfeeding duration in the Cox regression model were: pacifier sucking (adjusted Hazard Ratio 2.0; 95%CI 1.2-3.3 and bottle feeding (adjusted Hazard Ratio 2.0; 95%CI 1.2-3.5. However, protective factors (maternal age and family income differed between both models. CONCLUSIONS Risk and protective factors associated with cessation of breastfeeding may be analyzed by different models of statistical regression. Cox Regression Models are adequate to analyze such factors in longitudinal studies.
Multiple Discrete Endogenous Variables in Weakly-Separable Triangular Models
Directory of Open Access Journals (Sweden)
Sung Jae Jun
2016-02-01
Full Text Available We consider a model in which an outcome depends on two discrete treatment variables, where one treatment is given before the other. We formulate a three-equation triangular system with weak separability conditions. Without assuming assignment is random, we establish the identification of an average structural function using two-step matching. We also consider decomposing the effect of the first treatment into direct and indirect effects, which are shown to be identified by the proposed methodology. We allow for both of the treatment variables to be non-binary and do not appeal to an identification-at-infinity argument.
Quantum ring models and action-angle variables
Bellucci, Stefano; Nersessian, Armen; Saghatelian, Armen; Yeghikyan, Vahagn
2010-01-01
We suggest to use the action-angle variables for the study of properties of (quasi)particles in quantum rings. For this purpose we present the action-angle variables for three two-dimensional singular oscillator systems. The first one is the usual (Euclidean) singular oscillator, which plays the role of the confinement potential for the quantum ring. We also propose two singular spherical oscillator models for the role of the confinement system for the spherical ring. The first one is based o...
Parameters and variables appearing in repository design models
International Nuclear Information System (INIS)
Curtis, R.H.; Wart, R.J.
1983-12-01
This report defines the parameters and variables appearing in repository design models and presents typical values and ranges of values of each. Areas covered by this report include thermal, geomechanical, and coupled stress and flow analyses in rock. Particular emphasis is given to conductivity, radiation, and convection parameters for thermal analysis and elastic constants, failure criteria, creep laws, and joint properties for geomechanical analysis. The data in this report were compiled to help guide the selection of values of parameters and variables to be used in code benchmarking. 102 references, 33 figures, 51 tables
Ensembling Variable Selectors by Stability Selection for the Cox Model
Directory of Open Access Journals (Sweden)
Qing-Yan Yin
2017-01-01
Full Text Available As a pivotal tool to build interpretive models, variable selection plays an increasingly important role in high-dimensional data analysis. In recent years, variable selection ensembles (VSEs have gained much interest due to their many advantages. Stability selection (Meinshausen and Bühlmann, 2010, a VSE technique based on subsampling in combination with a base algorithm like lasso, is an effective method to control false discovery rate (FDR and to improve selection accuracy in linear regression models. By adopting lasso as a base learner, we attempt to extend stability selection to handle variable selection problems in a Cox model. According to our experience, it is crucial to set the regularization region Λ in lasso and the parameter λmin properly so that stability selection can work well. To the best of our knowledge, however, there is no literature addressing this problem in an explicit way. Therefore, we first provide a detailed procedure to specify Λ and λmin. Then, some simulated and real-world data with various censoring rates are used to examine how well stability selection performs. It is also compared with several other variable selection approaches. Experimental results demonstrate that it achieves better or competitive performance in comparison with several other popular techniques.
A Review of Variable Slicing in Fused Deposition Modeling
Nadiyapara, Hitesh Hirjibhai; Pande, Sarang
2017-06-01
The paper presents a literature survey in the field of fused deposition of plastic wires especially in the field of slicing and deposition using extrusion of thermoplastic wires. Various researchers working in the field of computation of deposition path have used their algorithms for variable slicing. In the study, a flowchart has also been proposed for the slicing and deposition process. The algorithm already been developed by previous researcher will be used to be implemented on the fused deposition modelling machine. To demonstrate the capabilities of the fused deposition modeling machine a case study has been taken. It uses a manipulated G-code to be fed to the fused deposition modeling machine. Two types of slicing strategies, namely uniform slicing and variable slicing have been evaluated. In the uniform slicing, the slice thickness has been used for deposition is varying from 0.1 to 0.4 mm. In the variable slicing, thickness has been varied from 0.1 in the polar region to 0.4 in the equatorial region Time required and the number of slices required to deposit a hemisphere of 20 mm diameter have been compared with that using the variable slicing.
Relevance units latent variable model and nonlinear dimensionality reduction.
Gao, Junbin; Zhang, Jun; Tien, David
2010-01-01
A new dimensionality reduction method, called relevance units latent variable model (RULVM), is proposed in this paper. RULVM has a close link with the framework of Gaussian process latent variable model (GPLVM) and it originates from a recently developed sparse kernel model called relevance units machine (RUM). RUM follows the idea of relevance vector machine (RVM) under the Bayesian framework but releases the constraint that relevance vectors (RVs) have to be selected from the input vectors. RUM treats relevance units (RUs) as part of the parameters to be learned from the data. As a result, a RUM maintains all the advantages of RVM and offers superior sparsity. RULVM inherits the advantages of sparseness offered by the RUM and the experimental result shows that RULVM algorithm possesses considerable computational advantages over GPLVM algorithm.
Pre-quantum mechanics. Introduction to models with hidden variables
International Nuclear Information System (INIS)
Grea, J.
1976-01-01
Within the context of formalism of hidden variable type, the author considers the models used to describe mechanical systems before the introduction of the quantum model. An account is given of the characteristics of the theoretical models and their relationships with experimental methodology. The models of analytical, pre-ergodic, stochastic and thermodynamic mechanics are studied in succession. At each stage the physical hypothesis is enunciated by postulate corresponding to the type of description of the reality of the model. Starting from this postulate, the physical propositions which are meaningful for the model under consideration are defined and their logical structure is indicated. It is then found that on passing from one level of description to another, one can obtain successively Boolean lattices embedded in lattices of continuous geometric type, which are themselves embedded in Boolean lattices. It is therefore possible to envisage a more detailed description than that given by the quantum lattice and to construct it by analogy. (Auth.)
Bayesian Variable Selection on Model Spaces Constrained by Heredity Conditions.
Taylor-Rodriguez, Daniel; Womack, Andrew; Bliznyuk, Nikolay
2016-01-01
This paper investigates Bayesian variable selection when there is a hierarchical dependence structure on the inclusion of predictors in the model. In particular, we study the type of dependence found in polynomial response surfaces of orders two and higher, whose model spaces are required to satisfy weak or strong heredity conditions. These conditions restrict the inclusion of higher-order terms depending upon the inclusion of lower-order parent terms. We develop classes of priors on the model space, investigate their theoretical and finite sample properties, and provide a Metropolis-Hastings algorithm for searching the space of models. The tools proposed allow fast and thorough exploration of model spaces that account for hierarchical polynomial structure in the predictors and provide control of the inclusion of false positives in high posterior probability models.
[Interaction between continuous variables in logistic regression model].
Qiu, Hong; Yu, Ignatius Tak-Sun; Tse, Lap Ah; Wang, Xiao-rong; Fu, Zhen-ming
2010-07-01
Rothman argued that interaction estimated as departure from additivity better reflected the biological interaction. In a logistic regression model, the product term reflects the interaction as departure from multiplicativity. So far, literature on estimating interaction regarding an additive scale using logistic regression was only focusing on two dichotomous factors. The objective of the present report was to provide a method to examine the interaction as departure from additivity between two continuous variables or between one continuous variable and one categorical variable. We used data from a lung cancer case-control study among males in Hong Kong as an example to illustrate the bootstrap re-sampling method for calculating the corresponding confidence intervals. Free software R (Version 2.8.1) was used to estimate interaction on the additive scale.
Toward An Internal Gravity Wave Spectrum In Global Ocean Models
2015-05-14
Toward an internal gravity wave spectrum in global ocean models Malte Müller1,2, Brian K. Arbic3, James G. Richman4, Jay F. Shriver4, Eric L. Kunze5...fields and tides are beginning to display realistic internal gravity wave spectra, especially as model resolution increases. This paper examines...able to simulate the internal gravity wave spectrum and the extent to which nonlinear internal wave-wave interactions contribute to the simulated
Directory of Open Access Journals (Sweden)
Restuccia Liliana
2016-06-01
Full Text Available The paper deals with the meaning of non-equilibrium temperatures in nanosystems with an internal variable, describing defects inside them, and implications on heat transport. In equilibrium all definitions of temperature lead to the same value, but in nonequilibrium steady states they lead to different values, giving information on different degrees of freedom. We discuss the caloric and entropic non-equilibrium temperatures and the relations among them, in defective nanosystems (crystals with dislocations or porous channels, carbon nanotubes in a solid matrix and so on, crossed by an external energy flux. Here, we present a model for nanocrystals with dislocation defects submitted to an external energy flux. The dislocations may have a strong influence on the effective thermal conductivity, and their own dynamics may be coupled in relevant way to the heat flux dynamics. In the linear case the constitutive relations, the rate equations for the internal variable and the heat flux are worked out and a generalized telegraphic heat equation is derived in the anisotropic and isotropic case, describing the thermal disturbances with finite velocity.
Modeling temporal and spatial variability of crop yield
Bonetti, S.; Manoli, G.; Scudiero, E.; Morari, F.; Putti, M.; Teatini, P.
2014-12-01
In a world of increasing food insecurity the development of modeling tools capable of supporting on-farm decision making processes is highly needed to formulate sustainable irrigation practices in order to preserve water resources while maintaining adequate crop yield. The design of these practices starts from the accurate modeling of soil-plant-atmosphere interaction. We present an innovative 3D Soil-Plant model that couples 3D hydrological soil dynamics with a mechanistic description of plant transpiration and photosynthesis, including a crop growth module. Because of its intrinsically three dimensional nature, the model is able to capture spatial and temporal patterns of crop yield over large scales and under various climate and environmental factors. The model is applied to a 25 ha corn field in the Venice coastland, Italy, that has been continuously monitored over the years 2010 and 2012 in terms of both hydrological dynamics and yield mapping. The model results satisfactorily reproduce the large variability observed in maize yield (from 2 to 15 ton/ha). This variability is shown to be connected to the spatial heterogeneities of the farmland, which is characterized by several sandy paleo-channels crossing organic-rich silty soils. Salt contamination of soils and groundwater in a large portion of the area strongly affects the crop yield, especially outside the paleo-channels, where measured salt concentrations are lower than the surroundings. The developed model includes a simplified description of the effects of salt concentration in soil water on transpiration. The results seem to capture accurately the effects of salt concentration and the variability of the climatic conditions occurred during the three years of measurements. This innovative modeling framework paves the way to future large scale simulations of farmland dynamics.
An Atmospheric Variability Model for Venus Aerobraking Missions
Tolson, Robert T.; Prince, Jill L. H.; Konopliv, Alexander A.
2013-01-01
Aerobraking has proven to be an enabling technology for planetary missions to Mars and has been proposed to enable low cost missions to Venus. Aerobraking saves a significant amount of propulsion fuel mass by exploiting atmospheric drag to reduce the eccentricity of the initial orbit. The solar arrays have been used as the primary drag surface and only minor modifications have been made in the vehicle design to accommodate the relatively modest aerothermal loads. However, if atmospheric density is highly variable from orbit to orbit, the mission must either accept higher aerothermal risk, a slower pace for aerobraking, or a tighter corridor likely with increased propulsive cost. Hence, knowledge of atmospheric variability is of great interest for the design of aerobraking missions. The first planetary aerobraking was at Venus during the Magellan mission. After the primary Magellan science mission was completed, aerobraking was used to provide a more circular orbit to enhance gravity field recovery. Magellan aerobraking took place between local solar times of 1100 and 1800 hrs, and it was found that the Venusian atmospheric density during the aerobraking phase had less than 10% 1 sigma orbit to orbit variability. On the other hand, at some latitudes and seasons, Martian variability can be as high as 40% 1 sigmaFrom both the MGN and PVO mission it was known that the atmosphere, above aerobraking altitudes, showed greater variability at night, but this variability was never quantified in a systematic manner. This paper proposes a model for atmospheric variability that can be used for aerobraking mission design until more complete data sets become available.
Multiscale thermohydrologic model: addressing variability and uncertainty at Yucca Mountain
International Nuclear Information System (INIS)
Buscheck, T; Rosenberg, N D; Gansemer, J D; Sun, Y
2000-01-01
Performance assessment and design evaluation require a modeling tool that simultaneously accounts for processes occurring at a scale of a few tens of centimeters around individual waste packages and emplacement drifts, and also on behavior at the scale of the mountain. Many processes and features must be considered, including non-isothermal, multiphase-flow in rock of variable saturation and thermal radiation in open cavities. Also, given the nature of the fractured rock at Yucca Mountain, a dual-permeability approach is needed to represent permeability. A monolithic numerical model with all these features requires too large a computational cost to be an effective simulation tool, one that is used to examine sensitivity to key model assumptions and parameters. We have developed a multi-scale modeling approach that effectively simulates 3D discrete-heat-source, mountain-scale thermohydrologic behavior at Yucca Mountain and captures the natural variability of the site consistent with what we know from site characterization and waste-package-to-waste-package variability in heat output. We describe this approach and present results examining the role of infiltration flux, the most important natural-system parameter with respect to how thermohydrologic behavior influences the performance of the repository
A new approach for modelling variability in residential construction projects
Directory of Open Access Journals (Sweden)
Mehrdad Arashpour
2013-06-01
Full Text Available The construction industry is plagued by long cycle times caused by variability in the supply chain. Variations or undesirable situations are the result of factors such as non-standard practices, work site accidents, inclement weather conditions and faults in design. This paper uses a new approach for modelling variability in construction by linking relative variability indicators to processes. Mass homebuilding sector was chosen as the scope of the analysis because data is readily available. Numerous simulation experiments were designed by varying size of capacity buffers in front of trade contractors, availability of trade contractors, and level of variability in homebuilding processes. The measurements were shown to lead to an accurate determination of relationships between these factors and production parameters. The variability indicator was found to dramatically affect the tangible performance measures such as home completion rates. This study provides for future analysis of the production homebuilding sector, which may lead to improvements in performance and a faster product delivery to homebuyers.
A new approach for modelling variability in residential construction projects
Directory of Open Access Journals (Sweden)
Mehrdad Arashpour
2013-06-01
Full Text Available The construction industry is plagued by long cycle times caused by variability in the supply chain. Variations or undesirable situations are the result of factors such as non-standard practices, work site accidents, inclement weather conditions and faults in design. This paper uses a new approach for modelling variability in construction by linking relative variability indicators to processes. Mass homebuilding sector was chosen as the scope of the analysis because data is readily available. Numerous simulation experiments were designed by varying size of capacity buffers in front of trade contractors, availability of trade contractors, and level of variability in homebuilding processes. The measurements were shown to lead to an accurate determination of relationships between these factors and production parameters. The variability indicator was found to dramatically affect the tangible performance measures such as home completion rates. This study provides for future analysis of the production homebuilding sector, which may lead to improvements in performance and a faster product delivery to homebuyers.
Li, Wei; Saleeb, Atef F.
1995-01-01
This two-part report is concerned with the development of a general framework for the implicit time-stepping integrators for the flow and evolution equations in generalized viscoplastic models. The primary goal is to present a complete theoretical formulation, and to address in detail the algorithmic and numerical analysis aspects involved in its finite element implementation, as well as to critically assess the numerical performance of the developed schemes in a comprehensive set of test cases. On the theoretical side, the general framework is developed on the basis of the unconditionally-stable, backward-Euler difference scheme as a starting point. Its mathematical structure is of sufficient generality to allow a unified treatment of different classes of viscoplastic models with internal variables. In particular, two specific models of this type, which are representative of the present start-of-art in metal viscoplasticity, are considered in applications reported here; i.e., fully associative (GVIPS) and non-associative (NAV) models. The matrix forms developed for both these models are directly applicable for both initially isotropic and anisotropic materials, in general (three-dimensional) situations as well as subspace applications (i.e., plane stress/strain, axisymmetric, generalized plane stress in shells). On the computational side, issues related to efficiency and robustness are emphasized in developing the (local) interative algorithm. In particular, closed-form expressions for residual vectors and (consistent) material tangent stiffness arrays are given explicitly for both GVIPS and NAV models, with their maximum sizes 'optimized' to depend only on the number of independent stress components (but independent of the number of viscoplastic internal state parameters). Significant robustness of the local iterative solution is provided by complementing the basic Newton-Raphson scheme with a line-search strategy for convergence. In the present second part of
Saleeb, Atef F.; Li, Wei
1995-01-01
This two-part report is concerned with the development of a general framework for the implicit time-stepping integrators for the flow and evolution equations in generalized viscoplastic models. The primary goal is to present a complete theoretical formulation, and to address in detail the algorithmic and numerical analysis aspects involved in its finite element implementation, as well as to critically assess the numerical performance of the developed schemes in a comprehensive set of test cases. On the theoretical side, the general framework is developed on the basis of the unconditionally-stable, backward-Euler difference scheme as a starting point. Its mathematical structure is of sufficient generality to allow a unified treatment of different classes of viscoplastic models with internal variables. In particular, two specific models of this type, which are representative of the present start-of-art in metal viscoplasticity, are considered in applications reported here; i.e., fully associative (GVIPS) and non-associative (NAV) models. The matrix forms developed for both these models are directly applicable for both initially isotropic and anisotropic materials, in general (three-dimensional) situations as well as subspace applications (i.e., plane stress/strain, axisymmetric, generalized plane stress in shells). On the computational side, issues related to efficiency and robustness are emphasized in developing the (local) interative algorithm. In particular, closed-form expressions for residual vectors and (consistent) material tangent stiffness arrays are given explicitly for both GVIPS and NAV models, with their maximum sizes 'optimized' to depend only on the number of independent stress components (but independent of the number of viscoplastic internal state parameters). Significant robustness of the local iterative solution is provided by complementing the basic Newton-Raphson scheme with a line-search strategy for convergence. In the present first part of the
Classification criteria of syndromes by latent variable models
DEFF Research Database (Denmark)
Petersen, Janne
2010-01-01
The thesis has two parts; one clinical part: studying the dimensions of human immunodeficiency virus associated lipodystrophy syndrome (HALS) by latent class models, and a more statistical part: investigating how to predict scores of latent variables so these can be used in subsequent regression...... analyses. Part 1: HALS engages different phenotypic changes of peripheral lipoatrophy and central lipohypertrophy. There are several different definitions of HALS and no consensus on the number of phenotypes. Many of the definitions consist of counting fulfilled criteria on markers and do not include...... patient's characteristics. These methods may erroneously reduce multiplicity either by combining markers of different phenotypes or by mixing HALS with other processes such as aging. Latent class models identify homogenous groups of patients based on sets of variables, for example symptoms. As no gold...
Explicit estimating equations for semiparametric generalized linear latent variable models
Ma, Yanyuan
2010-07-05
We study generalized linear latent variable models without requiring a distributional assumption of the latent variables. Using a geometric approach, we derive consistent semiparametric estimators. We demonstrate that these models have a property which is similar to that of a sufficient complete statistic, which enables us to simplify the estimating procedure and explicitly to formulate the semiparametric estimating equations. We further show that the explicit estimators have the usual root n consistency and asymptotic normality. We explain the computational implementation of our method and illustrate the numerical performance of the estimators in finite sample situations via extensive simulation studies. The advantage of our estimators over the existing likelihood approach is also shown via numerical comparison. We employ the method to analyse a real data example from economics. © 2010 Royal Statistical Society.
A Model Program for International Commerce Education.
Funston, Richard
To address the economy's growing reliance on international business, San Diego State University has recently introduced a program in international commerce. The program was developed by packaging coursework in three existing areas: business administration, language training, and area studies. Although still in its infancy, the international…
Variable fused deposition modelling - concept design and tool path generation
Brooks, Hadley Laurence
2011-01-01
Current Fused Deposition Modelling (FDM) techniques use fixed diameter nozzles to deposit a filament of plastic layer by layer. The consequence is that the same small nozzle, essential for fine details, is also used to fill in relatively large volumes. In practice a Pareto-optimal nozzle diameter is chosen that attempts to maximise resolution while minimising build time. This paper introduces a concept for adapting an additive manufacturing system, which exploits a variable diameter nozzle fo...
Binary system parameters and the hibernation model of cataclysmic variables
International Nuclear Information System (INIS)
Livio, M.; Shara, M.M.; Space Telescope Science Institute, Baltimore, MD)
1987-01-01
The hibernation model, in which nova systems spend most of the time between eruptions in a state of low mass transfer rate, is examined. The binary systems more likely to undergo hibernation are determined. The predictions of the hibernation scenario are shown to be consistent with available observational data. It is shown how the hibernation scenario provides links between classical novae, dwarf novae, and novalike variables, all of which represent different stages in the cyclic evolution of the same systems. 72 references
Dong, Lu; McPhaden, Michael J.
2017-03-01
Global mean surface temperature (GMST) shows considerable decadal variations superimposed on a pronounced warming trend, with rapid warming during 1920-1945 and 1977-2000 and warming hiatuses during 1946-1976 and 2001-2013. The prevailing view is that internally generated variations associated with the Interdecadal Pacific Oscillation (IPO) dominate decadal variations in GMST, while external forcing from greenhouse gases and anthropogenic aerosols dominate the long-term trend in GMST over the last hundred years. Here we show evidence from observations and climate models that external forcing largely governs decadal GMST variations in the historical record with internally generated variations playing a secondary role, except during those periods of IPO extremes. In particular, the warming hiatus during 1946-1976 started from a negative IPO but was later dominated by the eruption of Mount Agung in 1963, while the subsequent accelerated warming during 1977-2000 was due primarily to increased greenhouse gas forcing. The most recent warming hiatus apparent in observations occurred largely through cooling from a negative IPO extreme that overwhelmed the warming from external forcing. An important implication of this work is that when the phase of the IPO turns positive, as it did in 2014, the combination of external forcing and internal variability should lead to accelerated global warming. This accelerated warming appears to be underway, with record high GMST in 2014, 2015, and 2016.
Connolly, Joseph W.; Friedlander, David; Kopasakis, George
2015-01-01
This paper covers the development of an integrated nonlinear dynamic simulation for a variable cycle turbofan engine and nozzle that can be integrated with an overall vehicle Aero-Propulso-Servo-Elastic (APSE) model. A previously developed variable cycle turbofan engine model is used for this study and is enhanced here to include variable guide vanes allowing for operation across the supersonic flight regime. The primary focus of this study is to improve the fidelity of the model's thrust response by replacing the simple choked flow equation convergent-divergent nozzle model with a MacCormack method based quasi-1D model. The dynamic response of the nozzle model using the MacCormack method is verified by comparing it against a model of the nozzle using the conservation element/solution element method. A methodology is also presented for the integration of the MacCormack nozzle model with the variable cycle engine.
Models, measures, and methods: variability in aging research.
Miller, Edward Alan; Weissert, William G
2003-01-01
The purpose of this paper is to review the models and measurement strategies used in studies evaluating the predictors of nursing home placement, hospitalization, functional impairment and mortality. To do so we examine 167 multivariate equations abstracted from 78 longitudinal studies published between 1985 and 1998 that assess the risk factors of one or more adverse outcomes. We find that both comparatively straightforward concepts such as age and income and widely used scales such as activities of daily living and the short-portable mental status questionnaire display considerable variability in operationalization and coding. We also find that few researchers employ explicit conceptual models to assist with variable choice, while some predictors-demographics, physical and cognitive functioning-were studied much more frequently than others-service, market, and policy characteristics. Variability in measurement highlights the lack of standardization in this area of aging research and leaves room for improvements in validity and reliability. Limited use of conceptual models has led researchers to include some predictors in their analyses to the exclusion of others.
The international radioactive transportation regulations: A model for national regulations
International Nuclear Information System (INIS)
Pope, R.B.; Rawl, R.R.
1990-06-01
The International Atomic Energy Agency's (IAEA) Regulations for the Safe Transport of Radioactive Material, Safety Series No. 6 (herein after denoted as the ''International Regulations'') serve as the model for the regulations for individual countries and international modal organizations controlling the packaging and transportation of radioactive materials. The purpose of this paper is to outline the background and history of the International Regulations, the general principles behind the requirements of the International Regulations, the structure and general contents of the latest edition of the International Regulations, and the roles of various international bodies in the development and implementation of the International Regulations and the current status of regulatory and supportive document development at both the international and domestic level. This review will provide a basis for users and potential users to better understand the source and application of the International Regulations. 1 tab
Variable sound speed in interacting dark energy models
Linton, Mark S.; Pourtsidou, Alkistis; Crittenden, Robert; Maartens, Roy
2018-04-01
We consider a self-consistent and physical approach to interacting dark energy models described by a Lagrangian, and identify a new class of models with variable dark energy sound speed. We show that if the interaction between dark energy in the form of quintessence and cold dark matter is purely momentum exchange this generally leads to a dark energy sound speed that deviates from unity. Choosing a specific sub-case, we study its phenomenology by investigating the effects of the interaction on the cosmic microwave background and linear matter power spectrum. We also perform a global fitting of cosmological parameters using CMB data, and compare our findings to ΛCDM.
SME International Business Models: The Role of Context and Experience
DEFF Research Database (Denmark)
Child, John; Hsieh, Linda; Elbanna, Said
2017-01-01
This paper addresses two questions through a study of 180 SMEs located in contrasting industry and home country contexts. First, which business models for international markets prevail among SMEs and do they configure into different types? Second, which factors predict the international business...... models that SMEs follow? Three distinct international business models (traditional market-adaptive, technology exploiter, and ambidextrous explorer) are found among the SMEs studied. The likelihood of SMEs adopting one business model rather than another is to a high degree predictable with reference...... to a small set of factors: industry, level of home economy development, and decision-maker international experience....
Modelling of W UMa-type variable stars
Directory of Open Access Journals (Sweden)
P. L. Skelton
2010-01-01
Full Text Available W Ursae Majoris (W UMa-type variable stars are over-contact eclipsing binary stars. To understand how these systems form and evolve requires observations spanning many years, followed by detailed models of as many of them as possible. The All Sky Automated Survey (ASAS has an extensive database of these stars. Using the ASAS V band photometric data, models of W UMatype stars are being created to determine the parameters of these stars. This paper discusses the classification of eclipsing binary stars, the methods used to model them as well as the results of the modelling of ASAS 120036–3915.6, an over-contact eclipsing binary star that appears to be changing its period.
Holomorphic variables in magnetized brane models with continuous Wilson lines
Camara, Pablo G; Dudas, Emilian
2010-01-01
We analyze the action of the target-space modular group in toroidal type IIB orientifold compactifications with magnetized D-branes and continuous Wilson lines. The transformation of matter fields agree with that of twisted fields in heterotic compactifications, constituting a check of type I/heterotic duality. We identify the holomorphic N = 1 variables for these compactifications. Matter fields and closed string moduli are both redefined by open string moduli. The redefinition of matter fields can be read directly from the perturbative Yukawa couplings, whereas closed string moduli redefinitions are obtained from D-brane instanton superpotential couplings. The resulting expressions reproduce and generalize, in the presence of internal magnetic fields, previous results in the literature.
Investigation of a rotary valving system with variable valve timing for internal combustion engines
Cross, Paul C.; Hansen, Craig N.
1994-11-01
The objective of the program was to provide a functional demonstration of the Hansen Rotary Valving System with Variable Valve Timing (HRVS/VVT), capable of throttleless inlet charge control, as an alternative to conventional poppet-valves for use in spark ignited internal combustion engines. The goal of this new technology is to secure benefits in fuel economy, broadened torque band, vibration reduction, and overhaul accessibility. Additionally, use of the variable valve timing capability to vary the effective compression ratio is expected to improve multifuel tolerance and efficiency. Efforts directed at the design of HRVS components proved to be far more extensive than had been anticipated, ultimately requiring that proof-trial design/development work be performed. Although both time and funds were exhausted before optical or ion-probe types of in-cylinder investigation could be undertaken, a great deal of laboratory data was acquired during the course of the design/development work. This laboratory data is the basis for the information presented in this final report.
Austin, Peter C
2008-10-01
Researchers have proposed using bootstrap resampling in conjunction with automated variable selection methods to identify predictors of an outcome and to develop parsimonious regression models. Using this method, multiple bootstrap samples are drawn from the original data set. Traditional backward variable elimination is used in each bootstrap sample, and the proportion of bootstrap samples in which each candidate variable is identified as an independent predictor of the outcome is determined. The performance of this method for identifying predictor variables has not been examined. Monte Carlo simulation methods were used to determine the ability of bootstrap model selection methods to correctly identify predictors of an outcome when those variables that are selected for inclusion in at least 50% of the bootstrap samples are included in the final regression model. We compared the performance of the bootstrap model selection method to that of conventional backward variable elimination. Bootstrap model selection tended to result in an approximately equal proportion of selected models being equal to the true regression model compared with the use of conventional backward variable elimination. Bootstrap model selection performed comparatively to backward variable elimination for identifying the true predictors of a binary outcome.
Geochemical Modeling Of F Area Seepage Basin Composition And Variability
International Nuclear Information System (INIS)
Millings, M.; Denham, M.; Looney, B.
2012-01-01
From the 1950s through 1989, the F Area Seepage Basins at the Savannah River Site (SRS) received low level radioactive wastes resulting from processing nuclear materials. Discharges of process wastes to the F Area Seepage Basins followed by subsequent mixing processes within the basins and eventual infiltration into the subsurface resulted in contamination of the underlying vadose zone and downgradient groundwater. For simulating contaminant behavior and subsurface transport, a quantitative understanding of the interrelated discharge-mixing-infiltration system along with the resulting chemistry of fluids entering the subsurface is needed. An example of this need emerged as the F Area Seepage Basins was selected as a key case study demonstration site for the Advanced Simulation Capability for Environmental Management (ASCEM) Program. This modeling evaluation explored the importance of the wide variability in bulk wastewater chemistry as it propagated through the basins. The results are intended to generally improve and refine the conceptualization of infiltration of chemical wastes from seepage basins receiving variable waste streams and to specifically support the ASCEM case study model for the F Area Seepage Basins. Specific goals of this work included: (1) develop a technically-based 'charge-balanced' nominal source term chemistry for water infiltrating into the subsurface during basin operations, (2) estimate the nature of short term and long term variability in infiltrating water to support scenario development for uncertainty quantification (i.e., UQ analysis), (3) identify key geochemical factors that control overall basin water chemistry and the projected variability/stability, and (4) link wastewater chemistry to the subsurface based on monitoring well data. Results from this study provide data and understanding that can be used in further modeling efforts of the F Area groundwater plume. As identified in this study, key geochemical factors affecting basin
State variables for modelling thermohaline flow in rocks
Energy Technology Data Exchange (ETDEWEB)
Kroehn, Klaus-Peter
2010-12-15
Modelling thermohaline flow can easily involve complex physical interactions even if only the basic processes occurring in density-driven flow and heat transport are considered. In the light of these complexities it is of vital importance to know the thermal and hydraulic parameters required for the model and their dependencies as precise as possible. But also for designing a numerical simulator it is useful to know the dependencies of the parameters on the primary variables temperature, pressure and salinity in order to select an appropriate underlying mathematical model. The present report thus compiles the mathematical formulations for the fluid parameters from the literature. For each parameter the origin, at least one meaningful figure, a comment where necessary and conclusions about the influence of each primary variable on the thermo-hydraulic parameters are given. All required coefficients and auxiliary functions including dimensions are listed, too. Simulation of heat transport requires also information about some properties of the porous medium. Thus some complementary information about the properties of rocks is also given. In contrast to the properties for pure substances that are considered for the fluid the porous medium cannot be characterised as easily. Usually, the solids are a mixture of different materials with locally varying composition. Thus rather hints than exact values are provided for the rocks considered here. This compilation represents a complete set of mathematical formulations for fluid and solid properties to be used for thermohaline modelling that can directly used in the composing of a numerical simulator. (orig.)
Grady, Cheryl L; Garrett, Douglas D
2018-04-01
Variability in the Blood Oxygen-Level Dependent (BOLD) signal from fMRI is often associated with better cognitive performance and younger age. It has been proposed that neural variability enables flexible responding to uncertainty in a changing environment. However, signal variability reflecting environmental uncertainty may reduce to the extent that a task depends on internally-directed attention and is supported by neural "solutions" that are schematic and relatively stable within each individual. Accordingly, we examined the hypothesis that BOLD variability will be low at rest, higher during internally-directed tasks, and higher still during externally-directed tasks, and that this effect will be reduced with aging. Modulation of BOLD variability across conditions was consistent with these hypotheses, and was associated with faster and more stable behavioral performance in both young and older adults. These data support the idea that brain signal variability may modulate in response to environmental uncertainty, which is presumed to be greater in the external environment than in the internal milieu. Reduced flexibility of signal variability with age may indicate less ability to switch between internal and external brain states. Copyright © 2017 Elsevier Inc. All rights reserved.
CAO, Z.
2016-01-01
Tourism demand is one of the major areas of tourism economics research. The current research studies the interdependencies of international tourism demand across 24 major countries around the world. To this end, it proposes to develop a tourism demand model using an innovative approach, called the global vector autoregressive (GVAR) model. While existing tourism demand models are successful in measuring the causal effects of economic variables on tourism demand for a single origin-destinat...
Supervised Gaussian process latent variable model for dimensionality reduction.
Gao, Xinbo; Wang, Xiumei; Tao, Dacheng; Li, Xuelong
2011-04-01
The Gaussian process latent variable model (GP-LVM) has been identified to be an effective probabilistic approach for dimensionality reduction because it can obtain a low-dimensional manifold of a data set in an unsupervised fashion. Consequently, the GP-LVM is insufficient for supervised learning tasks (e.g., classification and regression) because it ignores the class label information for dimensionality reduction. In this paper, a supervised GP-LVM is developed for supervised learning tasks, and the maximum a posteriori algorithm is introduced to estimate positions of all samples in the latent variable space. We present experimental evidences suggesting that the supervised GP-LVM is able to use the class label information effectively, and thus, it outperforms the GP-LVM and the discriminative extension of the GP-LVM consistently. The comparison with some supervised classification methods, such as Gaussian process classification and support vector machines, is also given to illustrate the advantage of the proposed method.
Geospatial models of climatological variables distribution over Colombian territory
International Nuclear Information System (INIS)
Baron Leguizamon, Alicia
2003-01-01
Diverse studies have dealt on the existing relation between the variables temperature about the air and precipitation with the altitude; nevertheless they have been precise analyses or by regions, but no of them has gotten to constitute itself in a tool that reproduces the space distribution, of the temperature or the precipitation, taking into account orography and allowing to obtain from her data on these variables in a certain place. Cradle in the raised relation and from the multi-annual monthly information of the temperature of the air and the precipitation, it was calculated the vertical gradients of temperature and the related the precipitation to the altitude. After it, with base in the data of altitude provided by the DEM, one calculated the values of temperature and precipitation, and those values were interpolated to generate geospatial models monthly
Niche variability and its consequences for species distribution modeling.
Michel, Matt J; Knouft, Jason H
2012-01-01
When species distribution models (SDMs) are used to predict how a species will respond to environmental change, an important assumption is that the environmental niche of the species is conserved over evolutionary time-scales. Empirical studies conducted at ecological time-scales, however, demonstrate that the niche of some species can vary in response to environmental change. We use habitat and locality data of five species of stream fishes collected across seasons to examine the effects of niche variability on the accuracy of projections from Maxent, a popular SDM. We then compare these predictions to those from an alternate method of creating SDM projections in which a transformation of the environmental data to similar scales is applied. The niche of each species varied to some degree in response to seasonal variation in environmental variables, with most species shifting habitat use in response to changes in canopy cover or flow rate. SDMs constructed from the original environmental data accurately predicted the occurrences of one species across all seasons and a subset of seasons for two other species. A similar result was found for SDMs constructed from the transformed environmental data. However, the transformed SDMs produced better models in ten of the 14 total SDMs, as judged by ratios of mean probability values at known presences to mean probability values at all other locations. Niche variability should be an important consideration when using SDMs to predict future distributions of species because of its prevalence among natural populations. The framework we present here may potentially improve these predictions by accounting for such variability.
Niche variability and its consequences for species distribution modeling.
Directory of Open Access Journals (Sweden)
Matt J Michel
Full Text Available When species distribution models (SDMs are used to predict how a species will respond to environmental change, an important assumption is that the environmental niche of the species is conserved over evolutionary time-scales. Empirical studies conducted at ecological time-scales, however, demonstrate that the niche of some species can vary in response to environmental change. We use habitat and locality data of five species of stream fishes collected across seasons to examine the effects of niche variability on the accuracy of projections from Maxent, a popular SDM. We then compare these predictions to those from an alternate method of creating SDM projections in which a transformation of the environmental data to similar scales is applied. The niche of each species varied to some degree in response to seasonal variation in environmental variables, with most species shifting habitat use in response to changes in canopy cover or flow rate. SDMs constructed from the original environmental data accurately predicted the occurrences of one species across all seasons and a subset of seasons for two other species. A similar result was found for SDMs constructed from the transformed environmental data. However, the transformed SDMs produced better models in ten of the 14 total SDMs, as judged by ratios of mean probability values at known presences to mean probability values at all other locations. Niche variability should be an important consideration when using SDMs to predict future distributions of species because of its prevalence among natural populations. The framework we present here may potentially improve these predictions by accounting for such variability.
Initial CGE Model Results Summary Exogenous and Endogenous Variables Tests
Energy Technology Data Exchange (ETDEWEB)
Edwards, Brian Keith [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Boero, Riccardo [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Rivera, Michael Kelly [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2017-08-07
The following discussion presents initial results of tests of the most recent version of the National Infrastructure Simulation and Analysis Center Dynamic Computable General Equilibrium (CGE) model developed by Los Alamos National Laboratory (LANL). The intent of this is to test and assess the model’s behavioral properties. The test evaluated whether the predicted impacts are reasonable from a qualitative perspective. This issue is whether the predicted change, be it an increase or decrease in other model variables, is consistent with prior economic intuition and expectations about the predicted change. One of the purposes of this effort is to determine whether model changes are needed in order to improve its behavior qualitatively and quantitatively.
Del Rio Amador, Lenin; Lovejoy, Shaun
2017-04-01
Over the past ten years, a key advance in our understanding of atmospheric variability is the discovery that between the weather and climate regime lies an intermediate "macroweather" regime, spanning the range of scales from ≈10 days to ≈30 years. Macroweather statistics are characterized by two fundamental symmetries: scaling and the factorization of the joint space-time statistics. In the time domain, the scaling has low intermittency with the additional property that successive fluctuations tend to cancel. In space, on the contrary the scaling has high (multifractal) intermittency corresponding to the existence of different climate zones. These properties have fundamental implications for macroweather forecasting: a) the temporal scaling implies that the system has a long range memory that can be exploited for forecasting; b) the low temporal intermittency implies that mathematically well-established (Gaussian) forecasting techniques can be used; and c), the statistical factorization property implies that although spatial correlations (including teleconnections) may be large, if long enough time series are available, they are not necessarily useful in improving forecasts. Theoretically, these conditions imply the existence of stochastic predictability limits in our talk, we show that these limits apply to GCM's. Based on these statistical implications, we developed the Stochastic Seasonal and Interannual Prediction System (StocSIPS) for the prediction of temperature from regional to global scales and from one month to many years horizons. One of the main components of StocSIPS is the separation and prediction of both the internal and externally forced variabilities. In order to test the theoretical assumptions and consequences for predictability and predictions, we use 41 different CMIP5 model outputs from preindustrial control runs that have fixed external forcings: whose variability is purely internally generated. We first show that these statistical
Enhancing the Action Research Capacity of the International Model ...
International Development Research Centre (IDRC) Digital Library (Canada)
The International Model Forest Network (IMFN) dates from a commitment made by Canada at the UNCED (United Nations Conference on Environment and Development) Rio Conference in 1992 to create an international network of working models of sustainable forest management that are based on local-level ...
Modelling bulk canopy resistance from climatic variables for evapotranspiration estimation
Perez, P. J.; Martinez-Cob, A.; Lecina, S.; Castellvi, F.; Villalobos, F. J.
2003-04-01
Evapotranspiration is a component of the hydrological cycle whose accurate computation is needed for an adequate management of water resources. In particular, a high level of accuracy in crop evapotranspiration estimation can represent an important saving of economical and water resources at planning and management of irrigated areas. In the evapotranspiration process, bulk canopy resistance (r_c) is a primary factor and its correct modelling remains an important problem in the Penman-Monteith (PM) method, not only for tall crops but also for medium height and short crops under water stress. In this work, an alternative approach for modelling canopy resistance is presented against th PM method with constant canopy resistance. Variable r_c values are computed as function of a climatic resistance and compared with other two models, Katerji and Perrier and Todorovic. Hourly evapotranspiration values (ET_o) over grass were obtained with a weighing lysimeter and an eddy covariance system at the Ebro and Guadalquivir valleys (Spain) respectively. The main objective is to evaluate whether the use of variable rather than fixed r_c values, would improve the ET_o estimates obtained by applying the PM equation under the semiarid conditions of the two sites, where evaporative demand is high particularly during summer.
Modeling intraindividual variability with repeated measures data methods and applications
Hershberger, Scott L
2013-01-01
This book examines how individuals behave across time and to what degree that behavior changes, fluctuates, or remains stable.It features the most current methods on modeling repeated measures data as reported by a distinguished group of experts in the field. The goal is to make the latest techniques used to assess intraindividual variability accessible to a wide range of researchers. Each chapter is written in a ""user-friendly"" style such that even the ""novice"" data analyst can easily apply the techniques.Each chapter features:a minimum discussion of mathematical detail;an empirical examp
Context Tree Estimation in Variable Length Hidden Markov Models
Dumont, Thierry
2011-01-01
We address the issue of context tree estimation in variable length hidden Markov models. We propose an estimator of the context tree of the hidden Markov process which needs no prior upper bound on the depth of the context tree. We prove that the estimator is strongly consistent. This uses information-theoretic mixture inequalities in the spirit of Finesso and Lorenzo(Consistent estimation of the order for Markov and hidden Markov chains(1990)) and E.Gassiat and S.Boucheron (Optimal error exp...
Incompatible quantum measurements admitting a local-hidden-variable model
Quintino, Marco Túlio; Bowles, Joseph; Hirsch, Flavien; Brunner, Nicolas
2016-05-01
The observation of quantum nonlocality, i.e., quantum correlations violating a Bell inequality, implies the use of incompatible local quantum measurements. Here we consider the converse question. That is, can any set of incompatible measurements be used in order to demonstrate Bell inequality violation? Our main result is to construct a local hidden variable model for an incompatible set of qubit measurements. Specifically, we show that if Alice uses this set of measurements, then for any possible shared entangled state and any possible dichotomic measurements performed by Bob, the resulting statistics are local. This represents significant progress towards proving that measurement incompatibility does not imply Bell nonlocality in general.
Estimation and variable selection for generalized additive partial linear models
Wang, Li
2011-08-01
We study generalized additive partial linear models, proposing the use of polynomial spline smoothing for estimation of nonparametric functions, and deriving quasi-likelihood based estimators for the linear parameters. We establish asymptotic normality for the estimators of the parametric components. The procedure avoids solving large systems of equations as in kernel-based procedures and thus results in gains in computational simplicity. We further develop a class of variable selection procedures for the linear parameters by employing a nonconcave penalized quasi-likelihood, which is shown to have an asymptotic oracle property. Monte Carlo simulations and an empirical example are presented for illustration. © Institute of Mathematical Statistics, 2011.
Identification and modeling of internal waves
Digital Repository Service at National Institute of Oceanography (India)
Murty, T.V.R.; Sadhuram, Y.; Rao, M.M.M.; SujithKumar, S.; Maneesha, K.; Sandhya, K.S.; Prakash, S.S.; Chandramouli, P.; Murthy, K.S.R.
) and Bhimili (17°35.486’N, 83°42.322’E) at sonic depth 100 m during different seasons using time series CTD (hourly), current meter and indigenously developed thermister chain (at an interval of 2 minutes) to study the Internal Wave (IW) characteristics. Sound...
A model of internalized stigma and its effects on people with mental illness.
Drapalski, Amy L; Lucksted, Alicia; Perrin, Paul B; Aakre, Jennifer M; Brown, Clayton H; DeForge, Bruce R; Boyd, Jennifer E
2013-03-01
The investigators aimed to examine the prevalence of internalized stigma among individuals with serious mental illness and to construct and test a hypothesized model of the interrelationships among internalized stigma, self-concept, and psychiatric symptoms. One hundred individuals, most of whom were African American and had a diagnosis of serious mental illness, were receiving mental health services from one of three community outpatient mental health programs or one Veterans Affairsmedical center. They completed an interview that included measures of internalized stigma, psychiatric symptoms, self-esteem, selfefficacy, and recovery orientation. Structural equation modeling (SEM) was used to examine the interrelationships among these variables. Thirty-five percent of participants reported moderate to severe levels of internalized stigma, which was not significantly associated with any demographic variable or diagnosis. However, greater internalized stigma was associated with lower levels of self-esteem, self-efficacy, and recovery orientation, as well as with more severe psychiatric symptoms. The SEM produced a nonsignificant chi square statistic and other fit indices indicative of a good model fit (goodness-of-fit index=.96, root mean square error of approximation=.011). Results suggest that internalized stigma was prevalent and problematic among individuals with serious mental illness. There may be multiple pathways through which stigma and discrimination lead to negative outcomes, suggesting that interventions to reduce internalized stigma need to target multiple points along these pathways in order to be effective.
Quantifying uncertainty, variability and likelihood for ordinary differential equation models
LENUS (Irish Health Repository)
Weisse, Andrea Y
2010-10-28
Abstract Background In many applications, ordinary differential equation (ODE) models are subject to uncertainty or variability in initial conditions and parameters. Both, uncertainty and variability can be quantified in terms of a probability density function on the state and parameter space. Results The partial differential equation that describes the evolution of this probability density function has a form that is particularly amenable to application of the well-known method of characteristics. The value of the density at some point in time is directly accessible by the solution of the original ODE extended by a single extra dimension (for the value of the density). This leads to simple methods for studying uncertainty, variability and likelihood, with significant advantages over more traditional Monte Carlo and related approaches especially when studying regions with low probability. Conclusions While such approaches based on the method of characteristics are common practice in other disciplines, their advantages for the study of biological systems have so far remained unrecognized. Several examples illustrate performance and accuracy of the approach and its limitations.
Bobrowski, Maria; Schickhoff, Udo
2017-04-01
Betula utilis is a major constituent of alpine treeline ecotones in the western and central Himalayan region. The objective of this study is to provide first time analysis of the potential distribution of Betula utilis in the subalpine and alpine belts of the Himalayan region using species distribution modelling. Using Generalized Linear Models (GLM) we aim at examining climatic factors controlling the species distribution under current climate conditions. Furthermore we evaluate the prediction ability of climate data derived from different statistical methods. GLMs were created using least correlated bioclimatic variables derived from two different climate models: 1) interpolated climate data (i.e. Worldclim, Hijmans et al., 2005) and 2) quasi-mechanistical statistical downscaling (i.e. Chelsa; Karger et al., 2016). Model accuracy was evaluated by the ability to predict the potential species distribution range. We found that models based on variables of Chelsa climate data had higher predictive power, whereas models using Worldclim climate data consistently overpredicted the potential suitable habitat for Betula utilis. Although climatic variables of Worldclim are widely used in modelling species distribution, our results suggest to treat them with caution when remote regions like the Himalayan mountains are in focus. Unmindful usage of climatic variables for species distribution models potentially cause misleading projections and may lead to wrong implications and recommendations for nature conservation. References: Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G. & Jarvis, A. (2005) Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25, 1965-1978. Karger, D.N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R.W., Zimmermann, N., Linder, H.P. & Kessler, M. (2016) Climatologies at high resolution for the earth land surface areas. arXiv:1607.00217 [physics].
Regional modeling of decadal rainfall variability over the Sahel
Energy Technology Data Exchange (ETDEWEB)
Herceg, Deborah [Rutgers University, Institute of Marine and Coastal Sciences (IMCS), New Brunswick, NJ (United States); Sobel, Adam H. [Columbia University, Department of Applied Physics and Applied Mathematics, Department of Earth and Environmental Sciences, New York, NY (United States); Columbia University, International Research Institute for Climate and Society (IRI), Palisades, NY (United States); Sun, Liqiang [Columbia University, International Research Institute for Climate and Society (IRI), Palisades, NY (United States)
2007-07-15
A regional climate model is used to investigate the mechanism of interdecadal rainfall variability, specifically the drought of the 1970s and 1980s, in the Sahel region of Africa. The model is the National Center for Environmental Prediction's (NCEPs) Regional Spectral Model (RSM97), with a horizontal resolution of approximately equivalent to a grid spacing of 50 km, nested within the ECHAM4.5 atmospheric general circulation model (AGCM), which in turn was forced by observed sea surface temperature (SST). Simulations for the July-September season of the individual years 1955 and 1986 produced wet conditions in 1955 and dry conditions in 1986 in the Sahel, as observed. Additional July-September simulations were run forced by SSTs averaged for each month over the periods 1950-1959 and the 1978-1987. These simulations yielded wet conditions in the 1950-1959 case and dry conditions in the 1978-1987 case, confirming the role of SST forcing in decadal variability in particular. To test the hypothesis that the SST influences Sahel rainfall via stabilization of the tropospheric sounding, simulations were performed in which the temperature field from the AGCM was artificially modified before it was used to force the regional model. We modified the original 1955 ECHAM4.5 temperature profiles by adding a horizontally uniform, vertically varying temperature increase, taken from the 1986-1955 tropical mean warming in either the AGCM or the NCEP/National Center for Atmospheric Research Reanalysis. When compared to the 1955 simulations without the added tropospheric warming, these simulations show a drying in the Sahel similar to that in the 1986-1955 difference and to the decadal difference between the 1980s and 1950s. This suggests that the tropospheric warming may have been, at least in part, the agent by which the SST increases led to the Sahel drought of the 1970s and 1980s. (orig.)
Rosenberger, Kurt; Storlazzi, Curt; Cheriton, Olivia
2016-01-01
A 6-month deployment of instrumentation from April to October 2012 in 90 m water depth near the outer edge of the mid-shelf mud belt in southern Monterey Bay, California, reveals the importance regional upwelling on water column density structure, potentially accounting for the majority of the variability in internal tidal energy flux across the shelf. Observations consisted of time-series measurements of water-column currents, temperature and salinity, and near-bed currents and suspended matter. The internal tide accounted for 15–25% of the water-column current variance and the barotropic tide accounted for up to 35%. The subtidal flow showed remarkably little shear and was dominated by the 7–14 day band, which is associated with relaxations in the dominant equatorward winds typical of coastal California in the spring and summer. Upwelling and relaxation events resulted in strong near-bed flows and accounted for almost half of the current stress on the seafloor (not accounting for wave orbital velocities), and may have driven along-shelf geostrophic flow during steady state conditions. Several elevated suspended particulate matter (SPM) events occurred within 3 m of the bed and were generally associated with higher, long-period surface waves. However, these peaks in SPM did not coincide with the predicted resuspension events from the modeled combined wave–current shear stress, indicating that the observed SPM at our site was most likely resuspended elsewhere and advected along-isobath. Sediment flux was almost equal in magnitude in the alongshore and cross-shore directions. Instances of wave–current shear stress that exceeded the threshold of resuspension for the silty-clays common at these water depths only occurred when near-bed orbital velocities due to long-period surface waves coincided with vigorous near-bed currents associated with the internal tide or upwelling/relaxation events. Thus upwelling/relaxation dynamics are primarily responsible for
Ozone Concentration Prediction via Spatiotemporal Autoregressive Model With Exogenous Variables
Kamoun, W.; Senoussi, R.
2009-04-01
Forecast of environmental variables are nowadays of main concern for public health or agricultural management. In this context a large literature is devoted to spatio-temporal modelling of these variables using different statistical approaches. However, most of studies ignored the potential contribution of local (e.g. meteorological and/or geographical) covariables as well as the dynamical characteristics of observations. In this study, we present a spatiotemporal short term forecasting model for ozone concentration based on regularly observed covariables in predefined geographical sites. Our driving system simply combines a multidimensional second order autoregressive structured process with a linear regression model over influent exogenous factors and reads as follows: 2 q j Z (t) = A (Î&,cedil;D )Ã- [ αiZ(t- i)]+ B (Î&,cedil;D )Ã- [ βjX (t)]+ É(t) i=1 j=1 Z(t)=(Z1(t),â¦,Zn(t)) represents the vector of ozone concentration at time t of the n geographical sites, whereas Xj(t)=(X1j(t),â¦,Xnj(t)) denotes the jth exogenous variable observed over these sites. The nxn matrix functions A and B account for the spatial relationships between sites through the inter site distance matrix D and a vector parameter Î&.cedil; Multidimensional white noise É is assumed to be Gaussian and spatially correlated but temporally independent. A covariance structure of Z that takes account of noise spatial dependences is deduced under a stationary hypothesis and then included in the likelihood function. Statistical model and estimation procedure: Contrarily to the widely used choice of a {0,1}-valued neighbour matrix A, we put forward two more natural choices of exponential or power decay. Moreover, the model revealed enough stable to readily accommodate the crude observations without the usual tedious and somewhat arbitrarily variable transformations. Data set and preliminary analysis: In our case, ozone variable represents here the daily maximum ozone
Instrumental variables estimation under a structural Cox model
DEFF Research Database (Denmark)
Martinussen, Torben; Nørbo Sørensen, Ditte; Vansteelandt, Stijn
2017-01-01
Instrumental variable (IV) analysis is an increasingly popular tool for inferring the effect of an exposure on an outcome, as witnessed by the growing number of IV applications in epidemiology, for instance. The majority of IV analyses of time-to-event endpoints are, however, dominated by heuristic...... and instruments. We propose a novel class of estimators and derive their asymptotic properties. The methodology is illustrated using two real data applications, and using simulated data....... approaches. More rigorous proposals have either sidestepped the Cox model, or considered it within a restrictive context with dichotomous exposure and instrument, amongst other limitations. The aim of this article is to reconsider IV estimation under a structural Cox model, allowing for arbitrary exposure...
A rumor spreading model with variable forgetting rate
Zhao, Laijun; Xie, Wanlin; Gao, H. Oliver; Qiu, Xiaoyan; Wang, Xiaoli; Zhang, Shuhai
2013-12-01
A rumor spreading model with the consideration of forgetting rate changing over time is examined in small-world networks. The mean-field equations are derived to describe the dynamics of rumor spreading in small-world networks. Further, numerical solutions are conducted on LiveJournal, an online social blogging platform, to better understand the performance of the model. Results show that the forgetting rate has a significant impact on the final size of rumor spreading: the larger the initial forgetting rate or the faster the forgetting speed, the smaller the final size of the rumor spreading. Numerical solutions also show that the final size of rumor spreading is much larger under a variable forgetting rate compared to that under a constant forgetting rate.
Modeling the variability of shapes of a human placenta.
Yampolsky, M; Salafia, C M; Shlakhter, O; Haas, D; Eucker, B; Thorp, J
2008-09-01
Placentas are generally round/oval in shape, but "irregular" shapes are common. In the Collaborative Perinatal Project data, irregular shapes were associated with lower birth weight for placental weight, suggesting variably shaped placentas have altered function. (I) Using a 3D one-parameter model of placental vascular growth based on Diffusion Limited Aggregation (an accepted model for generating highly branched fractals), models were run with a branching density growth parameter either fixed or perturbed at either 5-7% or 50% of model growth. (II) In a data set with detailed measures of 1207 placental perimeters, radial standard deviations of placental shapes were calculated from the umbilical cord insertion, and from the centroid of the shape (a biologically arbitrary point). These two were compared to the difference between the observed scaling exponent and the Kleiber scaling exponent (0.75), considered optimal for vascular fractal transport systems. Spearman's rank correlation considered pcentroid) was associated with differences from the Kleiber exponent (p=0.006). A dynamical DLA model recapitulates multilobate and "star" placental shapes via changing fractal branching density. We suggest that (1) irregular placental outlines reflect deformation of the underlying placental fractal vascular network, (2) such irregularities in placental outline indicate sub-optimal branching structure of the vascular tree, and (3) this accounts for the lower birth weight observed in non-round/oval placentas in the Collaborative Perinatal Project.
Constrained variability of modeled T:ET ratio across biomes
Fatichi, Simone; Pappas, Christoforos
2017-07-01
A large variability (35-90%) in the ratio of transpiration to total evapotranspiration (referred here as T:ET) across biomes or even at the global scale has been documented by a number of studies carried out with different methodologies. Previous empirical results also suggest that T:ET does not covary with mean precipitation and has a positive dependence on leaf area index (LAI). Here we use a mechanistic ecohydrological model, with a refined process-based description of evaporation from the soil surface, to investigate the variability of T:ET across biomes. Numerical results reveal a more constrained range and higher mean of T:ET (70 ± 9%, mean ± standard deviation) when compared to observation-based estimates. T:ET is confirmed to be independent from mean precipitation, while it is found to be correlated with LAI seasonally but uncorrelated across multiple sites. Larger LAI increases evaporation from interception but diminishes ground evaporation with the two effects largely compensating each other. These results offer mechanistic model-based evidence to the ongoing research about the patterns of T:ET and the factors influencing its magnitude across biomes.
Computational Model for Internal Relative Humidity Distributions in Concrete
Directory of Open Access Journals (Sweden)
Wondwosen Ali
2014-01-01
Full Text Available A computational model is developed for predicting nonuniform internal relative humidity distribution in concrete. Internal relative humidity distribution is known to have a direct effect on the nonuniform drying shrinkage strains. These nonuniform drying shrinkage strains result in the buildup of internal stresses, which may lead to cracking of concrete. This may be particularly true at early ages of concrete since the concrete is relatively weak while the difference in internal relative humidity is probably high. The results obtained from this model can be used by structural and construction engineers to predict critical drying shrinkage stresses induced due to differential internal humidity distribution. The model uses finite elment-finite difference numerical methods. The finite element is used to space discretization while the finite difference is used to obtain transient solutions of the model. The numerical formulations are then programmed in Matlab. The numerical results were compared with experimental results found in the literature and demonstrated very good agreement.
Mechanisms of the Internally Generated Decadal-to-Multidecadal Variability in the Atlantic
Chen, Hua
The thesis investigates the physical question of mechanisms of the Atlantic multidecadal variability (AMV) in a new way, using the weather noise forced interactive ensemble. It includes two distinct but closely related components. 1) Verification of the interactive ensemble strategy and justification for the noise forcing. In order to separate the noise from the SST forced response, the SST forced response in the atmospheric GCM (AGCM), forced by the SST from the coupled GCM (CGCM), has to be the same as in the CGCM. To be consistent, the noise should also be the same statistically in the CGCM and AGCM. Comparison of the CGCM and AGCM ensemble shows that these conditions are satisfied. Therefore, the interactive ensemble is an appropriate tool for the investigation, and the "noise" that is diagnosed and used as forcing is appropriate. Our results apply not just to the interactive ensemble, but also have broader implications important for the design of a wide range of climate modeling experiments. 2) Diagnosis of the multidecadal variability in the CGCM simulation. The diagnosis is done using the interactive ensemble CGCM, in which the heat flux, wind stress and fresh water flux weather noise components are applied at the ocean surface in different regions and in different combinations. The interactive ensemble simulations prove that the model's climate variability is predominantly forced by weather noise. The local weather noise forcing is found to be responsible for the SST variability in the Atlantic, with the noise heat flux and noise wind stress playing a critical role, while the noise fresh water flux has negligible impact. The North Atlantic Oscillation (NAO) pattern in the atmosphere, dominated by weather noise, forces the AMV 45-year mode through the noise heat flux and noise wind stress, with the former important in the eastern North Atlantic and the latter along the separated Gulf Stream. The noise wind stress forces the AMV 45-year mode through ocean
Multi-scale climate modelling over Southern Africa using a variable-resolution global model
CSIR Research Space (South Africa)
Engelbrecht, FA
2011-12-01
Full Text Available -resolution global simulations, to ultra-high resolution simulations at the micro-scale. The model used for these experiments is a variable-resolution global atmospheric model, the conformal-cubic atmospheric model (CCAM). It is shown that CCAM may be used to obtain...
Transient modelling of a natural circulation loop under variable pressure
Energy Technology Data Exchange (ETDEWEB)
Vianna, Andre L.B.; Faccini, Jose L.H.; Su, Jian, E-mail: avianna@nuclear.ufrj.br, E-mail: sujian@nuclear.ufrj.br, E-mail: faccini@ien.gov.br [Coordenacao de Pos-Graduacao e Pesquisa de Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear; Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil). Lab. de Termo-Hidraulica Experimental
2017-07-01
The objective of the present work is to model the transient operation of a natural circulation loop, which is one-tenth scale in height to a typical Passive Residual Heat Removal system (PRHR) of an Advanced Pressurized Water Nuclear Reactor and was designed to meet the single and two-phase flow similarity criteria to it. The loop consists of a core barrel with electrically heated rods, upper and lower plena interconnected by hot and cold pipe legs to a seven-tube shell heat exchanger of countercurrent design, and an expansion tank with a descending tube. A long transient characterized the loop operation, during which a phenomenon of self-pressurization, without self-regulation of the pressure, was experimentally observed. This represented a unique situation, named natural circulation under variable pressure (NCVP). The self-pressurization was originated in the air trapped in the expansion tank and compressed by the loop water dilatation, as it heated up during each experiment. The mathematical model, initially oriented to the single-phase flow, included the heat capacity of the structure and employed a cubic polynomial approximation for the density, in the buoyancy term calculation. The heater was modelled taking into account the different heat capacities of the heating elements and the heater walls. The heat exchanger was modelled considering the coolant heating, during the heat exchanging process. The self-pressurization was modelled as an isentropic compression of a perfect gas. The whole model was computationally implemented via a set of finite difference equations. The corresponding computational algorithm of solution was of the explicit, marching type, as for the time discretization, in an upwind scheme, regarding the space discretization. The computational program was implemented in MATLAB. Several experiments were carried out in the natural circulation loop, having the coolant flow rate and the heating power as control parameters. The variables used in the
Sensitivity analysis of a forest gap model concerning current and future climate variability
Energy Technology Data Exchange (ETDEWEB)
Lasch, P.; Suckow, F.; Buerger, G.; Lindner, M.
1998-07-01
The ability of a forest gap model to simulate the effects of climate variability and extreme events depends on the temporal resolution of the weather data that are used and the internal processing of these data for growth, regeneration and mortality. The climatological driving forces of most current gap models are based on monthly means of weather data and their standard deviations, and long-term monthly means are used for calculating yearly aggregated response functions for ecological processes. In this study, the results of sensitivity analyses using the forest gap model FORSKA{sub -}P and involving climate data of different resolutions, from long-term monthly means to daily time series, including extreme events, are presented for the current climate and for a climate change scenario. The model was applied at two sites with differing soil conditions in the federal state of Brandenburg, Germany. The sensitivity of the model concerning climate variations and different climate input resolutions is analysed and evaluated. The climate variability used for the model investigations affected the behaviour of the model substantially. (orig.)
Directory of Open Access Journals (Sweden)
Fernanda Daniela Serralvo
2015-05-01
Full Text Available Introduction: The efficacy and safety in treatment with oral anticoagulants are dependent on the monitoring of the effect of anticoagulants by the prothrombin time (PT. The system INR (International Normalized Ratio was developed to minimize the variability in the PT, mainly because of the thromboplastin reagent used. Objective: Compare the results of INR employing six thromboplastins and plasmas of patients using oral anticoagulants. Materials and Methods: For this study, 96 patients using oral anticoagulants and that had TP collected for monitoring anticoagulants were selected randomly. INR values were determined using six commercially available thromboplastin brands. Results and Discussion: Of the 96 patients, 29 were with the INR between 2 and 3 when used reagents Dade-Behring®, Human do Brasil® and Diagnostica Stago®. Regardless of the range of INR, the results obtained with the reagent Labtest® were statistically different from the Dade-Behring®, from Diagnostica Stago®, Trinity Biotech and Bios Diagnostica®. With INR between 2 and 3 only differences were observed between the results of brands and Bios Diagnostica® Labtest®. With INR above 3, the results of Labtest® were different from the Dade-Behring®, from Diagnostica Stago®, Trinity Biotech® and Bios Diagnostica®. Conclusion: Despite the establishment of INR, there are still significant differences in INR results depending on the thromboplastin brand used, which can interfere with the therapeutic approach in relation to oral anticoagulants.
Modelling and prediction of pig iron variables in the blast furnace
Energy Technology Data Exchange (ETDEWEB)
Saxen, H.; Laaksonen, M.; Waller, M. [Aabo Akademi, Turku (Finland). Heat Engineering Lab.
1996-12-31
The blast furnace, where pig iron for steelmaking is produced, is an extremely complicated process, with heat and mass transfer and chemical reactions between several phases. Very few direct measurements on the internal state are available in the operation of the process. A main problem in on-line analysis and modelling is that the state of the furnace may undergo spontaneous changes, which alter the dynamic behaviour of the process. Moreover, large internal disturbances frequently occur, which affect the product quality. The work in this research project focuses on a central problem in the control of the blast furnace process, i.e., short-term prediction of pig iron variables. The problem is of considerable importance for fuel economy, product quality, and for an optimal decision making in integrated steel plants. The operation of the blast furnace aims at producing a product (hot metal) with variables maintained on a stable level (close to their setpoints) without waste of expensive fuel (metallurgical coke). The hot metal temperature and composition affect the downstream (steelmaking) processes, so fluctuations in the pig iron quality must be `corrected` in the steel plant. The goal is to develop a system which predicts the evolution of the hot metal variables (temperature, chemical composition) during the next few taps, and that can be used for decision-making in the operation of the blast furnace. Because of the complicated behaviour of the process, it is considered important to include both deterministic and stochastic components in the modelling: Mathematical models, which on the basis of measurements describe the physical state of the process, and statistical (black-box) models will be combined in the system. Moreover, different models will be applied in different domains in order to capture structural changes in the dynamics of the process SULA 2 Research Programme; 17 refs.
Modelling the Growth and Volatility in Daily International Mass Tourism to Peru
Jose Angelo Divino; Michael McAleer
2009-01-01
Peru is a South American country that is divided into two parts by the Andes Mountains. The rich historical, cultural and geographic diversity has led to the inclusion of ten Peruvian sites on UNESCO’s World Heritage List. For the potential negative impacts of mass tourism on the environment, and hence on future international tourism demand, to be managed appropriately require modelling growth rates and volatility adequately. The paper models the growth rate and volatility (or the variability...
Multilevel models in international business research
Peterson, M.F.; Arregle, J-L.; Martin, Xavier
2012-01-01
Multiple-level (or mixed linear) modeling (MLM) can simultaneously test hypotheses at several levels of analysis (usually two or three), or control for confounding effects at one level while testing hypotheses at others. Advances in multi-level modeling allow increased precision in quantitative
Scientists' internal models of the greenhouse effect
Libarkin, J. C.; Miller, H.; Thomas, S. R.
2013-12-01
A prior study utilized exploratory factor analysis to identify models underlying drawings of the greenhouse effect made by entering university freshmen. This analysis identified four archetype models of the greenhouse effect that appear within the college enrolling population. The current study collected drawings made by 144 geoscientists, from undergraduate geoscience majors through professionals. These participants scored highly on a standardized assessment of climate change understanding and expressed confidence in their understanding; many also indicated that they teach climate change in their courses. Although geoscientists held slightly more sophisticated greenhouse effect models than entering freshmen, very few held complete, explanatory models. As with freshmen, many scientists (44%) depict greenhouse gases in a layer in the atmosphere; 52% of participants depicted this or another layer as a physical barrier to escaping energy. In addition, 32% of participants indicated that incoming light from the Sun remains unchanged at Earth's surface, in alignment with a common model held by students. Finally, 3-20% of scientists depicted physical greenhouses, ozone, or holes in the atmosphere, all of which correspond to non-explanatory models commonly seen within students and represented in popular literature. For many scientists, incomplete models of the greenhouse effect are clearly enough to allow for reasoning about climate change. These data suggest that: 1) better representations about interdisciplinary concepts, such as the greenhouse effect, are needed for both scientist and public understanding; and 2) the scientific community needs to carefully consider how much understanding of a model is needed before necessary reasoning can occur.
Modelling and controlling infectious diseases | IDRC - International ...
International Development Research Centre (IDRC) Digital Library (Canada)
The research. The research team is exploring the potential of mathematical modelling to inform a new generation of tools and approaches to control disease spread. Drawing on research and surveillance data from China's National Center for AIDS/STD Control and Prevention, the team is creating disease models, focusing ...
Modern Gravity Models of Internal Migration. The Case of Romania
Directory of Open Access Journals (Sweden)
Daniela BUNEA
2012-04-01
Full Text Available Internal migration, although less investigated than international migration, is a key mechanism for adjustment to regional economic shocks, especially when other tools prove useless. But this process has very complex factors of determination which can be economic, social, demographic, environmental, etc. Based on previous international studies, in the case of Romania the robust variables proved to be the population size, the per capita gross domestic product, the road density, an amenity index and the crime rate from a static perspective, and the previous migration, the population size and the amenity index from a dynamic perspective. The techniques I have employed in making this study are the Least Square Dummy Variables (LSDV, or the fixed effects method and the Generalized Method of Moments (GMM, or the dynamic method both applied to panel data.
Resolving structural variability in network models and the brain.
Directory of Open Access Journals (Sweden)
Florian Klimm
2014-03-01
Full Text Available Large-scale white matter pathways crisscrossing the cortex create a complex pattern of connectivity that underlies human cognitive function. Generative mechanisms for this architecture have been difficult to identify in part because little is known in general about mechanistic drivers of structured networks. Here we contrast network properties derived from diffusion spectrum imaging data of the human brain with 13 synthetic network models chosen to probe the roles of physical network embedding and temporal network growth. We characterize both the empirical and synthetic networks using familiar graph metrics, but presented here in a more complete statistical form, as scatter plots and distributions, to reveal the full range of variability of each measure across scales in the network. We focus specifically on the degree distribution, degree assortativity, hierarchy, topological Rentian scaling, and topological fractal scaling--in addition to several summary statistics, including the mean clustering coefficient, the shortest path-length, and the network diameter. The models are investigated in a progressive, branching sequence, aimed at capturing different elements thought to be important in the brain, and range from simple random and regular networks, to models that incorporate specific growth rules and constraints. We find that synthetic models that constrain the network nodes to be physically embedded in anatomical brain regions tend to produce distributions that are most similar to the corresponding measurements for the brain. We also find that network models hardcoded to display one network property (e.g., assortativity do not in general simultaneously display a second (e.g., hierarchy. This relative independence of network properties suggests that multiple neurobiological mechanisms might be at play in the development of human brain network architecture. Together, the network models that we develop and employ provide a potentially useful
International Business Models Developed Through Brokerage Knowledge and Value Creation
DEFF Research Database (Denmark)
Petersen, Nicolaj Hannesbo; Rasmussen, Erik Stavnsager
This paper highlights theoretically and empirically international business model decisions in networks with knowledge sharing and value creation. The paper expands the conceptual in-ternational business model framework for technology-oriented companies to include the focal firm’s network role...... and strategic fit in a global embeddedness. The brokerage role in the in-ternationalization of a network is discussed from both a theoretical and empirical point of view. From a business model and social network analysis perspective, this paper will show how firms and network grow internationally through two...
Directory of Open Access Journals (Sweden)
Favas T. K.
2018-01-01
Full Text Available The current numerical investigation aims at analyzing the effect of variable thermal conductivity on local and global entropy generation rates in an energy generating plate dissipating heat by conjugate conduction-forced convection heat transfer. In order to fulfill this objective, the physical model of the plate dissipating heat into surrounding coolant is transformed into a mathematical model governing the temperature field in the plate as well as flow and thermal fields in the fluid. The resulting mathematical model, being a set of coupled and non linear partial differential equations, is solved by adopting stream function-vorticity formulation and by employing Alternating direction implicit scheme. Keeping Prandtl number of the fluid, temperature of the free stream coolant and maximum permissible plate temperature as fixed, numerical predictions are obtained for wide range of values of aspect ratio, conduction-convection parameter, energy generation parameter and flow Reynolds number. It is concluded that unrealistic constant thermal conductivity assumption leads to underestimation of entropy generation rates. It is also found that an increase in energy generation parameter results in significant increase in underestimation of global entropy generation rate.
A model for international border management systems.
Energy Technology Data Exchange (ETDEWEB)
Duggan, Ruth Ann
2008-09-01
To effectively manage the security or control of its borders, a country must understand its border management activities as a system. Using its systems engineering and security foundations as a Department of Energy National Security Laboratory, Sandia National Laboratories has developed such an approach to modeling and analyzing border management systems. This paper describes the basic model and its elements developed under Laboratory Directed Research and Development project 08-684.
Directory of Open Access Journals (Sweden)
Yong-Hong Zhang
2015-05-01
Full Text Available Assessing the human placental barrier permeability of drugs is very important to guarantee drug safety during pregnancy. Quantitative structure–activity relationship (QSAR method was used as an effective assessing tool for the placental transfer study of drugs, while in vitro human placental perfusion is the most widely used method. In this study, the partial least squares (PLS variable selection and modeling procedure was used to pick out optimal descriptors from a pool of 620 descriptors of 65 compounds and to simultaneously develop a QSAR model between the descriptors and the placental barrier permeability expressed by the clearance indices (CI. The model was subjected to internal validation by cross-validation and y-randomization and to external validation by predicting CI values of 19 compounds. It was shown that the model developed is robust and has a good predictive potential (r2 = 0.9064, RMSE = 0.09, q2 = 0.7323, rp2 = 0.7656, RMSP = 0.14. The mechanistic interpretation of the final model was given by the high variable importance in projection values of descriptors. Using PLS procedure, we can rapidly and effectively select optimal descriptors and thus construct a model with good stability and predictability. This analysis can provide an effective tool for the high-throughput screening of the placental barrier permeability of drugs.
Ching, Jason; Herwehe, Jerold; Swall, Jenise
The general situation (but exemplified in urban areas), where a significant degree of sub-grid variability (SGV) exists in grid models poses problems when comparing grid-based air-quality modeling results with observations. Typically, grid models ignore or parameterize processes and features that are at their sub-grid scale. Also, observations may be obtained in an area where significant spatial variability in the concentration fields exists. Consequently, model results and observations cannot be expected to be equal. To address this issue, we suggest a framework that can provide for qualitative judgments on model performance based on comparing observations to the grid predictions and its SGV distribution. Further, we (a) explore some characteristics of SGV, (b) comment on the contributions to SGV and (c) examine the implications to the modeling results at coarse grid resolution using examples from fine scale grid modeling of the Community Multi-scale Air Quality (CMAQ) modeling system.
Validation of an internal hardwood log defect prediction model
R. Edward. Thomas
2011-01-01
The type, size, and location of internal defects dictate the grade and value of lumber sawn from hardwood logs. However, acquiring internal defect knowledge with x-ray/computed-tomography or magnetic-resonance imaging technology can be expensive both in time and cost. An alternative approach uses prediction models based on correlations among external defect indicators...
A New Conceptual Model for Understanding International Students' College Needs
Alfattal, Eyad
2016-01-01
This study concerns the theory and practice of international marketing in higher education with the purpose of exploring a conceptual model for understanding international students' needs in the context of a four-year college in the United States. A transcendental phenomenological design was employed to investigate the essence of international…
Regional Climate Variability Under Model Simulations of Solar Geoengineering
Dagon, Katherine; Schrag, Daniel P.
2017-11-01
Solar geoengineering has been shown in modeling studies to successfully mitigate global mean surface temperature changes from greenhouse warming. Changes in land surface hydrology are complicated by the direct effect of carbon dioxide (CO2) on vegetation, which alters the flux of water from the land surface to the atmosphere. Here we investigate changes in boreal summer climate variability under solar geoengineering using multiple ensembles of model simulations. We find that spatially uniform solar geoengineering creates a strong meridional gradient in the Northern Hemisphere temperature response, with less consistent patterns in precipitation, evapotranspiration, and soil moisture. Using regional summertime temperature and precipitation results across 31-member ensembles, we show a decrease in the frequency of heat waves and consecutive dry days under solar geoengineering relative to a high-CO2 world. However in some regions solar geoengineering of this amount does not completely reduce summer heat extremes relative to present day climate. In western Russia and Siberia, an increase in heat waves is connected to a decrease in surface soil moisture that favors persistent high temperatures. Heat waves decrease in the central United States and the Sahel, while the hydrologic response increases terrestrial water storage. Regional changes in soil moisture exhibit trends over time as the model adjusts to solar geoengineering, particularly in Siberia and the Sahel, leading to robust shifts in climate variance. These results suggest potential benefits and complications of large-scale uniform climate intervention schemes.
Hummel, Alexandra C; Kiel, Elizabeth J
2015-02-01
Maternal depression relates to child internalizing outcomes, but one missing aspect of this association is how variation in depressive symptoms, including mild and moderate symptoms, relates to young children's outcomes. The current study examined a moderated mediation model to investigate how maternal behaviors may mediate this association in the context of child temperament and gender. Mothers and toddlers completed a free-play/clean-up task in the laboratory. Mothers rated their depressive symptoms and their toddlers' temperament and internalizing behaviors. Results indicated a significant indirect effect of maternal warmth on the relation between maternal depressive symptoms and toddler internalizing outcomes for boys with low negative emotionality. Toddler gender and temperament moderated the relation between maternal intrusiveness and toddler internalizing outcomes, but mediation was not supported. Results highlight the important interaction between child and maternal variables in predicting child outcomes, and suggest mechanisms by and conditions under which mild maternal depressive symptomatology can be a risk factor for toddler internalizing outcomes.
Foy, Pierre, Ed.; Arora, Alka, Ed.; Stanco, Gabrielle M., Ed.
2013-01-01
This supplement contains documentation on all the derived variables contained in the TIMSS 2011 data files that are based on background questionnaire variables. These variables were used to report background data in the TIMSS 2011 International Results in Mathematics and TIMSS 2011 International Results in Science reports, and are made available…
Stock assessment model outputs for ICCAT (International) managed species
National Oceanic and Atmospheric Administration, Department of Commerce — Includes outputs from the various models run in the evaluation of stock status for species managed by the International Commission for the Conservation of Atlantic...
Lipschitz-Elhawi, Racheli; Itzhaky, Haya; Michal, Hefetz
2008-01-01
The article deals with the contribution of background variables (gender, years of residence in a treatment center, and family status), internal resource (self-esteem), and external resources (peer, family and significant other support, sense of belonging to the community) to life satisfaction among adolescents living in residential treatment…
Examples of EOS Variables as compared to the UMM-Var Data Model
Cantrell, Simon; Lynnes, Chris
2016-01-01
In effort to provide EOSDIS clients a way to discover and use variable data from different providers, a Unified Metadata Model for Variables is being created. This presentation gives an overview of the model and use cases we are handling.
Modelling carbon and nitrogen turnover in variably saturated soils
Batlle-Aguilar, J.; Brovelli, A.; Porporato, A.; Barry, D. A.
2009-04-01
Natural ecosystems provide services such as ameliorating the impacts of deleterious human activities on both surface and groundwater. For example, several studies have shown that a healthy riparian ecosystem can reduce the nutrient loading of agricultural wastewater, thus protecting the receiving surface water body. As a result, in order to develop better protection strategies and/or restore natural conditions, there is a growing interest in understanding ecosystem functioning, including feedbacks and nonlinearities. Biogeochemical transformations in soils are heavily influenced by microbial decomposition of soil organic matter. Carbon and nutrient cycles are in turn strongly sensitive to environmental conditions, and primarily to soil moisture and temperature. These two physical variables affect the reaction rates of almost all soil biogeochemical transformations, including microbial and fungal activity, nutrient uptake and release from plants, etc. Soil water saturation and temperature are not constants, but vary both in space and time, thus further complicating the picture. In order to interpret field experiments and elucidate the different mechanisms taking place, numerical tools are beneficial. In this work we developed a 3D numerical reactive-transport model as an aid in the investigation the complex physical, chemical and biological interactions occurring in soils. The new code couples the USGS models (MODFLOW 2000-VSF, MT3DMS and PHREEQC) using an operator-splitting algorithm, and is a further development an existing reactive/density-dependent flow model PHWAT. The model was tested using simplified test cases. Following verification, a process-based biogeochemical reaction network describing the turnover of carbon and nitrogen in soils was implemented. Using this tool, we investigated the coupled effect of moisture content and temperature fluctuations on nitrogen and organic matter cycling in the riparian zone, in order to help understand the relative
Lamont, A.E.; Vermunt, J.K.; Van Horn, M.L.
2016-01-01
Regression mixture models are increasingly used as an exploratory approach to identify heterogeneity in the effects of a predictor on an outcome. In this simulation study, we tested the effects of violating an implicit assumption often made in these models; that is, independent variables in the
Andries, Jan P M; Vander Heyden, Yvan; Buydens, Lutgarde M C
2017-08-22
The calibration performance of Partial Least Squares regression (PLS) can be improved by eliminating uninformative variables. For PLS, many variable elimination methods have been developed. One is the Uninformative-Variable Elimination for PLS (UVE-PLS). However, the number of variables retained by UVE-PLS is usually still large. In UVE-PLS, variable elimination is repeated as long as the root mean squared error of cross validation (RMSECV) is decreasing. The set of variables in this first local minimum is retained. In this paper, a modification of UVE-PLS is proposed and investigated, in which UVE is repeated until no further reduction in variables is possible, followed by a search for the global RMSECV minimum. The method is called Global-Minimum Error Uninformative-Variable Elimination for PLS, denoted as GME-UVE-PLS or simply GME-UVE. After each iteration, the predictive ability of the PLS model, built with the remaining variable set, is assessed by RMSECV. The variable set with the global RMSECV minimum is then finally selected. The goal is to obtain smaller sets of variables with similar or improved predictability than those from the classical UVE-PLS method. The performance of the GME-UVE-PLS method is investigated using four data sets, i.e. a simulated set, NIR and NMR spectra, and a theoretical molecular descriptors set, resulting in twelve profile-response (X-y) calibrations. The selective and predictive performances of the models resulting from GME-UVE-PLS are statistically compared to those from UVE-PLS and 1-step UVE, one-sided paired t-tests. The results demonstrate that variable reduction with the proposed GME-UVE-PLS method, usually eliminates significantly more variables than the classical UVE-PLS, while the predictive abilities of the resulting models are better. With GME-UVE-PLS, a lower number of uninformative variables, without a chemical meaning for the response, may be retained than with UVE-PLS. The selectivity of the classical UVE method
Kipnis, Victor; Freedman, Laurence S; Carroll, Raymond J; Midthune, Douglas
2016-03-01
Semicontinuous data in the form of a mixture of a large portion of zero values and continuously distributed positive values frequently arise in many areas of biostatistics. This article is motivated by the analysis of relationships between disease outcomes and intakes of episodically consumed dietary components. An important aspect of studies in nutritional epidemiology is that true diet is unobservable and commonly evaluated by food frequency questionnaires with substantial measurement error. Following the regression calibration approach for measurement error correction, unknown individual intakes in the risk model are replaced by their conditional expectations given mismeasured intakes and other model covariates. Those regression calibration predictors are estimated using short-term unbiased reference measurements in a calibration substudy. Since dietary intakes are often "energy-adjusted," e.g., by using ratios of the intake of interest to total energy intake, the correct estimation of the regression calibration predictor for each energy-adjusted episodically consumed dietary component requires modeling short-term reference measurements of the component (a semicontinuous variable), and energy (a continuous variable) simultaneously in a bivariate model. In this article, we develop such a bivariate model, together with its application to regression calibration. We illustrate the new methodology using data from the NIH-AARP Diet and Health Study (Schatzkin et al., 2001, American Journal of Epidemiology 154, 1119-1125), and also evaluate its performance in a simulation study. © 2015, The International Biometric Society.
a modified intervention model for gross domestic product variable
African Journals Online (AJOL)
the economy. He continued that the excess money made from other sectors can be invested in agriculture so as to get a diversified economy .... The effects of these exogenous variables showed that if the exogenous variable and intervention variables are brought under control, same goes for the inflationary process as well.
Dominguez, M.
2017-12-01
Headwater catchments in complex terrain typically exhibit significant variations in microclimatic conditions across slopes. This microclimatic variability in turn, modifies land surface properties presumably altering the hydrologic dynamics of these catchments. The extent to which differences in microclimate and land cover dictate the partition of water and energy fluxes within a catchment is still poorly understood. In this study, we attempt to do an assessment of the effects of aspect, elevation and latitude (which are the principal factors that define microclimate conditions) on the hydrologic behavior of the hillslopes within catchments with complex terrain. Using a distributed hydrologic model on a number of catchments at different latitudes, where data is available for calibration and validation, we estimate the different components of the water balance to obtain the aridity index (AI = PET/P) and the evaporative index (EI = AET/P) of each slope for a number of years. We use Budyko's curve as a framework to characterize the inter-annual variability in the hydrologic response of the hillslopes in the studied catchments, developing a hydrologic sensitivity index (HSi) based on the relative change in Budyko's curve components (HSi=ΔAI/ΔEI). With this method, when the HSi values of a given hillslope are larger than 1 the hydrologic behavior of that part of the catchment is considered sensitive to changes in climatic conditions, while values approaching 0 would indicate the opposite. We use this approach as a diagnostic tool to discern the effect of aspect, elevation, and latitude on the hydrologic regime of the slopes in complex terrain catchments and to try to explain observed patterns of land cover conditions on these types of catchments.
White dwarf models of supernovae and cataclysmic variables
International Nuclear Information System (INIS)
Nomoto, K.; Hashimoto, M.
1986-01-01
If the accreting white dwarf increases its mass to the Chandrasekhar mass, it will either explode as a Type I supernova or collapse to form a neutron star. In fact, there is a good agreement between the exploding white dwarf model for Type I supernovae and observations. We describe various types of evolution of accreting white dwarfs as a function of binary parameters (i.e,. composition, mass, and age of the white dwarf, its companion star, and mass accretion rate), and discuss the conditions for the precursors of exploding or collapsing white dwarfs, and their relevance to cataclysmic variables. Particular attention is given to helium star cataclysmics which might be the precursors of some Type I supernovae or ultrashort period x-ray binaries. Finally we present new evolutionary calculations using the updated nuclear reaction rates for the formation of O+Ne+Mg white dwarfs, and discuss the composition structure and their relevance to the model for neon novae. 61 refs., 14 figs
Modeling first impressions from highly variable facial images.
Vernon, Richard J W; Sutherland, Clare A M; Young, Andrew W; Hartley, Tom
2014-08-12
First impressions of social traits, such as trustworthiness or dominance, are reliably perceived in faces, and despite their questionable validity they can have considerable real-world consequences. We sought to uncover the information driving such judgments, using an attribute-based approach. Attributes (physical facial features) were objectively measured from feature positions and colors in a database of highly variable "ambient" face photographs, and then used as input for a neural network to model factor dimensions (approachability, youthful-attractiveness, and dominance) thought to underlie social attributions. A linear model based on this approach was able to account for 58% of the variance in raters' impressions of previously unseen faces, and factor-attribute correlations could be used to rank attributes by their importance to each factor. Reversing this process, neural networks were then used to predict facial attributes and corresponding image properties from specific combinations of factor scores. In this way, the factors driving social trait impressions could be visualized as a series of computer-generated cartoon face-like images, depicting how attributes change along each dimension. This study shows that despite enormous variation in ambient images of faces, a substantial proportion of the variance in first impressions can be accounted for through linear changes in objectively defined features.
Learning atomic human actions using variable-length Markov models.
Liang, Yu-Ming; Shih, Sheng-Wen; Shih, Arthur Chun-Chieh; Liao, Hong-Yuan Mark; Lin, Cheng-Chung
2009-02-01
Visual analysis of human behavior has generated considerable interest in the field of computer vision because of its wide spectrum of potential applications. Human behavior can be segmented into atomic actions, each of which indicates a basic and complete movement. Learning and recognizing atomic human actions are essential to human behavior analysis. In this paper, we propose a framework for handling this task using variable-length Markov models (VLMMs). The framework is comprised of the following two modules: a posture labeling module and a VLMM atomic action learning and recognition module. First, a posture template selection algorithm, based on a modified shape context matching technique, is developed. The selected posture templates form a codebook that is used to convert input posture sequences into discrete symbol sequences for subsequent processing. Then, the VLMM technique is applied to learn the training symbol sequences of atomic actions. Finally, the constructed VLMMs are transformed into hidden Markov models (HMMs) for recognizing input atomic actions. This approach combines the advantages of the excellent learning function of a VLMM and the fault-tolerant recognition ability of an HMM. Experiments on realistic data demonstrate the efficacy of the proposed system.
Self-organized Criticality Model for Ocean Internal Waves
International Nuclear Information System (INIS)
Wang Gang; Hou Yijun; Lin Min; Qiao Fangli
2009-01-01
In this paper, we present a simple spring-block model for ocean internal waves based on the self-organized criticality (SOC). The oscillations of the water blocks in the model display power-law behavior with an exponent of -2 in the frequency domain, which is similar to the current and sea water temperature spectra in the actual ocean and the universal Garrett and Munk deep ocean internal wave model [Geophysical Fluid Dynamics 2 (1972) 225; J. Geophys. Res. 80 (1975) 291]. The influence of the ratio of the driving force to the spring coefficient to SOC behaviors in the model is also discussed. (general)
A Correlation-Based Transition Model using Local Variables. Part 1; Model Formation
Menter, F. R.; Langtry, R. B.; Likki, S. R.; Suzen, Y. B.; Huang, P. G.; Volker, S.
2006-01-01
A new correlation-based transition model has been developed, which is based strictly on local variables. As a result, the transition model is compatible with modern computational fluid dynamics (CFD) approaches, such as unstructured grids and massive parallel execution. The model is based on two transport equations, one for intermittency and one for the transition onset criteria in terms of momentum thickness Reynolds number. The proposed transport equations do not attempt to model the physics of the transition process (unlike, e.g., turbulence models) but from a framework for the implementation of correlation-based models into general-purpose CFD methods.
Modeling and assessing international climate financing
Wu, Jing; Tang, Lichun; Mohamed, Rayman; Zhu, Qianting; Wang, Zheng
2016-06-01
Climate financing is a key issue in current negotiations on climate protection. This study establishes a climate financing model based on a mechanism in which donor countries set up funds for climate financing and recipient countries use the funds exclusively for carbon emission reduction. The burden-sharing principles are based on GDP, historical emissions, and consumptionbased emissions. Using this model, we develop and analyze a series of scenario simulations, including a financing program negotiated at the Cancun Climate Change Conference (2010) and several subsequent programs. Results show that sustained climate financing can help to combat global climate change. However, the Cancun Agreements are projected to result in a reduction of only 0.01°C in global warming by 2100 compared to the scenario without climate financing. Longer-term climate financing programs should be established to achieve more significant benefits. Our model and simulations also show that climate financing has economic benefits for developing countries. Developed countries will suffer a slight GDP loss in the early stages of climate financing, but the longterm economic growth and the eventual benefits of climate mitigation will compensate for this slight loss. Different burden-sharing principles have very similar effects on global temperature change and economic growth of recipient countries, but they do result in differences in GDP changes for Japan and the FSU. The GDP-based principle results in a larger share of financial burden for Japan, while the historical emissions-based principle results in a larger share of financial burden for the FSU. A larger burden share leads to a greater GDP loss.
Simulation-Based Internal Models for Safer Robots
Directory of Open Access Journals (Sweden)
Christian Blum
2018-01-01
Full Text Available In this paper, we explore the potential of mobile robots with simulation-based internal models for safety in highly dynamic environments. We propose a robot with a simulation of itself, other dynamic actors and its environment, inside itself. Operating in real time, this simulation-based internal model is able to look ahead and predict the consequences of both the robot’s own actions and those of the other dynamic actors in its vicinity. Hence, the robot continuously modifies its own actions in order to actively maintain its own safety while also achieving its goal. Inspired by the problem of how mobile robots could move quickly and safely through crowds of moving humans, we present experimental results which compare the performance of our internal simulation-based controller with a purely reactive approach as a proof-of-concept study for the practical use of simulation-based internal models.
Voigt, C.; Denker, H.; Timmen, L.
2016-12-01
The latest generation of optical atomic clocks is approaching the level of one part in 1018 in terms of frequency stability and uncertainty. For clock comparisons and the definition of international time scales, a relativistic redshift effect of the clock frequencies has to be taken into account at a corresponding uncertainty level of about 0.1 m2 s-2 and 0.01 m in terms of gravity potential and height, respectively. Besides the predominant static part of the gravity potential, temporal variations must be considered in order to avoid systematic frequency shifts. Time-variable gravity potential components induced by tides and non-tidal mass redistributions are investigated with regard to the level of one part in 1018. The magnitudes and dominant time periods of the individual gravity potential contributions are investigated globally and for specific laboratory sites together with the related uncertainty estimates. The basics of the computation methods are presented along with the applied models, data sets and software. Solid Earth tides contribute by far the most dominant signal with a global maximum amplitude of 4.2 m2 s-2 for the potential and a range (maximum-to-minimum) of up to 1.3 and 10.0 m2 s-2 in terms of potential differences between specific laboratories over continental and intercontinental scales, respectively. Amplitudes of the ocean tidal loading potential can amount up to 1.25 m2 s-2, while the range of the potential between specific laboratories is 0.3 and 1.1 m2 s-2 over continental and intercontinental scales, respectively. These are the only two contributors being relevant at a 10-17 level. However, several other time-variable potential effects can particularly affect clock comparisons at the 10-18 level. Besides solid Earth pole tides, these are non-tidal mass redistributions in the atmosphere, the oceans and the continental water storage.
The International Reference Ionosphere 2012 – a model of international collaboration☆
Directory of Open Access Journals (Sweden)
Bilitza Dieter
2014-02-01
Full Text Available The International Reference Ionosphere (IRI project was established jointly by the Committee on Space Research (COSPAR and the International Union of Radio Science (URSI in the late sixties with the goal to develop an international standard for the specification of plasma parameters in the Earth’s ionosphere. COSPAR needed such a specification for the evaluation of environmental effects on spacecraft and experiments in space, and URSI for radiowave propagation studies and applications. At the request of COSPAR and URSI, IRI was developed as a data-based model to avoid the uncertainty of theory-based models which are only as good as the evolving theoretical understanding. Being based on most of the available and reliable observations of the ionospheric plasma from the ground and from space, IRI describes monthly averages of electron density, electron temperature, ion temperature, ion composition, and several additional parameters in the altitude range from 60 km to 2000 km. A working group of about 50 international ionospheric experts is in charge of developing and improving the IRI model. Over time as new data became available and new modeling techniques emerged, steadily improved editions of the IRI model have been published. This paper gives a brief history of the IRI project and describes the latest version of the model, IRI-2012. It also briefly discusses efforts to develop a real-time IRI model. The IRI homepage is at http://IRImodel.org.
Narapusetty, Balachandrudu
2017-06-01
The sensitivity of the sea-surface temperature (SST) prediction skill to the atmospheric internal variability (weather noise) in the North Pacific (20∘-60∘N;120∘E-80∘W) on decadal timescales is examined using state-of-the-art Climate Forecasting System model version 2 (CFS) and a variation of CFS in an Interactive Ensemble approach (CFSIE), wherein six copies of atmospheric components with different perturbed initial states of CFS are coupled with the same ocean model by exchanging heat, momentum and fresh water fluxes dynamically at the air-sea interface throughout the model integrations. The CFSIE experiments are designed to reduce weather noise and using a few ten-year long forecasts this study shows that reduction in weather noise leads to lower SST forecast skill. To understand the pathways that cause the reduced SST prediction skill, two twenty-year long forecasts produced with CFS and CFSIE for 1980-2000 are analyzed for the ocean subsurface characteristics that influence SST due to the reduction in weather noise in the North Pacific. The heat budget analysis in the oceanic mixed layer across the North Pacific reveals that weather noise significantly impacts the heat transport in the oceanic mixed layer. In the CFSIE forecasts, the reduced weather noise leads to increased variations in heat content due to shallower mixed layer, diminished heat storage and enhanced horizontal heat advection. The enhancement of the heat advection spans from the active Kuroshio regions of the east coast of Japan to the west coast of continental United States and significantly diffuses the basin-wide SST anomaly (SSTA) contrasts and leads to reduction in the SST prediction skill in decadal forecasts.
Magdziarz, P.; Machalski, J.
1993-08-01
The numerical model of extragalactic variability, proposed by Rys & Machalski (1990), is extended for multi-epoch and multi-frequency sampling of an imaginary population of variable sources. Variability observations gathered in Paper I of this series (cf. Introduction) are used to constrain free parameters of the model. The fits to the observations are satisfactory if the distributions of burst amplitude, duration, and recurrence time between consecutive bursts of radiation are frequency-dependent. The model shows how the characteristics of variability depends on the time-filter applied in observations. In particular we found that (1) the intrinsic amplitude A of the flux- density fluctuations varies with frequency as ν^0.41+/-0.14^, (2) the mean timescale of variability , characterizing the total population of variables, varies as ν^0.9+/-0.1^, and should increase from about 10-15 yr at 10.8 GHz to about 80-120 yr at 1.4 GHz. This behavior is explained by a loss of identity and dissolution of the burst in slowly decaying previous bursts, (3) the "intrinsic" fraction of variables (i.e. a fraction independent on the time filter applied) should increase (e.g. for sources with apparent fluctuation > 0.3, about five times) with increasing frequency from 1.4 to 10.8 GHz, (4) (i) the mean timescale observed in a sample of variables, ω^bar^, is shorter than that in the total population, and (ii) the observed fraction of variables is lower than the intrinsic one, if the time base of observations is shorter than (0.4-1.0) (depending on a number of sampling epochs).
Beskin, G.; Karpov, S.; Bondar, S.; Greco, G.; Guarnieri, A.; Bartolini, C.; Piccioni, A.
2010-08-01
We imaged the position of the naked-eye burst, GRB080319B, before, during, and after its gamma-ray activity with sub-second temporal resolution using the TORTORA wide-field camera. The burst optical prompt emission, which reached 5.3 mag, has been detected, and its periodic optical variability has been discovered in the form of four equidistant flashes with a duration of several seconds. We also detected a strong correlation (r ≈ 0.82) between optical and gamma-ray light curves with a 2 s delay of the optical emission with respect to the gamma-ray emission. The revealed temporal structure of the optical light curve in comparison with the gamma-ray light curve can be interpreted in the framework of the model of shell collisions in the ejecta containing a significant neutron component. All observed emission features reflect the non-stationary behavior of the burst internal engine—supposedly, a hyperaccreting solar-mass black hole formed in the collapse of a massive stellar core.
International Nuclear Information System (INIS)
Beskin, G.; Karpov, S.; Bondar, S.; Greco, G.; Guarnieri, A.; Bartolini, C.; Piccioni, A.
2010-01-01
We imaged the position of the naked-eye burst, GRB080319B, before, during, and after its gamma-ray activity with sub-second temporal resolution using the TORTORA wide-field camera. The burst optical prompt emission, which reached 5.3 mag, has been detected, and its periodic optical variability has been discovered in the form of four equidistant flashes with a duration of several seconds. We also detected a strong correlation (r ∼ 0.82) between optical and gamma-ray light curves with a 2 s delay of the optical emission with respect to the gamma-ray emission. The revealed temporal structure of the optical light curve in comparison with the gamma-ray light curve can be interpreted in the framework of the model of shell collisions in the ejecta containing a significant neutron component. All observed emission features reflect the non-stationary behavior of the burst internal engine-supposedly, a hyperaccreting solar-mass black hole formed in the collapse of a massive stellar core.
G. SARENS; I. DE BEELDE
2004-01-01
Following the recommendation made by Rittenberg (1999), this study encompasses the broader nature of internal auditing that is evolving in practice and confirmed by the revised definition of internal auditing and the new Professional Practices Framework, both issued by the IIA in 1999. This study, based on six extended case studies, attempts to contribute to the literature by studying contemporary internal auditing practices in Belgium (assurance and / or consulting oriented), refining the in...
Modeling Complex Nesting Structures in International Business Research
DEFF Research Database (Denmark)
Nielsen, Bo Bernhard; Nielsen, Sabina
2013-01-01
hierarchical random coefficient models (RCM) are often used for the analysis of multilevel phenomena, IB issues often result in more complex nested structures. This paper illustrates how cross-nested multilevel modeling allowing for predictor variables and cross-level interactions at multiple (crossed) levels...
Modeling Variable Phanerozoic Oxygen Effects on Physiology and Evolution.
Graham, Jeffrey B; Jew, Corey J; Wegner, Nicholas C
2016-01-01
Geochemical approximation of Earth's atmospheric O2 level over geologic time prompts hypotheses linking hyper- and hypoxic atmospheres to transformative events in the evolutionary history of the biosphere. Such correlations, however, remain problematic due to the relative imprecision of the timing and scope of oxygen change and the looseness of its overlay on the chronology of key biotic events such as radiations, evolutionary innovation, and extinctions. There are nevertheless general attributions of atmospheric oxygen concentration to key evolutionary changes among groups having a primary dependence upon oxygen diffusion for respiration. These include the occurrence of Devonian hypoxia and the accentuation of air-breathing dependence leading to the origin of vertebrate terrestriality, the occurrence of Carboniferous-Permian hyperoxia and the major radiation of early tetrapods and the origins of insect flight and gigantism, and the Mid-Late Permian oxygen decline accompanying the Permian extinction. However, because of variability between and error within different atmospheric models, there is little basis for postulating correlations outside the Late Paleozoic. Other problems arising in the correlation of paleo-oxygen with significant biological events include tendencies to ignore the role of blood pigment affinity modulation in maintaining homeostasis, the slow rates of O2 change that would have allowed for adaptation, and significant respiratory and circulatory modifications that can and do occur without changes in atmospheric oxygen. The purpose of this paper is thus to refocus thinking about basic questions central to the biological and physiological implications of O2 change over geological time.
Variable Width Riparian Model Enhances Landscape and Watershed Condition
Abood, S. A.; Spencer, L.
2017-12-01
Riparian areas are ecotones that represent about 1% of USFS administered landscape and contribute to numerous valuable ecosystem functions such as wildlife habitat, stream water quality and flows, bank stability and protection against erosion, and values related to diversity, aesthetics and recreation. Riparian zones capture the transitional area between terrestrial and aquatic ecosystems with specific vegetation and soil characteristics which provide critical values/functions and are very responsive to changes in land management activities and uses. Two staff areas at the US Forest Service have coordinated on a two phase project to support the National Forests in their planning revision efforts and to address rangeland riparian business needs at the Forest Plan and Allotment Management Plan levels. The first part of the project will include a national fine scale (USGS HUC-12 digits watersheds) inventory of riparian areas on National Forest Service lands in western United States with riparian land cover, utilizing GIS capabilities and open source geospatial data. The second part of the project will include the application of riparian land cover change and assessment based on selected indicators to assess and monitor riparian areas on annual/5-year cycle basis.This approach recognizes the dynamic and transitional nature of riparian areas by accounting for hydrologic, geomorphic and vegetation data as inputs into the delineation process. The results suggest that incorporating functional variable width riparian mapping within watershed management planning can improve riparian protection and restoration. The application of Riparian Buffer Delineation Model (RBDM) approach can provide the agency Watershed Condition Framework (WCF) with observed riparian area condition on an annual basis and on multiple scales. The use of this model to map moderate to low gradient systems of sufficient width in conjunction with an understanding of the influence of distinctive landscape
Martinelli, A M
1999-08-01
College students can establish healthy lifestyle practices that can have lifelong implications. Many students, however, continue to engage in risky behaviors such as active and passive smoking. The purpose of this study was to test an explanatory model of variables which can influence health promotion behaviors in smoking and nonsmoking college students. Pender's Health Promotion Model provided the framework for the study. Health promotion behaviors were found to be most effective when students: had an increased self-efficacy, avoided environmental tobacco smoke (ETS), perceived themselves as healthy, were female, and had a powerful external and internal health locus of control. College students may benefit from health promotion interventions designed to influence the avoidance of ETS and alter perceptions of self-efficacy, control of health, and health status. Such interventions may result in a decrease in both active and passive smoking.
Variable Renewable Energy in Long-Term Planning Models: A Multi-Model Perspective
Energy Technology Data Exchange (ETDEWEB)
Cole, Wesley [National Renewable Energy Lab. (NREL), Golden, CO (United States); Frew, Bethany [National Renewable Energy Lab. (NREL), Golden, CO (United States); Mai, Trieu [National Renewable Energy Lab. (NREL), Golden, CO (United States); Sun, Yinong [National Renewable Energy Lab. (NREL), Golden, CO (United States); Bistline, John [Electric Power Research Inst. (EPRI), Knoxville, TN (United States); Blanford, Geoffrey [Electric Power Research Inst. (EPRI), Knoxville, TN (United States); Young, David [Electric Power Research Inst. (EPRI), Knoxville, TN (United States); Marcy, Cara [U.S. Energy Information Administration, Washington, DC (United States); Namovicz, Chris [U.S. Energy Information Administration, Washington, DC (United States); Edelman, Risa [US Environmental Protection Agency (EPA), Washington, DC (United States); Meroney, Bill [US Environmental Protection Agency (EPA), Washington, DC (United States); Sims, Ryan [US Environmental Protection Agency (EPA), Washington, DC (United States); Stenhouse, Jeb [US Environmental Protection Agency (EPA), Washington, DC (United States); Donohoo-Vallett, Paul [Dept. of Energy (DOE), Washington DC (United States)
2017-11-01
Long-term capacity expansion models of the U.S. electricity sector have long been used to inform electric sector stakeholders and decision-makers. With the recent surge in variable renewable energy (VRE) generators — primarily wind and solar photovoltaics — the need to appropriately represent VRE generators in these long-term models has increased. VRE generators are especially difficult to represent for a variety of reasons, including their variability, uncertainty, and spatial diversity. This report summarizes the analyses and model experiments that were conducted as part of two workshops on modeling VRE for national-scale capacity expansion models. It discusses the various methods for treating VRE among four modeling teams from the Electric Power Research Institute (EPRI), the U.S. Energy Information Administration (EIA), the U.S. Environmental Protection Agency (EPA), and the National Renewable Energy Laboratory (NREL). The report reviews the findings from the two workshops and emphasizes the areas where there is still need for additional research and development on analysis tools to incorporate VRE into long-term planning and decision-making. This research is intended to inform the energy modeling community on the modeling of variable renewable resources, and is not intended to advocate for or against any particular energy technologies, resources, or policies.
An extended gravity model with substitution applied to international trade
Bikker, J.A.
The traditional gravity model has been applied many times to international trade flows, especially in order to analyze trade creation and trade diversion. However, there are two fundamental objections to the model: it cannot describe substitutions between flows and it lacks a cogent theoretical
Efficiency of a new internal combustion engine concept with variable piston motion
Directory of Open Access Journals (Sweden)
Dorić Jovan Ž.
2014-01-01
Full Text Available This paper presents simulation of working process in a new IC engine concept. The main feature of this new IC engine concept is the realization of variable movement of the piston. With this unconventional piston movement it is easy to provide variable compression ratio, variable displacement and combustion during constant volume. These advantages over standard piston mechanism are achieved through synthesis of the two pairs of non-circular gears. Presented mechanism is designed to obtain a specific motion law which provides better fuel consumption of IC engines. For this paper Ricardo/WAVE software was used, which provides a fully integrated treatment of time-dependent fluid dynamics and thermodynamics by means of onedimensional formulation. The results obtained herein include the efficiency characteristic of this new heat engine concept. The results show that combustion during constant volume, variable compression ratio and variable displacement have significant impact on improvement of fuel consumption.
Stratified flows with variable density: mathematical modelling and numerical challenges.
Murillo, Javier; Navas-Montilla, Adrian
2017-04-01
Stratified flows appear in a wide variety of fundamental problems in hydrological and geophysical sciences. They may involve from hyperconcentrated floods carrying sediment causing collapse, landslides and debris flows, to suspended material in turbidity currents where turbulence is a key process. Also, in stratified flows variable horizontal density is present. Depending on the case, density varies according to the volumetric concentration of different components or species that can represent transported or suspended materials or soluble substances. Multilayer approaches based on the shallow water equations provide suitable models but are not free from difficulties when moving to the numerical resolution of the governing equations. Considering the variety of temporal and spatial scales, transfer of mass and energy among layers may strongly differ from one case to another. As a consequence, in order to provide accurate solutions, very high order methods of proved quality are demanded. Under these complex scenarios it is necessary to observe that the numerical solution provides the expected order of accuracy but also converges to the physically based solution, which is not an easy task. To this purpose, this work will focus in the use of Energy balanced augmented solvers, in particular, the Augmented Roe Flux ADER scheme. References: J. Murillo , P. García-Navarro, Wave Riemann description of friction terms in unsteady shallow flows: Application to water and mud/debris floods. J. Comput. Phys. 231 (2012) 1963-2001. J. Murillo B. Latorre, P. García-Navarro. A Riemann solver for unsteady computation of 2D shallow flows with variable density. J. Comput. Phys.231 (2012) 4775-4807. A. Navas-Montilla, J. Murillo, Energy balanced numerical schemes with very high order. The Augmented Roe Flux ADER scheme. Application to the shallow water equations, J. Comput. Phys. 290 (2015) 188-218. A. Navas-Montilla, J. Murillo, Asymptotically and exactly energy balanced augmented flux
Fahimi, Farzad; Yaseen, Zaher Mundher; El-shafie, Ahmed
2017-05-01
Since the middle of the twentieth century, artificial intelligence (AI) models have been used widely in engineering and science problems. Water resource variable modeling and prediction are the most challenging issues in water engineering. Artificial neural network (ANN) is a common approach used to tackle this problem by using viable and efficient models. Numerous ANN models have been successfully developed to achieve more accurate results. In the current review, different ANN models in water resource applications and hydrological variable predictions are reviewed and outlined. In addition, recent hybrid models and their structures, input preprocessing, and optimization techniques are discussed and the results are compared with similar previous studies. Moreover, to achieve a comprehensive view of the literature, many articles that applied ANN models together with other techniques are included. Consequently, coupling procedure, model evaluation, and performance comparison of hybrid models with conventional ANN models are assessed, as well as, taxonomy and hybrid ANN models structures. Finally, current challenges and recommendations for future researches are indicated and new hybrid approaches are proposed.
McRae, Elizabeth M.; Stoppelbein, Laura; O'Kelley, Sarah E.; Fite, Paula; Greening, Leilani
2018-01-01
Parental adjustment, parenting behaviors, and child routines have been linked to internalizing and externalizing child behavior. The purpose of the present study was to evaluate a comprehensive model examining relations among these variables in children with ASD and their parents. Based on Sameroff's Transactional Model of Development (Sameroff…
Estimating net present value variability for deterministic models
van Groenendaal, W.J.H.
1995-01-01
For decision makers the variability in the net present value (NPV) of an investment project is an indication of the project's risk. So-called risk analysis is one way to estimate this variability. However, risk analysis requires knowledge about the stochastic character of the inputs. For large,
Modelling of Uncertainty and Bi-Variable Maps
Nánásiová, Ol'ga; Pykacz, Jarosław
2016-05-01
The paper gives an overview and compares various bi-varilable maps from orthomodular lattices into unit interval. It focuses mainly on such bi-variable maps that may be used for constructing joint probability distributions for random variables which are not defined on the same Boolean algebra.
Development of internal models and predictive abilities for visual tracking during childhood.
Ego, Caroline; Yüksel, Demet; Orban de Xivry, Jean-Jacques; Lefèvre, Philippe
2016-01-01
The prediction of the consequences of our own actions through internal models is an essential component of motor control. Previous studies showed improvement of anticipatory behaviors with age for grasping, drawing, and postural control. Since these actions require visual and proprioceptive feedback, these improvements might reflect both the development of internal models and the feedback control. In contrast, visual tracking of a temporarily invisible target gives specific markers of prediction and internal models for eye movements. Therefore, we recorded eye movements in 50 children (aged 5-19 yr) and in 10 adults, who were asked to pursue a visual target that is temporarily blanked. Results show that the youngest children (5-7 yr) have a general oculomotor behavior in this task, qualitatively similar to the one observed in adults. However, the overall performance of older subjects in terms of accuracy at target reappearance and variability in their behavior was much better than the youngest children. This late maturation of predictive mechanisms with age was reflected into the development of the accuracy of the internal models governing the synergy between the saccadic and pursuit systems with age. Altogether, we hypothesize that the maturation of the interaction between smooth pursuit and saccades that relies on internal models of the eye and target displacement is related to the continuous maturation of the cerebellum. Copyright © 2016 the American Physiological Society.
Models that predict standing crop of stream fish from habitat variables: 1950-85.
K.D. Fausch; C.L. Hawkes; M.G. Parsons
1988-01-01
We reviewed mathematical models that predict standing crop of stream fish (number or biomass per unit area or length of stream) from measurable habitat variables and classified them by the types of independent habitat variables found significant, by mathematical structure, and by model quality. Habitat variables were of three types and were measured on different scales...
Fossati, Giovanni
This proposal aims at fully exploiting the large body of X-ray and multiwavelength observational data on TeV gamma-ray bright blazars for a detailed comparison with state- of-the art blazar radiation transfer simulations. The aim of this investigation is to develop diagnostics on critical jet parameters and shock physics, such as the magnetic field, the kinetic energy content in the jets, the characteristics of the shock acceleration mechanisms, and the detailed influence on geometry on the observed spectral variability features. Our project will comprises a systematic, uniform re-analysis of the relevant (in particular, X-ray) data sets. We will extract time-dependent spectral energy distributions, light curves, and intra-band as well as inter-band time lags from the available data. The modeling tasks will start with a quick sweep through parameter space using a semi- analytical internal-shock model. This will help to narrow down parameters such as the Lorentz factors of interacting emission regions, the overall energy requirements, the characteristics of the electron distributions accelerated at internal shocks, and the magnetic field. The parameters of this semi-analytical internal-shock model that allow for a representation of time-dependent SEDs, light curves and inter-band time lags, will form the starting point for our detailed modeling using our state-of-the-art time-dependent multi-zone Monte-Carlo simulation code. Using that code, we will explore in more detail the characteristics of the particle acceleration in active regions and the influence of various geometries on the observable features. By capitalizing on archival data of several NASA space astrophysics missions our proposal is in agreement with the NASA ADAP research objective, "the analysis io NASA space astrophysics data that are archived in the public domain at the time of submission", as stated in the NASA Research announcement.
DEFF Research Database (Denmark)
Stolarz-Skrzypek, Katarzyna; Thijs, Lutgarde; Richart, Tom
2010-01-01
Ambulatory blood pressure (BP) monitoring provides information not only on the BP level but also on the diurnal changes in BP. In the present review, we summarized the main findings of the International Database on Ambulatory BP in relation to Cardiovascular Outcome (IDACO) with regard to risk.......1%. In conclusion, the IDACO observations support the concept that BP variability adds to risk stratification, but above all highlight that 24-h ambulatory BP level remains the main predictor to be considered in clinical practice....
Climate variability and international migration: the importance of the agricultural linkage
Czech Academy of Sciences Publication Activity Database
Cai, R.; Feng, S.; Oppenheimer, M.; Pytliková, Mariola
2016-01-01
Roč. 79, September (2016), s. 135-151 ISSN 0095-0696 Institutional support: RVO:67985998 Keywords : international migration * temperature * agricultural productivity Subject RIV: AH - Economics Impact factor: 2.305, year: 2016
Climate variability and international migration: the importance of the agricultural linkage
Czech Academy of Sciences Publication Activity Database
Cai, R.; Feng, S.; Oppenheimer, M.; Pytliková, Mariola
2016-01-01
Roč. 79, September (2016), s. 135-151 ISSN 0095-0696 Institutional support: PRVOUK-P23 Keywords : international migration * temperature * agricultural productivity Subject RIV: AH - Economics Impact factor: 2.305, year: 2016
Structure and internal consistency of a shoulder model.
Högfors, C; Karlsson, D; Peterson, B
1995-07-01
A three-dimensional biomechanical model of the shoulder is developed for force predictions in 46 shoulder structures. The model is directed towards the analysis of static working situations where the load is low or moderate. Arbitrary static arm postures in the natural shoulder range may be considered, as well as different kinds of external loads including different force and moment directions. The model can predict internal forces for the shoulder muscles, for the glenohumeral, the acromioclavicular and the sternoclavicular joint as well as for the coracohumeral ligament. A solution to the statistically indeterminate force system is obtained by minimising an objective function. The default function chosen for this is the sum of the squared muscle stresses, but other objective functions may be used as well. The structure of the model is described and its ingredients discussed. The internal consistency of the model, its structural stability and the compatibility of the elements that go into it, is investigated.
Deng, Chenhui; Plan, Elodie L; Karlsson, Mats O
2016-06-01
Parameter variation in pharmacometric analysis studies can be characterized as within subject parameter variability (WSV) in pharmacometric models. WSV has previously been successfully modeled using inter-occasion variability (IOV), but also stochastic differential equations (SDEs). In this study, two approaches, dynamic inter-occasion variability (dIOV) and adapted stochastic differential equations, were proposed to investigate WSV in pharmacometric count data analysis. These approaches were applied to published count models for seizure counts and Likert pain scores. Both approaches improved the model fits significantly. In addition, stochastic simulation and estimation were used to explore further the capability of the two approaches to diagnose and improve models where existing WSV is not recognized. The results of simulations confirmed the gain in introducing WSV as dIOV and SDEs when parameters vary randomly over time. Further, the approaches were also informative as diagnostics of model misspecification, when parameters changed systematically over time but this was not recognized in the structural model. The proposed approaches in this study offer strategies to characterize WSV and are not restricted to count data.
Exact solutions to a nonlinear dispersive model with variable coefficients
International Nuclear Information System (INIS)
Yin Jun; Lai Shaoyong; Qing Yin
2009-01-01
A mathematical technique based on an auxiliary differential equation and the symbolic computation system Maple is employed to investigate a prototypical and nonlinear K(n, n) equation with variable coefficients. The exact solutions to the equation are constructed analytically under various circumstances. It is shown that the variable coefficients and the exponent appearing in the equation determine the quantitative change in the physical structures of the solutions.
Modelling for Fuel Optimal Control of a Variable Compression Engine
Nilsson, Ylva
2007-01-01
Variable compression engines are a mean to meet the demand on lower fuel consumption. A high compression ratio results in high engine efficiency, but also increases the knock tendency. On conventional engines with fixed compression ratio, knock is avoided by retarding the ignition angle. The variable compression engine offers an extra dimension in knock control, since both ignition angle and compression ratio can be adjusted. The central question is thus for what combination of compression ra...
Modeling and designing of variable-period and variable-pole-number undulator
Directory of Open Access Journals (Sweden)
I. Davidyuk
2016-02-01
Full Text Available The concept of permanent-magnet variable-period undulator (VPU was proposed several years ago and has found few implementations so far. The VPUs have some advantages as compared with conventional undulators, e.g., a wider range of radiation wavelength tuning and the option to increase the number of poles for shorter periods. Both these advantages will be realized in the VPU under development now at Budker INP. In this paper, we present the results of 2D and 3D magnetic field simulations and discuss some design features of this VPU.
Directory of Open Access Journals (Sweden)
Shima Shahyad
2018-03-01
Full Text Available The aim of the present study was to examine the causal relationships between psychological and social factors, being independent variables and body image dissatisfaction plus symptoms of eating disorders as dependent variables through the mediation of social comparison and thin-ideal internalization. To conduct the study, 477 high-school students from Tehran were recruited by method of cluster sampling. Next, they filled out Rosenberg Self-esteem Scale (RSES, Physical Appearance Comparison Scale (PACS, Self-Concept Clarity Scale (SCCS, Appearance Perfectionism Scale (APS, Eating Disorder Inventory (EDI, Multidimensional Body Self Relations Questionnaire (MBSRQ and Sociocultural Attitudes towards Appearance Questionnaire (SATAQ-4. In the end, collected data were analyzed using structural equation modeling. Findings showed that the assumed model perfectly fitted the data after modification and as a result, all the path-coefficients of latent variables (except for the path between self-esteem and thin-ideal internalization were statistically significant (p<0.05. Also, in this model, 75% of scores' distribution of body dissatisfaction was explained through psychological variables, socio-cultural variables, social comparison and internalization of the thin ideal. The results of the present study provid experimental basis for the confirmation of proposed causal model. The combination of psychological, social and cultural variables could efficiently predict body image dissatisfaction of young girls in Iran. Key Words: Thin-ideal Internalization, Social comparison, Body image dissatisfaction, mediating effects model, eating disorder symptoms, psychological factors.
Global assemblages and structural models of International Relations
DEFF Research Database (Denmark)
Corry, Olaf
2014-01-01
Rather than consigning assemblages to the micro-politics of international relations, the chapter argues that assemblages can also be seen to play a role in the ‘grand’ structures of international relations. Structural IR theory normally only considers how subjects are ordered – hierarchically......, anarchically, in core-periphery relations or in terms of networks. However, not only subjects but also assemblages – the bringing together of previously unconnected elements into novel constellations – play a critical role in structuring international relations. More specifically, one sub......-category of assemblages – those constructed as malleable and governable which I call ‘governance-objects’ – is central to structure in international relations. The chapter begins with standard definitions of what structures are – patterns of interaction between elements – and briefly covers the range of models currently...
Internal noise-sustained circadian rhythms in a Drosophila model.
Li, Qianshu; Lang, Xiufeng
2008-03-15
Circadian rhythmic processes, mainly regulated by gene expression at the molecular level, have inherent stochasticity. Their robustness or resistance to internal noise has been extensively investigated by most of the previous studies. This work focuses on the constructive roles of internal noise in a reduced Drosophila model, which incorporates negative and positive feedback loops, each with a time delay. It is shown that internal noise sustains reliable oscillations with periods close to 24 h in a region of parameter space, where the deterministic kinetics would evolve to a stable steady state. The amplitudes of noise-sustained oscillations are significantly affected by the variation of internal noise level, and the best performance of the oscillations could be found at an optimal noise intensity, indicating the occurrence of intrinsic coherence resonance. In the oscillatory region of the deterministic model, the coherence of noisy circadian oscillations is suppressed by internal noise, while the period remains nearly constant over a large range of noise intensity, demonstrating robustness of the Drosophila model for circadian rhythms to intrinsic noise. In addition, the effects of time delay in the positive feedback on the oscillations are also investigated. It is found that the time delay could efficiently tune the performance of the noise-sustained oscillations. These results might aid understanding of the exploitation of intracellular noise in biochemical and genetic regulatory systems.
Urn model for products’ shares in international trade
Barbier, Matthieu; Lee, D.-S.
2017-12-01
International trade fluxes evolve as countries revise their portfolios of trade products towards economic development. Accordingly products’ shares in international trade vary with time, reflecting the transfer of capital between distinct industrial sectors. Here we analyze the share of hundreds of product categories in world trade for four decades and find a scaling law obeyed by the annual variation of product share, which informs us of how capital flows and interacts over the product space. A model of stochastic transfer of capital between products based on the observed scaling relation is proposed and shown to reproduce exactly the empirical share distribution. The model allows analytic solutions as well as numerical simulations, which predict a pseudo-condensation of capital onto few product categories and when it will occur. At the individual level, our model finds certain products unpredictable, the excess or deficient growth of which with respect to the model prediction is shown to be correlated with the nature of goods.
Modelling and Multi-Variable Control of Refrigeration Systems
DEFF Research Database (Denmark)
Larsen, Lars Finn Slot; Holm, J. R.
2003-01-01
In this paper a dynamic model of a 1:1 refrigeration system is presented. The main modelling effort has been concentrated on a lumped parameter model of a shell and tube condenser. The model has shown good resemblance with experimental data from a test rig, regarding as well the static as the dyn......In this paper a dynamic model of a 1:1 refrigeration system is presented. The main modelling effort has been concentrated on a lumped parameter model of a shell and tube condenser. The model has shown good resemblance with experimental data from a test rig, regarding as well the static...
Model tracking dual stochastic controller design under irregular internal noises
International Nuclear Information System (INIS)
Lee, Jong Bok; Heo, Hoon; Cho, Yun Hyun; Ji, Tae Young
2006-01-01
Although many methods about the control of irregular external noise have been introduced and implemented, it is still necessary to design a controller that will be more effective and efficient methods to exclude for various noises. Accumulation of errors due to model tracking, internal noises (thermal noise, shot noise and l/f noise) that come from elements such as resistor, diode and transistor etc. in the circuit system and numerical errors due to digital process often destabilize the system and reduce the system performance. New stochastic controller is adopted to remove those noises using conventional controller simultaneously. Design method of a model tracking dual controller is proposed to improve the stability of system while removing external and internal noises. In the study, design process of the model tracking dual stochastic controller is introduced that improves system performance and guarantees robustness under irregular internal noises which can be created internally. The model tracking dual stochastic controller utilizing F-P-K stochastic control technique developed earlier is implemented to reveal its performance via simulation
Trade and compliance cost model in the international supply chain
Arsyida, Tuty; van Delft, Selma; Rukanova, B.D.; Tan, Y.
2017-01-01
Trade costs for international supply chain are huge, even in the absence of formal barriers. It is necessary for all the stakeholders, both private and public organizations, to support an effective and efficient border compliance process. Very little trade cost model research has been done at the
Desirable role in an international duopoly model with tariffs
Ferreira, Fernanda A.; Ferreira, Flávio
2012-09-01
In this paper, we study an international market model in which the home government imposes a tariff on the imported goods. The model has two stages. In the first stage, the home government chooses an import tariff to maximize a function that cares about the home firm's profit and the total revenue. Then, the firms engage in a Cournot or in a Stackelberg competition. We compare the results obtained in the three different ways of moving on the decision make of the firms.
International Jobs and Economic Development Impacts (I-JEDI) Model
Energy Technology Data Exchange (ETDEWEB)
2016-09-01
International Jobs and Economic Development Impacts (I-JEDI) is a freely available economic model that estimates gross economic impacts from wind, solar, biomass, and geothermal energy projects. Building on a similar model for the United States, I-JEDI was developed by the National Renewable Energy Laboratory under the U.S. government's Enhancing Capacity for Low Emission Development Strategies (EC-LEDS) program to support partner countries in assessing economic impacts of LEDS actions in the energy sector.
Dieppois, Bastien; Pohl, Benjamin; Crétat, Julien; Keenlyside, Noel; New, Mark
2017-04-01
This study examines for the first time the ability of 28 global climate models from the Coupled Model Intercomparison Project 5 (CMIP5) to reproduce southern African summer rainfall variability and their teleconnections with large-scale modes of climate variability across the dominant timescales. In observations, summer southern African rainfall exhibits three significant timescales of variability over the twentieth century: interdecadal (15-28 years), quasi-decadal (8-13 years), and interannual (2-8 years). Most of CMIP5 simulations underestimate southern African summer rainfall variability at these three timescales, and this bias is proportionally stronger from high- to low-frequency. The inter-model spread is as important as the spread between the ensemble members of a given model, which suggests a strong influence of internal climate variability, and/or large model uncertainties. The underestimated amplitude of rainfall variability for each timescale are linked to unrealistic spatial distributions of these fluctuations over the subcontinent in most CMIP5 models. This is, at least partially, due to a poor representation of the tropical/subtropical teleconnections, which are known to favour wet conditions over southern African rainfall in the observations. Most CMIP5 realisations (85%) fail at simulating sea-surface temperature (SST) anomalies related to a negative Pacific Decadal Oscillation during wetter conditions at the interdecadal timescale. At the quasi-decadal timescale, only one-third of simulations display a negative Interdecadal Pacific Oscillation during wetter conditions, but these SST anomalies are anomalously shifted westward and poleward when compared to observed anomalies. Similar biases in simulating La Niña SST anomalies are identified in more than 50% of CMIP5 simulations at the interannual timescale. These biases in Pacific SST anomalies result in important shifts in the Walker circulation. This impacts southern Africa rainfall variability
Variable Renewable Energy in Long-Term Planning Models: A Multi-Model Perspective
Energy Technology Data Exchange (ETDEWEB)
Cole, Wesley J. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Frew, Bethany A. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Mai, Trieu T. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sun, Yinong [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Bistline, John [Electric Power Research Inst., Palo Alto, CA (United States); Blanford, Geoffrey [Electric Power Research Inst., Palo Alto, CA (United States); Young, David [Electric Power Research Inst., Palo Alto, CA (United States); Marcy, Cara [Energy Information Administration, Washington, DC (United States); Namovicz, Chris [Energy Information Administration, Washington, DC (United States); Edelman, Risa [Environmental Protection Agency, Washington, DC (United States); Meroney, Bill [Environmental Protection Agency; Sims, Ryan [Environmental Protection Agency; Stenhouse, Jeb [Environmental Protection Agency; Donohoo-Vallett, Paul [U.S. Department of Energy
2017-11-03
Long-term capacity expansion models of the U.S. electricity sector have long been used to inform electric sector stakeholders and decision makers. With the recent surge in variable renewable energy (VRE) generators - primarily wind and solar photovoltaics - the need to appropriately represent VRE generators in these long-term models has increased. VRE generators are especially difficult to represent for a variety of reasons, including their variability, uncertainty, and spatial diversity. To assess current best practices, share methods and data, and identify future research needs for VRE representation in capacity expansion models, four capacity expansion modeling teams from the Electric Power Research Institute, the U.S. Energy Information Administration, the U.S. Environmental Protection Agency, and the National Renewable Energy Laboratory conducted two workshops of VRE modeling for national-scale capacity expansion models. The workshops covered a wide range of VRE topics, including transmission and VRE resource data, VRE capacity value, dispatch and operational modeling, distributed generation, and temporal and spatial resolution. The objectives of the workshops were both to better understand these topics and to improve the representation of VRE across the suite of models. Given these goals, each team incorporated model updates and performed additional analyses between the first and second workshops. This report summarizes the analyses and model 'experiments' that were conducted as part of these workshops as well as the various methods for treating VRE among the four modeling teams. The report also reviews the findings and learnings from the two workshops. We emphasize the areas where there is still need for additional research and development on analysis tools to incorporate VRE into long-term planning and decision-making.
Cowan, P A; Cowan, C P; Cohn, D A; Pearson, J L
1996-02-01
Twenty-seven mothers and 27 fathers were given the Adult Attachment Interview (M. Main & R. Goldwyn, in press) when their children were 3.5 years old. Continuous ratings of narrative coherence, probable experience quality (parents perceived as loving), and state of mind (current anger at parents) were entered as latent variables in partial least squares structural equation models that included observational measures of marital quality and parenting style. Models that include fathers' attachment histories predicted more variance in kindergarten teachers' descriptions of children's externalizing behavior, whereas models that include mothers' attachment histories predicted more variance in children's internalizing behavior. Marital data added predictive power to the equations. Discussion is focused on the importance of integrating attachment and family systems approaches, and of parents' gender and marital quality, in understanding specific links between parents' attachment histories and their young children's externalizing and internalizing behaviors.
Directory of Open Access Journals (Sweden)
Jessie M H Szostakiwskyj
Full Text Available Increasing evidence suggests that brain signal variability is an important measure of brain function reflecting information processing capacity and functional integrity. In this study, we examined how maturation from childhood to adulthood affects the magnitude and spatial extent of state-to-state transitions in brain signal variability, and how this relates to cognitive performance. We looked at variability changes between resting-state and task (a symbol-matching task with three levels of difficulty, and within trial (fixation, post-stimulus, and post-response. We calculated variability with multiscale entropy (MSE, and additionally examined spectral power density (SPD from electroencephalography (EEG in children aged 8-14, and in adults aged 18-33. Our results suggest that maturation is characterized by increased local information processing (higher MSE at fine temporal scales and decreased long-range interactions with other neural populations (lower MSE at coarse temporal scales. Children show MSE changes that are similar in magnitude, but greater in spatial extent when transitioning between internally- and externally-driven brain states. Additionally, we found that in children, greater changes in task difficulty were associated with greater magnitude of modulation in MSE. Our results suggest that the interplay between maturational and state-to-state changes in brain signal variability manifest across different spatial and temporal scales, and influence information processing capacity in the brain.
Zhao, C.; Xu, M.; Wang, Y.; Guo, J.; Hu, Z.; Ruby, L.; Duda, M.; Skamarock, W. C.
2017-12-01
Modeling extreme precipitation requires high-resolution scales. Traditional regional downscaling modeling framework has some issues such as ill-posed boundary conditions, mismatches between the driving global and regional dynamics and physics, and the lack of regional feedback to global scales. The non-hydrostatic Model for Prediction Across Scales (MPAS), a global variable-resolution modeling framework, offers an opportunity to obtain regional features at high-resolution scales using regional mesh refinement without boundary limiting. In this study, the MPAS model is first time applied with the refined meshes over East China at various high-resolutions (16 km and 4 km) to simulate an extreme precipitation event during 26-27 June 2012. The simulations are evaluated with the ground observations from the Chinese Meteorological Administration (CMA) network and the reanalysis data. Sensitivity experiments with different physics and forecast lead time are conducted to understand the uncertainties in simulating spatial and temporal variation of precipitation. The variable-resolution simulations are also compared with the traditional global uniform-resolution simulations at a relatively low scale ( 30 km) and a relatively high scale ( 16 km). The analysis shows that the variable-resolution simulation can capture the high-scale feature of precipitation over East China as the uniform-resolution simulation at a relatively high scale. It also indicates that high-resolution significantly improves the capability of simulating extreme precipitation. The MPAS simulations are also compared with the traditional limited-area simulations at similar scales using the Weather Research and Forecasting Model (WRF). The difference between the simulations using these two different modeling framework is also discussed.
Multi-variable port Hamiltonian model of piezoelectric material
Macchelli, A.; Macchelli, Alessandro; van der Schaft, Arjan; Melchiorri, Claudio
2004-01-01
In this paper, the dynamics of a piezoelectric material is presented within the new framework of multi-variable distributed port Hamiltonian systems. This class of infinite dimensional system is quite general, thus allowing the description of several physical phenomena, such as heat conduction,
Multi-variable Port Hamiltonian Model of Piezoelectric Material
Macchelli, Alessandro; Schaft, Arjan J. van der; Melchiorri, Claudio
2004-01-01
In this paper, the dynamics of a piezoelectric material is presented within the new framework of multi-variable distributed port Hamiltonian systems. This class of infinite dimensional system is quite general, thus allowing the description of several physical phenomena, such as heat conduction,
Variability of four-dimensional computed tomography patient models
Sonke, Jan-Jakob; Lebesque, Joos; van Herk, Marcel
2008-01-01
PURPOSE: To quantify the interfractional variability in lung tumor trajectory and mean position during the course of radiation therapy. METHODS AND MATERIALS: Repeat four-dimensional (4D) cone-beam computed tomography (CBCT) scans (median, nine scans/patient) routinely acquired during the course of
Modeling HIVAIDS Variables, A Case Of Contingency Analysis
African Journals Online (AJOL)
PROF. OLIVER OSUAGWA
2015-06-01
Jun 1, 2015 ... of affection. Also the conditional independence of the pair-wise variables of interest existed. Age is conditionally independent of both gender of the affected patient and the year of the affection. Moreover, gender ..... “Grieving in the Ethnic Literature Classroom,” College Literature. 18(3), 1–2. [31] Wilks, S. S. ...
Modelling of Hydropower Reservoir Variables for Energy Generation ...
African Journals Online (AJOL)
Efficient management of hydropower reservoir can only be realized when there is sufficient understanding of interactions existing between reservoir variables and energy generation. Reservoir inflow, storage, reservoir elevation, turbine release, net generating had, plant use coefficient, tail race level and evaporation losses ...
Model Criticism of Bayesian Networks with Latent Variables.
Williamson, David M.; Mislevy, Robert J.; Almond, Russell G.
This study investigated statistical methods for identifying errors in Bayesian networks (BN) with latent variables, as found in intelligent cognitive assessments. BN, commonly used in artificial intelligence systems, are promising mechanisms for scoring constructed-response examinations. The success of an intelligent assessment or tutoring system…
INTERNAL REGULATIONS OF INTERNATIONAL COMPANIES OPERATING IN POLAND AND TRADITIONAL FAMILY MODEL
Directory of Open Access Journals (Sweden)
Chojara-Sobiecka Małgorzata
2017-12-01
Full Text Available Most of the big companies have the internal regulations about human resources management. The bylaws in question are usually created in the reality of a particular legal system. When a company expands abroad, it starts operating in a different legal system than its own. As a result, the bylaws are not always compatible neither with laws nor the legal culture of the state of a new market. The paper touches upon the problem of the cohesion of internal regulations of some of the international companies operating in Poland with the traditional family model established in Polish law analyzing three areas such as: supporting parenting, family business, and preference for non-heterosexual persons. The conclusions are that some of the internal regulations are not coherent with Polish law, and some of the bylaws regarding, e.g., daycare or flexible working hours, can be adapted to Polish legal system. It (unclear what “it” is referring to would benefit traditional model of the family. The paper contains also the excursus about some legis-lative phenomenon regarding the reception of state law regulations issues by private companies and pos-tulates that the Polish legislator shall be open to new ideas in this matter and search for the well-tried regulations.
Energy Technology Data Exchange (ETDEWEB)
Cochran, J.; Bird, L.; Heeter, J.; Arent, D. A.
2012-04-01
Many countries -- reflecting very different geographies, markets, and power systems -- are successfully managing high levels of variable renewable energy on the electric grid, including that from wind and solar energy. This study documents the diverse approaches to effective integration of variable renewable energy among six countries -- Australia (South Australia), Denmark, Germany, Ireland, Spain, and the United States (Western region-Colorado and Texas)-- and summarizes policy best practices that energy ministers and other stakeholders can pursue to ensure that electricity markets and power systems can effectively coevolve with increasing penetrations of variable renewable energy. Each country has crafted its own combination of policies, market designs, and system operations to achieve the system reliability and flexibility needed to successfully integrate renewables. Notwithstanding this diversity, the approaches taken by the countries studied all coalesce around five strategic areas: lead public engagement, particularly for new transmission; coordinate and integrate planning; develop rules for market evolution that enable system flexibility; expand access to diverse resources and geographic footprint of operations; and improve system operations. The ability to maintain a broad ecosystem perspective, to organize and make available the wealth of experiences, and to ensure a clear path from analysis to enactment should be the primary focus going forward.
Breslavs, Gershons; Г.М. Бреслав
2008-01-01
The transition from adolescence to adulthood is currently attracting increased attention in developmental psychology. According to Vygotsky, Bronfenbrenner, Erikson and Bruner’s developmental theories, increasing autonomy and self-concept development imply that relationships between young adults and parents change according to the internalization of this relationship and the development of new traits. Thus, different changes can be expected in the links between parental attitudes or style and...
Internal combustion engine with rotary valve assembly having variable intake valve timing
Hansen, Craig N.; Cross, Paul C.
1995-01-01
An internal combustion engine has rotary valves associated with movable shutters operable to vary the closing of intake air/fuel port sections to obtain peak volumetric efficiency over the entire range of speed of the engine. The shutters are moved automatically by a control mechanism that is responsive to the RPM of the engine. A foot-operated lever associated with the control mechanism is also used to move the shutters between their open and closed positions.
Preface: International Reference Ionosphere - Progress in Ionospheric Modelling
Bilitza Dieter; Reinisch, Bodo
2010-01-01
The international reference ionosphere (lRI) is the internationally recommended empirical model for the specification of ionospheric parameters supported by the Committee on Space Research (COSPAR) and the International Union of Radio Science (URSI) and recognized by the International Standardization Organization (ISO). IRI is being continually improved by a team of international experts as new data become available and better models are being developed. This issue chronicles the latest phase of model updates as reported during two IRI-related meetings. The first was a special session during the Scientific Assembly of the Committee of Space Research (COSPAR) in Montreal, Canada in July 2008 and the second was an IRI Task Force Activity at the US Air Force Academy in Colorado Springs in May 2009. This work led to several improvements and additions of the model which will be included in the next version, IRI-201O. The issue is divided into three sections focusing on the improvements made in the topside ionosphere, the F-peak, and the lower ionosphere, respectively. This issue would not have been possible without the reviewing efforts of many individuals. Each paper was reviewed by two referees. We thankfully acknowledge the contribution to this issue made by the following reviewers: Jacob Adeniyi, David Altadill, Eduardo Araujo, Feza Arikan, Dieter Bilitza, Jilijana Cander, Bela Fejer, Tamara Gulyaeva, Manuel Hermindez-Pajares, Ivan Kutiev, John MacDougal, Leo McNamara, Bruno Nava, Olivier Obrou, Elijah Oyeyemi, Vadym Paznukhov, Bodo Reinisch, John Retterer, Phil Richards, Gary Sales, J.H. Sastri, Ludger Scherliess, Iwona Stanislavska, Stamir Stankov, Shin-Yi Su, Manlian Zhang, Y ongliang Zhang, and Irina Zakharenkova. We are grateful to Peggy Ann Shea for her final review and guidance as the editor-in-chief for special issues of Advances in Space Research. We thank the authors for their timely submission and their quick response to the reviewer comments and humbly
The International Reference Ionosphere 2012 – a model of international collaboration
Czech Academy of Sciences Publication Activity Database
Bilitza, D.; Altadill, D.; Zhang, Y.; Mertens, Ch.; Truhlík, Vladimír; Richards, P.; McKinnell, L.- A.; Reinisch, B.
2014-01-01
Roč. 4, 20 February (2014), A07/1-A07/12 ISSN 2115-7251 R&D Projects: GA MŠk(CZ) LH11123 Institutional support: RVO:68378289 Keywords : International Reference Ionosphere * empirical models * plasma parameters * real - time IRI Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 2.558, year: 2014 http://www.swsc-journal.org/articles/swsc/abs/2014/01/swsc130043/swsc130043.html
Interdecadal variability in a hybrid coupled ocean-atmosphere-sea ice model
Kravtsov, S; Ghil, M
2004-01-01
Interdecadal climate variability in an idealized coupled ocean-atmosphere-sea-ice model is studied. The ocean component is a fully three-dimensional primitive equation model and the atmospheric component is a two-dimensional (2D) energy balance model of Budyko-Sellers-North type, while sea ice is represented by a 2D thermodynamic model. In a wide range of parameters the model climatology resembles certain aspects of observed climate. Two types of interdecadal variability are found. The first ...
Initiatives in national and international collaborations at Variable Energy Cyclotron Centre
International Nuclear Information System (INIS)
Viyogi, Yogendra Pathak; Chakrabarti, Alok
2008-01-01
Over the last two decades VECC scientists, under the leadership of their director Bikash Sinha, have pursued experimental physics studies under international collaboration programmes, which would not have been possible with the existing facilities at home. The collaboration extended from RIKEN (Japan) in the east to CERN (Switzerland) in the west. It spanned the energy scales from a few tens of MeV per nucleon to several hundred GeV per nucleon and the physics topics on one extreme being the structure of exotic nuclei and their decay modes and on other extreme being the phase transition of hadronic matter and the formation of quark gluon plasma. The dynamic leadership of Dr. Sinha not only helped to shed the initial inhibitions towards such activities, going beyond the national frontiers, but also gave a new dimension to the experimental physics research in the country. It helped to organize an Indian team of scientists from various national institutes and universities. It paved way for full scale funding of the projects and set the trend that enabled many other Indian groups to join several international collaborations in various fields. Here we reflect on the evolution of these national and international collaboration programmes and the physics, technological and sociological benefits resulting from these activities. (author)
A comprehensive gaze stabilization controller based on cerebellar internal models
DEFF Research Database (Denmark)
Vannucci, Lorenzo; Falotico, Egidio; Tolu, Silvia
2017-01-01
based on the coordination of VCR and VOR and OKR. The model, inspired by neuroscientific cerebellar theories, is provided with learning and adaptation capabilities based on internal models. We present the results for the gaze stabilization model on three sets of experiments conducted on the SABIAN robot...... and on the iCub simulator, validating the robustness of the proposed control method. The first set of experiments focused on the controller response to a set of disturbance frequencies along the vertical plane. The second shows the performances of the system under three-dimensional disturbances. The last set...
A conflict model for the international hazardous waste disposal dispute
International Nuclear Information System (INIS)
Hu Kaixian; Hipel, Keith W.; Fang, Liping
2009-01-01
A multi-stage conflict model is developed to analyze international hazardous waste disposal disputes. More specifically, the ongoing toxic waste conflicts are divided into two stages consisting of the dumping prevention and dispute resolution stages. The modeling and analyses, based on the methodology of graph model for conflict resolution (GMCR), are used in both stages in order to grasp the structure and implications of a given conflict from a strategic viewpoint. Furthermore, a specific case study is investigated for the Ivory Coast hazardous waste conflict. In addition to the stability analysis, sensitivity and attitude analyses are conducted to capture various strategic features of this type of complicated dispute.
International Conference on Computational Intelligence, Cyber Security, and Computational Models
Ramasamy, Vijayalakshmi; Sheen, Shina; Veeramani, C; Bonato, Anthony; Batten, Lynn
2016-01-01
This book aims at promoting high-quality research by researchers and practitioners from academia and industry at the International Conference on Computational Intelligence, Cyber Security, and Computational Models ICC3 2015 organized by PSG College of Technology, Coimbatore, India during December 17 – 19, 2015. This book enriches with innovations in broad areas of research like computational modeling, computational intelligence and cyber security. These emerging inter disciplinary research areas have helped to solve multifaceted problems and gained lot of attention in recent years. This encompasses theory and applications, to provide design, analysis and modeling of the aforementioned key areas.
International Nuclear Information System (INIS)
Anderson, C.A.; Smith, P.D.
1979-01-01
Numerical prediction of the behavior of prestressed concrete reactor vessels (PCRVs) under static, dynamic and long term loadings is complicated by the currently ill-defined behavior of concrete under stress and the three-dimensional nature of PCRVs. Which constitutive model most closely approximates the behavior of concrete in PCRVs under load has not yet been decided. Many equations for accurately modeling the three-dimensional behavior of PCRVs tax the capability of a most up-to-date computing system. The main purpose of this paper is to compare the characteristics of two constitutive models which have been proposed for concrete, variable modulus cracking model and elastic-plastic model. Moreover, the behavior of typical concrete structures was compared, the materials of which obey these constitutive laws. The response to internal pressure of PCRV structure, the constitutive models for concrete, the test problems using a thick-walled concrete ring and a rectangular concrete plate, and the analysis of an axisymmetric concrete pressure vessel PV-26 using the variable modulus cracking model of the ADINA code are explained. The variable modulus cracking model can predict the behavior of reinforced concrete structures well into the range of nonlinear behavior. (Kako, I.)
Variable Bus Voltage Modeling for Series Hybrid Electric Vehicle Simulation
Merkle, Matthew Alan
1997-01-01
A growing dependence on foreign oil, along with a heightened concern over the environmental impact of personal transportation, had led the U. S. government to investigate and sponsor research into advanced transportation concepts. One of these future technologies is the hybrid electric vehicle (HEV), typically featuring both an internal combustion engine and an electric motor, with the goal of producing fewer emissions while obtaining superior fuel economy. While vehicles such as the Virg...
Modelling the internal boundary layer over the lower fraser valley, British Columbia
Energy Technology Data Exchange (ETDEWEB)
Batchvarova, E. [National Inst. of Meteorology and Hydrology, Sofia (Bulgaria); Steyn, D. [Univ. of British Columbia, Dept. of Geography, Vancouver (Canada); Cai, X. [Univ. of Birmingham, School of Geography, Edgbaston (United Kingdom); Gryning, S.E. [Risoe National Lab., Roskilde (Denmark); Baldi, M. [Inst. for Atmospheric Physics, IFA-CNR, Rome (Italy)
1997-10-01
In this study we use the very extensive data-set on temporal and spatial structure of the internal boundary layer on the Lower Faser Valley, Canada, collected during the so-called Pacific `93 field campaign, to study the ability of the simple applied model by Gryning and Batchvarova (1996) and the CSU-RAMS meso-scale model summarised in Pielke et al. (1992) to describe the development and variability of the internal boundary layer depth during the course of a day. Given the complexity of topography, coastline and land-use in the Lower Fraser Valley region, both models perform remarkably well. The simple applied model performs extremely well, given its simplicity. It is clear that correct specification of spatially resolved surface sensible heat flux and wind field are crucial to the success of this model which can be operated at very fine spatial resolution. The 3D model performs extremely well, though it too must capture the local wind field correctly for complete success. Its limited horizontal resolution results in strongly smoothed internal boundary layer height fields. (LN)
Martinussen, Torben; Vansteelandt, Stijn; Tchetgen Tchetgen, Eric J; Zucker, David M
2017-12-01
The use of instrumental variables for estimating the effect of an exposure on an outcome is popular in econometrics, and increasingly so in epidemiology. This increasing popularity may be attributed to the natural occurrence of instrumental variables in observational studies that incorporate elements of randomization, either by design or by nature (e.g., random inheritance of genes). Instrumental variables estimation of exposure effects is well established for continuous outcomes and to some extent for binary outcomes. It is, however, largely lacking for time-to-event outcomes because of complications due to censoring and survivorship bias. In this article, we make a novel proposal under a class of structural cumulative survival models which parameterize time-varying effects of a point exposure directly on the scale of the survival function; these models are essentially equivalent with a semi-parametric variant of the instrumental variables additive hazards model. We propose a class of recursive instrumental variable estimators for these exposure effects, and derive their large sample properties along with inferential tools. We examine the performance of the proposed method in simulation studies and illustrate it in a Mendelian randomization study to evaluate the effect of diabetes on mortality using data from the Health and Retirement Study. We further use the proposed method to investigate potential benefit from breast cancer screening on subsequent breast cancer mortality based on the HIP-study. © 2017, The International Biometric Society.
Chen, Yun; Yang, Hui
2016-12-01
In the era of big data, there are increasing interests on clustering variables for the minimization of data redundancy and the maximization of variable relevancy. Existing clustering methods, however, depend on nontrivial assumptions about the data structure. Note that nonlinear interdependence among variables poses significant challenges on the traditional framework of predictive modeling. In the present work, we reformulate the problem of variable clustering from an information theoretic perspective that does not require the assumption of data structure for the identification of nonlinear interdependence among variables. Specifically, we propose the use of mutual information to characterize and measure nonlinear correlation structures among variables. Further, we develop Dirichlet process (DP) models to cluster variables based on the mutual-information measures among variables. Finally, orthonormalized variables in each cluster are integrated with group elastic-net model to improve the performance of predictive modeling. Both simulation and real-world case studies showed that the proposed methodology not only effectively reveals the nonlinear interdependence structures among variables but also outperforms traditional variable clustering algorithms such as hierarchical clustering.
Starnes, B J; Self, D R
1999-01-01
This article develops two previous research efforts. William J. Winston (1994, 1995) has proposed a set of strategies by which health care organizations can benefit from forging strategic alliances. Raadt and Self (1997) have proposed a classification model of alliances including horizontal, vertical, internal, and osmotic. In the second of two articles, this paper presents a model of vertical, internal, and osmotic alliances. Advantages and disadvantages of each are discussed. Finally, the complete alliance system model is presented.
Models for turbulent flows with variable density and combustion
International Nuclear Information System (INIS)
Jones, W.P.
1980-01-01
Models for transport processes and combustion in turbulent flows are outlined with emphasis on the situation where the fuel and air are injected separately. Attention is restricted to relatively simple flames. The flows investigated are high Reynolds number, single-phase, turbulent high-temperature flames in which radiative heat transfer can be considered negligible. Attention is given to the lower order closure models, algebraic stress and flux models, the k-epsilon turbulence model, the diffusion flame approximation, and finite rate reaction mechanisms
Internal Variability and Disequilibrium Confound Estimates of Climate Sensitivity From Observations
Marvel, Kate; Pincus, Robert; Schmidt, Gavin A.; Miller, Ron L.
2018-02-01
An emerging literature suggests that estimates of equilibrium climate sensitivity (ECS) derived from recent observations and energy balance models are biased low because models project more positive climate feedback in the far future. Here we use simulations from the Coupled Model Intercomparison Project Phase 5 (CMIP5) to show that across models, ECS inferred from the recent historical period (1979-2005) is indeed almost uniformly lower than that inferred from simulations subject to abrupt increases in CO2 radiative forcing. However, ECS inferred from simulations in which sea surface temperatures are prescribed according to observations is lower still. ECS inferred from simulations with prescribed sea surface temperatures is strongly linked to changes to tropical marine low clouds. However, feedbacks from these clouds are a weak constraint on long-term model ECS. One interpretation is that observations of recent climate changes constitute a poor direct proxy for long-term sensitivity.
Energy Technology Data Exchange (ETDEWEB)
Cochran, Jaquelin [National Renewable Energy Lab. (NREL), Golden, CO (United States); Bird, Lori [National Renewable Energy Lab. (NREL), Golden, CO (United States); Heeter, Jenny [National Renewable Energy Lab. (NREL), Golden, CO (United States); Arent, Douglas J. [National Renewable Energy Lab. (NREL), Golden, CO (United States)
2012-04-30
Many countries—reflecting very different geographies, markets, and power systems—are successfully managing high levels of variable renewable energy on the electric grid, including that from wind and solar energy. This document summarizes policy best practices that energy ministers and other stakeholders can pursue to ensure that electricity markets and power systems can effectively coevolve with increasing penetrations of variable renewable energy. There is no one-size-fits-all approach; each country studied has crafted its own combination of policies, market designs, and system operations to achieve the system reliability and flexibility needed to successfully integrate renewables. Notwithstanding this diversity, the approaches taken by the countries studied all coalesce around five strategic areas: lead public engagement, particularly for new transmission; coordinate and integrate planning; develop rules for market evolution that enable system flexibility; expand access to diverse resources and geographic footprint of operations; and improve system operations. This study also emphatically underscores the value of countries sharing their experiences. The more diverse and robust the experience base from which a country can draw, the more likely that it will be able to implement an appropriate, optimized, and system-wide approach.
Internal climate variability in a state space of statistical moments: ENSO and its asymmetry
Zhu, X.; Fraedrich, K.
2016-12-01
Intrinsic climate variability (ICV) is characterized by the first and second moments of a climate variable and subjected to system analysis in (i) geographical and (ii) state space. It is based on annual surface temperature fields computed over non-overlapping 100-yr segments (equilibrium simulations of Max Planck Institute ESM): last-millennium (800-1799), future climate projection (A1B scenario 2100-99), and 3100-yr unforced control. (i) In geographical space, a linear relationship between first and second moments is noted, most pronounced in the tropics: Negative (positive) regression slopes over the western (eastern) Pacific characterize the asymmetry of surface temperature ICV representing warm and cold ENSO extremes. In A1B the linear regressions largely retain their spatial structure but change in intensity and location. (ii) In state space spanned by a parsimonious set of dominating principal components of the moment fields, cluster centroids reveal the underlying asymmetry dynamics as ENSO and MODOKI modes. (iii) Extreme value estimates are affected by this first-second moment relation accounting for clustering of extremes.
Energy Technology Data Exchange (ETDEWEB)
Cochran, Jaquelin [National Renewable Energy Lab. (NREL), Golden, CO (United States); Bird, Lori [National Renewable Energy Lab. (NREL), Golden, CO (United States); Heeter, Jenny [National Renewable Energy Lab. (NREL), Golden, CO (United States); Arent, Douglas J. [National Renewable Energy Lab. (NREL), Golden, CO (United States)
2012-04-30
Many countries - reflecting very different geographies, markets, and power systems - are successfully managing high levels of variable renewable energy on the electric grid, including that from wind and solar energy. This document summarizes policy best practices that energy ministers and other stakeholders can pursue to ensure that electricity markets and power systems can effectively coevolve with increasing penetrations of variable renewable energy. There is no one-size-fits-all approach; each country studied has crafted its own combination of policies, market designs, and system operations to achieve the system reliability and flexibility needed to successfully integrate renewables. Notwithstanding this diversity, the approaches taken by the countries studied all coalesce around five strategic areas: lead public engagement, particularly for new transmission; coordinate and integrate planning; develop rules for market evolution that enable system flexibility; expand access to diverse resources and geographic footprint of operations; and improve system operations. This study also emphatically underscores the value of countries sharing their experiences. The more diverse and robust the experience base from which a country can draw, the more likely that it will be able to implement an appropriate, optimized, and system-wide approach.
Energy Technology Data Exchange (ETDEWEB)
Cochran, J.; Bird, L.; Heeter, J.; Arent, D. A.
2012-04-01
Many countries -- reflecting very different geographies, markets, and power systems -- are successfully managing high levels of variable renewable energy on the electric grid, including that from wind and solar energy. This document summarizes policy best practices that energy ministers and other stakeholders can pursue to ensure that electricity markets and power systems can effectively coevolve with increasing penetrations of variable renewable energy. There is no one-size-fits-all approach; each country studied has crafted its own combination of policies, market designs, and system operations to achieve the system reliability and flexibility needed to successfully integrate renewables. Notwithstanding this diversity, the approaches taken by the countries studied all coalesce around five strategic areas: lead public engagement, particularly for new transmission; coordinate and integrate planning; develop rules for market evolution that enable system flexibility; expand access to diverse resources and geographic footprint of operations; and improve system operations. This study also emphatically underscores the value of countries sharing their experiences. The more diverse and robust the experience base from which a country can draw, the more likely that it will be able to implement an appropriate, optimized, and system-wide approach.
Torque Modeling and Control of a Variable Compression Engine
Bergström, Andreas
2003-01-01
The SAAB variable compression engine is a new engine concept that enables the fuel consumption to be radically cut by varying the compression ratio. A challenge with this new engine concept is that the compression ratio has a direct influence on the output torque, which means that a change in compression ratio also leads to a change in the torque. A torque change may be felt as a jerk in the movement of the car, and this is an undesirable effect since the driver has no control over the compre...
The validity of transtheoretical model through different psychological variables
Morales Domínguez, Zaira Esther; Pascual Orts, Luis Miguel; Carmona Márquez, José
2010-01-01
El Modelo Transteórico es un modelo ampliamente utilizado para la explicación del cambio intencional, sobre todo cuando el cambio se refiere a conductas adictivas. A pesar de ello, también ha sido un modelo muy criticado, entre otros motivos por falta de validez. En este trabajo nos propusimos valorar la validez del propio modelo evaluando diferentes variables psicológicas distintas a los propios constructos del modelo: amplificación somatosensorial, hábitos de salud, actitu...
Fenicia, Fabrizio; Kavetski, Dmitri; Savenije, Hubert H. G.; Pfister, Laurent
2016-02-01
This paper explores the development and application of distributed hydrological models, focusing on the key decisions of how to discretize the landscape, which model structures to use in each landscape element, and how to link model parameters across multiple landscape elements. The case study considers the Attert catchment in Luxembourg—a 300 km2 mesoscale catchment with 10 nested subcatchments that exhibit clearly different streamflow dynamics. The research questions are investigated using conceptual models applied at hydrologic response unit (HRU) scales (1-4 HRUs) on 6 hourly time steps. Multiple model structures are hypothesized and implemented using the SUPERFLEX framework. Following calibration, space/time model transferability is tested using a split-sample approach, with evaluation criteria including streamflow prediction error metrics and hydrological signatures. Our results suggest that: (1) models using geology-based HRUs are more robust and capture the spatial variability of streamflow time series and signatures better than models using topography-based HRUs; this finding supports the hypothesis that, in the Attert, geology exerts a stronger control than topography on streamflow generation, (2) streamflow dynamics of different HRUs can be represented using distinct and remarkably simple model structures, which can be interpreted in terms of the perceived dominant hydrologic processes in each geology type, and (3) the same maximum root zone storage can be used across the three dominant geological units with no loss in model transferability; this finding suggests that the partitioning of water between streamflow and evaporation in the study area is largely independent of geology and can be used to improve model parsimony. The modeling methodology introduced in this study is general and can be used to advance our broader understanding and prediction of hydrological behavior, including the landscape characteristics that control hydrologic response, the
Environmental indicators and international models for making decision
International Nuclear Information System (INIS)
Polanco, Camilo
2006-01-01
The last international features proposed by the Organization for Economic Cooperation Development (OECD) and United Nations (UN) are analyzed in the use of the environmental indicators, in typology, selection criteria, and models, for organizing the information for management, environmental performance, and decision making. The advantages and disadvantages of each model are analyzed, as well as their environmental index characteristics. The analyzed models are Pressure - State - Response (PSR) and its conceptual developments: Driving Force - State Response (DSR), Driving Force - Pressure - State - Impact - Response (DPSIR), Model- Flow-Quality (MFQ), Pressure - State - Impact - Effect - Response (PSIER), and, finally, Pressure-State - Impact - Effect - Response - Management (PSIERM). The use of one or another model will depend on the quality of the available information, as well as on the proposed objectives
Latent variable models an introduction to factor, path, and structural equation analysis
Loehlin, John C
2004-01-01
This fourth edition introduces multiple-latent variable models by utilizing path diagrams to explain the underlying relationships in the models. The book is intended for advanced students and researchers in the areas of social, educational, clinical, ind
Random forest (RF) modeling has emerged as an important statistical learning method in ecology due to its exceptional predictive performance. However, for large and complex ecological datasets there is limited guidance on variable selection methods for RF modeling. Typically, e...
Multiphysical model of heterogenous flow moving along а channel of variable cross-section
Directory of Open Access Journals (Sweden)
М. А. Васильева
2017-10-01
Full Text Available The article deals with the problem aimed at solving the fundamental problems of developing effective methods and tools for designing, controlling and managing the stream of fluid flowing in variable-section pipelines intended for the production of pumping equipment, medical devices and used in such areas of industry as mining, chemical, food production, etc. Execution of simulation modelling of flow motion according to the scheme of twisted paddle static mixer allows to estimate the efficiency of mixing by calculating the trajectory and velocities of the suspended particles going through the mixer, and also to estimate the pressure drop on the hydraulic flow resistance. The model examines the mixing of solids dissolved in a liquid at room temperature. To visualize the process of distributing the mixture particles over the cross-section and analyzing the mixing efficiency, the Poincaréplot module of the COMSOL Multiphysics software environment was used. For the first time, a multi-physical stream of heterogeneous flow model has been developed that describes in detail the physical state of the fluid at all points of the considered section at the initial time, takes into account the design parameters of the channel (orientation, dimensions, material, etc., specifies the laws of variation of the parameters at the boundaries of the calculated section in conditions of the wave change in the internal section of the working chamber-channel of the inductive peristaltic pumping unit under the influence of the energy of the magnetic field.
A margin model to account for respiration-induced tumour motion and its variability
International Nuclear Information System (INIS)
Coolens, Catherine; Webb, Steve; Evans, Phil M; Shirato, H; Nishioka, K
2008-01-01
In order to reduce the sensitivity of radiotherapy treatments to organ motion, compensation methods are being investigated such as gating of treatment delivery, tracking of tumour position, 4D scanning and planning of the treatment, etc. An outstanding problem that would occur with all these methods is the assumption that breathing motion is reproducible throughout the planning and delivery process of treatment. This is obviously not a realistic assumption and is one that will introduce errors. A dynamic internal margin model (DIM) is presented that is designed to follow the tumour trajectory and account for the variability in respiratory motion. The model statistically describes the variation of the breathing cycle over time, i.e. the uncertainty in motion amplitude and phase reproducibility, in a polar coordinate system from which margins can be derived. This allows accounting for an additional gating window parameter for gated treatment delivery as well as minimizing the area of normal tissue irradiated. The model was illustrated with abdominal motion for a patient with liver cancer and tested with internal 3D lung tumour trajectories. The results confirm that the respiratory phases around exhale are most reproducible and have the smallest variation in motion amplitude and phase (approximately 2 mm). More importantly, the margin area covering normal tissue is significantly reduced by using trajectory-specific margins (as opposed to conventional margins) as the angular component is by far the largest contributor to the margin area. The statistical approach to margin calculation, in addition, offers the possibility for advanced online verification and updating of breathing variation as more data become available
Separation of uncertainty and interindividual variability in human exposure modeling.
Ragas, A.M.J.; Brouwer, F.P.E.; Buchner, F.L.; Hendriks, H.W.; Huijbregts, M.A.J.
2009-01-01
The NORMTOX model predicts the lifetime-averaged exposure to contaminants through multiple environmental media, that is, food, air, soil, drinking and surface water. The model was developed to test the coherence of Dutch environmental quality objectives (EQOs). A set of EQOs is called coherent if
Modelling and Internal Fuzzy Model Power Control of a Francis Water Turbine
Directory of Open Access Journals (Sweden)
Klemen Nagode
2014-02-01
Full Text Available This paper presents dynamic modelling of a Francis turbine with a surge tank and the control of a hydro power plant (HPP. Non-linear and linear models include technical parameters and show high similarity to measurement data. Turbine power control with an internal model control (IMC is proposed, based on a turbine fuzzy model. Considering appropriate control responses in the entire area of turbine power, the model parameters of the process are determined from a fuzzy model, which are further included in the internal model controller. The results are compared to a proportional-integral (PI controller tuned with an integral absolute error (IAE objective function, and show an improved response of internal model control.
Thomas E. Dilts; Peter J. Weisberg; Camie M. Dencker; Jeanne C. Chambers
2015-01-01
We have three goals. (1) To develop a suite of functionally relevant climate variables for modelling vegetation distribution on arid and semi-arid landscapes of the Great Basin, USA. (2) To compare the predictive power of vegetation distribution models based on mechanistically proximate factors (water deficit variables) and factors that are more mechanistically removed...
A Composite Likelihood Inference in Latent Variable Models for Ordinal Longitudinal Responses
Vasdekis, Vassilis G. S.; Cagnone, Silvia; Moustaki, Irini
2012-01-01
The paper proposes a composite likelihood estimation approach that uses bivariate instead of multivariate marginal probabilities for ordinal longitudinal responses using a latent variable model. The model considers time-dependent latent variables and item-specific random effects to be accountable for the interdependencies of the multivariate…
Radioactive waste management. International projects on biosphere modelling
International Nuclear Information System (INIS)
Carboneras, P.; Cancio, D.
1993-01-01
The paper presents a general overview and discussion on the state of art concerning the biospheric transfer and accumulation of contaminants. A special emphasis is given to the progress achieved in the field of radioactive contaminants and particularly to those implied in radioactive waste disposal. The objectives and advances of the international projects BIOMOVS and VAMP on validation of model predictions are also described. (Author)
Internal Catchment Data for Improved Model Diagnosis and Calibration
Goodrich, D. C.; Srinivasan, M.; McMillan, H.; Duncan, M.; Yatheendradas, S.; Wagener, T.; Clark, M.; Martinez, G.; Gupta, H.; Jackson, B.; Schmidt, J.; Woods, R.
2008-12-01
There have been numerous calls for the need to incorporate internal catchment observations for improving distributed catchment models. Recent results from a synthetic study by van Werkhoven et al., (GRL, 2008) imply that the relative worth of internal catchment observations for providing information to improve downstream predictions is limited to a time-varying zone, or cone of influence - that is, different observing points have explanatory power for different parts of the catchment at different times. In their study the spatial extent of this cone of influence is significantly influenced by a number of factors; primarily spatiotemporal precipitation patterns; but also initial conditions and inherent observational and model uncertainties. To explore this concept further two intensively instrumented experimental catchments, near end members of the hydro-climatic spectrum, with extensive internal observations were selected. The first is the 50 square kilometer Mahurangi Experimental Catchment located on the north island of New Zealand with mean annual rainfall and runoff of approximately 1700, and 870 mm, respectively. The second is the 148 square kilometer Walnut Gulch Experimental Watershed located in southeast Arizona, USA with respective mean annual rainfall and runoff of 325, and 2 mm. Data analysis and stepwise, spatially-explicit model calibration was conducted in each of these watersheds. Results from these analyses, in the context of the worth of internal runoff observations will be presented. van Werkhoven, K., T. Wagener, P. Reed, and Y. Tang (2008), Rainfall characteristics define the value of streamflow observations for distributed watershed model identification, Geophys. Res. Lett., 35, L11403, doi:10.1029/2008GL034162.
Directory of Open Access Journals (Sweden)
A Moameni
2011-02-01
Full Text Available Abstract In Iran, the experimental plots under fertilizer trials are managed in such a way that the whole plot area uniformly receives agricultural inputs. This could lead to biased research results and hence to suppressing of the efforts made by the researchers. This research was conducted in a selected site belonging to the Gonbad Agricultural Research Station, located in the semiarid region, northeastern Iran. The aim was to characterize the short-range spatial variability of the inherent and management-depended soil properties and to determine if this variation is large and can be managed at practical scales. The soils were sampled using a grid 55 m apart. In total, 100 composite soil samples were collected from topsoil (0-30 cm and were analyzed for calcium carbonate equivalent, organic carbon, clay, available phosphorus, available potassium, iron, copper, zinc and manganese. Descriptive statistics were applied to check data trends. Geostatistical analysis was applied to variography, model fitting and contour mapping. Sampling at 55 m made it possible to split the area of the selected experimental plot into relatively uniform areas that allow application of agricultural inputs with variable rates. Keywords: Short-range soil variability, Within-field soil variability, Interpolation, Precision agriculture, Geostatistics
International Digital Elevation Model Service (IDEMS): A Revived IAG Service
Kelly, K. M.; Hirt, C., , Dr; Kuhn, M.; Barzaghi, R.
2017-12-01
A newly developed International Digital Elevation Model Service (IDEMS) is now available under the umbrella of the International Gravity Field Service of the International Association of Geodesy. Hosted and operated by Environmental Systems Research Institute (Esri) (http://www.esri.com/), the new IDEMS website is available at: https://idems.maps.arcgis.com/home/index.html. IDEMS provides a focus for distribution of data and information about various digital elevation models, including spherical-harmonic models of Earth's global topography and lunar and planetary DEM. Related datasets, such as representation of inland water within DEMs, and relevant software which are available in the public domain are also provided. Currently, IDEMS serves as repository of links to providers of global terrain and bathymetry, terrain related Earth models and datasets such as digital elevation data services managed and maintained by Esri (Terrain and TopoBathy), Bedmap2-Ice thickness and subglacial topographic model of Antarctica and Ice, Cloud, and Land Elevation ICESat/GLAS Data, as well as planetary terrain data provided by PDS Geosciences Node at Washington University, St. Louis. These services provide online access to a collection of multi-resolution and multi-source elevation and bathymetry data, including metadata and source information. In addition to IDEMS current holdings of terrestrial and planetary DEMs, some topography related products IDEMS may include in future are: dynamic ocean topography, 3D crustal density models, Earth's dynamic topography, etc. IDEMS may also consider terrain related products such as quality assessments, global terrain corrections, global height anomaly-to-geoid height corrections and other geodesy-relevant studies and products. IDEMS encourages contributions to the site from the geodetic community in any of the product types listed above. Please contact the authors if you would like to contribute or recommend content you think appropriate for
Simulation of heart rate variability model in a network
Cascaval, Radu C.; D'Apice, Ciro; D'Arienzo, Maria Pia
2017-07-01
We consider a 1-D model for the simulation of the blood flow in the cardiovascular system. As inflow condition we consider a model for the aortic valve. The opening and closing of the valve is dynamically determined by the pressure difference between the left ventricular and aortic pressures. At the outflow we impose a peripheral resistance model. To approximate the solution we use a numerical scheme based on the discontinuous Galerkin method. We also considering a variation in heart rate and terminal reflection coefficient due to monitoring of the pressure in the network.
Directory of Open Access Journals (Sweden)
Khober Limanto Genius
2017-01-01
Full Text Available We investigate the association between related party transactions (RPT and real earnings management (REM. We also investigate the role of internal governance mechanism through the effectiveness of board of commissioner and audit committee in mitigating the association between RPT and REM. Our research sample consists of 386 firm-years of manufacturing firms listed in Indonesian Stock Exchange (IDX from year 2010 - 2014. Using linear regression, we find evidence that RPT has positive association with REM, only when the firm has higher RPT but not in the lower RPT. We find a contradictory result that board of commissioners strengthen the positive association between RPT and REM. Finally, we find evidence that the effectiveness of audit committees weaken the positive association between RPT and REM, both in full sample and in high RPT sample.
Heffel, James W.; Scott, Paul B.
2003-09-02
An apparatus and method for utilizing any arbitrary mixture ratio of multiple fuel gases having differing combustion characteristics, such as natural gas and hydrogen gas, within an internal combustion engine. The gaseous fuel composition ratio is first sensed, such as by thermal conductivity, infrared signature, sound propagation speed, or equivalent mixture differentiation mechanisms and combinations thereof which are utilized as input(s) to a "multiple map" engine control module which modulates selected operating parameters of the engine, such as fuel injection and ignition timing, in response to the proportions of fuel gases available so that the engine operates correctly and at high efficiency irrespective of the gas mixture ratio being utilized. As a result, an engine configured according to the teachings of the present invention may be fueled from at least two different fuel sources without admixing constraints.
Directory of Open Access Journals (Sweden)
Syed M. Islam
2002-06-01
Full Text Available This paper will present a review of characteristic harmonics in both single phase and three phase drive front end rectifiers, discuss recent research findings in identifying sources and production of non-characteristic harmonics and amplification of harmonic levels when the front end rectifiers are fed from non-ideal supply conditions. Significant amount of triplens may be generated due to unbalances in utility supply voltage wave form and anticipated harmonic levels may vary widely. The paper will also discuss international harmonic standards such as the AS 2279, IEEE 519, and IEC 61000 series applicable to rectifier loads. Finally, the paper will present techniques to reduce harmonic levels by mixing of single phase and three phase non-linear loads resulting from mutual cancellations.
Importance of predictor variables for models of chemical function
U.S. Environmental Protection Agency — Importance of random forest predictors for all classification models of chemical function. This dataset is associated with the following publication: Isaacs , K., M....
Directory of Open Access Journals (Sweden)
P. J. Young
2018-01-01
Full Text Available The goal of the Tropospheric Ozone Assessment Report (TOAR is to provide the research community with an up-to-date scientific assessment of tropospheric ozone, from the surface to the tropopause. While a suite of observations provides significant information on the spatial and temporal distribution of tropospheric ozone, observational gaps make it necessary to use global atmospheric chemistry models to synthesize our understanding of the processes and variables that control tropospheric ozone abundance and its variability. Models facilitate the interpretation of the observations and allow us to make projections of future tropospheric ozone and trace gas distributions for different anthropogenic or natural perturbations. This paper assesses the skill of current-generation global atmospheric chemistry models in simulating the observed present-day tropospheric ozone distribution, variability, and trends. Drawing upon the results of recent international multi-model intercomparisons and using a range of model evaluation techniques, we demonstrate that global chemistry models are broadly skillful in capturing the spatio-temporal variations of tropospheric ozone over the seasonal cycle, for extreme pollution episodes, and changes over interannual to decadal periods. However, models are consistently biased high in the northern hemisphere and biased low in the southern hemisphere, throughout the depth of the troposphere, and are unable to replicate particular metrics that define the longer term trends in tropospheric ozone as derived from some background sites. When the models compare unfavorably against observations, we discuss the potential causes of model biases and propose directions for future developments, including improved evaluations that may be able to better diagnose the root cause of the model-observation disparity. Overall, model results should be approached critically, including determining whether the model performance is acceptable for
Four-Stroke, Internal Combustion Engine Performance Modeling
Wagner, Richard C.
In this thesis, two models of four-stroke, internal combustion engines are created and compared. The first model predicts the intake and exhaust processes using isentropic flow equations augmented by discharge coefficients. The second model predicts the intake and exhaust processes using a compressible, time-accurate, Quasi-One-Dimensional (Q1D) approach. Both models employ the same heat release and reduced-order modeling of the cylinder charge. Both include friction and cylinder loss models so that the predicted performance values can be compared to measurements. The results indicate that the isentropic-based model neglects important fluid mechanics and returns inaccurate results. The Q1D flow model, combined with the reduced-order model of the cylinder charge, is able to capture the dominant intake and exhaust fluid mechanics and produces results that compare well with measurement. Fluid friction, convective heat transfer, piston ring and skirt friction and temperature-varying specific heats in the working fluids are all shown to be significant factors in engine performance predictions. Charge blowby is shown to play a lesser role.
Tzeng, Dong-Sheng; Wu, Yi-Chang; Hsu, Jane-Yi
2015-08-27
To investigate the factors related to approval after review by an Institutional Review Board (IRB), the structure equation model was used to analyze the latent variables 'investigators', 'vulnerability' and 'review process' for 221 proposals submitted to our IRB. The vulnerability factor included vulnerable cases, and studies that involved drug tests and genetic analyses. The principal investigator (PI) factor included the license level of the PI and whether they belonged to our institution. The review factor included administration time, total review time, and revision frequency. The revision frequency and total review time influenced the efficiency of review. The latent variable of reviewing was the most important factor mediating the PIs and vulnerability to IRB review approval. The local PIs moderated with genetic study and revision frequency had an impact on the review process and mediated non-approval. Better guidance of the investigators and reviewers might improve the efficiency with which IRBs function.
The necessity of connection structures in neural models of variable binding.
van der Velde, Frank; de Kamps, Marc
2015-08-01
In his review of neural binding problems, Feldman (Cogn Neurodyn 7:1-11, 2013) addressed two types of models as solutions of (novel) variable binding. The one type uses labels such as phase synchrony of activation. The other ('connectivity based') type uses dedicated connections structures to achieve novel variable binding. Feldman argued that label (synchrony) based models are the only possible candidates to handle novel variable binding, whereas connectivity based models lack the flexibility required for that. We argue and illustrate that Feldman's analysis is incorrect. Contrary to his conclusion, connectivity based models are the only viable candidates for models of novel variable binding because they are the only type of models that can produce behavior. We will show that the label (synchrony) based models analyzed by Feldman are in fact examples of connectivity based models. Feldman's analysis that novel variable binding can be achieved without existing connection structures seems to result from analyzing the binding problem in a wrong frame of reference, in particular in an outside instead of the required inside frame of reference. Connectivity based models can be models of novel variable binding when they possess a connection structure that resembles a small-world network, as found in the brain. We will illustrate binding with this type of model with episode binding and the binding of words, including novel words, in sentence structures.
Internal versus External Control of Reinforcement: A Case History of a Variable.
Rotter, Julian B.
1990-01-01
Uses the construct of generalized expectancies for locus of control as a model of the importance of broad theory and training in theory construction and evaluation in psychology. Discusses the characteristics that contribute to the construct's heuristic value and also discusses problems with the criteria for the publication of psychological…
A Simple Model of the Variability of Soil Depths
Directory of Open Access Journals (Sweden)
Fang Yu
2017-06-01
Full Text Available Soil depth tends to vary from a few centimeters to several meters, depending on many natural and environmental factors. We hypothesize that the cumulative effect of these factors on soil depth, which is chiefly dependent on the process of biogeochemical weathering, is particularly affected by soil porewater (i.e., solute transport and infiltration from the land surface. Taking into account evidence for a non-Gaussian distribution of rock weathering rates, we propose a simple mathematical model to describe the relationship between soil depth and infiltration flux. The model was tested using several areas in mostly semi-arid climate zones. The application of this model demonstrates the use of fundamental principles of physics to quantify the coupled effects of the five principal soil-forming factors of Dokuchaev.
Joint effect of obesity and TNFA variability on asthma: two international cohort studies.
Castro-Giner, F; Kogevinas, M; Imboden, M; de Cid, R; Jarvis, D; Mächler, M; Berger, W; Burney, P; Franklin, K A; Gonzalez, J R; Heinrich, J; Janson, C; Omenaas, E; Pin, I; Rochat, T; Sunyer, J; Wjst, M; Antó, J-M; Estivill, X; Probst-Hensch, N M
2009-05-01
Obesity is a risk factor for asthma. Adipose tissue expresses pro-inflammatory molecules including tumour necrosis factor (TNF), and levels of TNF are also related to polymorphisms in the TNF-alpha (TNFA) gene. The current authors examined the joint effect of obesity and TNFA variability on asthma in adults by combining two population-based studies. The European Community Respiratory Health Survey and the Swiss Cohort Study on Air Pollution and Lung and Heart Disease in Adults used comparable protocols, questionnaires and measures of lung function and atopy. DNA samples from 9,167 participants were genotyped for TNFA -308 and lymphotoxin-alpha (LTA) +252 gene variants. Obesity and TNFA were associated with asthma when mutually adjusting for their independent effects (odds ratio (OR) for obesity 2.4, 95% confidence interval (CI) 1.7-3.2; OR for TNFA -308 polymorphism 1.3, 95% CI 1.1-1.6). The association of obesity with asthma was stronger for subjects carrying the G/A and A/A TNFA -308 genotypes compared with the more common G/G genotype, particularly among nonatopics (OR for G/A and A/A genotypes 6.1, 95% CI 2.5-14.4; OR for G/G genotype 1.7, 95% CI 0.8-3.3). The present findings provide, for the first time, evidence for a complex pattern of interaction between obesity, a pro-inflammatory genetic factor and asthma.
Perturbative corrections for approximate inference in gaussian latent variable models
DEFF Research Database (Denmark)
Opper, Manfred; Paquet, Ulrich; Winther, Ole
2013-01-01
orders, corrections of increasing polynomial complexity can be applied to the approximation. The second order provides a correction in quadratic time, which we apply to an array of Gaussian process and Ising models. The corrections generalize to arbitrarily complex approximating families, which we...... illustrate on tree-structured Ising model approximations. Furthermore, they provide a polynomial-time assessment of the approximation error. We also provide both theoretical and practical insights on the exactness of the EP solution. © 2013 Manfred Opper, Ulrich Paquet and Ole Winther....
Perturbative corrections for approximate inference in gaussian latent variable models
DEFF Research Database (Denmark)
Opper, Manfred; Paquet, Ulrich; Winther, Ole
2013-01-01
Expectation Propagation (EP) provides a framework for approximate inference. When the model under consideration is over a latent Gaussian field, with the approximation being Gaussian, we show how these approximations can systematically be corrected. A perturbative expansion is made of the exact b...... illustrate on tree-structured Ising model approximations. Furthermore, they provide a polynomial-time assessment of the approximation error. We also provide both theoretical and practical insights on the exactness of the EP solution. © 2013 Manfred Opper, Ulrich Paquet and Ole Winther....
Directory of Open Access Journals (Sweden)
P. Ortega
2013-03-01
Full Text Available Studies addressing climate variability during the last millennium generally focus on variables with a direct influence on climate variability, like the fast thermal response to varying radiative forcing, or the large-scale changes in atmospheric dynamics (e.g. North Atlantic Oscillation. The ocean responds to these variations by slowly integrating in depth the upper heat flux changes, thus producing a delayed influence on ocean heat content (OHC that can later impact low frequency SST (sea surface temperature variability through reemergence processes. In this study, both the externally and internally driven variations of the OHC during the last millennium are investigated using a set of fully coupled simulations with the ECHO-G (coupled climate model ECHAMA4 and ocean model HOPE-G atmosphere–ocean general circulation model (AOGCM. When compared to observations for the last 55 yr, the model tends to overestimate the global trends and underestimate the decadal OHC variability. Extending the analysis back to the last one thousand years, the main impact of the radiative forcing is an OHC increase at high latitudes, explained to some extent by a reduction in cloud cover and the subsequent increase of short-wave radiation at the surface. This OHC response is dominated by the effect of volcanism in the preindustrial era, and by the fast increase of GHGs during the last 150 yr. Likewise, salient impacts from internal climate variability are observed at regional scales. For instance, upper temperature in the equatorial Pacific is controlled by ENSO (El Niño Southern Oscillation variability from interannual to multidecadal timescales. Also, both the Pacific Decadal Oscillation (PDO and the Atlantic Multidecadal Oscillation (AMO modulate intermittently the interdecadal OHC variability in the North Pacific and Mid Atlantic, respectively. The NAO, through its influence on North Atlantic surface heat fluxes and convection, also plays an important role on
Variable oxygen/nitrogen enriched intake air system for internal combustion engine applications
Poola, Ramesh B.; Sekar, Ramanujam R.; Cole, Roger L.
1997-01-01
An air supply control system for selectively supplying ambient air, oxygen enriched air and nitrogen enriched air to an intake of an internal combustion engine includes an air mixing chamber that is in fluid communication with the air intake. At least a portion of the ambient air flowing to the mixing chamber is selectively diverted through a secondary path that includes a selectively permeable air separating membrane device due a differential pressure established across the air separating membrane. The permeable membrane device separates a portion of the nitrogen in the ambient air so that oxygen enriched air (permeate) and nitrogen enriched air (retentate) are produced. The oxygen enriched air and the nitrogen enriched air can be selectively supplied to the mixing chamber or expelled to atmosphere. Alternatively, a portion of the nitrogen enriched air can be supplied through another control valve to a monatomic-nitrogen plasma generator device so that atomic nitrogen produced from the nitrogen enriched air can be then injected into the exhaust of the engine. The oxygen enriched air or the nitrogen enriched air becomes mixed with the ambient air in the mixing chamber and then the mixed air is supplied to the intake of the engine. As a result, the air being supplied to the intake of the engine can be regulated with respect to the concentration of oxygen and/or nitrogen.
Directory of Open Access Journals (Sweden)
Wei Li
2014-01-01
Full Text Available In order to improve the application area and the prediction accuracy of GM(1,1 model, a novel Grey model is proposed in this paper. To remedy the defects about the applications of traditional Grey model and buffer operators in medium- and long-term forecasting, a Variable Weights Buffer Grey model is proposed. The proposed model integrates the variable weights buffer operator with the background value optimized GM(1,1 model to implement dynamic preprocessing of original data. Taking the maximum degree of Grey incidence between fitting value and actual value as objective function, then the optimal buffer factor is chosen, which can improve forecasting precision, make forecasting results embodying the internal trend of original data to the maximum extent, and improve the stability of the prediction. To verify the effectiveness of the proposed model, the energy consumption in China from 2002 to 2009 is used for the modeling to forecast the energy consumption in China from 2010 to 2020, and the forecasting results prove that the GVGM(1,1 model has remarkably improved the forecasting ability of medium- and long-term energy consumption in China.
Directory of Open Access Journals (Sweden)
Xiangyue Lin
2017-12-01
Full Text Available Based on the assumptions of uniform corrosion and linear elastic expansion, an analytical model of cracking due to rebar corrosion expansion in concrete was established, which is able to consider the structure internal force. And then, by means of the complex variable function theory and series expansion technology established by Muskhelishvili, the corresponding stress component functions of concrete around the reinforcement were obtained. Also, a comparative analysis was conducted between the numerical simulation model and present model in this paper. The results show that the calculation results of both methods were consistent with each other, and the numerical deviation was less than 10%, proving that the analytical model established in this paper is reliable.
Modeling the Spatial Dynamics of International Tuna Fleets.
Directory of Open Access Journals (Sweden)
Jenny Sun
Full Text Available We developed an iterative sequential random utility model to investigate the social and environmental determinants of the spatiotemporal decision process of tuna purse-seine fishery fishing effort in the eastern Pacific Ocean. Operations of the fishing gear mark checkpoints in a continuous complex decision-making process. Individual fisher behavior is modeled by identifying diversified choices over decision-space for an entire fishing trip, which allows inclusion of prior and current vessel locations and conditions among the explanatory variables. Among these factors are vessel capacity; departure and arrival port; duration of the fishing trip; daily and cumulative distance travelled, which provides a proxy for operation costs; expected revenue; oceanographic conditions; and tons of fish on board. The model uses a two-step decision process to capture the probability of a vessel choosing a specific fishing region for the first set and the probability of switching to (or staying in a specific region to fish before returning to its landing port. The model provides a means to anticipate the success of marine resource management, and it can be used to evaluate fleet diversity in fisher behavior, the impact of climate variability, and the stability and resilience of complex coupled human and natural systems.
Modeling of carbon sequestration in coal-beds: A variable saturated simulation
International Nuclear Information System (INIS)
Liu Guoxiang; Smirnov, Andrei V.
2008-01-01
Storage of carbon dioxide in deep coal seams is a profitable method to reduce the concentration of green house gases in the atmosphere while the methane as a byproduct can be extracted during carbon dioxide injection into the coal seam. In this procedure, the key element is to keep carbon dioxide in the coal seam without escaping for a long term. It is depended on many factors such as properties of coal basin, fracture state, phase equilibrium, etc., especially the porosity, permeability and saturation of the coal seam. In this paper, a variable saturation model was developed to predict the capacity of carbon dioxide sequestration and coal-bed methane recovery. This variable saturation model can be used to track the saturation variability with the partial pressures change caused by carbon dioxide injection. Saturation variability is a key factor to predict the capacity of carbon dioxide storage and methane recovery. Based on this variable saturation model, a set of related variables including capillary pressure, relative permeability, porosity, coupled adsorption model, concentration and temperature equations were solved. From results of the simulation, historical data agree with the variable saturation model as well as the adsorption model constructed by Langmuir equations. The Appalachian basin, as an example, modeled the carbon dioxide sequestration in this paper. The results of the study and the developed models can provide the projections for the CO 2 sequestration and methane recovery in coal-beds within different regional specifics
Solute transport modelling with the variable temporally dependent ...
Indian Academy of Sciences (India)
Pintu Das
2018-02-07
Feb 7, 2018 ... In this present study, analytical and numerical solutions are obtained for solute transport modelling in homogeneous ..... Clay (0.40). Analytical solution. Numerical solution. Figure 3. Comparison of concentration distribution for sinu- soidal velocity pattern for boundary condition c0. 2 1 ю sec wt р. Ю.
A Model of Human Variability in Viable Ship Design
2014-02-21
each individual with a shared awareness of who knows what ( Wegner , 1987) Processes and outcomes through which groups acquire, share, and...2004). Effects of adaptive behaviors and shared mental models on control crew performance. Management Science, 50, 1534-1544. Wegner , D. M. (1987
Modeling Selected Climatic Variables in Ibadan, Oyo State, Nigeria ...
African Journals Online (AJOL)
PROF. O. E. OSUAGWU
2013-09-01
Sep 1, 2013 ... The aim of this study was fitting the modified generalized burr density function to total rainfall and temperature data obtained from the meteorological unit in the Department of. Environmental Modelling and Management of the Forestry Research Institute of Nigeria. (FRIN) in Ibadan, Oyo State, Nigeria.
Rasch's model for reading speed with manifest explanatory variables
Jansen, G.G.H.
In educational and psychological measurement we find the distinction between speed and power tests. Although most tests are partially speeded, the speed element is usually neglected. Here we consider a latent trait model developed by Rasch for the response time on a (set of) pure speed test(s),
QUANTIFYING SUBGRID POLLUTANT VARIABILITY IN EULERIAN AIR QUALITY MODELS
In order to properly assess human risk due to exposure to hazardous air pollutants or air toxics, detailed information is needed on the location and magnitude of ambient air toxic concentrations. Regional scale Eulerian air quality models are typically limited to relatively coar...
Variable thickness transient groundwater flow model theory and numerical implementation
International Nuclear Information System (INIS)
Kipp, K.L.; Reisenauer, A.E.; Cole, C.R.; Bryan, C.A.
1976-01-01
Modeling of radionuclide movement in the groundwater system beneath the Hanford Reservation requires mathematical simulation of the two-dimensional flow in the unconfined aquifer. This was accomplished using the nonlinear, transient Boussinesq equation with appropriate initial and boundary conditions, including measured Columbia River stages and rates of wastewater disposal to the ground. The heterogeneous permeability (hydraulic conductivity) distribution was derived by solution of the Boussinesq equation along instantaneous streamtubes of flow employing a measured water table surface and a limited number of field-measured hydraulic conductivity values. Use of a successive line over-relaxation technique with unequal time steps resulted in a more rapid convergence of the numerical solution than with previous techniques. The model was used to simulate the water table changes for the period 1968 through 1973 using known inputs and boundary conditions. A comparison of calculated and measured water table elevations was made at specific well locations and the quality of the verification simulation was evaluated using a data retrieval and display system. Agreement between the model results and measured data was good over two-thirds of the Hanford Reservation. The capability of the model to simulate flow with time-varying boundary conditions, complex boundary shapes, and a heterogeneous distribution of aquifer properties was demonstrated
Solute transport modelling with the variable temporally dependent ...
Indian Academy of Sciences (India)
Pintu Das
2018-02-07
Feb 7, 2018 ... Abstract. In this present study, analytical and numerical solutions are obtained for solute transport modelling in homogeneous semi-infinite porous medium. The dispersion coefficient is assumed to be initial dispersion and velocity is assumed to be temporally dependent with initial seepage velocity. Also ...
Models of Solar Irradiance Variability and the Instrumental Temperature Record
Marcus, S. L.; Ghil, M.; Ide, K.
1998-01-01
The effects of decade-to-century (Dec-Cen) variations in total solar irradiance (TSI) on global mean surface temperature Ts during the pre-Pinatubo instrumental era (1854-1991) are studied by using two different proxies for TSI and a simplified version of the IPCC climate model.
Two-Step Estimation of Models Between Latent Classes and External Variables.
Bakk, Zsuzsa; Kuha, Jouni
2017-11-17
We consider models which combine latent class measurement models for categorical latent variables with structural regression models for the relationships between the latent classes and observed explanatory and response variables. We propose a two-step method of estimating such models. In its first step, the measurement model is estimated alone, and in the second step the parameters of this measurement model are held fixed when the structural model is estimated. Simulation studies and applied examples suggest that the two-step method is an attractive alternative to existing one-step and three-step methods. We derive estimated standard errors for the two-step estimates of the structural model which account for the uncertainty from both steps of the estimation, and show how the method can be implemented in existing software for latent variable modelling.
Analytical Model for LLC Resonant Converter With Variable Duty-Cycle Control
DEFF Research Database (Denmark)
Shen, Yanfeng; Wang, Huai; Blaabjerg, Frede
2016-01-01
are identified and discussed. The proposed model enables a better understanding of the operation characteristics and fast parameter design of the LLC converter, which otherwise cannot be achieved by the existing simulation based methods and numerical models. The results obtained from the proposed model......In LLC resonant converters, the variable duty-cycle control is usually combined with a variable frequency control to widen the gain range, improve the light-load efficiency, or suppress the inrush current during start-up. However, a proper analytical model for the variable duty-cycle controlled LLC...... converter is still not available due to the complexity of operation modes and the nonlinearity of steady-state equations. This paper makes the efforts to develop an analytical model for the LLC converter with variable duty-cycle control. All possible operation models and critical operation characteristics...
Mercury's Internal Magnetic Field: Modeling Core Fields with Smooth Inversions
Uno, H.; Johnson, C. L.; Anderson, B. J.; Korth, H.; Purucker, M. E.; Solomon, S. C.
2008-12-01
MESSENGER's second flyby (M2) of Mercury on 6 October 2008 will provide significantly improved geographical sampling of the planet's internal magnetic field over previous measurements. Latitudinal coverage and spacecraft altitudes will be similar to those during MESSENGER's first encounter (M1), but the spacecraft trajectory will be displaced by about 180° in longitude, yielding the first magnetic measurements in the western hemisphere. We investigate spatial structure in Mercury's internal magnetic field by applying methods from inverse theory to construct low-degree-and-order spherical harmonic models. External fields predicted by a parameterized magnetospheric model are subtracted from the vector field observations. The approach takes into account noise contributions from long-wavelength uncertainties in the external field models, unexplained short-wavelength features, and spacecraft attitude errors. We investigate the effect of different regularization (smoothness) constraints on our inversions. Analyses of data from M1 and the two Mariner 10 flybys that penetrated the magnetosphere yield a preferred spherical harmonic solution to degree and order eight with the centered, axial dipole term g10 dominating. The model shows structure at low and mid-latitude regions near the flybys. Terms predicted by an analytical model for long- wavelength crustal fields - namely g10, g30 and g32 - are present, but their relative amplitudes are not consistent with such a field. We conclude that structure in our models is dominated by core, rather than by crustal, fields. We also investigate, through simulations, field morphologies that are recoverable while the spacecraft is in orbit about Mercury, under the assumption that the long-wavelength contributions from external sources can be accurately modeled and removed. Although the elliptical orbit of MESSENGER will impede the recovery of southern hemisphere structure, we obtain excellent recovery of the dipole field and of
Hybrid continuum–molecular modelling of multiscale internal gas flows
International Nuclear Information System (INIS)
Patronis, Alexander; Lockerby, Duncan A.; Borg, Matthew K.; Reese, Jason M.
2013-01-01
We develop and apply an efficient multiscale method for simulating a large class of low-speed internal rarefied gas flows. The method is an extension of the hybrid atomistic–continuum approach proposed by Borg et al. (2013) [28] for the simulation of micro/nano flows of high-aspect ratio. The major new extensions are: (1) incorporation of fluid compressibility; (2) implementation using the direct simulation Monte Carlo (DSMC) method for dilute rarefied gas flows, and (3) application to a broader range of geometries, including periodic, non-periodic, pressure-driven, gravity-driven and shear-driven internal flows. The multiscale method is applied to micro-scale gas flows through a periodic converging–diverging channel (driven by an external acceleration) and a non-periodic channel with a bend (driven by a pressure difference), as well as the flow between two eccentric cylinders (with the inner rotating relative to the outer). In all these cases there exists a wide variation of Knudsen number within the geometries, as well as substantial compressibility despite the Mach number being very low. For validation purposes, our multiscale simulation results are compared to those obtained from full-scale DSMC simulations: very close agreement is obtained in all cases for all flow variables considered. Our multiscale simulation is an order of magnitude more computationally efficient than the full-scale DSMC for the first and second test cases, and two orders of magnitude more efficient for the third case
Biofidelic Human Activity Modeling and Simulation with Large Variability
2014-11-25
exact match or a close representation. Efforts were made to ensure that the activity models can be integrated into widely used game engines and image...integrated into widely used game engines and image generators. ABOUT THE AUTHORS Dr. John Camp is a computer research scientist employed by AFRL. Dr...M&S) has been increasingly used in simulation-based training and virtual reality ( VR ). However, human M&S technology currently used in various
A Variable Flow Modelling Approach To Military End Strength Planning
2016-12-01
behaviours of a system and how the behaviours are influenced by...Markov Chain Models Wang describes Markov chain theory as a mathematical tool used to investigate dynamic behaviours of a system in a discrete-time... Organisation . 52 THIS PAGE INTENTIONALLY LEFT BLANK 53 INITIAL DISTRIBUTION LIST 1. Defense Technical Information Center Ft Belvoir Virginia 2. Dudley Knox Library Naval Postgraduate School Monterey, California
Validity and Variability of Animal Models Used in Dentistry
Directory of Open Access Journals (Sweden)
Mohammad Ali Saghiri
2015-01-01
Full Text Available Background: Animal models have contributed to dental literature for several decades. The major aim of this review was to outline tooth development stages in mice, and attempt to addressing potential strain differences. A literature review was performed using electronic and hand-searching methods for the animal models in dentistry with special emphasis on mice and dentistry. Root canal development in both C57BL/6 and BALB/c strains were investigated. There are a number of published reports regarding the morphogenesis and molecular reaction and maturation stages of mice molars. We observed some similarity between the mice and human odontegeneis as primary factor for tooth development. Although mice may present some technical challenges, including the small size of the mouse molars, they have similar stages as humans for molar development, and can be used to monitor the effects of various biomaterials, regeneration, and remodeling. Thus, mice provide an ideal alternative model to study developmental and regenerative processes in dentistry.
AeroPropulsoServoElasticity: Dynamic Modeling of the Variable Cycle Propulsion System
Kopasakis, George
2012-01-01
This presentation was made at the 2012 Fundamental Aeronautics Program Technical Conference and it covers research work for the Dynamic Modeling of the Variable cycle Propulsion System that was done under the Supersonics Project, in the area of AeroPropulsoServoElasticity. The presentation covers the objective for the propulsion system dynamic modeling work, followed by the work that has been done so far to model the variable Cycle Engine, modeling of the inlet, the nozzle, the modeling that has been done to model the affects of flow distortion, and finally presenting some concluding remarks and future plans.
International Nuclear Information System (INIS)
Zimmermann, J.S.; Kumpf, L.; Kimmig, B.
1998-01-01
Background: The variability of normal-tissue response is of major concern for radiation therapy. Multiple endogenous and exogenous factors are qualitatively known to alter the acute and late tissue response. Which of them are regarded most important by the European radiation oncologists and what is, empirically, their quantitative influence on the acute or late tissue tolerance? Methods: In August 1997, we sent a questionnaire to 255 European radiation oncology departments. Among others, the questionnaire asked for endogenous and exogenous factors modifying the tissue response to radiation therapy and their quantitative influence on the acute and late radiation morbidity (TD5/5). Fifty-five questionnaires (21.5%) were answered. Results: Empirically, the most important endogenous factors to modify the acute tissue tolerance are (a) metabolic/other diseases with macro- or microangiopathia (17 answers [a]/32% mean decrease of tissue tolerance), (b) collagen diseases (9 a/37%) and (c) immune diseases (5 a/53%). As endogenous response modifiers for the TD5/5 are recognized (a) metabolic or other diseases leading to marcro- or microangiopathia (15 a/31%), (b) collagen diseases (11 a/38%) and (c) immune diseases (2 a/50%). Inflammations from any reason are assumed to alter the acute tissue tolerance by (6 a/26%) and the TD5/5 by (10 a/24%). Exogenous modifiers of the acute tissue response mentioned are (a) smoking (34 a/44%), (b) alcohol (23 a/45%), (c) nutrition/diets (16 a/45%), (d) hygiene (9 a/26%) and (e) medical therapies (10 a/37%). Exogenous factors assumed to influence the TD5/5 are (a) smoking (22 a/40%), (b) alcohol (15 a/38%), (c) nutrition/diets (9 a/48%), (d) hygiene (5 a/34%) and (e) medical therapies (10 a/30%). Conclusions: Exogenous factors are regarded more important by number and extent on the acute and late tissue response than endogenous modifiers. Both may have an important influence on the individual expression of normal tissue response. (orig
Mulpuri, Kishore; Schaeffer, Emily K; Kelley, Simon P; Castañeda, Pablo; Clarke, Nicholas M P; Herrera-Soto, Jose A; Upasani, Vidyadhar; Narayanan, Unni G; Price, Charles T
2016-05-01
Little information exists concerning the variability of presentation and differences in treatment methods for developmental dysplasia of the hip (DDH) in children Hip Dysplasia Institute to establish the need to consider the center as a key variable in multicenter studies. (1) How do patient demographics differ across participating centers at presentation? (2) How do patient diagnoses (severity and laterality) differ across centers? (3) How do initial treatment approaches differ across participating centers? A multicenter prospective hip dysplasia study database was analyzed from 2010 to April 2015. Patients younger than 6 months of age at diagnosis were included if at least one hip was completely dislocated, whereas patients between 6 and 18 months of age at diagnosis were included with any form of DDH. Participating centers (academic, urban, tertiary care hospitals) span five countries across three continents. Baseline data (patient demographics, diagnosis, swaddling history, baseline International Hip Dysplasia Institute classification, and initial treatment) were compared among all nine centers. A total of 496 patients were enrolled with site enrolment ranging from 10 to 117. The proportion of eligible patients who were enrolled and followed at the nine participating centers was 98%. Patient enrollment rates were similar across all sites, and data collection/completeness for relevant variables at initial presentation was comparable. In total, 83% of all patients were female (410 of 496), and the median age at presentation was 2.2 months (range, 0-18 months). Breech presentation occurred more often in younger (Hip Dysplasia Institute classification), which included 58% (51 of 88) of all classified dislocated hips. Splintage was the primary initial treatment of choice at 80% (395 of 496), but was far more likely in younger compared with older patients (94% [309 of 328] versus 18% [17 of 93]; p < 0.001). With the lack of strong prognostic indicators for DDH
Observing and modeling nonlinear dynamics in an internal combustion engine
International Nuclear Information System (INIS)
Daw, C.S.; Kennel, M.B.; Finney, C.E.; Connolly, F.T.
1998-01-01
We propose a low-dimensional, physically motivated, nonlinear map as a model for cyclic combustion variation in spark-ignited internal combustion engines. A key feature is the interaction between stochastic, small-scale fluctuations in engine parameters and nonlinear deterministic coupling between successive engine cycles. Residual cylinder gas from each cycle alters the in-cylinder fuel-air ratio and thus the combustion efficiency in succeeding cycles. The model close-quote s simplicity allows rapid simulation of thousands of engine cycles, permitting statistical studies of cyclic-variation patterns and providing physical insight into this technologically important phenomenon. Using symbol statistics to characterize the noisy dynamics, we find good quantitative matches between our model and experimental time-series measurements. copyright 1998 The American Physical Society
Replicates in high dimensions, with applications to latent variable graphical models.
Tan, Kean Ming; Ning, Yang; Witten, Daniela M; Liu, Han
2016-12-01
In classical statistics, much thought has been put into experimental design and data collection. In the high-dimensional setting, however, experimental design has been less of a focus. In this paper, we stress the importance of collecting multiple replicates for each subject in this setting. We consider learning the structure of a graphical model with latent variables, under the assumption that these variables take a constant value across replicates within each subject. By collecting multiple replicates for each subject, we are able to estimate the conditional dependence relationships among the observed variables given the latent variables. To test the null hypothesis of conditional independence between two observed variables, we propose a pairwise decorrelated score test. Theoretical guarantees are established for parameter estimation and for this test. We show that our proposal is able to estimate latent variable graphical models more accurately than some existing proposals, and apply the proposed method to a brain imaging dataset.
Finite analytic method for modeling variably saturated flows.
Zhang, Zaiyong; Wang, Wenke; Gong, Chengcheng; Yeh, Tian-Chyi Jim; Wang, Zhoufeng; Wang, Yu-Li; Chen, Li
2018-04-15
This paper develops a finite analytic method (FAM) for solving the two-dimensional Richards' equation. The FAM incorporates the analytic solution in local elements to formulate the algebraic representation of the partial differential equation of unsaturated flow so as to effectively control both numerical oscillation and dispersion. The FAM model is then verified using four examples, in which the numerical solutions are compared with analytical solutions, solutions from VSAFT2, and observational data from a field experiment. These numerical experiments show that the method is not only accurate but also efficient, when compared with other numerical methods. Copyright © 2017 Elsevier B.V. All rights reserved.
Solar spectral irradiance variability in cycle 24: observations and models
Marchenko, Sergey V.; DeLand, Matthew T.; Lean, Judith L.
2016-12-01
Utilizing the excellent stability of the Ozone Monitoring Instrument (OMI), we characterize both short-term (solar rotation) and long-term (solar cycle) changes of the solar spectral irradiance (SSI) between 265 and 500 nm during the ongoing cycle 24. We supplement the OMI data with concurrent observations from the Global Ozone Monitoring Experiment-2 (GOME-2) and Solar Radiation and Climate Experiment (SORCE) instruments and find fair-to-excellent, depending on wavelength, agreement among the observations, and predictions of the Naval Research Laboratory Solar Spectral Irradiance (NRLSSI2) and Spectral And Total Irradiance REconstruction for the Satellite era (SATIRE-S) models.
Solar spectral irradiance variability in cycle 24: observations and models
Directory of Open Access Journals (Sweden)
Marchenko Sergey V.
2016-01-01
Full Text Available Utilizing the excellent stability of the Ozone Monitoring Instrument (OMI, we characterize both short-term (solar rotation and long-term (solar cycle changes of the solar spectral irradiance (SSI between 265 and 500 nm during the ongoing cycle 24. We supplement the OMI data with concurrent observations from the Global Ozone Monitoring Experiment-2 (GOME-2 and Solar Radiation and Climate Experiment (SORCE instruments and find fair-to-excellent, depending on wavelength, agreement among the observations, and predictions of the Naval Research Laboratory Solar Spectral Irradiance (NRLSSI2 and Spectral And Total Irradiance REconstruction for the Satellite era (SATIRE-S models.
Effective model development of internal auditors in the village financial institution
Arsana, I. M. M.; Sugiarta, I. N.
2018-01-01
Designing an effective audit system is complex and challenging, and a focus on examining how internal audit drive improvement in three core performance dimensions ethicality, efficiency, and effectiveness in organization is needed. The problem of research is how the desain model and peripheral of supporter of effective supervation Village Credit Institution? Research of objectives is yielding the desain model and peripheral of supporter of effective supervation Village Credit Institution. Method Research use data collecting technique interview, observation and enquette. Data analysis, data qualitative before analysed to be turned into quantitative data in the form of scale. Each variable made to become five classificat pursuant to scale of likert. Data analysed descriptively to find supervation level, Structural Equation Model (SEM) to find internal and eksternal factor. So that desain model supervation with descriptive analysis. Result of research desain model and peripheral of supporter of effective supervation Village Credit Institution. The conclusion desain model supported by three sub system: sub system institute yield body supervisor of Village Credit Institution, sub system standardization and working procedure yield standard operating procedure supervisor of Village Credit Institution, sub system education and training yield supervisor professional of Village Credit Institution.
Energy Technology Data Exchange (ETDEWEB)
De Lucia, Frank C., E-mail: frank.delucia@us.army.mil; Gottfried, Jennifer L.
2011-02-15
Using a series of thirteen organic materials that includes novel high-nitrogen energetic materials, conventional organic military explosives, and benign organic materials, we have demonstrated the importance of variable selection for maximizing residue discrimination with partial least squares discriminant analysis (PLS-DA). We built several PLS-DA models using different variable sets based on laser induced breakdown spectroscopy (LIBS) spectra of the organic residues on an aluminum substrate under an argon atmosphere. The model classification results for each sample are presented and the influence of the variables on these results is discussed. We found that using the whole spectra as the data input for the PLS-DA model gave the best results. However, variables due to the surrounding atmosphere and the substrate contribute to discrimination when the whole spectra are used, indicating this may not be the most robust model. Further iterative testing with additional validation data sets is necessary to determine the most robust model.
Impulsive synchronization and parameter mismatch of the three-variable autocatalator model
International Nuclear Information System (INIS)
Li, Yang; Liao, Xiaofeng; Li, Chuandong; Huang, Tingwen; Yang, Degang
2007-01-01
The synchronization problems of the three-variable autocatalator model via impulsive control approach are investigated; several theorems on the stability of impulsive control systems are also investigated. These theorems are then used to find the conditions under which the three-variable autocatalator model can be asymptotically controlled to the equilibrium point. This Letter derives some sufficient conditions for the stabilization and synchronization of a three-variable autocatalator model via impulsive control with varying impulsive intervals. Furthermore, we address the chaos quasi-synchronization in the presence of single-parameter mismatch. To illustrate the effectiveness of the new scheme, several numerical examples are given
Higher-Order Process Modeling: Product-Lining, Variability Modeling and Beyond
Directory of Open Access Journals (Sweden)
Johannes Neubauer
2013-09-01
Full Text Available We present a graphical and dynamic framework for binding and execution of business process models. It is tailored to integrate 1 ad hoc processes modeled graphically, 2 third party services discovered in the (Internet, and 3 (dynamically synthesized process chains that solve situation-specific tasks, with the synthesis taking place not only at design time, but also at runtime. Key to our approach is the introduction of type-safe stacked second-order execution contexts that allow for higher-order process modeling. Tamed by our underlying strict service-oriented notion of abstraction, this approach is tailored also to be used by application experts with little technical knowledge: users can select, modify, construct and then pass (component processes during process execution as if they were data. We illustrate the impact and essence of our framework along a concrete, realistic (business process modeling scenario: the development of Springer's browser-based Online Conference Service (OCS. The most advanced feature of our new framework allows one to combine online synthesis with the integration of the synthesized process into the running application. This ability leads to a particularly flexible way of implementing self-adaption, and to a particularly concise and powerful way of achieving variability not only at design time, but also at runtime.
Bhargava, R. R.; Bansal, P. K.
2002-09-01
A modified Dugdale model solution is obtained for an elastic-perfectly-plastic plate weakened by one internal and two external straight collinear hairline cracks. The tension applied to the infinite boundary of the plate opens the rims of cracks with forming a plastic zone ahead of each tip of the internal crack and also at each finitely distant tip of the two external cracks. The developed plastic zones are closed by normal cohesive linearly varying yield-point stress distributions applied to their rims. The problem is solved using the complex-variable technique. A case study is carried out to find the load required to prevent the cracks from further growing with respect to affecting parameters. The results obtained are reported graphically and analyzed.
A Time-Series Water Level Forecasting Model Based on Imputation and Variable Selection Method
Directory of Open Access Journals (Sweden)
Jun-He Yang
2017-01-01
Full Text Available Reservoirs are important for households and impact the national economy. This paper proposed a time-series forecasting model based on estimating a missing value followed by variable selection to forecast the reservoir’s water level. This study collected data from the Taiwan Shimen Reservoir as well as daily atmospheric data from 2008 to 2015. The two datasets are concatenated into an integrated dataset based on ordering of the data as a research dataset. The proposed time-series forecasting model summarily has three foci. First, this study uses five imputation methods to directly delete the missing value. Second, we identified the key variable via factor analysis and then deleted the unimportant variables sequentially via the variable selection method. Finally, the proposed model uses a Random Forest to build the forecasting model of the reservoir’s water level. This was done to compare with the listing method under the forecasting error. These experimental results indicate that the Random Forest forecasting model when applied to variable selection with full variables has better forecasting performance than the listing model. In addition, this experiment shows that the proposed variable selection can help determine five forecast methods used here to improve the forecasting capability.
Seismic velocity models for an internally asymmetric Mars
Franck, S.; Kowalle, G.
1994-01-01
The well-known dichotomy in topography, surface age, and crustal structure between the northern lowlands and the southern uplands of Mars has been explained by both endogenic and exogenic processes. According to the used model this asymmetry might be a result of a certain mechanism of core formation influencing the following planetary evolution. Therefore it has been assumed that the present internal structure of Mars is characterized by different velocity-depth distributions of the mantle for the northern and southern hemisphere, respectively. For both regions significant differences in travel times of seismic waves were calculated. These results may be important for the future seismic exploration of Mars.
International Family Migration and the Dual-Earner Model
DEFF Research Database (Denmark)
Munk, Martin D.; Nikolka, Till; Poutvaara, Panu
2018-01-01
Gender differences in labor force participation are exceptionally small in Nordic countries. We investigate how couples emigrating from Denmark self-select and sort into different destinations and whether couples pursue the dual-earner model, in which both partners work, when abroad. Female labor...... force participation is slightly lower among couples that later emigrate, and drops considerably after migration outside the Nordic countries. Pre-migration differences between couples subsequently migrating to different destinations are small. Our survey reveals that couple migration is usually driven...... by the male’s job opportunities. The results suggest that increasing international migration may reduce women’s career investments....
Models for Very Rapid High-Energy γ-Ray Variability in Blazars G. E. ...
Indian Academy of Sciences (India)
Blazars display rapid variability across the entire electromagnetic spectrum. Vari- ability at high energies on timescales of a few minutes has been observed for some of them, such as PKS 2155−304 (e.g., Aharonian et al. 2007). This discovery has led to the formulation of a large variety of models for non-thermal variability in ...
Lee, Sik-Yum; Song, Xin-Yuan; Tang, Nian-Sheng
2007-01-01
The analysis of interaction among latent variables has received much attention. This article introduces a Bayesian approach to analyze a general structural equation model that accommodates the general nonlinear terms of latent variables and covariates. This approach produces a Bayesian estimate that has the same statistical optimal properties as a…
Theoretical investigations of the new Cokriging method for variable-fidelity surrogate modeling
DEFF Research Database (Denmark)
Zimmermann, Ralf; Bertram, Anna
2017-01-01
Cokriging is a variable-fidelity surrogate modeling technique which emulates a target process based on the spatial correlation of sampled data of different levels of fidelity. In this work, we address two theoretical questions associated with the so-called new Cokriging method for variable fidelity...
Micro-macro multilevel latent class models with multiple discrete individual-level variables
Bennink, M.; Croon, M.A.; Kroon, B.; Vermunt, J.K.
2016-01-01
An existing micro-macro method for a single individual-level variable is extended to the multivariate situation by presenting two multilevel latent class models in which multiple discrete individual-level variables are used to explain a group-level outcome. As in the univariate case, the
Modeling of Mesoscale Variability in Biofilm Shear Behavior.
Directory of Open Access Journals (Sweden)
Pallab Barai
Full Text Available Formation of bacterial colonies as biofilm on the surface/interface of various objects has the potential to impact not only human health and disease but also energy and environmental considerations. Biofilms can be regarded as soft materials, and comprehension of their shear response to external forces is a key element to the fundamental understanding. A mesoscale model has been presented in this article based on digitization of a biofilm microstructure. Its response under externally applied shear load is analyzed. Strain stiffening type behavior is readily observed under high strain loads due to the unfolding of chains within soft polymeric substrate. Sustained shear loading of the biofilm network results in strain localization along the diagonal direction. Rupture of the soft polymeric matrix can potentially reduce the intercellular interaction between the bacterial cells. Evolution of stiffness within the biofilm network under shear reveals two regimes: a initial increase in stiffness due to strain stiffening of polymer matrix, and b eventual reduction in stiffness because of tear in polymeric substrate.
Awais, Muhammad; Awan, Saeed Ehsan; Iqbal, Khalid; Khan, Zuhaib Ashfaq; Raja, Muhammad Asif Zahoor
2018-03-01
The effect of Cattaneo-Christov heat flux model for the hydro-magnetic mixed convective flow of a non-Newtonian fluid is presented. The flow over a wall having variable thickness is anticipated under the influence of transverse magnetic field and internal heat generation/absorption effects. Mathematical formulation has been performed by making use of the suitable transformations. Convergence analysis has been performed and the optimal values are computed by employing optimal homotopy analysis method. The effects of physical parameters are elaborated in depth via graphical and numerical illustrations.
a Latent Variable Path Analysis Model of Secondary Physics Enrollments in New York State.
Sobolewski, Stanley John
The Percentage of Enrollment in Physics (PEP) at the secondary level nationally has been approximately 20% for the past few decades. For a more scientifically literate citizenry as well as specialists to continue scientific research and development, it is desirable that more students enroll in physics. Some of the predictor variables for physics enrollment and physics achievement that have been identified previously includes a community's socioeconomic status, the availability of physics, the sex of the student, the curriculum, as well as teacher and student data. This study isolated and identified predictor variables for PEP of secondary schools in New York. Data gathered by the State Education Department for the 1990-1991 school year was used. The source of this data included surveys completed by teachers and administrators on student characteristics and school facilities. A data analysis similar to that done by Bryant (1974) was conducted to determine if the relationships between a set of predictor variables related to physics enrollment had changed in the past 20 years. Variables which were isolated included: community, facilities, teacher experience, number of type of science courses, school size and school science facilities. When these variables were isolated, latent variable path diagrams were proposed and verified by the Linear Structural Relations computer modeling program (LISREL). These diagrams differed from those developed by Bryant in that there were more manifest variables used which included achievement scores in the form of Regents exam results. Two criterion variables were used, percentage of students enrolled in physics (PEP) and percent of students enrolled passing the Regents physics exam (PPP). The first model treated school and community level variables as exogenous while the second model treated only the community level variables as exogenous. The goodness of fit indices for the models was 0.77 for the first model and 0.83 for the second
Effect of climate variables on cocoa black pod incidence in Sabah using ARIMAX model
Ling Sheng Chang, Albert; Ramba, Haya; Mohd. Jaaffar, Ahmad Kamil; Kim Phin, Chong; Chong Mun, Ho
2016-06-01
Cocoa black pod disease is one of the major diseases affecting the cocoa production in Malaysia and also around the world. Studies have shown that the climate variables have influenced the cocoa black pod disease incidence and it is important to quantify the black pod disease variation due to the effect of climate variables. Application of time series analysis especially auto-regressive moving average (ARIMA) model has been widely used in economics study and can be used to quantify the effect of climate variables on black pod incidence to forecast the right time to control the incidence. However, ARIMA model does not capture some turning points in cocoa black pod incidence. In order to improve forecasting performance, other explanatory variables such as climate variables should be included into ARIMA model as ARIMAX model. Therefore, this paper is to study the effect of climate variables on the cocoa black pod disease incidence using ARIMAX model. The findings of the study showed ARIMAX model using MA(1) and relative humidity at lag 7 days, RHt - 7 gave better R square value compared to ARIMA model using MA(1) which could be used to forecast the black pod incidence to assist the farmers determine timely application of fungicide spraying and culture practices to control the black pod incidence.
Predictive and Descriptive CoMFA Models: The Effect of Variable Selection.
Sepehri, Bakhtyar; Omidikia, Nematollah; Kompany-Zareh, Mohsen; Ghavami, Raouf
2018-01-01
Aims & Scope: In this research, 8 variable selection approaches were used to investigate the effect of variable selection on the predictive power and stability of CoMFA models. Three data sets including 36 EPAC antagonists, 79 CD38 inhibitors and 57 ATAD2 bromodomain inhibitors were modelled by CoMFA. First of all, for all three data sets, CoMFA models with all CoMFA descriptors were created then by applying each variable selection method a new CoMFA model was developed so for each data set, 9 CoMFA models were built. Obtained results show noisy and uninformative variables affect CoMFA results. Based on created models, applying 5 variable selection approaches including FFD, SRD-FFD, IVE-PLS, SRD-UVEPLS and SPA-jackknife increases the predictive power and stability of CoMFA models significantly. Among them, SPA-jackknife removes most of the variables while FFD retains most of them. FFD and IVE-PLS are time consuming process while SRD-FFD and SRD-UVE-PLS run need to few seconds. Also applying FFD, SRD-FFD, IVE-PLS, SRD-UVE-PLS protect CoMFA countor maps information for both fields. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Chiu, Weihsueh A; Campbell, Jerry L; Clewell, Harvey J; Zhou, Yi-Hui; Wright, Fred A; Guyton, Kathryn Z; Rusyn, Ivan
2014-05-01
Quantitative estimation of toxicokinetic variability in the human population is a persistent challenge in risk assessment of environmental chemicals. Traditionally, interindividual differences in the population are accounted for by default assumptions or, in rare cases, are based on human toxicokinetic data. We evaluated the utility of genetically diverse mouse strains for estimating toxicokinetic population variability for risk assessment, using trichloroethylene (TCE) metabolism as a case study. We used data on oxidative and glutathione conjugation metabolism of TCE in 16 inbred and 1 hybrid mouse strains to calibrate and extend existing physiologically based pharmacokinetic (PBPK) models. We added one-compartment models for glutathione metabolites and a two-compartment model for dichloroacetic acid (DCA). We used a Bayesian population analysis of interstrain variability to quantify variability in TCE metabolism. Concentration-time profiles for TCE metabolism to oxidative and glutathione conjugation metabolites varied across strains. Median predictions for the metabolic flux through oxidation were less variable (5-fold range) than that through glutathione conjugation (10-fold range). For oxidative metabolites, median predictions of trichloroacetic acid production were less variable (2-fold range) than DCA production (5-fold range), although the uncertainty bounds for DCA exceeded the predicted variability. Population PBPK modeling of genetically diverse mouse strains can provide useful quantitative estimates of toxicokinetic population variability. When extrapolated to lower doses more relevant to environmental exposures, mouse population-derived variability estimates for TCE metabolism closely matched population variability estimates previously derived from human toxicokinetic studies with TCE, highlighting the utility of mouse interstrain metabolism studies for addressing toxicokinetic variability.
Razafindrakoto, Hoby
2015-04-22
Finite-fault earthquake source inversion is an ill-posed inverse problem leading to non-unique solutions. In addition, various fault parametrizations and input data may have been used by different researchers for the same earthquake. Such variability leads to large intra-event variability in the inferred rupture models. One way to understand this problem is to develop robust metrics to quantify model variability. We propose a Multi Dimensional Scaling (MDS) approach to compare rupture models quantitatively. We consider normalized squared and grey-scale metrics that reflect the variability in the location, intensity and geometry of the source parameters. We test the approach on two-dimensional random fields generated using a von Kármán autocorrelation function and varying its spectral parameters. The spread of points in the MDS solution indicates different levels of model variability. We observe that the normalized squared metric is insensitive to variability of spectral parameters, whereas the grey-scale metric is sensitive to small-scale changes in geometry. From this benchmark, we formulate a similarity scale to rank the rupture models. As case studies, we examine inverted models from the Source Inversion Validation (SIV) exercise and published models of the 2011 Mw 9.0 Tohoku earthquake, allowing us to test our approach for a case with a known reference model and one with an unknown true solution. The normalized squared and grey-scale metrics are respectively sensitive to the overall intensity and the extension of the three classes of slip (very large, large, and low). Additionally, we observe that a three-dimensional MDS configuration is preferable for models with large variability. We also find that the models for the Tohoku earthquake derived from tsunami data and their corresponding predictions cluster with a systematic deviation from other models. We demonstrate the stability of the MDS point-cloud using a number of realizations and jackknife tests, for
Guyon, Hervé; Falissard, Bruno; Kop, Jean-Luc
2017-01-01
Network Analysis is considered as a new method that challenges Latent Variable models in inferring psychological attributes. With Network Analysis, psychological attributes are derived from a complex system of components without the need to call on any latent variables. But the ontological status of psychological attributes is not adequately defined with Network Analysis, because a psychological attribute is both a complex system and a property emerging from this complex system. The aim of this article is to reappraise the legitimacy of latent variable models by engaging in an ontological and epistemological discussion on psychological attributes. Psychological attributes relate to the mental equilibrium of individuals embedded in their social interactions, as robust attractors within complex dynamic processes with emergent properties, distinct from physical entities located in precise areas of the brain. Latent variables thus possess legitimacy, because the emergent properties can be conceptualized and analyzed on the sole basis of their manifestations, without exploring the upstream complex system. However, in opposition with the usual Latent Variable models, this article is in favor of the integration of a dynamic system of manifestations. Latent Variables models and Network Analysis thus appear as complementary approaches. New approaches combining Latent Network Models and Network Residuals are certainly a promising new way to infer psychological attributes, placing psychological attributes in an inter-subjective dynamic approach. Pragmatism-realism appears as the epistemological framework required if we are to use latent variables as representations of psychological attributes. PMID:28572780
Modelling interacting molecular motors with an internal degree of freedom
Pinkoviezky, Itai; Gov, Nir S.
2013-02-01
The mechanisms underlying the collective motion of molecular motors in living cells are not yet fully understood. One such open puzzle is the observed pulses of backward-moving myosin-X in the filopodia structure. Motivated by this phenomenon we introduce two generalizations of the ‘total asymmetric exclusion process’ (TASEP) that might be relevant to the formation of such pulses. The first is adding a nearest-neighbours attractive interaction between motors, while the second is adding an internal degree of freedom corresponding to a processive and immobile form of the motors. Switching between the two states occurs stochastically, without a conservation law. Both models show strong deviations from the mean field behaviour and lack particle-hole symmetry. We use approximations borrowed from the research on vehicular traffic models to calculate the current and jam size distribution in a system with periodic boundary conditions and introduce a novel modification to one of these approximation schemes.
Modelling interacting molecular motors with an internal degree of freedom
International Nuclear Information System (INIS)
Pinkoviezky, Itai; Gov, Nir S
2013-01-01
The mechanisms underlying the collective motion of molecular motors in living cells are not yet fully understood. One such open puzzle is the observed pulses of backward-moving myosin-X in the filopodia structure. Motivated by this phenomenon we introduce two generalizations of the ‘total asymmetric exclusion process’ (TASEP) that might be relevant to the formation of such pulses. The first is adding a nearest-neighbours attractive interaction between motors, while the second is adding an internal degree of freedom corresponding to a processive and immobile form of the motors. Switching between the two states occurs stochastically, without a conservation law. Both models show strong deviations from the mean field behaviour and lack particle–hole symmetry. We use approximations borrowed from the research on vehicular traffic models to calculate the current and jam size distribution in a system with periodic boundary conditions and introduce a novel modification to one of these approximation schemes. (paper)
Dialogues on cancer survivorship: a new model of international cooperation.
Stein, Kevin; Mattioli, Vittorio
2013-06-01
The authors describe the rationale and background of the present supplement to Cancer intended to stimulate a dialogue among researchers from Europe and North America regarding important issues faced by cancer survivors. Through jointly written articles addressing various aspects of cancer survivorship, each manuscript reports on the similarities, disparities, and problems viewed from the point of view of each author's respective continent. The supplement is meant to create a springboard for increased collaboration and aid in the development of a shared care model to improve the quality of cancer care, both during and after the completion of primary treatment. We hope that this effort may represent a new model of international cooperation, which is fruitful not only for the field of scientific research but also for identifying and sharing new approaches to the care and management of cancer survivorship issues, ultimately bringing improvements to quality of life of the growing population of cancer survivors. Copyright © 2013 American Cancer Society.
Models and Rules of Evaluation in International Accounting
Directory of Open Access Journals (Sweden)
Niculae Feleaga
2006-04-01
Full Text Available The accounting procedures cannot be analyzed without a previous evaluation. Value is in general a very subjective issue, usually the result of a monetary evaluation made to a specific asset, group of assets or entities, or to some rendered services. Within the economic sciences, value comes from its very own deep history. In accounting, the concept of value had a late and fragile start. The term of value must not be misinterpreted as being the same thing with cost, even though value is frequently measured through costs. At the origin of the international accounting standards lays the framework for preparing, presenting and disclosing the financial statements. The framework stays as a reference matrix, as a standard of standards, as a constitution of financial accounting. According to the international framework, the financial statements use different evaluation basis: the hystorical cost, the current cost, the realisable (settlement value, the present value (the present value of cash flows. Choosing the evaluation basis and the capital maintenance concept will eventually determine the accounting evaluation model used in preparing the financial statements of a company. The multitude of accounting evaluation models differentiate themselves one from another through various relevance and reliable degrees of accounting information and therefore, accountants (the prepares of financial statements must try to equilibrate these two main qualitative characteristics of financial information.
Models and Rules of Evaluation in International Accounting
Directory of Open Access Journals (Sweden)
Liliana Feleaga
2006-06-01
Full Text Available The accounting procedures cannot be analyzed without a previous evaluation. Value is in general a very subjective issue, usually the result of a monetary evaluation made to a specific asset, group of assets or entities, or to some rendered services. Within the economic sciences, value comes from its very own deep history. In accounting, the concept of value had a late and fragile start. The term of value must not be misinterpreted as being the same thing with cost, even though value is frequently measured through costs. At the origin of the international accounting standards lays the framework for preparing, presenting and disclosing the financial statements. The framework stays as a reference matrix, as a standard of standards, as a constitution of financial accounting. According to the international framework, the financial statements use different evaluation basis: the hystorical cost, the current cost, the realisable (settlement value, the present value (the present value of cash flows. Choosing the evaluation basis and the capital maintenance concept will eventually determine the accounting evaluation model used in preparing the financial statements of a company. The multitude of accounting evaluation models differentiate themselves one from another through various relevance and reliable degrees of accounting information and therefore, accountants (the prepares of financial statements must try to equilibrate these two main qualitative characteristics of financial information.
DEFF Research Database (Denmark)
Lucantoni, C; Krishnan, R G; Gehrchen, P M
2016-01-01
STUDY DESIGN: Intra- and interrater reliability study for radiological variables of the International Spinal Cord Injury (SCI) Spinal Column Injury Basic Data Set. OBJECTIVES: To test reliability of the radiological variables in the International SCI Spinal Column Injury Basic Data Set and compare...... it with the Arbeitsgemeinschaft für Osteosynthesefragen (AO) classification. SETTING: The database of Eastern Denmark Regional SCI Referral Center, Copenhagen, Denmark. METHODS: Ratings of the International SCI Spinal Column Injury Basic Data Set radiological variables and AO classification were obtained by two international...... observers for all the surgically treated spine trauma patients between 1st October 2010 and 31st December 2012 at the Spine Unit, Rigshospitalet, Denmark. Statistical analyses for intra- and interrater crude agreement and Cohen's unweighted kappa (κ) coefficients were performed. RESULTS: For 283 spine...
A novel methodology improves reservoir characterization models using geologic fuzzy variables
Energy Technology Data Exchange (ETDEWEB)
Soto B, Rodolfo [DIGITOIL, Maracaibo (Venezuela); Soto O, David A. [Texas A and M University, College Station, TX (United States)
2004-07-01
One of the research projects carried out in Cusiana field to explain its rapid decline during the last years was to get better permeability models. The reservoir of this field has a complex layered system that it is not easy to model using conventional methods. The new technique included the development of porosity and permeability maps from cored wells following the same trend of the sand depositions for each facie or layer according to the sedimentary facie and the depositional system models. Then, we used fuzzy logic to reproduce those maps in three dimensions as geologic fuzzy variables. After multivariate statistical and factor analyses, we found independence and a good correlation coefficient between the geologic fuzzy variables and core permeability and porosity. This means, the geologic fuzzy variable could explain the fabric, the grain size and the pore geometry of the reservoir rock trough the field. Finally, we developed a neural network permeability model using porosity, gamma ray and the geologic fuzzy variable as input variables. This model has a cross-correlation coefficient of 0.873 and average absolute error of 33% compared with the actual model with a correlation coefficient of 0.511 and absolute error greater than 250%. We tested different methodologies, but this new one showed dramatically be a promiser way to get better permeability models. The use of the models have had a high impact in the explanation of well performance and workovers, and reservoir simulation models. (author)
Pek, Jolynn; Losardo, Diane; Bauer, Daniel J.
2011-01-01
Compared to parametric models, nonparametric and semiparametric approaches to modeling nonlinearity between latent variables have the advantage of recovering global relationships of unknown functional form. Bauer (2005) proposed an indirect application of finite mixtures of structural equation models where latent components are estimated in the…
Variable selection for modelling effects of eutrophication on stream and river ecosystems
Nijboer, R.C.; Verdonschot, P.F.M.
2004-01-01
Models are needed for forecasting the effects of eutrophication on stream and river ecosystems. Most of the current models do not include differences in local stream characteristics and effects on the biota. To define the most important variables that should be used in a stream eutrophication model,
Generalized Density-Corrected Model for Gas Diffusivity in Variably Saturated Soils
DEFF Research Database (Denmark)
Chamindu, Deepagoda; Møldrup, Per; Schjønning, Per
2011-01-01
models. The GDC model was further extended to describe two-region (bimodal) soils and could describe and predict Dp/Do well for both different soil aggregate size fractions and variably compacted volcanic ash soils. A possible use of the new GDC model is engineering applications such as the design...... of highly compacted landfill site caps....
BehavePlus fire modeling system, version 5.0: Variables
Patricia L. Andrews
2009-01-01
This publication has been revised to reflect updates to version 4.0 of the BehavePlus software. It was originally published as the BehavePlus fire modeling system, version 4.0: Variables in July, 2008.The BehavePlus fire modeling system is a computer program based on mathematical models that describe wildland fire behavior and effects and the...
Lyu, Kewei; Zhang, Xuebin; Church, John A.; Hu, Jianyu
2015-11-01
The Earth's climate evolves because of both internal variability and external forcings. Using Coupled Model Intercomparison Project Phase 5 (CMIP5) models, here we quantify the ratio of externally forced variance to total variance on interannual and longer time scales for regional surface air temperature (SAT) and sea level, which depends on the relative strength of externally forced signal compared to internal variability. The highest ratios are found in tropical areas for SAT but at high latitudes for sea level over the historical period when ocean dynamics and global mean thermosteric contributions are considered. Averaged globally, the ratios over a fixed time interval (e.g., 30 years) are projected to increase during the 21st century under the business-as-usual scenario (RCP8.5). In contrast, under two mitigation scenarios (RCP2.6 and RCP4.5), the ratio declines sharply by the end of the 21st century for SAT, but only declines slightly or stabilizes for sea level, indicating a slower response of sea level to climate mitigation.
Reimer, Janet J.; Cai, Wei-Jun; Xue, Liang; Vargas, Rodrigo; Noakes, Scott; Hu, Xinping; Signorini, Sergio R.; Mathis, Jeremy T.; Feely, Richard A.; Sutton, Adrienne J.; Sabine, Christopher; Musielewicz, Sylvia; Chen, Baoshan; Wanninkhof, Rik
2017-08-01
Marine carbonate system monitoring programs often consist of multiple observational methods that include underway cruise data, moored autonomous time series, and discrete water bottle samples. Monitored parameters include all, or some of the following: partial pressure of CO2 of the water (pCO2w) and air, dissolved inorganic carbon (DIC), total alkalinity (TA), and pH. Any combination of at least two of the aforementioned parameters can be used to calculate the others. In this study at the Gray's Reef (GR) mooring in the South Atlantic Bight (SAB) we: examine the internal consistency of pCO2w from underway cruise, moored autonomous time series, and calculated from bottle samples (DIC-TA pairing); describe the seasonal to interannual pCO2w time series variability and air-sea flux (FCO2), as well as describe the potential sources of pCO2w variability; and determine the source/sink for atmospheric pCO2. Over the 8.5 years of GR mooring time series, mooring-underway and mooring-bottle calculated-pCO2w strongly correlate with r-values > 0.90. pCO2w and FCO2 time series follow seasonal thermal patterns; however, seasonal non-thermal processes, such as terrestrial export, net biological production, and air-sea exchange also influence variability. The linear slope of time series pCO2w increases by 5.2 ± 1.4 μatm y-1 with FCO2 increasing 51-70 mmol m-2 y-1. The net FCO2 sign can switch interannually with the magnitude varying greatly. Non-thermal pCO2w is also increasing over the time series, likely indicating that terrestrial export and net biological processes drive the long term pCO2w increase.
gamboostLSS: An R Package for Model Building and Variable Selection in the GAMLSS Framework
Hofner, Benjamin; Mayr, Andreas; Schmid, Matthias
2014-01-01
Generalized additive models for location, scale and shape are a flexible class of regression models that allow to model multiple parameters of a distribution function, such as the mean and the standard deviation, simultaneously. With the R package gamboostLSS, we provide a boosting method to fit these models. Variable selection and model choice are naturally available within this regularized regression framework. To introduce and illustrate the R package gamboostLSS and its infrastructure, we...
Schmidtmann, I; Elsäßer, A; Weinmann, A; Binder, H
2014-12-30
For determining a manageable set of covariates potentially influential with respect to a time-to-event endpoint, Cox proportional hazards models can be combined with variable selection techniques, such as stepwise forward selection or backward elimination based on p-values, or regularized regression techniques such as component-wise boosting. Cox regression models have also been adapted for dealing with more complex event patterns, for example, for competing risks settings with separate, cause-specific hazard models for each event type, or for determining the prognostic effect pattern of a variable over different landmark times, with one conditional survival model for each landmark. Motivated by a clinical cancer registry application, where complex event patterns have to be dealt with and variable selection is needed at the same time, we propose a general approach for linking variable selection between several Cox models. Specifically, we combine score statistics for each covariate across models by Fisher's method as a basis for variable selection. This principle is implemented for a stepwise forward selection approach as well as for a regularized regression technique. In an application to data from hepatocellular carcinoma patients, the coupled stepwise approach is seen to facilitate joint interpretation of the different cause-specific Cox models. In conditional survival models at landmark times, which address updates of prediction as time progresses and both treatment and other potential explanatory variables may change, the coupled regularized regression approach identifies potentially important, stably selected covariates together with their effect time pattern, despite having only a small number of events. These results highlight the promise of the proposed approach for coupling variable selection between Cox models, which is particularly relevant for modeling for clinical cancer registries with their complex event patterns. Copyright © 2014 John Wiley & Sons
Incorporating Human-like Walking Variability in an HZD-Based Bipedal Model.
Martin, Anne E; Gregg, Robert D
2016-08-01
Predictive simulations of human walking could be used to investigate a wide range of questions. Promising moderately complex models have been developed using the robotics control technique hybrid zero dynamics (HZD). Existing simulations of human walking only consider the mean motion, so they cannot be used to investigate fall risk, which is correlated with variability. This work determines how to incorporate human-like variability into an HZD-based healthy human model to generate a more realistic gait. The key challenge is determining how to combine the existing mathematical description of variability with the dynamic model so that the biped is still able to walk without falling. To do so, the commanded motion is augmented with a sinusoidal variability function and a polynomial correction function. The variability function captures the variation in joint angles while the correction function prevents the variability function from growing uncontrollably. The necessity of the correction function and the improvements with a reduction of stance ankle variability are demonstrated via simulations. The variability in temporal measures is shown to be similar to experimental values.
Chowdhury, A. F. M. K.; Lockart, N.; Willgoose, G. R.; Kuczera, G. A.; Kiem, A.; Nadeeka, P. M.
2016-12-01
One of the key objectives of stochastic rainfall modelling is to capture the full variability of climate system for future drought and flood risk assessment. However, it is not clear how well these models can capture the future climate variability when they are calibrated to Global/Regional Climate Model data (GCM/RCM) as these datasets are usually available for very short future period/s (e.g. 20 years). This study has assessed the ability of two stochastic daily rainfall models to capture climate variability by calibrating them to a dynamically downscaled RCM dataset in an east Australian catchment for 1990-2010, 2020-2040, and 2060-2080 epochs. The two stochastic models are: (1) a hierarchical Markov Chain (MC) model, which we developed in a previous study and (2) a semi-parametric MC model developed by Mehrotra and Sharma (2007). Our hierarchical model uses stochastic parameters of MC and Gamma distribution, while the semi-parametric model uses a modified MC process with memory of past periods and kernel density estimation. This study has generated multiple realizations of rainfall series by using parameters of each model calibrated to the RCM dataset for each epoch. The generated rainfall series are used to generate synthetic streamflow by using a SimHyd hydrology model. Assessing the synthetic rainfall and streamflow series, this study has found that both stochastic models can incorporate a range of variability in rainfall as well as streamflow generation for both current and future periods. However, the hierarchical model tends to overestimate the multiyear variability of wet spell lengths (therefore, is less likely to simulate long periods of drought and flood), while the semi-parametric model tends to overestimate the mean annual rainfall depths and streamflow volumes (hence, simulated droughts are likely to be less severe). Sensitivity of these limitations of both stochastic models in terms of future drought and flood risk assessment will be discussed.
Model Predictive Control of a Nonlinear System with Known Scheduling Variable
DEFF Research Database (Denmark)
Mirzaei, Mahmood; Poulsen, Niels Kjølstad; Niemann, Hans Henrik
2012-01-01
Model predictive control (MPC) of a class of nonlinear systems is considered in this paper. We will use Linear Parameter Varying (LPV) model of the nonlinear system. By taking the advantage of having future values of the scheduling variable, we will simplify state prediction. Consequently...... the control problem of the nonlinear system is simplied into a quadratic programming. Wind turbine is chosen as the case study and we choose wind speed as the scheduling variable. Wind speed is measurable ahead of the turbine, therefore the scheduling variable is known for the entire prediction horizon....
Robots with Internal Models: A Route to Self-Aware and Hence Safer Robots
Winfield, Alan F. T.
The following sections are included: * Introduction * Internal Models and Self-Awareness * Internal Model-Based Architecture for Robot Safety * The Internal Model * The Consequence Evaluator * The Object Tracker-Localizer * Towards an Ethical Robot * Challenges and Open Questions * Discussion: The Way Forward * Summary and Conclusions
International Nuclear Information System (INIS)
Cordoba Maquilon, Jorge E; Gonzalez Calderon, Carlos A; Posada Henao, John J
2011-01-01
A study using revealed preference surveys and psychological tests was conducted. Key psychological variables of behavior involved in the choice of transportation mode in a population sample of the Metropolitan Area of the Valle de Aburra were detected. The experiment used the random utility theory for discrete choice models and reasoned action in order to assess beliefs. This was used as a tool for analysis of the psychological variables using the sixteen personality factor questionnaire (16PF test). In addition to the revealed preference surveys, two other surveys were carried out: one with socio-economic characteristics and the other with latent indicators. This methodology allows for an integration of discrete choice models and latent variables. The integration makes the model operational and quantifies the unobservable psychological variables. The most relevant result obtained was that anxiety affects the choice of urban transportation mode and shows that physiological alterations, as well as problems in perception and beliefs, can affect the decision-making process.
Brearley, J. A.; Sheen, K. L.; Naveira-Garabato, A. C.
2012-04-01
A key component of DIMES (Diapycnal and Isopycnal Mixing Experiment in the Southern Ocean) is the deployment of a two-year cross-shaped mooring array in the Antarctic Circumpolar Current to the east of Drake Passage close to 57°W. Motivation for the cluster arises from the need to understand how eddies dissipate in the Southern Ocean, and specifically how much energy is extracted from the mesoscale by breaking internal waves, which in turn leads to turbulent mixing. The location of the mooring cluster was chosen to fulfil these objectives, being situated in a region of pronounced finestructure with high eddy kinetic energy and rough topography. The array, comprising 34 current meters and Microcats and a downward-looking ADCP, was first deployed in December 2009 and serviced in December 2010. Time series of current meter results from the most heavily-instrumented 'C' mooring indicate that a strong (up to 80 cms-1) surface-intensified north-eastward directed ACC occupies the region for most of the year, with over 85% of the variability in current speed being accounted for by equivalent barotropic fluctuations. A strong mean poleward heat flux is observed at the site, which compares favourably in magnitude with literature results from other ACC locations. Interestingly, four episodes of mid-depth (~2000 m) current speed maxima, each of a few days duration, were found during the 360-day time series, a situation also observed by the lowered ADCP during mooring servicing in December 2010. Early results indicate that these episodes, which coincide with time minima in stratification close to 2000 m, could profoundly influence the nature of eddy-internal wave interactions at these times. Quantification of the energy budget at the mooring cluster has been a key priority. When compared with previous moorings located in Drake Passage (Bryden, 1977), a near threefold-increase in mean eddy kinetic energy (EKE) is observed despite a small reduction in the mean kinetic energy
Bayesian Variable Selection in Multilevel Item Response Theory Models with Application in Genomics.
Fragoso, Tiago M; de Andrade, Mariza; Pereira, Alexandre C; Rosa, Guilherme J M; Soler, Júlia M P
2016-04-01
The goal of this paper is to present an implementation of stochastic search variable selection (SSVS) to multilevel model from item response theory (IRT). As experimental settings get more complex and models are required to integrate multiple (and sometimes massive) sources of information, a model that can jointly summarize and select the most relevant characteristics can provide better interpretation and a deeper insight into the problem. A multilevel IRT model recently proposed in the literature for modeling multifactorial diseases is extended to perform variable selection in the presence of thousands of covariates using SSVS. We derive conditional distributions required for such a task as well as an acceptance-rejection step that allows for the SSVS in high dimensional settings using a Markov Chain Monte Carlo algorithm. We validate the variable selection procedure through simulation studies, and illustrate its application on a study with genetic markers associated with the metabolic syndrome. © 2016 WILEY PERIODICALS, INC.
Neurons compute internal models of the physical laws of motion.
Angelaki, Dora E; Shaikh, Aasef G; Green, Andrea M; Dickman, J David
2004-07-29
A critical step in self-motion perception and spatial awareness is the integration of motion cues from multiple sensory organs that individually do not provide an accurate representation of the physical world. One of the best-studied sensory ambiguities is found in visual processing, and arises because of the inherent uncertainty in detecting the motion direction of an untextured contour moving within a small aperture. A similar sensory ambiguity arises in identifying the actual motion associated with linear accelerations sensed by the otolith organs in the inner ear. These internal linear accelerometers respond identically during translational motion (for example, running forward) and gravitational accelerations experienced as we reorient the head relative to gravity (that is, head tilt). Using new stimulus combinations, we identify here cerebellar and brainstem motion-sensitive neurons that compute a solution to the inertial motion detection problem. We show that the firing rates of these populations of neurons reflect the computations necessary to construct an internal model representation of the physical equations of motion.
The International Trade Network: weighted network analysis and modelling
International Nuclear Information System (INIS)
Bhattacharya, K; Mukherjee, G; Manna, S S; Saramäki, J; Kaski, K
2008-01-01
Tools of the theory of critical phenomena, namely the scaling analysis and universality, are argued to be applicable to large complex web-like network structures. Using a detailed analysis of the real data of the International Trade Network we argue that the scaled link weight distribution has an approximate log-normal distribution which remains robust over a period of 53 years. Another universal feature is observed in the power-law growth of the trade strength with gross domestic product, the exponent being similar for all countries. Using the 'rich-club' coefficient measure of the weighted networks it has been shown that the size of the rich-club controlling half of the world's trade is actually shrinking. While the gravity law is known to describe well the social interactions in the static networks of population migration, international trade, etc, here for the first time we studied a non-conservative dynamical model based on the gravity law which excellently reproduced many empirical features of the ITN
Importance analysis for models with correlated variables and its sparse grid solution
International Nuclear Information System (INIS)
Li, Luyi; Lu, Zhenzhou
2013-01-01
For structural models involving correlated input variables, a novel interpretation for variance-based importance measures is proposed based on the contribution of the correlated input variables to the variance of the model output. After the novel interpretation of the variance-based importance measures is compared with the existing ones, two solutions of the variance-based importance measures of the correlated input variables are built on the sparse grid numerical integration (SGI): double-loop nested sparse grid integration (DSGI) method and single loop sparse grid integration (SSGI) method. The DSGI method solves the importance measure by decreasing the dimensionality of the input variables procedurally, while SSGI method performs importance analysis through extending the dimensionality of the inputs. Both of them can make full use of the advantages of the SGI, and are well tailored for different situations. By analyzing the results of several numerical and engineering examples, it is found that the novel proposed interpretation about the importance measures of the correlated input variables is reasonable, and the proposed methods for solving importance measures are efficient and accurate. -- Highlights: •The contribution of correlated variables to the variance of the output is analyzed. •A novel interpretation for variance-based indices of correlated variables is proposed. •Two solutions for variance-based importance measures of correlated variables are built
International Nuclear Information System (INIS)
De Larrard, Th.
2010-09-01
Evaluating structures durability requires taking into account the variability of material properties. The thesis has two main aspects: on the one hand, an experimental campaign aimed at quantifying the variability of many indicators of concrete behaviour; on the other hand, a simple numerical model for calcium leaching is developed in order to implement probabilistic methods so as to estimate the lifetime of structures such as those related to radioactive waste disposal. The experimental campaign consisted in following up two real building sites, and quantifying the variability of these indicators, studying their correlation, and characterising the random fields variability for the considered variables (especially the correlation length). To draw any conclusion from the accelerated leaching tests with ammonium nitrate by overcoming the effects of temperature, an inverse analysis tool based on the theory of artificial neural networks was developed. Simple numerical tools are presented to investigate the propagation of variability in durability issues, quantify the influence of this variability on the lifespan of structures and explain the variability of the input parameters of the numerical model and the physical measurable quantities of the material. (author)
A holistic model of behavioural branding: The role of employee behaviours and internal branding
DEFF Research Database (Denmark)
Mazzei, Alessandra; Ravazzani, Silvia
2015-01-01
consistent meaning during the interaction with customers. It reviews the literature about behavioural branding and its antecedents, mediating variables and consequences in order to develop a holistic model of the inside-out brand building process, rooted in the theoretical perspectives of proactive......Understanding employee behaviours is a growing concern in all kinds of companies and across disciplines because such behaviours are critical determinants of organizational success. This paper elaborates on the concept of behavioural branding, which refers to employee behaviours that convey brand...... behaviours, hierarchy of effects and planned behaviour. The paper concludes with a reflection on the role of internal branding in eliciting and managing employee brand consistent behaviours, and with avenues for future empirical research aimed to verify the model, its constructs and related measures....
A holistic model of behavioural branding: The role of employee behaviours and internal branding
DEFF Research Database (Denmark)
Mazzei, Alessandra; Ravazzani, Silvia
2015-01-01
behaviours, hierarchy of effects and planned behaviour. The paper concludes with a reflection on the role of internal branding in eliciting and managing employee brand consistent behaviours, and with avenues for future empirical research aimed to verify the model, its constructs and related measures.......Understanding employee behaviours is a growing concern in all kinds of companies and across disciplines because such behaviours are critical determinants of organizational success. This paper elaborates on the concept of behavioural branding, which refers to employee behaviours that convey brand...... consistent meaning during the interaction with customers. It reviews the literature about behavioural branding and its antecedents, mediating variables and consequences in order to develop a holistic model of the inside-out brand building process, rooted in the theoretical perspectives of proactive...
Influence of an Internally-Generated QBO on Modeled Stratospheric Dynamics and Ozone
Hurwitz, M. M.; Newman, P. A.; Song, I. S.
2011-01-01
A GEOS V2 CCM simulation with an internally generated quasi-biennial oscillation (QBO) signal is compared to an otherwise identical simulation without a QBO. In a present-day climate, inclusion of the modeled QBO makes a significant difference to stratospheric dynamics and ozone throughout the year. The QBO enhances variability in the tropics, as expected, but also in the polar stratosphere in some seasons. The modeled QBO also affects the mean stratospheric climate. Because tropical zonal winds in the baseline simulation are generally easterly, there is a relative increase in zonal wind magnitudes in tropical lower and middle stratosphere in the QBO simulation. Extra-tropical differences between the QBO and 'no QBO' simulations thus reflect a bias toward the westerly phase of the QBO: a relative strengthening and poleward shifting the polar stratospheric jets, and a reduction in Arctic lower stratospheric ozone.
Kawase, Mitsuhiro; Bang, Bohyun
2013-12-01
A three-dimensional hydrodynamic model is used to study seasonal variability of circulation and hydrography in Hood Canal, Washington, United States, an estuarine fjord that develops seasonally hypoxic conditions. The model is validated with data from year 2006, and is shown to be capable of quantitatively realistic simulation of hydrographic variability. Sensitivity experiments show the largest cause of seasonal variability to be that of salinity at the mouth of the fjord, which drives an annual deep water renewal in late summer-early autumn. Variability of fresh water input from the watershed also causes significant but secondary changes, especially in winter. Local wind stress has little effect over the seasonal timescale. Further experiments, in which one forcing parameter is abruptly altered while others are kept constant, show that outside salinity change induces an immediate response in the exchange circulation that, however, decays as a transient as the system equilibrates. In contrast, a change in the river input initiates gradual adjustment towards a new equilibrium value for the exchange transport. It is hypothesized that the spectral character of the system response to river variability will be redder than to salinity variability. This is demonstrated with a stochastically forced, semi-analytical model of fjord exchange circulation. While the exchange circulation in Hood Canal appears less sensitive to the river variability than to the outside hydrography at seasonal timescales, at decadal and longer timescales both could become significant factors in affecting the exchange circulation.
Variability in respiratory rhythm generation: In vitro and in silico models
Fietkiewicz, Christopher; Shafer, Geoffrey O.; Platt, Ethan A.; Wilson, Christopher G.
2016-03-01
The variability inherent in physiological rhythms is disruptive in extremis (too great or too little) but may also serve a functional and important role in homeostatic systems. Here we focus on the neural control of respiration which is critical for survival in many animals. The overall respiratory control system is comprised of multiple nuclei, each of which may have different contributions to rhythm variability. We focused on the pre-Bötzinger complex (preBötC) which is unique in that it can be studied in vitro as an isolated nucleus with autorhythmic behavior. The in vitro results show a bounded range of variability in which the upper and lower limits are functions of the respiratory rate. In addition, the correlation between variability and respiratory rate changes during development. We observed a weaker correlation in younger animals (0-3 days old) as compared to older animals (4-5 days old). Based on experimental observations, we developed a computational model that can be embedded in more comprehensive models of respiratory and cardiovascular autonomic control. Our simulation results successfully reproduce the variability we observed experimentally. The in silico model suggests that age-dependent variability may be due to a developmental increase in mean synaptic conductance between preBötC neurons. We also used simulations to explore the effects of stochastic spiking in sensory relay neurons. Our results suggest that stochastic spiking may actually stabilize modulation of both respiratory rate and its variability when the rate changes due to physiological demand.
Directory of Open Access Journals (Sweden)
Dirk Temme
2008-12-01
Full Text Available Integrated choice and latent variable (ICLV models represent a promising new class of models which merge classic choice models with the structural equation approach (SEM for latent variables. Despite their conceptual appeal, applications of ICLV models in marketing remain rare. We extend previous ICLV applications by first estimating a multinomial choice model and, second, by estimating hierarchical relations between latent variables. An empirical study on travel mode choice clearly demonstrates the value of ICLV models to enhance the understanding of choice processes. In addition to the usually studied directly observable variables such as travel time, we show how abstract motivations such as power and hedonism as well as attitudes such as a desire for flexibility impact on travel mode choice. Furthermore, we show that it is possible to estimate such a complex ICLV model with the widely available structural equation modeling package Mplus. This finding is likely to encourage more widespread application of this appealing model class in the marketing field.
DOE International Collaboration; Seismic Modeling and Simulation Capability Project
Energy Technology Data Exchange (ETDEWEB)
Leininger, Lara D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Settgast, Randolph R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2010-10-12
The following report describes the development and exercise of a new capability at LLNL to model complete, non-linear, seismic events in 3-dimensions with a fully-coupled soil structure interaction response. This work is specifically suited to nuclear reactor design because this design space is exempt from the Seismic Design requirements of International Building Code (IBC) and the American Society of Civil Engineers (ASCE) [4,2]. Both IBC and ASCE-7 exempt nuclear reactors because they are considered “structures that require special consideration” and their design is governed only by “other regulations”. In the case of nuclear reactors, the regulations are from both the Nuclear Regulatory Commission (NRC) [10] and ASCE 43 [3]. This current framework of design guidance, coupled to this new and evolving capability to provide high fidelity design solutions as presented in this report, enables the growing field of Performance-Based Design (PBD) for nuclear reactors subjected to earthquake ground motions.
Development of an International School Nurse Asthma Care Coordination Model.
Garwick, Ann W; Svavarsdóttir, Erla Kolbrun; Seppelt, Ann M; Looman, Wendy S; Anderson, Lori S; Örlygsdóttir, Brynja
2015-03-01
To identify and compare how school nurses in Reykjavik, Iceland and St. Paul, Minnesota coordinated care for youth with asthma (ages 10-18) and to develop an asthma school nurse care coordination model. Little is known about how school nurses coordinate care for youth with asthma in different countries. A qualitative descriptive study design using focus group data. Six focus groups with 32 school nurses were conducted in Reykjavik (n = 17) and St. Paul (n = 15) using the same protocol between September 2008 and January 2009. Descriptive content analytic and constant comparison strategies were used to categorize and compare how school nurses coordinated care, which resulted in the development of an International School Nurse Asthma Care Coordination Model. Participants in both countries spontaneously described a similar asthma care coordination process that involved information gathering, assessing risk for asthma episodes, prioritizing healthcare needs and anticipating and planning for student needs at the individual and school levels. This process informed how they individualized symptom management, case management and/or asthma education. School nurses played a pivotal part in collaborating with families, school and healthcare professionals to ensure quality care for youth with asthma. Results indicate a high level of complexity in school nurses' approaches to asthma care coordination that were responsive to the diverse and changing needs of students in school settings. The conceptual model derived provides a framework for investigators to use in examining the asthma care coordination process of school nurses in other geographic locations. © 2014 John Wiley & Sons Ltd.
Quantitative Risk Modeling of Fire on the International Space Station
Castillo, Theresa; Haught, Megan
2014-01-01
The International Space Station (ISS) Program has worked to prevent fire events and to mitigate their impacts should they occur. Hardware is designed to reduce sources of ignition, oxygen systems are designed to control leaking, flammable materials are prevented from flying to ISS whenever possible, the crew is trained in fire response, and fire response equipment improvements are sought out and funded. Fire prevention and mitigation are a top ISS Program priority - however, programmatic resources are limited; thus, risk trades are made to ensure an adequate level of safety is maintained onboard the ISS. In support of these risk trades, the ISS Probabilistic Risk Assessment (PRA) team has modeled the likelihood of fire occurring in the ISS pressurized cabin, a phenomenological event that has never before been probabilistically modeled in a microgravity environment. This paper will discuss the genesis of the ISS PRA fire model, its enhancement in collaboration with fire experts, and the results which have informed ISS programmatic decisions and will continue to be used throughout the life of the program.
Internal modelling under Risk-Based Capital (RBC) framework
Ling, Ang Siew; Hin, Pooi Ah
2015-12-01
Very often the methods for the internal modelling under the Risk-Based Capital framework make use of the data which are in the form of run-off triangle. The present research will instead extract from a group of n customers, the historical data for the sum insured si of the i-th customer together with the amount paid yij and the amount aij reported but not yet paid in the j-th development year for j = 1, 2, 3, 4, 5, 6. We model the future value (yij+1, aij+1) to be dependent on the present year value (yij, aij) and the sum insured si via a conditional distribution which is derived from a multivariate power-normal mixture distribution. For a group of given customers with different original purchase dates, the distribution of the aggregate claims liabilities may be obtained from the proposed model. The prediction interval based on the distribution for the aggregate claim liabilities is found to have good ability of covering the observed aggregate claim liabilities.
Kiss, Thomas; Güldner, Andreas; Bluth, Thomas; Uhlig, Christopher; Spieth, Peter Markus; Markstaller, Klaus; Ullrich, Roman; Jaber, Samir; Santos, Jose Alberto; Mancebo, Jordi; Camporota, Luigi; Beale, Richard; Schettino, Guilherme; Saddy, Felipe; Vallverdú, Immaculada; Wiedemann, Bärbel; Koch, Thea; Schultz, Marcus Josephus; Pelosi, Paolo; de Abreu, Marcelo Gama
2013-10-31
In pressure support ventilation (PSV), a non-variable level of pressure support is delivered by the ventilator when triggered by the patient. In contrast, variable PSV delivers a level of pressure support that varies in a random fashion, introducing more physiological variability to the respiratory pattern. Experimental studies show that variable PSV improves gas exchange, reduces lung inflammation and the mean pressure support, compared to non-variable PSV. Thus, it can theoretically shorten weaning from the mechanical ventilator. The ViPS (variable pressure support) trial is an international investigator-initiated multicenter randomized controlled open trial comparing variable vs. non-variable PSV. Adult patients on controlled mechanical ventilation for more than 24 hours who are ready to be weaned are eligible for the study. The randomization sequence is blocked per center and performed using a web-based platform. Patients are randomly assigned to one of the two groups: variable PSV or non-variable PSV. In non-variable PSV, breath-by-breath pressure support is kept constant and targeted to achieve a tidal volume of 6 to 8 ml/kg. In variable PSV, the mean pressure support level over a specific time period is targeted at the same mean tidal volume as non-variable PSV, but individual levels vary randomly breath-by-breath. The primary endpoint of the trial is the time to successful weaning, defined as the time from randomization to successful extubation. ViPS is the first randomized controlled trial investigating whether variable, compared to non-variable PSV, shortens the duration of weaning from mechanical ventilation in a mixed population of critically ill patients. This trial aims to determine the role of variable PSV in the intensive care unit. clinicaltrials.gov NCT01769053.
Directory of Open Access Journals (Sweden)
Frieda Beauregard
Full Text Available Both climatic and edaphic conditions determine plant distribution, however many species distribution models do not include edaphic variables especially over large geographical extent. Using an exceptional database of vegetation plots (n = 4839 covering an extent of ∼55,000 km2, we tested whether the inclusion of fine scale edaphic variables would improve model predictions of plant distribution compared to models using only climate predictors. We also tested how well these edaphic variables could predict distribution on their own, to evaluate the assumption that at large extents, distribution is governed largely by climate. We also hypothesized that the relative contribution of edaphic and climatic data would vary among species depending on their growth forms and biogeographical attributes within the study area. We modelled 128 native plant species from diverse taxa using four statistical model types and three sets of abiotic predictors: climate, edaphic, and edaphic-climate. Model predictive accuracy and variable importance were compared among these models and for species' characteristics describing growth form, range boundaries within the study area, and prevalence. For many species both the climate-only and edaphic-only models performed well, however the edaphic-climate models generally performed best. The three sets of predictors differed in the spatial information provided about habitat suitability, with climate models able to distinguish range edges, but edaphic models able to better distinguish within-range variation. Model predictive accuracy was generally lower for species without a range boundary within the study area and for common species, but these effects were buffered by including both edaphic and climatic predictors. The relative importance of edaphic and climatic variables varied with growth forms, with trees being more related to climate whereas lower growth forms were more related to edaphic conditions. Our study
Muller, Benjamin J.; Cade, Brian S.; Schwarzkoph, Lin
2018-01-01
Many different factors influence animal activity. Often, the value of an environmental variable may influence significantly the upper or lower tails of the activity distribution. For describing relationships with heterogeneous boundaries, quantile regressions predict a quantile of the conditional distribution of the dependent variable. A quantile count model extends linear quantile regression methods to discrete response variables, and is useful if activity is quantified by trapping, where there may be many tied (equal) values in the activity distribution, over a small range of discrete values. Additionally, different environmental variables in combination may have synergistic or antagonistic effects on activity, so examining their effects together, in a modeling framework, is a useful approach. Thus, model selection on quantile counts can be used to determine the relative importance of different variables in determining activity, across the entire distribution of capture results. We conducted model selection on quantile count models to describe the factors affecting activity (numbers of captures) of cane toads (Rhinella marina) in response to several environmental variables (humidity, temperature, rainfall, wind speed, and moon luminosity) over eleven months of trapping. Environmental effects on activity are understudied in this pest animal. In the dry season, model selection on quantile count models suggested that rainfall positively affected activity, especially near the lower tails of the activity distribution. In the wet season, wind speed limited activity near the maximum of the distribution, while minimum activity increased with minimum temperature. This statistical methodology allowed us to explore, in depth, how environmental factors influenced activity across the entire distribution, and is applicable to any survey or trapping regime, in which environmental variables affect activity.
Jones, Brendon R; Brouwers, Luke B; Van Tonder, Warren D; Dippenaar, Matthys A
2017-05-01
The vadose zone typically comprises soil underlain by fractured rock. Often, surface water and groundwater parameters are readily available, but variably saturated flow through soil and rock are oversimplified or estimated as input for hydrological models. In this paper, a series of geotechnical centrifuge experiments are conducted to contribute to the knowledge gaps in: (i) variably saturated flow and dispersion in soil and (ii) variably saturated flow in discrete vertical and horizontal fractures. Findings from the research show that the hydraulic gradient, and not the hydraulic conductivity, is scaled for seepage flow in the geotechnical centrifuge. Furthermore, geotechnical centrifuge modelling has been proven as a viable experimental tool for the modelling of hydrodynamic dispersion as well as the replication of similar flow mechanisms for unsaturated fracture flow, as previously observed in literature. Despite the imminent challenges of modelling variable saturation in the vadose zone, the geotechnical centrifuge offers a powerful experimental tool to physically model and observe variably saturated flow. This can be used to give valuable insight into mechanisms associated with solid-fluid interaction problems under these conditions. Findings from future research can be used to validate current numerical modelling techniques and address the subsequent influence on aquifer recharge and vulnerability, contaminant transport, waste disposal, dam construction, slope stability and seepage into subsurface excavations.
Comparisons of model simulations of climate variability with data, Task 2. [Progress report
Energy Technology Data Exchange (ETDEWEB)
1990-12-31
Significant progress has been made in our investigations aimed at diagnosing low frequency variations of climate in General Circulation Models. We have analyzed three versions of the Oregon State University General Circulation Model (OSU GCM). These are: (1) the Slab Model in which the ocean is treated as a static heat reservoir of fixed depth, (2) the coupled upper ocean-atmosphere model in which the ocean dynamics are calculated in two layers of variable depths representing the mixed layers and the thermocline; this model is referred to OSU2 in the following discussion, and (3) the coupled full ocean-atmosphere model in which the ocean is represented by six layers of variable depth; this model is referred to as OSU6 GCM in the discussion.
Comparisons of model simulations of climate variability with data, Task 2
Energy Technology Data Exchange (ETDEWEB)
1990-01-01
Significant progress has been made in our investigations aimed at diagnosing low frequency variations of climate in General Circulation Models. We have analyzed three versions of the Oregon State University General Circulation Model (OSU GCM). These are: (1) the Slab Model in which the ocean is treated as a static heat reservoir of fixed depth, (2) the coupled upper ocean-atmosphere model in which the ocean dynamics are calculated in two layers of variable depths representing the mixed layers and the thermocline; this model is referred to OSU2 in the following discussion, and (3) the coupled full ocean-atmosphere model in which the ocean is represented by six layers of variable depth; this model is referred to as OSU6 GCM in the discussion.