WorldWideScience

Sample records for model interfacing information

  1. Information visualization to user-friendly interface construction for information retrieval systems

    Directory of Open Access Journals (Sweden)

    Jessica Monique de Lira Vieira

    2011-10-01

    Full Text Available The information presented through visualization help the Information Retrieval System (IRS to reach its main goal: to retrieve relevant information that meets the informational needs of its users. The objective of this article is to describe and analyze techniques proposed by the Information Visualization area and interface models discussed in Information Science Literature, which applied to graphical interface construction would facilitate the appropriation of information by the users of IRS and would help them to search, browse and retrieve information. The methodology consists of a literature review focusing on the potential contribution of the visual representation of information in the development of user-friendly interfaces to IRS, as well as identification and analyses of visualizations used as interfaces by IRS. The use of visualizations is of great importance in the communication between SRI and users, because the information presented through visual representation are better understood by user and allow the discovery of new knowledge.

  2. Models of information exchange between radio interfaces of Wi-Fi group of standards

    Science.gov (United States)

    Litvinskaya, O. S.

    2018-05-01

    This paper offers models of information exchange between radio interfaces of the Wi-Fi group of standards by the example of a real facility management system for the oil and gas industry. Interaction between the MU-MIMO and MIMO technologies is analyzed. An optimal variant of information exchange is proposed.

  3. Interfaces for End-User Information Seeking.

    Science.gov (United States)

    Marchionini, Gary

    1992-01-01

    Discusses essential features of interfaces to support end-user information seeking. Highlights include cognitive engineering; task models and task analysis; the problem-solving nature of information seeking; examples of systems for end-users, including online public access catalogs (OPACs), hypertext, and help systems; and suggested research…

  4. Information interfaces for process plant diagnosis

    International Nuclear Information System (INIS)

    Lind, M.

    1984-02-01

    The paper describes a systematic approach to the design of information interfaces for operator support in diagnosing complex systems faults. The need of interpreting primary measured plant variables within the framework of different system representations organized into an abstraction hierarchy is identified from an analysis of the problem of diagnosing complex systems. A formalized approach to the modelling of production systems, called Multilevel Flow Modelling, is described. A MFM model specifies plant control requirements and the associated need for plant information and provide a consistent context for the interpretation of real time plant signals in diagnosis of malfunctions. The use of MFM models as a basis for functional design of the plant instrumentation system is outlined, and the use of knowledge Based (Expert) Systems for the design of man-machine interfaces is mentioned. Such systems would allow an active user participation in diagnosis and thus provide the basis for cooperative problem solving. 14 refs. (author)

  5. Interface models

    DEFF Research Database (Denmark)

    Ravn, Anders P.; Staunstrup, Jørgen

    1994-01-01

    This paper proposes a model for specifying interfaces between concurrently executing modules of a computing system. The model does not prescribe a particular type of communication protocol and is aimed at describing interfaces between both software and hardware modules or a combination of the two....... The model describes both functional and timing properties of an interface...

  6. Modeling reliability measurement of interface on information system: Towards the forensic of rules

    Science.gov (United States)

    Nasution, M. K. M.; Sitompul, Darwin; Harahap, Marwan

    2018-02-01

    Today almost all machines depend on the software. As a software and hardware system depends also on the rules that are the procedures for its use. If the procedure or program can be reliably characterized by involving the concept of graph, logic, and probability, then regulatory strength can also be measured accordingly. Therefore, this paper initiates an enumeration model to measure the reliability of interfaces based on the case of information systems supported by the rules of use by the relevant agencies. An enumeration model is obtained based on software reliability calculation.

  7. Interfacing real-time information with OILMAP

    International Nuclear Information System (INIS)

    Howlett, E.; Jayko, K.; Spaulding, M.

    1993-01-01

    OILMAP is a state-of-the-art, microcomputer-based oil spill response system applicable to oil spill contingency planning and real-time response for any location in the world. OILMAP has a graphic user interface and was designed in a modular framework so that different spill models could be incorporated into the system, as well as a suite of sophisticated data management tools, without increasing the complexity of the user interface. The basic OILMAP configuration contains a surface trajectory model intended for rapid, first-order estimates of spill movement. A variety of additional models are available within the OILMAP shell to address issues such as weathering, cleanup activities, and probabilities of oiling. A simplified geographic information system (GIS) allows display and manipulation of point, line, and area data geographically referenced to the spill domain. The GIS can import raster data so that images collected by satellite and aerial photography may be displayed. Several new capabilities have been implemented for OILMAP that allow real-time data to be integrated. These features include linking with the OILTRACKER free-floating buoys via a global positioning system, linking of hydrodynamic data from the Ocean Data and Information Network, the Harvard ocean forecasting system, and SeaSonde radar, and the capability of importing spill observations from any remotely sensed data. A further link between OILMAP's GIS and spill models has been developed which allows model predictions to be corrected to observed oil locations while the model runs. 13 refs., 6 figs

  8. Modeling of interface roughness in thermoelectric composite materials

    International Nuclear Information System (INIS)

    Gather, F; Heiliger, C; Klar, P J

    2011-01-01

    We use a network model to calculate the influence of the mesoscopic interface structure on the thermoelectric properties of superlattice structures consisting of alternating layers of materials A and B. The thermoelectric figure of merit of such a composite material depends on the layer thickness, if interface resistances are accounted for, and can be increased by proper interface design. In general, interface roughness reduces the figure of merit, again compared to the case of ideal interfaces. However, the strength of this reduction depends strongly on the type of interface roughness. Smooth atomic surface diffusion leading to alloying of materials A and B causes the largest reduction of the figure of merit. Consequently, in real structures, it is important not only to minimize interface roughness, but also to control the type of roughness. Although the microscopic effects of interfaces are only empirically accounted for, using a network model can yield useful information about the dependence of the macroscopic transport coefficients on the mesoscopic disorder in structured thermoelectric materials.

  9. Tightness of voter model interfaces

    Czech Academy of Sciences Publication Activity Database

    Sturm, A.; Swart, Jan M.

    2008-01-01

    Roč. 13, - (2008), s. 165-174 ISSN 1083-589X R&D Projects: GA ČR GA201/06/1323; GA ČR GA201/07/0237 Institutional research plan: CEZ:AV0Z10750506 Keywords : long range voter model * swapping voter model * interface tightness * exclusion process Subject RIV: BD - Theory of Information Impact factor: 0.392, year: 2008 http://www.emis.de/journals/EJP-ECP/_ejpecp/index.html

  10. Display analysis with the optimal control model of the human operator. [pilot-vehicle display interface and information processing

    Science.gov (United States)

    Baron, S.; Levison, W. H.

    1977-01-01

    Application of the optimal control model of the human operator to problems in display analysis is discussed. Those aspects of the model pertaining to the operator-display interface and to operator information processing are reviewed and discussed. The techniques are then applied to the analysis of advanced display/control systems for a Terminal Configured Vehicle. Model results are compared with those obtained in a large, fixed-base simulation.

  11. Validating the Technology Acceptance Model in the Context of the Laboratory Information System-Electronic Health Record Interface System

    Science.gov (United States)

    Aquino, Cesar A.

    2014-01-01

    This study represents a research validating the efficacy of Davis' Technology Acceptance Model (TAM) by pairing it with the Organizational Change Readiness Theory (OCRT) to develop another extension to the TAM, using the medical Laboratory Information Systems (LIS)--Electronic Health Records (EHR) interface as the medium. The TAM posits that it is…

  12. Operator interface design considerations for a PACS information management system

    Science.gov (United States)

    Steinke, James E.; Nabijee, Kamal H.; Freeman, Rick H.; Prior, Fred W.

    1990-08-01

    As prototype PACS grow into fully digital departmental and hospital-wide systems, effective information storage and retrieval mechanisms become increasingly important. Thus far, designers of PACS workstations have concentrated on image communication and display functionality. The new challenge is to provide appropriate operator interface environments to facilitate information retrieval. The "Marburg Model" 1 provides a detailed analysis of the functions, control flows and data structures used in Radiology. It identifies a set of "actors" who perform information manipulation functions. Drawing on this model and its associated methodology it is possible to identify four modes of use of information systems in Radiology: Clinical Routine, Research, Consultation, and Administration. Each mode has its own specific access requirements and views of information. An operator interface strategy appropriate for each mode will be proposed. Clinical Routine mode is the principal concern of PACS primary diagnosis workstations. In a full PACS implementation, such workstations must provide a simple and consistent navigational aid for the on-line image database, a local work list of cases to be reviewed, and easy access to information from other hospital information systems. A hierarchical method of information access is preferred because it provides the ability to start at high-level entities and iteratively narrow the scope of information from which to select subsequent operations. An implementation using hierarchical, nested software windows which fulfills such requirements shall be examined.

  13. Natural brain-information interfaces: Recommending information by relevance inferred from human brain signals

    Science.gov (United States)

    Eugster, Manuel J. A.; Ruotsalo, Tuukka; Spapé, Michiel M.; Barral, Oswald; Ravaja, Niklas; Jacucci, Giulio; Kaski, Samuel

    2016-01-01

    Finding relevant information from large document collections such as the World Wide Web is a common task in our daily lives. Estimation of a user’s interest or search intention is necessary to recommend and retrieve relevant information from these collections. We introduce a brain-information interface used for recommending information by relevance inferred directly from brain signals. In experiments, participants were asked to read Wikipedia documents about a selection of topics while their EEG was recorded. Based on the prediction of word relevance, the individual’s search intent was modeled and successfully used for retrieving new relevant documents from the whole English Wikipedia corpus. The results show that the users’ interests toward digital content can be modeled from the brain signals evoked by reading. The introduced brain-relevance paradigm enables the recommendation of information without any explicit user interaction and may be applied across diverse information-intensive applications. PMID:27929077

  14. Interface methods for using intranet portal organizational memory information system.

    Science.gov (United States)

    Ji, Yong Gu; Salvendy, Gavriel

    2004-12-01

    In this paper, an intranet portal is considered as an information infrastructure (organizational memory information system, OMIS) supporting organizational learning. The properties and the hierarchical structure of information and knowledge in an intranet portal OMIS was identified as a problem for navigation tools of an intranet portal interface. The problem relates to navigation and retrieval functions of intranet portal OMIS and is expected to adversely affect user performance, satisfaction, and usefulness. To solve the problem, a conceptual model for navigation tools of an intranet portal interface was proposed and an experiment using a crossover design was conducted with 10 participants. In the experiment, a separate access method (tabbed tree tool) was compared to an unified access method (single tree tool). The results indicate that each information/knowledge repository for which a user has a different structural knowledge should be handled separately with a separate access to increase user satisfaction and the usefulness of the OMIS and to improve user performance in navigation.

  15. The Knowledge Base Interface for Parametric Grid Information

    International Nuclear Information System (INIS)

    Hipp, James R.; Simons, Randall W.; Young, Chris J.

    1999-01-01

    The parametric grid capability of the Knowledge Base (KBase) provides an efficient robust way to store and access interpolatable information that is needed to monitor the Comprehensive Nuclear Test Ban Treaty. To meet both the accuracy and performance requirements of operational monitoring systems, we use an approach which combines the error estimation of kriging with the speed and robustness of Natural Neighbor Interpolation. The method involves three basic steps: data preparation, data storage, and data access. In past presentations we have discussed in detail the first step. In this paper we focus on the latter two, describing in detail the type of information which must be stored and the interface used to retrieve parametric grid data from the Knowledge Base. Once data have been properly prepared, the information (tessellation and associated value surfaces) needed to support the interface functionality, can be entered into the KBase. The primary types of parametric grid data that must be stored include (1) generic header information; (2) base model, station, and phase names and associated ID's used to construct surface identifiers; (3) surface accounting information; (4) tessellation accounting information; (5) mesh data for each tessellation; (6) correction data defined for each surface at each node of the surfaces owning tessellation (7) mesh refinement calculation set-up and flag information; and (8) kriging calculation set-up and flag information. The eight data components not only represent the results of the data preparation process but also include all required input information for several population tools that would enable the complete regeneration of the data results if that should be necessary

  16. Financial literacy: an interface between fi nancial information and ...

    African Journals Online (AJOL)

    the cognitive ability to understand fi nancial information in the context of these ... the interface (or gap) between information (matter) and decision-making (mind). ... Awareness of fi nancial literacy from the interface perspective promotes a ...

  17. User interfaces of information retrieval systems and user friendliness

    OpenAIRE

    Polona Vilar; Maja Žumer

    2008-01-01

    The paper deals with the characteristics of user interfaces of information retrieval systems with the emphasis on design and evaluation. It presents users’ information retrieval tasks and the functions which are offered through interfaces. Design rules, guidelines and standards are presented, as well as criteria and methods for evaluation. Special emphasis is placed on the concept of user friendliness as one of the most important characteristic of the user interfaces. Various definitions of u...

  18. Model-to-model interface for multiscale materials modeling

    Energy Technology Data Exchange (ETDEWEB)

    Antonelli, Perry Edward [Iowa State Univ., Ames, IA (United States)

    2017-12-17

    A low-level model-to-model interface is presented that will enable independent models to be linked into an integrated system of models. The interface is based on a standard set of functions that contain appropriate export and import schemas that enable models to be linked with no changes to the models themselves. These ideas are presented in the context of a specific multiscale material problem that couples atomistic-based molecular dynamics calculations to continuum calculations of fluid ow. These simulations will be used to examine the influence of interactions of the fluid with an adjacent solid on the fluid ow. The interface will also be examined by adding it to an already existing modeling code, Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) and comparing it with our own molecular dynamics code.

  19. User interfaces of information retrieval systems and user friendliness

    Directory of Open Access Journals (Sweden)

    Polona Vilar

    2008-01-01

    Full Text Available The paper deals with the characteristics of user interfaces of information retrieval systems with the emphasis on design and evaluation. It presents users’ information retrieval tasks and the functions which are offered through interfaces. Design rules, guidelines and standards are presented, as well as criteria and methods for evaluation. Special emphasis is placed on the concept of user friendliness as one of the most important characteristic of the user interfaces. Various definitions of user friendliness are presented and their elements are also discussed. In the end, the paper shows how user interfaces should be designed, taken into consideration all these criteria.

  20. Modeling soft interface dominated systems

    NARCIS (Netherlands)

    Lamorgese, A.; Mauri, R.; Sagis, L.M.C.

    2017-01-01

    The two main continuum frameworks used for modeling the dynamics of soft multiphase systems are the Gibbs dividing surface model, and the diffuse interface model. In the former the interface is modeled as a two dimensional surface, and excess properties such as a surface density, or surface energy

  1. Designing an information search interface for younger and older adults.

    Science.gov (United States)

    Pak, Richard; Price, Margaux M

    2008-08-01

    The present study examined Web-based information retrieval as a function of age for two information organization schemes: hierarchical organization and one organized around tags or keywords. Older adults' performance in information retrieval tasks has traditionally been lower compared with younger adults'. The current study examined the degree to which information organization moderated age-related performance differences on an information retrieval task. The theory of fluid and crystallized intelligence may provide insight into different kinds of information architectures that may reduce age-related differences in computer-based information retrieval performance. Fifty younger (18-23 years of age) and 50 older (55-76 years of age) participants browsed a Web site for answers to specific questions. Half of the participants browsed the hierarchically organized system (taxonomy), which maintained a one-to-one relationship between menu link and page, whereas the other half browsed the tag-based interface, with a many-to-one relationship between menu and page. This difference was expected to interact with age-related differences in fluid and crystallized intelligence. Age-related differences in information retrieval performance persisted; however, a tag-based retrieval interface reduced age-related differences, as compared with a taxonomical interface. Cognitive aging theory can lead to interface interventions that reduce age-related differences in performance with technology. In an information retrieval paradigm, older adults may be able to leverage their increased crystallized intelligence to offset fluid intelligence declines in a computer-based information search task. More research is necessary, but the results suggest that information retrieval interfaces organized around keywords may reduce age-related differences in performance.

  2. SatisFactory Common Information Data Exchange Model

    OpenAIRE

    CERTH

    2016-01-01

    This deliverable defines the Common Information Data Exchange Model (CIDEM). The aim of CIDEM is to provide a model of information elements (e.g. concepts, even, relations, interfaces) used for information exchange between components as well as for modelling work performed by other tasks (e.g. knowledge models to support human resources optimization). The CIDEM definition is considered as a shared vocabulary that enables to address the information needs for the SatisFactory framework components.

  3. Multiphase Microfluidics The Diffuse Interface Model

    CERN Document Server

    2012-01-01

    Multiphase flows are typically described assuming that the different phases are separated by a sharp interface, with appropriate boundary conditions. This approach breaks down whenever the lengthscale of the phenomenon that is being studied is comparable with the real interface thickness, as it happens, for example, in the coalescence and breakup of bubbles and drops, the wetting and dewetting of solid surfaces and, in general, im micro-devices. The diffuse interface model resolves these probems by assuming that all quantities can vary continuously, so that interfaces have a non-zero thickness, i.e. they are "diffuse". The contributions in this book review the theory and describe some relevant applications of the diffuse interface model for one-component, two-phase fluids and for liquid binary mixtures, to model multiphase flows in confined geometries.

  4. Impact of familiarity on information complexity in human-computer interfaces

    Directory of Open Access Journals (Sweden)

    Bakaev Maxim

    2016-01-01

    Full Text Available A quantitative measure of information complexity remains very much desirable in HCI field, since it may aid in optimization of user interfaces, especially in human-computer systems for controlling complex objects. Our paper is dedicated to exploration of subjective (subject-depended aspect of the complexity, conceptualized as information familiarity. Although research of familiarity in human cognition and behaviour is done in several fields, the accepted models in HCI, such as Human Processor or Hick-Hyman’s law do not generally consider this issue. In our experimental study the subjects performed search and selection of digits and letters, whose familiarity was conceptualized as frequency of occurrence in numbers and texts. The analysis showed significant effect of information familiarity on selection time and throughput in regression models, although the R2 values were somehow low. Still, we hope that our results might aid in quantification of information complexity and its further application for optimizing interaction in human-machine systems.

  5. Modeling Auditory-Haptic Interface Cues from an Analog Multi-line Telephone

    Science.gov (United States)

    Begault, Durand R.; Anderson, Mark R.; Bittner, Rachael M.

    2012-01-01

    The Western Electric Company produced a multi-line telephone during the 1940s-1970s using a six-button interface design that provided robust tactile, haptic and auditory cues regarding the "state" of the communication system. This multi-line telephone was used as a model for a trade study comparison of two interfaces: a touchscreen interface (iPad)) versus a pressure-sensitive strain gauge button interface (Phidget USB interface controllers). The experiment and its results are detailed in the authors' AES 133rd convention paper " Multimodal Information Management: Evaluation of Auditory and Haptic Cues for NextGen Communication Dispays". This Engineering Brief describes how the interface logic, visual indications, and auditory cues of the original telephone were synthesized using MAX/MSP, including the logic for line selection, line hold, and priority line activation.

  6. Developing the multi-level functioning interface framework for DER models

    DEFF Research Database (Denmark)

    Han, Xue; Bindner, Henrik W.; You, Shi

    2013-01-01

    The paper summarises several modelling applications of distributed energy resources (DERs) for various purposes, and describes the related operational issues regarding the complexity of the future distribution grid. Furthermore, a multi-level functioning interface framework is proposed for DER mo....... The information mapping for photovoltaic panel (PV) modelling is also provided as an example....

  7. Linking Informal and Formal Electronics Recycling via an Interface Organization

    Directory of Open Access Journals (Sweden)

    Yoshiaki Totoki

    2013-07-01

    Full Text Available Informal recycling of electronics in the developing world has emerged as a new global environmental concern. The primary approach to address this problem has been command-and-control policies that ban informal recycling and international trade in electronic scrap. These bans are difficult to enforce and also have negative effects by reducing reuse of electronics, and employment for people in poverty. An alternate approach is to link informal and formal sectors so as to maintain economic activity while mitigating environmental damages. This article explores the idea of an interface organization that purchases components and waste from informal dismantlers and passes them on to formal processors. Environmental, economic and social implications of interface organizations are discussed. The main environmental questions to resolve are what e-scrap components should be targeted by the interface organization, i.e., circuit boards, wires, and/or plastic parts. Economically, when formal recycling is more profitable (e.g., for circuit boards, the interface organization is revenue positive. However, price subsidies are needed for copper wires and residual waste to incentivize informal dismantlers to turn in for formal processing. Socially, the potential for corruption and gaming of the system is critical and needs to be addressed.

  8. Modeling Europa's Ice-Ocean Interface

    Science.gov (United States)

    Elsenousy, A.; Vance, S.; Bills, B. G.

    2014-12-01

    This work focuses on modeling the ice-ocean interface on Jupiter's Moon (Europa); mainly from the standpoint of heat and salt transfer relationship with emphasis on the basal ice growth rate and its implications to Europa's tidal response. Modeling the heat and salt flux at Europa's ice/ocean interface is necessary to understand the dynamics of Europa's ocean and its interaction with the upper ice shell as well as the history of active turbulence at this area. To achieve this goal, we used McPhee et al., 2008 parameterizations on Earth's ice/ocean interface that was developed to meet Europa's ocean dynamics. We varied one parameter at a time to test its influence on both; "h" the basal ice growth rate and on "R" the double diffusion tendency strength. The double diffusion tendency "R" was calculated as the ratio between the interface heat exchange coefficient αh to the interface salt exchange coefficient αs. Our preliminary results showed a strong double diffusion tendency R ~200 at Europa's ice-ocean interface for plausible changes in the heat flux due to onset or elimination of a hydrothermal activity, suggesting supercooling and a strong tendency for forming frazil ice.

  9. The intelligent user interface for NASA's advanced information management systems

    Science.gov (United States)

    Campbell, William J.; Short, Nicholas, Jr.; Rolofs, Larry H.; Wattawa, Scott L.

    1987-01-01

    NASA has initiated the Intelligent Data Management Project to design and develop advanced information management systems. The project's primary goal is to formulate, design and develop advanced information systems that are capable of supporting the agency's future space research and operational information management needs. The first effort of the project was the development of a prototype Intelligent User Interface to an operational scientific database, using expert systems and natural language processing technologies. An overview of Intelligent User Interface formulation and development is given.

  10. Translating building information modeling to building energy modeling using model view definition.

    Science.gov (United States)

    Jeong, WoonSeong; Kim, Jong Bum; Clayton, Mark J; Haberl, Jeff S; Yan, Wei

    2014-01-01

    This paper presents a new approach to translate between Building Information Modeling (BIM) and Building Energy Modeling (BEM) that uses Modelica, an object-oriented declarative, equation-based simulation environment. The approach (BIM2BEM) has been developed using a data modeling method to enable seamless model translations of building geometry, materials, and topology. Using data modeling, we created a Model View Definition (MVD) consisting of a process model and a class diagram. The process model demonstrates object-mapping between BIM and Modelica-based BEM (ModelicaBEM) and facilitates the definition of required information during model translations. The class diagram represents the information and object relationships to produce a class package intermediate between the BIM and BEM. The implementation of the intermediate class package enables system interface (Revit2Modelica) development for automatic BIM data translation into ModelicaBEM. In order to demonstrate and validate our approach, simulation result comparisons have been conducted via three test cases using (1) the BIM-based Modelica models generated from Revit2Modelica and (2) BEM models manually created using LBNL Modelica Buildings library. Our implementation shows that BIM2BEM (1) enables BIM models to be translated into ModelicaBEM models, (2) enables system interface development based on the MVD for thermal simulation, and (3) facilitates the reuse of original BIM data into building energy simulation without an import/export process.

  11. Translating Building Information Modeling to Building Energy Modeling Using Model View Definition

    Directory of Open Access Journals (Sweden)

    WoonSeong Jeong

    2014-01-01

    Full Text Available This paper presents a new approach to translate between Building Information Modeling (BIM and Building Energy Modeling (BEM that uses Modelica, an object-oriented declarative, equation-based simulation environment. The approach (BIM2BEM has been developed using a data modeling method to enable seamless model translations of building geometry, materials, and topology. Using data modeling, we created a Model View Definition (MVD consisting of a process model and a class diagram. The process model demonstrates object-mapping between BIM and Modelica-based BEM (ModelicaBEM and facilitates the definition of required information during model translations. The class diagram represents the information and object relationships to produce a class package intermediate between the BIM and BEM. The implementation of the intermediate class package enables system interface (Revit2Modelica development for automatic BIM data translation into ModelicaBEM. In order to demonstrate and validate our approach, simulation result comparisons have been conducted via three test cases using (1 the BIM-based Modelica models generated from Revit2Modelica and (2 BEM models manually created using LBNL Modelica Buildings library. Our implementation shows that BIM2BEM (1 enables BIM models to be translated into ModelicaBEM models, (2 enables system interface development based on the MVD for thermal simulation, and (3 facilitates the reuse of original BIM data into building energy simulation without an import/export process.

  12. Informing Architecture and Urban Modeling with Real-world Data on 3D Tangible Interfaces and Augmented Displays

    DEFF Research Database (Denmark)

    Banke, Tore; Salim, Flora; Jaworski, Przemyslaw

    2011-01-01

    The proliferation of online and digital data in our world yields unprecedented opportunities for connecting physical and digital parametric models with live data input and feedback. Tangible interfaces and augmented displays provide theatrical settings for designers to visualize real-world data a...... detection, and multi-touch techniques, multidimensional tangible interfaces and augmented displays presented in this paper demonstrate a powerful new approach for designing and interacting with physical models, materials, and environmental data....

  13. The Information Seeking Interface with Spatial Icons for the Children Digital-learning Database

    Directory of Open Access Journals (Sweden)

    吳可久、林佳蓉、陳泓均、柯皓仁 Ko-Chiu Wu,Chia-Jung Lin,Hung-Chun Chen,Hao-Ren Ke

    2014-04-01

    Full Text Available In this age of information technology, children must develop the ability to search digital databases.However, the information-seeking behavior and cognitive abilities associated with language and images differ substantially between children and adults. Therefore there is an urgent need foran information-searching interface customized for children. Drawing on the design of computer games, we created a three-dimensional (3D human-computer interface (HCI. Children’s experience playing computer games can therefore inform way-finding and information-seeking behavior inthis spatially-oriented interface. Three types of HCI were developed: a 2D graphic hyperlink (GH,a 3D extended survey (ES, and a 3D extended route (ER. These were tested for efficiency, effectiveness, and time of operation by one-way analysis of variance. Our results indicated that children behave differently on the various interfaces. The proposed HCI is a helpful tool offering children a knowledge map that enables them to search for the information they need. Our results demonstrate that information visualization theory and concept association are topics worthy offurther study in the development of a child-oriented information-seeking interface. pp. 51-65

  14. Finding and Exploring Health Information with a Slider-Based User Interface.

    Science.gov (United States)

    Pang, Patrick Cheong-Iao; Verspoor, Karin; Pearce, Jon; Chang, Shanton

    2016-01-01

    Despite the fact that search engines are the primary channel to access online health information, there are better ways to find and explore health information on the web. Search engines are prone to problems when they are used to find health information. For instance, users have difficulties in expressing health scenarios with appropriate search keywords, search results are not optimised for medical queries, and the search process does not account for users' literacy levels and reading preferences. In this paper, we describe our approach to addressing these problems by introducing a novel design using a slider-based user interface for discovering health information without the need for precise search keywords. The user evaluation suggests that the interface is easy to use and able to assist users in the process of discovering new information. This study demonstrates the potential value of adopting slider controls in the user interface of health websites for navigation and information discovery.

  15. The Johnson Space Center Management Information Systems (JSCMIS): An interface for organizational databases

    Science.gov (United States)

    Bishop, Peter C.; Erickson, Lloyd

    1990-01-01

    The Management Information and Decision Support Environment (MIDSE) is a research activity to build and test a prototype of a generic human interface on the Johnson Space Center (JSC) Information Network (CIN). The existing interfaces were developed specifically to support operations rather than the type of data which management could use. The diversity of the many interfaces and their relative difficulty discouraged occasional users from attempting to use them for their purposes. The MIDSE activity approached this problem by designing and building an interface to one JSC data base - the personnel statistics tables of the NASA Personnel and Payroll System (NPPS). The interface was designed against the following requirements: generic (use with any relational NOMAD data base); easy to learn (intuitive operations for new users); easy to use (efficient operations for experienced users); self-documenting (help facility which informs users about the data base structure as well as the operation of the interface); and low maintenance (easy configuration to new applications). A prototype interface entitled the JSC Management Information Systems (JSCMIS) was produced. It resides on CIN/PROFS and is available to JSC management who request it. The interface has passed management review and is ready for early use. Three kinds of data are now available: personnel statistics, personnel register, and plan/actual cost.

  16. Research and Development for an Operational Information Ecology: The User-System Interface Agent Project

    Science.gov (United States)

    Srivastava, Sadanand; deLamadrid, James

    1998-01-01

    The User System Interface Agent (USIA) is a special type of software agent which acts as the "middle man" between a human user and an information processing environment. USIA consists of a group of cooperating agents which are responsible for assisting users in obtaining information processing services intuitively and efficiently. Some of the main features of USIA include: (1) multiple interaction modes and (2) user-specific and stereotype modeling and adaptation. This prototype system provides us with a development platform towards the realization of an operational information ecology. In the first phase of this project we focus on the design and implementation of prototype system of the User-System Interface Agent (USIA). The second face of USIA allows user interaction via a restricted query language as well as through a taxonomy of windows. In third phase the USIA system architecture was revised.

  17. Quantitative interface models for simulating microstructure evolution

    International Nuclear Information System (INIS)

    Zhu, J.Z.; Wang, T.; Zhou, S.H.; Liu, Z.K.; Chen, L.Q.

    2004-01-01

    To quantitatively simulate microstructural evolution in real systems, we investigated three different interface models: a sharp-interface model implemented by the software DICTRA and two diffuse-interface models which use either physical order parameters or artificial order parameters. A particular example is considered, the diffusion-controlled growth of a γ ' precipitate in a supersaturated γ matrix in Ni-Al binary alloys. All three models use the thermodynamic and kinetic parameters from the same databases. The temporal evolution profiles of composition from different models are shown to agree with each other. The focus is on examining the advantages and disadvantages of each model as applied to microstructure evolution in alloys

  18. Interface sharpness in the Potts model

    International Nuclear Information System (INIS)

    Ruiz, J.

    1989-01-01

    A simple proof is given for the existence of a sharp interface between two ordered phases for the three-dimensional 2 double-prime-state Potts model (n integer). The results show that the roughening temperature of the three-dimensional Potts model is greater than the transition temperature of the two-dimensional Potts model. For a large arbitrary spin integer, it is expected that this roughening temperature is equal to the transition temperature (of the 3D model), i.e., that the interface between two ordered phases is harp up to the transition temperature, at which it is wetted by a film of the disordered phase. It is also expected that for a large arbitrary spin integer, the a-f interface (between an ordered and the disordered phase) is sharp at the transition temperature

  19. Risk-informed, performance-based safety-security interface

    International Nuclear Information System (INIS)

    Mrowca, B.; Eltawila, F.

    2012-01-01

    Safety-security interface is a term that is used as part of the commercial nuclear power security framework to promote coordination of the many potentially adverse interactions between plant security and plant safety. Its object is to prevent the compromise of either. It is also used to describe the concept of building security into a plant's design similar to the long standing practices used for safety therefore reducing the complexity of the operational security while maintaining or enhancing overall security. With this in mind, the concept of safety-security interface, when fully implemented, can influence a plant's design, operation and maintenance. It brings the approach use for plant security to one that is similar to that used for safety. Also, as with safety, the application of risk-informed techniques to fully implement and integrate safety and security is important. Just as designers and operators have applied these techniques to enhance and focus safety, these same techniques can be applied to security to not only enhance and focus the security but also to aid in the implementation of effective techniques to address the safety-security interfaces. Implementing this safety-security concept early within the design process can prevent or reduce security vulnerabilities through low cost solutions that often become difficult and expensive to retrofit later in the design and/or post construction period. These security considerations address many of the same issues as safety in ensuring that the response of equipment and plant personnel are adequate. That is, both safety and security are focused on reaching safe shutdown and preventing radiological release. However, the initiation of challenges and the progression of actions in response these challenges and even the definitions of safe shutdown can be considerably different. This paper explores the techniques and limitations that are employed to fully implement a risk-informed, safety-security interface

  20. Children’s information retrieval: beyond examining search strategies and interfaces

    NARCIS (Netherlands)

    Jochmann-Mannak, Hanna; Huibers, Theo W.C.; Sanders, T.J.M.

    2008-01-01

    The study of children’s information retrieval is still for the greater part untouched territory. Meanwhile, children can become lost in the digital information world, because they are confronted with search interfaces, both designed by and for adults. Most current research on children’s information

  1. Comparing two anesthesia information management system user interfaces: a usability evaluation.

    Science.gov (United States)

    Wanderer, Jonathan P; Rao, Anoop V; Rothwell, Sarah H; Ehrenfeld, Jesse M

    2012-11-01

    Anesthesia information management systems (AIMS) have been developed by multiple vendors and are deployed in thousands of operating rooms around the world, yet not much is known about measuring and improving AIMS usability. We developed a methodology for evaluating AIMS usability in a low-fidelity simulated clinical environment and used it to compare an existing user interface with a revised version. We hypothesized that the revised user interface would be more useable. In a low-fidelity simulated clinical environment, twenty anesthesia providers documented essential anesthetic information for the start of the case using both an existing and a revised user interface. Participants had not used the revised user interface previously and completed a brief training exercise prior to the study task. All participants completed a workload assessment and a satisfaction survey. All sessions were recorded. Multiple usability metrics were measured. The primary outcome was documentation accuracy. Secondary outcomes were perceived workload, number of documentation steps, number of user interactions, and documentation time. The interfaces were compared and design problems were identified by analyzing recorded sessions and survey results. Use of the revised user interface was shown to improve documentation accuracy from 85.1% to 92.4%, a difference of 7.3% (95% confidence interval [CI] for the difference 1.8 to 12.7). The revised user interface decreased the number of user interactions by 6.5 for intravenous documentation (95% CI 2.9 to 10.1) and by 16.1 for airway documentation (95% CI 11.1 to 21.1). The revised user interface required 3.8 fewer documentation steps (95% CI 2.3 to 5.4). Airway documentation time was reduced by 30.5 seconds with the revised workflow (95% CI 8.5 to 52.4). There were no significant time differences noted in intravenous documentation or in total task time. No difference in perceived workload was found between the user interfaces. Two user interface

  2. Predicting nucleic acid binding interfaces from structural models of proteins.

    Science.gov (United States)

    Dror, Iris; Shazman, Shula; Mukherjee, Srayanta; Zhang, Yang; Glaser, Fabian; Mandel-Gutfreund, Yael

    2012-02-01

    The function of DNA- and RNA-binding proteins can be inferred from the characterization and accurate prediction of their binding interfaces. However, the main pitfall of various structure-based methods for predicting nucleic acid binding function is that they are all limited to a relatively small number of proteins for which high-resolution three-dimensional structures are available. In this study, we developed a pipeline for extracting functional electrostatic patches from surfaces of protein structural models, obtained using the I-TASSER protein structure predictor. The largest positive patches are extracted from the protein surface using the patchfinder algorithm. We show that functional electrostatic patches extracted from an ensemble of structural models highly overlap the patches extracted from high-resolution structures. Furthermore, by testing our pipeline on a set of 55 known nucleic acid binding proteins for which I-TASSER produces high-quality models, we show that the method accurately identifies the nucleic acids binding interface on structural models of proteins. Employing a combined patch approach we show that patches extracted from an ensemble of models better predicts the real nucleic acid binding interfaces compared with patches extracted from independent models. Overall, these results suggest that combining information from a collection of low-resolution structural models could be a valuable approach for functional annotation. We suggest that our method will be further applicable for predicting other functional surfaces of proteins with unknown structure. Copyright © 2011 Wiley Periodicals, Inc.

  3. ModelMate - A graphical user interface for model analysis

    Science.gov (United States)

    Banta, Edward R.

    2011-01-01

    ModelMate is a graphical user interface designed to facilitate use of model-analysis programs with models. This initial version of ModelMate supports one model-analysis program, UCODE_2005, and one model software program, MODFLOW-2005. ModelMate can be used to prepare input files for UCODE_2005, run UCODE_2005, and display analysis results. A link to the GW_Chart graphing program facilitates visual interpretation of results. ModelMate includes capabilities for organizing directories used with the parallel-processing capabilities of UCODE_2005 and for maintaining files in those directories to be identical to a set of files in a master directory. ModelMate can be used on its own or in conjunction with ModelMuse, a graphical user interface for MODFLOW-2005 and PHAST.

  4. Sales-marketing interface and company performance. Is information use the missing link?

    OpenAIRE

    Keszey, Tamara

    2013-01-01

    Over the last couple of years there has been an ongoing debate on how sales managers contribute to organizational value. Direct measures between sales-marketing interface quality and company performance are compromised, as company performance is influenced by a plethora of other factors. We advocate that the use of sales information is the missing link between sales-marketing relationship quality and organizational outcomes. We propose and empirically test a model on how sales-mar...

  5. Human-telerobot interactions - Information, control, and mental models

    Science.gov (United States)

    Smith, Randy L.; Gillan, Douglas J.

    1987-01-01

    A part of the NASA's Space Station will be a teleoperated robot (telerobot) with arms for grasping and manipulation, feet for holding onto objects, and television cameras for visual feedback. The objective of the work described in this paper is to develop the requirements and specifications for the user-telerobot interface and to determine through research and testing that the interface results in efficient system operation. The focus of the development of the user-telerobot interface is on the information required by the user, the user inputs, and the design of the control workstation. Closely related to both the information required by the user and the user's control of the telerobot is the user's mental model of the relationship between the control inputs and the telerobot's actions.

  6. A nonlinear interface model applied to masonry structures

    Science.gov (United States)

    Lebon, Frédéric; Raffa, Maria Letizia; Rizzoni, Raffaella

    2015-12-01

    In this paper, a new imperfect interface model is presented. The model includes finite strains, micro-cracks and smooth roughness. The model is consistently derived by coupling a homogenization approach for micro-cracked media and arguments of asymptotic analysis. The model is applied to brick/mortar interfaces. Numerical results are presented.

  7. Diffuse-interface model for rapid phase transformations in nonequilibrium systems.

    Science.gov (United States)

    Galenko, Peter; Jou, David

    2005-04-01

    A thermodynamic approach to rapid phase transformations within a diffuse interface in a binary system is developed. Assuming an extended set of independent thermodynamic variables formed by the union of the classic set of slow variables and the space of fast variables, we introduce finiteness of the heat and solute diffusive propagation at the finite speed of the interface advancing. To describe transformations within the diffuse interface, we use the phase-field model which allows us to follow steep but smooth changes of phase within the width of the diffuse interface. Governing equations of the phase-field model are derived for the hyperbolic model, a model with memory, and a model of nonlinear evolution of transformation within the diffuse interface. The consistency of the model is proved by the verification of the validity of the condition of positive entropy production and by outcomes of the fluctuation-dissipation theorem. A comparison with existing sharp-interface and diffuse-interface versions of the model is given.

  8. Atomistic approach for modeling metal-semiconductor interfaces

    DEFF Research Database (Denmark)

    Stradi, Daniele; Martinez, Umberto; Blom, Anders

    2016-01-01

    realistic metal-semiconductor interfaces and allows for a direct comparison between theory and experiments via the I–V curve. In particular, it will be demonstrated how doping — and bias — modifies the Schottky barrier, and how finite size models (the slab approach) are unable to describe these interfaces......We present a general framework for simulating interfaces using an atomistic approach based on density functional theory and non-equilibrium Green's functions. The method includes all the relevant ingredients, such as doping and an accurate value of the semiconductor band gap, required to model...

  9. GRAPHICAL USER INTERFACE WITH APPLICATIONS IN SUSCEPTIBLE-INFECTIOUS-SUSCEPTIBLE MODELS.

    Science.gov (United States)

    Ilea, M; Turnea, M; Arotăriţei, D; Rotariu, Mariana; Popescu, Marilena

    2015-01-01

    Practical significance of understanding the dynamics and evolution of infectious diseases increases continuously in contemporary world. The mathematical study of the dynamics of infectious diseases has a long history. By incorporating statistical methods and computer-based simulations in dynamic epidemiological models, it could be possible for modeling methods and theoretical analyses to be more realistic and reliable, allowing a more detailed understanding of the rules governing epidemic spreading. To provide the basis for a disease transmission, the population of a region is often divided into various compartments, and the model governing their relation is called the compartmental model. To present all of the information available, a graphical user interface provides icons and visual indicators. The graphical interface shown in this paper is performed using the MATLAB software ver. 7.6.0. MATLAB software offers a wide range of techniques by which data can be displayed graphically. The process of data viewing involves a series of operations. To achieve it, I had to make three separate files, one for defining the mathematical model and two for the interface itself. Considering a fixed population, it is observed that the number of susceptible individuals diminishes along with an increase in the number of infectious individuals so that in about ten days the number of individuals infected and susceptible, respectively, has the same value. If the epidemic is not controlled, it will continue for an indefinite period of time. By changing the global parameters specific of the SIS model, a more rapid increase of infectious individuals is noted. Using the graphical user interface shown in this paper helps achieving a much easier interaction with the computer, simplifying the structure of complex instructions by using icons and menus, and, in particular, programs and files are much easier to organize. Some numerical simulations have been presented to illustrate theoretical

  10. Implementation and verification of interface constitutive model in FLAC3D

    Directory of Open Access Journals (Sweden)

    Hai-min Wu

    2011-09-01

    Full Text Available Due to the complexity of soil-structure interaction, simple constitutive models typically used for interface elements in general computer programs cannot satisfy the requirements of discontinuous deformation analysis of structures that contain different interfaces. In order to simulate the strain-softening characteristics of interfaces, a nonlinear strain-softening interface constitutive model was incorporated into fast Lagrange analysis of continua in three dimensions (FLAC3D through a user-defined program in the FISH environment. A numerical simulation of a direct shear test for geosynthetic interfaces was conducted to verify that the interface model was implemented correctly. Results of the numerical tests show good agreement with the results obtained from theoretical calculations, indicating that the model incorporated into FLAC3D can simulate the nonlinear strain-softening behavior of interfaces involving geosynthetic materials. The results confirmed the validity and reliability of the improved interface model. The procedure and method of implementing an interface constitutive model into a commercial computer program also provide a reference for implementation of a new interface constitutive model in FLAC3D.

  11. Modelling of plug and play interface for energy router based on IEC61850

    Science.gov (United States)

    Shi, Y. F.; Yang, F.; Gan, L.; He, H. L.

    2017-11-01

    Under the background of the “Internet Plus”, as the energy internet infrastructure equipment, energy router will be widely developed. The IEC61850 standard is the only universal standard in the field of power system automation which realizes the standardization of engineering operation of intelligent substation. To eliminate the lack of International unified standard for communication of energy router, this paper proposes to apply IEC61850 to plug and play interface and establishes the plug and play interface information model and information transfer services. This paper provides a research approach for the establishment of energy router communication standards, and promotes the development of energy router.

  12. Automatic geospatial information Web service composition based on ontology interface matching

    Science.gov (United States)

    Xu, Xianbin; Wu, Qunyong; Wang, Qinmin

    2008-10-01

    With Web services technology the functions of WebGIS can be presented as a kind of geospatial information service, and helped to overcome the limitation of the information-isolated situation in geospatial information sharing field. Thus Geospatial Information Web service composition, which conglomerates outsourced services working in tandem to offer value-added service, plays the key role in fully taking advantage of geospatial information services. This paper proposes an automatic geospatial information web service composition algorithm that employed the ontology dictionary WordNet to analyze semantic distances among the interfaces. Through making matching between input/output parameters and the semantic meaning of pairs of service interfaces, a geospatial information web service chain can be created from a number of candidate services. A practice of the algorithm is also proposed and the result of it shows the feasibility of this algorithm and the great promise in the emerging demand for geospatial information web service composition.

  13. Free surface modelling with two-fluid model and reduced numerical diffusion of the interface

    International Nuclear Information System (INIS)

    Strubelj, Luka; Tiselj, Izrok

    2008-01-01

    Full text of publication follows: The free surface flows are successfully modelled with one of existing free surface models, such as: level set method, volume of fluid method (with/without surface reconstruction), front tracking, two-fluid model (two momentum equations) with modified interphase force and others. The main disadvantage of two-fluid model used for simulations of free surface flows is numerical diffusion of the interface, which can be significantly reduced using the method presented in this paper. Several techniques for reduction of numerical diffusion of the interface have been implemented in the volume of fluid model and are based on modified numerical schemes for advection of volume fraction near the interface. The same approach could be used also for two-fluid method, but according to our experience more successful reduction of numerical diffusion of the interface can be achieved with conservative level set method. Within the conservative level set method, continuity equation for volume fraction is solved and after that the numerical diffusion of the interface is reduced in such a way that the thickness of the interface is kept constant during the simulation. Reduction of the interface diffusion can be also called interface sharpening. In present paper the two-fluid model with interface sharpening is validated on Rayleigh-Taylor instability. Under assumptions of isothermal and incompressible flow of two immiscible fluids, we simulated a system with the fluid of higher density located above the fluid of smaller density in two dimensions. Due to gravity in the system, fluid with higher density moves below the fluid with smaller density. Initial condition is not a flat interface between the fluids, but a sine wave with small amplitude, which develops into a mushroom-like structure. Mushroom-like structure in simulation of Rayleigh-Taylor instability later develops to small droplets as result of numerical dispersion of interface (interface sharpening

  14. EPES information depth for an overlayer/substrate system with a diffuse interface

    International Nuclear Information System (INIS)

    Zommer, L.

    2009-01-01

    The information depth (ID) of elastic peak electron spectroscopy (EPES) was considered for an overlayer/substrate system with a diffuse interface. The interface was assumed to have an exponential concentration profile. The paradox previously found by Zommer and Jablonski for the Rh/Al and Al/Rh systems with sharp interfaces also occurs for these systems with diffuse interfaces. We compared IDs for diffuse and sharp interfaces. Deviations between the IDs depend on the interface width, overlayer thickness, and selected system for a given primary energy (here 2000 eV). The deviations for the Rh/Al and Al/Rh systems differ profoundly. These results are of importance when interpreting EPES measurements of layered system

  15. Novel Thermal Analysis Model of the Foot-Shoe Sole Interface during Gait Motion

    Directory of Open Access Journals (Sweden)

    Yasuhiro Shimazaki

    2018-02-01

    Full Text Available Excessive heat at the foot-shoe sole interface negatively affects a human’s thermal comfort. An understanding of the thermal behavior at this interface is important for alleviating this discomfort. During gait motion, a human’s body weight cyclically compresses a shoe sole (commonly constructed of viscoelastic materials, generating heat during loading. To evaluate the thermal effects of this internal heat generation on foot comfort, we developed and empirically validated a thermal analysis model during gait motion. A simple, one-dimensional prediction model for heat conduction with heat generation during compressive loading was used. Heat generation was estimated as a function of the shoe sole’s material properties (e.g., elastic modulus and various gait parameters. When compared with experimental results, the proposed model proved effective in predicting thermal behavior at the foot-shoe sole interface under various conditions and shows potential for improving a human’s thermal comfort during gait motion through informed footwear design.

  16. A human-machine interface evaluation method: A difficulty evaluation method in information searching (DEMIS)

    International Nuclear Information System (INIS)

    Ha, Jun Su; Seong, Poong Hyun

    2009-01-01

    A human-machine interface (HMI) evaluation method, which is named 'difficulty evaluation method in information searching (DEMIS)', is proposed and demonstrated with an experimental study. The DEMIS is based on a human performance model and two measures of attentional-resource effectiveness in monitoring and detection tasks in nuclear power plants (NPPs). Operator competence and HMI design are modeled to be most significant factors to human performance. One of the two effectiveness measures is fixation-to-importance ratio (FIR) which represents attentional resource (eye fixations) spent on an information source compared to importance of the information source. The other measure is selective attention effectiveness (SAE) which incorporates FIRs for all information sources. The underlying principle of the measures is that the information source should be selectively attended to according to its informational importance. In this study, poor performance in information searching tasks is modeled to be coupled with difficulties caused by poor mental models of operators or/and poor HMI design. Human performance in information searching tasks is evaluated by analyzing the FIR and the SAE. Operator mental models are evaluated by a questionnaire-based method. Then difficulties caused by a poor HMI design are evaluated by a focused interview based on the FIR evaluation and then root causes leading to poor performance are identified in a systematic way.

  17. Scalable Quantum Information Transfer between Individual Nitrogen-Vacancy Centers by a Hybrid Quantum Interface

    International Nuclear Information System (INIS)

    Pei Pei; He-Fei Huang; Yan-Qing Guo; He-Shan Song

    2016-01-01

    We develop a design of a hybrid quantum interface for quantum information transfer (QIT), adopting a nanomechanical resonator as the intermedium, which is magnetically coupled with individual nitrogen-vacancy centers as the solid qubits, while capacitively coupled with a coplanar waveguide resonator as the quantum data bus. We describe the Hamiltonian of the model, and analytically demonstrate the QIT for both the resonant interaction and large detuning cases. The hybrid quantum interface allows for QIT between arbitrarily selected individual nitrogen-vacancy centers, and has advantages of the scalability and controllability. Our methods open an alternative perspective for implementing QIT, which is important during quantum storing or processing procedures in quantum computing. (paper)

  18. Transforming Collaborative Process Models into Interface Process Models by Applying an MDA Approach

    Science.gov (United States)

    Lazarte, Ivanna M.; Chiotti, Omar; Villarreal, Pablo D.

    Collaborative business models among enterprises require defining collaborative business processes. Enterprises implement B2B collaborations to execute these processes. In B2B collaborations the integration and interoperability of processes and systems of the enterprises are required to support the execution of collaborative processes. From a collaborative process model, which describes the global view of the enterprise interactions, each enterprise must define the interface process that represents the role it performs in the collaborative process in order to implement the process in a Business Process Management System. Hence, in this work we propose a method for the automatic generation of the interface process model of each enterprise from a collaborative process model. This method is based on a Model-Driven Architecture to transform collaborative process models into interface process models. By applying this method, interface processes are guaranteed to be interoperable and defined according to a collaborative process.

  19. Microsoft Repository Version 2 and the Open Information Model.

    Science.gov (United States)

    Bernstein, Philip A.; Bergstraesser, Thomas; Carlson, Jason; Pal, Shankar; Sanders, Paul; Shutt, David

    1999-01-01

    Describes the programming interface and implementation of the repository engine and the Open Information Model for Microsoft Repository, an object-oriented meta-data management facility that ships in Microsoft Visual Studio and Microsoft SQL Server. Discusses Microsoft's component object model, object manipulation, queries, and information…

  20. Formulation of consumables management models: Mission planning processor payload interface definition

    Science.gov (United States)

    Torian, J. G.

    1977-01-01

    Consumables models required for the mission planning and scheduling function are formulated. The relation of the models to prelaunch, onboard, ground support, and postmission functions for the space transportation systems is established. Analytical models consisting of an orbiter planning processor with consumables data base is developed. A method of recognizing potential constraint violations in both the planning and flight operations functions, and a flight data file storage/retrieval of information over an extended period which interfaces with a flight operations processor for monitoring of the actual flights is presented.

  1. An information theory based approach for quantitative evaluation of man-machine interface complexity

    International Nuclear Information System (INIS)

    Kang, Hyun Gook

    1999-02-01

    In complex and high-risk work conditions, especially such as in nuclear power plants, human understanding of the plant is highly cognitive and thus largely dependent on the effectiveness of the man-machine interface system. In order to provide more effective and reliable operating conditions for future nuclear power plants, developing more credible and easy to use evaluation methods will afford great help in designing interface systems in a more efficient manner. In this study, in order to analyze the human-machine interactions, I propose the Human-processor Communication(HPC) model which is based on the information flow concept. It identifies the information flow around a human-processor. Information flow has two aspects: appearance and content. Based on the HPC model, I propose two kinds of measures for evaluating a user interface from the viewpoint of these two aspects of information flow. They measure the communicative complexity of each aspect. In this study, for the evaluation of the aspect of appearance, I propose three complexity measures: Operation Complexity, Transition Complexity, and Screen Complexity. Each one of these measures has its own physical meaning. Two experiments carried out in this work support the utility of these measures. The result of the quiz game experiment shows that as the complexity of task context increases, the usage of the interface system becomes more complex. The experimental results of the three example systems(digital view, LDP style view and hierarchy view) show the utility of the proposed complexity measures. In this study, for the evaluation of the aspect of content, I propose the degree of informational coincidence, R (K, P) as a measure for the usefulness of an alarm-processing system. It is designed to perform user-oriented evaluation based on the informational entropy concept. It will be especially useful inearly design phase because designers can estimate the usefulness of an alarm system by short calculations instead

  2. An information theory based approach for quantitative evaluation of man-machine interface complexity

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Hyun Gook

    1999-02-15

    In complex and high-risk work conditions, especially such as in nuclear power plants, human understanding of the plant is highly cognitive and thus largely dependent on the effectiveness of the man-machine interface system. In order to provide more effective and reliable operating conditions for future nuclear power plants, developing more credible and easy to use evaluation methods will afford great help in designing interface systems in a more efficient manner. In this study, in order to analyze the human-machine interactions, I propose the Human-processor Communication(HPC) model which is based on the information flow concept. It identifies the information flow around a human-processor. Information flow has two aspects: appearance and content. Based on the HPC model, I propose two kinds of measures for evaluating a user interface from the viewpoint of these two aspects of information flow. They measure the communicative complexity of each aspect. In this study, for the evaluation of the aspect of appearance, I propose three complexity measures: Operation Complexity, Transition Complexity, and Screen Complexity. Each one of these measures has its own physical meaning. Two experiments carried out in this work support the utility of these measures. The result of the quiz game experiment shows that as the complexity of task context increases, the usage of the interface system becomes more complex. The experimental results of the three example systems(digital view, LDP style view and hierarchy view) show the utility of the proposed complexity measures. In this study, for the evaluation of the aspect of content, I propose the degree of informational coincidence, R (K, P) as a measure for the usefulness of an alarm-processing system. It is designed to perform user-oriented evaluation based on the informational entropy concept. It will be especially useful inearly design phase because designers can estimate the usefulness of an alarm system by short calculations instead

  3. An interface tracking model for droplet electrocoalescence.

    Energy Technology Data Exchange (ETDEWEB)

    Erickson, Lindsay Crowl

    2013-09-01

    This report describes an Early Career Laboratory Directed Research and Development (LDRD) project to develop an interface tracking model for droplet electrocoalescence. Many fluid-based technologies rely on electrical fields to control the motion of droplets, e.g. microfluidic devices for high-speed droplet sorting, solution separation for chemical detectors, and purification of biodiesel fuel. Precise control over droplets is crucial to these applications. However, electric fields can induce complex and unpredictable fluid dynamics. Recent experiments (Ristenpart et al. 2009) have demonstrated that oppositely charged droplets bounce rather than coalesce in the presence of strong electric fields. A transient aqueous bridge forms between approaching drops prior to pinch-off. This observation applies to many types of fluids, but neither theory nor experiments have been able to offer a satisfactory explanation. Analytic hydrodynamic approximations for interfaces become invalid near coalescence, and therefore detailed numerical simulations are necessary. This is a computationally challenging problem that involves tracking a moving interface and solving complex multi-physics and multi-scale dynamics, which are beyond the capabilities of most state-of-the-art simulations. An interface-tracking model for electro-coalescence can provide a new perspective to a variety of applications in which interfacial physics are coupled with electrodynamics, including electro-osmosis, fabrication of microelectronics, fuel atomization, oil dehydration, nuclear waste reprocessing and solution separation for chemical detectors. We present a conformal decomposition finite element (CDFEM) interface-tracking method for the electrohydrodynamics of two-phase flow to demonstrate electro-coalescence. CDFEM is a sharp interface method that decomposes elements along fluid-fluid boundaries and uses a level set function to represent the interface.

  4. Aeronautical Information Service–General Aviation Pilots interface in digital era

    Directory of Open Access Journals (Sweden)

    Roman Matyáš

    2016-04-01

    Full Text Available Modern technologies and portable devices are part of our everyday lives almost two decades. This article describes how Aeronautical Information Service providers in Central Europe utilize modern technologies in the communication interface with general aviation pilots.

  5. NASA Access Mechanism - Graphical user interface information retrieval system

    Science.gov (United States)

    Hunter, Judy F.; Generous, Curtis; Duncan, Denise

    1993-01-01

    Access to online information sources of aerospace, scientific, and engineering data, a mission focus for NASA's Scientific and Technical Information Program, has always been limited by factors such as telecommunications, query language syntax, lack of standardization in the information, and the lack of adequate tools to assist in searching. Today, the NASA STI Program's NASA Access Mechanism (NAM) prototype offers a solution to these problems by providing the user with a set of tools that provide a graphical interface to remote, heterogeneous, and distributed information in a manner adaptable to both casual and expert users. Additionally, the NAM provides access to many Internet-based services such as Electronic Mail, the Wide Area Information Servers system, Peer Locating tools, and electronic bulletin boards.

  6. NASA access mechanism: Graphical user interface information retrieval system

    Science.gov (United States)

    Hunter, Judy; Generous, Curtis; Duncan, Denise

    1993-01-01

    Access to online information sources of aerospace, scientific, and engineering data, a mission focus for NASA's Scientific and Technical Information Program, has always been limited to factors such as telecommunications, query language syntax, lack of standardization in the information, and the lack of adequate tools to assist in searching. Today, the NASA STI Program's NASA Access Mechanism (NAM) prototype offers a solution to these problems by providing the user with a set of tools that provide a graphical interface to remote, heterogeneous, and distributed information in a manner adaptable to both casual and expert users. Additionally, the NAM provides access to many Internet-based services such as Electronic Mail, the Wide Area Information Servers system, Peer Locating tools, and electronic bulletin boards.

  7. Evaluation of a novel Conjunctive Exploratory Navigation Interface for consumer health information: a crowdsourced comparative study.

    Science.gov (United States)

    Cui, Licong; Carter, Rebecca; Zhang, Guo-Qiang

    2014-02-10

    Numerous consumer health information websites have been developed to provide consumers access to health information. However, lookup search is insufficient for consumers to take full advantage of these rich public information resources. Exploratory search is considered a promising complementary mechanism, but its efficacy has never before been rigorously evaluated for consumer health information retrieval interfaces. This study aims to (1) introduce a novel Conjunctive Exploratory Navigation Interface (CENI) for supporting effective consumer health information retrieval and navigation, and (2) evaluate the effectiveness of CENI through a search-interface comparative evaluation using crowdsourcing with Amazon Mechanical Turk (AMT). We collected over 60,000 consumer health questions from NetWellness, one of the first consumer health websites to provide high-quality health information. We designed and developed a novel conjunctive exploratory navigation interface to explore NetWellness health questions with health topics as dynamic and searchable menus. To investigate the effectiveness of CENI, we developed a second interface with keyword-based search only. A crowdsourcing comparative study was carefully designed to compare three search modes of interest: (A) the topic-navigation-based CENI, (B) the keyword-based lookup interface, and (C) either the most commonly available lookup search interface with Google, or the resident advanced search offered by NetWellness. To compare the effectiveness of the three search modes, 9 search tasks were designed with relevant health questions from NetWellness. Each task included a rating of difficulty level and questions for validating the quality of answers. Ninety anonymous and unique AMT workers were recruited as participants. Repeated-measures ANOVA analysis of the data showed the search modes A, B, and C had statistically significant differences among their levels of difficulty (Pconsumer health information retrieval and

  8. User Interface Composition with COTS-UI and Trading Approaches: Application for Web-Based Environmental Information Systems

    Science.gov (United States)

    Criado, Javier; Padilla, Nicolás; Iribarne, Luis; Asensio, Jose-Andrés

    Due to the globalization of the information and knowledge society on the Internet, modern Web-based Information Systems (WIS) must be flexible and prepared to be easily accessible and manageable in real-time. In recent times it has received a special interest the globalization of information through a common vocabulary (i.e., ontologies), and the standardized way in which information is retrieved on the Web (i.e., powerful search engines, and intelligent software agents). These same principles of globalization and standardization should also be valid for the user interfaces of the WIS, but they are built on traditional development paradigms. In this paper we present an approach to reduce the gap of globalization/standardization in the generation of WIS user interfaces by using a real-time "bottom-up" composition perspective with COTS-interface components (type interface widgets) and trading services.

  9. Seismic modeling with radial basis function-generated finite differences (RBF-FD) – a simplified treatment of interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Bradley, E-mail: brma7253@colorado.edu; Fornberg, Bengt, E-mail: Fornberg@colorado.edu

    2017-04-15

    In a previous study of seismic modeling with radial basis function-generated finite differences (RBF-FD), we outlined a numerical method for solving 2-D wave equations in domains with material interfaces between different regions. The method was applicable on a mesh-free set of data nodes. It included all information about interfaces within the weights of the stencils (allowing the use of traditional time integrators), and was shown to solve problems of the 2-D elastic wave equation to 3rd-order accuracy. In the present paper, we discuss a refinement of that method that makes it simpler to implement. It can also improve accuracy for the case of smoothly-variable model parameter values near interfaces. We give several test cases that demonstrate the method solving 2-D elastic wave equation problems to 4th-order accuracy, even in the presence of smoothly-curved interfaces with jump discontinuities in the model parameters.

  10. Intelligent Context-Aware and Adaptive Interface for Mobile LBS.

    Science.gov (United States)

    Feng, Jiangfan; Liu, Yanhong

    2015-01-01

    Context-aware user interface plays an important role in many human-computer Interaction tasks of location based services. Although spatial models for context-aware systems have been studied extensively, how to locate specific spatial information for users is still not well resolved, which is important in the mobile environment where location based services users are impeded by device limitations. Better context-aware human-computer interaction models of mobile location based services are needed not just to predict performance outcomes, such as whether people will be able to find the information needed to complete a human-computer interaction task, but to understand human processes that interact in spatial query, which will in turn inform the detailed design of better user interfaces in mobile location based services. In this study, a context-aware adaptive model for mobile location based services interface is proposed, which contains three major sections: purpose, adjustment, and adaptation. Based on this model we try to describe the process of user operation and interface adaptation clearly through the dynamic interaction between users and the interface. Then we show how the model applies users' demands in a complicated environment and suggested the feasibility by the experimental results.

  11. The predictive model on the user reaction time using the information similarity

    International Nuclear Information System (INIS)

    Lee, Sung Jin; Heo, Gyun Young; Chang, Soon Heung

    2005-01-01

    Human performance is frequently degraded because people forget. Memory is one of brain processes that are important when trying to understand how people process information. Although a large number of studies have been made on the human performance, little is known about the similarity effect in human performance. The purpose of this paper is to propose and validate the quantitative and predictive model on the human response time in the user interface with the concept of similarity. However, it is not easy to explain the human performance with only similarity or information amount. We are confronted by two difficulties: making the quantitative model on the human response time with the similarity and validating the proposed model by experimental work. We made the quantitative model based on the Hick's law and the law of practice. In addition, we validated the model with various experimental conditions by measuring participants' response time in the environment of computer-based display. Experimental results reveal that the human performance is improved by the user interface's similarity. We think that the proposed model is useful for the user interface design and evaluation phases

  12. A Model-Driven Approach to Graphical User Interface Runtime Adaptation

    OpenAIRE

    Criado, Javier; Vicente Chicote, Cristina; Iribarne, Luis; Padilla, Nicolás

    2010-01-01

    Graphical user interfaces play a key role in human-computer interaction, as they link the system with its end-users, allowing information exchange and improving communication. Nowadays, users increasingly demand applications with adaptive interfaces that dynamically evolve in response to their specific needs. Thus, providing graphical user interfaces with runtime adaptation capabilities is becoming more and more an important issue. To address this problem, this paper proposes a componen...

  13. Micro-mechanical modeling of the cement-bone interface: the effect of friction, morphology and material properties on the micromechanical response.

    Science.gov (United States)

    Janssen, Dennis; Mann, Kenneth A; Verdonschot, Nico

    2008-11-14

    In order to gain insight into the micro-mechanical behavior of the cement-bone interface, the effect of parametric variations of frictional, morphological and material properties on the mechanical response of the cement-bone interface were analyzed using a finite element approach. Finite element models of a cement-bone interface specimen were created from micro-computed tomography data of a physical specimen that was sectioned from an in vitro cemented total hip arthroplasty. In five models the friction coefficient was varied (mu=0.0; 0.3; 0.7; 1.0 and 3.0), while in one model an ideally bonded interface was assumed. In two models cement interface gaps and an optimal cement penetration were simulated. Finally, the effect of bone cement stiffness variations was simulated (2.0 and 2.5 GPa, relative to the default 3.0 GPa). All models were loaded for a cycle of fully reversible tension-compression. From the simulated stress-displacement curves the interface deformation, stiffness and hysteresis were calculated. The results indicate that in the current model the mechanical properties of the cement-bone interface were caused by frictional phenomena at the shape-closed interlock rather than by adhesive properties of the cement. Our findings furthermore show that in our model maximizing cement penetration improved the micromechanical response of the cement-bone interface stiffness, while interface gaps had a detrimental effect. Relative to the frictional and morphological variations, variations in the cement stiffness had only a modest effect on the micro-mechanical behavior of the cement-bone interface. The current study provides information that may help to better understand the load-transfer mechanisms taking place at the cement-bone interface.

  14. Information and complexity measures in the interface of a metal and a superconductor

    Science.gov (United States)

    Moustakidis, Ch. C.; Panos, C. P.

    2018-06-01

    Fisher information, Shannon information entropy and Statistical Complexity are calculated for the interface of a normal metal and a superconductor, as a function of the temperature for several materials. The order parameter Ψ (r) derived from the Ginzburg-Landau theory is used as an input together with experimental values of critical transition temperature Tc and the superconducting coherence length ξ0. Analytical expressions are obtained for information and complexity measures. Thus Tc is directly related in a simple way with disorder and complexity. An analytical relation is found of the Fisher Information with the energy profile of superconductivity i.e. the ratio of surface free energy and the bulk free energy. We verify that a simple relation holds between Shannon and Fisher information i.e. a decomposition of a global information quantity (Shannon) in terms of two local ones (Fisher information), previously derived and verified for atoms and molecules by Liu et al. Finally, we find analytical expressions for generalized information measures like the Tsallis entropy and Fisher information. We conclude that the proper value of the non-extensivity parameter q ≃ 1, in agreement with previous work using a different model, where q ≃ 1.005.

  15. Computational design of patterned interfaces using reduced order models

    International Nuclear Information System (INIS)

    Vattre, A.J.; Abdolrahim, N.; Kolluri, K.; Demkowicz, M.J.

    2014-01-01

    Patterning is a familiar approach for imparting novel functionalities to free surfaces. We extend the patterning paradigm to interfaces between crystalline solids. Many interfaces have non-uniform internal structures comprised of misfit dislocations, which in turn govern interface properties. We develop and validate a computational strategy for designing interfaces with controlled misfit dislocation patterns by tailoring interface crystallography and composition. Our approach relies on a novel method for predicting the internal structure of interfaces: rather than obtaining it from resource-intensive atomistic simulations, we compute it using an efficient reduced order model based on anisotropic elasticity theory. Moreover, our strategy incorporates interface synthesis as a constraint on the design process. As an illustration, we apply our approach to the design of interfaces with rapid, 1-D point defect diffusion. Patterned interfaces may be integrated into the microstructure of composite materials, markedly improving performance. (authors)

  16. Modeling the electrified solid-liquid interface

    DEFF Research Database (Denmark)

    Rossmeisl, Jan; Skulason, Egill; Björketun, Mårten

    2008-01-01

    function can be related directly to the potential scale of the normal hydrogen electrode. We also show how finite-size effects in common periodic slab-type calculations can be avoided in calculations of activation energies and reaction energies for charge transfer reactions, where we use the Heyrovsky......A detailed atomistic model based on density functional theory calculations is presented of the charged solid-electrolyte interface. Having protons solvated in a water bilayer outside a Pt(111) slab with excess electrons, we show how the interface capacitance is well described and how the work...

  17. A model for the origin of solar wind stream interfaces

    International Nuclear Information System (INIS)

    Hundhausen, A.J.; Burlaga, L.F.

    1975-01-01

    The basic variations in solar wind properties that have been observed at 'stream interfaces' near 1 AU are explained by a gas dynamic model in which a radially propagating stream, produced by a temperature variation in the solar envelope, steepens nonlinearly while moving through interplanetary space. The region thus identified with the stream interface separates the ambient solar wind from the fresh hot material originally in the stream. However, the interface regions given by the present model are thicker than most stream interfaces observed in the solar wind, a fact suggesting that some additional physical process may be important in determining that thickness. Variations in the density, speed, or Alfven pressure alone appear not to produce streams with such an interface

  18. An optimal range of information quantity on computer-based procedure interface design in the advanced main control room

    International Nuclear Information System (INIS)

    Hsieh Minchih; Chiu Mingchuan; Hwang Sheueling

    2015-01-01

    The quantification of information in the interface design is a critical issue. Too much information on an interface can confuse a user while executing a task, and too little information may result in poor user performance. This study focused on the quantification of visible information on computer-based procedures (CBPs). Levels of information quantity and task complexity were considered in this experiment. Simulated CBPs were developed to consist of three levels: high (at least 10 events, i.e. 3.32 bits), medium (4–8 events, i.e. 2–3 bits), and low information quantity (1 or 2 events, i.e. 0 or 1 bits). Task complexity comprised two levels: complex tasks and simple tasks. The dependent variables include operation time, secondary task performance, and mental workload. Results suggested that medium information quantity of five to eight events has a remarkable advantage in supporting operator performance under both simple and complex tasks. This research not only suggested the appropriate range of information quantity on the CBP interface, but also complemented certain deficient results of previous CBP interface design studies. Additionally, based on results obtained by this study, the quantification of information on the CBP interface should be considered to ensure safe operation of nuclear power plants. (author)

  19. Real Time Radioactivity Monitoring and its Interface with predictive atmospheric transport modelling

    International Nuclear Information System (INIS)

    Raes, F.

    1990-01-01

    After the Chernobyl accident, a programme was initiated at the Joint Research Centre of the Commission of the European Communities named 'Radioactivity Environmental Monitoring' (REM). The main aspects considered in REM are: data handling, atmospheric modelling and data quality control related to radioactivity in the environment. The first REM workshop was held in December 1987: 'Aerosol Measurements and Nuclear Accidents: A Reconsideration'. (CEC EUR 11755 EN). These are the proceedings of the second REM workshop, held in December 1989, dealing with real-time radioactivity monitoring and its interface with predictive atmospheric models. Atmospheric transport models, in applications extending over time scales of the order of a day or more become progressively less reliable to the extent that an interface with real-time radiological field data becomes highly desirable. Through international arrangements for early exchange of information in the event of a nuclear accident (European Community, IAEA) such data might become available on a quasi real-time basis. The question is how best to use such information to improve our predictive capabilities. During the workshop the present status of on-line monitoring networks for airborne radioactivity in the EC Member States has been reviewed. Possibilities were discussed to use data from such networks as soon as they become available, in order to update predictions made with long range transport models. This publication gives the full text of 13 presentations and a report of the Round Table Discussion held afterwards

  20. Intelligent Context-Aware and Adaptive Interface for Mobile LBS

    Directory of Open Access Journals (Sweden)

    Jiangfan Feng

    2015-01-01

    Full Text Available Context-aware user interface plays an important role in many human-computer Interaction tasks of location based services. Although spatial models for context-aware systems have been studied extensively, how to locate specific spatial information for users is still not well resolved, which is important in the mobile environment where location based services users are impeded by device limitations. Better context-aware human-computer interaction models of mobile location based services are needed not just to predict performance outcomes, such as whether people will be able to find the information needed to complete a human-computer interaction task, but to understand human processes that interact in spatial query, which will in turn inform the detailed design of better user interfaces in mobile location based services. In this study, a context-aware adaptive model for mobile location based services interface is proposed, which contains three major sections: purpose, adjustment, and adaptation. Based on this model we try to describe the process of user operation and interface adaptation clearly through the dynamic interaction between users and the interface. Then we show how the model applies users’ demands in a complicated environment and suggested the feasibility by the experimental results.

  1. A solid-on-solid invasion percolation model for self-affine interfaces

    International Nuclear Information System (INIS)

    Arizmendi, C.M.; Martin, H.O.; Sanchez, J.R.

    1993-08-01

    The scaling properties of the interface of a new growth model are studied. The model is based on the standard invasion percolation without trapping in which the solid-on-solid condition is imposed. The local correlation between points of the interface can be controlled through a parameter. The self-affine properties of the interface show strong dependence on the existence of the local correlation. The dependence of the relevant exponents of the interface with the correlation is analysed. (author). 8 refs, 4 figs

  2. A model for assessing the degree of importance of ergonomics criteria to human machine interface

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Cesar Ribeiro de; Domech More, Jesus [Universidade Estacio de Sa do Rio de Janeiro, RJ (Brazil). Mestrado em Desenvolvimento Empresarial - MADE]. E-mail: cesararaujobr@yahoo.com.br; jesus.more@estacio.br; Silva, Aretha Felix Thomaz da [Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Civil. Sistemas Computacionais Orientados a Industria do Petroleo]. E-mail: aretha@coc.ufrj.br

    2007-07-01

    This paper intends to show a model to help us to incorporate ergonomics criteria into the usability of the human computer interface (HCI). The techniques based on fuzzy set theory are appropriate tools for the treatment of subjective and vague concepts that are inherent to usability for the HCI. The application consists of analysis concepts. This approach allows the use of natural language expressions of importance in ergonomics criteria estimation. The above-mentioned model shows the degree of importance of the ergonomics criteria present in the software interface used in the medical area. In this work, as entry data, the system developer opinions are used and as a result we had the hierarchy of 18 ergonomic criteria. The ergonomic criteria are those already validated by the market, which are linked to the ErgoList checklists. The fuzzy model created will allow knowing the most important criteria to health governmental companies. Its Information Technology (IT) professionals will concentrate efforts when treating the usability of the software interface and its systems. (author)

  3. A model for assessing the degree of importance of ergonomics criteria to human machine interface

    International Nuclear Information System (INIS)

    Araujo, Cesar Ribeiro de; Domech More, Jesus; Silva, Aretha Felix Thomaz da

    2007-01-01

    This paper intends to show a model to help us to incorporate ergonomics criteria into the usability of the human computer interface (HCI). The techniques based on fuzzy set theory are appropriate tools for the treatment of subjective and vague concepts that are inherent to usability for the HCI. The application consists of analysis concepts. This approach allows the use of natural language expressions of importance in ergonomics criteria estimation. The above-mentioned model shows the degree of importance of the ergonomics criteria present in the software interface used in the medical area. In this work, as entry data, the system developer opinions are used and as a result we had the hierarchy of 18 ergonomic criteria. The ergonomic criteria are those already validated by the market, which are linked to the ErgoList checklists. The fuzzy model created will allow knowing the most important criteria to health governmental companies. Its Information Technology (IT) professionals will concentrate efforts when treating the usability of the software interface and its systems. (author)

  4. PC-based Multiple Information System Interface (PC/MISI) design plan

    Science.gov (United States)

    Dominick, Wayne D. (Editor); Hall, Philip P.

    1985-01-01

    The general design plan for the implementation of a common user interface to multiple remote information systems within a microcomputer-based environment is presented. The intent is to provide a framework for the development of detailed specifications which will be used as guidelines for the actual development of the system.

  5. First-principles modeling of magnetic misfit interfaces

    KAUST Repository

    Grytsiuk, Sergii

    2013-08-16

    We investigate the structural and magnetic properties of interfaces with large lattice mismatch, choosing Pt/Co and Au/Co as prototypes. For our first-principles calculations, we reduce the lattice mismatch to 0.2% by constructing Moiré supercells. Our results show that the roughness and atomic density, and thus the magnetic properties, depend strongly on the substrate and thickness of the Co slab. An increasing thickness leads to the formation of a Co transition layer at the interface, especially for Pt/Co due to strong Pt-Co interaction. A Moiré supercell with a transition layer is found to reproduce the main experimental findings and thus turns out to be the appropriate model for simulating magnetic misfit interfaces.

  6. First-principles modeling of magnetic misfit interfaces

    KAUST Repository

    Grytsyuk, Sergiy; Schwingenschlö gl, Udo

    2013-01-01

    We investigate the structural and magnetic properties of interfaces with large lattice mismatch, choosing Pt/Co and Au/Co as prototypes. For our first-principles calculations, we reduce the lattice mismatch to 0.2% by constructing Moiré supercells. Our results show that the roughness and atomic density, and thus the magnetic properties, depend strongly on the substrate and thickness of the Co slab. An increasing thickness leads to the formation of a Co transition layer at the interface, especially for Pt/Co due to strong Pt-Co interaction. A Moiré supercell with a transition layer is found to reproduce the main experimental findings and thus turns out to be the appropriate model for simulating magnetic misfit interfaces.

  7. Towards an Open Modelling Interface (OpenMI the HarmonIT project

    Directory of Open Access Journals (Sweden)

    M. Blind

    2005-01-01

    Full Text Available The Water Framework Directive (WFD poses an immense challenge to water management in Europe. Aiming at a "good ecological status" of surface waters in 2015, integrated river basin management plans need to be in place by 2009, and broadly supported by stakeholders. Information & Communication Technology (ICT tools, such as computational models, are very helpful in designing river basin management plans (rbmp-s. However, many scientists believe that a single integrated modelling system to support the WFD cannot be developed, and integrated systems need to be quite tailored to the local situation and evolve during a collaborative planning process. As a consequence there is an urgent need to increase the flexibility of modelling systems, such that dedicated model systems can be developed from available building blocks. In the recent past a number of initiatives have been started to develop an IT framework for modelling to meet the required flexibility. In Europe the international project HarmonIT, which is sponsored by the European Commission, is developing and implementing a standard interface for modelling components and other relevant tools: The Open Modelling Interface (OpenMI. This paper describes the HarmonIT project and objectives in general. The current progress is described. It describes the roles for different types of stakeholders in modelling, varying from software coders to non-specialized users of decision support systems. It will provide insight in the requirements imposed when using the OpenMI.

  8. Information Modeling for Direct Control of Distributed Energy Resources

    DEFF Research Database (Denmark)

    Biegel, Benjamin; Andersen, Palle; Stoustrup, Jakob

    2013-01-01

    We present an architecture for an unbundled liberalized electricity market system where a virtual power plant (VPP) is able to control a number of distributed energy resources (DERs) directly through a two-way communication link. The aggregator who operates the VPP utilizes the accumulated...... a desired accumulated response. In this paper, we design such an information model based on the markets that the aggregator participates in and based on the flexibility characteristics of the remote controlled DERs. The information model is constructed in a modular manner making the interface suitable...

  9. Facial pressure zones of an oronasal interface for noninvasive ventilation: a computer model analysis

    Directory of Open Access Journals (Sweden)

    Luana Souto Barros

    2014-12-01

    Full Text Available OBJECTIVE: To study the effects of an oronasal interface (OI for noninvasive ventilation, using a three-dimensional (3D computational model with the ability to simulate and evaluate the main pressure zones (PZs of the OI on the human face. METHODS: We used a 3D digital model of the human face, based on a pre-established geometric model. The model simulated soft tissues, skull, and nasal cartilage. The geometric model was obtained by 3D laser scanning and post-processed for use in the model created, with the objective of separating the cushion from the frame. A computer simulation was performed to determine the pressure required in order to create the facial PZs. We obtained descriptive graphical images of the PZs and their intensity. RESULTS: For the graphical analyses of each face-OI model pair and their respective evaluations, we ran 21 simulations. The computer model identified several high-impact PZs in the nasal bridge and paranasal regions. The variation in soft tissue depth had a direct impact on the amount of pressure applied (438-724 cmH2O. CONCLUSIONS: The computer simulation results indicate that, in patients submitted to noninvasive ventilation with an OI, the probability of skin lesion is higher in the nasal bridge and paranasal regions. This methodology could increase the applicability of biomechanical research on noninvasive ventilation interfaces, providing the information needed in order to choose the interface that best minimizes the risk of skin lesion.

  10. Model potential for the description of metal/organic interface states

    Science.gov (United States)

    Armbrust, Nico; Schiller, Frederik; Güdde, Jens; Höfer, Ulrich

    2017-01-01

    We present an analytical one-dimensional model potential for the description of electronic interface states that form at the interface between a metal surface and flat-lying adlayers of π-conjugated organic molecules. The model utilizes graphene as a universal representation of these organic adlayers. It predicts the energy position of the interface state as well as the overlap of its wave function with the bulk metal without free fitting parameters. We show that the energy of the interface state depends systematically on the bond distance between the carbon backbone of the adayers and the metal. The general applicability and robustness of the model is demonstrated by a comparison of the calculated energies with numerous experimental results for a number of flat-lying organic molecules on different closed-packed metal surfaces that cover a large range of bond distances. PMID:28425444

  11. Research on new information service model of the contemporary library

    International Nuclear Information System (INIS)

    Xin Pingping; Lu Yan

    2010-01-01

    According to the development of the internet and multimedia technology, the information service models in the contemporary library become both of the traditional and digital information service. The libraries in each country do their best to make the voluminous information and the complex technology be High-integrated in the background management, and also make the front interface be more and more convenient to the users. The essential characteristics of the information service of the contemporary library are all-in-one and humanness. In this article, we will describe several new hot information service models of the contemporary library in detail, such as individualized service, reference service, reference service and strategic information service. (authors)

  12. Contribution to the modeling and the identification of haptic interfaces

    International Nuclear Information System (INIS)

    Janot, A.

    2007-12-01

    This thesis focuses on the modeling and the identification of haptic interfaces using cable drive. An haptic interface is a force feedback device, which enables its user to interact with a virtual world or a remote environment explored by a slave system. It aims at the matching between the forces and displacements given by the user and those applied to virtual world. Usually, haptic interfaces make use of a mechanical actuated structure whose distal link is equipped with a handle. When manipulating this handle to interact with explored world, the user feels the apparent mass, compliance and friction of the interface. This distortion introduced between the operator and the virtual world must be modeled and identified to enhance the design of the interface and develop appropriate control laws. The first approach has been to adapt the modeling and identification methods of rigid and localized flexibilities robots to haptic interfaces. The identification technique makes use of the inverse dynamic model and the linear least squares with the measurements of joint torques and positions. This approach is validated on a single degree of freedom and a three degree of freedom haptic devices. A new identification method needing only torque data is proposed. It is based on a closed loop simulation using the direct dynamic model. The optimal parameters minimize the 2 norms of the error between the actual torque and the simulated torque assuming the same control law and the same tracking trajectory. This non linear least squares problem dramatically is simplified using the inverse model to calculate the simulated torque. This method is validated on the single degree of freedom haptic device and the SCARA robot. (author)

  13. Diffusion-controlled interface kinetics-inclusive system-theoretic propagation models for molecular communication systems

    Science.gov (United States)

    Chude-Okonkwo, Uche A. K.; Malekian, Reza; Maharaj, B. T.

    2015-12-01

    Inspired by biological systems, molecular communication has been proposed as a new communication paradigm that uses biochemical signals to transfer information from one nano device to another over a short distance. The biochemical nature of the information transfer process implies that for molecular communication purposes, the development of molecular channel models should take into consideration diffusion phenomenon as well as the physical/biochemical kinetic possibilities of the process. The physical and biochemical kinetics arise at the interfaces between the diffusion channel and the transmitter/receiver units. These interfaces are herein termed molecular antennas. In this paper, we present the deterministic propagation model of the molecular communication between an immobilized nanotransmitter and nanoreceiver, where the emission and reception kinetics are taken into consideration. Specifically, we derived closed-form system-theoretic models and expressions for configurations that represent different communication systems based on the type of molecular antennas used. The antennas considered are the nanopores at the transmitter and the surface receptor proteins/enzymes at the receiver. The developed models are simulated to show the influence of parameters such as the receiver radius, surface receptor protein/enzyme concentration, and various reaction rate constants. Results show that the effective receiver surface area and the rate constants are important to the system's output performance. Assuming high rate of catalysis, the analysis of the frequency behavior of the developed propagation channels in the form of transfer functions shows significant difference introduce by the inclusion of the molecular antennas into the diffusion-only model. It is also shown that for t > > 0 and with the information molecules' concentration greater than the Michaelis-Menten kinetic constant of the systems, the inclusion of surface receptors proteins and enzymes in the models

  14. Improving the interface between informal carers and formal health and social services: a qualitative study.

    Science.gov (United States)

    McPherson, K M; Kayes, N K; Moloczij, N; Cummins, C

    2014-03-01

    Reports about the impact of caring vary widely, but a consistent finding is that the role is influenced (for better or worse) by how formal services respond to, and work with informal carers and of course the cared for person. We aimed to explore the connection between informal and formal cares and identify how a positive connection or interface might be developed and maintained. We undertook a qualitative descriptive study with focus groups and individual interviews with informal carers, formal care service providers and representatives from carer advocacy groups. Content analysis was used to identify key factors impacting on the interface between informal and formal carers and propose specific recommendations for service development. Community setting including urban and rural areas of New Zealand. Seventy participants (the majority informal carers) took part in 13 focus groups and 22 individual interviews. Four key themes were derived: Quality of care for the care recipient; Knowledge exchange (valuing carer perspectives); One size does not fit all (creating flexible services); and A constant struggle (reducing the burden services add). An optimum interface to address these key areas was proposed. In addition to ensuring quality care for the care recipient, specific structures and processes to support a more positive interface appear warranted if informal carers and services are to work well together. An approach recognising the caring context and carer expertise may decrease the additional burden services contribute, and reduce conflicting information and resultant confusion and/or frustration many carers experience. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Interface model coupling in fluid dynamics: application to two-phase flows

    International Nuclear Information System (INIS)

    Galie, Th.

    2009-03-01

    This thesis is devoted to the study of interface model coupling problems in space between different models of compressible flows. We consider one-dimensional problems where the interface is sharp, fixed and separating two regions of space corresponding to the two coupled models. Our goal is to define a coupling condition at the interface and to solve numerically the coupling problem with this condition. After a state of art on the interface model coupling of hyperbolic systems of conservation laws, we propose a new coupling condition by adding in the equations of the coupled problem a measure source term at the interface. We first suppose a given constant weight associated to this source term. Two Riemann solvers are developed and one of them is based on a relaxation approach preserving equilibrium solutions of the coupled problem. This relaxation method is then used in an optimization problem, defined by several motivations at the interface, which permits to calculate a time dynamical weight. In a second part, we develop an approached Riemann solver for a two-phase two-pressure model in the particular case of a two-phase isentropic flow. Such a model contains non conservative terms that we write under the form of measure source terms. The previous relaxation method is thus extended to the case of the two-phase two-pressure model with an a priori estimation of the non conservative term contributions. The method allows us to solve, in the next and last chapter, the coupling problem of a two-fluid two-pressure model with a drift-flux model thanks to the father model approach. (authors)

  16. Behaviour of turbulence models near a turbulent/non-turbulent interface revisited

    International Nuclear Information System (INIS)

    Ferrey, P.; Aupoix, B.

    2006-01-01

    The behaviour of turbulence models near a turbulent/non-turbulent interface is investigated. The analysis holds as well for two-equation as for Reynolds stress turbulence models using Daly and Harlow diffusion model. The behaviour near the interface is shown not to be a power law, as usually considered, but a more complex parametric solution. Why previous works seemed to numerically confirm the power law solution is explained. Constraints for turbulence modelling, i.e., for ensuring that models have a good behaviour near a turbulent/non-turbulent interface so that the solution is not sensitive to small turbulence levels imposed in the irrotational flow, are drawn

  17. Towards first principles modeling of electrochemical electrode-electrolyte interfaces

    DEFF Research Database (Denmark)

    Nielsen, Malte; Björketun, Mårten; Hansen, Martin Hangaard

    2015-01-01

    We present a mini-perspective on the development of first principles modeling of electrochemical interfaces. We show that none of the existing methods deal with all the thermodynamic constraints that the electrochemical environment imposes on the structure of the interface. We present two...

  18. Novel Scientific Visualization Interfaces for Interactive Information Visualization and Sharing

    Science.gov (United States)

    Demir, I.; Krajewski, W. F.

    2012-12-01

    As geoscientists are confronted with increasingly massive datasets from environmental observations to simulations, one of the biggest challenges is having the right tools to gain scientific insight from the data and communicate the understanding to stakeholders. Recent developments in web technologies make it easy to manage, visualize and share large data sets with general public. Novel visualization techniques and dynamic user interfaces allow users to interact with data, and modify the parameters to create custom views of the data to gain insight from simulations and environmental observations. This requires developing new data models and intelligent knowledge discovery techniques to explore and extract information from complex computational simulations or large data repositories. Scientific visualization will be an increasingly important component to build comprehensive environmental information platforms. This presentation provides an overview of the trends and challenges in the field of scientific visualization, and demonstrates information visualization and communication tools in the Iowa Flood Information System (IFIS), developed within the light of these challenges. The IFIS is a web-based platform developed by the Iowa Flood Center (IFC) to provide access to and visualization of flood inundation maps, real-time flood conditions, flood forecasts both short-term and seasonal, and other flood-related data for communities in Iowa. The key element of the system's architecture is the notion of community. Locations of the communities, those near streams and rivers, define basin boundaries. The IFIS provides community-centric watershed and river characteristics, weather (rainfall) conditions, and streamflow data and visualization tools. Interactive interfaces allow access to inundation maps for different stage and return period values, and flooding scenarios with contributions from multiple rivers. Real-time and historical data of water levels, gauge heights, and

  19. Modelling biological invasions: Individual to population scales at interfaces

    KAUST Repository

    Belmonte-Beitia, J.

    2013-10-01

    Extracting the population level behaviour of biological systems from that of the individual is critical in understanding dynamics across multiple scales and thus has been the subject of numerous investigations. Here, the influence of spatial heterogeneity in such contexts is explored for interfaces with a separation of the length scales characterising the individual and the interface, a situation that can arise in applications involving cellular modelling. As an illustrative example, we consider cell movement between white and grey matter in the brain which may be relevant in considering the invasive dynamics of glioma. We show that while one can safely neglect intrinsic noise, at least when considering glioma cell invasion, profound differences in population behaviours emerge in the presence of interfaces with only subtle alterations in the dynamics at the individual level. Transport driven by local cell sensing generates predictions of cell accumulations along interfaces where cell motility changes. This behaviour is not predicted with the commonly used Fickian diffusion transport model, but can be extracted from preliminary observations of specific cell lines in recent, novel, cryo-imaging. Consequently, these findings suggest a need to consider the impact of individual behaviour, spatial heterogeneity and especially interfaces in experimental and modelling frameworks of cellular dynamics, for instance in the characterisation of glioma cell motility. © 2013 Elsevier Ltd.

  20. Modelling biological invasions: Individual to population scales at interfaces

    KAUST Repository

    Belmonte-Beitia, J.; Woolley, T.E.; Scott, J.G.; Maini, P.K.; Gaffney, E.A.

    2013-01-01

    Extracting the population level behaviour of biological systems from that of the individual is critical in understanding dynamics across multiple scales and thus has been the subject of numerous investigations. Here, the influence of spatial heterogeneity in such contexts is explored for interfaces with a separation of the length scales characterising the individual and the interface, a situation that can arise in applications involving cellular modelling. As an illustrative example, we consider cell movement between white and grey matter in the brain which may be relevant in considering the invasive dynamics of glioma. We show that while one can safely neglect intrinsic noise, at least when considering glioma cell invasion, profound differences in population behaviours emerge in the presence of interfaces with only subtle alterations in the dynamics at the individual level. Transport driven by local cell sensing generates predictions of cell accumulations along interfaces where cell motility changes. This behaviour is not predicted with the commonly used Fickian diffusion transport model, but can be extracted from preliminary observations of specific cell lines in recent, novel, cryo-imaging. Consequently, these findings suggest a need to consider the impact of individual behaviour, spatial heterogeneity and especially interfaces in experimental and modelling frameworks of cellular dynamics, for instance in the characterisation of glioma cell motility. © 2013 Elsevier Ltd.

  1. User interface design considerations

    DEFF Research Database (Denmark)

    Andersen, Simon Engedal; Jakobsen, Arne; Rasmussen, Bjarne D.

    1999-01-01

    and output variables. This feature requires special attention when designing the user interface and a special approach for controlling the user selection of input and output variables are developed. To obtain a consistent system description the different input variables are grouped corresponding......When designing a user interface for a simulation model there are several important issues to consider: Who is the target user group, and which a priori information can be expected. What questions do the users want answers to and what questions are answered using a specific model?When developing...... the user interface of EESCoolTools these issues led to a series of simulation tools each with a specific purpose and a carefully selected set of input and output variables. To allow a more wide range of questions to be answered by the same model, the user can change between different sets of input...

  2. Downsizer - A Graphical User Interface-Based Application for Browsing, Acquiring, and Formatting Time-Series Data for Hydrologic Modeling

    Science.gov (United States)

    Ward-Garrison, Christian; Markstrom, Steven L.; Hay, Lauren E.

    2009-01-01

    The U.S. Geological Survey Downsizer is a computer application that selects, downloads, verifies, and formats station-based time-series data for environmental-resource models, particularly the Precipitation-Runoff Modeling System. Downsizer implements the client-server software architecture. The client presents a map-based, graphical user interface that is intuitive to modelers; the server provides streamflow and climate time-series data from over 40,000 measurement stations across the United States. This report is the Downsizer user's manual and provides (1) an overview of the software design, (2) installation instructions, (3) a description of the graphical user interface, (4) a description of selected output files, and (5) troubleshooting information.

  3. Physical modelling of interactions between interfaces and turbulence; Modelisation physique des interactions entre interfaces et turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Toutant, A

    2006-12-15

    The complex interactions between interfaces and turbulence strongly impact the flow properties. Unfortunately, Direct Numerical Simulations (DNS) have to entail a number of degrees of freedom proportional to the third power of the Reynolds number to correctly describe the flow behaviour. This extremely hard constraint makes it impossible to use DNS for industrial applications. Our strategy consists in using and improving DNS method in order to develop the Interfaces and Sub-grid Scales concept. ISS is a two-phase equivalent to the single-phase Large Eddy Simulation (LES) concept. The challenge of ISS is to integrate the two-way coupling phenomenon into sub-grid models. Applying a space filter, we have exhibited correlations or sub-grid terms that require closures. We have shown that, in two-phase flows, the presence of a discontinuity leads to specific sub-grid terms. Comparing the maximum of the norm of the sub-grid terms with the maximum of the norm of the advection tensor, we have found that sub-grid terms related to interfacial forces and viscous effect are negligible. Consequently, in the momentum balance, only the sub-grid terms related to inertia have to be closed. Thanks to a priori tests performed on several DNS data, we demonstrate that the scale similarity hypothesis, reinterpreted near discontinuity, provides sub-grid models that take into account the two-way coupling phenomenon. These models correspond to the first step of our work. Indeed, in this step, interfaces are smooth and, interactions between interfaces and turbulence occur in a transition zone where each physical variable varies sharply but continuously. The next challenge has been to determine the jump conditions across the sharp equivalent interface corresponding to the sub-grid models of the transition zone. We have used the matched asymptotic expansion method to obtain the jump conditions. The first tests on the velocity of the sharp equivalent interface are very promising (author)

  4. Nanoreinforced polymer composites: 3D FEM modeling with effective interface concept

    DEFF Research Database (Denmark)

    Wang, H.W.; Zhou, H.W.; Peng, R.D.

    2011-01-01

    modeling. The generalized effective interface model, with two layers of different stiffnesses and the option of overlapping layers is developed here. The effects of the effective interface properties, particle sizes, particle shapes (spherical, cylindrical, ellipsoidal and disc-shaped) and volume fraction...

  5. Electrode-electrolyte interface model of tripolar concentric ring electrode and electrode paste.

    Science.gov (United States)

    Nasrollaholhosseini, Seyed Hadi; Steele, Preston; Besio, Walter G

    2016-08-01

    Electrodes are used to transform ionic currents to electrical currents in biological systems. Modeling the electrode-electrolyte interface could help to optimize the performance of the electrode interface to achieve higher signal to noise ratios. There are previous reports of accurate models for single-element biomedical electrodes. In this paper we develop a model for the electrode-electrolyte interface for tripolar concentric ring electrodes (TCRE) that are used to record brain signals.

  6. Renewable Electric Plant Information System user interface manual: Paradox 7 Runtime for Windows

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-11-01

    The Renewable Electric Plant Information System (REPiS) is a comprehensive database with detailed information on grid-connected renewable electric plants in the US. The current version, REPiS3 beta, was developed in Paradox for Windows. The user interface (UI) was developed to facilitate easy access to information in the database, without the need to have, or know how to use, Paradox for Windows. The UI is designed to provide quick responses to commonly requested sorts of the database. A quick perusal of this manual will familiarize one with the functions of the UI and will make use of the system easier. There are six parts to this manual: (1) Quick Start: Instructions for Users Familiar with Database Applications; (2) Getting Started: The Installation Process; (3) Choosing the Appropriate Report; (4) Using the User Interface; (5) Troubleshooting; (6) Appendices A and B.

  7. A Model for Web-based Information Systems in E-Retailing.

    Science.gov (United States)

    Wang, Fang; Head, Milena M.

    2001-01-01

    Discusses the use of Web-based information systems (WIS) by electronic retailers to attract and retain consumers and deliver business functions and strategy. Presents an abstract model for WIS design in electronic retailing; discusses customers, business determinants, and business interface; and suggests future research. (Author/LRW)

  8. Quantifying effects of humans and climate on groundwater resources of Hawaii through sharp-interface modeling

    Science.gov (United States)

    Rotzoll, K.; Izuka, S. K.; Nishikawa, T.; Fienen, M. N.; El-Kadi, A. I.

    2016-12-01

    Some of the volcanic-rock aquifers of the islands of Hawaii are substantially developed, leading to concerns related to the effects of groundwater withdrawals on saltwater intrusion and stream base-flow reduction. A numerical modeling analysis using recent available information (e.g., recharge, withdrawals, hydrogeologic framework, and conceptual models of groundwater flow) advances current understanding of groundwater flow and provides insight into the effects of human activity and climate change on Hawaii's water resources. Three island-wide groundwater-flow models (Kauai, Oahu, and Maui) were constructed using MODFLOW 2005 coupled with the Seawater-Intrusion Package (SWI2), which simulates the transition between saltwater and freshwater in the aquifer as a sharp interface. This approach allowed coarse vertical discretization (maximum of two layers) without ignoring the freshwater-saltwater system at the regional scale. Model construction (FloPy3), parameter estimation (PEST), and analysis of results were streamlined using Python scripts. Model simulations included pre-development (1870) and recent (average of 2001-10) scenarios for each island. Additionally, scenarios for future withdrawals and climate change were simulated for Oahu. We present our streamlined approach and results showing estimated effects of human activity on the groundwater resource by quantifying decline in water levels, rise of the freshwater-saltwater interface, and reduction in stream base flow. Water-resource managers can use this information to evaluate consequences of groundwater development that can constrain future groundwater availability.

  9. Information, intelligence, and interface: the pillars of a successful medical information system.

    Science.gov (United States)

    Hadzikadic, M; Harrington, A L; Bohren, B F

    1995-01-01

    This paper addresses three key issues facing developers of clinical and/or research medical information systems. 1. INFORMATION. The basic function of every database is to store information about the phenomenon under investigation. There are many ways to organize information in a computer; however only a few will prove optimal for any real life situation. Computer Science theory has developed several approaches to database structure, with relational theory leading in popularity among end users [8]. Strict conformance to the rules of relational database design rewards the user with consistent data and flexible access to that data. A properly defined database structure minimizes redundancy i.e.,multiple storage of the same information. Redundancy introduces problems when updating a database, since the repeated value has to be updated in all locations--missing even a single value corrupts the whole database, and incorrect reports are produced [8]. To avoid such problems, relational theory offers a formal mechanism for determining the number and content of data files. These files not only preserve the conceptual schema of the application domain, but allow a virtually unlimited number of reports to be efficiently generated. 2. INTELLIGENCE. Flexible access enables the user to harvest additional value from collected data. This value is usually gained via reports defined at the time of database design. Although these reports are indispensable, with proper tools more information can be extracted from the database. For example, machine learning, a sub-discipline of artificial intelligence, has been successfully used to extract knowledge from databases of varying size by uncovering a correlation among fields and records[1-6, 9]. This knowledge, represented in the form of decision trees, production rules, and probabilistic networks, clearly adds a flavor of intelligence to the data collection and manipulation system. 3. INTERFACE. Despite the obvious importance of collecting

  10. Prediction of hot spots in protein interfaces using a random forest model with hybrid features.

    Science.gov (United States)

    Wang, Lin; Liu, Zhi-Ping; Zhang, Xiang-Sun; Chen, Luonan

    2012-03-01

    Prediction of hot spots in protein interfaces provides crucial information for the research on protein-protein interaction and drug design. Existing machine learning methods generally judge whether a given residue is likely to be a hot spot by extracting features only from the target residue. However, hot spots usually form a small cluster of residues which are tightly packed together at the center of protein interface. With this in mind, we present a novel method to extract hybrid features which incorporate a wide range of information of the target residue and its spatially neighboring residues, i.e. the nearest contact residue in the other face (mirror-contact residue) and the nearest contact residue in the same face (intra-contact residue). We provide a novel random forest (RF) model to effectively integrate these hybrid features for predicting hot spots in protein interfaces. Our method can achieve accuracy (ACC) of 82.4% and Matthew's correlation coefficient (MCC) of 0.482 in Alanine Scanning Energetics Database, and ACC of 77.6% and MCC of 0.429 in Binding Interface Database. In a comparison study, performance of our RF model exceeds other existing methods, such as Robetta, FOLDEF, KFC, KFC2, MINERVA and HotPoint. Of our hybrid features, three physicochemical features of target residues (mass, polarizability and isoelectric point), the relative side-chain accessible surface area and the average depth index of mirror-contact residues are found to be the main discriminative features in hot spots prediction. We also confirm that hot spots tend to form large contact surface areas between two interacting proteins. Source data and code are available at: http://www.aporc.org/doc/wiki/HotSpot.

  11. Towards a Methodology for the Design of Multimedia Public Access Interfaces.

    Science.gov (United States)

    Rowley, Jennifer

    1998-01-01

    Discussion of information systems methodologies that can contribute to interface design for public access systems covers: the systems life cycle; advantages of adopting information systems methodologies; soft systems methodologies; task-oriented approaches to user interface design; holistic design, the Star model, and prototyping; the…

  12. Design and usability study of an iconic user interface to ease information retrieval of medical guidelines.

    Science.gov (United States)

    Griffon, Nicolas; Kerdelhué, Gaétan; Hamek, Saliha; Hassler, Sylvain; Boog, César; Lamy, Jean-Baptiste; Duclos, Catherine; Venot, Alain; Darmoni, Stéfan J

    2014-10-01

    Doc'CISMeF (DC) is a semantic search engine used to find resources in CISMeF-BP, a quality controlled health gateway, which gathers guidelines available on the internet in French. Visualization of Concepts in Medicine (VCM) is an iconic language that may ease information retrieval tasks. This study aimed to describe the creation and evaluation of an interface integrating VCM in DC in order to make this search engine much easier to use. Focus groups were organized to suggest ways to enhance information retrieval tasks using VCM in DC. A VCM interface was created and improved using the ergonomic evaluation approach. 20 physicians were recruited to compare the VCM interface with the non-VCM one. Each evaluator answered two different clinical scenarios in each interface. The ability and time taken to select a relevant resource were recorded and compared. A usability analysis was performed using the System Usability Scale (SUS). The VCM interface contains a filter based on icons, and icons describing each resource according to focus group recommendations. Some ergonomic issues were resolved before evaluation. Use of VCM significantly increased the success of information retrieval tasks (OR=11; 95% CI 1.4 to 507). Nonetheless, it took significantly more time to find a relevant resource with VCM interface (101 vs 65 s; p=0.02). SUS revealed 'good' usability with an average score of 74/100. VCM was successfully implemented in DC as an option. It increased the success rate of information retrieval tasks, despite requiring slightly more time, and was well accepted by end-users. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  13. User's Manual for the Object User Interface (OUI): An Environmental Resource Modeling Framework

    Science.gov (United States)

    Markstrom, Steven L.; Koczot, Kathryn M.

    2008-01-01

    The Object User Interface is a computer application that provides a framework for coupling environmental-resource models and for managing associated temporal and spatial data. The Object User Interface is designed to be easily extensible to incorporate models and data interfaces defined by the user. Additionally, the Object User Interface is highly configurable through the use of a user-modifiable, text-based control file that is written in the eXtensible Markup Language. The Object User Interface user's manual provides (1) installation instructions, (2) an overview of the graphical user interface, (3) a description of the software tools, (4) a project example, and (5) specifications for user configuration and extension.

  14. The User Interface: A Hypertext Model Linking Art Objects and Related Information.

    Science.gov (United States)

    Moline, Judi

    This report presents a model combining the emerging technologies of hypertext and expert systems. Hypertext is relatively unexplored but promises an innovative approach to information retrieval. In contrast, expert systems have been used experimentally in many different application areas ranging from medical diagnosis to oil exploration. The…

  15. Nonlinear Displacement Discontinuity Model for Generalized Rayleigh Wave in Contact Interface

    Energy Technology Data Exchange (ETDEWEB)

    Kim, No Hyu; Yang, Seung Yong [Korea University of Technology and Education, Cheonan (Korea, Republic of)

    2007-12-15

    Imperfectly jointed interface serves as mechanical waveguide for elastic waves and gives rise to two distinct kinds of guided wave propagating along the interface. Contact acoustic nonlinearity (CAN) is known to plays major role in the generation of these interface waves called generalized Rayleigh waves in non-welded interface. Closed crack is modeled as non-welded interface that has nonlinear discontinuity condition in displacement across its boundary. Mathematical analysis of boundary conditions and wave equation is conducted to investigate the dispersive characteristics of the interface waves. Existence of the generalized Rayleigh wave(interface wave) in nonlinear contact interface is verified in theory where the dispersion equation for the interface wave is formulated and analyzed. It reveals that the interface waves have two distinct modes and that the phase velocity of anti-symmetric wave mode is highly dependent on contact conditions represented by linear and nonlinear dimensionless specific stiffness

  16. Nonlinear Displacement Discontinuity Model for Generalized Rayleigh Wave in Contact Interface

    International Nuclear Information System (INIS)

    Kim, No Hyu; Yang, Seung Yong

    2007-01-01

    Imperfectly jointed interface serves as mechanical waveguide for elastic waves and gives rise to two distinct kinds of guided wave propagating along the interface. Contact acoustic nonlinearity (CAN) is known to plays major role in the generation of these interface waves called generalized Rayleigh waves in non-welded interface. Closed crack is modeled as non-welded interface that has nonlinear discontinuity condition in displacement across its boundary. Mathematical analysis of boundary conditions and wave equation is conducted to investigate the dispersive characteristics of the interface waves. Existence of the generalized Rayleigh wave(interface wave) in nonlinear contact interface is verified in theory where the dispersion equation for the interface wave is formulated and analyzed. It reveals that the interface waves have two distinct modes and that the phase velocity of anti-symmetric wave mode is highly dependent on contact conditions represented by linear and nonlinear dimensionless specific stiffness

  17. General MACOS Interface for Modeling and Analysis for Controlled Optical Systems

    Science.gov (United States)

    Sigrist, Norbert; Basinger, Scott A.; Redding, David C.

    2012-01-01

    The General MACOS Interface (GMI) for Modeling and Analysis for Controlled Optical Systems (MACOS) enables the use of MATLAB as a front-end for JPL s critical optical modeling package, MACOS. MACOS is JPL s in-house optical modeling software, which has proven to be a superb tool for advanced systems engineering of optical systems. GMI, coupled with MACOS, allows for seamless interfacing with modeling tools from other disciplines to make possible integration of dynamics, structures, and thermal models with the addition of control systems for deformable optics and other actuated optics. This software package is designed as a tool for analysts to quickly and easily use MACOS without needing to be an expert at programming MACOS. The strength of MACOS is its ability to interface with various modeling/development platforms, allowing evaluation of system performance with thermal, mechanical, and optical modeling parameter variations. GMI provides an improved means for accessing selected key MACOS functionalities. The main objective of GMI is to marry the vast mathematical and graphical capabilities of MATLAB with the powerful optical analysis engine of MACOS, thereby providing a useful tool to anyone who can program in MATLAB. GMI also improves modeling efficiency by eliminating the need to write an interface function for each task/project, reducing error sources, speeding up user/modeling tasks, and making MACOS well suited for fast prototyping.

  18. runjags: An R Package Providing Interface Utilities, Model Templates, Parallel Computing Methods and Additional Distributions for MCMC Models in JAGS

    Directory of Open Access Journals (Sweden)

    Matthew J. Denwood

    2016-07-01

    Full Text Available The runjags package provides a set of interface functions to facilitate running Markov chain Monte Carlo models in JAGS from within R. Automated calculation of appropriate convergence and sample length diagnostics, user-friendly access to commonly used graphical outputs and summary statistics, and parallelized methods of running JAGS are provided. Template model specifications can be generated using a standard lme4-style formula interface to assist users less familiar with the BUGS syntax. Automated simulation study functions are implemented to facilitate model performance assessment, as well as drop-k type cross-validation studies, using high performance computing clusters such as those provided by parallel. A module extension for JAGS is also included within runjags, providing the Pareto family of distributions and a series of minimally-informative priors including the DuMouchel and half-Cauchy priors. This paper outlines the primary functions of this package, and gives an illustration of a simulation study to assess the sensitivity of two equivalent model formulations to different prior distributions.

  19. Radial restricted solid-on-solid and etching interface-growth models

    Science.gov (United States)

    Alves, Sidiney G.

    2018-03-01

    An approach to generate radial interfaces is presented. A radial network recursively obtained is used to implement discrete model rules designed originally for the investigation in flat substrates. I used the restricted solid-on-solid and etching models as to test the proposed scheme. The results indicate the Kardar, Parisi, and Zhang conjecture is completely verified leading to a good agreement between the interface radius fluctuation distribution and the Gaussian unitary ensemble. The evolution of the radius agrees well with the generalized conjecture, and the two-point correlation function exhibits also a good agreement with the covariance of the Airy2 process. The approach can be used to investigate radial interfaces evolution for many other classes of universality.

  20. A study on the quantitative model of human response time using the amount and the similarity of information

    International Nuclear Information System (INIS)

    Lee, Sung Jin

    2006-02-01

    The mental capacity to retain or recall information, or memory is related to human performance during processing of information. Although a large number of studies have been carried out on human performance, little is known about the similarity effect. The purpose of this study was to propose and validate a quantitative and predictive model on human response time in the user interface with the basic concepts of information amount, similarity and degree of practice. It was difficult to explain human performance by only similarity or information amount. There were two difficulties: constructing a quantitative model on human response time and validating the proposed model by experimental work. A quantitative model based on the Hick's law, the law of practice and similarity theory was developed. The model was validated under various experimental conditions by measuring the participants' response time in the environment of a computer-based display. Human performance was improved by degree of similarity and practice in the user interface. Also we found the age-related human performance which was degraded as he or she was more elder. The proposed model may be useful for training operators who will handle some interfaces and predicting human performance by changing system design

  1. An approach for the modeling of interface-body coupled nonlocal damage

    Directory of Open Access Journals (Sweden)

    J. Toti

    2010-04-01

    Full Text Available Fiber Reinforced Plastic (FRP can be used for strengthening concrete or masonry constructions. One of the main problem in the use of FRP is the possible detachment of the reinforcement from the support material. This paper deals with the modeling of the FRP-concrete or masonry damage interface, accounting for the coupling occurring between the degradation of the cohesive material and the FRP detachment. To this end, a damage model is considered for the quasi-brittle material. In order to prevent strain localization and strong mesh sensitivity of the solution, an integral-type of nonlocal model based on the weighted spatial averaging of a strain-like quantity is developed. Regarding the interface, the damage is governed by the relative displacement occurring at bond. A suitable interface model which accounts for the mode I, mode II and mixed mode of damage is developed. The coupling between the body damage and the interface damage is performed computing the body damage on the bond surface. Numerical examples are presented.

  2. Social Interface Model: Theorizing Ecological Post-Delivery Processes for Intervention Effects.

    Science.gov (United States)

    Pettigrew, Jonathan; Segrott, Jeremy; Ray, Colter D; Littlecott, Hannah

    2018-01-03

    Successful prevention programs depend on a complex interplay among aspects of the intervention, the participant, the specific intervention setting, and the broader set of contexts with which a participant interacts. There is a need to theorize what happens as participants bring intervention ideas and behaviors into other life-contexts, and theory has not yet specified how social interactions about interventions may influence outcomes. To address this gap, we use an ecological perspective to develop the social interface model. This paper presents the key components of the model and its potential to aid the design and implementation of prevention interventions. The model is predicated on the idea that intervention message effectiveness depends not only on message aspects but also on the participants' adoption and adaptation of the message vis-à-vis their social ecology. The model depicts processes by which intervention messages are received and enacted by participants through social processes occurring within and between relevant microsystems. Mesosystem interfaces (negligible interface, transference, co-dependence, and interdependence) can facilitate or detract from intervention effects. The social interface model advances prevention science by theorizing that practitioners can create better quality interventions by planning for what occurs after interventions are delivered.

  3. Algorithms, Interfaces, and the Circulation of Information: Interrogating the Epistemological Challenges of Facebook

    Directory of Open Access Journals (Sweden)

    Jannick Schou

    2016-05-01

    Full Text Available As social and political life increasingly takes place on social network sites, new epistemological questions have emerged. How can information disseminated through new media be understood and disentangled? How can potential hidden agendas or sources be identified? And what mechanisms govern what and how information is presented to the user? By drawing on existing research on the algorithms and interfaces underlying social network sites, this paper provides a discussion of Facebook and the epistemological challenges, potentials, and questions raised by the platform. The paper specifically discusses the ways in which interfaces shape how information can be accessed and processed by different kinds of users as well as the role of algorithms in pre-selecting what appears as representable information. A key argument of the paper is that Facebook, as a complex socio-technical network of human and non-human actors, has profound epistemological implications for how information can be accessed, understood, and circulated. In this sense, the user’s potential acquisition of information is shaped and conditioned by the technological structure of the platform. Building on these arguments, the paper suggests that new epistemological challenges deserve more scholarly attention, as they hold wide implications for both researchers and users

  4. Continental hydrosystem modelling: the concept of nested stream-aquifer interfaces

    Science.gov (United States)

    Flipo, N.; Mouhri, A.; Labarthe, B.; Biancamaria, S.; Rivière, A.; Weill, P.

    2014-08-01

    Coupled hydrological-hydrogeological models, emphasising the importance of the stream-aquifer interface, are more and more used in hydrological sciences for pluri-disciplinary studies aiming at investigating environmental issues. Based on an extensive literature review, stream-aquifer interfaces are described at five different scales: local [10 cm-~10 m], intermediate [~10 m-~1 km], watershed [10 km2-~1000 km2], regional [10 000 km2-~1 M km2] and continental scales [>10 M km2]. This led us to develop the concept of nested stream-aquifer interfaces, which extends the well-known vision of nested groundwater pathways towards the surface, where the mixing of low frequency processes and high frequency processes coupled with the complexity of geomorphological features and heterogeneities creates hydrological spiralling. This conceptual framework allows the identification of a hierarchical order of the multi-scale control factors of stream-aquifer hydrological exchanges, from the larger scale to the finer scale. The hyporheic corridor, which couples the river to its 3-D hyporheic zone, is then identified as the key component for scaling hydrological processes occurring at the interface. The identification of the hyporheic corridor as the support of the hydrological processes scaling is an important step for the development of regional studies, which is one of the main concerns for water practitioners and resources managers. In a second part, the modelling of the stream-aquifer interface at various scales is investigated with the help of the conductance model. Although the usage of the temperature as a tracer of the flow is a robust method for the assessment of stream-aquifer exchanges at the local scale, there is a crucial need to develop innovative methodologies for assessing stream-aquifer exchanges at the regional scale. After formulating the conductance model at the regional and intermediate scales, we address this challenging issue with the development of an

  5. Contribution to the modeling and the identification of haptic interfaces; Contribution a la modelisation et a l'identification des interfaces haptiques

    Energy Technology Data Exchange (ETDEWEB)

    Janot, A

    2007-12-15

    This thesis focuses on the modeling and the identification of haptic interfaces using cable drive. An haptic interface is a force feedback device, which enables its user to interact with a virtual world or a remote environment explored by a slave system. It aims at the matching between the forces and displacements given by the user and those applied to virtual world. Usually, haptic interfaces make use of a mechanical actuated structure whose distal link is equipped with a handle. When manipulating this handle to interact with explored world, the user feels the apparent mass, compliance and friction of the interface. This distortion introduced between the operator and the virtual world must be modeled and identified to enhance the design of the interface and develop appropriate control laws. The first approach has been to adapt the modeling and identification methods of rigid and localized flexibilities robots to haptic interfaces. The identification technique makes use of the inverse dynamic model and the linear least squares with the measurements of joint torques and positions. This approach is validated on a single degree of freedom and a three degree of freedom haptic devices. A new identification method needing only torque data is proposed. It is based on a closed loop simulation using the direct dynamic model. The optimal parameters minimize the 2 norms of the error between the actual torque and the simulated torque assuming the same control law and the same tracking trajectory. This non linear least squares problem dramatically is simplified using the inverse model to calculate the simulated torque. This method is validated on the single degree of freedom haptic device and the SCARA robot. (author)

  6. Federating resources of information systems: browsing interface (FRISBI)

    NARCIS (Netherlands)

    Malchanau, A.V.; van der Vet, P.E.; Roosendaal, Hans E.; de Bra, P.M.E.

    2003-01-01

    Designing the user interface of a federated system (what we call a browsing interface) must consider the knowledge gap that exists between desires of the users and the needs the systems are built to support. The concept of Habitable Interfaces aims to bridge the knowledge gap by providing kinds of

  7. User-Centered Design, Experience, and Usability of an Electronic Consent User Interface to Facilitate Informed Decision-Making in an HIV Clinic.

    Science.gov (United States)

    Ramos, S Raquel

    2017-11-01

    Health information exchange is the electronic accessibility and transferability of patient medical records across various healthcare settings and providers. In some states, patients have to formally give consent to allow their medical records to be electronically shared. The purpose of this study was to apply a novel user-centered, multistep, multiframework approach to design and test an electronic consent user interface, so patients with HIV can make more informed decisions about electronically sharing their health information. This study consisted of two steps. Step 1 was a cross-sectional, descriptive, qualitative study that used user-centric design interviews to create the user interface. This informed Step 2. Step 2 consisted of a one group posttest to examine perceptions of usefulness, ease of use, preference, and comprehension of a health information exchange electronic consent user interface. More than half of the study population had college experience, but challenges remained with overall comprehension regarding consent. The user interface was not independently successful, suggesting that in addition to an electronic consent user interface, human interaction may also be necessary to address the complexities associated with consenting to electronically share health information. Comprehension is key factor in the ability to make informed decisions.

  8. Enabling Accessibility Through Model-Based User Interface Development.

    Science.gov (United States)

    Ziegler, Daniel; Peissner, Matthias

    2017-01-01

    Adaptive user interfaces (AUIs) can increase the accessibility of interactive systems. They provide personalized display and interaction modes to fit individual user needs. Most AUI approaches rely on model-based development, which is considered relatively demanding. This paper explores strategies to make model-based development more attractive for mainstream developers.

  9. The management of design interfaces in the nuclear power construction

    International Nuclear Information System (INIS)

    Lv Shubao

    2005-01-01

    This paper introduces the design interfaces management in the construction of nuclear power plant through the Interface Control Manual (ICM). The ICM management model had been applied and practiced in the construction of both DAYA BAY and LING AO phase I (LNPS I ) nuclear power stations. It has solved many troublesome matters in the design interfaces information exchange among all concerned parties, and contributed to these projects greatly. The author considers that the ICM management: has great value for extending and applying in the new construction of nuclear power station. In order to understand easily the ICM management model, the paper expatiates on the compiling principle, the procedure establishing, the interface editing and the ICM updating. The advantages of using ICM are as follow: First, the ICM model provides the authoritative and legal document to be obeyed by all contractors for exchanging the design technical information basing on the responsibility and planning. Second, the ICM enhances the schedule control for the project engineering. Third, using ICM to manage the design information exchange solves the questions assorted with different parties, and decreases the times spent in unproductive coordination meeting. Fourth, the ICM management uses computer database and provides convenient method for engineers to track and control interface exchange, gets twice the result with half the effort. Fifth, the ICM database allows easy retrieval of any technical information for further re-use in a similar project. (authors)

  10. Understanding the interface between clinical and laboratory staff

    Directory of Open Access Journals (Sweden)

    Ankie van den Broek

    2014-07-01

    Objectives: To propose a new conceptual model to gain insight and analyse factors that influence the laboratory–clinical staff interface. Methods: To develop the conceptual model, a literature study was performed, regulatory guidelines and standards for laboratories were analysed and discussions were held with experts on the topic. Result: A conceptual model and analytical framework provided good guidance in understanding and assessing the organisational and personal factors shaping the interface. The model was based on three elements: (1 the three phases of communication (pre-analytical, analytical and post-analytical; (2 the organisational and personal factors of interaction; and (3 the socio-political, economic and cultural context in which clinicians and laboratory staff operate. Conclusion: Assessment of the interface between clinicians and laboratory workers can be performed in a systematic way. Applying this model will provide information to managers of health institutions and heads of laboratories and clinical departments about what happens when clinicians and laboratory staff interact, thus aiding them in designing strategies to improve this interface.

  11. In Vitro Mimetic Models for the Bone-Cartilage Interface Regeneration.

    Science.gov (United States)

    Bicho, Diana; Pina, Sandra; Oliveira, J Miguel; Reis, Rui L

    2018-01-01

    In embryonic development, pure cartilage structures are in the basis of bone-cartilage interfaces. Despite this fact, the mature bone and cartilage structures can vary greatly in composition and function. Nevertheless, they collaborate in the osteochondral region to create a smooth transition zone that supports the movements and forces resulting from the daily activities. In this sense, all the hierarchical organization is involved in the maintenance and reestablishment of the equilibrium in case of damage. Therefore, this interface has attracted a great deal of interest in order to understand the mechanisms of regeneration or disease progression in osteoarthritis. With that purpose, in vitro tissue models (either static or dynamic) have been studied. Static in vitro tissue models include monocultures, co-cultures, 3D cultures, and ex vivo cultures, mostly cultivated in flat surfaces, while dynamic models involve the use of bioreactors and microfluidic systems. The latter have emerged as alternatives to study the cellular interactions in a more authentic manner over some disadvantages of the static models. The current alternatives of in vitro mimetic models for bone-cartilage interface regeneration are overviewed and discussed herein.

  12. Proposal of adaptive human interface and study of interface evaluation method for plant operators

    International Nuclear Information System (INIS)

    Ujita, Hiroshi; Kubota, Ryuji.

    1994-01-01

    In this report, a new concept of human interface adaptive to plant operators' mental model, cognitive process and psychological state which change with time is proposed. It is composed of a function to determine information which should be indicated to operators based on the plant situation, a function to estimate operators' internal conditions, and a function to arrange the information amount, position, timing, form etc. based on their conditions. The method to evaluate the fitness of the interface by using the analysis results based on cognitive science, ergonomics, psychology and physiology is developed to achieve such an interface. Fundamental physiological experiments have been performed. Stress and workload can be identified by the ratio of the power average of the α wave fraction of a brain wave and be distinguished by the ratio of the standard deviation of the R-R interval in test and at rest, in the case of low stress such as mouse operation, calculation and walking. (author)

  13. Proposal of adaptive human interface and study of interface evaluation method for plant operators

    Energy Technology Data Exchange (ETDEWEB)

    Ujita, Hiroshi [Hitachi Ltd., Ibaraki (Japan). Energy Research Lab.; Kubota, Ryuji

    1994-07-01

    In this report, a new concept of human interface adaptive to plant operators' mental model, cognitive process and psychological state which change with time is proposed. It is composed of a function to determine information which should be indicated to operators based on the plant situation, a function to estimate operators' internal conditions, and a function to arrange the information amount, position, timing, form etc. based on their conditions. The method to evaluate the fitness of the interface by using the analysis results based on cognitive science, ergonomics, psychology and physiology is developed to achieve such an interface. Fundamental physiological experiments have been performed. Stress and workload can be identified by the ratio of the power average of the [alpha] wave fraction of a brain wave and be distinguished by the ratio of the standard deviation of the R-R interval in test and at rest, in the case of low stress such as mouse operation, calculation and walking. (author).

  14. Alice and Bob meet Banach the interface of asymptotic geometric analysis and quantum information theory

    CERN Document Server

    Aubrun, Guillaume

    2017-01-01

    The quest to build a quantum computer is arguably one of the major scientific and technological challenges of the twenty-first century, and quantum information theory (QIT) provides the mathematical framework for that quest. Over the last dozen or so years, it has become clear that quantum information theory is closely linked to geometric functional analysis (Banach space theory, operator spaces, high-dimensional probability), a field also known as asymptotic geometric analysis (AGA). In a nutshell, asymptotic geometric analysis investigates quantitative properties of convex sets, or other geometric structures, and their approximate symmetries as the dimension becomes large. This makes it especially relevant to quantum theory, where systems consisting of just a few particles naturally lead to models whose dimension is in the thousands, or even in the billions. Alice and Bob Meet Banach is aimed at multiple audiences connected through their interest in the interface of QIT and AGA: at quantum information resea...

  15. ToxPi Graphical User Interface 2.0: Dynamic exploration, visualization, and sharing of integrated data models.

    Science.gov (United States)

    Marvel, Skylar W; To, Kimberly; Grimm, Fabian A; Wright, Fred A; Rusyn, Ivan; Reif, David M

    2018-03-05

    Drawing integrated conclusions from diverse source data requires synthesis across multiple types of information. The ToxPi (Toxicological Prioritization Index) is an analytical framework that was developed to enable integration of multiple sources of evidence by transforming data into integrated, visual profiles. Methodological improvements have advanced ToxPi and expanded its applicability, necessitating a new, consolidated software platform to provide functionality, while preserving flexibility for future updates. We detail the implementation of a new graphical user interface for ToxPi (Toxicological Prioritization Index) that provides interactive visualization, analysis, reporting, and portability. The interface is deployed as a stand-alone, platform-independent Java application, with a modular design to accommodate inclusion of future analytics. The new ToxPi interface introduces several features, from flexible data import formats (including legacy formats that permit backward compatibility) to similarity-based clustering to options for high-resolution graphical output. We present the new ToxPi interface for dynamic exploration, visualization, and sharing of integrated data models. The ToxPi interface is freely-available as a single compressed download that includes the main Java executable, all libraries, example data files, and a complete user manual from http://toxpi.org .

  16. An improved interfacial bonding model for material interface modeling

    Science.gov (United States)

    Lin, Liqiang; Wang, Xiaodu; Zeng, Xiaowei

    2016-01-01

    An improved interfacial bonding model was proposed from potential function point of view to investigate interfacial interactions in polycrystalline materials. It characterizes both attractive and repulsive interfacial interactions and can be applied to model different material interfaces. The path dependence of work-of-separation study indicates that the transformation of separation work is smooth in normal and tangential direction and the proposed model guarantees the consistency of the cohesive constitutive model. The improved interfacial bonding model was verified through a simple compression test in a standard hexagonal structure. The error between analytical solutions and numerical results from the proposed model is reasonable in linear elastic region. Ultimately, we investigated the mechanical behavior of extrafibrillar matrix in bone and the simulation results agreed well with experimental observations of bone fracture. PMID:28584343

  17. Supporting special-purpose health care models via Web interfaces

    NARCIS (Netherlands)

    Warren, James R.; Frankel, Heath K.; Noone, Joseph T.; van der Zwaag, B.J.

    The potential of the Web, via both the Internet and intranets, to facilitate development of clinical information systems has been evident for some time. Most Web-based clinical workstations interfaces, however, provide merely a loose collection of access channels. There are numerous examples of

  18. Modelling Safe Interface Interactions in Web Applications

    Science.gov (United States)

    Brambilla, Marco; Cabot, Jordi; Grossniklaus, Michael

    Current Web applications embed sophisticated user interfaces and business logic. The original interaction paradigm of the Web based on static content pages that are browsed by hyperlinks is, therefore, not valid anymore. In this paper, we advocate a paradigm shift for browsers and Web applications, that improves the management of user interaction and browsing history. Pages are replaced by States as basic navigation nodes, and Back/Forward navigation along the browsing history is replaced by a full-fledged interactive application paradigm, supporting transactions at the interface level and featuring Undo/Redo capabilities. This new paradigm offers a safer and more precise interaction model, protecting the user from unexpected behaviours of the applications and the browser.

  19. Laminated materials with plastic interfaces: modeling and calculation

    International Nuclear Information System (INIS)

    Sandino Aquino de los Ríos, Gilberto; Castañeda Balderas, Rubén; Diaz Diaz, Alberto; Duong, Van Anh; Chataigner, Sylvain; Caron, Jean-François; Ehrlacher, Alain; Foret, Gilles

    2009-01-01

    In this paper, a model of laminated plates called M4-5N and validated in a previous paper is modified in order to take into account interlaminar plasticity by means of displacement discontinuities at the interfaces. These discontinuities are calculated by adapting a 3D plasticity model. In order to compute the model, a Newton–Raphson-like method is employed. In this method, two sub-problems are considered: one is linear and the other is non-linear. In the linear problem the non-linear equations of the model are linearized and the calculations are performed by making use of a finite element software. By iterating the resolution of each sub-problem, one obtains after convergence the solution of the global problem. The model is then applied to the problem of a double lap, adhesively bonded joint subjected to a tensile load. The adhesive layer is modeled by an elastic–plastic interface. The results of the M4-5N model are compared with those of a commercial finite element software. A good agreement between the two computation techniques is obtained and validates the non-linear calculations proposed in this paper. Finally, the numerical tool and a delamination criterion are applied to predict delamination onset in composite laminates

  20. Framework for non-coherent interface models at finite displacement jumps and finite strains

    Science.gov (United States)

    Ottosen, Niels Saabye; Ristinmaa, Matti; Mosler, Jörn

    2016-05-01

    This paper deals with a novel constitutive framework suitable for non-coherent interfaces, such as cracks, undergoing large deformations in a geometrically exact setting. For this type of interface, the displacement field shows a jump across the interface. Within the engineering community, so-called cohesive zone models are frequently applied in order to describe non-coherent interfaces. However, for existing models to comply with the restrictions imposed by (a) thermodynamical consistency (e.g., the second law of thermodynamics), (b) balance equations (in particular, balance of angular momentum) and (c) material frame indifference, these models are essentially fiber models, i.e. models where the traction vector is collinear with the displacement jump. This constraints the ability to model shear and, in addition, anisotropic effects are excluded. A novel, extended constitutive framework which is consistent with the above mentioned fundamental physical principles is elaborated in this paper. In addition to the classical tractions associated with a cohesive zone model, the main idea is to consider additional tractions related to membrane-like forces and out-of-plane shear forces acting within the interface. For zero displacement jump, i.e. coherent interfaces, this framework degenerates to existing formulations presented in the literature. For hyperelasticity, the Helmholtz energy of the proposed novel framework depends on the displacement jump as well as on the tangent vectors of the interface with respect to the current configuration - or equivalently - the Helmholtz energy depends on the displacement jump and the surface deformation gradient. It turns out that by defining the Helmholtz energy in terms of the invariants of these variables, all above-mentioned fundamental physical principles are automatically fulfilled. Extensions of the novel framework necessary for material degradation (damage) and plasticity are also covered.

  1. Introducing a new open source GIS user interface for the SWAT model

    Science.gov (United States)

    The Soil and Water Assessment Tool (SWAT) model is a robust watershed modelling tool. It typically uses the ArcSWAT interface to create its inputs. ArcSWAT is public domain software which works in the licensed ArcGIS environment. The aim of this paper was to develop an open source user interface ...

  2. Contribution to the modeling and the identification of haptic interfaces; Contribution a la modelisation et a l'identification des interfaces haptiques

    Energy Technology Data Exchange (ETDEWEB)

    Janot, A

    2007-12-15

    This thesis focuses on the modeling and the identification of haptic interfaces using cable drive. An haptic interface is a force feedback device, which enables its user to interact with a virtual world or a remote environment explored by a slave system. It aims at the matching between the forces and displacements given by the user and those applied to virtual world. Usually, haptic interfaces make use of a mechanical actuated structure whose distal link is equipped with a handle. When manipulating this handle to interact with explored world, the user feels the apparent mass, compliance and friction of the interface. This distortion introduced between the operator and the virtual world must be modeled and identified to enhance the design of the interface and develop appropriate control laws. The first approach has been to adapt the modeling and identification methods of rigid and localized flexibilities robots to haptic interfaces. The identification technique makes use of the inverse dynamic model and the linear least squares with the measurements of joint torques and positions. This approach is validated on a single degree of freedom and a three degree of freedom haptic devices. A new identification method needing only torque data is proposed. It is based on a closed loop simulation using the direct dynamic model. The optimal parameters minimize the 2 norms of the error between the actual torque and the simulated torque assuming the same control law and the same tracking trajectory. This non linear least squares problem dramatically is simplified using the inverse model to calculate the simulated torque. This method is validated on the single degree of freedom haptic device and the SCARA robot. (author)

  3. TaskMaster: a prototype graphical user interface to a schedule optimization model

    OpenAIRE

    Banham, Stephen R.

    1990-01-01

    Approved for public release, distribution is unlimited This thesis investigates the use of current graphical interface techniques to build more effective computer-user interfaces to Operations Research (OR) schedule optimization models. The design is directed at the scheduling decision maker who possesses limited OR experience. The feasibility and validity of building an interface for this kind of user is demonstrated in the development of a prototype graphical user interface called TaskMa...

  4. STEP-TRAMM - A modeling interface for simulating localized rainfall induced shallow landslides and debris flow runout pathways

    Science.gov (United States)

    Or, D.; von Ruette, J.; Lehmann, P.

    2017-12-01

    Landslides and subsequent debris-flows initiated by rainfall represent a common natural hazard in mountainous regions. We integrated a landslide hydro-mechanical triggering model with a simple model for debris flow runout pathways and developed a graphical user interface (GUI) to represent these natural hazards at catchment scale at any location. The STEP-TRAMM GUI provides process-based estimates of the initiation locations and sizes of landslides patterns based on digital elevation models (SRTM) linked with high resolution global soil maps (SoilGrids 250 m resolution) and satellite based information on rainfall statistics for the selected region. In the preprocessing phase the STEP-TRAMM model estimates soil depth distribution to supplement other soil information for delineating key hydrological and mechanical properties relevant to representing local soil failure. We will illustrate this publicly available GUI and modeling platform to simulate effects of deforestation on landslide hazards in several regions and compare model outcome with satellite based information.

  5. Children searching information on the Internet : Performance on children's interfaces compared to Google

    NARCIS (Netherlands)

    Jochmann-Mannak, Hanna; Huibers, Theo W.C.; Lentz, Leo; Sanders, Ted

    2010-01-01

    Children frequently make use of the Internet to search for information. However, research shows that children experience many problems with searching and browsing the web. The last decade numerous search environments have been developed, especially for children. Do these search interfaces support

  6. Interface between path and orbital angular momentum entanglement for high-dimensional photonic quantum information.

    Science.gov (United States)

    Fickler, Robert; Lapkiewicz, Radek; Huber, Marcus; Lavery, Martin P J; Padgett, Miles J; Zeilinger, Anton

    2014-07-30

    Photonics has become a mature field of quantum information science, where integrated optical circuits offer a way to scale the complexity of the set-up as well as the dimensionality of the quantum state. On photonic chips, paths are the natural way to encode information. To distribute those high-dimensional quantum states over large distances, transverse spatial modes, like orbital angular momentum possessing Laguerre Gauss modes, are favourable as flying information carriers. Here we demonstrate a quantum interface between these two vibrant photonic fields. We create three-dimensional path entanglement between two photons in a nonlinear crystal and use a mode sorter as the quantum interface to transfer the entanglement to the orbital angular momentum degree of freedom. Thus our results show a flexible way to create high-dimensional spatial mode entanglement. Moreover, they pave the way to implement broad complex quantum networks where high-dimensionally entangled states could be distributed over distant photonic chips.

  7. A thick-interface model for diffusive and massive phase transformation in substitutional alloys

    International Nuclear Information System (INIS)

    Svoboda, J.; Vala, J.; Gamsjaeger, E.; Fischer, F.D.

    2006-01-01

    Based on the application of the thermodynamic extremal principle, a new model for the diffusive and massive phase transformation in multicomponent substitutional alloys is developed. Interfacial reactions such as the rearrangement of the lattice, solute drag and trans-interface diffusion are automatically considered by assigning a finite thickness and a finite mobility to the interface region. As an application of the steady-state solution of the derived evolution equations, the kinetics of the massive γ → α transformation in the Fe-rich Fe-Cr-Ni system is simulated. The thermodynamic properties of the interface may influence significantly the contact conditions at the interface as well as the conditions for the occurrence of the massive transformation and its kinetics. The model is also used for the simulation of the diffusion-induced grain boundary migration in the same system. By application of the model a realistic value for the Gibbs energy per unit interface area is obtained

  8. Model-driven Instrumentation of graphical user interfaces.

    OpenAIRE

    Funk, M.; Hoyer, P.; Link, S.

    2009-01-01

    In today's continuously changing markets newly developed products often do not meet the demands and expectations of customers. Research on this problem identified a large gap between developer and user expectations. Approaches to bridge this gap are to provide the developers with better information on product usage and to create a fast feedback cycle that helps tackling usage problems. Therefore, the user interface of the product, the central point of human-computer interaction, has to be ins...

  9. Magnetic properties of the three-dimensional Ising model with an interface amorphization

    International Nuclear Information System (INIS)

    Benyoussef, A.; El Kenz, A.; Saber, M.

    1993-09-01

    A three-dimensional ferromagnetic Ising model with an interface amorphization is investigated with the use of the effective field theory. Phase diagrams and reduced magnetization curves of interface and bulks are studied. We obtain a number of characteristic behaviour such as the possibility of the reentrant phenomena and a large depression of interface magnetization. (author). 21 refs, 5 figs

  10. The Protein Model Portal--a comprehensive resource for protein structure and model information.

    Science.gov (United States)

    Haas, Juergen; Roth, Steven; Arnold, Konstantin; Kiefer, Florian; Schmidt, Tobias; Bordoli, Lorenza; Schwede, Torsten

    2013-01-01

    The Protein Model Portal (PMP) has been developed to foster effective use of 3D molecular models in biomedical research by providing convenient and comprehensive access to structural information for proteins. Both experimental structures and theoretical models for a given protein can be searched simultaneously and analyzed for structural variability. By providing a comprehensive view on structural information, PMP offers the opportunity to apply consistent assessment and validation criteria to the complete set of structural models available for proteins. PMP is an open project so that new methods developed by the community can contribute to PMP, for example, new modeling servers for creating homology models and model quality estimation servers for model validation. The accuracy of participating modeling servers is continuously evaluated by the Continuous Automated Model EvaluatiOn (CAMEO) project. The PMP offers a unique interface to visualize structural coverage of a protein combining both theoretical models and experimental structures, allowing straightforward assessment of the model quality and hence their utility. The portal is updated regularly and actively developed to include latest methods in the field of computational structural biology. Database URL: http://www.proteinmodelportal.org.

  11. The Protein Model Portal—a comprehensive resource for protein structure and model information

    Science.gov (United States)

    Haas, Juergen; Roth, Steven; Arnold, Konstantin; Kiefer, Florian; Schmidt, Tobias; Bordoli, Lorenza; Schwede, Torsten

    2013-01-01

    The Protein Model Portal (PMP) has been developed to foster effective use of 3D molecular models in biomedical research by providing convenient and comprehensive access to structural information for proteins. Both experimental structures and theoretical models for a given protein can be searched simultaneously and analyzed for structural variability. By providing a comprehensive view on structural information, PMP offers the opportunity to apply consistent assessment and validation criteria to the complete set of structural models available for proteins. PMP is an open project so that new methods developed by the community can contribute to PMP, for example, new modeling servers for creating homology models and model quality estimation servers for model validation. The accuracy of participating modeling servers is continuously evaluated by the Continuous Automated Model EvaluatiOn (CAMEO) project. The PMP offers a unique interface to visualize structural coverage of a protein combining both theoretical models and experimental structures, allowing straightforward assessment of the model quality and hence their utility. The portal is updated regularly and actively developed to include latest methods in the field of computational structural biology. Database URL: http://www.proteinmodelportal.org PMID:23624946

  12. Accessing Data Bases Through Interface Views Using a Unified Graph-Oriented Entity-Relationship Model

    DEFF Research Database (Denmark)

    Kraft, Peter; Sørensen, Jens Otto

    Interface Abstract: The paper describes an Entity Relationship (ER) model with a diagrammed schema and extensions modeled into a graph. The semantics of schema symbols are fundamentally simple implying a unified model where given conceptualizations of environments are diagrammed uniquely. By the ......Interface Abstract: The paper describes an Entity Relationship (ER) model with a diagrammed schema and extensions modeled into a graph. The semantics of schema symbols are fundamentally simple implying a unified model where given conceptualizations of environments are diagrammed uniquely...... with a unified graphic model is more efficient and less error-prone than working with more complex ER models and models based on lexical description. Key terms: Entity-relationship model, path expressions, entity-relationship language, derived interface view, view updates, graphical models....

  13. Distributed user interfaces for clinical ubiquitous computing applications.

    Science.gov (United States)

    Bång, Magnus; Larsson, Anders; Berglund, Erik; Eriksson, Henrik

    2005-08-01

    Ubiquitous computing with multiple interaction devices requires new interface models that support user-specific modifications to applications and facilitate the fast development of active workspaces. We have developed NOSTOS, a computer-augmented work environment for clinical personnel to explore new user interface paradigms for ubiquitous computing. NOSTOS uses several devices such as digital pens, an active desk, and walk-up displays that allow the system to track documents and activities in the workplace. We present the distributed user interface (DUI) model that allows standalone applications to distribute their user interface components to several devices dynamically at run-time. This mechanism permit clinicians to develop their own user interfaces and forms to clinical information systems to match their specific needs. We discuss the underlying technical concepts of DUIs and show how service discovery, component distribution, events and layout management are dealt with in the NOSTOS system. Our results suggest that DUIs--and similar network-based user interfaces--will be a prerequisite of future mobile user interfaces and essential to develop clinical multi-device environments.

  14. Modelling energy level alignment at organic interfaces and density functional theory

    DEFF Research Database (Denmark)

    Flores, F.; Ortega, J.; Vazquez, Patricia

    2009-01-01

    A review of our theoretical understanding of the band alignment at organic interfaces is presented with particular emphasis on the metal/organic (MO) case. The unified IDIS (induced density of interface states) and the ICT (integer charge transfer) models are reviewed and shown to describe qualit...

  15. A comparison of molecular dynamics and diffuse interface model predictions of Lennard-Jones fluid evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Barbante, Paolo [Dipartimento di Matematica, Politecnico di Milano - Piazza Leonardo da Vinci 32 - 20133 Milano (Italy); Frezzotti, Aldo; Gibelli, Livio [Dipartimento di Scienze e Tecnologie Aerospaziali, Politecnico di Milano - Via La Masa 34 - 20156 Milano (Italy)

    2014-12-09

    The unsteady evaporation of a thin planar liquid film is studied by molecular dynamics simulations of Lennard-Jones fluid. The obtained results are compared with the predictions of a diffuse interface model in which capillary Korteweg contributions are added to hydrodynamic equations, in order to obtain a unified description of the liquid bulk, liquid-vapor interface and vapor region. Particular care has been taken in constructing a diffuse interface model matching the thermodynamic and transport properties of the Lennard-Jones fluid. The comparison of diffuse interface model and molecular dynamics results shows that, although good agreement is obtained in equilibrium conditions, remarkable deviations of diffuse interface model predictions from the reference molecular dynamics results are observed in the simulation of liquid film evaporation. It is also observed that molecular dynamics results are in good agreement with preliminary results obtained from a composite model which describes the liquid film by a standard hydrodynamic model and the vapor by the Boltzmann equation. The two mathematical model models are connected by kinetic boundary conditions assuming unit evaporation coefficient.

  16. Degenerate Ising model for atomistic simulation of crystal-melt interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Schebarchov, D., E-mail: Dmitri.Schebarchov@gmail.com [University Chemical Laboratories, Lensfield Road, Cambridge CB2 1EW (United Kingdom); Schulze, T. P., E-mail: schulze@math.utk.edu [Department of Mathematics, University of Tennessee, Knoxville, Tennessee 37996-1300 (United States); Hendy, S. C. [The MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington 6140 (New Zealand); Department of Physics, University of Auckland, Auckland 1010 (New Zealand)

    2014-02-21

    One of the simplest microscopic models for a thermally driven first-order phase transition is an Ising-type lattice system with nearest-neighbour interactions, an external field, and a degeneracy parameter. The underlying lattice and the interaction coupling constant control the anisotropic energy of the phase boundary, the field strength represents the bulk latent heat, and the degeneracy quantifies the difference in communal entropy between the two phases. We simulate the (stochastic) evolution of this minimal model by applying rejection-free canonical and microcanonical Monte Carlo algorithms, and we obtain caloric curves and heat capacity plots for square (2D) and face-centred cubic (3D) lattices with periodic boundary conditions. Since the model admits precise adjustment of bulk latent heat and communal entropy, neither of which affect the interface properties, we are able to tune the crystal nucleation barriers at a fixed degree of undercooling and verify a dimension-dependent scaling expected from classical nucleation theory. We also analyse the equilibrium crystal-melt coexistence in the microcanonical ensemble, where we detect negative heat capacities and find that this phenomenon is more pronounced when the interface is the dominant contributor to the total entropy. The negative branch of the heat capacity appears smooth only when the equilibrium interface-area-to-volume ratio is not constant but varies smoothly with the excitation energy. Finally, we simulate microcanonical crystal nucleation and subsequent relaxation to an equilibrium Wulff shape, demonstrating the model's utility in tracking crystal-melt interfaces at the atomistic level.

  17. Degenerate Ising model for atomistic simulation of crystal-melt interfaces

    International Nuclear Information System (INIS)

    Schebarchov, D.; Schulze, T. P.; Hendy, S. C.

    2014-01-01

    One of the simplest microscopic models for a thermally driven first-order phase transition is an Ising-type lattice system with nearest-neighbour interactions, an external field, and a degeneracy parameter. The underlying lattice and the interaction coupling constant control the anisotropic energy of the phase boundary, the field strength represents the bulk latent heat, and the degeneracy quantifies the difference in communal entropy between the two phases. We simulate the (stochastic) evolution of this minimal model by applying rejection-free canonical and microcanonical Monte Carlo algorithms, and we obtain caloric curves and heat capacity plots for square (2D) and face-centred cubic (3D) lattices with periodic boundary conditions. Since the model admits precise adjustment of bulk latent heat and communal entropy, neither of which affect the interface properties, we are able to tune the crystal nucleation barriers at a fixed degree of undercooling and verify a dimension-dependent scaling expected from classical nucleation theory. We also analyse the equilibrium crystal-melt coexistence in the microcanonical ensemble, where we detect negative heat capacities and find that this phenomenon is more pronounced when the interface is the dominant contributor to the total entropy. The negative branch of the heat capacity appears smooth only when the equilibrium interface-area-to-volume ratio is not constant but varies smoothly with the excitation energy. Finally, we simulate microcanonical crystal nucleation and subsequent relaxation to an equilibrium Wulff shape, demonstrating the model's utility in tracking crystal-melt interfaces at the atomistic level

  18. Development of nodal interface conditions for a PN approximation nodal model

    International Nuclear Information System (INIS)

    Feiz, M.

    1993-01-01

    A relation was developed for approximating higher order odd-moments from lower order odd-moments at the nodal interfaces of a Legendre polynomial nodal model. Two sample problems were tested using different order P N expansions in adjacent nodes. The developed relation proved to be adequate and matched the nodal interface flux accurately. The development allows the use of different order expansions in adjacent nodes, and will be used in a hybrid diffusion-transport nodal model. (author)

  19. Failure Propagation Modeling and Analysis via System Interfaces

    Directory of Open Access Journals (Sweden)

    Lin Zhao

    2016-01-01

    Full Text Available Safety-critical systems must be shown to be acceptably safe to deploy and use in their operational environment. One of the key concerns of developing safety-critical systems is to understand how the system behaves in the presence of failures, regardless of whether that failure is triggered by the external environment or caused by internal errors. Safety assessment at the early stages of system development involves analysis of potential failures and their consequences. Increasingly, for complex systems, model-based safety assessment is becoming more widely used. In this paper we propose an approach for safety analysis based on system interface models. By extending interaction models on the system interface level with failure modes as well as relevant portions of the physical system to be controlled, automated support could be provided for much of the failure analysis. We focus on fault modeling and on how to compute minimal cut sets. Particularly, we explore state space reconstruction strategy and bounded searching technique to reduce the number of states that need to be analyzed, which remarkably improves the efficiency of cut sets searching algorithm.

  20. Stepwise approach to establishing multiple outreach laboratory information system-electronic medical record interfaces.

    Science.gov (United States)

    Pantanowitz, Liron; Labranche, Wayne; Lareau, William

    2010-05-26

    Clinical laboratory outreach business is changing as more physician practices adopt an electronic medical record (EMR). Physician connectivity with the laboratory information system (LIS) is consequently becoming more important. However, there are no reports available to assist the informatician with establishing and maintaining outreach LIS-EMR connectivity. A four-stage scheme is presented that was successfully employed to establish unidirectional and bidirectional interfaces with multiple physician EMRs. This approach involves planning (step 1), followed by interface building (step 2) with subsequent testing (step 3), and finally ongoing maintenance (step 4). The role of organized project management, software as a service (SAAS), and alternate solutions for outreach connectivity are discussed.

  1. Dynamic Distribution and Layouting of Model-Based User Interfaces in Smart Environments

    Science.gov (United States)

    Roscher, Dirk; Lehmann, Grzegorz; Schwartze, Veit; Blumendorf, Marco; Albayrak, Sahin

    The developments in computer technology in the last decade change the ways of computer utilization. The emerging smart environments make it possible to build ubiquitous applications that assist users during their everyday life, at any time, in any context. But the variety of contexts-of-use (user, platform and environment) makes the development of such ubiquitous applications for smart environments and especially its user interfaces a challenging and time-consuming task. We propose a model-based approach, which allows adapting the user interface at runtime to numerous (also unknown) contexts-of-use. Based on a user interface modelling language, defining the fundamentals and constraints of the user interface, a runtime architecture exploits the description to adapt the user interface to the current context-of-use. The architecture provides automatic distribution and layout algorithms for adapting the applications also to contexts unforeseen at design time. Designers do not specify predefined adaptations for each specific situation, but adaptation constraints and guidelines. Furthermore, users are provided with a meta user interface to influence the adaptations according to their needs. A smart home energy management system serves as running example to illustrate the approach.

  2. Development and implementation of (Q)SAR modeling within the CHARMMing web-user interface.

    Science.gov (United States)

    Weidlich, Iwona E; Pevzner, Yuri; Miller, Benjamin T; Filippov, Igor V; Woodcock, H Lee; Brooks, Bernard R

    2015-01-05

    Recent availability of large publicly accessible databases of chemical compounds and their biological activities (PubChem, ChEMBL) has inspired us to develop a web-based tool for structure activity relationship and quantitative structure activity relationship modeling to add to the services provided by CHARMMing (www.charmming.org). This new module implements some of the most recent advances in modern machine learning algorithms-Random Forest, Support Vector Machine, Stochastic Gradient Descent, Gradient Tree Boosting, so forth. A user can import training data from Pubchem Bioassay data collections directly from our interface or upload his or her own SD files which contain structures and activity information to create new models (either categorical or numerical). A user can then track the model generation process and run models on new data to predict activity. © 2014 Wiley Periodicals, Inc.

  3. Closed Loop Brain Model of Neocortical Information Based Exchange

    Directory of Open Access Journals (Sweden)

    James eKozloski

    2016-01-01

    Full Text Available Here we describe an information based exchange' model of brain function that ascribes to neocortex, basal ganglia, and thalamus distinct network functions. The model allows us to analyze whole brain system set point measures, such as the rate and heterogeneity of transitions in striatum and neocortex, in the context of neuromodulation and other perturbations. Our closed-loop model is grounded in neuroanatomical observations, proposing a novel Grand Loop through neocortex, and invokes different forms of plasticity at specific tissue interfaces and their principle cell synapses to achieve these transitions. By implementing a system for maximum information based exchange of action potentials between modeled neocortical areas, we observe changes to these measures in simulation. We hypothesize that similar dynamic set points and modulations exist in the brain's resting state activity, and that different modifications to information based exchange may shift the risk profile of different component tissues, resulting in different neurodegenerative diseases. This model is targeted for further development using IBM's Neural Tissue Simulator, which allows scalable elaboration of networks, tissues, and their neural and synaptic components towards ever greater complexity and biological realism.

  4. Workflow User Interfaces Patterns

    Directory of Open Access Journals (Sweden)

    Jean Vanderdonckt

    2012-03-01

    Full Text Available Este trabajo presenta una colección de patrones de diseño de interfaces de usuario para sistemas de información para el flujo de trabajo; la colección incluye cuarenta y tres patrones clasificados en siete categorías identificados a partir de la lógica del ciclo de vida de la tarea sobre la base de la oferta y la asignación de tareas a los responsables de realizarlas (i. e. recursos humanos durante el flujo de trabajo. Cada patrón de la interfaz de usuario de flujo de trabajo (WUIP, por sus siglas en inglés se caracteriza por las propiedades expresadas en el lenguaje PLML para expresar patrones y complementado por otros atributos y modelos que se adjuntan a dicho modelo: la interfaz de usuario abstracta y el modelo de tareas correspondiente. Estos modelos se especifican en un lenguaje de descripción de interfaces de usuario. Todos los WUIPs se almacenan en una biblioteca y se pueden recuperar a través de un editor de flujo de trabajo que vincula a cada patrón de asignación de trabajo a su WUIP correspondiente.A collection of user interface design patterns for workflow information systems is presented that contains forty three resource patterns classified in seven categories. These categories and their corresponding patterns have been logically identified from the task life cycle based on offering and allocation operations. Each Workflow User Interface Pattern (WUIP is characterized by properties expressed in the PLML markup language for expressing patterns and augmented by additional attributes and models attached to the pattern: the abstract user interface and the corresponding task model. These models are specified in a User Interface Description Language. All WUIPs are stored in a library and can be retrieved within a workflow editor that links each workflow pattern to its corresponding WUIP, thus giving rise to a user interface for each workflow pattern.

  5. Interface Management for a NASA Flight Project Using Model-Based Systems Engineering (MBSE)

    Science.gov (United States)

    Vipavetz, Kevin; Shull, Thomas A.; Infeld, Samatha; Price, Jim

    2016-01-01

    The goal of interface management is to identify, define, control, and verify interfaces; ensure compatibility; provide an efficient system development; be on time and within budget; while meeting stakeholder requirements. This paper will present a successful seven-step approach to interface management used in several NASA flight projects. The seven-step approach using Model Based Systems Engineering will be illustrated by interface examples from the Materials International Space Station Experiment-X (MISSE-X) project. The MISSE-X was being developed as an International Space Station (ISS) external platform for space environmental studies, designed to advance the technology readiness of materials and devices critical for future space exploration. Emphasis will be given to best practices covering key areas such as interface definition, writing good interface requirements, utilizing interface working groups, developing and controlling interface documents, handling interface agreements, the use of shadow documents, the importance of interface requirement ownership, interface verification, and product transition.

  6. Lateral strength force of URM structures based on a constitutive model for interface element

    Directory of Open Access Journals (Sweden)

    A.H. Akhaveissy

    Full Text Available This paper presents the numerical implementation of a new proposed interface model for modeling the behavior of mortar joints in masonry walls. Its theoretical framework is fully based on the plasticity theory. The Von Mises criterion is used to simulate the behavior of brick and stone units. The interface laws for contact elements are formulated to simulate the softening behavior of mortar joints under tensile stress; a normal linear cap model is also used to limit compressive stress. The numerical predictions based on the proposed model for the behavior of interface elements correlate very highly with test data. A new explicit formula based on results of proposed interface model is also presented to estimate the strength of unreinforced masonry structures. The closed form solution predicts the ultimate lateral load of unreinforced masonry walls less error percentage than ATC and FEMA-307. Consequently, the proposed closed form solution can be used satisfactorily to analyze unreinforced masonry structures.

  7. Search-User Interface Design

    CERN Document Server

    Wilson, Max

    2011-01-01

    Search User Interfaces (SUIs) represent the gateway between people who have a task to complete, and the repositories of information and data stored around the world. Not surprisingly, therefore, there are many communities who have a vested interest in the way SUIs are designed. There are people who study how humans search for information, and people who study how humans use computers. There are people who study good user interface design, and people who design aesthetically pleasing user interfaces. There are also people who curate and manage valuable information resources, and people who desi

  8. An open source web interface for linking models to infrastructure system databases

    Science.gov (United States)

    Knox, S.; Mohamed, K.; Harou, J. J.; Rheinheimer, D. E.; Medellin-Azuara, J.; Meier, P.; Tilmant, A.; Rosenberg, D. E.

    2016-12-01

    Models of networked engineered resource systems such as water or energy systems are often built collaboratively with developers from different domains working at different locations. These models can be linked to large scale real world databases, and they are constantly being improved and extended. As the development and application of these models becomes more sophisticated, and the computing power required for simulations and/or optimisations increases, so has the need for online services and tools which enable the efficient development and deployment of these models. Hydra Platform is an open source, web-based data management system, which allows modellers of network-based models to remotely store network topology and associated data in a generalised manner, allowing it to serve multiple disciplines. Hydra Platform uses a web API using JSON to allow external programs (referred to as `Apps') to interact with its stored networks and perform actions such as importing data, running models, or exporting the networks to different formats. Hydra Platform supports multiple users accessing the same network and has a suite of functions for managing users and data. We present ongoing development in Hydra Platform, the Hydra Web User Interface, through which users can collaboratively manage network data and models in a web browser. The web interface allows multiple users to graphically access, edit and share their networks, run apps and view results. Through apps, which are located on the server, the web interface can give users access to external data sources and models without the need to install or configure any software. This also ensures model results can be reproduced by removing platform or version dependence. Managing data and deploying models via the web interface provides a way for multiple modellers to collaboratively manage data, deploy and monitor model runs and analyse results.

  9. Nuclear Reactor/Hydrogen Process Interface Including the HyPEP Model

    International Nuclear Information System (INIS)

    Steven R. Sherman

    2007-01-01

    The Nuclear Reactor/Hydrogen Plant interface is the intermediate heat transport loop that will connect a very high temperature gas-cooled nuclear reactor (VHTR) to a thermochemical, high-temperature electrolysis, or hybrid hydrogen production plant. A prototype plant called the Next Generation Nuclear Plant (NGNP) is planned for construction and operation at the Idaho National Laboratory in the 2018-2021 timeframe, and will involve a VHTR, a high-temperature interface, and a hydrogen production plant. The interface is responsible for transporting high-temperature thermal energy from the nuclear reactor to the hydrogen production plant while protecting the nuclear plant from operational disturbances at the hydrogen plant. Development of the interface is occurring under the DOE Nuclear Hydrogen Initiative (NHI) and involves the study, design, and development of high-temperature heat exchangers, heat transport systems, materials, safety, and integrated system models. Research and development work on the system interface began in 2004 and is expected to continue at least until the start of construction of an engineering-scale demonstration plant

  10. Data Model Management for Space Information Systems

    Science.gov (United States)

    Hughes, J. Steven; Crichton, Daniel J.; Ramirez, Paul; Mattmann, chris

    2006-01-01

    The Reference Architecture for Space Information Management (RASIM) suggests the separation of the data model from software components to promote the development of flexible information management systems. RASIM allows the data model to evolve independently from the software components and results in a robust implementation that remains viable as the domain changes. However, the development and management of data models within RASIM are difficult and time consuming tasks involving the choice of a notation, the capture of the model, its validation for consistency, and the export of the model for implementation. Current limitations to this approach include the lack of ability to capture comprehensive domain knowledge, the loss of significant modeling information during implementation, the lack of model visualization and documentation capabilities, and exports being limited to one or two schema types. The advent of the Semantic Web and its demand for sophisticated data models has addressed this situation by providing a new level of data model management in the form of ontology tools. In this paper we describe the use of a representative ontology tool to capture and manage a data model for a space information system. The resulting ontology is implementation independent. Novel on-line visualization and documentation capabilities are available automatically, and the ability to export to various schemas can be added through tool plug-ins. In addition, the ingestion of data instances into the ontology allows validation of the ontology and results in a domain knowledge base. Semantic browsers are easily configured for the knowledge base. For example the export of the knowledge base to RDF/XML and RDFS/XML and the use of open source metadata browsers provide ready-made user interfaces that support both text- and facet-based search. This paper will present the Planetary Data System (PDS) data model as a use case and describe the import of the data model into an ontology tool

  11. Behavior of asphaltene model compounds at w/o interfaces.

    Science.gov (United States)

    Nordgård, Erland L; Sørland, Geir; Sjöblom, Johan

    2010-02-16

    Asphaltenes, present in significant amounts in heavy crude oil, contains subfractions capable of stabilizing water-in-oil emulsions. Still, the composition of these subfractions is not known in detail, and the actual mechanism behind emulsion stability is dependent on perceived interfacial concentrations and compositions. This study aims at utilizing polyaromatic surfactants which contains an acidic moiety as model compounds for the surface-active subfraction of asphaltenes. A modified pulse-field gradient (PFG) NMR method has been used to study droplet sizes and stability of emulsions prepared with asphaltene model compounds. The method has been compared to the standard microscopy droplet counting method. Arithmetic and volumetric mean droplet sizes as a function of surfactant concentration and water content clearly showed that the interfacial area was dependent on the available surfactant at the emulsion interface. Adsorption of the model compounds onto hydrophilic silica has been investigated by UV depletion, and minor differences in the chemical structure of the model compounds caused significant differences in the affinity toward this highly polar surface. The cross-sectional areas obtained have been compared to areas from the surface-to-volume ratio found by NMR and gave similar results for one of the two model compounds. The mean molecular area for this compound suggested a tilted geometry of the aromatic core with respect to the interface, which has also been proposed for real asphaltenic samples. The film behavior was further investigated using a liquid-liquid Langmuir trough supporting the ability to form stable interfacial films. This study supports that acidic, or strong hydrogen-bonding fractions, can promote stable water-in-oil emulsion. The use of model compounds opens up for studying emulsion behavior and demulsifier efficiency based on true interfacial concentrations rather than perceived interfaces.

  12. Stepwise approach to establishing multiple outreach laboratory information system-electronic medical record interfaces

    Directory of Open Access Journals (Sweden)

    Liron Pantanowitz

    2010-01-01

    Full Text Available Clinical laboratory outreach business is changing as more physician practices adopt an electronic medical record (EMR. Physician connectivity with the laboratory information system (LIS is consequently becoming more important. However, there are no reports available to assist the informatician with establishing and maintaining outreach LIS-EMR connectivity. A four-stage scheme is presented that was successfully employed to establish unidirectional and bidirectional interfaces with multiple physician EMRs. This approach involves planning (step 1, followed by interface building (step 2 with subsequent testing (step 3, and finally ongoing maintenance (step 4. The role of organized project management, software as a service (SAAS, and alternate solutions for outreach connectivity are discussed.

  13. A turbulence model for large interfaces in high Reynolds two-phase CFD

    International Nuclear Information System (INIS)

    Coste, P.; Laviéville, J.

    2015-01-01

    Highlights: • Two-phase CFD commonly involves interfaces much larger than the computational cells. • A two-phase turbulence model is developed to better take them into account. • It solves k–epsilon transport equations in each phase. • The special treatments and transfer terms at large interfaces are described. • Validation cases are presented. - Abstract: A model for two-phase (six-equation) CFD modelling of turbulence is presented, for the regions of the flow where the liquid–gas interface takes place on length scales which are much larger than the typical computational cell size. In the other regions of the flow, the liquid or gas volume fractions range from 0 to 1. Heat and mass transfer, compressibility of the fluids, are included in the system, which is used at high Reynolds numbers in large scale industrial calculations. In this context, a model based on k and ε transport equations in each phase was chosen. The paper describes the model, with a focus on the large interfaces, which require special treatments and transfer terms between the phases, including some approaches inspired from wall functions. The validation of the model is based on high Reynolds number experiments with turbulent quantities measurements of a liquid jet impinging a free surface and an air water stratified flow. A steam–water stratified condensing flow experiment is also used for an indirect validation in the case of heat and mass transfer

  14. HCIDL: Human-computer interface description language for multi-target, multimodal, plastic user interfaces

    Directory of Open Access Journals (Sweden)

    Lamia Gaouar

    2018-06-01

    Full Text Available From the human-computer interface perspectives, the challenges to be faced are related to the consideration of new, multiple interactions, and the diversity of devices. The large panel of interactions (touching, shaking, voice dictation, positioning … and the diversification of interaction devices can be seen as a factor of flexibility albeit introducing incidental complexity. Our work is part of the field of user interface description languages. After an analysis of the scientific context of our work, this paper introduces HCIDL, a modelling language staged in a model-driven engineering approach. Among the properties related to human-computer interface, our proposition is intended for modelling multi-target, multimodal, plastic interaction interfaces using user interface description languages. By combining plasticity and multimodality, HCIDL improves usability of user interfaces through adaptive behaviour by providing end-users with an interaction-set adapted to input/output of terminals and, an optimum layout. Keywords: Model driven engineering, Human-computer interface, User interface description languages, Multimodal applications, Plastic user interfaces

  15. Design and implementation of an interface supporting information navigation tasks using hyperbolic visualization technique

    International Nuclear Information System (INIS)

    Lee, J. K.; Choi, I. K.; Jun, S. H.; Park, K. O.; Seo, Y. S.; Seo, S. M.; Koo, I. S.; Jang, M. H.

    2001-01-01

    Visualization techniques can be used to support operator's information navigation tasks on the system especially consisting of an enormous volume of information, such as operating information display system and computerized operating procedure system in advanced control room of nuclear power plants. By offering an easy understanding environment of hierarchially structured information, these techniques can reduce the operator's supplementary navigation task load. As a result of that, operators can pay more attention on the primary tasks and ultimately improve the cognitive task performance, in this thesis, an interface was designed and implemented using hyperbolic visualization technique, which is expected to be applied as a means of optimizing operator's information navigation tasks

  16. Explicit modeling the progressive interface damage in fibrous composite: Analytical vs. numerical approach

    DEFF Research Database (Denmark)

    Kushch, V.I.; Shmegera, S.V.; Mishnaevsky, Leon

    2011-01-01

    of the multiple inclusion problem by means of complex potentials. The second, finite element model of FRC is based on the cohesive zone model of interface. Simulation of progressive debonding in FRC using the many-fiber models of composite has been performed. The advantageous features and applicability areas...... of both models are discussed. It has been shown that the developed models provide detailed analysis of the progressive debonding phenomena including the interface crack cluster formation, overall stiffness reduction and induced anisotropy of the effective elastic moduli of composite....

  17. An adaptive interface (KNOWBOT) for nuclear power industry data bases

    International Nuclear Information System (INIS)

    Heger, A.S.

    1989-01-01

    An adaptive interface, KNOWBOT, has been designed to solve some of the problems that face the users of large centralized databases. The interface applies the neural network approach to information retrieval from a database. The database is a subset of the Nuclear Plant Reliability Data System (NPRDS). KNOWBOT preempts an existing database interface and works in conjunction with it. By design, KNOWBOT starts as a tabula rasa but acquires knowledge through its interactions with the user and the database. The interface uses its gained knowledge to personalize the database retrieval process and to induce new queries. In addition, the interface forgets the information that is no longer needed by the user. These self-organizing features of the interface reduce the scope of the database to the subsets that are highly relevant to the user needs. A proof-of-principle version of this interface has been implemented in Common LISP on a Texas Instruments Explorer I workstation. Experiments with KNOWBOT have successfully demonstrated the robustness of the model especially with induction and self-organization

  18. Modeling adsorption of cationic surfactants at air/water interface without using the Gibbs equation.

    Science.gov (United States)

    Phan, Chi M; Le, Thu N; Nguyen, Cuong V; Yusa, Shin-ichi

    2013-04-16

    The Gibbs adsorption equation has been indispensable in predicting the surfactant adsorption at the interfaces, with many applications in industrial and natural processes. This study uses a new theoretical framework to model surfactant adsorption at the air/water interface without the Gibbs equation. The model was applied to two surfactants, C14TAB and C16TAB, to determine the maximum surface excesses. The obtained values demonstrated a fundamental change, which was verified by simulations, in the molecular arrangement at the interface. The new insights, in combination with recent discoveries in the field, expose the limitations of applying the Gibbs adsorption equation to cationic surfactants at the air/water interface.

  19. Models, Entropy and Information of Temporal Social Networks

    Science.gov (United States)

    Zhao, Kun; Karsai, Márton; Bianconi, Ginestra

    Temporal social networks are characterized by heterogeneous duration of contacts, which can either follow a power-law distribution, such as in face-to-face interactions, or a Weibull distribution, such as in mobile-phone communication. Here we model the dynamics of face-to-face interaction and mobile phone communication by a reinforcement dynamics, which explains the data observed in these different types of social interactions. We quantify the information encoded in the dynamics of these networks by the entropy of temporal networks. Finally, we show evidence that human dynamics is able to modulate the information present in social network dynamics when it follows circadian rhythms and when it is interfacing with a new technology such as the mobile-phone communication technology.

  20. Radiation budget measurement/model interface

    Science.gov (United States)

    Vonderhaar, T. H.; Ciesielski, P.; Randel, D.; Stevens, D.

    1983-01-01

    This final report includes research results from the period February, 1981 through November, 1982. Two new results combine to form the final portion of this work. They are the work by Hanna (1982) and Stevens to successfully test and demonstrate a low-order spectral climate model and the work by Ciesielski et al. (1983) to combine and test the new radiation budget results from NIMBUS-7 with earlier satellite measurements. Together, the two related activities set the stage for future research on radiation budget measurement/model interfacing. Such combination of results will lead to new applications of satellite data to climate problems. The objectives of this research under the present contract are therefore satisfied. Additional research reported herein includes the compilation and documentation of the radiation budget data set a Colorado State University and the definition of climate-related experiments suggested after lengthy analysis of the satellite radiation budget experiments.

  1. Towards a sharp-interface volume-of-fluid methodology for modeling evaporation

    Science.gov (United States)

    Pathak, Ashish; Raessi, Mehdi

    2017-11-01

    In modeling evaporation, the diffuse-interface (one-domain) formulation yields inaccurate results. Recent efforts approaching the problem via a sharp-interface (two-domain) formulation have shown significant improvements. The reasons behind their better performance are discussed in the present work. All available sharp-interface methods, however, exclusively employ the level-set. In the present work, we develop a sharp-interface evaporation model in a volume-of-fluid (VOF) framework in order to leverage its mass-conserving property as well as its ability to handle large topographical changes. We start with a critical review of the assumptions underlying the mathematical equations governing evaporation. For example, it is shown that the assumption of incompressibility can only be applied in special circumstances. The famous D2 law used for benchmarking is valid exclusively to steady-state test problems. Transient is present over significant lifetime of a micron-size droplet. Therefore, a 1D spherical fully transient model is developed to provide a benchmark transient solution. Finally, a 3D Cartesian Navier-Stokes evaporation solver is developed. Some preliminary validation test-cases are presented for static and moving drop evaporation. This material is based upon work supported by the Department of Energy, Office of Energy Efficiency and Renewable Energy and the Department of Defense, Tank and Automotive Research, Development, and Engineering Center, under Award Number DEEE0007292.

  2. Comparative studies on constitutive models for cohesive interface cracks of quasi-brittle materials

    International Nuclear Information System (INIS)

    Shen Xinpu; Shen Guoxiao; Zhou Lin

    2005-01-01

    In this paper, Concerning on the modelling of quasi-brittle fracture process zone at interface crack of quasi-brittle materials and structures, typical constitutive models of interface cracks were compared. Numerical calculations of the constitutive behaviours of selected models were carried out at local level. Aiming at the simulation of quasi-brittle fracture of concrete-like materials and structures, the emphases of the qualitative comparisons of selected cohesive models are focused on: (1) the fundamental mode I and mode II behaviours of selected models; (2) dilatancy properties of the selected models under mixed mode fracture loading conditions. (authors)

  3. Real-Time Extended Interface Automata for Software Testing Cases Generation

    Science.gov (United States)

    Yang, Shunkun; Xu, Jiaqi; Man, Tianlong; Liu, Bin

    2014-01-01

    Testing and verification of the interface between software components are particularly important due to the large number of complex interactions, which requires the traditional modeling languages to overcome the existing shortcomings in the aspects of temporal information description and software testing input controlling. This paper presents the real-time extended interface automata (RTEIA) which adds clearer and more detailed temporal information description by the application of time words. We also establish the input interface automaton for every input in order to solve the problems of input controlling and interface covering nimbly when applied in the software testing field. Detailed definitions of the RTEIA and the testing cases generation algorithm are provided in this paper. The feasibility and efficiency of this method have been verified in the testing of one real aircraft braking system. PMID:24892080

  4. Particles at fluid-fluid interfaces: A new Navier-Stokes-Cahn-Hilliard surface- phase-field-crystal model.

    Science.gov (United States)

    Aland, Sebastian; Lowengrub, John; Voigt, Axel

    2012-10-01

    Colloid particles that are partially wetted by two immiscible fluids can become confined to fluid-fluid interfaces. At sufficiently high volume fractions, the colloids may jam and the interface may crystallize. The fluids together with the interfacial colloids form an emulsion with interesting material properties and offer an important route to new soft materials. A promising approach to simulate these emulsions was presented in Aland et al. [Phys. Fluids 23, 062103 (2011)], where a Navier-Stokes-Cahn-Hilliard model for the macroscopic two-phase fluid system was combined with a surface phase-field-crystal model for the microscopic colloidal particles along the interface. Unfortunately this model leads to spurious velocities which require very fine spatial and temporal resolutions to accurately and stably simulate. In this paper we develop an improved Navier-Stokes-Cahn-Hilliard-surface phase-field-crystal model based on the principles of mass conservation and thermodynamic consistency. To validate our approach, we derive a sharp interface model and show agreement with the improved diffuse interface model. Using simple flow configurations, we show that the new model has much better properties and does not lead to spurious velocities. Finally, we demonstrate the solid-like behavior of the crystallized interface by simulating the fall of a solid ball through a colloid-laden multiphase fluid.

  5. Analytical Solution of Interface Effect on the Strength of Combined Model Composed of Different Geologic Bodies

    Directory of Open Access Journals (Sweden)

    Zeng-hui Zhao

    2014-01-01

    Full Text Available According to the special combined structure of surrounding rock in western mining area of China, a micromechanical model with variable parameters containing contact interface was proposed firstly. Then, the derived stresses in coal and rock near the interface were analyzed on the basis of the harmonized strain relation, and the analytical solutions with respect to stress states near the interface were drawn up. The triaxial compressive strength of coal and rock was further determined in case the contact interface was in the horizontal position. Moreover, effects of stiffness ratio, interface angle, and stress level on the strength of two bodies near the contact area were expounded in detail. Results indicate that additional stresses which have significant effect on the strength of combined model are derived due to the adhesive effect of contact interface and lithological differences between geologic bodies located on both sides. The interface effect on the strength of combined body is most associated with the stiffness, interface angle, and the stress level. These conclusions are also basically valid for three-body model and even for the multibody model and lay important theory foundation to guide the stability study of soft strata composed of different geologic bodies.

  6. Damage evolution of bi-body model composed of weakly cemented soft rock and coal considering different interface effect.

    Science.gov (United States)

    Zhao, Zenghui; Lv, Xianzhou; Wang, Weiming; Tan, Yunliang

    2016-01-01

    Considering the structure effect of tunnel stability in western mining of China, three typical kinds of numerical model were respectively built as follows based on the strain softening constitutive model and linear elastic-perfectly plastic model for soft rock and interface: R-M, R-C(s)-M and R-C(w)-M. Calculation results revealed that the stress-strain relation and failure characteristics of the three models vary between each other. The combination model without interface or with a strong interface presented continuous failure, while weak interface exhibited 'cut off' effect. Thus, conceptual models of bi-material model and bi-body model were established. Then numerical experiments of tri-axial compression were carried out for the two models. The relationships between stress evolution, failure zone and deformation rate fluctuations as well as the displacement of interface were detailed analyzed. Results show that two breakaway points of deformation rate actually demonstrate the starting and penetration of the main rupture, respectively. It is distinguishable due to the large fluctuation. The bi-material model shows general continuous failure while bi-body model shows 'V' type shear zone in weak body and failure in strong body near the interface due to the interface effect. With the increasing of confining pressure, the 'cut off' effect of weak interface is not obvious. These conclusions lay the theoretical foundation for further development of constitutive model for soft rock-coal combination body.

  7. Modeling and stabilities of Mg/MgH2 interfaces: A first-principles investigation

    Directory of Open Access Journals (Sweden)

    Jia-Jun Tang

    2014-07-01

    Full Text Available We have theoretically investigated the modeling and the structural stabilities of various Mg/MgH2 interfaces, i.e. Mg(101¯0/MgH2(210, Mg(0001/MgH2(101 and Mg(101¯0/MgH2(101, and provided illuminating insights into Mg/MgH2 interface. Specifically, the main factors, which impact the interfacial energies, are fully considered, including surface energies of two phases, mutual lattice constants of interface model, and relative position of two phases. The surface energies of Mg and MgH2, on the one hand, are found to be greatly impacting the interfacial energies, reflected by the lowest interfacial energy of Mg(0001/MgH2(101 which is comprised of two lowest energy surfaces. On the other hand, it is demonstrated that the mutual lattice constants and the relative position of two phases lead to variations of interfacial energies, thus influencing the interface stabilities dramatically. Moreover, the Mg-H bonding at interface is found to be the determinant of Mg/MgH2 interface stability. Lastly, interfacial and strain effects on defect formations are also studied, both of which are highly facilitating the defect formations. Our results provide a detailed insight into Mg/MgH2 interface structures and the corresponding stabilities.

  8. PC-based Multiple Information System Interface (PC/MISI) detailed design and implementation plan

    Science.gov (United States)

    Dominick, Wayne D. (Editor); Hall, Philip P.

    1985-01-01

    The design plan for the personal computer multiple information system interface (PC/MISI) project is discussed. The document is intended to be used as a blueprint for the implementation of the system. Each component is described in the detail necessary to allow programmers to implement the system. A description of the system data flow and system file structures is given.

  9. Modelling of Transport Phenomena at Cement Matrix—Aggregate Interfaces

    DEFF Research Database (Denmark)

    van Breugel, Klaas; Koenders, Eddie; Ye, Guang

    2004-01-01

    The performance of a heterogeneous material like concrete is largely determined by the many interfaces in this material. This contribution focuses on the potential of numerical simulation models to investigate the character of the matrix-aggregate interfacial zone and to simulate hydration-induce...

  10. Interface design and human factors considerations for model-based tight glycemic control in critical care.

    Science.gov (United States)

    Ward, Logan; Steel, James; Le Compte, Aaron; Evans, Alicia; Tan, Chia-Siong; Penning, Sophie; Shaw, Geoffrey M; Desaive, Thomas; Chase, J Geoffrey

    2012-01-01

    Tight glycemic control (TGC) has shown benefits but has been difficult to implement. Model-based methods and computerized protocols offer the opportunity to improve TGC quality and compliance. This research presents an interface design to maximize compliance, minimize real and perceived clinical effort, and minimize error based on simple human factors and end user input. The graphical user interface (GUI) design is presented by construction based on a series of simple, short design criteria based on fundamental human factors engineering and includes the use of user feedback and focus groups comprising nursing staff at Christchurch Hospital. The overall design maximizes ease of use and minimizes (unnecessary) interaction and use. It is coupled to a protocol that allows nurse staff to select measurement intervals and thus self-manage workload. The overall GUI design is presented and requires only one data entry point per intervention cycle. The design and main interface are heavily focused on the nurse end users who are the predominant users, while additional detailed and longitudinal data, which are of interest to doctors guiding overall patient care, are available via tabs. This dichotomy of needs and interests based on the end user's immediate focus and goals shows how interfaces must adapt to offer different information to multiple types of users. The interface is designed to minimize real and perceived clinical effort, and ongoing pilot trials have reported high levels of acceptance. The overall design principles, approach, and testing methods are based on fundamental human factors principles designed to reduce user effort and error and are readily generalizable. © 2012 Diabetes Technology Society.

  11. SXPS study of model GaAs(100)/electrolyte interface

    Energy Technology Data Exchange (ETDEWEB)

    Lebedev, Mikhail V. [A.F. Ioffe Physico-Technical Institute, Russian Academy of Sciences, St. Petersburg (Russian Federation); Mankel, Eric; Mayer, Thomas; Jaegermann, Wolfram [Institute of Material Sciences, Darmstadt University of Technology, Darmstadt (Germany)

    2010-02-15

    Model GaAs(100)/electrolyte interfaces are prepared in vacuum by co-adsorption of Cl{sub 2} and 2-propanol molecules at LN{sub 2} temperature. On adsorption of Cl{sub 2} molecules gallium chlorides, elemental arsenic and arsenic chlorides are formed. Co-adsorption of 2-propanol causes formation of additional GaCl{sub 3} and AsCl, as well as soluble/volatile As-based complexes, which are released from the surface depleting the sur- face by arsenic. Comparison of the As 3d and Ga 3d spectra obtained after heating the model interface to room temperature with the corresponding spectra obtained after emersion of the GaAs(100) surface from HCl/2-propanol solution allows to conclude that in HCl solution Cl{sup -} ions attack gallium sites and H{sup +} ions mostly attack arsenic sites. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  12. Graphical interface between the CIRSSE testbed and CimStation software with MCS/CTOS

    Science.gov (United States)

    Hron, Anna B.

    1992-01-01

    This research is concerned with developing a graphical simulation of the testbed at the Center for Intelligent Robotic Systems for Space Exploration (CIRSSE) and the interface which allows for communication between the two. Such an interface is useful in telerobotic operations, and as a functional interaction tool for testbed users. Creating a simulated model of a real world system, generates inevitable calibration discrepancies between them. This thesis gives a brief overview of the work done to date in the area of workcell representation and communication, describes the development of the CIRSSE interface, and gives a direction for future work in the area of system calibration. The CimStation software used for development of this interface, is a highly versatile robotic workcell simulation package which has been programmed for this application with a scale graphical model of the testbed, and supporting interface menu code. A need for this tool has been identified for the reasons of path previewing, as a window on teleoperation and for calibration of simulated vs. real world models. The interface allows information (i.e., joint angles) generated by CimStation to be sent as motion goal positions to the testbed robots. An option of the interface has been established such that joint angle information generated by supporting testbed algorithms (i.e., TG, collision avoidance) can be piped through CimStation as a visual preview of the path.

  13. Real-Time Extended Interface Automata for Software Testing Cases Generation

    Directory of Open Access Journals (Sweden)

    Shunkun Yang

    2014-01-01

    Full Text Available Testing and verification of the interface between software components are particularly important due to the large number of complex interactions, which requires the traditional modeling languages to overcome the existing shortcomings in the aspects of temporal information description and software testing input controlling. This paper presents the real-time extended interface automata (RTEIA which adds clearer and more detailed temporal information description by the application of time words. We also establish the input interface automaton for every input in order to solve the problems of input controlling and interface covering nimbly when applied in the software testing field. Detailed definitions of the RTEIA and the testing cases generation algorithm are provided in this paper. The feasibility and efficiency of this method have been verified in the testing of one real aircraft braking system.

  14. Interface management for the Yucca Mountain Project

    International Nuclear Information System (INIS)

    1988-12-01

    The subject of this report is selection of that portion of physical and informational interfaces that need to be controlled on the Yucca Mountain Project (YMP). Physical interfaces are interactions between physical elements of the mined geologic disposal system; for example, the repository shafts will interface with the shafts in the Exploratory Shaft Facility (ESF), because the ESF shafts will eventually be absorbed into the repository as additional repository shafts. Informational interfaces are interactions involving an exchange of information between organizations working on the mined geologic disposal system; for example, the in situ testing contractor will interact with the site performance assessment contractor and will supply information regarding host rock behavior. This report describes the physical system interfaces that can be identified from analysis of a physical system structure. A discussion of informational interfaces can be found elsewhere. 30 refs., 8 figs., 3 tabs

  15. Impact of multilayered compression bandages on sub-bandage interface pressure: a model.

    Science.gov (United States)

    Al Khaburi, J; Nelson, E A; Hutchinson, J; Dehghani-Sanij, A A

    2011-03-01

    Multi-component medical compression bandages are widely used to treat venous leg ulcers. The sub-bandage interface pressures induced by individual components of the multi-component compression bandage systems are not always simply additive. Current models to explain compression bandage performance do not take account of the increase in leg circumference when each bandage is applied, and this may account for the difference between predicted and actual pressures. To calculate the interface pressure when a multi-component compression bandage system is applied to a leg. Use thick wall cylinder theory to estimate the sub-bandage pressure over the leg when a multi-component compression bandage is applied to a leg. A mathematical model was developed based on thick cylinder theory to include bandage thickness in the calculation of the interface pressure in multi-component compression systems. In multi-component compression systems, the interface pressure corresponds to the sum of the pressures applied by individual bandage layers. However, the change in the limb diameter caused by additional bandage layers should be considered in the calculation. Adding the interface pressure produced by single components without considering the bandage thickness will result in an overestimate of the overall interface pressure produced by the multi-component compression systems. At the ankle (circumference 25 cm) this error can be 19.2% or even more in the case of four components bandaging systems. Bandage thickness should be considered when calculating the pressure applied using multi-component compression systems.

  16. Layout Design of Human-Machine Interaction Interface of Cabin Based on Cognitive Ergonomics and GA-ACA

    Directory of Open Access Journals (Sweden)

    Li Deng

    2016-01-01

    Full Text Available In order to consider the psychological cognitive characteristics affecting operating comfort and realize the automatic layout design, cognitive ergonomics and GA-ACA (genetic algorithm and ant colony algorithm were introduced into the layout design of human-machine interaction interface. First, from the perspective of cognitive psychology, according to the information processing process, the cognitive model of human-machine interaction interface was established. Then, the human cognitive characteristics were analyzed, and the layout principles of human-machine interaction interface were summarized as the constraints in layout design. Again, the expression form of fitness function, pheromone, and heuristic information for the layout optimization of cabin was studied. The layout design model of human-machine interaction interface was established based on GA-ACA. At last, a layout design system was developed based on this model. For validation, the human-machine interaction interface layout design of drilling rig control room was taken as an example, and the optimization result showed the feasibility and effectiveness of the proposed method.

  17. Layout Design of Human-Machine Interaction Interface of Cabin Based on Cognitive Ergonomics and GA-ACA.

    Science.gov (United States)

    Deng, Li; Wang, Guohua; Yu, Suihuai

    2016-01-01

    In order to consider the psychological cognitive characteristics affecting operating comfort and realize the automatic layout design, cognitive ergonomics and GA-ACA (genetic algorithm and ant colony algorithm) were introduced into the layout design of human-machine interaction interface. First, from the perspective of cognitive psychology, according to the information processing process, the cognitive model of human-machine interaction interface was established. Then, the human cognitive characteristics were analyzed, and the layout principles of human-machine interaction interface were summarized as the constraints in layout design. Again, the expression form of fitness function, pheromone, and heuristic information for the layout optimization of cabin was studied. The layout design model of human-machine interaction interface was established based on GA-ACA. At last, a layout design system was developed based on this model. For validation, the human-machine interaction interface layout design of drilling rig control room was taken as an example, and the optimization result showed the feasibility and effectiveness of the proposed method.

  18. Interface of the polarizable continuum model of solvation with semi-empirical methods in the GAMESS program

    DEFF Research Database (Denmark)

    Svendsen, Casper Steinmann; Blædel, Kristoffer L.; Christensen, Anders Steen

    2013-01-01

    An interface between semi-empirical methods and the polarized continuum model (PCM) of solvation successfully implemented into GAMESS following the approach by Chudinov et al (Chem. Phys. 1992, 160, 41). The interface includes energy gradients and is parallelized. For large molecules such as ubiq......An interface between semi-empirical methods and the polarized continuum model (PCM) of solvation successfully implemented into GAMESS following the approach by Chudinov et al (Chem. Phys. 1992, 160, 41). The interface includes energy gradients and is parallelized. For large molecules...

  19. Rayleigh's, Stoneley's, and Scholte's Interface Waves in Elastic Models Using a Boundary Element Method

    Directory of Open Access Journals (Sweden)

    Esteban Flores-Mendez

    2012-01-01

    Full Text Available This work is focused on studying interface waves for three canonical models, that is, interfaces formed by vacuum-solid, solid-solid, and liquid-solid. These interfaces excited by dynamic loads cause the emergence of Rayleigh's, Stoneley's, and Scholte's waves, respectively. To perform the study, the indirect boundary element method is used, which has proved to be a powerful tool for numerical modeling of problems in elastodynamics. In essence, the method expresses the diffracted wave field of stresses, pressures, and displacements by a boundary integral, also known as single-layer representation, whose shape can be regarded as a Fredholm's integral representation of second kind and zero order. This representation can be considered as an exemplification of Huygens' principle, which is equivalent to Somigliana's representation theorem. Results in frequency domain for the three types of interfaces are presented; then, using the fourier discrete transform, we derive the results in time domain, where the emergence of interface waves is highlighted.

  20. Modeling charge transfer at organic donor-acceptor semiconductor interfaces

    NARCIS (Netherlands)

    Cakir, Deniz; Bokdam, Menno; de Jong, Machiel Pieter; Fahlman, M.; Brocks, G.

    2012-01-01

    We develop an integer charge transfer model for the potential steps observed at interfaces between donor and acceptor molecular semiconductors. The potential step can be expressed as the difference between the Fermi energy pinning levels of electrons on the acceptor material and holes on the donor

  1. Interface between the model of quality QUALZE and a geographic information system

    International Nuclear Information System (INIS)

    Betancur, T; Sierra C, J.H.

    1998-01-01

    For the decision making related to the adequate utilization of a natural resource, is required count on versatile mechanisms that permit a rapid access the information related to the conditions of the system on the one which is intended to act, so that they could be analyzed and be designed political of managing and control that guarantee the preservation of the resource. A model is a design tool that permits to represent the simplified way reality and if is built of adequate way possesses a value predictive enormously useful for the managing of a natural resource. The water, essential element for the life, it has suffered deterioration in its quality, on account of man activities that they have established the irrational use of the water. The principal objective of the mathematical current models of water is to produce a tool that has the capacity to simulate the hydrological behavior and the quality of an aquatic system. The power to simulate the behavior of a water current permits to predict the changes that will have, when vary the element exhausts that affect its conditions

  2. An automated meta-monitoring mobile application and front-end interface for the ATLAS computing model

    Energy Technology Data Exchange (ETDEWEB)

    Kawamura, Gen; Quadt, Arnulf [II. Physikalisches Institut, Georg-August-Universitaet Goettingen (Germany)

    2016-07-01

    Efficient administration of computing centres requires advanced tools for the monitoring and front-end interface of the infrastructure. Providing the large-scale distributed systems as a global grid infrastructure, like the Worldwide LHC Computing Grid (WLCG) and ATLAS computing, is offering many existing web pages and information sources indicating the status of the services, systems and user jobs at grid sites. A meta-monitoring mobile application which automatically collects the information could give every administrator a sophisticated and flexible interface of the infrastructure. We describe such a solution; the MadFace mobile application developed at Goettingen. It is a HappyFace compatible mobile application which has a user-friendly interface. It also becomes very feasible to automatically investigate the status and problem from different sources and provides access of the administration roles for non-experts.

  3. Multi-scale diffuse interface modeling of multi-component two-phase flow with partial miscibility

    Science.gov (United States)

    Kou, Jisheng; Sun, Shuyu

    2016-08-01

    In this paper, we introduce a diffuse interface model to simulate multi-component two-phase flow with partial miscibility based on a realistic equation of state (e.g. Peng-Robinson equation of state). Because of partial miscibility, thermodynamic relations are used to model not only interfacial properties but also bulk properties, including density, composition, pressure, and realistic viscosity. As far as we know, this effort is the first time to use diffuse interface modeling based on equation of state for modeling of multi-component two-phase flow with partial miscibility. In numerical simulation, the key issue is to resolve the high contrast of scales from the microscopic interface composition to macroscale bulk fluid motion since the interface has a nanoscale thickness only. To efficiently solve this challenging problem, we develop a multi-scale simulation method. At the microscopic scale, we deduce a reduced interfacial equation under reasonable assumptions, and then we propose a formulation of capillary pressure, which is consistent with macroscale flow equations. Moreover, we show that Young-Laplace equation is an approximation of this capillarity formulation, and this formulation is also consistent with the concept of Tolman length, which is a correction of Young-Laplace equation. At the macroscopical scale, the interfaces are treated as discontinuous surfaces separating two phases of fluids. Our approach differs from conventional sharp-interface two-phase flow model in that we use the capillary pressure directly instead of a combination of surface tension and Young-Laplace equation because capillarity can be calculated from our proposed capillarity formulation. A compatible condition is also derived for the pressure in flow equations. Furthermore, based on the proposed capillarity formulation, we design an efficient numerical method for directly computing the capillary pressure between two fluids composed of multiple components. Finally, numerical tests

  4. Multi-scale diffuse interface modeling of multi-component two-phase flow with partial miscibility

    KAUST Repository

    Kou, Jisheng

    2016-05-10

    In this paper, we introduce a diffuse interface model to simulate multi-component two-phase flow with partial miscibility based on a realistic equation of state (e.g. Peng-Robinson equation of state). Because of partial miscibility, thermodynamic relations are used to model not only interfacial properties but also bulk properties, including density, composition, pressure, and realistic viscosity. As far as we know, this effort is the first time to use diffuse interface modeling based on equation of state for modeling of multi-component two-phase flow with partial miscibility. In numerical simulation, the key issue is to resolve the high contrast of scales from the microscopic interface composition to macroscale bulk fluid motion since the interface has a nanoscale thickness only. To efficiently solve this challenging problem, we develop a multi-scale simulation method. At the microscopic scale, we deduce a reduced interfacial equation under reasonable assumptions, and then we propose a formulation of capillary pressure, which is consistent with macroscale flow equations. Moreover, we show that Young-Laplace equation is an approximation of this capillarity formulation, and this formulation is also consistent with the concept of Tolman length, which is a correction of Young-Laplace equation. At the macroscopical scale, the interfaces are treated as discontinuous surfaces separating two phases of fluids. Our approach differs from conventional sharp-interface two-phase flow model in that we use the capillary pressure directly instead of a combination of surface tension and Young-Laplace equation because capillarity can be calculated from our proposed capillarity formulation. A compatible condition is also derived for the pressure in flow equations. Furthermore, based on the proposed capillarity formulation, we design an efficient numerical method for directly computing the capillary pressure between two fluids composed of multiple components. Finally, numerical tests

  5. Leverage and Delegation in Developing an Information Model for Geology

    Science.gov (United States)

    Cox, S. J.

    2007-12-01

    GeoSciML is an information model and XML encoding developed by a group of primarily geologic survey organizations under the auspices of the IUGS CGI. The scope of the core model broadly corresponds with information traditionally portrayed on a geologic map, viz. interpreted geology, some observations, the map legend and accompanying memoir. The development of GeoSciML has followed the methodology specified for an Application Schema defined by OGC and ISO 19100 series standards. This requires agreement within a community concerning their domain model, its formal representation using UML, documentation as a Feature Type Catalogue, with an XML Schema implementation generated from the model by applying a rule-based transformation. The framework and technology supports a modular governance process. Standard datatypes and GI components (geometry, the feature and coverage metamodels, metadata) are imported from the ISO framework. The observation and sampling model (including boreholes) is imported from OGC. The scale used for most scalar literal values (terms, codes, measures) allows for localization where necessary. Wildcards and abstract base- classes provide explicit extensibility points. Link attributes appear in a regular way in the encodings, allowing reference to external resources using URIs. The encoding is compatible with generic GI data-service interfaces (WFS, WMS, SOS). For maximum interoperability within a community, the interfaces may be specialised through domain-specified constraints (e.g. feature-types, scale and vocabulary bindings, query-models). Formalization using UML and XML allows use of standard validation and processing tools. Use of upper-level elements defined for generic GI application reduces the development effort and governance resonsibility, while maximising cross-domain interoperability. On the other hand, enabling specialization to be delegated in a controlled manner is essential to adoption across a range of subdisciplines and

  6. Presenting a model for display and user interface specifications of web based OPACs on the basis of available universal standards and experts views in order to compare the Iranian library and information centers OPACs

    OpenAIRE

    Zavaraqi, Rasoul

    2005-01-01

    The aim of this study is to present a model for display and user interface specifications of web-based OPACs on the basis of available universal standards and experts’ views in order to compare the present Iranian library and information centers OPACs. Three method were used for data collection in this research: literature review, survey of opinions by means of a checklist, and evaluation of the available web-based OPACs. The community of Iranian experts in OPAC issues and all of 6 available ...

  7. An ecological interface design for BWR nuclear power plants

    International Nuclear Information System (INIS)

    Monta, K.; Itoh, J.

    1992-01-01

    An ecological interface design was applied to realize the support function for the operator's direct perception and analytical reasoning in the development of an intelligent man-machine system for BWR nuclear power plants. The abstraction-aggregation functional hierarchy representation of the work domain is a base of the ecological interface design. Another base is the concept of the level of cognitive control. The former was mapped into the interface to externalize the operator's normative mental model of the plants, which will reduce his/her cognitive work load and support knowledge-based problem solving. In addition, the same framework can be used for the analytical evaluation of man-machine interfaces. The information content and structure of a prototype interface were evaluated. This approach seems promising from these experiences. (author)

  8. A general graphical user interface for automatic reliability modeling

    Science.gov (United States)

    Liceaga, Carlos A.; Siewiorek, Daniel P.

    1991-01-01

    Reported here is a general Graphical User Interface (GUI) for automatic reliability modeling of Processor Memory Switch (PMS) structures using a Markov model. This GUI is based on a hierarchy of windows. One window has graphical editing capabilities for specifying the system's communication structure, hierarchy, reconfiguration capabilities, and requirements. Other windows have field texts, popup menus, and buttons for specifying parameters and selecting actions. An example application of the GUI is given.

  9. Breather trapping and breather transmission in a DNA model with an interface

    DEFF Research Database (Denmark)

    Alvarez, A.; Romero, F.R.; Archilla, J.F.R.

    2006-01-01

    We study the dynamics of moving discrete breathers in an interfaced piecewise DNA molecule. This is a DNA chain in which all the base pairs are identical and there exists an interface such that the base pairs dipole moments at each side are oriented in opposite directions. The Hamiltonian...... of the Peyrard-Bishop model is augmented with a term that includes the dipole-dipole coupling between base pairs. Numerical simulations show the existence of two dynamical regimes. If the translational kinetic energy of a moving breather launched towards the interface is below a critical value, it is trapped...

  10. Use of models and mockups in verifying man-machine interfaces

    International Nuclear Information System (INIS)

    Seminara, J.L.

    1985-01-01

    The objective of Human Factors Engineering is to tailor the design of facilities and equipment systems to match the capabilities and limitations of the personnel who will operate and maintain the system. This optimization of the man-machine interface is undertaken to enhance the prospects for safe, reliable, timely, and error-free human performance in meeting system objectives. To ensure the eventual success of a complex man-machine system it is important to systematically and progressively test and verify the adequacy of man-machine interfaces from initial design concepts to system operation. Human factors specialists employ a variety of methods to evaluate the quality of the human-system interface. These methods include: (1) Reviews of two-dimensional drawings using appropriately scaled transparent overlays of personnel spanning the anthropometric range, considering clothing and protective gear encumbrances (2) Use of articulated, scaled, plastic templates or manikins that are overlayed on equipment or facility drawings (3) Development of computerized manikins in computer aided design approaches (4) Use of three-dimensional scale models to better conceptualize work stations, control rooms or maintenance facilities (5) Full or half-scale mockups of system components to evaluate operator/maintainer interfaces (6) Part of full-task dynamic simulation of operator or maintainer tasks and interactive system responses (7) Laboratory and field research to establish human performance capabilities with alternative system design concepts or configurations. Of the design verification methods listed above, this paper will only consider the use of models and mockups in the design process

  11. Icinga Monitoring System Interface

    CERN Document Server

    Neculae, Alina Georgiana

    2014-01-01

    The aim of this project is to develop a web interface that would be used by the Icinga monitoring system to manage the CMS online cluster, in the experimental site. The interface would allow users to visualize the information in a compressed and intuitive way, as well as modify the information of each individual object and edit the relationships between classes.

  12. Using cognitive modeling to improve the man-machine interface

    International Nuclear Information System (INIS)

    Newton, R.A.; Zyduck, R.C.; Johnson, D.R.

    1982-01-01

    A group of utilities from the Westinghouse Owners Group was formed in early 1980 to examine the interface requirements and to determine how they could be implemented. The products available from the major vendors were examined early in 1980 and judged not to be completely applicable. The utility group then decided to develop its own specifications for a Safety Assessment System (SAS) and, later in 1980, contracted with a company to develop the system, prepare the software and demonstrate the system on a simulator. The resulting SAS is a state-of-the-art system targeted for implementation on pressurized water reactor nuclear units. It has been designed to provide control room operators with centralized and easily understandable information from a computer-based data and display system. This paper gives an overview of the SAS plus a detailed description of one of its functional areas - called AIDS. The AIDS portion of SAS is an advanced concept which uses cognitive modeling of the operator as the basis for its design

  13. Affective affordances: Improving interface characters engagement through interaction.

    NARCIS (Netherlands)

    Van Vugt, H.C.; Hoorn, J.F.; Konijn, E.A.; De Bie Dimitriadou, A.

    2006-01-01

    The nature of humans interacting with interface characters (e.g. embodied agents) is not well understood. The I-PEFiC model provides an integrative perspective on human-character interaction, assuming that the processes of engagement and user interaction exchange information in explaining user

  14. Affective affordances: Improving interface character engagement through interaction

    NARCIS (Netherlands)

    van Vugt, H.C.; Hoorn, J.F.; Konijn, E.A.; de Bie Dimitriadou, A.

    2006-01-01

    The nature of humans interacting with interface characters (e.g. embodied agents) is not well understood. The I-PEFiC model provides an integrative perspective on human-character interaction, assuming that the processes of engagement and user interaction exchange information in explaining user

  15. Charge loss experiments in surface channel CCD's explained by the McWhorter interface states model

    NARCIS (Netherlands)

    Penning De Vries, R.G.M.; Wallinga, Hans

    1985-01-01

    On the basis of the McWhorter interface states model the CCD charge loss is derived as a function of bias charge, signal charge and channel width. As opposed to existing models, the charge loss is now attributed to interface states in the entire gate area, even for high bias charge levels.

  16. A comparison of recent methods for modelling mercury fluxes at the air-water interface

    Directory of Open Access Journals (Sweden)

    Fantozzi L.

    2013-04-01

    Full Text Available The atmospheric pathway of the global mercury flux is known to be the primary source of mercury contamination to most threatened aquatic ecosystems. Notwithstanding, the emission of mercury from surface water to the atmosphere is as much as 50% of total annual emissions of this metal into the atmosphere. In recent years, much effort has been made in theoretical and experimental researches to quantify the total mass flux of mercury to the atmosphere. In this study the most recent atmospheric modelling methods and the information obtained from them are presented and compared using experimental data collected during the Oceanographic Campaign Fenice 2011 (25 October – 8 November 2011, performed on board the Research Vessel (RV Urania of the CNR in the framework of the MEDOCEANOR ongoing program. A strategy for future numerical model development is proposed which is intended to gain a better knowledge of the long-term effects of meteo-climatic drivers on mercury evasional processes, and would provide key information on gaseous Hg exchange rates at the air-water interface.

  17. The ADAM project: a generic web interface for retrieval and display of ATLAS TDAQ information

    International Nuclear Information System (INIS)

    Harwood, A; Miotto, G Lehmann; Magnoni, L; Vandelli, W; Savu, D

    2012-01-01

    This paper describes a new approach to the visualization of information about the operation of the ATLAS Trigger and Data Acquisition system. ATLAS is one of the two general purpose detectors positioned along the Large Hadron Collider at CERN. Its data acquisition system consists of several thousand computers interconnected via multiple gigabit Ethernet networks, that are constantly monitored via different tools. Operational parameters ranging from the temperature of the computers to the network utilization are stored in several databases for later analysis. Although the ability to view these data-sets individually is already in place, currently there is no way to view this data together, in a uniform format, from one location. The ADAM project has been launched in order to overcome this limitation. It defines a uniform web interface to collect data from multiple providers that have different structures. It is capable of aggregating and correlating the data according to user defined criteria. Finally, it visualizes the collected data using a flexible and interactive front-end web system. Structurally, the project comprises of 3 main levels of the data collection cycle: The Level 0 represents the information sources within ATLAS. These providers do not store information in a uniform fashion. The first step of the project was to define a common interface with which to expose stored data. The interface designed for the project originates from the Google Data Protocol API. The idea is to allow read-only access to data providers, through HTTP requests similar in format to the SQL query structure. This provides a standardized way to access this different information sources within ATLAS. The Level 1 can be considered the engine of the system. The primary task of the Level 1 is to gather data from multiple data sources via the common interface, to correlate this data together, or over a defined time series, and expose the combined data as a whole to the Level 2 web

  18. The ADAM project: a generic web interface for retrieval and display of ATLAS TDAQ information

    Science.gov (United States)

    Harwood, A.; Lehmann Miotto, G.; Magnoni, L.; Vandelli, W.; Savu, D.

    2012-06-01

    This paper describes a new approach to the visualization of information about the operation of the ATLAS Trigger and Data Acquisition system. ATLAS is one of the two general purpose detectors positioned along the Large Hadron Collider at CERN. Its data acquisition system consists of several thousand computers interconnected via multiple gigabit Ethernet networks, that are constantly monitored via different tools. Operational parameters ranging from the temperature of the computers to the network utilization are stored in several databases for later analysis. Although the ability to view these data-sets individually is already in place, currently there is no way to view this data together, in a uniform format, from one location. The ADAM project has been launched in order to overcome this limitation. It defines a uniform web interface to collect data from multiple providers that have different structures. It is capable of aggregating and correlating the data according to user defined criteria. Finally, it visualizes the collected data using a flexible and interactive front-end web system. Structurally, the project comprises of 3 main levels of the data collection cycle: The Level 0 represents the information sources within ATLAS. These providers do not store information in a uniform fashion. The first step of the project was to define a common interface with which to expose stored data. The interface designed for the project originates from the Google Data Protocol API. The idea is to allow read-only access to data providers, through HTTP requests similar in format to the SQL query structure. This provides a standardized way to access this different information sources within ATLAS. The Level 1 can be considered the engine of the system. The primary task of the Level 1 is to gather data from multiple data sources via the common interface, to correlate this data together, or over a defined time series, and expose the combined data as a whole to the Level 2 web

  19. Diffuse interface methods for multiphase flow modeling

    International Nuclear Information System (INIS)

    Jamet, D.

    2004-01-01

    Full text of publication follows:Nuclear reactor safety programs need to get a better description of some stages of identified incident or accident scenarios. For some of them, such as the reflooding of the core or the dryout of fuel rods, the heat, momentum and mass transfers taking place at the scale of droplets or bubbles are part of the key physical phenomena for which a better description is needed. Experiments are difficult to perform at these very small scales and direct numerical simulations is viewed as a promising way to give new insight into these complex two-phase flows. This type of simulations requires numerical methods that are accurate, efficient and easy to run in three space dimensions and on parallel computers. Despite many years of development, direct numerical simulation of two-phase flows is still very challenging, mostly because it requires solving moving boundary problems. To avoid this major difficulty, a new class of numerical methods is arising, called diffuse interface methods. These methods are based on physical theories dating back to van der Waals and mostly used in materials science. In these methods, interfaces separating two phases are modeled as continuous transitions zones instead of surfaces of discontinuity. Since all the physical variables encounter possibly strong but nevertheless always continuous variations across the interfacial zones, these methods virtually eliminate the difficult moving boundary problem. We show that these methods lead to a single-phase like system of equations, which makes it easier to code in 3D and to make parallel compared to more classical methods. The first method presented is dedicated to liquid-vapor flows with phase-change. It is based on the van der Waals' theory of capillarity. This method has been used to study nucleate boiling of a pure fluid and of dilute binary mixtures. We discuss the importance of the choice and the meaning of the order parameter, i.e. a scalar which discriminates one

  20. Erratum to : Modeling of complex interfaces for pendant drop experiments (Rheologica Acta, , 55, 10, (801-822), 10.1007/s00397-016-0956-1)

    NARCIS (Netherlands)

    Balemans, C.; Hulsen, M.A.; Tervoort, T.A.; Anderson, P.D.

    2017-01-01

    The original version of this article unfortunately contained mistakes. Theo A. Tervoort was not listed among the authors. The correct information is given above. In Balemans et al. (2016), an axisymmetric finite element model is presented to study the behaviour of complex interfaces in pendant drop

  1. Developing A Web-based User Interface for Semantic Information Retrieval

    Science.gov (United States)

    Berrios, Daniel C.; Keller, Richard M.

    2003-01-01

    While there are now a number of languages and frameworks that enable computer-based systems to search stored data semantically, the optimal design for effective user interfaces for such systems is still uncle ar. Such interfaces should mask unnecessary query detail from users, yet still allow them to build queries of arbitrary complexity without significant restrictions. We developed a user interface supporting s emantic query generation for Semanticorganizer, a tool used by scient ists and engineers at NASA to construct networks of knowledge and dat a. Through this interface users can select node types, node attribute s and node links to build ad-hoc semantic queries for searching the S emanticOrganizer network.

  2. An online database for informing ecological network models: http://kelpforest.ucsc.edu.

    Science.gov (United States)

    Beas-Luna, Rodrigo; Novak, Mark; Carr, Mark H; Tinker, Martin T; Black, August; Caselle, Jennifer E; Hoban, Michael; Malone, Dan; Iles, Alison

    2014-01-01

    Ecological network models and analyses are recognized as valuable tools for understanding the dynamics and resiliency of ecosystems, and for informing ecosystem-based approaches to management. However, few databases exist that can provide the life history, demographic and species interaction information necessary to parameterize ecological network models. Faced with the difficulty of synthesizing the information required to construct models for kelp forest ecosystems along the West Coast of North America, we developed an online database (http://kelpforest.ucsc.edu/) to facilitate the collation and dissemination of such information. Many of the database's attributes are novel yet the structure is applicable and adaptable to other ecosystem modeling efforts. Information for each taxonomic unit includes stage-specific life history, demography, and body-size allometries. Species interactions include trophic, competitive, facilitative, and parasitic forms. Each data entry is temporally and spatially explicit. The online data entry interface allows researchers anywhere to contribute and access information. Quality control is facilitated by attributing each entry to unique contributor identities and source citations. The database has proven useful as an archive of species and ecosystem-specific information in the development of several ecological network models, for informing management actions, and for education purposes (e.g., undergraduate and graduate training). To facilitate adaptation of the database by other researches for other ecosystems, the code and technical details on how to customize this database and apply it to other ecosystems are freely available and located at the following link (https://github.com/kelpforest-cameo/databaseui).

  3. Exactly solvable models of growing interfaces and lattice gases: the Arcetri models, ageing and logarithmic sub-ageing

    Science.gov (United States)

    Durang, Xavier; Henkel, Malte

    2017-12-01

    Motivated by an analogy with the spherical model of a ferromagnet, the three Arcetri models are defined. They present new universality classes, either for the growth of interfaces, or else for lattice gases. They are distinct from the common Edwards-Wilkinson and Kardar-Parisi-Zhang universality classes. Their non-equilibrium evolution can be studied by the exact computation of their two-time correlators and responses. In both interpretations, the first model has a critical point in any dimension and shows simple ageing at and below criticality. The exact universal exponents are found. The second and third model are solved at zero temperature, in one dimension, where both show logarithmic sub-ageing, of which several distinct types are identified. Physically, the second model describes a lattice gas and the third model describes interface growth. A clear physical picture on the subsequent time and length scales of the sub-ageing process emerges.

  4. Information Practices and User Interfaces: Student Use of an iOS Application in Special Education

    Science.gov (United States)

    Demmans Epp, Carrie; McEwen, Rhonda; Campigotto, Rachelle; Moffatt, Karyn

    2016-01-01

    A framework connecting concepts from user interface design with those from information studies is applied in a study that integrated a location-aware mobile application into two special education classes at different schools; this application had two support modes (one general and one location specific). The five-month study revealed several…

  5. A coupled interface-body nonlocal damage model for the analysis of FRP strengthening detachment from cohesive material

    Directory of Open Access Journals (Sweden)

    J. Toti

    2011-10-01

    Full Text Available In the present work, a new model of the FRP-concrete or masonry interface, which accounts for the coupling occurring between the degradation of the cohesive material and the FRP detachment, is presented; in particular, a coupled interface-body nonlocal damage model is proposed. A nonlocal damage and plasticity model is developed for the quasi-brittle material. For the interface, a model which accounts for the mode I, mode II and mixed mode of damage and for the unilateral contact and friction effects is developed. Two different ways of performing the coupling between the body damage and the interface damage are proposed and compared. Some numerical applications are carried out in order to assess the performances of the proposed model in reproducing the mechanical behavior of the masonry elements strengthened with external FRP reinforcements.

  6. A user interface for the Kansas Geological Survey slug test model.

    Science.gov (United States)

    Esling, Steven P; Keller, John E

    2009-01-01

    The Kansas Geological Survey (KGS) developed a semianalytical solution for slug tests that incorporates the effects of partial penetration, anisotropy, and the presence of variable conductivity well skins. The solution can simulate either confined or unconfined conditions. The original model, written in FORTRAN, has a text-based interface with rigid input requirements and limited output options. We re-created the main routine for the KGS model as a Visual Basic macro that runs in most versions of Microsoft Excel and built a simple-to-use Excel spreadsheet interface that automatically displays the graphical results of the test. A comparison of the output from the original FORTRAN code to that of the new Excel spreadsheet version for three cases produced identical results.

  7. An X window based graphics user interface for radiation information processing system developed with object-oriented programming technology

    International Nuclear Information System (INIS)

    Gao Wenhuan; Fu Changqing; Kang Kejun

    1993-01-01

    X Window is a network-oriented and network transparent windowing system, and now dominant in the Unix domain. The object-oriented programming technology can be used to change the extensibility of a software system remarkably. An introduction to graphics user interface is given. And how to develop a graphics user interface for radiation information processing system with object-oriented programming technology, which is based on X Window and independent of application is described briefly

  8. Modeling of semiconductor nanostructures and semiconductor-electrolyte interfaces

    International Nuclear Information System (INIS)

    Birner, Stefan

    2011-01-01

    The main objective of Part I is to give an overview of some of the methods that have been implemented into the nextnano 3 software. Examples are discussed that give insight into doping, strain and mobility. Applications of the single-band Schroedinger equation include three-dimensional superlattices, and a qubit that is manipulated by a magnetic field. Results of the multi-band k.p method are presented for HgTe-CdTe and InAs-GaSb superlattices, and for a SiGe-Si quantum cascade structure. Particular focus is put on a detailed description of the contact block reduction (CBR) method that has been developed within our research group. By means of this approach, quantum transport in the ballistic limit in one, two and three dimensions can be calculated. I provide a very detailed description of the algorithm and present several well documented examples that highlight the key points of this method. Calculating quantum transport in three dimensions is a very challenging task where computationally efficient algorithms - apart from the CBR method - are not available yet. Part II describes the methods that I have implemented into the nextnano 3 software for calculating systems that consist of a combination of semiconductor materials and liquids. These biosensors have a solid-electrolyte interface, and the charges in the solid and in the electrolyte are coupled to each other through the Poisson-Boltzmann equation. I apply this model to a silicon based protein sensor, where I solve the Schroedinger equation together with the Poisson-Boltzmann equation self-consistently, and compare theoretical results with experiment. Furthermore, I have developed a novel approach to model the charge density profiles at semiconductor-electrolyte interfaces that allows us to distinguish hydrophobic and hydrophilic interfaces. Our approach extends previous work where ion specific potentials of mean force describe the distribution of ion species at the interface. I apply this new model to recently

  9. Modeling of semiconductor nanostructures and semiconductor-electrolyte interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Birner, Stefan

    2011-11-15

    The main objective of Part I is to give an overview of some of the methods that have been implemented into the nextnano{sup 3} software. Examples are discussed that give insight into doping, strain and mobility. Applications of the single-band Schroedinger equation include three-dimensional superlattices, and a qubit that is manipulated by a magnetic field. Results of the multi-band k.p method are presented for HgTe-CdTe and InAs-GaSb superlattices, and for a SiGe-Si quantum cascade structure. Particular focus is put on a detailed description of the contact block reduction (CBR) method that has been developed within our research group. By means of this approach, quantum transport in the ballistic limit in one, two and three dimensions can be calculated. I provide a very detailed description of the algorithm and present several well documented examples that highlight the key points of this method. Calculating quantum transport in three dimensions is a very challenging task where computationally efficient algorithms - apart from the CBR method - are not available yet. Part II describes the methods that I have implemented into the nextnano{sup 3} software for calculating systems that consist of a combination of semiconductor materials and liquids. These biosensors have a solid-electrolyte interface, and the charges in the solid and in the electrolyte are coupled to each other through the Poisson-Boltzmann equation. I apply this model to a silicon based protein sensor, where I solve the Schroedinger equation together with the Poisson-Boltzmann equation self-consistently, and compare theoretical results with experiment. Furthermore, I have developed a novel approach to model the charge density profiles at semiconductor-electrolyte interfaces that allows us to distinguish hydrophobic and hydrophilic interfaces. Our approach extends previous work where ion specific potentials of mean force describe the distribution of ion species at the interface. I apply this new model

  10. High-level Component Interfaces for Collaborative Development: A Proposal

    Directory of Open Access Journals (Sweden)

    Thomas Marlowe

    2009-12-01

    Full Text Available Software development has rapidly moved toward collaborative development models where multiple partners collaborate in creating and evolving software intensive systems or components of sophisticated ubiquitous socio-technical-ecosystems. In this paper we extend the concept of software interface to a flexible high-level interface as means for accommodating change and localizing, controlling and managing the exchange of knowledge and functional, behavioral, quality, project and business related information between the partners and between the developed components.

  11. Continuous Modeling Technique of Fiber Pullout from a Cement Matrix with Different Interface Mechanical Properties Using Finite Element Program

    Directory of Open Access Journals (Sweden)

    Leandro Ferreira Friedrich

    Full Text Available Abstract Fiber-matrix interface performance has a great influence on the mechanical properties of fiber reinforced composite. This influence is mainly presented during fiber pullout from the matrix. As fiber pullout process consists of fiber debonding stage and pullout stage which involve complex contact problem, numerical modeling is a best way to investigate the interface influence. Although many numerical research works have been conducted, practical and effective technique suitable for continuous modeling of fiber pullout process is still scarce. The reason is in that numerical divergence frequently happens, leading to the modeling interruption. By interacting the popular finite element program ANSYS with the MATLAB, we proposed continuous modeling technique and realized modeling of fiber pullout from cement matrix with desired interface mechanical performance. For debonding process, we used interface elements with cohesive surface traction and exponential failure behavior. For pullout process, we switched interface elements to spring elements with variable stiffness, which is related to the interface shear stress as a function of the interface slip displacement. For both processes, the results obtained are very good in comparison with other numerical or analytical models and experimental tests. We suggest using the present technique to model toughening achieved by randomly distributed fibers.

  12. Sensitivity, Error and Uncertainty Quantification: Interfacing Models at Different Scales

    International Nuclear Information System (INIS)

    Krstic, Predrag S.

    2014-01-01

    Discussion on accuracy of AMO data to be used in the plasma modeling codes for astrophysics and nuclear fusion applications, including plasma-material interfaces (PMI), involves many orders of magnitude of energy, spatial and temporal scales. Thus, energies run from tens of K to hundreds of millions of K, temporal and spatial scales go from fs to years and from nm’s to m’s and more, respectively. The key challenge for the theory and simulation in this field is the consistent integration of all processes and scales, i.e. an “integrated AMO science” (IAMO). The principal goal of the IAMO science is to enable accurate studies of interactions of electrons, atoms, molecules, photons, in many-body environment, including complex collision physics of plasma-material interfaces, leading to the best decisions and predictions. However, the accuracy requirement for a particular data strongly depends on the sensitivity of the respective plasma modeling applications to these data, which stresses a need for immediate sensitivity analysis feedback of the plasma modeling and material design communities. Thus, the data provision to the plasma modeling community is a “two-way road” as long as the accuracy of the data is considered, requiring close interactions of the AMO and plasma modeling communities.

  13. An overview of the evaluation plan for PC/MISI: PC-based Multiple Information System Interface

    Science.gov (United States)

    Dominick, Wayne D. (Editor); Lim, Bee Lee; Hall, Philip P.

    1985-01-01

    An initial evaluation plan for the personal computer multiple information system interface (PC/MISI) project is discussed. The document is intend to be used as a blueprint for the evaluation of this system. Each objective of the design project is discussed along with the evaluation parameters and methodology to be used in the evaluation of the implementation's achievement of those objectives. The potential of the system for research activities related to more general aspects of information retrieval is also discussed.

  14. Development and evaluation of nursing user interface screens using multiple methods.

    Science.gov (United States)

    Hyun, Sookyung; Johnson, Stephen B; Stetson, Peter D; Bakken, Suzanne

    2009-12-01

    Building upon the foundation of the Structured Narrative Electronic Health Record (EHR) model, we applied theory-based (combined Technology Acceptance Model and Task-Technology Fit Model) and user-centered methods to explore nurses' perceptions of functional requirements for an electronic nursing documentation system, design user interface screens reflective of the nurses' perspectives, and assess nurses' perceptions of the usability of the prototype user interface screens. The methods resulted in user interface screens that were perceived to be easy to use, potentially useful, and well-matched to nursing documentation tasks associated with Nursing Admission Assessment, Blood Administration, and Nursing Discharge Summary. The methods applied in this research may serve as a guide for others wishing to implement user-centered processes to develop or extend EHR systems. In addition, some of the insights obtained in this study may be informative to the development of safe and efficient user interface screens for nursing document templates in EHRs.

  15. Light Duty Utility Arm interface control document plan

    Energy Technology Data Exchange (ETDEWEB)

    Engstrom, J.W.

    1994-12-27

    This document describes the interface control documents that will be used to identify and control interface features throughout all phases of the Light Duty Utility Arm (LDUA) development and design. After the system is built, delivered and installed in the Cold Test Facility and later at the tank farm, the Interface Control Documents can be used in maintaining the configuration control process. The Interface Control Document will consist of Interface Control Drawings and a data base directly tied to the Interface Control Drawings. The data base can be used as an index to conveniently find interface information. Design drawings and other text documents that contain interface information will appear in the database. The Interface Control Drawings will be used to document and control the data and information that define the interface boundaries between systems, subsystems and equipment. Also, the interface boundaries will define the areas of responsibility for systems and subsystems. The drawing will delineate and identify all the physical and functional interfaces that required coordination to establish and maintain compatibility between the co-functioning equipment, computer software, and the tank farm facilities. An appendix contains the Engineering interface control database system riser manual.

  16. Light Duty Utility Arm interface control document plan

    International Nuclear Information System (INIS)

    Engstrom, J.W.

    1994-01-01

    This document describes the interface control documents that will be used to identify and control interface features throughout all phases of the Light Duty Utility Arm (LDUA) development and design. After the system is built, delivered and installed in the Cold Test Facility and later at the tank farm, the Interface Control Documents can be used in maintaining the configuration control process. The Interface Control Document will consist of Interface Control Drawings and a data base directly tied to the Interface Control Drawings. The data base can be used as an index to conveniently find interface information. Design drawings and other text documents that contain interface information will appear in the database. The Interface Control Drawings will be used to document and control the data and information that define the interface boundaries between systems, subsystems and equipment. Also, the interface boundaries will define the areas of responsibility for systems and subsystems. The drawing will delineate and identify all the physical and functional interfaces that required coordination to establish and maintain compatibility between the co-functioning equipment, computer software, and the tank farm facilities. An appendix contains the Engineering interface control database system riser manual

  17. Just Another Gibbs Additive Modeler: Interfacing JAGS and mgcv

    Directory of Open Access Journals (Sweden)

    Simon N. Wood

    2016-12-01

    Full Text Available The BUGS language offers a very flexible way of specifying complex statistical models for the purposes of Gibbs sampling, while its JAGS variant offers very convenient R integration via the rjags package. However, including smoothers in JAGS models can involve some quite tedious coding, especially for multivariate or adaptive smoothers. Further, if an additive smooth structure is required then some care is needed, in order to centre smooths appropriately, and to find appropriate starting values. R package mgcv implements a wide range of smoothers, all in a manner appropriate for inclusion in JAGS code, and automates centring and other smooth setup tasks. The purpose of this note is to describe an interface between mgcv and JAGS, based around an R function, jagam, which takes a generalized additive model (GAM as specified in mgcv and automatically generates the JAGS model code and data required for inference about the model via Gibbs sampling. Although the auto-generated JAGS code can be run as is, the expectation is that the user would wish to modify it in order to add complex stochastic model components readily specified in JAGS. A simple interface is also provided for visualisation and further inference about the estimated smooth components using standard mgcv functionality. The methods described here will be un-necessarily inefficient if all that is required is fully Bayesian inference about a standard GAM, rather than the full flexibility of JAGS. In that case the BayesX package would be more efficient.

  18. An enriched cohesive zone model for delamination in brittle interfaces

    NARCIS (Netherlands)

    Samimi, M.; Dommelen, van J.A.W.; Geers, M.G.D.

    2009-01-01

    Application of standard cohesive zone models in a finite element framework to simulate delamination in brittle interfaces may trigger non-smooth load-displacement responses that lead to the failure of iterative solution procedures. This non-smoothness is an artifact of the discretization; and hence

  19. Challenges of the expansive use of Building Information Modeling (BIM in construction projects

    Directory of Open Access Journals (Sweden)

    Hannele Kerosuo

    2015-06-01

    Full Text Available Building information modeling (BIM is an emerging modeling technology which challenges existing work procedures and practices in the construction industry. In this article we study the challenges, problems and potential expansions of BIM as a tool in the design, construction and operation of buildings. For this purpose the interfaces between different parties are examined in Finnish construction projects. The methodological approach of the study is cultural-historical activity theory, according to which a new artifact becomes a mediating instrument when the participatory subjects reconfigure the entire activity. The implementation of BIM is now spreading from the design activity to other phases of the construction projects, but its use is still limited in the projects' other three interfaces. BIM is an evolving set of software developed for various purposes which is locally 'combined' to fit the circumstances and capabilities of the stakeholders of the construction process.

  20. Soft yet Sharp Interfaces in a Vertex Model of Confluent Tissue

    Science.gov (United States)

    Sussman, Daniel M.; Schwarz, J. M.; Marchetti, M. Cristina; Manning, M. Lisa

    2018-01-01

    How can dense biological tissue maintain sharp boundaries between coexisting cell populations? We explore this question within a simple vertex model for cells, focusing on the role of topology and tissue surface tension. We show that the ability of cells to independently regulate adhesivity and tension, together with neighbor-based interaction rules, lets them support strikingly unusual interfaces. In particular, we show that mechanical- and fluctuation-based measurements of the effective surface tension of a cellular aggregate yield different results, leading to mechanically soft interfaces that are nevertheless extremely sharp.

  1. Java interface for asserting interactive telerobotic control

    Science.gov (United States)

    DePasquale, Peter; Lewis, John; Stein, Matthew R.

    1997-12-01

    Many current web-based telerobotic interfaces use HyperText Markup Language (HTML) forms to assert user control on a robot. While acceptable for some tasks, a Java interface can provide better client-server interaction. The Puma Paint project is a joint effort between the Department of Computing Sciences at Villanova University and the Department of Mechanical and Materials Engineering at Wilkes University. THe project utilizes a Java applet to control a Unimation Puma 1760 robot during the task of painting on a canvas. The interface allows the user to control the paint strokes as well as the pressure of a brush on the canvas and how deep the brush is dipped into a paint jar. To provide immediate feedback, a virtual canvas models the effects of the controls as the artist paints. Live color video feedback is provided, allowing the user to view the actual results of the robot's motions. Unlike the step-at-a-time model of many web forms, the application permits the user to assert interactive control. The greater the complexity of the interaction between the robot and its environment, the greater the need for high quality information presentation to the user. The use of Java allows the sophistication of the user interface to be raised to the level required for satisfactory control. This paper describes the Puma Paint project, including the interface and communications model. It also examines the challenges of using the Internet as the medium of communications and the challenges of encoding free ranging motions for transmission from the client to the robot.

  2. Model of two-dimensional electron gas formation at ferroelectric interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Aguado-Puente, P.; Bristowe, N. C.; Yin, B.; Shirasawa, R.; Ghosez, Philippe; Littlewood, P. B.; Artacho, Emilio

    2015-07-01

    The formation of a two-dimensional electron gas at oxide interfaces as a consequence of polar discontinuities has generated an enormous amount of activity due to the variety of interesting effects it gives rise to. Here, we study under what circumstances similar processes can also take place underneath ferroelectric thin films. We use a simple Landau model to demonstrate that in the absence of extrinsic screening mechanisms, a monodomain phase can be stabilized in ferroelectric films by means of an electronic reconstruction. Unlike in the LaAlO3/SrTiO3 heterostructure, the emergence with thickness of the free charge at the interface is discontinuous. This prediction is confirmed by performing first-principles simulations of free-standing slabs of PbTiO3. The model is also used to predict the response of the system to an applied electric field, demonstrating that the two-dimensional electron gas can be switched on and off discontinuously and in a nonvolatile fashion. Furthermore, the reversal of the polarization can be used to switch between a two-dimensional electron gas and a two-dimensional hole gas, which should, in principle, have very different transport properties. We discuss the possible formation of polarization domains and how such configuration competes with the spontaneous accumulation of free charge at the interfaces.

  3. Interface of the polarizable continuum model of solvation with semi-empirical methods in the GAMESS program

    DEFF Research Database (Denmark)

    Svendsen, Casper Steinmann; Blædel, Kristoffer; Christensen, Anders S

    2013-01-01

    An interface between semi-empirical methods and the polarized continuum model (PCM) of solvation successfully implemented into GAMESS following the approach by Chudinov et al (Chem. Phys. 1992, 160, 41). The interface includes energy gradients and is parallelized. For large molecules such as ubiq......An interface between semi-empirical methods and the polarized continuum model (PCM) of solvation successfully implemented into GAMESS following the approach by Chudinov et al (Chem. Phys. 1992, 160, 41). The interface includes energy gradients and is parallelized. For large molecules...... such as ubiquitin a reasonable speedup (up to a factor of six) is observed for up to 16 cores. The SCF convergence is greatly improved by PCM for proteins compared to the gas phase....

  4. A correction for Dupuit-Forchheimer interface flow models of seawater intrusion in unconfined coastal aquifers

    Science.gov (United States)

    Koussis, Antonis D.; Mazi, Katerina; Riou, Fabien; Destouni, Georgia

    2015-06-01

    Interface flow models that use the Dupuit-Forchheimer (DF) approximation for assessing the freshwater lens and the seawater intrusion in coastal aquifers lack representation of the gap through which fresh groundwater discharges to the sea. In these models, the interface outcrops unrealistically at the same point as the free surface, is too shallow and intersects the aquifer base too far inland, thus overestimating an intruding seawater front. To correct this shortcoming of DF-type interface solutions for unconfined aquifers, we here adapt the outflow gap estimate of an analytical 2-D interface solution for infinitely thick aquifers to fit the 50%-salinity contour of variable-density solutions for finite-depth aquifers. We further improve the accuracy of the interface toe location predicted with depth-integrated DF interface solutions by ∼20% (relative to the 50%-salinity contour of variable-density solutions) by combining the outflow-gap adjusted aquifer depth at the sea with a transverse-dispersion adjusted density ratio (Pool and Carrera, 2011), appropriately modified for unconfined flow. The effectiveness of the combined correction is exemplified for two regional Mediterranean aquifers, the Israel Coastal and Nile Delta aquifers.

  5. Flavor release measurement by atmospheric pressure chemical ionization ion trap mass spectrometry, construction of interface and mathematical modeling of release profiles

    DEFF Research Database (Denmark)

    Haahr, Anne-Mette; Madsen, Henrik; Smedsgaard, Jørn

    2003-01-01

    and the method can be used to measure breath from the nose. A mathematical model of the data was developed to give a quantitative method for description and characterization of the release of flavor compounds. The release profiles consisted of two sequences, one for a chewing period, and one for a phasing out...... process. The proposed method for modeling provided a reasonable description of the release process. In addition to flavor compounds, this new interface and mathematical application could provide information on chemicals in the human breath which could be interesting, for example, within medical diagnosis....... with that of the flavor detection threshold. An application study on the release of menthone and menthol from chewing gum by a group of six test persons was performed. Flavored chewing gum was used as a model matrix because of the long chewing periods and the simplicity of the system. It is concluded that the interface...

  6. Blocking and Blending: Different Assembly Models of Cyclodextrin and Sodium Caseinate at the Oil/Water Interface.

    Science.gov (United States)

    Xu, Hua-Neng; Liu, Huan-Huan; Zhang, Lianfu

    2015-08-25

    The stability of cyclodextrin (CD)-based emulsions is attributed to the formation of a solid film of oil-CD complexes at the oil/water interface. However, competitive interactions between CDs and other components at the interface still need to be understood. Here we develop two different routes that allow the incorporation of a model protein (sodium caseinate, SC) into emulsions based on β-CD. One route is the components adsorbed simultaneously from a mixed solution to the oil/water interface (route I), and the other is SC was added to a previously established CD-stabilized interface (route II). The adsorption mechanism of β-CD modified by SC at the oil/water interface is investigated by rheological and optical methods. Strong sensitivity of the rheological behavior to the routes is indicated by both steady-state and small-deformation oscillatory experiments. Possible β-CD/SC interaction models at the interface are proposed. In route I, the protein, due to its higher affinity for the interface, adsorbs strongly at the interface with blocking of the adsorption of β-CD and formation of oil-CD complexes. In route II, the protein penetrates and blends into the preadsorbed layer of oil-CD complexes already formed at the interface. The revelation of interfacial assembly is expected to help better understand CD-based emulsions in natural systems and improve their designs in engineering applications.

  7. Dynamics modeling for parallel haptic interfaces with force sensing and control.

    Science.gov (United States)

    Bernstein, Nicholas; Lawrence, Dale; Pao, Lucy

    2013-01-01

    Closed-loop force control can be used on haptic interfaces (HIs) to mitigate the effects of mechanism dynamics. A single multidimensional force-torque sensor is often employed to measure the interaction force between the haptic device and the user's hand. The parallel haptic interface at the University of Colorado (CU) instead employs smaller 1D force sensors oriented along each of the five actuating rods to build up a 5D force vector. This paper shows that a particular manipulandum/hand partition in the system dynamics is induced by the placement and type of force sensing, and discusses the implications on force and impedance control for parallel haptic interfaces. The details of a "squaring down" process are also discussed, showing how to obtain reduced degree-of-freedom models from the general six degree-of-freedom dynamics formulation.

  8. User interface using a 3D model for video surveillance

    Science.gov (United States)

    Hata, Toshihiko; Boh, Satoru; Tsukada, Akihiro; Ozaki, Minoru

    1998-02-01

    These days fewer people, who must carry out their tasks quickly and precisely, are required in industrial surveillance and monitoring applications such as plant control or building security. Utilizing multimedia technology is a good approach to meet this need, and we previously developed Media Controller, which is designed for the applications and provides realtime recording and retrieval of digital video data in a distributed environment. In this paper, we propose a user interface for such a distributed video surveillance system in which 3D models of buildings and facilities are connected to the surveillance video. A novel method of synchronizing camera field data with each frame of a video stream is considered. This method records and reads the camera field data similarity to the video data and transmits it synchronously with the video stream. This enables the user interface to have such useful functions as comprehending the camera field immediately and providing clues when visibility is poor, for not only live video but also playback video. We have also implemented and evaluated the display function which makes surveillance video and 3D model work together using Media Controller with Java and Virtual Reality Modeling Language employed for multi-purpose and intranet use of 3D model.

  9. Ergonomic Models of Anthropometry, Human Biomechanics and Operator-Equipment Interfaces

    Science.gov (United States)

    Kroemer, Karl H. E. (Editor); Snook, Stover H. (Editor); Meadows, Susan K. (Editor); Deutsch, Stanley (Editor)

    1988-01-01

    The Committee on Human Factors was established in October 1980 by the Commission on Behavioral and Social Sciences and Education of the National Research Council. The committee is sponsored by the Office of Naval Research, the Air Force Office of Scientific Research, the Army Research Institute for the Behavioral and Social Sciences, the National Aeronautics and Space Administration, and the National Science Foundation. The workshop discussed the following: anthropometric models; biomechanical models; human-machine interface models; and research recommendations. A 17-page bibliography is included.

  10. A Graphical User Interface to Generalized Linear Models in MATLAB

    Directory of Open Access Journals (Sweden)

    Peter Dunn

    1999-07-01

    Full Text Available Generalized linear models unite a wide variety of statistical models in a common theoretical framework. This paper discusses GLMLAB-software that enables such models to be fitted in the popular mathematical package MATLAB. It provides a graphical user interface to the powerful MATLAB computational engine to produce a program that is easy to use but with many features, including offsets, prior weights and user-defined distributions and link functions. MATLAB's graphical capacities are also utilized in providing a number of simple residual diagnostic plots.

  11. Electrode-tissues interface: modeling and experimental validation

    International Nuclear Information System (INIS)

    Sawan, M; Laaziri, Y; Mounaim, F; Elzayat, E; Corcos, J; Elhilali, M M

    2007-01-01

    The electrode-tissues interface (ETI) is one of the key issues in implantable devices such as stimulators and sensors. Once the stimulator is implanted, safety and reliability become more and more critical. In this case, modeling and monitoring of the ETI are required. We propose an empirical model for the ETI and a dedicated integrated circuit to measure its corresponding complex impedance. These measurements in the frequency range of 1 Hz to 100 kHz were achieved in acute dog experiments. The model demonstrates a closer fitting with experimental measurements. In addition, a custom monitoring device based on a stimuli current generator has been completed to evaluate the phase shift and voltage across the electrodes and to transmit wirelessly the values to an external controller. This integrated circuit has been fabricated in a CMOS 0.18 μm process, which consumes 4 mW only during measurements and occupies an area of 1 mm 2 . (review article)

  12. An Efficient User Interface Design for Nursing Information System Based on Integrated Patient Order Information.

    Science.gov (United States)

    Chu, Chia-Hui; Kuo, Ming-Chuan; Weng, Shu-Hui; Lee, Ting-Ting

    2016-01-01

    A user friendly interface can enhance the efficiency of data entry, which is crucial for building a complete database. In this study, two user interfaces (traditional pull-down menu vs. check boxes) are proposed and evaluated based on medical records with fever medication orders by measuring the time for data entry, steps for each data entry record, and the complete rate of each medical record. The result revealed that the time for data entry is reduced from 22.8 sec/record to 3.2 sec/record. The data entry procedures also have reduced from 9 steps in the traditional one to 3 steps in the new one. In addition, the completeness of medical records is increased from 20.2% to 98%. All these results indicate that the new user interface provides a more user friendly and efficient approach for data entry than the traditional interface.

  13. Universal quantum interfaces

    International Nuclear Information System (INIS)

    Lloyd, Seth; Landahl, Andrew J.; Slotine, Jean-Jacques E.

    2004-01-01

    To observe or control a quantum system, one must interact with it via an interface. This article exhibits simple universal quantum interfaces--quantum input/output ports consisting of a single two-state system or quantum bit that interacts with the system to be observed or controlled. It is shown that under very general conditions the ability to observe and control the quantum bit on its own implies the ability to observe and control the system itself. The interface can also be used as a quantum communication channel, and multiple quantum systems can be connected by interfaces to become an efficient universal quantum computer. Experimental realizations are proposed, and implications for controllability, observability, and quantum information processing are explored

  14. Control of enterprise interfaces for supply chain enterprise modeling

    Energy Technology Data Exchange (ETDEWEB)

    Interrante, L.D. [Sandia National Labs., Albuquerque, NM (United States); Macfarlane, J.F. [Lawrence Berkeley Lab., CA (United States). Information and Computing Sciences Div.

    1995-04-01

    There is a current trend for manufacturing enterprises in a supply chain of a particular industry to join forces in an attempt to promote efficiencies and improve competitive position. Such alliances occur in the context of specific legal and business agreements such that each enterprise retains a majority of its business and manufacturing information as private and shares other information with its trading partners. Shared information may include enterprise demand projections, capacities, finished goods inventories, and aggregate production schedules. Evidence of the trend toward information sharing includes the recent emphases on vendor-managed inventories, quick response, and Electronic Data Interchange (EDI) standards. The increased competition brought on by the global marketplace is driving industries to consider the advantages of trading partner agreements. Aggregate-level forecasts, supply-chain production smoothing, and aggregate-level inventory policies can reduce holding costs, record-keeping overhead, and lead time in product development. The goal of this research is to orchestrate information exchange among trading partners to allow for aggregate-level analysis to enhance supply chain efficiency. The notion of Enterprise Interface Control (EIC) is introduced as a means of accomplishing this end.

  15. Alternative biosphere modeling for safety assessment of HLW disposal taking account of geosphere-biosphere interface of marine environment

    International Nuclear Information System (INIS)

    Kato, Tomoko; Ishiguro, Katsuhiko; Naito, Morimasa; Ikeda, Takao; Little, Richard

    2001-03-01

    In the safety assessment of a high-level radioactive waste (HLW) disposal system, it is required to estimate radiological impacts on future human beings arising from potential radionuclide releases from a deep repository into the surface environment. In order to estimated the impacts, a biosphere model is developed by reasonably assuming radionuclide migration processes in the surface environment and relevant human lifestyles. It is important to modify the present biosphere models or to develop alternative biosphere models applying the biosphere models according to quality and quantify of the information acquired through the siting process for constructing the repository. In this study, alternative biosphere models were developed taking geosphere-biosphere interface of marine environment into account. Moreover, the flux to dose conversion factors calculated by these alternative biosphere models was compared with those by the present basic biosphere models. (author)

  16. Atomistic Modeling of Corrosion Events at the Interface between a Metal and Its Environment

    Directory of Open Access Journals (Sweden)

    Christopher D. Taylor

    2012-01-01

    Full Text Available Atomistic simulation is a powerful tool for probing the structure and properties of materials and the nature of chemical reactions. Corrosion is a complex process that involves chemical reactions occurring at the interface between a material and its environment and is, therefore, highly suited to study by atomistic modeling techniques. In this paper, the complex nature of corrosion processes and mechanisms is briefly reviewed. Various atomistic methods for exploring corrosion mechanisms are then described, and recent applications in the literature surveyed. Several instances of the application of atomistic modeling to corrosion science are then reviewed in detail, including studies of the metal-water interface, the reaction of water on electrified metallic interfaces, the dissolution of metal atoms from metallic surfaces, and the role of competitive adsorption in controlling the chemical nature and structure of a metallic surface. Some perspectives are then given concerning the future of atomistic modeling in the field of corrosion science.

  17. Designing distributed user interfaces for ambient intelligent environments using models and simulations

    OpenAIRE

    LUYTEN, Kris; VAN DEN BERGH, Jan; VANDERVELPEN, Chris; CONINX, Karin

    2006-01-01

    There is a growing demand for design support to create interactive systems that are deployed in ambient intelligent environments. Unlike traditional interactive systems, the wide diversity of situations these type of user interfaces need to work in require tool support that is close to the environment of the end-user on the one hand and provide a smooth integration with the application logic on the other hand. This paper shows how the model-based user interface development methodology can be ...

  18. A Model for Information

    Directory of Open Access Journals (Sweden)

    Paul Walton

    2014-09-01

    Full Text Available This paper uses an approach drawn from the ideas of computer systems modelling to produce a model for information itself. The model integrates evolutionary, static and dynamic views of information and highlights the relationship between symbolic content and the physical world. The model includes what information technology practitioners call “non-functional” attributes, which, for information, include information quality and information friction. The concepts developed in the model enable a richer understanding of Floridi’s questions “what is information?” and “the informational circle: how can information be assessed?” (which he numbers P1 and P12.

  19. A Novel Multilayer Correlation Maximization Model for Improving CCA-Based Frequency Recognition in SSVEP Brain-Computer Interface.

    Science.gov (United States)

    Jiao, Yong; Zhang, Yu; Wang, Yu; Wang, Bei; Jin, Jing; Wang, Xingyu

    2018-05-01

    Multiset canonical correlation analysis (MsetCCA) has been successfully applied to optimize the reference signals by extracting common features from multiple sets of electroencephalogram (EEG) for steady-state visual evoked potential (SSVEP) recognition in brain-computer interface application. To avoid extracting the possible noise components as common features, this study proposes a sophisticated extension of MsetCCA, called multilayer correlation maximization (MCM) model for further improving SSVEP recognition accuracy. MCM combines advantages of both CCA and MsetCCA by carrying out three layers of correlation maximization processes. The first layer is to extract the stimulus frequency-related information in using CCA between EEG samples and sine-cosine reference signals. The second layer is to learn reference signals by extracting the common features with MsetCCA. The third layer is to re-optimize the reference signals set in using CCA with sine-cosine reference signals again. Experimental study is implemented to validate effectiveness of the proposed MCM model in comparison with the standard CCA and MsetCCA algorithms. Superior performance of MCM demonstrates its promising potential for the development of an improved SSVEP-based brain-computer interface.

  20. Study on the standardization of hospital information system for medical image information sharing

    International Nuclear Information System (INIS)

    Kim, Seon Chil; Kwon, Su Ja

    2001-01-01

    As the adoption of PACS and hospital information system among university hospitals and hospital level institutions grows bigger, the need of sharing and transferring medical information among medical institutions is rising. For the medical information, which is saved in the hospital medical system, to be transferred within the same hospital, domestic, or foreign medical institutions, a standard protocol is necessary. But realistically, most of the domestic hospitals do not abide by H7L which is the HIS standard and so, information transferring is not possible as of present. As such, the purpose of this research is to implement the information between HIS and PACS to an international standard by constructing HL7 messages through HL7 Interface, which will eventually make possible information transferring between different hospitals. Our research team has developed a method which will make the PACS equip hospitals that do not follow HL7 standard which will make possible to transfer information between HIS and PACS through HL7 Message. By constructing message files, which follow the form of HL7 Message in the HL7 Interface, they can be transferred to PACS through the ftp protocol. The realization of the HIS/OCS Interface through HL7 enables data transferring between domestic and foreign medical institutions possible by implementing the international standard in the PACS and HIS data transferring process. The HL7 that our research team has developed made patient data transfer between medical institutions possible. The Interface is for a specific system model and in order for the data transfer between different systems to be realized, interfaces that are fit for each system must be needed. If the Interface is improvised and implemented to each hospital's information system, the data sharing among medical institutions can be broadened

  1. Advances in the development of a cognitive user interface

    Directory of Open Access Journals (Sweden)

    Jokisch Oliver

    2018-01-01

    Full Text Available In this contribution, we want to summarize recent development steps of the embedded cognitive user interface UCUI, which enables a user-adaptive scenario in human-machine or even human-robot interactions by considering sophisticated cognitive and semantic modelling. The interface prototype is developed by different German institutes and companies with their steering teams at Fraunhofer IKTS and Brandenburg University of Technology. The interface prototype is able to communicate with users via speech and gesture recognition, speech synthesis and a touch display. The device includes an autarkic semantic processing and beyond a cognitive behavior control, which supports an intuitive interaction to control different kinds of electronic devices, e. g. in a smart home environment or in interactive respectively collaborative robotics. Contrary to available speech assistance systems such as Amazon Echo or Google Home, the introduced cognitive user interface UCUI ensures the user privacy by processing all necessary information without any network access of the interface device.

  2. Provision of a wildfire risk map: informing residents in the wildland urban interface.

    Science.gov (United States)

    Mozumder, Pallab; Helton, Ryan; Berrens, Robert P

    2009-11-01

    Wildfires in the wildland urban interface (WUI) are an increasing concern throughout the western United States and elsewhere. WUI communities continue to grow and thus increase the wildfire risk to human lives and property. Information such as a wildfire risk map can inform WUI residents of potential risks and may help to efficiently sort mitigation efforts. This study uses the survey-based contingent valuation (CV) method to examine annual household willingness to pay (WTP) for the provision of a wildfire risk map. Data were collected through a mail survey of the East Mountain WUI area in the State of New Mexico (USA). The integrated empirical approach includes a system of equations that involves joint estimation of WTP values, along with measures of a respondent's risk perception and risk mitigation behavior. The median estimated WTP is around U.S. $12 for the annual wildfire risk map, which covers at least the costs of producing and distributing available risk information. Further, providing a wildfire risk map can help address policy goals emphasizing information gathering and sharing among stakeholders to mitigate the effects of wildfires.

  3. A Conceptual Architecture for Adaptive Human-Computer Interface of a PT Operation Platform Based on Context-Awareness

    Directory of Open Access Journals (Sweden)

    Qing Xue

    2014-01-01

    Full Text Available We present a conceptual architecture for adaptive human-computer interface of a PT operation platform based on context-awareness. This architecture will form the basis of design for such an interface. This paper describes components, key technologies, and working principles of the architecture. The critical contents covered context information modeling, processing, relationship establishing between contexts and interface design knowledge by use of adaptive knowledge reasoning, and visualization implementing of adaptive interface with the aid of interface tools technology.

  4. Four Principles for User Interface Design of Computerised Clinical Decision Support Systems

    DEFF Research Database (Denmark)

    Kanstrup, Anne Marie; Christiansen, Marion Berg; Nøhr, Christian

    2011-01-01

    emphasises a focus on how users interact with the system, a focus on how information is provided by the system, and four principles of interaction. The four principles for design of user interfaces for CDSS are summarised as four A’s: All in one, At a glance, At hand and Attention. It is recommended that all...... four interaction principles are integrated in the design of user interfaces for CDSS, i.e. the model is an integrated model which we suggest as a guide for interaction design when working with preventing medication errors....

  5. Extending the Solvation-Layer Interface Condition Continum Electrostatic Model to a Linearized Poisson-Boltzmann Solvent.

    Science.gov (United States)

    Molavi Tabrizi, Amirhossein; Goossens, Spencer; Mehdizadeh Rahimi, Ali; Cooper, Christopher D; Knepley, Matthew G; Bardhan, Jaydeep P

    2017-06-13

    We extend the linearized Poisson-Boltzmann (LPB) continuum electrostatic model for molecular solvation to address charge-hydration asymmetry. Our new solvation-layer interface condition (SLIC)/LPB corrects for first-shell response by perturbing the traditional continuum-theory interface conditions at the protein-solvent and the Stern-layer interfaces. We also present a GPU-accelerated treecode implementation capable of simulating large proteins, and our results demonstrate that the new model exhibits significant accuracy improvements over traditional LPB models, while reducing the number of fitting parameters from dozens (atomic radii) to just five parameters, which have physical meanings related to first-shell water behavior at an uncharged interface. In particular, atom radii in the SLIC model are not optimized but uniformly scaled from their Lennard-Jones radii. Compared to explicit-solvent free-energy calculations of individual atoms in small molecules, SLIC/LPB is significantly more accurate than standard parametrizations (RMS error 0.55 kcal/mol for SLIC, compared to RMS error of 3.05 kcal/mol for standard LPB). On parametrizing the electrostatic model with a simple nonpolar component for total molecular solvation free energies, our model predicts octanol/water transfer free energies with an RMS error 1.07 kcal/mol. A more detailed assessment illustrates that standard continuum electrostatic models reproduce total charging free energies via a compensation of significant errors in atomic self-energies; this finding offers a window into improving the accuracy of Generalized-Born theories and other coarse-grained models. Most remarkably, the SLIC model also reproduces positive charging free energies for atoms in hydrophobic groups, whereas standard PB models are unable to generate positive charging free energies regardless of the parametrized radii. The GPU-accelerated solver is freely available online, as is a MATLAB implementation.

  6. Analysis of model interfaces for Li ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Seemayer, Andreas; Pareek, Aparna; Vogel, Dirk; Rohwerder, Michael; Renner, Frank [Max-Planck-Institut fuer Eisenforschung GmbH, Duesseldorf (Germany)

    2010-07-01

    Lithium ion batteries are the most promising power source for future electromobility applications. Therefore a better understanding of the basic processes in Lithium ion batteries is needed. Especially nowadays research projects aim to improve real systems in terms of higher rate capability, cycle life, safety and operating temperature. Following the surface science approach we focus on the investigation of single crystal model systems of possible anode and cathode materials and electrode/solid electrolyte interfaces prepared by electrochemical deposition, molecular beam epitaxy or pulsed laser deposition.

  7. Modeling of ETL-Processes and Processed Information in Clinical Data Warehousing.

    Science.gov (United States)

    Tute, Erik; Steiner, Jochen

    2018-01-01

    Literature describes a big potential for reuse of clinical patient data. A clinical data warehouse (CDWH) is a means for that. To support management and maintenance of processes extracting, transforming and loading (ETL) data into CDWHs as well as to ease reuse of metadata between regular IT-management, CDWH and secondary data users by providing a modeling approach. Expert survey and literature review to find requirements and existing modeling techniques. An ETL-modeling-technique was developed extending existing modeling techniques. Evaluation by exemplarily modeling existing ETL-process and a second expert survey. Nine experts participated in the first survey. Literature review yielded 15 included publications. Six existing modeling techniques were identified. A modeling technique extending 3LGM2 and combining it with openEHR information models was developed and evaluated. Seven experts participated in the evaluation. The developed approach can help in management and maintenance of ETL-processes and could serve as interface between regular IT-management, CDWH and secondary data users.

  8. Modeling of the atomic and electronic structures of interfaces

    International Nuclear Information System (INIS)

    Sutton, A.P.

    1988-01-01

    Recent tight binding and Car-Parrinello simulations of grain boundaries in semiconductors are reviewed. A critique is given of some models of embrittlement that are based on electronic structure considerations. The structural unit model of grain boundary structure is critically assessed using some results for mixed tilt and twist grain boundaries. A new method of characterizing interfacial structure in terms of bond angle distribution functions is described. A new formulation of thermodynamic properties of interfaces is presented which focusses on the local atomic environment. Effective, temperature dependent N-body atomic interactions are derived for studying grain boundary structure at elevated temperature

  9. Interfacing to accelerator instrumentation

    International Nuclear Information System (INIS)

    Shea, T.J.

    1995-01-01

    As the sensory system for an accelerator, the beam instrumentation provides a tremendous amount of diagnostic information. Access to this information can vary from periodic spot checks by operators to high bandwidth data acquisition during studies. In this paper, example applications will illustrate the requirements on interfaces between the control system and the instrumentation hardware. A survey of the major accelerator facilities will identify the most popular interface standards. The impact of developments such as isochronous protocols and embedded digital signal processing will also be discussed

  10. Computer simulation study of the nematic-vapour interface in the Gay-Berne model

    Science.gov (United States)

    Rull, Luis F.; Romero-Enrique, José Manuel

    2017-06-01

    We present computer simulations of the vapour-nematic interface of the Gay-Berne model. We considered situations which correspond to either prolate or oblate molecules. We determine the anchoring of the nematic phase and correlate it with the intermolecular potential parameters. On the other hand, we evaluate the surface tension associated to this interface. We find a corresponding states law for the surface tension dependence on the temperature, valid for both prolate and oblate molecules.

  11. Modeling Strategic Use of Human Computer Interfaces with Novel Hidden Markov Models

    Directory of Open Access Journals (Sweden)

    Laura Jane Mariano

    2015-07-01

    Full Text Available Immersive software tools are virtual environments designed to give their users an augmented view of real-world data and ways of manipulating that data. As virtual environments, every action users make while interacting with these tools can be carefully logged, as can the state of the software and the information it presents to the user, giving these actions context. This data provides a high-resolution lens through which dynamic cognitive and behavioral processes can be viewed. In this report, we describe new methods for the analysis and interpretation of such data, utilizing a novel implementation of the Beta Process Hidden Markov Model (BP-HMM for analysis of software activity logs. We further report the results of a preliminary study designed to establish the validity of our modeling approach. A group of 20 participants were asked to play a simple computer game, instrumented to log every interaction with the interface. Participants had no previous experience with the game’s functionality or rules, so the activity logs collected during their naïve interactions capture patterns of exploratory behavior and skill acquisition as they attempted to learn the rules of the game. Pre- and post-task questionnaires probed for self-reported styles of problem solving, as well as task engagement, difficulty, and workload. We jointly modeled the activity log sequences collected from all participants using the BP-HMM approach, identifying a global library of activity patterns representative of the collective behavior of all the participants. Analyses show systematic relationships between both pre- and post-task questionnaires, self-reported approaches to analytic problem solving, and metrics extracted from the BP-HMM decomposition. Overall, we find that this novel approach to decomposing unstructured behavioral data within software environments provides a sensible means for understanding how users learn to integrate software functionality for strategic

  12. Modeling fractures as interfaces for flow and transport in porous media

    International Nuclear Information System (INIS)

    Serres, Ch.; Alboin, C.; Jaffre, J.; Roberts, J.

    2002-05-01

    We are concerned with flow and transport in a fractured porous medium at a scale where the fractures can be modelled individually. The fractures themselves are porous media with large permeability in comparison with that in the surrounding rock. Contrarily to many studies in which the contrast in permeabilities is of such an order that the flow outside of the fracture is neglected, the purpose of this work is to consider the case where the exchange between the fractures and the surrounding rock is significant. Then it is necessary to take into account this interaction because it has a profound effect on the flow and the transport of a solute. The main idea for this work is to treat fractures as interfaces. Then it will not be necessary to use mesh refinements around the fractures, which is an important drawback of most models. Treating fractures as interfaces leads to non-overlapping domain decomposition methods, using the natural domain decomposition suggested by the fracture network. This paper is organized as follows. In Section 2, we present the model, and in Section 3, we show that the corresponding problem has a unique solution. In Section 4, we reduce the approximate problem to a problem with unknowns on the interface. Numerical results are given in Section 5 for the simple case of a domain divided into two sub-domains by one fracture. In Section 6 we extend the formulation to the case of intersecting fractures and in Section 7 to that of a solute transport. (authors)

  13. Dynamic Stability of the Rate, State, Temperature, and Pore Pressure Friction Model at a Rock Interface

    Science.gov (United States)

    Sinha, Nitish; Singh, Arun K.; Singh, Trilok N.

    2018-05-01

    In this article, we study numerically the dynamic stability of the rate, state, temperature, and pore pressure friction (RSTPF) model at a rock interface using standard spring-mass sliding system. This particular friction model is a basically modified form of the previously studied friction model namely the rate, state, and temperature friction (RSTF). The RSTPF takes into account the role of thermal pressurization including dilatancy and permeability of the pore fluid due to shear heating at the slip interface. The linear stability analysis shows that the critical stiffness, at which the sliding becomes stable to unstable or vice versa, increases with the coefficient of thermal pressurization. Critical stiffness, on the other hand, remains constant for small values of either dilatancy factor or hydraulic diffusivity, but the same decreases as their values are increased further from dilatancy factor (˜ 10^{ - 4} ) and hydraulic diffusivity (˜ 10^{ - 9} {m}2 {s}^{ - 1} ) . Moreover, steady-state friction is independent of the coefficient of thermal pressurization, hydraulic diffusivity, and dilatancy factor. The proposed model is also used for predicting time of failure of a creeping interface of a rock slope under the constant gravitational force. It is observed that time of failure decreases with increase in coefficient of thermal pressurization and hydraulic diffusivity, but the dilatancy factor delays the failure of the rock fault under the condition of heat accumulation at the creeping interface. Moreover, stiffness of the rock-mass also stabilizes the failure process of the interface as the strain energy due to the gravitational force accumulates in the rock-mass before it transfers to the sliding interface. Practical implications of the present study are also discussed.

  14. Lectures on random interfaces

    CERN Document Server

    Funaki, Tadahisa

    2016-01-01

    Interfaces are created to separate two distinct phases in a situation in which phase coexistence occurs. This book discusses randomly fluctuating interfaces in several different settings and from several points of view: discrete/continuum, microscopic/macroscopic, and static/dynamic theories. The following four topics in particular are dealt with in the book. Assuming that the interface is represented as a height function measured from a fixed-reference discretized hyperplane, the system is governed by the Hamiltonian of gradient of the height functions. This is a kind of effective interface model called ∇φ-interface model. The scaling limits are studied for Gaussian (or non-Gaussian) random fields with a pinning effect under a situation in which the rate functional of the corresponding large deviation principle has non-unique minimizers. Young diagrams determine decreasing interfaces, and their dynamics are introduced. The large-scale behavior of such dynamics is studied from the points of view of the hyd...

  15. Application of a computational situation assessment model to human system interface design and experimental validation of its effectiveness

    International Nuclear Information System (INIS)

    Lee, Hyun-Chul; Koh, Kwang-Yong; Seong, Poong-Hyun

    2013-01-01

    Highlights: ► We validate the effectiveness of a proposed procedure thru an experiment. ► The proposed procedure addresses the salient coding of the key information. ► It was found that salience coding affects operators’ attention significantly. ► The first observation to the key information quickly guided to the correct situation awareness. ► It was validated the proposed procedure is effective for better situation awareness. - Abstract: To evaluate the effects of human cognitive characteristics on situation awareness, a computational situation assessment model of nuclear power plant operators has been developed, as well as a procedure to apply the developed model to the design of human system interfaces (HSIs). The concept of the proposed procedure is to identify the key information source, which is expected to guarantee fast and accurate diagnosis when operators attend to it. The developed computational model is used to search the diagnostic paths and the key information source. In this study, an experiment with twelve trained participants was executed to validate the effectiveness of the proposed procedure. Eighteen scenarios covering various accidents were administered twice for each subject, and experimental data were collected and analyzed. As a result of the data analysis, it was validated that the salience level of information sources significantly influences the attention of operators, and the first observation of the key information sources leads operators to a quick and correct situation assessment. Therefore, we conclude that the proposed procedure for applying the developed model to HSI design is effective

  16. Rich Interfaces for Dependability: Compositional Methods for Dynamic Fault Trees and Arcade models

    NARCIS (Netherlands)

    Boudali, H.; Crouzen, Pepijn; Haverkort, Boudewijn R.H.M.; Kuntz, G.W.M.; Stoelinga, Mariëlle Ida Antoinette

    This paper discusses two behavioural interfaces for reliability analysis: dynamic fault trees, which model the system reliability in terms of the reliability of its components and Arcade, which models the system reliability at an architectural level. For both formalisms, the reliability is analyzed

  17. Analysis of a diffuse interface model of multispecies tumor growth

    Czech Academy of Sciences Publication Activity Database

    Dai, M.; Feireisl, Eduard; Rocca, E.; Schimperna, G.; Schonbek, M.E.

    2017-01-01

    Roč. 30, č. 4 (2017), s. 1639-1658 ISSN 0951-7715 EU Projects: European Commission(XE) 320078 - MATHEF Institutional support: RVO:67985840 Keywords : Cahn-Hilliard equation * Darcy law * diffuse interface model Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 1.767, year: 2016 http://iopscience.iop.org/article/10.1088/1361-6544/aa6063/meta

  18. Formalize clinical processes into electronic health information systems: Modelling a screening service for diabetic retinopathy.

    Science.gov (United States)

    Eguzkiza, Aitor; Trigo, Jesús Daniel; Martínez-Espronceda, Miguel; Serrano, Luis; Andonegui, José

    2015-08-01

    Most healthcare services use information and communication technologies to reduce and redistribute the workload associated with follow-up of chronic conditions. However, the lack of normalization of the information handled in and exchanged between such services hinders the scalability and extendibility. The use of medical standards for modelling and exchanging information, especially dual-model based approaches, can enhance the features of screening services. Hence, the approach of this paper is twofold. First, this article presents a generic methodology to model patient-centered clinical processes. Second, a proof of concept of the proposed methodology was conducted within the diabetic retinopathy (DR) screening service of the Health Service of Navarre (Spain) in compliance with a specific dual-model norm (openEHR). As a result, a set of elements required for deploying a model-driven DR screening service has been established, namely: clinical concepts, archetypes, termsets, templates, guideline definition rules, and user interface definitions. This model fosters reusability, because those elements are available to be downloaded and integrated in any healthcare service, and interoperability, since from then on such services can share information seamlessly. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Improvement of design of a surgical interface using an eye tracking device.

    Science.gov (United States)

    Erol Barkana, Duygun; Açık, Alper; Duru, Dilek Goksel; Duru, Adil Deniz

    2014-05-07

    Surgical interfaces are used for helping surgeons in interpretation and quantification of the patient information, and for the presentation of an integrated workflow where all available data are combined to enable optimal treatments. Human factors research provides a systematic approach to design user interfaces with safety, accuracy, satisfaction and comfort. One of the human factors research called user-centered design approach is used to develop a surgical interface for kidney tumor cryoablation. An eye tracking device is used to obtain the best configuration of the developed surgical interface. Surgical interface for kidney tumor cryoablation has been developed considering the four phases of user-centered design approach, which are analysis, design, implementation and deployment. Possible configurations of the surgical interface, which comprise various combinations of menu-based command controls, visual display of multi-modal medical images, 2D and 3D models of the surgical environment, graphical or tabulated information, visual alerts, etc., has been developed. Experiments of a simulated cryoablation of a tumor task have been performed with surgeons to evaluate the proposed surgical interface. Fixation durations and number of fixations at informative regions of the surgical interface have been analyzed, and these data are used to modify the surgical interface. Eye movement data has shown that participants concentrated their attention on informative regions more when the number of displayed Computer Tomography (CT) images has been reduced. Additionally, the time required to complete the kidney tumor cryoablation task by the participants had been decreased with the reduced number of CT images. Furthermore, the fixation durations obtained after the revision of the surgical interface are very close to what is observed in visual search and natural scene perception studies suggesting more efficient and comfortable interaction with the surgical interface. The

  20. High-Density Signal Interface Electromagnetic Radiation Prediction for Electromagnetic Compatibility Evaluation.

    Energy Technology Data Exchange (ETDEWEB)

    Halligan, Matthew

    2017-11-01

    Radiated power calculation approaches for practical scenarios of incomplete high- density interface characterization information and incomplete incident power information are presented. The suggested approaches build upon a method that characterizes power losses through the definition of power loss constant matrices. Potential radiated power estimates include using total power loss information, partial radiated power loss information, worst case analysis, and statistical bounding analysis. A method is also proposed to calculate radiated power when incident power information is not fully known for non-periodic signals at the interface. Incident data signals are modeled from a two-state Markov chain where bit state probabilities are derived. The total spectrum for windowed signals is postulated as the superposition of spectra from individual pulses in a data sequence. Statistical bounding methods are proposed as a basis for the radiated power calculation due to the statistical calculation complexity to find a radiated power probability density function.

  1. Developing a laser shockwave model for characterizing diffusion bonded interfaces

    International Nuclear Information System (INIS)

    Lacy, Jeffrey M.; Smith, James A.; Rabin, Barry H.

    2015-01-01

    The US National Nuclear Security Agency has a Global Threat Reduction Initiative (GTRI) with the goal of reducing the worldwide use of high-enriched uranium (HEU). A salient component of that initiative is the conversion of research reactors from HEU to low enriched uranium (LEU) fuels. An innovative fuel is being developed to replace HEU in high-power research reactors. The new LEU fuel is a monolithic fuel made from a U-Mo alloy foil encapsulated in Al-6061 cladding. In order to support the fuel qualification process, the Laser Shockwave Technique (LST) is being developed to characterize the clad-clad and fuel-clad interface strengths in fresh and irradiated fuel plates. LST is a non-contact method that uses lasers for the generation and detection of large amplitude acoustic waves to characterize interfaces in nuclear fuel plates. However, because the deposition of laser energy into the containment layer on a specimen's surface is intractably complex, the shock wave energy is inferred from the surface velocity measured on the backside of the fuel plate and the depth of the impression left on the surface by the high pressure plasma pulse created by the shock laser. To help quantify the stresses generated at the interfaces, a finite element method (FEM) model is being utilized. This paper will report on initial efforts to develop and validate the model by comparing numerical and experimental results for back surface velocities and front surface depressions in a single aluminum plate representative of the fuel cladding

  2. Developing a laser shockwave model for characterizing diffusion bonded interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Lacy, Jeffrey M., E-mail: Jeffrey.Lacy@inl.gov; Smith, James A., E-mail: Jeffrey.Lacy@inl.gov; Rabin, Barry H., E-mail: Jeffrey.Lacy@inl.gov [Idaho National Laboratory, Idaho Falls, ID (United States)

    2015-03-31

    The US National Nuclear Security Agency has a Global Threat Reduction Initiative (GTRI) with the goal of reducing the worldwide use of high-enriched uranium (HEU). A salient component of that initiative is the conversion of research reactors from HEU to low enriched uranium (LEU) fuels. An innovative fuel is being developed to replace HEU in high-power research reactors. The new LEU fuel is a monolithic fuel made from a U-Mo alloy foil encapsulated in Al-6061 cladding. In order to support the fuel qualification process, the Laser Shockwave Technique (LST) is being developed to characterize the clad-clad and fuel-clad interface strengths in fresh and irradiated fuel plates. LST is a non-contact method that uses lasers for the generation and detection of large amplitude acoustic waves to characterize interfaces in nuclear fuel plates. However, because the deposition of laser energy into the containment layer on a specimen's surface is intractably complex, the shock wave energy is inferred from the surface velocity measured on the backside of the fuel plate and the depth of the impression left on the surface by the high pressure plasma pulse created by the shock laser. To help quantify the stresses generated at the interfaces, a finite element method (FEM) model is being utilized. This paper will report on initial efforts to develop and validate the model by comparing numerical and experimental results for back surface velocities and front surface depressions in a single aluminum plate representative of the fuel cladding.

  3. Protein adsorption at the electrified air-water interface: implications on foam stability.

    Science.gov (United States)

    Engelhardt, Kathrin; Rumpel, Armin; Walter, Johannes; Dombrowski, Jannika; Kulozik, Ulrich; Braunschweig, Björn; Peukert, Wolfgang

    2012-05-22

    The surface chemistry of ions, water molecules, and proteins as well as their ability to form stable networks in foams can influence and control macroscopic properties such as taste and texture of dairy products considerably. Despite the significant relevance of protein adsorption at liquid interfaces, a molecular level understanding on the arrangement of proteins at interfaces and their interactions has been elusive. Therefore, we have addressed the adsorption of the model protein bovine serum albumin (BSA) at the air-water interface with vibrational sum-frequency generation (SFG) and ellipsometry. SFG provides specific information on the composition and average orientation of molecules at interfaces, while complementary information on the thickness of the adsorbed layer can be obtained with ellipsometry. Adsorption of charged BSA proteins at the water surface leads to an electrified interface, pH dependent charging, and electric field-induced polar ordering of interfacial H(2)O and BSA. Varying the bulk pH of protein solutions changes the intensities of the protein related vibrational bands substantially, while dramatic changes in vibrational bands of interfacial H(2)O are simultaneously observed. These observations have allowed us to determine the isoelectric point of BSA directly at the electrolyte-air interface for the first time. BSA covered air-water interfaces with a pH near the isoelectric point form an amorphous network of possibly agglomerated BSA proteins. Finally, we provide a direct correlation of the molecular structure of BSA interfaces with foam stability and new information on the link between microscopic properties of BSA at water surfaces and macroscopic properties such as the stability of protein foams.

  4. Model-driven user interfaces for bioinformatics data resources: regenerating the wheel as an alternative to reinventing it

    Directory of Open Access Journals (Sweden)

    Swainston Neil

    2006-12-01

    Full Text Available Abstract Background The proliferation of data repositories in bioinformatics has resulted in the development of numerous interfaces that allow scientists to browse, search and analyse the data that they contain. Interfaces typically support repository access by means of web pages, but other means are also used, such as desktop applications and command line tools. Interfaces often duplicate functionality amongst each other, and this implies that associated development activities are repeated in different laboratories. Interfaces developed by public laboratories are often created with limited developer resources. In such environments, reducing the time spent on creating user interfaces allows for a better deployment of resources for specialised tasks, such as data integration or analysis. Laboratories maintaining data resources are challenged to reconcile requirements for software that is reliable, functional and flexible with limitations on software development resources. Results This paper proposes a model-driven approach for the partial generation of user interfaces for searching and browsing bioinformatics data repositories. Inspired by the Model Driven Architecture (MDA of the Object Management Group (OMG, we have developed a system that generates interfaces designed for use with bioinformatics resources. This approach helps laboratory domain experts decrease the amount of time they have to spend dealing with the repetitive aspects of user interface development. As a result, the amount of time they can spend on gathering requirements and helping develop specialised features increases. The resulting system is known as Pierre, and has been validated through its application to use cases in the life sciences, including the PEDRoDB proteomics database and the e-Fungi data warehouse. Conclusion MDAs focus on generating software from models that describe aspects of service capabilities, and can be applied to support rapid development of repository

  5. Thermodynamic and mechanical properties of curved interfaces : a discussion of models

    NARCIS (Netherlands)

    Oversteegen, M.

    2000-01-01

    Although relatively much is known about the physics of curved interfaces, several models for these kind of systems seem conflicting or internally inconsistent. It is the aim of this thesis to derive a rigorous framework of thermodynamic and mechanical expressions and study their relation to

  6. User interface support

    Science.gov (United States)

    Lewis, Clayton; Wilde, Nick

    1989-01-01

    Space construction will require heavy investment in the development of a wide variety of user interfaces for the computer-based tools that will be involved at every stage of construction operations. Using today's technology, user interface development is very expensive for two reasons: (1) specialized and scarce programming skills are required to implement the necessary graphical representations and complex control regimes for high-quality interfaces; (2) iteration on prototypes is required to meet user and task requirements, since these are difficult to anticipate with current (and foreseeable) design knowledge. We are attacking this problem by building a user interface development tool based on extensions to the spreadsheet model of computation. The tool provides high-level support for graphical user interfaces and permits dynamic modification of interfaces, without requiring conventional programming concepts and skills.

  7. Dynamic Model of Contact Interface between Stator and Rotor

    Directory of Open Access Journals (Sweden)

    ZengHui Zhao

    2013-01-01

    Full Text Available Based on the equivalent principle, a linear spring contact model was established for the friction layer between stator and rotor. Different contact conditions were described by a distance index δ. Detailed analysis of the nonlinear contact behavior especially the static and dynamic slipping was carried on using a space-time equation. A contact deflection angle was proposed to quantitatively express the influence of friction force on the output performance. A more precision simulation model was established based on the theoretical analysis, and influences of different preload pressures and elastic modulus Em of friction layer on output performance were analyzed. The results showed the simulation results had very good consistency with experimental results, and the model could well reflect the output characteristics of contact interface.

  8. Configuring a Graphical User Interface for Managing Local HYSPLIT Model Runs Through AWIPS

    Science.gov (United States)

    Wheeler, mark M.; Blottman, Peter F.; Sharp, David W.; Hoeth, Brian; VanSpeybroeck, Kurt M.

    2009-01-01

    Responding to incidents involving the release of harmful airborne pollutants is a continual challenge for Weather Forecast Offices in the National Weather Service. When such incidents occur, current protocol recommends forecaster-initiated requests of NOAA's Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model output through the National Centers of Environmental Prediction to obtain critical dispersion guidance. Individual requests are submitted manually through a secured web site, with desired multiple requests submitted in sequence, for the purpose of obtaining useful trajectory and concentration forecasts associated with the significant release of harmful chemical gases, radiation, wildfire smoke, etc., into local the atmosphere. To help manage the local HYSPLIT for both routine and emergency use, a graphical user interface was designed for operational efficiency. The interface allows forecasters to quickly determine the current HYSPLIT configuration for the list of predefined sites (e.g., fixed sites and floating sites), and to make any necessary adjustments to key parameters such as Input Model. Number of Forecast Hours, etc. When using the interface, forecasters will obtain desired output more confidently and without the danger of corrupting essential configuration files.

  9. Interface, information, interaction: a narrative review of design and functional requirements for clinical decision support.

    Science.gov (United States)

    Miller, Kristen; Mosby, Danielle; Capan, Muge; Kowalski, Rebecca; Ratwani, Raj; Noaiseh, Yaman; Kraft, Rachel; Schwartz, Sanford; Weintraub, William S; Arnold, Ryan

    2018-05-01

    Provider acceptance and associated patient outcomes are widely discussed in the evaluation of clinical decision support systems (CDSSs), but critical design criteria for tools have generally been overlooked. The objective of this work is to inform electronic health record alert optimization and clinical practice workflow by identifying, compiling, and reporting design recommendations for CDSS to support the efficient, effective, and timely delivery of high-quality care. A narrative review was conducted from 2000 to 2016 in PubMed and The Journal of Human Factors and Ergonomics Society to identify papers that discussed/recommended design features of CDSSs that are associated with the success of these systems. Fourteen papers were included as meeting the criteria and were found to have a total of 42 unique recommendations; 11 were classified as interface features, 10 as information features, and 21 as interaction features. Features are defined and described, providing actionable guidance that can be applied to CDSS development and policy. To our knowledge, no reviews have been completed that discuss/recommend design features of CDSS at this scale, and thus we found that this was important for the body of literature. The recommendations identified in this narrative review will help to optimize design, organization, management, presentation, and utilization of information through presentation, content, and function. The designation of 3 categories (interface, information, and interaction) should be further evaluated to determine the critical importance of the categories. Future work will determine how to prioritize them with limited resources for designers and developers in order to maximize the clinical utility of CDSS. This review will expand the field of knowledge and provide a novel organization structure to identify key recommendations for CDSS.

  10. Numerical modeling of capillary electrophoresis – electrospray mass spectrometry interface design

    Czech Academy of Sciences Publication Activity Database

    Járvás, G.; Guttman, A.; Foret, František

    2015-01-01

    Roč. 34, 5 (2015), s. 558-569 ISSN 0277-7037 R&D Projects: GA ČR(CZ) GBP206/12/G014 Institutional support: RVO:68081715 Keywords : CE-ESI-MS * modeling * simulation * CFD * interface design Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 9.346, year: 2015

  11. Percolation Model of Adhesion at Polymer Interfaces

    Science.gov (United States)

    Wool, Richard P.

    1998-03-01

    Adhesion at polymer interfaces is treated as a percolation problem, where an areal density of chains Σ, of length L, contribute a number of entanglements to the interface of thickness X. The fracture energy G, is determined by the fraction of entanglements P, fractured or disentangled in the deformation zone preceding the crack tip, via G ~ P-P_c, where Pc is the percolation threshold, given by Pc = 1- M_e/Mc . For incompatible A/B interfaces reinforced with Σ diblocks or random A-B copolymers of effective length L'(L' ~ 0 for brushes and strongly adsorbed chains), we obtain P ~ ΣL/X, Pc ~ Σ _cL/X, such that G = K(Σ - Σ _c)+ G_o, where K and Go ~ 1 J/m^2 are constants. Note that Log G vs Log Σ will have an apparent slope of about 2, incorrectly suggesting that G ~ Σ ^2. For cohesive fracture, disentanglement dominates at M M*, G = G*[1-M_c/M]. For fatigue crack propagation da/dN, at welding interfaces, we obtain da/dN ~ M-5/2(t/Tr)-5/4, where t is the welding time and Tr is the reptation time. For polymer-solid interfaces, G ~ (X/R)^2. where X is the conformational width of the first layer of chains of random coil size R. The fractal nature of the percolation process is relevant to the fracture mechanism and fractography.

  12. Bigger data for big data: from Twitter to brain-computer interfaces.

    Science.gov (United States)

    Roesch, Etienne B; Stahl, Frederic; Gaber, Mohamed Medhat

    2014-02-01

    We are sympathetic with Bentley et al.'s attempt to encompass the wisdom of crowds in a generative model, but posit that a successful attempt at using big data will include more sensitive measurements, more varied sources of information, and will also build from the indirect information available through technology, from ancillary technical features to data from brain-computer interfaces.

  13. Transport processes at fluidic interfaces

    CERN Document Server

    Reusken, Arnold

    2017-01-01

    There are several physico-chemical processes that determine the behavior of multiphase fluid systems – e.g., the fluid dynamics in the different phases and the dynamics of the interface(s), mass transport between the fluids, adsorption effects at the interface, and transport of surfactants on the interface – and result in heterogeneous interface properties. In general, these processes are strongly coupled and local properties of the interface play a crucial role. A thorough understanding of the behavior of such complex flow problems must be based on physically sound mathematical models, which especially account for the local processes at the interface. This book presents recent findings on the rigorous derivation and mathematical analysis of such models and on the development of numerical methods for direct numerical simulations. Validation results are based on specifically designed experiments using high-resolution experimental techniques. A special feature of this book is its focus on an interdisciplina...

  14. Measurement and modeling of interface heat transfer coefficients

    International Nuclear Information System (INIS)

    Rollett, A.D.; Lewis, H.D.; Dunn, P.S.

    1985-01-01

    The results of preliminary work on the modeling and measurement of the heat transfer coefficients of metal/mold interfaces is reported. The system investigated is the casting of uranium in graphite molds. The motivation for the work is primarily to improve the accuracy of process modeling of prototype mold designs at the Los Alamos Foundry. The evolution in design of a suitable mold for unidirectional solidification is described, illustrating the value of simulating mold designs prior to use. Experiment indicated a heat transfer coefficient of 2 kW/m 2 /K both with and without superheat. It was possible to distinguish between solidification due to the mold and that due to radiative heat loss. This permitted an experimental estimate of the emissivity, epsilon = 0.2, of the solidified metal

  15. Model for the interaction between interface migration and carbon diffusion during annealing of martensite-austenite microstructures in steels

    International Nuclear Information System (INIS)

    Santofimia, M.J.; Zhao, L.; Sietsma, J.

    2008-01-01

    The interaction between carbon partitioning from martensite to austenite and interface migration during annealing of martensite-austenite microstructures is modeled, assuming the same chemical potential of carbon in martensite and austenite at the interface and allowing the motion of the phase interface when a free-energy difference occurs. The simulations show that the motion of the martensite-austenite interface can be significant and can takes place in either direction

  16. Testing of Environmental Satellite Bus-Instrument Interfaces Using Engineering Models

    Science.gov (United States)

    Gagnier, Donald; Hayner, Rick; Nosek, Thomas; Roza, Michael; Hendershot, James E.; Razzaghi, Andrea I.

    2004-01-01

    This paper discusses the formulation and execution of a laboratory test of the electrical interfaces between multiple atmospheric scientific instruments and the spacecraft bus that carries them. The testing, performed in 2002, used engineering models of the instruments and the Aura spacecraft bus electronics. Aura is one of NASA s Earth Observatory System missions. The test was designed to evaluate the complex interfaces in the command and data handling subsystems prior to integration of the complete flight instruments on the spacecraft. A problem discovered during the flight integration phase of the observatory can cause significant cost and schedule impacts. The tests successfully revealed problems and led to their resolution before the full-up integration phase, saving significant cost and schedule. This approach could be beneficial for future environmental satellite programs involving the integration of multiple, complex scientific instruments onto a spacecraft bus.

  17. The development of a natural language interface to a geographical information system

    Science.gov (United States)

    Toledo, Sue Walker; Davis, Bruce

    1993-01-01

    This paper will discuss a two and a half year long project undertaken to develop an English-language interface for the geographical information system GRASS. The work was carried out for NASA by a small business, Netrologic, based in San Diego, California, under Phase 1 and 2 Small Business Innovative Research contracts. We consider here the potential value of this system whose current functionality addresses numerical, categorical and boolean raster layers and includes the display of point sets defined by constraints on one or more layers, answers yes/no and numerical questions, and creates statistical reports. It also handles complex queries and lexical ambiguities, and allows temporarily switching to UNIX or GRASS.

  18. Simplified microstrip discontinuity modeling using the transmission line matrix method interfaced to microwave CAD

    Science.gov (United States)

    Thompson, James H.; Apel, Thomas R.

    1990-07-01

    A technique for modeling microstrip discontinuities is presented which is derived from the transmission line matrix method of solving three-dimensional electromagnetic problems. In this technique the microstrip patch under investigation is divided into an integer number of square and half-square (triangle) subsections. An equivalent lumped-element model is calculated for each subsection. These individual models are then interconnected as dictated by the geometry of the patch. The matrix of lumped elements is then solved using either of two microwave CAD software interfaces with each port properly defined. Closed-form expressions for the lumped-element representation of the individual subsections is presented and experimentally verified through the X-band frequency range. A model demonstrating the use of symmetry and block construction of a circuit element is discussed, along with computer program development and CAD software interface.

  19. Diffuse-Interface Methods in Fluid Mechanics

    Science.gov (United States)

    Anderson, D. M.; McFadden, G. B.; Wheeler, A. A.

    1997-01-01

    The authors review the development of diffuse-interface models of hydrodynamics and their application to a wide variety of interfacial phenomena. The authors discuss the issues involved in formulating diffuse-interface models for single-component and binary fluids. Recent applications and computations using these models are discussed in each case. Further, the authors address issues including sharp-interface analyses that relate these models to the classical free-boundary problem, related computational approaches to describe interfacial phenomena, and related approaches describing fully-miscible fluids.

  20. BELIEF dashboard - a web-based curation interface to support generation of BEL networks

    OpenAIRE

    Madan, Sumit; Hodapp, Sven; Fluck, Juliane

    2015-01-01

    The relevance of network-based approaches in systems biology to achieve a better understanding of biological mechanisms has increased enormously. The Biological Expression Language (BEL) is well designed to collate findings from scientific literature into biological network models. To facilitate encoding and biocuration of such findings in BEL, a free and user-friendly web-based curation interface called BELIEF Dashboard has been developed. The interface incorporates an information extraction...

  1. Modelling of the Contact Condition at the Tool/Matrix Interface in Friction Stir Welding

    DEFF Research Database (Denmark)

    Schmidt, Henrik Nikolaj Blich; Hattel, Jesper; Wert, John

    2003-01-01

    a known contact condition at the contact interface, e.g. either as pure sliding or sticking. The present model uses Coulomb’s law of friction for the sliding condition and the material yield shear stress for the sticking condition to model the contact forces. The model includes heat generation...

  2. Bed occupancy monitoring: data processing and clinician user interface design.

    Science.gov (United States)

    Pouliot, Melanie; Joshi, Vilas; Goubran, Rafik; Knoefel, Frank

    2012-01-01

    Unobtrusive and continuous monitoring of patients, especially at their place of residence, is becoming a significant part of the healthcare model. A variety of sensors are being used to monitor different patient conditions. Bed occupancy monitoring provides clinicians a quantitative measure of bed entry/exit patterns and may provide information relating to sleep quality. This paper presents a bed occupancy monitoring system using a bed pressure mat sensor. A clinical trial was performed involving 8 patients to collect bed occupancy data. The trial period for each patient ranged from 5-10 weeks. This data was analyzed using a participatory design methodology incorporating clinician feedback to obtain bed occupancy parameters. The parameters extracted include the number of bed exits per night, the bed exit weekly average (including minimum and maximum), the time of day of a particular exit, and the amount of uninterrupted bed occupancy per night. The design of a clinical user interface plays a significant role in the acceptance of such patient monitoring systems by clinicians. The clinician user interface proposed in this paper was designed to be intuitive, easy to navigate and not cause information overload. An iterative design methodology was used for the interface design. The interface design is extendible to incorporate data from multiple sensors. This allows the interface to be part of a comprehensive remote patient monitoring system.

  3. Designing Gestural Interfaces Touchscreens and Interactive Devices

    CERN Document Server

    Saffer, Dan

    2008-01-01

    If you want to get started in new era of interaction design, this is the reference you need. Packed with informative illustrations and photos, Designing Gestural Interfaces provides you with essential information about kinesiology, sensors, ergonomics, physical computing, touchscreen technology, and new interface patterns -- information you need to augment your existing skills in traditional" websites, software, or product development. This book will help you enter this new world of possibilities."

  4. Self-Observation Model Employing an Instinctive Interface for Classroom Active Learning

    Science.gov (United States)

    Chen, Gwo-Dong; Nurkhamid; Wang, Chin-Yeh; Yang, Shu-Han; Chao, Po-Yao

    2014-01-01

    In a classroom, obtaining active, whole-focused, and engaging learning results from a design is often difficult. In this study, we propose a self-observation model that employs an instinctive interface for classroom active learning. Students can communicate with virtual avatars in the vertical screen and can react naturally according to the…

  5. Quantitative sputter profiling at surfaces and interfaces

    International Nuclear Information System (INIS)

    Kirschner, J.; Etzkorn, H.W.

    1981-01-01

    The key problem in quantitative sputter profiling, that of a sliding depth scale has been solved by combined Auger/X-ray microanalysis. By means of this technique and for the model system Ge/Si (amorphous) the following questions are treated quantitatively: shape of the sputter profiles when sputtering through an interface and origin of their asymmetry; precise location of the interface plane on the depth profile; broadening effects due to limited depth of information and their correction; origin and amount of bombardment induced broadening for different primary ions and energies; depth dependence of the broadening, and basic limits to depth resolution. Comparisons are made to recent theoretical calculations based on recoil mixing in the collision cascade and very good agreement is found

  6. General atomistic approach for modeling metal-semiconductor interfaces using density functional theory and nonequilibrium Green's function

    DEFF Research Database (Denmark)

    Stradi, Daniele; Martinez, Umberto; Blom, Anders

    2016-01-01

    Metal-semiconductor contacts are a pillar of modern semiconductor technology. Historically, their microscopic understanding has been hampered by the inability of traditional analytical and numerical methods to fully capture the complex physics governing their operating principles. Here we introduce...... an atomistic approach based on density functional theory and nonequilibrium Green's function, which includes all the relevant ingredients required to model realistic metal-semiconductor interfaces and allows for a direct comparison between theory and experiments via I-Vbias curve simulations. We apply...... interfaces as it neglects electron tunneling, and that finite-size atomistic models have problems in describing these interfaces in the presence of doping due to a poor representation of space-charge effects. Conversely, the present method deals effectively with both issues, thus representing a valid...

  7. The changing utility workforce and the emergence of building information modeling in utilities

    Energy Technology Data Exchange (ETDEWEB)

    Saunders, A. [Autodesk Inc., San Rafael, CA (United States)

    2010-07-01

    Utilities are faced with the extensive replacement of a workforce that is now reaching retirement age. New personnel will have varying skill levels and different expectations in relation to design tools. This paper discussed methods of facilitating knowledge transfer from the retiring workforce to new staff using rules-based design software. It was argued that while nothing can replace the experiential knowledge of long-term engineers, software with built-in validations can accelerate training and building information modelling (BIM) processes. Younger personnel will expect a user interface paradigm that is based on their past gaming and work experiences. Visualization, simulation, and modelling approaches were reviewed. 3 refs.

  8. Micromechanical modeling of the cement-bone interface: the effect of friction, morphology and material properties on the micromechanical response

    OpenAIRE

    Janssen, Dennis; Mann, Kenneth A.; Verdonschot, Nico

    2008-01-01

    In order to gain insight into the micro-mechanical behavior of the cement-bone interface, the effect of parametric variations of frictional, morphological and material properties on the mechanical response of the cement-bone interface were analyzed using a finite element approach. Finite element models of a cement-bone interface specimen were created from micro-computed tomography data of a physical specimen that was sectioned from an in vitro cemented total hip arthroplasty. In five models t...

  9. Graphic Interface for LCP2 Optimization Program

    DEFF Research Database (Denmark)

    Nicolae, Taropa Laurentiu; Gaunholt, Hans

    1998-01-01

    This report provides information about the software interface that is programmed for the Optimization Program LCP2. The first part is about the general description of the program followed by a guide for using the interface. The last chapters contain a discussion about problems or futute extension...... of the project. The program is written in Visual C++5.0 on a Windows NT4.0 operating system.......This report provides information about the software interface that is programmed for the Optimization Program LCP2. The first part is about the general description of the program followed by a guide for using the interface. The last chapters contain a discussion about problems or futute extensions...

  10. Finite element modeling of the neuron-electrode interface: stimulus transfer and geometry

    NARCIS (Netherlands)

    Buitenweg, Jan R.; Rutten, Wim; Marani, Enrico

    1999-01-01

    The relation between stimulus transfer and the geometry of the neuron-electrode interface can not be determined properly using electrical equivalent circuits, since current that flows from the sealing gap through the neuronal membrane is difficult to model in these circuits. Therefore, finite

  11. Interface magnons. Magnetic superstructure

    International Nuclear Information System (INIS)

    Djafari-Rouhani, B.; Dobrzynski, L.

    1975-01-01

    The localized magnons at an interface between two Heisenberg ferromagnets are studied with a simple model. The effect of the coupling at the interface on the existence condition for the localized modes, the dispersion laws and the possible occurrence of magnetic superstructures due to soft modes are investigated. Finally a comparison is made with the similar results obtained for interface phonons [fr

  12. SWMM5 Application Programming Interface and PySWMM: A Python Interfacing Wrapper

    Science.gov (United States)

    In support of the OpenWaterAnalytics open source initiative, the PySWMM project encompasses the development of a Python interfacing wrapper to SWMM5 with parallel ongoing development of the USEPA Stormwater Management Model (SWMM5) application programming interface (API). ...

  13. BIM. Building Information Model. Special issue; BIM. Building Information Model. Themanummer

    Energy Technology Data Exchange (ETDEWEB)

    Van Gelder, A.L.A. [Arta and Consultancy, Lage Zwaluwe (Netherlands); Van den Eijnden, P.A.A. [Stichting Marktwerking Installatietechniek, Zoetermeer (Netherlands); Veerman, J.; Mackaij, J.; Borst, E. [Royal Haskoning DHV, Nijmegen (Netherlands); Kruijsse, P.M.D. [Wolter en Dros, Amersfoort (Netherlands); Buma, W. [Merlijn Media, Waddinxveen (Netherlands); Bomhof, F.; Willems, P.H.; Boehms, M. [TNO, Delft (Netherlands); Hofman, M.; Verkerk, M. [ISSO, Rotterdam (Netherlands); Bodeving, M. [VIAC Installatie Adviseurs, Houten (Netherlands); Van Ravenswaaij, J.; Van Hoven, H. [BAM Techniek, Bunnik (Netherlands); Boeije, I.; Schalk, E. [Stabiplan, Bodegraven (Netherlands)

    2012-11-15

    A series of 14 articles illustrates the various aspects of the Building Information Model (BIM). The essence of BIM is to capture information about the building process and the building product. [Dutch] In 14 artikelen worden diverse aspecten m.b.t. het Building Information Model (BIM) belicht. De essentie van BIM is het vastleggen van informatie over het bouwproces en het bouwproduct.

  14. A lattice-gas model of the ion current across the solid interface: fast-ion conductor - intercalate

    International Nuclear Information System (INIS)

    Nachev, I.; Balkanski, M.

    1994-12-01

    The transport of Lithium ions across the material interface: fast-ion conducting glass - intercalate is simulated by a non-trivial lattice-gas model. The model takes explicitly into account the influence of the Coulomb correlations, the site-blocking effect and the boundary conditions on the ion kinetics. Potential device applications of the model are pointed out by computing the current density of Lithium ions for material parameters of the real interface: doped ternary borate glass - Indium Selenide, which constitute the electrolyte and the cathode, respectively, of a thin-film microbattery with improved performance. (author). 10 refs, 4 figs

  15. Efficient simulations of the aqueous bio-interface of graphitic nanostructures with a polarisable model

    Science.gov (United States)

    Hughes, Zak E.; Tomásio, Susana M.; Walsh, Tiffany R.

    2014-04-01

    To fully harness the enormous potential offered by interfaces between graphitic nanostructures and biomolecules, detailed connections between adsorbed conformations and adsorption behaviour are needed. To elucidate these links, a key approach, in partnership with experimental techniques, is molecular simulation. For this, a force-field (FF) that can appropriately capture the relevant physics and chemistry of these complex bio-interfaces, while allowing extensive conformational sampling, and also supporting inter-operability with known biological FFs, is a pivotal requirement. Here, we present and apply such a force-field, GRAPPA, designed to work with the CHARMM FF. GRAPPA is an efficiently implemented polarisable force-field, informed by extensive plane-wave DFT calculations using the revPBE-vdW-DF functional. GRAPPA adequately recovers the spatial and orientational structuring of the aqueous interface of graphene and carbon nanotubes, compared with more sophisticated approaches. We apply GRAPPA to determine the free energy of adsorption for a range of amino acids, identifying Trp, Tyr and Arg to have the strongest binding affinity and Asp to be a weak binder. The GRAPPA FF can be readily incorporated into mainstream simulation packages, and will enable large-scale polarisable biointerfacial simulations at graphitic interfaces, that will aid the development of biomolecule-mediated, solution-based graphene processing and self-assembly strategies.To fully harness the enormous potential offered by interfaces between graphitic nanostructures and biomolecules, detailed connections between adsorbed conformations and adsorption behaviour are needed. To elucidate these links, a key approach, in partnership with experimental techniques, is molecular simulation. For this, a force-field (FF) that can appropriately capture the relevant physics and chemistry of these complex bio-interfaces, while allowing extensive conformational sampling, and also supporting inter

  16. Accelerated lattice Boltzmann model for colloidal suspensions rheology and interface morphology

    Science.gov (United States)

    Farhat, Hassan

    Colloids are ubiquitous in the food, medical, cosmetic, polymer, water purification and pharmaceutical industries. Colloids thermal, mechanical and storage properties are highly dependent on their interface morphology and their rheological behavior. Numerical methods provide a cheap and reliable virtual laboratory for the study of colloids. However efficiency is a major concern to address when using numerical methods for practical applications. This work introduces the main building-blocks for an improved lattice Boltzmann-based numerical tool designed for the study of colloidal rheology and interface morphology. The efficiency of the proposed model is enhanced by using the recently developed and validated migrating multi-block algorithms for the lattice Boltzmann method (LBM). The migrating multi-block was used to simulate single component, multi-component, multiphase and single component multiphase flows. Results were validated by experimental, numerical and analytical solutions. The contamination of the fluid-fluid interface influences the colloids morphology. This issue was addressed by the introduction of the hybrid LBM for surfactant-covered droplets. The module was used for the simulation of surfactant-covered droplet deformation under shear and uniaxial extensional flows respectively and under buoyancy. Validation with experimental and theoretical results was provided. Colloids are non-Newtonian fluids which exhibit rich rheological behavior. The suppression of coalescence module is the part of the proposed model which facilitates the study of colloids rheology. The model results for the relative viscosity were in agreement with some theoretical results. Biological suspensions such as blood are macro-colloids by nature. The study of the blood flow in the microvasculature was heuristically approached by assuming the red blood cells as surfactant covered droplets. The effects of interfacial tension on the flow velocity and the droplet exclusion from the walls

  17. OMWS: A Web Service Interface for Ecological Niche Modelling

    Directory of Open Access Journals (Sweden)

    Renato De Giovanni

    2015-09-01

    Full Text Available Ecological niche modelling (ENM experiments often involve a high number of tasks to be performed. Such tasks may consume a significant amount of computing resources and take a long time to complete, especially when using personal computers. OMWS is a Web service interface that allows more powerful computing back-ends to be remotely exploited by other applications to carry out ENM tasks. Its latest version includes a new operation that can be used to specify complex workflows in a single request, adding the possibility of using workflow management systems on parallel computing back-end. In this paper we describe the OMWS protocol and compare its most recent version with the previous one by running the same ENM experiment using two functionally equivalent clients, each designed for one of the OMWS interface versions. Different back-end configurations were used to investigate how the performance scales for each protocol version when more processing power is made available. Results show that the new version outperforms (in a factor of 2 the previous one when more computing resources are used.

  18. Natural User Interfaces

    OpenAIRE

    Câmara , António

    2011-01-01

    Dissertação de Mestrado em Engenharia Informática apresentada à Faculdade de Ciências e Tecnologia da Universidade de Coimbra This project’s main subject are Natural User Interfaces. These interfaces’ main purpose is to allow the user to interact with computer systems in a more direct and natural way. The popularization of touch and gesture devices in the last few years has allowed for them to become increasingly common and today we are experiencing a transition of interface p...

  19. 3-D FEM Modeling of fiber/matrix interface debonding in UD composites including surface effects

    International Nuclear Information System (INIS)

    Pupurs, A; Varna, J

    2012-01-01

    Fiber/matrix interface debond growth is one of the main mechanisms of damage evolution in unidirectional (UD) polymer composites. Because for polymer composites the fiber strain to failure is smaller than for the matrix multiple fiber breaks occur at random positions when high mechanical stress is applied to the composite. The energy released due to each fiber break is usually larger than necessary for the creation of a fiber break therefore a partial debonding of fiber/matrix interface is typically observed. Thus the stiffness reduction of UD composite is contributed both from the fiber breaks and from the interface debonds. The aim of this paper is to analyze the debond growth in carbon fiber/epoxy and glass fiber/epoxy UD composites using fracture mechanics principles by calculation of energy release rate G II . A 3-D FEM model is developed for calculation of energy release rate for fiber/matrix interface debonds at different locations in the composite including the composite surface region where the stress state differs from the one in the bulk composite. In the model individual partially debonded fiber is surrounded by matrix region and embedded in a homogenized composite.

  20. Interface recombination influence on carrier transport

    International Nuclear Information System (INIS)

    Konin, A

    2013-01-01

    A theory of interface recombination in the semiconductor–semiconductor junction is developed. The interface recombination rate dependence on the nonequilibrium carrier densities is derived on the basis of a model in which the interface recombination occurs through the mechanism of trapping. The general relation between the interface recombination parameters at small carrier density deviation from the equilibrium ones is obtained. The validity of this relation is proved considering the generation of the Hall electric field in the extrinsic semiconductor sample. The anomalous Hall electromotive force in a weak magnetic field was investigated and interpreted by means of a new interface recombination model. The experimental data corroborate the developed theory. (paper)

  1. Interface model conditions for a non-equilibrium heat transfer model for conjugate fluid/porous/solid domains

    International Nuclear Information System (INIS)

    Betchen, L.J.; Straatman, A.G.

    2005-01-01

    A mathematical and numerical model for the treatment of conjugate fluid flow and heat transfer problems in domains containing pure fluid, porous, and pure solid regions has been developed. The model is general and physically reasoned, and allows for local thermal non-equilibrium in the porous region. The model is developed for implementation on a simple collocated finite volume grid. Of particular novelty are the conditions implemented at the interfaces between porous regions, and those containing a pure solid or pure fluid. The model is validated by simulation of a three-dimensional porous plug problem for which experimental results are available. (author)

  2. Diffusion between evolving interfaces

    International Nuclear Information System (INIS)

    Juntunen, Janne; Merikoski, Juha

    2010-01-01

    Diffusion in an evolving environment is studied by continuous-time Monte Carlo simulations. Diffusion is modeled by continuous-time random walkers on a lattice, in a dynamic environment provided by bubbles between two one-dimensional interfaces driven symmetrically towards each other. For one-dimensional random walkers constrained by the interfaces, the bubble size distribution dominates diffusion. For two-dimensional random walkers, it is also controlled by the topography and dynamics of the interfaces. The results of the one-dimensional case are recovered in the limit where the interfaces are strongly driven. Even with simple hard-core repulsion between the interfaces and the particles, diffusion is found to depend strongly on the details of the dynamical rules of particles close to the interfaces.

  3. Combinatorial Nano-Bio Interfaces.

    Science.gov (United States)

    Cai, Pingqiang; Zhang, Xiaoqian; Wang, Ming; Wu, Yun-Long; Chen, Xiaodong

    2018-06-08

    Nano-bio interfaces are emerging from the convergence of engineered nanomaterials and biological entities. Despite rapid growth, clinical translation of biomedical nanomaterials is heavily compromised by the lack of comprehensive understanding of biophysicochemical interactions at nano-bio interfaces. In the past decade, a few investigations have adopted a combinatorial approach toward decoding nano-bio interfaces. Combinatorial nano-bio interfaces comprise the design of nanocombinatorial libraries and high-throughput bioevaluation. In this Perspective, we address challenges in combinatorial nano-bio interfaces and call for multiparametric nanocombinatorics (composition, morphology, mechanics, surface chemistry), multiscale bioevaluation (biomolecules, organelles, cells, tissues/organs), and the recruitment of computational modeling and artificial intelligence. Leveraging combinatorial nano-bio interfaces will shed light on precision nanomedicine and its potential applications.

  4. Formal Modeling and Reconfiguration of User Interfaces for Reduction of Errors in Failure Handling of Complex Systems

    NARCIS (Netherlands)

    Weyers, Benjamin; Burkolter, Dina; Luther, Wolfram; Kluge, Annette

    2012-01-01

    Controlling and observing complex systems is central to the study of human-machine interaction. In our understanding, there is much to be gained from integrating formal modeling and analysis, including the reconfiguration of user interfaces, with the development of user interfaces with high

  5. A virtual reality interface for pre-planning of surgical operations based on a customized model of the patient

    Science.gov (United States)

    Witkowski, Marcin; Lenar, Janusz; Sitnik, Robert; Verdonschot, Nico

    2012-03-01

    We present a human-computer interface that enables the operator to plan a surgical procedure on the musculoskeletal (MS) model of the patient's lower limbs, send the modified model to the bio-mechanical analysis module, and export the scenario parameters to the surgical navigation system. The interface provides the operator with tools for: importing customized MS model of the patient, cutting bones and manipulating/removal of bony fragments, repositioning muscle insertion points, muscle removal and placing implants. After planning the operator exports the modified MS model for bio-mechanical analysis of the functional outcome. If the simulation result is satisfactory the exported scenario data may be directly used during the actual surgery. The advantages of the developed interface are the possibility of installing it in various hardware configurations and coherent operation regardless of the devices used. The hardware configurations proposed to be used with the interface are: (a) a standard computer keyboard and mouse, and a 2-D display, (b) a touch screen as a single device for both input and output, or (c) a 3-D display and a haptic device for natural manipulation of 3-D objects. The interface may be utilized in two main fields. Experienced surgeons may use it to simulate their intervention plans and prepare input data for a surgical navigation system while student or novice surgeons can use it for simulating results of their hypothetical procedure. The interface has been developed in the TLEMsafe project (www.tlemsafe.eu) funded by the European Commission FP7 program.

  6. Numerical and theoretical aspects of the modelling of compressible two-phase flow by interface capture methods

    International Nuclear Information System (INIS)

    Kokh, S.

    2001-01-01

    This research thesis reports the development of a numerical direct simulation of compressible two-phase flows by using interface capturing methods. These techniques are based on the use of an Eulerian fixed grid to describe flow variables as well as the interface between fluids. The author first recalls conventional interface capturing methods and makes the distinction between those based on discontinuous colour functions and those based on level set functions. The approach is then extended to a five equation model to allow the largest as possible choice of state equations for the fluids. Three variants are developed. A solver inspired by the Roe scheme is developed for one of them. These interface capturing methods are then refined, more particularly for problems of numerical diffusion at the interface. A last part addresses the study of dynamic phase change. Non-conventional thermodynamics tools are used to study the structures of an interface which performs phase transition [fr

  7. A Monthly Water-Balance Model Driven By a Graphical User Interface

    Science.gov (United States)

    McCabe, Gregory J.; Markstrom, Steven L.

    2007-01-01

    This report describes a monthly water-balance model driven by a graphical user interface, referred to as the Thornthwaite monthly water-balance program. Computations of monthly water-balance components of the hydrologic cycle are made for a specified location. The program can be used as a research tool, an assessment tool, and a tool for classroom instruction.

  8. MER SPICE Interface

    Science.gov (United States)

    Sayfi, Elias

    2004-01-01

    MER SPICE Interface is a software module for use in conjunction with the Mars Exploration Rover (MER) mission and the SPICE software system of the Navigation and Ancillary Information Facility (NAIF) at NASA's Jet Propulsion Laboratory. (SPICE is used to acquire, record, and disseminate engineering, navigational, and other ancillary data describing circumstances under which data were acquired by spaceborne scientific instruments.) Given a Spacecraft Clock value, MER SPICE Interface extracts MER-specific data from SPICE kernels (essentially, raw data files) and calculates values for Planet Day Number, Local Solar Longitude, Local Solar Elevation, Local Solar Azimuth, and Local Solar Time (UTC). MER SPICE Interface was adapted from a subroutine, denoted m98SpiceIF written by Payam Zamani, that was intended to calculate SPICE values for the Mars Polar Lander. The main difference between MER SPICE Interface and m98SpiceIf is that MER SPICE Interface does not explicitly call CHRONOS, a time-conversion program that is part of a library of utility subprograms within SPICE. Instead, MER SPICE Interface mimics some portions of the CHRONOS code, the advantage being that it executes much faster and can efficiently be called from a pipeline of events in a parallel processing environment.

  9. Design of an Interface for Page Rank Calculation using Web Link Attributes Information

    Directory of Open Access Journals (Sweden)

    Jeyalatha SIVARAMAKRISHNAN

    2010-01-01

    Full Text Available This paper deals with the Web Structure Mining and the different Structure Mining Algorithms like Page Rank, HITS, Trust Rank and Sel-HITS. The functioning of these algorithms are discussed. An incremental algorithm for calculation of PageRank using an interface has been formulated. This algorithm makes use of Web Link Attributes Information as key parameters and has been implemented using Visibility and Position of a Link. The application of Web Structure Mining Algorithm in an Academic Search Application has been discussed. The present work can be a useful input to Web Users, Faculty, Students and Web Administrators in a University Environment.

  10. Boundary and interface CFTs from the conformal bootstrap

    Energy Technology Data Exchange (ETDEWEB)

    Gliozzi, Ferdinando [Dipartimento di Fisica, Università di Torino,Via P. Giuria 1 I-10125 Torino (Italy); Istituto Nazionale di Fisica Nucleare - sezione di Torino,Via P. Giuria 1 I-10125 Torino (Italy); Liendo, Pedro [IMIP, Humboldt-Universität zu Berlin, IRIS Adelershof,Zum Großen Windkanal 6, 12489 Berlin (Germany); Meineri, Marco [Scuola Normale Superiore,Piazza dei Cavalieri 7 I-56126 Pisa (Italy); Istituto Nazionale di Fisica Nucleare - sezione di Pisa,Largo B. Pontecorvo, 3, 56127 Pisa (Italy); Rago, Antonio [Centre for Mathematical Sciences, Plymouth University,Drake Circus, Plymouth, PL4 8AA (United Kingdom)

    2015-05-07

    We explore some consequences of the crossing symmetry for defect conformal field theories, focusing on codimension one defects like flat boundaries or interfaces. We study surface transitions of the 3d Ising and other O(N) models through numerical solutions to the crossing equations with the method of determinants. In the extraordinary transition, where the low-lying spectrum of the surface operators is known, we use the bootstrap equations to obtain information on the bulk spectrum of the theory. In the ordinary transition the knowledge of the low-lying bulk spectrum allows to calculate the scale dimension of the relevant surface operator, which compares well with known results of two-loop calculations in 3d. Estimates of various OPE coefficients are also obtained. We also analyze in 4-ϵ dimensions the renormalization group interface between the O(N) model and the free theory and check numerically the results in 3d.

  11. Hydro-Mechanical Modelling of Slow Slip Phenomena at the Subduction Interface.

    Science.gov (United States)

    Petrini, C.; Gerya, T.; Madonna, C.; van Dinther, Y.

    2016-12-01

    Subduction zones experience a spectrum of slip phenomena, ranging from large devastating megathrust earthquakes to aseismic slow slip events. Slow slip events, lasting hours to years and being perceptible only by instruments, are believed to have the capability to induce large earthquakes. It is also repeatedly proposed that such slow events are controlled by fluid-rock interactions along the subduction interface, thus calling for development of fully coupled seismo-hydro-mechanical modeling approaches to identify their physics and controlling parameters. We present a newly developed finite difference visco-elasto-plastic numerical code with marker-in-cell technique, which fully couples mechanical deformation and fluid flow. We use this to investigate how the presence of fluids in the pore space of a (de)compacting rock matrix affects elastic stress accumulation and release along a fluid-bearing subduction interface. The model simulates the spontaneous occurrence of quasi-periodic slow slip phenomena along self-consistently forming highly localized shearbands, which accommodate shear displacement between two plates. The produced elastic rebound events show a slip velocity on the order of cm/yr, which is in good agreement with measured data. The governing gradual strength decrease along the slowly propagating shear bands is related to a drop in total pressure caused by shear localization at nearly constant (slightly decreasing) fluid pressure. Gradual reduction of the difference between the total and fluid pressure decreases brittle/plastic strength of fluid-bearing rocks along the shear bands, thus providing a dynamic feedback mechanism for the accumulated elastic stress release at the subduction interface.

  12. Bilinear modeling of EMG signals to extract user-independent features for multiuser myoelectric interface.

    Science.gov (United States)

    Matsubara, Takamitsu; Morimoto, Jun

    2013-08-01

    In this study, we propose a multiuser myoelectric interface that can easily adapt to novel users. When a user performs different motions (e.g., grasping and pinching), different electromyography (EMG) signals are measured. When different users perform the same motion (e.g., grasping), different EMG signals are also measured. Therefore, designing a myoelectric interface that can be used by multiple users to perform multiple motions is difficult. To cope with this problem, we propose for EMG signals a bilinear model that is composed of two linear factors: 1) user dependent and 2) motion dependent. By decomposing the EMG signals into these two factors, the extracted motion-dependent factors can be used as user-independent features. We can construct a motion classifier on the extracted feature space to develop the multiuser interface. For novel users, the proposed adaptation method estimates the user-dependent factor through only a few interactions. The bilinear EMG model with the estimated user-dependent factor can extract the user-independent features from the novel user data. We applied our proposed method to a recognition task of five hand gestures for robotic hand control using four-channel EMG signals measured from subject forearms. Our method resulted in 73% accuracy, which was statistically significantly different from the accuracy of standard nonmultiuser interfaces, as the result of a two-sample t -test at a significance level of 1%.

  13. Factors Affecting the Longevity and Strength in an In Vitro Model of the Bone–Ligament Interface

    Science.gov (United States)

    Paxton, Jennifer Z.; Donnelly, Kenneth; Keatch, Robert P.; Grover, Liam M.

    2010-01-01

    The interfaces between musculoskeletal tissues with contrasting moduli are morphologically and biochemically adapted to allow the transmission of force with minimal injury. Current methods of tissue engineering ligaments and tendons do not include the interface and this may limit the future clinical success of engineered musculoskeletal tissues. This study aimed to use solid brushite cement anchors to engineer intact ligaments from bone-to-bone, creating a functional musculoskeletal interface in vitro. We show here that modifying anchor shape and cement composition can alter both the longevity and the strength of an in vitro model of the bone–ligament interface: with values reaching 23 days and 21.6 kPa, respectively. These results validate the use of brushite bone cement to engineer the bone–ligament interface in vitro and raise the potential for future use in ligament replacement surgery. PMID:20431953

  14. Data Discretization for Novel Relationship Discovery in Information Retrieval.

    Science.gov (United States)

    Benoit, G.

    2002-01-01

    Describes an information retrieval, visualization, and manipulation model which offers the user multiple ways to exploit the retrieval set, based on weighted query terms, via an interactive interface. Outlines the mathematical model and describes an information retrieval application built on the model to search structured and full-text files.…

  15. RIS modality interfaces. From proprietary solutions to DICOM worklist management

    International Nuclear Information System (INIS)

    Jaeger, D.; Kotter, E.; Langer, M.

    1999-01-01

    Radiologic information systems (RIS) and picture archiving and communication systems (PACS) are becoming increasingly widespread. This leads to new demands on the integration of the individual, formerly independent information systems (RIS, modalities, PACS). Possible ways of integrating individual systems are introduced. Besides the detailed description of different realizations of system communication, its role in the PACS at the university hospital in Freiburg is explained. The integration of different information systems still requires the use of proprietary interfaces. An appropriate integration generally has been realized in Freiburg. In the near future DICOM basic worklist management will standardize system integration and render an interdepartmental workflow concept possible. Even though an available communication standard exists, not all problems in the RIS-modality interface are solved. Different data models in the various RI systems and modalities demand certain degrees of freedom in the standard. Thus a satisfactory workflow cannot be guaranteed even when all involved systems conform with the standard. (orig.) [de

  16. Modeling organohalide perovskites for photovoltaic applications: From materials to interfaces

    Science.gov (United States)

    de Angelis, Filippo

    2015-03-01

    The field of hybrid/organic photovoltaics has been revolutionized in 2012 by the first reports of solid-state solar cells based on organohalide perovskites, now topping at 20% efficiency. First-principles modeling has been widely applied to the dye-sensitized solar cells field, and more recently to perovskite-based solar cells. The computational design and screening of new materials has played a major role in advancing the DSCs field. Suitable modeling strategies may also offer a view of the crucial heterointerfaces ruling the device operational mechanism. I will illustrate how simulation tools can be employed in the emerging field of perovskite solar cells. The performance of the proposed simulation toolbox along with the fundamental modeling strategies are presented using selected examples of relevant materials and interfaces. The main issue with hybrid perovskite modeling is to be able to accurately describe their structural, electronic and optical features. These materials show a degree of short range disorder, due to the presence of mobile organic cations embedded within the inorganic matrix, requiring to average their properties over a molecular dynamics trajectory. Due to the presence of heavy atoms (e.g. Sn and Pb) their electronic structure must take into account spin-orbit coupling (SOC) in an effective way, possibly including GW corrections. The proposed SOC-GW method constitutes the basis for tuning the materials electronic and optical properties, rationalizing experimental trends. Modeling charge generation in perovskite-sensitized TiO2 interfaces is then approached based on a SOC-DFT scheme, describing alignment of energy levels in a qualitatively correct fashion. The role of interfacial chemistry on the device performance is finally discussed. The research leading to these results has received funding from the European Union Seventh Framework Programme [FP7/2007 2013] under Grant Agreement No. 604032 of the MESO project.

  17. Development and Evaluation of Disaster Information Management System Using Digital Pens and Tabletop User Interfaces

    Science.gov (United States)

    Fukada, Hidemi; Kobayashi, Kazue; Satou, Kenji; Kawana, Hideyuki; Masuda, Tomohiro

    Most traditional disaster information systems are necessary to post expert staff with high computer literacy to operate the system quickly and correctly in the tense situation when a disaster occurs. However, in the current disaster response system of local governments, it is not easy for local governments to post such expert staff because they are struggling with staff cuts due to administrative and fiscal reform. In this research, we propose a disaster information management system that can be easily operated, even under the disorderly conditions of a disaster, by municipal personnel in charge of disaster management. This system achieves usability enabling easy input of damage information, even by local government staff with no expertise, by using a digital pen and tabletop user interface. Evaluation was conducted by prospective users using a prototype, and the evaluation results are satisfactory with regard to the function and operationality of the proposed system.

  18. The International River Interface Cooperative: Public Domain Software for River Flow and Morphodynamics (Invited)

    Science.gov (United States)

    Nelson, J. M.; Shimizu, Y.; McDonald, R.; Takebayashi, H.

    2009-12-01

    The International River Interface Cooperative is an informal organization made up of academic faculty and government scientists with the goal of developing, distributing and providing education for a public-domain software interface for modeling river flow and morphodynamics. Formed in late 2007, the group released the first version of this interface (iRIC) in late 2009. iRIC includes models for two and three-dimensional flow, sediment transport, bed evolution, groundwater-surface water interaction, topographic data processing, and habitat assessment, as well as comprehensive data and model output visualization, mapping, and editing tools. All the tools in iRIC are specifically designed for use in river reaches and utilize common river data sets. The models are couched within a single graphical user interface so that a broad spectrum of models are available to users without learning new pre- and post-processing tools. The first version of iRIC was developed by combining the USGS public-domain Multi-Dimensional Surface Water Modeling System (MD_SWMS), developed at the USGS Geomorphology and Sediment Transport Laboratory in Golden, Colorado, with the public-domain river modeling code NAYS developed by the Universities of Hokkaido and Kyoto, Mizuho Corporation, and the Foundation of the River Disaster Prevention Research Institute in Sapporo, Japan. Since this initial effort, other Universities and Agencies have joined the group, and the interface has been expanded to allow users to integrate their own modeling code using Executable Markup Language (XML), which provides easy access and expandability to the iRIC software interface. In this presentation, the current components of iRIC are described and results from several practical modeling applications are presented to illustrate the capabilities and flexibility of the software. In addition, some future extensions to iRIC are demonstrated, including software for Lagrangian particle tracking and the prediction of

  19. Agricultural Library Information Retrieval Based on Improved Semantic Algorithm

    OpenAIRE

    Meiling , Xie

    2014-01-01

    International audience; To support users to quickly access information they need from the agricultural library’s vast information and to improve the low intelligence query service, a model for intelligent library information retrieval was constructed. The semantic web mode was introduced and the information retrieval framework was designed. The model structure consisted of three parts: Information data integration, user interface and information retrieval match. The key method supporting retr...

  20. The Kinematic Learning Model using Video and Interfaces Analysis

    Science.gov (United States)

    Firdaus, T.; Setiawan, W.; Hamidah, I.

    2017-09-01

    An educator currently in demand to apply the learning to not be separated from the development of technology. Educators often experience difficulties when explaining kinematics material, this is because kinematics is one of the lessons that often relate the concept to real life. Kinematics is one of the courses of physics that explains the cause of motion of an object, Therefore it takes the thinking skills and analytical skills in understanding these symptoms. Technology is one that can bridge between conceptual relationship with real life. A framework of technology-based learning models has been developed using video and interfaces analysis on kinematics concept. By using this learning model, learners will be better able to understand the concept that is taught by the teacher. This learning model is able to improve the ability of creative thinking, analytical skills, and problem-solving skills on the concept of kinematics.

  1. 3D printed, bio-inspired prototypes and analytical models for structured suture interfaces with geometrically-tuned deformation and failure behavior

    Science.gov (United States)

    Lin, Erica; Li, Yaning; Ortiz, Christine; Boyce, Mary C.

    2014-12-01

    Geometrically structured interfaces in nature possess enhanced, and often surprising, mechanical properties, and provide inspiration for materials design. This paper investigates the mechanics of deformation and failure mechanisms of suture interface designs through analytical models and experiments on 3D printed polymer physical prototypes. Suture waveforms with generalized trapezoidal geometries (trapezoidal, rectangular, anti-trapezoidal, and triangular) are studied and characterized by several important geometric parameters: the presence or absence of a bonded tip region, the tip angle, and the geometry. It is shown that a wide range (in some cases as great as an order of magnitude) in stiffness, strength, and toughness is achievable dependent on tip bonding, tip angle, and geometry. Suture interfaces with a bonded tip region exhibit a higher initial stiffness due to the greater load bearing by the skeletal teeth, a double peak in the stress-strain curve corresponding to the failure of the bonded tip and the failure of the slanted interface region or tooth, respectively, and an additional failure and toughening mechanism due to the failure of the bonded tip. Anti-trapezoidal geometries promote the greatest amplification of properties for suture interfaces with a bonded tip due the large tip interface area. The tip angle and geometry govern the stress distributions in the teeth and the ratio of normal to shear stresses in the interfacial layers, which together determine the failure mechanism of the interface and/or the teeth. Rectangular suture interfaces fail by simple shearing of the interfaces. Trapezoidal and triangular suture interfaces fail by a combination of shear and tensile normal stresses in the interface, leading to plastic deformation, cavitation events, and subsequent stretching of interface ligaments with mostly elastic deformation in the teeth. Anti-trapezoidal suture interfaces with small tip angles have high stress concentrations in the teeth

  2. Analytical model for the effects of wetting on thermal boundary conductance across solid/classical liquid interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Caplan, Matthew E.; Giri, Ashutosh; Hopkins, Patrick E., E-mail: phopkins@virginia.edu [Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, Virginia 22904 (United States)

    2014-04-21

    We develop an analytical model for the thermal boundary conductance between a solid and a liquid. By infusing recent developments in the phonon theory of liquid thermodynamics with diffuse mismatch theory, we derive a closed form model that can predict the effects of wetting on the thermal boundary conductance across an interface between a solid and a classical liquid. We account for the complete wetting (hydrophilicity), or lack thereof (hydrophobicity), of the liquid to the solid by considering varying contributions of transverse mode interactions between the solid and liquid interfacial layers; this transverse coupling relationship is determined with local density of states calculations from molecular dynamics simulations between Lennard-Jones solids and a liquids with different interfacial interaction energies. We present example calculations for the thermal boundary conductance between both hydrophobic and hydrophilic interfaces of Al/water and Au/water, which show excellent agreement with measured values reported by Ge et al. [Z. Ge, D. G. Cahill, and P. V. Braun, Phys. Rev. Lett. 96, 186101 (2006)]. Our model does not require any fitting parameters and is appropriate to model heat flow across any planar interface between a solid and a classical liquid.

  3. Molecular modeling of the green leaf volatile methyl salicylate on atmospheric air/water interfaces.

    Science.gov (United States)

    Liyana-Arachchi, Thilanga P; Hansel, Amie K; Stevens, Christopher; Ehrenhauser, Franz S; Valsaraj, Kalliat T; Hung, Francisco R

    2013-05-30

    Methyl salicylate (MeSA) is a green leaf volatile (GLV) compound that is emitted in significant amounts by plants, especially when they are under stress conditions. GLVs can then undergo chemical reactions with atmospheric oxidants, yielding compounds that contribute to the formation of secondary organic aerosols (SOAs). We investigated the adsorption of MeSA on atmospheric air/water interfaces at 298 K using thermodynamic integration (TI), potential of mean force (PMF) calculations, and classical molecular dynamics (MD) simulations. Our molecular models can reproduce experimental results of the 1-octanol/water partition coefficient of MeSA. A deep free energy minimum was found for MeSA at the air/water interface, which is mainly driven by energetic interactions between MeSA and water. At the interface, the oxygenated groups in MeSA tend to point toward the water side of the interface, with the aromatic group of MeSA lying farther away from water. Increases in the concentrations of MeSA lead to reductions in the height of the peaks in the MeSA-MeSA g(r) functions, a slowing down of the dynamics of both MeSA and water at the interface, and a reduction in the interfacial surface tension. Our results indicate that MeSA has a strong thermodynamic preference to remain at the air/water interface, and thus chemical reactions with atmospheric oxidants are more likely to take place at this interface, rather than in the water phase of atmospheric water droplets or in the gas phase.

  4. Risk-Informed Monitoring, Verification and Accounting (RI-MVA). An NRAP White Paper Documenting Methods and a Demonstration Model for Risk-Informed MVA System Design and Operations in Geologic Carbon Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Unwin, Stephen D.; Sadovsky, Artyom; Sullivan, E. C.; Anderson, Richard M.

    2011-09-30

    This white paper accompanies a demonstration model that implements methods for the risk-informed design of monitoring, verification and accounting (RI-MVA) systems in geologic carbon sequestration projects. The intent is that this model will ultimately be integrated with, or interfaced with, the National Risk Assessment Partnership (NRAP) integrated assessment model (IAM). The RI-MVA methods described here apply optimization techniques in the analytical environment of NRAP risk profiles to allow systematic identification and comparison of the risk and cost attributes of MVA design options.

  5. An interface energy density-based theory considering the coherent interface effect in nanomaterials

    Science.gov (United States)

    Yao, Yin; Chen, Shaohua; Fang, Daining

    2017-02-01

    To characterize the coherent interface effect conveniently and feasibly in nanomaterials, a continuum theory is proposed that is based on the concept of the interface free energy density, which is a dominant factor affecting the mechanical properties of the coherent interface in materials of all scales. The effect of the residual strain caused by self-relaxation and the lattice misfit of nanomaterials, as well as that due to the interface deformation induced by an external load on the interface free energy density is considered. In contrast to the existing theories, the stress discontinuity at the interface is characterized by the interface free energy density through an interface-induced traction. As a result, the interface elastic constant introduced in previous theories, which is not easy to determine precisely, is avoided in the present theory. Only the surface energy density of the bulk materials forming the interface, the relaxation parameter induced by surface relaxation, and the mismatch parameter for forming a coherent interface between the two surfaces are involved. All the related parameters are far easier to determine than the interface elastic constants. The effective bulk and shear moduli of a nanoparticle-reinforced nanocomposite are predicted using the proposed theory. Closed-form solutions are achieved, demonstrating the feasibility and convenience of the proposed model for predicting the interface effect in nanomaterials.

  6. First Principle simulations of electrochemical interfaces - a DFT study

    DEFF Research Database (Denmark)

    Ahmed, Rizwan

    for the whole system to qualify as a proper electrochemical interface. I have also contributed to the model, which accounts for pH in the first principle electrode-electrolyte interface simulations. This is an important step forward, since electrochemical reaction rate and barrier for charge transfer can......In this thesis, I have looked beyond the computational hydrogen electrode (CHE) model, and focused on the first principle simulations which treats the electrode-electrolyte interfaces explicitly. Since obtaining a realistic electrode-electrolyte interface was difficult, I aimed to address various...... challenges regarding first principle electrochemical interface modeling in order to bridge the gap between the model interface used in simulations and real catalyst at operating conditions. Atomic scale insight for the processes and reactions that occur at the electrochemical interface presents a challenge...

  7. A VR-User Interface for Design by Features

    NARCIS (Netherlands)

    Coomans, M.K.D.; Timmermans, H.J.P.

    1998-01-01

    We present the design of a Virtual Reality based user interface (VR-UI). It is the interface for the VR-DIS system, a design application for the Building and Construction industry (VRDIS stands for Virtual Reality - Design Information System). The interface is characterised by a mixed representation

  8. Designing Closed-Loop Brain-Machine Interfaces Using Model Predictive Control

    Directory of Open Access Journals (Sweden)

    Gautam Kumar

    2016-06-01

    Full Text Available Brain-machine interfaces (BMIs are broadly defined as systems that establish direct communications between living brain tissue and external devices, such as artificial arms. By sensing and interpreting neuronal activities to actuate an external device, BMI-based neuroprostheses hold great promise in rehabilitating motor disabled subjects, such as amputees. In this paper, we develop a control-theoretic analysis of a BMI-based neuroprosthetic system for voluntary single joint reaching task in the absence of visual feedback. Using synthetic data obtained through the simulation of an experimentally validated psycho-physiological cortical circuit model, both the Wiener filter and the Kalman filter based linear decoders are developed. We analyze the performance of both decoders in the presence and in the absence of natural proprioceptive feedback information. By performing simulations, we show that the performance of both decoders degrades significantly in the absence of the natural proprioception. To recover the performance of these decoders, we propose two problems, namely tracking the desired position trajectory and tracking the firing rate trajectory of neurons which encode the proprioception, in the model predictive control framework to design optimal artificial sensory feedback. Our results indicate that while the position trajectory based design can only recover the position and velocity trajectories, the firing rate trajectory based design can recover the performance of the motor task along with the recovery of firing rates in other cortical regions. Finally, we extend our design by incorporating a network of spiking neurons and designing artificial sensory feedback in the form of a charged balanced biphasic stimulating current.

  9. Accelerated lattice Boltzmann model for colloidal suspensions rheology and interface morphology

    CERN Document Server

    Farhat, Hassan; Kondaraju, Sasidhar

    2014-01-01

    Colloids are ubiquitous in the food, medical, cosmetics, polymers, water purification, and pharmaceutical industries. The thermal, mechanical, and storage properties of colloids are highly dependent on their interface morphology and their rheological behavior. Numerical methods provide a convenient and reliable tool for the study of colloids. Accelerated Lattice Boltzmann Model for Colloidal Suspensions introduce the main building-blocks for an improved lattice Boltzmann–based numerical tool designed for the study of colloidal rheology and interface morphology. This book also covers the migrating multi-block used to simulate single component, multi-component, multiphase, and single component multiphase flows and their validation by experimental, numerical, and analytical solutions.   Among other topics discussed are the hybrid lattice Boltzmann method (LBM) for surfactant-covered droplets; biological suspensions such as blood; used in conjunction with the suppression of coalescence for investigating the...

  10. Two graphical user interfaces for managing and analyzing MODFLOW groundwater-model scenarios

    Science.gov (United States)

    Banta, Edward R.

    2014-01-01

    Scenario Manager and Scenario Analyzer are graphical user interfaces that facilitate the use of calibrated, MODFLOW-based groundwater models for investigating possible responses to proposed stresses on a groundwater system. Scenario Manager allows a user, starting with a calibrated model, to design and run model scenarios by adding or modifying stresses simulated by the model. Scenario Analyzer facilitates the process of extracting data from model output and preparing such display elements as maps, charts, and tables. Both programs are designed for users who are familiar with the science on which groundwater modeling is based but who may not have a groundwater modeler’s expertise in building and calibrating a groundwater model from start to finish. With Scenario Manager, the user can manipulate model input to simulate withdrawal or injection wells, time-variant specified hydraulic heads, recharge, and such surface-water features as rivers and canals. Input for stresses to be simulated comes from user-provided geographic information system files and time-series data files. A Scenario Manager project can contain multiple scenarios and is self-documenting. Scenario Analyzer can be used to analyze output from any MODFLOW-based model; it is not limited to use with scenarios generated by Scenario Manager. Model-simulated values of hydraulic head, drawdown, solute concentration, and cell-by-cell flow rates can be presented in display elements. Map data can be represented as lines of equal value (contours) or as a gradated color fill. Charts and tables display time-series data obtained from output generated by a transient-state model run or from user-provided text files of time-series data. A display element can be based entirely on output of a single model run, or, to facilitate comparison of results of multiple scenarios, an element can be based on output from multiple model runs. Scenario Analyzer can export display elements and supporting metadata as a Portable

  11. Modeling the liquid-liquid interface and the transfer of a solute by molecular dynamics simulation

    International Nuclear Information System (INIS)

    Hayoun, Marc

    1990-11-01

    Molecular Dynamics method and Lennard-Jones potential functions have been employed to model Liquid-Liquid Interfaces. The variation of the miscibilities between the two liquids is obtained by changing the interaction between the two atomic species. The resulting interfaces have a thickness of about three atomic diameters and are stable on the time scale of the simulation. They have been characterized by the density and pressure profiles. The interfacial tension has also been computed and is of the order of magnitude of experimental values. The diffusion process is anisotropic in the interfacial region: the transverse diffusion coefficient (parallelly to the interface) is higher than the normal one. A qualitative explanation of this behaviour is suggested by considering the pressure tensor. The second part of this work, performed by Molecular Dynamics in the canonical ensemble, is devoted to the kinetic study of the transfer of a solute through the interface. A model of a symmetric interface with an atomic solute has been used. The interaction potential between the solute and the solvents has been built in order to obtain an activation barrier to the transfer. We have computed the mean force exerted by the solvent on the solute as a function of its distance to the interface. The resulting mean force potential corresponds to a free energy difference. The height of the energy barrier involved is about 4 kT. The potential energy and entropy profiles have also been calculated and discussed. The diffusion coefficient of the solute has been computed by equilibrium and non-equilibrium methods. We deduced the friction coefficient of the solvent, which is essential to determine the Kramers transmission coefficient. This coefficient is compared to the one obtained by simulation. Finally, the solute transfer rate constant has been calculated. (author) [fr

  12. Introduction to diffuse interfaces and transformation fronts modelling in compressible media

    Directory of Open Access Journals (Sweden)

    Saurel Richard

    2013-07-01

    Full Text Available Computation of interfaces separating compressible materials is related to mixture cells appearance. These mixture cells are consequences of fluid motion and artificial smearing of discontinuities. The correct computation of the entire flow field requires perfect fulfillment of the interface conditions. In the simplest situation of contact interfaces with perfect fluids, these conditions correspond to equal normal velocities and equal pressures. To compute compressible flows with interfaces two main classes of approaches are available. In the first one, the interface is considered as a sharp discontinuity. Lagrangian, Front Tracking and Level Set methods belong to this class. The second option consists in the building of a flow model valid everywhere, in pure materials and mixture cells, solved routinely with a unique Eulerian algorithm [37]. In this frame, the interface is considered as a numerically diffused zone, captured by the algorithm. There are some advantages with this approach, as the corresponding flow model is not only valid in artificial mixture cells, but it also describes accurately true multiphase mixtures of materials. The [37] approach has been simplified by [22] with the help of asymptotic analysis, resulting in a single velocity, single pressure but multi-temperature flow model. This reduced model presents however difficulties for its numerical resolution as one of the equations is non-conservative. In the presence of shocks, jump conditions have been provided by [42], determined in the weak shock limit. When compared against experiments for both weak and strong shocks, excellent agreement was observed. These relations have been accepted as closure shock relations for the [22] model and allowed the study of detonation waves in heterogeneous energetic materials. Generalized Chapman-Jouguet conditions were obtained as well as heterogenous explosives (non-ideal detonation wave structures [36]. Oppositely to the previous example

  13. The effect of four user interface concepts on visual scan pattern similarity and information foraging in a complex decision making task.

    Science.gov (United States)

    Starke, Sandra D; Baber, Chris

    2018-07-01

    User interface (UI) design can affect the quality of decision making, where decisions based on digitally presented content are commonly informed by visually sampling information through eye movements. Analysis of the resulting scan patterns - the order in which people visually attend to different regions of interest (ROIs) - gives an insight into information foraging strategies. In this study, we quantified scan pattern characteristics for participants engaging with conceptually different user interface designs. Four interfaces were modified along two dimensions relating to effort in accessing information: data presentation (either alpha-numerical data or colour blocks), and information access time (all information sources readily available or sequential revealing of information required). The aim of the study was to investigate whether a) people develop repeatable scan patterns and b) different UI concepts affect information foraging and task performance. Thirty-two participants (eight for each UI concept) were given the task to correctly classify 100 credit card transactions as normal or fraudulent based on nine transaction attributes. Attributes varied in their usefulness of predicting the correct outcome. Conventional and more recent (network analysis- and bioinformatics-based) eye tracking metrics were used to quantify visual search. Empirical findings were evaluated in context of random data and possible accuracy for theoretical decision making strategies. Results showed short repeating sequence fragments within longer scan patterns across participants and conditions, comprising a systematic and a random search component. The UI design concept showing alpha-numerical data in full view resulted in most complete data foraging, while the design concept showing colour blocks in full view resulted in the fastest task completion time. Decision accuracy was not significantly affected by UI design. Theoretical calculations showed that the difference in achievable

  14. Business Performer-Centered Design of User Interfaces

    Science.gov (United States)

    Sousa, Kênia; Vanderdonckt, Jean

    Business Performer-Centered Design of User Interfaces is a new design methodology that adopts business process (BP) definition and a business performer perspective for managing the life cycle of user interfaces of enterprise systems. In this methodology, when the organization has a business process culture, the business processes of an organization are firstly defined according to a traditional methodology for this kind of artifact. These business processes are then transformed into a series of task models that represent the interactive parts of the business processes that will ultimately lead to interactive systems. When the organization has its enterprise systems, but not yet its business processes modeled, the user interfaces of the systems help derive tasks models, which are then used to derive the business processes. The double linking between a business process and a task model, and between a task model and a user interface model makes it possible to ensure traceability of the artifacts in multiple paths and enables a more active participation of business performers in analyzing the resulting user interfaces. In this paper, we outline how a human-perspective is used tied to a model-driven perspective.

  15. MIG version 0.0 model interface guidelines: Rules to accelerate installation of numerical models into any compliant parent code

    Energy Technology Data Exchange (ETDEWEB)

    Brannon, R.M.; Wong, M.K.

    1996-08-01

    A set of model interface guidelines, called MIG, is presented as a means by which any compliant numerical material model can be rapidly installed into any parent code without having to modify the model subroutines. Here, {open_quotes}model{close_quotes} usually means a material model such as one that computes stress as a function of strain, though the term may be extended to any numerical operation. {open_quotes}Parent code{close_quotes} means a hydrocode, finite element code, etc. which uses the model and enforces, say, the fundamental laws of motion and thermodynamics. MIG requires the model developer (who creates the model package) to specify model needs in a standardized but flexible way. MIG includes a dictionary of technical terms that allows developers and parent code architects to share a common vocabulary when specifying field variables. For portability, database management is the responsibility of the parent code. Input/output occurs via structured calling arguments. As much model information as possible (such as the lists of required inputs, as well as lists of precharacterized material data and special needs) is supplied by the model developer in an ASCII text file. Every MIG-compliant model also has three required subroutines to check data, to request extra field variables, and to perform model physics. To date, the MIG scheme has proven flexible in beta installations of a simple yield model, plus a more complicated viscodamage yield model, three electromechanical models, and a complicated anisotropic microcrack constitutive model. The MIG yield model has been successfully installed using identical subroutines in three vectorized parent codes and one parallel C++ code, all predicting comparable results. By maintaining one model for many codes, MIG facilitates code-to-code comparisons and reduces duplication of effort, thereby reducing the cost of installing and sharing models in diverse new codes.

  16. The use of cloud enabled building information models – an expert analysis

    Directory of Open Access Journals (Sweden)

    Alan Redmond

    2015-10-01

    Full Text Available The dependency of today’s construction professionals to use singular commercial applications for design possibilities creates the risk of being dictated by the language-tools they use. This unknowingly approach to converting to the constraints of a particular computer application’s style, reduces one’s association with cutting-edge design as no single computer application can support all of the tasks associated with building-design and production. Interoperability depicts the need to pass data between applications, allowing multiple types of experts and applications to contribute to the work at hand. Cloud computing is a centralized heterogeneous platform that enables different applications to be connected to each other through using remote data servers. However, the possibility of providing an interoperable process based on binding several construction applications through a single repository platform ‘cloud computing’ required further analysis. The following Delphi questionnaires analysed the exchanging information opportunities of Building Information Modelling (BIM as the possible solution for the integration of applications on a cloud platform. The survey structure is modelled to; (i identify the most appropriate applications for advancing interoperability at the early design stage, (ii detect the most severe barriers of BIM implementation from a business and legal viewpoint, (iii examine the need for standards to address information exchange between design team, and (iv explore the use of the most common interfaces for exchanging information. The anticipated findings will assist in identifying a model that will enhance the standardized passing of information between systems at the feasibility design stage of a construction project.

  17. The use of cloud enabled building information models – an expert analysis

    Directory of Open Access Journals (Sweden)

    Alan Redmond

    2012-12-01

    Full Text Available The dependency of today’s construction professionals to use singular commercial applications for design possibilities creates the risk of being dictated by the language-tools they use. This unknowingly approach to converting to the constraints of a particular computer application’s style, reduces one’s association with cutting-edge design as no single computer application can support all of the tasks associated with building-design and production. Interoperability depicts the need to pass data between applications, allowing multiple types of experts and applications to contribute to the work at hand. Cloud computing is a centralized heterogeneous platform that enables different applications to be connected to each other through using remote data servers. However, the possibility of providing an interoperable process based on binding several construction applications through a single repository platform ‘cloud computing’ required further analysis. The following Delphi questionnaires analysed the exchanging information opportunities of Building Information Modelling (BIM as the possible solution for the integration of applications on a cloud platform. The survey structure is modelled to; (i identify the most appropriate applications for advancing interoperability at the early design stage, (ii detect the most severe barriers of BIM implementation from a business and legal viewpoint, (iii examine the need for standards to address information exchange between design team, and (iv explore the use of the most common interfaces for exchanging information. The anticipated findings will assist in identifying a model that will enhance the standardized passing of information between systems at the feasibility design stage of a construction project.

  18. Internet-based interface for STRMDEPL08

    Science.gov (United States)

    Reeves, Howard W.; Asher, A. Jeremiah

    2010-01-01

    The core of the computer program STRMDEPL08 that estimates streamflow depletion by a pumping well with one of four analytical solutions was re-written in the Javascript software language and made available through an internet-based interface (web page). In the internet-based interface, the user enters data for one of the four analytical solutions, Glover and Balmer (1954), Hantush (1965), Hunt (1999), and Hunt (2003), and the solution is run for constant pumping for a desired number of simulation days. Results are returned in tabular form to the user. For intermittent pumping, the interface allows the user to request that the header information for an input file for the stand-alone executable STRMDEPL08 be created. The user would add the pumping information to this header information and run the STRMDEPL08 executable that is available for download through the U.S. Geological Survey. Results for the internet-based and stand-alone versions of STRMDEPL08 are shown to match.

  19. Lumped parameter modeling of a two-phase thermal-hydraulic channel with interface tracking

    International Nuclear Information System (INIS)

    Jo, J.H.; Kaufman, J.M.; Ruger, C.J.; Stein, S.

    1978-01-01

    A nonhomogenous, thermal nonequilibrium model for one-dimensional two-phase flow in a heated channel has been formulated in lumped parameter form. The channel is divided into a variable number of flow regimes separated by moving interfaces. The model can be used to predict the behavior of a LWR core and both primary and secondary sides of a steam generator under transient conditions. (author)

  20. Application programming interface document for the modernized Transient Reactor Analysis Code (TRAC-M)

    International Nuclear Information System (INIS)

    Mahaffy, J.; Boyack, B.E.; Steinke, R.G.

    1998-05-01

    The objective of this document is to ease the task of adding new system components to the Transient Reactor Analysis Code (TRAC) or altering old ones. Sufficient information is provided to permit replacement or modification of physical models and correlations. Within TRAC, information is passed at two levels. At the upper level, information is passed by system-wide and component-specific data modules at and above the level of component subroutines. At the lower level, information is passed through a combination of module-based data structures and argument lists. This document describes the basic mechanics involved in the flow of information within the code. The discussion of interfaces in the body of this document has been kept to a general level to highlight key considerations. The appendices cover instructions for obtaining a detailed list of variables used to communicate in each subprogram, definitions and locations of key variables, and proposed improvements to intercomponent interfaces that are not available in the first level of code modernization

  1. Training Manual for Elements of Interface Definition and Control

    Science.gov (United States)

    Lalli, Vincent R. (Editor); Kastner, Robert E. (Editor); Hartt, Henry N. (Editor)

    1997-01-01

    The primary thrust of this manual is to ensure that the format and information needed to control interfaces between equipment are clear and understandable. The emphasis is on controlling the engineering design of the interface and not on the functional performance requirements of the system or the internal workings of the interfacing equipment. Interface control should take place, with rare exception, at the interfacing elements and no further. There are two essential sections of the manual. Chapter 2, Principles of Interface Control, discusses how interfaces are defined. It describes different types of interfaces to be considered and recommends a format for the documentation necessary for adequate interface control. Chapter 3, The Process: Through the Design Phases, provides tailored guidance for interface definition and control. This manual can be used to improve planned or existing interface control processes during system design and development. It can also be used to refresh and update the corporate knowledge base. The information presented herein will reduce the amount of paper and data required in interface definition and control processes by as much as 50 percent and will shorten the time required to prepare an interface control document. It also highlights the essential technical parameters that ensure that flight subsystems will indeed fit together and function as intended after assembly and checkout.

  2. Layout Design of Human-Machine Interaction Interface of Cabin Based on Cognitive Ergonomics and GA-ACA

    OpenAIRE

    Deng, Li; Wang, Guohua; Yu, Suihuai

    2016-01-01

    In order to consider the psychological cognitive characteristics affecting operating comfort and realize the automatic layout design, cognitive ergonomics and GA-ACA (genetic algorithm and ant colony algorithm) were introduced into the layout design of human-machine interaction interface. First, from the perspective of cognitive psychology, according to the information processing process, the cognitive model of human-machine interaction interface was established. Then, the human cognitive cha...

  3. DIRAC: Secure web user interface

    International Nuclear Information System (INIS)

    Casajus Ramo, A; Sapunov, M

    2010-01-01

    Traditionally the interaction between users and the Grid is done with command line tools. However, these tools are difficult to use by non-expert users providing minimal help and generating outputs not always easy to understand especially in case of errors. Graphical User Interfaces are typically limited to providing access to the monitoring or accounting information and concentrate on some particular aspects failing to cover the full spectrum of grid control tasks. To make the Grid more user friendly more complete graphical interfaces are needed. Within the DIRAC project we have attempted to construct a Web based User Interface that provides means not only for monitoring the system behavior but also allows to steer the main user activities on the grid. Using DIRAC's web interface a user can easily track jobs and data. It provides access to job information and allows performing actions on jobs such as killing or deleting. Data managers can define and monitor file transfer activity as well as check requests set by jobs. Production managers can define and follow large data productions and react if necessary by stopping or starting them. The Web Portal is build following all the grid security standards and using modern Web 2.0 technologies which allow to achieve the user experience similar to the desktop applications. Details of the DIRAC Web Portal architecture and User Interface will be presented and discussed.

  4. Multi-robot control interface

    Science.gov (United States)

    Bruemmer, David J [Idaho Falls, ID; Walton, Miles C [Idaho Falls, ID

    2011-12-06

    Methods and systems for controlling a plurality of robots through a single user interface include at least one robot display window for each of the plurality of robots with the at least one robot display window illustrating one or more conditions of a respective one of the plurality of robots. The user interface further includes at least one robot control window for each of the plurality of robots with the at least one robot control window configured to receive one or more commands for sending to the respective one of the plurality of robots. The user interface further includes a multi-robot common window comprised of information received from each of the plurality of robots.

  5. Interfacing a fieldable multichannel analyzer to a MicroVAX computer

    International Nuclear Information System (INIS)

    Litherland, K.R.; Johnson, M.W.

    1990-01-01

    This paper reports on software written for interfacing the D.S. Davidson Model 2056 portable multichannel analyzer to a MicroVAX computer running the VMS operating system. The operational objective of the software is to give the user a nearly transparent mechanism for controlling the analyzer with functions equivalent to those on the analyzer's own keyboard, thus minimizing the training requirement for the user. The software is written in VMS enhanced Fortran and consists of a main control program, several subprocesses, and libraries containing graphics commands and other information. Interfaces to other commercially available software packages for data storage and manipulation are provided. Problems encountered and their programming solutions are discussed

  6. Transitions in a probabilistic interface growth model

    International Nuclear Information System (INIS)

    Alves, S G; Moreira, J G

    2011-01-01

    We study a generalization of the Wolf–Villain (WV) interface growth model based on a probabilistic growth rule. In the WV model, particles are randomly deposited onto a substrate and subsequently move to a position nearby where the binding is strongest. We introduce a growth probability which is proportional to a power of the number n i of bindings of the site i: p i ∝n i ν . Through extensive simulations, in (1 + 1) dimensions, we find three behaviors depending on the ν value: (i) if ν is small, a crossover from the Mullins–Herring to the Edwards–Wilkinson (EW) universality class; (ii) for intermediate values of ν, a crossover from the EW to the Kardar–Parisi–Zhang (KPZ) universality class; and, finally, (iii) for large ν values, the system is always in the KPZ class. In (2 + 1) dimensions, we obtain three different behaviors: (i) a crossover from the Villain–Lai–Das Sarma to the EW universality class for small ν values; (ii) the EW class is always present for intermediate ν values; and (iii) a deviation from the EW class is observed for large ν values

  7. Ultra-low-cost 3D gaze estimation: an intuitive high information throughput compliment to direct brain-machine interfaces

    Science.gov (United States)

    Abbott, W. W.; Faisal, A. A.

    2012-08-01

    Eye movements are highly correlated with motor intentions and are often retained by patients with serious motor deficiencies. Despite this, eye tracking is not widely used as control interface for movement in impaired patients due to poor signal interpretation and lack of control flexibility. We propose that tracking the gaze position in 3D rather than 2D provides a considerably richer signal for human machine interfaces by allowing direct interaction with the environment rather than via computer displays. We demonstrate here that by using mass-produced video-game hardware, it is possible to produce an ultra-low-cost binocular eye-tracker with comparable performance to commercial systems, yet 800 times cheaper. Our head-mounted system has 30 USD material costs and operates at over 120 Hz sampling rate with a 0.5-1 degree of visual angle resolution. We perform 2D and 3D gaze estimation, controlling a real-time volumetric cursor essential for driving complex user interfaces. Our approach yields an information throughput of 43 bits s-1, more than ten times that of invasive and semi-invasive brain-machine interfaces (BMIs) that are vastly more expensive. Unlike many BMIs our system yields effective real-time closed loop control of devices (10 ms latency), after just ten minutes of training, which we demonstrate through a novel BMI benchmark—the control of the video arcade game ‘Pong’.

  8. Model for Educational Game Using Natural User Interface

    Directory of Open Access Journals (Sweden)

    Azrulhizam Shapi’i

    2016-01-01

    Full Text Available Natural User Interface (NUI is a new approach that has become increasingly popular in Human-Computer Interaction (HCI. The use of this technology is widely used in almost all sectors, including the field of education. In recent years, there are a lot of educational games using NUI technology in the market such as Kinect game. Kinect is a sensor that can recognize body movements, postures, and voices in three dimensions. It enables users to control and interact with game without the need of using game controller. However, the contents of most existing Kinect games do not follow the standard curriculum in classroom, thus making it do not fully achieve the learning objectives. Hence, this research proposes a design model as a guideline in designing educational game using NUI. A prototype has been developed as one of the objectives in this study. The prototype is based on proposed model to ensure and assess the effectiveness of the model. The outcomes of this study conclude that the proposed model contributed to the design method for the development of the educational game using NUI. Furthermore, evaluation results of the prototype show a good response from participant and in line with the standard curriculum.

  9. A novel asynchronous access method with binary interfaces

    Directory of Open Access Journals (Sweden)

    Torres-Solis Jorge

    2008-10-01

    Full Text Available Abstract Background Traditionally synchronous access strategies require users to comply with one or more time constraints in order to communicate intent with a binary human-machine interface (e.g., mechanical, gestural or neural switches. Asynchronous access methods are preferable, but have not been used with binary interfaces in the control of devices that require more than two commands to be successfully operated. Methods We present the mathematical development and evaluation of a novel asynchronous access method that may be used to translate sporadic activations of binary interfaces into distinct outcomes for the control of devices requiring an arbitrary number of commands to be controlled. With this method, users are required to activate their interfaces only when the device under control behaves erroneously. Then, a recursive algorithm, incorporating contextual assumptions relevant to all possible outcomes, is used to obtain an informed estimate of user intention. We evaluate this method by simulating a control task requiring a series of target commands to be tracked by a model user. Results When compared to a random selection, the proposed asynchronous access method offers a significant reduction in the number of interface activations required from the user. Conclusion This novel access method offers a variety of advantages over traditionally synchronous access strategies and may be adapted to a wide variety of contexts, with primary relevance to applications involving direct object manipulation.

  10. Developing Custom Fire Behavior Fuel Models for Mediterranean Wildland-Urban Interfaces in Southern Italy

    Science.gov (United States)

    Elia, Mario; Lafortezza, Raffaele; Lovreglio, Raffaella; Sanesi, Giovanni

    2015-09-01

    The dramatic increase of fire hazard in wildland-urban interfaces (WUIs) has required more detailed fuel management programs to preserve ecosystem functions and human settlements. Designing effective fuel treatment strategies allows to achieve goals such as resilient landscapes, fire-adapted communities, and ecosystem response. Therefore, obtaining background information on forest fuel parameters and fuel accumulation patterns has become an important first step in planning fuel management interventions. Site-specific fuel inventory data enhance the accuracy of fuel management planning and help forest managers in fuel management decision-making. We have customized four fuel models for WUIs in southern Italy, starting from forest classes of land-cover use and adopting a hierarchical clustering approach. Furthermore, we provide a prediction of the potential fire behavior of our customized fuel models using FlamMap 5 under different weather conditions. The results suggest that fuel model IIIP (Mediterranean maquis) has the most severe fire potential for the 95th percentile weather conditions and the least severe potential fire behavior for the 85th percentile weather conditions. This study shows that it is possible to create customized fuel models directly from fuel inventory data. This achievement has broad implications for land managers, particularly forest managers of the Mediterranean landscape, an ecosystem that is susceptible not only to wildfires but also to the increasing human population and man-made infrastructures.

  11. Developing Custom Fire Behavior Fuel Models for Mediterranean Wildland-Urban Interfaces in Southern Italy.

    Science.gov (United States)

    Elia, Mario; Lafortezza, Raffaele; Lovreglio, Raffaella; Sanesi, Giovanni

    2015-09-01

    The dramatic increase of fire hazard in wildland-urban interfaces (WUIs) has required more detailed fuel management programs to preserve ecosystem functions and human settlements. Designing effective fuel treatment strategies allows to achieve goals such as resilient landscapes, fire-adapted communities, and ecosystem response. Therefore, obtaining background information on forest fuel parameters and fuel accumulation patterns has become an important first step in planning fuel management interventions. Site-specific fuel inventory data enhance the accuracy of fuel management planning and help forest managers in fuel management decision-making. We have customized four fuel models for WUIs in southern Italy, starting from forest classes of land-cover use and adopting a hierarchical clustering approach. Furthermore, we provide a prediction of the potential fire behavior of our customized fuel models using FlamMap 5 under different weather conditions. The results suggest that fuel model IIIP (Mediterranean maquis) has the most severe fire potential for the 95th percentile weather conditions and the least severe potential fire behavior for the 85th percentile weather conditions. This study shows that it is possible to create customized fuel models directly from fuel inventory data. This achievement has broad implications for land managers, particularly forest managers of the Mediterranean landscape, an ecosystem that is susceptible not only to wildfires but also to the increasing human population and man-made infrastructures.

  12. The Properties of Intelligent Human-Machine Interface

    Directory of Open Access Journals (Sweden)

    Alexander Alfimtsev

    2012-04-01

    Full Text Available Intelligent human-machine interfaces based on multimodal interaction are developed separately in different application areas. No unified opinion exists about the issue of what properties should these interfaces have to provide an intuitive and natural interaction. Having carried out an analytical survey of the papers that deal with intelligent interfaces a set of properties are presented, which are necessary for intelligent interface between an information system and a human: absolute response, justification, training, personification, adaptiveness, collectivity, security, hidden persistence, portability, filtering.

  13. Mathematical modeling of planar and spherical vapor–liquid phase interfaces for multicomponent fluids

    Directory of Open Access Journals (Sweden)

    Celný David

    2016-01-01

    Full Text Available Development of methods for accurate modeling of phase interfaces is important for understanding various natural processes and for applications in technology such as power production and carbon dioxide separation and storage. In particular, prediction of the course of the non-equilibrium phase transition processes requires knowledge of the properties of the strongly curved phase interfaces of microscopic droplets. In our work, we focus on the spherical vapor–liquid phase interfaces for binary mixtures. We developed a robust computational method to determine the density and concentration profiles. The fundamentals of our approach lie in the Cahn-Hilliard gradient theory, allowing to transcribe the functional formulation into a system of ordinary Euler-Langrange equations. This system is then split and modified into a shape suitable for iterative computation. For this task, we combine the Newton-Raphson and the shooting methods providing a good convergence speed. For the thermodynamic roperties, the PC–SAFT equation of state is used. We determine the density and concentration profiles for spherical phase interfaces at various saturation factors for the binary mixture of CO2 and C9H20. The computed concentration profiles allow to the determine the work of formation and other characteristics of the microscopic droplets.

  14. iPhone User Interface Cookbook

    CERN Document Server

    Banga, Cameron

    2011-01-01

    Written in a cookbook style, this book offers solutions using a recipe based approach. Each recipe contains step-by-step instructions followed by an analysis of what was done in each task and other useful information. The cookbook approach means you can dive into whatever recipes you want in no particular order. The iPhone Interface Cookbook is written from the ground up for people who are new to iOS or application interface design in general. Each chapter discusses the reasoning and design strategy behind critical interface components, as well as how to best integrate each into any iPhone or

  15. Development of a GIS interface for WEPP Model application to Great Lakes forested watersheds

    Science.gov (United States)

    J. R. Frankenberger; S. Dun; D. C. Flanagan; J. Q. Wu; W. J. Elliot

    2011-01-01

    This presentation will highlight efforts on development of a new online WEPP GIS interface, targeted toward application in forested regions bordering the Great Lakes. The key components and algorithms of the online GIS system will be outlined. The general procedures used to provide input to the WEPP model and to display model output will be demonstrated.

  16. Rethinking Design Process: Using 3D Digital Models as an Interface in Collaborative Session

    Science.gov (United States)

    Ding, Suining

    2008-01-01

    This paper describes a pilot study for an alternative design process by integrating a designer-user collaborative session with digital models. The collaborative session took place in a 3D AutoCAD class for a real world project. The 3D models served as an interface for designer-user collaboration during the design process. Students not only learned…

  17. Highly informative multiclass profiling of lipids by ultra-high performance liquid chromatography - Low resolution (quadrupole) mass spectrometry by using electrospray ionization and atmospheric pressure chemical ionization interfaces.

    Science.gov (United States)

    Beccaria, Marco; Inferrera, Veronica; Rigano, Francesca; Gorynski, Krzysztof; Purcaro, Giorgia; Pawliszyn, Janusz; Dugo, Paola; Mondello, Luigi

    2017-08-04

    A simple, fast, and versatile method, using an ultra-high performance liquid chromatography system coupled with a low resolution (single quadrupole) mass spectrometer was optimized to perform multiclass lipid profiling of human plasma. Particular attention was made to develop a method suitable for both electrospray ionization and atmospheric pressure chemical ionization interfaces (sequentially in positive- and negative-ion mode), without any modification of the chromatographic conditions (mobile phase, flow-rate, gradient, etc.). Emphasis was given to the extrapolation of the structural information based on the fragmentation pattern obtained using atmospheric pressure chemical ionization interface, under each different ionization condition, highlighting the complementary information obtained using the electrospray ionization interface, of support for related molecule ions identification. Furthermore, mass spectra of phosphatidylserine and phosphatidylinositol obtained using the atmospheric pressure chemical ionization interface are reported and discussed for the first time. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Operating Comfort Prediction Model of Human-Machine Interface Layout for Cabin Based on GEP.

    Science.gov (United States)

    Deng, Li; Wang, Guohua; Chen, Bo

    2015-01-01

    In view of the evaluation and decision-making problem of human-machine interface layout design for cabin, the operating comfort prediction model is proposed based on GEP (Gene Expression Programming), using operating comfort to evaluate layout scheme. Through joint angles to describe operating posture of upper limb, the joint angles are taken as independent variables to establish the comfort model of operating posture. Factor analysis is adopted to decrease the variable dimension; the model's input variables are reduced from 16 joint angles to 4 comfort impact factors, and the output variable is operating comfort score. The Chinese virtual human body model is built by CATIA software, which will be used to simulate and evaluate the operators' operating comfort. With 22 groups of evaluation data as training sample and validation sample, GEP algorithm is used to obtain the best fitting function between the joint angles and the operating comfort; then, operating comfort can be predicted quantitatively. The operating comfort prediction result of human-machine interface layout of driller control room shows that operating comfort prediction model based on GEP is fast and efficient, it has good prediction effect, and it can improve the design efficiency.

  19. A multiphase electrokinetic flow model for electrolytes with liquid/liquid interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Berry, J.D., E-mail: joe.d.berry@gmail.com; Davidson, M.R., E-mail: m.davidson@unimelb.edu.au; Harvie, D.J.E., E-mail: daltonh@unimelb.edu.au

    2013-10-15

    A numerical model for electrokinetic flow of multiphase systems with deformable interfaces is presented, based on a combined level set-volume of fluid technique. A new feature is a multiphase formulation of the Nernst–Planck transport equation for advection, diffusion and conduction of individual charge carrier species that ensures their conservation in each fluid phase. The numerical model is validated against the analytical results of Zholkovskij et al. (2002) [1], and results for the problem of two drops coalescing in the presence of mobile charge carriers are presented. The time taken for two drops containing ions to coalesce decreases with increasing ion concentration.

  20. Safety risks associated with the lack of integration and interfacing of hospital health information technologies: a qualitative study of hospital electronic prescribing systems in England.

    Science.gov (United States)

    Cresswell, Kathrin M; Mozaffar, Hajar; Lee, Lisa; Williams, Robin; Sheikh, Aziz

    2017-07-01

    Substantial sums of money are being invested worldwide in health information technology. Realising benefits and mitigating safety risks is however highly dependent on effective integration of information within systems and/or interfacing to allow information exchange across systems. As part of an English programme of research, we explored the social and technical challenges relating to integration and interfacing experienced by early adopter hospitals of standalone and hospital-wide multimodular integrated electronic prescribing (ePrescribing) systems. We collected longitudinal qualitative data from six hospitals, which we conceptualised as case studies. We conducted 173 interviews with users, implementers and software suppliers (at up to three different times), 24 observations of system use and strategic meetings, 17 documents relating to implementation plans, and 2 whole-day expert round-table discussions. Data were thematically analysed initially within and then across cases, drawing on perspectives surrounding information infrastructures. We observed that integration and interfacing problems obstructed effective information transfer in both standalone and multimodular systems, resulting in threats to patient safety emerging from the lack of availability of timely information and duplicate data entry. Interfacing problems were immediately evident in some standalone systems where users had to cope with multiple log-ins, and this did not attenuate over time. Multimodular systems appeared at first sight to obviate such problems. However, with these systems, there was a perceived lack of data coherence across modules resulting in challenges in presenting a comprehensive overview of the patient record, this possibly resulting from the piecemeal implementation of modules with different functionalities. Although it was possible to access data from some primary care systems, we found poor two-way transfer of data between hospitals and primary care necessitating

  1. A visual retrieval environment for hypermedia information system

    Energy Technology Data Exchange (ETDEWEB)

    Lucarella, D; Zanzi, A [ENEL s.p.a., Centro Ricerca di Automatica, Cologno Monzese, Milan (Italy)

    1995-03-01

    The authors a graph-based object model that may be used as a uniform framework for direct manipulation of multimedia information. After an introduction motivating the need for abstraction and structuring mechanisms in hypermedia systems, the authors introduce the data model and the notion of perspective, a form of data abstraction that acts as a user interface to the system, providing control over the visibility of the objects and their properties. A perspective is defined to include an intention and an extension. The authors present a visual retrieval environment that effectively combines filtering, browsing, and navigation to provide an integrated view of the retrieval problem. Design and implementation issues are outlined for MORE (Multimedia Object Retrieval Environment), a prototype system relying on the proposed model. The focus is on the main user interface functionalities, and actual interaction sessions are presented including schema creation, information loading, and information retrieval

  2. HOPE information system review

    Science.gov (United States)

    Suzuki, Yoshiaki; Nishiyama, Kenji; Ono, Shuuji; Fukuda, Kouin

    1992-08-01

    An overview of the review conducted on H-2 Orbiting Plane (HOPE) is presented. A prototype model was constructed by inputting various technical information proposed by related laboratories. Especially operation flow which enables understanding of correlation between various analysis items, judgement criteria, technical data, and interfaces with others was constructed. Technical information data base and retrieval systems were studied. A Macintosh personal computer was selected for information shaping because of its excellent function, performance, operability, and software completeness.

  3. A fuzzy linguistic interface for data bases in nuclear safety problems

    International Nuclear Information System (INIS)

    Lyapin, B.; Ryjov, A.; Moscow Univ.

    1994-01-01

    This work describes the idea of a fuzzy linguistic interface for large-scale data bases, allowing to effectively handle a large amount of information. This effect is reached by providing an opportunity to search information on the basis of generalised concepts, or in other words, linguistic descriptions. These concepts are formulated by the user in natural language, and modelled by fuzzy sets, defined on the universe of the significances of the characteristics of the data base objects

  4. Towards a real-time interface between a biomimetic model of sensorimotor cortex and a robotic arm

    OpenAIRE

    Dura-Bernal, Salvador; Chadderdon, George L; Neymotin, Samuel A; Francis, Joseph T; Lytton, William W

    2014-01-01

    Brain-machine interfaces can greatly improve the performance of prosthetics. Utilizing biomimetic neuronal modeling in brain machine interfaces (BMI) offers the possibility of providing naturalistic motor-control algorithms for control of a robotic limb. This will allow finer control of a robot, while also giving us new tools to better understand the brain’s use of electrical signals. However, the biomimetic approach presents challenges in integrating technologies across multiple hardware and...

  5. Modelling of the flow in the interface of a composite liner at the bottom of a municipal waste landfill

    International Nuclear Information System (INIS)

    Cartaud, F.

    2004-11-01

    Composite liner at the bottom of waste landfill is based, in France, on a geo-membrane overlapping a compacted clay liner. Defects exist in geo-membranes and leachates, provided by water percolation through the waste, then flow in the interface between the two components of the lining system. The present work consisted in analysis, quantification and modelling of the leakage process in the interface. The experimental study has been carried out on a one-meter scale device in laboratory and allowed to assess the role of normal stress on the flow rate in interface. The case where a geo-textile is present beneath the geo-membrane has been also studied. The modelling allows to take into account more accurately the geometry of the interface and ensures a better quantification of leachate flow rates than using existing methods. (author)

  6. Modelling of multicomponent diffusion in a two-phase oxide-metal corium pool by a diffuse interface method

    International Nuclear Information System (INIS)

    Cardon, Clement

    2016-01-01

    This Ph.D. topic is focused on the modelling of stratification kinetics for an oxide-metal corium pool (U-O-Zr-steel system) in terms of multicomponent and multiphase diffusion. This work is part of a larger research effort for the development of a detailed corium pool modelling based on a CFD approach for thermal hydraulics. The overall goal is to improve the understanding of the involved phenomena and obtain closure laws for integral macroscopic models. The phase-field method coupled with an energy functional using the CALPHAD method appears to be relevant for this purpose. In a first part, we have developed a diffuse interface model in order to describe the diffusion process in the U-O system. This model has been coupled with a CALPHAD thermodynamic database and its parameterization has been developed with, in particular, an up-scaling procedure related to the interface thickness. Then, within the framework of a modelling for the U-O-Zr ternary system, we have proposed a generalization of the diffuse interface model through an assumption of local equilibrium for redox mechanisms. A particular attention was paid to the model analysis by 1D numerical simulations with a special focus on the steady state composition profiles. Finally we have applied this model to the U-O-Zr-Fe system. For that purpose, we have considered a configuration close to small-scale experimental tests of oxide-metal corium pool stratification. (author) [fr

  7. Properties of the In{sub 2}O{sub 3}-Si interface: An ab initio study of a model geometry

    Energy Technology Data Exchange (ETDEWEB)

    Höffling, Benjamin; Bechstedt, Friedhelm [Institut für Festkörpertheorie und -optik, Friedrich-Schiller-Universität and European Theoretical Spectroscopy Facility (ETSF), Max-Wien-Platz 1, 07743 Jena (Germany)

    2014-05-15

    The In{sub 2}O{sub 3}(001)-Si(001) heterojunction is studied by means of the ab initio density functional theory, quasiparticle corrections, and the supercell method. We construct a model interface based on the idea of a coincidence lattice, only Si-O interface bonds and biaxially strained In{sub 2}O{sub 3}. The properties of the interface and their consequences for the junction are mainly described in terms of electronic band levels and charge redistribution. The results indicate a type II heterostructure caused by interface dipole alteration due to electron rearrangements.

  8. Nonequilibrium pressurizer model; Model za neravnotezne uslove u sudu za odrzavanje pritiska

    Energy Technology Data Exchange (ETDEWEB)

    Stevanovic, V; Studovic, M [masinski fakultet, Beograd (Yugoslavia)

    1984-07-01

    The paper represents a nonequilibrium pressurizer model developed at the Faculty of Mechanical engineering as a sub model of complete NSSS model for predicting behaviour of corresponding components under transient conditions. Apart from other approaches, developed model was started with assumption that governing processes in pressurizer behaviour are interfaces heat and mass transfer processes. Such procedure has difficulties with information about values of interfaces and thermodynamic potential for mass and energy transfer across interfaces, during thermodynamic nonequilibrium state of vapour and liquid. To overcome these difficulties it was introduced the mass and energy parameters which successfully solve this problem. The model was verified with several analytical and experimental results. (author)

  9. Pygrass: An Object Oriented Python Application Programming Interface (API for Geographic Resources Analysis Support System (GRASS Geographic Information System (GIS

    Directory of Open Access Journals (Sweden)

    Marco Ciolli

    2013-03-01

    Full Text Available PyGRASS is an object-oriented Python Application Programming Interface (API for Geographic Resources Analysis Support System (GRASS Geographic Information System (GIS, a powerful open source GIS widely used in academia, commercial settings and governmental agencies. We present the architecture of the PyGRASS library, covering interfaces to GRASS modules, vector and raster data, with a focus on the new capabilities that it provides to GRASS users and developers. Our design concept of the module interface allows the direct linking of inputs and outputs of GRASS modules to create process chains, including compatibility checks, process control and error handling. The module interface was designed to be easily extended to work with remote processing services (Web Processing Service (WPS, Web Service Definition Language (WSDL/Simple Object Access Protocol (SOAP. The new object-oriented Python programming API introduces an abstract layer that opens the possibility to use and access transparently the efficient raster and vector functions of GRASS that are implemented in C. The design goal was to provide an easy to use, but powerful, Python interface for users and developers who are not familiar with the programming language C and with the GRASS C-API. We demonstrate the capabilities, scalability and performance of PyGRASS with several dedicated tests and benchmarks. We compare and discuss the results of the benchmarks with dedicated C implementations.

  10. Modelling of nanoscale multi-gate transistors affected by atomistic interface roughness

    Science.gov (United States)

    Nagy, Daniel; Aldegunde, Manuel; Elmessary, Muhammad A.; García-Loureiro, Antonio J.; Seoane, Natalia; Kalna, Karol

    2018-04-01

    Interface roughness scattering (IRS) is one of the major scattering mechanisms limiting the performance of non-planar multi-gate transistors, like Fin field-effect transistors (FETs). Here, two physical models (Ando’s and multi-sub-band) of electron scattering with the interface roughness induced potential are investigated using an in-house built 3D finite element ensemble Monte Carlo simulation toolbox including parameter-free 2D Schrödinger equation quantum correction that handles all relevant scattering mechanisms within highly non-equilibrium carrier transport. Moreover, we predict the effect of IRS on performance of FinFETs with realistic channel cross-section shapes with respect to the IRS correlation length (Λ) and RMS height (Δ_RMS ). The simulations of the n-type SOI FinFETs with the multi-sub-band IRS model shows its very strong effect on electron transport in the device channel compared to the Ando’s model. We have also found that the FinFETs are strongly affected by the IRS in the ON-region. The limiting effect of the IRS significantly increases as the Fin width is reduced. The FinFETs with channel orientation are affected more by the IRS than those with the crystal orientation. Finally, Λ and Δ_RMS are shown to affect the device performance similarly. A change in values by 30% (Λ) or 20% (Δ_RMS ) results in an increase (decrease) of up to 13% in the drive current.

  11. User Interface Cultures of Mobile Knowledge Workers

    Directory of Open Access Journals (Sweden)

    Petri Mannonen

    2008-10-01

    Full Text Available Information and communication tools (ICTs have become a major influencer of how modern work is carried out. Methods of user-centered design do not however take into account the full complexity of technology and the user interface context the users live in. User interface culture analysis aims providing to designers new ways and strategies to better take into account the current user interface environment when designing new products. This paper describes the reasons behind user interface culture analysis and shows examples of its usage when studying mobile and distributed knowledge workers.

  12. Multi-scale diffuse interface modeling of multi-component two-phase flow with partial miscibility

    KAUST Repository

    Kou, Jisheng; Sun, Shuyu

    2016-01-01

    In this paper, we introduce a diffuse interface model to simulate multi-component two-phase flow with partial miscibility based on a realistic equation of state (e.g. Peng-Robinson equation of state). Because of partial miscibility, thermodynamic

  13. Nurses perceptions of a user friendly interface

    OpenAIRE

    Alshafai, Fatimah

    2017-01-01

    Introduction: The successful implementation of clinical information systems depends to a large extent on its usability. Usability can be achieved by a strong focus on interface quality. With a focus on improving the quality of patient care, growing numbers of clinical information systems have been advertised as being "user-friendly". However, the term "user-friendly" may not be quite accurate and in some circumstances could be misleading. Within a clinical setting, an interface designed as ea...

  14. 200 Area TEDF interface control document

    Energy Technology Data Exchange (ETDEWEB)

    Brown, M.J.; Hildebrand, R.A.

    1994-11-15

    Because the TEDF does not have any treatment or retention capacity, strict control at the generator interface is essential to operate the TEDF in compliance with good engineering practices, Hanford site requirements, and the 216 Discharge Permit. The information in the Interface Control Document (ICD) forms the basis of understanding between all parties involved in the TEDF; DOE, WHC, and the generating facilities. The ICD defines the controlling document hierarchy; LEF, and generator responsibilities; monitoring and sampling requirements; and specifies the TEDF/Generator Interface points.

  15. 200 Area TEDF interface control document

    International Nuclear Information System (INIS)

    Brown, M.J.; Hildebrand, R.A.

    1994-01-01

    Because the TEDF does not have any treatment or retention capacity, strict control at the generator interface is essential to operate the TEDF in compliance with good engineering practices, Hanford site requirements, and the 216 Discharge Permit. The information in the Interface Control Document (ICD) forms the basis of understanding between all parties involved in the TEDF; DOE, WHC, and the generating facilities. The ICD defines the controlling document hierarchy; LEF, and generator responsibilities; monitoring and sampling requirements; and specifies the TEDF/Generator Interface points

  16. Towards Molecular Characterization of Mineral-Organic Matter Interface Using In Situ Liquid Secondary Ion Mass Spectrometry

    Science.gov (United States)

    Zhu, Z.; Yu, X. Y.

    2017-12-01

    Organo-Mineral-Microbe interactions in terrestrial ecosystems are of great interest. Quite a few models have been developed through extensive efforts in this field. However, predictions from current models are far from being accurate, and many debates still exist. One of the major reasons is that most experimental data generated from bulk analysis, and the information of molecular dynamics occurring at mineral-organic matter interface is rare. Such information has been difficult to obtain, due to lack of suitable in situ analysis tools. Recently, we have developed in situ liquid secondary ion mass spectrometry (SIMS) at Pacific Northwest National Laboratory1, and it has shown promise to provide both elemental and molecular information at vacuum-liquid and solid-liquid interfaces.2 In this presentation, we demonstrate that in situ liquid SIMS can provide critical molecular information at solid substrate-live biofilm interface.3 Shewanella oneidensis is used as a model micro-organism and silicon nitride as a model mineral surface. Of particular interest, biologically relevant water clusters have been first observed in the living biofilms. Characteristic fragments of biofilm matrix components such as proteins, polysaccharides, and lipids can be molecularly examined. Furthermore, characteristic fatty acids (e.g., palmitic acid), quinolone signal, and riboflavin fragments were found to respond after the biofilm is treated with Cr(VI), leading to biofilm dispersal. Significant changes in water clusters and quorum sensing signals indicative of intercellular communication in the aqueous environment were observed, suggesting that they might result in fatty acid synthesis and inhibition of riboflavin production. The Cr(VI) reduction seems to follow the Mtr pathway leading to Cr(III) formation. Our approach potentially opens a new avenue for in-situ understanding of mineral-organo or mineral-microbe interfaces using in situ liquid SIMS and super resolution fluorescence

  17. Modeling the Charge Transport in Graphene Nano Ribbon Interfaces for Nano Scale Electronic Devices

    Science.gov (United States)

    Kumar, Ravinder; Engles, Derick

    2015-05-01

    In this research work we have modeled, simulated and compared the electronic charge transport for Metal-Semiconductor-Metal interfaces of Graphene Nano Ribbons (GNR) with different geometries using First-Principle calculations and Non-Equilibrium Green's Function (NEGF) method. We modeled junctions of Armchair GNR strip sandwiched between two Zigzag strips with (Z-A-Z) and Zigzag GNR strip sandwiched between two Armchair strips with (A-Z-A) using semi-empirical Extended Huckle Theory (EHT) within the framework of Non-Equilibrium Green Function (NEGF). I-V characteristics of the interfaces were visualized for various transport parameters. The distinct changes in conductance and I-V curves reported as the Width across layers, Channel length (Central part) was varied at different bias voltages from -1V to 1 V with steps of 0.25 V. From the simulated results we observed that the conductance through A-Z-A graphene junction is in the range of 10-13 Siemens whereas the conductance through Z-A-Z graphene junction is in the range of 10-5 Siemens. These suggested conductance controlled mechanisms for the charge transport in the graphene interfaces with different geometries is important for the design of graphene based nano scale electronic devices like Graphene FETs, Sensors.

  18. Language workbench user interfaces for data analysis

    Directory of Open Access Journals (Sweden)

    Victoria M. Benson

    2015-02-01

    Full Text Available Biological data analysis is frequently performed with command line software. While this practice provides considerable flexibility for computationally savy individuals, such as investigators trained in bioinformatics, this also creates a barrier to the widespread use of data analysis software by investigators trained as biologists and/or clinicians. Workflow systems such as Galaxy and Taverna have been developed to try and provide generic user interfaces that can wrap command line analysis software. These solutions are useful for problems that can be solved with workflows, and that do not require specialized user interfaces. However, some types of analyses can benefit from custom user interfaces. For instance, developing biomarker models from high-throughput data is a type of analysis that can be expressed more succinctly with specialized user interfaces. Here, we show how Language Workbench (LW technology can be used to model the biomarker development and validation process. We developed a language that models the concepts of Dataset, Endpoint, Feature Selection Method and Classifier. These high-level language concepts map directly to abstractions that analysts who develop biomarker models are familiar with. We found that user interfaces developed in the Meta-Programming System (MPS LW provide convenient means to configure a biomarker development project, to train models and view the validation statistics. We discuss several advantages of developing user interfaces for data analysis with a LW, including increased interface consistency, portability and extension by language composition. The language developed during this experiment is distributed as an MPS plugin (available at http://campagnelab.org/software/bdval-for-mps/.

  19. Language workbench user interfaces for data analysis

    Science.gov (United States)

    Benson, Victoria M.

    2015-01-01

    Biological data analysis is frequently performed with command line software. While this practice provides considerable flexibility for computationally savy individuals, such as investigators trained in bioinformatics, this also creates a barrier to the widespread use of data analysis software by investigators trained as biologists and/or clinicians. Workflow systems such as Galaxy and Taverna have been developed to try and provide generic user interfaces that can wrap command line analysis software. These solutions are useful for problems that can be solved with workflows, and that do not require specialized user interfaces. However, some types of analyses can benefit from custom user interfaces. For instance, developing biomarker models from high-throughput data is a type of analysis that can be expressed more succinctly with specialized user interfaces. Here, we show how Language Workbench (LW) technology can be used to model the biomarker development and validation process. We developed a language that models the concepts of Dataset, Endpoint, Feature Selection Method and Classifier. These high-level language concepts map directly to abstractions that analysts who develop biomarker models are familiar with. We found that user interfaces developed in the Meta-Programming System (MPS) LW provide convenient means to configure a biomarker development project, to train models and view the validation statistics. We discuss several advantages of developing user interfaces for data analysis with a LW, including increased interface consistency, portability and extension by language composition. The language developed during this experiment is distributed as an MPS plugin (available at http://campagnelab.org/software/bdval-for-mps/). PMID:25755929

  20. Modelling of planar interface elastic behaviour: Application to grain boundaries in polycrystals

    International Nuclear Information System (INIS)

    Gelebart, L.

    2010-01-01

    In polycrystalline elastic simulations, grain boundaries can be considered as volume inter-phases or as elastic interfaces assuming a displacement jump across the interface. Such an interface description does not account for the in-plane deformation of the interface and Poisson effects cannot be reproduced. The purpose of this Note is to provide an enriched description of the elastic interface which takes into account such effects. When considering a multilayer material, the interphase description and the enriched interface description yield identical homogenized behaviour while quite important discrepancies can be observed with the classical interface description. (author)

  1. Evaluation of technical design of advanced information display

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Woo Chang; Kang, Young Ju; Ji, Jung Hun; Jang, Sung Pil; Jung, Sung Hae [Kumoh National Institute of Technology, Gumi (Korea, Republic of)

    2003-03-15

    The performance of human machine system such as nuclear power plant is highly dependent on the suitability of the interface design of the system. As the computer technology is highly developed, the mental model of computer users including NPP operators has been changed from analogue display type-based stereotype to digitalized one. Therefore, it is necessary and confident to consider the issues to evaluate system suitability of advanced information display on CRT or CBP (Computer Based Procedure). This document is intended for providing an updated and expanded set of user-interface guidelines that meet the needs of designing information display on CRT by finding the generic guidelines involving information display design issues as much as possible. The design Issues and resolutions from the finding may provide the cues for the designers and evaluators of the specific man machine interfaces of digitalized devices.

  2. Evaluation of technical design of advanced information display

    International Nuclear Information System (INIS)

    Cha, Woo Chang; Kang, Young Ju; Ji, Jung Hun; Jang, Sung Pil; Jung, Sung Hae

    2003-03-01

    The performance of human machine system such as nuclear power plant is highly dependent on the suitability of the interface design of the system. As the computer technology is highly developed, the mental model of computer users including NPP operators has been changed from analogue display type-based stereotype to digitalized one. Therefore, it is necessary and confident to consider the issues to evaluate system suitability of advanced information display on CRT or CBP (Computer Based Procedure). This document is intended for providing an updated and expanded set of user-interface guidelines that meet the needs of designing information display on CRT by finding the generic guidelines involving information display design issues as much as possible. The design Issues and resolutions from the finding may provide the cues for the designers and evaluators of the specific man machine interfaces of digitalized devices

  3. A Function-Behavior-State Approach to Designing Human Machine Interface for Nuclear Power Plant Operators

    Science.gov (United States)

    Lin, Y.; Zhang, W. J.

    2005-02-01

    This paper presents an approach to human-machine interface design for control room operators of nuclear power plants. The first step in designing an interface for a particular application is to determine information content that needs to be displayed. The design methodology for this step is called the interface design framework (called framework ). Several frameworks have been proposed for applications at varying levels, including process plants. However, none is based on the design and manufacture of a plant system for which the interface is designed. This paper presents an interface design framework which originates from design theory and methodology for general technical systems. Specifically, the framework is based on a set of core concepts of a function-behavior-state model originally proposed by the artificial intelligence research community and widely applied in the design research community. Benefits of this new framework include the provision of a model-based fault diagnosis facility, and the seamless integration of the design (manufacture, maintenance) of plants and the design of human-machine interfaces. The missing linkage between design and operation of a plant was one of the causes of the Three Mile Island nuclear reactor incident. A simulated plant system is presented to explain how to apply this framework in designing an interface. The resulting human-machine interface is discussed; specifically, several fault diagnosis examples are elaborated to demonstrate how this interface could support operators' fault diagnosis in an unanticipated situation.

  4. Multidimensional Models of Information Need

    OpenAIRE

    Yun-jie (Calvin) Xu; Kai Huang (Joseph) Tan

    2009-01-01

    User studies in information science have recognised relevance as a multidimensional construct. An implication of multidimensional relevance is that a user's information need should be modeled by multiple data structures to represent different relevance dimensions. While the extant literature has attempted to model multiple dimensions of a user's information need, the fundamental assumption that a multidimensional model is better than a uni-dimensional model has not been addressed. This study ...

  5. The APS intranet as a man-machine interface

    International Nuclear Information System (INIS)

    Ciarlette, D.; Gerig, R.; McDowell, W.

    1997-01-01

    The Advanced Photon Source at Argonne National Laboratory has implemented a number of methods for people to interact with the accelerator systems. The accelerator operators use Sun workstations running MEDM and WCL to interface interactively with the accelerator, however, many people need to view information rather than interact with the machine. One of the most common interfaces for viewing information at the Advanced Photon Source is the World Wide Web. Information such as operations logbook entries, machine status updates, and displays of archived and current data are easily available to APS personnel. This interface between people and the accelerator has proven to be quite useful. Because the Intranet is operating-system independent and inherently unidirectional, ensuring the prevention of unauthorized or accidental control of the accelerators is straightforward

  6. Modeling of turbulent flows in porous media and at the interface with a free fluid medium

    International Nuclear Information System (INIS)

    Chandesris, M.

    2006-12-01

    This work deals with the numerical simulation of turbulent flows in the whole nuclear reactor core, using multi-scale approaches. First, a macroscopic turbulence model is built, based on a porous media approach, to describe the flow in the fuel assemblies part of the nuclear core. Then, we study the jump conditions that have to be applied at a free fluid/porous interface. A thorough analytical study is carried out for laminar flows. This study allows to answer some fundamental questions about the physical meaning of the jump conditions, the values of the jump parameters and the location of the interface. Using these results, jump conditions for turbulent flows are proposed. The model is then applied to the simulation of a turbulent flow in a simplified model of a reactor core. (author)

  7. Development and implementation of an electronic interface for complex clinical laboratory instruments without a vendor-provided data transfer interface

    Directory of Open Access Journals (Sweden)

    Gary E Blank

    2011-01-01

    Full Text Available Background: Clinical pathology laboratories increasingly use complex instruments that incorporate chromatographic separation, e.g. liquid chromatography, with mass detection for rapid identification and quantification of biochemicals, biomolecules, or pharmaceuticals. Electronic data management for these instruments through interfaces with laboratory information systems (LIS is not generally available from the instrument manufacturers or LIS vendors. Unavailability of a data management interface is a limiting factor in the use of these instruments in clinical laboratories where there is a demand for high-throughput assays with turn-around times that meet patient care needs. Materials and Methods: Professional society guidelines for design and transfer of data between instruments and LIS were used in the development and implementation of the interface. File transfer protocols and support utilities were written to facilitate transfer of information between the instruments and the LIS. An interface was created for liquid chromatography-tandem mass spectroscopy and inductively coupled plasma-mass spectroscopy instruments to manage data in the Sunquest® LIS. Results: Interface validation, implementation and data transfer fidelity as well as training of technologists for use of the interface was performed by the LIS group. The technologists were familiarized with the data verification process as a part of the data management protocol. The total time for the technologists for patient/control sample data entry, assay results data transfer, and results verification was reduced from approximately 20 s per sample to <1 s per sample. Sample identification, results data entry errors, and omissions were eliminated. There was electronic record of the technologist performing the assay runs and data management. Conclusions: Development of a data management interface for complex, chromatography instruments in clinical laboratories has resulted in rapid, accurate

  8. Conceptual models of information processing

    Science.gov (United States)

    Stewart, L. J.

    1983-01-01

    The conceptual information processing issues are examined. Human information processing is defined as an active cognitive process that is analogous to a system. It is the flow and transformation of information within a human. The human is viewed as an active information seeker who is constantly receiving, processing, and acting upon the surrounding environmental stimuli. Human information processing models are conceptual representations of cognitive behaviors. Models of information processing are useful in representing the different theoretical positions and in attempting to define the limits and capabilities of human memory. It is concluded that an understanding of conceptual human information processing models and their applications to systems design leads to a better human factors approach.

  9. Decoding of grasping information from neural signals recorded using peripheral intrafascicular interfaces.

    Science.gov (United States)

    Micera, Silvestro; Rossini, Paolo M; Rigosa, Jacopo; Citi, Luca; Carpaneto, Jacopo; Raspopovic, Stanisa; Tombini, Mario; Cipriani, Christian; Assenza, Giovanni; Carrozza, Maria C; Hoffmann, Klaus-Peter; Yoshida, Ken; Navarro, Xavier; Dario, Paolo

    2011-09-05

    The restoration of complex hand functions by creating a novel bidirectional link between the nervous system and a dexterous hand prosthesis is currently pursued by several research groups. This connection must be fast, intuitive, with a high success rate and quite natural to allow an effective bidirectional flow of information between the user's nervous system and the smart artificial device. This goal can be achieved with several approaches and among them, the use of implantable interfaces connected with the peripheral nervous system, namely intrafascicular electrodes, is considered particularly interesting. Thin-film longitudinal intra-fascicular electrodes were implanted in the median and ulnar nerves of an amputee's stump during a four-week trial. The possibility of decoding motor commands suitable to control a dexterous hand prosthesis was investigated for the first time in this research field by implementing a spike sorting and classification algorithm. The results showed that motor information (e.g., grip types and single finger movements) could be extracted with classification accuracy around 85% (for three classes plus rest) and that the user could improve his ability to govern motor commands over time as shown by the improved discrimination ability of our classification algorithm. These results open up new and promising possibilities for the development of a neuro-controlled hand prosthesis.

  10. Operating Comfort Prediction Model of Human-Machine Interface Layout for Cabin Based on GEP

    Directory of Open Access Journals (Sweden)

    Li Deng

    2015-01-01

    Full Text Available In view of the evaluation and decision-making problem of human-machine interface layout design for cabin, the operating comfort prediction model is proposed based on GEP (Gene Expression Programming, using operating comfort to evaluate layout scheme. Through joint angles to describe operating posture of upper limb, the joint angles are taken as independent variables to establish the comfort model of operating posture. Factor analysis is adopted to decrease the variable dimension; the model’s input variables are reduced from 16 joint angles to 4 comfort impact factors, and the output variable is operating comfort score. The Chinese virtual human body model is built by CATIA software, which will be used to simulate and evaluate the operators’ operating comfort. With 22 groups of evaluation data as training sample and validation sample, GEP algorithm is used to obtain the best fitting function between the joint angles and the operating comfort; then, operating comfort can be predicted quantitatively. The operating comfort prediction result of human-machine interface layout of driller control room shows that operating comfort prediction model based on GEP is fast and efficient, it has good prediction effect, and it can improve the design efficiency.

  11. First-principles modeling of interfaces between solids with large lattice mismatch: The prototypical CoO(111)/Ni(111) interface

    KAUST Repository

    Grytsiuk, Sergii

    2012-11-28

    In this work we investigate the CoO(111)/Ni(111) interface by first-principles calculations, focusing on its structure and stability. To satisfy the approximate 5:6 ratio of the CoO and Ni lattice constants, we construct a supercell with 5×5 Co (O) and 6×6 Ni atoms per layer in the bulk regions. For the interface Ni layer and the adjacent Ni layer we consider different configurations and study the binding energy. We show for an ideal CoO interface terminated by 5×5 O atoms that the structure is more stable if there are 5×5 Ni atoms next to it instead of 6×6 as in the bulk. In addition, we observe that a transition layer with 31 or 33 Ni atoms located between the interface 5×5 Ni and bulk 6×6 Ni layers (which partially reflects the structures of both these layers) enhances the stability of the CoO/Ni interface. The electronic and magnetic modifications induced by the interface formation are discussed.

  12. First-principles modeling of interfaces between solids with large lattice mismatch: The prototypical CoO(111)/Ni(111) interface

    KAUST Repository

    Grytsyuk, Sergiy; Peskov, Maxim; Schwingenschlö gl, Udo

    2012-01-01

    In this work we investigate the CoO(111)/Ni(111) interface by first-principles calculations, focusing on its structure and stability. To satisfy the approximate 5:6 ratio of the CoO and Ni lattice constants, we construct a supercell with 5×5 Co (O) and 6×6 Ni atoms per layer in the bulk regions. For the interface Ni layer and the adjacent Ni layer we consider different configurations and study the binding energy. We show for an ideal CoO interface terminated by 5×5 O atoms that the structure is more stable if there are 5×5 Ni atoms next to it instead of 6×6 as in the bulk. In addition, we observe that a transition layer with 31 or 33 Ni atoms located between the interface 5×5 Ni and bulk 6×6 Ni layers (which partially reflects the structures of both these layers) enhances the stability of the CoO/Ni interface. The electronic and magnetic modifications induced by the interface formation are discussed.

  13. Evolution of the argillite / CEM I interface at 70 C.: in situ tests and modelling results

    International Nuclear Information System (INIS)

    Lalan, P.; Dauzeres, A.; Barker, E.; De Windt, L.; Detilleux, V.; Desveaux, P.

    2015-01-01

    French radioactive waste disposal concept involves cementitious materials in a clayey host-rock. The presence of exothermic wastes in the storage cells may induce a temperature of about 70 Celsius degrees at the material interfaces. At present, experiment thermal conditions have been undertaken at about 20 C. degrees and studies at higher temperature are really scarce, especially experiments considering diffusion through the cement / clay interface. The still on-going study presented here is focusing on argillite / CEM-I interface. A one-year experiment under in situ conditions at the Tournemire experimental station (IRSN) was carried out and meanwhile, preliminary reactive transport modelling with HYTEC helped to understand the impact of a high temperature on the physico-chemical behaviour of cement / clay interface. The first results showed decalcification of cement and diffuse carbonation as well as a possible illite precipitation of clay-type phases. A C-S-H ribbon appeared at the interface between the two materials and a layer grew between the C-S-H ribbon and the cementitious material. This layer contained zeolites and behaved as a diffusive barrier. After one year of in situ interactions, the disturbance thickness was about 350 microns in CEM-I cement paste and about 100 microns in argillite. The modelling reproduced relatively well the experimentally observed processes but the extension of the disturbance is too wide and the zeolite layer is misplaced according to the experimental observations. This study highlights the lack of data at highest temperature on the reaction kinetics, diffusion coefficients but also on porosity variations. (authors)

  14. Direct experimental determination of the atomic structure at internal interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Browning, N.D. [Oak Ridge National Lab., TN (United States)]|[Illinois Univ., Chicago, IL (United States); Pennycook, S.J. [Oak Ridge National Lab., TN (United States)

    1995-07-01

    A crucial first step in understanding the effect that internal interfaces have on the properties of materials is the ability to determine the atomic structure at the interface. As interfaces can contain atomic disorder, dislocations, segregated impurities and interphases, sensitivity to all of these features is essential for complete experimental characterization. By combining Z-contrast imaging and electron energy loss spectroscopy (EELS) in a dedicated scanning transmission electron microscope (STEM), the ability to probe the structure, bonding and composition at interfaces with the necessary atomic resolution has been obtained. Experimental conditions can be controlled to provide, simultaneously, both incoherent imaging and spectroscopy. This enables interface structures observed in the image to be interpreted intuitively and the bonding in a specified atomic column to be probed directly by EELS. The bonding and structure information can then be correlated using bond-valence sum analysis to produce structural models. This technique is demonstrated for 25{degrees}, 36{degrees} and 67{degrees} symmetric and 45{degrees} and 25{degrees} asymmetric [001] tilt grain boundaries in SrTiO{sub 3} The structures of both types of boundary were found to contain partially occupied columns in the boundary plane. From these experimental results, a series of structural units were identified which could be combined, using continuity of gain boundary structure principles, to construct all [001] tilt boundaries in SrTiO{sub 3}. Using these models, the ability of this technique to address the issues of vacancies and dopant segregation at grain boundaries in electroceramics is discussed.

  15. Phase constitution and interface structure of nano-sized Ag-Cu/AlN multilayers: Experiment and ab initio modeling

    Energy Technology Data Exchange (ETDEWEB)

    Pigozzi, Giancarlo; Janczak-Rusch, Jolanta; Passerone, Daniele; Antonio Pignedoli, Carlo; Patscheider, Joerg; Jeurgens, Lars P. H. [Empa, Swiss Federal Laboratories for Materials Science and Technology, Ueberlandstrasse 129, CH-8600 Duebendorf (Switzerland); Antusek, Andrej [Empa, Swiss Federal Laboratories for Materials Science and Technology, Ueberlandstrasse 129, CH-8600 Duebendorf (Switzerland); Faculty of Materials Science and Technology, Slovak University of Technology in Bratislava, Paulinska 16, 917 24 Trnava (Slovakia); Parlinska-Wojtan, Magdalena [Empa, Swiss Federal Laboratories for Materials Science and Technology, Ueberlandstrasse 129, CH-8600 Duebendorf (Switzerland); University of Rzeszow, Institute of Physics, ul. Rejtana 16a, 35-959 Rzeszow (Poland); Bissig, Vinzenz [Kirsten Soldering AG, Hinterbergstrasse 32, CH-6330 Cham (Switzerland)

    2012-10-29

    Nano-sized Ag-Cu{sub 8nm}/AlN{sub 10nm} multilayers were deposited by reactive DC sputtering on {alpha}-Al{sub 2}O{sub 3}(0001) substrates. Investigation of the phase constitution and interface structure of the multilayers evidences a phase separation of the alloy sublayers into nanosized grains of Ag and Cu. The interfaces between the Ag grains and the quasi-single-crystalline AlN sublayers are semi-coherent, whereas the corresponding Cu/AlN interfaces are incoherent. The orientation relationship between Ag and AlN is constant throughout the entire multilayer stack. These observations are consistent with atomistic models of the interfaces as obtained by ab initio calculations.

  16. A user-friendly mathematical modelling web interface to assist local decision making in the fight against drug-resistant tuberculosis.

    Science.gov (United States)

    Ragonnet, Romain; Trauer, James M; Denholm, Justin T; Marais, Ben J; McBryde, Emma S

    2017-05-30

    Multidrug-resistant and rifampicin-resistant tuberculosis (MDR/RR-TB) represent an important challenge for global tuberculosis (TB) control. The high rates of MDR/RR-TB observed among re-treatment cases can arise from diverse pathways: de novo amplification during initial treatment, inappropriate treatment of undiagnosed MDR/RR-TB, relapse despite appropriate treatment, or reinfection with MDR/RR-TB. Mathematical modelling allows quantification of the contribution made by these pathways in different settings. This information provides valuable insights for TB policy-makers, allowing better contextualised solutions. However, mathematical modelling outputs need to consider local data and be easily accessible to decision makers in order to improve their usefulness. We present a user-friendly web-based modelling interface, which can be used by people without technical knowledge. Users can input their own parameter values and produce estimates for their specific setting. This innovative tool provides easy access to mathematical modelling outputs that are highly relevant to national TB control programs. In future, the same approach could be applied to a variety of modelling applications, enhancing local decision making.

  17. Virtual interface environment workstations

    Science.gov (United States)

    Fisher, S. S.; Wenzel, E. M.; Coler, C.; Mcgreevy, M. W.

    1988-01-01

    A head-mounted, wide-angle, stereoscopic display system controlled by operator position, voice and gesture has been developed at NASA's Ames Research Center for use as a multipurpose interface environment. This Virtual Interface Environment Workstation (VIEW) system provides a multisensory, interactive display environment in which a user can virtually explore a 360-degree synthesized or remotely sensed environment and can viscerally interact with its components. Primary applications of the system are in telerobotics, management of large-scale integrated information systems, and human factors research. System configuration, research scenarios, and research directions are described.

  18. Structure and chemical composition of layers adsorbed at interfaces with champagne.

    Science.gov (United States)

    Aguié-Béghin, V; Adriaensen, Y; Péron, N; Valade, M; Rouxhet, P; Douillard, R

    2009-11-11

    The structure and the chemical composition of the layer adsorbed at interfaces involving champagne have been investigated using native champagne, as well as ultrafiltrate (UFch) and ultraconcentrate (UCch) obtained by ultrafiltration with a 10(4) nominal molar mass cutoff. The layer adsorbed at the air/liquid interface was examined by surface tension and ellipsometry kinetic measurements. Brewster angle microscopy demonstrated that the layer formed on polystyrene by adsorption or drop evaporation was heterogeneous, with a domain structure presenting similarities with the layer adsorbed at the air/liquid interface. The surface chemical composition of polystyrene with the adlayer was determined by X-ray photoelectron spectroscopy (XPS). The contribution of champagne constituents varied according to the liquid (native, UFch, and UCch) and to the procedure of adlayer formation (evaporation, adsorption, and adsorption + rinsing). However, their chemical composition was not significantly influenced either by ultrafiltration or by the procedure of deposition on polystyrene. Modeling this composition in terms of classes of model compounds gave approximately 35% (w/w) of proteins and 65% (w/w) of polysaccharides. In the adlayer, the carboxyl groups or esters represent about 18% of carbon due to nonpolypeptidic compounds, indicating the presence of either uronic acids in the complex structure of pectic polysaccharides or of polyphenolic esters. This structural and chemical information and its relationship with the experimental procedures indicate that proteins alone cannot be used as a realistic model for the macromolecules forming the adsorption layer of champagne. Polysaccharides, the other major macromolecular components of champagne wine, are assembled with proteins at the interfaces, in agreement with the heterogeneous character of the adsorbed layer at interfaces.

  19. Interface of the polarizable continuum model of solvation with semi-empirical methods in the GAMESS program.

    Directory of Open Access Journals (Sweden)

    Casper Steinmann

    Full Text Available An interface between semi-empirical methods and the polarized continuum model (PCM of solvation successfully implemented into GAMESS following the approach by Chudinov et al (Chem. Phys. 1992, 160, 41. The interface includes energy gradients and is parallelized. For large molecules such as ubiquitin a reasonable speedup (up to a factor of six is observed for up to 16 cores. The SCF convergence is greatly improved by PCM for proteins compared to the gas phase.

  20. SPATIALLY EXPLICIT MICRO-LEVEL MODELLING OF LAND USE CHANGE AT THE RURAL-URBAN INTERFACE. (R828012)

    Science.gov (United States)

    This paper describes micro-economic models of land use change applicable to the rural–urban interface in the US. Use of a spatially explicit micro-level modelling approach permits the analysis of regional patterns of land use as the aggregate outcomes of many, disparate...

  1. Interface learning

    DEFF Research Database (Denmark)

    Thorhauge, Sally

    2014-01-01

    "Interface learning - New goals for museum and upper secondary school collaboration" investigates and analyzes the learning that takes place when museums and upper secondary schools in Denmark work together in local partnerships to develop and carry out school-related, museum-based coursework...... for students. The research focuses on the learning that the students experience in the interface of the two learning environments: The formal learning environment of the upper secondary school and the informal learning environment of the museum. Focus is also on the learning that the teachers and museum...... professionals experience as a result of their collaboration. The dissertation demonstrates how a given partnership’s collaboration affects the students’ learning experiences when they are doing the coursework. The dissertation presents findings that museum-school partnerships can use in order to develop...

  2. Standards for the user interface - Developing a user consensus. [for Space Station Information System

    Science.gov (United States)

    Moe, Karen L.; Perkins, Dorothy C.; Szczur, Martha R.

    1987-01-01

    The user support environment (USE) which is a set of software tools for a flexible standard interactive user interface to the Space Station systems, platforms, and payloads is described in detail. Included in the USE concept are a user interface language, a run time environment and user interface management system, support tools, and standards for human interaction methods. The goals and challenges of the USE are discussed as well as a methodology based on prototype demonstrations for involving users in the process of validating the USE concepts. By prototyping the key concepts and salient features of the proposed user interface standards, the user's ability to respond is greatly enhanced.

  3. The Information Warfare Life Cycle Model

    Directory of Open Access Journals (Sweden)

    Brett van Niekerk

    2011-11-01

    Full Text Available Information warfare (IW is a dynamic and developing concept, which constitutes a number of disciplines. This paper aims to develop a life cycle model for information warfare that is applicable to all of the constituent disciplines. The model aims to be scalable and applicable to civilian and military incidents where information warfare tactics are employed. Existing information warfare models are discussed, and a new model is developed from the common aspects of these existing models. The proposed model is then applied to a variety of incidents to test its applicability and scalability. The proposed model is shown to be applicable to multiple disciplines of information warfare and is scalable, thus meeting the objectives of the model.

  4. The Information Warfare Life Cycle Model

    Directory of Open Access Journals (Sweden)

    Brett van Niekerk

    2011-03-01

    Full Text Available Information warfare (IW is a dynamic and developing concept, which constitutes a number of disciplines. This paper aims to develop a life cycle model for information warfare that is applicable to all of the constituent disciplines. The model aims to be scalable and applicable to civilian and military incidents where information warfare tactics are employed. Existing information warfare models are discussed, and a new model is developed from the common aspects of these existing models. The proposed model is then applied to a variety of incidents to test its applicability and scalability. The proposed model is shown to be applicable to multiple disciplines of information warfare and is scalable, thus meeting the objectives of the model.

  5. Modeling biochemical transformation processes and information processing with Narrator.

    Science.gov (United States)

    Mandel, Johannes J; Fuss, Hendrik; Palfreyman, Niall M; Dubitzky, Werner

    2007-03-27

    Software tools that model and simulate the dynamics of biological processes and systems are becoming increasingly important. Some of these tools offer sophisticated graphical user interfaces (GUIs), which greatly enhance their acceptance by users. Such GUIs are based on symbolic or graphical notations used to describe, interact and communicate the developed models. Typically, these graphical notations are geared towards conventional biochemical pathway diagrams. They permit the user to represent the transport and transformation of chemical species and to define inhibitory and stimulatory dependencies. A critical weakness of existing tools is their lack of supporting an integrative representation of transport, transformation as well as biological information processing. Narrator is a software tool facilitating the development and simulation of biological systems as Co-dependence models. The Co-dependence Methodology complements the representation of species transport and transformation together with an explicit mechanism to express biological information processing. Thus, Co-dependence models explicitly capture, for instance, signal processing structures and the influence of exogenous factors or events affecting certain parts of a biological system or process. This combined set of features provides the system biologist with a powerful tool to describe and explore the dynamics of life phenomena. Narrator's GUI is based on an expressive graphical notation which forms an integral part of the Co-dependence Methodology. Behind the user-friendly GUI, Narrator hides a flexible feature which makes it relatively easy to map models defined via the graphical notation to mathematical formalisms and languages such as ordinary differential equations, the Systems Biology Markup Language or Gillespie's direct method. This powerful feature facilitates reuse, interoperability and conceptual model development. Narrator is a flexible and intuitive systems biology tool. It is

  6. Design of Electronic Medical Record User Interfaces: A Matrix-Based Method for Improving Usability

    Directory of Open Access Journals (Sweden)

    Kushtrim Kuqi

    2013-01-01

    Full Text Available This study examines a new approach of using the Design Structure Matrix (DSM modeling technique to improve the design of Electronic Medical Record (EMR user interfaces. The usability of an EMR medication dosage calculator used for placing orders in an academic hospital setting was investigated. The proposed method captures and analyzes the interactions between user interface elements of the EMR system and groups elements based on information exchange, spatial adjacency, and similarity to improve screen density and time-on-task. Medication dose adjustment task time was recorded for the existing and new designs using a cognitive simulation model that predicts user performance. We estimate that the design improvement could reduce time-on-task by saving an average of 21 hours of hospital physicians’ time over the course of a month. The study suggests that the application of DSM can improve the usability of an EMR user interface.

  7. The Development of Web-based Graphical User Interface for Unified Modeling Data with Multi (Correlated) Responses

    Science.gov (United States)

    Made Tirta, I.; Anggraeni, Dian

    2018-04-01

    Statistical models have been developed rapidly into various directions to accommodate various types of data. Data collected from longitudinal, repeated measured, clustered data (either continuous, binary, count, or ordinal), are more likely to be correlated. Therefore statistical model for independent responses, such as Generalized Linear Model (GLM), Generalized Additive Model (GAM) are not appropriate. There are several models available to apply for correlated responses including GEEs (Generalized Estimating Equations), for marginal model and various mixed effect model such as GLMM (Generalized Linear Mixed Models) and HGLM (Hierarchical Generalized Linear Models) for subject spesific models. These models are available on free open source software R, but they can only be accessed through command line interface (using scrit). On the othe hand, most practical researchers very much rely on menu based or Graphical User Interface (GUI). We develop, using Shiny framework, standard pull down menu Web-GUI that unifies most models for correlated responses. The Web-GUI has accomodated almost all needed features. It enables users to do and compare various modeling for repeated measure data (GEE, GLMM, HGLM, GEE for nominal responses) much more easily trough online menus. This paper discusses the features of the Web-GUI and illustrates the use of them. In General we find that GEE, GLMM, HGLM gave very closed results.

  8. The successful implementation of a licensed data management interface between a Sunquest(®) laboratory information system and an AB SCIEX™ mass spectrometer.

    Science.gov (United States)

    French, Deborah; Terrazas, Enrique

    2013-01-01

    Interfacing complex laboratory equipment to laboratory information systems (LIS) has become a more commonly encountered problem in clinical laboratories, especially for instruments that do not have an interface provided by the vendor. Liquid chromatography-tandem mass spectrometry is a great example of such complex equipment, and has become a frequent addition to clinical laboratories. As the testing volume on such instruments can be significant, manual data entry will also be considerable and the potential for concomitant transcription errors arises. Due to this potential issue, our aim was to interface an AB SCIEX™ mass spectrometer to our Sunquest(®) LIS. WE LICENSED SOFTWARE FOR THE DATA MANAGEMENT INTERFACE FROM THE UNIVERSITY OF PITTSBURGH, BUT EXTENDED THIS WORK AS FOLLOWS: The interface was designed so that it would accept a text file exported from the AB SCIEX™ × 5500 QTrap(®) mass spectrometer, pre-process the file (using newly written code) into the correct format and upload it into Sunquest(®) via file transfer protocol. The licensed software handled the majority of the interface tasks with the exception of converting the output from the Analyst(®) software to the required Sunquest(®) import format. This required writing of a "pre-processor" by one of the authors which was easily integrated with the supplied software. We successfully implemented the data management interface licensed from the University of Pittsburgh. Given the coding that was required to write the pre-processor, and alterations to the source code that were performed when debugging the software, we would suggest that before a laboratory decides to implement such an interface, it would be necessary to have a competent computer programmer available.

  9. Rapid Prototyping Human Interfaces Using Stretchable Strain Sensor

    Directory of Open Access Journals (Sweden)

    Tokiya Yamaji

    2017-01-01

    Full Text Available In the modern society with a variety of information electronic devices, human interfaces increase their importance in a boundary of a human and a device. In general, the human is required to get used to the device. Even if the device is designed as a universal device or a high-usability device, the device is not suitable for all users. The usability of the device depends on the individual user. Therefore, personalized and customized human interfaces are effective for the user. To create customized interfaces, we propose rapid prototyping human interfaces using stretchable strain sensors. The human interfaces comprise parts formed by a three-dimensional printer and the four strain sensors. The three-dimensional printer easily makes customized human interfaces. The outputs of the interface are calculated based on the sensor’s lengths. Experiments evaluate three human interfaces: a sheet-shaped interface, a sliding lever interface, and a tilting lever interface. We confirm that the three human interfaces obtain input operations with a high accuracy.

  10. Scalable coherent interface

    International Nuclear Information System (INIS)

    Alnaes, K.; Kristiansen, E.H.; Gustavson, D.B.; James, D.V.

    1990-01-01

    The Scalable Coherent Interface (IEEE P1596) is establishing an interface standard for very high performance multiprocessors, supporting a cache-coherent-memory model scalable to systems with up to 64K nodes. This Scalable Coherent Interface (SCI) will supply a peak bandwidth per node of 1 GigaByte/second. The SCI standard should facilitate assembly of processor, memory, I/O and bus bridge cards from multiple vendors into massively parallel systems with throughput far above what is possible today. The SCI standard encompasses two levels of interface, a physical level and a logical level. The physical level specifies electrical, mechanical and thermal characteristics of connectors and cards that meet the standard. The logical level describes the address space, data transfer protocols, cache coherence mechanisms, synchronization primitives and error recovery. In this paper we address logical level issues such as packet formats, packet transmission, transaction handshake, flow control, and cache coherence. 11 refs., 10 figs

  11. Solid surfaces, interfaces and thin films

    CERN Document Server

    Lüth, Hans

    2015-01-01

    This book emphasises both experimental and theoretical aspects of surface, interface and thin-film physics. As in previous editions the preparation of surfaces and thin films, their atomic and morphological structure, their vibronic and electronic properties as well as fundamentals of adsorption are treated. Because of their importance in modern information technology and nanostructure research, particular emphasis is paid to electronic surface and interface states, semiconductor space charge layers and heterostructures. A special chapter of the book is devoted to collective phenomena at interfaces and in thin films such as superconductivity and magnetism. The latter topic includes the meanwhile important issues giant magnetoresistance and spin-transfer torque mechanism, both effects being of high interest in information technology. In this new edition, for the first time, the effect of spin-orbit coupling on surface states is treated. In this context the class of the recently detected topological insulators,...

  12. Data-driven model comparing the effects of glial scarring and interface interactions on chronic neural recordings in non-human primates

    Science.gov (United States)

    Malaga, Karlo A.; Schroeder, Karen E.; Patel, Paras R.; Irwin, Zachary T.; Thompson, David E.; Bentley, J. Nicole; Lempka, Scott F.; Chestek, Cynthia A.; Patil, Parag G.

    2016-02-01

    Objective. We characterized electrode stability over twelve weeks of impedance and neural recording data from four chronically-implanted Utah arrays in two rhesus macaques, and investigated the effects of glial scarring and interface interactions at the electrode recording site on signal quality using a computational model. Approach. A finite-element model of a Utah array microelectrode in neural tissue was coupled with a multi-compartmental model of a neuron to quantify the effects of encapsulation thickness, encapsulation resistivity, and interface resistivity on electrode impedance and waveform amplitude. The coupled model was then reconciled with the in vivo data. Histology was obtained seventeen weeks post-implantation to measure gliosis. Main results. From week 1-3, mean impedance and amplitude increased at rates of 115.8 kΩ/week and 23.1 μV/week, respectively. This initial ramp up in impedance and amplitude was observed across all arrays, and is consistent with biofouling (increasing interface resistivity) and edema clearing (increasing tissue resistivity), respectively, in the model. Beyond week 3, the trends leveled out. Histology showed that thin scars formed around the electrodes. In the model, scarring could not match the in vivo data. However, a thin interface layer at the electrode tip could. Despite having a large effect on impedance, interface resistivity did not have a noticeable effect on amplitude. Significance. This study suggests that scarring does not cause an electrical problem with regard to signal quality since it does not appear to be the main contributor to increasing impedance or significantly affect amplitude unless it displaces neurons. This, in turn, suggests that neural signals can be obtained reliably despite scarring as long as the recording site has sufficiently low impedance after accumulating a thin layer of biofouling. Therefore, advancements in microelectrode technology may be expedited by focusing on improvements to the

  13. Molecular modeling studies of structural properties of polyvinyl alcohol: a comparative study using INTERFACE force field.

    Science.gov (United States)

    Radosinski, Lukasz; Labus, Karolina

    2017-10-05

    Polyvinyl alcohol (PVA) is a material with a variety of applications in separation, biotechnology, and biomedicine. Using combined Monte Carlo and molecular dynamics techniques, we present an extensive comparative study of second- and third-generation force fields Universal, COMPASS, COMPASS II, PCFF, and the newly developed INTERFACE, as applied to this system. In particular, we show that an INTERFACE force field provides a possibility of composing a reliable atomistic model to reproduce density change of PVA matrix in a narrow temperature range (298-348 K) and calculate a thermal expansion coefficient with reasonable accuracy. Thus, the INTERFACE force field may be used to predict mechanical properties of the PVA system, being a scaffold for hydrogels, with much greater accuracy than latter approaches. Graphical abstract Molecular Dynamics and Monte Carlo studies indicate that it is possible to predict properties of the PVA in narrow temperature range by using the INTERFACE force field.

  14. Man machine interface and its implementation

    International Nuclear Information System (INIS)

    Hills, B.G.; Boettcher, D.B.; Reed, R.

    1992-01-01

    Sizewell B is the latest nuclear power station to be constructed in the United Kingdom: its Man-Machine Interfaces are therefore, by definition, the state-of-the-art. This paper discusses the principal Man-Machine Interfaces used in the operation of the station, and the systems that implement them. The Man-Machine Interface facilities discussed are: in the Main Control Room, which is used for normal operation and shutdown of the plant: in the Auxiliary Shutdown Room, which allows shutdown of the reactor if evacuation of the main Control Room is necessary: and in the Technical Support Centre, which is used for remote monitoring of the plant. The Man-Machine Interfaces that are described are parts of a station-wide group of interlinked computer systems called the Data Processing and Control System. This system collects data from the plant and displays it to the operators via discrete devices and on graphical computer displays. It also acquires control inputs from the operators via switches, which are then used to provide remote manual control, modulating control and sequence control. The computer system that handles the plant process data and alarm information displays uses a windowing interface with keyboard and trackerball navigation to allow easy retrieval and viewing of information. It is this system that is the main topic of this paper. (author)

  15. Spectral Transfer Learning Using Information Geometry for a User-Independent Brain-Computer Interface.

    Science.gov (United States)

    Waytowich, Nicholas R; Lawhern, Vernon J; Bohannon, Addison W; Ball, Kenneth R; Lance, Brent J

    2016-01-01

    Recent advances in signal processing and machine learning techniques have enabled the application of Brain-Computer Interface (BCI) technologies to fields such as medicine, industry, and recreation; however, BCIs still suffer from the requirement of frequent calibration sessions due to the intra- and inter-individual variability of brain-signals, which makes calibration suppression through transfer learning an area of increasing interest for the development of practical BCI systems. In this paper, we present an unsupervised transfer method (spectral transfer using information geometry, STIG), which ranks and combines unlabeled predictions from an ensemble of information geometry classifiers built on data from individual training subjects. The STIG method is validated in both off-line and real-time feedback analysis during a rapid serial visual presentation task (RSVP). For detection of single-trial, event-related potentials (ERPs), the proposed method can significantly outperform existing calibration-free techniques as well as outperform traditional within-subject calibration techniques when limited data is available. This method demonstrates that unsupervised transfer learning for single-trial detection in ERP-based BCIs can be achieved without the requirement of costly training data, representing a step-forward in the overall goal of achieving a practical user-independent BCI system.

  16. Large interface simulation in an averaged two-fluid code

    International Nuclear Information System (INIS)

    Henriques, A.

    2006-01-01

    Different ranges of size of interfaces and eddies are involved in multiphase flow phenomena. Classical formalisms focus on a specific range of size. This study presents a Large Interface Simulation (LIS) two-fluid compressible formalism taking into account different sizes of interfaces. As in the single-phase Large Eddy Simulation, a filtering process is used to point out Large Interface (LI) simulation and Small interface (SI) modelization. The LI surface tension force is modelled adapting the well-known CSF method. The modelling of SI transfer terms is done calling for classical closure laws of the averaged approach. To simulate accurately LI transfer terms, we develop a LI recognition algorithm based on a dimensionless criterion. The LIS model is applied in a classical averaged two-fluid code. The LI transfer terms modelling and the LI recognition are validated on analytical and experimental tests. A square base basin excited by a horizontal periodic movement is studied with the LIS model. The capability of the model is also shown on the case of the break-up of a bubble in a turbulent liquid flow. The break-up of a large bubble at a grid impact performed regime transition between two different scales of interface from LI to SI and from PI to LI. (author) [fr

  17. Factors affecting physicians’ use of a dedicated overview interface in an electronic health record

    DEFF Research Database (Denmark)

    Jensen, Lotte Groth; Bossen, Claus

    2016-01-01

    Background : It remains a continual challenge to present information in user interfaces in large IT systems to support overview in the best possible way. We here examine how an Electronic Health Record (EHR) supports the creation of overview among hospital physicians with a particular focus...... the reasons for its use and non-use Method: We conducted exploratory ethnographic fieldwork among physicians in two hospitals and gathered statistical data on their use of the overview interface. From the quantitative data, we identified where the interface was used most and conducted 18 semi-structured, open-ended...... on the use of an interface designed to provide clinicians with a patient information overview. The overview interface integrates information flexibly from diverse places in the EHR and presents this information in one screen display. Our study revealed widespread non-use of the overview interface. We explore...

  18. The social-sensory interface: category interactions in person perception.

    Science.gov (United States)

    Freeman, Jonathan B; Johnson, Kerri L; Adams, Reginald B; Ambady, Nalini

    2012-01-01

    Research is increasingly challenging the claim that distinct sources of social information-such as sex, race, and emotion-are processed in discrete fashion. Instead, there appear to be functionally relevant interactions that occur. In the present article, we describe research examining how cues conveyed by the human face, voice, and body interact to form the unified representations that guide our perceptions of and responses to other people. We explain how these information sources are often thrown into interaction through bottom-up forces (e.g., phenotypic cues) as well as top-down forces (e.g., stereotypes and prior knowledge). Such interactions point to a person perception process that is driven by an intimate interface between bottom-up perceptual and top-down social processes. Incorporating data from neuroimaging, event-related potentials (ERP), computational modeling, computer mouse-tracking, and other behavioral measures, we discuss the structure of this interface, and we consider its implications and adaptive purposes. We argue that an increased understanding of person perception will likely require a synthesis of insights and techniques, from social psychology to the cognitive, neural, and vision sciences.

  19. A Hyperbolic Ontology Visualization Tool for Model Application Programming Interface Documentation

    Science.gov (United States)

    Hyman, Cody

    2011-01-01

    Spacecraft modeling, a critically important portion in validating planned spacecraft activities, is currently carried out using a time consuming method of mission to mission model implementations and integration. A current project in early development, Integrated Spacecraft Analysis (ISCA), aims to remedy this hindrance by providing reusable architectures and reducing time spent integrating models with planning and sequencing tools. The principle objective of this internship was to develop a user interface for an experimental ontology-based structure visualization of navigation and attitude control system modeling software. To satisfy this, a number of tree and graph visualization tools were researched and a Java based hyperbolic graph viewer was selected for experimental adaptation. Early results show promise in the ability to organize and display large amounts of spacecraft model documentation efficiently and effectively through a web browser. This viewer serves as a conceptual implementation for future development but trials with both ISCA developers and end users should be performed to truly evaluate the effectiveness of continued development of such visualizations.

  20. ORIGAMI -- The Oak Ridge Geometry Analysis and Modeling Interface

    International Nuclear Information System (INIS)

    Burns, T.J.

    1996-01-01

    A revised ''ray-tracing'' package which is a superset of the geometry specifications of the radiation transport codes MORSE, MASH (GIFT Versions 4 and 5), HETC, and TORT has been developed by ORNL. Two additional CAD-based formats are also included as part of the superset: the native format of the BRL-CAD system--MGED, and the solid constructive geometry subset of the IGES specification. As part of this upgrade effort, ORNL has designed an Xwindows-based utility (ORIGAMI) to facilitate the construction, manipulation, and display of the geometric models required by the MASH code. Since the primary design criterion for this effort was that the utility ''see'' the geometric model exactly as the radiation transport code does, ORIGAMI is designed to utilize the same ''ray-tracing'' package as the revised version of MASH. ORIGAMI incorporates the functionality of two previously developed graphical utilities, CGVIEW and ORGBUG, into a single consistent interface

  1. Adsorption of rationally designed "surf-tides" to a liquid-crystal interface.

    Science.gov (United States)

    Badami, Joseph V; Bernstein, Chaim; Maldarelli, Charles; Tu, Raymond S

    2015-09-07

    The interfacial adsorption of proteins in surfactant laden systems occurs both in nature and industrial processing, yet much of the fundamental behavior behind these systems is still not well understood. We report the development of a system that monitors optical transitions of a liquid-crystalline/aqueous interface to examine the dynamics of adsorption of two rationally designed model peptide molecules. The two molecules synthesized in this study were both designed to become surface-active upon folding and contain the same net charge of +3, but one of the peptides, K-2.5, has its three charges separated by 2.5 amino acids as compared to K-6.0, which has its three charges separated by 6 amino acids. Our study examines the roles that surfactant adsorption, peptide charge distribution and secondary structure have on the relative adsorption dynamics of these two models peptides onto a fluid/fluid interface. Using the optical detection of molecular adsorption and image analysis of these events, we obtain quantitative information about the dynamics as a function of the charge spacing and initial peptide concentration. We show that both peptides initially follow a diffusion-limited adsorption model onto the interface. Additionally, our results suggest that the K-6.0 peptides demonstrate enhanced adsorption kinetics, where the enhanced rates are a consequence of the well-folded adsorbed state and spatial distribution on the surface. These findings provide further insights into the role that charge spacing has on secondary structure and subsequently the dynamics of adsorption, while developing a versatile system capable of extracting quantitative information from a simple inexpensive optical system.

  2. Evaluation and Satisfaction Survey on the Interface Usability of Online Publishing Software

    Directory of Open Access Journals (Sweden)

    Ying-Jye Lee

    2014-01-01

    Full Text Available Digital publishing is one of the national key programs. Different from traditional digital publishing models, consumers could create personal digital publications with the editing program provided by businesses and combine it with web-to-print to output solid publications. Nevertheless, the usability of online publishing software is related to consumers’ acceptance or intention of product purchase. In this case, Focus Group is utilized to screen representative online publishing software (including TinTint, Photobook, and Hypo for evaluating interface usability, investigating users’ Subjective Satisfaction, and further proposing suggestions for interface modification. Learnability and the number of user errors are set as the evaluation indicators of usability. Within the evaluation indicators in Learnability, the results show that nine typical tasks, except for Storing, show significant difference between various online publishing software. Typical tasks of basic information of works, appending pictures, adjusting pictures, changing type version, and changing pages in the number of user errors reveal significant difference on distinct online publishing software. Regarding the evaluation of overall Subjective Satisfaction with interface, TinTint and Hypo outperform Photobook, and no significant difference appears between TinTint and Hypo. It is expected that the research model could be the application reference of interface development and evaluation in digital content industries.

  3. Low-cost universal stereoscopic virtual reality interfaces

    Science.gov (United States)

    Starks, Michael R.

    1993-09-01

    Low cost stereoscopic virtual reality hardware interfacing with nearly any computer and stereoscopic software running on any PC is described. Both are user configurable for serial or parallel ports. Stereo modeling, rendering, and interaction via gloves or 6D mice are provided. Low cost LCD Visors and external interfaces represent a breakthrough in convenience and price/performance. A complete system with software, Visor, interface and Power Glove is under $DOL500. StereoDrivers will interface with any system giving video sync (e.g., G of RGB). PC3D will access any standard serial port, while PCVR works with serial or parallel ports and glove devices. Model RF Visors detect magnetic fields and require no connection to the system. PGSI is a microprocessor control for the Power Glove and Visors. All interfaces will operate to 120 Hz with Model G Visors. The SpaceStations are demultiplexing, field doubling devices which convert field sequential video or graphics for stereo display with dual video projection or dual LCD SpaceHelmets.

  4. Tunneling of electrons via rotor–stator molecular interfaces: Combined ab initio and model study

    Energy Technology Data Exchange (ETDEWEB)

    Petreska, Irina, E-mail: irina.petreska@pmf.ukim.mk [Institute of Physics, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, PO Box 162, 1000 Skopje, Former Yugolav Republic of Macedonia, The (Macedonia, The Former Yugoslav Republic of); Ohanesjan, Vladimir [Institute of Physics, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, PO Box 162, 1000 Skopje, Former Yugolav Republic of Macedonia, The (Macedonia, The Former Yugoslav Republic of); Pejov, Ljupčo [Institute of Chemistry, Department of Physical Chemistry, Ss. Cyril and Methodius University, Arhimedova 5, P.O. Box 162, 1000 Skopje, Former Yugolav Republic of Macedonia, The (Macedonia, The Former Yugoslav Republic of); Kocarev, Ljupčo [Macedonian Academy of Sciences and Arts, Krste Misirkov 2, PO Box 428, 1000 Skopje, Former Yugolav Republic of Macedonia, The (Macedonia, The Former Yugoslav Republic of); Faculty of Computer Science and Engineering, Ss. Cyril and Methodius University, Skopje, Former Yugolav Republic of Macedonia, The (Macedonia, The Former Yugoslav Republic of)

    2016-07-01

    Tunneling of electrons through rotor–stator anthracene aldehyde molecular interfaces is studied with a combined ab initio and model approach. Molecular electronic structure calculated from first principles is utilized to model different shapes of tunneling barriers. Together with a rectangular barrier, we also consider a sinusoidal shape that captures the effects of the molecular internal structure more realistically. Quasiclassical approach with the Simmons’ formula for current density is implemented. Special attention is paid on conformational dependence of the tunneling current. Our results confirm that the presence of the side aldehyde group enhances the interesting electronic properties of the pure anthracene molecule, making it a bistable system with geometry dependent transport properties. We also investigate the transition voltage and we show that conformation-dependent field emission could be observed in these molecular interfaces at realistically low voltages. The present study accompanies our previous work where we investigated the coherent transport via strongly coupled delocalized orbital by application of Non-equilibrium Green’s Function Formalism.

  5. Analysis of the interface tracking errors

    International Nuclear Information System (INIS)

    Cerne, G.; Tiselj, I.; Petelin, S.

    2001-01-01

    An important limitation of the interface-tracking algorithm is the grid density, which determines the space scale of the surface tracking. In this paper the analysis of the interface tracking errors, which occur in a dispersed flow, is performed for the VOF interface tracking method. A few simple two-fluid tests are proposed for the investigation of the interface tracking errors and their grid dependence. When the grid density becomes too coarse to follow the interface changes, the errors can be reduced either by using denser nodalization or by switching to the two-fluid model during the simulation. Both solutions are analyzed and compared on a simple vortex-flow test.(author)

  6. Developing a friendly I/O graphical interface for the integral transport CP2D computer code

    International Nuclear Information System (INIS)

    Constantin, M.

    2002-01-01

    The code CP 2 D design and developing involved the newest methods and techniques in the first flight collision probability (FFCP) calculations. These methods are strongly connected with the computer developing both in hardware and software. The code CP 2 D was developed in INR Pitesti, between 1997-2001. It is a transport code in the first flight collision probability formalism, able to treat exactly a lot of complicated geometry (such as CANDU clusters, TRIGA and PWR fuel assemblies). The first version CP 2 D1.0 was released in 1998. The second, CP 2 D2.0, was released in 1999 and uses a multistratified coolant model (MM) for CANDU loss of coolant accident analysis. The third version, CP 2 D3.0 (2000), have incorporated a generalized burning scheme. An user-friendly graphical interface was developed in 2001. It is intended to a rapid introduction of the input data and to extract the interest information from the output files. This information is directly converted into graphics and tables contained into a single MsWord document. The introduced input data are validated by the interface if the numerical, physical and mathematical restrictions are fulfilled. The user can see the representation of the model and can interactively modify the input data until the model is correct. The interface and the code were exhaustively documented and the obtained version was released as CP 2 D4.0. The version allows to a low experienced user to build the input files, to correct the possible errors and to extract the information of interest for the analyzed problem. The paper shows the interface as a useful concept for the upgrade of the classical codes. (author)

  7. The Ni-YSZ interface

    DEFF Research Database (Denmark)

    Jensen, Karin Vels

    The anode/electrolyte interface in solid oxide fuel cells (SOFC) is known to cause electrical losses. Geometrically simple Ni/yttria-stabilised zirconia (YSZ) interfaces were examined to gain information on the structural and chemical changes occurring during experiments at 1000°C in an atmosphere...... of 97% H2/3% H2O. Electrochemical impedance spectroscopy at open circuit voltage (OCV) and at anodic and cathodic polarisations (100 mV) was performed. A correlation of the electrical data with the structure development and the chemical composition was attempted. Nickel wires with different impurity...... between polarised and non-polarised samples. With pure nickel wires, however, the microstructures depended on the polarisation/non-polarisation conditions. At non-polarised conditions a hill and valley type structure was found. Anodic polarisation produced an up to 1 μm thick interface layer consisting...

  8. A Unified Air-Sea Interface in Fully Coupled Atmosphere-Wave-Ocean Models for Data Assimilation and Ensemble Prediction

    Science.gov (United States)

    Chen, Shuyi; Curcic, Milan; Donelan, Mark; Campbell, Tim; Smith, Travis; Chen, Sue; Allard, Rick; Michalakes, John

    2014-05-01

    The goals of this study are to 1) better understand the physical processes controlling air-sea interaction and their impact on coastal marine and storm predictions, 2) explore the use of coupled atmosphere-ocean observations in model verification and data assimilation, and 3) develop a physically based and computationally efficient coupling at the air-sea interface that is flexible for use in a multi-model system and portable for transition to the next generation research and operational coupled atmosphere-wave-ocean-land models. We have developed a unified air-sea interface module that couples multiple atmosphere, wave, and ocean models using the Earth System Modeling Framework (ESMF). This standardized coupling framework allows researchers to develop and test air-sea coupling parameterizations and coupled data assimilation, and to better facilitate research-to-operation activities. It also allows for future ensemble forecasts using coupled models that can be used for coupled data assimilation and assessment of uncertainties in coupled model predictions. The current component models include two atmospheric models (WRF and COAMPS), two ocean models (HYCOM and NCOM), and two wave models (UMWM and SWAN). The coupled modeling systems have been tested and evaluated using the coupled air-sea observations (e.g., GPS dropsondes and AXBTs, drifters and floats) collected in recent field campaigns in the Gulf of Mexico and tropical cyclones in the Atlantic and Pacific basins. This talk will provide an overview of the unified air-sea interface model and fully coupled atmosphere-wave-ocean model predictions over various coastal regions and tropical cyclones in the Pacific and Atlantic basins including an example from coupled ensemble prediction of Superstorm Sandy (2012).

  9. Risk Issues in Developing Novel User Interfaces for Human-Computer Interaction

    KAUST Repository

    Klinker, Gudrun; Huber, Manuel; Tö nnis, Marcus

    2014-01-01

    © 2014 Springer International Publishing Switzerland. All rights are reserved. When new user interfaces or information visualization schemes are developed for complex information processing systems, it is not readily clear how much they do, in fact, support and improve users' understanding and use of such systems. Is a new interface better than an older one? In what respect, and in which situations? To provide answers to such questions, user testing schemes are employed. This chapter reports on a range of risks pertaining to the design and implementation of user interfaces in general, and to newly emerging interfaces (3-dimensionally, immersive, mobile) in particular.

  10. Risk Issues in Developing Novel User Interfaces for Human-Computer Interaction

    KAUST Repository

    Klinker, Gudrun

    2014-01-01

    © 2014 Springer International Publishing Switzerland. All rights are reserved. When new user interfaces or information visualization schemes are developed for complex information processing systems, it is not readily clear how much they do, in fact, support and improve users\\' understanding and use of such systems. Is a new interface better than an older one? In what respect, and in which situations? To provide answers to such questions, user testing schemes are employed. This chapter reports on a range of risks pertaining to the design and implementation of user interfaces in general, and to newly emerging interfaces (3-dimensionally, immersive, mobile) in particular.

  11. Fracture mechanics of piezoelectric solids with interface cracks

    CERN Document Server

    Govorukha, Volodymyr; Loboda, Volodymyr; Lapusta, Yuri

    2017-01-01

    This book provides a comprehensive study of cracks situated at the interface of two piezoelectric materials. It discusses different electric boundary conditions along the crack faces, in particular the cases of electrically permeable, impermeable, partially permeable, and conducting cracks. The book also elaborates on a new technique for the determination of electromechanical fields at the tips of interface cracks in finite sized piezoceramic bodies of arbitrary shape under different load types. It solves scientific problems of solid mechanics in connection with the investigation of electromechanical fields in piezoceramic bodies with interface cracks, and develops calculation models and solution methods for plane fracture mechanical problems for piecewise homogeneous piezoceramic bodies with cracks at the interfaces. It discusses the “open” crack model, which leads to a physically unrealistic oscillating singularity at the crack tips, and the contact zone model for in-plane straight interface cracks betw...

  12. Visualizing Oceans of Data: Using learning research to inform the design of student interfaces to climate data (Invited)

    Science.gov (United States)

    Krumhansl, R.; Peach, C. L.; Busey, A.; Foster, J.; Baker, I.

    2013-12-01

    To be climate literate, students must be data-literate. To connect with the evidence behind scientists' assertions about climate change, students (and other novices) must be able to distinguish long-term trends from short-term variability in graphs, recognize the distribution of sea surface temperature or precipitation changes on maps, and discern important patterns in animations that display changes in data over time. Although the development of cyberinfrastructure for accessing near digital, sharable, real-time and archived earth systems data has the potential to transform how climate science is taught by connecting students directly with evidence to support their understanding, online interfaces to scientific data are typically industrial-strength - built by scientists for scientists - and their design can significantly impede broad use by novices. To inform efforts at bridging scientific data portals to the classroom, Education Development Center, Inc. (EDC) and the Scripps Institution of Oceanography conducted an NSF-funded 2-year interdisciplinary review of literature and expert opinion pertinent to making interfaces to large scientific databases accessible to and usable by student learners and their instructors. The >70 cross-cutting and specific guidelines in our project report are grounded in the fundamentals of Cognitive Load Theory, Visual Perception, Schema theory and Universal Design for Learning. The components of the human visual system and associated cognitive processes are highly specialized and have evolved in response to survival demands of the three-dimensional world humans have lived in for thousands of years. Because the use of two-dimensional representations, such as maps and graphs, and the use and navigation of Web interfaces has developed quite recently in human history, our visual perception system is not specifically adapted to these tasks. Therefore, it's critical to understand how to design two-dimensional media to take advantage of

  13. PREFACE: Functionalized Liquid Liquid Interfaces

    Science.gov (United States)

    Girault, Hubert; Kornyshev, Alexei A.; Monroe, Charles W.; Urbakh, Michael

    2007-09-01

    the external potential bias, the ITIES works as an 'electrode'; there is no traffic of ions across it. Thus the interface can sustain fields of the order of 106 V/cm, which are localized in a nanoscopic layer near the interface. This gives many new options for building various kinds of electrically tunable self assembled moloecular devices. Through the years, ITIES have been considered by electrochemists as a popular biomimetic model system, or for studies of interfacial reaction kinetics; ITIES were also used in industrial phase-transfer catalysis. Recently, this system has opened up new options for nano-scale engineering of functional assemblies (for dense information storage, efficient energy conversion, light-harvesting, and miniaturized sensors), which justifies its presentation in this issue.

  14. Decoding of grasping information from neural signals recorded using peripheral intrafascicular interfaces

    Directory of Open Access Journals (Sweden)

    Cipriani Christian

    2011-09-01

    Full Text Available Abstract Background The restoration of complex hand functions by creating a novel bidirectional link between the nervous system and a dexterous hand prosthesis is currently pursued by several research groups. This connection must be fast, intuitive, with a high success rate and quite natural to allow an effective bidirectional flow of information between the user's nervous system and the smart artificial device. This goal can be achieved with several approaches and among them, the use of implantable interfaces connected with the peripheral nervous system, namely intrafascicular electrodes, is considered particularly interesting. Methods Thin-film longitudinal intra-fascicular electrodes were implanted in the median and ulnar nerves of an amputee's stump during a four-week trial. The possibility of decoding motor commands suitable to control a dexterous hand prosthesis was investigated for the first time in this research field by implementing a spike sorting and classification algorithm. Results The results showed that motor information (e.g., grip types and single finger movements could be extracted with classification accuracy around 85% (for three classes plus rest and that the user could improve his ability to govern motor commands over time as shown by the improved discrimination ability of our classification algorithm. Conclusions These results open up new and promising possibilities for the development of a neuro-controlled hand prosthesis.

  15. Avatars and virtual agents - relationship interfaces for the elderly.

    Science.gov (United States)

    Shaked, Nava A

    2017-06-01

    In the Digital Era, the authors witness a change in the relationship between the patient and the care-giver or Health Maintenance Organization's providing the health services. Another fact is the use of various technologies to increase the effectiveness and quality of health services across all primary and secondary users. These technologies range from telemedicine systems, decision making tools, online and self-services applications and virtual agents; all providing information and assistance. The common thread between all these digital implementations, is they all require human machine interfaces. These interfaces must be interactive, user friendly and inviting, to create user involvement and cooperation incentives. The challenge is to design interfaces which will best fit the target users and enable smooth interaction especially, for the elderly users. Avatars and Virtual Agents are one of the interfaces used for both home care monitoring and companionship. They are also inherently multimodal in nature and allow an intimate relation between the elderly users and the Avatar. This study discusses the need and nature of these relationship models, the challenges of designing for the elderly. The study proposes key features for the design and evaluation in the area of assistive applications using Avatar and Virtual agents for the elderly users.

  16. Cell adhesion and spreading at a charged interface: Insight into the mechanism using surface techniques and mathematical modelling

    International Nuclear Information System (INIS)

    DeNardis, Nadica Ivošević; Ilić, Jadranka Pečar; Ružić, Ivica; Pletikapić, Galja

    2015-01-01

    Highlights: • Kinetics of adhesion and spreading of the algal cell at a charged interface is explored. • Amperometric signals are analyzed using extended methodology and the reaction kinetics model. • The model reconstructs and quantifies individual states of the three-step adhesion process. • Adhesion kinetics of the algal cell is slower than that of its plasma membrane vesicle. • Slow spreading of organic film at the interface could be due to the attenuated effect of the potential. - Abstract: We study the kinetics of adhesion and spreading of an algal cell and its plasma membrane vesicle at the charged interface. A simple system of an isolated plasma membrane vesicle without internal content has been developed and characterized by atomic force microscopy (AFM). We extend the methodology based on the reaction kinetics model and empirical fitting for the analysis of amperometric signals, and demonstrate its validity and pertinence in a wide range of surface charge densities. Adhesion kinetics of the algal cell is slower than that of its plasma membrane vesicle. Isolated plasma membrane contributes about one quarter to the cell contact area. The model reconstructs and quantifies individual states of the three-step adhesion process of the algal cell and makes it possible to associate them with various features of amperometric signal. At the time of current amplitude, the ruptured state predominates and the cell spread contact area is larger than its initial area as well as the contact area of the plasma membrane vesicle. These results suggest that a major structural disruption of the cell membrane, collapse of cytoskeleton and leakage of intracellular material could appear close to the time of current amplitude. Further, slow kinetics of the organic film spreading at the interface to its maximal extent is considered as the rate determining step, which could be a consequence of the attenuated effect of potential at the modified interface, stronger

  17. An Exploration into Framing Effects and Information Preferences: Implications for the Design of Energy Feedback Interfaces

    Science.gov (United States)

    Taylor-Brown, Peter

    A recent topic in the energy industry involves developing strategies to reduce the necessary peak production capacity of our future electricity infrastructure. One of these strategies is promoting behavioral change among individual energy consumers. An inherent problem with electricity consumption is that electricity is invisible, intangible, and abstract. Interfaces that provide people with useful feedback on their usage can help with understanding and reduction of consumption. These interfaces intend to empower individuals with ability to adopt less wasteful energy consumption behaviors. Skillful HCI design will include attention to informational preferences, and framing effects due to presentation choices. An online questionnaire was utilized to explore this domain, and the results identified design requirements for a home feedback interface. The final dataset contained responses from 36 male and 49 female United States residents. Cost () was perceived as the most useful metric and kW as the least useful. Respondent preference was expressed for lower levels of automation, which was not attributable to distrust of automation. Further, a test of framings effects showed a higher likelihood to change behavior to save 100 dollars per year than 2 per week (U=1248.5, p=0.001). A feedback interface design based on the questionnaire results was used in the second phase of the research. A 2x2x2 factorial design compared the effects of goal-type (specific vs. open-ended), metric-use ( vs. kWh), and visualization (graphical vs. text-only) on user experience, learning and behavior during a consumption reduction task. Results showed that goal-type affects the amount of diagnostic behavior conducted by participants (U=351.0, p=0.001). Goal-type and metric-use independently affect participant belief that they could reduce their consumption in their real home with the same feedback shown in the task, F(df=1,39)=24.77, p=0.001; F(df=1,39)=5.55, p=0.05. In addition, visualization

  18. Two-Phase Fluid Simulation Using a Diffuse Interface Model with Peng--Robinson Equation of State

    KAUST Repository

    Qiao, Zhonghua; Sun, Shuyu

    2014-01-01

    In this paper, two-phase fluid systems are simulated using a diffusive interface model with the Peng-Robinson equation of state (EOS), a widely used realistic EOS for hydrocarbon fluid in the petroleum industry. We first utilize the gradient theory

  19. SpineCreator: a Graphical User Interface for the Creation of Layered Neural Models.

    Science.gov (United States)

    Cope, A J; Richmond, P; James, S S; Gurney, K; Allerton, D J

    2017-01-01

    There is a growing requirement in computational neuroscience for tools that permit collaborative model building, model sharing, combining existing models into a larger system (multi-scale model integration), and are able to simulate models using a variety of simulation engines and hardware platforms. Layered XML model specification formats solve many of these problems, however they are difficult to write and visualise without tools. Here we describe a new graphical software tool, SpineCreator, which facilitates the creation and visualisation of layered models of point spiking neurons or rate coded neurons without requiring the need for programming. We demonstrate the tool through the reproduction and visualisation of published models and show simulation results using code generation interfaced directly into SpineCreator. As a unique application for the graphical creation of neural networks, SpineCreator represents an important step forward for neuronal modelling.

  20. Item Information in the Rasch Model

    NARCIS (Netherlands)

    Engelen, Ron J.H.; van der Linden, Willem J.; Oosterloo, Sebe J.

    1988-01-01

    Fisher's information measure for the item difficulty parameter in the Rasch model and its marginal and conditional formulations are investigated. It is shown that expected item information in the unconditional model equals information in the marginal model, provided the assumption of sampling

  1. Information modelling and knowledge bases XXV

    CERN Document Server

    Tokuda, T; Jaakkola, H; Yoshida, N

    2014-01-01

    Because of our ever increasing use of and reliance on technology and information systems, information modelling and knowledge bases continue to be important topics in those academic communities concerned with data handling and computer science. As the information itself becomes more complex, so do the levels of abstraction and the databases themselves. This book is part of the series Information Modelling and Knowledge Bases, which concentrates on a variety of themes in the important domains of conceptual modeling, design and specification of information systems, multimedia information modelin

  2. The Mo/Ta (100) interface

    International Nuclear Information System (INIS)

    Quintanar, C.; Velasco, V.R.; Garcia-Moliner, F.

    1990-12-01

    We have calculated the interface local density of states (ILDOS) formed by the transition metals Mo/Ta using a tight-binding Slater-Koster description and the Green Function matching method together with quickly converging algorithms to compute the transfer matrices. We obtain the surface LDOS as a byproduct. Our result is a useful tool to analyze experimental results and to check models as a function of the value of the tight-binding parameters either of the bulk or at the interface itself. We consider the (100) direction. We compare the interface to the bulk and to the surface and comment on some recently found experimental results for this interface. (author). 17 refs, 2 figs

  3. Analyzing rasters, vectors and time series using new Python interfaces in GRASS GIS 7

    Science.gov (United States)

    Petras, Vaclav; Petrasova, Anna; Chemin, Yann; Zambelli, Pietro; Landa, Martin; Gebbert, Sören; Neteler, Markus; Löwe, Peter

    2015-04-01

    helps researchers to ensure the robustness of the algorithm, correctness of the results in edge cases as well as the detection of changes in results due to new development. For all modules GRASS GIS automatically creates standardized command line and graphical user interfaces and documentation. Finally, we will show how GRASS GIS can be used together with powerful Python tools such as the NumPy package and the IPython Notebook. References: Gebbert, S., Pebesma, E., 2014. A temporal GIS for field based environmental modeling. Environmental Modelling & Software 53, 1-12. Neteler, M., Bowman, M.H., Landa, M. and Metz, M., 2012. GRASS GIS: a multi-purpose Open Source GIS. Environmental Modelling & Software 31: 124-130. Petras, V., Gebbert, S., 2014. Testing framework for GRASS GIS: ensuring reproducibility of scientific geospatial computing. Poster presented at: AGU Fall Meeting, December 15-19, 2014, San Francisco, USA. Zambelli, P., Gebbert, S., Ciolli, M., 2013. Pygrass: An Object Oriented Python Application Programming Interface (API) for Geographic Resources Analysis Support System (GRASS) Geographic Information System (GIS). ISPRS International Journal of Geo-Information 2, 201-219.

  4. Monitoring and controlling ATLAS data management: The Rucio web user interface

    CERN Document Server

    Lassnig, Mario; The ATLAS collaboration; Barisits, Martin-Stefan; Serfon, Cedric; Vigne, Ralph; Garonne, Vincent

    2015-01-01

    The monitoring and controlling interfaces of the previous data management system DQ2 followed the evolutionary requirements and needs of the ATLAS collaboration. The new system, Rucio, has put in place a redesigned web-based interface based upon the lessons learnt from DQ2, and the increased volume of managed information. This interface encompasses both a monitoring and controlling component, and allows easy integration for user-generated views. The interface follows three design principles. First, the collection and storage of data from internal and external systems is asynchronous to reduce latency. This includes the use of technologies like ActiveMQ or Nagios. Second, analysis of the data into information is done massively parallel due to its volume, using a combined approach with an Oracle database and Hadoop MapReduce. Third, sharing of the information does not distinguish between human or programmatic access, making it easy to access selective parts of the information both in constrained frontends like ...

  5. Monitoring and controlling ATLAS data management: The Rucio web user interface

    CERN Document Server

    Lassnig, Mario; The ATLAS collaboration; Vigne, Ralph; Barisits, Martin-Stefan; Garonne, Vincent; Serfon, Cedric

    2015-01-01

    The monitoring and controlling interfaces of the previous data management system DQ2 followed the evolutionary requirements and needs of the ATLAS collaboration. The new data management system, Rucio, has put in place a redesigned web-based interface based upon the lessons learnt from DQ2, and the increased volume of managed information. This interface encompasses both a monitoring and controlling component, and allows easy integration for user-generated views. The interface follows three design principles. First, the collection and storage of data from internal and external systems is asynchronous to reduce latency. This includes the use of technologies like ActiveMQ or Nagios. Second, analysis of the data into information is done massively parallel due to its volume, using a combined approach with an Oracle database and Hadoop MapReduce. Third, sharing of the information does not distinguish between human or programmatic access, making it easy to access selective parts of the information both in constrained...

  6. Specific material effects of wear-particle-induced inflammation and osteolysis at the bone–implant interface: A rat model

    Directory of Open Access Journals (Sweden)

    Lisa K. Longhofer

    2017-01-01

    Conclusion: Different biomaterials in particulate form exert different forms of adverse effects in terms of the amount of osteolysis and inflammatory reactions on bone tissue at the bone–implant interface. It provides information for engineering more appropriate materials for arthroplasty components.

  7. Interface Schottky barrier engineering via strain in metal-semiconductor composites

    Science.gov (United States)

    Ma, Xiangchao; Dai, Ying; Yu, Lin; Huang, Baibiao

    2016-01-01

    demonstrates that strain can be an effective way to decrease the interface SBH and that the n-type SBH can be more effectively decreased than the p-type SBH. Astonishingly, strain affects the interface SBH mainly by changing the intrinsic properties of Au and TiO2, whereas the interfacial potential alignment is almost independent of strain due to two opposite effects, which are induced by strain at the interfacial region. These observed trends can be understood on the basis of the general free-electron gas model of typical metals, the tight-binding theory and the crystal-field theory, which suggest that similar trends may be generalized for many other metal-semiconductor heterostructures. Given the commonness and tunability of strain in typical heterostructures, we anticipate that the tunability of the interface SBH with strain described here can provide an alternative effective way for realizing more efficient applications of relevant heterostructures. Electronic supplementary information (ESI) available: The changes of Au 5d DOS, valence bands of TiO2, the interfacial bond length and interfacial energy with strain, and the local DOS results for the change of SBH with strain. See DOI: 10.1039/c5nr05583k

  8. Space ecoliteracy- five informal education models for community empowerment

    Science.gov (United States)

    Venkataramaiah, Jagannatha; Jagannath, Sahana; J, Spandana; J, Sadhana; Jagannath, Shobha

    Space ecoliteracy is a historical necessity and vital aspect of space age.Space Situational Awareness has taught lessons for mankind to look inward while stretching beyond cradle in human endeavours. Quality of life for every one on the only home of mankind-TERRA shall be a feasibility only after realizing Space ecoliteracy amongst all stakeholders in space quest. Objectives of Informal Environmental Education(UNESCO/UNEP/IEEP,1977) mandates awareness, attitude, knowledge, skill and participation at Individual and Community domains. Application of Space Technology at both Telecommunications and Remote Sensing domain have started making the fact that mankind has a challenge to learn and affirm earthmanship. Community empowerment focus after Earth Summit 1992 mandate of Sustainable Development has demonstrated a deluge of best practices in Agriculture,Urban, Industries and service sectors all over the globe. Further, deployment of Space technologies have proved the immense potential only after pre-empting the participatory approach at individual and community levels.Indian Space Programme with its 44th year of space service to national development has demonstrated self reliance in space technology for human development. Space technology for the most underdeveloped is a success story both in communication and information tools for quality of life. In this presentation Five Space Ecoliteracy models designed and validated since 1985 till date on informal environmental education namely 1) Ecological Environmental Studies by Students-EESS (1988): cited as one of the 20 best eco -education models by Earth Day Network,2)Community Eco Literacy Campaign-CEL,(2000): cited as a partner under Clean Up the World Campaign,UN, 3) Space Eco Literacy(2011)-an informa 8 week space eco literacy training reported at 39th COSPAR 12 assembly and 4) Space Eco Literacy by Practice(2014)- interface with formal education at institutions and 5) Space Ecoliteracy Mission as a space out reach in

  9. Prediction of the human response time with the similarity and quantity of information

    International Nuclear Information System (INIS)

    Lee, Sungjin; Heo, Gyunyoung; Chang, Soon Heung

    2006-01-01

    Memory is one of brain processes that are important when trying to understand how people process information. Although a large number of studies have been made on the human performance, little is known about the similarity effect in human performance. The purpose of this paper is to propose and validate the quantitative and predictive model on the human response time in the user interface with the concept of similarity. However, it is not easy to explain the human performance with only similarity or information amount. We are confronted by two difficulties: making the quantitative model on the human response time with the similarity and validating the proposed model by experimental work. We made the quantitative model based on the Hick's law and the law of practice. In addition, we validated the model with various experimental conditions by measuring participants' response time in the environment of computer-based display. Experimental results reveal that the human performance is improved by the user interface's similarity. We think that the proposed model is useful for the user interface design and evaluation phases

  10. A KINETIC MODEL FOR MONO-LAYER GLOBULAR PROTEIN ADSORPTION ON SOLID/LIQUID INTERFACES

    Directory of Open Access Journals (Sweden)

    Kamal I. M. Al-Malah

    2012-12-01

    Full Text Available A kinetic model was derived for globular protein adsorption. The model takes into account the three possible scenarios of a protein molecule in solution, being exposed to an interface: adsorption step from the solution to the interface; the possible desorption back into the solution; and the surface-induced unfolding or spreading of the protein unto the substrate surface. A globular protein molecule is visualized as a sphere with radius D. In addition to the general case of protein adsorption, which portrays either the surface coverage (Theta or surface concentration (� as a function of the adsorption time, special cases, like equilibrium condition, lowsurface coverage, irreversible, and Langmuirian were also presented and treated in light of the derived model. The general model was simplified for each of the subset cases. The irreversibility versus reversibility of protein adsorption was discussed. The substrate surface energetics or effects are accounted for via the proposition of the percent relative change in D/V ratio for the adsorbing protein, called (D/VPRC parameter. (D/VPRC is calculated with respect to the monolayer surface concentration of protein, where the latter is given by D/Vratio. This can be used as a landmark to protein adsorption isotherms or even kinetics. This is visualized as an indicator for solid substrate effects on the adsorbing proteins. (D/VPRC can be zero (fresh monolayer, negative (aged monolayer, or positive (multi-layer. The reference surface concentration is reported for some selected proteins.

  11. Exploring Interaction Space as Abstraction Mechanism for Task-Based User Interface Design

    DEFF Research Database (Denmark)

    Nielsen, C. M.; Overgaard, M.; Pedersen, M. B.

    2007-01-01

    Designing a user interface is often a complex undertaking. Model-based user interface design is an approach where models and mappings between them form the basis for creating and specifying the design of a user interface. Such models usually include descriptions of the tasks of the prospective user......, but there is considerable variation in the other models that are employed. This paper explores the extent to which the notion of interaction space is useful as an abstraction mechanism to reduce the complexity of creating and specifying a user interface design. We present how we designed a specific user interface through...... mechanism that can help user interface designers exploit object-oriented analysis results and reduce the complexity of designing a user interface....

  12. COMPLEMENTARITY OF HISTORIC BUILDING INFORMATION MODELLING AND GEOGRAPHIC INFORMATION SYSTEMS

    Directory of Open Access Journals (Sweden)

    X. Yang

    2016-06-01

    Full Text Available In this paper, we discuss the potential of integrating both semantically rich models from Building Information Modelling (BIM and Geographical Information Systems (GIS to build the detailed 3D historic model. BIM contributes to the creation of a digital representation having all physical and functional building characteristics in several dimensions, as e.g. XYZ (3D, time and non-architectural information that are necessary for construction and management of buildings. GIS has potential in handling and managing spatial data especially exploring spatial relationships and is widely used in urban modelling. However, when considering heritage modelling, the specificity of irregular historical components makes it problematic to create the enriched model according to its complex architectural elements obtained from point clouds. Therefore, some open issues limiting the historic building 3D modelling will be discussed in this paper: how to deal with the complex elements composing historic buildings in BIM and GIS environment, how to build the enriched historic model, and why to construct different levels of details? By solving these problems, conceptualization, documentation and analysis of enriched Historic Building Information Modelling are developed and compared to traditional 3D models aimed primarily for visualization.

  13. Des interfaces intelligentes pour les modèles de gisements Intelligent Interfaces for Reservoir Models

    Directory of Open Access Journals (Sweden)

    Zucchini P.

    2006-11-01

    Full Text Available Les codes de simulation numérique nécessitent souvent l'entrée de données nombreuses et variées. Nous présentons un programme interactif d'aide à la constitution d'un jeu de données pour un modèle de simulation de l'évolution des fluides dans un gisement d'hydrocarbures pendant son exploitation. Nous avons utilisé un moteur d'inférences et un générateur d'écrans de saisie pour écrire cette interface. Cette approche comporte de nombreux avantages concernant la qualité du logiciel produit : fiabilité, extensibilité, facilité d'utilisation, etc. L'utilisation combinée de règles d'expertise et d'un langage orienté objet offre de nouvelles perspectives qui sont étudiées. En conclusion, nous proposons l'extension de cette démarche pour développer une interface commune aux logiciels en Exploration - Production. Numerical simulation software often needs many input data having different natures. This article describes an interactive software that is of help in building the input data fill needed by oil reservoir simulators. A professional inference engine has been used to build this interface. This approach offers many advantages concerning the quality of the software produced, i. e. reliability, extensibility, user friendliness, etc. New prospects opened up by the mixed use of expertise rules and object-oriented languages are pointed out. The conclusion emphasizes the extension of this approach to the development of a common interface for exploration-production software.

  14. An ovine model of cerebral catheter venography for implantation of an endovascular neural interface.

    Science.gov (United States)

    Oxley, Thomas James; Opie, Nicholas Lachlan; Rind, Gil Simon; Liyanage, Kishan; John, Sam Emmanuel; Ronayne, Stephen; McDonald, Alan James; Dornom, Anthony; Lovell, Timothy John Haynes; Mitchell, Peter John; Bennett, Iwan; Bauquier, Sebastien; Warne, Leon Norris; Steward, Chris; Grayden, David Bruce; Desmond, Patricia; Davis, Stephen M; O'Brien, Terence John; May, Clive N

    2018-04-01

    OBJECTIVE Neural interface technology may enable the development of novel therapies to treat neurological conditions, including motor prostheses for spinal cord injury. Intracranial neural interfaces currently require a craniotomy to achieve implantation and may result in chronic tissue inflammation. Novel approaches are required that achieve less invasive implantation methods while maintaining high spatial resolution. An endovascular stent electrode array avoids direct brain trauma and is able to record electrocorticography in local cortical tissue from within the venous vasculature. The motor area in sheep runs in a parasagittal plane immediately adjacent to the superior sagittal sinus (SSS). The authors aimed to develop a sheep model of cerebral venography that would enable validation of an endovascular neural interface. METHODS Cerebral catheter venography was performed in 39 consecutive sheep. Contrast-enhanced MRI of the brain was performed on 13 animals. Multiple telescoping coaxial catheter systems were assessed to determine the largest wide-bore delivery catheter that could be delivered into the anterior SSS. Measurements of SSS diameter and distance from the motor area were taken. The location of the motor area was determined in relation to lateral and superior projections of digital subtraction venography images and confirmed on MRI. RESULTS The venous pathway from the common jugular vein (7.4 mm) to the anterior SSS (1.2 mm) was technically challenging to selectively catheterize. The SSS coursed immediately adjacent to the motor cortex (SSS. Attempted access with 5-Fr and 6-Fr delivery catheters was associated with longer procedure times and higher complication rates. A 4-Fr catheter (internal lumen diameter 1.1 mm) was successful in accessing the SSS in 100% of cases with no associated complications. Complications included procedure-related venous dissection in two major areas: the torcular herophili, and the anterior formation of the SSS. The

  15. An explicit formula for the interface tension of the 2D Potts model

    Science.gov (United States)

    Borgs, Christian; Janke, Wolfhard

    1992-11-01

    We consider the exact correlation length calculations for the two-dimensional Potts model at the transition point β_t by Klümper, Schadschneider and Zittartz, and by Buffenoir and Wallon. We argue that the correlation length calculated by the latter authors is the correlation length in the disordered phase and then combine their result with duality and the assumption of complete wetting to give an explicit formula for the order-disorder interface tension σ_od of this model. The result is used to clarify a controversy stemming from different numerical simulations of σ_od.

  16. Usability Analysis of Online Bank Login Interface Based on Eye Tracking Experiment

    Directory of Open Access Journals (Sweden)

    Xiaofang YUAN

    2014-02-01

    Full Text Available With the rapid development of information technology and rapid popularization of online banking, it is used by the more and more consumers. Studying on the usability of online banking interface, improving the user-friendliness of web interface, and enhancing attraction of bank website, which have gradually become the basic network marketing strategy of the banks. Therefore, this study took three banks as an example to record subjects’’ eye tracking data of time to first fixation, fixation duration and blink count and so on by using Tobii T60XL Eye Tracking equipment, while they login online banking web interface, and analyzed that the factors of webpage layout, colors, the amount of information presentation which impacts on the usability of online banking login interface. The results shows that the login entry, account login information and other key control buttons should be placed in the upper left corner to quickly lock the target, and the interface should have a moderate amount of information presentation, the appropriate proportion, reasonable font size settings, harmonious, simple, and warmth design style.

  17. PREFACE: Liquid-solid interfaces: structure and dynamics from spectroscopy and simulations Liquid-solid interfaces: structure and dynamics from spectroscopy and simulations

    Science.gov (United States)

    Gaigeot, Marie-Pierre; Sulpizi, Marialore

    2012-03-01

    /computational communities. On the experimental side, surface specific techniques, such as non-linear optical spectroscopy (sum frequency generation spectroscopy (SFG) and second harmonic generation (SHG)), surface sensitive x-ray scattering, in situ scanning tunneling microscopy (STM) and infrared reflection absorption spectroscopy provide information on layers of nanometric thickness at the interface. On the other hand, it is quite clear that the experiments require theoretical modelling in order to dissect the experimental results and to rationalize the different factors that contribute to the interfacial properties. In this respect molecular dynamics simulations are a major tool. While many successes have already been achieved with molecular dynamics simulations based on empirical force fields, first principles molecular dynamics simulations are now emerging as the other major approach where structure and reactivity are treated in a consistent way. Recent progress within the past 3-5 years on efficient treatments of basis sets and long range interactions in density functional theory (DFT) indeed extend such simulation capabilities to hundreds and thousands of atoms, thus allowing realistic models for interfaces to be tackled, maintaining first principles quality. Most of these simulations bring information on the structural organization of the solvent in the interfacial region between the solid and the liquid, but very few investigate the supplementary challenge of extracting vibrational spectroscopic fingerprints of the interface and, in particular, the direct modeling of the vibrational sum frequency generation (VSFG) non-linear spectra. The present special section reports an interesting contribution from the group of R Y Shen who pioneered VSFG optical experiments. They show how VSFG measurements can be used to unravel the behavior of interfacial water on alumina Al2O3 as a function of pH. The groups of A Hodgson and C Busse respectively provide complementary experiments based on low

  18. Simulation and experimental studies of operators' decision styles and crew composition while using an ecological and traditional user interface for the control room of a nuclear power plant

    International Nuclear Information System (INIS)

    Meshkati, N.; Buller, B.J.; Azadeh, M.A.

    1995-01-01

    The goal of this research is threefold: (1) use of the Skill-, Rule-, and Knowledge-based levels of cognitive control -- the SRK framework -- to develop an integrated information processing conceptual framework (for integration of workstation, job, and team design); (2) to evaluate the user interface component of this framework -- the Ecological display; and (3) to analyze the effect of operators' individual information processing behavior and decision styles on handling plant disturbances plus their performance on, and preference for, Traditional and Ecological user interfaces. A series of studies were conducted. In Part I, a computer simulation model and a mathematical model were developed. In Part II, an experiment was designed and conducted at the EBR-II plant of the Argonne National Laboratory-West in Idaho Falls, Idaho. It is concluded that: the integrated SRK-based information processing model for control room operations is superior to the conventional rule-based model; operators' individual decision styles and the combination of their styles play a significant role in effective handling of nuclear power plant disturbances; use of the Ecological interface results in significantly more accurate event diagnosis and recall of various plant parameters, faster response to plant transients, and higher ratings of subject preference; and operators' decision styles affect on both their performance and preference for the Ecological interface

  19. Simulation and experimental studies of operators` decision styles and crew composition while using an ecological and traditional user interface for the control room of a nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Meshkati, N.; Buller, B.J.; Azadeh, M.A. [Univ. of Southern California, Los Angeles, CA (United States)

    1995-04-01

    The goal of this research is threefold: (1) use of the Skill-, Rule-, and Knowledge-based levels of cognitive control -- the SRK framework -- to develop an integrated information processing conceptual framework (for integration of workstation, job, and team design); (2) to evaluate the user interface component of this framework -- the Ecological display; and (3) to analyze the effect of operators` individual information processing behavior and decision styles on handling plant disturbances plus their performance on, and preference for, Traditional and Ecological user interfaces. A series of studies were conducted. In Part I, a computer simulation model and a mathematical model were developed. In Part II, an experiment was designed and conducted at the EBR-II plant of the Argonne National Laboratory-West in Idaho Falls, Idaho. It is concluded that: the integrated SRK-based information processing model for control room operations is superior to the conventional rule-based model; operators` individual decision styles and the combination of their styles play a significant role in effective handling of nuclear power plant disturbances; use of the Ecological interface results in significantly more accurate event diagnosis and recall of various plant parameters, faster response to plant transients, and higher ratings of subject preference; and operators` decision styles affect on both their performance and preference for the Ecological interface.

  20. Evaluation method of human-system interface for nuclear power plants

    International Nuclear Information System (INIS)

    Tanji, Junichi; Kawai, Jun; Masui, Takao; Ezaki, Ikuko

    2000-01-01

    We have developed HSI evaluation method based on a model of human cognitive processes in order to provide the viewpoint of the evaluation on the operability of interface. The model describes systematically the human error categories of GEMS by Reason. Based on the model together with reference to the other published information such as NUREG-0700Rev.1, the evaluation items for HSI have embodied in the electronic handbook HIBISCUS. The applicability of HIBISCUS have been assessed by evaluating experimental results using a simulator equipped with control panel using CRTs and touch operations. From the results, the usefulness of the handbook has been confirmed. (author)

  1. Evaluation method of human-system interface for nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Tanji, Junichi [Nuclear Power Engineering Corp. (NUPEC), Tokyo (Japan); Kawai, Jun; Masui, Takao; Ezaki, Ikuko [Mitsubishi Research Inst., Tokyo (Japan)

    2000-10-01

    We have developed HSI evaluation method based on a model of human cognitive processes in order to provide the viewpoint of the evaluation on the operability of interface. The model describes systematically the human error categories of GEMS by Reason. Based on the model together with reference to the other published information such as NUREG-0700Rev.1, the evaluation items for HSI have embodied in the electronic handbook HIBISCUS. The applicability of HIBISCUS have been assessed by evaluating experimental results using a simulator equipped with control panel using CRTs and touch operations. From the results, the usefulness of the handbook has been confirmed. (author)

  2. Actinides and environmental interfaces: striving for molecular-level understanding

    International Nuclear Information System (INIS)

    Heino Nitsche

    2005-01-01

    enhanced second harmonic generation can probe the electronic (UV-vis region) structure of metal species adsorbed at a surface or interface. Infrared-visible sum frequency generation spectroscopy probes the infrared vibrational spectrum of molecules adsorbed at the interface. SHG/SFG studies will greatly assist with understanding reactivity at interfaces of oxides and soil organic matter with heavy metals and radionuclides/actinides. Time-resolved Laser-fluorescence spectroscopy (TRLFS) is a highly sensitive tool for actinides that absorb light and de-excite by fluorescence emission, e.g., U(VI) and Cm(III), to probe changes in actinide speciation and coordination environment in solution. This method can also be used to differentiate whether adsorbed species form surface complexes or surface precipitates. Recently, it was shown that the intense synchrotron radiation can change the oxidation states of redox-sensitive actinide samples which may cause erroneous results, and low temperature measurements are now used to alleviate this shortcoming. X-ray Absorption Fine Structure (XAFS) Spectroscopy is composed of two component spectroscopies, X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) which provide element specific oxidation state and local structure information, respectively. EXAFS (Extended X-ray Absorption Fine Structure Spectroscopy) provides information on the chemical environment of particular actinide, in particular bond lengths and the number of neighboring atoms. Combining both methods, detailed knowledge of the different processes resulting from the interaction of the selected actinides with environmental interfaces can be gained. XANES and EXAFS measurements and TRLFS studies to obtain molecular-level mechanistic details of actinide interaction with common environmental solutions and interfaces will be presented together with first SHG/SFG characterization results of model systems for environmental interfaces

  3. Modeling Thermal and Stress Behavior of the Fuel-clad Interface in Monolithic Fuel Mini-plates

    International Nuclear Information System (INIS)

    Miller, Gregory K.; Medvedev, Pavel G.; Burkes, Douglas E.; Wachs, Daniel M.

    2010-01-01

    As part of the Global Threat Reduction Initiative, a fuel development and qualification program is in process with the objective of qualifying very high density low enriched uranium fuel that will enable the conversion of high performance research reactors with operational requirements beyond those supported with currently available low enriched uranium fuels. The high density of the fuel is achieved by replacing the fuel meat with a single monolithic low enriched uranium-molybdenum fuel foil. Doing so creates differences in the mechanical and structural characteristics of the fuel plate because of the planar interface created by the fuel foil and cladding. Furthermore, the monolithic fuel meat will dominate the structural properties of the fuel plate rather than the aluminum matrix, which is characteristic of dispersion fuel types. Understanding the integrity and behavior of the fuel-clad interface during irradiation is of great importance for qualification of the new fuel, but can be somewhat challenging to determine with a single technique. Efforts aimed at addressing this problem are underway within the fuel development and qualification program, comprised of modeling, as-fabricated plate characterization, and post-irradiation examination. An initial finite element analysis model has been developed to investigate worst-case scenarios for the basic monolithic fuel plate structure, using typical mini-plate irradiation conditions in the Advanced Test Reactor. Initial analysis shows that the stress normal to the fuel-clad interface dominates during irradiation, and that the presence of small, rounded delaminations at the interface is not of great concern. However, larger and/or fuel-clad delaminations with sharp corners can create areas of concern, as maximum principal cladding stress, strain, displacement, and peak fuel temperature are all significantly increased. Furthermore, stresses resulting from temperature gradients that cause the plate to bow or buckle in

  4. LIANA Model Integration System - architecture, user interface design and application in MOIRA DSS

    Directory of Open Access Journals (Sweden)

    D. Hofman

    2005-01-01

    Full Text Available The LIANA Model Integration System is the shell application supporting model integration and user interface functionality required for the rapid construction and run-time support of the environmental decision support systems (EDSS. Internally it is constructed as the framework of C++ classes and functions covering most common tasks performed by the EDSS (such as managing of and alternative strategies, running of the chain of the models, supporting visualisation of the data with tables and graphs, keeping ranges and default values for input parameters etc.. EDSS is constructed by integration of LIANA system with the models or other applications such as GIS or MAA software. The basic requirements to the model or other application to be integrated is minimal - it should be a Windows or DOS .exe file and receive input and provide output as text files. For the user the EDSS is represented as the number of data sets describing scenario or giving results of evaluation of scenario via modelling. Internally data sets correspond to the I/O files of the models. During the integration the parameters included in each the data sets as well as specifications necessary to present the data set in GUI and export or import it to/from text file are provided with MIL_LIANA language. Visual C++ version of LIANA has been developed in the frame of MOIRA project and is used as the basis for the MOIRA Software Framework - the shell and user interface component of the MOIRA Decision Support System. At present, the usage of LIANA for the creation of a new EDSS requires changes to be made in its C++ code. The possibility to use LIANA for the new EDSS construction without extending the source code is achieved by substituting MIL_LIANA with the object-oriented LIANA language.

  5. InteractiveROSETTA: a graphical user interface for the PyRosetta protein modeling suite.

    Science.gov (United States)

    Schenkelberg, Christian D; Bystroff, Christopher

    2015-12-15

    Modern biotechnical research is becoming increasingly reliant on computational structural modeling programs to develop novel solutions to scientific questions. Rosetta is one such protein modeling suite that has already demonstrated wide applicability to a number of diverse research projects. Unfortunately, Rosetta is largely a command-line-driven software package which restricts its use among non-computational researchers. Some graphical interfaces for Rosetta exist, but typically are not as sophisticated as commercial software. Here, we present InteractiveROSETTA, a graphical interface for the PyRosetta framework that presents easy-to-use controls for several of the most widely used Rosetta protocols alongside a sophisticated selection system utilizing PyMOL as a visualizer. InteractiveROSETTA is also capable of interacting with remote Rosetta servers, facilitating sophisticated protocols that are not accessible in PyRosetta or which require greater computational resources. InteractiveROSETTA is freely available at https://github.com/schenc3/InteractiveROSETTA/releases and relies upon a separate download of PyRosetta which is available at http://www.pyrosetta.org after obtaining a license (free for academic use). © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  6. Spectral Transfer Learning using Information Geometry for a User-Independent Brain-Computer Interface

    Directory of Open Access Journals (Sweden)

    Nicholas Roy Waytowich

    2016-09-01

    Full Text Available Recent advances in signal processing and machine learning techniques have enabled the application of Brain-Computer Interface (BCI technologies to fields such as medicine, industry and recreation. However, BCIs still suffer from the requirement of frequent calibration sessions due to the intra- and inter- individual variability of brain-signals, which makes calibration suppression through transfer learning an area of increasing interest for the development of practical BCI systems. In this paper, we present an unsupervised transfer method (spectral transfer using information geometry, STIG, which ranks and combines unlabeled predictions from an ensemble of information geometry classifiers built on data from individual training subjects. The STIG method is validated in both offline and real-time feedback analysis during a rapid serial visual presentation task (RSVP. For detection of single-trial, event-related potentials (ERPs, the proposed method can significantly outperform existing calibration-free techniques as well as outperform traditional within-subject calibration techniques when limited data is available. This method demonstrates that unsupervised transfer learning for single-trial detection in ERP-based BCIs can be achieved without the requirement of costly training data, representing a step-forward in the overall goal of achieving a practical user-independent BCI system.

  7. Interface matrix method in AFEN framework

    Energy Technology Data Exchange (ETDEWEB)

    Pogosbekyan, Leonid; Cho, Jin Young; Kim, Young Jin [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    In this study, we extend the application of the interface-matrix(IM) method for reflector modeling to Analytic Flux Expansion Nodal (AFEN) method. This include the modifications of the surface-averaged net current continuity and the net leakage balance conditions for IM method in accordance with AFEN formula. AFEN-interface matrix (AFEN-IM) method has been tested against ZION-1 benchmark problem. The numerical result of AFEN-IM method shows 1.24% of maximum error and 0.42% of root-mean square error in assembly power distribution, and 0.006% {Delta} k of neutron multiplication factor. This result proves that the interface-matrix method for reflector modeling can be useful in AFEN method. 3 refs., 4 figs. (Author)

  8. Interface matrix method in AFEN framework

    Energy Technology Data Exchange (ETDEWEB)

    Pogosbekyan, Leonid; Cho, Jin Young; Kim, Young Jin [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-12-31

    In this study, we extend the application of the interface-matrix(IM) method for reflector modeling to Analytic Flux Expansion Nodal (AFEN) method. This include the modifications of the surface-averaged net current continuity and the net leakage balance conditions for IM method in accordance with AFEN formula. AFEN-interface matrix (AFEN-IM) method has been tested against ZION-1 benchmark problem. The numerical result of AFEN-IM method shows 1.24% of maximum error and 0.42% of root-mean square error in assembly power distribution, and 0.006% {Delta} k of neutron multiplication factor. This result proves that the interface-matrix method for reflector modeling can be useful in AFEN method. 3 refs., 4 figs. (Author)

  9. Gaming with augmented reality interface and quantum dot technology

    OpenAIRE

    SAYANTAN GUPTA

    2017-01-01

    In Augmented Reality (AR), interfaces consist of a blend of both real and virtual content. In this paper we examine existing gaming styles played in the real world or on computers. We discuss the strengths and weaknesses of these mediums within an informal model of gaming experience split into four aspects; physical, mental, social and emotional. We find that their strengths are mostly complementary, and argue that games built in AR can blend them to enhance existing game styles a...

  10. Design principles of a web interface for monitoring tools

    International Nuclear Information System (INIS)

    Aiftimiei, C; Pra, S D; Fantinel, S; Andreozzi, S; Fattibene, E; Misurelli, G; Cuscela, G; Donvito, G; Dudhalkar, V; Maggi, G; Pierro, A

    2008-01-01

    A monitoring tool of a complex Grid system can gather a huge amount of information that have to be presented to the users in the most comprehensive way. Moreover different types of consumers could be interested in inspecting and analyzing different subsets of data. The main goal in designing a Web interface for the presentation of monitoring information is to organize the huge amount of data in a simple, user-friendly and usable structure. One more problem is to consider different approaches, skills and interests that all the possible categories of users have in looking for the desired information. Starting from the Information Architecture guidelines for the Web, it is possible to design Web interfaces towards a closer user experience and to deal with an advanced user interaction through the implementation of many Web standard technologies. In this paper, we will present a number of principles for the design of Web interface for monitoring tools that provide a wider, richer range of possibilities for what concerns the user interaction. These principles are based on an extensive review of the current literature in Web design and on the experience with the development of the GridICE monitoring tool. The described principles can drive the evolution of the Web interface of Grid monitoring tools

  11. INFORMATION MODEL OF SOCIAL TRANSFORMATIONS

    Directory of Open Access Journals (Sweden)

    Мария Васильевна Комова

    2013-09-01

    Full Text Available The social transformation is considered as a process of qualitative changes of the society, creating a new level of organization in all areas of life, in different social formations, societies of different types of development. The purpose of the study is to create a universal model for studying social transformations based on their understanding as the consequence of the information exchange processes in the society. After defining the conceptual model of the study, the author uses the following methods: the descriptive method, analysis, synthesis, comparison.Information, objectively existing in all elements and systems of the material world, is an integral attribute of the society transformation as well. The information model of social transformations is based on the definition of the society transformation as the change in the information that functions in the society’s information space. The study of social transformations is the study of information flows circulating in the society and being characterized by different spatial, temporal, and structural states. Social transformations are a highly integrated system of social processes and phenomena, the nature, course and consequences of which are affected by the factors representing the whole complex of material objects. The integrated information model of social transformations foresees the interaction of the following components: social memory, information space, and the social ideal. To determine the dynamics and intensity of social transformations the author uses the notions of "information threshold of social transformations" and "information pressure".Thus, the universal nature of information leads to considering social transformations as a system of information exchange processes. Social transformations can be extended to any episteme actualized by social needs. The establishment of an information threshold allows to simulate the course of social development, to predict the

  12. Graphic User Interface Design for Mapping, Information, Display, and Analysis Systems

    National Research Council Canada - National Science Library

    Lowell, James

    2000-01-01

    This thesis evaluates both the interface design process and the map-based mission planning tools of the Loosely Coupled Components Research Group, Naval Postgraduate School, for human factors usability...

  13. Environmental materials and interfaces

    International Nuclear Information System (INIS)

    1991-11-01

    A workshop that explored materials and interfaces research needs relevant to national environmental concerns was conducted at Pacific Northwest Laboratory. The purposes of the workshop were to refine the scientific research directions being planned for the Materials and Interface Program in the Molecular Science Research Center (MSRC) and further define the research and user equipment to the included as part of the proposed Environmental and Molecular Science Laboratory (EMSL). Three plenary information sessions served to outline the background, objectives, and status of the MSRC and EMSL initiatives; selected specific areas with environmentally related materials; and the status of capabilities and facilities planned for the EMSL. Attention was directed to four areas where materials and interface science can have a significant impact on prevention and remediation of environmental problems: in situ detection and characterization of hazardous wastes (sensors), minimization of hazardous waste (separation membranes, ion exchange materials, catalysts), waste containment (encapsulation and barrier materials), and fundamental understanding of contaminant transport mechanisms. During all other sessions, the participants were divided into three working groups for detailed discussion and the preparation of a written report. The working groups focused on the areas of interface structure and chemistry, materials and interface stability, and materials synthesis. These recommendations and suggestions for needed research will be useful for other researchers in proposing projects and for suggesting collaborative work with MSRC researchers. 1 fig

  14. The Delicate Interface between Management Accounting and Marketing Management

    NARCIS (Netherlands)

    van Helden, Jan; Alsem, Karel Jan

    2016-01-01

    This paper explores the delicate interface between management accounting and marketing management. Based on the scope of their mutual relationship, a distinction is made between two types of interfaces: informing and integrating. Whereas the traditional management accounting domains, such as

  15. Extracting interface locations in multilayer polymer waveguide films using scanning angle Raman spectroscopy

    International Nuclear Information System (INIS)

    Bobbitt, Jonathan M.; Smith, Emily A.

    2017-01-01

    There is an increasing demand for nondestructive in situ techniques that measure chemical content, total thickness, and interface locations for multilayer polymer films, and SA Raman spectroscopy in combination with appropriate data models can provide this information. A scanning angle (SA) Raman spectroscopy method was developed to measure the chemical composition of multilayer polymer waveguide films and to extract the location of buried interfaces between polymer layers with 7–80-nm axial spatial resolution. The SA Raman method measures Raman spectra as the incident angle of light upon a prism-coupled thin film is scanned. Six multilayer films consisting of poly(methyl methacrylate)/polystyrene or poly(methyl methacrylate)/polystyrene/poly(methyl methacrylate) were prepared with total thicknesses ranging from 330-1260 nm. The interface locations were varied by altering the individual layer thicknesses between 140-680 nm. The Raman amplitude ratio of the 1605 cm -1 peak for PS and 812 cm -1 peak for PMMA was used in calculations of the electric field intensity within the polymer layers to model the SA Raman data and extract the total thickness and interface locations. There is an average 8% and 7% difference in the measured thickness between the SA Raman and profilometry measurements for bilayer and trilayer films, respectively.

  16. Information-Theoretic Perspectives on Geophysical Models

    Science.gov (United States)

    Nearing, Grey

    2016-04-01

    To test any hypothesis about any dynamic system, it is necessary to build a model that places that hypothesis into the context of everything else that we know about the system: initial and boundary conditions and interactions between various governing processes (Hempel and Oppenheim, 1948, Cartwright, 1983). No hypothesis can be tested in isolation, and no hypothesis can be tested without a model (for a geoscience-related discussion see Clark et al., 2011). Science is (currently) fundamentally reductionist in the sense that we seek some small set of governing principles that can explain all phenomena in the universe, and such laws are ontological in the sense that they describe the object under investigation (Davies, 1990 gives several competing perspectives on this claim). However, since we cannot build perfect models of complex systems, any model that does not also contain an epistemological component (i.e., a statement, like a probability distribution, that refers directly to the quality of of the information from the model) is falsified immediately (in the sense of Popper, 2002) given only a small number of observations. Models necessarily contain both ontological and epistemological components, and what this means is that the purpose of any robust scientific method is to measure the amount and quality of information provided by models. I believe that any viable philosophy of science must be reducible to this statement. The first step toward a unified theory of scientific models (and therefore a complete philosophy of science) is a quantitative language that applies to both ontological and epistemological questions. Information theory is one such language: Cox' (1946) theorem (see Van Horn, 2003) tells us that probability theory is the (only) calculus that is consistent with Classical Logic (Jaynes, 2003; chapter 1), and information theory is simply the integration of convex transforms of probability ratios (integration reduces density functions to scalar

  17. Point defect stability in a semicoherent metallic interface

    Science.gov (United States)

    González, C.; Iglesias, R.; Demkowicz, M. J.

    2015-02-01

    We present a comprehensive density functional theory (DFT) -based study of different aspects of one vacancy and He impurity atom behavior at semicoherent interfaces between the low-solubility transition metals Cu and Nb. Such interfaces have not been previously modeled using DFT. A thorough analysis of the stability and mobility of the two types of defects at the interfaces and neighboring internal layers has been performed and the results have been compared to the equivalent cases in the pure metallic matrices. The different behavior of fcc and bcc metals on both sides of the interface has been specifically assessed. The modeling effort undertaken is the first attempt to study the stability and defect energetics of noncoherent Cu/Nb interfaces from first principles, in order to assess their potential use in radiation-resistant materials.

  18. A Framework for Effective User Interface Design for Web-Based Electronic Commerce Applications

    Directory of Open Access Journals (Sweden)

    Justyna Burns

    2001-01-01

    Full Text Available Efficient delivery of relevant product information is increasingly becoming the central basis of competition between firms. The interface design represents the central component for successful information delivery to consumers. However, interface design for web-based information systems is probably more an art than a science at this point in time. Much research is needed to understand properties of an effective interface for electronic commerce. This paper develops a framework identifying the relationship between user factors, the role of the user interface and overall system success for web-based electronic commerce. The paper argues that web-based systems for electronic commerce have some similar properties to decision support systems (DSS and adapts an established DSS framework to the electronic commerce domain. Based on a limited amount of research studying web browser interface design, the framework identifies areas of research needed and outlines possible relationships between consumer characteristics, interface design attributes and measures of overall system success.

  19. Electronic Processes at Organic−Organic Interfaces: Insight from Modeling and Implications for Opto-electronic Devices †

    KAUST Repository

    Beljonne, David; Cornil, Jérôme; Muccioli, Luca; Zannoni, Claudio; Brédas, Jean-Luc; Castet, Frédéric

    2011-01-01

    We report on the recent progress achieved in modeling the electronic processes that take place at interfaces between π-conjugated materials in organic opto-electronic devices. First, we provide a critical overview of the current computational

  20. Progress report on research project [Plan for www interface layout

    International Nuclear Information System (INIS)

    Fukahori, T.

    2006-01-01

    Full text: Presentations and status reports. T. Fukahori reported the plan for www interface layout as a status report. Discussed were which functions were needed for new RIPL-3 web pages. The results are summarized in next section. Layout of the interfaces and retrieval tools and web. The RIPL-3 home page will include a summary description and link to the HANDBOOK: a) The web page for 'mass' segment contains same contents as RIPL-2 except to remove the information about ground state deformation. The abundance data will be replaced by those according to the new BNL wallet card (2005 version). The Q-value calculation tool will be also improved. The 'Nuclear Matter Density' will be renamed as 'Nucleon Density Distribution'. b) Those of 'levels' segment will be same as before, and the deformation parameters for excited levels will be moved from 'optical' segment with the name of 'deformation'. c) Those of 'resonances' segment will be same as before. It will be considered to replace RIPL-2 database with the new Mughabghab tables. d) Those of 'optical' segment will be same as before, and the deformation parameters for excited levels will be moved to 'optical' segment with the name of 'deformation'. The optical model calculation with ECIS and OPTMAN will be considered and double-folding calculation tool will be possibly provided. e) Those of 'densities' segment will be same as before, and the programs used to plot will be checked. The 3-7 sets of combination of GC, BSFG, GSFM with/without enhancement factors will be given. f) Those of 'gamma' segment will be same as before with adding MLO and theoretical GDR calculation. g) Those of 'fission' segment will be same as before, and 'Exp.' will be renamed. New barrier evaluations will be added. Some additional information could be included, for example, fission transition states. The fission spectrum calculation tool (codes and inputs) will be considered to be added. The fundamental format will be kept as before. For new