WorldWideScience

Sample records for model interfacing information

  1. Interface models

    DEFF Research Database (Denmark)

    Ravn, Anders P.; Staunstrup, Jørgen

    1994-01-01

    This paper proposes a model for specifying interfaces between concurrently executing modules of a computing system. The model does not prescribe a particular type of communication protocol and is aimed at describing interfaces between both software and hardware modules or a combination of the two....... The model describes both functional and timing properties of an interface...

  2. Models of information exchange between radio interfaces of Wi-Fi group of standards

    Science.gov (United States)

    Litvinskaya, O. S.

    2018-05-01

    This paper offers models of information exchange between radio interfaces of the Wi-Fi group of standards by the example of a real facility management system for the oil and gas industry. Interaction between the MU-MIMO and MIMO technologies is analyzed. An optimal variant of information exchange is proposed.

  3. Modeling reliability measurement of interface on information system: Towards the forensic of rules

    Science.gov (United States)

    Nasution, M. K. M.; Sitompul, Darwin; Harahap, Marwan

    2018-02-01

    Today almost all machines depend on the software. As a software and hardware system depends also on the rules that are the procedures for its use. If the procedure or program can be reliably characterized by involving the concept of graph, logic, and probability, then regulatory strength can also be measured accordingly. Therefore, this paper initiates an enumeration model to measure the reliability of interfaces based on the case of information systems supported by the rules of use by the relevant agencies. An enumeration model is obtained based on software reliability calculation.

  4. Validating the Technology Acceptance Model in the Context of the Laboratory Information System-Electronic Health Record Interface System

    Science.gov (United States)

    Aquino, Cesar A.

    2014-01-01

    This study represents a research validating the efficacy of Davis' Technology Acceptance Model (TAM) by pairing it with the Organizational Change Readiness Theory (OCRT) to develop another extension to the TAM, using the medical Laboratory Information Systems (LIS)--Electronic Health Records (EHR) interface as the medium. The TAM posits that it is…

  5. Display analysis with the optimal control model of the human operator. [pilot-vehicle display interface and information processing

    Science.gov (United States)

    Baron, S.; Levison, W. H.

    1977-01-01

    Application of the optimal control model of the human operator to problems in display analysis is discussed. Those aspects of the model pertaining to the operator-display interface and to operator information processing are reviewed and discussed. The techniques are then applied to the analysis of advanced display/control systems for a Terminal Configured Vehicle. Model results are compared with those obtained in a large, fixed-base simulation.

  6. Interfaces for End-User Information Seeking.

    Science.gov (United States)

    Marchionini, Gary

    1992-01-01

    Discusses essential features of interfaces to support end-user information seeking. Highlights include cognitive engineering; task models and task analysis; the problem-solving nature of information seeking; examples of systems for end-users, including online public access catalogs (OPACs), hypertext, and help systems; and suggested research…

  7. The User Interface: A Hypertext Model Linking Art Objects and Related Information.

    Science.gov (United States)

    Moline, Judi

    This report presents a model combining the emerging technologies of hypertext and expert systems. Hypertext is relatively unexplored but promises an innovative approach to information retrieval. In contrast, expert systems have been used experimentally in many different application areas ranging from medical diagnosis to oil exploration. The…

  8. Interface between the model of quality QUALZE and a geographic information system

    International Nuclear Information System (INIS)

    Betancur, T; Sierra C, J.H.

    1998-01-01

    For the decision making related to the adequate utilization of a natural resource, is required count on versatile mechanisms that permit a rapid access the information related to the conditions of the system on the one which is intended to act, so that they could be analyzed and be designed political of managing and control that guarantee the preservation of the resource. A model is a design tool that permits to represent the simplified way reality and if is built of adequate way possesses a value predictive enormously useful for the managing of a natural resource. The water, essential element for the life, it has suffered deterioration in its quality, on account of man activities that they have established the irrational use of the water. The principal objective of the mathematical current models of water is to produce a tool that has the capacity to simulate the hydrological behavior and the quality of an aquatic system. The power to simulate the behavior of a water current permits to predict the changes that will have, when vary the element exhausts that affect its conditions

  9. Tightness of voter model interfaces

    Czech Academy of Sciences Publication Activity Database

    Sturm, A.; Swart, Jan M.

    2008-01-01

    Roč. 13, - (2008), s. 165-174 ISSN 1083-589X R&D Projects: GA ČR GA201/06/1323; GA ČR GA201/07/0237 Institutional research plan: CEZ:AV0Z10750506 Keywords : long range voter model * swapping voter model * interface tightness * exclusion process Subject RIV: BD - Theory of Information Impact factor: 0.392, year: 2008 http://www.emis.de/journals/EJP-ECP/_ejpecp/index.html

  10. Information interfaces for process plant diagnosis

    International Nuclear Information System (INIS)

    Lind, M.

    1984-02-01

    The paper describes a systematic approach to the design of information interfaces for operator support in diagnosing complex systems faults. The need of interpreting primary measured plant variables within the framework of different system representations organized into an abstraction hierarchy is identified from an analysis of the problem of diagnosing complex systems. A formalized approach to the modelling of production systems, called Multilevel Flow Modelling, is described. A MFM model specifies plant control requirements and the associated need for plant information and provide a consistent context for the interpretation of real time plant signals in diagnosis of malfunctions. The use of MFM models as a basis for functional design of the plant instrumentation system is outlined, and the use of knowledge Based (Expert) Systems for the design of man-machine interfaces is mentioned. Such systems would allow an active user participation in diagnosis and thus provide the basis for cooperative problem solving. 14 refs. (author)

  11. Informing Architecture and Urban Modeling with Real-world Data on 3D Tangible Interfaces and Augmented Displays

    DEFF Research Database (Denmark)

    Banke, Tore; Salim, Flora; Jaworski, Przemyslaw

    2011-01-01

    The proliferation of online and digital data in our world yields unprecedented opportunities for connecting physical and digital parametric models with live data input and feedback. Tangible interfaces and augmented displays provide theatrical settings for designers to visualize real-world data a...... detection, and multi-touch techniques, multidimensional tangible interfaces and augmented displays presented in this paper demonstrate a powerful new approach for designing and interacting with physical models, materials, and environmental data....

  12. Modeling soft interface dominated systems

    NARCIS (Netherlands)

    Lamorgese, A.; Mauri, R.; Sagis, L.M.C.

    2017-01-01

    The two main continuum frameworks used for modeling the dynamics of soft multiphase systems are the Gibbs dividing surface model, and the diffuse interface model. In the former the interface is modeled as a two dimensional surface, and excess properties such as a surface density, or surface energy

  13. Interfacing real-time information with OILMAP

    International Nuclear Information System (INIS)

    Howlett, E.; Jayko, K.; Spaulding, M.

    1993-01-01

    OILMAP is a state-of-the-art, microcomputer-based oil spill response system applicable to oil spill contingency planning and real-time response for any location in the world. OILMAP has a graphic user interface and was designed in a modular framework so that different spill models could be incorporated into the system, as well as a suite of sophisticated data management tools, without increasing the complexity of the user interface. The basic OILMAP configuration contains a surface trajectory model intended for rapid, first-order estimates of spill movement. A variety of additional models are available within the OILMAP shell to address issues such as weathering, cleanup activities, and probabilities of oiling. A simplified geographic information system (GIS) allows display and manipulation of point, line, and area data geographically referenced to the spill domain. The GIS can import raster data so that images collected by satellite and aerial photography may be displayed. Several new capabilities have been implemented for OILMAP that allow real-time data to be integrated. These features include linking with the OILTRACKER free-floating buoys via a global positioning system, linking of hydrodynamic data from the Ocean Data and Information Network, the Harvard ocean forecasting system, and SeaSonde radar, and the capability of importing spill observations from any remotely sensed data. A further link between OILMAP's GIS and spill models has been developed which allows model predictions to be corrected to observed oil locations while the model runs. 13 refs., 6 figs

  14. Information visualization to user-friendly interface construction for information retrieval systems

    Directory of Open Access Journals (Sweden)

    Jessica Monique de Lira Vieira

    2011-10-01

    Full Text Available The information presented through visualization help the Information Retrieval System (IRS to reach its main goal: to retrieve relevant information that meets the informational needs of its users. The objective of this article is to describe and analyze techniques proposed by the Information Visualization area and interface models discussed in Information Science Literature, which applied to graphical interface construction would facilitate the appropriation of information by the users of IRS and would help them to search, browse and retrieve information. The methodology consists of a literature review focusing on the potential contribution of the visual representation of information in the development of user-friendly interfaces to IRS, as well as identification and analyses of visualizations used as interfaces by IRS. The use of visualizations is of great importance in the communication between SRI and users, because the information presented through visual representation are better understood by user and allow the discovery of new knowledge.

  15. An expanded One Health model: integrating social science and One Health to inform study of the human-animal interface.

    Science.gov (United States)

    Woldehanna, Sara; Zimicki, Susan

    2015-03-01

    Zoonotic disease emergence is not a purely biological process mediated only by ecologic factors; opportunities for transmission of zoonoses from animals to humans also depend on how people interact with animals. While exposure is conditioned by the type of animal and the location in which interactions occur, these in turn are influenced by human activity. The activities people engage in are determined by social as well as contextual factors including gender, age, socio-economic status, occupation, social norms, settlement patterns and livelihood systems, family and community dynamics, as well as national and global influences. This paper proposes an expanded "One Health" conceptual model for human-animal exposure that accounts for social as well as epidemiologic factors. The expanded model informed a new study approach to document the extent of human exposure to animals and explore the interplay of social and environmental factors that influence risk of transmission at the individual and community level. The approach includes a formative phase using qualitative and participatory methods, and a representative, random sample survey to quantify exposure to animals in a variety of settings. The paper discusses the different factors that were considered in developing the approach, including the range of animals asked about and the parameters of exposure that are included, as well as factors to be considered in local adaptation of the generic instruments. Illustrative results from research using this approach in Lao PDR are presented to demonstrate the effect of social factors on how people interact with animals. We believe that the expanded model can be similarly operationalized to explore the interactions of other social and policy-level determinants that may influence transmission of zoonoses. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Financial literacy: an interface between fi nancial information and ...

    African Journals Online (AJOL)

    the cognitive ability to understand fi nancial information in the context of these ... the interface (or gap) between information (matter) and decision-making (mind). ... Awareness of fi nancial literacy from the interface perspective promotes a ...

  17. Interface methods for using intranet portal organizational memory information system.

    Science.gov (United States)

    Ji, Yong Gu; Salvendy, Gavriel

    2004-12-01

    In this paper, an intranet portal is considered as an information infrastructure (organizational memory information system, OMIS) supporting organizational learning. The properties and the hierarchical structure of information and knowledge in an intranet portal OMIS was identified as a problem for navigation tools of an intranet portal interface. The problem relates to navigation and retrieval functions of intranet portal OMIS and is expected to adversely affect user performance, satisfaction, and usefulness. To solve the problem, a conceptual model for navigation tools of an intranet portal interface was proposed and an experiment using a crossover design was conducted with 10 participants. In the experiment, a separate access method (tabbed tree tool) was compared to an unified access method (single tree tool). The results indicate that each information/knowledge repository for which a user has a different structural knowledge should be handled separately with a separate access to increase user satisfaction and the usefulness of the OMIS and to improve user performance in navigation.

  18. Operator interface design considerations for a PACS information management system

    Science.gov (United States)

    Steinke, James E.; Nabijee, Kamal H.; Freeman, Rick H.; Prior, Fred W.

    1990-08-01

    As prototype PACS grow into fully digital departmental and hospital-wide systems, effective information storage and retrieval mechanisms become increasingly important. Thus far, designers of PACS workstations have concentrated on image communication and display functionality. The new challenge is to provide appropriate operator interface environments to facilitate information retrieval. The "Marburg Model" 1 provides a detailed analysis of the functions, control flows and data structures used in Radiology. It identifies a set of "actors" who perform information manipulation functions. Drawing on this model and its associated methodology it is possible to identify four modes of use of information systems in Radiology: Clinical Routine, Research, Consultation, and Administration. Each mode has its own specific access requirements and views of information. An operator interface strategy appropriate for each mode will be proposed. Clinical Routine mode is the principal concern of PACS primary diagnosis workstations. In a full PACS implementation, such workstations must provide a simple and consistent navigational aid for the on-line image database, a local work list of cases to be reviewed, and easy access to information from other hospital information systems. A hierarchical method of information access is preferred because it provides the ability to start at high-level entities and iteratively narrow the scope of information from which to select subsequent operations. An implementation using hierarchical, nested software windows which fulfills such requirements shall be examined.

  19. Quantitative interface models for simulating microstructure evolution

    International Nuclear Information System (INIS)

    Zhu, J.Z.; Wang, T.; Zhou, S.H.; Liu, Z.K.; Chen, L.Q.

    2004-01-01

    To quantitatively simulate microstructural evolution in real systems, we investigated three different interface models: a sharp-interface model implemented by the software DICTRA and two diffuse-interface models which use either physical order parameters or artificial order parameters. A particular example is considered, the diffusion-controlled growth of a γ ' precipitate in a supersaturated γ matrix in Ni-Al binary alloys. All three models use the thermodynamic and kinetic parameters from the same databases. The temporal evolution profiles of composition from different models are shown to agree with each other. The focus is on examining the advantages and disadvantages of each model as applied to microstructure evolution in alloys

  20. User interfaces of information retrieval systems and user friendliness

    OpenAIRE

    Polona Vilar; Maja Žumer

    2008-01-01

    The paper deals with the characteristics of user interfaces of information retrieval systems with the emphasis on design and evaluation. It presents users’ information retrieval tasks and the functions which are offered through interfaces. Design rules, guidelines and standards are presented, as well as criteria and methods for evaluation. Special emphasis is placed on the concept of user friendliness as one of the most important characteristic of the user interfaces. Various definitions of u...

  1. Multiphase Microfluidics The Diffuse Interface Model

    CERN Document Server

    2012-01-01

    Multiphase flows are typically described assuming that the different phases are separated by a sharp interface, with appropriate boundary conditions. This approach breaks down whenever the lengthscale of the phenomenon that is being studied is comparable with the real interface thickness, as it happens, for example, in the coalescence and breakup of bubbles and drops, the wetting and dewetting of solid surfaces and, in general, im micro-devices. The diffuse interface model resolves these probems by assuming that all quantities can vary continuously, so that interfaces have a non-zero thickness, i.e. they are "diffuse". The contributions in this book review the theory and describe some relevant applications of the diffuse interface model for one-component, two-phase fluids and for liquid binary mixtures, to model multiphase flows in confined geometries.

  2. User interfaces of information retrieval systems and user friendliness

    Directory of Open Access Journals (Sweden)

    Polona Vilar

    2008-01-01

    Full Text Available The paper deals with the characteristics of user interfaces of information retrieval systems with the emphasis on design and evaluation. It presents users’ information retrieval tasks and the functions which are offered through interfaces. Design rules, guidelines and standards are presented, as well as criteria and methods for evaluation. Special emphasis is placed on the concept of user friendliness as one of the most important characteristic of the user interfaces. Various definitions of user friendliness are presented and their elements are also discussed. In the end, the paper shows how user interfaces should be designed, taken into consideration all these criteria.

  3. The Knowledge Base Interface for Parametric Grid Information

    International Nuclear Information System (INIS)

    Hipp, James R.; Simons, Randall W.; Young, Chris J.

    1999-01-01

    The parametric grid capability of the Knowledge Base (KBase) provides an efficient robust way to store and access interpolatable information that is needed to monitor the Comprehensive Nuclear Test Ban Treaty. To meet both the accuracy and performance requirements of operational monitoring systems, we use an approach which combines the error estimation of kriging with the speed and robustness of Natural Neighbor Interpolation. The method involves three basic steps: data preparation, data storage, and data access. In past presentations we have discussed in detail the first step. In this paper we focus on the latter two, describing in detail the type of information which must be stored and the interface used to retrieve parametric grid data from the Knowledge Base. Once data have been properly prepared, the information (tessellation and associated value surfaces) needed to support the interface functionality, can be entered into the KBase. The primary types of parametric grid data that must be stored include (1) generic header information; (2) base model, station, and phase names and associated ID's used to construct surface identifiers; (3) surface accounting information; (4) tessellation accounting information; (5) mesh data for each tessellation; (6) correction data defined for each surface at each node of the surfaces owning tessellation (7) mesh refinement calculation set-up and flag information; and (8) kriging calculation set-up and flag information. The eight data components not only represent the results of the data preparation process but also include all required input information for several population tools that would enable the complete regeneration of the data results if that should be necessary

  4. The intelligent user interface for NASA's advanced information management systems

    Science.gov (United States)

    Campbell, William J.; Short, Nicholas, Jr.; Rolofs, Larry H.; Wattawa, Scott L.

    1987-01-01

    NASA has initiated the Intelligent Data Management Project to design and develop advanced information management systems. The project's primary goal is to formulate, design and develop advanced information systems that are capable of supporting the agency's future space research and operational information management needs. The first effort of the project was the development of a prototype Intelligent User Interface to an operational scientific database, using expert systems and natural language processing technologies. An overview of Intelligent User Interface formulation and development is given.

  5. Model-to-model interface for multiscale materials modeling

    Energy Technology Data Exchange (ETDEWEB)

    Antonelli, Perry Edward [Iowa State Univ., Ames, IA (United States)

    2017-12-17

    A low-level model-to-model interface is presented that will enable independent models to be linked into an integrated system of models. The interface is based on a standard set of functions that contain appropriate export and import schemas that enable models to be linked with no changes to the models themselves. These ideas are presented in the context of a specific multiscale material problem that couples atomistic-based molecular dynamics calculations to continuum calculations of fluid ow. These simulations will be used to examine the influence of interactions of the fluid with an adjacent solid on the fluid ow. The interface will also be examined by adding it to an already existing modeling code, Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) and comparing it with our own molecular dynamics code.

  6. Modeling of interface roughness in thermoelectric composite materials

    International Nuclear Information System (INIS)

    Gather, F; Heiliger, C; Klar, P J

    2011-01-01

    We use a network model to calculate the influence of the mesoscopic interface structure on the thermoelectric properties of superlattice structures consisting of alternating layers of materials A and B. The thermoelectric figure of merit of such a composite material depends on the layer thickness, if interface resistances are accounted for, and can be increased by proper interface design. In general, interface roughness reduces the figure of merit, again compared to the case of ideal interfaces. However, the strength of this reduction depends strongly on the type of interface roughness. Smooth atomic surface diffusion leading to alloying of materials A and B causes the largest reduction of the figure of merit. Consequently, in real structures, it is important not only to minimize interface roughness, but also to control the type of roughness. Although the microscopic effects of interfaces are only empirically accounted for, using a network model can yield useful information about the dependence of the macroscopic transport coefficients on the mesoscopic disorder in structured thermoelectric materials.

  7. Natural brain-information interfaces: Recommending information by relevance inferred from human brain signals

    Science.gov (United States)

    Eugster, Manuel J. A.; Ruotsalo, Tuukka; Spapé, Michiel M.; Barral, Oswald; Ravaja, Niklas; Jacucci, Giulio; Kaski, Samuel

    2016-01-01

    Finding relevant information from large document collections such as the World Wide Web is a common task in our daily lives. Estimation of a user’s interest or search intention is necessary to recommend and retrieve relevant information from these collections. We introduce a brain-information interface used for recommending information by relevance inferred directly from brain signals. In experiments, participants were asked to read Wikipedia documents about a selection of topics while their EEG was recorded. Based on the prediction of word relevance, the individual’s search intent was modeled and successfully used for retrieving new relevant documents from the whole English Wikipedia corpus. The results show that the users’ interests toward digital content can be modeled from the brain signals evoked by reading. The introduced brain-relevance paradigm enables the recommendation of information without any explicit user interaction and may be applied across diverse information-intensive applications. PMID:27929077

  8. Interface sharpness in the Potts model

    International Nuclear Information System (INIS)

    Ruiz, J.

    1989-01-01

    A simple proof is given for the existence of a sharp interface between two ordered phases for the three-dimensional 2 double-prime-state Potts model (n integer). The results show that the roughening temperature of the three-dimensional Potts model is greater than the transition temperature of the two-dimensional Potts model. For a large arbitrary spin integer, it is expected that this roughening temperature is equal to the transition temperature (of the 3D model), i.e., that the interface between two ordered phases is harp up to the transition temperature, at which it is wetted by a film of the disordered phase. It is also expected that for a large arbitrary spin integer, the a-f interface (between an ordered and the disordered phase) is sharp at the transition temperature

  9. Modeling Europa's Ice-Ocean Interface

    Science.gov (United States)

    Elsenousy, A.; Vance, S.; Bills, B. G.

    2014-12-01

    This work focuses on modeling the ice-ocean interface on Jupiter's Moon (Europa); mainly from the standpoint of heat and salt transfer relationship with emphasis on the basal ice growth rate and its implications to Europa's tidal response. Modeling the heat and salt flux at Europa's ice/ocean interface is necessary to understand the dynamics of Europa's ocean and its interaction with the upper ice shell as well as the history of active turbulence at this area. To achieve this goal, we used McPhee et al., 2008 parameterizations on Earth's ice/ocean interface that was developed to meet Europa's ocean dynamics. We varied one parameter at a time to test its influence on both; "h" the basal ice growth rate and on "R" the double diffusion tendency strength. The double diffusion tendency "R" was calculated as the ratio between the interface heat exchange coefficient αh to the interface salt exchange coefficient αs. Our preliminary results showed a strong double diffusion tendency R ~200 at Europa's ice-ocean interface for plausible changes in the heat flux due to onset or elimination of a hydrothermal activity, suggesting supercooling and a strong tendency for forming frazil ice.

  10. Humor modeling in the interface

    NARCIS (Netherlands)

    Nijholt, Antinus; Cockton, G.; Stock, O.; Korhonen, P.; Dix, A.; Bergman, E.; Bjork, S.; Morkes, J.; Collings, P.; Dey, A.; Draper, S.; Guliksen, J.; Keinonen, T.; Lazar, J.; Lund, A.; Malich, R.; Nakakoji, K.; Nigay, L.; Prates Oliveira, R.; Rieman, J.; Snyder, C.

    2003-01-01

    Humor is a multi-disciplinary field of research. People have been working on humor in many fields of research, such as psychology, philosophy and linguistics, sociology and literature. Especially in the context of computer science (or Artificial Intelligence) humor research aims at modeling humor in

  11. An interface tracking model for droplet electrocoalescence.

    Energy Technology Data Exchange (ETDEWEB)

    Erickson, Lindsay Crowl

    2013-09-01

    This report describes an Early Career Laboratory Directed Research and Development (LDRD) project to develop an interface tracking model for droplet electrocoalescence. Many fluid-based technologies rely on electrical fields to control the motion of droplets, e.g. microfluidic devices for high-speed droplet sorting, solution separation for chemical detectors, and purification of biodiesel fuel. Precise control over droplets is crucial to these applications. However, electric fields can induce complex and unpredictable fluid dynamics. Recent experiments (Ristenpart et al. 2009) have demonstrated that oppositely charged droplets bounce rather than coalesce in the presence of strong electric fields. A transient aqueous bridge forms between approaching drops prior to pinch-off. This observation applies to many types of fluids, but neither theory nor experiments have been able to offer a satisfactory explanation. Analytic hydrodynamic approximations for interfaces become invalid near coalescence, and therefore detailed numerical simulations are necessary. This is a computationally challenging problem that involves tracking a moving interface and solving complex multi-physics and multi-scale dynamics, which are beyond the capabilities of most state-of-the-art simulations. An interface-tracking model for electro-coalescence can provide a new perspective to a variety of applications in which interfacial physics are coupled with electrodynamics, including electro-osmosis, fabrication of microelectronics, fuel atomization, oil dehydration, nuclear waste reprocessing and solution separation for chemical detectors. We present a conformal decomposition finite element (CDFEM) interface-tracking method for the electrohydrodynamics of two-phase flow to demonstrate electro-coalescence. CDFEM is a sharp interface method that decomposes elements along fluid-fluid boundaries and uses a level set function to represent the interface.

  12. Designing an information search interface for younger and older adults.

    Science.gov (United States)

    Pak, Richard; Price, Margaux M

    2008-08-01

    The present study examined Web-based information retrieval as a function of age for two information organization schemes: hierarchical organization and one organized around tags or keywords. Older adults' performance in information retrieval tasks has traditionally been lower compared with younger adults'. The current study examined the degree to which information organization moderated age-related performance differences on an information retrieval task. The theory of fluid and crystallized intelligence may provide insight into different kinds of information architectures that may reduce age-related differences in computer-based information retrieval performance. Fifty younger (18-23 years of age) and 50 older (55-76 years of age) participants browsed a Web site for answers to specific questions. Half of the participants browsed the hierarchically organized system (taxonomy), which maintained a one-to-one relationship between menu link and page, whereas the other half browsed the tag-based interface, with a many-to-one relationship between menu and page. This difference was expected to interact with age-related differences in fluid and crystallized intelligence. Age-related differences in information retrieval performance persisted; however, a tag-based retrieval interface reduced age-related differences, as compared with a taxonomical interface. Cognitive aging theory can lead to interface interventions that reduce age-related differences in performance with technology. In an information retrieval paradigm, older adults may be able to leverage their increased crystallized intelligence to offset fluid intelligence declines in a computer-based information search task. More research is necessary, but the results suggest that information retrieval interfaces organized around keywords may reduce age-related differences in performance.

  13. Novel Scientific Visualization Interfaces for Interactive Information Visualization and Sharing

    Science.gov (United States)

    Demir, I.; Krajewski, W. F.

    2012-12-01

    As geoscientists are confronted with increasingly massive datasets from environmental observations to simulations, one of the biggest challenges is having the right tools to gain scientific insight from the data and communicate the understanding to stakeholders. Recent developments in web technologies make it easy to manage, visualize and share large data sets with general public. Novel visualization techniques and dynamic user interfaces allow users to interact with data, and modify the parameters to create custom views of the data to gain insight from simulations and environmental observations. This requires developing new data models and intelligent knowledge discovery techniques to explore and extract information from complex computational simulations or large data repositories. Scientific visualization will be an increasingly important component to build comprehensive environmental information platforms. This presentation provides an overview of the trends and challenges in the field of scientific visualization, and demonstrates information visualization and communication tools in the Iowa Flood Information System (IFIS), developed within the light of these challenges. The IFIS is a web-based platform developed by the Iowa Flood Center (IFC) to provide access to and visualization of flood inundation maps, real-time flood conditions, flood forecasts both short-term and seasonal, and other flood-related data for communities in Iowa. The key element of the system's architecture is the notion of community. Locations of the communities, those near streams and rivers, define basin boundaries. The IFIS provides community-centric watershed and river characteristics, weather (rainfall) conditions, and streamflow data and visualization tools. Interactive interfaces allow access to inundation maps for different stage and return period values, and flooding scenarios with contributions from multiple rivers. Real-time and historical data of water levels, gauge heights, and

  14. Modeling the electrified solid-liquid interface

    DEFF Research Database (Denmark)

    Rossmeisl, Jan; Skulason, Egill; Björketun, Mårten

    2008-01-01

    function can be related directly to the potential scale of the normal hydrogen electrode. We also show how finite-size effects in common periodic slab-type calculations can be avoided in calculations of activation energies and reaction energies for charge transfer reactions, where we use the Heyrovsky......A detailed atomistic model based on density functional theory calculations is presented of the charged solid-electrolyte interface. Having protons solvated in a water bilayer outside a Pt(111) slab with excess electrons, we show how the interface capacitance is well described and how the work...

  15. Linking Informal and Formal Electronics Recycling via an Interface Organization

    Directory of Open Access Journals (Sweden)

    Yoshiaki Totoki

    2013-07-01

    Full Text Available Informal recycling of electronics in the developing world has emerged as a new global environmental concern. The primary approach to address this problem has been command-and-control policies that ban informal recycling and international trade in electronic scrap. These bans are difficult to enforce and also have negative effects by reducing reuse of electronics, and employment for people in poverty. An alternate approach is to link informal and formal sectors so as to maintain economic activity while mitigating environmental damages. This article explores the idea of an interface organization that purchases components and waste from informal dismantlers and passes them on to formal processors. Environmental, economic and social implications of interface organizations are discussed. The main environmental questions to resolve are what e-scrap components should be targeted by the interface organization, i.e., circuit boards, wires, and/or plastic parts. Economically, when formal recycling is more profitable (e.g., for circuit boards, the interface organization is revenue positive. However, price subsidies are needed for copper wires and residual waste to incentivize informal dismantlers to turn in for formal processing. Socially, the potential for corruption and gaming of the system is critical and needs to be addressed.

  16. Presenting a model for display and user interface specifications of web based OPACs on the basis of available universal standards and experts views in order to compare the Iranian library and information centers OPACs

    OpenAIRE

    Zavaraqi, Rasoul

    2005-01-01

    The aim of this study is to present a model for display and user interface specifications of web-based OPACs on the basis of available universal standards and experts’ views in order to compare the present Iranian library and information centers OPACs. Three method were used for data collection in this research: literature review, survey of opinions by means of a checklist, and evaluation of the available web-based OPACs. The community of Iranian experts in OPAC issues and all of 6 available ...

  17. Modelling Safe Interface Interactions in Web Applications

    Science.gov (United States)

    Brambilla, Marco; Cabot, Jordi; Grossniklaus, Michael

    Current Web applications embed sophisticated user interfaces and business logic. The original interaction paradigm of the Web based on static content pages that are browsed by hyperlinks is, therefore, not valid anymore. In this paper, we advocate a paradigm shift for browsers and Web applications, that improves the management of user interaction and browsing history. Pages are replaced by States as basic navigation nodes, and Back/Forward navigation along the browsing history is replaced by a full-fledged interactive application paradigm, supporting transactions at the interface level and featuring Undo/Redo capabilities. This new paradigm offers a safer and more precise interaction model, protecting the user from unexpected behaviours of the applications and the browser.

  18. A Model for Information

    Directory of Open Access Journals (Sweden)

    Paul Walton

    2014-09-01

    Full Text Available This paper uses an approach drawn from the ideas of computer systems modelling to produce a model for information itself. The model integrates evolutionary, static and dynamic views of information and highlights the relationship between symbolic content and the physical world. The model includes what information technology practitioners call “non-functional” attributes, which, for information, include information quality and information friction. The concepts developed in the model enable a richer understanding of Floridi’s questions “what is information?” and “the informational circle: how can information be assessed?” (which he numbers P1 and P12.

  19. Predicting nucleic acid binding interfaces from structural models of proteins.

    Science.gov (United States)

    Dror, Iris; Shazman, Shula; Mukherjee, Srayanta; Zhang, Yang; Glaser, Fabian; Mandel-Gutfreund, Yael

    2012-02-01

    The function of DNA- and RNA-binding proteins can be inferred from the characterization and accurate prediction of their binding interfaces. However, the main pitfall of various structure-based methods for predicting nucleic acid binding function is that they are all limited to a relatively small number of proteins for which high-resolution three-dimensional structures are available. In this study, we developed a pipeline for extracting functional electrostatic patches from surfaces of protein structural models, obtained using the I-TASSER protein structure predictor. The largest positive patches are extracted from the protein surface using the patchfinder algorithm. We show that functional electrostatic patches extracted from an ensemble of structural models highly overlap the patches extracted from high-resolution structures. Furthermore, by testing our pipeline on a set of 55 known nucleic acid binding proteins for which I-TASSER produces high-quality models, we show that the method accurately identifies the nucleic acids binding interface on structural models of proteins. Employing a combined patch approach we show that patches extracted from an ensemble of models better predicts the real nucleic acid binding interfaces compared with patches extracted from independent models. Overall, these results suggest that combining information from a collection of low-resolution structural models could be a valuable approach for functional annotation. We suggest that our method will be further applicable for predicting other functional surfaces of proteins with unknown structure. Copyright © 2011 Wiley Periodicals, Inc.

  20. NASA Access Mechanism - Graphical user interface information retrieval system

    Science.gov (United States)

    Hunter, Judy F.; Generous, Curtis; Duncan, Denise

    1993-01-01

    Access to online information sources of aerospace, scientific, and engineering data, a mission focus for NASA's Scientific and Technical Information Program, has always been limited by factors such as telecommunications, query language syntax, lack of standardization in the information, and the lack of adequate tools to assist in searching. Today, the NASA STI Program's NASA Access Mechanism (NAM) prototype offers a solution to these problems by providing the user with a set of tools that provide a graphical interface to remote, heterogeneous, and distributed information in a manner adaptable to both casual and expert users. Additionally, the NAM provides access to many Internet-based services such as Electronic Mail, the Wide Area Information Servers system, Peer Locating tools, and electronic bulletin boards.

  1. NASA access mechanism: Graphical user interface information retrieval system

    Science.gov (United States)

    Hunter, Judy; Generous, Curtis; Duncan, Denise

    1993-01-01

    Access to online information sources of aerospace, scientific, and engineering data, a mission focus for NASA's Scientific and Technical Information Program, has always been limited to factors such as telecommunications, query language syntax, lack of standardization in the information, and the lack of adequate tools to assist in searching. Today, the NASA STI Program's NASA Access Mechanism (NAM) prototype offers a solution to these problems by providing the user with a set of tools that provide a graphical interface to remote, heterogeneous, and distributed information in a manner adaptable to both casual and expert users. Additionally, the NAM provides access to many Internet-based services such as Electronic Mail, the Wide Area Information Servers system, Peer Locating tools, and electronic bulletin boards.

  2. ModelMate - A graphical user interface for model analysis

    Science.gov (United States)

    Banta, Edward R.

    2011-01-01

    ModelMate is a graphical user interface designed to facilitate use of model-analysis programs with models. This initial version of ModelMate supports one model-analysis program, UCODE_2005, and one model software program, MODFLOW-2005. ModelMate can be used to prepare input files for UCODE_2005, run UCODE_2005, and display analysis results. A link to the GW_Chart graphing program facilitates visual interpretation of results. ModelMate includes capabilities for organizing directories used with the parallel-processing capabilities of UCODE_2005 and for maintaining files in those directories to be identical to a set of files in a master directory. ModelMate can be used on its own or in conjunction with ModelMuse, a graphical user interface for MODFLOW-2005 and PHAST.

  3. Radiation budget measurement/model interface

    Science.gov (United States)

    Vonderhaar, T. H.; Ciesielski, P.; Randel, D.; Stevens, D.

    1983-01-01

    This final report includes research results from the period February, 1981 through November, 1982. Two new results combine to form the final portion of this work. They are the work by Hanna (1982) and Stevens to successfully test and demonstrate a low-order spectral climate model and the work by Ciesielski et al. (1983) to combine and test the new radiation budget results from NIMBUS-7 with earlier satellite measurements. Together, the two related activities set the stage for future research on radiation budget measurement/model interfacing. Such combination of results will lead to new applications of satellite data to climate problems. The objectives of this research under the present contract are therefore satisfied. Additional research reported herein includes the compilation and documentation of the radiation budget data set a Colorado State University and the definition of climate-related experiments suggested after lengthy analysis of the satellite radiation budget experiments.

  4. Risk-informed, performance-based safety-security interface

    International Nuclear Information System (INIS)

    Mrowca, B.; Eltawila, F.

    2012-01-01

    Safety-security interface is a term that is used as part of the commercial nuclear power security framework to promote coordination of the many potentially adverse interactions between plant security and plant safety. Its object is to prevent the compromise of either. It is also used to describe the concept of building security into a plant's design similar to the long standing practices used for safety therefore reducing the complexity of the operational security while maintaining or enhancing overall security. With this in mind, the concept of safety-security interface, when fully implemented, can influence a plant's design, operation and maintenance. It brings the approach use for plant security to one that is similar to that used for safety. Also, as with safety, the application of risk-informed techniques to fully implement and integrate safety and security is important. Just as designers and operators have applied these techniques to enhance and focus safety, these same techniques can be applied to security to not only enhance and focus the security but also to aid in the implementation of effective techniques to address the safety-security interfaces. Implementing this safety-security concept early within the design process can prevent or reduce security vulnerabilities through low cost solutions that often become difficult and expensive to retrofit later in the design and/or post construction period. These security considerations address many of the same issues as safety in ensuring that the response of equipment and plant personnel are adequate. That is, both safety and security are focused on reaching safe shutdown and preventing radiological release. However, the initiation of challenges and the progression of actions in response these challenges and even the definitions of safe shutdown can be considerably different. This paper explores the techniques and limitations that are employed to fully implement a risk-informed, safety-security interface

  5. Diffuse interface methods for multiphase flow modeling

    International Nuclear Information System (INIS)

    Jamet, D.

    2004-01-01

    Full text of publication follows:Nuclear reactor safety programs need to get a better description of some stages of identified incident or accident scenarios. For some of them, such as the reflooding of the core or the dryout of fuel rods, the heat, momentum and mass transfers taking place at the scale of droplets or bubbles are part of the key physical phenomena for which a better description is needed. Experiments are difficult to perform at these very small scales and direct numerical simulations is viewed as a promising way to give new insight into these complex two-phase flows. This type of simulations requires numerical methods that are accurate, efficient and easy to run in three space dimensions and on parallel computers. Despite many years of development, direct numerical simulation of two-phase flows is still very challenging, mostly because it requires solving moving boundary problems. To avoid this major difficulty, a new class of numerical methods is arising, called diffuse interface methods. These methods are based on physical theories dating back to van der Waals and mostly used in materials science. In these methods, interfaces separating two phases are modeled as continuous transitions zones instead of surfaces of discontinuity. Since all the physical variables encounter possibly strong but nevertheless always continuous variations across the interfacial zones, these methods virtually eliminate the difficult moving boundary problem. We show that these methods lead to a single-phase like system of equations, which makes it easier to code in 3D and to make parallel compared to more classical methods. The first method presented is dedicated to liquid-vapor flows with phase-change. It is based on the van der Waals' theory of capillarity. This method has been used to study nucleate boiling of a pure fluid and of dilute binary mixtures. We discuss the importance of the choice and the meaning of the order parameter, i.e. a scalar which discriminates one

  6. Computational design of patterned interfaces using reduced order models

    International Nuclear Information System (INIS)

    Vattre, A.J.; Abdolrahim, N.; Kolluri, K.; Demkowicz, M.J.

    2014-01-01

    Patterning is a familiar approach for imparting novel functionalities to free surfaces. We extend the patterning paradigm to interfaces between crystalline solids. Many interfaces have non-uniform internal structures comprised of misfit dislocations, which in turn govern interface properties. We develop and validate a computational strategy for designing interfaces with controlled misfit dislocation patterns by tailoring interface crystallography and composition. Our approach relies on a novel method for predicting the internal structure of interfaces: rather than obtaining it from resource-intensive atomistic simulations, we compute it using an efficient reduced order model based on anisotropic elasticity theory. Moreover, our strategy incorporates interface synthesis as a constraint on the design process. As an illustration, we apply our approach to the design of interfaces with rapid, 1-D point defect diffusion. Patterned interfaces may be integrated into the microstructure of composite materials, markedly improving performance. (authors)

  7. A nonlinear interface model applied to masonry structures

    Science.gov (United States)

    Lebon, Frédéric; Raffa, Maria Letizia; Rizzoni, Raffaella

    2015-12-01

    In this paper, a new imperfect interface model is presented. The model includes finite strains, micro-cracks and smooth roughness. The model is consistently derived by coupling a homogenization approach for micro-cracked media and arguments of asymptotic analysis. The model is applied to brick/mortar interfaces. Numerical results are presented.

  8. Transitions in a probabilistic interface growth model

    International Nuclear Information System (INIS)

    Alves, S G; Moreira, J G

    2011-01-01

    We study a generalization of the Wolf–Villain (WV) interface growth model based on a probabilistic growth rule. In the WV model, particles are randomly deposited onto a substrate and subsequently move to a position nearby where the binding is strongest. We introduce a growth probability which is proportional to a power of the number n i of bindings of the site i: p i ∝n i ν . Through extensive simulations, in (1 + 1) dimensions, we find three behaviors depending on the ν value: (i) if ν is small, a crossover from the Mullins–Herring to the Edwards–Wilkinson (EW) universality class; (ii) for intermediate values of ν, a crossover from the EW to the Kardar–Parisi–Zhang (KPZ) universality class; and, finally, (iii) for large ν values, the system is always in the KPZ class. In (2 + 1) dimensions, we obtain three different behaviors: (i) a crossover from the Villain–Lai–Das Sarma to the EW universality class for small ν values; (ii) the EW class is always present for intermediate ν values; and (iii) a deviation from the EW class is observed for large ν values

  9. Federating resources of information systems: browsing interface (FRISBI)

    NARCIS (Netherlands)

    Malchanau, A.V.; van der Vet, P.E.; Roosendaal, Hans E.; de Bra, P.M.E.

    2003-01-01

    Designing the user interface of a federated system (what we call a browsing interface) must consider the knowledge gap that exists between desires of the users and the needs the systems are built to support. The concept of Habitable Interfaces aims to bridge the knowledge gap by providing kinds of

  10. Research and Development for an Operational Information Ecology: The User-System Interface Agent Project

    Science.gov (United States)

    Srivastava, Sadanand; deLamadrid, James

    1998-01-01

    The User System Interface Agent (USIA) is a special type of software agent which acts as the "middle man" between a human user and an information processing environment. USIA consists of a group of cooperating agents which are responsible for assisting users in obtaining information processing services intuitively and efficiently. Some of the main features of USIA include: (1) multiple interaction modes and (2) user-specific and stereotype modeling and adaptation. This prototype system provides us with a development platform towards the realization of an operational information ecology. In the first phase of this project we focus on the design and implementation of prototype system of the User-System Interface Agent (USIA). The second face of USIA allows user interaction via a restricted query language as well as through a taxonomy of windows. In third phase the USIA system architecture was revised.

  11. Sales-marketing interface and company performance. Is information use the missing link?

    OpenAIRE

    Keszey, Tamara

    2013-01-01

    Over the last couple of years there has been an ongoing debate on how sales managers contribute to organizational value. Direct measures between sales-marketing interface quality and company performance are compromised, as company performance is influenced by a plethora of other factors. We advocate that the use of sales information is the missing link between sales-marketing relationship quality and organizational outcomes. We propose and empirically test a model on how sales-mar...

  12. Percolation Model of Adhesion at Polymer Interfaces

    Science.gov (United States)

    Wool, Richard P.

    1998-03-01

    Adhesion at polymer interfaces is treated as a percolation problem, where an areal density of chains Σ, of length L, contribute a number of entanglements to the interface of thickness X. The fracture energy G, is determined by the fraction of entanglements P, fractured or disentangled in the deformation zone preceding the crack tip, via G ~ P-P_c, where Pc is the percolation threshold, given by Pc = 1- M_e/Mc . For incompatible A/B interfaces reinforced with Σ diblocks or random A-B copolymers of effective length L'(L' ~ 0 for brushes and strongly adsorbed chains), we obtain P ~ ΣL/X, Pc ~ Σ _cL/X, such that G = K(Σ - Σ _c)+ G_o, where K and Go ~ 1 J/m^2 are constants. Note that Log G vs Log Σ will have an apparent slope of about 2, incorrectly suggesting that G ~ Σ ^2. For cohesive fracture, disentanglement dominates at M M*, G = G*[1-M_c/M]. For fatigue crack propagation da/dN, at welding interfaces, we obtain da/dN ~ M-5/2(t/Tr)-5/4, where t is the welding time and Tr is the reptation time. For polymer-solid interfaces, G ~ (X/R)^2. where X is the conformational width of the first layer of chains of random coil size R. The fractal nature of the percolation process is relevant to the fracture mechanism and fractography.

  13. An improved interfacial bonding model for material interface modeling

    Science.gov (United States)

    Lin, Liqiang; Wang, Xiaodu; Zeng, Xiaowei

    2016-01-01

    An improved interfacial bonding model was proposed from potential function point of view to investigate interfacial interactions in polycrystalline materials. It characterizes both attractive and repulsive interfacial interactions and can be applied to model different material interfaces. The path dependence of work-of-separation study indicates that the transformation of separation work is smooth in normal and tangential direction and the proposed model guarantees the consistency of the cohesive constitutive model. The improved interfacial bonding model was verified through a simple compression test in a standard hexagonal structure. The error between analytical solutions and numerical results from the proposed model is reasonable in linear elastic region. Ultimately, we investigated the mechanical behavior of extrafibrillar matrix in bone and the simulation results agreed well with experimental observations of bone fracture. PMID:28584343

  14. Modeling Auditory-Haptic Interface Cues from an Analog Multi-line Telephone

    Science.gov (United States)

    Begault, Durand R.; Anderson, Mark R.; Bittner, Rachael M.

    2012-01-01

    The Western Electric Company produced a multi-line telephone during the 1940s-1970s using a six-button interface design that provided robust tactile, haptic and auditory cues regarding the "state" of the communication system. This multi-line telephone was used as a model for a trade study comparison of two interfaces: a touchscreen interface (iPad)) versus a pressure-sensitive strain gauge button interface (Phidget USB interface controllers). The experiment and its results are detailed in the authors' AES 133rd convention paper " Multimodal Information Management: Evaluation of Auditory and Haptic Cues for NextGen Communication Dispays". This Engineering Brief describes how the interface logic, visual indications, and auditory cues of the original telephone were synthesized using MAX/MSP, including the logic for line selection, line hold, and priority line activation.

  15. Towards first principles modeling of electrochemical electrode-electrolyte interfaces

    DEFF Research Database (Denmark)

    Nielsen, Malte; Björketun, Mårten; Hansen, Martin Hangaard

    2015-01-01

    We present a mini-perspective on the development of first principles modeling of electrochemical interfaces. We show that none of the existing methods deal with all the thermodynamic constraints that the electrochemical environment imposes on the structure of the interface. We present two...

  16. A human-machine interface evaluation method: A difficulty evaluation method in information searching (DEMIS)

    International Nuclear Information System (INIS)

    Ha, Jun Su; Seong, Poong Hyun

    2009-01-01

    A human-machine interface (HMI) evaluation method, which is named 'difficulty evaluation method in information searching (DEMIS)', is proposed and demonstrated with an experimental study. The DEMIS is based on a human performance model and two measures of attentional-resource effectiveness in monitoring and detection tasks in nuclear power plants (NPPs). Operator competence and HMI design are modeled to be most significant factors to human performance. One of the two effectiveness measures is fixation-to-importance ratio (FIR) which represents attentional resource (eye fixations) spent on an information source compared to importance of the information source. The other measure is selective attention effectiveness (SAE) which incorporates FIRs for all information sources. The underlying principle of the measures is that the information source should be selectively attended to according to its informational importance. In this study, poor performance in information searching tasks is modeled to be coupled with difficulties caused by poor mental models of operators or/and poor HMI design. Human performance in information searching tasks is evaluated by analyzing the FIR and the SAE. Operator mental models are evaluated by a questionnaire-based method. Then difficulties caused by a poor HMI design are evaluated by a focused interview based on the FIR evaluation and then root causes leading to poor performance are identified in a systematic way.

  17. Building information modelling (BIM)

    CSIR Research Space (South Africa)

    Conradie, Dirk CU

    2009-02-01

    Full Text Available The concept of a Building Information Model (BIM) also known as a Building Product Model (BPM) is nothing new. A short article on BIM will never cover the entire filed, because it is a particularly complex filed that is recently beginning to receive...

  18. A model for the origin of solar wind stream interfaces

    International Nuclear Information System (INIS)

    Hundhausen, A.J.; Burlaga, L.F.

    1975-01-01

    The basic variations in solar wind properties that have been observed at 'stream interfaces' near 1 AU are explained by a gas dynamic model in which a radially propagating stream, produced by a temperature variation in the solar envelope, steepens nonlinearly while moving through interplanetary space. The region thus identified with the stream interface separates the ambient solar wind from the fresh hot material originally in the stream. However, the interface regions given by the present model are thicker than most stream interfaces observed in the solar wind, a fact suggesting that some additional physical process may be important in determining that thickness. Variations in the density, speed, or Alfven pressure alone appear not to produce streams with such an interface

  19. Atomistic approach for modeling metal-semiconductor interfaces

    DEFF Research Database (Denmark)

    Stradi, Daniele; Martinez, Umberto; Blom, Anders

    2016-01-01

    realistic metal-semiconductor interfaces and allows for a direct comparison between theory and experiments via the I–V curve. In particular, it will be demonstrated how doping — and bias — modifies the Schottky barrier, and how finite size models (the slab approach) are unable to describe these interfaces......We present a general framework for simulating interfaces using an atomistic approach based on density functional theory and non-equilibrium Green's functions. The method includes all the relevant ingredients, such as doping and an accurate value of the semiconductor band gap, required to model...

  20. Physical modelling of interactions between interfaces and turbulence; Modelisation physique des interactions entre interfaces et turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Toutant, A

    2006-12-15

    The complex interactions between interfaces and turbulence strongly impact the flow properties. Unfortunately, Direct Numerical Simulations (DNS) have to entail a number of degrees of freedom proportional to the third power of the Reynolds number to correctly describe the flow behaviour. This extremely hard constraint makes it impossible to use DNS for industrial applications. Our strategy consists in using and improving DNS method in order to develop the Interfaces and Sub-grid Scales concept. ISS is a two-phase equivalent to the single-phase Large Eddy Simulation (LES) concept. The challenge of ISS is to integrate the two-way coupling phenomenon into sub-grid models. Applying a space filter, we have exhibited correlations or sub-grid terms that require closures. We have shown that, in two-phase flows, the presence of a discontinuity leads to specific sub-grid terms. Comparing the maximum of the norm of the sub-grid terms with the maximum of the norm of the advection tensor, we have found that sub-grid terms related to interfacial forces and viscous effect are negligible. Consequently, in the momentum balance, only the sub-grid terms related to inertia have to be closed. Thanks to a priori tests performed on several DNS data, we demonstrate that the scale similarity hypothesis, reinterpreted near discontinuity, provides sub-grid models that take into account the two-way coupling phenomenon. These models correspond to the first step of our work. Indeed, in this step, interfaces are smooth and, interactions between interfaces and turbulence occur in a transition zone where each physical variable varies sharply but continuously. The next challenge has been to determine the jump conditions across the sharp equivalent interface corresponding to the sub-grid models of the transition zone. We have used the matched asymptotic expansion method to obtain the jump conditions. The first tests on the velocity of the sharp equivalent interface are very promising (author)

  1. Scalable Quantum Information Transfer between Individual Nitrogen-Vacancy Centers by a Hybrid Quantum Interface

    International Nuclear Information System (INIS)

    Pei Pei; He-Fei Huang; Yan-Qing Guo; He-Shan Song

    2016-01-01

    We develop a design of a hybrid quantum interface for quantum information transfer (QIT), adopting a nanomechanical resonator as the intermedium, which is magnetically coupled with individual nitrogen-vacancy centers as the solid qubits, while capacitively coupled with a coplanar waveguide resonator as the quantum data bus. We describe the Hamiltonian of the model, and analytically demonstrate the QIT for both the resonant interaction and large detuning cases. The hybrid quantum interface allows for QIT between arbitrarily selected individual nitrogen-vacancy centers, and has advantages of the scalability and controllability. Our methods open an alternative perspective for implementing QIT, which is important during quantum storing or processing procedures in quantum computing. (paper)

  2. Developing the multi-level functioning interface framework for DER models

    DEFF Research Database (Denmark)

    Han, Xue; Bindner, Henrik W.; You, Shi

    2013-01-01

    The paper summarises several modelling applications of distributed energy resources (DERs) for various purposes, and describes the related operational issues regarding the complexity of the future distribution grid. Furthermore, a multi-level functioning interface framework is proposed for DER mo....... The information mapping for photovoltaic panel (PV) modelling is also provided as an example....

  3. Radiation budget measurement/model interface research

    Science.gov (United States)

    Vonderhaar, T. H.

    1981-01-01

    The NIMBUS 6 data were analyzed to form an up to date climatology of the Earth radiation budget as a basis for numerical model definition studies. Global maps depicting infrared emitted flux, net flux and albedo from processed NIMBUS 6 data for July, 1977, are presented. Zonal averages of net radiation flux for April, May, and June and zonal mean emitted flux and net flux for the December to January period are also presented. The development of two models is reported. The first is a statistical dynamical model with vertical and horizontal resolution. The second model is a two level global linear balance model. The results of time integration of the model up to 120 days, to simulate the January circulation, are discussed. Average zonal wind, meridonal wind component, vertical velocity, and moisture budget are among the parameters addressed.

  4. Information model of economy

    Directory of Open Access Journals (Sweden)

    N.S.Gonchar

    2006-01-01

    Full Text Available A new stochastic model of economy is developed that takes into account the choice of consumers are the dependent random fields. Axioms of such a model are formulated. The existence of random fields of consumer's choice and decision making by firms are proved. New notions of conditionally independent random fields and random fields of evaluation of information by consumers are introduced. Using the above mentioned random fields the random fields of consumer choice and decision making by firms are constructed. The theory of economic equilibrium is developed.

  5. Information and complexity measures in the interface of a metal and a superconductor

    Science.gov (United States)

    Moustakidis, Ch. C.; Panos, C. P.

    2018-06-01

    Fisher information, Shannon information entropy and Statistical Complexity are calculated for the interface of a normal metal and a superconductor, as a function of the temperature for several materials. The order parameter Ψ (r) derived from the Ginzburg-Landau theory is used as an input together with experimental values of critical transition temperature Tc and the superconducting coherence length ξ0. Analytical expressions are obtained for information and complexity measures. Thus Tc is directly related in a simple way with disorder and complexity. An analytical relation is found of the Fisher Information with the energy profile of superconductivity i.e. the ratio of surface free energy and the bulk free energy. We verify that a simple relation holds between Shannon and Fisher information i.e. a decomposition of a global information quantity (Shannon) in terms of two local ones (Fisher information), previously derived and verified for atoms and molecules by Liu et al. Finally, we find analytical expressions for generalized information measures like the Tsallis entropy and Fisher information. We conclude that the proper value of the non-extensivity parameter q ≃ 1, in agreement with previous work using a different model, where q ≃ 1.005.

  6. Alice and Bob meet Banach the interface of asymptotic geometric analysis and quantum information theory

    CERN Document Server

    Aubrun, Guillaume

    2017-01-01

    The quest to build a quantum computer is arguably one of the major scientific and technological challenges of the twenty-first century, and quantum information theory (QIT) provides the mathematical framework for that quest. Over the last dozen or so years, it has become clear that quantum information theory is closely linked to geometric functional analysis (Banach space theory, operator spaces, high-dimensional probability), a field also known as asymptotic geometric analysis (AGA). In a nutshell, asymptotic geometric analysis investigates quantitative properties of convex sets, or other geometric structures, and their approximate symmetries as the dimension becomes large. This makes it especially relevant to quantum theory, where systems consisting of just a few particles naturally lead to models whose dimension is in the thousands, or even in the billions. Alice and Bob Meet Banach is aimed at multiple audiences connected through their interest in the interface of QIT and AGA: at quantum information resea...

  7. Enabling Accessibility Through Model-Based User Interface Development.

    Science.gov (United States)

    Ziegler, Daniel; Peissner, Matthias

    2017-01-01

    Adaptive user interfaces (AUIs) can increase the accessibility of interactive systems. They provide personalized display and interaction modes to fit individual user needs. Most AUI approaches rely on model-based development, which is considered relatively demanding. This paper explores strategies to make model-based development more attractive for mainstream developers.

  8. Supporting special-purpose health care models via Web interfaces

    NARCIS (Netherlands)

    Warren, James R.; Frankel, Heath K.; Noone, Joseph T.; van der Zwaag, B.J.

    The potential of the Web, via both the Internet and intranets, to facilitate development of clinical information systems has been evident for some time. Most Web-based clinical workstations interfaces, however, provide merely a loose collection of access channels. There are numerous examples of

  9. Contribution to the modeling and the identification of haptic interfaces

    International Nuclear Information System (INIS)

    Janot, A.

    2007-12-01

    This thesis focuses on the modeling and the identification of haptic interfaces using cable drive. An haptic interface is a force feedback device, which enables its user to interact with a virtual world or a remote environment explored by a slave system. It aims at the matching between the forces and displacements given by the user and those applied to virtual world. Usually, haptic interfaces make use of a mechanical actuated structure whose distal link is equipped with a handle. When manipulating this handle to interact with explored world, the user feels the apparent mass, compliance and friction of the interface. This distortion introduced between the operator and the virtual world must be modeled and identified to enhance the design of the interface and develop appropriate control laws. The first approach has been to adapt the modeling and identification methods of rigid and localized flexibilities robots to haptic interfaces. The identification technique makes use of the inverse dynamic model and the linear least squares with the measurements of joint torques and positions. This approach is validated on a single degree of freedom and a three degree of freedom haptic devices. A new identification method needing only torque data is proposed. It is based on a closed loop simulation using the direct dynamic model. The optimal parameters minimize the 2 norms of the error between the actual torque and the simulated torque assuming the same control law and the same tracking trajectory. This non linear least squares problem dramatically is simplified using the inverse model to calculate the simulated torque. This method is validated on the single degree of freedom haptic device and the SCARA robot. (author)

  10. The Johnson Space Center Management Information Systems (JSCMIS): An interface for organizational databases

    Science.gov (United States)

    Bishop, Peter C.; Erickson, Lloyd

    1990-01-01

    The Management Information and Decision Support Environment (MIDSE) is a research activity to build and test a prototype of a generic human interface on the Johnson Space Center (JSC) Information Network (CIN). The existing interfaces were developed specifically to support operations rather than the type of data which management could use. The diversity of the many interfaces and their relative difficulty discouraged occasional users from attempting to use them for their purposes. The MIDSE activity approached this problem by designing and building an interface to one JSC data base - the personnel statistics tables of the NASA Personnel and Payroll System (NPPS). The interface was designed against the following requirements: generic (use with any relational NOMAD data base); easy to learn (intuitive operations for new users); easy to use (efficient operations for experienced users); self-documenting (help facility which informs users about the data base structure as well as the operation of the interface); and low maintenance (easy configuration to new applications). A prototype interface entitled the JSC Management Information Systems (JSCMIS) was produced. It resides on CIN/PROFS and is available to JSC management who request it. The interface has passed management review and is ready for early use. Three kinds of data are now available: personnel statistics, personnel register, and plan/actual cost.

  11. Modelling biological invasions: Individual to population scales at interfaces

    KAUST Repository

    Belmonte-Beitia, J.

    2013-10-01

    Extracting the population level behaviour of biological systems from that of the individual is critical in understanding dynamics across multiple scales and thus has been the subject of numerous investigations. Here, the influence of spatial heterogeneity in such contexts is explored for interfaces with a separation of the length scales characterising the individual and the interface, a situation that can arise in applications involving cellular modelling. As an illustrative example, we consider cell movement between white and grey matter in the brain which may be relevant in considering the invasive dynamics of glioma. We show that while one can safely neglect intrinsic noise, at least when considering glioma cell invasion, profound differences in population behaviours emerge in the presence of interfaces with only subtle alterations in the dynamics at the individual level. Transport driven by local cell sensing generates predictions of cell accumulations along interfaces where cell motility changes. This behaviour is not predicted with the commonly used Fickian diffusion transport model, but can be extracted from preliminary observations of specific cell lines in recent, novel, cryo-imaging. Consequently, these findings suggest a need to consider the impact of individual behaviour, spatial heterogeneity and especially interfaces in experimental and modelling frameworks of cellular dynamics, for instance in the characterisation of glioma cell motility. © 2013 Elsevier Ltd.

  12. Modelling biological invasions: Individual to population scales at interfaces

    KAUST Repository

    Belmonte-Beitia, J.; Woolley, T.E.; Scott, J.G.; Maini, P.K.; Gaffney, E.A.

    2013-01-01

    Extracting the population level behaviour of biological systems from that of the individual is critical in understanding dynamics across multiple scales and thus has been the subject of numerous investigations. Here, the influence of spatial heterogeneity in such contexts is explored for interfaces with a separation of the length scales characterising the individual and the interface, a situation that can arise in applications involving cellular modelling. As an illustrative example, we consider cell movement between white and grey matter in the brain which may be relevant in considering the invasive dynamics of glioma. We show that while one can safely neglect intrinsic noise, at least when considering glioma cell invasion, profound differences in population behaviours emerge in the presence of interfaces with only subtle alterations in the dynamics at the individual level. Transport driven by local cell sensing generates predictions of cell accumulations along interfaces where cell motility changes. This behaviour is not predicted with the commonly used Fickian diffusion transport model, but can be extracted from preliminary observations of specific cell lines in recent, novel, cryo-imaging. Consequently, these findings suggest a need to consider the impact of individual behaviour, spatial heterogeneity and especially interfaces in experimental and modelling frameworks of cellular dynamics, for instance in the characterisation of glioma cell motility. © 2013 Elsevier Ltd.

  13. ITER plasma safety interface models and assessments

    International Nuclear Information System (INIS)

    Uckan, N.A.; Bartels, H-W.; Honda, T.; Amano, T.; Boucher, D.; Post, D.; Wesley, J.

    1996-01-01

    Physics models and requirements to be used as a basis for safety analysis studies are developed and physics results motivated by safety considerations are presented for the ITER design. Physics specifications are provided for enveloping plasma dynamic events for Category I (operational event), Category II (likely event), and Category III (unlikely event). A safety analysis code SAFALY has been developed to investigate plasma anomaly events. The plasma response to ex-vessel component failure and machine response to plasma transients are considered

  14. SatisFactory Common Information Data Exchange Model

    OpenAIRE

    CERTH

    2016-01-01

    This deliverable defines the Common Information Data Exchange Model (CIDEM). The aim of CIDEM is to provide a model of information elements (e.g. concepts, even, relations, interfaces) used for information exchange between components as well as for modelling work performed by other tasks (e.g. knowledge models to support human resources optimization). The CIDEM definition is considered as a shared vocabulary that enables to address the information needs for the SatisFactory framework components.

  15. EPES information depth for an overlayer/substrate system with a diffuse interface

    International Nuclear Information System (INIS)

    Zommer, L.

    2009-01-01

    The information depth (ID) of elastic peak electron spectroscopy (EPES) was considered for an overlayer/substrate system with a diffuse interface. The interface was assumed to have an exponential concentration profile. The paradox previously found by Zommer and Jablonski for the Rh/Al and Al/Rh systems with sharp interfaces also occurs for these systems with diffuse interfaces. We compared IDs for diffuse and sharp interfaces. Deviations between the IDs depend on the interface width, overlayer thickness, and selected system for a given primary energy (here 2000 eV). The deviations for the Rh/Al and Al/Rh systems differ profoundly. These results are of importance when interpreting EPES measurements of layered system

  16. Modelling of plug and play interface for energy router based on IEC61850

    Science.gov (United States)

    Shi, Y. F.; Yang, F.; Gan, L.; He, H. L.

    2017-11-01

    Under the background of the “Internet Plus”, as the energy internet infrastructure equipment, energy router will be widely developed. The IEC61850 standard is the only universal standard in the field of power system automation which realizes the standardization of engineering operation of intelligent substation. To eliminate the lack of International unified standard for communication of energy router, this paper proposes to apply IEC61850 to plug and play interface and establishes the plug and play interface information model and information transfer services. This paper provides a research approach for the establishment of energy router communication standards, and promotes the development of energy router.

  17. Aeronautical Information Service–General Aviation Pilots interface in digital era

    Directory of Open Access Journals (Sweden)

    Roman Matyáš

    2016-04-01

    Full Text Available Modern technologies and portable devices are part of our everyday lives almost two decades. This article describes how Aeronautical Information Service providers in Central Europe utilize modern technologies in the communication interface with general aviation pilots.

  18. Modelling of Transport Phenomena at Cement Matrix—Aggregate Interfaces

    DEFF Research Database (Denmark)

    van Breugel, Klaas; Koenders, Eddie; Ye, Guang

    2004-01-01

    The performance of a heterogeneous material like concrete is largely determined by the many interfaces in this material. This contribution focuses on the potential of numerical simulation models to investigate the character of the matrix-aggregate interfacial zone and to simulate hydration-induce...

  19. An enriched cohesive zone model for delamination in brittle interfaces

    NARCIS (Netherlands)

    Samimi, M.; Dommelen, van J.A.W.; Geers, M.G.D.

    2009-01-01

    Application of standard cohesive zone models in a finite element framework to simulate delamination in brittle interfaces may trigger non-smooth load-displacement responses that lead to the failure of iterative solution procedures. This non-smoothness is an artifact of the discretization; and hence

  20. Modeling charge transfer at organic donor-acceptor semiconductor interfaces

    NARCIS (Netherlands)

    Cakir, Deniz; Bokdam, Menno; de Jong, Machiel Pieter; Fahlman, M.; Brocks, G.

    2012-01-01

    We develop an integer charge transfer model for the potential steps observed at interfaces between donor and acceptor molecular semiconductors. The potential step can be expressed as the difference between the Fermi energy pinning levels of electrons on the acceptor material and holes on the donor

  1. Using cognitive modeling to improve the man-machine interface

    International Nuclear Information System (INIS)

    Newton, R.A.; Zyduck, R.C.; Johnson, D.R.

    1982-01-01

    A group of utilities from the Westinghouse Owners Group was formed in early 1980 to examine the interface requirements and to determine how they could be implemented. The products available from the major vendors were examined early in 1980 and judged not to be completely applicable. The utility group then decided to develop its own specifications for a Safety Assessment System (SAS) and, later in 1980, contracted with a company to develop the system, prepare the software and demonstrate the system on a simulator. The resulting SAS is a state-of-the-art system targeted for implementation on pressurized water reactor nuclear units. It has been designed to provide control room operators with centralized and easily understandable information from a computer-based data and display system. This paper gives an overview of the SAS plus a detailed description of one of its functional areas - called AIDS. The AIDS portion of SAS is an advanced concept which uses cognitive modeling of the operator as the basis for its design

  2. First-principles modeling of magnetic misfit interfaces

    KAUST Repository

    Grytsyuk, Sergiy; Schwingenschlö gl, Udo

    2013-01-01

    We investigate the structural and magnetic properties of interfaces with large lattice mismatch, choosing Pt/Co and Au/Co as prototypes. For our first-principles calculations, we reduce the lattice mismatch to 0.2% by constructing Moiré supercells. Our results show that the roughness and atomic density, and thus the magnetic properties, depend strongly on the substrate and thickness of the Co slab. An increasing thickness leads to the formation of a Co transition layer at the interface, especially for Pt/Co due to strong Pt-Co interaction. A Moiré supercell with a transition layer is found to reproduce the main experimental findings and thus turns out to be the appropriate model for simulating magnetic misfit interfaces.

  3. First-principles modeling of magnetic misfit interfaces

    KAUST Repository

    Grytsiuk, Sergii

    2013-08-16

    We investigate the structural and magnetic properties of interfaces with large lattice mismatch, choosing Pt/Co and Au/Co as prototypes. For our first-principles calculations, we reduce the lattice mismatch to 0.2% by constructing Moiré supercells. Our results show that the roughness and atomic density, and thus the magnetic properties, depend strongly on the substrate and thickness of the Co slab. An increasing thickness leads to the formation of a Co transition layer at the interface, especially for Pt/Co due to strong Pt-Co interaction. A Moiré supercell with a transition layer is found to reproduce the main experimental findings and thus turns out to be the appropriate model for simulating magnetic misfit interfaces.

  4. Finding and Exploring Health Information with a Slider-Based User Interface.

    Science.gov (United States)

    Pang, Patrick Cheong-Iao; Verspoor, Karin; Pearce, Jon; Chang, Shanton

    2016-01-01

    Despite the fact that search engines are the primary channel to access online health information, there are better ways to find and explore health information on the web. Search engines are prone to problems when they are used to find health information. For instance, users have difficulties in expressing health scenarios with appropriate search keywords, search results are not optimised for medical queries, and the search process does not account for users' literacy levels and reading preferences. In this paper, we describe our approach to addressing these problems by introducing a novel design using a slider-based user interface for discovering health information without the need for precise search keywords. The user evaluation suggests that the interface is easy to use and able to assist users in the process of discovering new information. This study demonstrates the potential value of adopting slider controls in the user interface of health websites for navigation and information discovery.

  5. Children’s information retrieval: beyond examining search strategies and interfaces

    NARCIS (Netherlands)

    Jochmann-Mannak, Hanna; Huibers, Theo W.C.; Sanders, T.J.M.

    2008-01-01

    The study of children’s information retrieval is still for the greater part untouched territory. Meanwhile, children can become lost in the digital information world, because they are confronted with search interfaces, both designed by and for adults. Most current research on children’s information

  6. Model for Electromagnetic Information Leakage

    OpenAIRE

    Mao Jian; Li Yongmei; Zhang Jiemin; Liu Jinming

    2013-01-01

    Electromagnetic leakage will happen in working information equipments; it could lead to information leakage. In order to discover the nature of information in electromagnetic leakage, this paper combined electromagnetic theory with information theory as an innovative research method. It outlines a systematic model of electromagnetic information leakage, which theoretically describes the process of information leakage, intercept and reproduction based on electromagnetic radiation, and ana...

  7. Information, intelligence, and interface: the pillars of a successful medical information system.

    Science.gov (United States)

    Hadzikadic, M; Harrington, A L; Bohren, B F

    1995-01-01

    This paper addresses three key issues facing developers of clinical and/or research medical information systems. 1. INFORMATION. The basic function of every database is to store information about the phenomenon under investigation. There are many ways to organize information in a computer; however only a few will prove optimal for any real life situation. Computer Science theory has developed several approaches to database structure, with relational theory leading in popularity among end users [8]. Strict conformance to the rules of relational database design rewards the user with consistent data and flexible access to that data. A properly defined database structure minimizes redundancy i.e.,multiple storage of the same information. Redundancy introduces problems when updating a database, since the repeated value has to be updated in all locations--missing even a single value corrupts the whole database, and incorrect reports are produced [8]. To avoid such problems, relational theory offers a formal mechanism for determining the number and content of data files. These files not only preserve the conceptual schema of the application domain, but allow a virtually unlimited number of reports to be efficiently generated. 2. INTELLIGENCE. Flexible access enables the user to harvest additional value from collected data. This value is usually gained via reports defined at the time of database design. Although these reports are indispensable, with proper tools more information can be extracted from the database. For example, machine learning, a sub-discipline of artificial intelligence, has been successfully used to extract knowledge from databases of varying size by uncovering a correlation among fields and records[1-6, 9]. This knowledge, represented in the form of decision trees, production rules, and probabilistic networks, clearly adds a flavor of intelligence to the data collection and manipulation system. 3. INTERFACE. Despite the obvious importance of collecting

  8. The Information Seeking Interface with Spatial Icons for the Children Digital-learning Database

    Directory of Open Access Journals (Sweden)

    吳可久、林佳蓉、陳泓均、柯皓仁 Ko-Chiu Wu,Chia-Jung Lin,Hung-Chun Chen,Hao-Ren Ke

    2014-04-01

    Full Text Available In this age of information technology, children must develop the ability to search digital databases.However, the information-seeking behavior and cognitive abilities associated with language and images differ substantially between children and adults. Therefore there is an urgent need foran information-searching interface customized for children. Drawing on the design of computer games, we created a three-dimensional (3D human-computer interface (HCI. Children’s experience playing computer games can therefore inform way-finding and information-seeking behavior inthis spatially-oriented interface. Three types of HCI were developed: a 2D graphic hyperlink (GH,a 3D extended survey (ES, and a 3D extended route (ER. These were tested for efficiency, effectiveness, and time of operation by one-way analysis of variance. Our results indicated that children behave differently on the various interfaces. The proposed HCI is a helpful tool offering children a knowledge map that enables them to search for the information they need. Our results demonstrate that information visualization theory and concept association are topics worthy offurther study in the development of a child-oriented information-seeking interface. pp. 51-65

  9. A general graphical user interface for automatic reliability modeling

    Science.gov (United States)

    Liceaga, Carlos A.; Siewiorek, Daniel P.

    1991-01-01

    Reported here is a general Graphical User Interface (GUI) for automatic reliability modeling of Processor Memory Switch (PMS) structures using a Markov model. This GUI is based on a hierarchy of windows. One window has graphical editing capabilities for specifying the system's communication structure, hierarchy, reconfiguration capabilities, and requirements. Other windows have field texts, popup menus, and buttons for specifying parameters and selecting actions. An example application of the GUI is given.

  10. Impact of familiarity on information complexity in human-computer interfaces

    Directory of Open Access Journals (Sweden)

    Bakaev Maxim

    2016-01-01

    Full Text Available A quantitative measure of information complexity remains very much desirable in HCI field, since it may aid in optimization of user interfaces, especially in human-computer systems for controlling complex objects. Our paper is dedicated to exploration of subjective (subject-depended aspect of the complexity, conceptualized as information familiarity. Although research of familiarity in human cognition and behaviour is done in several fields, the accepted models in HCI, such as Human Processor or Hick-Hyman’s law do not generally consider this issue. In our experimental study the subjects performed search and selection of digits and letters, whose familiarity was conceptualized as frequency of occurrence in numbers and texts. The analysis showed significant effect of information familiarity on selection time and throughput in regression models, although the R2 values were somehow low. Still, we hope that our results might aid in quantification of information complexity and its further application for optimizing interaction in human-machine systems.

  11. Model-driven Instrumentation of graphical user interfaces.

    OpenAIRE

    Funk, M.; Hoyer, P.; Link, S.

    2009-01-01

    In today's continuously changing markets newly developed products often do not meet the demands and expectations of customers. Research on this problem identified a large gap between developer and user expectations. Approaches to bridge this gap are to provide the developers with better information on product usage and to create a fast feedback cycle that helps tackling usage problems. Therefore, the user interface of the product, the central point of human-computer interaction, has to be ins...

  12. Interface information transfer between non-matching, nonconforming interfaces using radial basis function interpolation

    CSIR Research Space (South Africa)

    Bogaers, Alfred EJ

    2016-10-01

    Full Text Available words, gB = [ φBA PB ] [ MAA PA P TA 0 ]−1 [ gA 0 ] . (15) NAME: DEFINITION C0 compactly supported piecewise polynomial (C0): (1− (||x|| /r))2+ C2 compactly supported piecewise polynomial (C2): (1− (||x|| /r))4+ (4 (||x|| /r) + 1) Thin-plate spline (TPS... a numerical comparison to Kriging and the moving least-squares method, see Krishnamurthy [16]). RBF interpolation is based on fitting a series of splines, or basis functions to interpolate information from one point cloud to another. Let us assume we...

  13. Information Retrieval Models

    NARCIS (Netherlands)

    Hiemstra, Djoerd; Göker, Ayse; Davies, John

    2009-01-01

    Many applications that handle information on the internet would be completely inadequate without the support of information retrieval technology. How would we find information on the world wide web if there were no web search engines? How would we manage our email without spam filtering? Much of the

  14. An information theory based approach for quantitative evaluation of man-machine interface complexity

    International Nuclear Information System (INIS)

    Kang, Hyun Gook

    1999-02-01

    In complex and high-risk work conditions, especially such as in nuclear power plants, human understanding of the plant is highly cognitive and thus largely dependent on the effectiveness of the man-machine interface system. In order to provide more effective and reliable operating conditions for future nuclear power plants, developing more credible and easy to use evaluation methods will afford great help in designing interface systems in a more efficient manner. In this study, in order to analyze the human-machine interactions, I propose the Human-processor Communication(HPC) model which is based on the information flow concept. It identifies the information flow around a human-processor. Information flow has two aspects: appearance and content. Based on the HPC model, I propose two kinds of measures for evaluating a user interface from the viewpoint of these two aspects of information flow. They measure the communicative complexity of each aspect. In this study, for the evaluation of the aspect of appearance, I propose three complexity measures: Operation Complexity, Transition Complexity, and Screen Complexity. Each one of these measures has its own physical meaning. Two experiments carried out in this work support the utility of these measures. The result of the quiz game experiment shows that as the complexity of task context increases, the usage of the interface system becomes more complex. The experimental results of the three example systems(digital view, LDP style view and hierarchy view) show the utility of the proposed complexity measures. In this study, for the evaluation of the aspect of content, I propose the degree of informational coincidence, R (K, P) as a measure for the usefulness of an alarm-processing system. It is designed to perform user-oriented evaluation based on the informational entropy concept. It will be especially useful inearly design phase because designers can estimate the usefulness of an alarm system by short calculations instead

  15. An information theory based approach for quantitative evaluation of man-machine interface complexity

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Hyun Gook

    1999-02-15

    In complex and high-risk work conditions, especially such as in nuclear power plants, human understanding of the plant is highly cognitive and thus largely dependent on the effectiveness of the man-machine interface system. In order to provide more effective and reliable operating conditions for future nuclear power plants, developing more credible and easy to use evaluation methods will afford great help in designing interface systems in a more efficient manner. In this study, in order to analyze the human-machine interactions, I propose the Human-processor Communication(HPC) model which is based on the information flow concept. It identifies the information flow around a human-processor. Information flow has two aspects: appearance and content. Based on the HPC model, I propose two kinds of measures for evaluating a user interface from the viewpoint of these two aspects of information flow. They measure the communicative complexity of each aspect. In this study, for the evaluation of the aspect of appearance, I propose three complexity measures: Operation Complexity, Transition Complexity, and Screen Complexity. Each one of these measures has its own physical meaning. Two experiments carried out in this work support the utility of these measures. The result of the quiz game experiment shows that as the complexity of task context increases, the usage of the interface system becomes more complex. The experimental results of the three example systems(digital view, LDP style view and hierarchy view) show the utility of the proposed complexity measures. In this study, for the evaluation of the aspect of content, I propose the degree of informational coincidence, R (K, P) as a measure for the usefulness of an alarm-processing system. It is designed to perform user-oriented evaluation based on the informational entropy concept. It will be especially useful inearly design phase because designers can estimate the usefulness of an alarm system by short calculations instead

  16. Automatic geospatial information Web service composition based on ontology interface matching

    Science.gov (United States)

    Xu, Xianbin; Wu, Qunyong; Wang, Qinmin

    2008-10-01

    With Web services technology the functions of WebGIS can be presented as a kind of geospatial information service, and helped to overcome the limitation of the information-isolated situation in geospatial information sharing field. Thus Geospatial Information Web service composition, which conglomerates outsourced services working in tandem to offer value-added service, plays the key role in fully taking advantage of geospatial information services. This paper proposes an automatic geospatial information web service composition algorithm that employed the ontology dictionary WordNet to analyze semantic distances among the interfaces. Through making matching between input/output parameters and the semantic meaning of pairs of service interfaces, a geospatial information web service chain can be created from a number of candidate services. A practice of the algorithm is also proposed and the result of it shows the feasibility of this algorithm and the great promise in the emerging demand for geospatial information web service composition.

  17. A Graphical User Interface to Generalized Linear Models in MATLAB

    Directory of Open Access Journals (Sweden)

    Peter Dunn

    1999-07-01

    Full Text Available Generalized linear models unite a wide variety of statistical models in a common theoretical framework. This paper discusses GLMLAB-software that enables such models to be fitted in the popular mathematical package MATLAB. It provides a graphical user interface to the powerful MATLAB computational engine to produce a program that is easy to use but with many features, including offsets, prior weights and user-defined distributions and link functions. MATLAB's graphical capacities are also utilized in providing a number of simple residual diagnostic plots.

  18. Analysis of a diffuse interface model of multispecies tumor growth

    Czech Academy of Sciences Publication Activity Database

    Dai, M.; Feireisl, Eduard; Rocca, E.; Schimperna, G.; Schonbek, M.E.

    2017-01-01

    Roč. 30, č. 4 (2017), s. 1639-1658 ISSN 0951-7715 EU Projects: European Commission(XE) 320078 - MATHEF Institutional support: RVO:67985840 Keywords : Cahn-Hilliard equation * Darcy law * diffuse interface model Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 1.767, year: 2016 http://iopscience.iop.org/article/10.1088/1361-6544/aa6063/meta

  19. Providing Information about Reading Lists via a Dashboard Interface

    Directory of Open Access Journals (Sweden)

    Dr Jason Cooper

    2013-01-01

    Full Text Available As developers of the open source LORLS Resource/Reading List Management System we have developed a dashboard to better support academic staffs’ understanding of how their students use reading lists. This dashboard provides both graphical and tabulated information drawn from LORLS and the Aleph Integrated Library System. Development of the dashboard required changes to back-end functionality of LORLS such as logging views of reading lists and caching of loan data. Changes to the front end included the use of HTML5 canvas elements to generate pie charts and line graphs. Recently launched to academic staff at Loughborough University, the dashboard has already garnered much praise. It is hoped that further development of the dashboard will provide even more support for academics in the compilation of their reading lists.

  20. Comparing two anesthesia information management system user interfaces: a usability evaluation.

    Science.gov (United States)

    Wanderer, Jonathan P; Rao, Anoop V; Rothwell, Sarah H; Ehrenfeld, Jesse M

    2012-11-01

    Anesthesia information management systems (AIMS) have been developed by multiple vendors and are deployed in thousands of operating rooms around the world, yet not much is known about measuring and improving AIMS usability. We developed a methodology for evaluating AIMS usability in a low-fidelity simulated clinical environment and used it to compare an existing user interface with a revised version. We hypothesized that the revised user interface would be more useable. In a low-fidelity simulated clinical environment, twenty anesthesia providers documented essential anesthetic information for the start of the case using both an existing and a revised user interface. Participants had not used the revised user interface previously and completed a brief training exercise prior to the study task. All participants completed a workload assessment and a satisfaction survey. All sessions were recorded. Multiple usability metrics were measured. The primary outcome was documentation accuracy. Secondary outcomes were perceived workload, number of documentation steps, number of user interactions, and documentation time. The interfaces were compared and design problems were identified by analyzing recorded sessions and survey results. Use of the revised user interface was shown to improve documentation accuracy from 85.1% to 92.4%, a difference of 7.3% (95% confidence interval [CI] for the difference 1.8 to 12.7). The revised user interface decreased the number of user interactions by 6.5 for intravenous documentation (95% CI 2.9 to 10.1) and by 16.1 for airway documentation (95% CI 11.1 to 21.1). The revised user interface required 3.8 fewer documentation steps (95% CI 2.3 to 5.4). Airway documentation time was reduced by 30.5 seconds with the revised workflow (95% CI 8.5 to 52.4). There were no significant time differences noted in intravenous documentation or in total task time. No difference in perceived workload was found between the user interfaces. Two user interface

  1. Laminated materials with plastic interfaces: modeling and calculation

    International Nuclear Information System (INIS)

    Sandino Aquino de los Ríos, Gilberto; Castañeda Balderas, Rubén; Diaz Diaz, Alberto; Duong, Van Anh; Chataigner, Sylvain; Caron, Jean-François; Ehrlacher, Alain; Foret, Gilles

    2009-01-01

    In this paper, a model of laminated plates called M4-5N and validated in a previous paper is modified in order to take into account interlaminar plasticity by means of displacement discontinuities at the interfaces. These discontinuities are calculated by adapting a 3D plasticity model. In order to compute the model, a Newton–Raphson-like method is employed. In this method, two sub-problems are considered: one is linear and the other is non-linear. In the linear problem the non-linear equations of the model are linearized and the calculations are performed by making use of a finite element software. By iterating the resolution of each sub-problem, one obtains after convergence the solution of the global problem. The model is then applied to the problem of a double lap, adhesively bonded joint subjected to a tensile load. The adhesive layer is modeled by an elastic–plastic interface. The results of the M4-5N model are compared with those of a commercial finite element software. A good agreement between the two computation techniques is obtained and validates the non-linear calculations proposed in this paper. Finally, the numerical tool and a delamination criterion are applied to predict delamination onset in composite laminates

  2. Multidimensional Models of Information Need

    OpenAIRE

    Yun-jie (Calvin) Xu; Kai Huang (Joseph) Tan

    2009-01-01

    User studies in information science have recognised relevance as a multidimensional construct. An implication of multidimensional relevance is that a user's information need should be modeled by multiple data structures to represent different relevance dimensions. While the extant literature has attempted to model multiple dimensions of a user's information need, the fundamental assumption that a multidimensional model is better than a uni-dimensional model has not been addressed. This study ...

  3. Improving the interface between informal carers and formal health and social services: a qualitative study.

    Science.gov (United States)

    McPherson, K M; Kayes, N K; Moloczij, N; Cummins, C

    2014-03-01

    Reports about the impact of caring vary widely, but a consistent finding is that the role is influenced (for better or worse) by how formal services respond to, and work with informal carers and of course the cared for person. We aimed to explore the connection between informal and formal cares and identify how a positive connection or interface might be developed and maintained. We undertook a qualitative descriptive study with focus groups and individual interviews with informal carers, formal care service providers and representatives from carer advocacy groups. Content analysis was used to identify key factors impacting on the interface between informal and formal carers and propose specific recommendations for service development. Community setting including urban and rural areas of New Zealand. Seventy participants (the majority informal carers) took part in 13 focus groups and 22 individual interviews. Four key themes were derived: Quality of care for the care recipient; Knowledge exchange (valuing carer perspectives); One size does not fit all (creating flexible services); and A constant struggle (reducing the burden services add). An optimum interface to address these key areas was proposed. In addition to ensuring quality care for the care recipient, specific structures and processes to support a more positive interface appear warranted if informal carers and services are to work well together. An approach recognising the caring context and carer expertise may decrease the additional burden services contribute, and reduce conflicting information and resultant confusion and/or frustration many carers experience. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Free surface modelling with two-fluid model and reduced numerical diffusion of the interface

    International Nuclear Information System (INIS)

    Strubelj, Luka; Tiselj, Izrok

    2008-01-01

    Full text of publication follows: The free surface flows are successfully modelled with one of existing free surface models, such as: level set method, volume of fluid method (with/without surface reconstruction), front tracking, two-fluid model (two momentum equations) with modified interphase force and others. The main disadvantage of two-fluid model used for simulations of free surface flows is numerical diffusion of the interface, which can be significantly reduced using the method presented in this paper. Several techniques for reduction of numerical diffusion of the interface have been implemented in the volume of fluid model and are based on modified numerical schemes for advection of volume fraction near the interface. The same approach could be used also for two-fluid method, but according to our experience more successful reduction of numerical diffusion of the interface can be achieved with conservative level set method. Within the conservative level set method, continuity equation for volume fraction is solved and after that the numerical diffusion of the interface is reduced in such a way that the thickness of the interface is kept constant during the simulation. Reduction of the interface diffusion can be also called interface sharpening. In present paper the two-fluid model with interface sharpening is validated on Rayleigh-Taylor instability. Under assumptions of isothermal and incompressible flow of two immiscible fluids, we simulated a system with the fluid of higher density located above the fluid of smaller density in two dimensions. Due to gravity in the system, fluid with higher density moves below the fluid with smaller density. Initial condition is not a flat interface between the fluids, but a sine wave with small amplitude, which develops into a mushroom-like structure. Mushroom-like structure in simulation of Rayleigh-Taylor instability later develops to small droplets as result of numerical dispersion of interface (interface sharpening

  5. Behavior of asphaltene model compounds at w/o interfaces.

    Science.gov (United States)

    Nordgård, Erland L; Sørland, Geir; Sjöblom, Johan

    2010-02-16

    Asphaltenes, present in significant amounts in heavy crude oil, contains subfractions capable of stabilizing water-in-oil emulsions. Still, the composition of these subfractions is not known in detail, and the actual mechanism behind emulsion stability is dependent on perceived interfacial concentrations and compositions. This study aims at utilizing polyaromatic surfactants which contains an acidic moiety as model compounds for the surface-active subfraction of asphaltenes. A modified pulse-field gradient (PFG) NMR method has been used to study droplet sizes and stability of emulsions prepared with asphaltene model compounds. The method has been compared to the standard microscopy droplet counting method. Arithmetic and volumetric mean droplet sizes as a function of surfactant concentration and water content clearly showed that the interfacial area was dependent on the available surfactant at the emulsion interface. Adsorption of the model compounds onto hydrophilic silica has been investigated by UV depletion, and minor differences in the chemical structure of the model compounds caused significant differences in the affinity toward this highly polar surface. The cross-sectional areas obtained have been compared to areas from the surface-to-volume ratio found by NMR and gave similar results for one of the two model compounds. The mean molecular area for this compound suggested a tilted geometry of the aromatic core with respect to the interface, which has also been proposed for real asphaltenic samples. The film behavior was further investigated using a liquid-liquid Langmuir trough supporting the ability to form stable interfacial films. This study supports that acidic, or strong hydrogen-bonding fractions, can promote stable water-in-oil emulsion. The use of model compounds opens up for studying emulsion behavior and demulsifier efficiency based on true interfacial concentrations rather than perceived interfaces.

  6. An Efficient User Interface Design for Nursing Information System Based on Integrated Patient Order Information.

    Science.gov (United States)

    Chu, Chia-Hui; Kuo, Ming-Chuan; Weng, Shu-Hui; Lee, Ting-Ting

    2016-01-01

    A user friendly interface can enhance the efficiency of data entry, which is crucial for building a complete database. In this study, two user interfaces (traditional pull-down menu vs. check boxes) are proposed and evaluated based on medical records with fever medication orders by measuring the time for data entry, steps for each data entry record, and the complete rate of each medical record. The result revealed that the time for data entry is reduced from 22.8 sec/record to 3.2 sec/record. The data entry procedures also have reduced from 9 steps in the traditional one to 3 steps in the new one. In addition, the completeness of medical records is increased from 20.2% to 98%. All these results indicate that the new user interface provides a more user friendly and efficient approach for data entry than the traditional interface.

  7. Just Another Gibbs Additive Modeler: Interfacing JAGS and mgcv

    Directory of Open Access Journals (Sweden)

    Simon N. Wood

    2016-12-01

    Full Text Available The BUGS language offers a very flexible way of specifying complex statistical models for the purposes of Gibbs sampling, while its JAGS variant offers very convenient R integration via the rjags package. However, including smoothers in JAGS models can involve some quite tedious coding, especially for multivariate or adaptive smoothers. Further, if an additive smooth structure is required then some care is needed, in order to centre smooths appropriately, and to find appropriate starting values. R package mgcv implements a wide range of smoothers, all in a manner appropriate for inclusion in JAGS code, and automates centring and other smooth setup tasks. The purpose of this note is to describe an interface between mgcv and JAGS, based around an R function, jagam, which takes a generalized additive model (GAM as specified in mgcv and automatically generates the JAGS model code and data required for inference about the model via Gibbs sampling. Although the auto-generated JAGS code can be run as is, the expectation is that the user would wish to modify it in order to add complex stochastic model components readily specified in JAGS. A simple interface is also provided for visualisation and further inference about the estimated smooth components using standard mgcv functionality. The methods described here will be un-necessarily inefficient if all that is required is fully Bayesian inference about a standard GAM, rather than the full flexibility of JAGS. In that case the BayesX package would be more efficient.

  8. Transforming Collaborative Process Models into Interface Process Models by Applying an MDA Approach

    Science.gov (United States)

    Lazarte, Ivanna M.; Chiotti, Omar; Villarreal, Pablo D.

    Collaborative business models among enterprises require defining collaborative business processes. Enterprises implement B2B collaborations to execute these processes. In B2B collaborations the integration and interoperability of processes and systems of the enterprises are required to support the execution of collaborative processes. From a collaborative process model, which describes the global view of the enterprise interactions, each enterprise must define the interface process that represents the role it performs in the collaborative process in order to implement the process in a Business Process Management System. Hence, in this work we propose a method for the automatic generation of the interface process model of each enterprise from a collaborative process model. This method is based on a Model-Driven Architecture to transform collaborative process models into interface process models. By applying this method, interface processes are guaranteed to be interoperable and defined according to a collaborative process.

  9. Modeling of the atomic and electronic structures of interfaces

    International Nuclear Information System (INIS)

    Sutton, A.P.

    1988-01-01

    Recent tight binding and Car-Parrinello simulations of grain boundaries in semiconductors are reviewed. A critique is given of some models of embrittlement that are based on electronic structure considerations. The structural unit model of grain boundary structure is critically assessed using some results for mixed tilt and twist grain boundaries. A new method of characterizing interfacial structure in terms of bond angle distribution functions is described. A new formulation of thermodynamic properties of interfaces is presented which focusses on the local atomic environment. Effective, temperature dependent N-body atomic interactions are derived for studying grain boundary structure at elevated temperature

  10. Sensitivity, Error and Uncertainty Quantification: Interfacing Models at Different Scales

    International Nuclear Information System (INIS)

    Krstic, Predrag S.

    2014-01-01

    Discussion on accuracy of AMO data to be used in the plasma modeling codes for astrophysics and nuclear fusion applications, including plasma-material interfaces (PMI), involves many orders of magnitude of energy, spatial and temporal scales. Thus, energies run from tens of K to hundreds of millions of K, temporal and spatial scales go from fs to years and from nm’s to m’s and more, respectively. The key challenge for the theory and simulation in this field is the consistent integration of all processes and scales, i.e. an “integrated AMO science” (IAMO). The principal goal of the IAMO science is to enable accurate studies of interactions of electrons, atoms, molecules, photons, in many-body environment, including complex collision physics of plasma-material interfaces, leading to the best decisions and predictions. However, the accuracy requirement for a particular data strongly depends on the sensitivity of the respective plasma modeling applications to these data, which stresses a need for immediate sensitivity analysis feedback of the plasma modeling and material design communities. Thus, the data provision to the plasma modeling community is a “two-way road” as long as the accuracy of the data is considered, requiring close interactions of the AMO and plasma modeling communities.

  11. Evaluation of a novel Conjunctive Exploratory Navigation Interface for consumer health information: a crowdsourced comparative study.

    Science.gov (United States)

    Cui, Licong; Carter, Rebecca; Zhang, Guo-Qiang

    2014-02-10

    Numerous consumer health information websites have been developed to provide consumers access to health information. However, lookup search is insufficient for consumers to take full advantage of these rich public information resources. Exploratory search is considered a promising complementary mechanism, but its efficacy has never before been rigorously evaluated for consumer health information retrieval interfaces. This study aims to (1) introduce a novel Conjunctive Exploratory Navigation Interface (CENI) for supporting effective consumer health information retrieval and navigation, and (2) evaluate the effectiveness of CENI through a search-interface comparative evaluation using crowdsourcing with Amazon Mechanical Turk (AMT). We collected over 60,000 consumer health questions from NetWellness, one of the first consumer health websites to provide high-quality health information. We designed and developed a novel conjunctive exploratory navigation interface to explore NetWellness health questions with health topics as dynamic and searchable menus. To investigate the effectiveness of CENI, we developed a second interface with keyword-based search only. A crowdsourcing comparative study was carefully designed to compare three search modes of interest: (A) the topic-navigation-based CENI, (B) the keyword-based lookup interface, and (C) either the most commonly available lookup search interface with Google, or the resident advanced search offered by NetWellness. To compare the effectiveness of the three search modes, 9 search tasks were designed with relevant health questions from NetWellness. Each task included a rating of difficulty level and questions for validating the quality of answers. Ninety anonymous and unique AMT workers were recruited as participants. Repeated-measures ANOVA analysis of the data showed the search modes A, B, and C had statistically significant differences among their levels of difficulty (Pconsumer health information retrieval and

  12. Interface Management for a NASA Flight Project Using Model-Based Systems Engineering (MBSE)

    Science.gov (United States)

    Vipavetz, Kevin; Shull, Thomas A.; Infeld, Samatha; Price, Jim

    2016-01-01

    The goal of interface management is to identify, define, control, and verify interfaces; ensure compatibility; provide an efficient system development; be on time and within budget; while meeting stakeholder requirements. This paper will present a successful seven-step approach to interface management used in several NASA flight projects. The seven-step approach using Model Based Systems Engineering will be illustrated by interface examples from the Materials International Space Station Experiment-X (MISSE-X) project. The MISSE-X was being developed as an International Space Station (ISS) external platform for space environmental studies, designed to advance the technology readiness of materials and devices critical for future space exploration. Emphasis will be given to best practices covering key areas such as interface definition, writing good interface requirements, utilizing interface working groups, developing and controlling interface documents, handling interface agreements, the use of shadow documents, the importance of interface requirement ownership, interface verification, and product transition.

  13. Failure Propagation Modeling and Analysis via System Interfaces

    Directory of Open Access Journals (Sweden)

    Lin Zhao

    2016-01-01

    Full Text Available Safety-critical systems must be shown to be acceptably safe to deploy and use in their operational environment. One of the key concerns of developing safety-critical systems is to understand how the system behaves in the presence of failures, regardless of whether that failure is triggered by the external environment or caused by internal errors. Safety assessment at the early stages of system development involves analysis of potential failures and their consequences. Increasingly, for complex systems, model-based safety assessment is becoming more widely used. In this paper we propose an approach for safety analysis based on system interface models. By extending interaction models on the system interface level with failure modes as well as relevant portions of the physical system to be controlled, automated support could be provided for much of the failure analysis. We focus on fault modeling and on how to compute minimal cut sets. Particularly, we explore state space reconstruction strategy and bounded searching technique to reduce the number of states that need to be analyzed, which remarkably improves the efficiency of cut sets searching algorithm.

  14. User interface using a 3D model for video surveillance

    Science.gov (United States)

    Hata, Toshihiko; Boh, Satoru; Tsukada, Akihiro; Ozaki, Minoru

    1998-02-01

    These days fewer people, who must carry out their tasks quickly and precisely, are required in industrial surveillance and monitoring applications such as plant control or building security. Utilizing multimedia technology is a good approach to meet this need, and we previously developed Media Controller, which is designed for the applications and provides realtime recording and retrieval of digital video data in a distributed environment. In this paper, we propose a user interface for such a distributed video surveillance system in which 3D models of buildings and facilities are connected to the surveillance video. A novel method of synchronizing camera field data with each frame of a video stream is considered. This method records and reads the camera field data similarity to the video data and transmits it synchronously with the video stream. This enables the user interface to have such useful functions as comprehending the camera field immediately and providing clues when visibility is poor, for not only live video but also playback video. We have also implemented and evaluated the display function which makes surveillance video and 3D model work together using Media Controller with Java and Virtual Reality Modeling Language employed for multi-purpose and intranet use of 3D model.

  15. Facial pressure zones of an oronasal interface for noninvasive ventilation: a computer model analysis

    Directory of Open Access Journals (Sweden)

    Luana Souto Barros

    2014-12-01

    Full Text Available OBJECTIVE: To study the effects of an oronasal interface (OI for noninvasive ventilation, using a three-dimensional (3D computational model with the ability to simulate and evaluate the main pressure zones (PZs of the OI on the human face. METHODS: We used a 3D digital model of the human face, based on a pre-established geometric model. The model simulated soft tissues, skull, and nasal cartilage. The geometric model was obtained by 3D laser scanning and post-processed for use in the model created, with the objective of separating the cushion from the frame. A computer simulation was performed to determine the pressure required in order to create the facial PZs. We obtained descriptive graphical images of the PZs and their intensity. RESULTS: For the graphical analyses of each face-OI model pair and their respective evaluations, we ran 21 simulations. The computer model identified several high-impact PZs in the nasal bridge and paranasal regions. The variation in soft tissue depth had a direct impact on the amount of pressure applied (438-724 cmH2O. CONCLUSIONS: The computer simulation results indicate that, in patients submitted to noninvasive ventilation with an OI, the probability of skin lesion is higher in the nasal bridge and paranasal regions. This methodology could increase the applicability of biomechanical research on noninvasive ventilation interfaces, providing the information needed in order to choose the interface that best minimizes the risk of skin lesion.

  16. Design and implementation of an interface supporting information navigation tasks using hyperbolic visualization technique

    International Nuclear Information System (INIS)

    Lee, J. K.; Choi, I. K.; Jun, S. H.; Park, K. O.; Seo, Y. S.; Seo, S. M.; Koo, I. S.; Jang, M. H.

    2001-01-01

    Visualization techniques can be used to support operator's information navigation tasks on the system especially consisting of an enormous volume of information, such as operating information display system and computerized operating procedure system in advanced control room of nuclear power plants. By offering an easy understanding environment of hierarchially structured information, these techniques can reduce the operator's supplementary navigation task load. As a result of that, operators can pay more attention on the primary tasks and ultimately improve the cognitive task performance, in this thesis, an interface was designed and implemented using hyperbolic visualization technique, which is expected to be applied as a means of optimizing operator's information navigation tasks

  17. Design and usability study of an iconic user interface to ease information retrieval of medical guidelines.

    Science.gov (United States)

    Griffon, Nicolas; Kerdelhué, Gaétan; Hamek, Saliha; Hassler, Sylvain; Boog, César; Lamy, Jean-Baptiste; Duclos, Catherine; Venot, Alain; Darmoni, Stéfan J

    2014-10-01

    Doc'CISMeF (DC) is a semantic search engine used to find resources in CISMeF-BP, a quality controlled health gateway, which gathers guidelines available on the internet in French. Visualization of Concepts in Medicine (VCM) is an iconic language that may ease information retrieval tasks. This study aimed to describe the creation and evaluation of an interface integrating VCM in DC in order to make this search engine much easier to use. Focus groups were organized to suggest ways to enhance information retrieval tasks using VCM in DC. A VCM interface was created and improved using the ergonomic evaluation approach. 20 physicians were recruited to compare the VCM interface with the non-VCM one. Each evaluator answered two different clinical scenarios in each interface. The ability and time taken to select a relevant resource were recorded and compared. A usability analysis was performed using the System Usability Scale (SUS). The VCM interface contains a filter based on icons, and icons describing each resource according to focus group recommendations. Some ergonomic issues were resolved before evaluation. Use of VCM significantly increased the success of information retrieval tasks (OR=11; 95% CI 1.4 to 507). Nonetheless, it took significantly more time to find a relevant resource with VCM interface (101 vs 65 s; p=0.02). SUS revealed 'good' usability with an average score of 74/100. VCM was successfully implemented in DC as an option. It increased the success rate of information retrieval tasks, despite requiring slightly more time, and was well accepted by end-users. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  18. Analysis of model interfaces for Li ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Seemayer, Andreas; Pareek, Aparna; Vogel, Dirk; Rohwerder, Michael; Renner, Frank [Max-Planck-Institut fuer Eisenforschung GmbH, Duesseldorf (Germany)

    2010-07-01

    Lithium ion batteries are the most promising power source for future electromobility applications. Therefore a better understanding of the basic processes in Lithium ion batteries is needed. Especially nowadays research projects aim to improve real systems in terms of higher rate capability, cycle life, safety and operating temperature. Following the surface science approach we focus on the investigation of single crystal model systems of possible anode and cathode materials and electrode/solid electrolyte interfaces prepared by electrochemical deposition, molecular beam epitaxy or pulsed laser deposition.

  19. PC-based Multiple Information System Interface (PC/MISI) design plan

    Science.gov (United States)

    Dominick, Wayne D. (Editor); Hall, Philip P.

    1985-01-01

    The general design plan for the implementation of a common user interface to multiple remote information systems within a microcomputer-based environment is presented. The intent is to provide a framework for the development of detailed specifications which will be used as guidelines for the actual development of the system.

  20. PC-based Multiple Information System Interface (PC/MISI) detailed design and implementation plan

    Science.gov (United States)

    Dominick, Wayne D. (Editor); Hall, Philip P.

    1985-01-01

    The design plan for the personal computer multiple information system interface (PC/MISI) project is discussed. The document is intended to be used as a blueprint for the implementation of the system. Each component is described in the detail necessary to allow programmers to implement the system. A description of the system data flow and system file structures is given.

  1. Information Practices and User Interfaces: Student Use of an iOS Application in Special Education

    Science.gov (United States)

    Demmans Epp, Carrie; McEwen, Rhonda; Campigotto, Rachelle; Moffatt, Karyn

    2016-01-01

    A framework connecting concepts from user interface design with those from information studies is applied in a study that integrated a location-aware mobile application into two special education classes at different schools; this application had two support modes (one general and one location specific). The five-month study revealed several…

  2. Children searching information on the Internet : Performance on children's interfaces compared to Google

    NARCIS (Netherlands)

    Jochmann-Mannak, Hanna; Huibers, Theo W.C.; Lentz, Leo; Sanders, Ted

    2010-01-01

    Children frequently make use of the Internet to search for information. However, research shows that children experience many problems with searching and browsing the web. The last decade numerous search environments have been developed, especially for children. Do these search interfaces support

  3. Conceptual models of information processing

    Science.gov (United States)

    Stewart, L. J.

    1983-01-01

    The conceptual information processing issues are examined. Human information processing is defined as an active cognitive process that is analogous to a system. It is the flow and transformation of information within a human. The human is viewed as an active information seeker who is constantly receiving, processing, and acting upon the surrounding environmental stimuli. Human information processing models are conceptual representations of cognitive behaviors. Models of information processing are useful in representing the different theoretical positions and in attempting to define the limits and capabilities of human memory. It is concluded that an understanding of conceptual human information processing models and their applications to systems design leads to a better human factors approach.

  4. Control of enterprise interfaces for supply chain enterprise modeling

    Energy Technology Data Exchange (ETDEWEB)

    Interrante, L.D. [Sandia National Labs., Albuquerque, NM (United States); Macfarlane, J.F. [Lawrence Berkeley Lab., CA (United States). Information and Computing Sciences Div.

    1995-04-01

    There is a current trend for manufacturing enterprises in a supply chain of a particular industry to join forces in an attempt to promote efficiencies and improve competitive position. Such alliances occur in the context of specific legal and business agreements such that each enterprise retains a majority of its business and manufacturing information as private and shares other information with its trading partners. Shared information may include enterprise demand projections, capacities, finished goods inventories, and aggregate production schedules. Evidence of the trend toward information sharing includes the recent emphases on vendor-managed inventories, quick response, and Electronic Data Interchange (EDI) standards. The increased competition brought on by the global marketplace is driving industries to consider the advantages of trading partner agreements. Aggregate-level forecasts, supply-chain production smoothing, and aggregate-level inventory policies can reduce holding costs, record-keeping overhead, and lead time in product development. The goal of this research is to orchestrate information exchange among trading partners to allow for aggregate-level analysis to enhance supply chain efficiency. The notion of Enterprise Interface Control (EIC) is introduced as a means of accomplishing this end.

  5. Dynamic Model of Contact Interface between Stator and Rotor

    Directory of Open Access Journals (Sweden)

    ZengHui Zhao

    2013-01-01

    Full Text Available Based on the equivalent principle, a linear spring contact model was established for the friction layer between stator and rotor. Different contact conditions were described by a distance index δ. Detailed analysis of the nonlinear contact behavior especially the static and dynamic slipping was carried on using a space-time equation. A contact deflection angle was proposed to quantitatively express the influence of friction force on the output performance. A more precision simulation model was established based on the theoretical analysis, and influences of different preload pressures and elastic modulus Em of friction layer on output performance were analyzed. The results showed the simulation results had very good consistency with experimental results, and the model could well reflect the output characteristics of contact interface.

  6. Electrode-tissues interface: modeling and experimental validation

    International Nuclear Information System (INIS)

    Sawan, M; Laaziri, Y; Mounaim, F; Elzayat, E; Corcos, J; Elhilali, M M

    2007-01-01

    The electrode-tissues interface (ETI) is one of the key issues in implantable devices such as stimulators and sensors. Once the stimulator is implanted, safety and reliability become more and more critical. In this case, modeling and monitoring of the ETI are required. We propose an empirical model for the ETI and a dedicated integrated circuit to measure its corresponding complex impedance. These measurements in the frequency range of 1 Hz to 100 kHz were achieved in acute dog experiments. The model demonstrates a closer fitting with experimental measurements. In addition, a custom monitoring device based on a stimuli current generator has been completed to evaluate the phase shift and voltage across the electrodes and to transmit wirelessly the values to an external controller. This integrated circuit has been fabricated in a CMOS 0.18 μm process, which consumes 4 mW only during measurements and occupies an area of 1 mm 2 . (review article)

  7. The Kinematic Learning Model using Video and Interfaces Analysis

    Science.gov (United States)

    Firdaus, T.; Setiawan, W.; Hamidah, I.

    2017-09-01

    An educator currently in demand to apply the learning to not be separated from the development of technology. Educators often experience difficulties when explaining kinematics material, this is because kinematics is one of the lessons that often relate the concept to real life. Kinematics is one of the courses of physics that explains the cause of motion of an object, Therefore it takes the thinking skills and analytical skills in understanding these symptoms. Technology is one that can bridge between conceptual relationship with real life. A framework of technology-based learning models has been developed using video and interfaces analysis on kinematics concept. By using this learning model, learners will be better able to understand the concept that is taught by the teacher. This learning model is able to improve the ability of creative thinking, analytical skills, and problem-solving skills on the concept of kinematics.

  8. Textual information access statistical models

    CERN Document Server

    Gaussier, Eric

    2013-01-01

    This book presents statistical models that have recently been developed within several research communities to access information contained in text collections. The problems considered are linked to applications aiming at facilitating information access:- information extraction and retrieval;- text classification and clustering;- opinion mining;- comprehension aids (automatic summarization, machine translation, visualization).In order to give the reader as complete a description as possible, the focus is placed on the probability models used in the applications

  9. Microsoft Repository Version 2 and the Open Information Model.

    Science.gov (United States)

    Bernstein, Philip A.; Bergstraesser, Thomas; Carlson, Jason; Pal, Shankar; Sanders, Paul; Shutt, David

    1999-01-01

    Describes the programming interface and implementation of the repository engine and the Open Information Model for Microsoft Repository, an object-oriented meta-data management facility that ships in Microsoft Visual Studio and Microsoft SQL Server. Discusses Microsoft's component object model, object manipulation, queries, and information…

  10. Modeling of semiconductor nanostructures and semiconductor-electrolyte interfaces

    International Nuclear Information System (INIS)

    Birner, Stefan

    2011-01-01

    The main objective of Part I is to give an overview of some of the methods that have been implemented into the nextnano 3 software. Examples are discussed that give insight into doping, strain and mobility. Applications of the single-band Schroedinger equation include three-dimensional superlattices, and a qubit that is manipulated by a magnetic field. Results of the multi-band k.p method are presented for HgTe-CdTe and InAs-GaSb superlattices, and for a SiGe-Si quantum cascade structure. Particular focus is put on a detailed description of the contact block reduction (CBR) method that has been developed within our research group. By means of this approach, quantum transport in the ballistic limit in one, two and three dimensions can be calculated. I provide a very detailed description of the algorithm and present several well documented examples that highlight the key points of this method. Calculating quantum transport in three dimensions is a very challenging task where computationally efficient algorithms - apart from the CBR method - are not available yet. Part II describes the methods that I have implemented into the nextnano 3 software for calculating systems that consist of a combination of semiconductor materials and liquids. These biosensors have a solid-electrolyte interface, and the charges in the solid and in the electrolyte are coupled to each other through the Poisson-Boltzmann equation. I apply this model to a silicon based protein sensor, where I solve the Schroedinger equation together with the Poisson-Boltzmann equation self-consistently, and compare theoretical results with experiment. Furthermore, I have developed a novel approach to model the charge density profiles at semiconductor-electrolyte interfaces that allows us to distinguish hydrophobic and hydrophilic interfaces. Our approach extends previous work where ion specific potentials of mean force describe the distribution of ion species at the interface. I apply this new model to recently

  11. Modeling of semiconductor nanostructures and semiconductor-electrolyte interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Birner, Stefan

    2011-11-15

    The main objective of Part I is to give an overview of some of the methods that have been implemented into the nextnano{sup 3} software. Examples are discussed that give insight into doping, strain and mobility. Applications of the single-band Schroedinger equation include three-dimensional superlattices, and a qubit that is manipulated by a magnetic field. Results of the multi-band k.p method are presented for HgTe-CdTe and InAs-GaSb superlattices, and for a SiGe-Si quantum cascade structure. Particular focus is put on a detailed description of the contact block reduction (CBR) method that has been developed within our research group. By means of this approach, quantum transport in the ballistic limit in one, two and three dimensions can be calculated. I provide a very detailed description of the algorithm and present several well documented examples that highlight the key points of this method. Calculating quantum transport in three dimensions is a very challenging task where computationally efficient algorithms - apart from the CBR method - are not available yet. Part II describes the methods that I have implemented into the nextnano{sup 3} software for calculating systems that consist of a combination of semiconductor materials and liquids. These biosensors have a solid-electrolyte interface, and the charges in the solid and in the electrolyte are coupled to each other through the Poisson-Boltzmann equation. I apply this model to a silicon based protein sensor, where I solve the Schroedinger equation together with the Poisson-Boltzmann equation self-consistently, and compare theoretical results with experiment. Furthermore, I have developed a novel approach to model the charge density profiles at semiconductor-electrolyte interfaces that allows us to distinguish hydrophobic and hydrophilic interfaces. Our approach extends previous work where ion specific potentials of mean force describe the distribution of ion species at the interface. I apply this new model

  12. Developing a laser shockwave model for characterizing diffusion bonded interfaces

    International Nuclear Information System (INIS)

    Lacy, Jeffrey M.; Smith, James A.; Rabin, Barry H.

    2015-01-01

    The US National Nuclear Security Agency has a Global Threat Reduction Initiative (GTRI) with the goal of reducing the worldwide use of high-enriched uranium (HEU). A salient component of that initiative is the conversion of research reactors from HEU to low enriched uranium (LEU) fuels. An innovative fuel is being developed to replace HEU in high-power research reactors. The new LEU fuel is a monolithic fuel made from a U-Mo alloy foil encapsulated in Al-6061 cladding. In order to support the fuel qualification process, the Laser Shockwave Technique (LST) is being developed to characterize the clad-clad and fuel-clad interface strengths in fresh and irradiated fuel plates. LST is a non-contact method that uses lasers for the generation and detection of large amplitude acoustic waves to characterize interfaces in nuclear fuel plates. However, because the deposition of laser energy into the containment layer on a specimen's surface is intractably complex, the shock wave energy is inferred from the surface velocity measured on the backside of the fuel plate and the depth of the impression left on the surface by the high pressure plasma pulse created by the shock laser. To help quantify the stresses generated at the interfaces, a finite element method (FEM) model is being utilized. This paper will report on initial efforts to develop and validate the model by comparing numerical and experimental results for back surface velocities and front surface depressions in a single aluminum plate representative of the fuel cladding

  13. Developing a laser shockwave model for characterizing diffusion bonded interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Lacy, Jeffrey M., E-mail: Jeffrey.Lacy@inl.gov; Smith, James A., E-mail: Jeffrey.Lacy@inl.gov; Rabin, Barry H., E-mail: Jeffrey.Lacy@inl.gov [Idaho National Laboratory, Idaho Falls, ID (United States)

    2015-03-31

    The US National Nuclear Security Agency has a Global Threat Reduction Initiative (GTRI) with the goal of reducing the worldwide use of high-enriched uranium (HEU). A salient component of that initiative is the conversion of research reactors from HEU to low enriched uranium (LEU) fuels. An innovative fuel is being developed to replace HEU in high-power research reactors. The new LEU fuel is a monolithic fuel made from a U-Mo alloy foil encapsulated in Al-6061 cladding. In order to support the fuel qualification process, the Laser Shockwave Technique (LST) is being developed to characterize the clad-clad and fuel-clad interface strengths in fresh and irradiated fuel plates. LST is a non-contact method that uses lasers for the generation and detection of large amplitude acoustic waves to characterize interfaces in nuclear fuel plates. However, because the deposition of laser energy into the containment layer on a specimen's surface is intractably complex, the shock wave energy is inferred from the surface velocity measured on the backside of the fuel plate and the depth of the impression left on the surface by the high pressure plasma pulse created by the shock laser. To help quantify the stresses generated at the interfaces, a finite element method (FEM) model is being utilized. This paper will report on initial efforts to develop and validate the model by comparing numerical and experimental results for back surface velocities and front surface depressions in a single aluminum plate representative of the fuel cladding.

  14. Formulation of consumables management models: Mission planning processor payload interface definition

    Science.gov (United States)

    Torian, J. G.

    1977-01-01

    Consumables models required for the mission planning and scheduling function are formulated. The relation of the models to prelaunch, onboard, ground support, and postmission functions for the space transportation systems is established. Analytical models consisting of an orbiter planning processor with consumables data base is developed. A method of recognizing potential constraint violations in both the planning and flight operations functions, and a flight data file storage/retrieval of information over an extended period which interfaces with a flight operations processor for monitoring of the actual flights is presented.

  15. Stepwise approach to establishing multiple outreach laboratory information system-electronic medical record interfaces.

    Science.gov (United States)

    Pantanowitz, Liron; Labranche, Wayne; Lareau, William

    2010-05-26

    Clinical laboratory outreach business is changing as more physician practices adopt an electronic medical record (EMR). Physician connectivity with the laboratory information system (LIS) is consequently becoming more important. However, there are no reports available to assist the informatician with establishing and maintaining outreach LIS-EMR connectivity. A four-stage scheme is presented that was successfully employed to establish unidirectional and bidirectional interfaces with multiple physician EMRs. This approach involves planning (step 1), followed by interface building (step 2) with subsequent testing (step 3), and finally ongoing maintenance (step 4). The role of organized project management, software as a service (SAAS), and alternate solutions for outreach connectivity are discussed.

  16. Nonlinear Displacement Discontinuity Model for Generalized Rayleigh Wave in Contact Interface

    Energy Technology Data Exchange (ETDEWEB)

    Kim, No Hyu; Yang, Seung Yong [Korea University of Technology and Education, Cheonan (Korea, Republic of)

    2007-12-15

    Imperfectly jointed interface serves as mechanical waveguide for elastic waves and gives rise to two distinct kinds of guided wave propagating along the interface. Contact acoustic nonlinearity (CAN) is known to plays major role in the generation of these interface waves called generalized Rayleigh waves in non-welded interface. Closed crack is modeled as non-welded interface that has nonlinear discontinuity condition in displacement across its boundary. Mathematical analysis of boundary conditions and wave equation is conducted to investigate the dispersive characteristics of the interface waves. Existence of the generalized Rayleigh wave(interface wave) in nonlinear contact interface is verified in theory where the dispersion equation for the interface wave is formulated and analyzed. It reveals that the interface waves have two distinct modes and that the phase velocity of anti-symmetric wave mode is highly dependent on contact conditions represented by linear and nonlinear dimensionless specific stiffness

  17. Nonlinear Displacement Discontinuity Model for Generalized Rayleigh Wave in Contact Interface

    International Nuclear Information System (INIS)

    Kim, No Hyu; Yang, Seung Yong

    2007-01-01

    Imperfectly jointed interface serves as mechanical waveguide for elastic waves and gives rise to two distinct kinds of guided wave propagating along the interface. Contact acoustic nonlinearity (CAN) is known to plays major role in the generation of these interface waves called generalized Rayleigh waves in non-welded interface. Closed crack is modeled as non-welded interface that has nonlinear discontinuity condition in displacement across its boundary. Mathematical analysis of boundary conditions and wave equation is conducted to investigate the dispersive characteristics of the interface waves. Existence of the generalized Rayleigh wave(interface wave) in nonlinear contact interface is verified in theory where the dispersion equation for the interface wave is formulated and analyzed. It reveals that the interface waves have two distinct modes and that the phase velocity of anti-symmetric wave mode is highly dependent on contact conditions represented by linear and nonlinear dimensionless specific stiffness

  18. SXPS study of model GaAs(100)/electrolyte interface

    Energy Technology Data Exchange (ETDEWEB)

    Lebedev, Mikhail V. [A.F. Ioffe Physico-Technical Institute, Russian Academy of Sciences, St. Petersburg (Russian Federation); Mankel, Eric; Mayer, Thomas; Jaegermann, Wolfram [Institute of Material Sciences, Darmstadt University of Technology, Darmstadt (Germany)

    2010-02-15

    Model GaAs(100)/electrolyte interfaces are prepared in vacuum by co-adsorption of Cl{sub 2} and 2-propanol molecules at LN{sub 2} temperature. On adsorption of Cl{sub 2} molecules gallium chlorides, elemental arsenic and arsenic chlorides are formed. Co-adsorption of 2-propanol causes formation of additional GaCl{sub 3} and AsCl, as well as soluble/volatile As-based complexes, which are released from the surface depleting the sur- face by arsenic. Comparison of the As 3d and Ga 3d spectra obtained after heating the model interface to room temperature with the corresponding spectra obtained after emersion of the GaAs(100) surface from HCl/2-propanol solution allows to conclude that in HCl solution Cl{sup -} ions attack gallium sites and H{sup +} ions mostly attack arsenic sites. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  19. Modeling organohalide perovskites for photovoltaic applications: From materials to interfaces

    Science.gov (United States)

    de Angelis, Filippo

    2015-03-01

    The field of hybrid/organic photovoltaics has been revolutionized in 2012 by the first reports of solid-state solar cells based on organohalide perovskites, now topping at 20% efficiency. First-principles modeling has been widely applied to the dye-sensitized solar cells field, and more recently to perovskite-based solar cells. The computational design and screening of new materials has played a major role in advancing the DSCs field. Suitable modeling strategies may also offer a view of the crucial heterointerfaces ruling the device operational mechanism. I will illustrate how simulation tools can be employed in the emerging field of perovskite solar cells. The performance of the proposed simulation toolbox along with the fundamental modeling strategies are presented using selected examples of relevant materials and interfaces. The main issue with hybrid perovskite modeling is to be able to accurately describe their structural, electronic and optical features. These materials show a degree of short range disorder, due to the presence of mobile organic cations embedded within the inorganic matrix, requiring to average their properties over a molecular dynamics trajectory. Due to the presence of heavy atoms (e.g. Sn and Pb) their electronic structure must take into account spin-orbit coupling (SOC) in an effective way, possibly including GW corrections. The proposed SOC-GW method constitutes the basis for tuning the materials electronic and optical properties, rationalizing experimental trends. Modeling charge generation in perovskite-sensitized TiO2 interfaces is then approached based on a SOC-DFT scheme, describing alignment of energy levels in a qualitatively correct fashion. The role of interfacial chemistry on the device performance is finally discussed. The research leading to these results has received funding from the European Union Seventh Framework Programme [FP7/2007 2013] under Grant Agreement No. 604032 of the MESO project.

  20. Modelling Choice of Information Sources

    Directory of Open Access Journals (Sweden)

    Agha Faisal Habib Pathan

    2013-04-01

    Full Text Available This paper addresses the significance of traveller information sources including mono-modal and multimodal websites for travel decisions. The research follows a decision paradigm developed earlier, involving an information acquisition process for travel choices, and identifies the abstract characteristics of new information sources that deserve further investigation (e.g. by incorporating these in models and studying their significance in model estimation. A Stated Preference experiment is developed and the utility functions are formulated by expanding the travellers' choice set to include different combinations of sources of information. In order to study the underlying choice mechanisms, the resulting variables are examined in models based on different behavioural strategies, including utility maximisation and minimising the regret associated with the foregone alternatives. This research confirmed that RRM (Random Regret Minimisation Theory can fruitfully be used and can provide important insights for behavioural studies. The study also analyses the properties of travel planning websites and establishes a link between travel choices and the content, provenance, design, presence of advertisements, and presentation of information. The results indicate that travellers give particular credence to governmentowned sources and put more importance on their own previous experiences than on any other single source of information. Information from multimodal websites is more influential than that on train-only websites. This in turn is more influential than information from friends, while information from coachonly websites is the least influential. A website with less search time, specific information on users' own criteria, and real time information is regarded as most attractive

  1. Measurement and modeling of interface heat transfer coefficients

    International Nuclear Information System (INIS)

    Rollett, A.D.; Lewis, H.D.; Dunn, P.S.

    1985-01-01

    The results of preliminary work on the modeling and measurement of the heat transfer coefficients of metal/mold interfaces is reported. The system investigated is the casting of uranium in graphite molds. The motivation for the work is primarily to improve the accuracy of process modeling of prototype mold designs at the Los Alamos Foundry. The evolution in design of a suitable mold for unidirectional solidification is described, illustrating the value of simulating mold designs prior to use. Experiment indicated a heat transfer coefficient of 2 kW/m 2 /K both with and without superheat. It was possible to distinguish between solidification due to the mold and that due to radiative heat loss. This permitted an experimental estimate of the emissivity, epsilon = 0.2, of the solidified metal

  2. ORIGAMI -- The Oak Ridge Geometry Analysis and Modeling Interface

    International Nuclear Information System (INIS)

    Burns, T.J.

    1996-01-01

    A revised ''ray-tracing'' package which is a superset of the geometry specifications of the radiation transport codes MORSE, MASH (GIFT Versions 4 and 5), HETC, and TORT has been developed by ORNL. Two additional CAD-based formats are also included as part of the superset: the native format of the BRL-CAD system--MGED, and the solid constructive geometry subset of the IGES specification. As part of this upgrade effort, ORNL has designed an Xwindows-based utility (ORIGAMI) to facilitate the construction, manipulation, and display of the geometric models required by the MASH code. Since the primary design criterion for this effort was that the utility ''see'' the geometric model exactly as the radiation transport code does, ORIGAMI is designed to utilize the same ''ray-tracing'' package as the revised version of MASH. ORIGAMI incorporates the functionality of two previously developed graphical utilities, CGVIEW and ORGBUG, into a single consistent interface

  3. Renewable Electric Plant Information System user interface manual: Paradox 7 Runtime for Windows

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-11-01

    The Renewable Electric Plant Information System (REPiS) is a comprehensive database with detailed information on grid-connected renewable electric plants in the US. The current version, REPiS3 beta, was developed in Paradox for Windows. The user interface (UI) was developed to facilitate easy access to information in the database, without the need to have, or know how to use, Paradox for Windows. The UI is designed to provide quick responses to commonly requested sorts of the database. A quick perusal of this manual will familiarize one with the functions of the UI and will make use of the system easier. There are six parts to this manual: (1) Quick Start: Instructions for Users Familiar with Database Applications; (2) Getting Started: The Installation Process; (3) Choosing the Appropriate Report; (4) Using the User Interface; (5) Troubleshooting; (6) Appendices A and B.

  4. Interface between path and orbital angular momentum entanglement for high-dimensional photonic quantum information.

    Science.gov (United States)

    Fickler, Robert; Lapkiewicz, Radek; Huber, Marcus; Lavery, Martin P J; Padgett, Miles J; Zeilinger, Anton

    2014-07-30

    Photonics has become a mature field of quantum information science, where integrated optical circuits offer a way to scale the complexity of the set-up as well as the dimensionality of the quantum state. On photonic chips, paths are the natural way to encode information. To distribute those high-dimensional quantum states over large distances, transverse spatial modes, like orbital angular momentum possessing Laguerre Gauss modes, are favourable as flying information carriers. Here we demonstrate a quantum interface between these two vibrant photonic fields. We create three-dimensional path entanglement between two photons in a nonlinear crystal and use a mode sorter as the quantum interface to transfer the entanglement to the orbital angular momentum degree of freedom. Thus our results show a flexible way to create high-dimensional spatial mode entanglement. Moreover, they pave the way to implement broad complex quantum networks where high-dimensionally entangled states could be distributed over distant photonic chips.

  5. Seismic modeling with radial basis function-generated finite differences (RBF-FD) – a simplified treatment of interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Bradley, E-mail: brma7253@colorado.edu; Fornberg, Bengt, E-mail: Fornberg@colorado.edu

    2017-04-15

    In a previous study of seismic modeling with radial basis function-generated finite differences (RBF-FD), we outlined a numerical method for solving 2-D wave equations in domains with material interfaces between different regions. The method was applicable on a mesh-free set of data nodes. It included all information about interfaces within the weights of the stencils (allowing the use of traditional time integrators), and was shown to solve problems of the 2-D elastic wave equation to 3rd-order accuracy. In the present paper, we discuss a refinement of that method that makes it simpler to implement. It can also improve accuracy for the case of smoothly-variable model parameter values near interfaces. We give several test cases that demonstrate the method solving 2-D elastic wave equation problems to 4th-order accuracy, even in the presence of smoothly-curved interfaces with jump discontinuities in the model parameters.

  6. INFORMATION MODEL OF SOCIAL TRANSFORMATIONS

    Directory of Open Access Journals (Sweden)

    Мария Васильевна Комова

    2013-09-01

    Full Text Available The social transformation is considered as a process of qualitative changes of the society, creating a new level of organization in all areas of life, in different social formations, societies of different types of development. The purpose of the study is to create a universal model for studying social transformations based on their understanding as the consequence of the information exchange processes in the society. After defining the conceptual model of the study, the author uses the following methods: the descriptive method, analysis, synthesis, comparison.Information, objectively existing in all elements and systems of the material world, is an integral attribute of the society transformation as well. The information model of social transformations is based on the definition of the society transformation as the change in the information that functions in the society’s information space. The study of social transformations is the study of information flows circulating in the society and being characterized by different spatial, temporal, and structural states. Social transformations are a highly integrated system of social processes and phenomena, the nature, course and consequences of which are affected by the factors representing the whole complex of material objects. The integrated information model of social transformations foresees the interaction of the following components: social memory, information space, and the social ideal. To determine the dynamics and intensity of social transformations the author uses the notions of "information threshold of social transformations" and "information pressure".Thus, the universal nature of information leads to considering social transformations as a system of information exchange processes. Social transformations can be extended to any episteme actualized by social needs. The establishment of an information threshold allows to simulate the course of social development, to predict the

  7. OMWS: A Web Service Interface for Ecological Niche Modelling

    Directory of Open Access Journals (Sweden)

    Renato De Giovanni

    2015-09-01

    Full Text Available Ecological niche modelling (ENM experiments often involve a high number of tasks to be performed. Such tasks may consume a significant amount of computing resources and take a long time to complete, especially when using personal computers. OMWS is a Web service interface that allows more powerful computing back-ends to be remotely exploited by other applications to carry out ENM tasks. Its latest version includes a new operation that can be used to specify complex workflows in a single request, adding the possibility of using workflow management systems on parallel computing back-end. In this paper we describe the OMWS protocol and compare its most recent version with the previous one by running the same ENM experiment using two functionally equivalent clients, each designed for one of the OMWS interface versions. Different back-end configurations were used to investigate how the performance scales for each protocol version when more processing power is made available. Results show that the new version outperforms (in a factor of 2 the previous one when more computing resources are used.

  8. pyhector: A Python interface for the simple climate model Hector

    Energy Technology Data Exchange (ETDEWEB)

    N Willner, Sven; Hartin, Corinne; Gieseke, Robert

    2017-04-01

    Pyhector is a Python interface for the simple climate model Hector (Hartin et al. 2015) developed in C++. Simple climate models like Hector can, for instance, be used in the analysis of scenarios within integrated assessment models like GCAM1, in the emulation of complex climate models, and in uncertainty analyses. Hector is an open-source, object oriented, simple global climate carbon cycle model. Its carbon cycle consists of a one pool atmosphere, three terrestrial pools which can be broken down into finer biomes or regions, and four carbon pools in the ocean component. The terrestrial carbon cycle includes primary production and respiration fluxes. The ocean carbon cycle circulates carbon via a simplified thermohaline circulation, calculating air-sea fluxes as well as the marine carbonate system (Hartin et al. 2016). The model input is time series of greenhouse gas emissions; as example scenarios for these the Pyhector package contains the Representative Concentration Pathways (RCPs)2. These were developed to cover the range of baseline and mitigation emissions scenarios and are widely used in climate change research and model intercomparison projects. Using DataFrames from the Python library Pandas (McKinney 2010) as a data structure for the scenarios simplifies generating and adapting scenarios. Other parameters of the Hector model can easily be modified when running the model. Pyhector can be installed using pip from the Python Package Index.3 Source code and issue tracker are available in Pyhector's GitHub repository4. Documentation is provided through Readthedocs5. Usage examples are also contained in the repository as a Jupyter Notebook (Pérez and Granger 2007; Kluyver et al. 2016). Courtesy of the Mybinder project6, the example Notebook can also be executed and modified without installing Pyhector locally.

  9. GRAPHICAL USER INTERFACE WITH APPLICATIONS IN SUSCEPTIBLE-INFECTIOUS-SUSCEPTIBLE MODELS.

    Science.gov (United States)

    Ilea, M; Turnea, M; Arotăriţei, D; Rotariu, Mariana; Popescu, Marilena

    2015-01-01

    Practical significance of understanding the dynamics and evolution of infectious diseases increases continuously in contemporary world. The mathematical study of the dynamics of infectious diseases has a long history. By incorporating statistical methods and computer-based simulations in dynamic epidemiological models, it could be possible for modeling methods and theoretical analyses to be more realistic and reliable, allowing a more detailed understanding of the rules governing epidemic spreading. To provide the basis for a disease transmission, the population of a region is often divided into various compartments, and the model governing their relation is called the compartmental model. To present all of the information available, a graphical user interface provides icons and visual indicators. The graphical interface shown in this paper is performed using the MATLAB software ver. 7.6.0. MATLAB software offers a wide range of techniques by which data can be displayed graphically. The process of data viewing involves a series of operations. To achieve it, I had to make three separate files, one for defining the mathematical model and two for the interface itself. Considering a fixed population, it is observed that the number of susceptible individuals diminishes along with an increase in the number of infectious individuals so that in about ten days the number of individuals infected and susceptible, respectively, has the same value. If the epidemic is not controlled, it will continue for an indefinite period of time. By changing the global parameters specific of the SIS model, a more rapid increase of infectious individuals is noted. Using the graphical user interface shown in this paper helps achieving a much easier interaction with the computer, simplifying the structure of complex instructions by using icons and menus, and, in particular, programs and files are much easier to organize. Some numerical simulations have been presented to illustrate theoretical

  10. Thermal analysis of charring materials based on pyrolysis interface model

    Directory of Open Access Journals (Sweden)

    Huang Hai-Ming

    2014-01-01

    Full Text Available Charring thermal protection systems have been used to protect hypersonic vehicles from high heat loads. The pyrolysis of charring materials is a complicated physical and chemical phenomenon. Based on the pyrolysis interface model, a simulating approach for charring ablation has been designed in order to obtain one dimensional transient thermal behavior of homogeneous charring materials in reentry capsules. As the numerical results indicate, the pyrolysis rate and the surface temperature under a given heat flux rise abruptly in the beginning, then reach a plateau, but the temperature at the bottom rises very slowly to prevent the structural materials from being heated seriously. Pyrolysis mechanism can play an important role in thermal protection systems subjected to serious aerodynamic heat.

  11. Parallelization of a hydrological model using the message passing interface

    Science.gov (United States)

    Wu, Yiping; Li, Tiejian; Sun, Liqun; Chen, Ji

    2013-01-01

    With the increasing knowledge about the natural processes, hydrological models such as the Soil and Water Assessment Tool (SWAT) are becoming larger and more complex with increasing computation time. Additionally, other procedures such as model calibration, which may require thousands of model iterations, can increase running time and thus further reduce rapid modeling and analysis. Using the widely-applied SWAT as an example, this study demonstrates how to parallelize a serial hydrological model in a Windows® environment using a parallel programing technology—Message Passing Interface (MPI). With a case study, we derived the optimal values for the two parameters (the number of processes and the corresponding percentage of work to be distributed to the master process) of the parallel SWAT (P-SWAT) on an ordinary personal computer and a work station. Our study indicates that model execution time can be reduced by 42%–70% (or a speedup of 1.74–3.36) using multiple processes (two to five) with a proper task-distribution scheme (between the master and slave processes). Although the computation time cost becomes lower with an increasing number of processes (from two to five), this enhancement becomes less due to the accompanied increase in demand for message passing procedures between the master and all slave processes. Our case study demonstrates that the P-SWAT with a five-process run may reach the maximum speedup, and the performance can be quite stable (fairly independent of a project size). Overall, the P-SWAT can help reduce the computation time substantially for an individual model run, manual and automatic calibration procedures, and optimization of best management practices. In particular, the parallelization method we used and the scheme for deriving the optimal parameters in this study can be valuable and easily applied to other hydrological or environmental models.

  12. Model for Educational Game Using Natural User Interface

    Directory of Open Access Journals (Sweden)

    Azrulhizam Shapi’i

    2016-01-01

    Full Text Available Natural User Interface (NUI is a new approach that has become increasingly popular in Human-Computer Interaction (HCI. The use of this technology is widely used in almost all sectors, including the field of education. In recent years, there are a lot of educational games using NUI technology in the market such as Kinect game. Kinect is a sensor that can recognize body movements, postures, and voices in three dimensions. It enables users to control and interact with game without the need of using game controller. However, the contents of most existing Kinect games do not follow the standard curriculum in classroom, thus making it do not fully achieve the learning objectives. Hence, this research proposes a design model as a guideline in designing educational game using NUI. A prototype has been developed as one of the objectives in this study. The prototype is based on proposed model to ensure and assess the effectiveness of the model. The outcomes of this study conclude that the proposed model contributed to the design method for the development of the educational game using NUI. Furthermore, evaluation results of the prototype show a good response from participant and in line with the standard curriculum.

  13. Magnetic properties of the three-dimensional Ising model with an interface amorphization

    International Nuclear Information System (INIS)

    Benyoussef, A.; El Kenz, A.; Saber, M.

    1993-09-01

    A three-dimensional ferromagnetic Ising model with an interface amorphization is investigated with the use of the effective field theory. Phase diagrams and reduced magnetization curves of interface and bulks are studied. We obtain a number of characteristic behaviour such as the possibility of the reentrant phenomena and a large depression of interface magnetization. (author). 21 refs, 5 figs

  14. Executive Information Systems' Multidimensional Models

    Directory of Open Access Journals (Sweden)

    2007-01-01

    Full Text Available Executive Information Systems are design to improve the quality of strategic level of management in organization through a new type of technology and several techniques for extracting, transforming, processing, integrating and presenting data in such a way that the organizational knowledge filters can easily associate with this data and turn it into information for the organization. These technologies are known as Business Intelligence Tools. But in order to build analytic reports for Executive Information Systems (EIS in an organization we need to design a multidimensional model based on the business model from the organization. This paper presents some multidimensional models that can be used in EIS development and propose a new model that is suitable for strategic business requests.

  15. TaskMaster: a prototype graphical user interface to a schedule optimization model

    OpenAIRE

    Banham, Stephen R.

    1990-01-01

    Approved for public release, distribution is unlimited This thesis investigates the use of current graphical interface techniques to build more effective computer-user interfaces to Operations Research (OR) schedule optimization models. The design is directed at the scheduling decision maker who possesses limited OR experience. The feasibility and validity of building an interface for this kind of user is demonstrated in the development of a prototype graphical user interface called TaskMa...

  16. Algorithms, Interfaces, and the Circulation of Information: Interrogating the Epistemological Challenges of Facebook

    Directory of Open Access Journals (Sweden)

    Jannick Schou

    2016-05-01

    Full Text Available As social and political life increasingly takes place on social network sites, new epistemological questions have emerged. How can information disseminated through new media be understood and disentangled? How can potential hidden agendas or sources be identified? And what mechanisms govern what and how information is presented to the user? By drawing on existing research on the algorithms and interfaces underlying social network sites, this paper provides a discussion of Facebook and the epistemological challenges, potentials, and questions raised by the platform. The paper specifically discusses the ways in which interfaces shape how information can be accessed and processed by different kinds of users as well as the role of algorithms in pre-selecting what appears as representable information. A key argument of the paper is that Facebook, as a complex socio-technical network of human and non-human actors, has profound epistemological implications for how information can be accessed, understood, and circulated. In this sense, the user’s potential acquisition of information is shaped and conditioned by the technological structure of the platform. Building on these arguments, the paper suggests that new epistemological challenges deserve more scholarly attention, as they hold wide implications for both researchers and users

  17. Towards an Open Modelling Interface (OpenMI the HarmonIT project

    Directory of Open Access Journals (Sweden)

    M. Blind

    2005-01-01

    Full Text Available The Water Framework Directive (WFD poses an immense challenge to water management in Europe. Aiming at a "good ecological status" of surface waters in 2015, integrated river basin management plans need to be in place by 2009, and broadly supported by stakeholders. Information & Communication Technology (ICT tools, such as computational models, are very helpful in designing river basin management plans (rbmp-s. However, many scientists believe that a single integrated modelling system to support the WFD cannot be developed, and integrated systems need to be quite tailored to the local situation and evolve during a collaborative planning process. As a consequence there is an urgent need to increase the flexibility of modelling systems, such that dedicated model systems can be developed from available building blocks. In the recent past a number of initiatives have been started to develop an IT framework for modelling to meet the required flexibility. In Europe the international project HarmonIT, which is sponsored by the European Commission, is developing and implementing a standard interface for modelling components and other relevant tools: The Open Modelling Interface (OpenMI. This paper describes the HarmonIT project and objectives in general. The current progress is described. It describes the roles for different types of stakeholders in modelling, varying from software coders to non-specialized users of decision support systems. It will provide insight in the requirements imposed when using the OpenMI.

  18. Description of waste pretreatment and interfacing systems dynamic simulation model

    International Nuclear Information System (INIS)

    Garbrick, D.J.; Zimmerman, B.D.

    1995-05-01

    The Waste Pretreatment and Interfacing Systems Dynamic Simulation Model was created to investigate the required pretreatment facility processing rates for both high level and low level waste so that the vitrification of tank waste can be completed according to the milestones defined in the Tri-Party Agreement (TPA). In order to achieve this objective, the processes upstream and downstream of the pretreatment facilities must also be included. The simulation model starts with retrieval of tank waste and ends with vitrification for both low level and high level wastes. This report describes the results of three simulation cases: one based on suggested average facility processing rates, one with facility rates determined so that approximately 6 new DSTs are required, and one with facility rates determined so that approximately no new DSTs are required. It appears, based on the simulation results, that reasonable facility processing rates can be selected so that no new DSTs are required by the TWRS program. However, this conclusion must be viewed with respect to the modeling assumptions, described in detail in the report. Also included in the report, in an appendix, are results of two sensitivity cases: one with glass plant water recycle steams recycled versus not recycled, and one employing the TPA SST retrieval schedule versus a more uniform SST retrieval schedule. Both recycling and retrieval schedule appear to have a significant impact on overall tank usage

  19. Resistive switching near electrode interfaces: Estimations by a current model

    Science.gov (United States)

    Schroeder, Herbert; Zurhelle, Alexander; Stemmer, Stefanie; Marchewka, Astrid; Waser, Rainer

    2013-02-01

    The growing resistive switching database is accompanied by many detailed mechanisms which often are pure hypotheses. Some of these suggested models can be verified by checking their predictions with the benchmarks of future memory cells. The valence change memory model assumes that the different resistances in ON and OFF states are made by changing the defect density profiles in a sheet near one working electrode during switching. The resulting different READ current densities in ON and OFF states were calculated by using an appropriate simulation model with variation of several important defect and material parameters of the metal/insulator (oxide)/metal thin film stack such as defect density and its profile change in density and thickness, height of the interface barrier, dielectric permittivity, applied voltage. The results were compared to the benchmarks and some memory windows of the varied parameters can be defined: The required ON state READ current density of 105 A/cm2 can only be achieved for barriers smaller than 0.7 eV and defect densities larger than 3 × 1020 cm-3. The required current ratio between ON and OFF states of at least 10 requests defect density reduction of approximately an order of magnitude in a sheet of several nanometers near the working electrode.

  20. Quantifying effects of humans and climate on groundwater resources of Hawaii through sharp-interface modeling

    Science.gov (United States)

    Rotzoll, K.; Izuka, S. K.; Nishikawa, T.; Fienen, M. N.; El-Kadi, A. I.

    2016-12-01

    Some of the volcanic-rock aquifers of the islands of Hawaii are substantially developed, leading to concerns related to the effects of groundwater withdrawals on saltwater intrusion and stream base-flow reduction. A numerical modeling analysis using recent available information (e.g., recharge, withdrawals, hydrogeologic framework, and conceptual models of groundwater flow) advances current understanding of groundwater flow and provides insight into the effects of human activity and climate change on Hawaii's water resources. Three island-wide groundwater-flow models (Kauai, Oahu, and Maui) were constructed using MODFLOW 2005 coupled with the Seawater-Intrusion Package (SWI2), which simulates the transition between saltwater and freshwater in the aquifer as a sharp interface. This approach allowed coarse vertical discretization (maximum of two layers) without ignoring the freshwater-saltwater system at the regional scale. Model construction (FloPy3), parameter estimation (PEST), and analysis of results were streamlined using Python scripts. Model simulations included pre-development (1870) and recent (average of 2001-10) scenarios for each island. Additionally, scenarios for future withdrawals and climate change were simulated for Oahu. We present our streamlined approach and results showing estimated effects of human activity on the groundwater resource by quantifying decline in water levels, rise of the freshwater-saltwater interface, and reduction in stream base flow. Water-resource managers can use this information to evaluate consequences of groundwater development that can constrain future groundwater availability.

  1. Novel Thermal Analysis Model of the Foot-Shoe Sole Interface during Gait Motion

    Directory of Open Access Journals (Sweden)

    Yasuhiro Shimazaki

    2018-02-01

    Full Text Available Excessive heat at the foot-shoe sole interface negatively affects a human’s thermal comfort. An understanding of the thermal behavior at this interface is important for alleviating this discomfort. During gait motion, a human’s body weight cyclically compresses a shoe sole (commonly constructed of viscoelastic materials, generating heat during loading. To evaluate the thermal effects of this internal heat generation on foot comfort, we developed and empirically validated a thermal analysis model during gait motion. A simple, one-dimensional prediction model for heat conduction with heat generation during compressive loading was used. Heat generation was estimated as a function of the shoe sole’s material properties (e.g., elastic modulus and various gait parameters. When compared with experimental results, the proposed model proved effective in predicting thermal behavior at the foot-shoe sole interface under various conditions and shows potential for improving a human’s thermal comfort during gait motion through informed footwear design.

  2. A model for assessing the degree of importance of ergonomics criteria to human machine interface

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Cesar Ribeiro de; Domech More, Jesus [Universidade Estacio de Sa do Rio de Janeiro, RJ (Brazil). Mestrado em Desenvolvimento Empresarial - MADE]. E-mail: cesararaujobr@yahoo.com.br; jesus.more@estacio.br; Silva, Aretha Felix Thomaz da [Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Civil. Sistemas Computacionais Orientados a Industria do Petroleo]. E-mail: aretha@coc.ufrj.br

    2007-07-01

    This paper intends to show a model to help us to incorporate ergonomics criteria into the usability of the human computer interface (HCI). The techniques based on fuzzy set theory are appropriate tools for the treatment of subjective and vague concepts that are inherent to usability for the HCI. The application consists of analysis concepts. This approach allows the use of natural language expressions of importance in ergonomics criteria estimation. The above-mentioned model shows the degree of importance of the ergonomics criteria present in the software interface used in the medical area. In this work, as entry data, the system developer opinions are used and as a result we had the hierarchy of 18 ergonomic criteria. The ergonomic criteria are those already validated by the market, which are linked to the ErgoList checklists. The fuzzy model created will allow knowing the most important criteria to health governmental companies. Its Information Technology (IT) professionals will concentrate efforts when treating the usability of the software interface and its systems. (author)

  3. A model for assessing the degree of importance of ergonomics criteria to human machine interface

    International Nuclear Information System (INIS)

    Araujo, Cesar Ribeiro de; Domech More, Jesus; Silva, Aretha Felix Thomaz da

    2007-01-01

    This paper intends to show a model to help us to incorporate ergonomics criteria into the usability of the human computer interface (HCI). The techniques based on fuzzy set theory are appropriate tools for the treatment of subjective and vague concepts that are inherent to usability for the HCI. The application consists of analysis concepts. This approach allows the use of natural language expressions of importance in ergonomics criteria estimation. The above-mentioned model shows the degree of importance of the ergonomics criteria present in the software interface used in the medical area. In this work, as entry data, the system developer opinions are used and as a result we had the hierarchy of 18 ergonomic criteria. The ergonomic criteria are those already validated by the market, which are linked to the ErgoList checklists. The fuzzy model created will allow knowing the most important criteria to health governmental companies. Its Information Technology (IT) professionals will concentrate efforts when treating the usability of the software interface and its systems. (author)

  4. Middle-School Students' Online Information Problem Solving Behaviors on the Information Retrieval Interface

    Science.gov (United States)

    Yeh, Yi-Fen; Hsu, Ying-Shao; Chuang, Fu-Tai; Hwang, Fu-Kwun

    2014-01-01

    With the near-overload of online information, it is necessary to equip our students with the skills necessary to deal with Information Problem Solving (IPS). This study also intended to help students develop major IPS strategies with the assistance of an instructor's scaffolding in a designed IPS course as well as on an Online Information…

  5. Implementation and verification of interface constitutive model in FLAC3D

    Directory of Open Access Journals (Sweden)

    Hai-min Wu

    2011-09-01

    Full Text Available Due to the complexity of soil-structure interaction, simple constitutive models typically used for interface elements in general computer programs cannot satisfy the requirements of discontinuous deformation analysis of structures that contain different interfaces. In order to simulate the strain-softening characteristics of interfaces, a nonlinear strain-softening interface constitutive model was incorporated into fast Lagrange analysis of continua in three dimensions (FLAC3D through a user-defined program in the FISH environment. A numerical simulation of a direct shear test for geosynthetic interfaces was conducted to verify that the interface model was implemented correctly. Results of the numerical tests show good agreement with the results obtained from theoretical calculations, indicating that the model incorporated into FLAC3D can simulate the nonlinear strain-softening behavior of interfaces involving geosynthetic materials. The results confirmed the validity and reliability of the improved interface model. The procedure and method of implementing an interface constitutive model into a commercial computer program also provide a reference for implementation of a new interface constitutive model in FLAC3D.

  6. Graphical User Interface for Simulink Integrated Performance Analysis Model

    Science.gov (United States)

    Durham, R. Caitlyn

    2009-01-01

    The J-2X Engine (built by Pratt & Whitney Rocketdyne,) in the Upper Stage of the Ares I Crew Launch Vehicle, will only start within a certain range of temperature and pressure for Liquid Hydrogen and Liquid Oxygen propellants. The purpose of the Simulink Integrated Performance Analysis Model is to verify that in all reasonable conditions the temperature and pressure of the propellants are within the required J-2X engine start boxes. In order to run the simulation, test variables must be entered at all reasonable values of parameters such as heat leak and mass flow rate. To make this testing process as efficient as possible in order to save the maximum amount of time and money, and to show that the J-2X engine will start when it is required to do so, a graphical user interface (GUI) was created to allow the input of values to be used as parameters in the Simulink Model, without opening or altering the contents of the model. The GUI must allow for test data to come from Microsoft Excel files, allow those values to be edited before testing, place those values into the Simulink Model, and get the output from the Simulink Model. The GUI was built using MATLAB, and will run the Simulink simulation when the Simulate option is activated. After running the simulation, the GUI will construct a new Microsoft Excel file, as well as a MATLAB matrix file, using the output values for each test of the simulation so that they may graphed and compared to other values.

  7. Electrode-electrolyte interface model of tripolar concentric ring electrode and electrode paste.

    Science.gov (United States)

    Nasrollaholhosseini, Seyed Hadi; Steele, Preston; Besio, Walter G

    2016-08-01

    Electrodes are used to transform ionic currents to electrical currents in biological systems. Modeling the electrode-electrolyte interface could help to optimize the performance of the electrode interface to achieve higher signal to noise ratios. There are previous reports of accurate models for single-element biomedical electrodes. In this paper we develop a model for the electrode-electrolyte interface for tripolar concentric ring electrodes (TCRE) that are used to record brain signals.

  8. Prediction of hot spots in protein interfaces using a random forest model with hybrid features.

    Science.gov (United States)

    Wang, Lin; Liu, Zhi-Ping; Zhang, Xiang-Sun; Chen, Luonan

    2012-03-01

    Prediction of hot spots in protein interfaces provides crucial information for the research on protein-protein interaction and drug design. Existing machine learning methods generally judge whether a given residue is likely to be a hot spot by extracting features only from the target residue. However, hot spots usually form a small cluster of residues which are tightly packed together at the center of protein interface. With this in mind, we present a novel method to extract hybrid features which incorporate a wide range of information of the target residue and its spatially neighboring residues, i.e. the nearest contact residue in the other face (mirror-contact residue) and the nearest contact residue in the same face (intra-contact residue). We provide a novel random forest (RF) model to effectively integrate these hybrid features for predicting hot spots in protein interfaces. Our method can achieve accuracy (ACC) of 82.4% and Matthew's correlation coefficient (MCC) of 0.482 in Alanine Scanning Energetics Database, and ACC of 77.6% and MCC of 0.429 in Binding Interface Database. In a comparison study, performance of our RF model exceeds other existing methods, such as Robetta, FOLDEF, KFC, KFC2, MINERVA and HotPoint. Of our hybrid features, three physicochemical features of target residues (mass, polarizability and isoelectric point), the relative side-chain accessible surface area and the average depth index of mirror-contact residues are found to be the main discriminative features in hot spots prediction. We also confirm that hot spots tend to form large contact surface areas between two interacting proteins. Source data and code are available at: http://www.aporc.org/doc/wiki/HotSpot.

  9. Translating building information modeling to building energy modeling using model view definition.

    Science.gov (United States)

    Jeong, WoonSeong; Kim, Jong Bum; Clayton, Mark J; Haberl, Jeff S; Yan, Wei

    2014-01-01

    This paper presents a new approach to translate between Building Information Modeling (BIM) and Building Energy Modeling (BEM) that uses Modelica, an object-oriented declarative, equation-based simulation environment. The approach (BIM2BEM) has been developed using a data modeling method to enable seamless model translations of building geometry, materials, and topology. Using data modeling, we created a Model View Definition (MVD) consisting of a process model and a class diagram. The process model demonstrates object-mapping between BIM and Modelica-based BEM (ModelicaBEM) and facilitates the definition of required information during model translations. The class diagram represents the information and object relationships to produce a class package intermediate between the BIM and BEM. The implementation of the intermediate class package enables system interface (Revit2Modelica) development for automatic BIM data translation into ModelicaBEM. In order to demonstrate and validate our approach, simulation result comparisons have been conducted via three test cases using (1) the BIM-based Modelica models generated from Revit2Modelica and (2) BEM models manually created using LBNL Modelica Buildings library. Our implementation shows that BIM2BEM (1) enables BIM models to be translated into ModelicaBEM models, (2) enables system interface development based on the MVD for thermal simulation, and (3) facilitates the reuse of original BIM data into building energy simulation without an import/export process.

  10. Translating Building Information Modeling to Building Energy Modeling Using Model View Definition

    Directory of Open Access Journals (Sweden)

    WoonSeong Jeong

    2014-01-01

    Full Text Available This paper presents a new approach to translate between Building Information Modeling (BIM and Building Energy Modeling (BEM that uses Modelica, an object-oriented declarative, equation-based simulation environment. The approach (BIM2BEM has been developed using a data modeling method to enable seamless model translations of building geometry, materials, and topology. Using data modeling, we created a Model View Definition (MVD consisting of a process model and a class diagram. The process model demonstrates object-mapping between BIM and Modelica-based BEM (ModelicaBEM and facilitates the definition of required information during model translations. The class diagram represents the information and object relationships to produce a class package intermediate between the BIM and BEM. The implementation of the intermediate class package enables system interface (Revit2Modelica development for automatic BIM data translation into ModelicaBEM. In order to demonstrate and validate our approach, simulation result comparisons have been conducted via three test cases using (1 the BIM-based Modelica models generated from Revit2Modelica and (2 BEM models manually created using LBNL Modelica Buildings library. Our implementation shows that BIM2BEM (1 enables BIM models to be translated into ModelicaBEM models, (2 enables system interface development based on the MVD for thermal simulation, and (3 facilitates the reuse of original BIM data into building energy simulation without an import/export process.

  11. Information Systems Outsourcing Relationship Model

    Directory of Open Access Journals (Sweden)

    Richard Flemming

    2007-09-01

    Full Text Available Increasing attention is being paid to what determines the success of an information systems outsourcing arrangement. The current research aims to provide an improved understanding of the factors influencing the outcome of an information systems outsourcing relationship and to provide a preliminary validation of an extended outsourcing relationship model by interviews with information systems outsourcing professionals in both the client and vendor of a major Australian outsourcing relationship. It also investigates whether the client and the vendor perceive the relationship differently and if so, how they perceive it differently and whether the two perspectives are interrelated.

  12. Data Model Management for Space Information Systems

    Science.gov (United States)

    Hughes, J. Steven; Crichton, Daniel J.; Ramirez, Paul; Mattmann, chris

    2006-01-01

    The Reference Architecture for Space Information Management (RASIM) suggests the separation of the data model from software components to promote the development of flexible information management systems. RASIM allows the data model to evolve independently from the software components and results in a robust implementation that remains viable as the domain changes. However, the development and management of data models within RASIM are difficult and time consuming tasks involving the choice of a notation, the capture of the model, its validation for consistency, and the export of the model for implementation. Current limitations to this approach include the lack of ability to capture comprehensive domain knowledge, the loss of significant modeling information during implementation, the lack of model visualization and documentation capabilities, and exports being limited to one or two schema types. The advent of the Semantic Web and its demand for sophisticated data models has addressed this situation by providing a new level of data model management in the form of ontology tools. In this paper we describe the use of a representative ontology tool to capture and manage a data model for a space information system. The resulting ontology is implementation independent. Novel on-line visualization and documentation capabilities are available automatically, and the ability to export to various schemas can be added through tool plug-ins. In addition, the ingestion of data instances into the ontology allows validation of the ontology and results in a domain knowledge base. Semantic browsers are easily configured for the knowledge base. For example the export of the knowledge base to RDF/XML and RDFS/XML and the use of open source metadata browsers provide ready-made user interfaces that support both text- and facet-based search. This paper will present the Planetary Data System (PDS) data model as a use case and describe the import of the data model into an ontology tool

  13. The ADAM project: a generic web interface for retrieval and display of ATLAS TDAQ information

    Science.gov (United States)

    Harwood, A.; Lehmann Miotto, G.; Magnoni, L.; Vandelli, W.; Savu, D.

    2012-06-01

    This paper describes a new approach to the visualization of information about the operation of the ATLAS Trigger and Data Acquisition system. ATLAS is one of the two general purpose detectors positioned along the Large Hadron Collider at CERN. Its data acquisition system consists of several thousand computers interconnected via multiple gigabit Ethernet networks, that are constantly monitored via different tools. Operational parameters ranging from the temperature of the computers to the network utilization are stored in several databases for later analysis. Although the ability to view these data-sets individually is already in place, currently there is no way to view this data together, in a uniform format, from one location. The ADAM project has been launched in order to overcome this limitation. It defines a uniform web interface to collect data from multiple providers that have different structures. It is capable of aggregating and correlating the data according to user defined criteria. Finally, it visualizes the collected data using a flexible and interactive front-end web system. Structurally, the project comprises of 3 main levels of the data collection cycle: The Level 0 represents the information sources within ATLAS. These providers do not store information in a uniform fashion. The first step of the project was to define a common interface with which to expose stored data. The interface designed for the project originates from the Google Data Protocol API. The idea is to allow read-only access to data providers, through HTTP requests similar in format to the SQL query structure. This provides a standardized way to access this different information sources within ATLAS. The Level 1 can be considered the engine of the system. The primary task of the Level 1 is to gather data from multiple data sources via the common interface, to correlate this data together, or over a defined time series, and expose the combined data as a whole to the Level 2 web

  14. The ADAM project: a generic web interface for retrieval and display of ATLAS TDAQ information

    International Nuclear Information System (INIS)

    Harwood, A; Miotto, G Lehmann; Magnoni, L; Vandelli, W; Savu, D

    2012-01-01

    This paper describes a new approach to the visualization of information about the operation of the ATLAS Trigger and Data Acquisition system. ATLAS is one of the two general purpose detectors positioned along the Large Hadron Collider at CERN. Its data acquisition system consists of several thousand computers interconnected via multiple gigabit Ethernet networks, that are constantly monitored via different tools. Operational parameters ranging from the temperature of the computers to the network utilization are stored in several databases for later analysis. Although the ability to view these data-sets individually is already in place, currently there is no way to view this data together, in a uniform format, from one location. The ADAM project has been launched in order to overcome this limitation. It defines a uniform web interface to collect data from multiple providers that have different structures. It is capable of aggregating and correlating the data according to user defined criteria. Finally, it visualizes the collected data using a flexible and interactive front-end web system. Structurally, the project comprises of 3 main levels of the data collection cycle: The Level 0 represents the information sources within ATLAS. These providers do not store information in a uniform fashion. The first step of the project was to define a common interface with which to expose stored data. The interface designed for the project originates from the Google Data Protocol API. The idea is to allow read-only access to data providers, through HTTP requests similar in format to the SQL query structure. This provides a standardized way to access this different information sources within ATLAS. The Level 1 can be considered the engine of the system. The primary task of the Level 1 is to gather data from multiple data sources via the common interface, to correlate this data together, or over a defined time series, and expose the combined data as a whole to the Level 2 web

  15. Real Time Radioactivity Monitoring and its Interface with predictive atmospheric transport modelling

    International Nuclear Information System (INIS)

    Raes, F.

    1990-01-01

    After the Chernobyl accident, a programme was initiated at the Joint Research Centre of the Commission of the European Communities named 'Radioactivity Environmental Monitoring' (REM). The main aspects considered in REM are: data handling, atmospheric modelling and data quality control related to radioactivity in the environment. The first REM workshop was held in December 1987: 'Aerosol Measurements and Nuclear Accidents: A Reconsideration'. (CEC EUR 11755 EN). These are the proceedings of the second REM workshop, held in December 1989, dealing with real-time radioactivity monitoring and its interface with predictive atmospheric models. Atmospheric transport models, in applications extending over time scales of the order of a day or more become progressively less reliable to the extent that an interface with real-time radiological field data becomes highly desirable. Through international arrangements for early exchange of information in the event of a nuclear accident (European Community, IAEA) such data might become available on a quasi real-time basis. The question is how best to use such information to improve our predictive capabilities. During the workshop the present status of on-line monitoring networks for airborne radioactivity in the EC Member States has been reviewed. Possibilities were discussed to use data from such networks as soon as they become available, in order to update predictions made with long range transport models. This publication gives the full text of 13 presentations and a report of the Round Table Discussion held afterwards

  16. Stepwise approach to establishing multiple outreach laboratory information system-electronic medical record interfaces

    Directory of Open Access Journals (Sweden)

    Liron Pantanowitz

    2010-01-01

    Full Text Available Clinical laboratory outreach business is changing as more physician practices adopt an electronic medical record (EMR. Physician connectivity with the laboratory information system (LIS is consequently becoming more important. However, there are no reports available to assist the informatician with establishing and maintaining outreach LIS-EMR connectivity. A four-stage scheme is presented that was successfully employed to establish unidirectional and bidirectional interfaces with multiple physician EMRs. This approach involves planning (step 1, followed by interface building (step 2 with subsequent testing (step 3, and finally ongoing maintenance (step 4. The role of organized project management, software as a service (SAAS, and alternate solutions for outreach connectivity are discussed.

  17. Interface design and human factors considerations for model-based tight glycemic control in critical care.

    Science.gov (United States)

    Ward, Logan; Steel, James; Le Compte, Aaron; Evans, Alicia; Tan, Chia-Siong; Penning, Sophie; Shaw, Geoffrey M; Desaive, Thomas; Chase, J Geoffrey

    2012-01-01

    Tight glycemic control (TGC) has shown benefits but has been difficult to implement. Model-based methods and computerized protocols offer the opportunity to improve TGC quality and compliance. This research presents an interface design to maximize compliance, minimize real and perceived clinical effort, and minimize error based on simple human factors and end user input. The graphical user interface (GUI) design is presented by construction based on a series of simple, short design criteria based on fundamental human factors engineering and includes the use of user feedback and focus groups comprising nursing staff at Christchurch Hospital. The overall design maximizes ease of use and minimizes (unnecessary) interaction and use. It is coupled to a protocol that allows nurse staff to select measurement intervals and thus self-manage workload. The overall GUI design is presented and requires only one data entry point per intervention cycle. The design and main interface are heavily focused on the nurse end users who are the predominant users, while additional detailed and longitudinal data, which are of interest to doctors guiding overall patient care, are available via tabs. This dichotomy of needs and interests based on the end user's immediate focus and goals shows how interfaces must adapt to offer different information to multiple types of users. The interface is designed to minimize real and perceived clinical effort, and ongoing pilot trials have reported high levels of acceptance. The overall design principles, approach, and testing methods are based on fundamental human factors principles designed to reduce user effort and error and are readily generalizable. © 2012 Diabetes Technology Society.

  18. Des interfaces intelligentes pour les modèles de gisements Intelligent Interfaces for Reservoir Models

    Directory of Open Access Journals (Sweden)

    Zucchini P.

    2006-11-01

    Full Text Available Les codes de simulation numérique nécessitent souvent l'entrée de données nombreuses et variées. Nous présentons un programme interactif d'aide à la constitution d'un jeu de données pour un modèle de simulation de l'évolution des fluides dans un gisement d'hydrocarbures pendant son exploitation. Nous avons utilisé un moteur d'inférences et un générateur d'écrans de saisie pour écrire cette interface. Cette approche comporte de nombreux avantages concernant la qualité du logiciel produit : fiabilité, extensibilité, facilité d'utilisation, etc. L'utilisation combinée de règles d'expertise et d'un langage orienté objet offre de nouvelles perspectives qui sont étudiées. En conclusion, nous proposons l'extension de cette démarche pour développer une interface commune aux logiciels en Exploration - Production. Numerical simulation software often needs many input data having different natures. This article describes an interactive software that is of help in building the input data fill needed by oil reservoir simulators. A professional inference engine has been used to build this interface. This approach offers many advantages concerning the quality of the software produced, i. e. reliability, extensibility, user friendliness, etc. New prospects opened up by the mixed use of expertise rules and object-oriented languages are pointed out. The conclusion emphasizes the extension of this approach to the development of a common interface for exploration-production software.

  19. Modeling Human Information Acquisition Strategies

    NARCIS (Netherlands)

    Heuvelink, Annerieke; Klein, Michel C. A.; van Lambalgen, Rianne; Taatgen, Niels A.; Rijn, Hedderik van

    2009-01-01

    The focus of this paper is the development of a computational model for intelligent agents that decides on whether to acquire required information by retrieving it from memory or by interacting with the world. First, we present a task for which such decisions have to be made. Next, we discuss an

  20. Human-telerobot interactions - Information, control, and mental models

    Science.gov (United States)

    Smith, Randy L.; Gillan, Douglas J.

    1987-01-01

    A part of the NASA's Space Station will be a teleoperated robot (telerobot) with arms for grasping and manipulation, feet for holding onto objects, and television cameras for visual feedback. The objective of the work described in this paper is to develop the requirements and specifications for the user-telerobot interface and to determine through research and testing that the interface results in efficient system operation. The focus of the development of the user-telerobot interface is on the information required by the user, the user inputs, and the design of the control workstation. Closely related to both the information required by the user and the user's control of the telerobot is the user's mental model of the relationship between the control inputs and the telerobot's actions.

  1. Development and implementation of (Q)SAR modeling within the CHARMMing web-user interface.

    Science.gov (United States)

    Weidlich, Iwona E; Pevzner, Yuri; Miller, Benjamin T; Filippov, Igor V; Woodcock, H Lee; Brooks, Bernard R

    2015-01-05

    Recent availability of large publicly accessible databases of chemical compounds and their biological activities (PubChem, ChEMBL) has inspired us to develop a web-based tool for structure activity relationship and quantitative structure activity relationship modeling to add to the services provided by CHARMMing (www.charmming.org). This new module implements some of the most recent advances in modern machine learning algorithms-Random Forest, Support Vector Machine, Stochastic Gradient Descent, Gradient Tree Boosting, so forth. A user can import training data from Pubchem Bioassay data collections directly from our interface or upload his or her own SD files which contain structures and activity information to create new models (either categorical or numerical). A user can then track the model generation process and run models on new data to predict activity. © 2014 Wiley Periodicals, Inc.

  2. Diffusion-controlled interface kinetics-inclusive system-theoretic propagation models for molecular communication systems

    Science.gov (United States)

    Chude-Okonkwo, Uche A. K.; Malekian, Reza; Maharaj, B. T.

    2015-12-01

    Inspired by biological systems, molecular communication has been proposed as a new communication paradigm that uses biochemical signals to transfer information from one nano device to another over a short distance. The biochemical nature of the information transfer process implies that for molecular communication purposes, the development of molecular channel models should take into consideration diffusion phenomenon as well as the physical/biochemical kinetic possibilities of the process. The physical and biochemical kinetics arise at the interfaces between the diffusion channel and the transmitter/receiver units. These interfaces are herein termed molecular antennas. In this paper, we present the deterministic propagation model of the molecular communication between an immobilized nanotransmitter and nanoreceiver, where the emission and reception kinetics are taken into consideration. Specifically, we derived closed-form system-theoretic models and expressions for configurations that represent different communication systems based on the type of molecular antennas used. The antennas considered are the nanopores at the transmitter and the surface receptor proteins/enzymes at the receiver. The developed models are simulated to show the influence of parameters such as the receiver radius, surface receptor protein/enzyme concentration, and various reaction rate constants. Results show that the effective receiver surface area and the rate constants are important to the system's output performance. Assuming high rate of catalysis, the analysis of the frequency behavior of the developed propagation channels in the form of transfer functions shows significant difference introduce by the inclusion of the molecular antennas into the diffusion-only model. It is also shown that for t > > 0 and with the information molecules' concentration greater than the Michaelis-Menten kinetic constant of the systems, the inclusion of surface receptors proteins and enzymes in the models

  3. A Model-Driven Approach to Graphical User Interface Runtime Adaptation

    OpenAIRE

    Criado, Javier; Vicente Chicote, Cristina; Iribarne, Luis; Padilla, Nicolás

    2010-01-01

    Graphical user interfaces play a key role in human-computer interaction, as they link the system with its end-users, allowing information exchange and improving communication. Nowadays, users increasingly demand applications with adaptive interfaces that dynamically evolve in response to their specific needs. Thus, providing graphical user interfaces with runtime adaptation capabilities is becoming more and more an important issue. To address this problem, this paper proposes a componen...

  4. Development and Evaluation of Disaster Information Management System Using Digital Pens and Tabletop User Interfaces

    Science.gov (United States)

    Fukada, Hidemi; Kobayashi, Kazue; Satou, Kenji; Kawana, Hideyuki; Masuda, Tomohiro

    Most traditional disaster information systems are necessary to post expert staff with high computer literacy to operate the system quickly and correctly in the tense situation when a disaster occurs. However, in the current disaster response system of local governments, it is not easy for local governments to post such expert staff because they are struggling with staff cuts due to administrative and fiscal reform. In this research, we propose a disaster information management system that can be easily operated, even under the disorderly conditions of a disaster, by municipal personnel in charge of disaster management. This system achieves usability enabling easy input of damage information, even by local government staff with no expertise, by using a digital pen and tabletop user interface. Evaluation was conducted by prospective users using a prototype, and the evaluation results are satisfactory with regard to the function and operationality of the proposed system.

  5. Design of an Interface for Page Rank Calculation using Web Link Attributes Information

    Directory of Open Access Journals (Sweden)

    Jeyalatha SIVARAMAKRISHNAN

    2010-01-01

    Full Text Available This paper deals with the Web Structure Mining and the different Structure Mining Algorithms like Page Rank, HITS, Trust Rank and Sel-HITS. The functioning of these algorithms are discussed. An incremental algorithm for calculation of PageRank using an interface has been formulated. This algorithm makes use of Web Link Attributes Information as key parameters and has been implemented using Visibility and Position of a Link. The application of Web Structure Mining Algorithm in an Academic Search Application has been discussed. The present work can be a useful input to Web Users, Faculty, Students and Web Administrators in a University Environment.

  6. User Interface Composition with COTS-UI and Trading Approaches: Application for Web-Based Environmental Information Systems

    Science.gov (United States)

    Criado, Javier; Padilla, Nicolás; Iribarne, Luis; Asensio, Jose-Andrés

    Due to the globalization of the information and knowledge society on the Internet, modern Web-based Information Systems (WIS) must be flexible and prepared to be easily accessible and manageable in real-time. In recent times it has received a special interest the globalization of information through a common vocabulary (i.e., ontologies), and the standardized way in which information is retrieved on the Web (i.e., powerful search engines, and intelligent software agents). These same principles of globalization and standardization should also be valid for the user interfaces of the WIS, but they are built on traditional development paradigms. In this paper we present an approach to reduce the gap of globalization/standardization in the generation of WIS user interfaces by using a real-time "bottom-up" composition perspective with COTS-interface components (type interface widgets) and trading services.

  7. Charge loss experiments in surface channel CCD's explained by the McWhorter interface states model

    NARCIS (Netherlands)

    Penning De Vries, R.G.M.; Wallinga, Hans

    1985-01-01

    On the basis of the McWhorter interface states model the CCD charge loss is derived as a function of bias charge, signal charge and channel width. As opposed to existing models, the charge loss is now attributed to interface states in the entire gate area, even for high bias charge levels.

  8. Nanoreinforced polymer composites: 3D FEM modeling with effective interface concept

    DEFF Research Database (Denmark)

    Wang, H.W.; Zhou, H.W.; Peng, R.D.

    2011-01-01

    modeling. The generalized effective interface model, with two layers of different stiffnesses and the option of overlapping layers is developed here. The effects of the effective interface properties, particle sizes, particle shapes (spherical, cylindrical, ellipsoidal and disc-shaped) and volume fraction...

  9. Introducing a new open source GIS user interface for the SWAT model

    Science.gov (United States)

    The Soil and Water Assessment Tool (SWAT) model is a robust watershed modelling tool. It typically uses the ArcSWAT interface to create its inputs. ArcSWAT is public domain software which works in the licensed ArcGIS environment. The aim of this paper was to develop an open source user interface ...

  10. Building Information Modeling Comprehensive Overview

    Directory of Open Access Journals (Sweden)

    Sergey Kalinichuk

    2015-07-01

    Full Text Available The article is addressed to provide a comprehensive review on recently accelerated development of the Information Technology within project market such as industrial, engineering, procurement and construction. Author’s aim is to cover the last decades of the growth of the Information and Communication Technology in construction industry in particular Building Information Modeling and testifies that the problem of a choice of the effective project realization method not only has not lost its urgency, but has also transformed into one of the major condition of the intensive technology development. All of it has created a great impulse on shortening the project duration and has led to the development of various schedule compression techniques what becomes a focus of modern construction.

  11. Modeling Strategic Use of Human Computer Interfaces with Novel Hidden Markov Models

    Directory of Open Access Journals (Sweden)

    Laura Jane Mariano

    2015-07-01

    Full Text Available Immersive software tools are virtual environments designed to give their users an augmented view of real-world data and ways of manipulating that data. As virtual environments, every action users make while interacting with these tools can be carefully logged, as can the state of the software and the information it presents to the user, giving these actions context. This data provides a high-resolution lens through which dynamic cognitive and behavioral processes can be viewed. In this report, we describe new methods for the analysis and interpretation of such data, utilizing a novel implementation of the Beta Process Hidden Markov Model (BP-HMM for analysis of software activity logs. We further report the results of a preliminary study designed to establish the validity of our modeling approach. A group of 20 participants were asked to play a simple computer game, instrumented to log every interaction with the interface. Participants had no previous experience with the game’s functionality or rules, so the activity logs collected during their naïve interactions capture patterns of exploratory behavior and skill acquisition as they attempted to learn the rules of the game. Pre- and post-task questionnaires probed for self-reported styles of problem solving, as well as task engagement, difficulty, and workload. We jointly modeled the activity log sequences collected from all participants using the BP-HMM approach, identifying a global library of activity patterns representative of the collective behavior of all the participants. Analyses show systematic relationships between both pre- and post-task questionnaires, self-reported approaches to analytic problem solving, and metrics extracted from the BP-HMM decomposition. Overall, we find that this novel approach to decomposing unstructured behavioral data within software environments provides a sensible means for understanding how users learn to integrate software functionality for strategic

  12. A solid-on-solid invasion percolation model for self-affine interfaces

    International Nuclear Information System (INIS)

    Arizmendi, C.M.; Martin, H.O.; Sanchez, J.R.

    1993-08-01

    The scaling properties of the interface of a new growth model are studied. The model is based on the standard invasion percolation without trapping in which the solid-on-solid condition is imposed. The local correlation between points of the interface can be controlled through a parameter. The self-affine properties of the interface show strong dependence on the existence of the local correlation. The dependence of the relevant exponents of the interface with the correlation is analysed. (author). 8 refs, 4 figs

  13. Modeling adsorption of cationic surfactants at air/water interface without using the Gibbs equation.

    Science.gov (United States)

    Phan, Chi M; Le, Thu N; Nguyen, Cuong V; Yusa, Shin-ichi

    2013-04-16

    The Gibbs adsorption equation has been indispensable in predicting the surfactant adsorption at the interfaces, with many applications in industrial and natural processes. This study uses a new theoretical framework to model surfactant adsorption at the air/water interface without the Gibbs equation. The model was applied to two surfactants, C14TAB and C16TAB, to determine the maximum surface excesses. The obtained values demonstrated a fundamental change, which was verified by simulations, in the molecular arrangement at the interface. The new insights, in combination with recent discoveries in the field, expose the limitations of applying the Gibbs adsorption equation to cationic surfactants at the air/water interface.

  14. An optimal range of information quantity on computer-based procedure interface design in the advanced main control room

    International Nuclear Information System (INIS)

    Hsieh Minchih; Chiu Mingchuan; Hwang Sheueling

    2015-01-01

    The quantification of information in the interface design is a critical issue. Too much information on an interface can confuse a user while executing a task, and too little information may result in poor user performance. This study focused on the quantification of visible information on computer-based procedures (CBPs). Levels of information quantity and task complexity were considered in this experiment. Simulated CBPs were developed to consist of three levels: high (at least 10 events, i.e. 3.32 bits), medium (4–8 events, i.e. 2–3 bits), and low information quantity (1 or 2 events, i.e. 0 or 1 bits). Task complexity comprised two levels: complex tasks and simple tasks. The dependent variables include operation time, secondary task performance, and mental workload. Results suggested that medium information quantity of five to eight events has a remarkable advantage in supporting operator performance under both simple and complex tasks. This research not only suggested the appropriate range of information quantity on the CBP interface, but also complemented certain deficient results of previous CBP interface design studies. Additionally, based on results obtained by this study, the quantification of information on the CBP interface should be considered to ensure safe operation of nuclear power plants. (author)

  15. Behaviour of turbulence models near a turbulent/non-turbulent interface revisited

    International Nuclear Information System (INIS)

    Ferrey, P.; Aupoix, B.

    2006-01-01

    The behaviour of turbulence models near a turbulent/non-turbulent interface is investigated. The analysis holds as well for two-equation as for Reynolds stress turbulence models using Daly and Harlow diffusion model. The behaviour near the interface is shown not to be a power law, as usually considered, but a more complex parametric solution. Why previous works seemed to numerically confirm the power law solution is explained. Constraints for turbulence modelling, i.e., for ensuring that models have a good behaviour near a turbulent/non-turbulent interface so that the solution is not sensitive to small turbulence levels imposed in the irrotational flow, are drawn

  16. User's Manual for the Object User Interface (OUI): An Environmental Resource Modeling Framework

    Science.gov (United States)

    Markstrom, Steven L.; Koczot, Kathryn M.

    2008-01-01

    The Object User Interface is a computer application that provides a framework for coupling environmental-resource models and for managing associated temporal and spatial data. The Object User Interface is designed to be easily extensible to incorporate models and data interfaces defined by the user. Additionally, the Object User Interface is highly configurable through the use of a user-modifiable, text-based control file that is written in the eXtensible Markup Language. The Object User Interface user's manual provides (1) installation instructions, (2) an overview of the graphical user interface, (3) a description of the software tools, (4) a project example, and (5) specifications for user configuration and extension.

  17. Flashover of a vacuum-insulator interface: A statistical model

    Directory of Open Access Journals (Sweden)

    W. A. Stygar

    2004-07-01

    Full Text Available We have developed a statistical model for the flashover of a 45° vacuum-insulator interface (such as would be found in an accelerator subject to a pulsed electric field. The model assumes that the initiation of a flashover plasma is a stochastic process, that the characteristic statistical component of the flashover delay time is much greater than the plasma formative time, and that the average rate at which flashovers occur is a power-law function of the instantaneous value of the electric field. Under these conditions, we find that the flashover probability is given by 1-exp(-E_{p}^{β}t_{eff}C/k^{β}, where E_{p} is the peak value in time of the spatially averaged electric field E(t, t_{eff}≡∫[E(t/E_{p}]^{β}dt is the effective pulse width, C is the insulator circumference, k∝exp(λ/d, and β and λ are constants. We define E(t as V(t/d, where V(t is the voltage across the insulator and d is the insulator thickness. Since the model assumes that flashovers occur at random azimuthal locations along the insulator, it does not apply to systems that have a significant defect, i.e., a location contaminated with debris or compromised by an imperfection at which flashovers repeatedly take place, and which prevents a random spatial distribution. The model is consistent with flashover measurements to within 7% for pulse widths between 0.5 ns and 10   μs, and to within a factor of 2 between 0.5 ns and 90 s (a span of over 11 orders of magnitude. For these measurements, E_{p} ranges from 64 to 651  kV/cm, d from 0.50 to 4.32 cm, and C from 4.96 to 95.74 cm. The model is significantly more accurate, and is valid over a wider range of parameters, than the J. C. Martin flashover relation that has been in use since 1971 [J. C. Martin on Pulsed Power, edited by T. H. Martin, A. H. Guenther, and M. Kristiansen (Plenum, New York, 1996]. We have generalized the statistical model to estimate the total-flashover probability of an

  18. Interface, information, interaction: a narrative review of design and functional requirements for clinical decision support.

    Science.gov (United States)

    Miller, Kristen; Mosby, Danielle; Capan, Muge; Kowalski, Rebecca; Ratwani, Raj; Noaiseh, Yaman; Kraft, Rachel; Schwartz, Sanford; Weintraub, William S; Arnold, Ryan

    2018-05-01

    Provider acceptance and associated patient outcomes are widely discussed in the evaluation of clinical decision support systems (CDSSs), but critical design criteria for tools have generally been overlooked. The objective of this work is to inform electronic health record alert optimization and clinical practice workflow by identifying, compiling, and reporting design recommendations for CDSS to support the efficient, effective, and timely delivery of high-quality care. A narrative review was conducted from 2000 to 2016 in PubMed and The Journal of Human Factors and Ergonomics Society to identify papers that discussed/recommended design features of CDSSs that are associated with the success of these systems. Fourteen papers were included as meeting the criteria and were found to have a total of 42 unique recommendations; 11 were classified as interface features, 10 as information features, and 21 as interaction features. Features are defined and described, providing actionable guidance that can be applied to CDSS development and policy. To our knowledge, no reviews have been completed that discuss/recommend design features of CDSS at this scale, and thus we found that this was important for the body of literature. The recommendations identified in this narrative review will help to optimize design, organization, management, presentation, and utilization of information through presentation, content, and function. The designation of 3 categories (interface, information, and interaction) should be further evaluated to determine the critical importance of the categories. Future work will determine how to prioritize them with limited resources for designers and developers in order to maximize the clinical utility of CDSS. This review will expand the field of knowledge and provide a novel organization structure to identify key recommendations for CDSS.

  19. Information risk and security modeling

    Science.gov (United States)

    Zivic, Predrag

    2005-03-01

    This research paper presentation will feature current frameworks to addressing risk and security modeling and metrics. The paper will analyze technical level risk and security metrics of Common Criteria/ISO15408, Centre for Internet Security guidelines, NSA configuration guidelines and metrics used at this level. Information IT operational standards view on security metrics such as GMITS/ISO13335, ITIL/ITMS and architectural guidelines such as ISO7498-2 will be explained. Business process level standards such as ISO17799, COSO and CobiT will be presented with their control approach to security metrics. Top level, the maturity standards such as SSE-CMM/ISO21827, NSA Infosec Assessment and CobiT will be explored and reviewed. For each defined level of security metrics the research presentation will explore the appropriate usage of these standards. The paper will discuss standards approaches to conducting the risk and security metrics. The research findings will demonstrate the need for common baseline for both risk and security metrics. This paper will show the relation between the attribute based common baseline and corporate assets and controls for risk and security metrics. IT will be shown that such approach spans over all mentioned standards. The proposed approach 3D visual presentation and development of the Information Security Model will be analyzed and postulated. Presentation will clearly demonstrate the benefits of proposed attributes based approach and defined risk and security space for modeling and measuring.

  20. A Sketching Interface for Freeform 3D Modeling

    Science.gov (United States)

    Igarashi, Takeo

    This chapter introduces Teddy, a sketch-based modeling system to quickly and easily design freeform models such as stuffed animals and other rotund objects. The user draws several 2D freeform strokes interactively on the screen and the system automatically constructs plausible 3D polygonal surfaces. Our system supports several modeling operations, including the operation to construct a 3D polygonal surface from a 2D silhouette drawn by the user: it inflates the region surrounded by the silhouette making a wide area fat, and a narrow area thin. Teddy, our prototype system, is implemented as a Java program, and the mesh construction is done in real-time on a standard PC. Our informal user study showed that a first-time user masters the operations within 10 minutes, and can construct interesting 3D models within minutes. We also report the result of a case study where a high school teacher taught various 3D concepts in geography using the system.

  1. Towards emotion modeling based on gaze dynamics in generic interfaces

    DEFF Research Database (Denmark)

    Vester-Christensen, Martin; Leimberg, Denis; Ersbøll, Bjarne Kjær

    2005-01-01

    Gaze detection can be a useful ingredient in generic human computer interfaces if current technical barriers are overcome. We discuss the feasibility of concurrent posture and eye-tracking in the context of single (low cost) camera imagery. The ingredients in the approach are posture and eye region...

  2. On the Modeling of Contact Interfaces with Frictional Slips

    Directory of Open Access Journals (Sweden)

    Ligia Munteanu

    2013-09-01

    Full Text Available The paper analyses the contact interfaces between the scatterers and the matrix into the sonic composites, in the presence of the frictional slips. The sonic composite is a sonic liner designed in order to provide suppression of unwanted noise for jet engines, with emphases on the nacelle of turbofan engines for commercial aircraft.

  3. A Contextual Model for Identity Management (IdM) Interfaces

    Science.gov (United States)

    Fuller, Nathaniel J.

    2014-01-01

    The usability of Identity Management (IdM) systems is highly dependent upon design that simplifies the processes of identification, authentication, and authorization. Recent findings reveal two critical problems that degrade IdM usability: (1) unfeasible techniques for managing various digital identifiers, and (2) ambiguous security interfaces.…

  4. Micro-mechanical modeling of the cement-bone interface: the effect of friction, morphology and material properties on the micromechanical response.

    Science.gov (United States)

    Janssen, Dennis; Mann, Kenneth A; Verdonschot, Nico

    2008-11-14

    In order to gain insight into the micro-mechanical behavior of the cement-bone interface, the effect of parametric variations of frictional, morphological and material properties on the mechanical response of the cement-bone interface were analyzed using a finite element approach. Finite element models of a cement-bone interface specimen were created from micro-computed tomography data of a physical specimen that was sectioned from an in vitro cemented total hip arthroplasty. In five models the friction coefficient was varied (mu=0.0; 0.3; 0.7; 1.0 and 3.0), while in one model an ideally bonded interface was assumed. In two models cement interface gaps and an optimal cement penetration were simulated. Finally, the effect of bone cement stiffness variations was simulated (2.0 and 2.5 GPa, relative to the default 3.0 GPa). All models were loaded for a cycle of fully reversible tension-compression. From the simulated stress-displacement curves the interface deformation, stiffness and hysteresis were calculated. The results indicate that in the current model the mechanical properties of the cement-bone interface were caused by frictional phenomena at the shape-closed interlock rather than by adhesive properties of the cement. Our findings furthermore show that in our model maximizing cement penetration improved the micromechanical response of the cement-bone interface stiffness, while interface gaps had a detrimental effect. Relative to the frictional and morphological variations, variations in the cement stiffness had only a modest effect on the micro-mechanical behavior of the cement-bone interface. The current study provides information that may help to better understand the load-transfer mechanisms taking place at the cement-bone interface.

  5. A thick-interface model for diffusive and massive phase transformation in substitutional alloys

    International Nuclear Information System (INIS)

    Svoboda, J.; Vala, J.; Gamsjaeger, E.; Fischer, F.D.

    2006-01-01

    Based on the application of the thermodynamic extremal principle, a new model for the diffusive and massive phase transformation in multicomponent substitutional alloys is developed. Interfacial reactions such as the rearrangement of the lattice, solute drag and trans-interface diffusion are automatically considered by assigning a finite thickness and a finite mobility to the interface region. As an application of the steady-state solution of the derived evolution equations, the kinetics of the massive γ → α transformation in the Fe-rich Fe-Cr-Ni system is simulated. The thermodynamic properties of the interface may influence significantly the contact conditions at the interface as well as the conditions for the occurrence of the massive transformation and its kinetics. The model is also used for the simulation of the diffusion-induced grain boundary migration in the same system. By application of the model a realistic value for the Gibbs energy per unit interface area is obtained

  6. Diffuse-interface model for rapid phase transformations in nonequilibrium systems.

    Science.gov (United States)

    Galenko, Peter; Jou, David

    2005-04-01

    A thermodynamic approach to rapid phase transformations within a diffuse interface in a binary system is developed. Assuming an extended set of independent thermodynamic variables formed by the union of the classic set of slow variables and the space of fast variables, we introduce finiteness of the heat and solute diffusive propagation at the finite speed of the interface advancing. To describe transformations within the diffuse interface, we use the phase-field model which allows us to follow steep but smooth changes of phase within the width of the diffuse interface. Governing equations of the phase-field model are derived for the hyperbolic model, a model with memory, and a model of nonlinear evolution of transformation within the diffuse interface. The consistency of the model is proved by the verification of the validity of the condition of positive entropy production and by outcomes of the fluctuation-dissipation theorem. A comparison with existing sharp-interface and diffuse-interface versions of the model is given.

  7. Modelling energy level alignment at organic interfaces and density functional theory

    DEFF Research Database (Denmark)

    Flores, F.; Ortega, J.; Vazquez, Patricia

    2009-01-01

    A review of our theoretical understanding of the band alignment at organic interfaces is presented with particular emphasis on the metal/organic (MO) case. The unified IDIS (induced density of interface states) and the ICT (integer charge transfer) models are reviewed and shown to describe qualit...

  8. Analytical Solution of Interface Effect on the Strength of Combined Model Composed of Different Geologic Bodies

    Directory of Open Access Journals (Sweden)

    Zeng-hui Zhao

    2014-01-01

    Full Text Available According to the special combined structure of surrounding rock in western mining area of China, a micromechanical model with variable parameters containing contact interface was proposed firstly. Then, the derived stresses in coal and rock near the interface were analyzed on the basis of the harmonized strain relation, and the analytical solutions with respect to stress states near the interface were drawn up. The triaxial compressive strength of coal and rock was further determined in case the contact interface was in the horizontal position. Moreover, effects of stiffness ratio, interface angle, and stress level on the strength of two bodies near the contact area were expounded in detail. Results indicate that additional stresses which have significant effect on the strength of combined model are derived due to the adhesive effect of contact interface and lithological differences between geologic bodies located on both sides. The interface effect on the strength of combined body is most associated with the stiffness, interface angle, and the stress level. These conclusions are also basically valid for three-body model and even for the multibody model and lay important theory foundation to guide the stability study of soft strata composed of different geologic bodies.

  9. Research on new information service model of the contemporary library

    International Nuclear Information System (INIS)

    Xin Pingping; Lu Yan

    2010-01-01

    According to the development of the internet and multimedia technology, the information service models in the contemporary library become both of the traditional and digital information service. The libraries in each country do their best to make the voluminous information and the complex technology be High-integrated in the background management, and also make the front interface be more and more convenient to the users. The essential characteristics of the information service of the contemporary library are all-in-one and humanness. In this article, we will describe several new hot information service models of the contemporary library in detail, such as individualized service, reference service, reference service and strategic information service. (authors)

  10. Provision of a wildfire risk map: informing residents in the wildland urban interface.

    Science.gov (United States)

    Mozumder, Pallab; Helton, Ryan; Berrens, Robert P

    2009-11-01

    Wildfires in the wildland urban interface (WUI) are an increasing concern throughout the western United States and elsewhere. WUI communities continue to grow and thus increase the wildfire risk to human lives and property. Information such as a wildfire risk map can inform WUI residents of potential risks and may help to efficiently sort mitigation efforts. This study uses the survey-based contingent valuation (CV) method to examine annual household willingness to pay (WTP) for the provision of a wildfire risk map. Data were collected through a mail survey of the East Mountain WUI area in the State of New Mexico (USA). The integrated empirical approach includes a system of equations that involves joint estimation of WTP values, along with measures of a respondent's risk perception and risk mitigation behavior. The median estimated WTP is around U.S. $12 for the annual wildfire risk map, which covers at least the costs of producing and distributing available risk information. Further, providing a wildfire risk map can help address policy goals emphasizing information gathering and sharing among stakeholders to mitigate the effects of wildfires.

  11. Accessing Data Bases Through Interface Views Using a Unified Graph-Oriented Entity-Relationship Model

    DEFF Research Database (Denmark)

    Kraft, Peter; Sørensen, Jens Otto

    Interface Abstract: The paper describes an Entity Relationship (ER) model with a diagrammed schema and extensions modeled into a graph. The semantics of schema symbols are fundamentally simple implying a unified model where given conceptualizations of environments are diagrammed uniquely. By the ......Interface Abstract: The paper describes an Entity Relationship (ER) model with a diagrammed schema and extensions modeled into a graph. The semantics of schema symbols are fundamentally simple implying a unified model where given conceptualizations of environments are diagrammed uniquely...... with a unified graphic model is more efficient and less error-prone than working with more complex ER models and models based on lexical description. Key terms: Entity-relationship model, path expressions, entity-relationship language, derived interface view, view updates, graphical models....

  12. An Exploration into Framing Effects and Information Preferences: Implications for the Design of Energy Feedback Interfaces

    Science.gov (United States)

    Taylor-Brown, Peter

    A recent topic in the energy industry involves developing strategies to reduce the necessary peak production capacity of our future electricity infrastructure. One of these strategies is promoting behavioral change among individual energy consumers. An inherent problem with electricity consumption is that electricity is invisible, intangible, and abstract. Interfaces that provide people with useful feedback on their usage can help with understanding and reduction of consumption. These interfaces intend to empower individuals with ability to adopt less wasteful energy consumption behaviors. Skillful HCI design will include attention to informational preferences, and framing effects due to presentation choices. An online questionnaire was utilized to explore this domain, and the results identified design requirements for a home feedback interface. The final dataset contained responses from 36 male and 49 female United States residents. Cost () was perceived as the most useful metric and kW as the least useful. Respondent preference was expressed for lower levels of automation, which was not attributable to distrust of automation. Further, a test of framings effects showed a higher likelihood to change behavior to save 100 dollars per year than 2 per week (U=1248.5, p=0.001). A feedback interface design based on the questionnaire results was used in the second phase of the research. A 2x2x2 factorial design compared the effects of goal-type (specific vs. open-ended), metric-use ( vs. kWh), and visualization (graphical vs. text-only) on user experience, learning and behavior during a consumption reduction task. Results showed that goal-type affects the amount of diagnostic behavior conducted by participants (U=351.0, p=0.001). Goal-type and metric-use independently affect participant belief that they could reduce their consumption in their real home with the same feedback shown in the task, F(df=1,39)=24.77, p=0.001; F(df=1,39)=5.55, p=0.05. In addition, visualization

  13. Information Modeling for Direct Control of Distributed Energy Resources

    DEFF Research Database (Denmark)

    Biegel, Benjamin; Andersen, Palle; Stoustrup, Jakob

    2013-01-01

    We present an architecture for an unbundled liberalized electricity market system where a virtual power plant (VPP) is able to control a number of distributed energy resources (DERs) directly through a two-way communication link. The aggregator who operates the VPP utilizes the accumulated...... a desired accumulated response. In this paper, we design such an information model based on the markets that the aggregator participates in and based on the flexibility characteristics of the remote controlled DERs. The information model is constructed in a modular manner making the interface suitable...

  14. runjags: An R Package Providing Interface Utilities, Model Templates, Parallel Computing Methods and Additional Distributions for MCMC Models in JAGS

    Directory of Open Access Journals (Sweden)

    Matthew J. Denwood

    2016-07-01

    Full Text Available The runjags package provides a set of interface functions to facilitate running Markov chain Monte Carlo models in JAGS from within R. Automated calculation of appropriate convergence and sample length diagnostics, user-friendly access to commonly used graphical outputs and summary statistics, and parallelized methods of running JAGS are provided. Template model specifications can be generated using a standard lme4-style formula interface to assist users less familiar with the BUGS syntax. Automated simulation study functions are implemented to facilitate model performance assessment, as well as drop-k type cross-validation studies, using high performance computing clusters such as those provided by parallel. A module extension for JAGS is also included within runjags, providing the Pareto family of distributions and a series of minimally-informative priors including the DuMouchel and half-Cauchy priors. This paper outlines the primary functions of this package, and gives an illustration of a simulation study to assess the sensitivity of two equivalent model formulations to different prior distributions.

  15. Spiral model pilot project information model

    Science.gov (United States)

    1991-01-01

    The objective was an evaluation of the Spiral Model (SM) development approach to allow NASA Marshall to develop an experience base of that software management methodology. A discussion is presented of the Information Model (IM) that was used as part of the SM methodology. A key concept of the SM is the establishment of an IM to be used by management to track the progress of a project. The IM is the set of metrics that is to be measured and reported throughout the life of the project. These metrics measure both the product and the process to ensure the quality of the final delivery item and to ensure the project met programmatic guidelines. The beauty of the SM, along with the IM, is the ability to measure not only the correctness of the specification and implementation of the requirements but to also obtain a measure of customer satisfaction.

  16. The ADAM project: a generic web interface for retrieval and display of ATLAS TDAQ information.

    CERN Document Server

    Harwood, A; The ATLAS collaboration; Magnoni, L; Vandelli, W; Savu, D

    2011-01-01

    This paper describes a new approach to the visualization of stored information about the operation of the ATLAS Trigger and Data Acquisition system. ATLAS is one of the two general purpose detectors positioned along the Large Hadron Collider at CERN. Its data acquisition system consists of several thousand computers interconnected via multiple gigabit Ethernet networks, that are constantly monitored via different tools. Operational parameters ranging from the temperature of the computers to the network utilization are stored in several databases for later analysis. Although the ability to view these data-sets individually is already in place, currently there is no way to view this data together, in a uniform format, from one location. The ADAM project has been launched in order to overcome this limitation. It defines a uniform web interface to collect data from multiple providers that have different structures. It is capable of aggregating and correlating the data according to user defined criteria. Finally, ...

  17. ADAM Project – A generic web interface for retrieval and display of ATLAS TDAQ information.

    CERN Document Server

    Harwood, A; The ATLAS collaboration; Lehmann Miotto, G

    2011-01-01

    This paper describes a new approach to the visualization of stored information about the operation of the ATLAS Trigger and Data Acquisition system. ATLAS is one of the two general purpose detectors positioned along the Large Hadron Collider at CERN. Its data acquisition system consists of several thousand computers interconnected via multiple gigabit Ethernet networks, that are constantly monitored via different tools. Operational parameters ranging from the temperature of the computers, to the network utilization are stored in several databases for a posterior analysis. Although the ability to view these data-sets individually is already in place, there currently is no way to view this data together, in a uniform format, from one location. The ADAM project has been launched in order to overcome this limitation. It defines a uniform web interface to collect data from multiple diversely structured providers. It is capable of aggregating and correlating the data according to user defined criteria. Finally it v...

  18. The development of a natural language interface to a geographical information system

    Science.gov (United States)

    Toledo, Sue Walker; Davis, Bruce

    1993-01-01

    This paper will discuss a two and a half year long project undertaken to develop an English-language interface for the geographical information system GRASS. The work was carried out for NASA by a small business, Netrologic, based in San Diego, California, under Phase 1 and 2 Small Business Innovative Research contracts. We consider here the potential value of this system whose current functionality addresses numerical, categorical and boolean raster layers and includes the display of point sets defined by constraints on one or more layers, answers yes/no and numerical questions, and creates statistical reports. It also handles complex queries and lexical ambiguities, and allows temporarily switching to UNIX or GRASS.

  19. MIG version 0.0 model interface guidelines: Rules to accelerate installation of numerical models into any compliant parent code

    Energy Technology Data Exchange (ETDEWEB)

    Brannon, R.M.; Wong, M.K.

    1996-08-01

    A set of model interface guidelines, called MIG, is presented as a means by which any compliant numerical material model can be rapidly installed into any parent code without having to modify the model subroutines. Here, {open_quotes}model{close_quotes} usually means a material model such as one that computes stress as a function of strain, though the term may be extended to any numerical operation. {open_quotes}Parent code{close_quotes} means a hydrocode, finite element code, etc. which uses the model and enforces, say, the fundamental laws of motion and thermodynamics. MIG requires the model developer (who creates the model package) to specify model needs in a standardized but flexible way. MIG includes a dictionary of technical terms that allows developers and parent code architects to share a common vocabulary when specifying field variables. For portability, database management is the responsibility of the parent code. Input/output occurs via structured calling arguments. As much model information as possible (such as the lists of required inputs, as well as lists of precharacterized material data and special needs) is supplied by the model developer in an ASCII text file. Every MIG-compliant model also has three required subroutines to check data, to request extra field variables, and to perform model physics. To date, the MIG scheme has proven flexible in beta installations of a simple yield model, plus a more complicated viscodamage yield model, three electromechanical models, and a complicated anisotropic microcrack constitutive model. The MIG yield model has been successfully installed using identical subroutines in three vectorized parent codes and one parallel C++ code, all predicting comparable results. By maintaining one model for many codes, MIG facilitates code-to-code comparisons and reduces duplication of effort, thereby reducing the cost of installing and sharing models in diverse new codes.

  20. An X window based graphics user interface for radiation information processing system developed with object-oriented programming technology

    International Nuclear Information System (INIS)

    Gao Wenhuan; Fu Changqing; Kang Kejun

    1993-01-01

    X Window is a network-oriented and network transparent windowing system, and now dominant in the Unix domain. The object-oriented programming technology can be used to change the extensibility of a software system remarkably. An introduction to graphics user interface is given. And how to develop a graphics user interface for radiation information processing system with object-oriented programming technology, which is based on X Window and independent of application is described briefly

  1. STEP-TRAMM - A modeling interface for simulating localized rainfall induced shallow landslides and debris flow runout pathways

    Science.gov (United States)

    Or, D.; von Ruette, J.; Lehmann, P.

    2017-12-01

    Landslides and subsequent debris-flows initiated by rainfall represent a common natural hazard in mountainous regions. We integrated a landslide hydro-mechanical triggering model with a simple model for debris flow runout pathways and developed a graphical user interface (GUI) to represent these natural hazards at catchment scale at any location. The STEP-TRAMM GUI provides process-based estimates of the initiation locations and sizes of landslides patterns based on digital elevation models (SRTM) linked with high resolution global soil maps (SoilGrids 250 m resolution) and satellite based information on rainfall statistics for the selected region. In the preprocessing phase the STEP-TRAMM model estimates soil depth distribution to supplement other soil information for delineating key hydrological and mechanical properties relevant to representing local soil failure. We will illustrate this publicly available GUI and modeling platform to simulate effects of deforestation on landslide hazards in several regions and compare model outcome with satellite based information.

  2. Lateral strength force of URM structures based on a constitutive model for interface element

    Directory of Open Access Journals (Sweden)

    A.H. Akhaveissy

    Full Text Available This paper presents the numerical implementation of a new proposed interface model for modeling the behavior of mortar joints in masonry walls. Its theoretical framework is fully based on the plasticity theory. The Von Mises criterion is used to simulate the behavior of brick and stone units. The interface laws for contact elements are formulated to simulate the softening behavior of mortar joints under tensile stress; a normal linear cap model is also used to limit compressive stress. The numerical predictions based on the proposed model for the behavior of interface elements correlate very highly with test data. A new explicit formula based on results of proposed interface model is also presented to estimate the strength of unreinforced masonry structures. The closed form solution predicts the ultimate lateral load of unreinforced masonry walls less error percentage than ATC and FEMA-307. Consequently, the proposed closed form solution can be used satisfactorily to analyze unreinforced masonry structures.

  3. Two graphical user interfaces for managing and analyzing MODFLOW groundwater-model scenarios

    Science.gov (United States)

    Banta, Edward R.

    2014-01-01

    Scenario Manager and Scenario Analyzer are graphical user interfaces that facilitate the use of calibrated, MODFLOW-based groundwater models for investigating possible responses to proposed stresses on a groundwater system. Scenario Manager allows a user, starting with a calibrated model, to design and run model scenarios by adding or modifying stresses simulated by the model. Scenario Analyzer facilitates the process of extracting data from model output and preparing such display elements as maps, charts, and tables. Both programs are designed for users who are familiar with the science on which groundwater modeling is based but who may not have a groundwater modeler’s expertise in building and calibrating a groundwater model from start to finish. With Scenario Manager, the user can manipulate model input to simulate withdrawal or injection wells, time-variant specified hydraulic heads, recharge, and such surface-water features as rivers and canals. Input for stresses to be simulated comes from user-provided geographic information system files and time-series data files. A Scenario Manager project can contain multiple scenarios and is self-documenting. Scenario Analyzer can be used to analyze output from any MODFLOW-based model; it is not limited to use with scenarios generated by Scenario Manager. Model-simulated values of hydraulic head, drawdown, solute concentration, and cell-by-cell flow rates can be presented in display elements. Map data can be represented as lines of equal value (contours) or as a gradated color fill. Charts and tables display time-series data obtained from output generated by a transient-state model run or from user-provided text files of time-series data. A display element can be based entirely on output of a single model run, or, to facilitate comparison of results of multiple scenarios, an element can be based on output from multiple model runs. Scenario Analyzer can export display elements and supporting metadata as a Portable

  4. Connecting Social Science and Information Technology through an Interface-Centric Framework of Analysis

    Directory of Open Access Journals (Sweden)

    Mikael Sundström

    2008-06-01

    Full Text Available The gathering pace of IT innovation has, or ought to have had notable methodological repercussions for the social-science community (and beyond. Where yesterday the researcher could unhurriedly unlock the social-scientific significance of a chosen medium, secure in the knowledge that his or her work would have bearing for many years, by now there is every reason to confront a fear that the prodded IT implementation may in fact be gone or at least heavily altered by the time such comprehensive research is concluded. This paper will propose a complementing systematic "interface-centric" research model capable of interconnecting a non-finite variety of IT implementations and social science studies in a coherent way. The paper also outlines how users "downstream", whether political actors or technology operators can use the proposed framework to more easily approach and weight academic input when evaluating complex IT effects.

  5. Comparative studies on constitutive models for cohesive interface cracks of quasi-brittle materials

    International Nuclear Information System (INIS)

    Shen Xinpu; Shen Guoxiao; Zhou Lin

    2005-01-01

    In this paper, Concerning on the modelling of quasi-brittle fracture process zone at interface crack of quasi-brittle materials and structures, typical constitutive models of interface cracks were compared. Numerical calculations of the constitutive behaviours of selected models were carried out at local level. Aiming at the simulation of quasi-brittle fracture of concrete-like materials and structures, the emphases of the qualitative comparisons of selected cohesive models are focused on: (1) the fundamental mode I and mode II behaviours of selected models; (2) dilatancy properties of the selected models under mixed mode fracture loading conditions. (authors)

  6. Development of nodal interface conditions for a PN approximation nodal model

    International Nuclear Information System (INIS)

    Feiz, M.

    1993-01-01

    A relation was developed for approximating higher order odd-moments from lower order odd-moments at the nodal interfaces of a Legendre polynomial nodal model. Two sample problems were tested using different order P N expansions in adjacent nodes. The developed relation proved to be adequate and matched the nodal interface flux accurately. The development allows the use of different order expansions in adjacent nodes, and will be used in a hybrid diffusion-transport nodal model. (author)

  7. Decoding of grasping information from neural signals recorded using peripheral intrafascicular interfaces

    Directory of Open Access Journals (Sweden)

    Cipriani Christian

    2011-09-01

    Full Text Available Abstract Background The restoration of complex hand functions by creating a novel bidirectional link between the nervous system and a dexterous hand prosthesis is currently pursued by several research groups. This connection must be fast, intuitive, with a high success rate and quite natural to allow an effective bidirectional flow of information between the user's nervous system and the smart artificial device. This goal can be achieved with several approaches and among them, the use of implantable interfaces connected with the peripheral nervous system, namely intrafascicular electrodes, is considered particularly interesting. Methods Thin-film longitudinal intra-fascicular electrodes were implanted in the median and ulnar nerves of an amputee's stump during a four-week trial. The possibility of decoding motor commands suitable to control a dexterous hand prosthesis was investigated for the first time in this research field by implementing a spike sorting and classification algorithm. Results The results showed that motor information (e.g., grip types and single finger movements could be extracted with classification accuracy around 85% (for three classes plus rest and that the user could improve his ability to govern motor commands over time as shown by the improved discrimination ability of our classification algorithm. Conclusions These results open up new and promising possibilities for the development of a neuro-controlled hand prosthesis.

  8. Spectral Transfer Learning using Information Geometry for a User-Independent Brain-Computer Interface

    Directory of Open Access Journals (Sweden)

    Nicholas Roy Waytowich

    2016-09-01

    Full Text Available Recent advances in signal processing and machine learning techniques have enabled the application of Brain-Computer Interface (BCI technologies to fields such as medicine, industry and recreation. However, BCIs still suffer from the requirement of frequent calibration sessions due to the intra- and inter- individual variability of brain-signals, which makes calibration suppression through transfer learning an area of increasing interest for the development of practical BCI systems. In this paper, we present an unsupervised transfer method (spectral transfer using information geometry, STIG, which ranks and combines unlabeled predictions from an ensemble of information geometry classifiers built on data from individual training subjects. The STIG method is validated in both offline and real-time feedback analysis during a rapid serial visual presentation task (RSVP. For detection of single-trial, event-related potentials (ERPs, the proposed method can significantly outperform existing calibration-free techniques as well as outperform traditional within-subject calibration techniques when limited data is available. This method demonstrates that unsupervised transfer learning for single-trial detection in ERP-based BCIs can be achieved without the requirement of costly training data, representing a step-forward in the overall goal of achieving a practical user-independent BCI system.

  9. Decoding of grasping information from neural signals recorded using peripheral intrafascicular interfaces.

    Science.gov (United States)

    Micera, Silvestro; Rossini, Paolo M; Rigosa, Jacopo; Citi, Luca; Carpaneto, Jacopo; Raspopovic, Stanisa; Tombini, Mario; Cipriani, Christian; Assenza, Giovanni; Carrozza, Maria C; Hoffmann, Klaus-Peter; Yoshida, Ken; Navarro, Xavier; Dario, Paolo

    2011-09-05

    The restoration of complex hand functions by creating a novel bidirectional link between the nervous system and a dexterous hand prosthesis is currently pursued by several research groups. This connection must be fast, intuitive, with a high success rate and quite natural to allow an effective bidirectional flow of information between the user's nervous system and the smart artificial device. This goal can be achieved with several approaches and among them, the use of implantable interfaces connected with the peripheral nervous system, namely intrafascicular electrodes, is considered particularly interesting. Thin-film longitudinal intra-fascicular electrodes were implanted in the median and ulnar nerves of an amputee's stump during a four-week trial. The possibility of decoding motor commands suitable to control a dexterous hand prosthesis was investigated for the first time in this research field by implementing a spike sorting and classification algorithm. The results showed that motor information (e.g., grip types and single finger movements) could be extracted with classification accuracy around 85% (for three classes plus rest) and that the user could improve his ability to govern motor commands over time as shown by the improved discrimination ability of our classification algorithm. These results open up new and promising possibilities for the development of a neuro-controlled hand prosthesis.

  10. Spectral Transfer Learning Using Information Geometry for a User-Independent Brain-Computer Interface.

    Science.gov (United States)

    Waytowich, Nicholas R; Lawhern, Vernon J; Bohannon, Addison W; Ball, Kenneth R; Lance, Brent J

    2016-01-01

    Recent advances in signal processing and machine learning techniques have enabled the application of Brain-Computer Interface (BCI) technologies to fields such as medicine, industry, and recreation; however, BCIs still suffer from the requirement of frequent calibration sessions due to the intra- and inter-individual variability of brain-signals, which makes calibration suppression through transfer learning an area of increasing interest for the development of practical BCI systems. In this paper, we present an unsupervised transfer method (spectral transfer using information geometry, STIG), which ranks and combines unlabeled predictions from an ensemble of information geometry classifiers built on data from individual training subjects. The STIG method is validated in both off-line and real-time feedback analysis during a rapid serial visual presentation task (RSVP). For detection of single-trial, event-related potentials (ERPs), the proposed method can significantly outperform existing calibration-free techniques as well as outperform traditional within-subject calibration techniques when limited data is available. This method demonstrates that unsupervised transfer learning for single-trial detection in ERP-based BCIs can be achieved without the requirement of costly training data, representing a step-forward in the overall goal of achieving a practical user-independent BCI system.

  11. ToxPi Graphical User Interface 2.0: Dynamic exploration, visualization, and sharing of integrated data models.

    Science.gov (United States)

    Marvel, Skylar W; To, Kimberly; Grimm, Fabian A; Wright, Fred A; Rusyn, Ivan; Reif, David M

    2018-03-05

    Drawing integrated conclusions from diverse source data requires synthesis across multiple types of information. The ToxPi (Toxicological Prioritization Index) is an analytical framework that was developed to enable integration of multiple sources of evidence by transforming data into integrated, visual profiles. Methodological improvements have advanced ToxPi and expanded its applicability, necessitating a new, consolidated software platform to provide functionality, while preserving flexibility for future updates. We detail the implementation of a new graphical user interface for ToxPi (Toxicological Prioritization Index) that provides interactive visualization, analysis, reporting, and portability. The interface is deployed as a stand-alone, platform-independent Java application, with a modular design to accommodate inclusion of future analytics. The new ToxPi interface introduces several features, from flexible data import formats (including legacy formats that permit backward compatibility) to similarity-based clustering to options for high-resolution graphical output. We present the new ToxPi interface for dynamic exploration, visualization, and sharing of integrated data models. The ToxPi interface is freely-available as a single compressed download that includes the main Java executable, all libraries, example data files, and a complete user manual from http://toxpi.org .

  12. Parsimonious Language Models for Information Retrieval

    NARCIS (Netherlands)

    Hiemstra, Djoerd; Robertson, Stephen; Zaragoza, Hugo

    We systematically investigate a new approach to estimating the parameters of language models for information retrieval, called parsimonious language models. Parsimonious language models explicitly address the relation between levels of language models that are typically used for smoothing. As such,

  13. Downsizer - A Graphical User Interface-Based Application for Browsing, Acquiring, and Formatting Time-Series Data for Hydrologic Modeling

    Science.gov (United States)

    Ward-Garrison, Christian; Markstrom, Steven L.; Hay, Lauren E.

    2009-01-01

    The U.S. Geological Survey Downsizer is a computer application that selects, downloads, verifies, and formats station-based time-series data for environmental-resource models, particularly the Precipitation-Runoff Modeling System. Downsizer implements the client-server software architecture. The client presents a map-based, graphical user interface that is intuitive to modelers; the server provides streamflow and climate time-series data from over 40,000 measurement stations across the United States. This report is the Downsizer user's manual and provides (1) an overview of the software design, (2) installation instructions, (3) a description of the graphical user interface, (4) a description of selected output files, and (5) troubleshooting information.

  14. Model potential for the description of metal/organic interface states

    Science.gov (United States)

    Armbrust, Nico; Schiller, Frederik; Güdde, Jens; Höfer, Ulrich

    2017-01-01

    We present an analytical one-dimensional model potential for the description of electronic interface states that form at the interface between a metal surface and flat-lying adlayers of π-conjugated organic molecules. The model utilizes graphene as a universal representation of these organic adlayers. It predicts the energy position of the interface state as well as the overlap of its wave function with the bulk metal without free fitting parameters. We show that the energy of the interface state depends systematically on the bond distance between the carbon backbone of the adayers and the metal. The general applicability and robustness of the model is demonstrated by a comparison of the calculated energies with numerous experimental results for a number of flat-lying organic molecules on different closed-packed metal surfaces that cover a large range of bond distances. PMID:28425444

  15. Explicit modeling the progressive interface damage in fibrous composite: Analytical vs. numerical approach

    DEFF Research Database (Denmark)

    Kushch, V.I.; Shmegera, S.V.; Mishnaevsky, Leon

    2011-01-01

    of the multiple inclusion problem by means of complex potentials. The second, finite element model of FRC is based on the cohesive zone model of interface. Simulation of progressive debonding in FRC using the many-fiber models of composite has been performed. The advantageous features and applicability areas...... of both models are discussed. It has been shown that the developed models provide detailed analysis of the progressive debonding phenomena including the interface crack cluster formation, overall stiffness reduction and induced anisotropy of the effective elastic moduli of composite....

  16. Refreshing Information Literacy: Learning from Recent British Information Literacy Models

    Science.gov (United States)

    Martin, Justine

    2013-01-01

    Models play an important role in helping practitioners implement and promote information literacy. Over time models can lose relevance with the advances in technology, society, and learning theory. Practitioners and scholars often call for adaptations or transformations of these frameworks to articulate the learning needs in information literacy…

  17. Function Model for Community Health Service Information

    Science.gov (United States)

    Yang, Peng; Pan, Feng; Liu, Danhong; Xu, Yongyong

    In order to construct a function model of community health service (CHS) information for development of CHS information management system, Integration Definition for Function Modeling (IDEF0), an IEEE standard which is extended from Structured Analysis and Design(SADT) and now is a widely used function modeling method, was used to classifying its information from top to bottom. The contents of every level of the model were described and coded. Then function model for CHS information, which includes 4 super-classes, 15 classes and 28 sub-classed of business function, 43 business processes and 168 business activities, was established. This model can facilitate information management system development and workflow refinement.

  18. Beam modelling with a window-oriented user interface

    International Nuclear Information System (INIS)

    Raich, U.

    1990-01-01

    In the near future, graphic workstations will be used as replacements for the present operator consoles in the CERN PS accelerator complex. This implies a major change in the style of work for the operators and in the way programs have to be conceived by the programmers. ULTRIX-based (ULTRIX is Digital's version of UNIX) VAX workstations have been selected and DEC-Windows will be used to construct the user interfaces. As a first prototype application, TRACE3D, a beam-transport simulation program, has been adapted to the new environment. This program was an ideal candidate for tests because it needs a great deal of user interaction, while process access is not necessary, at least in a first implementation. This paper describes the different ways in which users interact in order to calculate the beam envelopes, to plot the results, to print out the beam or transport-line parameters, to modify the parameters and to get help. (orig.)

  19. Standards for the user interface - Developing a user consensus. [for Space Station Information System

    Science.gov (United States)

    Moe, Karen L.; Perkins, Dorothy C.; Szczur, Martha R.

    1987-01-01

    The user support environment (USE) which is a set of software tools for a flexible standard interactive user interface to the Space Station systems, platforms, and payloads is described in detail. Included in the USE concept are a user interface language, a run time environment and user interface management system, support tools, and standards for human interaction methods. The goals and challenges of the USE are discussed as well as a methodology based on prototype demonstrations for involving users in the process of validating the USE concepts. By prototyping the key concepts and salient features of the proposed user interface standards, the user's ability to respond is greatly enhanced.

  20. Item Information in the Rasch Model

    NARCIS (Netherlands)

    Engelen, Ron J.H.; van der Linden, Willem J.; Oosterloo, Sebe J.

    1988-01-01

    Fisher's information measure for the item difficulty parameter in the Rasch model and its marginal and conditional formulations are investigated. It is shown that expected item information in the unconditional model equals information in the marginal model, provided the assumption of sampling

  1. A comparison of molecular dynamics and diffuse interface model predictions of Lennard-Jones fluid evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Barbante, Paolo [Dipartimento di Matematica, Politecnico di Milano - Piazza Leonardo da Vinci 32 - 20133 Milano (Italy); Frezzotti, Aldo; Gibelli, Livio [Dipartimento di Scienze e Tecnologie Aerospaziali, Politecnico di Milano - Via La Masa 34 - 20156 Milano (Italy)

    2014-12-09

    The unsteady evaporation of a thin planar liquid film is studied by molecular dynamics simulations of Lennard-Jones fluid. The obtained results are compared with the predictions of a diffuse interface model in which capillary Korteweg contributions are added to hydrodynamic equations, in order to obtain a unified description of the liquid bulk, liquid-vapor interface and vapor region. Particular care has been taken in constructing a diffuse interface model matching the thermodynamic and transport properties of the Lennard-Jones fluid. The comparison of diffuse interface model and molecular dynamics results shows that, although good agreement is obtained in equilibrium conditions, remarkable deviations of diffuse interface model predictions from the reference molecular dynamics results are observed in the simulation of liquid film evaporation. It is also observed that molecular dynamics results are in good agreement with preliminary results obtained from a composite model which describes the liquid film by a standard hydrodynamic model and the vapor by the Boltzmann equation. The two mathematical model models are connected by kinetic boundary conditions assuming unit evaporation coefficient.

  2. Modeling and stabilities of Mg/MgH2 interfaces: A first-principles investigation

    Directory of Open Access Journals (Sweden)

    Jia-Jun Tang

    2014-07-01

    Full Text Available We have theoretically investigated the modeling and the structural stabilities of various Mg/MgH2 interfaces, i.e. Mg(101¯0/MgH2(210, Mg(0001/MgH2(101 and Mg(101¯0/MgH2(101, and provided illuminating insights into Mg/MgH2 interface. Specifically, the main factors, which impact the interfacial energies, are fully considered, including surface energies of two phases, mutual lattice constants of interface model, and relative position of two phases. The surface energies of Mg and MgH2, on the one hand, are found to be greatly impacting the interfacial energies, reflected by the lowest interfacial energy of Mg(0001/MgH2(101 which is comprised of two lowest energy surfaces. On the other hand, it is demonstrated that the mutual lattice constants and the relative position of two phases lead to variations of interfacial energies, thus influencing the interface stabilities dramatically. Moreover, the Mg-H bonding at interface is found to be the determinant of Mg/MgH2 interface stability. Lastly, interfacial and strain effects on defect formations are also studied, both of which are highly facilitating the defect formations. Our results provide a detailed insight into Mg/MgH2 interface structures and the corresponding stabilities.

  3. Model Information Exchange System (MIXS).

    Science.gov (United States)

    2013-08-01

    Many travel demand forecast models operate at state, regional, and local levels. While they share the same physical network in overlapping geographic areas, they use different and uncoordinated modeling networks. This creates difficulties for models ...

  4. Breather trapping and breather transmission in a DNA model with an interface

    DEFF Research Database (Denmark)

    Alvarez, A.; Romero, F.R.; Archilla, J.F.R.

    2006-01-01

    We study the dynamics of moving discrete breathers in an interfaced piecewise DNA molecule. This is a DNA chain in which all the base pairs are identical and there exists an interface such that the base pairs dipole moments at each side are oriented in opposite directions. The Hamiltonian...... of the Peyrard-Bishop model is augmented with a term that includes the dipole-dipole coupling between base pairs. Numerical simulations show the existence of two dynamical regimes. If the translational kinetic energy of a moving breather launched towards the interface is below a critical value, it is trapped...

  5. Modelling of the Contact Condition at the Tool/Matrix Interface in Friction Stir Welding

    DEFF Research Database (Denmark)

    Schmidt, Henrik Nikolaj Blich; Hattel, Jesper; Wert, John

    2003-01-01

    a known contact condition at the contact interface, e.g. either as pure sliding or sticking. The present model uses Coulomb’s law of friction for the sliding condition and the material yield shear stress for the sticking condition to model the contact forces. The model includes heat generation...

  6. Mathematical Modelling of Surfactant Self-assembly at Interfaces

    KAUST Repository

    Morgan, C. E.; Breward, C. J. W.; Griffiths, I. M.; Howell, P. D.

    2015-01-01

    © 2015 Society for Industrial and Applied Mathematics. We present a mathematical model to describe the distribution of surfactant pairs in a multilayer structure beneath an adsorbed monolayer. A mesoscopic model comprising a set of ordinary

  7. Developing Custom Fire Behavior Fuel Models for Mediterranean Wildland-Urban Interfaces in Southern Italy

    Science.gov (United States)

    Elia, Mario; Lafortezza, Raffaele; Lovreglio, Raffaella; Sanesi, Giovanni

    2015-09-01

    The dramatic increase of fire hazard in wildland-urban interfaces (WUIs) has required more detailed fuel management programs to preserve ecosystem functions and human settlements. Designing effective fuel treatment strategies allows to achieve goals such as resilient landscapes, fire-adapted communities, and ecosystem response. Therefore, obtaining background information on forest fuel parameters and fuel accumulation patterns has become an important first step in planning fuel management interventions. Site-specific fuel inventory data enhance the accuracy of fuel management planning and help forest managers in fuel management decision-making. We have customized four fuel models for WUIs in southern Italy, starting from forest classes of land-cover use and adopting a hierarchical clustering approach. Furthermore, we provide a prediction of the potential fire behavior of our customized fuel models using FlamMap 5 under different weather conditions. The results suggest that fuel model IIIP (Mediterranean maquis) has the most severe fire potential for the 95th percentile weather conditions and the least severe potential fire behavior for the 85th percentile weather conditions. This study shows that it is possible to create customized fuel models directly from fuel inventory data. This achievement has broad implications for land managers, particularly forest managers of the Mediterranean landscape, an ecosystem that is susceptible not only to wildfires but also to the increasing human population and man-made infrastructures.

  8. Developing Custom Fire Behavior Fuel Models for Mediterranean Wildland-Urban Interfaces in Southern Italy.

    Science.gov (United States)

    Elia, Mario; Lafortezza, Raffaele; Lovreglio, Raffaella; Sanesi, Giovanni

    2015-09-01

    The dramatic increase of fire hazard in wildland-urban interfaces (WUIs) has required more detailed fuel management programs to preserve ecosystem functions and human settlements. Designing effective fuel treatment strategies allows to achieve goals such as resilient landscapes, fire-adapted communities, and ecosystem response. Therefore, obtaining background information on forest fuel parameters and fuel accumulation patterns has become an important first step in planning fuel management interventions. Site-specific fuel inventory data enhance the accuracy of fuel management planning and help forest managers in fuel management decision-making. We have customized four fuel models for WUIs in southern Italy, starting from forest classes of land-cover use and adopting a hierarchical clustering approach. Furthermore, we provide a prediction of the potential fire behavior of our customized fuel models using FlamMap 5 under different weather conditions. The results suggest that fuel model IIIP (Mediterranean maquis) has the most severe fire potential for the 95th percentile weather conditions and the least severe potential fire behavior for the 85th percentile weather conditions. This study shows that it is possible to create customized fuel models directly from fuel inventory data. This achievement has broad implications for land managers, particularly forest managers of the Mediterranean landscape, an ecosystem that is susceptible not only to wildfires but also to the increasing human population and man-made infrastructures.

  9. Framework for non-coherent interface models at finite displacement jumps and finite strains

    Science.gov (United States)

    Ottosen, Niels Saabye; Ristinmaa, Matti; Mosler, Jörn

    2016-05-01

    This paper deals with a novel constitutive framework suitable for non-coherent interfaces, such as cracks, undergoing large deformations in a geometrically exact setting. For this type of interface, the displacement field shows a jump across the interface. Within the engineering community, so-called cohesive zone models are frequently applied in order to describe non-coherent interfaces. However, for existing models to comply with the restrictions imposed by (a) thermodynamical consistency (e.g., the second law of thermodynamics), (b) balance equations (in particular, balance of angular momentum) and (c) material frame indifference, these models are essentially fiber models, i.e. models where the traction vector is collinear with the displacement jump. This constraints the ability to model shear and, in addition, anisotropic effects are excluded. A novel, extended constitutive framework which is consistent with the above mentioned fundamental physical principles is elaborated in this paper. In addition to the classical tractions associated with a cohesive zone model, the main idea is to consider additional tractions related to membrane-like forces and out-of-plane shear forces acting within the interface. For zero displacement jump, i.e. coherent interfaces, this framework degenerates to existing formulations presented in the literature. For hyperelasticity, the Helmholtz energy of the proposed novel framework depends on the displacement jump as well as on the tangent vectors of the interface with respect to the current configuration - or equivalently - the Helmholtz energy depends on the displacement jump and the surface deformation gradient. It turns out that by defining the Helmholtz energy in terms of the invariants of these variables, all above-mentioned fundamental physical principles are automatically fulfilled. Extensions of the novel framework necessary for material degradation (damage) and plasticity are also covered.

  10. A comparison of recent methods for modelling mercury fluxes at the air-water interface

    Directory of Open Access Journals (Sweden)

    Fantozzi L.

    2013-04-01

    Full Text Available The atmospheric pathway of the global mercury flux is known to be the primary source of mercury contamination to most threatened aquatic ecosystems. Notwithstanding, the emission of mercury from surface water to the atmosphere is as much as 50% of total annual emissions of this metal into the atmosphere. In recent years, much effort has been made in theoretical and experimental researches to quantify the total mass flux of mercury to the atmosphere. In this study the most recent atmospheric modelling methods and the information obtained from them are presented and compared using experimental data collected during the Oceanographic Campaign Fenice 2011 (25 October – 8 November 2011, performed on board the Research Vessel (RV Urania of the CNR in the framework of the MEDOCEANOR ongoing program. A strategy for future numerical model development is proposed which is intended to gain a better knowledge of the long-term effects of meteo-climatic drivers on mercury evasional processes, and would provide key information on gaseous Hg exchange rates at the air-water interface.

  11. Designing distributed user interfaces for ambient intelligent environments using models and simulations

    OpenAIRE

    LUYTEN, Kris; VAN DEN BERGH, Jan; VANDERVELPEN, Chris; CONINX, Karin

    2006-01-01

    There is a growing demand for design support to create interactive systems that are deployed in ambient intelligent environments. Unlike traditional interactive systems, the wide diversity of situations these type of user interfaces need to work in require tool support that is close to the environment of the end-user on the one hand and provide a smooth integration with the application logic on the other hand. This paper shows how the model-based user interface development methodology can be ...

  12. Computer simulation study of the nematic-vapour interface in the Gay-Berne model

    Science.gov (United States)

    Rull, Luis F.; Romero-Enrique, José Manuel

    2017-06-01

    We present computer simulations of the vapour-nematic interface of the Gay-Berne model. We considered situations which correspond to either prolate or oblate molecules. We determine the anchoring of the nematic phase and correlate it with the intermolecular potential parameters. On the other hand, we evaluate the surface tension associated to this interface. We find a corresponding states law for the surface tension dependence on the temperature, valid for both prolate and oblate molecules.

  13. Directory of Energy Information Administration Models 1994

    International Nuclear Information System (INIS)

    1994-07-01

    This directory revises and updates the 1993 directory and includes 15 models of the National Energy Modeling System (NEMS). Three other new models in use by the Energy Information Administration (EIA) have also been included: the Motor Gasoline Market Model (MGMM), Distillate Market Model (DMM), and the Propane Market Model (PPMM). This directory contains descriptions about each model, including title, acronym, purpose, followed by more detailed information on characteristics, uses and requirements. Sources for additional information are identified. Included in this directory are 37 EIA models active as of February 1, 1994

  14. Directory of Energy Information Administration Models 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-07-01

    This directory revises and updates the 1993 directory and includes 15 models of the National Energy Modeling System (NEMS). Three other new models in use by the Energy Information Administration (EIA) have also been included: the Motor Gasoline Market Model (MGMM), Distillate Market Model (DMM), and the Propane Market Model (PPMM). This directory contains descriptions about each model, including title, acronym, purpose, followed by more detailed information on characteristics, uses and requirements. Sources for additional information are identified. Included in this directory are 37 EIA models active as of February 1, 1994.

  15. Interface model coupling in fluid dynamics: application to two-phase flows

    International Nuclear Information System (INIS)

    Galie, Th.

    2009-03-01

    This thesis is devoted to the study of interface model coupling problems in space between different models of compressible flows. We consider one-dimensional problems where the interface is sharp, fixed and separating two regions of space corresponding to the two coupled models. Our goal is to define a coupling condition at the interface and to solve numerically the coupling problem with this condition. After a state of art on the interface model coupling of hyperbolic systems of conservation laws, we propose a new coupling condition by adding in the equations of the coupled problem a measure source term at the interface. We first suppose a given constant weight associated to this source term. Two Riemann solvers are developed and one of them is based on a relaxation approach preserving equilibrium solutions of the coupled problem. This relaxation method is then used in an optimization problem, defined by several motivations at the interface, which permits to calculate a time dynamical weight. In a second part, we develop an approached Riemann solver for a two-phase two-pressure model in the particular case of a two-phase isentropic flow. Such a model contains non conservative terms that we write under the form of measure source terms. The previous relaxation method is thus extended to the case of the two-phase two-pressure model with an a priori estimation of the non conservative term contributions. The method allows us to solve, in the next and last chapter, the coupling problem of a two-fluid two-pressure model with a drift-flux model thanks to the father model approach. (authors)

  16. Accessing developmental information of fossil hominin teeth using new synchrotron microtomography-based visualization techniques of dental surfaces and interfaces.

    Directory of Open Access Journals (Sweden)

    Adeline Le Cabec

    Full Text Available Quantification of dental long-period growth lines (Retzius lines in enamel and Andresen lines in dentine and matching of stress patterns (internal accentuated lines and hypoplasias are used in determining crown formation time and age at death in juvenile fossil hominins. They yield the chronology employed for inferences of life history. Synchrotron virtual histology has been demonstrated as a non-destructive alternative to conventional invasive approaches. Nevertheless, fossil teeth are sometimes poorly preserved or physically inaccessible, preventing observation of the external expression of incremental lines (perikymata and periradicular bands. Here we present a new approach combining synchrotron virtual histology and high quality three-dimensional rendering of dental surfaces and internal interfaces. We illustrate this approach with seventeen permanent fossil hominin teeth. The outer enamel surface and enamel-dentine junction (EDJ were segmented by capturing the phase contrast fringes at the structural interfaces. Three-dimensional models were rendered with Phong's algorithm, and a combination of directional colored lights to enhance surface topography and the pattern of subtle variations in tissue density. The process reveals perikymata and linear enamel hypoplasias on the entire crown surface, including unerupted teeth. Using this method, highly detailed stress patterns at the EDJ allow precise matching of teeth within an individual's dentition when virtual histology is not sufficient. We highlight that taphonomical altered enamel can in particular cases yield artificial subdivisions of perikymata when imaged using X-ray microtomography with insufficient resolution. This may complicate assessments of developmental time, although this can be circumvented by a careful analysis of external and internal structures in parallel. We further present new crown formation times for two unerupted canines from South African Australopiths, which were

  17. Accessing developmental information of fossil hominin teeth using new synchrotron microtomography-based visualization techniques of dental surfaces and interfaces.

    Science.gov (United States)

    Le Cabec, Adeline; Tang, Nancy; Tafforeau, Paul

    2015-01-01

    Quantification of dental long-period growth lines (Retzius lines in enamel and Andresen lines in dentine) and matching of stress patterns (internal accentuated lines and hypoplasias) are used in determining crown formation time and age at death in juvenile fossil hominins. They yield the chronology employed for inferences of life history. Synchrotron virtual histology has been demonstrated as a non-destructive alternative to conventional invasive approaches. Nevertheless, fossil teeth are sometimes poorly preserved or physically inaccessible, preventing observation of the external expression of incremental lines (perikymata and periradicular bands). Here we present a new approach combining synchrotron virtual histology and high quality three-dimensional rendering of dental surfaces and internal interfaces. We illustrate this approach with seventeen permanent fossil hominin teeth. The outer enamel surface and enamel-dentine junction (EDJ) were segmented by capturing the phase contrast fringes at the structural interfaces. Three-dimensional models were rendered with Phong's algorithm, and a combination of directional colored lights to enhance surface topography and the pattern of subtle variations in tissue density. The process reveals perikymata and linear enamel hypoplasias on the entire crown surface, including unerupted teeth. Using this method, highly detailed stress patterns at the EDJ allow precise matching of teeth within an individual's dentition when virtual histology is not sufficient. We highlight that taphonomical altered enamel can in particular cases yield artificial subdivisions of perikymata when imaged using X-ray microtomography with insufficient resolution. This may complicate assessments of developmental time, although this can be circumvented by a careful analysis of external and internal structures in parallel. We further present new crown formation times for two unerupted canines from South African Australopiths, which were found to form over

  18. Information modelling and knowledge bases XXV

    CERN Document Server

    Tokuda, T; Jaakkola, H; Yoshida, N

    2014-01-01

    Because of our ever increasing use of and reliance on technology and information systems, information modelling and knowledge bases continue to be important topics in those academic communities concerned with data handling and computer science. As the information itself becomes more complex, so do the levels of abstraction and the databases themselves. This book is part of the series Information Modelling and Knowledge Bases, which concentrates on a variety of themes in the important domains of conceptual modeling, design and specification of information systems, multimedia information modelin

  19. An overview of the evaluation plan for PC/MISI: PC-based Multiple Information System Interface

    Science.gov (United States)

    Dominick, Wayne D. (Editor); Lim, Bee Lee; Hall, Philip P.

    1985-01-01

    An initial evaluation plan for the personal computer multiple information system interface (PC/MISI) project is discussed. The document is intend to be used as a blueprint for the evaluation of this system. Each objective of the design project is discussed along with the evaluation parameters and methodology to be used in the evaluation of the implementation's achievement of those objectives. The potential of the system for research activities related to more general aspects of information retrieval is also discussed.

  20. General MACOS Interface for Modeling and Analysis for Controlled Optical Systems

    Science.gov (United States)

    Sigrist, Norbert; Basinger, Scott A.; Redding, David C.

    2012-01-01

    The General MACOS Interface (GMI) for Modeling and Analysis for Controlled Optical Systems (MACOS) enables the use of MATLAB as a front-end for JPL s critical optical modeling package, MACOS. MACOS is JPL s in-house optical modeling software, which has proven to be a superb tool for advanced systems engineering of optical systems. GMI, coupled with MACOS, allows for seamless interfacing with modeling tools from other disciplines to make possible integration of dynamics, structures, and thermal models with the addition of control systems for deformable optics and other actuated optics. This software package is designed as a tool for analysts to quickly and easily use MACOS without needing to be an expert at programming MACOS. The strength of MACOS is its ability to interface with various modeling/development platforms, allowing evaluation of system performance with thermal, mechanical, and optical modeling parameter variations. GMI provides an improved means for accessing selected key MACOS functionalities. The main objective of GMI is to marry the vast mathematical and graphical capabilities of MATLAB with the powerful optical analysis engine of MACOS, thereby providing a useful tool to anyone who can program in MATLAB. GMI also improves modeling efficiency by eliminating the need to write an interface function for each task/project, reducing error sources, speeding up user/modeling tasks, and making MACOS well suited for fast prototyping.

  1. Preventing tissue fibrosis by local biomaterials interfacing of specific cryptic extracellular matrix information

    Science.gov (United States)

    Horejs, Christine-Maria; St-Pierre, Jean-Philippe; Ojala, Juha R. M.; Steele, Joseph A. M.; da Silva, Patricia Barros; Rynne-Vidal, Angela; Maynard, Stephanie A.; Hansel, Catherine S.; Rodríguez-Fernández, Clara; Mazo, Manuel M.; You, Amanda Y. F.; Wang, Alex J.; von Erlach, Thomas; Tryggvason, Karl; López-Cabrera, Manuel; Stevens, Molly M.

    2017-01-01

    Matrix metalloproteinases (MMPs) contribute to the breakdown of tissue structures such as the basement membrane, promoting tissue fibrosis. Here we developed an electrospun membrane biofunctionalized with a fragment of the laminin β1-chain to modulate the expression of MMP2 in this context. We demonstrate that interfacing of the β1-fragment with the mesothelium of the peritoneal membrane via a biomaterial abrogates the release of active MMP2 in response to transforming growth factor β1 and rescues tissue integrity ex vivo and in vivo in a mouse model of peritoneal fibrosis. Importantly, our data demonstrate that the membrane inhibits MMP2 expression. Changes in the expression of epithelial-to-mesenchymal transition (EMT)-related molecules further point towards a contribution of the modulation of EMT. Biomaterial-based presentation of regulatory basement membrane signals directly addresses limitations of current therapeutic approaches by enabling a localized and specific method to counteract MMP2 release applicable to a broad range of therapeutic targets. PMID:28593951

  2. Preventing tissue fibrosis by local biomaterials interfacing of specific cryptic extracellular matrix information

    Science.gov (United States)

    Horejs, Christine-Maria; St-Pierre, Jean-Philippe; Ojala, Juha R. M.; Steele, Joseph A. M.; da Silva, Patricia Barros; Rynne-Vidal, Angela; Maynard, Stephanie A.; Hansel, Catherine S.; Rodríguez-Fernández, Clara; Mazo, Manuel M.; You, Amanda Y. F.; Wang, Alex J.; von Erlach, Thomas; Tryggvason, Karl; López-Cabrera, Manuel; Stevens, Molly M.

    2017-06-01

    Matrix metalloproteinases (MMPs) contribute to the breakdown of tissue structures such as the basement membrane, promoting tissue fibrosis. Here we developed an electrospun membrane biofunctionalized with a fragment of the laminin β1-chain to modulate the expression of MMP2 in this context. We demonstrate that interfacing of the β1-fragment with the mesothelium of the peritoneal membrane via a biomaterial abrogates the release of active MMP2 in response to transforming growth factor β1 and rescues tissue integrity ex vivo and in vivo in a mouse model of peritoneal fibrosis. Importantly, our data demonstrate that the membrane inhibits MMP2 expression. Changes in the expression of epithelial-to-mesenchymal transition (EMT)-related molecules further point towards a contribution of the modulation of EMT. Biomaterial-based presentation of regulatory basement membrane signals directly addresses limitations of current therapeutic approaches by enabling a localized and specific method to counteract MMP2 release applicable to a broad range of therapeutic targets.

  3. Model-driven Instrumentation of graphical user interfaces.

    NARCIS (Netherlands)

    Funk, M.; Hoyer, P.; Link, S.

    2009-01-01

    In today's continuously changing markets newly developed products often do not meet the demands and expectations of customers. Research on this problem identified a large gap between developer and user expectations. Approaches to bridge this gap are to provide the developers with better information

  4. Alternative biosphere modeling for safety assessment of HLW disposal taking account of geosphere-biosphere interface of marine environment

    International Nuclear Information System (INIS)

    Kato, Tomoko; Ishiguro, Katsuhiko; Naito, Morimasa; Ikeda, Takao; Little, Richard

    2001-03-01

    In the safety assessment of a high-level radioactive waste (HLW) disposal system, it is required to estimate radiological impacts on future human beings arising from potential radionuclide releases from a deep repository into the surface environment. In order to estimated the impacts, a biosphere model is developed by reasonably assuming radionuclide migration processes in the surface environment and relevant human lifestyles. It is important to modify the present biosphere models or to develop alternative biosphere models applying the biosphere models according to quality and quantify of the information acquired through the siting process for constructing the repository. In this study, alternative biosphere models were developed taking geosphere-biosphere interface of marine environment into account. Moreover, the flux to dose conversion factors calculated by these alternative biosphere models was compared with those by the present basic biosphere models. (author)

  5. COMPLEMENTARITY OF HISTORIC BUILDING INFORMATION MODELLING AND GEOGRAPHIC INFORMATION SYSTEMS

    Directory of Open Access Journals (Sweden)

    X. Yang

    2016-06-01

    Full Text Available In this paper, we discuss the potential of integrating both semantically rich models from Building Information Modelling (BIM and Geographical Information Systems (GIS to build the detailed 3D historic model. BIM contributes to the creation of a digital representation having all physical and functional building characteristics in several dimensions, as e.g. XYZ (3D, time and non-architectural information that are necessary for construction and management of buildings. GIS has potential in handling and managing spatial data especially exploring spatial relationships and is widely used in urban modelling. However, when considering heritage modelling, the specificity of irregular historical components makes it problematic to create the enriched model according to its complex architectural elements obtained from point clouds. Therefore, some open issues limiting the historic building 3D modelling will be discussed in this paper: how to deal with the complex elements composing historic buildings in BIM and GIS environment, how to build the enriched historic model, and why to construct different levels of details? By solving these problems, conceptualization, documentation and analysis of enriched Historic Building Information Modelling are developed and compared to traditional 3D models aimed primarily for visualization.

  6. Molecular modeling studies of structural properties of polyvinyl alcohol: a comparative study using INTERFACE force field.

    Science.gov (United States)

    Radosinski, Lukasz; Labus, Karolina

    2017-10-05

    Polyvinyl alcohol (PVA) is a material with a variety of applications in separation, biotechnology, and biomedicine. Using combined Monte Carlo and molecular dynamics techniques, we present an extensive comparative study of second- and third-generation force fields Universal, COMPASS, COMPASS II, PCFF, and the newly developed INTERFACE, as applied to this system. In particular, we show that an INTERFACE force field provides a possibility of composing a reliable atomistic model to reproduce density change of PVA matrix in a narrow temperature range (298-348 K) and calculate a thermal expansion coefficient with reasonable accuracy. Thus, the INTERFACE force field may be used to predict mechanical properties of the PVA system, being a scaffold for hydrogels, with much greater accuracy than latter approaches. Graphical abstract Molecular Dynamics and Monte Carlo studies indicate that it is possible to predict properties of the PVA in narrow temperature range by using the INTERFACE force field.

  7. A correction for Dupuit-Forchheimer interface flow models of seawater intrusion in unconfined coastal aquifers

    Science.gov (United States)

    Koussis, Antonis D.; Mazi, Katerina; Riou, Fabien; Destouni, Georgia

    2015-06-01

    Interface flow models that use the Dupuit-Forchheimer (DF) approximation for assessing the freshwater lens and the seawater intrusion in coastal aquifers lack representation of the gap through which fresh groundwater discharges to the sea. In these models, the interface outcrops unrealistically at the same point as the free surface, is too shallow and intersects the aquifer base too far inland, thus overestimating an intruding seawater front. To correct this shortcoming of DF-type interface solutions for unconfined aquifers, we here adapt the outflow gap estimate of an analytical 2-D interface solution for infinitely thick aquifers to fit the 50%-salinity contour of variable-density solutions for finite-depth aquifers. We further improve the accuracy of the interface toe location predicted with depth-integrated DF interface solutions by ∼20% (relative to the 50%-salinity contour of variable-density solutions) by combining the outflow-gap adjusted aquifer depth at the sea with a transverse-dispersion adjusted density ratio (Pool and Carrera, 2011), appropriately modified for unconfined flow. The effectiveness of the combined correction is exemplified for two regional Mediterranean aquifers, the Israel Coastal and Nile Delta aquifers.

  8. Dynamic Distribution and Layouting of Model-Based User Interfaces in Smart Environments

    Science.gov (United States)

    Roscher, Dirk; Lehmann, Grzegorz; Schwartze, Veit; Blumendorf, Marco; Albayrak, Sahin

    The developments in computer technology in the last decade change the ways of computer utilization. The emerging smart environments make it possible to build ubiquitous applications that assist users during their everyday life, at any time, in any context. But the variety of contexts-of-use (user, platform and environment) makes the development of such ubiquitous applications for smart environments and especially its user interfaces a challenging and time-consuming task. We propose a model-based approach, which allows adapting the user interface at runtime to numerous (also unknown) contexts-of-use. Based on a user interface modelling language, defining the fundamentals and constraints of the user interface, a runtime architecture exploits the description to adapt the user interface to the current context-of-use. The architecture provides automatic distribution and layout algorithms for adapting the applications also to contexts unforeseen at design time. Designers do not specify predefined adaptations for each specific situation, but adaptation constraints and guidelines. Furthermore, users are provided with a meta user interface to influence the adaptations according to their needs. A smart home energy management system serves as running example to illustrate the approach.

  9. Impact of multilayered compression bandages on sub-bandage interface pressure: a model.

    Science.gov (United States)

    Al Khaburi, J; Nelson, E A; Hutchinson, J; Dehghani-Sanij, A A

    2011-03-01

    Multi-component medical compression bandages are widely used to treat venous leg ulcers. The sub-bandage interface pressures induced by individual components of the multi-component compression bandage systems are not always simply additive. Current models to explain compression bandage performance do not take account of the increase in leg circumference when each bandage is applied, and this may account for the difference between predicted and actual pressures. To calculate the interface pressure when a multi-component compression bandage system is applied to a leg. Use thick wall cylinder theory to estimate the sub-bandage pressure over the leg when a multi-component compression bandage is applied to a leg. A mathematical model was developed based on thick cylinder theory to include bandage thickness in the calculation of the interface pressure in multi-component compression systems. In multi-component compression systems, the interface pressure corresponds to the sum of the pressures applied by individual bandage layers. However, the change in the limb diameter caused by additional bandage layers should be considered in the calculation. Adding the interface pressure produced by single components without considering the bandage thickness will result in an overestimate of the overall interface pressure produced by the multi-component compression systems. At the ankle (circumference 25 cm) this error can be 19.2% or even more in the case of four components bandaging systems. Bandage thickness should be considered when calculating the pressure applied using multi-component compression systems.

  10. Serendipity dimensions and users' information behaviour in the physical library interface

    DEFF Research Database (Denmark)

    Björneborn, Lennart

    2008-01-01

    a conceptual framework including models to describe users' interaction with library spaces. Method. The study took place at two Danish public libraries during 10 months in 2006. Naturalistic observation of users' information behaviour was supplemented with qualitative interviews with 113 users including think......Introduction. Outlines an exploratory study concerned with the types of information behaviour users employ to find materials in a public library. Special focus was on what dimensions in the physical library may affect possibilities for serendipity. The overall aim of the study was to develop...... different types of convergent (goal-directed) and divergent (explorative) information behaviour. Ten dimensions in the physical library that may affect possibilities for serendipity were identified in the study. The paper introduces a conceptual framework suggesting that libraries can be viewed...

  11. Mathematical Modelling of Surfactant Self-assembly at Interfaces

    KAUST Repository

    Morgan, C. E.

    2015-01-01

    © 2015 Society for Industrial and Applied Mathematics. We present a mathematical model to describe the distribution of surfactant pairs in a multilayer structure beneath an adsorbed monolayer. A mesoscopic model comprising a set of ordinary differential equations that couple the rearrangement of surfactant within the multilayer to the surface adsorption kinetics is first derived. This model is then extended to the macroscopic scale by taking the continuum limit that exploits the typically large number of surfactant layers, which results in a novel third-order partial differential equation. The model is generalized to allow for the presence of two adsorbing boundaries, which results in an implicit free-boundary problem. The system predicts physically observed features in multilayer systems such as the initial formation of smaller lamellar structures and the typical number of layers that form in equilibrium.

  12. Modeling of environmentally significant interfaces: Two case studies

    International Nuclear Information System (INIS)

    Williford, R.E.

    2006-01-01

    When some parameters cannot be easily measured experimentally, mathematical models can often be used to deconvolute or interpret data collected on complex systems, such as those characteristic of many environmental problems. These models can help quantify the contributions of various physical or chemical phenomena that contribute to the overall behavior, thereby enabling the scientist to control and manipulate these phenomena, and thus to optimize the performance of the material or device. In the first case study presented here, a model is used to test the hypothesis that oxygen interactions with hydrogen on the catalyst particles of solid oxide fuel cell anodes can sometimes occur a finite distance away from the triple phase boundary (TPB), so that such reactions are not restricted to the TPB as normally assumed. The model may help explain a discrepancy between the observed structure of SOFCs and their performance. The second case study develops a simple physical model that allows engineers to design and control the sizes and shapes of mesopores in silica thin films. Such pore design can be useful for enhancing the selectivity and reactivity of environmental sensors and catalysts. This paper demonstrates the mutually beneficial interactions between experiment and modeling in the solution of a wide range of problems

  13. Developing A Web-based User Interface for Semantic Information Retrieval

    Science.gov (United States)

    Berrios, Daniel C.; Keller, Richard M.

    2003-01-01

    While there are now a number of languages and frameworks that enable computer-based systems to search stored data semantically, the optimal design for effective user interfaces for such systems is still uncle ar. Such interfaces should mask unnecessary query detail from users, yet still allow them to build queries of arbitrary complexity without significant restrictions. We developed a user interface supporting s emantic query generation for Semanticorganizer, a tool used by scient ists and engineers at NASA to construct networks of knowledge and dat a. Through this interface users can select node types, node attribute s and node links to build ad-hoc semantic queries for searching the S emanticOrganizer network.

  14. Graphic User Interface Design for Mapping, Information, Display, and Analysis Systems

    National Research Council Canada - National Science Library

    Lowell, James

    2000-01-01

    This thesis evaluates both the interface design process and the map-based mission planning tools of the Loosely Coupled Components Research Group, Naval Postgraduate School, for human factors usability...

  15. Rich Interfaces for Dependability: Compositional Methods for Dynamic Fault Trees and Arcade models

    NARCIS (Netherlands)

    Boudali, H.; Crouzen, Pepijn; Haverkort, Boudewijn R.H.M.; Kuntz, G.W.M.; Stoelinga, Mariëlle Ida Antoinette

    This paper discusses two behavioural interfaces for reliability analysis: dynamic fault trees, which model the system reliability in terms of the reliability of its components and Arcade, which models the system reliability at an architectural level. For both formalisms, the reliability is analyzed

  16. Development of a GIS interface for WEPP Model application to Great Lakes forested watersheds

    Science.gov (United States)

    J. R. Frankenberger; S. Dun; D. C. Flanagan; J. Q. Wu; W. J. Elliot

    2011-01-01

    This presentation will highlight efforts on development of a new online WEPP GIS interface, targeted toward application in forested regions bordering the Great Lakes. The key components and algorithms of the online GIS system will be outlined. The general procedures used to provide input to the WEPP model and to display model output will be demonstrated.

  17. Rethinking Design Process: Using 3D Digital Models as an Interface in Collaborative Session

    Science.gov (United States)

    Ding, Suining

    2008-01-01

    This paper describes a pilot study for an alternative design process by integrating a designer-user collaborative session with digital models. The collaborative session took place in a 3D AutoCAD class for a real world project. The 3D models served as an interface for designer-user collaboration during the design process. Students not only learned…

  18. A proposed general model of information behaviour.

    Directory of Open Access Journals (Sweden)

    2003-01-01

    Full Text Available Presents a critical description of Wilson's (1996 global model of information behaviour and proposes major modification on the basis of research into information behaviour of managers, conducted in Poland. The theoretical analysis and research results suggest that Wilson's model has certain imperfections, both in its conceptual content, and in graphical presentation. The model, for example, cannot be used to describe managers' information behaviour, since managers basically are not the end users of external from organization or computerized information services, and they acquire information mainly through various intermediaries. Therefore, the model cannot be considered as a general model, applicable to every category of information users. The proposed new model encompasses the main concepts of Wilson's model, such as: person-in-context, three categories of intervening variables (individual, social and environmental, activating mechanisms, cyclic character of information behaviours, and the adoption of a multidisciplinary approach to explain them. However, the new model introduces several changes. They include: 1. identification of 'context' with the intervening variables; 2. immersion of the chain of information behaviour in the 'context', to indicate that the context variables influence behaviour at all stages of the process (identification of needs, looking for information, processing and using it; 3. stress is put on the fact that the activating mechanisms also can occur at all stages of the information acquisition process; 4. introduction of two basic strategies of looking for information: personally and/or using various intermediaries.

  19. The Information Warfare Life Cycle Model

    Directory of Open Access Journals (Sweden)

    Brett van Niekerk

    2011-11-01

    Full Text Available Information warfare (IW is a dynamic and developing concept, which constitutes a number of disciplines. This paper aims to develop a life cycle model for information warfare that is applicable to all of the constituent disciplines. The model aims to be scalable and applicable to civilian and military incidents where information warfare tactics are employed. Existing information warfare models are discussed, and a new model is developed from the common aspects of these existing models. The proposed model is then applied to a variety of incidents to test its applicability and scalability. The proposed model is shown to be applicable to multiple disciplines of information warfare and is scalable, thus meeting the objectives of the model.

  20. The Information Warfare Life Cycle Model

    Directory of Open Access Journals (Sweden)

    Brett van Niekerk

    2011-03-01

    Full Text Available Information warfare (IW is a dynamic and developing concept, which constitutes a number of disciplines. This paper aims to develop a life cycle model for information warfare that is applicable to all of the constituent disciplines. The model aims to be scalable and applicable to civilian and military incidents where information warfare tactics are employed. Existing information warfare models are discussed, and a new model is developed from the common aspects of these existing models. The proposed model is then applied to a variety of incidents to test its applicability and scalability. The proposed model is shown to be applicable to multiple disciplines of information warfare and is scalable, thus meeting the objectives of the model.

  1. Spinal Cord Injury Model System Information Network

    Science.gov (United States)

    ... the UAB-SCIMS More The UAB-SCIMS Information Network The University of Alabama at Birmingham Spinal Cord Injury Model System (UAB-SCIMS) maintains this Information Network as a resource to promote knowledge in the ...

  2. Atomistic Modeling of Corrosion Events at the Interface between a Metal and Its Environment

    Directory of Open Access Journals (Sweden)

    Christopher D. Taylor

    2012-01-01

    Full Text Available Atomistic simulation is a powerful tool for probing the structure and properties of materials and the nature of chemical reactions. Corrosion is a complex process that involves chemical reactions occurring at the interface between a material and its environment and is, therefore, highly suited to study by atomistic modeling techniques. In this paper, the complex nature of corrosion processes and mechanisms is briefly reviewed. Various atomistic methods for exploring corrosion mechanisms are then described, and recent applications in the literature surveyed. Several instances of the application of atomistic modeling to corrosion science are then reviewed in detail, including studies of the metal-water interface, the reaction of water on electrified metallic interfaces, the dissolution of metal atoms from metallic surfaces, and the role of competitive adsorption in controlling the chemical nature and structure of a metallic surface. Some perspectives are then given concerning the future of atomistic modeling in the field of corrosion science.

  3. Pygrass: An Object Oriented Python Application Programming Interface (API for Geographic Resources Analysis Support System (GRASS Geographic Information System (GIS

    Directory of Open Access Journals (Sweden)

    Marco Ciolli

    2013-03-01

    Full Text Available PyGRASS is an object-oriented Python Application Programming Interface (API for Geographic Resources Analysis Support System (GRASS Geographic Information System (GIS, a powerful open source GIS widely used in academia, commercial settings and governmental agencies. We present the architecture of the PyGRASS library, covering interfaces to GRASS modules, vector and raster data, with a focus on the new capabilities that it provides to GRASS users and developers. Our design concept of the module interface allows the direct linking of inputs and outputs of GRASS modules to create process chains, including compatibility checks, process control and error handling. The module interface was designed to be easily extended to work with remote processing services (Web Processing Service (WPS, Web Service Definition Language (WSDL/Simple Object Access Protocol (SOAP. The new object-oriented Python programming API introduces an abstract layer that opens the possibility to use and access transparently the efficient raster and vector functions of GRASS that are implemented in C. The design goal was to provide an easy to use, but powerful, Python interface for users and developers who are not familiar with the programming language C and with the GRASS C-API. We demonstrate the capabilities, scalability and performance of PyGRASS with several dedicated tests and benchmarks. We compare and discuss the results of the benchmarks with dedicated C implementations.

  4. Model for the interaction between interface migration and carbon diffusion during annealing of martensite-austenite microstructures in steels

    International Nuclear Information System (INIS)

    Santofimia, M.J.; Zhao, L.; Sietsma, J.

    2008-01-01

    The interaction between carbon partitioning from martensite to austenite and interface migration during annealing of martensite-austenite microstructures is modeled, assuming the same chemical potential of carbon in martensite and austenite at the interface and allowing the motion of the phase interface when a free-energy difference occurs. The simulations show that the motion of the martensite-austenite interface can be significant and can takes place in either direction

  5. Topic Models in Information Retrieval

    Science.gov (United States)

    2007-08-01

    Information Processing Systems, Cambridge, MA, MIT Press, 2004. Brown, P.F., Della Pietra, V.J., deSouza, P.V., Lai, J.C. and Mercer, R.L., Class-based...2003. http://www.wkap.nl/prod/b/1-4020-1216-0. Croft, W.B., Lucia , T.J., Cringean, J., and Willett, P., Retrieving Documents By Plausible Inference

  6. A turbulence model for large interfaces in high Reynolds two-phase CFD

    International Nuclear Information System (INIS)

    Coste, P.; Laviéville, J.

    2015-01-01

    Highlights: • Two-phase CFD commonly involves interfaces much larger than the computational cells. • A two-phase turbulence model is developed to better take them into account. • It solves k–epsilon transport equations in each phase. • The special treatments and transfer terms at large interfaces are described. • Validation cases are presented. - Abstract: A model for two-phase (six-equation) CFD modelling of turbulence is presented, for the regions of the flow where the liquid–gas interface takes place on length scales which are much larger than the typical computational cell size. In the other regions of the flow, the liquid or gas volume fractions range from 0 to 1. Heat and mass transfer, compressibility of the fluids, are included in the system, which is used at high Reynolds numbers in large scale industrial calculations. In this context, a model based on k and ε transport equations in each phase was chosen. The paper describes the model, with a focus on the large interfaces, which require special treatments and transfer terms between the phases, including some approaches inspired from wall functions. The validation of the model is based on high Reynolds number experiments with turbulent quantities measurements of a liquid jet impinging a free surface and an air water stratified flow. A steam–water stratified condensing flow experiment is also used for an indirect validation in the case of heat and mass transfer

  7. INFORMATION MODEL OF A GENERAL PRACTITIONER

    Directory of Open Access Journals (Sweden)

    S. M. Zlepko

    2016-06-01

    Full Text Available In the paper the authors developed information model family doctor shows its innovation and functionality. The proposed model meets the requirements of the current job description and criteria World Organization of Family Doctors.

  8. Energy-Environment interface: an economic model approach

    International Nuclear Information System (INIS)

    Glot-Sanchez, N.

    1995-01-01

    This thesis is separated in two parts. The first part has four chapters, from the first to the fourth one;the second part has four chapters, from the fifth to the eighth one. The first part describes an analysis of different areas about the subject: the energy sphere, the environmental sphere, the notion of external effects and environmental policy in terms of instruments. The second part is the analysis of the results of a model, aiming to determine the energy strategies in matter of electricity production and their investments to reduce carbon dioxide emissions. 181 refs

  9. An open source web interface for linking models to infrastructure system databases

    Science.gov (United States)

    Knox, S.; Mohamed, K.; Harou, J. J.; Rheinheimer, D. E.; Medellin-Azuara, J.; Meier, P.; Tilmant, A.; Rosenberg, D. E.

    2016-12-01

    Models of networked engineered resource systems such as water or energy systems are often built collaboratively with developers from different domains working at different locations. These models can be linked to large scale real world databases, and they are constantly being improved and extended. As the development and application of these models becomes more sophisticated, and the computing power required for simulations and/or optimisations increases, so has the need for online services and tools which enable the efficient development and deployment of these models. Hydra Platform is an open source, web-based data management system, which allows modellers of network-based models to remotely store network topology and associated data in a generalised manner, allowing it to serve multiple disciplines. Hydra Platform uses a web API using JSON to allow external programs (referred to as `Apps') to interact with its stored networks and perform actions such as importing data, running models, or exporting the networks to different formats. Hydra Platform supports multiple users accessing the same network and has a suite of functions for managing users and data. We present ongoing development in Hydra Platform, the Hydra Web User Interface, through which users can collaboratively manage network data and models in a web browser. The web interface allows multiple users to graphically access, edit and share their networks, run apps and view results. Through apps, which are located on the server, the web interface can give users access to external data sources and models without the need to install or configure any software. This also ensures model results can be reproduced by removing platform or version dependence. Managing data and deploying models via the web interface provides a way for multiple modellers to collaboratively manage data, deploy and monitor model runs and analyse results.

  10. Radial restricted solid-on-solid and etching interface-growth models

    Science.gov (United States)

    Alves, Sidiney G.

    2018-03-01

    An approach to generate radial interfaces is presented. A radial network recursively obtained is used to implement discrete model rules designed originally for the investigation in flat substrates. I used the restricted solid-on-solid and etching models as to test the proposed scheme. The results indicate the Kardar, Parisi, and Zhang conjecture is completely verified leading to a good agreement between the interface radius fluctuation distribution and the Gaussian unitary ensemble. The evolution of the radius agrees well with the generalized conjecture, and the two-point correlation function exhibits also a good agreement with the covariance of the Airy2 process. The approach can be used to investigate radial interfaces evolution for many other classes of universality.

  11. Social Interface Model: Theorizing Ecological Post-Delivery Processes for Intervention Effects.

    Science.gov (United States)

    Pettigrew, Jonathan; Segrott, Jeremy; Ray, Colter D; Littlecott, Hannah

    2018-01-03

    Successful prevention programs depend on a complex interplay among aspects of the intervention, the participant, the specific intervention setting, and the broader set of contexts with which a participant interacts. There is a need to theorize what happens as participants bring intervention ideas and behaviors into other life-contexts, and theory has not yet specified how social interactions about interventions may influence outcomes. To address this gap, we use an ecological perspective to develop the social interface model. This paper presents the key components of the model and its potential to aid the design and implementation of prevention interventions. The model is predicated on the idea that intervention message effectiveness depends not only on message aspects but also on the participants' adoption and adaptation of the message vis-à-vis their social ecology. The model depicts processes by which intervention messages are received and enacted by participants through social processes occurring within and between relevant microsystems. Mesosystem interfaces (negligible interface, transference, co-dependence, and interdependence) can facilitate or detract from intervention effects. The social interface model advances prevention science by theorizing that practitioners can create better quality interventions by planning for what occurs after interventions are delivered.

  12. Modeling power electronics and interfacing energy conversion systems

    CERN Document Server

    Simões, Marcelo Godoy

    2017-01-01

    Discusses the application of mathematical and engineering tools for modeling, simulation and control oriented for energy systems, power electronics and renewable energy. This book builds on the background knowledge of electrical circuits, control of dc/dc converters and inverters, energy conversion and power electronics. The book shows readers how to apply computational methods for multi-domain simulation of energy systems and power electronics engineering problems. Each chapter has a brief introduction on the theoretical background, a description of the problems to be solved, and objectives to be achieved. Block diagrams, electrical circuits, mathematical analysis or computer code are covered. Each chapter concludes with discussions on what should be learned, suggestions for further studies and even some experimental work.

  13. Dynamic Stability of the Rate, State, Temperature, and Pore Pressure Friction Model at a Rock Interface

    Science.gov (United States)

    Sinha, Nitish; Singh, Arun K.; Singh, Trilok N.

    2018-05-01

    In this article, we study numerically the dynamic stability of the rate, state, temperature, and pore pressure friction (RSTPF) model at a rock interface using standard spring-mass sliding system. This particular friction model is a basically modified form of the previously studied friction model namely the rate, state, and temperature friction (RSTF). The RSTPF takes into account the role of thermal pressurization including dilatancy and permeability of the pore fluid due to shear heating at the slip interface. The linear stability analysis shows that the critical stiffness, at which the sliding becomes stable to unstable or vice versa, increases with the coefficient of thermal pressurization. Critical stiffness, on the other hand, remains constant for small values of either dilatancy factor or hydraulic diffusivity, but the same decreases as their values are increased further from dilatancy factor (˜ 10^{ - 4} ) and hydraulic diffusivity (˜ 10^{ - 9} {m}2 {s}^{ - 1} ) . Moreover, steady-state friction is independent of the coefficient of thermal pressurization, hydraulic diffusivity, and dilatancy factor. The proposed model is also used for predicting time of failure of a creeping interface of a rock slope under the constant gravitational force. It is observed that time of failure decreases with increase in coefficient of thermal pressurization and hydraulic diffusivity, but the dilatancy factor delays the failure of the rock fault under the condition of heat accumulation at the creeping interface. Moreover, stiffness of the rock-mass also stabilizes the failure process of the interface as the strain energy due to the gravitational force accumulates in the rock-mass before it transfers to the sliding interface. Practical implications of the present study are also discussed.

  14. Application of a computational situation assessment model to human system interface design and experimental validation of its effectiveness

    International Nuclear Information System (INIS)

    Lee, Hyun-Chul; Koh, Kwang-Yong; Seong, Poong-Hyun

    2013-01-01

    Highlights: ► We validate the effectiveness of a proposed procedure thru an experiment. ► The proposed procedure addresses the salient coding of the key information. ► It was found that salience coding affects operators’ attention significantly. ► The first observation to the key information quickly guided to the correct situation awareness. ► It was validated the proposed procedure is effective for better situation awareness. - Abstract: To evaluate the effects of human cognitive characteristics on situation awareness, a computational situation assessment model of nuclear power plant operators has been developed, as well as a procedure to apply the developed model to the design of human system interfaces (HSIs). The concept of the proposed procedure is to identify the key information source, which is expected to guarantee fast and accurate diagnosis when operators attend to it. The developed computational model is used to search the diagnostic paths and the key information source. In this study, an experiment with twelve trained participants was executed to validate the effectiveness of the proposed procedure. Eighteen scenarios covering various accidents were administered twice for each subject, and experimental data were collected and analyzed. As a result of the data analysis, it was validated that the salience level of information sources significantly influences the attention of operators, and the first observation of the key information sources leads operators to a quick and correct situation assessment. Therefore, we conclude that the proposed procedure for applying the developed model to HSI design is effective

  15. Rayleigh's, Stoneley's, and Scholte's Interface Waves in Elastic Models Using a Boundary Element Method

    Directory of Open Access Journals (Sweden)

    Esteban Flores-Mendez

    2012-01-01

    Full Text Available This work is focused on studying interface waves for three canonical models, that is, interfaces formed by vacuum-solid, solid-solid, and liquid-solid. These interfaces excited by dynamic loads cause the emergence of Rayleigh's, Stoneley's, and Scholte's waves, respectively. To perform the study, the indirect boundary element method is used, which has proved to be a powerful tool for numerical modeling of problems in elastodynamics. In essence, the method expresses the diffracted wave field of stresses, pressures, and displacements by a boundary integral, also known as single-layer representation, whose shape can be regarded as a Fredholm's integral representation of second kind and zero order. This representation can be considered as an exemplification of Huygens' principle, which is equivalent to Somigliana's representation theorem. Results in frequency domain for the three types of interfaces are presented; then, using the fourier discrete transform, we derive the results in time domain, where the emergence of interface waves is highlighted.

  16. Compilation of information on melter modeling

    International Nuclear Information System (INIS)

    Eyler, L.L.

    1996-03-01

    The objective of the task described in this report is to compile information on modeling capabilities for the High-Temperature Melter and the Cold Crucible Melter and issue a modeling capabilities letter report summarizing existing modeling capabilities. The report is to include strategy recommendations for future modeling efforts to support the High Level Waste (BLW) melter development

  17. Information-Processing Models and Curriculum Design

    Science.gov (United States)

    Calfee, Robert C.

    1970-01-01

    "This paper consists of three sections--(a) the relation of theoretical analyses of learning to curriculum design, (b) the role of information-processing models in analyses of learning processes, and (c) selected examples of the application of information-processing models to curriculum design problems." (Author)

  18. Erratum to : Modeling of complex interfaces for pendant drop experiments (Rheologica Acta, , 55, 10, (801-822), 10.1007/s00397-016-0956-1)

    NARCIS (Netherlands)

    Balemans, C.; Hulsen, M.A.; Tervoort, T.A.; Anderson, P.D.

    2017-01-01

    The original version of this article unfortunately contained mistakes. Theo A. Tervoort was not listed among the authors. The correct information is given above. In Balemans et al. (2016), an axisymmetric finite element model is presented to study the behaviour of complex interfaces in pendant drop

  19. A sharp interface model for void growth in irradiated materials

    Science.gov (United States)

    Hochrainer, Thomas; El-Azab, Anter

    2015-03-01

    A thermodynamic formalism for the interaction of point defects with free surfaces in single-component solids has been developed and applied to the problem of void growth by absorption of point defects in irradiated metals. This formalism consists of two parts, a detailed description of the dynamics of defects within the non-equilibrium thermodynamic frame, and the application of the second law of thermodynamics to provide closure relations for all kinetic equations. Enforcing the principle of non-negative entropy production showed that the description of the problem of void evolution under irradiation must include a relationship between the normal fluxes of defects into the void surface and the driving thermodynamic forces for the void surface motion; these thermodynamic forces are identified for both vacancies and interstitials and the relationships between these forces and the normal point defect fluxes are established using the concepts of transition state theory. The latter theory implies that the defect accommodation into the surface is a thermally activated process. Numerical examples are given to illustrate void growth dynamics in this new formalism and to investigate the effect of the surface energy barriers on void growth. Consequences for phase field models of void growth are discussed.

  20. OpenDolphin: presentation models for compelling user interfaces

    CERN Multimedia

    CERN. Geneva

    2014-01-01

    Shared applications run on the server. They still need a display, though, be it on the web or on the desktop. OpenDolphin introduces a shared presentation model to clearly differentiate between "what" to display and "how" to display. The "what" is managed on the server and is independent of the UI technology whereas the "how" can fully exploit the UI capabilities like the ubiquity of the web or the power of the desktop in terms of interactivity, animations, effects, 3D worlds, and local devices. If you run a server-centric architecture and still seek to provide the best possible user experience, then this talk is for you. About the speaker Dierk König (JavaOne Rock Star) works as a fellow for Canoo Engineering AG, Basel, Switzerland. He is a committer to many open-source projects including OpenDolphin, Groovy, Grails, GPars and GroovyFX. He is lead author of the "Groovy in Action" book, which is among ...

  1. Damage evolution of bi-body model composed of weakly cemented soft rock and coal considering different interface effect.

    Science.gov (United States)

    Zhao, Zenghui; Lv, Xianzhou; Wang, Weiming; Tan, Yunliang

    2016-01-01

    Considering the structure effect of tunnel stability in western mining of China, three typical kinds of numerical model were respectively built as follows based on the strain softening constitutive model and linear elastic-perfectly plastic model for soft rock and interface: R-M, R-C(s)-M and R-C(w)-M. Calculation results revealed that the stress-strain relation and failure characteristics of the three models vary between each other. The combination model without interface or with a strong interface presented continuous failure, while weak interface exhibited 'cut off' effect. Thus, conceptual models of bi-material model and bi-body model were established. Then numerical experiments of tri-axial compression were carried out for the two models. The relationships between stress evolution, failure zone and deformation rate fluctuations as well as the displacement of interface were detailed analyzed. Results show that two breakaway points of deformation rate actually demonstrate the starting and penetration of the main rupture, respectively. It is distinguishable due to the large fluctuation. The bi-material model shows general continuous failure while bi-body model shows 'V' type shear zone in weak body and failure in strong body near the interface due to the interface effect. With the increasing of confining pressure, the 'cut off' effect of weak interface is not obvious. These conclusions lay the theoretical foundation for further development of constitutive model for soft rock-coal combination body.

  2. Conceptual Modeling of Time-Varying Information

    DEFF Research Database (Denmark)

    Gregersen, Heidi; Jensen, Christian S.

    2004-01-01

    A wide range of database applications manage information that varies over time. Many of the underlying database schemas of these were designed using the Entity-Relationship (ER) model. In the research community as well as in industry, it is common knowledge that the temporal aspects of the mini......-world are important, but difficult to capture using the ER model. Several enhancements to the ER model have been proposed in an attempt to support the modeling of temporal aspects of information. Common to the existing temporally extended ER models, few or no specific requirements to the models were given...

  3. Directory of Energy Information Administration models 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-07-01

    This directory revises and updates the Directory of Energy Information Administration Models 1995, DOE/EIA-0293(95), Energy Information Administration (EIA), U.S. Department of Energy, July 1995. Four models have been deleted in this directory as they are no longer being used: (1) Market Penetration Model for Ground-Water Heat Pump Systems (MPGWHP); (2) Market Penetration Model for Residential Rooftop PV Systems (MPRESPV-PC); (3) Market Penetration Model for Active and Passive Solar Technologies (MPSOLARPC); and (4) Revenue Requirements Modeling System (RRMS).

  4. Self-Observation Model Employing an Instinctive Interface for Classroom Active Learning

    Science.gov (United States)

    Chen, Gwo-Dong; Nurkhamid; Wang, Chin-Yeh; Yang, Shu-Han; Chao, Po-Yao

    2014-01-01

    In a classroom, obtaining active, whole-focused, and engaging learning results from a design is often difficult. In this study, we propose a self-observation model that employs an instinctive interface for classroom active learning. Students can communicate with virtual avatars in the vertical screen and can react naturally according to the…

  5. An aggregation model for households connected in the low-voltage grid using a VPP interface

    DEFF Research Database (Denmark)

    Thavlov, Anders; Bindner, Henrik W.

    2013-01-01

    . This paper presents an aggregation model using an interface defined by an operating virtual power plant. Simulations of the aggregator show that a large share of the power consumption, due to heating of households, can be postponed or accelerated in time to the benefit of the stability of the power system...

  6. Finite element modeling of the neuron-electrode interface: stimulus transfer and geometry

    NARCIS (Netherlands)

    Buitenweg, Jan R.; Rutten, Wim; Marani, Enrico

    1999-01-01

    The relation between stimulus transfer and the geometry of the neuron-electrode interface can not be determined properly using electrical equivalent circuits, since current that flows from the sealing gap through the neuronal membrane is difficult to model in these circuits. Therefore, finite

  7. An approach for the modeling of interface-body coupled nonlocal damage

    Directory of Open Access Journals (Sweden)

    J. Toti

    2010-04-01

    Full Text Available Fiber Reinforced Plastic (FRP can be used for strengthening concrete or masonry constructions. One of the main problem in the use of FRP is the possible detachment of the reinforcement from the support material. This paper deals with the modeling of the FRP-concrete or masonry damage interface, accounting for the coupling occurring between the degradation of the cohesive material and the FRP detachment. To this end, a damage model is considered for the quasi-brittle material. In order to prevent strain localization and strong mesh sensitivity of the solution, an integral-type of nonlocal model based on the weighted spatial averaging of a strain-like quantity is developed. Regarding the interface, the damage is governed by the relative displacement occurring at bond. A suitable interface model which accounts for the mode I, mode II and mixed mode of damage is developed. The coupling between the body damage and the interface damage is performed computing the body damage on the bond surface. Numerical examples are presented.

  8. Numerical modeling of capillary electrophoresis – electrospray mass spectrometry interface design

    Czech Academy of Sciences Publication Activity Database

    Járvás, G.; Guttman, A.; Foret, František

    2015-01-01

    Roč. 34, 5 (2015), s. 558-569 ISSN 0277-7037 R&D Projects: GA ČR(CZ) GBP206/12/G014 Institutional support: RVO:68081715 Keywords : CE-ESI-MS * modeling * simulation * CFD * interface design Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 9.346, year: 2015

  9. A Monthly Water-Balance Model Driven By a Graphical User Interface

    Science.gov (United States)

    McCabe, Gregory J.; Markstrom, Steven L.

    2007-01-01

    This report describes a monthly water-balance model driven by a graphical user interface, referred to as the Thornthwaite monthly water-balance program. Computations of monthly water-balance components of the hydrologic cycle are made for a specified location. The program can be used as a research tool, an assessment tool, and a tool for classroom instruction.

  10. Thermodynamic and mechanical properties of curved interfaces : a discussion of models

    NARCIS (Netherlands)

    Oversteegen, M.

    2000-01-01

    Although relatively much is known about the physics of curved interfaces, several models for these kind of systems seem conflicting or internally inconsistent. It is the aim of this thesis to derive a rigorous framework of thermodynamic and mechanical expressions and study their relation to

  11. An information maximization model of eye movements

    Science.gov (United States)

    Renninger, Laura Walker; Coughlan, James; Verghese, Preeti; Malik, Jitendra

    2005-01-01

    We propose a sequential information maximization model as a general strategy for programming eye movements. The model reconstructs high-resolution visual information from a sequence of fixations, taking into account the fall-off in resolution from the fovea to the periphery. From this framework we get a simple rule for predicting fixation sequences: after each fixation, fixate next at the location that minimizes uncertainty (maximizes information) about the stimulus. By comparing our model performance to human eye movement data and to predictions from a saliency and random model, we demonstrate that our model is best at predicting fixation locations. Modeling additional biological constraints will improve the prediction of fixation sequences. Our results suggest that information maximization is a useful principle for programming eye movements.

  12. Molecular modeling of the green leaf volatile methyl salicylate on atmospheric air/water interfaces.

    Science.gov (United States)

    Liyana-Arachchi, Thilanga P; Hansel, Amie K; Stevens, Christopher; Ehrenhauser, Franz S; Valsaraj, Kalliat T; Hung, Francisco R

    2013-05-30

    Methyl salicylate (MeSA) is a green leaf volatile (GLV) compound that is emitted in significant amounts by plants, especially when they are under stress conditions. GLVs can then undergo chemical reactions with atmospheric oxidants, yielding compounds that contribute to the formation of secondary organic aerosols (SOAs). We investigated the adsorption of MeSA on atmospheric air/water interfaces at 298 K using thermodynamic integration (TI), potential of mean force (PMF) calculations, and classical molecular dynamics (MD) simulations. Our molecular models can reproduce experimental results of the 1-octanol/water partition coefficient of MeSA. A deep free energy minimum was found for MeSA at the air/water interface, which is mainly driven by energetic interactions between MeSA and water. At the interface, the oxygenated groups in MeSA tend to point toward the water side of the interface, with the aromatic group of MeSA lying farther away from water. Increases in the concentrations of MeSA lead to reductions in the height of the peaks in the MeSA-MeSA g(r) functions, a slowing down of the dynamics of both MeSA and water at the interface, and a reduction in the interfacial surface tension. Our results indicate that MeSA has a strong thermodynamic preference to remain at the air/water interface, and thus chemical reactions with atmospheric oxidants are more likely to take place at this interface, rather than in the water phase of atmospheric water droplets or in the gas phase.

  13. Soft yet Sharp Interfaces in a Vertex Model of Confluent Tissue

    Science.gov (United States)

    Sussman, Daniel M.; Schwarz, J. M.; Marchetti, M. Cristina; Manning, M. Lisa

    2018-01-01

    How can dense biological tissue maintain sharp boundaries between coexisting cell populations? We explore this question within a simple vertex model for cells, focusing on the role of topology and tissue surface tension. We show that the ability of cells to independently regulate adhesivity and tension, together with neighbor-based interaction rules, lets them support strikingly unusual interfaces. In particular, we show that mechanical- and fluctuation-based measurements of the effective surface tension of a cellular aggregate yield different results, leading to mechanically soft interfaces that are nevertheless extremely sharp.

  14. Ultra-low-cost 3D gaze estimation: an intuitive high information throughput compliment to direct brain-machine interfaces

    Science.gov (United States)

    Abbott, W. W.; Faisal, A. A.

    2012-08-01

    Eye movements are highly correlated with motor intentions and are often retained by patients with serious motor deficiencies. Despite this, eye tracking is not widely used as control interface for movement in impaired patients due to poor signal interpretation and lack of control flexibility. We propose that tracking the gaze position in 3D rather than 2D provides a considerably richer signal for human machine interfaces by allowing direct interaction with the environment rather than via computer displays. We demonstrate here that by using mass-produced video-game hardware, it is possible to produce an ultra-low-cost binocular eye-tracker with comparable performance to commercial systems, yet 800 times cheaper. Our head-mounted system has 30 USD material costs and operates at over 120 Hz sampling rate with a 0.5-1 degree of visual angle resolution. We perform 2D and 3D gaze estimation, controlling a real-time volumetric cursor essential for driving complex user interfaces. Our approach yields an information throughput of 43 bits s-1, more than ten times that of invasive and semi-invasive brain-machine interfaces (BMIs) that are vastly more expensive. Unlike many BMIs our system yields effective real-time closed loop control of devices (10 ms latency), after just ten minutes of training, which we demonstrate through a novel BMI benchmark—the control of the video arcade game ‘Pong’.

  15. Contribution to the modeling and the identification of haptic interfaces; Contribution a la modelisation et a l'identification des interfaces haptiques

    Energy Technology Data Exchange (ETDEWEB)

    Janot, A

    2007-12-15

    This thesis focuses on the modeling and the identification of haptic interfaces using cable drive. An haptic interface is a force feedback device, which enables its user to interact with a virtual world or a remote environment explored by a slave system. It aims at the matching between the forces and displacements given by the user and those applied to virtual world. Usually, haptic interfaces make use of a mechanical actuated structure whose distal link is equipped with a handle. When manipulating this handle to interact with explored world, the user feels the apparent mass, compliance and friction of the interface. This distortion introduced between the operator and the virtual world must be modeled and identified to enhance the design of the interface and develop appropriate control laws. The first approach has been to adapt the modeling and identification methods of rigid and localized flexibilities robots to haptic interfaces. The identification technique makes use of the inverse dynamic model and the linear least squares with the measurements of joint torques and positions. This approach is validated on a single degree of freedom and a three degree of freedom haptic devices. A new identification method needing only torque data is proposed. It is based on a closed loop simulation using the direct dynamic model. The optimal parameters minimize the 2 norms of the error between the actual torque and the simulated torque assuming the same control law and the same tracking trajectory. This non linear least squares problem dramatically is simplified using the inverse model to calculate the simulated torque. This method is validated on the single degree of freedom haptic device and the SCARA robot. (author)

  16. Contribution to the modeling and the identification of haptic interfaces; Contribution a la modelisation et a l'identification des interfaces haptiques

    Energy Technology Data Exchange (ETDEWEB)

    Janot, A

    2007-12-15

    This thesis focuses on the modeling and the identification of haptic interfaces using cable drive. An haptic interface is a force feedback device, which enables its user to interact with a virtual world or a remote environment explored by a slave system. It aims at the matching between the forces and displacements given by the user and those applied to virtual world. Usually, haptic interfaces make use of a mechanical actuated structure whose distal link is equipped with a handle. When manipulating this handle to interact with explored world, the user feels the apparent mass, compliance and friction of the interface. This distortion introduced between the operator and the virtual world must be modeled and identified to enhance the design of the interface and develop appropriate control laws. The first approach has been to adapt the modeling and identification methods of rigid and localized flexibilities robots to haptic interfaces. The identification technique makes use of the inverse dynamic model and the linear least squares with the measurements of joint torques and positions. This approach is validated on a single degree of freedom and a three degree of freedom haptic devices. A new identification method needing only torque data is proposed. It is based on a closed loop simulation using the direct dynamic model. The optimal parameters minimize the 2 norms of the error between the actual torque and the simulated torque assuming the same control law and the same tracking trajectory. This non linear least squares problem dramatically is simplified using the inverse model to calculate the simulated torque. This method is validated on the single degree of freedom haptic device and the SCARA robot. (author)

  17. Dynamics modeling for parallel haptic interfaces with force sensing and control.

    Science.gov (United States)

    Bernstein, Nicholas; Lawrence, Dale; Pao, Lucy

    2013-01-01

    Closed-loop force control can be used on haptic interfaces (HIs) to mitigate the effects of mechanism dynamics. A single multidimensional force-torque sensor is often employed to measure the interaction force between the haptic device and the user's hand. The parallel haptic interface at the University of Colorado (CU) instead employs smaller 1D force sensors oriented along each of the five actuating rods to build up a 5D force vector. This paper shows that a particular manipulandum/hand partition in the system dynamics is induced by the placement and type of force sensing, and discusses the implications on force and impedance control for parallel haptic interfaces. The details of a "squaring down" process are also discussed, showing how to obtain reduced degree-of-freedom models from the general six degree-of-freedom dynamics formulation.

  18. Nuclear Reactor/Hydrogen Process Interface Including the HyPEP Model

    International Nuclear Information System (INIS)

    Steven R. Sherman

    2007-01-01

    The Nuclear Reactor/Hydrogen Plant interface is the intermediate heat transport loop that will connect a very high temperature gas-cooled nuclear reactor (VHTR) to a thermochemical, high-temperature electrolysis, or hybrid hydrogen production plant. A prototype plant called the Next Generation Nuclear Plant (NGNP) is planned for construction and operation at the Idaho National Laboratory in the 2018-2021 timeframe, and will involve a VHTR, a high-temperature interface, and a hydrogen production plant. The interface is responsible for transporting high-temperature thermal energy from the nuclear reactor to the hydrogen production plant while protecting the nuclear plant from operational disturbances at the hydrogen plant. Development of the interface is occurring under the DOE Nuclear Hydrogen Initiative (NHI) and involves the study, design, and development of high-temperature heat exchangers, heat transport systems, materials, safety, and integrated system models. Research and development work on the system interface began in 2004 and is expected to continue at least until the start of construction of an engineering-scale demonstration plant

  19. Micromechanical modeling of the cement-bone interface: the effect of friction, morphology and material properties on the micromechanical response

    OpenAIRE

    Janssen, Dennis; Mann, Kenneth A.; Verdonschot, Nico

    2008-01-01

    In order to gain insight into the micro-mechanical behavior of the cement-bone interface, the effect of parametric variations of frictional, morphological and material properties on the mechanical response of the cement-bone interface were analyzed using a finite element approach. Finite element models of a cement-bone interface specimen were created from micro-computed tomography data of a physical specimen that was sectioned from an in vitro cemented total hip arthroplasty. In five models t...

  20. Towards a sharp-interface volume-of-fluid methodology for modeling evaporation

    Science.gov (United States)

    Pathak, Ashish; Raessi, Mehdi

    2017-11-01

    In modeling evaporation, the diffuse-interface (one-domain) formulation yields inaccurate results. Recent efforts approaching the problem via a sharp-interface (two-domain) formulation have shown significant improvements. The reasons behind their better performance are discussed in the present work. All available sharp-interface methods, however, exclusively employ the level-set. In the present work, we develop a sharp-interface evaporation model in a volume-of-fluid (VOF) framework in order to leverage its mass-conserving property as well as its ability to handle large topographical changes. We start with a critical review of the assumptions underlying the mathematical equations governing evaporation. For example, it is shown that the assumption of incompressibility can only be applied in special circumstances. The famous D2 law used for benchmarking is valid exclusively to steady-state test problems. Transient is present over significant lifetime of a micron-size droplet. Therefore, a 1D spherical fully transient model is developed to provide a benchmark transient solution. Finally, a 3D Cartesian Navier-Stokes evaporation solver is developed. Some preliminary validation test-cases are presented for static and moving drop evaporation. This material is based upon work supported by the Department of Energy, Office of Energy Efficiency and Renewable Energy and the Department of Defense, Tank and Automotive Research, Development, and Engineering Center, under Award Number DEEE0007292.

  1. Simplified microstrip discontinuity modeling using the transmission line matrix method interfaced to microwave CAD

    Science.gov (United States)

    Thompson, James H.; Apel, Thomas R.

    1990-07-01

    A technique for modeling microstrip discontinuities is presented which is derived from the transmission line matrix method of solving three-dimensional electromagnetic problems. In this technique the microstrip patch under investigation is divided into an integer number of square and half-square (triangle) subsections. An equivalent lumped-element model is calculated for each subsection. These individual models are then interconnected as dictated by the geometry of the patch. The matrix of lumped elements is then solved using either of two microwave CAD software interfaces with each port properly defined. Closed-form expressions for the lumped-element representation of the individual subsections is presented and experimentally verified through the X-band frequency range. A model demonstrating the use of symmetry and block construction of a circuit element is discussed, along with computer program development and CAD software interface.

  2. Modeling the liquid-liquid interface and the transfer of a solute by molecular dynamics simulation

    International Nuclear Information System (INIS)

    Hayoun, Marc

    1990-11-01

    Molecular Dynamics method and Lennard-Jones potential functions have been employed to model Liquid-Liquid Interfaces. The variation of the miscibilities between the two liquids is obtained by changing the interaction between the two atomic species. The resulting interfaces have a thickness of about three atomic diameters and are stable on the time scale of the simulation. They have been characterized by the density and pressure profiles. The interfacial tension has also been computed and is of the order of magnitude of experimental values. The diffusion process is anisotropic in the interfacial region: the transverse diffusion coefficient (parallelly to the interface) is higher than the normal one. A qualitative explanation of this behaviour is suggested by considering the pressure tensor. The second part of this work, performed by Molecular Dynamics in the canonical ensemble, is devoted to the kinetic study of the transfer of a solute through the interface. A model of a symmetric interface with an atomic solute has been used. The interaction potential between the solute and the solvents has been built in order to obtain an activation barrier to the transfer. We have computed the mean force exerted by the solvent on the solute as a function of its distance to the interface. The resulting mean force potential corresponds to a free energy difference. The height of the energy barrier involved is about 4 kT. The potential energy and entropy profiles have also been calculated and discussed. The diffusion coefficient of the solute has been computed by equilibrium and non-equilibrium methods. We deduced the friction coefficient of the solvent, which is essential to determine the Kramers transmission coefficient. This coefficient is compared to the one obtained by simulation. Finally, the solute transfer rate constant has been calculated. (author) [fr

  3. Teaching Photovoltaic Array Modelling and Characterization Using a Graphical User Interface and a Flash Solar Simulator

    DEFF Research Database (Denmark)

    Spataru, Sergiu; Sera, Dezso; Kerekes, Tamas

    2012-01-01

    This paper presents a set of laboratory tools aimed to support students with various backgrounds (no programming) to understand photovoltaic array modelling and characterization techniques. A graphical user interface (GUI) has been developed in Matlab, for modelling PV arrays and characterizing...... the effect of different types of parameters and operating conditions, on the current-voltage and power-voltage curves. The GUI is supported by experimental investigation and validation on PV module level, with the help of an indoor flash solar simulator....

  4. Lumped parameter modeling of a two-phase thermal-hydraulic channel with interface tracking

    International Nuclear Information System (INIS)

    Jo, J.H.; Kaufman, J.M.; Ruger, C.J.; Stein, S.

    1978-01-01

    A nonhomogenous, thermal nonequilibrium model for one-dimensional two-phase flow in a heated channel has been formulated in lumped parameter form. The channel is divided into a variable number of flow regimes separated by moving interfaces. The model can be used to predict the behavior of a LWR core and both primary and secondary sides of a steam generator under transient conditions. (author)

  5. Directory of energy information administration models 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-13

    This updated directory has been published annually; after this issue, it will be published only biennially. The Disruption Impact Simulator Model in use by EIA is included. Model descriptions have been updated according to revised documentation approved during the past year. This directory contains descriptions about each model, including title, acronym, purpose, followed by more detailed information on characteristics, uses, and requirements. Sources for additional information are identified. Included are 37 EIA models active as of February 1, 1995. The first group is the National Energy Modeling System (NEMS) models. The second group is all other EIA models that are not part of NEMS. Appendix A identifies major EIA modeling systems and the models within these systems. Appendix B is a summary of the `Annual Energy Outlook` Forecasting System.

  6. Directory of Energy Information Administration Models 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-07-06

    This directory contains descriptions about each model, including the title, acronym, purpose, followed by more detailed information on characteristics, uses, and requirements. Sources for additional information are identified. Included in this directory are 35 EIA models active as of May 1, 1993. Models that run on personal computers are identified by ``PC`` as part of the acronym. EIA is developing new models, a National Energy Modeling System (NEMS), and is making changes to existing models to include new technologies, environmental issues, conservation, and renewables, as well as extend forecast horizon. Other parts of the Department are involved in this modeling effort. A fully operational model is planned which will integrate completed segments of NEMS for its first official application--preparation of EIA`s Annual Energy Outlook 1994. Abstracts for the new models will be included in next year`s version of this directory.

  7. Constructivist learning at the science-policy interface: tsunami science informing disaster policy in West Sumatra

    Science.gov (United States)

    McCaughey, J.; Dewi, P. R.; Natawidjaja, D. H.; Sieh, K. E.

    2012-12-01

    Science communication often falls short when it is based on the blank-slate assumption that if we can just get the message right, then the information will be received and understood as intended. In contrast, constructivist learning theory and practice suggest that we all actively construct our knowledge from a variety of information sources and through particular, novel associations with our prior knowledge. This constructed knowledge can be quite different from any of its original sources, such as a particular science communication. Successful communication requires carefully examining how people construct their knowledge of the topic of interest. Examples from our outreach work to connect hazard-science research with disaster-risk reduction practice in West Sumatra illustrate the mismatch between expert and stakeholder/public mental models of the characteristics of tsunamigenic earthquakes. There are incorrect conceptions that seawater always withdraws before a tsunami, and that a tsunami can be produced by an earthquake only if the epicenter is located at the ocean trench. These incorrect conceptions arise from generalizations based on recent, local earthquake experiences, as well as from unintended consequences of science outreach, science education, and, in one case, the way that tsunami modelling is graphically presented in scientific journals. We directly address these incorrect conceptions in our discussions with government officials and others; as a result, the local disaster-management agency has changed its policies to reflect an increased understanding of the hazard. This outreach success would not have been possible without eliciting the prior knowledge of our audiences through dialogue.

  8. Spectral Transfer Learning using Information Geometry for a User-Independent Brain-Computer Interface

    OpenAIRE

    Nicholas Roy Waytowich; Nicholas Roy Waytowich; Vernon Lawhern; Vernon Lawhern; Addison Bohannon; Addison Bohannon; Kenneth Ball; Brent Lance

    2016-01-01

    Recent advances in signal processing and machine learning techniques have enabled the application of Brain-Computer Interface (BCI) technologies to fields such as medicine, industry and recreation. However, BCIs still suffer from the requirement of frequent calibration sessions due to the intra- and inter- individual variability of brain-signals, which makes calibration suppression through transfer learning an area of increasing interest for the development of practical BCI systems. In this p...

  9. Spectral Transfer Learning Using Information Geometry for a User-Independent Brain-Computer Interface

    OpenAIRE

    Waytowich, Nicholas R.; Lawhern, Vernon J.; Bohannon, Addison W.; Ball, Kenneth R.; Lance, Brent J.

    2016-01-01

    Recent advances in signal processing and machine learning techniques have enabled the application of Brain-Computer Interface (BCI) technologies to fields such as medicine, industry, and recreation; however, BCIs still suffer from the requirement of frequent calibration sessions due to the intra- and inter-individual variability of brain-signals, which makes calibration suppression through transfer learning an area of increasing interest for the development of practical BCI systems. In this p...

  10. Information-Theoretic Perspectives on Geophysical Models

    Science.gov (United States)

    Nearing, Grey

    2016-04-01

    To test any hypothesis about any dynamic system, it is necessary to build a model that places that hypothesis into the context of everything else that we know about the system: initial and boundary conditions and interactions between various governing processes (Hempel and Oppenheim, 1948, Cartwright, 1983). No hypothesis can be tested in isolation, and no hypothesis can be tested without a model (for a geoscience-related discussion see Clark et al., 2011). Science is (currently) fundamentally reductionist in the sense that we seek some small set of governing principles that can explain all phenomena in the universe, and such laws are ontological in the sense that they describe the object under investigation (Davies, 1990 gives several competing perspectives on this claim). However, since we cannot build perfect models of complex systems, any model that does not also contain an epistemological component (i.e., a statement, like a probability distribution, that refers directly to the quality of of the information from the model) is falsified immediately (in the sense of Popper, 2002) given only a small number of observations. Models necessarily contain both ontological and epistemological components, and what this means is that the purpose of any robust scientific method is to measure the amount and quality of information provided by models. I believe that any viable philosophy of science must be reducible to this statement. The first step toward a unified theory of scientific models (and therefore a complete philosophy of science) is a quantitative language that applies to both ontological and epistemological questions. Information theory is one such language: Cox' (1946) theorem (see Van Horn, 2003) tells us that probability theory is the (only) calculus that is consistent with Classical Logic (Jaynes, 2003; chapter 1), and information theory is simply the integration of convex transforms of probability ratios (integration reduces density functions to scalar

  11. The Tournemire industrial analogue: reactive-transport modelling of cement-clay interfaces

    International Nuclear Information System (INIS)

    Watson, C.; Wilson, J.; Benbow, S.; Savage, D.; Walker, C.; Norris, S.

    2012-01-01

    Document available in extended abstract form only. In a number of concepts for geological disposal facilities (GDFs) for radioactive waste, cement-based materials are used for a variety of purposes including mechanical support, backfilling of cavities, grouting of fractures in the host rock, and immobilisation of radionuclides in waste-forms. Such facilities will ultimately re-saturate with encroaching groundwater, at which point leaching of the cement components is likely to give rise to an alkaline pore fluid, regardless of cement type. This pore fluid will be in disequilibrium with both the host rock and other engineered barrier system (EBS) materials used in the construction of the facility, such as bentonite. The interaction of the pore fluid could lead, for example, to the reduction in the swelling capacity of the clay, alteration of porosity and permeability both in the host rock and in EBS materials, and reduction of sorption capacities. Analogue systems can provide information about hyper-alkaline alteration that it is not possible to obtain from short-term experimental studies alone, because they have evolved in situ over many tens, hundreds or thousands of years. These systems can be used to improve scientific understanding and consequently mathematical models, which in turn can be used to simulate the performance of the engineered and natural materials over the lifetime of the GDF. Industrial analogues provide a kind of 'halfway house' between natural analogues and laboratory experimental studies; the initial and boundary conditions are often better understood than natural analogues, and the timescales involved, whilst much shorter than natural analogues, are generally of much greater duration than laboratory studies. One such analogue can be found at Tournemire, southern France, where a tunnel excavated in the 1880's had several exploration boreholes drilled into its basement in the 1990's. These boreholes were then filled with concrete and cement

  12. Closed Loop Brain Model of Neocortical Information Based Exchange

    Directory of Open Access Journals (Sweden)

    James eKozloski

    2016-01-01

    Full Text Available Here we describe an information based exchange' model of brain function that ascribes to neocortex, basal ganglia, and thalamus distinct network functions. The model allows us to analyze whole brain system set point measures, such as the rate and heterogeneity of transitions in striatum and neocortex, in the context of neuromodulation and other perturbations. Our closed-loop model is grounded in neuroanatomical observations, proposing a novel Grand Loop through neocortex, and invokes different forms of plasticity at specific tissue interfaces and their principle cell synapses to achieve these transitions. By implementing a system for maximum information based exchange of action potentials between modeled neocortical areas, we observe changes to these measures in simulation. We hypothesize that similar dynamic set points and modulations exist in the brain's resting state activity, and that different modifications to information based exchange may shift the risk profile of different component tissues, resulting in different neurodegenerative diseases. This model is targeted for further development using IBM's Neural Tissue Simulator, which allows scalable elaboration of networks, tissues, and their neural and synaptic components towards ever greater complexity and biological realism.

  13. Availability verification of information for human system interface in automatic SG level control using activity diagram

    Energy Technology Data Exchange (ETDEWEB)

    Nuraslinda, Anuar; Kim, Dong Young; Kim, Jong Hyun [KEPCO International Nuclear Graduate School, Uljugun (Korea, Republic of)

    2012-10-15

    Steam Generator (SG) level control system in OPR 1000 is one of representative automatic systems that falls under the Supervisory Control level in Endsley's taxonomy. Supervisory control of automated systems is classified as a form of out of the loop (OOTL) performance due to passive involvement in the systems operation, which could lead to loss of situation awareness (SA). There was a reported event, which was caused by inadequate human automation communication that contributed to an unexpected reactor trip in July 2005. A high SG level trip occurred in Yeonggwang (YGN) Unit 6 Nuclear Power Plant (NPP) due to human operator failure to recognize the need to change the control mode of the economizer valve controller (EVC) to manual mode during swap over (the transition from low power mode to high power mode) after the loss of offsite power (LOOP) event was recovered. This paper models the human system interaction in NPP SG level control system using Unified Modeling Language (UML) Activity Diagram. Then, it identifies the missing information for operators in the OPR1000 Main Control Room (MCR) and suggests some means of improving the human system interaction.

  14. Availability verification of information for human system interface in automatic SG level control using activity diagram

    International Nuclear Information System (INIS)

    Nuraslinda, Anuar; Kim, Dong Young; Kim, Jong Hyun

    2012-01-01

    Steam Generator (SG) level control system in OPR 1000 is one of representative automatic systems that falls under the Supervisory Control level in Endsley's taxonomy. Supervisory control of automated systems is classified as a form of out of the loop (OOTL) performance due to passive involvement in the systems operation, which could lead to loss of situation awareness (SA). There was a reported event, which was caused by inadequate human automation communication that contributed to an unexpected reactor trip in July 2005. A high SG level trip occurred in Yeonggwang (YGN) Unit 6 Nuclear Power Plant (NPP) due to human operator failure to recognize the need to change the control mode of the economizer valve controller (EVC) to manual mode during swap over (the transition from low power mode to high power mode) after the loss of offsite power (LOOP) event was recovered. This paper models the human system interaction in NPP SG level control system using Unified Modeling Language (UML) Activity Diagram. Then, it identifies the missing information for operators in the OPR1000 Main Control Room (MCR) and suggests some means of improving the human system interaction

  15. Exactly solvable models of growing interfaces and lattice gases: the Arcetri models, ageing and logarithmic sub-ageing

    Science.gov (United States)

    Durang, Xavier; Henkel, Malte

    2017-12-01

    Motivated by an analogy with the spherical model of a ferromagnet, the three Arcetri models are defined. They present new universality classes, either for the growth of interfaces, or else for lattice gases. They are distinct from the common Edwards-Wilkinson and Kardar-Parisi-Zhang universality classes. Their non-equilibrium evolution can be studied by the exact computation of their two-time correlators and responses. In both interpretations, the first model has a critical point in any dimension and shows simple ageing at and below criticality. The exact universal exponents are found. The second and third model are solved at zero temperature, in one dimension, where both show logarithmic sub-ageing, of which several distinct types are identified. Physically, the second model describes a lattice gas and the third model describes interface growth. A clear physical picture on the subsequent time and length scales of the sub-ageing process emerges.

  16. Bilinear modeling of EMG signals to extract user-independent features for multiuser myoelectric interface.

    Science.gov (United States)

    Matsubara, Takamitsu; Morimoto, Jun

    2013-08-01

    In this study, we propose a multiuser myoelectric interface that can easily adapt to novel users. When a user performs different motions (e.g., grasping and pinching), different electromyography (EMG) signals are measured. When different users perform the same motion (e.g., grasping), different EMG signals are also measured. Therefore, designing a myoelectric interface that can be used by multiple users to perform multiple motions is difficult. To cope with this problem, we propose for EMG signals a bilinear model that is composed of two linear factors: 1) user dependent and 2) motion dependent. By decomposing the EMG signals into these two factors, the extracted motion-dependent factors can be used as user-independent features. We can construct a motion classifier on the extracted feature space to develop the multiuser interface. For novel users, the proposed adaptation method estimates the user-dependent factor through only a few interactions. The bilinear EMG model with the estimated user-dependent factor can extract the user-independent features from the novel user data. We applied our proposed method to a recognition task of five hand gestures for robotic hand control using four-channel EMG signals measured from subject forearms. Our method resulted in 73% accuracy, which was statistically significantly different from the accuracy of standard nonmultiuser interfaces, as the result of a two-sample t -test at a significance level of 1%.

  17. 3-D FEM Modeling of fiber/matrix interface debonding in UD composites including surface effects

    International Nuclear Information System (INIS)

    Pupurs, A; Varna, J

    2012-01-01

    Fiber/matrix interface debond growth is one of the main mechanisms of damage evolution in unidirectional (UD) polymer composites. Because for polymer composites the fiber strain to failure is smaller than for the matrix multiple fiber breaks occur at random positions when high mechanical stress is applied to the composite. The energy released due to each fiber break is usually larger than necessary for the creation of a fiber break therefore a partial debonding of fiber/matrix interface is typically observed. Thus the stiffness reduction of UD composite is contributed both from the fiber breaks and from the interface debonds. The aim of this paper is to analyze the debond growth in carbon fiber/epoxy and glass fiber/epoxy UD composites using fracture mechanics principles by calculation of energy release rate G II . A 3-D FEM model is developed for calculation of energy release rate for fiber/matrix interface debonds at different locations in the composite including the composite surface region where the stress state differs from the one in the bulk composite. In the model individual partially debonded fiber is surrounded by matrix region and embedded in a homogenized composite.

  18. A Model for an Electronic Information Marketplace

    Directory of Open Access Journals (Sweden)

    Wei Ge

    2005-11-01

    Full Text Available As the information content on the Internet increases, the task of locating desired information and assessing its quality becomes increasingly difficult. This development causes users to be more willing to pay for information that is focused on specific issues, verifiable, and available upon request. Thus, the nature of the Internet opens up the opportunity for information trading. In this context, the Internet cannot only be used to close the transaction, but also to deliver the product - desired information - to the user. Early attempts to implement such business models have fallen short of expectations. In this paper, we discuss the limitations of such practices and present a modified business model for information trading, which uses a reverse auction approach together with a multiple-buyer price discovery process

  19. Modeling of turbulent flows in porous media and at the interface with a free fluid medium

    International Nuclear Information System (INIS)

    Chandesris, M.

    2006-12-01

    This work deals with the numerical simulation of turbulent flows in the whole nuclear reactor core, using multi-scale approaches. First, a macroscopic turbulence model is built, based on a porous media approach, to describe the flow in the fuel assemblies part of the nuclear core. Then, we study the jump conditions that have to be applied at a free fluid/porous interface. A thorough analytical study is carried out for laminar flows. This study allows to answer some fundamental questions about the physical meaning of the jump conditions, the values of the jump parameters and the location of the interface. Using these results, jump conditions for turbulent flows are proposed. The model is then applied to the simulation of a turbulent flow in a simplified model of a reactor core. (author)

  20. Information in general medical practices: the information processing model.

    Science.gov (United States)

    Crowe, Sarah; Tully, Mary P; Cantrill, Judith A

    2010-04-01

    The need for effective communication and handling of secondary care information in general practices is paramount. To explore practice processes on receiving secondary care correspondence in a way that integrates the information needs and perceptions of practice staff both clinical and administrative. Qualitative study using semi-structured interviews with a wide range of practice staff (n = 36) in nine practices in the Northwest of England. Analysis was based on the framework approach using N-Vivo software and involved transcription, familiarization, coding, charting, mapping and interpretation. The 'information processing model' was developed to describe the six stages involved in practice processing of secondary care information. These included the amendment or updating of practice records whilst simultaneously or separately actioning secondary care recommendations, using either a 'one-step' or 'two-step' approach, respectively. Many factors were found to influence each stage and impact on the continuum of patient care. The primary purpose of processing secondary care information is to support patient care; this study raises the profile of information flow and usage within practices as an issue requiring further consideration.

  1. Geospatial Information System Capability Maturity Models

    Science.gov (United States)

    2017-06-01

    To explore how State departments of transportation (DOTs) evaluate geospatial tool applications and services within their own agencies, particularly their experiences using capability maturity models (CMMs) such as the Urban and Regional Information ...

  2. Designing Closed-Loop Brain-Machine Interfaces Using Model Predictive Control

    Directory of Open Access Journals (Sweden)

    Gautam Kumar

    2016-06-01

    Full Text Available Brain-machine interfaces (BMIs are broadly defined as systems that establish direct communications between living brain tissue and external devices, such as artificial arms. By sensing and interpreting neuronal activities to actuate an external device, BMI-based neuroprostheses hold great promise in rehabilitating motor disabled subjects, such as amputees. In this paper, we develop a control-theoretic analysis of a BMI-based neuroprosthetic system for voluntary single joint reaching task in the absence of visual feedback. Using synthetic data obtained through the simulation of an experimentally validated psycho-physiological cortical circuit model, both the Wiener filter and the Kalman filter based linear decoders are developed. We analyze the performance of both decoders in the presence and in the absence of natural proprioceptive feedback information. By performing simulations, we show that the performance of both decoders degrades significantly in the absence of the natural proprioception. To recover the performance of these decoders, we propose two problems, namely tracking the desired position trajectory and tracking the firing rate trajectory of neurons which encode the proprioception, in the model predictive control framework to design optimal artificial sensory feedback. Our results indicate that while the position trajectory based design can only recover the position and velocity trajectories, the firing rate trajectory based design can recover the performance of the motor task along with the recovery of firing rates in other cortical regions. Finally, we extend our design by incorporating a network of spiking neurons and designing artificial sensory feedback in the form of a charged balanced biphasic stimulating current.

  3. In Vitro Mimetic Models for the Bone-Cartilage Interface Regeneration.

    Science.gov (United States)

    Bicho, Diana; Pina, Sandra; Oliveira, J Miguel; Reis, Rui L

    2018-01-01

    In embryonic development, pure cartilage structures are in the basis of bone-cartilage interfaces. Despite this fact, the mature bone and cartilage structures can vary greatly in composition and function. Nevertheless, they collaborate in the osteochondral region to create a smooth transition zone that supports the movements and forces resulting from the daily activities. In this sense, all the hierarchical organization is involved in the maintenance and reestablishment of the equilibrium in case of damage. Therefore, this interface has attracted a great deal of interest in order to understand the mechanisms of regeneration or disease progression in osteoarthritis. With that purpose, in vitro tissue models (either static or dynamic) have been studied. Static in vitro tissue models include monocultures, co-cultures, 3D cultures, and ex vivo cultures, mostly cultivated in flat surfaces, while dynamic models involve the use of bioreactors and microfluidic systems. The latter have emerged as alternatives to study the cellular interactions in a more authentic manner over some disadvantages of the static models. The current alternatives of in vitro mimetic models for bone-cartilage interface regeneration are overviewed and discussed herein.

  4. Models, Entropy and Information of Temporal Social Networks

    Science.gov (United States)

    Zhao, Kun; Karsai, Márton; Bianconi, Ginestra

    Temporal social networks are characterized by heterogeneous duration of contacts, which can either follow a power-law distribution, such as in face-to-face interactions, or a Weibull distribution, such as in mobile-phone communication. Here we model the dynamics of face-to-face interaction and mobile phone communication by a reinforcement dynamics, which explains the data observed in these different types of social interactions. We quantify the information encoded in the dynamics of these networks by the entropy of temporal networks. Finally, we show evidence that human dynamics is able to modulate the information present in social network dynamics when it follows circadian rhythms and when it is interfacing with a new technology such as the mobile-phone communication technology.

  5. A Web Browser Interface to Manage the Searching and Organizing of Information on the Web by Learners

    Science.gov (United States)

    Li, Liang-Yi; Chen, Gwo-Dong

    2010-01-01

    Information Gathering is a knowledge construction process. Web learners make a plan for their Information Gathering task based on their prior knowledge. The plan is evolved with new information encountered and their mental model is constructed through continuously assimilating and accommodating new information gathered from different Web pages. In…

  6. Interface of the polarizable continuum model of solvation with semi-empirical methods in the GAMESS program

    DEFF Research Database (Denmark)

    Svendsen, Casper Steinmann; Blædel, Kristoffer L.; Christensen, Anders Steen

    2013-01-01

    An interface between semi-empirical methods and the polarized continuum model (PCM) of solvation successfully implemented into GAMESS following the approach by Chudinov et al (Chem. Phys. 1992, 160, 41). The interface includes energy gradients and is parallelized. For large molecules such as ubiq......An interface between semi-empirical methods and the polarized continuum model (PCM) of solvation successfully implemented into GAMESS following the approach by Chudinov et al (Chem. Phys. 1992, 160, 41). The interface includes energy gradients and is parallelized. For large molecules...

  7. THE INFORMATION MODEL «SOCIAL EXPLOSION»

    Directory of Open Access Journals (Sweden)

    Alexander Chernyavskiy

    2012-01-01

    Full Text Available Article is dedicated to examination and analysis of the construction of the information model «social explosion», which corresponds to the newest «colored» revolutions. The analysis of model makes it possible to see effective approaches to the initiation of this explosion and by the use of contemporary information communications as honeycomb connection and the mobile Internet

  8. SpineCreator: a Graphical User Interface for the Creation of Layered Neural Models.

    Science.gov (United States)

    Cope, A J; Richmond, P; James, S S; Gurney, K; Allerton, D J

    2017-01-01

    There is a growing requirement in computational neuroscience for tools that permit collaborative model building, model sharing, combining existing models into a larger system (multi-scale model integration), and are able to simulate models using a variety of simulation engines and hardware platforms. Layered XML model specification formats solve many of these problems, however they are difficult to write and visualise without tools. Here we describe a new graphical software tool, SpineCreator, which facilitates the creation and visualisation of layered models of point spiking neurons or rate coded neurons without requiring the need for programming. We demonstrate the tool through the reproduction and visualisation of published models and show simulation results using code generation interfaced directly into SpineCreator. As a unique application for the graphical creation of neural networks, SpineCreator represents an important step forward for neuronal modelling.

  9. Evolution of the argillite / CEM I interface at 70 C.: in situ tests and modelling results

    International Nuclear Information System (INIS)

    Lalan, P.; Dauzeres, A.; Barker, E.; De Windt, L.; Detilleux, V.; Desveaux, P.

    2015-01-01

    French radioactive waste disposal concept involves cementitious materials in a clayey host-rock. The presence of exothermic wastes in the storage cells may induce a temperature of about 70 Celsius degrees at the material interfaces. At present, experiment thermal conditions have been undertaken at about 20 C. degrees and studies at higher temperature are really scarce, especially experiments considering diffusion through the cement / clay interface. The still on-going study presented here is focusing on argillite / CEM-I interface. A one-year experiment under in situ conditions at the Tournemire experimental station (IRSN) was carried out and meanwhile, preliminary reactive transport modelling with HYTEC helped to understand the impact of a high temperature on the physico-chemical behaviour of cement / clay interface. The first results showed decalcification of cement and diffuse carbonation as well as a possible illite precipitation of clay-type phases. A C-S-H ribbon appeared at the interface between the two materials and a layer grew between the C-S-H ribbon and the cementitious material. This layer contained zeolites and behaved as a diffusive barrier. After one year of in situ interactions, the disturbance thickness was about 350 microns in CEM-I cement paste and about 100 microns in argillite. The modelling reproduced relatively well the experimentally observed processes but the extension of the disturbance is too wide and the zeolite layer is misplaced according to the experimental observations. This study highlights the lack of data at highest temperature on the reaction kinetics, diffusion coefficients but also on porosity variations. (authors)

  10. Millennial Students' Mental Models of Information Retrieval

    Science.gov (United States)

    Holman, Lucy

    2009-01-01

    This qualitative study examines first-year college students' online search habits in order to identify patterns in millennials' mental models of information retrieval. The study employed a combination of modified contextual inquiry and concept mapping methodologies to elicit students' mental models. The researcher confirmed previously observed…

  11. Enterprise Modelling for an Educational Information Infrastructure

    NARCIS (Netherlands)

    Widya, I.A.; Michiels, E.F.; Volman, C.J.A.M.; Pokraev, S.; de Diana, I.P.F.; Filipe, J.; Sharp, B.; Miranda, P.

    2001-01-01

    This paper reports the modelling exercise of an educational information infrastructure that aims to support the organisation of teaching and learning activities suitable for a wide range of didactic policies. The modelling trajectory focuses on capturing invariant structures of relations between

  12. Multi-dimensional indoor location information model

    NARCIS (Netherlands)

    Xiong, Q.; Zhu, Q.; Zlatanova, S.; Huang, L.; Zhou, Y.; Du, Z.

    2013-01-01

    Aiming at the increasing requirements of seamless indoor and outdoor navigation and location service, a Chinese standard of Multidimensional Indoor Location Information Model is being developed, which defines ontology of indoor location. The model is complementary to 3D concepts like CityGML and

  13. BIM. Building Information Model. Special issue; BIM. Building Information Model. Themanummer

    Energy Technology Data Exchange (ETDEWEB)

    Van Gelder, A.L.A. [Arta and Consultancy, Lage Zwaluwe (Netherlands); Van den Eijnden, P.A.A. [Stichting Marktwerking Installatietechniek, Zoetermeer (Netherlands); Veerman, J.; Mackaij, J.; Borst, E. [Royal Haskoning DHV, Nijmegen (Netherlands); Kruijsse, P.M.D. [Wolter en Dros, Amersfoort (Netherlands); Buma, W. [Merlijn Media, Waddinxveen (Netherlands); Bomhof, F.; Willems, P.H.; Boehms, M. [TNO, Delft (Netherlands); Hofman, M.; Verkerk, M. [ISSO, Rotterdam (Netherlands); Bodeving, M. [VIAC Installatie Adviseurs, Houten (Netherlands); Van Ravenswaaij, J.; Van Hoven, H. [BAM Techniek, Bunnik (Netherlands); Boeije, I.; Schalk, E. [Stabiplan, Bodegraven (Netherlands)

    2012-11-15

    A series of 14 articles illustrates the various aspects of the Building Information Model (BIM). The essence of BIM is to capture information about the building process and the building product. [Dutch] In 14 artikelen worden diverse aspecten m.b.t. het Building Information Model (BIM) belicht. De essentie van BIM is het vastleggen van informatie over het bouwproces en het bouwproduct.

  14. Mathematical modeling of planar and spherical vapor–liquid phase interfaces for multicomponent fluids

    Directory of Open Access Journals (Sweden)

    Celný David

    2016-01-01

    Full Text Available Development of methods for accurate modeling of phase interfaces is important for understanding various natural processes and for applications in technology such as power production and carbon dioxide separation and storage. In particular, prediction of the course of the non-equilibrium phase transition processes requires knowledge of the properties of the strongly curved phase interfaces of microscopic droplets. In our work, we focus on the spherical vapor–liquid phase interfaces for binary mixtures. We developed a robust computational method to determine the density and concentration profiles. The fundamentals of our approach lie in the Cahn-Hilliard gradient theory, allowing to transcribe the functional formulation into a system of ordinary Euler-Langrange equations. This system is then split and modified into a shape suitable for iterative computation. For this task, we combine the Newton-Raphson and the shooting methods providing a good convergence speed. For the thermodynamic roperties, the PC–SAFT equation of state is used. We determine the density and concentration profiles for spherical phase interfaces at various saturation factors for the binary mixture of CO2 and C9H20. The computed concentration profiles allow to the determine the work of formation and other characteristics of the microscopic droplets.

  15. Continental hydrosystem modelling: the concept of nested stream-aquifer interfaces

    Science.gov (United States)

    Flipo, N.; Mouhri, A.; Labarthe, B.; Biancamaria, S.; Rivière, A.; Weill, P.

    2014-08-01

    Coupled hydrological-hydrogeological models, emphasising the importance of the stream-aquifer interface, are more and more used in hydrological sciences for pluri-disciplinary studies aiming at investigating environmental issues. Based on an extensive literature review, stream-aquifer interfaces are described at five different scales: local [10 cm-~10 m], intermediate [~10 m-~1 km], watershed [10 km2-~1000 km2], regional [10 000 km2-~1 M km2] and continental scales [>10 M km2]. This led us to develop the concept of nested stream-aquifer interfaces, which extends the well-known vision of nested groundwater pathways towards the surface, where the mixing of low frequency processes and high frequency processes coupled with the complexity of geomorphological features and heterogeneities creates hydrological spiralling. This conceptual framework allows the identification of a hierarchical order of the multi-scale control factors of stream-aquifer hydrological exchanges, from the larger scale to the finer scale. The hyporheic corridor, which couples the river to its 3-D hyporheic zone, is then identified as the key component for scaling hydrological processes occurring at the interface. The identification of the hyporheic corridor as the support of the hydrological processes scaling is an important step for the development of regional studies, which is one of the main concerns for water practitioners and resources managers. In a second part, the modelling of the stream-aquifer interface at various scales is investigated with the help of the conductance model. Although the usage of the temperature as a tracer of the flow is a robust method for the assessment of stream-aquifer exchanges at the local scale, there is a crucial need to develop innovative methodologies for assessing stream-aquifer exchanges at the regional scale. After formulating the conductance model at the regional and intermediate scales, we address this challenging issue with the development of an

  16. A user interface for the Kansas Geological Survey slug test model.

    Science.gov (United States)

    Esling, Steven P; Keller, John E

    2009-01-01

    The Kansas Geological Survey (KGS) developed a semianalytical solution for slug tests that incorporates the effects of partial penetration, anisotropy, and the presence of variable conductivity well skins. The solution can simulate either confined or unconfined conditions. The original model, written in FORTRAN, has a text-based interface with rigid input requirements and limited output options. We re-created the main routine for the KGS model as a Visual Basic macro that runs in most versions of Microsoft Excel and built a simple-to-use Excel spreadsheet interface that automatically displays the graphical results of the test. A comparison of the output from the original FORTRAN code to that of the new Excel spreadsheet version for three cases produced identical results.

  17. Information Literacy for Health Professionals: Teaching Essential Information Skills with the Big6 Information Literacy Model

    Science.gov (United States)

    Santana Arroyo, Sonia

    2013-01-01

    Health professionals frequently do not possess the necessary information-seeking abilities to conduct an effective search in databases and Internet sources. Reference librarians may teach health professionals these information and technology skills through the Big6 information literacy model (Big6). This article aims to address this issue. It also…

  18. Ergonomic Models of Anthropometry, Human Biomechanics and Operator-Equipment Interfaces

    Science.gov (United States)

    Kroemer, Karl H. E. (Editor); Snook, Stover H. (Editor); Meadows, Susan K. (Editor); Deutsch, Stanley (Editor)

    1988-01-01

    The Committee on Human Factors was established in October 1980 by the Commission on Behavioral and Social Sciences and Education of the National Research Council. The committee is sponsored by the Office of Naval Research, the Air Force Office of Scientific Research, the Army Research Institute for the Behavioral and Social Sciences, the National Aeronautics and Space Administration, and the National Science Foundation. The workshop discussed the following: anthropometric models; biomechanical models; human-machine interface models; and research recommendations. A 17-page bibliography is included.

  19. Mathematical Modelling of the Evaporating Liquid Films on the Basis of the Generalized Interface Conditions

    Directory of Open Access Journals (Sweden)

    Goncharova Olga

    2016-01-01

    Full Text Available The two-dimensional films, flowing down an inclined, non-uniformly heated substrate are studied. The results contain the new mathematical models developed with the help of the long-wave approximation of the Navier-Stokes and heat transfer equations or Oberbeck-Boussinesq equations in the case, when the generalized conditions are formulated at thermocapillary interface. The evolution equations for the film thickness include the effects of gravity, viscosity, capillarity, thermocapillarity, additional stress effects and evaporation.

  20. On weak solutions to a diffuse interface model of a binary mixture of compressible fluids

    Czech Academy of Sciences Publication Activity Database

    Feireisl, Eduard

    2016-01-01

    Roč. 9, č. 1 (2016), s. 173-183 ISSN 1937-1632 R&D Projects: GA ČR GA13-00522S Institutional support: RVO:67985840 Keywords : Euler-Cahn-Hilliard system * weak solution * diffuse interface model Subject RIV: BA - General Mathematics Impact factor: 0.781, year: 2016 http://aimsciences.org/journals/displayArticlesnew.jsp?paperID=12093

  1. Degenerate Ising model for atomistic simulation of crystal-melt interfaces

    International Nuclear Information System (INIS)

    Schebarchov, D.; Schulze, T. P.; Hendy, S. C.

    2014-01-01

    One of the simplest microscopic models for a thermally driven first-order phase transition is an Ising-type lattice system with nearest-neighbour interactions, an external field, and a degeneracy parameter. The underlying lattice and the interaction coupling constant control the anisotropic energy of the phase boundary, the field strength represents the bulk latent heat, and the degeneracy quantifies the difference in communal entropy between the two phases. We simulate the (stochastic) evolution of this minimal model by applying rejection-free canonical and microcanonical Monte Carlo algorithms, and we obtain caloric curves and heat capacity plots for square (2D) and face-centred cubic (3D) lattices with periodic boundary conditions. Since the model admits precise adjustment of bulk latent heat and communal entropy, neither of which affect the interface properties, we are able to tune the crystal nucleation barriers at a fixed degree of undercooling and verify a dimension-dependent scaling expected from classical nucleation theory. We also analyse the equilibrium crystal-melt coexistence in the microcanonical ensemble, where we detect negative heat capacities and find that this phenomenon is more pronounced when the interface is the dominant contributor to the total entropy. The negative branch of the heat capacity appears smooth only when the equilibrium interface-area-to-volume ratio is not constant but varies smoothly with the excitation energy. Finally, we simulate microcanonical crystal nucleation and subsequent relaxation to an equilibrium Wulff shape, demonstrating the model's utility in tracking crystal-melt interfaces at the atomistic level

  2. Degenerate Ising model for atomistic simulation of crystal-melt interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Schebarchov, D., E-mail: Dmitri.Schebarchov@gmail.com [University Chemical Laboratories, Lensfield Road, Cambridge CB2 1EW (United Kingdom); Schulze, T. P., E-mail: schulze@math.utk.edu [Department of Mathematics, University of Tennessee, Knoxville, Tennessee 37996-1300 (United States); Hendy, S. C. [The MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington 6140 (New Zealand); Department of Physics, University of Auckland, Auckland 1010 (New Zealand)

    2014-02-21

    One of the simplest microscopic models for a thermally driven first-order phase transition is an Ising-type lattice system with nearest-neighbour interactions, an external field, and a degeneracy parameter. The underlying lattice and the interaction coupling constant control the anisotropic energy of the phase boundary, the field strength represents the bulk latent heat, and the degeneracy quantifies the difference in communal entropy between the two phases. We simulate the (stochastic) evolution of this minimal model by applying rejection-free canonical and microcanonical Monte Carlo algorithms, and we obtain caloric curves and heat capacity plots for square (2D) and face-centred cubic (3D) lattices with periodic boundary conditions. Since the model admits precise adjustment of bulk latent heat and communal entropy, neither of which affect the interface properties, we are able to tune the crystal nucleation barriers at a fixed degree of undercooling and verify a dimension-dependent scaling expected from classical nucleation theory. We also analyse the equilibrium crystal-melt coexistence in the microcanonical ensemble, where we detect negative heat capacities and find that this phenomenon is more pronounced when the interface is the dominant contributor to the total entropy. The negative branch of the heat capacity appears smooth only when the equilibrium interface-area-to-volume ratio is not constant but varies smoothly with the excitation energy. Finally, we simulate microcanonical crystal nucleation and subsequent relaxation to an equilibrium Wulff shape, demonstrating the model's utility in tracking crystal-melt interfaces at the atomistic level.

  3. Space transportation. [user needs met by information derived from satellites and the interface with space transportation systems

    Science.gov (United States)

    1975-01-01

    User-oriented panels were formed to examine practical applications of information or services derived from earth orbiting satellites. Topics discussed include: weather and climate; uses of communication; land use planning; agriculture, forest, and range; inland water resources; retractable resources; environmental quality; marine and maritime uses; and materials processing in space. Emphasis was placed on the interface of the space transportation system (STS) with the applications envisioned by the user panels. User requirements were compared with expected STS capabilities in terms of availability, carrying payload to orbit, and estimated costs per launch. Conclusions and recommendations were reported.

  4. Visualizing Oceans of Data: Using learning research to inform the design of student interfaces to climate data (Invited)

    Science.gov (United States)

    Krumhansl, R.; Peach, C. L.; Busey, A.; Foster, J.; Baker, I.

    2013-12-01

    To be climate literate, students must be data-literate. To connect with the evidence behind scientists' assertions about climate change, students (and other novices) must be able to distinguish long-term trends from short-term variability in graphs, recognize the distribution of sea surface temperature or precipitation changes on maps, and discern important patterns in animations that display changes in data over time. Although the development of cyberinfrastructure for accessing near digital, sharable, real-time and archived earth systems data has the potential to transform how climate science is taught by connecting students directly with evidence to support their understanding, online interfaces to scientific data are typically industrial-strength - built by scientists for scientists - and their design can significantly impede broad use by novices. To inform efforts at bridging scientific data portals to the classroom, Education Development Center, Inc. (EDC) and the Scripps Institution of Oceanography conducted an NSF-funded 2-year interdisciplinary review of literature and expert opinion pertinent to making interfaces to large scientific databases accessible to and usable by student learners and their instructors. The >70 cross-cutting and specific guidelines in our project report are grounded in the fundamentals of Cognitive Load Theory, Visual Perception, Schema theory and Universal Design for Learning. The components of the human visual system and associated cognitive processes are highly specialized and have evolved in response to survival demands of the three-dimensional world humans have lived in for thousands of years. Because the use of two-dimensional representations, such as maps and graphs, and the use and navigation of Web interfaces has developed quite recently in human history, our visual perception system is not specifically adapted to these tasks. Therefore, it's critical to understand how to design two-dimensional media to take advantage of

  5. User interface design considerations

    DEFF Research Database (Denmark)

    Andersen, Simon Engedal; Jakobsen, Arne; Rasmussen, Bjarne D.

    1999-01-01

    and output variables. This feature requires special attention when designing the user interface and a special approach for controlling the user selection of input and output variables are developed. To obtain a consistent system description the different input variables are grouped corresponding......When designing a user interface for a simulation model there are several important issues to consider: Who is the target user group, and which a priori information can be expected. What questions do the users want answers to and what questions are answered using a specific model?When developing...... the user interface of EESCoolTools these issues led to a series of simulation tools each with a specific purpose and a carefully selected set of input and output variables. To allow a more wide range of questions to be answered by the same model, the user can change between different sets of input...

  6. Information retrieval models foundations and relationships

    CERN Document Server

    Roelleke, Thomas

    2013-01-01

    Information Retrieval (IR) models are a core component of IR research and IR systems. The past decade brought a consolidation of the family of IR models, which by 2000 consisted of relatively isolated views on TF-IDF (Term-Frequency times Inverse-Document-Frequency) as the weighting scheme in the vector-space model (VSM), the probabilistic relevance framework (PRF), the binary independence retrieval (BIR) model, BM25 (Best-Match Version 25, the main instantiation of the PRF/BIR), and language modelling (LM). Also, the early 2000s saw the arrival of divergence from randomness (DFR).Regarding in

  7. Modeling fractures as interfaces for flow and transport in porous media

    International Nuclear Information System (INIS)

    Serres, Ch.; Alboin, C.; Jaffre, J.; Roberts, J.

    2002-05-01

    We are concerned with flow and transport in a fractured porous medium at a scale where the fractures can be modelled individually. The fractures themselves are porous media with large permeability in comparison with that in the surrounding rock. Contrarily to many studies in which the contrast in permeabilities is of such an order that the flow outside of the fracture is neglected, the purpose of this work is to consider the case where the exchange between the fractures and the surrounding rock is significant. Then it is necessary to take into account this interaction because it has a profound effect on the flow and the transport of a solute. The main idea for this work is to treat fractures as interfaces. Then it will not be necessary to use mesh refinements around the fractures, which is an important drawback of most models. Treating fractures as interfaces leads to non-overlapping domain decomposition methods, using the natural domain decomposition suggested by the fracture network. This paper is organized as follows. In Section 2, we present the model, and in Section 3, we show that the corresponding problem has a unique solution. In Section 4, we reduce the approximate problem to a problem with unknowns on the interface. Numerical results are given in Section 5 for the simple case of a domain divided into two sub-domains by one fracture. In Section 6 we extend the formulation to the case of intersecting fractures and in Section 7 to that of a solute transport. (authors)

  8. Advanced human-system interface design review guideline. General evaluation model, technical development, and guideline description

    International Nuclear Information System (INIS)

    O'Hara, J.M.

    1994-07-01

    Advanced control rooms will use advanced human-system interface (HSI) technologies that may have significant implications for plant safety in that they will affect the operator's overall role in the system, the method of information presentation, and the ways in which operators interact with the system. The U.S. Nuclear Regulatory Commission (NRC) reviews the HSI aspects of control rooms to ensure that they are designed to good human factors engineering principles and that operator performance and reliability are appropriately supported to protect public health and safety. The principal guidance available to the NRC, however, was developed more than ten years ago, well before these technological changes. Accordingly, the human factors guidance needs to be updated to serve as the basis for NRC review of these advanced designs. The purpose of this project was to develop a general approach to advanced HSI review and the human factors guidelines to support NRC safety reviews of advanced systems. This two-volume report provides the results of the project. Volume I describes the development of the Advanced HSI Design Review Guideline (DRG) including (1) its theoretical and technical foundation, (2) a general model for the review of advanced HSIs, (3) guideline development in both hard-copy and computer-based versions, and (4) the tests and evaluations performed to develop and validate the DRG. Volume I also includes a discussion of the gaps in available guidance and a methodology for addressing them. Volume 2 provides the guidelines to be used for advanced HSI review and the procedures for their use

  9. Advanced human-system interface design review guideline. General evaluation model, technical development, and guideline description

    Energy Technology Data Exchange (ETDEWEB)

    O`Hara, J.M.

    1994-07-01

    Advanced control rooms will use advanced human-system interface (HSI) technologies that may have significant implications for plant safety in that they will affect the operator`s overall role in the system, the method of information presentation, and the ways in which operators interact with the system. The U.S. Nuclear Regulatory Commission (NRC) reviews the HSI aspects of control rooms to ensure that they are designed to good human factors engineering principles and that operator performance and reliability are appropriately supported to protect public health and safety. The principal guidance available to the NRC, however, was developed more than ten years ago, well before these technological changes. Accordingly, the human factors guidance needs to be updated to serve as the basis for NRC review of these advanced designs. The purpose of this project was to develop a general approach to advanced HSI review and the human factors guidelines to support NRC safety reviews of advanced systems. This two-volume report provides the results of the project. Volume I describes the development of the Advanced HSI Design Review Guideline (DRG) including (1) its theoretical and technical foundation, (2) a general model for the review of advanced HSIs, (3) guideline development in both hard-copy and computer-based versions, and (4) the tests and evaluations performed to develop and validate the DRG. Volume I also includes a discussion of the gaps in available guidance and a methodology for addressing them. Volume 2 provides the guidelines to be used for advanced HSI review and the procedures for their use.

  10. A Model for Web-based Information Systems in E-Retailing.

    Science.gov (United States)

    Wang, Fang; Head, Milena M.

    2001-01-01

    Discusses the use of Web-based information systems (WIS) by electronic retailers to attract and retain consumers and deliver business functions and strategy. Presents an abstract model for WIS design in electronic retailing; discusses customers, business determinants, and business interface; and suggests future research. (Author/LRW)

  11. Continuous Modeling Technique of Fiber Pullout from a Cement Matrix with Different Interface Mechanical Properties Using Finite Element Program

    Directory of Open Access Journals (Sweden)

    Leandro Ferreira Friedrich

    Full Text Available Abstract Fiber-matrix interface performance has a great influence on the mechanical properties of fiber reinforced composite. This influence is mainly presented during fiber pullout from the matrix. As fiber pullout process consists of fiber debonding stage and pullout stage which involve complex contact problem, numerical modeling is a best way to investigate the interface influence. Although many numerical research works have been conducted, practical and effective technique suitable for continuous modeling of fiber pullout process is still scarce. The reason is in that numerical divergence frequently happens, leading to the modeling interruption. By interacting the popular finite element program ANSYS with the MATLAB, we proposed continuous modeling technique and realized modeling of fiber pullout from cement matrix with desired interface mechanical performance. For debonding process, we used interface elements with cohesive surface traction and exponential failure behavior. For pullout process, we switched interface elements to spring elements with variable stiffness, which is related to the interface shear stress as a function of the interface slip displacement. For both processes, the results obtained are very good in comparison with other numerical or analytical models and experimental tests. We suggest using the present technique to model toughening achieved by randomly distributed fibers.

  12. Numerical and theoretical aspects of the modelling of compressible two-phase flow by interface capture methods

    International Nuclear Information System (INIS)

    Kokh, S.

    2001-01-01

    This research thesis reports the development of a numerical direct simulation of compressible two-phase flows by using interface capturing methods. These techniques are based on the use of an Eulerian fixed grid to describe flow variables as well as the interface between fluids. The author first recalls conventional interface capturing methods and makes the distinction between those based on discontinuous colour functions and those based on level set functions. The approach is then extended to a five equation model to allow the largest as possible choice of state equations for the fluids. Three variants are developed. A solver inspired by the Roe scheme is developed for one of them. These interface capturing methods are then refined, more particularly for problems of numerical diffusion at the interface. A last part addresses the study of dynamic phase change. Non-conventional thermodynamics tools are used to study the structures of an interface which performs phase transition [fr

  13. Formal Modeling and Reconfiguration of User Interfaces for Reduction of Errors in Failure Handling of Complex Systems

    NARCIS (Netherlands)

    Weyers, Benjamin; Burkolter, Dina; Luther, Wolfram; Kluge, Annette

    2012-01-01

    Controlling and observing complex systems is central to the study of human-machine interaction. In our understanding, there is much to be gained from integrating formal modeling and analysis, including the reconfiguration of user interfaces, with the development of user interfaces with high

  14. Blocking and Blending: Different Assembly Models of Cyclodextrin and Sodium Caseinate at the Oil/Water Interface.

    Science.gov (United States)

    Xu, Hua-Neng; Liu, Huan-Huan; Zhang, Lianfu

    2015-08-25

    The stability of cyclodextrin (CD)-based emulsions is attributed to the formation of a solid film of oil-CD complexes at the oil/water interface. However, competitive interactions between CDs and other components at the interface still need to be understood. Here we develop two different routes that allow the incorporation of a model protein (sodium caseinate, SC) into emulsions based on β-CD. One route is the components adsorbed simultaneously from a mixed solution to the oil/water interface (route I), and the other is SC was added to a previously established CD-stabilized interface (route II). The adsorption mechanism of β-CD modified by SC at the oil/water interface is investigated by rheological and optical methods. Strong sensitivity of the rheological behavior to the routes is indicated by both steady-state and small-deformation oscillatory experiments. Possible β-CD/SC interaction models at the interface are proposed. In route I, the protein, due to its higher affinity for the interface, adsorbs strongly at the interface with blocking of the adsorption of β-CD and formation of oil-CD complexes. In route II, the protein penetrates and blends into the preadsorbed layer of oil-CD complexes already formed at the interface. The revelation of interfacial assembly is expected to help better understand CD-based emulsions in natural systems and improve their designs in engineering applications.

  15. The GRIN-Global Information Management System – Public Interface Demonstration and Input Opportunity

    Science.gov (United States)

    The GRIN-Global (GG) Information Management System, under development for the past three years, provides the world's crop genebanks and plant genetic resource (PGR) users with a powerful, flexible, easy-to-use PGR information management system. Developed jointly by the USDA Agricultural Research Ser...

  16. Information model of the 'Ukryttya' object

    International Nuclear Information System (INIS)

    Batij, E.V.; Ermolenko, A.A.; Kotlyarov, V.T.

    2008-01-01

    There were described the building principles and content of the 'Ukryttya' object information model that has been developed at the Institute for Safety Problems of NPP. Using the client/server architecture in this system (the simultaneous access of the many users), Autodesk Map Guide and ASP.NET technologies allowed avoiding the typical defects of the 'stand-alone desktop' information systems (that aimed for a single user)

  17. The Protein Model Portal--a comprehensive resource for protein structure and model information.

    Science.gov (United States)

    Haas, Juergen; Roth, Steven; Arnold, Konstantin; Kiefer, Florian; Schmidt, Tobias; Bordoli, Lorenza; Schwede, Torsten

    2013-01-01

    The Protein Model Portal (PMP) has been developed to foster effective use of 3D molecular models in biomedical research by providing convenient and comprehensive access to structural information for proteins. Both experimental structures and theoretical models for a given protein can be searched simultaneously and analyzed for structural variability. By providing a comprehensive view on structural information, PMP offers the opportunity to apply consistent assessment and validation criteria to the complete set of structural models available for proteins. PMP is an open project so that new methods developed by the community can contribute to PMP, for example, new modeling servers for creating homology models and model quality estimation servers for model validation. The accuracy of participating modeling servers is continuously evaluated by the Continuous Automated Model EvaluatiOn (CAMEO) project. The PMP offers a unique interface to visualize structural coverage of a protein combining both theoretical models and experimental structures, allowing straightforward assessment of the model quality and hence their utility. The portal is updated regularly and actively developed to include latest methods in the field of computational structural biology. Database URL: http://www.proteinmodelportal.org.

  18. The Protein Model Portal—a comprehensive resource for protein structure and model information

    Science.gov (United States)

    Haas, Juergen; Roth, Steven; Arnold, Konstantin; Kiefer, Florian; Schmidt, Tobias; Bordoli, Lorenza; Schwede, Torsten

    2013-01-01

    The Protein Model Portal (PMP) has been developed to foster effective use of 3D molecular models in biomedical research by providing convenient and comprehensive access to structural information for proteins. Both experimental structures and theoretical models for a given protein can be searched simultaneously and analyzed for structural variability. By providing a comprehensive view on structural information, PMP offers the opportunity to apply consistent assessment and validation criteria to the complete set of structural models available for proteins. PMP is an open project so that new methods developed by the community can contribute to PMP, for example, new modeling servers for creating homology models and model quality estimation servers for model validation. The accuracy of participating modeling servers is continuously evaluated by the Continuous Automated Model EvaluatiOn (CAMEO) project. The PMP offers a unique interface to visualize structural coverage of a protein combining both theoretical models and experimental structures, allowing straightforward assessment of the model quality and hence their utility. The portal is updated regularly and actively developed to include latest methods in the field of computational structural biology. Database URL: http://www.proteinmodelportal.org PMID:23624946

  19. Impact of the interfaces for wind and wave modeling - interpretation using COAWST, SAR and point measurements

    DEFF Research Database (Denmark)

    Air and sea interacts, where winds generate waves and waves affect the winds. This topic is ever relevant for offshore functions such as shipping, portal routines, wind farm operation and maintenance. In a coupled modeling system, the atmospheric modeling and the wave modeling interfere with each...... use the stress directly, thus avoiding the uncertainties caused by parameterizations. This study examines the efficiency of the wave impact transfer to the atmospheric modeling through the two types of interfaces, roughness length and stress, through the coupled......-ocean-atmosphere-wave-sediment-transport (COAWST) modeling system. The roughness length has been calculated using seven schemes (Charnock, Fan, Oost, Drennen, Liu, Andreas, Taylor-Yelland). The stress approach is applied through a wave boundary layer model in SWAN. The experiments are done to a case where the Synthetic Aperture Radar (SAR) image...

  20. Leverage and Delegation in Developing an Information Model for Geology

    Science.gov (United States)

    Cox, S. J.

    2007-12-01

    GeoSciML is an information model and XML encoding developed by a group of primarily geologic survey organizations under the auspices of the IUGS CGI. The scope of the core model broadly corresponds with information traditionally portrayed on a geologic map, viz. interpreted geology, some observations, the map legend and accompanying memoir. The development of GeoSciML has followed the methodology specified for an Application Schema defined by OGC and ISO 19100 series standards. This requires agreement within a community concerning their domain model, its formal representation using UML, documentation as a Feature Type Catalogue, with an XML Schema implementation generated from the model by applying a rule-based transformation. The framework and technology supports a modular governance process. Standard datatypes and GI components (geometry, the feature and coverage metamodels, metadata) are imported from the ISO framework. The observation and sampling model (including boreholes) is imported from OGC. The scale used for most scalar literal values (terms, codes, measures) allows for localization where necessary. Wildcards and abstract base- classes provide explicit extensibility points. Link attributes appear in a regular way in the encodings, allowing reference to external resources using URIs. The encoding is compatible with generic GI data-service interfaces (WFS, WMS, SOS). For maximum interoperability within a community, the interfaces may be specialised through domain-specified constraints (e.g. feature-types, scale and vocabulary bindings, query-models). Formalization using UML and XML allows use of standard validation and processing tools. Use of upper-level elements defined for generic GI application reduces the development effort and governance resonsibility, while maximising cross-domain interoperability. On the other hand, enabling specialization to be delegated in a controlled manner is essential to adoption across a range of subdisciplines and

  1. Model of two-dimensional electron gas formation at ferroelectric interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Aguado-Puente, P.; Bristowe, N. C.; Yin, B.; Shirasawa, R.; Ghosez, Philippe; Littlewood, P. B.; Artacho, Emilio

    2015-07-01

    The formation of a two-dimensional electron gas at oxide interfaces as a consequence of polar discontinuities has generated an enormous amount of activity due to the variety of interesting effects it gives rise to. Here, we study under what circumstances similar processes can also take place underneath ferroelectric thin films. We use a simple Landau model to demonstrate that in the absence of extrinsic screening mechanisms, a monodomain phase can be stabilized in ferroelectric films by means of an electronic reconstruction. Unlike in the LaAlO3/SrTiO3 heterostructure, the emergence with thickness of the free charge at the interface is discontinuous. This prediction is confirmed by performing first-principles simulations of free-standing slabs of PbTiO3. The model is also used to predict the response of the system to an applied electric field, demonstrating that the two-dimensional electron gas can be switched on and off discontinuously and in a nonvolatile fashion. Furthermore, the reversal of the polarization can be used to switch between a two-dimensional electron gas and a two-dimensional hole gas, which should, in principle, have very different transport properties. We discuss the possible formation of polarization domains and how such configuration competes with the spontaneous accumulation of free charge at the interfaces.

  2. Modeling the Charge Transport in Graphene Nano Ribbon Interfaces for Nano Scale Electronic Devices

    Science.gov (United States)

    Kumar, Ravinder; Engles, Derick

    2015-05-01

    In this research work we have modeled, simulated and compared the electronic charge transport for Metal-Semiconductor-Metal interfaces of Graphene Nano Ribbons (GNR) with different geometries using First-Principle calculations and Non-Equilibrium Green's Function (NEGF) method. We modeled junctions of Armchair GNR strip sandwiched between two Zigzag strips with (Z-A-Z) and Zigzag GNR strip sandwiched between two Armchair strips with (A-Z-A) using semi-empirical Extended Huckle Theory (EHT) within the framework of Non-Equilibrium Green Function (NEGF). I-V characteristics of the interfaces were visualized for various transport parameters. The distinct changes in conductance and I-V curves reported as the Width across layers, Channel length (Central part) was varied at different bias voltages from -1V to 1 V with steps of 0.25 V. From the simulated results we observed that the conductance through A-Z-A graphene junction is in the range of 10-13 Siemens whereas the conductance through Z-A-Z graphene junction is in the range of 10-5 Siemens. These suggested conductance controlled mechanisms for the charge transport in the graphene interfaces with different geometries is important for the design of graphene based nano scale electronic devices like Graphene FETs, Sensors.

  3. Configuring a Graphical User Interface for Managing Local HYSPLIT Model Runs Through AWIPS

    Science.gov (United States)

    Wheeler, mark M.; Blottman, Peter F.; Sharp, David W.; Hoeth, Brian; VanSpeybroeck, Kurt M.

    2009-01-01

    Responding to incidents involving the release of harmful airborne pollutants is a continual challenge for Weather Forecast Offices in the National Weather Service. When such incidents occur, current protocol recommends forecaster-initiated requests of NOAA's Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model output through the National Centers of Environmental Prediction to obtain critical dispersion guidance. Individual requests are submitted manually through a secured web site, with desired multiple requests submitted in sequence, for the purpose of obtaining useful trajectory and concentration forecasts associated with the significant release of harmful chemical gases, radiation, wildfire smoke, etc., into local the atmosphere. To help manage the local HYSPLIT for both routine and emergency use, a graphical user interface was designed for operational efficiency. The interface allows forecasters to quickly determine the current HYSPLIT configuration for the list of predefined sites (e.g., fixed sites and floating sites), and to make any necessary adjustments to key parameters such as Input Model. Number of Forecast Hours, etc. When using the interface, forecasters will obtain desired output more confidently and without the danger of corrupting essential configuration files.

  4. Interface model conditions for a non-equilibrium heat transfer model for conjugate fluid/porous/solid domains

    International Nuclear Information System (INIS)

    Betchen, L.J.; Straatman, A.G.

    2005-01-01

    A mathematical and numerical model for the treatment of conjugate fluid flow and heat transfer problems in domains containing pure fluid, porous, and pure solid regions has been developed. The model is general and physically reasoned, and allows for local thermal non-equilibrium in the porous region. The model is developed for implementation on a simple collocated finite volume grid. Of particular novelty are the conditions implemented at the interfaces between porous regions, and those containing a pure solid or pure fluid. The model is validated by simulation of a three-dimensional porous plug problem for which experimental results are available. (author)

  5. Mathematical models of information and stochastic systems

    CERN Document Server

    Kornreich, Philipp

    2008-01-01

    From ancient soothsayers and astrologists to today's pollsters and economists, probability theory has long been used to predict the future on the basis of past and present knowledge. Mathematical Models of Information and Stochastic Systems shows that the amount of knowledge about a system plays an important role in the mathematical models used to foretell the future of the system. It explains how this known quantity of information is used to derive a system's probabilistic properties. After an introduction, the book presents several basic principles that are employed in the remainder of the t

  6. The Esri 3D city information model

    International Nuclear Information System (INIS)

    Reitz, T; Schubiger-Banz, S

    2014-01-01

    With residential and commercial space becoming increasingly scarce, cities are going vertical. Managing the urban environments in 3D is an increasingly important and complex undertaking. To help solving this problem, Esri has released the ArcGIS for 3D Cities solution. The ArcGIS for 3D Cities solution provides the information model, tools and apps for creating, analyzing and maintaining a 3D city using the ArcGIS platform. This paper presents an overview of the 3D City Information Model and some sample use cases

  7. Accelerated lattice Boltzmann model for colloidal suspensions rheology and interface morphology

    CERN Document Server

    Farhat, Hassan; Kondaraju, Sasidhar

    2014-01-01

    Colloids are ubiquitous in the food, medical, cosmetics, polymers, water purification, and pharmaceutical industries. The thermal, mechanical, and storage properties of colloids are highly dependent on their interface morphology and their rheological behavior. Numerical methods provide a convenient and reliable tool for the study of colloids. Accelerated Lattice Boltzmann Model for Colloidal Suspensions introduce the main building-blocks for an improved lattice Boltzmann–based numerical tool designed for the study of colloidal rheology and interface morphology. This book also covers the migrating multi-block used to simulate single component, multi-component, multiphase, and single component multiphase flows and their validation by experimental, numerical, and analytical solutions.   Among other topics discussed are the hybrid lattice Boltzmann method (LBM) for surfactant-covered droplets; biological suspensions such as blood; used in conjunction with the suppression of coalescence for investigating the...

  8. Testing of Environmental Satellite Bus-Instrument Interfaces Using Engineering Models

    Science.gov (United States)

    Gagnier, Donald; Hayner, Rick; Nosek, Thomas; Roza, Michael; Hendershot, James E.; Razzaghi, Andrea I.

    2004-01-01

    This paper discusses the formulation and execution of a laboratory test of the electrical interfaces between multiple atmospheric scientific instruments and the spacecraft bus that carries them. The testing, performed in 2002, used engineering models of the instruments and the Aura spacecraft bus electronics. Aura is one of NASA s Earth Observatory System missions. The test was designed to evaluate the complex interfaces in the command and data handling subsystems prior to integration of the complete flight instruments on the spacecraft. A problem discovered during the flight integration phase of the observatory can cause significant cost and schedule impacts. The tests successfully revealed problems and led to their resolution before the full-up integration phase, saving significant cost and schedule. This approach could be beneficial for future environmental satellite programs involving the integration of multiple, complex scientific instruments onto a spacecraft bus.

  9. A multiphase electrokinetic flow model for electrolytes with liquid/liquid interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Berry, J.D., E-mail: joe.d.berry@gmail.com; Davidson, M.R., E-mail: m.davidson@unimelb.edu.au; Harvie, D.J.E., E-mail: daltonh@unimelb.edu.au

    2013-10-15

    A numerical model for electrokinetic flow of multiphase systems with deformable interfaces is presented, based on a combined level set-volume of fluid technique. A new feature is a multiphase formulation of the Nernst–Planck transport equation for advection, diffusion and conduction of individual charge carrier species that ensures their conservation in each fluid phase. The numerical model is validated against the analytical results of Zholkovskij et al. (2002) [1], and results for the problem of two drops coalescing in the presence of mobile charge carriers are presented. The time taken for two drops containing ions to coalesce decreases with increasing ion concentration.

  10. An explicit formula for the interface tension of the 2D Potts model

    Science.gov (United States)

    Borgs, Christian; Janke, Wolfhard

    1992-11-01

    We consider the exact correlation length calculations for the two-dimensional Potts model at the transition point β_t by Klümper, Schadschneider and Zittartz, and by Buffenoir and Wallon. We argue that the correlation length calculated by the latter authors is the correlation length in the disordered phase and then combine their result with duality and the assumption of complete wetting to give an explicit formula for the order-disorder interface tension σ_od of this model. The result is used to clarify a controversy stemming from different numerical simulations of σ_od.

  11. Definition of common support equipment and space station interface requirements for IOC model technology experiments

    Science.gov (United States)

    Russell, Richard A.; Waiss, Richard D.

    1988-01-01

    A study was conducted to identify the common support equipment and Space Station interface requirements for the IOC (initial operating capabilities) model technology experiments. In particular, each principal investigator for the proposed model technology experiment was contacted and visited for technical understanding and support for the generation of the detailed technical backup data required for completion of this study. Based on the data generated, a strong case can be made for a dedicated technology experiment command and control work station consisting of a command keyboard, cathode ray tube, data processing and storage, and an alert/annunciator panel located in the pressurized laboratory.

  12. A Novel Multilayer Correlation Maximization Model for Improving CCA-Based Frequency Recognition in SSVEP Brain-Computer Interface.

    Science.gov (United States)

    Jiao, Yong; Zhang, Yu; Wang, Yu; Wang, Bei; Jin, Jing; Wang, Xingyu

    2018-05-01

    Multiset canonical correlation analysis (MsetCCA) has been successfully applied to optimize the reference signals by extracting common features from multiple sets of electroencephalogram (EEG) for steady-state visual evoked potential (SSVEP) recognition in brain-computer interface application. To avoid extracting the possible noise components as common features, this study proposes a sophisticated extension of MsetCCA, called multilayer correlation maximization (MCM) model for further improving SSVEP recognition accuracy. MCM combines advantages of both CCA and MsetCCA by carrying out three layers of correlation maximization processes. The first layer is to extract the stimulus frequency-related information in using CCA between EEG samples and sine-cosine reference signals. The second layer is to learn reference signals by extracting the common features with MsetCCA. The third layer is to re-optimize the reference signals set in using CCA with sine-cosine reference signals again. Experimental study is implemented to validate effectiveness of the proposed MCM model in comparison with the standard CCA and MsetCCA algorithms. Superior performance of MCM demonstrates its promising potential for the development of an improved SSVEP-based brain-computer interface.

  13. Use of models and mockups in verifying man-machine interfaces

    International Nuclear Information System (INIS)

    Seminara, J.L.

    1985-01-01

    The objective of Human Factors Engineering is to tailor the design of facilities and equipment systems to match the capabilities and limitations of the personnel who will operate and maintain the system. This optimization of the man-machine interface is undertaken to enhance the prospects for safe, reliable, timely, and error-free human performance in meeting system objectives. To ensure the eventual success of a complex man-machine system it is important to systematically and progressively test and verify the adequacy of man-machine interfaces from initial design concepts to system operation. Human factors specialists employ a variety of methods to evaluate the quality of the human-system interface. These methods include: (1) Reviews of two-dimensional drawings using appropriately scaled transparent overlays of personnel spanning the anthropometric range, considering clothing and protective gear encumbrances (2) Use of articulated, scaled, plastic templates or manikins that are overlayed on equipment or facility drawings (3) Development of computerized manikins in computer aided design approaches (4) Use of three-dimensional scale models to better conceptualize work stations, control rooms or maintenance facilities (5) Full or half-scale mockups of system components to evaluate operator/maintainer interfaces (6) Part of full-task dynamic simulation of operator or maintainer tasks and interactive system responses (7) Laboratory and field research to establish human performance capabilities with alternative system design concepts or configurations. Of the design verification methods listed above, this paper will only consider the use of models and mockups in the design process

  14. Multi-Modal Traveler Information System - GCM Corridor Architecture Interface Control Requirements

    Science.gov (United States)

    1997-10-31

    The Multi-Modal Traveler Information System (MMTIS) project involves a large number of Intelligent Transportation System (ITS) related tasks. It involves research of all ITS initiatives in the Gary-Chicago-Milwaukee (GCM) Corridor which are currently...

  15. Informing the network: Improving communication with interface communities during wildland fire

    Science.gov (United States)

    Taylor, J.G.; Gillette, S.C.; Hodgson, R.W.; Downing, J.L.; Burns, M.R.; Chavez, D.J.; Hogan, J.T.

    2007-01-01

    An interagency research team studied fire communications that took place during different stages of two wildfires in southern California: one small fire of short duration and one large fire of long duration. This "quick- response" research showed that pre-fire communication planning was particularly effective for smaller fire events and parts of that planning proved invaluable for the large fire event as well. Information seeking by the affected public relied on locally convenient sources during the small fire. During the large fire, widespread evacuations disrupted many of the local informal communication networks. Residents' needs were for "real-time, " place-specific information: precise location, severity, size, and direction of spread of the fires. Fire management agencies must contribute real-time, place-specific fire information when it is most needed by the affected public, as they try to make sense out of the chaos of a wildland fire. Disseminating fire information as broadly as possible through multiple pathways will maximize the probability of the public finding the information they need. ?? Society for Human Ecology.

  16. Leveraging anatomical information to improve transfer learning in brain-computer interfaces

    Science.gov (United States)

    Wronkiewicz, Mark; Larson, Eric; Lee, Adrian K. C.

    2015-08-01

    Objective. Brain-computer interfaces (BCIs) represent a technology with the potential to rehabilitate a range of traumatic and degenerative nervous system conditions but require a time-consuming training process to calibrate. An area of BCI research known as transfer learning is aimed at accelerating training by recycling previously recorded training data across sessions or subjects. Training data, however, is typically transferred from one electrode configuration to another without taking individual head anatomy or electrode positioning into account, which may underutilize the recycled data. Approach. We explore transfer learning with the use of source imaging, which estimates neural activity in the cortex. Transferring estimates of cortical activity, in contrast to scalp recordings, provides a way to compensate for variability in electrode positioning and head morphologies across subjects and sessions. Main results. Based on simulated and measured electroencephalography activity, we trained a classifier using data transferred exclusively from other subjects and achieved accuracies that were comparable to or surpassed a benchmark classifier (representative of a real-world BCI). Our results indicate that classification improvements depend on the number of trials transferred and the cortical region of interest. Significance. These findings suggest that cortical source-based transfer learning is a principled method to transfer data that improves BCI classification performance and provides a path to reduce BCI calibration time.

  17. A coupled interface-body nonlocal damage model for the analysis of FRP strengthening detachment from cohesive material

    Directory of Open Access Journals (Sweden)

    J. Toti

    2011-10-01

    Full Text Available In the present work, a new model of the FRP-concrete or masonry interface, which accounts for the coupling occurring between the degradation of the cohesive material and the FRP detachment, is presented; in particular, a coupled interface-body nonlocal damage model is proposed. A nonlocal damage and plasticity model is developed for the quasi-brittle material. For the interface, a model which accounts for the mode I, mode II and mixed mode of damage and for the unilateral contact and friction effects is developed. Two different ways of performing the coupling between the body damage and the interface damage are proposed and compared. Some numerical applications are carried out in order to assess the performances of the proposed model in reproducing the mechanical behavior of the masonry elements strengthened with external FRP reinforcements.

  18. Operating Comfort Prediction Model of Human-Machine Interface Layout for Cabin Based on GEP.

    Science.gov (United States)

    Deng, Li; Wang, Guohua; Chen, Bo

    2015-01-01

    In view of the evaluation and decision-making problem of human-machine interface layout design for cabin, the operating comfort prediction model is proposed based on GEP (Gene Expression Programming), using operating comfort to evaluate layout scheme. Through joint angles to describe operating posture of upper limb, the joint angles are taken as independent variables to establish the comfort model of operating posture. Factor analysis is adopted to decrease the variable dimension; the model's input variables are reduced from 16 joint angles to 4 comfort impact factors, and the output variable is operating comfort score. The Chinese virtual human body model is built by CATIA software, which will be used to simulate and evaluate the operators' operating comfort. With 22 groups of evaluation data as training sample and validation sample, GEP algorithm is used to obtain the best fitting function between the joint angles and the operating comfort; then, operating comfort can be predicted quantitatively. The operating comfort prediction result of human-machine interface layout of driller control room shows that operating comfort prediction model based on GEP is fast and efficient, it has good prediction effect, and it can improve the design efficiency.

  19. Study on geo-information modelling

    Czech Academy of Sciences Publication Activity Database

    Klimešová, Dana

    2006-01-01

    Roč. 5, č. 5 (2006), s. 1108-1113 ISSN 1109-2777 Institutional research plan: CEZ:AV0Z10750506 Keywords : control GIS * geo-information modelling * uncertainty * spatial temporal approach Web Services Subject RIV: BC - Control Systems Theory

  20. Modelling Dynamic Forgetting in Distributed Information Systems

    NARCIS (Netherlands)

    N.F. Höning (Nicolas); M.C. Schut

    2010-01-01

    htmlabstractWe describe and model a new aspect in the design of distributed information systems. We build upon a previously described problem on the microlevel, which asks how quickly agents should discount (forget) their experience: If they cherish their memories, they can build their reports on

  1. Asset Condition, Information Systems and Decision Models

    CERN Document Server

    Willett, Roger; Brown, Kerry; Mathew, Joseph

    2012-01-01

    Asset Condition, Information Systems and Decision Models, is the second volume of the Engineering Asset Management Review Series. The manuscripts provide examples of implementations of asset information systems as well as some practical applications of condition data for diagnostics and prognostics. The increasing trend is towards prognostics rather than diagnostics, hence the need for assessment and decision models that promote the conversion of condition data into prognostic information to improve life-cycle planning for engineered assets. The research papers included here serve to support the on-going development of Condition Monitoring standards. This volume comprises selected papers from the 1st, 2nd, and 3rd World Congresses on Engineering Asset Management, which were convened under the auspices of ISEAM in collaboration with a number of organisations, including CIEAM Australia, Asset Management Council Australia, BINDT UK, and Chinese Academy of Sciences, Beijing University of Chemical Technology, Chin...

  2. Deriving quantitative dynamics information for proteins and RNAs using ROTDIF with a graphical user interface.

    Science.gov (United States)

    Berlin, Konstantin; Longhini, Andrew; Dayie, T Kwaku; Fushman, David

    2013-12-01

    To facilitate rigorous analysis of molecular motions in proteins, DNA, and RNA, we present a new version of ROTDIF, a program for determining the overall rotational diffusion tensor from single- or multiple-field nuclear magnetic resonance relaxation data. We introduce four major features that expand the program's versatility and usability. The first feature is the ability to analyze, separately or together, (13)C and/or (15)N relaxation data collected at a single or multiple fields. A significant improvement in the accuracy compared to direct analysis of R2/R1 ratios, especially critical for analysis of (13)C relaxation data, is achieved by subtracting high-frequency contributions to relaxation rates. The second new feature is an improved method for computing the rotational diffusion tensor in the presence of biased errors, such as large conformational exchange contributions, that significantly enhances the accuracy of the computation. The third new feature is the integration of the domain alignment and docking module for relaxation-based structure determination of multi-domain systems. Finally, to improve accessibility to all the program features, we introduced a graphical user interface that simplifies and speeds up the analysis of the data. Written in Java, the new ROTDIF can run on virtually any computer platform. In addition, the new ROTDIF achieves an order of magnitude speedup over the previous version by implementing a more efficient deterministic minimization algorithm. We not only demonstrate the improvement in accuracy and speed of the new algorithm for synthetic and experimental (13)C and (15)N relaxation data for several proteins and nucleic acids, but also show that careful analysis required especially for characterizing RNA dynamics allowed us to uncover subtle conformational changes in RNA as a function of temperature that were opaque to previous analysis.

  3. Modeling decisions information fusion and aggregation operators

    CERN Document Server

    Torra, Vicenc

    2007-01-01

    Information fusion techniques and aggregation operators produce the most comprehensive, specific datum about an entity using data supplied from different sources, thus enabling us to reduce noise, increase accuracy, summarize and extract information, and make decisions. These techniques are applied in fields such as economics, biology and education, while in computer science they are particularly used in fields such as knowledge-based systems, robotics, and data mining. This book covers the underlying science and application issues related to aggregation operators, focusing on tools used in practical applications that involve numerical information. Starting with detailed introductions to information fusion and integration, measurement and probability theory, fuzzy sets, and functional equations, the authors then cover the following topics in detail: synthesis of judgements, fuzzy measures, weighted means and fuzzy integrals, indices and evaluation methods, model selection, and parameter extraction. The method...

  4. User-Centered Design, Experience, and Usability of an Electronic Consent User Interface to Facilitate Informed Decision-Making in an HIV Clinic.

    Science.gov (United States)

    Ramos, S Raquel

    2017-11-01

    Health information exchange is the electronic accessibility and transferability of patient medical records across various healthcare settings and providers. In some states, patients have to formally give consent to allow their medical records to be electronically shared. The purpose of this study was to apply a novel user-centered, multistep, multiframework approach to design and test an electronic consent user interface, so patients with HIV can make more informed decisions about electronically sharing their health information. This study consisted of two steps. Step 1 was a cross-sectional, descriptive, qualitative study that used user-centric design interviews to create the user interface. This informed Step 2. Step 2 consisted of a one group posttest to examine perceptions of usefulness, ease of use, preference, and comprehension of a health information exchange electronic consent user interface. More than half of the study population had college experience, but challenges remained with overall comprehension regarding consent. The user interface was not independently successful, suggesting that in addition to an electronic consent user interface, human interaction may also be necessary to address the complexities associated with consenting to electronically share health information. Comprehension is key factor in the ability to make informed decisions.

  5. ModelMuse - A Graphical User Interface for MODFLOW-2005 and PHAST

    Science.gov (United States)

    Winston, Richard B.

    2009-01-01

    ModelMuse is a graphical user interface (GUI) for the U.S. Geological Survey (USGS) models MODFLOW-2005 and PHAST. This software package provides a GUI for creating the flow and transport input file for PHAST and the input files for MODFLOW-2005. In ModelMuse, the spatial data for the model is independent of the grid, and the temporal data is independent of the stress periods. Being able to input these data independently allows the user to redefine the spatial and temporal discretization at will. This report describes the basic concepts required to work with ModelMuse. These basic concepts include the model grid, data sets, formulas, objects, the method used to assign values to data sets, and model features. The ModelMuse main window has a top, front, and side view of the model that can be used for editing the model, and a 3-D view of the model that can be used to display properties of the model. ModelMuse has tools to generate and edit the model grid. It also has a variety of interpolation methods and geographic functions that can be used to help define the spatial variability of the model. ModelMuse can be used to execute both MODFLOW-2005 and PHAST and can also display the results of MODFLOW-2005 models. An example of using ModelMuse with MODFLOW-2005 is included in this report. Several additional examples are described in the help system for ModelMuse, which can be accessed from the Help menu.

  6. Operating Comfort Prediction Model of Human-Machine Interface Layout for Cabin Based on GEP

    Directory of Open Access Journals (Sweden)

    Li Deng

    2015-01-01

    Full Text Available In view of the evaluation and decision-making problem of human-machine interface layout design for cabin, the operating comfort prediction model is proposed based on GEP (Gene Expression Programming, using operating comfort to evaluate layout scheme. Through joint angles to describe operating posture of upper limb, the joint angles are taken as independent variables to establish the comfort model of operating posture. Factor analysis is adopted to decrease the variable dimension; the model’s input variables are reduced from 16 joint angles to 4 comfort impact factors, and the output variable is operating comfort score. The Chinese virtual human body model is built by CATIA software, which will be used to simulate and evaluate the operators’ operating comfort. With 22 groups of evaluation data as training sample and validation sample, GEP algorithm is used to obtain the best fitting function between the joint angles and the operating comfort; then, operating comfort can be predicted quantitatively. The operating comfort prediction result of human-machine interface layout of driller control room shows that operating comfort prediction model based on GEP is fast and efficient, it has good prediction effect, and it can improve the design efficiency.

  7. A KINETIC MODEL FOR MONO-LAYER GLOBULAR PROTEIN ADSORPTION ON SOLID/LIQUID INTERFACES

    Directory of Open Access Journals (Sweden)

    Kamal I. M. Al-Malah

    2012-12-01

    Full Text Available A kinetic model was derived for globular protein adsorption. The model takes into account the three possible scenarios of a protein molecule in solution, being exposed to an interface: adsorption step from the solution to the interface; the possible desorption back into the solution; and the surface-induced unfolding or spreading of the protein unto the substrate surface. A globular protein molecule is visualized as a sphere with radius D. In addition to the general case of protein adsorption, which portrays either the surface coverage (Theta or surface concentration (� as a function of the adsorption time, special cases, like equilibrium condition, lowsurface coverage, irreversible, and Langmuirian were also presented and treated in light of the derived model. The general model was simplified for each of the subset cases. The irreversibility versus reversibility of protein adsorption was discussed. The substrate surface energetics or effects are accounted for via the proposition of the percent relative change in D/V ratio for the adsorbing protein, called (D/VPRC parameter. (D/VPRC is calculated with respect to the monolayer surface concentration of protein, where the latter is given by D/Vratio. This can be used as a landmark to protein adsorption isotherms or even kinetics. This is visualized as an indicator for solid substrate effects on the adsorbing proteins. (D/VPRC can be zero (fresh monolayer, negative (aged monolayer, or positive (multi-layer. The reference surface concentration is reported for some selected proteins.

  8. GEOTRANS: An interface program from GEOPROGRAM to a geographic information system

    International Nuclear Information System (INIS)

    Schilling, S.P.

    1991-01-01

    The US Geological Survey Plotter Lab, Denver, Colorado, has created a computer program to translate data from GEOPROGRAM recording files to a geographic information system (GIS) and a relational database. The program, GEOTRANS, takes files recorded on a Kern DSR 11 Analytical Plotter and translates the coordinate information into the KORK Geographic Information System (KGIS) and places the non-coordinate information into ORACLE, a relational database program. The advantage of linking the data collection capabilities of GEOPROGRAM with KGIS and ORACLE is to offer geologists a means of merging, editing, and querying coordinate and relational databases online. GEOTRANS is written in Pascal v.3.8 running under the DEC VMS operating system on a Microvax II computer. The program is structured in such a manner as to facilitate converting and restructuring of the program to translate 3D coordinate and attribute data collected with an analytical plotter to either 3D or other 2D GIS. This report describes how files from GEOPROGRAM are read, how 2D topology is created, and how GEOTRANS procedures and various calls to libraries transform and insert data to the proper place. A user's manual is included to run GEOTRANS. 7 refs., 6 figs

  9. Algorithms, Interfaces, and the Circulation of Information: Interrogating the Epistemological Challenges of Facebook

    DEFF Research Database (Denmark)

    Schou, Jannick; Farkas, Johan

    2016-01-01

    As social and political life increasingly takes place on social network sites, new epistemological questions have emerged. How can information disseminated through new media be understood and disentangled? How can potential hidden agendas or sources be identified? And what mechanisms govern what ...... suggests that new epistemological challenges deserve more scholarly attention, as they hold wide implications for both researchers and users....

  10. Electronic Processes at Organic−Organic Interfaces: Insight from Modeling and Implications for Opto-electronic Devices †

    KAUST Repository

    Beljonne, David; Cornil, Jérôme; Muccioli, Luca; Zannoni, Claudio; Brédas, Jean-Luc; Castet, Frédéric

    2011-01-01

    We report on the recent progress achieved in modeling the electronic processes that take place at interfaces between π-conjugated materials in organic opto-electronic devices. First, we provide a critical overview of the current computational

  11. Particles at fluid-fluid interfaces: A new Navier-Stokes-Cahn-Hilliard surface- phase-field-crystal model.

    Science.gov (United States)

    Aland, Sebastian; Lowengrub, John; Voigt, Axel

    2012-10-01

    Colloid particles that are partially wetted by two immiscible fluids can become confined to fluid-fluid interfaces. At sufficiently high volume fractions, the colloids may jam and the interface may crystallize. The fluids together with the interfacial colloids form an emulsion with interesting material properties and offer an important route to new soft materials. A promising approach to simulate these emulsions was presented in Aland et al. [Phys. Fluids 23, 062103 (2011)], where a Navier-Stokes-Cahn-Hilliard model for the macroscopic two-phase fluid system was combined with a surface phase-field-crystal model for the microscopic colloidal particles along the interface. Unfortunately this model leads to spurious velocities which require very fine spatial and temporal resolutions to accurately and stably simulate. In this paper we develop an improved Navier-Stokes-Cahn-Hilliard-surface phase-field-crystal model based on the principles of mass conservation and thermodynamic consistency. To validate our approach, we derive a sharp interface model and show agreement with the improved diffuse interface model. Using simple flow configurations, we show that the new model has much better properties and does not lead to spurious velocities. Finally, we demonstrate the solid-like behavior of the crystallized interface by simulating the fall of a solid ball through a colloid-laden multiphase fluid.

  12. Modelling of planar interface elastic behaviour: Application to grain boundaries in polycrystals

    International Nuclear Information System (INIS)

    Gelebart, L.

    2010-01-01

    In polycrystalline elastic simulations, grain boundaries can be considered as volume inter-phases or as elastic interfaces assuming a displacement jump across the interface. Such an interface description does not account for the in-plane deformation of the interface and Poisson effects cannot be reproduced. The purpose of this Note is to provide an enriched description of the elastic interface which takes into account such effects. When considering a multilayer material, the interphase description and the enriched interface description yield identical homogenized behaviour while quite important discrepancies can be observed with the classical interface description. (author)

  13. User Interface Problems of a Nationwide Inpatient Information System: A Heuristic Evaluation.

    Science.gov (United States)

    Atashi, Alireza; Khajouei, Reza; Azizi, Amirabbas; Dadashi, Ali

    2016-01-01

    While studies have shown that usability evaluation could uncover many design problems of health information systems, the usability of health information systems in developing countries using their native language is poorly studied. The objective of this study was to evaluate the usability of a nationwide inpatient information system used in many academic hospitals in Iran. Three trained usability evaluators independently evaluated the system using Nielsen's 10 usability heuristics. The evaluators combined identified problems in a single list and independently rated the severity of the problems. We statistically compared the number and severity of problems identified by HIS experienced and non-experienced evaluators. A total of 158 usability problems were identified. After removing duplications 99 unique problems were left. The highest mismatch with usability principles was related to "Consistency and standards" heuristic (25%) and the lowest related to "Flexibility and efficiency of use" (4%). The average severity of problems ranged from 2.4 (Major problem) to 3.3 (Catastrophe problem). The experienced evaluator with HIS identified significantly more problems and gave higher severities to problems (pusers' and patients' time, increase errors and finally threaten patient's safety. Many of them can be fixed with simple redesign solutions such as using clear labels and better layouts. This study suggests conducting further studies to confirm the findings concerning effect of evaluator experience on the results of Heuristic Evaluation.

  14. Characterisation of the Ni/ScYSZ interface in a model solid oxide fuel cell anode

    DEFF Research Database (Denmark)

    Schmidt, Michael Stenbæk; Hansen, Karin Vels; Norrman, Kion

    2008-01-01

    A nickel point electrode setup was used as a model of an SOFC anode on three slightly different electrolytes of zirconia stabilised by co-doping with scandia and yttria. The effect of electrolyte impurities on the electrode polarisation resistance was investigated by correlating electrochemical...... impedance spectroscopy data with time-of-flight secondary ion mass spectrometry, scanning electron microscopy and atomic force microscopy data. A semi-quantitative analysis of the electrolyte surfaces showed that the levels of surface impurities inside the electrode/electrolyte interface in close proximity...

  15. Information as a Measure of Model Skill

    Science.gov (United States)

    Roulston, M. S.; Smith, L. A.

    2002-12-01

    Physicist Paul Davies has suggested that rather than the quest for laws that approximate ever more closely to "truth", science should be regarded as the quest for compressibility. The goodness of a model can be judged by the degree to which it allows us to compress data describing the real world. The "logarithmic scoring rule" is a method for evaluating probabilistic predictions of reality that turns this philosophical position into a practical means of model evaluation. This scoring rule measures the information deficit or "ignorance" of someone in possession of the prediction. A more applied viewpoint is that the goodness of a model is determined by its value to a user who must make decisions based upon its predictions. Any form of decision making under uncertainty can be reduced to a gambling scenario. Kelly showed that the value of a probabilistic prediction to a gambler pursuing the maximum return on their bets depends on their "ignorance", as determined from the logarithmic scoring rule, thus demonstrating a one-to-one correspondence between data compression and gambling returns. Thus information theory provides a way to think about model evaluation, that is both philosophically satisfying and practically oriented. P.C.W. Davies, in "Complexity, Entropy and the Physics of Information", Proceedings of the Santa Fe Institute, Addison-Wesley 1990 J. Kelly, Bell Sys. Tech. Journal, 35, 916-926, 1956.

  16. Highly informative multiclass profiling of lipids by ultra-high performance liquid chromatography - Low resolution (quadrupole) mass spectrometry by using electrospray ionization and atmospheric pressure chemical ionization interfaces.

    Science.gov (United States)

    Beccaria, Marco; Inferrera, Veronica; Rigano, Francesca; Gorynski, Krzysztof; Purcaro, Giorgia; Pawliszyn, Janusz; Dugo, Paola; Mondello, Luigi

    2017-08-04

    A simple, fast, and versatile method, using an ultra-high performance liquid chromatography system coupled with a low resolution (single quadrupole) mass spectrometer was optimized to perform multiclass lipid profiling of human plasma. Particular attention was made to develop a method suitable for both electrospray ionization and atmospheric pressure chemical ionization interfaces (sequentially in positive- and negative-ion mode), without any modification of the chromatographic conditions (mobile phase, flow-rate, gradient, etc.). Emphasis was given to the extrapolation of the structural information based on the fragmentation pattern obtained using atmospheric pressure chemical ionization interface, under each different ionization condition, highlighting the complementary information obtained using the electrospray ionization interface, of support for related molecule ions identification. Furthermore, mass spectra of phosphatidylserine and phosphatidylinositol obtained using the atmospheric pressure chemical ionization interface are reported and discussed for the first time. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Efficient simulations of the aqueous bio-interface of graphitic nanostructures with a polarisable model

    Science.gov (United States)

    Hughes, Zak E.; Tomásio, Susana M.; Walsh, Tiffany R.

    2014-04-01

    To fully harness the enormous potential offered by interfaces between graphitic nanostructures and biomolecules, detailed connections between adsorbed conformations and adsorption behaviour are needed. To elucidate these links, a key approach, in partnership with experimental techniques, is molecular simulation. For this, a force-field (FF) that can appropriately capture the relevant physics and chemistry of these complex bio-interfaces, while allowing extensive conformational sampling, and also supporting inter-operability with known biological FFs, is a pivotal requirement. Here, we present and apply such a force-field, GRAPPA, designed to work with the CHARMM FF. GRAPPA is an efficiently implemented polarisable force-field, informed by extensive plane-wave DFT calculations using the revPBE-vdW-DF functional. GRAPPA adequately recovers the spatial and orientational structuring of the aqueous interface of graphene and carbon nanotubes, compared with more sophisticated approaches. We apply GRAPPA to determine the free energy of adsorption for a range of amino acids, identifying Trp, Tyr and Arg to have the strongest binding affinity and Asp to be a weak binder. The GRAPPA FF can be readily incorporated into mainstream simulation packages, and will enable large-scale polarisable biointerfacial simulations at graphitic interfaces, that will aid the development of biomolecule-mediated, solution-based graphene processing and self-assembly strategies.To fully harness the enormous potential offered by interfaces between graphitic nanostructures and biomolecules, detailed connections between adsorbed conformations and adsorption behaviour are needed. To elucidate these links, a key approach, in partnership with experimental techniques, is molecular simulation. For this, a force-field (FF) that can appropriately capture the relevant physics and chemistry of these complex bio-interfaces, while allowing extensive conformational sampling, and also supporting inter

  18. LIANA Model Integration System - architecture, user interface design and application in MOIRA DSS

    Directory of Open Access Journals (Sweden)

    D. Hofman

    2005-01-01

    Full Text Available The LIANA Model Integration System is the shell application supporting model integration and user interface functionality required for the rapid construction and run-time support of the environmental decision support systems (EDSS. Internally it is constructed as the framework of C++ classes and functions covering most common tasks performed by the EDSS (such as managing of and alternative strategies, running of the chain of the models, supporting visualisation of the data with tables and graphs, keeping ranges and default values for input parameters etc.. EDSS is constructed by integration of LIANA system with the models or other applications such as GIS or MAA software. The basic requirements to the model or other application to be integrated is minimal - it should be a Windows or DOS .exe file and receive input and provide output as text files. For the user the EDSS is represented as the number of data sets describing scenario or giving results of evaluation of scenario via modelling. Internally data sets correspond to the I/O files of the models. During the integration the parameters included in each the data sets as well as specifications necessary to present the data set in GUI and export or import it to/from text file are provided with MIL_LIANA language. Visual C++ version of LIANA has been developed in the frame of MOIRA project and is used as the basis for the MOIRA Software Framework - the shell and user interface component of the MOIRA Decision Support System. At present, the usage of LIANA for the creation of a new EDSS requires changes to be made in its C++ code. The possibility to use LIANA for the new EDSS construction without extending the source code is achieved by substituting MIL_LIANA with the object-oriented LIANA language.

  19. Structured Additive Regression Models: An R Interface to BayesX

    Directory of Open Access Journals (Sweden)

    Nikolaus Umlauf

    2015-02-01

    Full Text Available Structured additive regression (STAR models provide a flexible framework for model- ing possible nonlinear effects of covariates: They contain the well established frameworks of generalized linear models and generalized additive models as special cases but also allow a wider class of effects, e.g., for geographical or spatio-temporal data, allowing for specification of complex and realistic models. BayesX is standalone software package providing software for fitting general class of STAR models. Based on a comprehensive open-source regression toolbox written in C++, BayesX uses Bayesian inference for estimating STAR models based on Markov chain Monte Carlo simulation techniques, a mixed model representation of STAR models, or stepwise regression techniques combining penalized least squares estimation with model selection. BayesX not only covers models for responses from univariate exponential families, but also models from less-standard regression situations such as models for multi-categorical responses with either ordered or unordered categories, continuous time survival data, or continuous time multi-state models. This paper presents a new fully interactive R interface to BayesX: the R package R2BayesX. With the new package, STAR models can be conveniently specified using Rs formula language (with some extended terms, fitted using the BayesX binary, represented in R with objects of suitable classes, and finally printed/summarized/plotted. This makes BayesX much more accessible to users familiar with R and adds extensive graphics capabilities for visualizing fitted STAR models. Furthermore, R2BayesX complements the already impressive capabilities for semiparametric regression in R by a comprehensive toolbox comprising in particular more complex response types and alternative inferential procedures such as simulation-based Bayesian inference.

  20. Factors Affecting the Longevity and Strength in an In Vitro Model of the Bone–Ligament Interface

    Science.gov (United States)

    Paxton, Jennifer Z.; Donnelly, Kenneth; Keatch, Robert P.; Grover, Liam M.

    2010-01-01

    The interfaces between musculoskeletal tissues with contrasting moduli are morphologically and biochemically adapted to allow the transmission of force with minimal injury. Current methods of tissue engineering ligaments and tendons do not include the interface and this may limit the future clinical success of engineered musculoskeletal tissues. This study aimed to use solid brushite cement anchors to engineer intact ligaments from bone-to-bone, creating a functional musculoskeletal interface in vitro. We show here that modifying anchor shape and cement composition can alter both the longevity and the strength of an in vitro model of the bone–ligament interface: with values reaching 23 days and 21.6 kPa, respectively. These results validate the use of brushite bone cement to engineer the bone–ligament interface in vitro and raise the potential for future use in ligament replacement surgery. PMID:20431953

  1. Big data challenges in decoding cortical activity in a human with quadriplegia to inform a brain computer interface.

    Science.gov (United States)

    Friedenberg, David A; Bouton, Chad E; Annetta, Nicholas V; Skomrock, Nicholas; Mingming Zhang; Schwemmer, Michael; Bockbrader, Marcia A; Mysiw, W Jerry; Rezai, Ali R; Bresler, Herbert S; Sharma, Gaurav

    2016-08-01

    Recent advances in Brain Computer Interfaces (BCIs) have created hope that one day paralyzed patients will be able to regain control of their paralyzed limbs. As part of an ongoing clinical study, we have implanted a 96-electrode Utah array in the motor cortex of a paralyzed human. The array generates almost 3 million data points from the brain every second. This presents several big data challenges towards developing algorithms that should not only process the data in real-time (for the BCI to be responsive) but are also robust to temporal variations and non-stationarities in the sensor data. We demonstrate an algorithmic approach to analyze such data and present a novel method to evaluate such algorithms. We present our methodology with examples of decoding human brain data in real-time to inform a BCI.

  2. Information operation/information warfare modeling and simulation

    OpenAIRE

    Buettner, Raymond

    2000-01-01

    Information Operations have always been a part of warfare. However, this aspect of warfare is having ever-greater importance as forces rely more and more on information as an enabler. Modern information systems make possible very rapid creation, distribution, and utilization of information. These same systems have vulnerabilities that can be exploited by enemy forces. Information force-on-force is important and complex. New tools and procedures are needed for this warfare arena. As these t...

  3. Flavor release measurement by atmospheric pressure chemical ionization ion trap mass spectrometry, construction of interface and mathematical modeling of release profiles

    DEFF Research Database (Denmark)

    Haahr, Anne-Mette; Madsen, Henrik; Smedsgaard, Jørn

    2003-01-01

    and the method can be used to measure breath from the nose. A mathematical model of the data was developed to give a quantitative method for description and characterization of the release of flavor compounds. The release profiles consisted of two sequences, one for a chewing period, and one for a phasing out...... process. The proposed method for modeling provided a reasonable description of the release process. In addition to flavor compounds, this new interface and mathematical application could provide information on chemicals in the human breath which could be interesting, for example, within medical diagnosis....... with that of the flavor detection threshold. An application study on the release of menthone and menthol from chewing gum by a group of six test persons was performed. Flavored chewing gum was used as a model matrix because of the long chewing periods and the simplicity of the system. It is concluded that the interface...

  4. Using Interaction Scenarios to Model Information Systems

    DEFF Research Database (Denmark)

    Bækgaard, Lars; Bøgh Andersen, Peter

    The purpose of this paper is to define and discuss a set of interaction primitives that can be used to model the dynamics of socio-technical activity systems, including information systems, in a way that emphasizes structural aspects of the interaction that occurs in such systems. The primitives...... a number of case studies that indicate that interaction primitives can be useful modeling tools for supplementing conventional flow-oriented modeling of business processes....... are based on a unifying, conceptual definition of the disparate interaction types - a robust model of the types. The primitives can be combined and may thus represent mediated interaction. We present a set of visualizations that can be used to define multiple related interactions and we present and discuss...

  5. Photoelectrolysis at the oxide-electrolyte interface as interpreted through the 'transition' layer model

    Science.gov (United States)

    Kalia, R. K.; Weber, Michael F.; Schumacher, L.; Dignam, M. J.

    1980-12-01

    A transition layer model of the oxide-electrolyte interface, proposed earlier by one of us, is outlined and then examined in the light of experimental data relating primarily to photoelectrolysis of water at semiconducting oxide electrodes. The model provides useful insight into the behaviour of the system and allows a calculation of thc minimum bias potential needed for photoelectrolysis, thus illuminating the origin of the requirement for such an external bias. In order to electrolyse water without a bias, the model requires an n-type oxide to be sufficiently reduced so that it is thermodynamically capable of chemically reducing water to produce hydrogen at 1 atm pressure. Similarly, for bias-free operation, a p-type metal oxide must be thermodynamically unstable with respect to the release of oxygen at 1 atm pressure. In the face of these requirements it is apparent that oxide stability is bound to be in general a serious problem for nonstoichiometric single metal oxides.

  6. Establishing a novel modeling tool: a python-based interface for a neuromorphic hardware system

    Directory of Open Access Journals (Sweden)

    Daniel Brüderle

    2009-06-01

    Full Text Available Neuromorphic hardware systems provide new possibilities for the neuroscience modeling community. Due to the intrinsic parallelism of the micro-electronic emulation of neural computation, such models are highly scalable without a loss of speed. However, the communities of software simulator users and neuromorphic engineering in neuroscience are rather disjoint. We present a software concept that provides the possibility to establish such hardware devices as valuable modeling tools. It is based on the integration of the hardware interface into a simulator-independent language which allows for unified experiment descriptions that can be run on various simulation platforms without modification, implying experiment portability and a huge simplification of the quantitative comparison of hardware and simulator results. We introduce an accelerated neuromorphic hardware device and describe the implementation of the proposed concept for this system. An example setup and results acquired by utilizing both the hardware system and a software simulator are demonstrated.

  7. Establishing a novel modeling tool: a python-based interface for a neuromorphic hardware system.

    Science.gov (United States)

    Brüderle, Daniel; Müller, Eric; Davison, Andrew; Muller, Eilif; Schemmel, Johannes; Meier, Karlheinz

    2009-01-01

    Neuromorphic hardware systems provide new possibilities for the neuroscience modeling community. Due to the intrinsic parallelism of the micro-electronic emulation of neural computation, such models are highly scalable without a loss of speed. However, the communities of software simulator users and neuromorphic engineering in neuroscience are rather disjoint. We present a software concept that provides the possibility to establish such hardware devices as valuable modeling tools. It is based on the integration of the hardware interface into a simulator-independent language which allows for unified experiment descriptions that can be run on various simulation platforms without modification, implying experiment portability and a huge simplification of the quantitative comparison of hardware and simulator results. We introduce an accelerated neuromorphic hardware device and describe the implementation of the proposed concept for this system. An example setup and results acquired by utilizing both the hardware system and a software simulator are demonstrated.

  8. An ovine model of cerebral catheter venography for implantation of an endovascular neural interface.

    Science.gov (United States)

    Oxley, Thomas James; Opie, Nicholas Lachlan; Rind, Gil Simon; Liyanage, Kishan; John, Sam Emmanuel; Ronayne, Stephen; McDonald, Alan James; Dornom, Anthony; Lovell, Timothy John Haynes; Mitchell, Peter John; Bennett, Iwan; Bauquier, Sebastien; Warne, Leon Norris; Steward, Chris; Grayden, David Bruce; Desmond, Patricia; Davis, Stephen M; O'Brien, Terence John; May, Clive N

    2018-04-01

    OBJECTIVE Neural interface technology may enable the development of novel therapies to treat neurological conditions, including motor prostheses for spinal cord injury. Intracranial neural interfaces currently require a craniotomy to achieve implantation and may result in chronic tissue inflammation. Novel approaches are required that achieve less invasive implantation methods while maintaining high spatial resolution. An endovascular stent electrode array avoids direct brain trauma and is able to record electrocorticography in local cortical tissue from within the venous vasculature. The motor area in sheep runs in a parasagittal plane immediately adjacent to the superior sagittal sinus (SSS). The authors aimed to develop a sheep model of cerebral venography that would enable validation of an endovascular neural interface. METHODS Cerebral catheter venography was performed in 39 consecutive sheep. Contrast-enhanced MRI of the brain was performed on 13 animals. Multiple telescoping coaxial catheter systems were assessed to determine the largest wide-bore delivery catheter that could be delivered into the anterior SSS. Measurements of SSS diameter and distance from the motor area were taken. The location of the motor area was determined in relation to lateral and superior projections of digital subtraction venography images and confirmed on MRI. RESULTS The venous pathway from the common jugular vein (7.4 mm) to the anterior SSS (1.2 mm) was technically challenging to selectively catheterize. The SSS coursed immediately adjacent to the motor cortex (SSS. Attempted access with 5-Fr and 6-Fr delivery catheters was associated with longer procedure times and higher complication rates. A 4-Fr catheter (internal lumen diameter 1.1 mm) was successful in accessing the SSS in 100% of cases with no associated complications. Complications included procedure-related venous dissection in two major areas: the torcular herophili, and the anterior formation of the SSS. The

  9. Canonical Polyadic Decomposition With Auxiliary Information for Brain-Computer Interface.

    Science.gov (United States)

    Li, Junhua; Li, Chao; Cichocki, Andrzej

    2017-01-01

    Physiological signals are often organized in the form of multiple dimensions (e.g., channel, time, task, and 3-D voxel), so it is better to preserve original organization structure when processing. Unlike vector-based methods that destroy data structure, canonical polyadic decomposition (CPD) aims to process physiological signals in the form of multiway array, which considers relationships between dimensions and preserves structure information contained by the physiological signal. Nowadays, CPD is utilized as an unsupervised method for feature extraction in a classification problem. After that, a classifier, such as support vector machine, is required to classify those features. In this manner, classification task is achieved in two isolated steps. We proposed supervised CPD by directly incorporating auxiliary label information during decomposition, by which a classification task can be achieved without an extra step of classifier training. The proposed method merges the decomposition and classifier learning together, so it reduces procedure of classification task compared with that of respective decomposition and classification. In order to evaluate the performance of the proposed method, three different kinds of signals, synthetic signal, EEG signal, and MEG signal, were used. The results based on evaluations of synthetic and real signals demonstrated that the proposed method is effective and efficient.

  10. Fisher information framework for time series modeling

    Science.gov (United States)

    Venkatesan, R. C.; Plastino, A.

    2017-08-01

    A robust prediction model invoking the Takens embedding theorem, whose working hypothesis is obtained via an inference procedure based on the minimum Fisher information principle, is presented. The coefficients of the ansatz, central to the working hypothesis satisfy a time independent Schrödinger-like equation in a vector setting. The inference of (i) the probability density function of the coefficients of the working hypothesis and (ii) the establishing of constraint driven pseudo-inverse condition for the modeling phase of the prediction scheme, is made, for the case of normal distributions, with the aid of the quantum mechanical virial theorem. The well-known reciprocity relations and the associated Legendre transform structure for the Fisher information measure (FIM, hereafter)-based model in a vector setting (with least square constraints) are self-consistently derived. These relations are demonstrated to yield an intriguing form of the FIM for the modeling phase, which defines the working hypothesis, solely in terms of the observed data. Cases for prediction employing time series' obtained from the: (i) the Mackey-Glass delay-differential equation, (ii) one ECG signal from the MIT-Beth Israel Deaconess Hospital (MIT-BIH) cardiac arrhythmia database, and (iii) one ECG signal from the Creighton University ventricular tachyarrhythmia database. The ECG samples were obtained from the Physionet online repository. These examples demonstrate the efficiency of the prediction model. Numerical examples for exemplary cases are provided.

  11. Hydro-Mechanical Modelling of Slow Slip Phenomena at the Subduction Interface.

    Science.gov (United States)

    Petrini, C.; Gerya, T.; Madonna, C.; van Dinther, Y.

    2016-12-01

    Subduction zones experience a spectrum of slip phenomena, ranging from large devastating megathrust earthquakes to aseismic slow slip events. Slow slip events, lasting hours to years and being perceptible only by instruments, are believed to have the capability to induce large earthquakes. It is also repeatedly proposed that such slow events are controlled by fluid-rock interactions along the subduction interface, thus calling for development of fully coupled seismo-hydro-mechanical modeling approaches to identify their physics and controlling parameters. We present a newly developed finite difference visco-elasto-plastic numerical code with marker-in-cell technique, which fully couples mechanical deformation and fluid flow. We use this to investigate how the presence of fluids in the pore space of a (de)compacting rock matrix affects elastic stress accumulation and release along a fluid-bearing subduction interface. The model simulates the spontaneous occurrence of quasi-periodic slow slip phenomena along self-consistently forming highly localized shearbands, which accommodate shear displacement between two plates. The produced elastic rebound events show a slip velocity on the order of cm/yr, which is in good agreement with measured data. The governing gradual strength decrease along the slowly propagating shear bands is related to a drop in total pressure caused by shear localization at nearly constant (slightly decreasing) fluid pressure. Gradual reduction of the difference between the total and fluid pressure decreases brittle/plastic strength of fluid-bearing rocks along the shear bands, thus providing a dynamic feedback mechanism for the accumulated elastic stress release at the subduction interface.

  12. Interfacial rheology of model particles at liquid interfaces and its relation to (bicontinuous) Pickering emulsions

    Science.gov (United States)

    Thijssen, J. H. J.; Vermant, J.

    2018-01-01

    Interface-dominated materials are commonly encountered in both science and technology, and typical examples include foams and emulsions. Conventionally stabilised by surfactants, emulsions can also be stabilised by micron-sized particles. These so-called Pickering-Ramsden (PR) emulsions have received substantial interest, as they are model arrested systems, rather ubiquitous in industry and promising templates for advanced materials. The mechanical properties of the particle-laden liquid-liquid interface, probed via interfacial rheology, have been shown to play an important role in the formation and stability of PR emulsions. However, the morphological processes which control the formation of emulsions and foams in mixing devices, such as deformation, break-up, and coalescence, are complex and diverse, making it difficult to identify the precise role of the interfacial rheological properties. Interestingly, the role of interfacial rheology in the stability of bicontinuous PR emulsions (bijels) has been virtually unexplored, even though the phase separation process which leads to the formation of these systems is relatively simple and the interfacial deformation processes can be better conceptualised. Hence, the aims of this topical review are twofold. First, we review the existing literature on the interfacial rheology of particle-laden liquid interfaces in rheometrical flows, focussing mainly on model latex suspensions consisting of polystyrene particles carrying sulfate groups, which have been most extensively studied to date. The goal of this part of the review is to identify the generic features of the rheology of such systems. Secondly, we will discuss the relevance of these results to the formation and stability of PR emulsions and bijels.

  13. Coupling of snow and permafrost processes using the Basic Modeling Interface (BMI)

    Science.gov (United States)

    Wang, K.; Overeem, I.; Jafarov, E. E.; Piper, M.; Stewart, S.; Clow, G. D.; Schaefer, K. M.

    2017-12-01

    We developed a permafrost modeling tool based by implementing the Kudryavtsev empirical permafrost active layer depth model (the so-called "Ku" component). The model is specifically set up to have a basic model interface (BMI), which enhances the potential coupling to other earth surface processes model components. This model is accessible through the Web Modeling Tool in Community Surface Dynamics Modeling System (CSDMS). The Kudryavtsev model has been applied for entire Alaska to model permafrost distribution at high spatial resolution and model predictions have been verified by Circumpolar Active Layer Monitoring (CALM) in-situ observations. The Ku component uses monthly meteorological forcing, including air temperature, snow depth, and snow density, and predicts active layer thickness (ALT) and temperature on the top of permafrost (TTOP), which are important factors in snow-hydrological processes. BMI provides an easy approach to couple the models with each other. Here, we provide a case of coupling the Ku component to snow process components, including the Snow-Degree-Day (SDD) method and Snow-Energy-Balance (SEB) method, which are existing components in the hydrological model TOPOFLOW. The work flow is (1) get variables from meteorology component, set the values to snow process component, and advance the snow process component, (2) get variables from meteorology and snow component, provide these to the Ku component and advance, (3) get variables from snow process component, set the values to meteorology component, and advance the meteorology component. The next phase is to couple the permafrost component with fully BMI-compliant TOPOFLOW hydrological model, which could provide a useful tool to investigate the permafrost hydrological effect.

  14. Modeling fire susceptibility to delineate wildland-urban interface for municipal-scale fire risk management.

    Science.gov (United States)

    Whitman, Ellen; Rapaport, Eric; Sherren, Kate

    2013-12-01

    The wildland-urban interface (WUI) is the region where development meets and intermingles with wildlands. The WUI has an elevated fire risk due to the proximity of development and residents to wildlands with natural wildfire regimes. Existing methods of delineating WUI are typically applied over a large region, use proxies for risk, and do not consider site-specific fire hazard drivers. While these models are appropriate for federal and provincial risk management, municipal managers require models intended for smaller regions. The model developed here uses the Burn-P3 fire behavior model to model WUI from local fire susceptibility (FS) in two study communities. Forest fuel code (FFC) maps for the study communities were modified using remote sensing data to produce detailed forest edges, including ladder fuels, update data currency, and add buildings and roads. The modified FFC maps used in Burn-P3 produced bimodal FS distributions for each community. The WUI in these communities was delineated as areas within community bounds where FS was greater than or equal to -1 SD from the mean FS value ([Formula: see text]), which fell in the trough of the bimodal distribution. The WUI so delineated conformed to the definition of WUI. This model extends WUI modeling for broader risk management initiatives for municipal management of risk, as it (a) considers site-specific drivers of fire behavior; (b) models risk, represented by WUI, specific to a community; and, (c) does not use proxies for risk.

  15. Acceptance model of a Hospital Information System.

    Science.gov (United States)

    Handayani, P W; Hidayanto, A N; Pinem, A A; Hapsari, I C; Sandhyaduhita, P I; Budi, I

    2017-03-01

    The purpose of this study is to develop a model of Hospital Information System (HIS) user acceptance focusing on human, technological, and organizational characteristics for supporting government eHealth programs. This model was then tested to see which hospital type in Indonesia would benefit from the model to resolve problems related to HIS user acceptance. This study used qualitative and quantitative approaches with case studies at four privately owned hospitals and three government-owned hospitals, which are general hospitals in Indonesia. The respondents involved in this study are low-level and mid-level hospital management officers, doctors, nurses, and administrative staff who work at medical record, inpatient, outpatient, emergency, pharmacy, and information technology units. Data was processed using Structural Equation Modeling (SEM) and AMOS 21.0. The study concludes that non-technological factors, such as human characteristics (i.e. compatibility, information security expectancy, and self-efficacy), and organizational characteristics (i.e. management support, facilitating conditions, and user involvement) which have level of significance of p<0.05, significantly influenced users' opinions of both the ease of use and the benefits of the HIS. This study found that different factors may affect the acceptance of each user in each type of hospital regarding the use of HIS. Finally, this model is best suited for government-owned hospitals. Based on the results of this study, hospital management and IT developers should have more understanding on the non-technological factors to better plan for HIS implementation. Support from management is critical to the sustainability of HIS implementation to ensure HIS is easy to use and provides benefits to the users as well as hospitals. Finally, this study could assist hospital management and IT developers, as well as researchers, to understand the obstacles faced by hospitals in implementing HIS. Copyright © 2016

  16. Comparative evaluation of two models of UPQC for suitable interface to enhance power quality

    Energy Technology Data Exchange (ETDEWEB)

    Basu, Malabika [Department of Electrical Engineering, Dublin Institute of Technology, Kevin Street, Dublin 8 (Ireland); Das, Shyama P.; Dubey, Gopal K. [Department of Electrical Engineering, Indian Institute of Technology, Kanpur (India)

    2007-05-15

    Majority of the dispersed generations from renewable energy sources are connected to the grid through power electronic interface, which introduce additional harmonics in the distribution systems. Research is being carried out to integrate active filtering with specific interface such that a common power quality (PQ) platform could be achieved. For generalized solution, a unified power quality conditioner (UPQC) could be the most comprehensive PQ protecting device for sensitive non-linear loads, which require quality input supply. Also, load current harmonic isolation needs to be ensured for maintaining the quality of the supply current. The present paper describes two control scheme models for UPQC, for enhancing PQ of sensitive non-linear loads. Based on two different kinds of voltage compensation strategy, two control schemes have been designed, which are termed as UPQC-Q and UPQC-P. A comparative loading analysis has developed useful insight in finding the typical application of the two different control schemes. The effectiveness of the two control schemes is verified through extensive simulation using the software SABER. As the power circuit configuration of UPQC remains same for both the model, with modification of control scheme only, the utility of UPQC can be optimized depending upon the application requirement. (author)

  17. InteractiveROSETTA: a graphical user interface for the PyRosetta protein modeling suite.

    Science.gov (United States)

    Schenkelberg, Christian D; Bystroff, Christopher

    2015-12-15

    Modern biotechnical research is becoming increasingly reliant on computational structural modeling programs to develop novel solutions to scientific questions. Rosetta is one such protein modeling suite that has already demonstrated wide applicability to a number of diverse research projects. Unfortunately, Rosetta is largely a command-line-driven software package which restricts its use among non-computational researchers. Some graphical interfaces for Rosetta exist, but typically are not as sophisticated as commercial software. Here, we present InteractiveROSETTA, a graphical interface for the PyRosetta framework that presents easy-to-use controls for several of the most widely used Rosetta protocols alongside a sophisticated selection system utilizing PyMOL as a visualizer. InteractiveROSETTA is also capable of interacting with remote Rosetta servers, facilitating sophisticated protocols that are not accessible in PyRosetta or which require greater computational resources. InteractiveROSETTA is freely available at https://github.com/schenc3/InteractiveROSETTA/releases and relies upon a separate download of PyRosetta which is available at http://www.pyrosetta.org after obtaining a license (free for academic use). © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  18. Tunneling of electrons via rotor–stator molecular interfaces: Combined ab initio and model study

    Energy Technology Data Exchange (ETDEWEB)

    Petreska, Irina, E-mail: irina.petreska@pmf.ukim.mk [Institute of Physics, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, PO Box 162, 1000 Skopje, Former Yugolav Republic of Macedonia, The (Macedonia, The Former Yugoslav Republic of); Ohanesjan, Vladimir [Institute of Physics, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, PO Box 162, 1000 Skopje, Former Yugolav Republic of Macedonia, The (Macedonia, The Former Yugoslav Republic of); Pejov, Ljupčo [Institute of Chemistry, Department of Physical Chemistry, Ss. Cyril and Methodius University, Arhimedova 5, P.O. Box 162, 1000 Skopje, Former Yugolav Republic of Macedonia, The (Macedonia, The Former Yugoslav Republic of); Kocarev, Ljupčo [Macedonian Academy of Sciences and Arts, Krste Misirkov 2, PO Box 428, 1000 Skopje, Former Yugolav Republic of Macedonia, The (Macedonia, The Former Yugoslav Republic of); Faculty of Computer Science and Engineering, Ss. Cyril and Methodius University, Skopje, Former Yugolav Republic of Macedonia, The (Macedonia, The Former Yugoslav Republic of)

    2016-07-01

    Tunneling of electrons through rotor–stator anthracene aldehyde molecular interfaces is studied with a combined ab initio and model approach. Molecular electronic structure calculated from first principles is utilized to model different shapes of tunneling barriers. Together with a rectangular barrier, we also consider a sinusoidal shape that captures the effects of the molecular internal structure more realistically. Quasiclassical approach with the Simmons’ formula for current density is implemented. Special attention is paid on conformational dependence of the tunneling current. Our results confirm that the presence of the side aldehyde group enhances the interesting electronic properties of the pure anthracene molecule, making it a bistable system with geometry dependent transport properties. We also investigate the transition voltage and we show that conformation-dependent field emission could be observed in these molecular interfaces at realistically low voltages. The present study accompanies our previous work where we investigated the coherent transport via strongly coupled delocalized orbital by application of Non-equilibrium Green’s Function Formalism.

  19. Microenvironment temperature prediction between body and seat interface using autoregressive data-driven model.

    Science.gov (United States)

    Liu, Zhuofu; Wang, Lin; Luo, Zhongming; Heusch, Andrew I; Cascioli, Vincenzo; McCarthy, Peter W

    2015-11-01

    There is a need to develop a greater understanding of temperature at the skin-seat interface during prolonged seating from the perspectives of both industrial design (comfort/discomfort) and medical care (skin ulcer formation). Here we test the concept of predicting temperature at the seat surface and skin interface during prolonged sitting (such as required from wheelchair users). As caregivers are usually busy, such a method would give them warning ahead of a problem. This paper describes a data-driven model capable of predicting thermal changes and thus having the potential to provide an early warning (15- to 25-min ahead prediction) of an impending temperature that may increase the risk for potential skin damages for those subject to enforced sitting and who have little or no sensory feedback from this area. Initially, the oscillations of the original signal are suppressed using the reconstruction strategy of empirical mode decomposition (EMD). Consequentially, the autoregressive data-driven model can be used to predict future thermal trends based on a shorter period of acquisition, which reduces the possibility of introducing human errors and artefacts associated with longer duration "enforced" sitting by volunteers. In this study, the method had a maximum predictive error of body insensitivity and disability requiring them to be immobile in seats for prolonged periods. Copyright © 2015 Tissue Viability Society. Published by Elsevier Ltd. All rights reserved.

  20. INFORMATIONAL MODEL OF MENTAL ROTATION OF FIGURES

    Directory of Open Access Journals (Sweden)

    V. A. Lyakhovetskiy

    2016-01-01

    Full Text Available Subject of Study.The subject of research is the information structure of objects internal representations and operations over them, used by man to solve the problem of mental rotation of figures. To analyze this informational structure we considered not only classical dependencies of the correct answers on the angle of rotation, but also the other dependencies obtained recently in cognitive psychology. Method.The language of technical computing Matlab R2010b was used for developing information model of the mental rotation of figures. Such model parameters as the number of bits in the internal representation, an error probability in a single bit, discrete rotation angle, comparison threshold, and the degree of difference during rotation can be changed. Main Results.The model reproduces qualitatively such psychological dependencies as the linear increase of time of correct answers and the number of errors on the angle of rotation for identical figures, "flat" dependence of the time of correct answers and the number of errors on the angle of rotation for mirror-like figures. The simulation results suggest that mental rotation is an iterative process of finding a match between the two figures, each step of which can lead to a significant distortion of the internal representation of the stored objects. Matching is carried out within the internal representations that have no high invariance to rotation angle. Practical Significance.The results may be useful for understanding the role of learning (including the learning with a teacher in the development of effective information representation and operations on them in artificial intelligence systems.

  1. Decay Rates of Interactive Hyperbolic-Parabolic PDE Models with Thermal Effects on the Interface

    International Nuclear Information System (INIS)

    Lasiecka, I.; Lebiedzik, C.

    2000-01-01

    We consider coupled PDE systems comprising of a hyperbolic and a parabolic-like equation with an interface on a portion of the boundary. These models are motivated by structural acoustic problems. A specific prototype consists of a wave equation defined on a three-dimensional bounded domain Ω coupled with a thermoelastic plate equation defined on Γ 0 -a flat surface of the boundary Ω. Thus, the coupling between the wave and the plate takes place on the interface Γ 0 . The main issue studied here is that of uniform stability of the overall interactive model. Since the original (uncontrolled) model is only strongly stable, but not uniformly stable, the question becomes: what is the 'minimal amount' of dissipation necessary to obtain uniform decay rates for the energy of the overall system? Our main result states that boundary nonlinear dissipation placed only on a suitable portion of the part of the boundary which is complementary to Γ 0 , suffices for the stabilization of the entire structure. This result is new with respect to the literature on several accounts: (i) thermoelasticity is accounted for in the plate model; (ii) the plate model does not account for any type of mechanical damping, including the structural damping most often considered in the literature; (iii) there is no mechanical damping placed on the interface Γ 0 ; (iv) the boundary damping is nonlinear without a prescribed growth rate at the origin; (v) the undamped portions of the boundary partial Ω are subject to Neumann (rather than Dirichlet) boundary conditions, which is a recognized difficulty in the context of stabilization of wave equations, due to the fact that the strong Lopatinski condition does not hold. The main mathematical challenge is to show how the thermal energy is propagated onto the hyperbolic component of the structure. This is achieved by using a recently developed sharp theory of boundary traces corresponding to wave and plate equations, along with the analytic

  2. Multi-solid and multi-fluid diffuse interface model: Applications to dynamic fracture and fragmentation

    Energy Technology Data Exchange (ETDEWEB)

    Ndanou, S., E-mail: serge.ndanou@univ-amu.fr; Favrie, N., E-mail: nicolas.favrie@univ-amu.fr; Gavrilyuk, S., E-mail: sergey.gavrilyuk@univ-amu.fr

    2015-08-15

    We extend the model of diffuse solid–fluid interfaces developed earlier by authors of this paper to the case of arbitrary number of interacting hyperelastic solids. Plastic transformations of solids are taken into account through a Maxwell type model. The specific energy of each solid is given in separable form: it is the sum of a hydrodynamic part of the energy depending only on the density and the entropy, and an elastic part of the energy which is unaffected by the volume change. It allows us to naturally pass to the fluid description in the limit of vanishing shear modulus. In spite of a large number of governing equations, the model has a quite simple mathematical structure: it is a duplication of a single visco-elastic model. The model is well posed both mathematically and thermodynamically: it is hyperbolic and compatible with the second law of thermodynamics. The resulting model can be applied in the situations involving an arbitrary number of fluids and solids. In particular, we show the ability of the model to describe spallation and penetration phenomena occurring during high velocity impacts.

  3. Interface of the polarizable continuum model of solvation with semi-empirical methods in the GAMESS program

    DEFF Research Database (Denmark)

    Svendsen, Casper Steinmann; Blædel, Kristoffer; Christensen, Anders S

    2013-01-01

    An interface between semi-empirical methods and the polarized continuum model (PCM) of solvation successfully implemented into GAMESS following the approach by Chudinov et al (Chem. Phys. 1992, 160, 41). The interface includes energy gradients and is parallelized. For large molecules such as ubiq......An interface between semi-empirical methods and the polarized continuum model (PCM) of solvation successfully implemented into GAMESS following the approach by Chudinov et al (Chem. Phys. 1992, 160, 41). The interface includes energy gradients and is parallelized. For large molecules...... such as ubiquitin a reasonable speedup (up to a factor of six) is observed for up to 16 cores. The SCF convergence is greatly improved by PCM for proteins compared to the gas phase....

  4. Modelling of the flow in the interface of a composite liner at the bottom of a municipal waste landfill

    International Nuclear Information System (INIS)

    Cartaud, F.

    2004-11-01

    Composite liner at the bottom of waste landfill is based, in France, on a geo-membrane overlapping a compacted clay liner. Defects exist in geo-membranes and leachates, provided by water percolation through the waste, then flow in the interface between the two components of the lining system. The present work consisted in analysis, quantification and modelling of the leakage process in the interface. The experimental study has been carried out on a one-meter scale device in laboratory and allowed to assess the role of normal stress on the flow rate in interface. The case where a geo-textile is present beneath the geo-membrane has been also studied. The modelling allows to take into account more accurately the geometry of the interface and ensures a better quantification of leachate flow rates than using existing methods. (author)

  5. A basic experimental study on characteristics of on-line human information processing associated with man-machine interface

    International Nuclear Information System (INIS)

    Yoshikawa, Hidekazu; Shimoda, Hiroshi; Nagai, Yoshinori; Kojima, Shin-ichi.

    1990-01-01

    Regarding human factors research on man-machine interface, a basic psychological experiment was conducted to observe psycho-physiological characteristics of on-line human cognitive behavior when cognitive tasks on learning and pattern classification were given to subjects by personal computer using a simple state transition model. During the experiment, three different types of subjects' data were recorded: (i) eye movement data by eye mark recorder, (ii) physio-electric signals by polygraph and (iii) verbal reports. Those subjects' data were analyzed with respect to: (i) the related human cognitive characteristics concerning problem solving strategy, measures of problem difficulty and mental image effect, (ii) observed eye movement characteristics such as saccade, attention, pupil reaction and blinking, etc., and (iii) obtained characteristics of skin potential response and heart rate. It was found that the application of psycho-physiological measurement would serve to objective and detailed analysis of on-line cognitive process. (author)

  6. Illustration interface of accident progression in PWR by quick inference based on multilevel flow models

    International Nuclear Information System (INIS)

    Yoshikawa, H.; Ouyang, J.; Niwa, Y.

    2006-01-01

    In this paper, a new accident inference method is proposed by using a goal and function oriented modeling method called Multilevel Flow Model focusing on explaining the causal-consequence relations and the objective of automatic action in the accident of nuclear power plant. Users can easily grasp how the various plant parameters will behave and how the various safety facilities will be activated sequentially to cope with the accident until the nuclear power plants are settled into safety state, i.e., shutdown state. The applicability of the developed method was validated by the conduction of internet-based 'view' experiment to the voluntary respondents, and in the future, further elaboration of interface design and the further introduction of instruction contents will be developed to make it become the usable CAI system. (authors)

  7. Adaptive Crack Modeling with Interface Solid Elements for Plain and Fiber Reinforced Concrete Structures.

    Science.gov (United States)

    Zhan, Yijian; Meschke, Günther

    2017-07-08

    The effective analysis of the nonlinear behavior of cement-based engineering structures not only demands physically-reliable models, but also computationally-efficient algorithms. Based on a continuum interface element formulation that is suitable to capture complex cracking phenomena in concrete materials and structures, an adaptive mesh processing technique is proposed for computational simulations of plain and fiber-reinforced concrete structures to progressively disintegrate the initial finite element mesh and to add degenerated solid elements into the interfacial gaps. In comparison with the implementation where the entire mesh is processed prior to the computation, the proposed adaptive cracking model allows simulating the failure behavior of plain and fiber-reinforced concrete structures with remarkably reduced computational expense.

  8. Towards a real-time interface between a biomimetic model of sensorimotor cortex and a robotic arm

    OpenAIRE

    Dura-Bernal, Salvador; Chadderdon, George L; Neymotin, Samuel A; Francis, Joseph T; Lytton, William W

    2014-01-01

    Brain-machine interfaces can greatly improve the performance of prosthetics. Utilizing biomimetic neuronal modeling in brain machine interfaces (BMI) offers the possibility of providing naturalistic motor-control algorithms for control of a robotic limb. This will allow finer control of a robot, while also giving us new tools to better understand the brain’s use of electrical signals. However, the biomimetic approach presents challenges in integrating technologies across multiple hardware and...

  9. Interface of the polarizable continuum model of solvation with semi-empirical methods in the GAMESS program.

    Directory of Open Access Journals (Sweden)

    Casper Steinmann

    Full Text Available An interface between semi-empirical methods and the polarized continuum model (PCM of solvation successfully implemented into GAMESS following the approach by Chudinov et al (Chem. Phys. 1992, 160, 41. The interface includes energy gradients and is parallelized. For large molecules such as ubiquitin a reasonable speedup (up to a factor of six is observed for up to 16 cores. The SCF convergence is greatly improved by PCM for proteins compared to the gas phase.

  10. Accelerated lattice Boltzmann model for colloidal suspensions rheology and interface morphology

    Science.gov (United States)

    Farhat, Hassan

    Colloids are ubiquitous in the food, medical, cosmetic, polymer, water purification and pharmaceutical industries. Colloids thermal, mechanical and storage properties are highly dependent on their interface morphology and their rheological behavior. Numerical methods provide a cheap and reliable virtual laboratory for the study of colloids. However efficiency is a major concern to address when using numerical methods for practical applications. This work introduces the main building-blocks for an improved lattice Boltzmann-based numerical tool designed for the study of colloidal rheology and interface morphology. The efficiency of the proposed model is enhanced by using the recently developed and validated migrating multi-block algorithms for the lattice Boltzmann method (LBM). The migrating multi-block was used to simulate single component, multi-component, multiphase and single component multiphase flows. Results were validated by experimental, numerical and analytical solutions. The contamination of the fluid-fluid interface influences the colloids morphology. This issue was addressed by the introduction of the hybrid LBM for surfactant-covered droplets. The module was used for the simulation of surfactant-covered droplet deformation under shear and uniaxial extensional flows respectively and under buoyancy. Validation with experimental and theoretical results was provided. Colloids are non-Newtonian fluids which exhibit rich rheological behavior. The suppression of coalescence module is the part of the proposed model which facilitates the study of colloids rheology. The model results for the relative viscosity were in agreement with some theoretical results. Biological suspensions such as blood are macro-colloids by nature. The study of the blood flow in the microvasculature was heuristically approached by assuming the red blood cells as surfactant covered droplets. The effects of interfacial tension on the flow velocity and the droplet exclusion from the walls

  11. Invasive brain-machine interfaces: a survey of paralyzed patients’ attitudes, knowledge and methods of information retrieval

    Science.gov (United States)

    Lahr, Jacob; Schwartz, Christina; Heimbach, Bernhard; Aertsen, Ad; Rickert, Jörn; Ball, Tonio

    2015-08-01

    Objective. Brain-machine interfaces (BMI) are an emerging therapeutic option that can allow paralyzed patients to gain control over assistive technology devices (ATDs). BMI approaches can be broadly classified into invasive (based on intracranially implanted electrodes) and noninvasive (based on skin electrodes or extracorporeal sensors). Invasive BMIs have a favorable signal-to-noise ratio, and thus allow for the extraction of more information than noninvasive BMIs, but they are also associated with the risks related to neurosurgical device implantation. Current noninvasive BMI approaches are typically concerned, among other issues, with long setup times and/or intensive training. Recent studies have investigated the attitudes of paralyzed patients eligible for BMIs, particularly patients affected by amyotrophic lateral sclerosis (ALS). These studies indicate that paralyzed patients are indeed interested in BMIs. Little is known, however, about the degree of knowledge among paralyzed patients concerning BMI approaches or about how patients retrieve information on ATDs. Furthermore, it is not yet clear if paralyzed patients would accept intracranial implantation of BMI electrodes with the premise of decoding improvements, and what the attitudes of a broader range of patients with diseases such as stroke or spinal cord injury are towards this new kind of treatment. Approach. Using a questionnaire, we surveyed 131 paralyzed patients for their opinions on invasive BMIs and their attitude toward invasive BMI treatment options. Main results. The majority of the patients knew about and had a positive attitude toward invasive BMI approaches. The group of ALS patients was especially open to the concept of BMIs. The acceptance of invasive BMI technology depended on the improvements expected from the technology. Furthermore, the survey revealed that for paralyzed patients, the Internet is an important source of information on ATDs. Significance. Websites tailored to

  12. Model-driven user interfaces for bioinformatics data resources: regenerating the wheel as an alternative to reinventing it

    Directory of Open Access Journals (Sweden)

    Swainston Neil

    2006-12-01

    Full Text Available Abstract Background The proliferation of data repositories in bioinformatics has resulted in the development of numerous interfaces that allow scientists to browse, search and analyse the data that they contain. Interfaces typically support repository access by means of web pages, but other means are also used, such as desktop applications and command line tools. Interfaces often duplicate functionality amongst each other, and this implies that associated development activities are repeated in different laboratories. Interfaces developed by public laboratories are often created with limited developer resources. In such environments, reducing the time spent on creating user interfaces allows for a better deployment of resources for specialised tasks, such as data integration or analysis. Laboratories maintaining data resources are challenged to reconcile requirements for software that is reliable, functional and flexible with limitations on software development resources. Results This paper proposes a model-driven approach for the partial generation of user interfaces for searching and browsing bioinformatics data repositories. Inspired by the Model Driven Architecture (MDA of the Object Management Group (OMG, we have developed a system that generates interfaces designed for use with bioinformatics resources. This approach helps laboratory domain experts decrease the amount of time they have to spend dealing with the repetitive aspects of user interface development. As a result, the amount of time they can spend on gathering requirements and helping develop specialised features increases. The resulting system is known as Pierre, and has been validated through its application to use cases in the life sciences, including the PEDRoDB proteomics database and the e-Fungi data warehouse. Conclusion MDAs focus on generating software from models that describe aspects of service capabilities, and can be applied to support rapid development of repository

  13. Introduction to diffuse interfaces and transformation fronts modelling in compressible media

    Directory of Open Access Journals (Sweden)

    Saurel Richard

    2013-07-01

    Full Text Available Computation of interfaces separating compressible materials is related to mixture cells appearance. These mixture cells are consequences of fluid motion and artificial smearing of discontinuities. The correct computation of the entire flow field requires perfect fulfillment of the interface conditions. In the simplest situation of contact interfaces with perfect fluids, these conditions correspond to equal normal velocities and equal pressures. To compute compressible flows with interfaces two main classes of approaches are available. In the first one, the interface is considered as a sharp discontinuity. Lagrangian, Front Tracking and Level Set methods belong to this class. The second option consists in the building of a flow model valid everywhere, in pure materials and mixture cells, solved routinely with a unique Eulerian algorithm [37]. In this frame, the interface is considered as a numerically diffused zone, captured by the algorithm. There are some advantages with this approach, as the corresponding flow model is not only valid in artificial mixture cells, but it also describes accurately true multiphase mixtures of materials. The [37] approach has been simplified by [22] with the help of asymptotic analysis, resulting in a single velocity, single pressure but multi-temperature flow model. This reduced model presents however difficulties for its numerical resolution as one of the equations is non-conservative. In the presence of shocks, jump conditions have been provided by [42], determined in the weak shock limit. When compared against experiments for both weak and strong shocks, excellent agreement was observed. These relations have been accepted as closure shock relations for the [22] model and allowed the study of detonation waves in heterogeneous energetic materials. Generalized Chapman-Jouguet conditions were obtained as well as heterogenous explosives (non-ideal detonation wave structures [36]. Oppositely to the previous example

  14. Enhanced Publications: Data Models and Information Systems

    Directory of Open Access Journals (Sweden)

    Alessia Bardi

    2014-04-01

    Full Text Available “Enhanced publications” are commonly intended as digital publications that consist of a mandatory narrative part (the description of the research conducted plus related “parts”, such as datasets, other publications, images, tables, workflows, devices. The state-of-the-art on information systems for enhanced publications has today reached the point where some kind of common understanding is required, in order to provide the methodology and language for scientists to compare, analyse, or simply discuss the multitude of solutions in the field. In this paper, we thoroughly examined the literature with a two-fold aim: firstly, introducing the terminology required to describe and compare structural and semantic features of existing enhanced publication data models; secondly, proposing a classification of enhanced publication information systems based on their main functional goals.

  15. Modelling the Replication Management in Information Systems

    Directory of Open Access Journals (Sweden)

    Cezar TOADER

    2017-01-01

    Full Text Available In the modern economy, the benefits of Web services are significant because they facilitates the activities automation in the framework of Internet distributed businesses as well as the cooperation between organizations through interconnection process running in the computer systems. This paper presents the development stages of a model for a reliable information system. This paper describes the communication between the processes within the distributed system, based on the message exchange, and also presents the problem of distributed agreement among processes. A list of objectives for the fault-tolerant systems is defined and a framework model for distributed systems is proposed. This framework makes distinction between management operations and execution operations. The proposed model promotes the use of a central process especially designed for the coordination and control of other application processes. The execution phases and the protocols for the management and the execution components are presented. This model of a reliable system could be a foundation for an entire class of distributed systems models based on the management of replication process.

  16. A review of building information modelling

    Science.gov (United States)

    Wang, Wen; Han, Rui

    2018-05-01

    Building Information Modelling (BIM) is widely seen as a catalyst for innovation and productivity. It is becoming standard for new construction and is the most significant technology changing how we design, build, use and manage the building. It is a dominant technological trend in the software industry and although the theoretical groundwork was laid in the previous century, it is a popular topic in academic research. BIM is discussed in this study, which results can provide better and more comprehensive choices for building owners, designers, and developers in future.

  17. Modelling of nanoscale multi-gate transistors affected by atomistic interface roughness

    Science.gov (United States)

    Nagy, Daniel; Aldegunde, Manuel; Elmessary, Muhammad A.; García-Loureiro, Antonio J.; Seoane, Natalia; Kalna, Karol

    2018-04-01

    Interface roughness scattering (IRS) is one of the major scattering mechanisms limiting the performance of non-planar multi-gate transistors, like Fin field-effect transistors (FETs). Here, two physical models (Ando’s and multi-sub-band) of electron scattering with the interface roughness induced potential are investigated using an in-house built 3D finite element ensemble Monte Carlo simulation toolbox including parameter-free 2D Schrödinger equation quantum correction that handles all relevant scattering mechanisms within highly non-equilibrium carrier transport. Moreover, we predict the effect of IRS on performance of FinFETs with realistic channel cross-section shapes with respect to the IRS correlation length (Λ) and RMS height (Δ_RMS ). The simulations of the n-type SOI FinFETs with the multi-sub-band IRS model shows its very strong effect on electron transport in the device channel compared to the Ando’s model. We have also found that the FinFETs are strongly affected by the IRS in the ON-region. The limiting effect of the IRS significantly increases as the Fin width is reduced. The FinFETs with channel orientation are affected more by the IRS than those with the crystal orientation. Finally, Λ and Δ_RMS are shown to affect the device performance similarly. A change in values by 30% (Λ) or 20% (Δ_RMS ) results in an increase (decrease) of up to 13% in the drive current.

  18. The predictive model on the user reaction time using the information similarity

    International Nuclear Information System (INIS)

    Lee, Sung Jin; Heo, Gyun Young; Chang, Soon Heung

    2005-01-01

    Human performance is frequently degraded because people forget. Memory is one of brain processes that are important when trying to understand how people process information. Although a large number of studies have been made on the human performance, little is known about the similarity effect in human performance. The purpose of this paper is to propose and validate the quantitative and predictive model on the human response time in the user interface with the concept of similarity. However, it is not easy to explain the human performance with only similarity or information amount. We are confronted by two difficulties: making the quantitative model on the human response time with the similarity and validating the proposed model by experimental work. We made the quantitative model based on the Hick's law and the law of practice. In addition, we validated the model with various experimental conditions by measuring participants' response time in the environment of computer-based display. Experimental results reveal that the human performance is improved by the user interface's similarity. We think that the proposed model is useful for the user interface design and evaluation phases

  19. Building information modelling (BIM: now and beyond

    Directory of Open Access Journals (Sweden)

    Salman Azhar

    2015-10-01

    Full Text Available Building Information Modeling (BIM, also called n-D Modeling or Virtual Prototyping Technology, is a revolutionary development that is quickly reshaping the Architecture-Engineering-Construction (AEC industry. BIM is both a technology and a process. The technology component of BIM helps project stakeholders to visualize what is to be built in a simulated environment to identify any potential design, construction or operational issues. The process component enables close collaboration and encourages integration of the roles of all stakeholders on a project. The paper presents an overview of BIM with focus on its core concepts, applications in the project life cycle and benefits for project stakeholders with the help of case studies. The paper also elaborates risks and barriers to BIM implementation and future trends.

  20. Building information modelling (BIM: now and beyond

    Directory of Open Access Journals (Sweden)

    Salman Azhar

    2012-12-01

    Full Text Available Building Information Modeling (BIM, also called n-D Modeling or Virtual Prototyping Technology, is a revolutionary development that is quickly reshaping the Architecture-Engineering-Construction (AEC industry. BIM is both a technology and a process. The technology component of BIM helps project stakeholders to visualize what is to be built in a simulated environment to identify any potential design, construction or operational issues. The process component enables close collaboration and encourages integration of the roles of all stakeholders on a project. The paper presents an overview of BIM with focus on its core concepts, applications in the project life cycle and benefits for project stakeholders with the help of case studies. The paper also elaborates risks and barriers to BIM implementation and future trends.

  1. Dynamic impedance model of the skin-electrode interface for transcutaneous electrical stimulation.

    Directory of Open Access Journals (Sweden)

    José Luis Vargas Luna

    Full Text Available Transcutaneous electrical stimulation can depolarize nerve or muscle cells applying impulses through electrodes attached on the skin. For these applications, the electrode-skin impedance is an important factor which influences effectiveness. Various models describe the interface using constant or current-depending resistive-capacitive equivalent circuit. Here, we develop a dynamic impedance model valid for a wide range stimulation intensities. The model considers electroporation and charge-dependent effects to describe the impedance variation, which allows to describe high-charge pulses. The parameters were adjusted based on rectangular, biphasic stimulation pulses generated by a stimulator, providing optionally current or voltage-controlled impulses, and applied through electrodes of different sizes. Both control methods deliver a different electrical field to the tissue, which is constant throughout the impulse duration for current-controlled mode or have a very current peak for voltage-controlled. The results show a predominant dependence in the current intensity in the case of both stimulation techniques that allows to keep a simple model. A verification simulation using the proposed dynamic model shows coefficient of determination of around 0.99 in both stimulation types. The presented method for fitting electrode-skin impedance can be simple extended to other stimulation waveforms and electrode configuration. Therefore, it can be embedded in optimization algorithms for designing electrical stimulation applications even for pulses with high charges and high current spikes.

  2. Residue conservation and dimer-interface analysis of olfactory receptor molecular models

    Directory of Open Access Journals (Sweden)

    Ramanathan Sowdhamini

    2012-10-01

    Full Text Available Olfactory Receptors (ORs are members of the Class A rhodopsin like G-protein coupled receptors (GPCRs which are the initial players in the signal transduction cascade, leading to the generation of nerve impulses transmitted to the brain and resulting in the detection of odorant molecules. Despite the accumulation of thousands of olfactory receptor sequences, no crystal structures of ORs are known tο date. However, the recent availability of crystallographic models of a few GPCRs allows us to generate homology models of ORs and analyze their amino acid patterns, as there is a huge diversity in OR sequences. In this study, we have generated three-dimensional models of 100 representative ORs from Homo sapiens, Mus musculus, Drosophila melanogaster, Caenorhabditis elegans and Sacharomyces cerevisiae which were selected on the basis of a composite classification scheme and phylogenetic analysis. The crystal structure of bovine rhodopsin was used as a template and it was found that the full-length models have more than 90% of their residues in allowed regions of the Ramachandran plot. The structures were further used for analysis of conserved residues in the transmembrane and extracellular loop regions in order to identify functionally important residues. Several ORs are known to be functional as dimers and hence dimer interfaces were predicted for OR models to analyse their oligomeric functional state.

  3. Neuromuscular interfacing: establishing an EMG-driven model for the human elbow joint.

    Science.gov (United States)

    Pau, James W L; Xie, Shane S Q; Pullan, Andrew J

    2012-09-01

    Assistive devices aim to mitigate the effects of physical disability by aiding users to move their limbs or by rehabilitating through therapy. These devices are commonly embodied by robotic or exoskeletal systems that are still in development and use the electromyographic (EMG) signal to determine user intent. Not much focus has been placed on developing a neuromuscular interface (NI) that solely relies on the EMG signal, and does not require modifications to the end user's state to enhance the signal (such as adding weights). This paper presents the development of a flexible, physiological model for the elbow joint that is leading toward the implementation of an NI, which predicts joint motion from EMG signals for both able-bodied and less-abled users. The approach uses musculotendon models to determine muscle contraction forces, a proposed musculoskeletal model to determine total joint torque, and a kinematic model to determine joint rotational kinematics. After a sensitivity analysis and tuning using genetic algorithms, subject trials yielded an average root-mean-square error of 6.53° and 22.4° for a single cycle and random cycles of movement of the elbow joint, respectively. This helps us to validate the elbow model and paves the way toward the development of an NI.

  4. Brain-computer interface with language model-electroencephalography fusion for locked-in syndrome.

    Science.gov (United States)

    Oken, Barry S; Orhan, Umut; Roark, Brian; Erdogmus, Deniz; Fowler, Andrew; Mooney, Aimee; Peters, Betts; Miller, Meghan; Fried-Oken, Melanie B

    2014-05-01

    Some noninvasive brain-computer interface (BCI) systems are currently available for locked-in syndrome (LIS) but none have incorporated a statistical language model during text generation. To begin to address the communication needs of individuals with LIS using a noninvasive BCI that involves rapid serial visual presentation (RSVP) of symbols and a unique classifier with electroencephalography (EEG) and language model fusion. The RSVP Keyboard was developed with several unique features. Individual letters are presented at 2.5 per second. Computer classification of letters as targets or nontargets based on EEG is performed using machine learning that incorporates a language model for letter prediction via Bayesian fusion enabling targets to be presented only 1 to 4 times. Nine participants with LIS and 9 healthy controls were enrolled. After screening, subjects first calibrated the system, and then completed a series of balanced word generation mastery tasks that were designed with 5 incremental levels of difficulty, which increased by selecting phrases for which the utility of the language model decreased naturally. Six participants with LIS and 9 controls completed the experiment. All LIS participants successfully mastered spelling at level 1 and one subject achieved level 5. Six of 9 control participants achieved level 5. Individuals who have incomplete LIS may benefit from an EEG-based BCI system, which relies on EEG classification and a statistical language model. Steps to further improve the system are discussed.

  5. A Hyperbolic Ontology Visualization Tool for Model Application Programming Interface Documentation

    Science.gov (United States)

    Hyman, Cody

    2011-01-01

    Spacecraft modeling, a critically important portion in validating planned spacecraft activities, is currently carried out using a time consuming method of mission to mission model implementations and integration. A current project in early development, Integrated Spacecraft Analysis (ISCA), aims to remedy this hindrance by providing reusable architectures and reducing time spent integrating models with planning and sequencing tools. The principle objective of this internship was to develop a user interface for an experimental ontology-based structure visualization of navigation and attitude control system modeling software. To satisfy this, a number of tree and graph visualization tools were researched and a Java based hyperbolic graph viewer was selected for experimental adaptation. Early results show promise in the ability to organize and display large amounts of spacecraft model documentation efficiently and effectively through a web browser. This viewer serves as a conceptual implementation for future development but trials with both ISCA developers and end users should be performed to truly evaluate the effectiveness of continued development of such visualizations.

  6. A lattice-gas model of the ion current across the solid interface: fast-ion conductor - intercalate

    International Nuclear Information System (INIS)

    Nachev, I.; Balkanski, M.

    1994-12-01

    The transport of Lithium ions across the material interface: fast-ion conducting glass - intercalate is simulated by a non-trivial lattice-gas model. The model takes explicitly into account the influence of the Coulomb correlations, the site-blocking effect and the boundary conditions on the ion kinetics. Potential device applications of the model are pointed out by computing the current density of Lithium ions for material parameters of the real interface: doped ternary borate glass - Indium Selenide, which constitute the electrolyte and the cathode, respectively, of a thin-film microbattery with improved performance. (author). 10 refs, 4 figs

  7. An information theory-based approach to modeling the information processing of NPP operators

    International Nuclear Information System (INIS)

    Kim, Jong Hyun; Seong, Poong Hyun

    2002-01-01

    This paper proposes a quantitative approach to modeling the information processing of NPP operators. The aim of this work is to derive the amount of the information processed during a certain control task. The focus will be on i) developing a model for information processing of NPP operators and ii) quantifying the model. To resolve the problems of the previous approaches based on the information theory, i.e. the problems of single channel approaches, we primarily develop the information processing model having multiple stages, which contains information flows. Then the uncertainty of the information is quantified using the Conant's model, a kind of information theory

  8. An automated meta-monitoring mobile application and front-end interface for the ATLAS computing model

    Energy Technology Data Exchange (ETDEWEB)

    Kawamura, Gen; Quadt, Arnulf [II. Physikalisches Institut, Georg-August-Universitaet Goettingen (Germany)

    2016-07-01

    Efficient administration of computing centres requires advanced tools for the monitoring and front-end interface of the infrastructure. Providing the large-scale distributed systems as a global grid infrastructure, like the Worldwide LHC Computing Grid (WLCG) and ATLAS computing, is offering many existing web pages and information sources indicating the status of the services, systems and user jobs at grid sites. A meta-monitoring mobile application which automatically collects the information could give every administrator a sophisticated and flexible interface of the infrastructure. We describe such a solution; the MadFace mobile application developed at Goettingen. It is a HappyFace compatible mobile application which has a user-friendly interface. It also becomes very feasible to automatically investigate the status and problem from different sources and provides access of the administration roles for non-experts.

  9. Multiscale information modelling for heart morphogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Abdulla, T; Imms, R; Summers, R [Department of Electronic and Electrical Engineering, Loughborough University, Loughborough (United Kingdom); Schleich, J M, E-mail: T.Abdulla@lboro.ac.u [LTSI Signal and Image Processing Laboratory, University of Rennes 1, Rennes (France)

    2010-07-01

    Science is made feasible by the adoption of common systems of units. As research has become more data intensive, especially in the biomedical domain, it requires the adoption of a common system of information models, to make explicit the relationship between one set of data and another, regardless of format. This is being realised through the OBO Foundry to develop a suite of reference ontologies, and NCBO Bioportal to provide services to integrate biomedical resources and functionality to visualise and create mappings between ontology terms. Biomedical experts tend to be focused at one level of spatial scale, be it biochemistry, cell biology, or anatomy. Likewise, the ontologies they use tend to be focused at a particular level of scale. There is increasing interest in a multiscale systems approach, which attempts to integrate between different levels of scale to gain understanding of emergent effects. This is a return to physiological medicine with a computational emphasis, exemplified by the worldwide Physiome initiative, and the European Union funded Network of Excellence in the Virtual Physiological Human. However, little work has been done on how information modelling itself may be tailored to a multiscale systems approach. We demonstrate how this can be done for the complex process of heart morphogenesis, which requires multiscale understanding in both time and spatial domains. Such an effort enables the integration of multiscale metrology.

  10. Multiscale information modelling for heart morphogenesis

    International Nuclear Information System (INIS)

    Abdulla, T; Imms, R; Summers, R; Schleich, J M

    2010-01-01

    Science is made feasible by the adoption of common systems of units. As research has become more data intensive, especially in the biomedical domain, it requires the adoption of a common system of information models, to make explicit the relationship between one set of data and another, regardless of format. This is being realised through the OBO Foundry to develop a suite of reference ontologies, and NCBO Bioportal to provide services to integrate biomedical resources and functionality to visualise and create mappings between ontology terms. Biomedical experts tend to be focused at one level of spatial scale, be it biochemistry, cell biology, or anatomy. Likewise, the ontologies they use tend to be focused at a particular level of scale. There is increasing interest in a multiscale systems approach, which attempts to integrate between different levels of scale to gain understanding of emergent effects. This is a return to physiological medicine with a computational emphasis, exemplified by the worldwide Physiome initiative, and the European Union funded Network of Excellence in the Virtual Physiological Human. However, little work has been done on how information modelling itself may be tailored to a multiscale systems approach. We demonstrate how this can be done for the complex process of heart morphogenesis, which requires multiscale understanding in both time and spatial domains. Such an effort enables the integration of multiscale metrology.

  11. Phase constitution and interface structure of nano-sized Ag-Cu/AlN multilayers: Experiment and ab initio modeling

    Energy Technology Data Exchange (ETDEWEB)

    Pigozzi, Giancarlo; Janczak-Rusch, Jolanta; Passerone, Daniele; Antonio Pignedoli, Carlo; Patscheider, Joerg; Jeurgens, Lars P. H. [Empa, Swiss Federal Laboratories for Materials Science and Technology, Ueberlandstrasse 129, CH-8600 Duebendorf (Switzerland); Antusek, Andrej [Empa, Swiss Federal Laboratories for Materials Science and Technology, Ueberlandstrasse 129, CH-8600 Duebendorf (Switzerland); Faculty of Materials Science and Technology, Slovak University of Technology in Bratislava, Paulinska 16, 917 24 Trnava (Slovakia); Parlinska-Wojtan, Magdalena [Empa, Swiss Federal Laboratories for Materials Science and Technology, Ueberlandstrasse 129, CH-8600 Duebendorf (Switzerland); University of Rzeszow, Institute of Physics, ul. Rejtana 16a, 35-959 Rzeszow (Poland); Bissig, Vinzenz [Kirsten Soldering AG, Hinterbergstrasse 32, CH-6330 Cham (Switzerland)

    2012-10-29

    Nano-sized Ag-Cu{sub 8nm}/AlN{sub 10nm} multilayers were deposited by reactive DC sputtering on {alpha}-Al{sub 2}O{sub 3}(0001) substrates. Investigation of the phase constitution and interface structure of the multilayers evidences a phase separation of the alloy sublayers into nanosized grains of Ag and Cu. The interfaces between the Ag grains and the quasi-single-crystalline AlN sublayers are semi-coherent, whereas the corresponding Cu/AlN interfaces are incoherent. The orientation relationship between Ag and AlN is constant throughout the entire multilayer stack. These observations are consistent with atomistic models of the interfaces as obtained by ab initio calculations.

  12. Validity of information security policy models

    Directory of Open Access Journals (Sweden)

    Joshua Onome Imoniana

    Full Text Available Validity is concerned with establishing evidence for the use of a method to be used with a particular set of population. Thus, when we address the issue of application of security policy models, we are concerned with the implementation of a certain policy, taking into consideration the standards required, through attribution of scores to every item in the research instrument. En today's globalized economic scenarios, the implementation of information security policy, in an information technology environment, is a condition sine qua non for the strategic management process of any organization. Regarding this topic, various studies present evidences that, the responsibility for maintaining a policy rests primarily with the Chief Security Officer. The Chief Security Officer, in doing so, strives to enhance the updating of technologies, in order to meet all-inclusive business continuity planning policies. Therefore, for such policy to be effective, it has to be entirely embraced by the Chief Executive Officer. This study was developed with the purpose of validating specific theoretical models, whose designs were based on literature review, by sampling 10 of the Automobile Industries located in the ABC region of Metropolitan São Paulo City. This sampling was based on the representativeness of such industries, particularly with regards to each one's implementation of information technology in the region. The current study concludes, presenting evidence of the discriminating validity of four key dimensions of the security policy, being such: the Physical Security, the Logical Access Security, the Administrative Security, and the Legal & Environmental Security. On analyzing the Alpha of Crombach structure of these security items, results not only attest that the capacity of those industries to implement security policies is indisputable, but also, the items involved, homogeneously correlate to each other.

  13. Visual momentum: an example of cognitive models applied to interface design

    International Nuclear Information System (INIS)

    Woods, D.D.

    1982-01-01

    The growth of computer applications has radically changed the nature of the man-machine interface. Through increased automation, the nature of the human's task has shifted from an emphasis on perceptual-motor skills to an emphasis on cognitive activities (e.g., problem solving and decision making). The result is a need to improve the cognitive coupling of person and machine. The goal of this paper is to describe how knowledge from cognitive psychology can be used to provide guidance to display system designers and to solve human performance problems in person-machine systems. The mechanism is to explore one example of a principle of man-machine interaction - visual momentum - that was developed on the basis of a general model of human front-end cognitive processing

  14. Modeling Dzyaloshinskii-Moriya Interaction at Transition Metal Interfaces: Constrained Moment versus Generalized Bloch Theorem

    KAUST Repository

    Dong, Yao-Jun; Belabbes, Abderrezak; Manchon, Aurelien

    2017-01-01

    Dzyaloshinskii-Moriya interaction (DMI) at Pt/Co interfaces is investigated theoretically using two different first principles methods. The first one uses the constrained moment method to build a spin spiral in real space, while the second method uses the generalized Bloch theorem approach to construct a spin spiral in reciprocal space. We show that although the two methods produce an overall similar total DMI energy, the dependence of DMI as a function of the spin spiral wavelength is dramatically different. We suggest that long-range magnetic interactions, that determine itinerant magnetism in transition metals, are responsible for this discrepancy. We conclude that the generalized Bloch theorem approach is more adapted to model DMI in transition metal systems, where magnetism is delocalized, while the constrained moment approach is mostly applicable to weak or insulating magnets, where magnetism is localized.

  15. Modeling Dzyaloshinskii-Moriya Interaction at Transition Metal Interfaces: Constrained Moment versus Generalized Bloch Theorem

    KAUST Repository

    Dong, Yao-Jun

    2017-10-29

    Dzyaloshinskii-Moriya interaction (DMI) at Pt/Co interfaces is investigated theoretically using two different first principles methods. The first one uses the constrained moment method to build a spin spiral in real space, while the second method uses the generalized Bloch theorem approach to construct a spin spiral in reciprocal space. We show that although the two methods produce an overall similar total DMI energy, the dependence of DMI as a function of the spin spiral wavelength is dramatically different. We suggest that long-range magnetic interactions, that determine itinerant magnetism in transition metals, are responsible for this discrepancy. We conclude that the generalized Bloch theorem approach is more adapted to model DMI in transition metal systems, where magnetism is delocalized, while the constrained moment approach is mostly applicable to weak or insulating magnets, where magnetism is localized.

  16. Leveraging Open Standard Interfaces in Providing Efficient Discovery, Retrieval, and Information of NASA-Sponsored Observations and Predictions

    Science.gov (United States)

    Cole, M.; Alameh, N.; Bambacus, M.

    2006-05-01

    The Applied Sciences Program at NASA focuses on extending the results of NASA's Earth-Sun system science research beyond the science and research communities to contribute to national priority applications with societal benefits. By employing a systems engineering approach, supporting interoperable data discovery and access, and developing partnerships with federal agencies and national organizations, the Applied Sciences Program facilitates the transition from research to operations in national applications. In particular, the Applied Sciences Program identifies twelve national applications, listed at http://science.hq.nasa.gov/earth-sun/applications/, which can be best served by the results of NASA aerospace research and development of science and technologies. The ability to use and integrate NASA data and science results into these national applications results in enhanced decision support and significant socio-economic benefits for each of the applications. This paper focuses on leveraging the power of interoperability and specifically open standard interfaces in providing efficient discovery, retrieval, and integration of NASA's science research results. Interoperability (the ability to access multiple, heterogeneous geoprocessing environments, either local or remote by means of open and standard software interfaces) can significantly increase the value of NASA-related data by increasing the opportunities to discover, access and integrate that data in the twelve identified national applications (particularly in non-traditional settings). Furthermore, access to data, observations, and analytical models from diverse sources can facilitate interdisciplinary and exploratory research and analysis. To streamline this process, the NASA GeoSciences Interoperability Office (GIO) is developing the NASA Earth-Sun System Gateway (ESG) to enable access to remote geospatial data, imagery, models, and visualizations through open, standard web protocols. The gateway (online

  17. SPATIALLY EXPLICIT MICRO-LEVEL MODELLING OF LAND USE CHANGE AT THE RURAL-URBAN INTERFACE. (R828012)

    Science.gov (United States)

    This paper describes micro-economic models of land use change applicable to the rural–urban interface in the US. Use of a spatially explicit micro-level modelling approach permits the analysis of regional patterns of land use as the aggregate outcomes of many, disparate...

  18. Numerical Methods for a Multicomponent Two-Phase Interface Model with Geometric Mean Influence Parameters

    KAUST Repository

    Kou, Jisheng

    2015-07-16

    In this paper, we consider an interface model for multicomponent two-phase fluids with geometric mean influence parameters, which is popularly used to model and predict surface tension in practical applications. For this model, there are two major challenges in theoretical analysis and numerical simulation: the first one is that the influence parameter matrix is not positive definite; the second one is the complicated structure of the energy function, which requires us to find out a physically consistent treatment. To overcome these two challenging problems, we reduce the formulation of the energy function by employing a linear transformation and a weighted molar density, and furthermore, we propose a local minimum grand potential energy condition to establish the relation between the weighted molar density and mixture compositions. From this, we prove the existence of the solution under proper conditions and prove the maximum principle of the weighted molar density. For numerical simulation, we propose a modified Newton\\'s method for solving this nonlinear model and analyze its properties; we also analyze a finite element method with a physical-based adaptive mesh-refinement technique. Numerical examples are tested to verify the theoretical results and the efficiency of the proposed methods.

  19. Numerical Methods for a Multicomponent Two-Phase Interface Model with Geometric Mean Influence Parameters

    KAUST Repository

    Kou, Jisheng; Sun, Shuyu

    2015-01-01

    In this paper, we consider an interface model for multicomponent two-phase fluids with geometric mean influence parameters, which is popularly used to model and predict surface tension in practical applications. For this model, there are two major challenges in theoretical analysis and numerical simulation: the first one is that the influence parameter matrix is not positive definite; the second one is the complicated structure of the energy function, which requires us to find out a physically consistent treatment. To overcome these two challenging problems, we reduce the formulation of the energy function by employing a linear transformation and a weighted molar density, and furthermore, we propose a local minimum grand potential energy condition to establish the relation between the weighted molar density and mixture compositions. From this, we prove the existence of the solution under proper conditions and prove the maximum principle of the weighted molar density. For numerical simulation, we propose a modified Newton's method for solving this nonlinear model and analyze its properties; we also analyze a finite element method with a physical-based adaptive mesh-refinement technique. Numerical examples are tested to verify the theoretical results and the efficiency of the proposed methods.

  20. Building information models for astronomy projects

    Science.gov (United States)

    Ariño, Javier; Murga, Gaizka; Campo, Ramón; Eletxigerra, Iñigo; Ampuero, Pedro

    2012-09-01

    A Building Information Model is a digital representation of physical and functional characteristics of a building. BIMs represent the geometrical characteristics of the Building, but also properties like bills of quantities, definition of COTS components, status of material in the different stages of the project, project economic data, etc. The BIM methodology, which is well established in the Architecture Engineering and Construction (AEC) domain for conventional buildings, has been brought one step forward in its application for Astronomical/Scientific facilities. In these facilities steel/concrete structures have high dynamic and seismic requirements, M&E installations are complex and there is a large amount of special equipment and mechanisms involved as a fundamental part of the facility. The detail design definition is typically implemented by different design teams in specialized design software packages. In order to allow the coordinated work of different engineering teams, the overall model, and its associated engineering database, is progressively integrated using a coordination and roaming software which can be used before starting construction phase for checking interferences, planning the construction sequence, studying maintenance operation, reporting to the project office, etc. This integrated design & construction approach will allow to efficiently plan construction sequence (4D). This is a powerful tool to study and analyze in detail alternative construction sequences and ideally coordinate the work of different construction teams. In addition engineering, construction and operational database can be linked to the virtual model (6D), what gives to the end users a invaluable tool for the lifecycle management, as all the facility information can be easily accessed, added or replaced. This paper presents the BIM methodology as implemented by IDOM with the E-ELT and ATST Enclosures as application examples.

  1. Energy-Environment interface: an economic model approach; L`interface energie - environnement: une approche economique modelisee

    Energy Technology Data Exchange (ETDEWEB)

    Glot-Sanchez, N

    1995-03-17

    This thesis is separated in two parts. The first part has four chapters, from the first to the fourth one;the second part has four chapters, from the fifth to the eighth one. The first part describes an analysis of different areas about the subject: the energy sphere, the environmental sphere, the notion of external effects and environmental policy in terms of instruments. The second part is the analysis of the results of a model, aiming to determine the energy strategies in matter of electricity production and their investments to reduce carbon dioxide emissions. 181 refs.

  2. JUPITER: Joint Universal Parameter IdenTification and Evaluation of Reliability - An Application Programming Interface (API) for Model Analysis

    Science.gov (United States)

    Banta, Edward R.; Poeter, Eileen P.; Doherty, John E.; Hill, Mary C.

    2006-01-01

    he Joint Universal Parameter IdenTification and Evaluation of Reliability Application Programming Interface (JUPITER API) improves the computer programming resources available to those developing applications (computer programs) for model analysis.The JUPITER API consists of eleven Fortran-90 modules that provide for encapsulation of data and operations on that data. Each module contains one or more entities: data, data types, subroutines, functions, and generic interfaces. The modules do not constitute computer programs themselves; instead, they are used to construct computer programs. Such computer programs are called applications of the API. The API provides common modeling operations for use by a variety of computer applications.The models being analyzed are referred to here as process models, and may, for example, represent the physics, chemistry, and(or) biology of a field or laboratory system. Process models commonly are constructed using published models such as MODFLOW (Harbaugh et al., 2000; Harbaugh, 2005), MT3DMS (Zheng and Wang, 1996), HSPF (Bicknell et al., 1997), PRMS (Leavesley and Stannard, 1995), and many others. The process model may be accessed by a JUPITER API application as an external program, or it may be implemented as a subroutine within a JUPITER API application . In either case, execution of the model takes place in a framework designed by the application programmer. This framework can be designed to take advantage of any parallel processing capabilities possessed by the process model, as well as the parallel-processing capabilities of the JUPITER API.Model analyses for which the JUPITER API could be useful include, for example: Compare model results to observed values to determine how well the model reproduces system processes and characteristics.Use sensitivity analysis to determine the information provided by observations to parameters and predictions of interest.Determine the additional data needed to improve selected model

  3. Ion beam processing of surfaces and interfaces. Modeling and atomistic simulations

    International Nuclear Information System (INIS)

    Liedke, Bartosz

    2011-01-01

    Self-organization of regular surface pattern under ion beam erosion was described in detail by Navez in 1962. Several years later in 1986 Bradley and Harper (BH) published the first self-consistent theory on this phenomenon based on the competition of surface roughening described by Sigmund's sputter theory and surface smoothing by Mullins-Herring diffusion. Many papers that followed BH theory introduced other processes responsible for the surface patterning e.g. viscous flow, redeposition, phase separation, preferential sputtering, etc. The present understanding is still not sufficient to specify the dominant driving forces responsible for self-organization. 3D atomistic simulations can improve the understanding by reproducing the pattern formation with the detailed microscopic description of the driving forces. 2D simulations published so far can contribute to this understanding only partially. A novel program package for 3D atomistic simulations called TRIDER (TRansport of Ions in matter with DEfect Relaxation), which unifies full collision cascade simulation with atomistic relaxation processes, has been developed. The collision cascades are provided by simulations based on the Binary Collision Approximation, and the relaxation processes are simulated with the 3D lattice kinetic Monte-Carlo method. This allows, without any phenomenological model, a full 3D atomistic description on experimental spatiotemporal scales. Recently discussed new mechanisms of surface patterning like ballistic mass drift or the dependence of the local morphology on sputtering yield are inherently included in our atomistic approach. The atomistic 3D simulations do not depend so much on experimental assumptions like reported 2D simulations or continuum theories. The 3D computer experiments can even be considered as 'cleanest' possible experiments for checking continuum theories. This work aims mainly at the methodology of a novel atomistic approach, showing that: (i) In general

  4. Ion beam processing of surfaces and interfaces. Modeling and atomistic simulations

    Energy Technology Data Exchange (ETDEWEB)

    Liedke, Bartosz

    2011-03-24

    Self-organization of regular surface pattern under ion beam erosion was described in detail by Navez in 1962. Several years later in 1986 Bradley and Harper (BH) published the first self-consistent theory on this phenomenon based on the competition of surface roughening described by Sigmund's sputter theory and surface smoothing by Mullins-Herring diffusion. Many papers that followed BH theory introduced other processes responsible for the surface patterning e.g. viscous flow, redeposition, phase separation, preferential sputtering, etc. The present understanding is still not sufficient to specify the dominant driving forces responsible for self-organization. 3D atomistic simulations can improve the understanding by reproducing the pattern formation with the detailed microscopic description of the driving forces. 2D simulations published so far can contribute to this understanding only partially. A novel program package for 3D atomistic simulations called TRIDER (TRansport of Ions in matter with DEfect Relaxation), which unifies full collision cascade simulation with atomistic relaxation processes, has been developed. The collision cascades are provided by simulations based on the Binary Collision Approximation, and the relaxation processes are simulated with the 3D lattice kinetic Monte-Carlo method. This allows, without any phenomenological model, a full 3D atomistic description on experimental spatiotemporal scales. Recently discussed new mechanisms of surface patterning like ballistic mass drift or the dependence of the local morphology on sputtering yield are inherently included in our atomistic approach. The atomistic 3D simulations do not depend so much on experimental assumptions like reported 2D simulations or continuum theories. The 3D computer experiments can even be considered as 'cleanest' possible experiments for checking continuum theories. This work aims mainly at the methodology of a novel atomistic approach, showing that: (i) In

  5. Specific material effects of wear-particle-induced inflammation and osteolysis at the bone–implant interface: A rat model

    Directory of Open Access Journals (Sweden)

    Lisa K. Longhofer

    2017-01-01

    Conclusion: Different biomaterials in particulate form exert different forms of adverse effects in terms of the amount of osteolysis and inflammatory reactions on bone tissue at the bone–implant interface. It provides information for engineering more appropriate materials for arthroplasty components.

  6. Brain-Computer Interface Controlled Cyborg: Establishing a Functional Information Transfer Pathway from Human Brain to Cockroach Brain.

    Science.gov (United States)

    Li, Guangye; Zhang, Dingguo

    2016-01-01

    An all-chain-wireless brain-to-brain system (BTBS), which enabled motion control of a cyborg cockroach via human brain, was developed in this work. Steady-state visual evoked potential (SSVEP) based brain-computer interface (BCI) was used in this system for recognizing human motion intention and an optimization algorithm was proposed in SSVEP to improve online performance of the BCI. The cyborg cockroach was developed by surgically integrating a portable microstimulator that could generate invasive electrical nerve stimulation. Through Bluetooth communication, specific electrical pulse trains could be triggered from the microstimulator by BCI commands and were sent through the antenna nerve to stimulate the brain of cockroach. Serial experiments were designed and conducted to test overall performance of the BTBS with six human subjects and three cockroaches. The experimental results showed that the online classification accuracy of three-mode BCI increased from 72.86% to 78.56% by 5.70% using the optimization algorithm and the mean response accuracy of the cyborgs using this system reached 89.5%. Moreover, the results also showed that the cyborg could be navigated by the human brain to complete walking along an S-shape track with the success rate of about 20%, suggesting the proposed BTBS established a feasible functional information transfer pathway from the human brain to the cockroach brain.

  7. Transfer Learning for SSVEP Electroencephalography Based Brain–Computer Interfaces Using Learn++.NSE and Mutual Information

    Directory of Open Access Journals (Sweden)

    Matthew Sybeldon

    2017-01-01

    Full Text Available Brain–Computer Interfaces (BCI using Steady-State Visual Evoked Potentials (SSVEP are sometimes used by injured patients seeking to use a computer. Canonical Correlation Analysis (CCA is seen as state-of-the-art for SSVEP BCI systems. However, this assumes that the user has full control over their covert attention, which may not be the case. This introduces high calibration requirements when using other machine learning techniques. These may be circumvented by using transfer learning to utilize data from other participants. This paper proposes a combination of ensemble learning via Learn++ for Nonstationary Environments (Learn++.NSEand similarity measures such as mutual information to identify ensembles of pre-existing data that result in higher classification. Results show that this approach performed worse than CCA in participants with typical SSVEP responses, but outperformed CCA in participants whose SSVEP responses violated CCA assumptions. This indicates that similarity measures and Learn++.NSE can introduce a transfer learning mechanism to bring SSVEP system accessibility to users unable to control their covert attention.

  8. The successful implementation of a licensed data management interface between a Sunquest(®) laboratory information system and an AB SCIEX™ mass spectrometer.

    Science.gov (United States)

    French, Deborah; Terrazas, Enrique

    2013-01-01

    Interfacing complex laboratory equipment to laboratory information systems (LIS) has become a more commonly encountered problem in clinical laboratories, especially for instruments that do not have an interface provided by the vendor. Liquid chromatography-tandem mass spectrometry is a great example of such complex equipment, and has become a frequent addition to clinical laboratories. As the testing volume on such instruments can be significant, manual data entry will also be considerable and the potential for concomitant transcription errors arises. Due to this potential issue, our aim was to interface an AB SCIEX™ mass spectrometer to our Sunquest(®) LIS. WE LICENSED SOFTWARE FOR THE DATA MANAGEMENT INTERFACE FROM THE UNIVERSITY OF PITTSBURGH, BUT EXTENDED THIS WORK AS FOLLOWS: The interface was designed so that it would accept a text file exported from the AB SCIEX™ × 5500 QTrap(®) mass spectrometer, pre-process the file (using newly written code) into the correct format and upload it into Sunquest(®) via file transfer protocol. The licensed software handled the majority of the interface tasks with the exception of converting the output from the Analyst(®) software to the required Sunquest(®) import format. This required writing of a "pre-processor" by one of the authors which was easily integrated with the supplied software. We successfully implemented the data management interface licensed from the University of Pittsburgh. Given the coding that was required to write the pre-processor, and alterations to the source code that were performed when debugging the software, we would suggest that before a laboratory decides to implement such an interface, it would be necessary to have a competent computer programmer available.

  9. The successful implementation of a licensed data management interface between a Sunquest® laboratory information system and an AB SCIEX TM mass spectrometer

    Directory of Open Access Journals (Sweden)

    Deborah French

    2013-01-01

    Full Text Available Background: Interfacing complex laboratory equipment to laboratory information systems (LIS has become a more commonly encountered problem in clinical laboratories, especially for instruments that do not have an interface provided by the vendor. Liquid chromatography-tandem mass spectrometry is a great example of such complex equipment, and has become a frequent addition to clinical laboratories. As the testing volume on such instruments can be significant, manual data entry will also be considerable and the potential for concomitant transcription errors arises. Due to this potential issue, our aim was to interface an AB SCIEX TM mass spectrometer to our Sunquest® LIS. Materials and Methods: We licensed software for the data management interface from the University of Pittsburgh, but extended this work as follows: The interface was designed so that it would accept a text file exported from the AB SCIEX TM × 5500 QTrap® mass spectrometer, pre-process the file (using newly written code into the correct format and upload it into Sunquest® via file transfer protocol. Results: The licensed software handled the majority of the interface tasks with the exception of converting the output from the Analyst® software to the required Sunquest® import format. This required writing of a "pre-processor" by one of the authors which was easily integrated with the supplied software. Conclusions: We successfully implemented the data management interface licensed from the University of Pittsburgh. Given the coding that was required to write the pre-processor, and alterations to the source code that were performed when debugging the software, we would suggest that before a laboratory decides to implement such an interface, it would be necessary to have a competent computer programmer available.

  10. Modeling biochemical transformation processes and information processing with Narrator

    Directory of Open Access Journals (Sweden)

    Palfreyman Niall M

    2007-03-01

    Full Text Available Abstract Background Software tools that model and simulate the dynamics of biological processes and systems are becoming increasingly important. Some of these tools offer sophisticated graphical user interfaces (GUIs, which greatly enhance their acceptance by users. Such GUIs are based on symbolic or graphical notations used to describe, interact and communicate the developed models. Typically, these graphical notations are geared towards conventional biochemical pathway diagrams. They permit the user to represent the transport and transformation of chemical species and to define inhibitory and stimulatory dependencies. A critical weakness of existing tools is their lack of supporting an integrative representation of transport, transformation as well as biological information processing. Results Narrator is a software tool facilitating the development and simulation of biological systems as Co-dependence models. The Co-dependence Methodology complements the representation of species transport and transformation together with an explicit mechanism to express biological information processing. Thus, Co-dependence models explicitly capture, for instance, signal processing structures and the influence of exogenous factors or events affecting certain parts of a biological system or process. This combined set of features provides the system biologist with a powerful tool to describe and explore the dynamics of life phenomena. Narrator's GUI is based on an expressive graphical notation which forms an integral part of the Co-dependence Methodology. Behind the user-friendly GUI, Narrator hides a flexible feature which makes it relatively easy to map models defined via the graphical notation to mathematical formalisms and languages such as ordinary differential equations, the Systems Biology Markup Language or Gillespie's direct method. This powerful feature facilitates reuse, interoperability and conceptual model development. Conclusion Narrator is a

  11. Modeling biochemical transformation processes and information processing with Narrator.

    Science.gov (United States)

    Mandel, Johannes J; Fuss, Hendrik; Palfreyman, Niall M; Dubitzky, Werner

    2007-03-27

    Software tools that model and simulate the dynamics of biological processes and systems are becoming increasingly important. Some of these tools offer sophisticated graphical user interfaces (GUIs), which greatly enhance their acceptance by users. Such GUIs are based on symbolic or graphical notations used to describe, interact and communicate the developed models. Typically, these graphical notations are geared towards conventional biochemical pathway diagrams. They permit the user to represent the transport and transformation of chemical species and to define inhibitory and stimulatory dependencies. A critical weakness of existing tools is their lack of supporting an integrative representation of transport, transformation as well as biological information processing. Narrator is a software tool facilitating the development and simulation of biological systems as Co-dependence models. The Co-dependence Methodology complements the representation of species transport and transformation together with an explicit mechanism to express biological information processing. Thus, Co-dependence models explicitly capture, for instance, signal processing structures and the influence of exogenous factors or events affecting certain parts of a biological system or process. This combined set of features provides the system biologist with a powerful tool to describe and explore the dynamics of life phenomena. Narrator's GUI is based on an expressive graphical notation which forms an integral part of the Co-dependence Methodology. Behind the user-friendly GUI, Narrator hides a flexible feature which makes it relatively easy to map models defined via the graphical notation to mathematical formalisms and languages such as ordinary differential equations, the Systems Biology Markup Language or Gillespie's direct method. This powerful feature facilitates reuse, interoperability and conceptual model development. Narrator is a flexible and intuitive systems biology tool. It is

  12. The Hyper-Envelope Modeling Interface (HEMI): A Novel Approach Illustrated Through Predicting Tamarisk (Tamarix spp.) Habitat in the Western USA

    Science.gov (United States)

    Graham, Jim; Young, Nick; Jarnevich, Catherine S.; Newman, Greg; Evangelista, Paul; Stohlgren, Thomas J.

    2013-01-01

    Habitat suitability maps are commonly created by modeling a species’ environmental niche from occurrences and environmental characteristics. Here, we introduce the hyper-envelope modeling interface (HEMI), providing a new method for creating habitat suitability models using Bezier surfaces to model a species niche in environmental space. HEMI allows modeled surfaces to be visualized and edited in environmental space based on expert knowledge and does not require absence points for model development. The modeled surfaces require relatively few parameters compared to similar modeling approaches and may produce models that better match ecological niche theory. As a case study, we modeled the invasive species tamarisk (Tamarix spp.) in the western USA. We compare results from HEMI with those from existing similar modeling approaches (including BioClim, BioMapper, and Maxent). We used synthetic surfaces to create visualizations of the various models in environmental space and used modified area under the curve (AUC) statistic and akaike information criterion (AIC) as measures of model performance. We show that HEMI produced slightly better AUC values, except for Maxent and better AIC values overall. HEMI created a model with only ten parameters while Maxent produced a model with over 100 and BioClim used only eight. Additionally, HEMI allowed visualization and editing of the model in environmental space to develop alternative potential habitat scenarios. The use of Bezier surfaces can provide simple models that match our expectations of biological niche models and, at least in some cases, out-perform more complex approaches.

  13. The Hyper-Envelope Modeling Interface (HEMI): A Novel Approach Illustrated Through Predicting Tamarisk ( Tamarix spp.) Habitat in the Western USA

    Science.gov (United States)

    Graham, Jim; Young, Nick; Jarnevich, Catherine S.; Newman, Greg; Evangelista, Paul; Stohlgren, Thomas J.

    2013-10-01

    Habitat suitability maps are commonly created by modeling a species' environmental niche from occurrences and environmental characteristics. Here, we introduce the hyper-envelope modeling interface (HEMI), providing a new method for creating habitat suitability models using Bezier surfaces to model a species niche in environmental space. HEMI allows modeled surfaces to be visualized and edited in environmental space based on expert knowledge and does not require absence points for model development. The modeled surfaces require relatively few parameters compared to similar modeling approaches and may produce models that better match ecological niche theory. As a case study, we modeled the invasive species tamarisk ( Tamarix spp.) in the western USA. We compare results from HEMI with those from existing similar modeling approaches (including BioClim, BioMapper, and Maxent). We used synthetic surfaces to create visualizations of the various models in environmental space and used modified area under the curve (AUC) statistic and akaike information criterion (AIC) as measures of model performance. We show that HEMI produced slightly better AUC values, except for Maxent and better AIC values overall. HEMI created a model with only ten parameters while Maxent produced a model with over 100 and BioClim used only eight. Additionally, HEMI allowed visualization and editing of the model in environmental space to develop alternative potential habitat scenarios. The use of Bezier surfaces can provide simple models that match our expectations of biological niche models and, at least in some cases, out-perform more complex approaches.

  14. A quantitative approach to modeling the information processing of NPP operators under input information overload

    International Nuclear Information System (INIS)

    Kim, Jong Hyun; Seong, Poong Hyun

    2002-01-01

    This paper proposes a quantitative approach to modeling the information processing of NPP operators. The aim of this work is to derive the amount of the information processed during a certain control task under input information overload. We primarily develop the information processing model having multiple stages, which contains information flow. Then the uncertainty of the information is quantified using the Conant's model, a kind of information theory. We also investigate the applicability of this approach to quantifying the information reduction of operators under the input information overload

  15. Public health component in building information modeling

    Science.gov (United States)

    Trufanov, A. I.; Rossodivita, A.; Tikhomirov, A. A.; Berestneva, O. G.; Marukhina, O. V.

    2018-05-01

    A building information modelling (BIM) conception has established itself as an effective and practical approach to plan, design, construct, and manage buildings and infrastructure. Analysis of the governance literature has shown that the BIM-developed tools do not take fully into account the growing demands from ecology and health fields. In this connection, it is possible to offer an optimal way of adapting such tools to the necessary consideration of the sanitary and hygienic specifications of materials used in construction industry. It is proposed to do it through the introduction of assessments that meet the requirements of national sanitary standards. This approach was demonstrated in the case study of Revit® program.

  16. A vector radiative transfer model for coupled atmosphere and ocean systems with a rough interface

    International Nuclear Information System (INIS)

    Zhai Pengwang; Hu Yongxiang; Chowdhary, Jacek; Trepte, Charles R.; Lucker, Patricia L.; Josset, Damien B.

    2010-01-01

    We report on an exact vector (polarized) radiative transfer (VRT) model for coupled atmosphere and ocean systems. This VRT model is based on the successive order of scattering (SOS) method, which virtually takes all the multiple scattering processes into account, including atmospheric scattering, oceanic scattering, reflection and transmission through the rough ocean surface. The isotropic Cox-Munk wave model is used to derive the ref and transmission matrices for the rough ocean surface. Shadowing effects are included by the shadowing function. We validated the SOS results by comparing them with those calculated by two independent codes based on the doubling/adding and Monte Carlo methods. Two error analyses related to the ocean color remote sensing are performed in the coupled atmosphere and ocean systems. One is the scalar error caused by ignoring the polarization in the whole system. The other is the error introduced by ignoring the polarization of the light transmitted through the ocean interface. Both errors are significant for the cases studied. This code fits for the next generation of ocean color study because it converges fast for absorbing medium as, for instance, ocean.

  17. Thermal modeling of head disk interface system in heat assisted magnetic recording

    Energy Technology Data Exchange (ETDEWEB)

    Vemuri, Sesha Hari; Seung Chung, Pil; Jhon, Myung S., E-mail: mj3a@andrew.cmu.edu [Department of Chemical Engineering and Data Storage Systems Center, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, Pennsylvania 15213 (United States); Min Kim, Hyung [Department of Mechanical System Engineering, Kyonggi University, Suwon, Gyeonggi-do 440-746 (Korea, Republic of)

    2014-05-07

    A thorough understanding of the temperature profiles introduced by the heat assisted magnetic recording is required to maintain the hotspot at the desired location on the disk with minimal heat damage to other components. Here, we implement a transient mesoscale modeling methodology termed lattice Boltzmann method (LBM) for phonons (which are primary carriers of energy) in the thermal modeling of the head disk interface (HDI) components, namely, carbon overcoat (COC). The LBM can provide more accurate results compared to conventional Fourier methodology by capturing the nanoscale phenomena due to ballistic heat transfer. We examine the in-plane and out-of-plane heat transfer in the COC via analyzing the temperature profiles with a continuously focused and pulsed laser beam on a moving disk. Larger in-plane hotspot widening is observed in continuously focused laser beam compared to a pulsed laser. A pulsed laser surface develops steeper temperature gradients compared to continuous hotspot. Furthermore, out-of-plane heat transfer from the COC to the media is enhanced with a continuous laser beam then a pulsed laser, while the temperature takes around 140 fs to reach the bottom surface of the COC. Our study can lead to a realistic thermal model describing novel HDI material design criteria for the next generation of hard disk drives with ultra high recording densities.

  18. Predictions of mixed mode interface crack growth using a cohesive zone model for ductile fracture

    DEFF Research Database (Denmark)

    Tvergaard, Viggo

    2004-01-01

    Special interface elements that account for ductile failure by the nucleation and growth of voids to coalescence are used to analyse crack growth. In these elements the stress component tangential to the interface is accounted for, as determined by the requirement of compatibility with the surrou......Special interface elements that account for ductile failure by the nucleation and growth of voids to coalescence are used to analyse crack growth. In these elements the stress component tangential to the interface is accounted for, as determined by the requirement of compatibility...

  19. Multi-scale diffuse interface modeling of multi-component two-phase flow with partial miscibility

    Science.gov (United States)

    Kou, Jisheng; Sun, Shuyu

    2016-08-01

    In this paper, we introduce a diffuse interface model to simulate multi-component two-phase flow with partial miscibility based on a realistic equation of state (e.g. Peng-Robinson equation of state). Because of partial miscibility, thermodynamic relations are used to model not only interfacial properties but also bulk properties, including density, composition, pressure, and realistic viscosity. As far as we know, this effort is the first time to use diffuse interface modeling based on equation of state for modeling of multi-component two-phase flow with partial miscibility. In numerical simulation, the key issue is to resolve the high contrast of scales from the microscopic interface composition to macroscale bulk fluid motion since the interface has a nanoscale thickness only. To efficiently solve this challenging problem, we develop a multi-scale simulation method. At the microscopic scale, we deduce a reduced interfacial equation under reasonable assumptions, and then we propose a formulation of capillary pressure, which is consistent with macroscale flow equations. Moreover, we show that Young-Laplace equation is an approximation of this capillarity formulation, and this formulation is also consistent with the concept of Tolman length, which is a correction of Young-Laplace equation. At the macroscopical scale, the interfaces are treated as discontinuous surfaces separating two phases of fluids. Our approach differs from conventional sharp-interface two-phase flow model in that we use the capillary pressure directly instead of a combination of surface tension and Young-Laplace equation because capillarity can be calculated from our proposed capillarity formulation. A compatible condition is also derived for the pressure in flow equations. Furthermore, based on the proposed capillarity formulation, we design an efficient numerical method for directly computing the capillary pressure between two fluids composed of multiple components. Finally, numerical tests

  20. Multi-scale diffuse interface modeling of multi-component two-phase flow with partial miscibility

    KAUST Repository

    Kou, Jisheng

    2016-05-10

    In this paper, we introduce a diffuse interface model to simulate multi-component two-phase flow with partial miscibility based on a realistic equation of state (e.g. Peng-Robinson equation of state). Because of partial miscibility, thermodynamic relations are used to model not only interfacial properties but also bulk properties, including density, composition, pressure, and realistic viscosity. As far as we know, this effort is the first time to use diffuse interface modeling based on equation of state for modeling of multi-component two-phase flow with partial miscibility. In numerical simulation, the key issue is to resolve the high contrast of scales from the microscopic interface composition to macroscale bulk fluid motion since the interface has a nanoscale thickness only. To efficiently solve this challenging problem, we develop a multi-scale simulation method. At the microscopic scale, we deduce a reduced interfacial equation under reasonable assumptions, and then we propose a formulation of capillary pressure, which is consistent with macroscale flow equations. Moreover, we show that Young-Laplace equation is an approximation of this capillarity formulation, and this formulation is also consistent with the concept of Tolman length, which is a correction of Young-Laplace equation. At the macroscopical scale, the interfaces are treated as discontinuous surfaces separating two phases of fluids. Our approach differs from conventional sharp-interface two-phase flow model in that we use the capillary pressure directly instead of a combination of surface tension and Young-Laplace equation because capillarity can be calculated from our proposed capillarity formulation. A compatible condition is also derived for the pressure in flow equations. Furthermore, based on the proposed capillarity formulation, we design an efficient numerical method for directly computing the capillary pressure between two fluids composed of multiple components. Finally, numerical tests