WorldWideScience

Sample records for model integration monsoon

  1. Modelling the Asian summer monsoon using CCAM

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Kim Chi; McGregor, John L. [CSIRO Marine and Atmospheric Research, Aspendale, VIC (Australia)

    2009-02-15

    A ten-year mean (1989-1998) climatology of the Asian summer monsoon is studied using the CSIRO Conformal-Cubic Atmospheric Model (CCAM) to downscale NCEP reanalyses. The aim of the current study is to validate the model results against previous work on this topic, in order to identify model strengths and weaknesses in simulating the Asian summer monsoon. The model results are compared with available observations and are presented in two parts. In the first part, the mean summer rainfall, maximum and minimum temperatures and winds are compared with the observations. The second part focuses on validation of the monsoon onset. The model captures the mean characteristics such as the cross-equatorial flow of low-level winds over the Indian Ocean and near the Somali coast, rainfall patterns, onset indices, northward movements, active-break and revival periods. (orig.)

  2. SPATIO-TEMPORAL ESTIMATION OF INTEGRATED WATER VAPOUR OVER THE MALAYSIAN PENINSULA DURING MONSOON SEASON

    Directory of Open Access Journals (Sweden)

    S. Salihin

    2017-10-01

    Full Text Available This paper provides the precise information on spatial-temporal distribution of water vapour that was retrieved from Zenith Path Delay (ZPD which was estimated by Global Positioning System (GPS processing over the Malaysian Peninsular. A time series analysis of these ZPD and Integrated Water Vapor (IWV values was done to capture the characteristic on their seasonal variation during monsoon seasons. This study was found that the pattern and distribution of atmospheric water vapour over Malaysian Peninsular in whole four years periods were influenced by two inter-monsoon and two monsoon seasons which are First Inter-monsoon, Second Inter-monsoon, Southwest monsoon and Northeast monsoon.

  3. Evaluation of global climate models for Indian monsoon climatology

    International Nuclear Information System (INIS)

    Kodra, Evan; Ganguly, Auroop R; Ghosh, Subimal

    2012-01-01

    The viability of global climate models for forecasting the Indian monsoon is explored. Evaluation and intercomparison of model skills are employed to assess the reliability of individual models and to guide model selection strategies. Two dominant and unique patterns of Indian monsoon climatology are trends in maximum temperature and periodicity in total rainfall observed after 30 yr averaging over India. An examination of seven models and their ensembles reveals that no single model or model selection strategy outperforms the rest. The single-best model for the periodicity of Indian monsoon rainfall is the only model that captures a low-frequency natural climate oscillator thought to dictate the periodicity. The trend in maximum temperature, which most models are thought to handle relatively better, is best captured through a multimodel average compared to individual models. The results suggest a need to carefully evaluate individual models and model combinations, in addition to physical drivers where possible, for regional projections from global climate models. (letter)

  4. Mechanism of ENSO influence on the South Asian monsoon rainfall in global model simulations

    Science.gov (United States)

    Joshi, Sneh; Kar, Sarat C.

    2018-02-01

    Coupled ocean atmosphere global climate models are increasingly being used for seasonal scale simulation of the South Asian monsoon. In these models, sea surface temperatures (SSTs) evolve as coupled air-sea interaction process. However, sensitivity experiments with various SST forcing can only be done in an atmosphere-only model. In this study, the Global Forecast System (GFS) model at T126 horizontal resolution has been used to examine the mechanism of El Niño-Southern Oscillation (ENSO) forcing on the monsoon circulation and rainfall. The model has been integrated (ensemble) with observed, climatological and ENSO SST forcing to document the mechanism on how the South Asian monsoon responds to basin-wide SST variations in the Indian and Pacific Oceans. The model simulations indicate that the internal variability gets modulated by the SSTs with warming in the Pacific enhancing the ensemble spread over the monsoon region as compared to cooling conditions. Anomalous easterly wind anomalies cover the Indian region both at 850 and 200 hPa levels during El Niño years. The locations and intensity of Walker and Hadley circulations are altered due to ENSO SST forcing. These lead to reduction of monsoon rainfall over most parts of India during El Niño events compared to La Niña conditions. However, internally generated variability is a major source of uncertainty in the model-simulated climate.

  5. Modelling Monsoons: Understanding and Predicting Current and Future Behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Turner, A; Sperber, K R; Slingo, J M; Meehl, G A; Mechoso, C R; Kimoto, M; Giannini, A

    2008-09-16

    The global monsoon system is so varied and complex that understanding and predicting its diverse behaviour remains a challenge that will occupy modellers for many years to come. Despite the difficult task ahead, an improved monsoon modelling capability has been realized through the inclusion of more detailed physics of the climate system and higher resolution in our numerical models. Perhaps the most crucial improvement to date has been the development of coupled ocean-atmosphere models. From subseasonal to interdecadal timescales, only through the inclusion of air-sea interaction can the proper phasing and teleconnections of convection be attained with respect to sea surface temperature variations. Even then, the response to slow variations in remote forcings (e.g., El Nino-Southern Oscillation) does not result in a robust solution, as there are a host of competing modes of variability that must be represented, including those that appear to be chaotic. Understanding the links between monsoons and land surface processes is not as mature as that explored regarding air-sea interactions. A land surface forcing signal appears to dominate the onset of wet season rainfall over the North American monsoon region, though the relative role of ocean versus land forcing remains a topic of investigation in all the monsoon systems. Also, improved forecasts have been made during periods in which additional sounding observations are available for data assimilation. Thus, there is untapped predictability that can only be attained through the development of a more comprehensive observing system for all monsoon regions. Additionally, improved parameterizations - for example, of convection, cloud, radiation, and boundary layer schemes as well as land surface processes - are essential to realize the full potential of monsoon predictability. Dynamical considerations require ever increased horizontal resolution (probably to 0.5 degree or higher) in order to resolve many monsoon features

  6. On the recent warming in the subcloud layer entropy and vertically integrated moist static energy over South Asian Monsoon region.

    Science.gov (United States)

    Konduru, R.; Gupta, A.; Matsumoto, J.; Takahashi, H. G.

    2017-12-01

    In order to explain monsoon circulation, surface temperature gradients described as most traditional concept. However, it cannot explain certain important aspects of monsoon circulation. Later, convective quasi-equilibrium framework and vertically integrated atmospheric energy budget has become recognized theories to explain the monsoon circulation. In this article, same theories were analyzed and observed for the duration 1979-2010 over south Asian summer monsoon region. With the help of NCEP-R2, NOAA 20th Century, and Era-Interim reanalysis an important feature was noticed pertained to subcloud layer entropy and vertical moist static energy. In the last 32 years, subcloud layer entropy and vertically integrated moist static energy has shown significant seasonal warming all over the region with peak over the poleward flank of the cross-equatorial cell. The important reason related to the warming was found to be increase in surface enthalpy fluxes. Instead, other dynamical contributions pertained to the warming was also observed. Increase in positive anomalies of vertical advection of moist static energy over northern Bay of Bengal, Central India, Peninsular India, Eastern Arabian Sea, and Equatorial Indian Ocean was found to be an important dynamic factor contributing for warming of vertically integrated moist static energy. Along with it vertical moist stability has also supported the argument. Similar interpretations were perceived in the AMIP simulation of CCSM4 model. Further modeling experiments on this warming will be helpful to know the exact mechanism behind it.

  7. IMD's model for forecasting monsoon in India

    Digital Repository Service at National Institute of Oceanography (India)

    Varkey, M.J.

    feeling of the subject to the younger generation. There is an increa s ing need for modelling, simulating and optimizing technological, physical, medi cal and economic processes. In fa ct, recently a study 2 program ent i- tled ?Tech0... . This is the first instance an Indian scie n- tist has been elected as a foreign fellow. C. N. R. Rao is already a member of all the major academies of the world. MEETING REPORTS Nutrition is the key to health and nation?s develo p ment* So say...

  8. Residual estuarine circulation in the Mandovi, a monsoonal estuary: A three-dimensional model study

    Digital Repository Service at National Institute of Oceanography (India)

    Vijith, V.; Shetye, S.R.; Baetens, K.; Luyten, P.; Michael, G.S.

    -dependence is forced by the Indian Summer Monsoon (ISM) and hence the estuary is referred to as a monsoonal estuary. In this paper, we use a three-dimensional, open source, hydrodynamic, numerical model to reproduce the observed annual salinity field in the Mandovi. We...

  9. Intraseasonal Variability of the Indian Monsoon as Simulated by a Global Model

    Science.gov (United States)

    Joshi, Sneh; Kar, S. C.

    2018-01-01

    This study uses the global forecast system (GFS) model at T126 horizontal resolution to carry out seasonal simulations with prescribed sea-surface temperatures. Main objectives of the study are to evaluate the simulated Indian monsoon variability in intraseasonal timescales. The GFS model has been integrated for 29 monsoon seasons with 15 member ensembles forced with observed sea-surface temperatures (SSTs) and additional 16-member ensemble runs have been carried out using climatological SSTs. Northward propagation of intraseasonal rainfall anomalies over the Indian region from the model simulations has been examined. It is found that the model is unable to simulate the observed moisture pattern when the active zone of convection is over central India. However, the model simulates the observed pattern of specific humidity during the life cycle of northward propagation on day - 10 and day + 10 of maximum convection over central India. The space-time spectral analysis of the simulated equatorial waves shows that the ensemble members have varying amount of power in each band of wavenumbers and frequencies. However, variations among ensemble members are more in the antisymmetric component of westward moving waves and maximum difference in power is seen in the 8-20 day mode among ensemble members.

  10. Attenuation of surface waves due to monsoon rains: A model study for the north Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Vethamony, P.; Kumar, B.P.; Sarma, Y.V.B.

    The dynamic interaction of intense rain with waves based on momentum exchange is applied to a second generation wave model to predict wave attenuation during monsoon. The scheme takes into account the characteristics of rain and wave parameters...

  11. Modelling the distribution of domestic ducks in Monsoon Asia

    Science.gov (United States)

    Van Bockel, Thomas P.; Prosser, Diann; Franceschini, Gianluca; Biradar, Chandra; Wint, William; Robinson, Tim; Gilbert, Marius

    2011-01-01

    Domestic ducks are considered to be an important reservoir of highly pathogenic avian influenza (HPAI), as shown by a number of geospatial studies in which they have been identified as a significant risk factor associated with disease presence. Despite their importance in HPAI epidemiology, their large-scale distribution in Monsoon Asia is poorly understood. In this study, we created a spatial database of domestic duck census data in Asia and used it to train statistical distribution models for domestic duck distributions at a spatial resolution of 1km. The method was based on a modelling framework used by the Food and Agriculture Organisation to produce the Gridded Livestock of the World (GLW) database, and relies on stratified regression models between domestic duck densities and a set of agro-ecological explanatory variables. We evaluated different ways of stratifying the analysis and of combining the prediction to optimize the goodness of fit of the predictions. We found that domestic duck density could be predicted with reasonable accuracy (mean RMSE and correlation coefficient between log-transformed observed and predicted densities being 0.58 and 0.80, respectively), using a stratification based on livestock production systems. We tested the use of artificially degraded data on duck distributions in Thailand and Vietnam as training data, and compared the modelled outputs with the original high-resolution data. This showed, for these two countries at least, that these approaches could be used to accurately disaggregate provincial level (administrative level 1) statistical data to provide high resolution model distributions.

  12. Assessment of Land Surface Models in a High-Resolution Atmospheric Model during Indian Summer Monsoon

    KAUST Repository

    Attada, Raju

    2018-04-17

    Assessment of the land surface models (LSMs) on monsoon studies over the Indian summer monsoon (ISM) region is essential. In this study, we evaluate the skill of LSMs at 10 km spatial resolution in simulating the 2010 monsoon season. The thermal diffusion scheme (TDS), rapid update cycle (RUC), and Noah and Noah with multi-parameterization (Noah-MP) LSMs are chosen based on nature of complexity, that is, from simple slab model to multi-parameterization options coupled with the Weather Research and Forecasting (WRF) model. Model results are compared with the available in situ observations and reanalysis fields. The sensitivity of monsoon elements, surface characteristics, and vertical structures to different LSMs is discussed. Our results reveal that the monsoon features are reproduced by WRF model with all LSMs, but with some regional discrepancies. The model simulations with selected LSMs are able to reproduce the broad rainfall patterns, orography-induced rainfall over the Himalayan region, and dry zone over the southern tip of India. The unrealistic precipitation pattern over the equatorial western Indian Ocean is simulated by WRF–LSM-based experiments. The spatial and temporal distributions of top 2-m soil characteristics (soil temperature and soil moisture) are well represented in RUC and Noah-MP LSM-based experiments during the ISM. Results show that the WRF simulations with RUC, Noah, and Noah-MP LSM-based experiments significantly improved the skill of 2-m temperature and moisture compared to TDS (chosen as a base) LSM-based experiments. Furthermore, the simulations with Noah, RUC, and Noah-MP LSMs exhibit minimum error in thermodynamics fields. In case of surface wind speed, TDS LSM performed better compared to other LSM experiments. A significant improvement is noticeable in simulating rainfall by WRF model with Noah, RUC, and Noah-MP LSMs over TDS LSM. Thus, this study emphasis the importance of choosing/improving LSMs for simulating the ISM phenomena

  13. Assessment of Land Surface Models in a High-Resolution Atmospheric Model during Indian Summer Monsoon

    Science.gov (United States)

    Attada, Raju; Kumar, Prashant; Dasari, Hari Prasad

    2018-04-01

    Assessment of the land surface models (LSMs) on monsoon studies over the Indian summer monsoon (ISM) region is essential. In this study, we evaluate the skill of LSMs at 10 km spatial resolution in simulating the 2010 monsoon season. The thermal diffusion scheme (TDS), rapid update cycle (RUC), and Noah and Noah with multi-parameterization (Noah-MP) LSMs are chosen based on nature of complexity, that is, from simple slab model to multi-parameterization options coupled with the Weather Research and Forecasting (WRF) model. Model results are compared with the available in situ observations and reanalysis fields. The sensitivity of monsoon elements, surface characteristics, and vertical structures to different LSMs is discussed. Our results reveal that the monsoon features are reproduced by WRF model with all LSMs, but with some regional discrepancies. The model simulations with selected LSMs are able to reproduce the broad rainfall patterns, orography-induced rainfall over the Himalayan region, and dry zone over the southern tip of India. The unrealistic precipitation pattern over the equatorial western Indian Ocean is simulated by WRF-LSM-based experiments. The spatial and temporal distributions of top 2-m soil characteristics (soil temperature and soil moisture) are well represented in RUC and Noah-MP LSM-based experiments during the ISM. Results show that the WRF simulations with RUC, Noah, and Noah-MP LSM-based experiments significantly improved the skill of 2-m temperature and moisture compared to TDS (chosen as a base) LSM-based experiments. Furthermore, the simulations with Noah, RUC, and Noah-MP LSMs exhibit minimum error in thermodynamics fields. In case of surface wind speed, TDS LSM performed better compared to other LSM experiments. A significant improvement is noticeable in simulating rainfall by WRF model with Noah, RUC, and Noah-MP LSMs over TDS LSM. Thus, this study emphasis the importance of choosing/improving LSMs for simulating the ISM phenomena in

  14. Assessment of Land Surface Models in a High-Resolution Atmospheric Model during Indian Summer Monsoon

    KAUST Repository

    Attada, Raju; Kumar, Prashant; Dasari, Hari Prasad

    2018-01-01

    Assessment of the land surface models (LSMs) on monsoon studies over the Indian summer monsoon (ISM) region is essential. In this study, we evaluate the skill of LSMs at 10 km spatial resolution in simulating the 2010 monsoon season. The thermal diffusion scheme (TDS), rapid update cycle (RUC), and Noah and Noah with multi-parameterization (Noah-MP) LSMs are chosen based on nature of complexity, that is, from simple slab model to multi-parameterization options coupled with the Weather Research and Forecasting (WRF) model. Model results are compared with the available in situ observations and reanalysis fields. The sensitivity of monsoon elements, surface characteristics, and vertical structures to different LSMs is discussed. Our results reveal that the monsoon features are reproduced by WRF model with all LSMs, but with some regional discrepancies. The model simulations with selected LSMs are able to reproduce the broad rainfall patterns, orography-induced rainfall over the Himalayan region, and dry zone over the southern tip of India. The unrealistic precipitation pattern over the equatorial western Indian Ocean is simulated by WRF–LSM-based experiments. The spatial and temporal distributions of top 2-m soil characteristics (soil temperature and soil moisture) are well represented in RUC and Noah-MP LSM-based experiments during the ISM. Results show that the WRF simulations with RUC, Noah, and Noah-MP LSM-based experiments significantly improved the skill of 2-m temperature and moisture compared to TDS (chosen as a base) LSM-based experiments. Furthermore, the simulations with Noah, RUC, and Noah-MP LSMs exhibit minimum error in thermodynamics fields. In case of surface wind speed, TDS LSM performed better compared to other LSM experiments. A significant improvement is noticeable in simulating rainfall by WRF model with Noah, RUC, and Noah-MP LSMs over TDS LSM. Thus, this study emphasis the importance of choosing/improving LSMs for simulating the ISM phenomena

  15. GMMIP (v1.0) contribution to CMIP6: Global Monsoons Model Inter-comparison Project

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Tianjun; Turner, Andrew G.; Kinter, James L.; Wang, Bin; Qian, Yun; Chen, Xiaolong; Wu, Bo; Wang, Bin; Liu, Bo; Zou, Liwei; He, Bian

    2016-10-10

    The Global Monsoons Model Inter-comparison Project (GMMIP) has been endorsed by the panel of Coupled Model Inter-comparison Project (CMIP) as one of the participating model inter-comparison projects (MIPs) in the sixth phase of CMIP (CMIP6). The focus of GMMIP is on monsoon climatology, variability, prediction and projection, which is relevant to four of the “Grand Challenges” proposed by the World Climate Research Programme. At present, 21 international modeling groups are committed to joining GMMIP. This overview paper introduces the motivation behind GMMIP and the scientific questions it intends to answer. Three tiers of experiments, of decreasing priority, are designed to examine (a) model skill in simulating the climatology and interannual-to-multidecadal variability of global monsoons forced by the sea surface temperature during historical climate period; (b) the roles of the Interdecadal Pacific Oscillation and Atlantic Multidecadal Oscillation in driving variations of the global and regional monsoons; and (c) the effects of large orographic terrain on the establishment of the monsoons. The outputs of the CMIP6 Diagnostic, Evaluation and Characterization of Klima experiments (DECK), “historical” simulation and endorsed MIPs will also be used in the diagnostic analysis of GMMIP to give a comprehensive understanding of the roles played by different external forcings, potential improvements in the simulation of monsoon rainfall at high resolution and reproducibility at decadal timescales. The implementation of GMMIP will improve our understanding of the fundamental physics of changes in the global and regional monsoons over the past 140 years and ultimately benefit monsoons prediction and projection in the current century.

  16. Modeling and forecasting rainfall patterns of southwest monsoons in North-East India as a SARIMA process

    Science.gov (United States)

    Narasimha Murthy, K. V.; Saravana, R.; Vijaya Kumar, K.

    2018-02-01

    Weather forecasting is an important issue in the field of meteorology all over the world. The pattern and amount of rainfall are the essential factors that affect agricultural systems. India experiences the precious Southwest monsoon season for four months from June to September. The present paper describes an empirical study for modeling and forecasting the time series of Southwest monsoon rainfall patterns in the North-East India. The Box-Jenkins Seasonal Autoregressive Integrated Moving Average (SARIMA) methodology has been adopted for model identification, diagnostic checking and forecasting for this region. The study has shown that the SARIMA (0, 1, 1) (1, 0, 1)4 model is appropriate for analyzing and forecasting the future rainfall patterns. The Analysis of Means (ANOM) is a useful alternative to the analysis of variance (ANOVA) for comparing the group of treatments to study the variations and critical comparisons of rainfall patterns in different months of the season.

  17. The East Asian Atmospheric Water Cycle and Monsoon Circulation in the Met Office Unified Model

    Science.gov (United States)

    Rodríguez, José M.; Milton, Sean F.; Marzin, Charline

    2017-10-01

    In this study the low-level monsoon circulation and observed sources of moisture responsible for the maintenance and seasonal evolution of the East Asian monsoon are examined, studying the detailed water budget components. These observational estimates are contrasted with the Met Office Unified Model (MetUM) climate simulation performance in capturing the circulation and water cycle at a variety of model horizontal resolutions and in fully coupled ocean-atmosphere simulations. We study the role of large-scale circulation in determining the hydrological cycle by analyzing key systematic errors in the model simulations. MetUM climate simulations exhibit robust circulation errors, including a weakening of the summer west Pacific Subtropical High, which leads to an underestimation of the southwesterly monsoon flow over the region. Precipitation and implied diabatic heating biases in the South Asian monsoon and Maritime Continent region are shown, via nudging sensitivity experiments, to have an impact on the East Asian monsoon circulation. By inference, the improvement of these tropical biases with increased model horizontal resolution is hypothesized to be a factor in improvements seen over East Asia with increased resolution. Results from the annual cycle of the hydrological budget components in five domains show a good agreement between MetUM simulations and ERA-Interim reanalysis in northern and Tibetan domains. In simulations, the contribution from moisture convergence is larger than in reanalysis, and they display less precipitation recycling over land. The errors are closely linked to monsoon circulation biases.

  18. Effect of increasing greenhouse gases on Indian monsoon rainfall as downscaled from the ECHAM coupled model

    International Nuclear Information System (INIS)

    Singh, S.V.; Storch, H.V.

    1994-01-01

    It is more or less accepted that the increasing anthropogenic gases will result in global warming through the greenhouse effect. The major influence of this will be felt in the form of ice melts and rising sea levels. The influence on regional climates like monsoons is not very clear. Since the monsoons arise due to surface heating, one would expect that global warming will lead to more vigorous monsoons. The expected change in a climate parameter can be studied by analyzing the historical data and then extrapolating in time. Alternatively, one can use the state-of-the-art coupled GCMs which are able to simulate the earth's climate with reasonable accuracy. Both methods have some limitations. The first method cannot adequately consider the nonlinearity, and the second method may not be efficient for regional scales. So that the projections can be trusted, the regional features should be well simulated. None of the current models are able to simulate the Indian monsoon satisfactorily. Therefore it is desirable to infer the expected change in monsoons from other large and near global scale features which are better simulated. This approach, which depends on the concurrent association between a large-scale modeled feature and a regional scale, is known as downscaling, after Storch et al., and is adopted here to project the Indian monsoon rainfall for the next 100 years from the ECHAM T21 coupled model

  19. Multi-model ensemble schemes for predicting northeast monsoon ...

    Indian Academy of Sciences (India)

    drought occurred. Some of these are extreme north- east monsoon years with significantly less rain- fall (1982, 1988, 1989 and 2005), and in some years, more than normal rainfall occurred (1987,. 1993, 1996, 1997 and 1998). Some of these typ- ical years may also be characterized as El Ni˜no year (1987), La Ni˜na year ...

  20. Model Interpretation of Climate Signals: Application to the Asian Monsoon Climate

    Science.gov (United States)

    Lau, William K. M.

    2002-01-01

    This is an invited review paper intended to be published as a Chapter in a book entitled "The Global Climate System: Patterns, Processes and Teleconnections" Cambridge University Press. The author begins with an introduction followed by a primer of climate models, including a description of various modeling strategies and methodologies used for climate diagnostics and predictability studies. Results from the CLIVAR Monsoon Model Intercomparison Project (MMIP) were used to illustrate the application of the strategies to modeling the Asian monsoon. It is shown that state-of-the art atmospheric GCMs have reasonable capability in simulating the seasonal mean large scale monsoon circulation, and response to El Nino. However, most models fail to capture the climatological as well as interannual anomalies of regional scale features of the Asian monsoon. These include in general over-estimating the intensity and/or misplacing the locations of the monsoon convection over the Bay of Bengal, and the zones of heavy rainfall near steep topography of the Indian subcontinent, Indonesia, and Indo-China and the Philippines. The intensity of convection in the equatorial Indian Ocean is generally weaker in models compared to observations. Most important, an endemic problem in all models is the weakness and the lack of definition of the Mei-yu rainbelt of the East Asia, in particular the part of the Mei-yu rainbelt over the East China Sea and southern Japan are under-represented. All models seem to possess certain amount of intraseasonal variability, but the monsoon transitions, such as the onset and breaks are less defined compared with the observed. Evidences are provided that a better simulation of the annual cycle and intraseasonal variability is a pre-requisite for better simulation and better prediction of interannual anomalies.

  1. Modeling the Influences of Aerosols on Pre-Monsoon Circulation and Rainfall over Southeast Asia

    Science.gov (United States)

    Lee, D.; Sud, Y. C.; Oreopoulos, L.; Kim, K.-M.; Lau, W. K.; Kang, I.-S.

    2014-01-01

    We conduct several sets of simulations with a version of NASA's Goddard Earth Observing System, version 5, (GEOS-5) Atmospheric Global Climate Model (AGCM) equipped with a two-moment cloud microphysical scheme to understand the role of biomass burning aerosol (BBA) emissions in Southeast Asia (SEA) in the pre-monsoon period of February-May. Our experiments are designed so that both direct and indirect aerosol effects can be evaluated. For climatologically prescribed monthly sea surface temperatures, we conduct sets of model integrations with and without biomass burning emissions in the area of peak burning activity, and with direct aerosol radiative effects either active or inactive. Taking appropriate differences between AGCM experiment sets, we find that BBA affects liquid clouds in statistically significantly ways, increasing cloud droplet number concentrations, decreasing droplet effective radii (i.e., a classic aerosol indirect effect), and locally suppressing precipitation due to a deceleration of the autoconversion process, with the latter effect apparently also leading to cloud condensate increases. Geographical re-arrangements of precipitation patterns, with precipitation increases downwind of aerosol sources are also seen, most likely because of advection of weakly precipitating cloud fields. Somewhat unexpectedly, the change in cloud radiative effect (cloud forcing) at surface is in the direction of lesser cooling because of decreases in cloud fraction. Overall, however, because of direct radiative effect contributions, aerosols exert a net negative forcing at both the top of the atmosphere and, perhaps most importantly, the surface, where decreased evaporation triggers feedbacks that further reduce precipitation. Invoking the approximation that direct and indirect aerosol effects are additive, we estimate that the overall precipitation reduction is about 40% due to the direct effects of absorbing aerosols, which stabilize the atmosphere and reduce

  2. Radiative effects of black carbon aerosols on Indian monsoon: a study using WRF-Chem model

    Science.gov (United States)

    Soni, Pramod; Tripathi, Sachchida Nand; Srivastava, Rajesh

    2018-04-01

    The Weather Research and Forecasting model with Chemistry (WRF-Chem) is utilized to examine the radiative effects of black carbon (BC) aerosols on the Indian monsoon, for the year 2010. Five ensemble simulations with different initial conditions (1st to 5th December, 2009) were performed and simulation results between 1st January, 2010 to 31st December, 2010 were used for analysis. Most of the BC which stays near the surface during the pre-monsoon season gets transported to higher altitudes with the northward migration of the Inter Tropical Convergence Zone (ITCZ) during the monsoon season. In both the seasons, strong negative SW anomalies are present at the surface along with positive anomalies in the atmosphere, which results in the surface cooling and lower tropospheric heating, respectively. During the pre-monsoon season, lower troposphere heating causes increased convection and enhanced meridional wind circulation, bringing moist air from Indian Ocean and Bay of Bengal to the North-East India, leading to increased rainfall there. However, during the monsoon season, along with cooling over the land regions, a warming over the Bay of Bengal is simulated. This differential heating results in an increased westerly moisture flux anomaly over central India, leading to increased rainfall over northern parts of India but decreased rainfall over southern parts. Decreased rainfall over southern India is also substantiated by the presence of increased evaporation over Bay of Bengal and decrease over land regions.

  3. Aerosol and monsoon climate interactions over Asia: AEROSOL AND MONSOON CLIMATE INTERACTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhanqing [State Key Laboratory of Earth Surface Processes and Resource Ecology and College of Global Change and Earth System Science, Beijing Normal University, Beijing China; Department of Atmospheric and Oceanic Science and ESSIC, University of Maryland, College Park Maryland USA; Lau, W. K. -M. [Department of Atmospheric and Oceanic Science and ESSIC, University of Maryland, College Park Maryland USA; Ramanathan, V. [Department of Atmospheric and Climate Sciences, University of California, San Diego California USA; Wu, G. [Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing China; Ding, Y. [National Climate Center, China Meteorological Administration, Beijing China; Manoj, M. G. [Department of Atmospheric and Oceanic Science and ESSIC, University of Maryland, College Park Maryland USA; Liu, J. [Department of Atmospheric and Oceanic Science and ESSIC, University of Maryland, College Park Maryland USA; Qian, Y. [Pacific Northwest National Laboratory, Richland Washington USA; Li, J. [State Key Laboratory of Earth Surface Processes and Resource Ecology and College of Global Change and Earth System Science, Beijing Normal University, Beijing China; Zhou, T. [Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing China; Fan, J. [Pacific Northwest National Laboratory, Richland Washington USA; Rosenfeld, D. [Institute of Earth Sciences, Hebrew University, Jerusalem Israel; Ming, Y. [Geophysical Fluid Dynamic Laboratory, NOAA, Princeton New Jersey USA; Wang, Y. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena California USA; Huang, J. [College of Atmospheric Sciences, Lanzhou University, Lanzhou China; Wang, B. [Department of Atmospheric Sciences, University of Hawaii, Honolulu Hawaii USA; School of Atmospheric Physics, Nanjing University of Information Science and Technology, Nanjing China; Xu, X. [Chinese Academy of Meteorological Sciences, Beijing China; Lee, S. -S. [Department of Atmospheric and Oceanic Science and ESSIC, University of Maryland, College Park Maryland USA; Cribb, M. [Department of Atmospheric and Oceanic Science and ESSIC, University of Maryland, College Park Maryland USA; Zhang, F. [State Key Laboratory of Earth Surface Processes and Resource Ecology and College of Global Change and Earth System Science, Beijing Normal University, Beijing China; Yang, X. [State Key Laboratory of Earth Surface Processes and Resource Ecology and College of Global Change and Earth System Science, Beijing Normal University, Beijing China; Zhao, C. [State Key Laboratory of Earth Surface Processes and Resource Ecology and College of Global Change and Earth System Science, Beijing Normal University, Beijing China; Takemura, T. [Research Institute for Applied Mechanics, Kyushu University, Fukuoka Japan; Wang, K. [State Key Laboratory of Earth Surface Processes and Resource Ecology and College of Global Change and Earth System Science, Beijing Normal University, Beijing China; Xia, X. [Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing China; Yin, Y. [School of Atmospheric Physics, Nanjing University of Information Science and Technology, Nanjing China; Zhang, H. [National Climate Center, China Meteorological Administration, Beijing China; Guo, J. [Chinese Academy of Meteorological Sciences, Beijing China; Zhai, P. M. [Chinese Academy of Meteorological Sciences, Beijing China; Sugimoto, N. [National Institute for Environmental Studies, Tsukuba Japan; Babu, S. S. [Space Physics Laboratory, Vikram Sarabhai Space Centre, Thiruvananthapuram India; Brasseur, G. P. [Max Planck Institute for Meteorology, Hamburg Germany

    2016-11-15

    Asian monsoons and aerosols have been studied extensively which are intertwined in influencing the climate of Asia. This paper provides a comprehensive review of ample studies on Asian aerosol, monsoon and their interactions. The region is the primary source of aerosol emissions of varies species, influenced by distinct weather and climatic regimes. On continental scale, aerosols reduce surface insolation and weaken the land-ocean thermal contrast, thus inhibiting the development of monsoons. Locally, aerosol radiative effects alter the thermodynamic stability and convective potential of the lower atmosphere leading to reduced temperatures, increased atmospheric stability, and weakened wind and atmospheric circulation. The atmospheric thermodynamic state may also be altered by the aerosol serving as cloud condensation nuclei or ice nuclei. Many mechanisms have been put forth regarding how aerosols modulate the amplitude, frequency, intensity, and phase of numerous monsoon climate variables. A wide range of theoretical, observational, and modeling findings on the Asian monsoon, aerosols, and their interactions are synthesized. A new paradigm is proposed on investigating aerosol-monsoon interactions, in which natural aerosols such as desert dust, black carbon from biomass burning, and biogenic aerosols from vegetation are considered integral components of an intrinsic aerosol-monsoon climate system, subject to external forcings of global warming, anthropogenic aerosols, and land use and change. Future research on aerosol-monsoon interactions calls for an integrated approach and international collaborations based on long-term sustained observations, process measurements, and improved models, as well as using observations to constrain model simulations and projections.

  4. Realism of modelled Indian summer monsoon correlation with the tropical Indo-Pacific affects projected monsoon changes.

    Science.gov (United States)

    Li, Ziguang; Lin, Xiaopei; Cai, Wenju

    2017-07-10

    El Niño-Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD) tend to exert an offsetting impact on Indian summer monsoon rainfall (ISMR), with an El Niño event tending to lower, whereas a positive IOD tending to increase ISMR. Simulation of these relationships in Phase Five of the Coupled Model Intercomparison Project has not been fully assessed, nor is their impact on the response of ISMR to greenhouse warming. Here we show that the majority of models simulate an unrealistic present-day IOD-ISMR correlation due to an overly strong control by ENSO. As such, a positive IOD is associated with an ISMR reduction in the simulated present-day climate. This unrealistic present-day correlation is relevant to future ISMR projection, inducing an underestimation in the projected ISMR increase. Thus uncertainties in ISMR projection can be in part induced by present-day simulation of ENSO, the IOD, their relationship and their rainfall correlations.

  5. The role of the intra-daily SST variability in the Indian monsoon variability and monsoon-ENSO-IOD relationships in a global coupled model

    Energy Technology Data Exchange (ETDEWEB)

    Terray, Pascal; Kamala, Kakitha; Masson, Sebastien; Madec, Gurvan [Universite Pierre et Marie Curie, LOCEAN/IPSL, CNRS/IRD/UPMC/MNHN, Paris Cedex 05 (France); Sahai, A.K. [Indian Institute of Tropical Meteorology, Pune (India); Luo, Jing-Jia; Yamagata, Toshio [RIGC, Yokohama (Japan)

    2012-08-15

    The impact of diurnal SST coupling and vertical oceanic resolution on the simulation of the Indian Summer Monsoon (ISM) and its relationships with El Nino-Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD) events are studied through the analysis of four integrations of a high resolution Coupled General Circulation Model (CGCM), but with different configurations. The only differences between the four integrations are the frequency of coupling between the ocean and atmosphere for the Sea Surface Temperature (SST) parameter (2 vs. 24 h coupling) and/or the vertical oceanic resolution (31 vs. 301 levels) in the CGCM. Although the summer mean tropical climate is reasonably well captured with all the configurations of the CGCM and is not significantly modified by changing the frequency of SST coupling from once to twelve per day, the ISM-ENSO teleconnections are rather poorly simulated in the two simulations in which SST is exchanged only once per day, independently of the vertical oceanic resolution used in the CGCM. Surprisingly, when 2 h SST coupling is implemented in the CGCM, the ISM-ENSO teleconnection is better simulated, particularly, the complex lead-lag relationships between the two phenomena, in which a weak ISM occurs during the developing phase of an El Nino event in the Pacific, are closely resembling the observed ones. Evidence is presented to show that these improvements are related to changes in the characteristics of the model's El Nino which has a more realistic evolution in its developing and decaying phases, a stronger amplitude and a shift to lower frequencies when a 2-hourly SST coupling strategy is implemented without any significant changes in the basic state of the CGCM. As a consequence of these improvements in ENSO variability, the lead relationships between Indo-Pacific SSTs and ISM rainfall resemble the observed patterns more closely, the ISM-ENSO teleconnection is strengthened during boreal summer and ISM rainfall power spectrum

  6. Failure of CMIP5 climate models in simulating post-1950 decreasing trend of Indian monsoon

    Science.gov (United States)

    Saha, Anamitra; Ghosh, Subimal; Sahana, A. S.; Rao, E. P.

    2014-10-01

    Impacts of climate change on Indian Summer Monsoon Rainfall (ISMR) and the growing population pose a major threat to water and food security in India. Adapting to such changes needs reliable projections of ISMR by general circulation models. Here we find that, majority of new generation climate models from Coupled Model Intercomparison Project phase5 (CMIP5) fail to simulate the post-1950 decreasing trend of ISMR. The weakening of monsoon is associated with the warming of Southern Indian Ocean and strengthening of cyclonic formation in the tropical western Pacific Ocean. We also find that these large-scale changes are not captured by CMIP5 models, with few exceptions, which is the reason of this failure. Proper representation of these highlighted geophysical processes in next generation models may improve the reliability of ISMR projections. Our results also alert the water resource planners to evaluate the CMIP5 models before using them for adaptation strategies.

  7. Objective spatiotemporal proxy-model comparisons of the Asian monsoon for the last millennium

    Science.gov (United States)

    Anchukaitis, K. J.; Cook, E. R.; Ammann, C. M.; Buckley, B. M.; D'Arrigo, R. D.; Jacoby, G.; Wright, W. E.; Davi, N.; Li, J.

    2008-12-01

    The Asian monsoon system can be studied using a complementary proxy/simulation approach which evaluates climate models using estimates of past precipitation and temperature, and which subsequently applies the best understanding of the physics of the climate system as captured in general circulation models to evaluate the broad-scale dynamics behind regional paleoclimate reconstructions. Here, we use a millennial-length climate field reconstruction of monsoon season summer (JJA) drought, developed from tree- ring proxies, with coupled climate simulations from NCAR CSM1.4 and CCSM3 to evaluate the cause of large- scale persistent droughts over the last one thousand years. Direct comparisons are made between the external forced response within the climate model and the spatiotemporal field reconstruction. In order to identify patterns of drought associated with internal variability in the climate system, we use a model/proxy analog technique which objectively selects epochs in the model that most closely reproduce those observed in the reconstructions. The concomitant ocean-atmosphere dynamics are then interpreted in order to identify and understand the internal climate system forcing of low frequency monsoon variability. We examine specific periods of extensive or intensive regional drought in the 15th, 17th, and 18th centuries, many of which are coincident with major cultural changes in the region.

  8. Short-Range Prediction of Monsoon Precipitation by NCMRWF Regional Unified Model with Explicit Convection

    Science.gov (United States)

    Mamgain, Ashu; Rajagopal, E. N.; Mitra, A. K.; Webster, S.

    2018-03-01

    There are increasing efforts towards the prediction of high-impact weather systems and understanding of related dynamical and physical processes. High-resolution numerical model simulations can be used directly to model the impact at fine-scale details. Improvement in forecast accuracy can help in disaster management planning and execution. National Centre for Medium Range Weather Forecasting (NCMRWF) has implemented high-resolution regional unified modeling system with explicit convection embedded within coarser resolution global model with parameterized convection. The models configurations are based on UK Met Office unified seamless modeling system. Recent land use/land cover data (2012-2013) obtained from Indian Space Research Organisation (ISRO) are also used in model simulations. Results based on short-range forecast of both the global and regional models over India for a month indicate that convection-permitting simulations by the high-resolution regional model is able to reduce the dry bias over southern parts of West Coast and monsoon trough zone with more intense rainfall mainly towards northern parts of monsoon trough zone. Regional model with explicit convection has significantly improved the phase of the diurnal cycle of rainfall as compared to the global model. Results from two monsoon depression cases during study period show substantial improvement in details of rainfall pattern. Many categories in rainfall defined for operational forecast purposes by Indian forecasters are also well represented in case of convection-permitting high-resolution simulations. For the statistics of number of days within a range of rain categories between `No-Rain' and `Heavy Rain', the regional model is outperforming the global model in all the ranges. In the very heavy and extremely heavy categories, the regional simulations show overestimation of rainfall days. Global model with parameterized convection have tendency to overestimate the light rainfall days and

  9. The Indian Monsoon

    Indian Academy of Sciences (India)

    user

    and led to the expectation that the impact of the monsoon on the ... a lead time of 10 days to a month for rainfall, temperature, etc., ... trying to predict, such as clouds or a monsoon depression (in ... occur because (i) the models are not perfect (involving many ... ally at many centres in the world, long-range predictions are.

  10. Seasonal modulation of the Asian summer monsoon between the Medieval Warm Period and Little Ice Age: a multi model study

    Science.gov (United States)

    Kamae, Youichi; Kawana, Toshi; Oshiro, Megumi; Ueda, Hiroaki

    2017-12-01

    Instrumental and proxy records indicate remarkable global climate variability over the last millennium, influenced by solar irradiance, Earth's orbital parameters, volcanic eruptions and human activities. Numerical model simulations and proxy data suggest an enhanced Asian summer monsoon during the Medieval Warm Period (MWP) compared to the Little Ice Age (LIA). Using multiple climate model simulations, we show that anomalous seasonal insolation over the Northern Hemisphere due to a long cycle of orbital parameters results in a modulation of the Asian summer monsoon transition between the MWP and LIA. Ten climate model simulations prescribing historical radiative forcing that includes orbital parameters consistently reproduce an enhanced MWP Asian monsoon in late summer and a weakened monsoon in early summer. Weakened, then enhanced Northern Hemisphere insolation before and after June leads to a seasonally asymmetric temperature response over the Eurasian continent, resulting in a seasonal reversal of the signs of MWP-LIA anomalies in land-sea thermal contrast, atmospheric circulation, and rainfall from early to late summer. This seasonal asymmetry in monsoon response is consistently found among the different climate models and is reproduced by an idealized model simulation forced solely by orbital parameters. The results of this study indicate that slow variation in the Earth's orbital parameters contributes to centennial variability in the Asian monsoon transition.[Figure not available: see fulltext.

  11. Role of aerosols on the Indian Summer Monsoon variability, as simulated by state-of-the-art global climate models

    Science.gov (United States)

    Cagnazzo, Chiara; Biondi, Riccardo; D'Errico, Miriam; Cherchi, Annalisa; Fierli, Federico; Lau, William K. M.

    2016-04-01

    Recent observational and modeling analyses have explored the interaction between aerosols and the Indian summer monsoon precipitation on seasonal-to-interannual time scales. By using global scale climate model simulations, we show that when increased aerosol loading is found on the Himalayas slopes in the premonsoon period (April-May), intensification of early monsoon rainfall over India and increased low-level westerly flow follow, in agreement with the elevated-heat-pump (EHP) mechanism. The increase in rainfall during the early monsoon season has a cooling effect on the land surface that may also be amplified through solar dimming (SD) by more cloudiness and aerosol loading with subsequent reduction in monsoon rainfall over India. We extend this analyses to a subset of CMIP5 climate model simulations. Our results suggest that 1) absorbing aerosols, by influencing the seasonal variability of the Indian summer monsoon with the discussed time-lag, may act as a source of predictability for the Indian Summer Monsoon and 2) if the EHP and SD effects are operating also in a number of state-of-the-art climate models, their inclusion could potentially improve seasonal forecasts.

  12. Tropospheric biennial oscillation and south Asian summer monsoon rainfall in a coupled model

    Science.gov (United States)

    Konda, Gopinadh; Chowdary, J. S.; Srinivas, G.; Gnanaseelan, C.; Parekh, Anant; Attada, Raju; Rama Krishna, S. S. V. S.

    2018-06-01

    In this study Tropospheric Biennial Oscillation (TBO) and south Asian summer monsoon rainfall are examined in the National Centers for Environmental Prediction (NCEP) Climate Forecast System (CFSv2) hindcast. High correlation between the observations and model TBO index suggests that the model is able to capture most of the TBO years. Spatial patterns of rainfall anomalies associated with positive TBO over the south Asian region are better represented in the model as in the observations. However, the model predicted rainfall anomaly patterns associated with negative TBO years are improper and magnitudes are underestimated compared to the observations. It is noted that positive (negative) TBO is associated with La Niña (El Niño) like Sea surface temperature (SST) anomalies in the model. This leads to the fact that model TBO is El Niño-Southern Oscillation (ENSO) driven, while in the observations Indian Ocean Dipole (IOD) also plays a role in the negative TBO phase. Detailed analysis suggests that the negative TBO rainfall anomaly pattern in the model is highly influenced by improper teleconnections allied to IOD. Unlike in the observations, rainfall anomalies over the south Asian region are anti-correlated with IOD index in CFSv2. Further, summer monsoon rainfall over south Asian region is highly correlated with IOD western pole than eastern pole in CFSv2 in contrast to the observations. Altogether, the present study highlights the importance of improving Indian Ocean SST teleconnections to south Asian summer rainfall in the model by enhancing the predictability of TBO. This in turn would improve monsoon rainfall prediction skill of the model.

  13. Tropospheric biennial oscillation and south Asian summer monsoon rainfall in a coupled model

    KAUST Repository

    Konda, Gopinadh; Chowdary, Jasti S.; Srinivas, G; Gnanaseelan, C; Parekh, Anant; Attada, Raju; Rama Krishna, S S V S

    2018-01-01

    In this study Tropospheric Biennial Oscillation (TBO) and south Asian summer monsoon rainfall are examined in the National Centers for Environmental Prediction (NCEP) Climate Forecast System (CFSv2) hindcast. High correlation between the observations and model TBO index suggests that the model is able to capture most of the TBO years. Spatial patterns of rainfall anomalies associated with positive TBO over the south Asian region are better represented in the model as in the observations. However, the model predicted rainfall anomaly patterns associated with negative TBO years are improper and magnitudes are underestimated compared to the observations. It is noted that positive (negative) TBO is associated with La Niña (El Niño) like Sea surface temperature (SST) anomalies in the model. This leads to the fact that model TBO is El Niño-Southern Oscillation (ENSO) driven, while in the observations Indian Ocean Dipole (IOD) also plays a role in the negative TBO phase. Detailed analysis suggests that the negative TBO rainfall anomaly pattern in the model is highly influenced by improper teleconnections allied to IOD. Unlike in the observations, rainfall anomalies over the south Asian region are anti-correlated with IOD index in CFSv2. Further, summer monsoon rainfall over south Asian region is highly correlated with IOD western pole than eastern pole in CFSv2 in contrast to the observations. Altogether, the present study highlights the importance of improving Indian Ocean SST teleconnections to south Asian summer rainfall in the model by enhancing the predictability of TBO. This in turn would improve monsoon rainfall prediction skill of the model.

  14. Tropospheric biennial oscillation and south Asian summer monsoon rainfall in a coupled model

    KAUST Repository

    Konda, Gopinadh

    2018-05-22

    In this study Tropospheric Biennial Oscillation (TBO) and south Asian summer monsoon rainfall are examined in the National Centers for Environmental Prediction (NCEP) Climate Forecast System (CFSv2) hindcast. High correlation between the observations and model TBO index suggests that the model is able to capture most of the TBO years. Spatial patterns of rainfall anomalies associated with positive TBO over the south Asian region are better represented in the model as in the observations. However, the model predicted rainfall anomaly patterns associated with negative TBO years are improper and magnitudes are underestimated compared to the observations. It is noted that positive (negative) TBO is associated with La Niña (El Niño) like Sea surface temperature (SST) anomalies in the model. This leads to the fact that model TBO is El Niño-Southern Oscillation (ENSO) driven, while in the observations Indian Ocean Dipole (IOD) also plays a role in the negative TBO phase. Detailed analysis suggests that the negative TBO rainfall anomaly pattern in the model is highly influenced by improper teleconnections allied to IOD. Unlike in the observations, rainfall anomalies over the south Asian region are anti-correlated with IOD index in CFSv2. Further, summer monsoon rainfall over south Asian region is highly correlated with IOD western pole than eastern pole in CFSv2 in contrast to the observations. Altogether, the present study highlights the importance of improving Indian Ocean SST teleconnections to south Asian summer rainfall in the model by enhancing the predictability of TBO. This in turn would improve monsoon rainfall prediction skill of the model.

  15. Vegetation Variability And Its Effect On Monsoon Rainfall Over South East Asia: Observational and Modeling Results

    Science.gov (United States)

    Sarkar, S.; Peters-Lidard, C.; Chiu, L.; Kafatos, M.

    2005-12-01

    Increasing population and urbanization have created stress on developing nations. The quickly shifting patterns of vegetation change in different parts of the world have given rise to the pertinent question of feedback on the climate prevailing on local to regional scales. It is now known with some certainty, that vegetation changes can affect the climate by influencing the heat and water balance. The hydrological cycle particularly is susceptible to changes in vegetation. The Monsoon rainfall forms a vital link in the hydrological cycle prevailing over South East Asia This work examines the variability of vegetation over South East Asia and assesses its impact on the monsoon rainfall. We explain the role of changing vegetation and show how this change has affected the heat and energy balance. We demonstrate the role of vegetation one season earlier in influencing rainfall intensity over specific areas in South East Asia and show the ramification of vegetation change on the summer rainfall behavior. The vegetation variability study specifically focuses on India and China, two of the largest and most populous nations. We have done an assessment to find out the key meteorological and human induced parameters affecting vegetation over the study area through a spatial analysis of monthly NDVI values. This study highlights the role of monsoon rainfall, regional climate dynamics and large scale human induced pollution to be the crucial factors governing the vegetation and vegetation distribution. The vegetation is seen to follow distinct spatial patterns that have been found to be crucial in its eventual impact on monsoon rainfall. We have carried out a series of sensitivity experiments using a land surface hydrologic modeling scheme. The vital energy and water balance parameters are identified and the daily climatological cycles are examined for possible change in behavior for different boundary conditions. It is found that the change from native deciduous forest

  16. Improvements of ENSO-monsoon relationship in CMIP5 models through statistical downscaling over India.

    Science.gov (United States)

    Akhter, J.; Das, L.; Deb, A.

    2017-12-01

    Present study has assessed the skills of global climate models (GCMS) from coupled model inter-comparison project phase five (CMIP5) in simulating ENSO-monsoon relationships over seven homogeneous zones of India. Observational sea surface temperature (SST) data has revealed that there has been a significant negative correlation between zonal precipitation and Nino 3.4 index over North Mountainous India, North West India, North Central India, West Peninsular India and South Peninsular India. First and third principal component (PC) of zonal precipitation explaining 44.4% and 14.2% variance respectively has also shown significant anti-correlation with Nino 3.4. Analysis with CMIP5 models revealed that majority of GCMs have failed to reproduce both magnitude and phase of such relationships mainly due to poor simulation of Nino 3.4 index. Therefore, an attempt has been made to improve the results through empirical orthogonal function (EOF) based statistical downscaling of CMIP5 GCMs. To downscale Nino 3.4 index, an optimal predictor combination of PCs extracted from EOF fields of large scale GCM predictors like Geo-potential height, u and v wind, Specific and relative humidity and air temperature at pressure levels 500, 850 and 1000 hpa, mean sea level pressure and atmospheric vapor content has been utilized. Results indicated improvements of downscaled CMIP5 models in simulating ENSO-monsoon relationship for zone wise precipitation. Multi-model ensemble (MME) of downscaled GCMs has better skill than individuals GCM. Therefore, downscaled MME may be used more reliably to investigate future ENSO-monsoon relationship under various warming scenarios

  17. Origins of the Asian-Australian monsoons related to Cenozoic plate movement and Tibetan Plateau uplift - A modeling study

    Science.gov (United States)

    Liu, X.; Dong, B.; Yin, Z. Y.; Smith, R. S.; Guo, Q.

    2017-12-01

    The origin of monsoon is a subject that has attracted much attention in the scientific community and even today it is still controversial. According to geological records, there is conflicting evidence regarding the timings of establishment of the monsoon climates in South Asia, East Asia, and northern Australia. Additionally, different explanations for the monsoon origins have been derived from various numerical simulations. To further investigate the origin and evolution of the Asian and Australian monsoons, we designed a series of numerical experiments using a coupled atmospheric-oceanic general circulation model. Since the Indian-Australian plate has shifted its position significantly during the Cenozoic, together with the large-scale uplift of the Tibetan Plateau (TP), in these experiments we considered the configurations of ocean-land masses and large topographic features based on geological evidence of plate motion and TP uplift in 5 typical Cenozoic geological periods: mid-Paleocene ( 60Ma), late-Eocene ( 40Ma), late-Oligocene ( 25Ma), late-Miocene ( 10Ma), and present day. These experiments allowed us to examine the combined effects of the changes in the land-ocean configuration due to plate movement and TP uplift, they also provided insight into the effects of the high CO2 levels during the Eocene. The simulations revealed that during the Paleocene, the Indian Subcontinent was still positioned in the Southern Hemisphere (SH) and, therefore, its climate behaved as the SH tropical monsoon. By the late Eocene, it moved into the tropical Northern Hemisphere, which allowed the establishment of the South Asian monsoon. In contrast, the East Asian and Australian monsoon did not exist in the late Oligocene. These monsoon systems were established in the Miocene and then enhanced thereafter. Establishments of the low-latitude monsoons in South Asia and Australia were entirely determined by the position of the Indian-Australian plate and not related to the TP uplift

  18. Simulation skill of APCC set of global climate models for Asian summer monsoon rainfall variability

    Science.gov (United States)

    Singh, U. K.; Singh, G. P.; Singh, Vikas

    2015-04-01

    The performance of 11 Asia-Pacific Economic Cooperation Climate Center (APCC) global climate models (coupled and uncoupled both) in simulating the seasonal summer (June-August) monsoon rainfall variability over Asia (especially over India and East Asia) has been evaluated in detail using hind-cast data (3 months advance) generated from APCC which provides the regional climate information product services based on multi-model ensemble dynamical seasonal prediction systems. The skill of each global climate model over Asia was tested separately in detail for the period of 21 years (1983-2003), and simulated Asian summer monsoon rainfall (ASMR) has been verified using various statistical measures for Indian and East Asian land masses separately. The analysis found a large variation in spatial ASMR simulated with uncoupled model compared to coupled models (like Predictive Ocean Atmosphere Model for Australia, National Centers for Environmental Prediction and Japan Meteorological Agency). The simulated ASMR in coupled model was closer to Climate Prediction Centre Merged Analysis of Precipitation (CMAP) compared to uncoupled models although the amount of ASMR was underestimated in both models. Analysis also found a high spread in simulated ASMR among the ensemble members (suggesting that the model's performance is highly dependent on its initial conditions). The correlation analysis between sea surface temperature (SST) and ASMR shows that that the coupled models are strongly associated with ASMR compared to the uncoupled models (suggesting that air-sea interaction is well cared in coupled models). The analysis of rainfall using various statistical measures suggests that the multi-model ensemble (MME) performed better compared to individual model and also separate study indicate that Indian and East Asian land masses are more useful compared to Asia monsoon rainfall as a whole. The results of various statistical measures like skill of multi-model ensemble, large spread

  19. Performance of Regional Climate Model in Simulating Monsoon Onset Over Indian Subcontinent

    Science.gov (United States)

    Bhatla, R.; Mandal, B.; Verma, Shruti; Ghosh, Soumik; Mall, R. K.

    2018-06-01

    The performance of various Convective Parameterization Schemes (CPSs) of Regional Climate Model version 4.3 (RegCM-4.3) for simulation of onset phase of Indian summer monsoon (ISM) over Kerala was studied for the period of 2001-2010. The onset date and its associated spatial variation were simulated using RegCM-4.3 four core CPS, namely Kuo, Tiedtke, Emanuel and Grell; and with two mixed convection schemes Mix98 (Emanuel over land and Grell over ocean) and Mix99 (Grell over land and Emanuel over ocean) on the basis of criteria given by the India Meteorological Department (IMD) (Pai and Rajeevan in Indian summer monsoon onset: variability and prediction. National Climate Centre, India Meteorological Department, 2007). It has been found that out of six CPS, two schemes, namely Tiedtke and Mix99 simulated the onset date properly. The onset phase is characterized with several transition phases of atmosphere. Therefore, to study the thermal response or the effect of different sea surface temperature (SST), namely ERA interim (ERSST) and weekly optimal interpolation (OI_WK SST) on Indian summer monsoon, the role of two different types of SST has been used to investigate the simulated onset date. In addition, spatial atmospheric circulation pattern during onset phase were analyzed using reanalyze dataset of ERA Interim (EIN15) and National Oceanic and Atmospheric Administration (NOAA), respectively, for wind and outgoing long-wave radiation (OLR) pattern. Among the six convective schemes of RegCM-4.3 model, Tiedtke is in good agreement with actual onset dates and OI_WK SST forcing is better for simulating onset of ISM over Kerala.

  20. On the response of Indian summer monsoon to aerosol forcing in CMIP5 model simulations

    Science.gov (United States)

    Sanap, S. D.; Pandithurai, G.; Manoj, M. G.

    2015-11-01

    The Indo-Gangetic plains (IGP), which hosts 1/7th of the world population, has undergone significant anomalous changes in hydrological cycle in recent decades. In present study, the role of aerosols in the precipitation changes over IGP region is investigated using Coupled Model Inter-comparison Project-5 (CMIP5) experiments with adequate representation of aerosols in state-of-the art climate models. The climatological sea surface temperature experiments are used to explore the relative impact of the aerosols. The diagnostic analysis on representation of aerosols and precipitation over Indian region was investigated in CMIP5 models. After the evaluation, multi-model ensemble was used for further analysis. It is revealed from the analysis that aerosol-forcing plays an important role in observed weakening of the monsoon circulation and decreased precipitation over the IGP region. The significant cooling of the continental Indian region (mainly IGP) caused by the aerosols leads to reduction in land sea temperature contrast, which further leads to weakening of monsoon overturning circulation and reduction in precipitation.

  1. Prediction of Monthly Summer Monsoon Rainfall Using Global Climate Models Through Artificial Neural Network Technique

    Science.gov (United States)

    Nair, Archana; Singh, Gurjeet; Mohanty, U. C.

    2018-01-01

    The monthly prediction of summer monsoon rainfall is very challenging because of its complex and chaotic nature. In this study, a non-linear technique known as Artificial Neural Network (ANN) has been employed on the outputs of Global Climate Models (GCMs) to bring out the vagaries inherent in monthly rainfall prediction. The GCMs that are considered in the study are from the International Research Institute (IRI) (2-tier CCM3v6) and the National Centre for Environmental Prediction (Coupled-CFSv2). The ANN technique is applied on different ensemble members of the individual GCMs to obtain monthly scale prediction over India as a whole and over its spatial grid points. In the present study, a double-cross-validation and simple randomization technique was used to avoid the over-fitting during training process of the ANN model. The performance of the ANN-predicted rainfall from GCMs is judged by analysing the absolute error, box plots, percentile and difference in linear error in probability space. Results suggest that there is significant improvement in prediction skill of these GCMs after applying the ANN technique. The performance analysis reveals that the ANN model is able to capture the year to year variations in monsoon months with fairly good accuracy in extreme years as well. ANN model is also able to simulate the correct signs of rainfall anomalies over different spatial points of the Indian domain.

  2. Monsoonal Responses to External Forcings over the Past Millennium: A Model Study (Invited)

    Science.gov (United States)

    Liu, J.; Wang, B.

    2009-12-01

    The climate variations related to Global Monsoon (GM) and East Asian summer monsoon (EASM) rainfall over the past 1000 years were investigated by analysis of a pair of millennium simulations with the coupled climate model named ECHO-G. The free run was generated using fixed external (annual cycle) forcing, while the forced run was obtained using time-varying solar irradiance variability, greenhouse gases (CO2 and CH4) concentration and estimated radiative effect of volcanic aerosols. The model results indicate that the centennial-millennial variation of the GM and EASM is essentially a forced response to the external radiative forcings (insolation, volcanic aerosols, and greenhouse gases). The GM strength responds more directly to the effective solar forcing (insolation plus radiative effect of the volcanoes) when compared to responses of the global mean surface temperature on centennial timescale. The simulated GM precipitation in the forced run exhibits a significant quasi-bi-centennial oscillation. Weak GM precipitation was simulated during the Little Ice Age (1450-1850) with three weakest periods concurring with the Spörer, Maunder, and Dalton Minimum of solar activity. Conversely, strong GM was simulated during the model Medieval Warm Period (ca. 1030-1240). Before the industrial period, the natural variation in effective solar forcing reinforces the thermal contrasts both between the ocean and continent and between the northern and southern hemispheres, resulting in millennium-scale variation and the quasi-bi-centennial oscillation of the GM. The prominent upward trend in the GM precipitation occurring in the last century and the remarkably strengthening of the global monsoon in the period of 1961-1990 appear unprecedented and owed possibly in part to the increase of atmospheric carbon dioxide concentration. The EASM has the largest meridional extent (5oN-55oN) among all the regional monsoons on globe. Thus, the EASM provides an unique opportunity for

  3. A zonally symmetric model for the monsoon-Hadley circulation with stochastic convective forcing

    Science.gov (United States)

    De La Chevrotière, Michèle; Khouider, Boualem

    2017-02-01

    Idealized models of reduced complexity are important tools to understand key processes underlying a complex system. In climate science in particular, they are important for helping the community improve our ability to predict the effect of climate change on the earth system. Climate models are large computer codes based on the discretization of the fluid dynamics equations on grids of horizontal resolution in the order of 100 km, whereas unresolved processes are handled by subgrid models. For instance, simple models are routinely used to help understand the interactions between small-scale processes due to atmospheric moist convection and large-scale circulation patterns. Here, a zonally symmetric model for the monsoon circulation is presented and solved numerically. The model is based on the Galerkin projection of the primitive equations of atmospheric synoptic dynamics onto the first modes of vertical structure to represent free tropospheric circulation and is coupled to a bulk atmospheric boundary layer (ABL) model. The model carries bulk equations for water vapor in both the free troposphere and the ABL, while the processes of convection and precipitation are represented through a stochastic model for clouds. The model equations are coupled through advective nonlinearities, and the resulting system is not conservative and not necessarily hyperbolic. This makes the design of a numerical method for the solution of this system particularly difficult. Here, we develop a numerical scheme based on the operator time-splitting strategy, which decomposes the system into three pieces: a conservative part and two purely advective parts, each of which is solved iteratively using an appropriate method. The conservative system is solved via a central scheme, which does not require hyperbolicity since it avoids the Riemann problem by design. One of the advective parts is a hyperbolic diagonal matrix, which is easily handled by classical methods for hyperbolic equations, while

  4. Representation of the West African Monsoon System in the aerosol-climate model ECHAM6-HAM2

    Science.gov (United States)

    Stanelle, Tanja; Lohmann, Ulrike; Bey, Isabelle

    2017-04-01

    The West African Monsoon (WAM) is a major component of the global monsoon system. The temperature contrast between the Saharan land surface in the North and the sea surface temperature in the South dominates the WAM formation. The West African region receives most of its precipitation during the monsoon season between end of June and September. Therefore the existence of the monsoon is of major social and economic importance. We discuss the ability of the climate model ECHAM6 as well as the coupled aerosol climate model ECHAM6-HAM2 to simulate the major features of the WAM system. The north-south temperature gradient is reproduced by both model versions but all model versions fail in reproducing the precipitation amount south of 10° N. A special focus is on the representation of the nocturnal low level jet (NLLJ) and the corresponding enhancement of low level clouds (LLC) at the Guinea Coast, which are a crucial factor for the regional energy budget. Most global climate models have difficulties to represent these features. The pure climate model ECHAM6 is able to simulate the existence of the NLLJ and LLC, but the model does not represent the pronounced diurnal cycle. Overall, the representation of LLC is worse in the coupled model. We discuss the model behaviors on the basis of outputted temperature and humidity tendencies and try to identify potential processes responsible for the model deficiencies.

  5. Representation of monsoon intraseasonal oscillations in regional climate model: sensitivity to convective physics

    KAUST Repository

    Umakanth, U.

    2015-11-07

    The aim of the study is to evaluate the performance of regional climate model (RegCM) version 4.4 over south Asian CORDEX domain to simulate seasonal mean and monsoon intraseasonal oscillations (MISOs) during Indian summer monsoon. Three combinations of Grell (G) and Emanuel (E) cumulus schemes namely, RegCM-EG, RegCM-EE and RegCM-GE have been used. The model is initialized at 1st January, 2000 for a 13-year continuous simulation at a spatial resolution of 50 km. The models reasonably simulate the seasonal mean low level wind pattern though they differ in simulating mean precipitation pattern. All models produce dry bias in precipitation over Indian land region except in RegCM-EG where relatively low value of dry bias is observed. On seasonal scale, the performance of RegCM-EG is more close to observation though it fails at intraseasonal time scales. In wave number-frequency spectrum, the observed peak in zonal wind (850 hPa) at 40–50 day scale is captured by all models with a slight change in amplitude, however, the 40–50 day peak in precipitation is completely absent in RegCM-EG. The space–time characteristics of MISOs are well captured by RegCM-EE over RegCM-GE, however it fails to show the eastward propagation of the convection across the Maritime Continent. Except RegCM-EE all other models completely underestimates the moisture advection from Equatorial Indian Ocean onto Indian land region during life-cycle of MISOs. The characteristics of MISOs are studied for strong (SM) and weak (WM) monsoon years and the differences in model performances are analyzed. The wavelet spectrum of rainfall over central India denotes that, the SM years are dominated by high frequency oscillations (period <20 days) whereas little higher periods (>30 days) along with dominated low periods (<20 days) observed during WM years. During SM, RegCM-EE is dominated with high frequency oscillations (period <20 days) whereas in WM, RegCM-EE is dominated with periods >20

  6. Intercomparison and analyses of the climatology of the West African monsoon in the West African monsoon modeling and evaluation project (WAMME) first model intercomparison experiment

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Yongkang; Sales, Fernando De [University of California, Los Angeles, CA (United States); Lau, W.K.M.; Schubert, Siegfried D.; Wu, Man-Li C. [NASA, Goddard Space Flight Center, Greenbelt, MD (United States); Boone, Aaron [Centre National de Recherches Meteorologiques, Meteo-France Toulouse, Toulouse (France); Feng, Jinming [University of California, Los Angeles, CA (United States); Chinese Academy of Sciences, Institute of Atmospheric Physics, Beijing (China); Dirmeyer, Paul; Guo, Zhichang [Center for Ocean-Land-Atmosphere Interactions, Calverton, MD (United States); Kim, Kyu-Myong [University of Maryland Baltimore County, Baltimore, MD (United States); Kitoh, Akio [Meteorological Research Institute, Tsukuba (Japan); Kumar, Vadlamani [National Center for Environmental Prediction, Camp Springs, MD (United States); Wyle Information Systems, Gaithersburg, MD (United States); Poccard-Leclercq, Isabelle [Universite de Bourgogne, Centre de Recherches de Climatologie UMR5210 CNRS, Dijon (France); Mahowald, Natalie [Cornell University, Ithaca, NY (United States); Moufouma-Okia, Wilfran; Rowell, David P. [Met Office Hadley Centre, Exeter (United Kingdom); Pegion, Phillip [NASA, Goddard Space Flight Center, Greenbelt, MD (United States); National Center for Environmental Prediction, Camp Springs, MD (United States); Schemm, Jae; Thiaw, Wassila M. [National Center for Environmental Prediction, Camp Springs, MD (United States); Sealy, Andrea [The Caribbean Institute for Meteorology and Hydrology, St. James (Barbados); Vintzileos, Augustin [National Center for Environmental Prediction, Camp Springs, MD (United States); Science Applications International Corporation, Camp Springs, MD (United States); Williams, Steven F. [National Center for Atmospheric Research, Boulder, CO (United States)

    2010-07-15

    This paper briefly presents the West African monsoon (WAM) modeling and evaluation project (WAMME) and evaluates WAMME general circulation models' (GCM) performances in simulating variability of WAM precipitation, surface temperature, and major circulation features at seasonal and intraseasonal scales in the first WAMME experiment. The analyses indicate that models with specified sea surface temperature generally have reasonable simulations of the pattern of spatial distribution of WAM seasonal mean precipitation and surface temperature as well as the averaged zonal wind in latitude-height cross-section and low level circulation. But there are large differences among models in simulating spatial correlation, intensity, and variance of precipitation compared with observations. Furthermore, the majority of models fail to produce proper intensities of the African Easterly Jet (AEJ) and the tropical easterly jet. AMMA Land Surface Model Intercomparison Project (ALMIP) data are used to analyze the association between simulated surface processes and the WAM and to investigate the WAM mechanism. It has been identified that the spatial distributions of surface sensible heat flux, surface temperature, and moisture convergence are closely associated with the simulated spatial distribution of precipitation; while surface latent heat flux is closely associated with the AEJ and contributes to divergence in AEJ simulation. Common empirical orthogonal functions (CEOF) analysis is applied to characterize the WAM precipitation evolution and has identified a major WAM precipitation mode and two temperature modes (Sahara mode and Sahel mode). Results indicate that the WAMME models produce reasonable temporal evolutions of major CEOF modes but have deficiencies/uncertainties in producing variances explained by major modes. Furthermore, the CEOF analysis shows that WAM precipitation evolution is closely related to the enhanced Sahara mode and the weakened Sahel mode, supporting

  7. Impact of satellite data assimilation on the predictability of monsoon intraseasonal oscillations in a regional model

    KAUST Repository

    Parekh, Anant

    2017-04-07

    This study reports the improvement in the predictability of circulation and precipitation associated with monsoon intraseasonal oscillations (MISO) when the initial state is produced by assimilating Atmospheric Infrared Sounder (AIRS) retrieved temperature and water vapour profiles in Weather Research Forecast (WRF) model. Two separate simulations are carried out for nine years (2003 to 2011) . In the first simulation, forcing is from National Centers for Environmental Prediction (NCEP, CTRL) and in the second, apart from NCEP forcing, AIRS temperature and moisture profiles are assimilated (ASSIM). Ten active and break cases are identified from each simulation. Three dimensional temperature states of identified active and break cases are perturbed using twin perturbation method and carried out predictability tests. Analysis reveals that the limit of predictability of low level zonal wind is improved by four (three) days during active (break) phase. Similarly the predictability of upper level zonal wind (precipitation) is enhanced by four (two) and two (four) days respectively during active and break phases. This suggests that the initial state using AIRS observations could enhance predictability limit of MISOs in WRF. More realistic baroclinic response and better representation of vertical state of atmosphere associated with monsoon enhance the predictability of circulation and rainfall.

  8. Uncertainty Source of Modeled Ecosystem Productivity in East Asian Monsoon Region: A Traceability Analysis

    Science.gov (United States)

    Cui, E.; Xia, J.; Huang, K.; Ito, A.; Arain, M. A.; Jain, A. K.; Poulter, B.; Peng, C.; Hayes, D. J.; Ricciuto, D. M.; Huntzinger, D. N.; Tian, H.; Mao, J.; Fisher, J.; Schaefer, K. M.; Huang, M.; Peng, S.; Wang, W.

    2017-12-01

    East Asian monsoon region, benefits from sufficient water-heat availability and increasing nitrogen deposition, represents significantly higher net ecosystem productivity than the same latitudes of Europe-Africa and North America. A better understanding of major contributions to the uncertainties of terrestrial carbon cycle in this region is greatly important for evaluating the global carbon balance. This study analyzed the key carbon processes and parameters derived from a series of terrestrial biosphere models. A wide range of inter-model disagreement on GPP was found in China's subtropical regions. Then, this large difference was traced to a few traceable components included in terrestrial carbon cycle. The increase in ensemble mean GPP over 1901-2010 was predominantly resulted from increasing atmospheric CO2 concentration and nitrogen deposition, while high frequent land-use change over this region showed a slightly negative effect on GPP. However, inter-model differences of GPP were mainly attributed to the baseline simulations without changes in external forcing. According to the variance decomposition, the large spread in simulated GPP was well explained by the differences in leaf area index (LAI) and specific leaf area (SLA) among models. In addition, the underlying errors in simulated GPP propagate through the model and introduce some additional errors to the simulation of NPP and biomass. By comparing the simulations with satellite-derived, data-oriented and observation-based datasets, we further found that GPP, vegetation carbon turn-over time, aboveground biomass, LAI and SLA were all overestimated in most of the models while biomass distribution in leaves was significantly underestimated. The results of this study indicate that model performance on ecosystem productivity in East Asian monsoon region can be improved by a more realistic representation of leaf functional traits.

  9. The INCOMPASS project field and modelling campaign: Interaction of Convective Organization and Monsoon Precipitation, Atmosphere, Surface and Sea

    Science.gov (United States)

    Turner, Andrew; Bhat, Ganapati; Evans, Jonathan; Madan, Ranju; Marsham, John; Martin, Gill; Mitra, Ashis; Mrudula, Gm; Parker, Douglas; Pattnaik, Sandeep; Rajagopal, En; Taylor, Christopher; Tripathi, Sachchida

    2017-04-01

    The INCOMPASS project uses data from a field and aircraft measurement campaign during the 2016 monsoon onset to better understand and predict monsoon rainfall. The monsoon supplies the majority of water in South Asia, however modelling and forecasting the monsoon from days to the season ahead is limited by large model errors that develop quickly. Likely problems lie in physical parametrizations such as convection, the boundary layer and land surface. At the same time, lack of detailed observations prevents more thorough understanding of monsoon circulation and its interaction with the land surface; a process governed by boundary layer and convective cloud dynamics. From May to July 2016, INCOMPASS used a modified BAe-146 jet aircraft operated by the UK Facility for Airborne Atmospheric Measurements (FAAM), for the first project of this scale in India. The India and UK team flew around 100 hours of science sorties from bases in northern and southern India. Flights from Lucknow in the northern plains took measurements to the west and southeast to allow sampling of the complete contrast from dry desert air to the humid environment over the north Bay of Bengal. These routes were repeated in the pre-monsoon and monsoon phases, measuring contrasting surface and boundary layer structures. In addition, flights from the southern base in Bengaluru measured contrasts from the Arabian Sea, across the intense rains of the Western Ghats mountains, over the rain shadow in southeast India and over the southern Bay of Bengal. Flight planning was performed with the aid of forecasts from a new UK Met Office 4km limited area model. INCOMPASS also installed a network of surface flux towers, as well as operating a cloud-base ceilometer and performing intensive radiosonde launches from a supersite in Kanpur. Here we will outline preliminary results from the field campaign including new observations of the surface, boundary layer structure and atmospheric profiles from aircraft data. We

  10. Evaluation of NCMRWF unified model vertical cloud structure with CloudSat over the Indian summer monsoon region

    Science.gov (United States)

    Jayakumar, A.; Mamgain, Ashu; Jisesh, A. S.; Mohandas, Saji; Rakhi, R.; Rajagopal, E. N.

    2016-05-01

    Representation of rainfall distribution and monsoon circulation in the high resolution versions of NCMRWF Unified model (NCUM-REG) for the short-range forecasting of extreme rainfall event is vastly dependent on the key factors such as vertical cloud distribution, convection and convection/cloud relationship in the model. Hence it is highly relevant to evaluate the vertical structure of cloud and precipitation of the model over the monsoon environment. In this regard, we utilized the synergy of the capabilities of CloudSat data for long observational period, by conditioning it for the synoptic situation of the model simulation period. Simulations were run at 4-km grid length with the convective parameterization effectively switched off and on. Since the sample of CloudSat overpasses through the monsoon domain is small, the aforementioned methodology may qualitatively evaluate the vertical cloud structure for the model simulation period. It is envisaged that the present study will open up the possibility of further improvement in the high resolution version of NCUM in the tropics for the Indian summer monsoon associated rainfall events.

  11. Energetics and monsoon bifurcations

    Science.gov (United States)

    Seshadri, Ashwin K.

    2017-01-01

    Monsoons involve increases in dry static energy (DSE), with primary contributions from increased shortwave radiation and condensation of water vapor, compensated by DSE export via horizontal fluxes in monsoonal circulations. We introduce a simple box-model characterizing evolution of the DSE budget to study nonlinear dynamics of steady-state monsoons. Horizontal fluxes of DSE are stabilizing during monsoons, exporting DSE and hence weakening the monsoonal circulation. By contrast latent heat addition (LHA) due to condensation of water vapor destabilizes, by increasing the DSE budget. These two factors, horizontal DSE fluxes and LHA, are most strongly dependent on the contrast in tropospheric mean temperature between land and ocean. For the steady-state DSE in the box-model to be stable, the DSE flux should depend more strongly on the temperature contrast than LHA; stronger circulation then reduces DSE and thereby restores equilibrium. We present conditions for this to occur. The main focus of the paper is describing conditions for bifurcation behavior of simple models. Previous authors presented a minimal model of abrupt monsoon transitions and argued that such behavior can be related to a positive feedback called the `moisture advection feedback'. However, by accounting for the effect of vertical lapse rate of temperature on the DSE flux, we show that bifurcations are not a generic property of such models despite these fluxes being nonlinear in the temperature contrast. We explain the origin of this behavior and describe conditions for a bifurcation to occur. This is illustrated for the case of the July-mean monsoon over India. The default model with mean parameter estimates does not contain a bifurcation, but the model admits bifurcation as parameters are varied.

  12. Improvement in the Modeled Representation of North American Monsoon Precipitation Using a Modified Kain–Fritsch Convective Parameterization Scheme

    KAUST Repository

    Luong, Thang; Castro, Christopher; Nguyen, Truong; Cassell, William; Chang, Hsin-I

    2018-01-01

    A commonly noted problem in the simulation of warm season convection in the North American monsoon region has been the inability of atmospheric models at the meso-β scales (10 s to 100 s of kilometers) to simulate organized convection, principally

  13. SST and OLR relationship during Indian summer monsoon: a coupled climate modelling perspective

    Science.gov (United States)

    Chaudhari, Hemantkumar S.; Hazra, Anupam; Pokhrel, Samir; Chakrabarty, Chandrima; Saha, Subodh Kumar; Sreenivas, P.

    2018-04-01

    The study mainly investigates sea surface temperature (SST) and outgoing longwave radiation (OLR) relationships in coupled climate model. To support the analysis, high-level cloud and OLR relationship is also investigated. High-level cloud and OLR relationship depicts significant negative correlation over the entire monsoon regime. Coupled climate model is able to produce the same. SST and OLR relationship in observation also depicts significant negative relationship, in particular, over the Equatorial Eastern Indian Ocean (EIO) region. Climate Forecast System version 2 (CFSv2) is able to portray the negative relationship over EIO region; however, it is underestimated as compared to observation. Significant negative correlations elucidate that local SSTs regulate the convection and further it initiates Bjerknes feedback in the central Indian Ocean. It connotes that SST anomalies during monsoon period tend to be determined by oceanic forcing. The heat content of the coastal Bay of Bengal shows highest response to EIO SST by a lag of 1 month. It suggests that the coastal region of the Bay of Bengal is marked by coastally trapped Kelvin waves, which might have come from EIO at a time lag of 1 month. Sea surface height anomalies, depth at 20 °C isotherms and depth at 26 isotherms also supports the above hypothesis. Composite analysis based on EIO index and coupled climate model sensitivity experiments also suggest that the coastal Bay of Bengal region is marked by coastally trapped Kelvin waves, which are propagated from EIO at a time lag of 1 month. Thus, SST and OLR relationship pinpoints that the Bay of Bengal OLR (convection) is governed by local ocean-atmospheric coupling, which is influenced by the delayed response from EIO brought forward through oceanic planetary waves at a lag of 1 month. These results have utmost predictive value for seasonal and extended range forecasting. Thus, OLR and SST relationship can constitute a pivotal role in investigating the

  14. Modelling the impacts of deforestation on monsoon rainfall in West Africa

    International Nuclear Information System (INIS)

    Abiodun, B J; Pal, J S; Afiesimama, E A; Gutowski, W J; Adedoyin, A

    2010-01-01

    The study found that deforestation causes more monsoon moisture to be retained in the mid-troposphere, thereby reducing the northward transport of moisture needed for rainfall over West Africa. Hence, deforestation has dynamical impacts on the West African monsoon and rainfall.

  15. Coupling of Community Land Model with RegCM4 for Indian Summer Monsoon Simulation

    Science.gov (United States)

    Maurya, R. K. S.; Sinha, P.; Mohanty, M. R.; Mohanty, U. C.

    2017-11-01

    Three land surface schemes available in the regional climate model RegCM4 have been examined to understand the coupling between land and atmosphere for simulation of the Indian summer monsoon rainfall. The RegCM4 is coupled with biosphere-atmosphere transfer scheme (BATS) and the National Center for Atmospheric Research (NCAR) Community Land Model versions 3.5, and 4.5 (CLM3.5 and CLM4.5, respectively) and model performance is evaluated for recent drought (2009) and normal (2011) monsoon years. The CLM4.5 has a more distinct category of surface and it is capable of representing better the land surface characteristics. National Centers for Environmental Prediction (NCEP) and Department of Energy (DOE) reanalysis version 2 (NNRP2) datasets are considered as driving force to conduct the experiments for the Indian monsoon region (30°E-120°E; 30°S-50°N). The NNRP2 and India Meteorological Department (IMD) gridded precipitation data are used for verification analysis. The results indicate that RegCM4 simulations with CLM4.5 (RegCM4-CLM4.5) and CLM3.5 (RegCM4-CLM3.5) surface temperature (at 2 ms) have very low warm biases ( 1 °C), while with BATS (RegCM4-BATS) has a cold bias of about 1-3 °C in peninsular India and some parts of central India. Warm bias in the RegCM4-BATS is observed over the Indo-Gangetic plain and northwest India and the bias is more for the deficit year as compared to the normal year. However, the warm (cold) bias is less in RegCM4-CLM4.5 than other schemes for both the deficit and normal years. The model-simulated maximum (minimum) surface temperature and sensible heat flux at the surface are positively (negatively) biased in all the schemes; however, the bias is higher in RegCM4-BATS and lower in RegCM4-CLM4.5 over India. All the land surface schemes overestimated the precipitation in peninsular India and underestimated in central parts of India for both the years; however, the biases are less in RegCM4-CLM4.5 and more in RegCM4-CLM3.5 and Reg

  16. Progress Towards Achieving the Challenge of Indian Summer Monsoon Climate Simulation in a Coupled Ocean-Atmosphere Model

    Science.gov (United States)

    Hazra, Anupam; Chaudhari, Hemantkumar S.; Saha, Subodh Kumar; Pokhrel, Samir; Goswami, B. N.

    2017-10-01

    Simulation of the spatial and temporal structure of the monsoon intraseasonal oscillations (MISOs), which have effects on the seasonal mean and annual cycle of Indian summer monsoon (ISM) rainfall, remains a grand challenge for the state-of-the-art global coupled models. Biases in simulation of the amplitude and northward propagation of MISOs and related dry rainfall bias over ISM region in climate models are limiting the current skill of monsoon prediction. Recent observations indicate that the convective microphysics of clouds may be critical in simulating the observed MISOs. The hypothesis is strongly supported by high fidelity in simulation of the amplitude and space-time spectra of MISO by a coupled climate model, when our physically based modified cloud microphysics scheme is implemented in conjunction with a modified new Simple Arakawa Schubert (nSAS) convective parameterization scheme. Improved simulation of MISOs appears to have been aided by much improved simulation of the observed high cloud fraction and convective to stratiform rain fractions and resulted into a much improved simulation of the ISM rainfall, monsoon onset, and the annual cycle.

  17. Time-slice analysis of the Australian summer monsoon during the late Quaternary using the Fast Ocean Atmosphere Model

    Science.gov (United States)

    Marshall, A. G.; Lynch, A. H.

    2006-10-01

    We use the Fast Ocean Atmosphere Model (FOAM) to investigate the variation in the Australian summer monsoon over the last 55 000 years. A synthesis of palaeoenvironmental observations is used to constrain the model for six time slices: 55, 35, 21, 11, 6 and 0 ka. Both inter-hemispheric forcing and the seasonal timing of local insolation changes play key, and interacting, roles on the evolution and intensity of the monsoon.During the onset to the monsoon, a heat low develops to the west of Australia over the Indian Ocean in all time slices, but with varying strengths. Divergent outflow from Asia converges with the cyclonic flow to bring increased rainfall to northern Australia and the maritime continent. The relative importance of a low pressure pull and the high pressure push varies according to the strength of the pressure anomalies. Only in the middle Holocene is the low pressure pull the dominant forcing mechanism. At 21 ka, the climate shift to colder mean temperatures determines the large-scale dynamics of the monsoon.The general picture that emerges from these results is consistent with available palaeodata but highlights the importance of a broad regional perspective to ascribe the driving mechanisms at different times. Copyright

  18. Reanalysis of the Indian summer monsoon: four dimensional data assimilation of AIRS retrievals in a regional data assimilation and modeling framework

    Science.gov (United States)

    Attada, Raju; Parekh, Anant; Chowdary, J. S.; Gnanaseelan, C.

    2018-04-01

    This work is the first attempt to produce a multi-year downscaled regional reanalysis of the Indian summer monsoon (ISM) using the National Centers for Environmental Prediction (NCEP) operational analyses and Atmospheric Infrared Sounder (AIRS) version 5 temperature and moisture retrievals in a regional model. Reanalysis of nine monsoon seasons (2003-2011) are produced in two parallel setups. The first set of experiments simply downscale the original NCEP operational analyses, whilst the second one assimilates the AIRS temperature and moisture profiles. The results show better representation of the key monsoon features such as low level jet, tropical easterly jet, subtropical westerly jet, monsoon trough and the spatial pattern of precipitation when AIRS profiles are assimilated (compared to those without AIRS data assimilation). The distribution of temperature, moisture and meridional gradients of dynamical and thermodynamical fields over the monsoon region are better represented in the reanalysis that assimilates AIRS profiles. The change induced by AIRS data on the moist and thermodynamic conditions results in more realistic rendering of the vertical shear associated with the monsoon, which in turn leads to a proper moisture transport and the moist convective feedback. This feedback benefits the representation of the regional monsoon characteristics, the monsoon dynamics and the moist convective processes on the seasonal time scale. This study emphasizes the use of AIRS soundings for downscaling of ISM representation in a regional reanalysis.

  19. Reanalysis of the Indian summer monsoon: four dimensional data assimilation of AIRS retrievals in a regional data assimilation and modeling framework

    KAUST Repository

    Attada, Raju

    2017-07-04

    This work is the first attempt to produce a multi-year downscaled regional reanalysis of the Indian summer monsoon (ISM) using the National Centers for Environmental Prediction (NCEP) operational analyses and Atmospheric Infrared Sounder (AIRS) version 5 temperature and moisture retrievals in a regional model. Reanalysis of nine monsoon seasons (2003–2011) are produced in two parallel setups. The first set of experiments simply downscale the original NCEP operational analyses, whilst the second one assimilates the AIRS temperature and moisture profiles. The results show better representation of the key monsoon features such as low level jet, tropical easterly jet, subtropical westerly jet, monsoon trough and the spatial pattern of precipitation when AIRS profiles are assimilated (compared to those without AIRS data assimilation). The distribution of temperature, moisture and meridional gradients of dynamical and thermodynamical fields over the monsoon region are better represented in the reanalysis that assimilates AIRS profiles. The change induced by AIRS data on the moist and thermodynamic conditions results in more realistic rendering of the vertical shear associated with the monsoon, which in turn leads to a proper moisture transport and the moist convective feedback. This feedback benefits the representation of the regional monsoon characteristics, the monsoon dynamics and the moist convective processes on the seasonal time scale. This study emphasizes the use of AIRS soundings for downscaling of ISM representation in a regional reanalysis.

  20. Simulation of the Indian summer monsoon onset-phase rainfall using a regional model

    KAUST Repository

    Srinivas, C. V.

    2015-09-11

    This study examines the ability of the Advanced Research WRF (ARW) regional model to simulate Indian summer monsoon (ISM) rainfall climatology in different climate zones during the monsoon onset phase in the decade 2000–2009. The initial and boundary conditions for ARW are provided from the NCEP/NCAR Reanalysis Project (NNRP) global reanalysis. Seasonal onset-phase rainfall is compared with corresponding values from 0.25° IMD (India Meteorological Department) rainfall and NNRP precipitation data over seven climate zones (perhumid, humid, dry/moist, subhumid, dry/moist, semiarid and arid) of India to see whether dynamical downscaling using a regional model yields advantages over just using large-scale model predictions. Results show that the model could simulate the onset phase in terms of progression and distribution of rainfall in most zones (except over the northeast) with good correlations and low error metrics. The observed mean onset dates and their variability over different zones are well reproduced by the regional model over most climate zones. It has been found that the ARW performed similarly to the reanalysis in most zones and improves the onset time by 1 to 3 days in zones 4 and 7, in which the NNRP shows a delayed onset compared to the actual IMD onset times. The variations in the onset-phase rainfall during the below-normal onset (June negative) and above-normal onset (June positive) phases are well simulated. The slight underestimation of onset-phase rainfall in the northeast zone could be due to failure in resolving the wide extent of topographic variations and the associated multiscale interactions in that zone. Spatial comparisons showed improvement of pentad rainfall in both space and quantity in ARW simulations over NNRP data, as evident from a wider eastward distribution of pentad rainfall over the Western Ghats, central and eastern India, as in IMD observations. While NNRP under-represented the high pentad rainfall over northeast, east and

  1. Simulation of the Indian summer monsoon onset-phase rainfall using a regional model

    Directory of Open Access Journals (Sweden)

    C. V. Srinivas

    2015-09-01

    Full Text Available This study examines the ability of the Advanced Research WRF (ARW regional model to simulate Indian summer monsoon (ISM rainfall climatology in different climate zones during the monsoon onset phase in the decade 2000–2009. The initial and boundary conditions for ARW are provided from the NCEP/NCAR Reanalysis Project (NNRP global reanalysis. Seasonal onset-phase rainfall is compared with corresponding values from 0.25° IMD (India Meteorological Department rainfall and NNRP precipitation data over seven climate zones (perhumid, humid, dry/moist, subhumid, dry/moist, semiarid and arid of India to see whether dynamical downscaling using a regional model yields advantages over just using large-scale model predictions. Results show that the model could simulate the onset phase in terms of progression and distribution of rainfall in most zones (except over the northeast with good correlations and low error metrics. The observed mean onset dates and their variability over different zones are well reproduced by the regional model over most climate zones. It has been found that the ARW performed similarly to the reanalysis in most zones and improves the onset time by 1 to 3 days in zones 4 and 7, in which the NNRP shows a delayed onset compared to the actual IMD onset times. The variations in the onset-phase rainfall during the below-normal onset (June negative and above-normal onset (June positive phases are well simulated. The slight underestimation of onset-phase rainfall in the northeast zone could be due to failure in resolving the wide extent of topographic variations and the associated multiscale interactions in that zone. Spatial comparisons showed improvement of pentad rainfall in both space and quantity in ARW simulations over NNRP data, as evident from a wider eastward distribution of pentad rainfall over the Western Ghats, central and eastern India, as in IMD observations. While NNRP under-represented the high pentad rainfall over

  2. Site-specific high-resolution models of the monsoon for Africa and Asia

    Science.gov (United States)

    Bryson, R. A.; Bryson, R. U.

    2000-11-01

    Using the macrophysical climate model of Bryson [Bryson, R.A., 1992. A macrophysical model of the Holocene intertropical convergence and jetstream positions and rainfall for the Saharan region. Meteorol. Atmos. Phys., 47, pp. 247-258], it is possible to calculate the monthly latitude of the jetstream and the latitude of the subtropical anticyclones. From these and modern climatic data, it is possible to model the two-century mean latitude of the intertropical convergence (ITC) month by month and estimate the monthly monsoon rainfall using the ITC-Rainfall model of Ilesanmi [Ilesanmi, O.O., 1971. An empirical formulation of an ITD rainfall model for the tropics — a case study of Nigeria. J. Appl. Meteorol., 10, pp. 882-891] and similar relationships. Input to this model is only calculated radiation and atmospheric optical depth estimated from a database of global volcanicity. Recent work has shown that it is possible to extend these estimates to both precipitation and temperature at specific sites, even in mountainous terrain. Testing of the model against archaeological records and climatic proxies is now underway, as well as refining the fundamental model. Preliminary indications are that the timing of fluctuations in the local climate is very well modeled. Especially well matched are the modeled Nile flood based on calculated rainfall on the Blue and White Nile watersheds and the level of Lake Moeris [Hassan, F., 1985. Holocene lakes and prehistoric settlements of the Western Faiyum, Egypt. J. Archaeol. Res., 13, pp. 483-501]. Modeled precipitation histories for specific sites in China, Thailand, the Arabian Peninsula, and North Africa will be presented and contrasted with the simulated rainfall history of Mesopotamia.

  3. Assessment of two versions of regional climate model in simulating the Indian Summer Monsoon over South Asia CORDEX domain

    Science.gov (United States)

    Pattnayak, K. C.; Panda, S. K.; Saraswat, Vaishali; Dash, S. K.

    2018-04-01

    This study assess the performance of two versions of Regional Climate Model (RegCM) in simulating the Indian summer monsoon over South Asia for the period 1998 to 2003 with an aim of conducting future climate change simulations. Two sets of experiments were carried out with two different versions of RegCM (viz. RegCM4.2 and RegCM4.3) with the lateral boundary forcings provided from European Center for Medium Range Weather Forecast Reanalysis (ERA-interim) at 50 km horizontal resolution. The major updates in RegCM4.3 in comparison to the older version RegCM4.2 are the inclusion of measured solar irradiance in place of hardcoded solar constant and additional layers in the stratosphere. The analysis shows that the Indian summer monsoon rainfall, moisture flux and surface net downward shortwave flux are better represented in RegCM4.3 than that in the RegCM4.2 simulations. Excessive moisture flux in the RegCM4.2 simulation over the northern Arabian Sea and Peninsular India resulted in an overestimation of rainfall over the Western Ghats, Peninsular region as a result of which the all India rainfall has been overestimated. RegCM4.3 has performed well over India as a whole as well as its four rainfall homogenous zones in reproducing the mean monsoon rainfall and inter-annual variation of rainfall. Further, the monsoon onset, low-level Somali Jet and the upper level tropical easterly jet are better represented in the RegCM4.3 than RegCM4.2. Thus, RegCM4.3 has performed better in simulating the mean summer monsoon circulation over the South Asia. Hence, RegCM4.3 may be used to study the future climate change over the South Asia.

  4. Dependence of Indian monsoon rainfall on moisture fluxes across the Arabian Sea and the impact of coupled model sea surface temperature biases

    Energy Technology Data Exchange (ETDEWEB)

    Levine, Richard C. [Met Office Hadley Centre, Devon (United Kingdom); Turner, Andrew G. [University of Reading, NCAS-Climate, Department of Meteorology, Reading (United Kingdom)

    2012-06-15

    The Arabian Sea is an important moisture source for Indian monsoon rainfall. The skill of climate models in simulating the monsoon and its variability varies widely, while Arabian Sea cold sea surface temperature (SST) biases are common in coupled models and may therefore influence the monsoon and its sensitivity to climate change. We examine the relationship between monsoon rainfall, moisture fluxes and Arabian Sea SST in observations and climate model simulations. Observational analysis shows strong monsoons depend on moisture fluxes across the Arabian Sea, however detecting consistent signals with contemporaneous summer SST anomalies is complicated in the observed system by air/sea coupling and large-scale induced variability such as the El Nino-Southern Oscillation feeding back onto the monsoon through development of the Somali Jet. Comparison of HadGEM3 coupled and atmosphere-only configurations suggests coupled model cold SST biases significantly reduce monsoon rainfall. Idealised atmosphere-only experiments show that the weakened monsoon can be mainly attributed to systematic Arabian Sea cold SST biases during summer and their impact on the monsoon-moisture relationship. The impact of large cold SST biases on atmospheric moisture content over the Arabian Sea, and also the subsequent reduced latent heat release over India, dominates over any enhancement in the land-sea temperature gradient and results in changes to the mean state. We hypothesize that a cold base state will result in underestimation of the impact of larger projected Arabian Sea SST changes in future climate, suggesting that Arabian Sea biases should be a clear target for model development. (orig.)

  5. Investigating synoptic-scale monsoonal disturbances in an idealized moist model

    Science.gov (United States)

    Clark, S.; Ming, Y.

    2017-12-01

    Recent studies have highlighted the potential utility of a theory for a "moisture-dynamical" instability in explaining the time and spatial scales of intra-seasonal variability associated with the Indian summer monsoon. These studies suggest that a localized region in the subtropics with mean low-level westerly winds and mean temperature increasing poleward will allow the formation of westward propagating precipitation anomalies associated with moist Rossby-like waves. Here we test this theory in an idealized moist model with realistic radiative transfer by inducing a local poleward-increasing temperature gradient by placing a continent with simplified hydrology in the subtropics. We experiment with different treatments of land-surface hydrology, ranging from the extreme (treating land as having the same heat capacity as the slab ocean used in the model, and turning off evaporation completely over land) to the more realistic (bucket hydrology, with a decreased heat capacity over land), and different continental shapes, ranging from a zonally-symmetric continent, to Earth-like continental geometry. Precipitation rates produced by the simulations are analyzed using space-time spectral analysis, and connected to variability in the winds through regression analysis. The observed behavior is discussed with respect to predictions from the theory.

  6. Global monsoons in the mid-Holocene and oceanic feedback

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Z.; Kutzbach, J. [Center for Climatic Research, University of Wisconsin-Madison, 1225 W. Dayton Street, Madison, WI 53706 (United States); Harrison, S.P. [Max Planck Institute for Biogeochemistry, P.O. Box 100164, 07701 Jena (Germany); Otto-Bliesner, B. [National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307 (United States)

    2004-03-01

    The response of the six major summer monsoon systems (the North American monsoon, the northern Africa monsoon, the Asia monsoon, the northern Australasian monsoon, the South America monsoon and the southern Africa monsoon) to mid-Holocene orbital forcing has been investigated using a coupled ocean-atmosphere general circulation model (FOAM), with the focus on the distinct roles of the direct insolation forcing and oceanic feedback. The simulation result is also found to compare well with the NCAR CSM. The direct effects of the change in insolation produce an enhancement of the Northern Hemisphere monsoons and a reduction of the Southern Hemisphere monsoons. Ocean feedbacks produce a further enhancement of the northern Africa monsoon and the North American monsoon. However, ocean feedbacks appear to weaken the Asia monsoon, although the overall effect (direct insolation forcing plus ocean feedback) remains a strengthened monsoon. The impact of ocean feedbacks on the South American and southern African monsoons is relatively small, and therefore these regions, especially the South America, experienced a reduced monsoon regime compared to present. However, there is a strong ocean feedback on the northern Australian monsoon that negates the direct effects of orbital changes and results in a strengthening of austral summer monsoon precipitation in this region. A new synthesis is made for mid-Holocene paleoenvironmental records and is compared with the model simulations. Overall, model simulations produce changes in regional climates that are generally consistent with paleoenvironmental observations. (orig.)

  7. Solar control on the cloud liquid water content and integrated water vapor associated with monsoon rainfall over India

    Science.gov (United States)

    Maitra, Animesh; Saha, Upal; Adhikari, Arpita

    2014-12-01

    A long-term observation over three solar cycles indicates a perceptible influence of solar activity on rainfall and associated parameters in the Indian region. This paper attempts to reveal the solar control on the cloud liquid water content (LWC) and integrated water vapor (IWV) along with Indian Summer Monsoon (ISM) rainfall during the period of 1977-2012 over nine different Indian stations. Cloud LWC and IWV are positively correlated with each other. An anti-correlation is observed between the Sunspot Number (SSN) and ISM rainfall for a majority of the stations and a poor positive correlation obtained for other locations. Cloud LWC and IWV possess positive correlations with Galactic Cosmic Rays (GCR) and SSN respectively for most of the stations. The wavelet analyses of SSN, ISM rainfall, cloud LWC and IWV have been performed to investigate the periodic characteristics of climatic parameters and also to indicate the varying relationship of solar activity with ISM rainfall, cloud LWC and IWV. SSN, ISM rainfall and IWV are found to have a peak at around 10.3 years whereas a dip is observed at that particular period for cloud LWC.

  8. The Aerosol-Monsoon Climate System of Asia

    Science.gov (United States)

    Lau, William K. M.; Kyu-Myong, Kim

    2012-01-01

    In Asian monsoon countries such as China and India, human health and safety problems caused by air-pollution are worsening due to the increased loading of atmospheric pollutants stemming from rising energy demand associated with the rapid pace of industrialization and modernization. Meanwhile, uneven distribution of monsoon rain associated with flash flood or prolonged drought, has caused major loss of human lives, and damages in crop and properties with devastating societal impacts on Asian countries. Historically, air-pollution and monsoon research are treated as separate problems. However a growing number of recent studies have suggested that the two problems may be intrinsically intertwined and need to be studied jointly. Because of complexity of the dynamics of the monsoon systems, aerosol impacts on monsoons and vice versa must be studied and understood in the context of aerosol forcing in relationship to changes in fundamental driving forces of the monsoon climate system (e.g. sea surface temperature, land-sea contrast etc.) on time scales from intraseasonal variability (weeks) to climate change ( multi-decades). Indeed, because of the large contributions of aerosols to the global and regional energy balance of the atmosphere and earth surface, and possible effects of the microphysics of clouds and precipitation, a better understanding of the response to climate change in Asian monsoon regions requires that aerosols be considered as an integral component of a fully coupled aerosol-monsoon system on all time scales. In this paper, using observations and results from climate modeling, we will discuss the coherent variability of the coupled aerosol-monsoon climate system in South Asia and East Asia, including aerosol distribution and types, with respect to rainfall, moisture, winds, land-sea thermal contrast, heat sources and sink distributions in the atmosphere in seasonal, interannual to climate change time scales. We will show examples of how elevated

  9. A model perspective on orbital forcing of monsoons and Mediterranean climate using EC-Earth

    NARCIS (Netherlands)

    Bosmans, J.H.C.

    2014-01-01

    This thesis focuses on orbitally forced changes of monsoons and Mediterranean climate. Changes in the shape of the Earths orbit around the Sun and its rotational axis govern the seasonal and latitudinal distribution of incoming solar radiation on time scales of thousands to millions of years. The

  10. Aspect of ECMWF downscaled Regional Climate Modeling in simulating Indian summer monsoon rainfall and dependencies on lateral boundary conditions

    Science.gov (United States)

    Ghosh, Soumik; Bhatla, R.; Mall, R. K.; Srivastava, Prashant K.; Sahai, A. K.

    2018-03-01

    Climate model faces considerable difficulties in simulating the rainfall characteristics of southwest summer monsoon. In this study, the dynamical downscaling of European Centre for Medium-Range Weather Forecast's (ECMWF's) ERA-Interim (EIN15) has been utilized for the simulation of Indian summer monsoon (ISM) through the Regional Climate Model version 4.3 (RegCM-4.3) over the South Asia Co-Ordinated Regional Climate Downscaling EXperiment (CORDEX) domain. The complexities of model simulation over a particular terrain are generally influenced by factors such as complex topography, coastal boundary, and lack of unbiased initial and lateral boundary conditions. In order to overcome some of these limitations, the RegCM-4.3 is employed for simulating the rainfall characteristics over the complex topographical conditions. For reliable rainfall simulation, implementations of numerous lower boundary conditions are forced in the RegCM-4.3 with specific horizontal grid resolution of 50 km over South Asia CORDEX domain. The analysis is considered for 30 years of climatological simulation of rainfall, outgoing longwave radiation (OLR), mean sea level pressure (MSLP), and wind with different vertical levels over the specified region. The dependency of model simulation with the forcing of EIN15 initial and lateral boundary conditions is used to understand the impact of simulated rainfall characteristics during different phases of summer monsoon. The results obtained from this study are used to evaluate the activity of initial conditions of zonal wind circulation speed, which causes an increase in the uncertainty of regional model output over the region under investigation. Further, the results showed that the EIN15 zonal wind circulation lacks sufficient speed over the specified region in a particular time, which was carried forward by the RegCM output and leads to a disrupted regional simulation in the climate model.

  11. On the climate model simulation of Indian monsoon low pressure systems and the effect of remote disturbances and systematic biases

    Science.gov (United States)

    Levine, Richard C.; Martin, Gill M.

    2018-06-01

    Monsoon low pressure systems (LPS) are synoptic-scale systems forming over the Indian monsoon trough region, contributing substantially to seasonal mean summer monsoon rainfall there. Many current global climate models (GCMs), including the Met Office Unified Model (MetUM), show deficient rainfall in this region, much of which has previously been attributed to remote systematic biases such as excessive equatorial Indian Ocean (EIO) convection, while also substantially under-representing LPS and associated rainfall as they travel westwards across India. Here the sources and sensitivities of LPS to local, remote and short-timescale forcing are examined, in order to understand the poor representation in GCMs. An LPS tracking method is presented using TRACK feature tracking software for comparison between re-analysis data-sets, MetUM GCM and regional climate model (RCM) simulations. RCM simulations, at similar horizontal resolution to the GCM and forced with re-analysis data at the lateral boundaries, are carried out with different domains to examine the effects of remote biases. The results suggest that remote biases contribute significantly to the poor simulation of LPS in the GCM. As these remote systematic biases are common amongst many current GCMs, it is likely that GCMs are intrinsically capable of representing LPS, even at relatively low resolution. The main problem areas are time-mean excessive EIO convection and poor representation of precursor disturbances transmitted from the Western Pacific. The important contribution of the latter is established using RCM simulations forced by climatological 6-hourly lateral boundary conditions, which also highlight the role of LPS in moving rainfall from steep orography towards Central India.

  12. The Asian-Australian Monsoon and El Niño-Southern Oscillation in the NCAR Climate System Model*.

    Science.gov (United States)

    Meehl, Gerald A.; Arblaster, Julie M.

    1998-06-01

    Features associated with the Asian-Australian monsoon system and El Niño-Southern Oscillation (ENSO) are described in the National Center for Atmospheric Research (NCAR) global coupled Climate System Model (CSM). Simulation characteristics are compared with a version of the atmospheric component of the CSM, the NCAR CCM3, run with time-evolving SSTs from 1950 to 1994, and with observations. The CSM is shown to represent most major features of the monsoon system in terms of mean climatology, interannual variability, and connections to the tropical Pacific. This includes a representation of the Southern Oscillation links between strong Asian-Australian monsoons and associated negative SST anomalies in the eastern equatorial Pacific. The equatorial SST gradient across the Pacific in the CSM is shown to be similar to the observed with somewhat cooler mean SSTs across the entire Pacific by about 1°-2°C. The seasonal cycle of SSTs in the eastern equatorial Pacific has the characteristic signature seen in the observations of relatively warmer SSTs propagating westward in the first half of the year followed by the reestablishment of the cold tongue with relatively colder SSTs propagating westward in the second half of the year. Like other global coupled models, the propagation is similar to the observed but with the establishment of the relatively warmer water in the first half of the year occurring about 1-2 months later than observed. The seasonal cycle of precipitation in the tropical eastern Pacific is also similar to other global coupled models in that there is a tendency for a stronger-than-observed double ITCZ year round, particularly in northern spring, but with a well-reproduced annual maximum of ITCZ strength north of the equator in the second half of the year. Time series of area-averaged SSTs for the NINO3 region in the eastern equatorial Pacific show that the CSM is producing about 60% of the amplitude of the observed variability in that region, consistent

  13. Association between Empirically Estimated Monsoon Dynamics and Other Weather Factors and Historical Tea Yields in China: Results from a Yield Response Model

    Directory of Open Access Journals (Sweden)

    Rebecca Boehm

    2016-04-01

    Full Text Available Farmers in China’s tea-growing regions report that monsoon dynamics and other weather factors are changing and that this is affecting tea harvest decisions. To assess the effect of climate change on tea production in China, this study uses historical weather and production data from 1980 to 2011 to construct a yield response model that estimates the partial effect of weather factors on tea yields in China, with a specific focus on East Asian Monsoon dynamics. Tea (Camellia sinensis (L. Kunze has not been studied using these methods even though it is an important crop for human nutrition and the economic well-being of rural communities in many countries. Previous studies have approximated the monsoon period using historical average onset and retreat dates, which we believe limits our understanding of how changing monsoon patterns affect crop productivity. In our analysis, we instead estimate the monsoon season across China’s tea growing regions empirically by identifying the unknown breakpoints in the year-by-province cumulative precipitation. We find that a 1% increase in the monsoon retreat date is associated with 0.481%–0.535% reduction in tea yield. In the previous year, we also find that a 1% increase in the date of the monsoon retreat is associated with a 0.604% decrease in tea yields. For precipitation, we find that a 1% increase in average daily precipitation occurring during the monsoon period is associated with a 0.184%–0.262% reduction in tea yields. In addition, our models show that 1% increase in the average daily monsoon precipitation from the previous growing season is associated with 0.258%–0.327% decline in yields. We also find that a 1% decrease in solar radiation in the previous growing season is associated with 0.554%-0.864% decrease in tea yields. These findings suggest the need for adaptive management and harvesting strategies given climate change projections and the known negative association between excess

  14. Improvement in the Modeled Representation of North American Monsoon Precipitation Using a Modified Kain–Fritsch Convective Parameterization Scheme

    KAUST Repository

    Luong, Thang

    2018-01-22

    A commonly noted problem in the simulation of warm season convection in the North American monsoon region has been the inability of atmospheric models at the meso-β scales (10 s to 100 s of kilometers) to simulate organized convection, principally mesoscale convective systems. With the use of convective parameterization, high precipitation biases in model simulations are typically observed over the peaks of mountain ranges. To address this issue, the Kain–Fritsch (KF) cumulus parameterization scheme has been modified with new diagnostic equations to compute the updraft velocity, the convective available potential energy closure assumption, and the convective trigger function. The scheme has been adapted for use in the Weather Research and Forecasting (WRF). A numerical weather prediction-type simulation is conducted for the North American Monsoon Experiment Intensive Observing Period 2 and a regional climate simulation is performed, by dynamically downscaling. In both of these applications, there are notable improvements in the WRF model-simulated precipitation due to the better representation of organized, propagating convection. The use of the modified KF scheme for atmospheric model simulations may provide a more computationally economical alternative to improve the representation of organized convection, as compared to convective-permitting simulations at the kilometer scale or a super-parameterization approach.

  15. The simulation of stratospheric water vapor in the NH summer monsoon regions in a suite of WACCM models

    Science.gov (United States)

    Wang, X.; Wu, Y.; Huang, Y.; Tilmes, S.

    2016-12-01

    Water vapor maxima are found in the upper troposphere lower stratosphere (UTLS) over Asian and North America monsoon regions during Northern Hemisphere (NH) summer months. High concentrations of stratospheric water vapor are associated with the upper-level anticyclonic circulation and they play an important role in the radiative forcing for the climate system. However, discrepancies in the simulation of stratospheric water vapor are found among different models. In this study, we use both observational data: Aura Microwave Limb Sounder satellite observations (MLS), the Modern-Era Retrospective analysis for Research and Applications version 2 (MERRA-2) and chemistry climate model outputs: different configurations of the Whole Atmosphere Community Climate Model (WACCM), including standard configuration of WACCM, WACCM L110, specified chemistry (SC) WACCM and specified dynamics (SD) WACCM. We find that WACCM L110 with finer vertical resolution better simulates the stratospheric water vapor maxima over the summer monsoon regions. To better understand the mechanism, we examine the simulated temperature at around 100 hPa since 100 hPa is known to act as a dehydration mechanism, i.e. the warmer the temperature, the wetter the stratospheric water vapor. We find that both WACCM L110 and SD-WACCM better simulate the temperature at 100 hPa as compared to that of MERRA2. This suggests that improving model vertical resolution and dynamical processes in the UTLS is crucial in simulating the stratospheric water vapor concentrations.

  16. Dynamics of the Indian monsoon and ENSO relationships in the SINTEX global coupled model

    Energy Technology Data Exchange (ETDEWEB)

    Terray, P. [LODYC, Paris (France); Universite Paris 7, Paris (France); Guilyardi, E. [LSCE, Gif-sur-Yvette (France); CGAM, Reading (United Kingdom); Fischer, A.S. [LODYC, Paris (France); Delecluse, P. [LODYC, Paris (France); LSCE, Gif-sur-Yvette (France)

    2005-02-01

    This paper uses recent gridded climatological data and a coupled general circulation model (GCM) simulation in order to assess the relationships between the interannual variability of the Indian summer monsoon (ISM) and the El Nino-Southern Oscillation (ENSO). The focus is on the dynamics of the ISM-ENSO relationships and the ability of the state-of-the-art coupled GCM to reproduce the complex lead-lag relationships between the ISM and the ENSO. The coupled GCM is successful in reproducing the ISM circulation and rainfall climatology in the Indian areas even though the entire ISM circulation is weaker relative to that observed. In both observations and in the simulation, the ISM rainfall anomalies are significantly associated with fluctuations of the Hadley circulation and the 200 hPa zonal wind anomalies over the Indian Ocean. A quasi-biennial time scale is found to structure the ISM dynamical and rainfall indices in both cases. Moreover, ISM indices have a similar interannual variability in the simulation and observations. The coupled model is less successful in simulating the annual cycle in the tropical Pacific. Despite some problems in simulation of the annual cycle and the Southern Oscillation, the coupled model captures some aspects of the interannual variability in the tropical Pacific. ENSO events are phase-locked with the annual cycle as observed, but are of reduced amplitude relative to the observations. Wavelet analysis of the model Nino34 time series shows enhanced power in the 2-4 year band, as compared to the 2-8 year range for observations during the 1950-2000 period. The ISM circulation is weakened during ENSO years in both the simulation and the observations. However, the model fails to reproduce the lead-lag relationship between the ISM and Nino34 sea surface temperatures (SSTs). Furthermore, lag correlations show that the delayed response of the wind stress over the central Pacific to ISM variability is insignificant in the simulation. These

  17. Boreal summer sub-seasonal variability of the South Asian monsoon in the Met Office GloSea5 initialized coupled model

    Science.gov (United States)

    Jayakumar, A.; Turner, A. G.; Johnson, S. J.; Rajagopal, E. N.; Mohandas, Saji; Mitra, A. K.

    2017-09-01

    Boreal summer sub-seasonal variability in the Asian monsoon, otherwise known as the monsoon intra-seasonal oscillation (MISO), is one of the dominant modes of intraseasonal variability in the tropics, with large impacts on total monsoon rainfall and India's agricultural production. However, our understanding of the mechanisms involved in MISO is incomplete and its simulation in various numerical models is often flawed. In this study, we focus on the objective evaluation of the fidelity of MISO simulation in the Met Office Global Seasonal forecast system version 5 (GloSea5), an initialized coupled model. We analyze a series of nine-member hindcasts from GloSea5 over 1996-2009 during the peak monsoon period (July-August) over the South-Asian monsoon domain focusing on aspects of the time-mean background state and air-sea interaction processes pertinent to MISO. Dominant modes during this period are evident in power spectrum analysis, but propagation and evolution characteristics of the MISO are not realistic. We find that simulated air-sea interactions in the central Indian Ocean are not supportive of MISO initiation in that region, likely a result of the low surface wind variance there. As a consequence, the expected near-quadrature phase relationship between SST and convection is not represented properly over the central equatorial Indian Ocean, and northward propagation from the equator is poorly simulated. This may reinforce the equatorial rainfall mean state bias in GloSea5.

  18. Indian Summer Monsoon Sub-seasonal Low-Level Circulation Predictability and its Association with Rainfall in a Coupled Model

    KAUST Repository

    Sagalgile, Archana P.

    2017-10-26

    This study investigates predictability of the sub-seasonal Indian summer monsoon (ISM) circulation and its relation with rainfall variations in the coupled model National Centers for Environmental Prediction (NCEP) Climate Forecast System version 2 (CFSv2). Hindcasts based on CFSv2 for the period of 1982–2009 are used for detailed analysis. Though the model is capable of predicting the seasonal ISM rainfall at long lead months, the predication skill of the model for sub-seasonal rainfall in general is poor for short and long lead except for September. Rainfall over the ISM region/Indian Subcontinent is highly correlated with the low-level jet (LLJ) or Somali jet both in the observations and the model. The model displays improved skill in predicting LLJ as compared to precipitation in seasonal mean and September, whereas the model skill is poor for June and August. Detailed analysis reveals that the model LLJ variations throughout the season are overdependent on the El Niño-Southern Oscillation (ENSO) unlike in the observations. This is mainly responsible for the model’s low skill in predicting LLJ especially in July and August, which is the primary cause for the poor rainfall skill. Though LLJ is weak in September, the model skill is reasonably good because of its ENSO dependency both in model and the observations and which is contributed to the seasonal mean skill. Thus, to improve the skill of seasonal mean monsoon forecast, it is essential to improve the skill of individual months/sub-seasonal circulation and rainfall skill.

  19. Indian Summer Monsoon Sub-seasonal Low-Level Circulation Predictability and its Association with Rainfall in a Coupled Model

    KAUST Repository

    Sagalgile, Archana P.; Chowdary, Jasti S.; Srinivas, G.; Gnanaseelan, C.; Parekh, Anant; Attada, Raju; Singh, Prem

    2017-01-01

    This study investigates predictability of the sub-seasonal Indian summer monsoon (ISM) circulation and its relation with rainfall variations in the coupled model National Centers for Environmental Prediction (NCEP) Climate Forecast System version 2 (CFSv2). Hindcasts based on CFSv2 for the period of 1982–2009 are used for detailed analysis. Though the model is capable of predicting the seasonal ISM rainfall at long lead months, the predication skill of the model for sub-seasonal rainfall in general is poor for short and long lead except for September. Rainfall over the ISM region/Indian Subcontinent is highly correlated with the low-level jet (LLJ) or Somali jet both in the observations and the model. The model displays improved skill in predicting LLJ as compared to precipitation in seasonal mean and September, whereas the model skill is poor for June and August. Detailed analysis reveals that the model LLJ variations throughout the season are overdependent on the El Niño-Southern Oscillation (ENSO) unlike in the observations. This is mainly responsible for the model’s low skill in predicting LLJ especially in July and August, which is the primary cause for the poor rainfall skill. Though LLJ is weak in September, the model skill is reasonably good because of its ENSO dependency both in model and the observations and which is contributed to the seasonal mean skill. Thus, to improve the skill of seasonal mean monsoon forecast, it is essential to improve the skill of individual months/sub-seasonal circulation and rainfall skill.

  20. Why do global climate models struggle to represent low-level clouds in the West African summer monsoon?

    Science.gov (United States)

    Knippertz, Peter; Hannak, Lisa; Fink, Andreas H.; Kniffka, Anke; Pante, Gregor

    2017-04-01

    Climate models struggle to realistically represent the West African monsoon (WAM), which hinders reliable future projections and the development of adequate adaption measures. Low-level clouds over southern West Africa (5-10°N, 8°W-8°E) during July-September are an integral part of the WAM through their effect on the surface energy balance and precipitation, but their representation in climate models has so far received little attention. These clouds usually form during the night near the level of the nocturnal low-level jet ( 950 hPa), thicken and spread until the mid-morning ( 09 UTC), and then break up and rise in the course of the day, typically to about 850 hPa. The low thermal contrast to the surface and the frequent presence of obscuring higher-level clouds make detection of the low-level clouds from space rather challenging. Here we use 30 years of output from 18 models participating in the Coupled Model Intercomparison Project Phase 5 (CMIP5) as well as 20 years of output from 8 models participating in the Year of Tropical Convection (YoTC) experiments to identify cloud biases and their causes. A great advantage of the YoTC dataset is the 6-hourly output frequency, which allows an analysis of the diurnal cycle, and the availability of temperature and moisture tendencies from parameterized processes such as convection, radiation and boundary-layer turbulence. A comparison to earlier analyses based on CMIP3 output reveals rather limited improvements with regard to the represenation of low-level cloud and winds. Compared to ERA-Interim re-analyses, which shows satisfactory agreement with surface observations, many of the CMIP5 and YoTC models still have large biases in low-level cloudiness of both signs and a tendency to too high elevation and too weak diurnal cycles. At the same time, these models tend to have too strong low-level jets, the impact of which is unclear due to concomitant effects on temperature and moisture advection as well as turbulent

  1. Similarity-based multi-model ensemble approach for 1-15-day advance prediction of monsoon rainfall over India

    Science.gov (United States)

    Jaiswal, Neeru; Kishtawal, C. M.; Bhomia, Swati

    2018-04-01

    The southwest (SW) monsoon season (June, July, August and September) is the major period of rainfall over the Indian region. The present study focuses on the development of a new multi-model ensemble approach based on the similarity criterion (SMME) for the prediction of SW monsoon rainfall in the extended range. This approach is based on the assumption that training with the similar type of conditions may provide the better forecasts in spite of the sequential training which is being used in the conventional MME approaches. In this approach, the training dataset has been selected by matching the present day condition to the archived dataset and days with the most similar conditions were identified and used for training the model. The coefficients thus generated were used for the rainfall prediction. The precipitation forecasts from four general circulation models (GCMs), viz. European Centre for Medium-Range Weather Forecasts (ECMWF), United Kingdom Meteorological Office (UKMO), National Centre for Environment Prediction (NCEP) and China Meteorological Administration (CMA) have been used for developing the SMME forecasts. The forecasts of 1-5, 6-10 and 11-15 days were generated using the newly developed approach for each pentad of June-September during the years 2008-2013 and the skill of the model was analysed using verification scores, viz. equitable skill score (ETS), mean absolute error (MAE), Pearson's correlation coefficient and Nash-Sutcliffe model efficiency index. Statistical analysis of SMME forecasts shows superior forecast skill compared to the conventional MME and the individual models for all the pentads, viz. 1-5, 6-10 and 11-15 days.

  2. Water Isotope Proxy-Proxy and Proxy-Model Convergence for Late Pleistocene East Asian Monsoon Rainfall Reconstructions

    Science.gov (United States)

    Clemens, S. C.; Holbourn, A.; Kubota, Y.; Lee, K. E.; Liu, Z.; Chen, G.

    2017-12-01

    Confidence in reconstruction of East Asian paleomonsoon rainfall using precipitation isotope proxies is a matter of considerable debate, largely due to the lack of correlation between precipitation amount and isotopic composition in the present climate. We present four new, very highly resolved records spanning the past 300,000 years ( 200 year sample spacing) from IODP Site U1429 in the East China Sea. We demonstrate that all the orbital- and millennial-scale variance in the onshore Yangtze River Valley speleothem δ18O record1 is also embedded in the offshore Site U1429 seawater δ18O record (derived from the planktonic foraminifer Globigerinoides ruber and sea surface temperature reconstructions). Signal replication in these two independent terrestrial and marine archives, both controlled by the same monsoon system, uniquely identifies δ18O of precipitation as the primary driver of the precession-band variance in both records. This proxy-proxy convergence also eliminates a wide array of other drivers that have been called upon as potential contaminants to the precipitation δ18O signal recorded by these proxies. We compare East Asian precipitation isotope proxy records to precipitation amount from a CCSM3 transient climate model simulation of the past 300,000 years using realistic insolation, ice volume, greenhouse gasses, and sea level boundary conditions. This model-proxy comparison suggests that both Yangtze River Valley precipitation isotope proxies (seawater and speleothem δ18O) track changes in summer-monsoon rainfall amount at orbital time scales, as do precipitation isotope records from the Pearl River Valley2 (leaf wax δ2H) and Borneo3 (speleothem δ18O). Notably, these proxy records all have significantly different spectral structure indicating strongly regional rainfall patterns that are also consistent with model results. Transient, isotope-enabled model simulations will be necessary to more thoroughly evaluate these promising results, and to

  3. Meta-heuristic ant colony optimization technique to forecast the amount of summer monsoon rainfall: skill comparison with Markov chain model

    Science.gov (United States)

    Chaudhuri, Sutapa; Goswami, Sayantika; Das, Debanjana; Middey, Anirban

    2014-05-01

    Forecasting summer monsoon rainfall with precision becomes crucial for the farmers to plan for harvesting in a country like India where the national economy is mostly based on regional agriculture. The forecast of monsoon rainfall based on artificial neural network is a well-researched problem. In the present study, the meta-heuristic ant colony optimization (ACO) technique is implemented to forecast the amount of summer monsoon rainfall for the next day over Kolkata (22.6°N, 88.4°E), India. The ACO technique belongs to swarm intelligence and simulates the decision-making processes of ant colony similar to other adaptive learning techniques. ACO technique takes inspiration from the foraging behaviour of some ant species. The ants deposit pheromone on the ground in order to mark a favourable path that should be followed by other members of the colony. A range of rainfall amount replicating the pheromone concentration is evaluated during the summer monsoon season. The maximum amount of rainfall during summer monsoon season (June—September) is observed to be within the range of 7.5-35 mm during the period from 1998 to 2007, which is in the range 4 category set by the India Meteorological Department (IMD). The result reveals that the accuracy in forecasting the amount of rainfall for the next day during the summer monsoon season using ACO technique is 95 % where as the forecast accuracy is 83 % with Markov chain model (MCM). The forecast through ACO and MCM are compared with other existing models and validated with IMD observations from 2008 to 2012.

  4. Simulation of boreal Summer Monsoon Rainfall using CFSV2_SSiB model: sensitivity to Land Use Land Cover (LULC)

    Science.gov (United States)

    Chilukoti, N.; Xue, Y.

    2016-12-01

    The land surface play a vital role in determining the surface energy budget, accurate representation of land use and land cover (LULC) is necessary to improve forecast. In this study, we have investigated the influence of surface vegetation maps with different LULC on simulating the boreal summer monsoon rainfall. Using a National Centres for Environmental Prediction (NCEP) Coupled Forecast System version 2(CFSv2) model coupled with Simplified Simple Biosphere (SSiB) model, two experiments were conducted: one with old vegetation map and one with new vegetation map. The significant differences between new and old vegetation map were in semi-arid and arid areas. For example, in old map Tibetan plateau classified as desert, which is not appropriate, while in new map it was classified as grasslands or shrubs with bare soil. Old map classified the Sahara desert as a bare soil and shrubs with bare soil, whereas in new map it was classified as bare ground. In addition to central Asia and the Sahara desert, in new vegetation map, Europe had more cropped area and India's vegetation cover was changed from crops and forests to wooded grassland and small areas of grassland and shrubs. The simulated surface air temperature with new map shows a significant improvement over Asia, South Africa, and northern America by some 1 to 2ºC and 2 to 3ºC over north east China and these are consistent with the reduced rainfall biases over Africa, near Somali coast, north east India, Bangladesh, east China sea, eastern Pacific and northern USA. Over Indian continent and bay of Bengal dry rainfall anomalies that is the only area showing large dry rainfall bias, however, they were unchanged with new map simulation. Overall the CFSv2(coupled with SSiB) model with new vegetation map show a promising result in improving the monsoon forecast by improving the Land -Atmosphere interactions. To compare with the LULC forcing, experiment was conducted using the Global Forecast System (GFS) simulations

  5. Model integration and a theory of models

    OpenAIRE

    Dolk, Daniel R.; Kottemann, Jeffrey E.

    1993-01-01

    Model integration extends the scope of model management to include the dimension of manipulation as well. This invariably leads to comparisons with database theory. Model integration is viewed from four perspectives: Organizational, definitional, procedural, and implementational. Strategic modeling is discussed as the organizational motivation for model integration. Schema and process integration are examined as the logical and manipulation counterparts of model integr...

  6. Three-Dimensional modelling of the long-term variability of tracer transport in the Asian Summer Monsoon anticyclone

    Science.gov (United States)

    Taverna, Giorgio; Chipperfield, Martyn; Feng, Wuhu; Pope, Richard; Hossaini, Ryan; Forster, Piers

    2017-04-01

    The Asian Monsoon is an important region for the transport of gases from the troposphere to the stratosphere. Recent work by many groups has focused on quantifying processes which contribute to coupling in the upper troposphere - lower stratosphere (UTLS), including transport during the Asian Summer Monsoon (ASM). Troposphere-to-stratosphere transport in this region has been the focus of a number of recent campaigns, including the EU "StratoClim campaign" in Kalamata, Greece, 2016. Anthropogenic compounds such as CO Very Short-Lived Substances (VSLS), which destroy stratospheric ozone, and sulphur compounds, which maintain the stratospheric aerosol layer, are among the important species involved in large convective systems transport such as the ASM. An important question for halogenated VSLS is whether ASM-associated transport can take place on timescales which are short relative to their chemical lifetimes of days to months. This talk will present results of the TOMCAT/SLIMCAT off-line 3-D chemical transport model to investigate these issues using moderate-resolution simulations (2.8°x2.8°, 60 levels from surface to 60 km). The model is forced by ECMWF ERA-Interim reanalyses. A 1979-2016 simulation was run using artificial and idealized tracers with parametrized loss rates, lifetimes and emissions. These types of tracer have already been successfully used to study the transport of VSLS from surface through the TTL. The interannual variability of the transport inside and through the ASM anticyclone and related confinement will be shown and quantified. Comparisons will be made with in-situ and remote satellite data, where possible.

  7. The Indian Monsoon

    Indian Academy of Sciences (India)

    The word 'monsoon' is derived from the Arabic word 'mausam' for season and the distinguishing attribute of ... lance, the word monsoon is used for the rainfall in the rainy season. In this article, I discuss the ..... [1] C S Ramage, Monsoon meteorology, International Geophysics Series,. Academic Press, San Diego, California ...

  8. INTEGRATED CORPORATE STRATEGY MODEL

    Directory of Open Access Journals (Sweden)

    CATALINA SORIANA SITNIKOV

    2014-02-01

    Full Text Available Corporations are at present operating in demanding and highly unsure periods, facing a mixture of increased macroeconomic need, competitive and capital market dangers, and in many cases, the prospect for significant technical and regulative gap. Throughout these demanding and highly unsure times, the corporations must pay particular attention to corporate strategy. In present times, corporate strategy must be perceived and used as a function of various fields, covers, and characters as well as a highly interactive system. For the corporation's strategy to become a competitive advantage is necessary to understand and also to integrate it in a holistic model to ensure sustainable progress of corporation activities under the optimum conditions of profitability. The model proposed in this paper is aimed at integrating the two strategic models, Hoshin Kanri and Integrated Strategy Model, as well as their consolidation with the principles of sound corporate governance set out by the OECD.

  9. The representation of low-level clouds during the West African monsoon in weather and climate models

    Science.gov (United States)

    Kniffka, Anke; Hannak, Lisa; Knippertz, Peter; Fink, Andreas

    2016-04-01

    The West African monsoon is one of the most important large-scale circulation features in the tropics and the associated seasonal rainfalls are crucial to rain-fed agriculture and water resources for hundreds of millions of people. However, numerical weather and climate models still struggle to realistically represent salient features of the monsoon across a wide range of scales. Recently it has been shown that substantial errors in radiation and clouds exist in the southern parts of West Africa (8°W-8°E, 5-10°N) during summer. This area is characterised by strong low-level jets associated with the formation of extensive ultra-low stratus clouds. Often persisting long after sunrise, these clouds have a substantial impact on the radiation budget at the surface and thus the diurnal evolution of the planetary boundary layer (PBL). Here we present some first results from a detailed analysis of the representation of these clouds and the associated PBL features across a range of weather and climate models. Recent climate model simulations for the period 1991-2010 run in the framework of the Year of Tropical Convection (YOTC) offer a great opportunity for this analysis. The models are those used for the latest Assessment Report of the Intergovernmental Panel on Climate Change, but for YOTC the model output has a much better temporal resolution, allowing to resolve the diurnal cycle, and includes diabatic terms, allowing to much better assess physical reasons for errors in low-level temperature, moisture and thus cloudiness. These more statistical climate model analyses are complemented by experiments using ICON (Icosahedral non-hydrostatic general circulation model), the new numerical weather prediction model of the German Weather Service and the Max Planck Institute for Meteorology. ICON allows testing sensitivities to model resolution and numerical schemes. These model simulations are validated against (re-)analysis data, satellite observations (e.g. CM SAF cloud and

  10. Influence of Tropical South Atlantic Sea Surface Temperatures on the Indian Summer monsoon in CMIP5 models

    Science.gov (United States)

    Kucharski, Fred; Joshi, Manish K.

    2017-04-01

    In this study the teleconnection from the tropical south Atlantic to the Indian monsoon has been assessed in observations and in 32 models from the World Climate Research Program (WCRP) Coupled Model Intercomparison Project Phase 5 (CMIP5). All models show that the regression pattern of tropics-wide Atlantic sea surface temperature (SST) anomalies onto the tropical south Atlantic index correlates well with that in observations, even though with varying spatial standard deviations. However, only about half of the 32 models considered show the correct sign of rainfall response over India to a warm anomaly in the south tropical Atlantic, which is a reduction of rainfall. On the other hand, models generally do show large-scale responses broadly consistent with the observations, and the signal over India depends on relatively subtle changes in the response. This response to a tropical south Atlantic warm (cold) anomaly is a low-level quadrupole in streamfunction with an anticyclonic (cyclonic) anomaly over the Arabian Sea and India. This anticyclonic (cyclonic) anomaly leads to a weakening (strengthening) of the Somali jet and low-level divergence (convergence) over India, both inducing a reduction (increase) of Indian rainfall. The models which do not show the correct rainfall response over India also show a response similar to the one indicated above, but with maximum of the anticyclonic (cyclonic) response shifted to the western Pacific. The large-scale Walker circulation adjustment to the tropical south Atlantic SST anomalies is identified as one of the factors which account for the differences in the low-level streamfunction response. Models (and the observations) with the correct sign of the rainfall signal over India show the dominant upper-level convergence (divergence) as response to a warm (cold) tropical south Atlantic in the western Pacific region, whereas models with the wrong sign of the rainfall signal show it predominantly in the central-eastern Pacific

  11. Potential impact of carbonaceous aerosol on the upper troposphere and lower stratosphere (UTLS) and precipitation during Asian summer monsoon in a global model simulation

    KAUST Repository

    Fadnavis, Suvarna

    2017-09-28

    Recent satellite observations show efficient vertical transport of Asian pollutants from the surface to the upper-level anticyclone by deep monsoon convection. In this paper, we examine the transport of carbonaceous aerosols, including black carbon (BC) and organic carbon (OC), into the monsoon anticyclone using of ECHAM6-HAM, a global aerosol climate model. Further, we investigate impacts of enhanced (doubled) carbonaceous aerosol emissions on the upper troposphere and lower stratosphere (UTLS), underneath monsoon circulation and precipitation from sensitivity simulations. The model simulation shows that boundary layer aerosols are transported into the monsoon anticyclone by the strong monsoon convection from the Bay of Bengal, southern slopes of the Himalayas and the South China Sea. Doubling of emissions of both BC and OC aerosols over Southeast Asia (10° S–50° N, 65–155° E) shows that lofted aerosols produce significant warming (0.6–1 K) over the Tibetan Plateau (TP) near 400–200 hPa and instability in the middle/upper troposphere. These aerosols enhance radiative heating rates (0.02–0.03 K day−1) near the tropopause. The enhanced carbonaceous aerosols alter aerosol radiative forcing (RF) at the surface by −4.74 ± 1.42 W m−2, at the top of the atmosphere (TOA) by +0.37 ± 0.26 W m−2 and in the atmosphere by +5.11 ± 0.83 W m−2 over the TP and Indo-Gangetic Plain region (15–35° N, 80–110° E). Atmospheric warming increases vertical velocities and thereby cloud ice in the upper troposphere. Aerosol induced anomalous warming over the TP facilitates the relative strengthening of the monsoon Hadley circulation and increases moisture inflow by strengthening the cross-equatorial monsoon jet. This increases precipitation amounts over India (1–4 mm day−1) and eastern China (0.2–2 mm day−1). These results are significant at the 99 % confidence level.

  12. Decadal shifts of East Asian summer monsoon in a climate model free of explicit GHGs and aerosols

    Science.gov (United States)

    Lin, Renping; Zhu, Jiang; Zheng, Fei

    2016-12-01

    The East Asian summer monsoon (EASM) experienced decadal transitions over the past few decades, and the associated "wetter-South-drier-North" shifts in rainfall patterns in China significantly affected the social and economic development in China. Two viewpoints stand out to explain these decadal shifts, regarding the shifts either a result of internal variability of climate system or that of external forcings (e.g. greenhouse gases (GHGs) and anthropogenic aerosols). However, most climate models, for example, the Atmospheric Model Intercomparison Project (AMIP)-type simulations and the Coupled Model Intercomparison Project (CMIP)-type simulations, fail to simulate the variation patterns, leaving the mechanisms responsible for these shifts still open to dispute. In this study, we conducted a successful simulation of these decadal transitions in a coupled model where we applied ocean data assimilation in the model free of explicit aerosols and GHGs forcing. The associated decadal shifts of the three-dimensional spatial structure in the 1990s, including the eastward retreat, the northward shift of the western Pacific subtropical high (WPSH), and the south-cool-north-warm pattern of the upper-level tropospheric temperature, were all well captured. Our simulation supports the argument that the variations of the oceanic fields are the dominant factor responsible for the EASM decadal transitions.

  13. Modeling biomass burning over the South, South East and East Asian Monsoon regions using a new, satellite constrained approach

    Science.gov (United States)

    Lan, R.; Cohen, J. B.

    2017-12-01

    Biomass burning over the South, South East and East Asian Monsoon regions, is a crucial contributor to the total local aerosol loading. Furthermore, the impact of the ITCZ, and Monsoonal circulation patterns coupled with complex topography also have a prominent impact on the aerosol loading throughout much of the Northern Hemisphere. However, at the present time, biomass burning emissions are highly underestimated over this region, in part due to under-reported emissions in space and time, and in part due to an incomplete understanding of the physics and chemistry of the aerosols emitted in fires and formed downwind from them. Hence, a better understanding of the four-dimensional source distribution, plume rise, and in-situ processing, in particular in regions with significant quantities of urban air pollutants, is essential to advance our knowledge of this problem. This work uses a new modeling methodology based on the simultaneous constraints of measured AOD and some trace gasses over the region. The results of the 4-D constrained emissions are further expanded upon using different fire plume height rise and in-situ processing assumptions. Comparisons between the results and additional ground-based and remotely sensed measurements, including AERONET, CALIOP, and NOAA and other ground networks are included. The end results reveal a trio of insights into the nonlinear processes most-important to understand the impacts of biomass burning in this part of the world. Model-measurement comparisons are found to be consistent during the typical burning years of 2016. First, the model performs better under the new emissions representations, than it does using any of the standard hotspot based approaches currently employed by the community. Second, long range transport and mixing between the boundary layer and free troposphere contribute to the spatial-temporal variations. Third, we indicate some source regions that are new, either because of increased urbanization, or of

  14. Integrated Assessment Model Evaluation

    Science.gov (United States)

    Smith, S. J.; Clarke, L.; Edmonds, J. A.; Weyant, J. P.

    2012-12-01

    Integrated assessment models of climate change (IAMs) are widely used to provide insights into the dynamics of the coupled human and socio-economic system, including emission mitigation analysis and the generation of future emission scenarios. Similar to the climate modeling community, the integrated assessment community has a two decade history of model inter-comparison, which has served as one of the primary venues for model evaluation and confirmation. While analysis of historical trends in the socio-economic system has long played a key role in diagnostics of future scenarios from IAMs, formal hindcast experiments are just now being contemplated as evaluation exercises. Some initial thoughts on setting up such IAM evaluation experiments are discussed. Socio-economic systems do not follow strict physical laws, which means that evaluation needs to take place in a context, unlike that of physical system models, in which there are few fixed, unchanging relationships. Of course strict validation of even earth system models is not possible (Oreskes etal 2004), a fact borne out by the inability of models to constrain the climate sensitivity. Energy-system models have also been grappling with some of the same questions over the last quarter century. For example, one of "the many questions in the energy field that are waiting for answers in the next 20 years" identified by Hans Landsberg in 1985 was "Will the price of oil resume its upward movement?" Of course we are still asking this question today. While, arguably, even fewer constraints apply to socio-economic systems, numerous historical trends and patterns have been identified, although often only in broad terms, that are used to guide the development of model components, parameter ranges, and scenario assumptions. IAM evaluation exercises are expected to provide useful information for interpreting model results and improving model behavior. A key step is the recognition of model boundaries, that is, what is inside

  15. Diverse methods for integrable models

    NARCIS (Netherlands)

    Fehér, G.

    2017-01-01

    This thesis is centered around three topics, sharing integrability as a common theme. This thesis explores different methods in the field of integrable models. The first two chapters are about integrable lattice models in statistical physics. The last chapter describes an integrable quantum chain.

  16. The Indian Monsoon

    Indian Academy of Sciences (India)

    Pacific Oceans, on subseasonal scales of a few days and on an interannual scale. ... over the Indian monsoon zone2 (Figure 3) during the summer monsoon .... each 500 km ×500 km grid over the equatorial Indian Ocean, Bay of Bengal and ...

  17. Future projection of mean and variability of the Asian Summer Monsoon and Indian Ocean Climate systems

    Energy Technology Data Exchange (ETDEWEB)

    Annamalai, H. [Univ. of Hawaii, Honolulu, HI (United States)

    2014-09-15

    The overall goal of this project is to assess the ability of the CMIP3/5 models to simulate the Indian-Ocean monsoon systems. The PI along with post-docs investigated research issues ranging from synoptic systems to long-term trends over the Asian monsoon region. The PI applied diagnostic tools such as moist static energy (MSE) to isolate: the moist and radiative processes responsible for extended monsoon breaks over South Asia, precursors in the ENSO-monsoon association, reasons for the drying tendency over South Asia and the possible effect on tropical Indian Ocean climate anomalies influencing certain aspects of ENSO characteristics. By diagnosing various observations and coupled model simulations, we developed working hypothesis and tested them by carrying out sensitivity experiments with both linear and nonlinear models. Possible physical and dynamical reasons for model sensitivities were deduced. On the teleconnection front, the ability of CMIP5 models in representing the monsoon-desert mechanism was examined recently. Further more, we have applied a suite of diagnostics and have performed an in depth analysis on CMIP5 integrations to isolate the possible reasons for the ENSO-monsoon linkage or lack thereof. The PI has collaborated with Dr. K.R. Sperber of PCMDI and other CLIVAR Asian-Australian monsoon panel members in understanding the ability of CMIP3/5 models in capturing monsoon and its spectrum of variability. The objective and process-based diagnostics aided in selecting models that best represent the present-day monsoon and its variability that are then employed for future projections. Two major highlights were an invitation to write a review on present understanding monsoons in a changing climate in Nature Climate Change, and identification of an east-west shift in observed monsoon rainfall (more rainfall over tropical western Pacific and drying tendency over South Asia) in the last six decades and attributing that shift to SST rise over the tropical

  18. Integrated Environmental Assessment Modelling

    Energy Technology Data Exchange (ETDEWEB)

    Guardanz, R; Gimeno, B S; Bermejo, V; Elvira, S; Martin, F; Palacios, M; Rodriguez, E; Donaire, I [Ciemat, Madrid (Spain)

    2000-07-01

    This report describes the results of the Spanish participation in the project Coupling CORINAIR data to cost-effect emission reduction strategies based on critical threshold. (EU/LIFE97/ENV/FIN/336). The subproject has focused on three tasks. Develop tools to improve knowledge on the spatial and temporal details of emissions of air pollutants in Spain. Exploit existing experimental information on plant response to air pollutants in temperate ecosystem and Integrate these findings in a modelling framework that can asses with more accuracy the impact of air pollutants to temperate ecosystems. The results obtained during the execution of this project have significantly improved the models of the impact of alternative emission control strategies on ecosystems and crops in the Iberian Peninsula. (Author) 375 refs.

  19. Mass accumulation rate and monsoon records from Xifeng, Chinese Loess Plateau, based on a luminescence age model

    DEFF Research Database (Denmark)

    Stevens, Thomas; Buylaert, Jan-Pieter; Lu, Huayu

    2016-01-01

    common than previously realized. MARs from undisturbed portions of Xifeng vary dramatically, with peaks potentially matching the timing of Heinrich events. The last glacial maximum peak MAR (22–27 ka) matches the Pacific and Greenland dust flux records, although appears earlier than peak MARs seen...... in many other OSL‐dated Loess Plateau sites. East Asian monsoon grain‐size and magnetic susceptibility records also show several differences between independently dated loess sites. This complicates our understanding of any lag between insolation forcing and monsoon response. Nevertheless, the Xifeng...

  20. Simulation of the Indian summer monsoon onset-phase rainfall using a regional model

    KAUST Repository

    Srinivas, C. V.; Hari Prasad, D.; Bhaskar Rao, D. V.; Baskaran, R.; Venkatraman, B.

    2015-01-01

    data over seven climate zones (perhumid, humid, dry/moist, subhumid, dry/moist, semiarid and arid) of India to see whether dynamical downscaling using a regional model yields advantages over just using large-scale model predictions. Results show

  1. Coastal circulation off Ratnagiri, west coast of India during monsoon seasons: a numerical model study.

    Digital Repository Service at National Institute of Oceanography (India)

    Samiksha, S.V.; Sharif, J.; Vethamony, P.

    Present study is the coastal circulation modelling off Ratnagiri under the influence of winds and tides. A two-dimensional hydrodynamic model MIKE 21HD has been used to simulate tides and currents, and model results are in a good agreement...

  2. Potential impact of carbonaceous aerosol on the upper troposphere and lower stratosphere (UTLS) and precipitation during Asian summer monsoon in a global model simulation

    KAUST Repository

    Fadnavis, Suvarna; Kalita, Gayatry; Kumar, K. Ravi; Gasparini, Blaž; Li, Jui-Lin Frank

    2017-01-01

    The model simulation shows that boundary layer aerosols are transported into the monsoon anticyclone by the strong monsoon convection from the Bay of Bengal, southern slopes of the Himalayas and the South China Sea. Doubling of emissions of both BC and OC aerosols over Southeast Asia (10° S–50° N, 65–155° E) shows that lofted aerosols produce significant warming (0.6–1 K) over the Tibetan Plateau (TP) near 400–200 hPa and instability in the middle/upper troposphere. These aerosols enhance radiative heating rates (0.02–0.03 K day−1) near the tropopause. The enhanced carbonaceous aerosols alter aerosol radiative forcing (RF) at the surface by −4.74 ± 1.42 W m−2, at the top of the atmosphere (TOA) by +0.37 ± 0.26 W m−2 and in the atmosphere by +5.11 ± 0.83 W m−2 over the TP and Indo-Gangetic Plain region (15–35° N, 80–110° E). Atmospheric warming increases vertical velocities and thereby cloud ice in the upper troposphere. Aerosol induced anomalous warming over the TP facilitates the relative strengthening of the monsoon Hadley circulation and increases moisture inflow by strengthening the cross-equatorial monsoon jet. This increases precipitation amounts over India (1–4 mm day−1) and eastern China (0.2–2 mm day−1). These results are significant at the 99 % confidence level.

  3. Integrated Medical Model Overview

    Science.gov (United States)

    Myers, J.; Boley, L.; Foy, M.; Goodenow, D.; Griffin, D.; Keenan, A.; Kerstman, E.; Melton, S.; McGuire, K.; Saile, L.; hide

    2015-01-01

    The Integrated Medical Model (IMM) Project represents one aspect of NASA's Human Research Program (HRP) to quantitatively assess medical risks to astronauts for existing operational missions as well as missions associated with future exploration and commercial space flight ventures. The IMM takes a probabilistic approach to assessing the likelihood and specific outcomes of one hundred medical conditions within the envelope of accepted space flight standards of care over a selectable range of mission capabilities. A specially developed Integrated Medical Evidence Database (iMED) maintains evidence-based, organizational knowledge across a variety of data sources. Since becoming operational in 2011, version 3.0 of the IMM, the supporting iMED, and the expertise of the IMM project team have contributed to a wide range of decision and informational processes for the space medical and human research community. This presentation provides an overview of the IMM conceptual architecture and range of application through examples of actual space flight community questions posed to the IMM project.

  4. Representation of monsoon intraseasonal oscillations in regional climate model: sensitivity to convective physics

    KAUST Repository

    Umakanth, U.; Kesarkar, Amit P.; Attada, Raju; Vijaya Bhaskar Rao, S.

    2015-01-01

    combinations of Grell (G) and Emanuel (E) cumulus schemes namely, RegCM-EG, RegCM-EE and RegCM-GE have been used. The model is initialized at 1st January, 2000 for a 13-year continuous simulation at a spatial resolution of 50 km. The models reasonably simulate

  5. Trace gas composition in the Asian summer monsoon anticyclone: a case study based on aircraft observations and model simulations

    Science.gov (United States)

    Gottschaldt, Klaus-D.; Schlager, Hans; Baumann, Robert; Bozem, Heiko; Eyring, Veronika; Hoor, Peter; Jöckel, Patrick; Jurkat, Tina; Voigt, Christiane; Zahn, Andreas; Ziereis, Helmut

    2017-05-01

    We present in situ measurements of the trace gas composition of the upper tropospheric (UT) Asian summer monsoon anticyclone (ASMA) performed with the High Altitude and Long Range Research Aircraft (HALO) in the frame of the Earth System Model Validation (ESMVal) campaign. Air masses with enhanced O3 mixing ratios were encountered after entering the ASMA at its southern edge at about 150 hPa on 18 September 2012. This is in contrast to the presumption that the anticyclone's interior is dominated by recently uplifted air with low O3 in the monsoon season. We also observed enhanced CO and HCl in the ASMA, which are tracers for boundary layer pollution and tropopause layer (TL) air or stratospheric in-mixing respectively. In addition, reactive nitrogen was enhanced in the ASMA. Along the HALO flight track across the ASMA boundary, strong gradients of these tracers separate anticyclonic from outside air. Lagrangian trajectory calculations using HYSPLIT show that HALO sampled a filament of UT air three times, which included air masses uplifted from the lower or mid-troposphere north of the Bay of Bengal. The trace gas gradients between UT and uplifted air masses were preserved during transport within a belt of streamlines fringing the central part of the anticyclone (fringe), but are smaller than the gradients across the ASMA boundary. Our data represent the first in situ observations across the southern part and downstream of the eastern ASMA flank. Back-trajectories starting at the flight track furthermore indicate that HALO transected the ASMA where it was just splitting into a Tibetan and an Iranian part. The O3-rich filament is diverted from the fringe towards the interior of the original anticyclone, and is at least partially bound to become part of the new Iranian eddy. A simulation with the ECHAM/MESSy Atmospheric Chemistry (EMAC) model is found to reproduce the observations reasonably well. It shows that O3-rich air is entrained by the outer streamlines of the

  6. The multidecadal variations of the interannual relationship between the East Asian summer monsoon and ENSO in a coupled model

    Science.gov (United States)

    Liu, Bo; Huang, Gang; Hu, Kaiming; Wu, Renguang; Gong, Hainan; Wang, Pengfei; Zhao, Guijie

    2017-10-01

    This study investigates the multidecadal variations of the interannual relationship between the East Asian summer monsoon (EASM) and El Niño-Southern Oscillation (ENSO) in 1000-year simulation of a coupled climate model. The interannual relationship between ENSO and EASM has experienced pronounced changes throughout the 1000-year simulation. During the periods with significant ENSO-EASM relationship, the ENSO-related circulation anomalies show a Pacific-Japan (PJ)-like pattern with significant wave-activity flux propagating from the tropics to the north in lower troposphere and from the mid-latitudes to the south in upper troposphere. The resultant ENSO-related precipitation anomalies are more (less) than normal over the East Asia (western North Pacific) in the decaying summers of El Niño events. In contrast, the circulation and precipitation anomalies are weak over East Asia-western North Pacific during the periods with weak ENSO-EASM relationship. Based on the energy conversion analysis, the related anomalies achieve barotropic and baroclinic energy from the mean flow during the periods with strong ENSO-EASM relationship. On the contrary, during the low-correlation periods, the energy conversion is too weak to form the link between the tropics and mid-latitudes. The main reason for the multidecadal variations of ENSO-EASM relationship is the amplitude discrepancy of SST anomalies over the Indo-western Pacific Ocean which, in turn, leads to the intensity difference of the western North Pacific anomalous anticyclone (WPAC) and related climate anomalies.

  7. SUNYA Regional Climate Model Simulations of East Asia Summer Monsoon: Effects of Cloud Vertical Structure on the Surface Energy Balance

    Directory of Open Access Journals (Sweden)

    Wei Gong and Wei-Chyung Wang

    2007-01-01

    Full Text Available We used the State University of New York at Albany (SUNYA regional climate model to study the effect of cloud vertical distribution in affecting the surface energy balance of the East Asia summer monsoon (EASM. Simulations were conducted for the summers of 1988 and 1989, during which large contrast in the intra-seasonal cloud radiative forcing (CRF was observed at the top of the atmosphere. The model results indicate that both the high and low clouds are persistent throughout the summer months in both years. Because of large cloud water, low clouds significantly reduce the solar radiation flux reaching the surface, which nevertheless still dominate the surface energy balance, accounting for more than 50% of the surface heating. The low clouds also contribute significantly the downward longwave radiation to the surface with values strongly dependent on the cloud base temperature. The presence of low clouds effectively decreases the temperature and moisture gradients near surface, resulting in a substantial decrease in the sensible and latent heat fluxes from surface, which partially compensate the decrease of the net radiative cooling of the surface. For example, in the two days, May 8 and July 11 of 1988, the total cloud cover of 80% is simulated, but the respective low cloud cover (water was 63% (114 gm-2 and 22% (21 gm-2. As a result, the downward solar radiation is smaller by 161 Wm-2 in May 8. On the other hand, the cloud temperature was _ lower, yielding 56 Wm-2 smaller downward longwave radiation. The near surface temperature and gradient is more than _ smaller (and moisture gradient, leading to 21 and 81 Wm-2 smaller sensible heat and latent heat fluxes. It is also demonstrated that the model is capable to reproduce the intraseasonal variation of shortwave CRF, and catches the relationship between total cloud cover and SW CRF. The model results show the dominance of high cloud on the regional mean longwave CRF and low cloud on the intra

  8. Integrative structure modeling with the Integrative Modeling Platform.

    Science.gov (United States)

    Webb, Benjamin; Viswanath, Shruthi; Bonomi, Massimiliano; Pellarin, Riccardo; Greenberg, Charles H; Saltzberg, Daniel; Sali, Andrej

    2018-01-01

    Building models of a biological system that are consistent with the myriad data available is one of the key challenges in biology. Modeling the structure and dynamics of macromolecular assemblies, for example, can give insights into how biological systems work, evolved, might be controlled, and even designed. Integrative structure modeling casts the building of structural models as a computational optimization problem, for which information about the assembly is encoded into a scoring function that evaluates candidate models. Here, we describe our open source software suite for integrative structure modeling, Integrative Modeling Platform (https://integrativemodeling.org), and demonstrate its use. © 2017 The Protein Society.

  9. Sub-seasonal behaviour of Asian summer monsoon under a changing climate: assessments using CMIP5 models

    Science.gov (United States)

    Sooraj, K. P.; Terray, Pascal; Xavier, Prince

    2016-06-01

    Numerous global warming studies show the anticipated increase in mean precipitation with the rising levels of carbon dioxide concentration. However, apart from the changes in mean precipitation, the finer details of daily precipitation distribution, such as its intensity and frequency (so called daily rainfall extremes), need to be accounted for while determining the impacts of climate changes in future precipitation regimes. Here we examine the climate model projections from a large set of Coupled Model Inter-comparison Project 5 models, to assess these future aspects of rainfall distribution over Asian summer monsoon (ASM) region. Our assessment unravels a north-south rainfall dipole pattern, with increased rainfall over Indian subcontinent extending into the western Pacific region (north ASM region, NASM) and decreased rainfall over equatorial oceanic convergence zone over eastern Indian Ocean region (south ASM region, SASM). This robust future pattern is well conspicuous at both seasonal and sub-seasonal time scales. Subsequent analysis, using daily rainfall events defined using percentile thresholds, demonstrates that mean rainfall changes over NASM region are mainly associated with more intense and more frequent extreme rainfall events (i.e. above 95th percentile). The inference is that there are significant future changes in rainfall probability distributions and not only a uniform shift in the mean rainfall over the NASM region. Rainfall suppression over SASM seems to be associated with changes involving multiple rainfall events and shows a larger model spread, thus making its interpretation more complex compared to NASM. Moisture budget diagnostics generally show that the low-level moisture convergence, due to stronger increase of water vapour in the atmosphere, acts positively to future rainfall changes, especially for heaviest rainfall events. However, it seems that the dynamic component of moisture convergence, associated with vertical motion, shows a

  10. Projections of West African summer monsoon rainfall extremes from two CORDEX models

    Science.gov (United States)

    Akinsanola, A. A.; Zhou, Wen

    2018-05-01

    Global warming has a profound impact on the vulnerable environment of West Africa; hence, robust climate projection, especially of rainfall extremes, is quite important. Based on two representative concentration pathway (RCP) scenarios, projected changes in extreme summer rainfall events over West Africa were investigated using data from the Coordinated Regional Climate Downscaling Experiment models. Eight (8) extreme rainfall indices (CDD, CWD, r10mm, r20mm, PRCPTOT, R95pTOT, rx5day, and sdii) defined by the Expert Team on Climate Change Detection and Indices were used in the study. The performance of the regional climate model (RCM) simulations was validated by comparing with GPCP and TRMM observation data sets. Results show that the RCMs reasonably reproduced the observed pattern of extreme rainfall over the region and further added significant value to the driven GCMs over some grids. Compared to the baseline period 1976-2005, future changes (2070-2099) in summer rainfall extremes under the RCP4.5 and RCP8.5 scenarios show statistically significant decreasing total rainfall (PRCPTOT), while consecutive dry days and extreme rainfall events (R95pTOT) are projected to increase significantly. There are obvious indications that simple rainfall intensity (sdii) will increase in the future. This does not amount to an increase in total rainfall but suggests a likelihood of greater intensity of rainfall events. Overall, our results project that West Africa may suffer more natural disasters such as droughts and floods in the future.

  11. Business and technology integrated model

    OpenAIRE

    Noce, Irapuan; Carvalho, João Álvaro

    2011-01-01

    There is a growing interest in business modeling and architecture in the areas of management and information systems. One of the issues in the area is the lack of integration between the modeling techniques that are employed to support business development and those used for technology modeling. This paper proposes a modeling approach that is capable of integrating the modeling of the business and of the technology. By depicting the business model, the organization structure and the technolog...

  12. Application of regional climate models to the Indian winter monsoon over the western Himalayas.

    Science.gov (United States)

    Dimri, A P; Yasunari, T; Wiltshire, A; Kumar, P; Mathison, C; Ridley, J; Jacob, D

    2013-12-01

    The Himalayan region is characterized by pronounced topographic heterogeneity and land use variability from west to east, with a large variation in regional climate patterns. Over the western part of the region, almost one-third of the annual precipitation is received in winter during cyclonic storms embedded in westerlies, known locally as the western disturbance. In the present paper, the regional winter climate over the western Himalayas is analyzed from simulations produced by two regional climate models (RCMs) forced with large-scale fields from ERA-Interim. The analysis was conducted by the composition of contrasting (wet and dry) winter precipitation years. The findings showed that RCMs could simulate the regional climate of the western Himalayas and represent the atmospheric circulation during extreme precipitation years in accordance with observations. The results suggest the important role of topography in moisture fluxes, transport and vertical flows. Dynamical downscaling with RCMs represented regional climates at the mountain or even event scale. However, uncertainties of precipitation scale and liquid-solid precipitation ratios within RCMs are still large for the purposes of hydrological and glaciological studies. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Gridded daily Indian monsoon rainfall for 14 seasons: Merged ...

    Indian Academy of Sciences (India)

    Indian monsoon is an important component of earth's climate system. Daily rainfall data for longer period is vital to study components and processes related to Indian monsoon. Daily observed gridded rainfall data covering both land and adjoining oceanic regions are required for numerical model vali- dation and model ...

  14. Improvement of Statistical Typhoon Rainfall Forecasting with ANN-Based Southwest Monsoon Enhancement

    Directory of Open Access Journals (Sweden)

    Tsung-Yi Pan

    2011-01-01

    Full Text Available Typhoon Morakot 2009, with significant southwest monsoon flow, produced a record-breaking rainfall of 2361 mm in 48 hours. This study hopes to improve a statistical typhoon rainfall forecasting method used over the mountain region of Taiwan via an artificial neural network based southwest monsoon enhancement (ANNSME model. Rainfall data collected at two mountain weather stations, ALiShan and YuShan, are analyzed to establish the relation to the southwest monsoon moisture flux which is calculated at a designated sea area southwest of Taiwan. The results show that the moisture flux, with southwest monsoon flow, transported water vapor during the landfall periods of Typhoons Mindulle, Bilis, Fungwong, Kalmaegi, Haitaing and Morakot. Based on the moisture flux, a linear regression is used to identify an effective value of moisture flux as the threshold flux which can enhance mountain rainfall in southwestern Taiwan. In particular, a feedforward neural network (FNN is applied to estimate the residuals from the linear model to the differences between simulated rainfalls by a typhoon rainfall climatology model (TRCM and observations. Consequently, the ANNSME model integrates the effective moisture flux, linear rainfall model and the FNN for residuals. Even with very limited training cases, our results indicate that the ANNSME model is robust and suitable for improvement of TRCM rainfall prediction. The improved prediction of the total rainfall and of the multiple rainfall peaks is important for emergency operation.

  15. Integrability of the Rabi Model

    International Nuclear Information System (INIS)

    Braak, D.

    2011-01-01

    The Rabi model is a paradigm for interacting quantum systems. It couples a bosonic mode to the smallest possible quantum model, a two-level system. I present the analytical solution which allows us to consider the question of integrability for quantum systems that do not possess a classical limit. A criterion for quantum integrability is proposed which shows that the Rabi model is integrable due to the presence of a discrete symmetry. Moreover, I introduce a generalization with no symmetries; the generalized Rabi model is the first example of a nonintegrable but exactly solvable system.

  16. Monsoon onset over Kerala and pre monsoon rainfall peak

    Digital Repository Service at National Institute of Oceanography (India)

    RameshKumar, M.R.; Shenoi, S.S.C.; Shankar, D.

    and the monsoon onset date over Kerala was found to be 0.72, which was statistically significant. Thus, as is felt that the pre monsoon rainfall estimate from the satellite data can be used for predicting the monsoon onset over Kerala coast. The results...

  17. IMMIGRANTS’ INTEGRATION MODELS

    Directory of Open Access Journals (Sweden)

    CARMEN UZLĂU

    2012-05-01

    Full Text Available In the context of the European population aging trend, and while the birth rate is still at a low level, the immigrants may contribute to the support of the EU economy and to finance the national social protection systems. But this would be possible only if they have been fully integrated in the host countries, the integration policies being a task of the national governments. The European Union may still offer support and stimulation through financing, policies coordination and good practices exchange facilitation. The new measures should encourage local level actions, including cooperation between local authorities, employers, migrants’ organizations, service providers and local population. Within the EU, there live 20.1 million immigrants (approximately 4% of the entire population coming from outside European area. An important element of the common EU policy on immigration is the one regarding the development of a policy on immigrants’ integration, which should provide a fair treatment within the member states, and guarantee rights and obligations comparable with the ones of the Union citizens.

  18. A climate model study of an intense Asian Monsoon in a La Niña-like climate of MIS-13

    Science.gov (United States)

    Karami, M. P.; Berger, A.; Herold, N.; Yin, Q. Z.

    2012-04-01

    Studying the paleo-monsoon during past interglacials is a valuable approach to improve our understanding of the monsoon system in present-day and future climates. We focus on Marine Isotopic stage 13 (MIS-13; ~0.5 Ma) which was a relatively cool interglacial, but with a paradoxically intense monsoonal precipitation over eastern and southern Asia. Our main goal is to understand the physics-based mechanism driving the intense monsoon, specifically the East Asian Summer Monsoon (EASM), during MIS-13. We applied both an intermediate complexity model (LOVECLIM) as well as fully coupled general circulation models (HadCM3 and CCSM3) to simulate pre-industrial and MIS-13 climates. The boundary conditions for MIS-13 were chosen for 506 ka with Northern-Hemisphere (NH) summer at perihelion and a CO2 concentration of 240 ppm. For pre-industrial, NH-winter occurring at perihelion and a CO2 concentration of 280 ppm were prescribed. Preliminary analysis of the model results shows different atmospheric and oceanic features in MIS-13 compared to the pre-industrial which could affect the EASM. The Northern Pacific Subtropical High (NPSH), which is an important factor in controlling the EASM, strengthened and extended to the northwest in MIS-13 partially due to cooling of the central Pacific Ocean. This in turn brought more moisture from the Central Pacific to the EASM-region and caused a northwestward shift and bending of the low-level jet along East Asia. The change in the low-level jet subsequently increased the meridional wind velocity at 850 mbar in the EASM-region providing more moisture from the tropical Pacific and Indian Oceans. In addition, higher sea-surface temperature in the Indian Ocean during MIS-13 further increased the source of moisture for the EASM. The Asian low, which is another component of the EASM-system, also shifted eastward moving the rain band northward. Moreover, it was found that MIS-13 had a dominant La Niña condition in the tropical Pacific. La Ni

  19. Integrable quantum impurity models

    International Nuclear Information System (INIS)

    Eckle, H.P.

    1998-01-01

    By modifying some of the local L operators of the algebraic form of the Bethe Ansatz inhomogeneous one dimensional quantum lattice models can be constructed. This fact has recently attracted new attention, the inhomogeneities being interpreted as local impurities. The Hamiltonians of the so constructed one-dimensional quantum models have a nearest neighbour structure except in the vicinity of the local impurities which involve three-site interactions. The pertinent feature of these models is the absence of backscattering at the impurities: the impurities are transparent. (Copyright (1998) World Scientific Publishing Co. Pte. Ltd)

  20. Gravitational interactions of integrable models

    International Nuclear Information System (INIS)

    Abdalla, E.; Abdalla, M.C.B.

    1995-10-01

    We couple non-linear σ-models to Liouville gravity, showing that integrability properties of symmetric space models still hold for the matter sector. Using similar arguments for the fermionic counterpart, namely Gross-Neveu-type models, we verify that such conclusions must also hold for them, as recently suggested. (author). 18 refs

  1. Non-stationary analysis of dry spells in monsoon season of Senegal River Basin using data from Regional Climate Models (RCMs)

    Science.gov (United States)

    Giraldo Osorio, J. D.; García Galiano, S. G.

    2012-07-01

    SummaryThe Senegal River Basin, located in West Africa, has been affected by several droughts since the end of the 1960s. In its valley, which is densely populated and highly vulnerable to climate variability and water availability, agricultural activities provide the livelihood for thousands of people. Increasing the knowledge about plausible trends of drought events will allow to improve the adaptation and mitigation measures in order to build "adaptive capacity" to climate change in West Africa. An innovative methodology for the non-stationary analysis of droughts events, which allows the prediction of regional trends associated to several return periods, is presented. The analyses were based on Regional Climate Models (RCMs) provided by the European ENSEMBLES project for West Africa, together with observed data. A non-stationary behaviour of the annual series of maximum length of dry spells (AMDSL) in the monsoon season is reflected in temporal changes in mean and variance. The non-stationary nature of hydrometeorological series, due to climate change and anthropogenic activities, is the main criticism to traditional frequency analysis. Therefore, in this paper, the modelling tool GAMLSS (Generalized Additive Models for Location, Scale and Shape), is applied to develop regional probability density functions (pdfs) fitted to AMDSL series for the monsoon season in the Senegal River Basin. The skills of RCMs in the representation of maximum length of dry spells observed for the period 1970-1990, are evaluated considering observed data. Based on the results obtained, a first selection of the RCMs with which to apply GAMLSS to the AMDSL series identified, for the time period 1970-2050, is made. The results of GAMLSS analysis exhibit divergent trends, with different value ranges for parameters of probability distributions being detected. Therefore, in the second stage of the paper, regional pdfs are constructed using bootstrapping distributions based on probabilistic

  2. Measuring the monsoon

    Digital Repository Service at National Institute of Oceanography (India)

    Ramaswamy, V.; Nair, R.R.

    that are constant enough to be used for navigation. But the monsoon also acts as a sign of the climatic times. Although its timing is remarkably regular, the intensity of its effects varies considerably from year to year. On top of natural variations in the strength...

  3. Tropical and Monsoonal Studies.

    Science.gov (United States)

    1988-01-01

    Duiing the cold surge event the balance of the 200 mb zonal momentum budget is between the zonal advecton of momentum and the coriolis, aceration ...over the South China Sea in the Malaysia ACKNOWLEDGEMENTS region during the winter monsoon, December 1973. Pure AppL Geophys., 115, 1303-1334. We wish

  4. The Indian Monsoon

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 13; Issue 3. The Indian Monsoon - Links to Cloud systems over the Tropical Oceans. Sulochana Gadgil. Series Article Volume 13 Issue 3 March 2008 pp 218-235. Fulltext. Click here to view fulltext PDF. Permanent link:

  5. Foretelling the Monsoon

    Indian Academy of Sciences (India)

    Relation between the continental TCZ and the TCZ over Equatorial Indian Ocean · Understanding year-to year (interannual) variation of the monsoon · Slide 40 · IMPACT OF EL NINO/LA NINA · Slide 42 · Variation of ISMR anomalies ( i.e. difference from the average value) normalized by std. deviation from 1979-2004.

  6. Integrated Debugging of Modelica Models

    Directory of Open Access Journals (Sweden)

    Adrian Pop

    2014-04-01

    Full Text Available The high abstraction level of equation-based object-oriented (EOO languages such as Modelica has the drawback that programming and modeling errors are often hard to find. In this paper we present integrated static and dynamic debugging methods for Modelica models and a debugger prototype that addresses several of those problems. The goal is an integrated debugging framework that combines classical debugging techniques with special techniques for equation-based languages partly based on graph visualization and interaction. To our knowledge, this is the first Modelica debugger that supports both equation-based transformational and algorithmic code debugging in an integrated fashion.

  7. Integrated Inflammatory Stress (ITIS) Model

    DEFF Research Database (Denmark)

    Bangsgaard, Elisabeth O.; Hjorth, Poul G.; Olufsen, Mette S.

    2017-01-01

    maintains a long-term level of the stress hormone cortisol which is also anti-inflammatory. A new integrated model of the interaction between these two subsystems of the inflammatory system is proposed and coined the integrated inflammatory stress (ITIS) model. The coupling mechanisms describing....... A constant activation results in elevated levels of the variables in the model while a prolonged change of the oscillations in ACTH and cortisol concentrations is the most pronounced result of different LPS doses predicted by the model....

  8. Integrated Medical Model – Chest Injury Model

    Data.gov (United States)

    National Aeronautics and Space Administration — The Exploration Medical Capability (ExMC) Element of NASA's Human Research Program (HRP) developed the Integrated Medical Model (IMM) to forecast the resources...

  9. Lower tropospheric ozone over India and its linkage to the South Asian monsoon

    Science.gov (United States)

    Lu, Xiao; Zhang, Lin; Liu, Xiong; Gao, Meng; Zhao, Yuanhong; Shao, Jingyuan

    2018-03-01

    Lower tropospheric (surface to 600 hPa) ozone over India poses serious risks to both human health and crops, and potentially affects global ozone distribution through frequent deep convection in tropical regions. Our current understanding of the processes controlling seasonal and long-term variations in lower tropospheric ozone over this region is rather limited due to spatially and temporally sparse observations. Here we present an integrated process analysis of the seasonal cycle, interannual variability, and long-term trends of lower tropospheric ozone over India and its linkage to the South Asian monsoon using the Ozone Monitoring Instrument (OMI) satellite observations for years 2006-2014 interpreted with a global chemical transport model (GEOS-Chem) simulation for 1990-2010. OMI observed lower tropospheric ozone over India averaged for 2006-2010, showing the highest concentrations (54.1 ppbv) in the pre-summer monsoon season (May) and the lowest concentrations (40.5 ppbv) in the summer monsoon season (August). Process analyses in GEOS-Chem show that hot and dry meteorological conditions and active biomass burning together contribute to 5.8 Tg more ozone being produced in the lower troposphere in India in May than January. The onset of the summer monsoon brings ozone-unfavorable meteorological conditions and strong upward transport, which all lead to large decreases in the lower tropospheric ozone burden. Interannually, we find that both OMI and GEOS-Chem indicate strong positive correlations (r = 0.55-0.58) between ozone and surface temperature in pre-summer monsoon seasons, with larger correlations found in high NOx emission regions reflecting NOx-limited production conditions. Summer monsoon seasonal mean ozone levels are strongly controlled by monsoon strengths. Lower ozone concentrations are found in stronger monsoon seasons mainly due to less ozone net chemical production. Furthermore, model simulations over 1990-2010 estimate a mean annual trend of 0

  10. Diversity in the representation of large-scale circulation associated with ENSO-Indian summer monsoon teleconnections in CMIP5 models

    Science.gov (United States)

    Ramu, Dandi A.; Chowdary, Jasti S.; Ramakrishna, S. S. V. S.; Kumar, O. S. R. U. B.

    2018-04-01

    Realistic simulation of large-scale circulation patterns associated with El Niño-Southern Oscillation (ENSO) is vital in coupled models in order to represent teleconnections to different regions of globe. The diversity in representing large-scale circulation patterns associated with ENSO-Indian summer monsoon (ISM) teleconnections in 23 Coupled Model Intercomparison Project Phase 5 (CMIP5) models is examined. CMIP5 models have been classified into three groups based on the correlation between Niño3.4 sea surface temperature (SST) index and ISM rainfall anomalies, models in group 1 (G1) overestimated El Niño-ISM teleconections and group 3 (G3) models underestimated it, whereas these teleconnections are better represented in group 2 (G2) models. Results show that in G1 models, El Niño-induced Tropical Indian Ocean (TIO) SST anomalies are not well represented. Anomalous low-level anticyclonic circulation anomalies over the southeastern TIO and western subtropical northwest Pacific (WSNP) cyclonic circulation are shifted too far west to 60° E and 120° E, respectively. This bias in circulation patterns implies dry wind advection from extratropics/midlatitudes to Indian subcontinent. In addition to this, large-scale upper level convergence together with lower level divergence over ISM region corresponding to El Niño are stronger in G1 models than in observations. Thus, unrealistic shift in low-level circulation centers corroborated by upper level circulation changes are responsible for overestimation of ENSO-ISM teleconnections in G1 models. Warm Pacific SST anomalies associated with El Niño are shifted too far west in many G3 models unlike in the observations. Further large-scale circulation anomalies over the Pacific and ISM region are misrepresented during El Niño years in G3 models. Too strong upper-level convergence away from Indian subcontinent and too weak WSNP cyclonic circulation are prominent in most of G3 models in which ENSO-ISM teleconnections are

  11. The integrated economic model

    International Nuclear Information System (INIS)

    Syrota, J.; Cirelli, J.F.; Brimont, S.; Lyle, C.; Nossent, G.; Moraleda, P.

    2005-01-01

    The setting up of the European energy market has triggered a radical change of the context within with the energy players operated. The natural markets of the incumbent operators, which were formerly demarcated by national and even regional borders, have extended to at least the scale of the European Union. In addition to their geographical development strategy, gas undertakings are diversifying their portfolios towards both upstream as well as downstream activities of the gas chain, and/or extending their offers to other energies and services. Energy players' strategies are rather complex and sometimes give the impression that of being based on contradictory decisions. Some operators widen their field of operations, whereas others specialize in a limited number of activities. This Round Table provides an opportunity to compare business models as adopted by the major gas undertakings in response to structural changes observed in various countries over recent years

  12. Separations and safeguards model integration.

    Energy Technology Data Exchange (ETDEWEB)

    Cipiti, Benjamin B.; Zinaman, Owen

    2010-09-01

    Research and development of advanced reprocessing plant designs can greatly benefit from the development of a reprocessing plant model capable of transient solvent extraction chemistry. This type of model can be used to optimize the operations of a plant as well as the designs for safeguards, security, and safety. Previous work has integrated a transient solvent extraction simulation module, based on the Solvent Extraction Process Having Interaction Solutes (SEPHIS) code developed at Oak Ridge National Laboratory, with the Separations and Safeguards Performance Model (SSPM) developed at Sandia National Laboratory, as a first step toward creating a more versatile design and evaluation tool. The goal of this work was to strengthen the integration by linking more variables between the two codes. The results from this integrated model show expected operational performance through plant transients. Additionally, ORIGEN source term files were integrated into the SSPM to provide concentrations, radioactivity, neutron emission rate, and thermal power data for various spent fuels. This data was used to generate measurement blocks that can determine the radioactivity, neutron emission rate, or thermal power of any stream or vessel in the plant model. This work examined how the code could be expanded to integrate other separation steps and benchmark the results to other data. Recommendations for future work will be presented.

  13. The Monsoon Erosion Pump and the Indian Monsoon since Eocene

    Science.gov (United States)

    Giosan, L.

    2017-12-01

    Lack of consensus on the Neogene establishment and evolution of the Indian Monsoon is remarkable after half a century of research. Conflicting interpretations point toward the possibility of periodic decoupling between monsoon winds and monsoon precipitation. Here I introduce the concept of a monsoon erosion pump based on terrestrial and oceanic records reconstructed from recent NGHP and IODP drilling and spanning the last 34 million years in the Bay of Bengal, Arabian and Andaman Seas. From millennial to orbital to tectonic timescales, these records suggest that vegetation land cover interacts and modulates the regime of erosion and weathering under perennial but variable monsoonal rain conditions. Under this new proposed paradigm the Indian monsoon exhibits two distinct flavours during the Neogene that can be largely explained by its heartbeat, or astronomical forcing, mediated by the global glacial state and interacting with the paleogeography of South Asia.

  14. Enabling model customization and integration

    Science.gov (United States)

    Park, Minho; Fishwick, Paul A.

    2003-09-01

    Until fairly recently, the idea of dynamic model content and presentation were treated synonymously. For example, if one was to take a data flow network, which captures the dynamics of a target system in terms of the flow of data through nodal operators, then one would often standardize on rectangles and arrows for the model display. The increasing web emphasis on XML, however, suggests that the network model can have its content specified in an XML language, and then the model can be represented in a number of ways depending on the chosen style. We have developed a formal method, based on styles, that permits a model to be specified in XML and presented in 1D (text), 2D, and 3D. This method allows for customization and personalization to exert their benefits beyond e-commerce, to the area of model structures used in computer simulation. This customization leads naturally to solving the bigger problem of model integration - the act of taking models of a scene and integrating them with that scene so that there is only one unified modeling interface. This work focuses mostly on customization, but we address the integration issue in the future work section.

  15. Developing Integrated Care: Towards a development model for integrated care

    NARCIS (Netherlands)

    M.M.N. Minkman (Mirella)

    2012-01-01

    textabstractThe thesis adresses the phenomenon of integrated care. The implementation of integrated care for patients with a stroke or dementia is studied. Because a generic quality management model for integrated care is lacking, the study works towards building a development model for integrated

  16. Weakening of the North American monsoon with global warming

    Science.gov (United States)

    Pascale, Salvatore; Boos, William R.; Bordoni, Simona; Delworth, Thomas L.; Kapnick, Sarah B.; Murakami, Hiroyuki; Vecchi, Gabriel A.; Zhang, Wei

    2017-11-01

    Future changes in the North American monsoon, a circulation system that brings abundant summer rains to vast areas of the North American Southwest, could have significant consequences for regional water resources. How this monsoon will change with increasing greenhouse gases, however, remains unclear, not least because coarse horizontal resolution and systematic sea-surface temperature biases limit the reliability of its numerical model simulations. Here we investigate the monsoon response to increased atmospheric carbon dioxide (CO2) concentrations using a 50-km-resolution global climate model which features a realistic representation of the monsoon climatology and its synoptic-scale variability. It is found that the monsoon response to CO2 doubling is sensitive to sea-surface temperature biases. When minimizing these biases, the model projects a robust reduction in monsoonal precipitation over the southwestern United States, contrasting with previous multi-model assessments. Most of this precipitation decline can be attributed to increased atmospheric stability, and hence weakened convection, caused by uniform sea-surface warming. These results suggest improved adaptation measures, particularly water resource planning, will be required to cope with projected reductions in monsoon rainfall in the American Southwest.

  17. The impact of convection in the West African monsoon region on global weather forecasts - explicit vs. parameterised convection simulations using the ICON model

    Science.gov (United States)

    Pante, Gregor; Knippertz, Peter

    2017-04-01

    The West African monsoon is the driving element of weather and climate during summer in the Sahel region. It interacts with mesoscale convective systems (MCSs) and the African easterly jet and African easterly waves. Poor representation of convection in numerical models, particularly its organisation on the mesoscale, can result in unrealistic forecasts of the monsoon dynamics. Arguably, the parameterisation of convection is one of the main deficiencies in models over this region. Overall, this has negative impacts on forecasts over West Africa itself but may also affect remote regions, as waves originating from convective heating are badly represented. Here we investigate those remote forecast impacts based on daily initialised 10-day forecasts for July 2016 using the ICON model. One set of simulations employs the default setup of the global model with a horizontal grid spacing of 13 km. It is compared with simulations using the 2-way nesting capability of ICON. A second model domain over West Africa (the nest) with 6.5 km grid spacing is sufficient to explicitly resolve MCSs in this region. In the 2-way nested simulations, the prognostic variables of the global model are influenced by the results of the nest through relaxation. The nest with explicit convection is able to reproduce single MCSs much more realistically compared to the stand-alone global simulation with parameterised convection. Explicit convection leads to cooler temperatures in the lower troposphere (below 500 hPa) over the northern Sahel due to stronger evaporational cooling. Overall, the feedback of dynamic variables from the nest to the global model shows clear positive effects when evaluating the output of the global domain of the 2-way nesting simulation and the output of the stand-alone global model with ERA-Interim re-analyses. Averaged over the 2-way nested region, bias and root mean squared error (RMSE) of temperature, geopotential, wind and relative humidity are significantly reduced in

  18. Global energetics and local physics as drivers of past, present and future monsoons

    Science.gov (United States)

    Biasutti, Michela; Voigt, Aiko; Boos, William R.; Braconnot, Pascale; Hargreaves, Julia C.; Harrison, Sandy P.; Kang, Sarah M.; Mapes, Brian E.; Scheff, Jacob; Schumacher, Courtney; Sobel, Adam H.; Xie, Shang-Ping

    2018-06-01

    Global constraints on momentum and energy govern the variability of the rainfall belt in the intertropical convergence zone and the structure of the zonal mean tropical circulation. The continental-scale monsoon systems are also facets of a momentum- and energy-constrained global circulation, but their modern and palaeo variability deviates substantially from that of the intertropical convergence zone. The mechanisms underlying deviations from expectations based on the longitudinal mean budgets are neither fully understood nor simulated accurately. We argue that a framework grounded in global constraints on energy and momentum yet encompassing the complexities of monsoon dynamics is needed to identify the causes of the mismatch between theory, models and observations, and ultimately to improve regional climate projections. In a first step towards this goal, disparate regional processes must be distilled into gross measures of energy flow in and out of continents and between the surface and the tropopause, so that monsoon dynamics may be coherently diagnosed across modern and palaeo observations and across idealized and comprehensive simulations. Accounting for zonal asymmetries in the circulation, land/ocean differences in surface fluxes, and the character of convective systems, such a monsoon framework would integrate our understanding at all relevant scales: from the fine details of how moisture and energy are lifted in the updrafts of thunderclouds, up to the global circulations.

  19. Impact of West African Monsoon convective transport and lightning NOx production upon the upper tropospheric composition: a multi-model study

    Directory of Open Access Journals (Sweden)

    H. Schlager

    2010-06-01

    Full Text Available Within the African Monsoon Multidisciplinary Analysis (AMMA, we investigate the impact of nitrogen oxides produced by lightning (LiNOx and convective transport during the West African Monsoon (WAM upon the composition of the upper troposphere (UT in the tropics. For this purpose, we have performed simulations with 4 state-of-the-art chemistry transport models involved within AMMA, namely MOCAGE, TM4, LMDz-INCA and p-TOMCAT. The model intercomparison is complemented with an evaluation of the simulations based on both spaceborne and airborne observations. The baseline simulations show important differences between the UT CO and O3 distributions simulated by each of the 4 models when compared to measurements from the MOZAIC program and fom the Aura/MLS spaceborne sensor. We show that such model discrepancies can be explained by differences in the convective transport parameterizations and, more particularly, the altitude reached by convective updrafts (ranging between ~200–125 hPa. Concerning UT O3, the models exhibit a good agreement with the main observed features. Nevertheless the majority of models simulate low O3 concentrations compared to both MOZAIC and Aura/MLS observations south of the equator, and rather high concentrations in the Northern Hemisphere. Sensitivity studies are performed to quantify the effect of deep convective transport and the influence of LiNOx production on the UT composition. These clearly indicate that the CO maxima and the elevated O3 concentrations south of the equator are due to convective uplift of air masses impacted by Southern African biomass burning, in agreement with previous studies. Moreover, during the WAM, LiNOx from Africa are responsible for the highest UT O3 enhancements (10–20 ppbv over the tropical Atlantic between 10° S–20° N. Differences between models are primarily due to the performance of the parameterizations used to simulate lightning activity which are evaluated using spaceborne

  20. Challenges in horizontal model integration.

    Science.gov (United States)

    Kolczyk, Katrin; Conradi, Carsten

    2016-03-11

    Systems Biology has motivated dynamic models of important intracellular processes at the pathway level, for example, in signal transduction and cell cycle control. To answer important biomedical questions, however, one has to go beyond the study of isolated pathways towards the joint study of interacting signaling pathways or the joint study of signal transduction and cell cycle control. Thereby the reuse of established models is preferable, as it will generally reduce the modeling effort and increase the acceptance of the combined model in the field. Obtaining a combined model can be challenging, especially if the submodels are large and/or come from different working groups (as is generally the case, when models stored in established repositories are used). To support this task, we describe a semi-automatic workflow based on established software tools. In particular, two frequent challenges are described: identification of the overlap and subsequent (re)parameterization of the integrated model. The reparameterization step is crucial, if the goal is to obtain a model that can reproduce the data explained by the individual models. For demonstration purposes we apply our workflow to integrate two signaling pathways (EGF and NGF) from the BioModels Database.

  1. Forecasting Monsoon Precipitation Using Artificial Neural Networks

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    This paper explores the application of Artificial Intelligent (AI) techniques for climate forecast. It pres ents a study on modelling the monsoon precipitation forecast by means of Artificial Neural Networks (ANNs). Using the historical data of the total amount of summer rainfall over the Delta Area of Yangtze River in China, three ANNs models have been developed to forecast the monsoon precipitation in the corre sponding area one year, five-year, and ten-year forward respectively. Performances of the models have been validated using a 'new' data set that has not been exposed to the models during the processes of model development and test. The experiment results are promising, indicating that the proposed ANNs models have good quality in terms of the accuracy, stability and generalisation ability.

  2. Integrated modeling: a look back

    Science.gov (United States)

    Briggs, Clark

    2015-09-01

    This paper discusses applications and implementation approaches used for integrated modeling of structural systems with optics over the past 30 years. While much of the development work focused on control system design, significant contributions were made in system modeling and computer-aided design (CAD) environments. Early work appended handmade line-of-sight models to traditional finite element models, such as the optical spacecraft concept from the ACOSS program. The IDEAS2 computational environment built in support of Space Station collected a wider variety of existing tools around a parametric database. Later, IMOS supported interferometer and large telescope mission studies at JPL with MATLAB modeling of structural dynamics, thermal analysis, and geometric optics. IMOS's predecessor was a simple FORTRAN command line interpreter for LQG controller design with additional functions that built state-space finite element models. Specialized language systems such as CAESY were formulated and prototyped to provide more complex object-oriented functions suited to control-structure interaction. A more recent example of optical modeling directly in mechanical CAD is used to illustrate possible future directions. While the value of directly posing the optical metric in system dynamics terms is well understood today, the potential payoff is illustrated briefly via project-based examples. It is quite likely that integrated structure thermal optical performance (STOP) modeling could be accomplished in a commercial off-the-shelf (COTS) tool set. The work flow could be adopted, for example, by a team developing a small high-performance optical or radio frequency (RF) instrument.

  3. A Mesoscale Analysis of Column-Integrated Aerosol Properties in Northern India During the TIGERZ 2008 Pre-Monsoon Period and a Comparison to MODIS Retrievals

    Science.gov (United States)

    Giles, D. M.; Holben, B. N.; Tripathi, S. N.; Eck, T. F.; Newcomb, W. W.; Slutsker, I.; Dickerson, R. R.; Thompson, A. M.; Wang, S.-H.; Singh, R. P.; hide

    2010-01-01

    opportunity to measure the spatial and temporal variations of aerosol loading in the IGP. The strong aerosol absorption derived from ground-based sun/sky radiometer measurements suggested the presence of a predominately black carbon and dust mixture during the pre-monsoon period. Consistent with the elevated heat-pump hypothesis, these absorbing aerosols found across Kanpur and the greater IGP region during the pre-monsoon period likely induced regional atmospheric warming, which lead to a more rapid advance of the southwest Asian monsoon and above normal precipitation over northern India in June 2008.

  4. Integrated model of destination competitiveness

    Directory of Open Access Journals (Sweden)

    Armenski Tanja

    2011-01-01

    Full Text Available The aim of this paper is to determine the weakest point of Serbian destination competitiveness as a tourist destination in comparation with its main competitors. The paper is organized as follows. The short introduction of the previous research on the destination competitiveness is followed by description of the Integrated model of destination competitiveness (Dwyer et al, 2003 that was used as the main reference framework. Section three is devoted to the description of the previous studies on competitiveness of Serbian tourism, while section four outlines the statistical methodology employed in this study and presents and interprets the empirical results. The results showed that Serbia is more competitive in its natural, cultural and created resources than in destination management while, according to the Integrated model, Serbia is less competitive in demand conditions that refer to the image and awareness of the destination itself.

  5. Predictor-Year Subspace Clustering Based Ensemble Prediction of Indian Summer Monsoon

    Directory of Open Access Journals (Sweden)

    Moumita Saha

    2016-01-01

    Full Text Available Forecasting the Indian summer monsoon is a challenging task due to its complex and nonlinear behavior. A large number of global climatic variables with varying interaction patterns over years influence monsoon. Various statistical and neural prediction models have been proposed for forecasting monsoon, but many of them fail to capture variability over years. The skill of predictor variables of monsoon also evolves over time. In this article, we propose a joint-clustering of monsoon years and predictors for understanding and predicting the monsoon. This is achieved by subspace clustering algorithm. It groups the years based on prevailing global climatic condition using statistical clustering technique and subsequently for each such group it identifies significant climatic predictor variables which assist in better prediction. Prediction model is designed to frame individual cluster using random forest of regression tree. Prediction of aggregate and regional monsoon is attempted. Mean absolute error of 5.2% is obtained for forecasting aggregate Indian summer monsoon. Errors in predicting the regional monsoons are also comparable in comparison to the high variation of regional precipitation. Proposed joint-clustering based ensemble model is observed to be superior to existing monsoon prediction models and it also surpasses general nonclustering based prediction models.

  6. Exclusion statistics and integrable models

    International Nuclear Information System (INIS)

    Mashkevich, S.

    1998-01-01

    The definition of exclusion statistics, as given by Haldane, allows for a statistical interaction between distinguishable particles (multi-species statistics). The thermodynamic quantities for such statistics ca be evaluated exactly. The explicit expressions for the cluster coefficients are presented. Furthermore, single-species exclusion statistics is realized in one-dimensional integrable models. The interesting questions of generalizing this correspondence onto the higher-dimensional and the multi-species cases remain essentially open

  7. Exclusion statistics and integrable models

    International Nuclear Information System (INIS)

    Mashkevich, S.

    1998-01-01

    The definition of exclusion statistics that was given by Haldane admits a 'statistical interaction' between distinguishable particles (multispecies statistics). For such statistics, thermodynamic quantities can be evaluated exactly; explicit expressions are presented here for cluster coefficients. Furthermore, single-species exclusion statistics is realized in one-dimensional integrable models of the Calogero-Sutherland type. The interesting questions of generalizing this correspondence to the higher-dimensional and the multispecies cases remain essentially open; however, our results provide some hints as to searches for the models in question

  8. Integrated materials–structural models

    DEFF Research Database (Denmark)

    Stang, Henrik; Geiker, Mette Rica

    2008-01-01

    , repair works and strengthening methods for structures. A very significant part of the infrastructure consists of reinforced concrete structures. Even though reinforced concrete structures typically are very competitive, certain concrete structures suffer from various types of degradation. A framework...... should define a framework in which materials research results eventually should fit in and on the other side the materials research should define needs and capabilities in structural modelling. Integrated materials-structural models of a general nature are almost non-existent in the field of cement based...

  9. The integrated environmental control model

    Energy Technology Data Exchange (ETDEWEB)

    Rubin, E.S.; Berkenpas, M.B.; Kalagnanam, J.R. [Carnegie Mellon Univ., Pittsburgh, PA (United States)

    1995-11-01

    The capability to estimate the performance and cost of emission control systems is critical to a variety of planning and analysis requirements faced by utilities, regulators, researchers and analysts in the public and private sectors. The computer model described in this paper has been developed for DOe to provide an up-to-date capability for analyzing a variety of pre-combustion, combustion, and post-combustion options in an integrated framework. A unique capability allows performance and costs to be modeled probabilistically, which allows explicit characterization of uncertainties and risks.

  10. Integrated Site Model Process Model Report

    International Nuclear Information System (INIS)

    Booth, T.

    2000-01-01

    The Integrated Site Model (ISM) provides a framework for discussing the geologic features and properties of Yucca Mountain, which is being evaluated as a potential site for a geologic repository for the disposal of nuclear waste. The ISM is important to the evaluation of the site because it provides 3-D portrayals of site geologic, rock property, and mineralogic characteristics and their spatial variabilities. The ISM is not a single discrete model; rather, it is a set of static representations that provide three-dimensional (3-D), computer representations of site geology, selected hydrologic and rock properties, and mineralogic-characteristics data. These representations are manifested in three separate model components of the ISM: the Geologic Framework Model (GFM), the Rock Properties Model (RPM), and the Mineralogic Model (MM). The GFM provides a representation of the 3-D stratigraphy and geologic structure. Based on the framework provided by the GFM, the RPM and MM provide spatial simulations of the rock and hydrologic properties, and mineralogy, respectively. Functional summaries of the component models and their respective output are provided in Section 1.4. Each of the component models of the ISM considers different specific aspects of the site geologic setting. Each model was developed using unique methodologies and inputs, and the determination of the modeled units for each of the components is dependent on the requirements of that component. Therefore, while the ISM represents the integration of the rock properties and mineralogy into a geologic framework, the discussion of ISM construction and results is most appropriately presented in terms of the three separate components. This Process Model Report (PMR) summarizes the individual component models of the ISM (the GFM, RPM, and MM) and describes how the three components are constructed and combined to form the ISM

  11. Validation of the HIRHAM-Simulated Indian Summer Monsoon Circulation

    Directory of Open Access Journals (Sweden)

    Stefan Polanski

    2010-01-01

    Full Text Available The regional climate model HIRHAM has been applied over the Asian continent to simulate the Indian monsoon circulation under present-day conditions. The model is driven at the lateral and lower boundaries by European reanalysis (ERA40 data for the period from 1958 to 2001. Simulations with a horizontal resolution of 50 km are carried out to analyze the regional monsoon patterns. The focus in this paper is on the validation of the long-term summer monsoon climatology and its variability concerning circulation, temperature, and precipitation. Additionally, the monsoonal behavior in simulations for wet and dry years has been investigated and compared against several observational data sets. The results successfully reproduce the observations due to a realistic reproduction of topographic features. The simulated precipitation shows a better agreement with a high-resolution gridded precipitation data set over the central land areas of India and in the higher elevated Tibetan and Himalayan regions than ERA40.

  12. Cotangent Models for Integrable Systems

    Science.gov (United States)

    Kiesenhofer, Anna; Miranda, Eva

    2017-03-01

    We associate cotangent models to a neighbourhood of a Liouville torus in symplectic and Poisson manifolds focusing on b-Poisson/ b-symplectic manifolds. The semilocal equivalence with such models uses the corresponding action-angle theorems in these settings: the theorem of Liouville-Mineur-Arnold for symplectic manifolds and an action-angle theorem for regular Liouville tori in Poisson manifolds (Laurent- Gengoux et al., IntMath Res Notices IMRN 8: 1839-1869, 2011). Our models comprise regular Liouville tori of Poisson manifolds but also consider the Liouville tori on the singular locus of a b-Poisson manifold. For this latter class of Poisson structures we define a twisted cotangent model. The equivalence with this twisted cotangent model is given by an action-angle theorem recently proved by the authors and Scott (Math. Pures Appl. (9) 105(1):66-85, 2016). This viewpoint of cotangent models provides a new machinery to construct examples of integrable systems, which are especially valuable in the b-symplectic case where not many sources of examples are known. At the end of the paper we introduce non-degenerate singularities as lifted cotangent models on b-symplectic manifolds and discuss some generalizations of these models to general Poisson manifolds.

  13. The systems integration modeling system

    International Nuclear Information System (INIS)

    Danker, W.J.; Williams, J.R.

    1990-01-01

    This paper discusses the systems integration modeling system (SIMS), an analysis tool for the detailed evaluation of the structure and related performance of the Federal Waste Management System (FWMS) and its interface with waste generators. It's use for evaluations in support of system-level decisions as to FWMS configurations, the allocation, sizing, balancing and integration of functions among elements, and the establishment of system-preferred waste selection and sequencing methods and other operating strategies is presented. SIMS includes major analysis submodels which quantify the detailed characteristics of individual waste items, loaded casks and waste packages, simulate the detailed logistics of handling and processing discrete waste items and packages, and perform detailed cost evaluations

  14. An architecture for integration of multidisciplinary models

    DEFF Research Database (Denmark)

    Belete, Getachew F.; Voinov, Alexey; Holst, Niels

    2014-01-01

    Integrating multidisciplinary models requires linking models: that may operate at different temporal and spatial scales; developed using different methodologies, tools and techniques; different levels of complexity; calibrated for different ranges of inputs and outputs, etc. On the other hand......, Enterprise Application Integration, and Integration Design Patterns. We developed an architecture of a multidisciplinary model integration framework that brings these three aspects of integration together. Service-oriented-based platform independent architecture that enables to establish loosely coupled...

  15. Study of aerosol direct and indirect effects and auto-conversion processes over the West African monsoon region using a regional climate model

    Science.gov (United States)

    Salah, Zeinab; Shalaby, Ahmed; Steiner, Allison L.; Zakey, Ashraf S.; Gautam, Ritesh; Abdel Wahab, Mohamed M.

    2018-02-01

    This study assesses the direct and indirect effects of natural and anthropogenic aerosols (e.g., black carbon and sulfate) over West and Central Africa during the West African monsoon (WAM) period (June-July-August). We investigate the impacts of aerosols on the amount of cloudiness, the influences on the precipitation efficiency of clouds, and the associated radiative forcing (direct and indirect). Our study includes the implementation of three new formulations of auto-conversion parameterization [namely, the Beheng (BH), Tripoli and Cotton (TC) and Liu and Daum (R6) schemes] in RegCM4.4.1, besides the default model's auto-conversion scheme (Kessler). Among the new schemes, BH reduces the precipitation wet bias by more than 50% over West Africa and achieves a bias reduction of around 25% over Central Africa. Results from detailed sensitivity experiments suggest a significant path forward in terms of addressing the long-standing issue of the characteristic wet bias in RegCM. In terms of aerosol-induced radiative forcing, the impact of the various schemes is found to vary considerably (ranging from -5 to -25 W m-2).

  16. Integrated modelling in materials and process technology

    DEFF Research Database (Denmark)

    Hattel, Jesper Henri

    2008-01-01

    Integrated modelling of entire process sequences and the subsequent in-service conditions, and multiphysics modelling of the single process steps are areas that increasingly support optimisation of manufactured parts. In the present paper, three different examples of modelling manufacturing...... processes from the viewpoint of combined materials and process modelling are presented: solidification of thin walled ductile cast iron, integrated modelling of spray forming and multiphysics modelling of friction stir welding. The fourth example describes integrated modelling applied to a failure analysis...

  17. Integration of design applications with building models

    DEFF Research Database (Denmark)

    Eastman, C. M.; Jeng, T. S.; Chowdbury, R.

    1997-01-01

    This paper reviews various issues in the integration of applications with a building model... (Truncated.)......This paper reviews various issues in the integration of applications with a building model... (Truncated.)...

  18. Did Aboriginal vegetation burning affect the Australian summer monsoon?

    Science.gov (United States)

    Balcerak, Ernie

    2011-08-01

    For thousands of years, Aboriginal Australians burned forests, creating grasslands. Some studies have suggested that in addition to changing the landscape, these burning practices also affected the timing and intensity of the Australian summer monsoon. Different vegetation types can alter evaporation, roughness, and surface reflectivity, leading to changes in the weather and climate. On the basis of an ensemble of experiments with a global climate model, Notaro et al. conducted a comprehensive evaluation of the effects of decreased vegetation cover on the summer monsoon in northern Australia. They found that although decreased vegetation cover would have had only minor effects during the height of the monsoon season, during the premonsoon season, burning-induced vegetation loss would have caused significant decreases in precipitation and increases in temperature. Thus, by burning forests, Aboriginals altered the local climate, effectively extending the dry season and delaying the start of the monsoon season. (Geophysical Research Letters, doi:10.1029/2011GL047774, 2011)

  19. Qualitative Analysis of Integration Adapter Modeling

    OpenAIRE

    Ritter, Daniel; Holzleitner, Manuel

    2015-01-01

    Integration Adapters are a fundamental part of an integration system, since they provide (business) applications access to its messaging channel. However, their modeling and configuration remain under-represented. In previous work, the integration control and data flow syntax and semantics have been expressed in the Business Process Model and Notation (BPMN) as a semantic model for message-based integration, while adapter and the related quality of service modeling were left for further studi...

  20. Dirtier Air from a Weaker Monsoon

    Science.gov (United States)

    Chin, Mian

    2012-01-01

    The level of air pollution in China has much increased in the past decades, causing serious health problems. Among the main pollutants are aerosols, also known as particulate matter: tiny, invisible particles that are suspended in the air. These particles contribute substantially to premature mortality associated with cardiopulmonary diseases and lung cancer1. The increase of the aerosol level in China has been commonly attributed to the fast rise in pollutant emissions from the rapid economic development in the region. However, writing in Geophysical Research Letters, Jianlei Zhu and colleagues2 tell a different side of the story: using a chemical transport model and observation data, they show that the decadal scale weakening of the East Asian summer monsoon has also contributed to the increase of aerosol concentrations in China. The life cycle of atmospheric aerosols starts with its emission or formation in the atmosphere. Some aerosol components such as dust, soot and sea salt are emitted directly as particles to the atmosphere, but others are formed there by way of photochemical reactions. For example, sulphate and nitrate aerosols are produced from their respective precursor gases, sulphur dioxide and nitrogen oxides. Aerosol particles can be transported away from their source locations by winds or vertical motion of the air. Eventually, they are removed from the atmosphere by means of dry deposition and wet scavenging by precipitation. Measurements generally show that aerosol concentrations over Asia are lowest during the summer monsoon season3, because intense rainfall efficiently removes them from the air. The East Asian summer monsoon extends over subtropics and mid-latitudes. Its rainfall tends to concentrate in rain belts that stretch out for many thousands of kilometres and affect China, Korea, Japan and the surrounding area. Observations suggest that the East Asian summer monsoon circulation and precipitation have been in decline since the 1970s4. In

  1. Winter/Summer Monsoon Experiment

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Winter/Summer Monsoon Experiment (MONEX) was conducted during the First Global GARP (Global Atmospheric Research Program) Experiment (FGGE). An international...

  2. The resolution sensitivity of the Asian summer monsoon and its inter-model comparison between MRI-AGCM and MetUM

    Science.gov (United States)

    Ogata, Tomomichi; Johnson, Stephanie J.; Schiemann, Reinhard; Demory, Marie-Estelle; Mizuta, Ryo; Yoshida, Kohei; Osamu Arakawa

    2017-11-01

    In this study, we compare the resolution sensitivity of the Asian Summer Monsoon (ASM) in two Atmospheric General Circulation Models (AGCMs): the MRI-AGCM and the MetUM. We analyze the MetUM at three different resolutions, N96 (approximately 200-km mesh on the equator), N216 (90-km mesh) and N512 (40-km mesh), and the MRI-AGCM at TL95 (approximately 180-km mesh on the equator), TL319 (60-km mesh), and TL959 (20-km mesh). The MRI-AGCM and the MetUM both show decreasing precipitation over the western Pacific with increasing resolution, but their precipitation responses differ over the Indian Ocean. In MRI-AGCM, a large precipitation increase appears off the equator (5-20°N). In MetUM, this off-equatorial precipitation increase is less significant and precipitation decreases over the equator. Moisture budget analysis demonstrates that a changing in moisture flux convergence at higher resolution is related to the precipitation response. Orographic effects, intra-seasonal variability and the representation of the meridional thermal gradient are explored as possible causes of the resolution sensitivity. Both high-resolution AGCMs (TL959 and N512) can represent steep topography, which anchors the rainfall pattern over south Asia and the Maritime Continent. In MRI-AGCM, representation of low pressure systems in TL959 also contributes to the rainfall pattern. Furthermore, the seasonal evolution of the meridional thermal gradient appears to be more accurate at higher resolution, particularly in the MRI-AGCM. These findings emphasize that the impact of resolution is only robust across the two AGCMs for some features of the ASM, and highlights the importance of multi-model studies of GCM resolution sensitivity.

  3. Modeling sensitivity study of the possible impact of snow and glaciers developing over Tibetan Plateau on Holocene African-Asian summer monsoon climate

    Directory of Open Access Journals (Sweden)

    L. Jin

    2009-08-01

    Full Text Available The impacts of various scenarios of a gradual snow and glaciers developing over the Tibetan Plateau on climate change in Afro-Asian monsoon region and other regions during the Holocene (9 kyr BP–0 kyr BP are studied by using the Earth system model of intermediate complexity, CLIMBER-2. The simulations show that the imposed snow and glaciers over the Tibetan Plateau in the mid-Holocene induce global summer temperature decreases over most of Eurasia but in the Southern Asia temperature response is opposite. With the imposed snow and glaciers, summer precipitation decreases strongly in North Africa and South Asia as well as northeastern China, while it increases in Southeast Asia and the Mediterranean. For the whole period of Holocene (9 kyr BP–0 kyr BP, the response of vegetation cover to the imposed snow and glaciers cover over the Tibetan Plateau is not synchronous in South Asia and in North Africa, showing an earlier and a more rapid decrease in vegetation cover in North Africa from 9 kyr BP to 6 kyr BP while it has only minor influence on that in South Asia until 5 kyr BP. The precipitation decreases rapidly in North Africa and South Asia while it decreases slowly or unchanged during 6 kyr BP to 0 kyr BP with imposed snow and glacier cover over the Tibetan Plateau. The different scenarios of snow and glacier developing over the Tibetan Plateau would result in differences in variation of temperature, precipitation and vegetation cover in North Africa, South Asia and Southeast Asia. The model results suggest that the development of snow and ice cover over Tibetan Plateau represents an additional important climate feedback, which amplify orbital forcing and produces a significant synergy with the positive vegetation feedback.

  4. Integrable models of quantum optics

    Directory of Open Access Journals (Sweden)

    Yudson Vladimir

    2017-01-01

    Full Text Available We give an overview of exactly solvable many-body models of quantum optics. Among them is a system of two-level atoms which interact with photons propagating in a one-dimensional (1D chiral waveguide; exact eigenstates of this system can be explicitly constructed. This approach is used also for a system of closely located atoms in the usual (non-chiral waveguide or in 3D space. Moreover, it is shown that for an arbitrary atomic system with a cascade spontaneous radiative decay, the fluorescence spectrum can be described by an exact analytic expression which accounts for interference of emitted photons. Open questions related with broken integrability are discussed.

  5. Topological quantum theories and integrable models

    International Nuclear Information System (INIS)

    Keski-Vakkuri, E.; Niemi, A.J.; Semenoff, G.; Tirkkonen, O.

    1991-01-01

    The path-integral generalization of the Duistermaat-Heckman integration formula is investigated for integrable models. It is shown that for models with periodic classical trajectories the path integral reduces to a form similar to the finite-dimensional Duistermaat-Heckman integration formula. This provides a relation between exactness of the stationary-phase approximation and Morse theory. It is also argued that certain integrable models can be related to topological quantum theories. Finally, it is found that in general the stationary-phase approximation presumes that the initial and final configurations are in different polarizations. This is exemplified by the quantization of the SU(2) coadjoint orbit

  6. Reanalysis of the Indian summer monsoon: four dimensional data assimilation of AIRS retrievals in a regional data assimilation and modeling framework

    KAUST Repository

    Attada, Raju; Parekh, Anant; Chowdary, J. S.; Gnanaseelan, C.

    2017-01-01

    in the reanalysis that assimilates AIRS profiles. The change induced by AIRS data on the moist and thermodynamic conditions results in more realistic rendering of the vertical shear associated with the monsoon, which in turn leads to a proper moisture transport

  7. Effects of large-scale deforestation on precipitation in the monsoon regions: remote versus local effects.

    Science.gov (United States)

    Devaraju, N; Bala, Govindasamy; Modak, Angshuman

    2015-03-17

    In this paper, using idealized climate model simulations, we investigate the biogeophysical effects of large-scale deforestation on monsoon regions. We find that the remote forcing from large-scale deforestation in the northern middle and high latitudes shifts the Intertropical Convergence Zone southward. This results in a significant decrease in precipitation in the Northern Hemisphere monsoon regions (East Asia, North America, North Africa, and South Asia) and moderate precipitation increases in the Southern Hemisphere monsoon regions (South Africa, South America, and Australia). The magnitude of the monsoonal precipitation changes depends on the location of deforestation, with remote effects showing a larger influence than local effects. The South Asian Monsoon region is affected the most, with 18% decline in precipitation over India. Our results indicate that any comprehensive assessment of afforestation/reforestation as climate change mitigation strategies should carefully evaluate the remote effects on monsoonal precipitation alongside the large local impacts on temperatures.

  8. Testing periodically integrated autoregressive models

    NARCIS (Netherlands)

    Ph.H.B.F. Franses (Philip Hans); M.J. McAleer (Michael)

    1997-01-01

    textabstractPeriodically integrated time series require a periodic differencing filter to remove the stochastic trend. A non-periodic integrated time series needs the first-difference filter for similar reasons. When the changing seasonal fluctuations for the non-periodic integrated series can be

  9. Long-range forecast of all India summer monsoon rainfall using adaptive neuro-fuzzy inference system: skill comparison with CFSv2 model simulation and real-time forecast for the year 2015

    Science.gov (United States)

    Chaudhuri, S.; Das, D.; Goswami, S.; Das, S. K.

    2016-11-01

    All India summer monsoon rainfall (AISMR) characteristics play a vital role for the policy planning and national economy of the country. In view of the significant impact of monsoon system on regional as well as global climate systems, accurate prediction of summer monsoon rainfall has become a challenge. The objective of this study is to develop an adaptive neuro-fuzzy inference system (ANFIS) for long range forecast of AISMR. The NCEP/NCAR reanalysis data of temperature, zonal and meridional wind at different pressure levels have been taken to construct the input matrix of ANFIS. The membership of the input parameters for AISMR as high, medium or low is estimated with trapezoidal membership function. The fuzzified standardized input parameters and the de-fuzzified target output are trained with artificial neural network models. The forecast of AISMR with ANFIS is compared with non-hybrid multi-layer perceptron model (MLP), radial basis functions network (RBFN) and multiple linear regression (MLR) models. The forecast error analyses of the models reveal that ANFIS provides the best forecast of AISMR with minimum prediction error of 0.076, whereas the errors with MLP, RBFN and MLR models are 0.22, 0.18 and 0.73 respectively. During validation with observations, ANFIS shows its potency over the said comparative models. Performance of the ANFIS model is verified through different statistical skill scores, which also confirms the aptitude of ANFIS in forecasting AISMR. The forecast skill of ANFIS is also observed to be better than Climate Forecast System version 2. The real-time forecast with ANFIS shows possibility of deficit (65-75 cm) AISMR in the year 2015.

  10. Predicting onset and withdrawal of Indian Summer Monsoon in 2016: results of Tipping elements approach

    Science.gov (United States)

    Surovyatkina, Elena; Stolbova, Veronika; Kurths, Jurgen

    2017-04-01

    started to decrease, and after two days meteorological stations reported 'No rain' in the EG and also in areas located across the subcontinent in the direction from the North Pakistan to the Bay of Bengal. Hence, the date of monsoon withdrawal - October 10-th, predicted 70 days in advance, lies within our prediction interval. Our results show that our method allows predicting a future monsoon, and not only retrospectively or hindcast. In 2016 we predicted of the onset and withdrawal dates of the Southwest monsoon over the Eastern Ghats region in Central India for 40 and 70 days in advance respectively. Our general framework for predicting spatial-temporal critical transitions is applicable for systems of different nature. It allows predicting future from observational data only, when the model of a transition does not exist yet. [1] Stolbova, V., E. Surovyatkina, B. Bookhagen, and J. Kurths (2016): Tipping elements of the Indian monsoon: Prediction of onset and withdrawal. Geophys. Res. Lett., 43, 1-9. [2]https://www.pik-potsdam.de/news/press-releases/indian-monsoon-novel-approach-allows-early-forecasting?set_language=en [3] https://www.pik-potsdam.de/kontakt/pressebuero/fotos/monsoon-withdrawal/view

  11. Pleistocene Indian Monsoon Rainfall Variability

    Science.gov (United States)

    Yirgaw, D. G.; Hathorne, E. C.; Giosan, L.; Collett, T. S.; Sijingeo, A. V.; Nath, B. N.; Frank, M.

    2014-12-01

    The past variability of the Indian Monsoon is mostly known from records of wind strength over the Arabian Sea. Here we investigate proxies for fresh water input and runoff in a region of strong monsoon precipitation that is a major moisture source for the east Asian Monsoon. A sediment core obtained by the IODP vessel JOIDES Resolution and a gravity core from the Alcock Seamount complex in the Andaman Sea are used to examine the past monsoon variability on the Indian sub-continent and directly over the ocean. The current dataset covers the last glacial and deglacial but will eventually provide a Pleistocene record. We utilise the ecological habitats of G. sacculifer and N. dutertrei to investigate the freshwater-induced stratification with paired Mg/Ca and δ18O analyses to estimate seawater δ18O (δ18Osw). During the last 60 kyrs, Ba/Ca ratios and δ18Osw values generally agree well between the two cores and suggest the weakest surface runoff and monsoon during the LGM and strongest monsoon during the Holocene. The difference in δ18O between the species, interpreted as a proxy for upper ocean stratification, implies stratification developed around 37 ka and remained relatively constant during the LGM, deglacial and Holocene. To investigate monsoon variability for intervals in the past, single shell Mg/Ca and δ18O analyses have been conducted. Mg/Ca ratios from individual shells of N. dutertrei suggest relatively small changes in temperature. However, individual N. dutertrei δ18O differ greatly between the mid-Holocene and samples from the LGM and a nearby core top. The mid-Holocene individuals have a greater range and large skew towards negative values indicating greater fresh water influence.

  12. Joint influence of the Indo-Pacific Warm Pool and Northern Arabian Sea Temperatures on the Indian Summer Monsoon in a Global Climate Model Simulation

    Science.gov (United States)

    Befort, Daniel J.; Leckebusch, Gregor C.; Cubasch, Ulrich

    2016-04-01

    Proxy-based studies confirmed that the Indian Summer Monsoon (ISM) shows large variations during the Holocene. These changes might be explained by changes in orbital conditions and solar insolation but are also thought to be associated to changes in oceanic conditions, e.g. over the Indo-Pacific-Warm-Pool region. However, due to the nature of these (proxy-based) analyses no conclusion about atmospheric circulation changes during dry and wet epochs are possible. Here, a fully-coupled global climate simulation (AOGCM) covering the past 6000 years is analysed regarding ISM variability. Several dry and wet epochs are found, the most striking around 2ka BP (dry) and 1.7ka BP (wet). As only orbital parameters change during integration, we expect these "shorter-term" changes to be associated with changes in oceanic conditions. During 1.7ka BP the sea surface temperatures (SST) over the Northern Arabian Sea (NARAB) are significantly warmer compared to 2ka BP, whereas cooler conditions are found over the western Pacific Ocean. Additionally, significant differences are found over large parts of the North Atlantic. To explain in how far these different ocean basins are responsible for anomalous conditions during 1.7ka BP, several sensitivity experiments with changed SST/SIC conditions are carried out. It is found that neither the SST's in the Pacific nor in the Indian Ocean are able to reproduce the anomalous rainfall and atmospheric circulation patterns during 1.7ka on its own. Instead, anomalous dry conditions during 2ka BP and wet conditions during 1.7ka BP are associated with a shift of the Indo-Pacific-Warm-Pool (IPWP) and simultaneous anomalous sea-surface temperatures over the NARAB region. Eventually, it is tested in how far this hypothesis holds true for other dry and wet events in the AOGCM data during the whole 6000 years. In general, a shift of the IPWP without anomalous SST conditions over the NARAB region (and vice versa) is not sufficient to cause long

  13. Integrable models in classical and quantum mechanics

    International Nuclear Information System (INIS)

    Jurco, B.

    1991-01-01

    Integrable systems are investigated, especially the rational and trigonometric Gaudin models. The Gaudin models are diagonalized for the case of classical Lie algebras. Their relation to the other integrable models and to the quantum inverse scattering method is investigated. Applications in quantum optics and plasma physics are discussed. (author). 94 refs

  14. Monsoon Rainfall and Landslides in Nepal

    Science.gov (United States)

    Dahal, R. K.; Hasegawa, S.; Bhandary, N. P.; Yatabe, R.

    2009-12-01

    A large number of human settlements on the Nepal Himalayas are situated either on old landslide mass or on landslide-prone areas. As a result, a great number of people are affected by large- and small-scale landslides all over the Himalayas especially during monsoon periods. In Nepal, only in the half monsoon period (June 10 to August 15), 70, 50 and 68 people were killed from landslides in 2007, 2008 and 2009, respectively. In this context, this paper highlights monsoon rainfall and their implications in the Nepal Himalaya. In Nepal, monsoon is major source of rainfall in summer and approximately 80% of the annual total rainfall occurs from June to September. The measured values of mean annual precipitation in Nepal range from a low of approximately 250 mm at area north of the Himalaya to many areas exceeding 6,000 mm. The mean annual rainfall varying between 1500 mm and 2500 mm predominate over most of the country. In Nepal, the daily distribution of precipitation during rainy season is also uneven. Sometime 10% of the total annual precipitation can occur in a single day. Similarly, 50% total annual rainfall also can occur within 10 days of monsoon. This type of uneven distribution plays an important role in triggering many landslides in Nepal. When spatial distribution of landslides was evaluated from record of more than 650 landslides, it is found that more landslides events were concentrated at central Nepal in the area of high mean annual rainfall. When monsoon rainfall and landslide relationship was taken into consideration, it was noticed that a considerable number of landslides were triggered in the Himalaya by continuous rainfall of 3 to 90 days. It has been noticed that continuous rainfall of few days (5 days or 7 days or 10 days) are usually responsible for landsliding in the Nepal Himalaya. Monsoon rains usually fall with interruptions of 2-3 days and are generally characterized by low intensity and long duration. Thus, there is a strong role of

  15. Creating Dynamically Downscaled Seasonal Climate Forecast and Climate Change Projection Information for the North American Monsoon Region Suitable for Decision Making Purposes

    Science.gov (United States)

    Castro, C. L.; Dominguez, F.; Chang, H.

    2010-12-01

    Current seasonal climate forecasts and climate change projections of the North American monsoon are based on the use of course-scale information from a general circulation model. The global models, however, have substantial difficulty in resolving the regional scale forcing mechanisms of precipitation. This is especially true during the period of the North American Monsoon in the warm season. Precipitation is driven primarily due to the diurnal cycle of convection, and this process cannot be resolve in coarse-resolution global models that have a relatively poor representation of terrain. Though statistical downscaling may offer a relatively expedient method to generate information more appropriate for the regional scale, and is already being used in the resource decision making processes in the Southwest U.S., its main drawback is that it cannot account for a non-stationary climate. Here we demonstrate the use of a regional climate model, specifically the Weather Research and Forecast (WRF) model, for dynamical downscaling of the North American Monsoon. To drive the WRF simulations, we use retrospective reforecasts from the Climate Forecast System (CFS) model, the operational model used at the U.S. National Center for Environmental Prediction, and three select “well performing” IPCC AR 4 models for the A2 emission scenario. Though relatively computationally expensive, the use of WRF as a regional climate model in this way adds substantial value in the representation of the North American Monsoon. In both cases, the regional climate model captures a fairly realistic and reasonable monsoon, where none exists in the driving global model, and captures the dominant modes of precipitation anomalies associated with ENSO and the Pacific Decadal Oscillation (PDO). Long-term precipitation variability and trends in these simulations is considered via the standardized precipitation index (SPI), a commonly used metric to characterize long-term drought. Dynamically

  16. Advanced Manufacturing Technologies (AMT): Composites Integrated Modeling

    Data.gov (United States)

    National Aeronautics and Space Administration — The Composites Integrated Modeling (CIM) Element developed low cost, lightweight, and efficient composite structures, materials and manufacturing technologies with...

  17. An integrated model for the assessment of global water resources – Part 2: Applications and assessments

    Directory of Open Access Journals (Sweden)

    N. Hanasaki

    2008-07-01

    Full Text Available To assess global water resources from the perspective of subannual variation in water availability and water use, an integrated water resources model was developed. In a companion report, we presented the global meteorological forcing input used to drive the model and six modules, namely, the land surface hydrology module, the river routing module, the crop growth module, the reservoir operation module, the environmental flow requirement module, and the anthropogenic withdrawal module. Here, we present the results of the model application and global water resources assessments. First, the timing and volume of simulated agriculture water use were examined because agricultural use composes approximately 85% of total consumptive water withdrawal in the world. The estimated crop calendar showed good agreement with earlier reports for wheat, maize, and rice in major countries of production. In major countries, the error in the planting date was ±1 mo, but there were some exceptional cases. The estimated irrigation water withdrawal also showed fair agreement with country statistics, but tended to be underestimated in countries in the Asian monsoon region. The results indicate the validity of the model and the input meteorological forcing because site-specific parameter tuning was not used in the series of simulations. Finally, global water resources were assessed on a subannual basis using a newly devised index. This index located water-stressed regions that were undetected in earlier studies. These regions, which are indicated by a gap in the subannual distribution of water availability and water use, include the Sahel, the Asian monsoon region, and southern Africa. The simulation results show that the reservoir operations of major reservoirs (>1 km3 and the allocation of environmental flow requirements can alter the population under high water stress by approximately −11% to +5% globally. The integrated model is applicable to

  18. Modeling integrated biomass gasification business concepts

    Science.gov (United States)

    Peter J. Ince; Ted Bilek; Mark A. Dietenberger

    2011-01-01

    Biomass gasification is an approach to producing energy and/or biofuels that could be integrated into existing forest product production facilities, particularly at pulp mills. Existing process heat and power loads tend to favor integration at existing pulp mills. This paper describes a generic modeling system for evaluating integrated biomass gasification business...

  19. Circulation characteristics of a monsoon depression during ...

    Indian Academy of Sciences (India)

    M. Senthilkumar (Newgen Imaging) 1461 1996 Oct 15 13:05:22

    ciated with organized convective processes in a monsoon depression. The objective is to ..... the errors are large and the performance of the high-resolution ... Ramage C S 1971 Monsoon meteorology (London: Academic. Press) 45–46.

  20. On breaks of the Indian monsoon

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    quadrapole is a basic feature of weak spells of the intraseasonal variation over the Asia-west Pacific region. ... (Earth Planet. Sci.), 112 .... be useful to define the break monsoon (and active ... monsoon zone, different scientists have used the.

  1. Possible teleconnections between East and South Asian summer monsoon precipitation in projected future climate change

    Science.gov (United States)

    Woo, Sumin; Singh, Gyan Prakash; Oh, Jai-Ho; Lee, Kyoung-Min

    2018-01-01

    The present paper examined the teleconnections between two huge Asian summer monsoon components (South and East Asia) during three time slices in future: near-(2010-2039), mid-(2040-2069) and far-(2070-2100) futures under the RCP4.5 and RCP8.5 scenarios. For this purpose, a high-resolution atmospheric general circulation model is used and integrated at 40 km horizontal resolution. To get more insight into the relationships between the two Asian monsoon components, we have studied the spatial displaying correlation coefficients (CCs) pattern of precipitation over the entire Asian monsoon region with that of South Asia and three regions of East Asia (North China, Korea-Japan and Southern China) separately during the same three time slices. The possible factors responsible for these teleconnections are explored by using mean sea level pressure (MSLP) and wind fields at 850 hPa. The CC pattern of precipitation over South Asia shows an in-phase relationship with North China and an out-of-phase relationship with Korea-Japan, while precipitation variations over Korea-Japan and Southern China exhibit an out-of-phase relationship with South Asia. The CCs analysis between the two Asian blocks during different time slices shows the strongest CCs during the near and far future with the RCP8.5 scenario. The CC pattern of precipitation over Korea-Japan and Southern China with the wind (at 850 hPa) and MSLP fields indicate that the major parts of the moisture over Korea-Japan gets transported from the west Pacific along the western limb of NPSH, while the moisture over Southern China comes from the Bay of Bengal and South China Seas for good monsoon activity.

  2. Global monsoon precipitation responses to large volcanic eruptions

    Science.gov (United States)

    Liu, Fei; Chai, Jing; Wang, Bin; Liu, Jian; Zhang, Xiao; Wang, Zhiyuan

    2016-01-01

    Climate variation of global monsoon (GM) precipitation involves both internal feedback and external forcing. Here, we focus on strong volcanic forcing since large eruptions are known to be a dominant mechanism in natural climate change. It is not known whether large volcanoes erupted at different latitudes have distinctive effects on the monsoon in the Northern Hemisphere (NH) and the Southern Hemisphere (SH). We address this issue using a 1500-year volcanic sensitivity simulation by the Community Earth System Model version 1.0 (CESM1). Volcanoes are classified into three types based on their meridional aerosol distributions: NH volcanoes, SH volcanoes and equatorial volcanoes. Using the model simulation, we discover that the GM precipitation in one hemisphere is enhanced significantly by the remote volcanic forcing occurring in the other hemisphere. This remote volcanic forcing-induced intensification is mainly through circulation change rather than moisture content change. In addition, the NH volcanic eruptions are more efficient in reducing the NH monsoon precipitation than the equatorial ones, and so do the SH eruptions in weakening the SH monsoon, because the equatorial eruptions, despite reducing moisture content, have weaker effects in weakening the off-equatorial monsoon circulation than the subtropical-extratropical volcanoes do. PMID:27063141

  3. Global monsoon precipitation responses to large volcanic eruptions.

    Science.gov (United States)

    Liu, Fei; Chai, Jing; Wang, Bin; Liu, Jian; Zhang, Xiao; Wang, Zhiyuan

    2016-04-11

    Climate variation of global monsoon (GM) precipitation involves both internal feedback and external forcing. Here, we focus on strong volcanic forcing since large eruptions are known to be a dominant mechanism in natural climate change. It is not known whether large volcanoes erupted at different latitudes have distinctive effects on the monsoon in the Northern Hemisphere (NH) and the Southern Hemisphere (SH). We address this issue using a 1500-year volcanic sensitivity simulation by the Community Earth System Model version 1.0 (CESM1). Volcanoes are classified into three types based on their meridional aerosol distributions: NH volcanoes, SH volcanoes and equatorial volcanoes. Using the model simulation, we discover that the GM precipitation in one hemisphere is enhanced significantly by the remote volcanic forcing occurring in the other hemisphere. This remote volcanic forcing-induced intensification is mainly through circulation change rather than moisture content change. In addition, the NH volcanic eruptions are more efficient in reducing the NH monsoon precipitation than the equatorial ones, and so do the SH eruptions in weakening the SH monsoon, because the equatorial eruptions, despite reducing moisture content, have weaker effects in weakening the off-equatorial monsoon circulation than the subtropical-extratropical volcanoes do.

  4. A Fractionally Integrated Wishart Stochastic Volatility Model

    NARCIS (Netherlands)

    M. Asai (Manabu); M.J. McAleer (Michael)

    2013-01-01

    textabstractThere has recently been growing interest in modeling and estimating alternative continuous time multivariate stochastic volatility models. We propose a continuous time fractionally integrated Wishart stochastic volatility (FIWSV) process. We derive the conditional Laplace transform of

  5. Meteorological results of monsoon-88 Expedition (pre-monsoon period)

    Digital Repository Service at National Institute of Oceanography (India)

    Sadhuram, Y.; Krishnamurthy, L.; Babu, M.T.

    Mean atmospheric circulation, moisture budget and net heat exchange were studied during a pre-monsoon period (18th March to 3rd May, 1988), making use of the data collected on board "Akademik Korolev" in the central equatorial and southern Arabian...

  6. Revisiting Asian monsoon formation and change associated with Tibetan Plateau forcing: I. Formation

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Guoxiong; Liu, Yimin; Duan, Anmin; Bao, Qing [Chinese Academy of Sciences, State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Beijing (China); Dong, Buwen [University of Reading, Department of Meteorology, National Centre for Atmospheric Science, Reading (United Kingdom); Liang, Xiaoyun [China Meteorological Administration, National Climate Center, Beijing (China); Yu, Jingjing [China Meteorological Administration, National Meteorological Information Center, Beijing (China)

    2012-09-15

    Numerical experiments with different idealized land and mountain distributions are carried out to study the formation of the Asian monsoon and related coupling processes. Results demonstrate that when there is only extratropical continent located between 0 and 120 E and between 20/30 N and the North Pole, a rather weak monsoon rainband appears along the southern border of the continent, coexisting with an intense intertropical convergence zone (ITCZ). The continuous ITCZ surrounds the whole globe, prohibits the development of near-surface cross-equatorial flow, and collects water vapor from tropical oceans, resulting in very weak monsoon rainfall. When tropical lands are integrated, the ITCZ over the longitude domain where the extratropical continent exists disappears as a consequence of the development of a strong surface cross-equatorial flow from the winter hemisphere to the summer hemisphere. In addition, an intense interaction between the two hemispheres develops, tropical water vapor is transported to the subtropics by the enhanced poleward flow, and a prototype of the Asian monsoon appears. The Tibetan Plateau acts to enhance the coupling between the lower and upper tropospheric circulations and between the subtropical and tropical monsoon circulations, resulting in an intensification of the East Asian summer monsoon and a weakening of the South Asian summer monsoon. Linking the Iranian Plateau to the Tibetan Plateau substantially reduces the precipitation over Africa and increases the precipitation over the Arabian Sea and the northern Indian subcontinent, effectively contributing to the development of the South Asian summer monsoon. (orig.)

  7. Data requirements for integrated near field models

    International Nuclear Information System (INIS)

    Wilems, R.E.; Pearson, F.J. Jr.; Faust, C.R.; Brecher, A.

    1981-01-01

    The coupled nature of the various processes in the near field require that integrated models be employed to assess long term performance of the waste package and repository. The nature of the integrated near field models being compiled under the SCEPTER program are discussed. The interfaces between these near field models and far field models are described. Finally, near field data requirements are outlined in sufficient detail to indicate overall programmatic guidance for data gathering activities

  8. MEASURING INFORMATION INTEGR-ATION MODEL FOR CAD/CMM

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A CAD/CMM workpiece modeling system based on IGES file is proposed. The modeling system is implemented by using a new method for labelling the tolerance items of 3D workpiece. The concept-"feature face" is used in the method. First the CAD data of workpiece are extracted and recognized automatically. Then a workpiece model is generated, which is the integration of pure 3D geometry form with its corresponding inspection items. The principle of workpiece modeling is also presented. At last, the experiment results are shown and correctness of the model is certified.

  9. Seasonal prediction of Indian summer monsoon: Sensitivity to ...

    Indian Academy of Sciences (India)

    In the present study, the assessment of the Community Atmosphere Model (CAM) developed at National Centre for Atmospheric Research (NCAR) for seasonal forecasting of Indian Summer Monsoon (ISM) with different persistent SST is reported. Towards achieving the objective, 30-year model climatology has been ...

  10. Seasonal behaviour of tidal inlets in a tropical monsoon area

    NARCIS (Netherlands)

    Lam, N.T.; Stive, M.J.F.; Verhagen, H.J.; Wang, Z.B.

    2008-01-01

    Morphodynamics of a tidal inlet system on a micro-tidal coast in a tropical monsoon influenced region is modelled and discussed. Influences of river flow and wave climate on the inlet morphology are investigated with the aid of process-based state-of-the-art numerical models. Seasonal and episodic

  11. Teacher Models of Technology Integration.

    Science.gov (United States)

    Peterman, Leinda

    2003-01-01

    Provides examples of best practices in technology integration from five Technology Innovation Challenge Grant (TICG) programs, funded through the Department of Education to meet the No Child Left Behind technology goals. Highlights include professional development activities in Louisiana and New Mexico; collaborative learning applications; and…

  12. Asian monsoon variability, cyclicities, and forcing mechanisms

    Digital Repository Service at National Institute of Oceanography (India)

    Naidu, P.D.

    in monsoonal intensity from 5 to 2Ma. Uplift of the Himalayas and the Tibetan Plateau occurred coeval with the increase in strength of the Asian Monsoon between 9.5 and 5Ma. Variability of monsoon on glacial and interglacial time scale Multi proxy based... in the Western Ghats of India 131 Fig. 3. Multi proxy monsoon reconstructions show that summer monsoon strength was stronger during interglacials (shaded intervals) as compared to glacials 0 2 4 6 8 10 12 14 16 18 20 0 100 200 300 400 0 50...

  13. Data assimilation in integrated hydrological modelling

    DEFF Research Database (Denmark)

    Rasmussen, Jørn

    Integrated hydrological models are useful tools for water resource management and research, and advances in computational power and the advent of new observation types has resulted in the models generally becoming more complex and distributed. However, the models are often characterized by a high...... degree of parameterization which results in significant model uncertainty which cannot be reduced much due to observations often being scarce and often taking the form of point measurements. Data assimilation shows great promise for use in integrated hydrological models , as it allows for observations...... to be efficiently combined with models to improve model predictions, reduce uncertainty and estimate model parameters. In this thesis, a framework for assimilating multiple observation types and updating multiple components and parameters of a catchment scale integrated hydrological model is developed and tested...

  14. Open source integrated modeling environment Delta Shell

    Science.gov (United States)

    Donchyts, G.; Baart, F.; Jagers, B.; van Putten, H.

    2012-04-01

    In the last decade, integrated modelling has become a very popular topic in environmental modelling since it helps solving problems, which is difficult to model using a single model. However, managing complexity of integrated models and minimizing time required for their setup remains a challenging task. The integrated modelling environment Delta Shell simplifies this task. The software components of Delta Shell are easy to reuse separately from each other as well as a part of integrated environment that can run in a command-line or a graphical user interface mode. The most components of the Delta Shell are developed using C# programming language and include libraries used to define, save and visualize various scientific data structures as well as coupled model configurations. Here we present two examples showing how Delta Shell simplifies process of setting up integrated models from the end user and developer perspectives. The first example shows coupling of a rainfall-runoff, a river flow and a run-time control models. The second example shows how coastal morphological database integrates with the coastal morphological model (XBeach) and a custom nourishment designer. Delta Shell is also available as open-source software released under LGPL license and accessible via http://oss.deltares.nl.

  15. Aerosol and rainfall variability over the Indian monsoon region: distributions, trends and coupling

    Directory of Open Access Journals (Sweden)

    R. Gautam

    2009-09-01

    Full Text Available Aerosol solar absorption over the Indian monsoon region has a potential role of modulating the monsoon circulation and rainfall distribution as suggested by recent studies based on model simulations. Prior to the onset of the monsoon, northern India is influenced by significant dust transport that constitutes the bulk of the regional aerosol loading over the Gangetic-Himalayan region. In this paper, a multi-sensor characterization of the increasing pre-monsoon aerosol loading over northern India, in terms of their spatial, temporal and vertical distribution is presented. Aerosol transport from the northwestern arid regions into the Indo-Gangetic Plains and over the foothills of the Himalayas is found to be vertically extended to elevated altitudes (up to 5 km as observed from the space-borne lidar measurements (CALIPSO. In relation with the enhanced pre-monsoon aerosol loading and the associated solar absorption effects on tropospheric temperature anomalies, this paper investigates the monsoon rainfall variability over India in recent past decades from an observational viewpoint. It is found that the early summer monsoon rainfall over India is on the rise since 1950s, as indicated by historical rainfall data, with over 20% increase for the period 1950–2004. This large sustained increase in the early summer rainfall is led by the observed strengthening of the pre-monsoon tropospheric land-sea thermal gradient over the Indian monsoon region as indicated by microwave satellite measurements (MSU of tropospheric temperatures from 1979–2007. Combined analysis of changes in tropospheric temperatures and summer monsoon rainfall in the past three decades, suggest a future possibility of an emerging rainfall pattern of a wetter monsoon over South Asia in early summer followed by a drier period.

  16. Monsoon Convection during the South China Sea Monsoon Experiment Observed from Shipboard Radar and the TRMM Satellite

    Science.gov (United States)

    Rickenbach, Tom; Cifelli, Rob; Halverson, Jeff; Kucera, Paul; Atkinson, Lester; Fisher, Brad; Gerlach, John; Harris, Kathy; Kaufman, Cristina; Liu, Ching-Hwang; hide

    1999-01-01

    A main goal of the recent South China Sea Monsoon Experiment (SCSMEX) was to study convective processes associated with the onset of the Southeast Asian summer monsoon. The NASA TOGA C-band scanning radar was deployed on the Chinese research vessel Shi Yan #3 for two 20 day cruises, collecting dual-Doppler measurements in conjunction with the BMRC C-Pol dual-polarimetric radar on Dongsha Island. Soundings and surface meteorological data were also collected with an NCAR Integrated Sounding System (ISS). This experiment was the first major tropical field campaign following the launch of the Tropical Rainfall Measuring Mission (TRMM) satellite. These observations of tropical oceanic convection provided an opportunity to make comparisons between surface radar measurements and the Precipitation Radar (PR) aboard the TRMM satellite in an oceanic environment. Nearly continuous radar operations were conducted during two Intensive Observing Periods (IOPS) straddling the onset of the monsoon (5-25 May 1998 and 5-25 June 1998). Mesoscale lines of convection with widespread regions of both trailing and forward stratiform precipitation were observed during the active monsoon periods in a southwesterly flow regime. Several examples of mesoscale convection will be shown from ship-based and spacebome radar reflectivity data during times of TRMM satellite overpasses. Further examples of pre-monsoon convection, characterized by isolated cumulonimbus and shallow, precipitating congestus clouds, will be discussed. A strong waterspout was observed very near the ship from an isolated cell in the pre-monsoon period, and was well documented with photography, radar, sounding, and sounding data.

  17. Model Identification of Integrated ARMA Processes

    Science.gov (United States)

    Stadnytska, Tetiana; Braun, Simone; Werner, Joachim

    2008-01-01

    This article evaluates the Smallest Canonical Correlation Method (SCAN) and the Extended Sample Autocorrelation Function (ESACF), automated methods for the Autoregressive Integrated Moving-Average (ARIMA) model selection commonly available in current versions of SAS for Windows, as identification tools for integrated processes. SCAN and ESACF can…

  18. Social Ecological Model Analysis for ICT Integration

    Science.gov (United States)

    Zagami, Jason

    2013-01-01

    ICT integration of teacher preparation programmes was undertaken by the Australian Teaching Teachers for the Future (TTF) project in all 39 Australian teacher education institutions and highlighted the need for guidelines to inform systemic ICT integration approaches. A Social Ecological Model (SEM) was used to positively inform integration…

  19. Integrable lattice models and quantum groups

    International Nuclear Information System (INIS)

    Saleur, H.; Zuber, J.B.

    1990-01-01

    These lectures aim at introducing some basic algebraic concepts on lattice integrable models, in particular quantum groups, and to discuss some connections with knot theory and conformal field theories. The list of contents is: Vertex models and Yang-Baxter equation; Quantum sl(2) algebra and the Yang-Baxter equation; U q sl(2) as a symmetry of statistical mechanical models; Face models; Face models attached to graphs; Yang-Baxter equation, braid group and link polynomials

  20. Dynamics and composition of the Asian summer monsoon anticyclone

    NARCIS (Netherlands)

    Gottschaldt, Klaus Dirk; Schlager, Hans; Baumann, Robert; Sinh Cai, Duy; Eyring, Veronika; Graf, Phoebe; Grewe, V.; Jöckel, Patrick; Jurkat-Witschas, Tina; Voigt, Christiane; Zahn, Andreas; Ziereis, Helmut

    2018-01-01

    This study places HALO research aircraft observations in the upper-tropospheric Asian summer monsoon anticyclone (ASMA) into the context of regional, intra-annual variability by hindcasts with the ECHAM/MESSy Atmospheric Chemistry (EMAC) model. The observations were obtained during the Earth

  1. Tropospheric biennial oscillation and South Asian summer monsoon ...

    Indian Academy of Sciences (India)

    20

    suggested that the Indo-Pacific SST displays strong impact on TBO as compared to .... and model display clear biennial signals with above 95% confidence level .... Ascending motion and low level convergence over the monsoon core ..... Indian and western Pacific oceans during the northern winter as revealed by a self-.

  2. Seasonal forecasting of Bangladesh summer monsoon rainfall using ...

    Indian Academy of Sciences (India)

    In this paper, the development of a statistical forecasting method for summer ... 2008 summer monsoon rainfall based on the model were also found to be in good agreement with the ..... nificant on the basis of a one-tailed test of Student's.

  3. Effects of increased CO{sub 2} levels on monsoons

    Energy Technology Data Exchange (ETDEWEB)

    Cherchi, Annalisa; Masina, Simona; Navarra, Antonio [Centro Euro-Mediterraneo per i Cambiamenti Climatici and Istituto Nazionale di Geofisica e Vulcanologia, Bologna (Italy); Alessandri, Andrea [Centro Euro-Mediterraneo per i Cambiamenti Climatici, Bologna (Italy)

    2011-07-15

    Increased atmospheric carbon dioxide concentration provided warmer atmospheric temperature and higher atmospheric water vapor content, but not necessarily more precipitation. A set of experiments performed with a state-of-the-art coupled general circulation model forced with increased atmospheric CO{sub 2} concentration (2, 4 and 16 times the present-day mean value) were analyzed and compared with a control experiment to evaluate the effect of increased CO{sub 2} levels on monsoons. Generally, the monsoon precipitation responses to CO{sub 2} forcing are largest if extreme concentrations of carbon dioxide are used, but they are not necessarily proportional to the forcing applied. In fact, despite a common response in terms of an atmospheric water vapor increase to the atmospheric warming, two out of the six monsoons studied simulate less or equal summer mean precipitation in the 16 x CO{sub 2} experiment compared to the intermediate sensitivity experiments. The precipitation differences between CO{sub 2} sensitivity experiments and CTRL have been investigated specifying the contribution of thermodynamic and purely dynamic processes. As a general rule, the differences depending on the atmospheric moisture content changes (thermodynamic component) are large and positive, and they tend to be damped by the dynamic component associated with the changes in the vertical velocity. However, differences are observed among monsoons in terms of the role played by other terms (like moisture advection and evaporation) in shaping the precipitation changes in warmer climates. The precipitation increase, even if weak, occurs despite a weakening of the mean circulation in the monsoon regions (''precipitation-wind paradox''). In particular, the tropical east-west Walker circulation is reduced, as found from velocity potential analysis. The meridional component of the monsoon circulation is changed as well, with larger (smaller) meridional (vertical) scales. (orig.)

  4. 20th century intraseasonal Asian monsoon dynamics viewed from Isomap

    Directory of Open Access Journals (Sweden)

    A. Hannachi

    2013-10-01

    Full Text Available The Asian summer monsoon is a high-dimensional and highly nonlinear phenomenon involving considerable moisture transport towards land from the ocean, and is critical for the whole region. We have used daily ECMWF reanalysis (ERA-40 sea-level pressure (SLP anomalies on the seasonal cycle, over the region 50–145° E, 20° S–35° N, to study the nonlinearity of the Asian monsoon using Isomap. We have focused on the two-dimensional embedding of the SLP anomalies for ease of interpretation. Unlike the unimodality obtained from tests performed in empirical orthogonal function space, the probability density function, within the two-dimensional Isomap space, turns out to be bimodal. But a clustering procedure applied to the SLP data reveals support for three clusters, which are identified using a three-component bivariate Gaussian mixture model. The modes are found to appear similar to active and break phases of the monsoon over South Asia in addition to a third phase, which shows active conditions over the western North Pacific. Using the low-level wind field anomalies, the active phase over South Asia is found to be characterised by a strengthening and an eastward extension of the Somali jet. However during the break phase, the Somali jet is weakened near southern India, while the monsoon trough in northern India also weakens. Interpretation is aided using the APHRODITE gridded land precipitation product for monsoon Asia. The effect of large-scale seasonal mean monsoon and lower boundary forcing, in the form of ENSO, is also investigated and discussed. The outcome here is that ENSO is shown to perturb the intraseasonal regimes, in agreement with conceptual ideas.

  5. Monsoon effect simulation on typhoon rainfall potential - Typhoon Morakot (2009

    Directory of Open Access Journals (Sweden)

    Yi-Ling Chang

    2017-01-01

    Full Text Available A record breaking extreme precipitation event produced 3000 mm day-1 of accumulated rainfall over southern Taiwan in August 2009. The interactions between Typhoon Morakot and the prevailing southwesterly (SW monsoon are the primary mechanism for this heavy precipitation during 5 - 13 August 2009. This extreme precipitation could be produced by the abundant moisture from the SW monsoon associated with the interaction between typhoon and monsoon wind fields, leading to severe property damage. The accurate mapping of extreme precipitation caused from the interaction between a monsoon and typhoon is critical for early warning in Taiwan. This study simulates the heavy rainfall event is based on the Weather Research and Forecast system model (WRF using the three nested domain configuration. Using data assimilation with a virtual meteorological field using the 3D-Var system, such as wind field to alter the SW monsoon strength in the initial condition, the impacts of intensified convergence and water vapor content on the accumulated rainfall are analyzed to quantize the intensification of typhoon rainfall potential. The results showed a positive correlation between the enhanced precipitation and the intensity of low-level wind speed convergence as well as water vapor content. For the Typhoon Morakot case study the rainfall for could attain approximately 2 × 104 mm at 6 hours interval in the southern Taiwan area when 10 × 10-6 s-1 convergence intensified at 850 hPa level around the southern part of the Taiwan Strait. These results suggest that low-level wind speed, convergence and water vapor content play key roles in the typhoon rainfall potential coupled with the SW monsoon.

  6. Integrated climate and hydrology modelling

    DEFF Research Database (Denmark)

    Larsen, Morten Andreas Dahl

    To ensure optimal management and sustainable strategies for water resources, infrastructures, food production and ecosystems there is a need for an improved understanding of feedback and interaction mechanisms between the atmosphere and the land surface. This is especially true in light of expected...... global warming and increased frequency of extreme events. The skill in developing projections of both the present and future climate depends essentially on the ability to numerically simulate the processes of atmospheric circulation, hydrology, energy and ecology. Previous modelling efforts of climate...... and hydrology models to more directly include the interaction between the atmosphere and the land surface. The present PhD study is motivated by an ambition of developing and applying a modelling tool capable of including the interaction and feedback mechanisms between the atmosphere and the land surface...

  7. Ontology modeling in physical asset integrity management

    CERN Document Server

    Yacout, Soumaya

    2015-01-01

    This book presents cutting-edge applications of, and up-to-date research on, ontology engineering techniques in the physical asset integrity domain. Though a survey of state-of-the-art theory and methods on ontology engineering, the authors emphasize essential topics including data integration modeling, knowledge representation, and semantic interpretation. The book also reflects novel topics dealing with the advanced problems of physical asset integrity applications such as heterogeneity, data inconsistency, and interoperability existing in design and utilization. With a distinctive focus on applications relevant in heavy industry, Ontology Modeling in Physical Asset Integrity Management is ideal for practicing industrial and mechanical engineers working in the field, as well as researchers and graduate concerned with ontology engineering in physical systems life cycles. This book also: Introduces practicing engineers, research scientists, and graduate students to ontology engineering as a modeling techniqu...

  8. Predicting summer monsoon of Bhutan based on SST and teleconnection indices

    Science.gov (United States)

    Dorji, Singay; Herath, Srikantha; Mishra, Binaya Kumar; Chophel, Ugyen

    2018-02-01

    The paper uses a statistical method of predicting summer monsoon over Bhutan using the ocean-atmospheric circulation variables of sea surface temperature (SST), mean sea-level pressure (MSLP), and selected teleconnection indices. The predictors are selected based on the correlation. They are the SST and MSLP of the Bay of Bengal and the Arabian Sea and the MSLP of Bangladesh and northeast India. The Northern Hemisphere teleconnections of East Atlantic Pattern (EA), West Pacific Pattern (WP), Pacific/North American Pattern, and East Atlantic/West Russia Pattern (EA/WR). The rainfall station data are grouped into two regions with principal components analysis and Ward's hierarchical clustering algorithm. A support vector machine for regression model is proposed to predict the monsoon. The model shows improved skills over traditional linear regression. The model was able to predict the summer monsoon for the test data from 2011 to 2015 with a total monthly root mean squared error of 112 mm for region A and 33 mm for region B. Model could also forecast the 2016 monsoon of the South Asia Monsoon Outlook of World Meteorological Organization (WMO) for Bhutan. The reliance on agriculture and hydropower economy makes the prediction of summer monsoon highly valuable information for farmers and various other sectors. The proposed method can predict summer monsoon for operational forecasting.

  9. Annual monsoon rains recorded by Jurassic dunes.

    Science.gov (United States)

    Loope, D B; Rowe, C M; Joeckel, R M

    2001-07-05

    Pangaea, the largest landmass in the Earth's history, was nearly bisected by the Equator during the late Palaeozoic and early Mesozoic eras. Modelling experiments and stratigraphic studies have suggested that the supercontinent generated a monsoonal atmospheric circulation that led to extreme seasonality, but direct evidence for annual rainfall periodicity has been lacking. In the Mesozoic era, about 190 million years ago, thick deposits of wind-blown sand accumulated in dunes of a vast, low-latitude desert at Pangaea's western margin. These deposits are now situated in the southwestern USA. Here we analyse slump masses in the annual depositional cycles within these deposits, which have been described for some outcrops of the Navajo Sandstone. Twenty-four slumps, which were generated by heavy rainfall, appear within one interval representing 36 years of dune migration. We interpret the positions of 20 of these masses to indicate slumping during summer monsoon rains, with the other four having been the result of winter storms. The slumped lee faces of these Jurassic dunes therefore represent a prehistoric record of yearly rain events.

  10. Integrating systems biology models and biomedical ontologies.

    Science.gov (United States)

    Hoehndorf, Robert; Dumontier, Michel; Gennari, John H; Wimalaratne, Sarala; de Bono, Bernard; Cook, Daniel L; Gkoutos, Georgios V

    2011-08-11

    Systems biology is an approach to biology that emphasizes the structure and dynamic behavior of biological systems and the interactions that occur within them. To succeed, systems biology crucially depends on the accessibility and integration of data across domains and levels of granularity. Biomedical ontologies were developed to facilitate such an integration of data and are often used to annotate biosimulation models in systems biology. We provide a framework to integrate representations of in silico systems biology with those of in vivo biology as described by biomedical ontologies and demonstrate this framework using the Systems Biology Markup Language. We developed the SBML Harvester software that automatically converts annotated SBML models into OWL and we apply our software to those biosimulation models that are contained in the BioModels Database. We utilize the resulting knowledge base for complex biological queries that can bridge levels of granularity, verify models based on the biological phenomenon they represent and provide a means to establish a basic qualitative layer on which to express the semantics of biosimulation models. We establish an information flow between biomedical ontologies and biosimulation models and we demonstrate that the integration of annotated biosimulation models and biomedical ontologies enables the verification of models as well as expressive queries. Establishing a bi-directional information flow between systems biology and biomedical ontologies has the potential to enable large-scale analyses of biological systems that span levels of granularity from molecules to organisms.

  11. Modeling energy-economy interactions using integrated models

    International Nuclear Information System (INIS)

    Uyterlinde, M.A.

    1994-06-01

    Integrated models are defined as economic energy models that consist of several submodels, either coupled by an interface module, or embedded in one large model. These models can be used for energy policy analysis. Using integrated models yields the following benefits. They provide a framework in which energy-economy interactions can be better analyzed than in stand-alone models. Integrated models can represent both energy sector technological details, as well as the behaviour of the market and the role of prices. Furthermore, the combination of modeling methodologies in one model can compensate weaknesses of one approach with strengths of another. These advantages motivated this survey of the class of integrated models. The purpose of this literature survey therefore was to collect and to present information on integrated models. To carry out this task, several goals were identified. The first goal was to give an overview of what is reported on these models in general. The second one was to find and describe examples of such models. Other goals were to find out what kinds of models were used as component models, and to examine the linkage methodology. Solution methods and their convergence properties were also a subject of interest. The report has the following structure. In chapter 2, a 'conceptual framework' is given. In chapter 3 a number of integrated models is described. In a table, a complete overview is presented of all described models. Finally, in chapter 4, the report is summarized, and conclusions are drawn regarding the advantages and drawbacks of integrated models. 8 figs., 29 refs

  12. Integrated Heat Air & Moisture Modeling and control

    NARCIS (Netherlands)

    Schijndel, van A.W.M.

    2007-01-01

    The paper presents a recently developed Heat Air & Moisture Laboratory in SimuLink. The simulation laboratory facilitates the integration of the following models: (1) a whole building model; (2) Heating Venting and Air-Conditioning and primary systems; (3) 2D indoor airflow, 3D Heat Air & Moisture

  13. Development of a generalized integral jet model

    DEFF Research Database (Denmark)

    Duijm, Nijs Jan; Kessler, A.; Markert, Frank

    2017-01-01

    Integral type models to describe stationary plumes and jets in cross-flows (wind) have been developed since about 1970. These models are widely used for risk analysis, to describe the consequences of many different scenarios. Alternatively, CFD codes are being applied, but computational requireme......Integral type models to describe stationary plumes and jets in cross-flows (wind) have been developed since about 1970. These models are widely used for risk analysis, to describe the consequences of many different scenarios. Alternatively, CFD codes are being applied, but computational...... requirements still limit the number of scenarios that can be dealt with using CFD only. The integral models, however, are not suited to handle transient releases, such as releases from pressurized equipment, where the initially high release rate decreases rapidly with time. Further, on gas ignition, a second...... model is needed to describe the rapid combustion of the flammable part of the plume (flash fire) and a third model has to be applied for the remaining jet fire. The objective of this paper is to describe the first steps of the development of an integral-type model describing the transient development...

  14. An introduction to Space Weather Integrated Modeling

    Science.gov (United States)

    Zhong, D.; Feng, X.

    2012-12-01

    The need for a software toolkit that integrates space weather models and data is one of many challenges we are facing with when applying the models to space weather forecasting. To meet this challenge, we have developed Space Weather Integrated Modeling (SWIM) that is capable of analysis and visualizations of the results from a diverse set of space weather models. SWIM has a modular design and is written in Python, by using NumPy, matplotlib, and the Visualization ToolKit (VTK). SWIM provides data management module to read a variety of spacecraft data products and a specific data format of Solar-Interplanetary Conservation Element/Solution Element MHD model (SIP-CESE MHD model) for the study of solar-terrestrial phenomena. Data analysis, visualization and graphic user interface modules are also presented in a user-friendly way to run the integrated models and visualize the 2-D and 3-D data sets interactively. With these tools we can locally or remotely analysis the model result rapidly, such as extraction of data on specific location in time-sequence data sets, plotting interplanetary magnetic field lines, multi-slicing of solar wind speed, volume rendering of solar wind density, animation of time-sequence data sets, comparing between model result and observational data. To speed-up the analysis, an in-situ visualization interface is used to support visualizing the data 'on-the-fly'. We also modified some critical time-consuming analysis and visualization methods with the aid of GPU and multi-core CPU. We have used this tool to visualize the data of SIP-CESE MHD model in real time, and integrated the Database Model of shock arrival, Shock Propagation Model, Dst forecasting model and SIP-CESE MHD model developed by SIGMA Weather Group at State Key Laboratory of Space Weather/CAS.

  15. Dynamics and composition of the Asian summer monsoon anticyclone

    Science.gov (United States)

    Gottschaldt, Klaus-Dirk; Schlager, Hans; Baumann, Robert; Sinh Cai, Duy; Eyring, Veronika; Graf, Phoebe; Grewe, Volker; Jöckel, Patrick; Jurkat-Witschas, Tina; Voigt, Christiane; Zahn, Andreas; Ziereis, Helmut

    2018-04-01

    This study places HALO research aircraft observations in the upper-tropospheric Asian summer monsoon anticyclone (ASMA) into the context of regional, intra-annual variability by hindcasts with the ECHAM/MESSy Atmospheric Chemistry (EMAC) model. The observations were obtained during the Earth System Model Validation (ESMVal) campaign in September 2012. Observed and simulated tracer-tracer relations reflect photochemical O3 production as well as in-mixing from the lower troposphere and the tropopause layer. The simulations demonstrate that tropospheric trace gas profiles in the monsoon season are distinct from those in the rest of the year, and the measurements reflect the main processes acting throughout the monsoon season. Net photochemical O3 production is significantly enhanced in the ASMA, where uplifted precursors meet increased NOx, mainly produced by lightning. An analysis of multiple monsoon seasons in the simulation shows that stratospherically influenced tropopause layer air is regularly entrained at the eastern ASMA flank and then transported in the southern fringe around the interior region. Radial transport barriers of the circulation are effectively overcome by subseasonal dynamical instabilities of the anticyclone, which occur quite frequently and are of paramount importance for the trace gas composition of the ASMA. Both the isentropic entrainment of O3-rich air and the photochemical conversion of uplifted O3-poor air tend to increase O3 in the ASMA outflow.

  16. Conceptual model of integrated apiarian consultancy

    OpenAIRE

    Bodescu, Dan; Stefan, Gavril; Paveliuc Olariu, Codrin; Magdici, Maria

    2010-01-01

    The socio-economic field researches have indicated the necessity of realizing an integrated consultancy service for beekeepers that will supply technical-economic solutions with a practical character for ensuring the lucrativeness and viability of the apiaries. Consequently, an integrated apiarian consultancy model has been built holding the following features: it realizes the diagnosis of the meliferous resources and supplies solutions for its optimal administration; it realizes the technica...

  17. The Indian Monsoon

    Indian Academy of Sciences (India)

    mathematical models of interactive populations. ... The most important facet of weather and climate in a tropical region such as ... dense cloud with considerable vertical extent,· in the form of. - . ... almost unhampered to the surface of the earth where it is ..... when effects of entrainment of the surrounding air due to viscos-.

  18. MMM: A toolbox for integrative structure modeling.

    Science.gov (United States)

    Jeschke, Gunnar

    2018-01-01

    Structural characterization of proteins and their complexes may require integration of restraints from various experimental techniques. MMM (Multiscale Modeling of Macromolecules) is a Matlab-based open-source modeling toolbox for this purpose with a particular emphasis on distance distribution restraints obtained from electron paramagnetic resonance experiments on spin-labelled proteins and nucleic acids and their combination with atomistic structures of domains or whole protomers, small-angle scattering data, secondary structure information, homology information, and elastic network models. MMM does not only integrate various types of restraints, but also various existing modeling tools by providing a common graphical user interface to them. The types of restraints that can support such modeling and the available model types are illustrated by recent application examples. © 2017 The Protein Society.

  19. Decadal Monsoon-ENSO Relationships Reexamined

    Science.gov (United States)

    Yun, Kyung-Sook; Timmermann, Axel

    2018-02-01

    The strength of the El Niño-Southern Oscillation (ENSO)-Indian summer monsoon rainfall (ISMR) relationship shows considerable decadal fluctuations, which have been previously linked to low-frequency climatic processes such as shifts in ENSO's center of action or the Atlantic Multidecadal Oscillation. However, random variability can also cause similar variations in the relationship between climate phenomena. Here we propose a statistical test to determine whether the observed time-evolving correlations between ENSO and ISMR are different from those expected from a simple stochastic null hypothesis model. The analysis focuses on the time evolution of moving correlations, their expected variance, and probabilities for rapid transitions. The results indicate that the time evolution of the observed running correlation between these climate modes is indistinguishable from a system in which the ISMR signal can be expressed as a stochastically perturbed ENSO signal. This challenges previous deterministic interpretations. Our results are further corroborated by the analysis of climate model simulations.

  20. Potential modulations of pre-monsoon aerosols during El Niño: impact on Indian summer monsoon

    Science.gov (United States)

    Fadnavis, S.; Roy, Chaitri; Sabin, T. P.; Ayantika, D. C.; Ashok, K.

    2017-10-01

    The potential role of aerosol loading on the Indian summer monsoon rainfall during the El Niño years are examined using satellite-derived observations and a state of the art fully interactive aerosol-chemistry-climate model. The Aerosol Index (AI) from TOMS (1978-2005) and Aerosol Optical Depth (AOD) from MISR spectroradiometer (2000-2010) indicate a higher-than-normal aerosol loading over the Indo-Gangetic plain (IGP) during the pre-monsoon season with a concurrent El Niño. Sensitivity experiments using ECHAM5-HAMMOZ climate model suggests that this enhanced loading of pre-monsoon absorbing aerosols over the Indo-Gangetic plain can reduce the drought during El Niño years by invoking the `Elevated-Heat-Pump' mechanism through an anomalous aerosol-induced warm core in the atmospheric column. This anomalous heating upshot the relative strengthening of the cross-equatorial moisture inflow associated with the monsoon and eventually reduces the severity of drought during El Niño years. The findings are subject to the usual limitations such as the uncertainties in observations, and limited number of El Niño years (during the study period).

  1. Monsoon Convective During the South China Sea Monsoon Experiment: Observations from Ground-Based Radar and the TRMM Satellite

    Science.gov (United States)

    Cifelli, Rob; Rickenbach, Tom; Halverson, Jeff; Keenan, Tom; Kucera, Paul; Atkinson, Lester; Fisher, Brad; Gerlach, John; Harris, Kathy; Kaufman, Cristina

    1999-01-01

    A main goal of the recent South China Sea Monsoon Experiment (SCSMEX) was to study convective processes associated with the onset of the Southeast Asian summer monsoon. The NASA TOGA C-band scanning radar was deployed on the Chinese research vessel Shi Yan #3 for two 20 day cruises, collecting dual-Doppler measurements in conjunction with the BMRC C-Pol dual-polarimetric radar on Dongsha Island. Soundings and surface meteorological data were also collected with an NCAR Integrated Sounding System (ISS). This experiment was the first major tropical field campaign following the launch of the Tropical Rainfall Measuring Mission (TRMM) satellite. These observations of tropical oceanic convection provided an opportunity to make comparisons between surface radar measurements and the Precipitation Radar (PR) aboard the TRMM satellite in an oceanic environment. Nearly continuous radar operations were conducted during two Intensive Observing Periods (IOPS) straddling the onset of the monsoon (5-25 May 1998 and 5-25 June 1998). Mesoscale lines of convection with widespread regions of both trailing and forward stratiform precipitation were observed following the onset of the active monsoon in the northern South China Sea region. The vertical structure of the convection during periods of strong westerly flow and relatively moist environmental conditions in the lower to mid-troposphere contrasted sharply with convection observed during periods of low level easterlies, weak shear, and relatively dry conditions in the mid to upper troposphere. Several examples of mesoscale convection will be shown from the ground (ship)-based and spaceborne radar data during times of TRMM satellite overpasses. Examples of pre-monsoon convection, characterized by isolated cumulonimbus and shallow, precipitating congestus clouds, will also be discussed.

  2. Integrated Modelling - the next steps (Invited)

    Science.gov (United States)

    Moore, R. V.

    2010-12-01

    Integrated modelling (IM) has made considerable advances over the past decade but it has not yet been taken up as an operational tool in the way that its proponents had hoped. The reasons why will be discussed in Session U17. This talk will propose topics for a research and development programme and suggest an institutional structure which, together, could overcome the present obstacles. Their combined aim would be first to make IM into an operational tool useable by competent public authorities and commercial companies and, in time, to see it evolve into the modelling equivalent of Google Maps, something accessible and useable by anyone with a PC or an iphone and an internet connection. In a recent study, a number of government agencies, water authorities and utilities applied integrated modelling to operational problems. While the project demonstrated that IM could be used in an operational setting and had benefit, it also highlighted the advances that would be required for its widespread uptake. These were: greatly improving the ease with which models could be a) made linkable, b) linked and c) run; developing a methodology for applying integrated modelling; developing practical options for calibrating and validating linked models; addressing the science issues that arise when models are linked; extending the range of modelling concepts that can be linked; enabling interface standards to pass uncertainty information; making the interface standards platform independent; extending the range of platforms to include those for high performance computing; developing the concept of modelling components as web services; separating simulation code from the model’s GUI, so that all the results from the linked models can be viewed through a single GUI; developing scenario management systems so that that there is an audit trail of the version of each model and dataset used in each linked model run. In addition to the above, there is a need to build a set of integrated

  3. Integrated facilities modeling using QUEST and IGRIP

    International Nuclear Information System (INIS)

    Davis, K.R.; Haan, E.R.

    1995-01-01

    A QUEST model and associated detailed IGRIP models were developed and used to simulate several workcells in a proposed Plutonium Storage Facility (PSF). The models are being used by team members assigned to the program to improve communication and to assist in evaluating concepts and in performing trade-off studies which will result in recommendations and a final design. The model was designed so that it could be changed easily. The added flexibility techniques used to make changes easily are described in this paper in addition to techniques for integrating the QUEST and IGRIP products. Many of these techniques are generic in nature and can be applied to any modeling endeavor

  4. Integrated modelling of two xenobiotic organic compounds

    DEFF Research Database (Denmark)

    Lindblom, Erik Ulfson; Gernaey, K.V.; Henze, Mogens

    2006-01-01

    This paper presents a dynamic mathematical model that describes the fate and transport of two selected xenobiotic organic compounds (XOCs) in a simplified representation. of an integrated urban wastewater system. A simulation study, where the xenobiotics bisphenol A and pyrene are used as reference...... compounds, is carried out. Sorption and specific biological degradation processes are integrated with standardised water process models to model the fate of both compounds. Simulated mass flows of the two compounds during one dry weather day and one wet weather day are compared for realistic influent flow...... rate and concentration profiles. The wet weather day induces resuspension of stored sediments, which increases the pollutant load on the downstream system. The potential of the model to elucidate important phenomena related to origin and fate of the model compounds is demonstrated....

  5. An integrative model of organizational safety behavior.

    Science.gov (United States)

    Cui, Lin; Fan, Di; Fu, Gui; Zhu, Cherrie Jiuhua

    2013-06-01

    This study develops an integrative model of safety management based on social cognitive theory and the total safety culture triadic framework. The purpose of the model is to reveal the causal linkages between a hazardous environment, safety climate, and individual safety behaviors. Based on primary survey data from 209 front-line workers in one of the largest state-owned coal mining corporations in China, the model is tested using structural equation modeling techniques. An employee's perception of a hazardous environment is found to have a statistically significant impact on employee safety behaviors through a psychological process mediated by the perception of management commitment to safety and individual beliefs about safety. The integrative model developed here leads to a comprehensive solution that takes into consideration the environmental, organizational and employees' psychological and behavioral aspects of safety management. Copyright © 2013 National Safety Council and Elsevier Ltd. All rights reserved.

  6. Modern model of integrated corporate communication

    Directory of Open Access Journals (Sweden)

    Milica Slijepčević

    2018-03-01

    Full Text Available The main purpose of this paper is to present the modern model of integrated corporate communication. Beside this, the authors will describe the changes occurring in the corporate environment and importance of changing the model of corporate communication. This paper also discusses the importance of implementation of the suggested model, the use of new media and effects of these changes on corporations. The approach used in this paper is the literature review. The authors explore the importance of implementation of the suggested model and the new media in corporate communication, both internal and external, addressing all the stakeholders and communication contents. The paper recommends implementation of a modern model of integrated corporate communication as a response to constant development of the new media and generation changes taking place. Practical implications: the modern model of integrated corporate communication can be used as an upgrade of the conventional communication models. This modern model empowers companies to sustain and build up the existing relationships with stakeholders, and to find out and create new relationships with stakeholders who were previously inaccessible and invisible.

  7. CTBT integrated verification system evaluation model supplement

    Energy Technology Data Exchange (ETDEWEB)

    EDENBURN,MICHAEL W.; BUNTING,MARCUS; PAYNE JR.,ARTHUR C.; TROST,LAWRENCE C.

    2000-03-02

    Sandia National Laboratories has developed a computer based model called IVSEM (Integrated Verification System Evaluation Model) to estimate the performance of a nuclear detonation monitoring system. The IVSEM project was initiated in June 1994, by Sandia's Monitoring Systems and Technology Center and has been funded by the U.S. Department of Energy's Office of Nonproliferation and National Security (DOE/NN). IVSEM is a simple, ''top-level,'' modeling tool which estimates the performance of a Comprehensive Nuclear Test Ban Treaty (CTBT) monitoring system and can help explore the impact of various sensor system concepts and technology advancements on CTBT monitoring. One of IVSEM's unique features is that it integrates results from the various CTBT sensor technologies (seismic, in sound, radionuclide, and hydroacoustic) and allows the user to investigate synergy among the technologies. Specifically, IVSEM estimates the detection effectiveness (probability of detection), location accuracy, and identification capability of the integrated system and of each technology subsystem individually. The model attempts to accurately estimate the monitoring system's performance at medium interfaces (air-land, air-water) and for some evasive testing methods such as seismic decoupling. The original IVSEM report, CTBT Integrated Verification System Evaluation Model, SAND97-25 18, described version 1.2 of IVSEM. This report describes the changes made to IVSEM version 1.2 and the addition of identification capability estimates that have been incorporated into IVSEM version 2.0.

  8. CTBT integrated verification system evaluation model supplement

    International Nuclear Information System (INIS)

    EDENBURN, MICHAEL W.; BUNTING, MARCUS; PAYNE, ARTHUR C. JR.; TROST, LAWRENCE C.

    2000-01-01

    Sandia National Laboratories has developed a computer based model called IVSEM (Integrated Verification System Evaluation Model) to estimate the performance of a nuclear detonation monitoring system. The IVSEM project was initiated in June 1994, by Sandia's Monitoring Systems and Technology Center and has been funded by the U.S. Department of Energy's Office of Nonproliferation and National Security (DOE/NN). IVSEM is a simple, ''top-level,'' modeling tool which estimates the performance of a Comprehensive Nuclear Test Ban Treaty (CTBT) monitoring system and can help explore the impact of various sensor system concepts and technology advancements on CTBT monitoring. One of IVSEM's unique features is that it integrates results from the various CTBT sensor technologies (seismic, in sound, radionuclide, and hydroacoustic) and allows the user to investigate synergy among the technologies. Specifically, IVSEM estimates the detection effectiveness (probability of detection), location accuracy, and identification capability of the integrated system and of each technology subsystem individually. The model attempts to accurately estimate the monitoring system's performance at medium interfaces (air-land, air-water) and for some evasive testing methods such as seismic decoupling. The original IVSEM report, CTBT Integrated Verification System Evaluation Model, SAND97-25 18, described version 1.2 of IVSEM. This report describes the changes made to IVSEM version 1.2 and the addition of identification capability estimates that have been incorporated into IVSEM version 2.0

  9. Why the Australian Monsoon Strengthened During the Cold Last Glacial Maximum?

    Science.gov (United States)

    Yan, M.; Wang, B.; Liu, J.; Ning, L.

    2017-12-01

    The multi-model ensemble simulation suggests that the global monsoon and most sub-monsoons are weakened during the Last Glacial Maximum (LGM) due to the lower green-house gases concentration, the presence of the ice-sheets and the weakened seasonal distribution of insolation. In contrast, the Australian monsoon is strengthened during the LGM. The precipitation there increases in austral summer and decreases in austral winter, so that the annual range or monsoonality increases. The strengthened monsoonality is mainly due to the decreased precipitation in austral winter, which is primarily caused by circulation changes, although the reduced atmospheric water vapor also has a moderate contribution. On the other hand, the strengthened Australian summer monsoon rainfall is likely caused by the change of land-sea thermal contrast due to the alteration of land-sea configuration and by the asymmetric change in sea surface temperature (SST) over Indo-Pacific warm pool region. The strengthened land-sea thermal contrast and Western Pacific-Eastern Indian Ocean thermal gradients in the pre-summer monsoon season triggers a cyclonic wind anomaly that is maintained to the monsoon season, thereby increasing summer precipitation. The increased summer precipitation is associated with the increased cloud cover over the land and decreased cloud cover over the ocean. This may weaken the land-sea thermal contrast, which agrees with the paleoclimate reconstruction. The biases between different models are likely related to the different responses of SST over the North Atlantic Ocean in the pre-summer monsoon season.

  10. Renewed mer model of integral management

    Directory of Open Access Journals (Sweden)

    Janko Belak

    2015-12-01

    Full Text Available Background: The research work on entrepreneurship, enterprise's policy and management, which started in 1992, successfully continued in the following years. Between 1992 and 2011, more than 400 academics and other researchers have participated in research work (MER research program whose main orientation has been the creation of their own model of integral management. Results: In past years, academics (researchers and authors of published papers from Austria, Belgium, Bosnia and Herzegovina, Bulgaria, Byelorussia, Canada, the Czech Republic, Croatia, Estonia, France, Germany, Hungary, Italy, Poland, Romania, Russia, the Slovak Republic, Slovenia, Switzerland, Ukraine, and the US have cooperated in MER programs, coming from more than fifty institutions. Thus, scientific doctrines of different universities influenced the development of the MER model which is based on both horizontal and vertical integration of the enterprises' governance and management processes, instruments and institutions into a consistently operating unit. Conclusions: The presented MER model is based on the multi-layer integration of governance and management with an enterprise and its environment, considering the fundamental desires for the enterprises' existence and, thus, their quantitative as well as qualitative changes. The process, instrumental, and institutional integrity of the governance and management is also the initial condition for the implementation of all other integration factors.

  11. The Summer Monsoon of 1987.

    Science.gov (United States)

    Krishnamurti, T. N.; Bedi, H. S.; Subramaniam, M.

    1989-04-01

    In this paper we have examined the evolution of a number of parameters we believe were important for our understanding of the drought over India during the summer of 1987. The list of parameters includes monthly means or anomalies of the following fields: sea surface temperatures, divergent circulations, outgoing longwave radiation, streamfunction of the lower and upper troposphere, and monthly precipitation (expressed as a percentage departure from a long-term mean). The El Niño related warm sea surface temperature anomaly and a weaker warm sea surface temperature anomaly over the equatorial Indian Ocean provide sustained convection, as reflected by the negative values of the outgoing longwave radiation. With the seasonal heating, a pronounced planetary-scale divergent circulation evolved with a center along the western Pacific Ocean. The monsoonal divergent circulation merged with that related to the El Niño, maintaining most of the heavy rainfall activity between the equatorial Pacific Ocean and east Asia. Persistent convective activity continued south of India during the entire monsoon season. Strong Hadley type overturnings with rising motions over these warm SST anomaly regions and descent roughly near 20° to 25°S was evident as early as April 1987. The subtropical high pressure areas near 20° to 25°S showed stronger than normal circulations. This was revealed by the presence of a counterclockwise streamfunction anomaly at 850 mb during April 1987. With the seasonal heating, this anomaly moved northwards and was located over the Arabian Sea and India. This countermonsoon circulation anomaly at the low levels was associated with a weaker than normal Somali jet and Arabian Sea circulation throughout this summer. The monsoon remained active along northeast India, Bangladesh, northern lndochina, and central China during the summer monsoon season. This was related to the eastward shift of the divergent circulation. An eastward shift of the upper tropospheric

  12. Characteristics of monsoon low level jet (MLLJ)

    Indian Academy of Sciences (India)

    Temperature and wind data are used to describe variation in the strength of the Monsoon Low Level Jet (MLLJ) from an active phase of the monsoon to a break phase. Also estimated are the characteristics of turbulence above and below MLLJ.

  13. Integrated Model of Bioenergy and Agriculture System

    DEFF Research Database (Denmark)

    Sigurjonsson, Hafthor Ægir; Elmegaard, Brian; Clausen, Lasse Røngaard

    2015-01-01

    Due to increased burden on the environment caused by human activities, focus on industrial ecology designs are gaining more attention. In that perspective an environ- mentally effective integration of bionergy and agriculture systems has significant potential. This work introduces a modeling...... of the overall model. C- TOOL and Yasso07 are used in the carbon balance of agri- culture, Dynamic Network Analysis is used for the energy simulation and Brightway2 is used to build a Life Cycle Inventory compatible database and processes it for vari- ous impacts assessment methods. The model is success- fully...... approach that builds on Life Cycle Inventory and carries out Life Cycle Impact Assessment for a con- sequential Life Cycle Assessment on integrated bioenergy and agriculture systems. The model framework is built in Python which connects various freely available soft- ware that handle different aspects...

  14. Towards an integrated model of international migration

    Directory of Open Access Journals (Sweden)

    Douglas S. MASSEY

    2012-12-01

    Full Text Available Demographers have yet to develop a suitable integrated model of international migration and consequently have been very poor at forecasting immigration. This paper outlines the basic elements of an integrated model and surveys recent history to suggest the key challenges to model construction. A comprehensive theory must explain the structural forces that create a supply of people prone to migrate internationally, the structural origins of labour demand in receiving countries, the motivations of those who respond to these forces by choosing to migrate internationally, the growth and structure of transnational networks that arise to support international movement, the behaviour states in response to immigrant flows, and the influence of state actions on the behaviour of migrants. Recent history suggests that a good model needs to respect the salience of markets, recognize the circularity of migrant flows, appreciate the power of feedback effects, and be alert unanticipated consequences of policy actions.

  15. Quiver gauge theories and integrable lattice models

    International Nuclear Information System (INIS)

    Yagi, Junya

    2015-01-01

    We discuss connections between certain classes of supersymmetric quiver gauge theories and integrable lattice models from the point of view of topological quantum field theories (TQFTs). The relevant classes include 4d N=1 theories known as brane box and brane tilling models, 3d N=2 and 2d N=(2,2) theories obtained from them by compactification, and 2d N=(0,2) theories closely related to these theories. We argue that their supersymmetric indices carry structures of TQFTs equipped with line operators, and as a consequence, are equal to the partition functions of lattice models. The integrability of these models follows from the existence of extra dimension in the TQFTs, which emerges after the theories are embedded in M-theory. The Yang-Baxter equation expresses the invariance of supersymmetric indices under Seiberg duality and its lower-dimensional analogs.

  16. Which coordinate system for modelling path integration?

    Science.gov (United States)

    Vickerstaff, Robert J; Cheung, Allen

    2010-03-21

    Path integration is a navigation strategy widely observed in nature where an animal maintains a running estimate, called the home vector, of its location during an excursion. Evidence suggests it is both ancient and ubiquitous in nature, and has been studied for over a century. In that time, canonical and neural network models have flourished, based on a wide range of assumptions, justifications and supporting data. Despite the importance of the phenomenon, consensus and unifying principles appear lacking. A fundamental issue is the neural representation of space needed for biological path integration. This paper presents a scheme to classify path integration systems on the basis of the way the home vector records and updates the spatial relationship between the animal and its home location. Four extended classes of coordinate systems are used to unify and review both canonical and neural network models of path integration, from the arthropod and mammalian literature. This scheme demonstrates analytical equivalence between models which may otherwise appear unrelated, and distinguishes between models which may superficially appear similar. A thorough analysis is carried out of the equational forms of important facets of path integration including updating, steering, searching and systematic errors, using each of the four coordinate systems. The type of available directional cue, namely allothetic or idiothetic, is also considered. It is shown that on balance, the class of home vectors which includes the geocentric Cartesian coordinate system, appears to be the most robust for biological systems. A key conclusion is that deducing computational structure from behavioural data alone will be difficult or impossible, at least in the absence of an analysis of random errors. Consequently it is likely that further theoretical insights into path integration will require an in-depth study of the effect of noise on the four classes of home vectors. Copyright 2009 Elsevier Ltd

  17. Topological matter, integrable models and fusion rings

    International Nuclear Information System (INIS)

    Nemeschansky, D.; Warner, N.P.

    1992-01-01

    We show how topological G k /G k models can be embedded into the topological matter models that are obtained by perturbing the twisted N = 2 supersymmetric, hermitian symmetric, coset models. In particular, this leads to an embedding of the fusion ring of G as a sub-ring of the perturbed, chiral primary ring. The perturbation of the twisted N = 2 model that leads to the fusion ring is also shown to lead to an integrable N = 2 supersymmetric field theory when the untwisted N = 2 superconformal field theory is perturbed by the same operator and its hermitian conjugate. (orig.)

  18. Towards an Integrative Model of Knowledge Transfer

    DEFF Research Database (Denmark)

    Turcan, Romeo V.; Heslop, Ben

    This paper aims to contribute towards the advancement of an efficient architecture of a single market for knowledge through the development of an integrative model of knowledge transfer. Within this aim, several points of departure can be singled out. One, the article builds on the call of the Eu......This paper aims to contribute towards the advancement of an efficient architecture of a single market for knowledge through the development of an integrative model of knowledge transfer. Within this aim, several points of departure can be singled out. One, the article builds on the call...... business and academia, and implementing the respective legislature are enduring. The research objectives were to explore (i) the process of knowledge transfer in universities, including the nature of tensions, obstacles and incentives, (ii) the relationships between key stakeholders in the KT market...... of the emergent integrative model of knowledge transfer. In an attempt to bring it to a higher level of generalizability, the integrative model of KT is further conceptualized from a ‘sociology of markets’ perspective resulting in an emergent architecture of a single market for knowledge. Future research...

  19. International Summit on Integrated Environmental Modeling

    Science.gov (United States)

    This report describes the International Summit on Integrated Environmental Modeling (IEM), held in Washington, DC 7th-9th December 2010. The meeting brought together 57 scientists and managers from leading US and European government and non-governmental organizations, universitie...

  20. Accurate Electromagnetic Modeling Methods for Integrated Circuits

    NARCIS (Netherlands)

    Sheng, Z.

    2010-01-01

    The present development of modern integrated circuits (IC’s) is characterized by a number of critical factors that make their design and verification considerably more difficult than before. This dissertation addresses the important questions of modeling all electromagnetic behavior of features on

  1. Rethinking School Bullying: Towards an Integrated Model

    Science.gov (United States)

    Dixon, Roz; Smith, Peter K.

    2011-01-01

    What would make anti-bullying initiatives more successful? This book offers a new approach to the problem of school bullying. The question of what constitutes a useful theory of bullying is considered and suggestions are made as to how priorities for future research might be identified. The integrated, systemic model of school bullying introduced…

  2. Glacial-interglacial water cycle, global monsoon and atmospheric methane changes

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Zhengtang; Wu, Haibin [Chinese Academy of Sciences, Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Beijing (China); Zhou, Xin [Chinese Academy of Sciences, Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Beijing (China); University of Science and Technology of China, School of Earth and Space Sciences and Institute of Polar Environment, Hefei (China)

    2012-09-15

    The causes of atmospheric methane (CH{sub 4}) changes are still a major contention, in particular with regards to the relative contributions of glacial-interglacial cycles, monsoons in both hemispheres and the late Holocene human intervention. Here, we explore the CH{sub 4} signals in the Antarctic EPICA Dome C and Vostok ice records using the methods of timeseries analyses and correlate them with insolation and geological records to address these issues. The results parse out three distinct groups of CH{sub 4} signals attributable to different drivers. The first group ({proportional_to}80% variance), well tracking the marine {delta}{sup 18}O record, is attributable to glacial-interglacial modulation on the global water cycle with the effects shared by wetlands at all latitudes, from monsoonal and non-monsoonal regions in both hemispheres. The second group ({proportional_to}15% variance), centered at the {proportional_to}10-kyr semi-precession frequency, is linkable with insolation-driven tropical monsoon changes in both hemispheres. The third group ({proportional_to}5% variance), marked by millennial frequencies, is seemingly related with the combined effect of ice-volume and bi-hemispheric insolation changes at the precession bands. These results indicate that bi-hemispheric monsoon changes have been a constant driver of atmospheric CH{sub 4}. This mechanism also partially explains the Holocene CH{sub 4} reversal since {proportional_to}5 kyr BP besides the human intervention. In the light of these results, we propose that global monsoon can be regarded as a system consisting of two main integrated components, one primarily driven by the oscillations of Inter-Tropical Convergence Zone (ITCZ) in response to the low-latitude summer insolation changes, anti-phase between the two hemispheres (i.e. the ITCZ monsoon component); and another modulated by the glacial-interglacial cycles, mostly synchronous at the global scale (i.e. the glacial-interglacial monsoon

  3. Nonlinear integral equations for the sausage model

    Science.gov (United States)

    Ahn, Changrim; Balog, Janos; Ravanini, Francesco

    2017-08-01

    The sausage model, first proposed by Fateev, Onofri, and Zamolodchikov, is a deformation of the O(3) sigma model preserving integrability. The target space is deformed from the sphere to ‘sausage’ shape by a deformation parameter ν. This model is defined by a factorizable S-matrix which is obtained by deforming that of the O(3) sigma model by a parameter λ. Clues for the deformed sigma model are provided by various UV and IR information through the thermodynamic Bethe ansatz (TBA) analysis based on the S-matrix. Application of TBA to the sausage model is, however, limited to the case of 1/λ integer where the coupled integral equations can be truncated to a finite number. In this paper, we propose a finite set of nonlinear integral equations (NLIEs), which are applicable to generic value of λ. Our derivation is based on T-Q relations extracted from the truncated TBA equations. For a consistency check, we compute next-leading order corrections of the vacuum energy and extract the S-matrix information in the IR limit. We also solved the NLIE both analytically and numerically in the UV limit to get the effective central charge and compared with that of the zero-mode dynamics to obtain exact relation between ν and λ. Dedicated to the memory of Petr Petrovich Kulish.

  4. What drives the global summer monsoon over the past millennium?

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jian [Chinese Academy of Sciences, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Nanjing (China); Wang, Bin [University of Hawaii at Manoa, Department of Meteorology, Honolulu, HI (United States); University of Hawaii at Manoa, International Pacific Research Center, Honolulu, HI (United States); Yim, So-Young; Lee, June-Yi [University of Hawaii at Manoa, International Pacific Research Center, Honolulu, HI (United States); Jhun, Jong-Ghap [Seoul National University, School of Earth and Environmental Sciences/Research Institute of Oceanography, Seoul (Korea, Republic of); Ha, Kyung-Ja [Pusan National University, Division of Earth Environmental System, Busan (Korea, Republic of)

    2012-09-15

    The global summer monsoon precipitation (GSMP) provides a fundamental measure for changes in the annual cycle of the climate system and hydroclimate. We investigate mechanisms governing decadal-centennial variations of the GSMP over the past millennium with a coupled climate model's (ECHO-G) simulation forced by solar-volcanic (SV) radiative forcing and greenhouse gases (GHG) forcing. We show that the leading mode of GSMP is a forced response to external forcing on centennial time scale with a globally uniform change of precipitation across all monsoon regions, whereas the second mode represents internal variability on multi-decadal time scale with regional characteristics. The total amount of GSMP varies in phase with the global mean temperature, indicating that global warming is accompanied by amplification of the annual cycle of the climate system. The northern hemisphere summer monsoon precipitation (NHSMP) responds to GHG forcing more sensitively, while the southern hemisphere summer monsoon precipitation (SHSMP) responds to the SV radiative forcing more sensitively. The NHSMP is enhanced by increased NH land-ocean thermal contrast and NH-minus-SH thermal contrast. On the other hand, the SHSMP is strengthened by enhanced SH subtropical highs and the east-west mass contrast between Southeast Pacific and tropical Indian Ocean. The strength of the GSMP is determined by the factors controlling both the NHSMP and SHSMP. Intensification of GSMP is associated with (a) increased global land-ocean thermal contrast, (b) reinforced east-west mass contrast between Southeast Pacific and tropical Indian Ocean, and (c) enhanced circumglobal SH subtropical highs. The physical mechanisms revealed here will add understanding of future change of the global monsoon. (orig.)

  5. Relative role of pre-monsoon conditions and intraseasonal oscillations in determining early-vs-late indian monsoon intensity in a GCM

    Science.gov (United States)

    Ghosh, Rohit; Chakraborty, Arindam; Nanjundiah, Ravi S.

    2018-01-01

    The aim of this paper is to identify relative roles of different land-atmospheric conditions, apart from sea surface temperature (SST), in determining early vs. late summer monsoon intensity over India in a high resolution general circulation model (GCM). We find that in its early phase (June-July; JJ), pre-monsoon land-atmospheric processes play major role to modulate the precipitation over Indian region. These effects of pre-monsoon conditions decrease substantially during its later phase (August-September; AS) for which the interannual variation is mainly governed by the low frequency northward propagating intraseasonal oscillations. This intraseasonal variability which is related to mean vertical wind shear has a significant role during the early phase of monsoon as well. Further, using multiple linear regression, we show that interannual variation of early and late monsoon rainfall over India is best explained when all these land-atmospheric parameters are taken together. Our study delineates the relative role of different processes affecting early versus later summer monsoon rainfall over India that can be used for determining its subseasonal predictability.

  6. Sensible climates in monsoon Asia.

    Science.gov (United States)

    Ono, H S; Kawamura, T

    1991-06-01

    This study identifies characteristics of the geographical distribution of sensible climates and their diurnal and annual variations, and presents a classification of bioclimates in monsoon Asia by using Kawamura's discomfort index formula. During the hottest month, tropical areas and areas in central and South China are uncomfortable for humans throughout the day and night, and temperate zones in lowlands are uncomfortable during the daytime. Tropical zones are uncomfortable all year long and temperate zones in lowlands are uncomfortable during summer. Four climatic types were distinguished in monsoon Asia. Climatic type I, hyperthermal throughout the year, occurs in the tropics south of latitude 20 degrees N. Climatic type II, hyperthermal in the hottest month and comfortable in the coldest month, extends over latitudes from 20 degrees to 30 degrees N except in the highlands. Climatic type III, hyperthermal in the hottest month and hypothermal in the coldest month, encompasses temperate zones of East Asia and subtropical arid areas of northwestern India. Climatic type V, comfortable in the hottest month and hypothermal in coldest month, occurs near the southeast coast of the Soviet Union and in the highlands of the Himalayas.

  7. Initial results from the StratoClim aircraft campaign in the Asian Monsoon in summer 2017

    Science.gov (United States)

    Rex, M.

    2017-12-01

    The Asian Monsoon System is one of the Earth's largest and most energetic weather systems. Monsoon rainfall is critical to feeding over a billion people in Asia and the monsoon circulation affects weather patterns over the entire northern hemisphere. The Monsoon also acts like an enormous elevator, pumping vast amounts of air and pollutants from the surface up to the tropopause region at levels above 16km altitude, from where air can ascend into the stratosphere, where it spreads globally. Thus the monsoon affects the chemical composition of the global tropopause region and the stratosphere, and hence plays a key role for the composition of the UTS. Dynamically the monsoon circulation leads to the formation of a large anticyclone at tropopause levels above South Asia - the Asian Monsoon Anticyclone (AMA). Satellite images show a large cloud of aerosols directly above the monsoon, the Asian Tropopause Aerosol Layer (ATAL). In July to August 2017 the international research project StratoClim carried out the first in-situ aircraft measurements in the AMA and the ATAL with the high altitude research aircraft M55-Geophysica. Around 8 scientific flights took place in the airspaces of Nepal, India and Bangladesh and have horizontally and vertically probed the AMA and have well characterized the ATAL along flight patterns that have been carefully designed by a theory, modelling and satellite data analysing team in the field. The aircraft campaign has been complemented by launches of research balloons from ground stations in Nepal, Bangladesh, China and Palau. The presentation will give an overview of the StratoClim project, the aircraft and balloon activities and initial results from the StratoClim Asian Monsoon campaign in summer 2017.

  8. Prediction of Indian Summer-Monsoon Onset Variability: A Season in Advance.

    Science.gov (United States)

    Pradhan, Maheswar; Rao, A Suryachandra; Srivastava, Ankur; Dakate, Ashish; Salunke, Kiran; Shameera, K S

    2017-10-27

    Monsoon onset is an inherent transient phenomenon of Indian Summer Monsoon and it was never envisaged that this transience can be predicted at long lead times. Though onset is precipitous, its variability exhibits strong teleconnections with large scale forcing such as ENSO and IOD and hence may be predictable. Despite of the tremendous skill achieved by the state-of-the-art models in predicting such large scale processes, the prediction of monsoon onset variability by the models is still limited to just 2-3 weeks in advance. Using an objective definition of onset in a global coupled ocean-atmosphere model, it is shown that the skillful prediction of onset variability is feasible under seasonal prediction framework. The better representations/simulations of not only the large scale processes but also the synoptic and intraseasonal features during the evolution of monsoon onset are the comprehensions behind skillful simulation of monsoon onset variability. The changes observed in convection, tropospheric circulation and moisture availability prior to and after the onset are evidenced in model simulations, which resulted in high hit rate of early/delay in monsoon onset in the high resolution model.

  9. Predictability experiments for the Asian summer monsoon: impact of SST anomalies on interannual and intraseasonal variability

    International Nuclear Information System (INIS)

    Molteni, Franco; Corti, Susanna; Ferranti, Laura; Slingo, Julia M.

    2003-07-01

    The effects of SST anomalies on the interannual and intraseasonal variability of the Asian summer monsoon have been studied by multivariate statistical analyses of 850-hPa wind and rainfall fields simulated in a set of ensemble integrations of the ECMWF atmospheric GCM, referred to as the PRISM experiments. The simulations used observed SSTs (PRISM-O), covering 9 years characterised by large variations of the ENSO phenomenon in the 1980's and the early 1990's. A parallel set of simulations was also performed with climatological SSTs (PRISM-C), thus enabling the influence of SST forcing on the modes of interannual and intraseasonal variability to be investigated. As in observations, the model's interannual variability is dominated by a zonally-oriented mode which describes the north-south movement of the tropical convergence zone (TCZ). This mode appears to be independent of SST forcing and its robustness between the PRISM-O and PRISM-C simulations suggests that it is driven by internal atmospheric dynamics. On the other hand, the second mode of variability, which again has a good correspondence with observed patterns, shows a clear relationship with the ENSO cycle. Since the mode related to ENSO accounts for only a small part of the total variance, the notion of a quasi-linear superposition of forced and unforced modes of variability may not provide an appropriate interpretation of monsoon interannual variability. Consequently, the possibility of a non-linear influence has been investigated by exploring the relationship between interannual and intraseasonal variability. As in other studies, a common mode of interannual and intraseasonal variability has been found, in this case describing the north-south transition of the TCZ associated with monsoon active/break cycles. Although seasonal-mean values of the Principal Component (PC) timeseries associated with the leading intraseasonal mode shows no significant correlation with ENSO, the 2-dimensional probability

  10. Predictability experiments for the Asian summer monsoon: Impact of SST anomalies on interannual and intraseasonal variability

    International Nuclear Information System (INIS)

    Molteni, F.; Corti, S.; Ferranti, L.; Slingo, J.M.

    2002-04-01

    The effects of SST anomalies on the interannual and intraseasonal variability of the Asian summer monsoon have been studied by multivariate statistical analyses of 850-hPa wind and rainfall yields simulated in a set of ensemble integrations of the ECMWF atmospheric GCM, referred to as the PRISM experiments. The simulations used observed SSTs (PRISM-O), covering 9 years characterised by large variations of the ENSO phenomenon in the 1980's and the early 1990's. A parallel set of simulations was also performed with climatological SSTs (PRISM-C), thus enabling the influence of SST forcing on the modes of interannual and intraseasonal variability to be investigated. As in observations, the model's interannual variability is dominated by a zonally-oriented mode which describes the north-south movement of the tropical convergence zone (TCZ). This mode appears to be independent of SST forcing and its robustness between the PRISM-O and PRISM-C simulations suggests that it is driven by internal atmospheric dynamics. On the other hand, the second mode of variability, which again has a good correspondence with observed patterns, shows a clear relationship with the ENSO cycle. Since the mode related to ENSO accounts for only a small part of the total variance, the notion of a quasi-linear superposition of forced and unforced modes of variability may not provide an appropriate interpretation of monsoon interannual variability. Consequently, the possibility of a non-linear influence has been investigated by exploring the relationship between interannual and intraseasonal variability. As in other studies, a common mode of interannual and intraseasonal variability has been found, in this case describing the north-south transition of the TCZ associated with monsoon active/break cycles. Although seasonal-mean values of the Principal Component (PC) timeseries associated with the leading intraseasonal mode shows no significant correlation with ENSO, the 2-dimensional probability

  11. Interactions Between Asian Air Pollution and Monsoon System: South Asia (ROSES-2014 ACMAP)

    Science.gov (United States)

    Pan, Xiaohua; Chin, Mian; Tao, Zhining; Kim, Dongchul; Bian, Huisheng; Kucsera, Tom

    2018-01-01

    Asia's rapid economic growth over the past several decades has brought a remarkable increase in air pollution levels in that region. High concentrations of aerosols (also known as particulate matter or PM) from pollution sources pose major health hazards to half of the world population in Asia including South Asia. How do pollution and dust aerosols regulate the monsoon circulation and rainfall via scattering and absorbing solar radiation, changing the atmospheric heating rates, and modifying the cloud properties? We conducted a series of regional model experiments with NASA-Unified Weather Research and Forecast (NUWRF) regional model with coupled aerosol-chemistry-radiation-microphysics processes over South Asia for winter, pre-monsoon, and monsoon seasons to address this question. This study investigates the worsening air quality problem in South Asia by focusing on the interactions between pollution and South Asian monsoon, not merely focusing on the increase of pollutant emissions.

  12. Evaluation of CFSV2 Forecast Skill for Indian Summer Monsoon Sub-Seasonal Characteristics

    Science.gov (United States)

    S, S. A.; Ghosh, S.

    2015-12-01

    Prediction of sub seasonal monsoon characteristics of Indian Summer Monsoon (ISM) is highly crucial for agricultural planning and water resource management. The Climate forecast System version 2 (CFS V2), the state of the art coupled climate model developed by NCEP, is currently being employed for the seasonal and extended range forecasts of ISM. Even though CFSV2 is a fully coupled ocean- atmosphere- land model with advanced physics, increased resolution and refined initialisation, its ISM forecasts, in terms of seasonal mean and variability needs improvement. Numerous works have been done for verifying the CFSV2 forecasts in terms of the seasonal mean, its mean and variability, active and break spells, and El Nino Southern Oscillation (ENSO) - monsoon interactions. Most of these works are based on either rain fall strength or rainfall based indices. Here we evaluate the skill of CFS v2 model in forecasting the various sub seasonal features of ISM, viz., the onset and withdrawal days of monsoon that are determined using circulation based indices, the Monsoon Intra Seasonal Oscillations (MISO), and Indian Ocean and Pacific Ocean sea surface temperatures. The MISO index, we use here, is based on zonal wind at 850 hPa and Outgoing Long wave Radiation (OLR) anomalies. With this work, we aim at assessing the skill of the model in simulating the large scale circulation patterns and their variabilities within the monsoon season. Variabilities in these large scale circulation patterns are primarily responsible for the variabilities in the seasonal monsoon strength and its temporal distribution across the season. We find that the model can better forecast the large scale circulation and than the actual precipitation. Hence we suggest that seasonal rainfall forecasts can be improved by the statistical downscaling of CFSV2 forecasts by incorporating the established relationships between the well forecasted large scale variables and monsoon precipitation.

  13. Mass generation in perturbed massless integrable models

    International Nuclear Information System (INIS)

    Controzzi, D.; Mussardo, G.

    2005-01-01

    We extend form-factor perturbation theory to non-integrable deformations of massless integrable models, in order to address the problem of mass generation in such systems. With respect to the standard renormalisation group analysis this approach is more suitable for studying the particle content of the perturbed theory. Analogously to the massive case, interesting information can be obtained already at first order, such as the identification of the operators which create a mass gap and those which induce the confinement of the massless particles in the perturbed theory

  14. Paradox of integration-A computational model

    Science.gov (United States)

    Krawczyk, Małgorzata J.; Kułakowski, Krzysztof

    2017-02-01

    The paradoxical aspect of integration of a social group has been highlighted by Blau (1964). During the integration process, the group members simultaneously compete for social status and play the role of the audience. Here we show that when the competition prevails over the desire of approval, a sharp transition breaks all friendly relations. However, as was described by Blau, people with high status are inclined to bother more with acceptance of others; this is achieved by praising others and revealing her/his own weak points. In our model, this action smooths the transition and improves interpersonal relations.

  15. Integrated assessment models of global climate change

    International Nuclear Information System (INIS)

    Parson, E.A.; Fisher-Vanden, K.

    1997-01-01

    The authors review recent work in the integrated assessment modeling of global climate change. This field has grown rapidly since 1990. Integrated assessment models seek to combine knowledge from multiple disciplines in formal integrated representations; inform policy-making, structure knowledge, and prioritize key uncertainties; and advance knowledge of broad system linkages and feedbacks, particularly between socio-economic and bio-physical processes. They may combine simplified representations of the socio-economic determinants of greenhouse gas emissions, the atmosphere and oceans, impacts on human activities and ecosystems, and potential policies and responses. The authors summarize current projects, grouping them according to whether they emphasize the dynamics of emissions control and optimal policy-making, uncertainty, or spatial detail. They review the few significant insights that have been claimed from work to date and identify important challenges for integrated assessment modeling in its relationships to disciplinary knowledge and to broader assessment seeking to inform policy- and decision-making. 192 refs., 2 figs

  16. COGMIR: A computer model for knowledge integration

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Z.X.

    1988-01-01

    This dissertation explores some aspects of knowledge integration, namely, accumulation of scientific knowledge and performing analogical reasoning on the acquired knowledge. Knowledge to be integrated is conveyed by paragraph-like pieces referred to as documents. By incorporating some results from cognitive science, the Deutsch-Kraft model of information retrieval is extended to a model for knowledge engineering, which integrates acquired knowledge and performs intelligent retrieval. The resulting computer model is termed COGMIR, which stands for a COGnitive Model for Intelligent Retrieval. A scheme, named query invoked memory reorganization, is used in COGMIR for knowledge integration. Unlike some other schemes which realize knowledge integration through subjective understanding by representing new knowledge in terms of existing knowledge, the proposed scheme suggests at storage time only recording the possible connection of knowledge acquired from different documents. The actual binding of the knowledge acquired from different documents is deferred to query time. There is only one way to store knowledge and numerous ways to utilize the knowledge. Each document can be represented as a whole as well as its meaning. In addition, since facts are constructed from the documents, document retrieval and fact retrieval are treated in a unified way. When the requested knowledge is not available, query invoked memory reorganization can generate suggestion based on available knowledge through analogical reasoning. This is done by revising the algorithms developed for document retrieval and fact retrieval, and by incorporating Gentner's structure mapping theory. Analogical reasoning is treated as a natural extension of intelligent retrieval, so that two previously separate research areas are combined. A case study is provided. All the components are implemented as list structures similar to relational data-bases.

  17. The effect of the Asian Monsoon to the atmospheric boundary layer over the Tibetan Plateau

    Science.gov (United States)

    Li, Maoshan; Su, Zhongbo; Chen, Xuelong; Zheng, Donghai; Sun, Fanglin; Ma, Yaoming; Hu, Zeyong

    2016-04-01

    needed temporal and spatial coupling and means for validation of mesoscale model simulations (Zhong et al., 2009, 2011). When these time series are integrated into energy balance analyses methods (Su, 2002, 2005) with reanalysis data, plateau scale diurnal radiative and turbulence fluxes can be generated (Oku et al., 2005; Su et al., 2010) for the study of the boundary layer atmospheric structures at plateau scale. As such regional land-atmosphere feedbacks and atmospheric boundary layer structures can be studied. The quantification of the multi-scale atmospheric boundary layer and land surface processes over the heterogeneous underlying surface of the Tibetan Plateau is a challenging problem that remains unsettled despite many years of efforts. Using field observation, truth investigation, land surface process parameterization and meso-scale simulation, the dynamical and thermal uniform function of the atmospheric boundary layer and its effect to the atmospheric boundary layer will be analyzed in this research. Results The different characteristics of the Boundary layer with Asia monsoon season exchange over TP The height of atmospheric boundary layer was higher before monsoon season than it in summer. It was around 3-4 km above the ground in spring, while it was 1-2 km during monsoon season. It due to sensible heat flux was stronger in spring than it in summer. Using wavelet analysis method, we decomposed the wind include horizontal and vertical velocity from radiosounding observational data. The reason of high boundary layer height was disclosed. Compared to the observation, the output of model was underestimation during spring, while it was reasonable in summer monsoon. The effect of the Asian Monsoon to the precipitation on the TP Numerical simulation of climate on the TP was implemented for the whole year of 2008 using WRF-Noah model. The output of the WRF model is compared to TRMM data set for precipitation and ERA-interim land product for soil moisture. Modeled

  18. Simulation of the anthropogenic aerosols over South Asia and their effects on Indian summer monsoon

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Zhenming [Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Beijing (China); National Climate Center, Beijing (China); Graduate University of Chinese Academy of Sciences, Beijing (China); Kang, Shichang [Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Beijing (China); Chinese Academy of Sciences, State Key Laboratory of Cryospheric Science, Lanzhou (China); Zhang, Dongfeng [Shanxi Meteorological Bureau, Taiyuan (China); Zhu, Chunzi [Nanjing University of Information Science Technology, College of Atmospheric Science, Nanjing (China); Wu, Jia; Xu, Ying [National Climate Center, Beijing (China)

    2011-05-15

    A regional climate model coupled with a chemistry-aerosol model is employed to simulate the anthropogenic aerosols including sulfate, black carbon and organic carbon and their direct effect on climate over South Asia. The model is driven by the NCAR/NCEP re-analysis data. Multi-year simulations with half, normal and double emission fluxes are conducted. Results show that the model performs well in reproducing present climate over the region. Simulations of the aerosol optical depth and surface concentration of aerosols are also reasonable although to a less extent. The negative radiative forcing is found at the top of atmosphere and largely depended on emission concentration. Surface air temperature decreases by 0.1-0.5 C both in pre-monsoon and monsoon seasons. The range and intensity of cooling areas enlarge while aerosol emission increases. Changes in precipitation are between -25 and 25%. Different diversifications of rainfall are showed with three emission scenarios. The changes of precipitation are consistent with varieties of monsoon onset dates in pre-monsoon season. In the regions of increasing precipitation, monsoon onset is advanced and vice versa. In northeast India and Myanmar, aerosols lead the India summer monsoon onset advancing 1-2 pentads, and delaying by 1-2 pentads in central and southeast India. These changes are mainly caused by the anomaly of local Hadley circulations and enhancive precipitation. Tibetan Plateau played a crucial role in the circulation changes. (orig.)

  19. Toward an Integrative Model of Global Business Strategy

    DEFF Research Database (Denmark)

    Li, Xin

    fragmentation-integration-fragmentation-integration upward spiral. In response to the call for integrative approach to strategic management research, we propose an integrative model of global business strategy that aims at integrating not only strategy and IB but also the different paradigms within the strategy...... field. We also discuss the merit and limitation of our model....

  20. CTBT Integrated Verification System Evaluation Model

    Energy Technology Data Exchange (ETDEWEB)

    Edenburn, M.W.; Bunting, M.L.; Payne, A.C. Jr.

    1997-10-01

    Sandia National Laboratories has developed a computer based model called IVSEM (Integrated Verification System Evaluation Model) to estimate the performance of a nuclear detonation monitoring system. The IVSEM project was initiated in June 1994, by Sandia`s Monitoring Systems and Technology Center and has been funded by the US Department of Energy`s Office of Nonproliferation and National Security (DOE/NN). IVSEM is a simple, top-level, modeling tool which estimates the performance of a Comprehensive Nuclear Test Ban Treaty (CTBT) monitoring system and can help explore the impact of various sensor system concepts and technology advancements on CTBT monitoring. One of IVSEM`s unique features is that it integrates results from the various CTBT sensor technologies (seismic, infrasound, radionuclide, and hydroacoustic) and allows the user to investigate synergy among the technologies. Specifically, IVSEM estimates the detection effectiveness (probability of detection) and location accuracy of the integrated system and of each technology subsystem individually. The model attempts to accurately estimate the monitoring system`s performance at medium interfaces (air-land, air-water) and for some evasive testing methods such as seismic decoupling. This report describes version 1.2 of IVSEM.

  1. Changing circulation structure and precipitation characteristics in Asian monsoon regions: greenhouse warming vs. aerosol effects

    Science.gov (United States)

    Lau, William K. M.; Kim, Kyu-Myong; Ruby Leung, L.

    2017-12-01

    Using model outputs from CMIP5 historical integrations, we have investigated the relative roles of anthropogenic emissions of greenhouse gases (GHG) and aerosols in changing the characteristics of the large-scale circulation and rainfall in Asian summer monsoon (ASM) regions. Under GHG warming, a strong positive trend in low-level moist static energy (MSE) is found over ASM regions, associated with increasing large-scale land-sea thermal contrast from 1870s to present. During the same period, a mid-tropospheric convective barrier (MCB) due to widespread reduction in relative humidity in the mid- and lower troposphere is strengthening over the ASM regions, in conjunction with expanding areas of anomalous subsidence associated with the Deep Tropical Squeeze (Lau and Kim in Proc Natl Acad Sci 12:3630-3635, 2015). The opposing effects of MSE and MCB lead to enhanced total ASM rainfall, but only a partial strengthening of the southern portion of the monsoon meridional circulation, coupled to anomalous multi-cellular overturning motions over ASM land. Including anthropogenic aerosol emissions strongly masks MSE but enhances MCB via increased stability in the lower troposphere, resulting in an overall weakened ASM circulation with suppressed rainfall. Analyses of rainfall characteristics indicate that under GHG, overall precipitation efficiency over the ASM region is reduced, manifesting in less moderate but more extreme heavy rain events. Under combined effects of GHG and aerosols, precipitation efficiency is unchanged, with more moderate, but less extreme rainfall.

  2. Using idealized snow forcing to test teleconnections with the Indian summer monsoon in the Hadley Centre GCM

    Energy Technology Data Exchange (ETDEWEB)

    Turner, A.G. [University of Reading, NCAS-Climate, Walker Institute for Climate System Research, Department of Meteorology, Reading (United Kingdom); Slingo, J.M. [University of Reading, NCAS-Climate, Walker Institute for Climate System Research, Department of Meteorology, Reading (United Kingdom); Met Office, Exeter (United Kingdom)

    2011-05-15

    Anomalous heavy snow during winter or spring has long been regarded as a possible precursor of deficient Indian monsoon rainfall during the subsequent summer. However previous work in this field is inconclusive, in terms of the mechanism that communicates snow anomalies to the monsoon summer, and even the region from which snow has the most impact. In this study we explore these issues in coupled and atmosphere-only versions of the Hadley Centre model. A 1050-year control integration of the HadCM3 coupled model, which well represents the seasonal cycle of snow cover over the Eurasian continent, is analysed and shows evidence for weakened monsoons being preceded by strong snow forcing (in the absence of ENSO) over either the Himalaya/Tibetan Plateau or north/west Eurasia regions. However, empirical orthogonal function (EOF) analysis of springtime interannual variability in snow depth shows the leading mode to have opposite signs between these two regions, suggesting that competing mechanisms may be possible. To determine the dominant region, ensemble integrations are carried out using HadAM3, the atmospheric component of HadCM3, and a variety of anomalous snow forcing initial conditions obtained from the control integration of the coupled model. Forcings are applied during spring in separate experiments over the Himalaya/Tibetan Plateau and north/west Eurasia regions, in conjunction with climatological SSTs in order to avoid the direct effects of ENSO. With the aid of idealized forcing conditions in sensitivity tests, we demonstrate that forcing from the Himalaya region is dominant in this model via a Blanford-type mechanism involving reduced surface sensible heat and longwave fluxes, reduced heating of the troposphere over the Tibetan Plateau and consequently a reduced meridional tropospheric temperature gradient which weakens the monsoon during early summer. Snow albedo is shown to be key to the mechanism, explaining around 50% of the perturbation in sensible

  3. Pedagogic process modeling: Humanistic-integrative approach

    Directory of Open Access Journals (Sweden)

    Boritko Nikolaj M.

    2007-01-01

    Full Text Available The paper deals with some current problems of modeling the dynamics of the subject-features development of the individual. The term "process" is considered in the context of the humanistic-integrative approach, in which the principles of self education are regarded as criteria for efficient pedagogic activity. Four basic characteristics of the pedagogic process are pointed out: intentionality reflects logicality and regularity of the development of the process; discreteness (stageability in dicates qualitative stages through which the pedagogic phenomenon passes; nonlinearity explains the crisis character of pedagogic processes and reveals inner factors of self-development; situationality requires a selection of pedagogic conditions in accordance with the inner factors, which would enable steering the pedagogic process. Offered are two steps for singling out a particular stage and the algorithm for developing an integrative model for it. The suggested conclusions might be of use for further theoretic research, analyses of educational practices and for realistic predicting of pedagogical phenomena. .

  4. Asian summer monsoon prediction in ECMWF System 4 and NCEP CFSv2 retrospective seasonal forecasts

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hye-Mi; Webster, Peter J.; Curry, Judith A.; Toma, Violeta E. [Georgia Institute of Technology, School of Earth and Atmospheric Science, Atlanta, GA (United States)

    2012-12-15

    The seasonal prediction skill of the Asian summer monsoon is assessed using retrospective predictions (1982-2009) from the ECMWF System 4 (SYS4) and NCEP CFS version 2 (CFSv2) seasonal prediction systems. In both SYS4 and CFSv2, a cold bias of sea-surface temperature (SST) is found over the equatorial Pacific, North Atlantic, Indian Oceans and over a broad region in the Southern Hemisphere relative to observations. In contrast, a warm bias is found over the northern part of North Pacific and North Atlantic. Excessive precipitation is found along the ITCZ, equatorial Atlantic, equatorial Indian Ocean and the maritime continent. The southwest monsoon flow and the Somali Jet are stronger in SYS4, while the south-easterly trade winds over the tropical Indian Ocean, the Somali Jet and the subtropical northwestern Pacific high are weaker in CFSv2 relative to the reanalysis. In both systems, the prediction of SST, precipitation and low-level zonal wind has greatest skill in the tropical belt, especially over the central and eastern Pacific where the influence of El Nino-Southern Oscillation (ENSO) is dominant. Both modeling systems capture the global monsoon and the large-scale monsoon wind variability well, while at the same time performing poorly in simulating monsoon precipitation. The Asian monsoon prediction skill increases with the ENSO amplitude, although the models simulate an overly strong impact of ENSO on the monsoon. Overall, the monsoon predictive skill is lower than the ENSO skill in both modeling systems but both systems show greater predictive skill compared to persistence. (orig.)

  5. Seasonally asymmetric transition of the Asian monsoon in response to ice age boundary conditions

    Energy Technology Data Exchange (ETDEWEB)

    Ueda, Hiroaki; Kuroki, Harumitsu; Kamae, Youichi [University of Tsukuba, Graduate School of Life and Environmental Sciences, Tsukuba, Ibaraki (Japan); Ohba, Masamichi [Central Research Institute of Electric Power Industry, Environmental Science Research Laboratory, Abiko (Japan)

    2011-12-15

    Modulation of a monsoon under glacial forcing is examined using an atmosphere-ocean coupled general circulation model (AOGCM) following the specifications established by Paleoclimate Modelling Intercomparison Project phase 2 (PMIP2) to understand the air-sea-land interaction under different climate forcing. Several sensitivity experiments are performed in response to individual changes in the continental ice sheet, orbital parameters, and sea surface temperature (SST) in the Last Glacial Maximum (LGM: 21 ka) to evaluate the driving mechanisms for the anomalous seasonal evolution of the monsoon. Comparison of the model results in the LGM with the pre-industrial (PI) simulation shows that the Arabian Sea and Bay of Bengal are characterized by enhancement of pre-monsoon convection despite a drop in the SST encompassing the globe, while the rainfall is considerably suppressed in the subsequent monsoon period. In the LGM winter relative to the PI, anomalies in the meridional temperature gradient (MTG) between the Asian continents minus the tropical oceans become positive and are consistent with the intensified pre-monsoon circulation. The enhanced MTG anomalies can be explained by a decrease in the condensation heating relevant to the suppressed tropical convection as well as positive insolation anomalies in the higher latitude, showing an opposing view to a warmer future climate. It is also evident that a latitudinal gradient in the SST across the equator plays an important role in the enhancement of pre-monsoon rainfall. As for the summer, the sensitivity experiments imply that two ice sheets over the northern hemisphere cools the air temperature over the Asian continent, which is consistent with the reduction of MTG involved in the attenuated monsoon. The surplus pre-monsoon convection causes a decrease in the SST through increased heat loss from the ocean surface; in other words, negative ocean feedback is also responsible for the subsequent weakening of summer

  6. Site descriptive modelling - strategy for integrated evaluation

    International Nuclear Information System (INIS)

    Andersson, Johan

    2003-02-01

    The current document establishes the strategy to be used for achieving sufficient integration between disciplines in producing Site Descriptive Models during the Site Investigation stage. The Site Descriptive Model should be a multidisciplinary interpretation of geology, rock mechanics, thermal properties, hydrogeology, hydrogeochemistry, transport properties and ecosystems using site investigation data from deep bore holes and from the surface as input. The modelling comprise the following iterative steps, evaluation of primary data, descriptive and quantitative modelling (in 3D), overall confidence evaluation. Data are first evaluated within each discipline and then the evaluations are checked between the disciplines. Three-dimensional modelling (i.e. estimating the distribution of parameter values in space and its uncertainty) is made in a sequence, where the geometrical framework is taken from the geological model and in turn used by the rock mechanics, thermal and hydrogeological modelling etc. The three-dimensional description should present the parameters with their spatial variability over a relevant and specified scale, with the uncertainty included in this description. Different alternative descriptions may be required. After the individual discipline modelling and uncertainty assessment a phase of overall confidence evaluation follows. Relevant parts of the different modelling teams assess the suggested uncertainties and evaluate the feedback. These discussions should assess overall confidence by, checking that all relevant data are used, checking that information in past model versions is considered, checking that the different kinds of uncertainty are addressed, checking if suggested alternatives make sense and if there is potential for additional alternatives, and by discussing, if appropriate, how additional measurements (i.e. more data) would affect confidence. The findings as well as the modelling results are to be documented in a Site Description

  7. Observational Analysis of Two Contrasting Monsoon Years

    Science.gov (United States)

    Karri, S.; Ahmad, R.; Sujata, P.; Jose, S.; Sreenivas, G.; Maurya, D. K.

    2014-11-01

    The Indian summer monsoon rainfall contributes about 75 % of the total annual rainfall and exhibits considerable interannual variations. The agricultural economy of the country depends mainly on the monsoon rainfall. The long-range forecast of the monsoon rainfall is, therefore of significant importance in agricultural planning and other economic activities of the country. There are various parameters which influence the amount of rainfall received during the monsoon. Some of the important parameters considered by the Indian Meteorological Department (IMD) for the study of monsoon are Outgoing Longwave Radiation (OLR), moisture content of the atmosphere, zonal wind speed, low level vorticity, pressure gradient etc. Compared to the Long Period Average (LPA) value of rain fall, the country as a whole received higher amount of rainfall in June, 2013 (34 % more than LPA). The same month showed considerable decrease next year as the amount of rainfall received was around 43 % less compared to LPA. This drastic difference of monsoon prompted to study the behaviour of some of the monsoon relevant parameters. In this study we have considered five atmospheric parameters as the indicators of monsoon behaviour namely vertical relative humidity, OLR, aerosol optical depth (AOD), wind at 850 hPa and mean sea level pressure (MSLP). In the initial analysis of weekly OLR difference for year 2013 and 2014 shows positive values in the month of May over north-western parts of India (region of heat low). This should result in a weaker monsoon in 2014. This is substantiated by the rainfall data received for various stations over India. Inference made based on the analysis of RH profiles coupled with AOD values is in agreement with the rainfall over the corresponding stations.

  8. Integrated Modelling in CRUCIAL Science Education

    Science.gov (United States)

    Mahura, Alexander; Nuterman, Roman; Mukhamedzhanova, Elena; Nerobelov, Georgiy; Sedeeva, Margarita; Suhodskiy, Alexander; Mostamandy, Suleiman; Smyshlyaev, Sergey

    2017-04-01

    The NordForsk CRUCIAL project (2016-2017) "Critical steps in understanding land surface - atmosphere interactions: from improved knowledge to socioeconomic solutions" as a part of the Pan-Eurasian EXperiment (PEEX; https://www.atm.helsinki.fi/peex) programme activities, is looking for a deeper collaboration between Nordic-Russian science communities. In particular, following collaboration between Danish and Russian partners, several topics were selected for joint research and are focused on evaluation of: (1) urbanization processes impact on changes in urban weather and climate on urban-subregional-regional scales and at contribution to assessment studies for population and environment; (2) effects of various feedback mechanisms on aerosol and cloud formation and radiative forcing on urban-regional scales for better predicting extreme weather events and at contribution to early warning systems, (3) environmental contamination from continues emissions and industrial accidents for better assessment and decision making for sustainable social and economic development, and (4) climatology of atmospheric boundary layer in northern latitudes to improve understanding of processes, revising parameterizations, and better weather forecasting. These research topics are realized employing the online integrated Enviro-HIRLAM (Environment - High Resolution Limited Area Model) model within students' research projects: (1) "Online integrated high-resolution modelling of Saint-Petersburg metropolitan area influence on weather and air pollution forecasting"; (2) "Modeling of aerosol impact on regional-urban scales: case study of Saint-Petersburg metropolitan area"; (3) "Regional modeling and GIS evaluation of environmental pollution from Kola Peninsula sources"; and (4) "Climatology of the High-Latitude Planetary Boundary Layer". The students' projects achieved results and planned young scientists research training on online integrated modelling (Jun 2017) will be presented and

  9. Prediction of monthly rainfall on homogeneous monsoon regions of India based on large scale circulation patterns using Genetic Programming

    Science.gov (United States)

    Kashid, Satishkumar S.; Maity, Rajib

    2012-08-01

    SummaryPrediction of Indian Summer Monsoon Rainfall (ISMR) is of vital importance for Indian economy, and it has been remained a great challenge for hydro-meteorologists due to inherent complexities in the climatic systems. The Large-scale atmospheric circulation patterns from tropical Pacific Ocean (ENSO) and those from tropical Indian Ocean (EQUINOO) are established to influence the Indian Summer Monsoon Rainfall. The information of these two large scale atmospheric circulation patterns in terms of their indices is used to model the complex relationship between Indian Summer Monsoon Rainfall and the ENSO as well as EQUINOO indices. However, extracting the signal from such large-scale indices for modeling such complex systems is significantly difficult. Rainfall predictions have been done for 'All India' as one unit, as well as for five 'homogeneous monsoon regions of India', defined by Indian Institute of Tropical Meteorology. Recent 'Artificial Intelligence' tool 'Genetic Programming' (GP) has been employed for modeling such problem. The Genetic Programming approach is found to capture the complex relationship between the monthly Indian Summer Monsoon Rainfall and large scale atmospheric circulation pattern indices - ENSO and EQUINOO. Research findings of this study indicate that GP-derived monthly rainfall forecasting models, that use large-scale atmospheric circulation information are successful in prediction of All India Summer Monsoon Rainfall with correlation coefficient as good as 0.866, which may appears attractive for such a complex system. A separate analysis is carried out for All India Summer Monsoon rainfall for India as one unit, and five homogeneous monsoon regions, based on ENSO and EQUINOO indices of months of March, April and May only, performed at end of month of May. In this case, All India Summer Monsoon Rainfall could be predicted with 0.70 as correlation coefficient with somewhat lesser Correlation Coefficient (C.C.) values for different

  10. SWIM (Soil and Water Integrated Model)

    Energy Technology Data Exchange (ETDEWEB)

    Krysanova, V; Wechsung, F; Arnold, J; Srinivasan, R; Williams, J

    2000-12-01

    The model SWIM (Soil and Water Integrated Model) was developed in order to provide a comprehensive GIS-based tool for hydrological and water quality modelling in mesoscale and large river basins (from 100 to 10,000 km{sup 2}), which can be parameterised using regionally available information. The model was developed for the use mainly in Europe and temperate zone, though its application in other regions is possible as well. SWIM is based on two previously developed tools - SWAT and MATSALU (see more explanations in section 1.1). The model integrates hydrology, vegetation, erosion, and nutrient dynamics at the watershed scale. SWIM has a three-level disaggregation scheme 'basin - sub-basins - hydrotopes' and is coupled to the Geographic Information System GRASS (GRASS, 1993). A robust approach is suggested for the nitrogen and phosphorus modelling in mesoscale watersheds. SWIM runs under the UNIX environment. Model test and validation were performed sequentially for hydrology, crop growth, nitrogen and erosion in a number of mesoscale watersheds in the German part of the Elbe drainage basin. A comprehensive scheme of spatial disaggregation into sub-basins and hydrotopes combined with reasonable restriction on a sub-basin area allows performing the assessment of water resources and water quality with SWIM in mesoscale river basins. The modest data requirements represent an important advantage of the model. Direct connection to land use and climate data provides a possibility to use the model for analysis of climate change and land use change impacts on hydrology, agricultural production, and water quality. (orig.)

  11. Integrated Model for E-Learning Acceptance

    Science.gov (United States)

    Ramadiani; Rodziah, A.; Hasan, S. M.; Rusli, A.; Noraini, C.

    2016-01-01

    E-learning is not going to work if the system is not used in accordance with user needs. User Interface is very important to encourage using the application. Many theories had discuss about user interface usability evaluation and technology acceptance separately, actually why we do not make it correlation between interface usability evaluation and user acceptance to enhance e-learning process. Therefore, the evaluation model for e-learning interface acceptance is considered important to investigate. The aim of this study is to propose the integrated e-learning user interface acceptance evaluation model. This model was combined some theories of e-learning interface measurement such as, user learning style, usability evaluation, and the user benefit. We formulated in constructive questionnaires which were shared at 125 English Language School (ELS) students. This research statistics used Structural Equation Model using LISREL v8.80 and MANOVA analysis.

  12. MODELS OF TECHNOLOGY ADOPTION: AN INTEGRATIVE APPROACH

    Directory of Open Access Journals (Sweden)

    Andrei OGREZEANU

    2015-06-01

    Full Text Available The interdisciplinary study of information technology adoption has developed rapidly over the last 30 years. Various theoretical models have been developed and applied such as: the Technology Acceptance Model (TAM, Innovation Diffusion Theory (IDT, Theory of Planned Behavior (TPB, etc. The result of these many years of research is thousands of contributions to the field, which, however, remain highly fragmented. This paper develops a theoretical model of technology adoption by integrating major theories in the field: primarily IDT, TAM, and TPB. To do so while avoiding mess, an approach that goes back to basics in independent variable type’s development is proposed; emphasizing: 1 the logic of classification, and 2 psychological mechanisms behind variable types. Once developed these types are then populated with variables originating in empirical research. Conclusions are developed on which types are underpopulated and present potential for future research. I end with a set of methodological recommendations for future application of the model.

  13. An Integrative Model of Internationalization Strategies

    DEFF Research Database (Denmark)

    Li, Xin; Gammelgaard, Jens

    2014-01-01

    – The OLI and the UIP models fail to include corporate entrepreneurship and managerial psychology in their analyses. We suggest that regulatory focus theory unifies the managerial strategic choice between position logic and opportunity logic. In addition, host country institutions affect this managerial......Purpose – This paper aims to critically review the ownership, location and internalization (OLI) model and the Uppsala internationalization process (UIP) framework. We suggest that the inclusion of concepts such as corporate entrepreneurship, host country institutions and regulatory focus...... in an integrated framework helps to explain firm internationalization. Design/methodology/approach – This paper is based on a review of the literature on the OLI and UIP models. In addition, it presents a conceptual model that encompasses corporate entrepreneurship, regulatory focus and institutions. Findings...

  14. Monsoonal response to mid-holocene orbital forcing in a high resolution GCM

    Directory of Open Access Journals (Sweden)

    J. H. C. Bosmans

    2012-04-01

    Full Text Available In this study, we use a sophisticated high-resolution atmosphere-ocean coupled climate model, EC-Earth, to investigate the effect of Mid-Holocene orbital forcing on summer monsoons on both hemispheres. During the Mid-Holocene (6 ka, there was more summer insolation on the Northern Hemisphere than today, which intensified the meridional temperature and pressure gradients. Over North Africa, monsoonal precipitation is intensified through increased landward monsoon winds and moisture advection as well as decreased moisture convergence over the oceans and more convergence over land compared to the pre-industrial simulation. Precipitation also extends further north as the ITCZ shifts northward in response to the stronger poleward gradient of insolation. This increase and poleward extent is stronger than in most previous ocean-atmosphere GCM simulations. In north-westernmost Africa, precipitation extends up to 35° N. Over tropical Africa, internal feedbacks completely overcome the direct warming effect of increased insolation. We also find a weakened African Easterly Jet. Over Asia, monsoonal precipitation during the Mid-Holocene is increased as well, but the response is different than over North-Africa. There is more convection over land at the expense of convection over the ocean, but precipitation does not extend further northward, monsoon winds over the ocean are weaker and the surrounding ocean does not provide more moisture. On the Southern Hemisphere, summer insolation and the poleward insolation gradient were weaker during the Mid-Holocene, resulting in a reduced South American monsoon through decreased monsoon winds and less convection, as well as an equatorward shift in the ITCZ. This study corroborates the findings of paleodata research as well as previous model studies, while giving a more detailed account of Mid-Holocene monsoons.

  15. Increases in aerosol concentrations over eastern China due to the decadal-scale weakening of the East Asian summer monsoon

    Science.gov (United States)

    Zhu, Jianlei; Liao, Hong; Li, Jianping

    2012-05-01

    China has been experiencing increased concentrations of aerosols, commonly attributed to the large increases in emissions associated with the rapid economic development. We show by using a chemical transport model driven by the assimilated meteorological fields that the observed decadal-scale weakening of the East Asian summer monsoon also contributed to the increases in aerosols in China. We find that the simulated aerosol concentrations have strong negative correlations with the strength of the East Asian Summer monsoon. Accounting for sulfate, nitrate, ammonium, black carbon, and organic carbon aerosols, the summer surface-layer PM2.5 concentration averaged over eastern China (110°-125°E, 20°-45°N) can be 17.7% higher in the weakest monsoon years than in the strongest monsoon years. The weakening of the East Asian Summer monsoon increases aerosol concentrations mainly by the changes in atmospheric circulation (the convergence of air pollutants) in eastern China.

  16. The Gold Coast Integrated Care Model

    Directory of Open Access Journals (Sweden)

    Martin Connor

    2016-07-01

    Full Text Available This article outlines the development of the Australian Gold Coast Integrated Care Model based on the elements identified in contemporary research literature as essential for successful integration of care between primary care, and acute hospital services. The objectives of the model are to proactively manage high risk patients with complex and chronic conditions in collaboration with General Practitioners to ultimately reduce presentations to the health service emergency department, improve the capacity of specialist outpatients, and decrease planned and unplanned admission rates. Central to the model is a shared care record which is maintained and accessed by staff in the Coordination Centre. We provide a process map outlining the care protocols from initial assessment to care of the patient presenting for emergency care. The model is being evaluated over a pilot three year proof of concept phase to determine economic and process perspectives. If found to be cost-effective, acceptable to patients and professionals and as good as or better than usual care in terms of outcomes, the strategic intent is to scale the programme beyond the local health service.

  17. Typological and Integrative Models of Sexual Abuse

    Directory of Open Access Journals (Sweden)

    Demidova L.Y.,

    2014-11-01

    Full Text Available We discuss the basic typological and integrative theoretical models that explain the occurrence of child sexual abuse and the differences detected among the perpetrators of crimes against sexual integrity of minors. A comprehensive review of the theoretical concepts of sexual abuse in our country, in fact has not been carried out, and in this paper for the first time we made such an attempt. It is shown that the existing notions of sexual abuse largely overlap each other, but each of the models somehow takes into account the factors not explicitly addressed in other concepts. Systematic consideration of the theoretical models of sexual abuse can generalize and systematize the available data on the mechanisms of pedophile behavior. This review provides an opportunity to develop a new benchmark in the study of sexual abuse, get closer to building the most accurate and comprehensive model. In turn, this may contribute to solving the questions about the factors, dynamics, and the prevention of criminal sexual conduct against children

  18. Global Environmental Change: An integrated modelling approach

    International Nuclear Information System (INIS)

    Den Elzen, M.

    1993-01-01

    Two major global environmental problems are dealt with: climate change and stratospheric ozone depletion (and their mutual interactions), briefly surveyed in part 1. In Part 2 a brief description of the integrated modelling framework IMAGE 1.6 is given. Some specific parts of the model are described in more detail in other Chapters, e.g. the carbon cycle model, the atmospheric chemistry model, the halocarbon model, and the UV-B impact model. In Part 3 an uncertainty analysis of climate change and stratospheric ozone depletion is presented (Chapter 4). Chapter 5 briefly reviews the social and economic uncertainties implied by future greenhouse gas emissions. Chapters 6 and 7 describe a model and sensitivity analysis pertaining to the scientific uncertainties and/or lacunae in the sources and sinks of methane and carbon dioxide, and their biogeochemical feedback processes. Chapter 8 presents an uncertainty and sensitivity analysis of the carbon cycle model, the halocarbon model, and the IMAGE model 1.6 as a whole. Part 4 presents the risk assessment methodology as applied to the problems of climate change and stratospheric ozone depletion more specifically. In Chapter 10, this methodology is used as a means with which to asses current ozone policy and a wide range of halocarbon policies. Chapter 11 presents and evaluates the simulated globally-averaged temperature and sea level rise (indicators) for the IPCC-1990 and 1992 scenarios, concluding with a Low Risk scenario, which would meet the climate targets. Chapter 12 discusses the impact of sea level rise on the frequency of the Dutch coastal defence system (indicator) for the IPCC-1990 scenarios. Chapter 13 presents projections of mortality rates due to stratospheric ozone depletion based on model simulations employing the UV-B chain model for a number of halocarbon policies. Chapter 14 presents an approach for allocating future emissions of CO 2 among regions. (Abstract Truncated)

  19. Integrated identification, modeling and control with applications

    Science.gov (United States)

    Shi, Guojun

    This thesis deals with the integration of system design, identification, modeling and control. In particular, six interdisciplinary engineering problems are addressed and investigated. Theoretical results are established and applied to structural vibration reduction and engine control problems. First, the data-based LQG control problem is formulated and solved. It is shown that a state space model is not necessary to solve this problem; rather a finite sequence from the impulse response is the only model data required to synthesize an optimal controller. The new theory avoids unnecessary reliance on a model, required in the conventional design procedure. The infinite horizon model predictive control problem is addressed for multivariable systems. The basic properties of the receding horizon implementation strategy is investigated and the complete framework for solving the problem is established. The new theory allows the accommodation of hard input constraints and time delays. The developed control algorithms guarantee the closed loop stability. A closed loop identification and infinite horizon model predictive control design procedure is established for engine speed regulation. The developed algorithms are tested on the Cummins Engine Simulator and desired results are obtained. A finite signal-to-noise ratio model is considered for noise signals. An information quality index is introduced which measures the essential information precision required for stabilization. The problems of minimum variance control and covariance control are formulated and investigated. Convergent algorithms are developed for solving the problems of interest. The problem of the integrated passive and active control design is addressed in order to improve the overall system performance. A design algorithm is developed, which simultaneously finds: (i) the optimal values of the stiffness and damping ratios for the structure, and (ii) an optimal output variance constrained stabilizing

  20. Vertically Integrated Models for Carbon Storage Modeling in Heterogeneous Domains

    Science.gov (United States)

    Bandilla, K.; Celia, M. A.

    2017-12-01

    Numerical modeling is an essential tool for studying the impacts of geologic carbon storage (GCS). Injection of carbon dioxide (CO2) into deep saline aquifers leads to multi-phase flow (injected CO2 and resident brine), which can be described by a set of three-dimensional governing equations, including mass-balance equation, volumetric flux equations (modified Darcy), and constitutive equations. This is the modeling approach on which commonly used reservoir simulators such as TOUGH2 are based. Due to the large density difference between CO2 and brine, GCS models can often be simplified by assuming buoyant segregation and integrating the three-dimensional governing equations in the vertical direction. The integration leads to a set of two-dimensional equations coupled with reconstruction operators for vertical profiles of saturation and pressure. Vertically-integrated approaches have been shown to give results of comparable quality as three-dimensional reservoir simulators when applied to realistic CO2 injection sites such as the upper sand wedge at the Sleipner site. However, vertically-integrated approaches usually rely on homogeneous properties over the thickness of a geologic layer. Here, we investigate the impact of general (vertical and horizontal) heterogeneity in intrinsic permeability, relative permeability functions, and capillary pressure functions. We consider formations involving complex fluvial deposition environments and compare the performance of vertically-integrated models to full three-dimensional models for a set of hypothetical test cases consisting of high permeability channels (streams) embedded in a low permeability background (floodplains). The domains are randomly generated assuming that stream channels can be represented by sinusoidal waves in the plan-view and by parabolas for the streams' cross-sections. Stream parameters such as width, thickness and wavelength are based on values found at the Ketzin site in Germany. Results from the

  1. Testing an integral conceptual model of frailty.

    Science.gov (United States)

    Gobbens, Robbert J; van Assen, Marcel A; Luijkx, Katrien G; Schols, Jos M

    2012-09-01

    This paper is a report of a study conducted to test three hypotheses derived from an integral conceptual model of frailty.   The integral model of frailty describes the pathway from life-course determinants to frailty to adverse outcomes. The model assumes that life-course determinants and the three domains of frailty (physical, psychological, social) affect adverse outcomes, the effect of disease(s) on adverse outcomes is mediated by frailty, and the effect of frailty on adverse outcomes depends on the life-course determinants. In June 2008 a questionnaire was sent to a sample of community-dwelling people, aged 75 years and older (n = 213). Life-course determinants and frailty were assessed using the Tilburg frailty indicator. Adverse outcomes were measured using the Groningen activity restriction scale, the WHOQOL-BREF and questions regarding healthcare utilization. The effect of seven self-reported chronic diseases was examined. Life-course determinants, chronic disease(s), and frailty together explain a moderate to large part of the variance of the seven continuous adverse outcomes (26-57%). All these predictors together explained a significant part of each of the five dichotomous adverse outcomes. The effect of chronic disease(s) on all 12 adverse outcomes was mediated at least partly by frailty. The effect of frailty domains on adverse outcomes did not depend on life-course determinants. Our finding that the adverse outcomes are differently and uniquely affected by the three domains of frailty (physical, psychological, social), and life-course determinants and disease(s), emphasizes the importance of an integral conceptual model of frailty. © 2011 Blackwell Publishing Ltd.

  2. Relationship between summer monsoon rainfall and cyclogenesis ...

    Indian Academy of Sciences (India)

    relationship between Indian Ocean Dipole Mode. Index (IODMI) and the ... 2013) in the cyclogenesis over north Indian Ocean ..... Indian summer monsoon; J. Climate 17 3141–3155. ... Murakami H, Wang B and Kitoh A 2011 Future change.

  3. Hypnosis, suggestion, and suggestibility: an integrative model.

    Science.gov (United States)

    Lynn, Steven Jay; Laurence, Jean-Roch; Kirsch, Irving

    2015-01-01

    This article elucidates an integrative model of hypnosis that integrates social, cultural, cognitive, and neurophysiological variables at play both in and out of hypnosis and considers their dynamic interaction as determinants of the multifaceted experience of hypnosis. The roles of these variables are examined in the induction and suggestion stages of hypnosis, including how they are related to the experience of involuntariness, one of the hallmarks of hypnosis. It is suggested that studies of the modification of hypnotic suggestibility; cognitive flexibility; response sets and expectancies; the default-mode network; and the search for the neurophysiological correlates of hypnosis, more broadly, in conjunction with research on social psychological variables, hold much promise to further understanding of hypnosis.

  4. A watershed model to integrate EO data

    Science.gov (United States)

    Jauch, Eduardo; Chambel-Leitao, Pedro; Carina, Almeida; Brito, David; Cherif, Ines; Alexandridis, Thomas; Neves, Ramiro

    2013-04-01

    MOHID LAND is a open source watershed model developed by MARETEC and is part of the MOHID Framework. It integrates four mediums (or compartments): porous media, surface, rivers and atmosphere. The movement of water between these mediums are based on mass and momentum balance equations. The atmosphere medium is not explicity simulated. Instead, it's used as boundary condition to the model through meteorological properties: precipitation, solar radiation, wind speed/direction, relative humidity and air temperature. The surface medium includes the overland runoff and vegetation growth processes and is simulated using a 2D grid. The porous media includes both the unsaturated (soil) and saturated zones (aquifer) and is simulated using a 3D grid. The river flow is simulated through a 1D drainage network. All these mediums are linked through evapotranspiration and flow exchanges (infiltration, river-soil growndwater flow, surface-river overland flow). Besides the water movement, it is also possible to simulate water quality processes and solute/sediment transport. Model setup include the definition of the geometry and the properties of each one of its compartments. After the setup of the model, the only continuous input data that MOHID LAND requires are the atmosphere properties (boundary conditions) that can be provided as timeseries or spacial data. MOHID LAND has been adapted the last 4 years under FP7 and ESA projects to integrate Earth Observation (EO) data, both variable in time and in space. EO data can be used to calibrate/validate or as input/assimilation data to the model. The currently EO data used include LULC (Land Use Land Cover) maps, LAI (Leaf Area Index) maps, EVTP (Evapotranspiration) maps and SWC (Soil Water Content) maps. Model results are improved by the EO data, but the advantage of this integration is that the model can still run without the EO data. This means that model do not stop due to unavailability of EO data and can run on a forecast mode

  5. Impacts of Aerosol-Monsoon Interaction on Rainfall and Circulation over Northern India and the Himalaya Foothills

    Science.gov (United States)

    Lau, William K. M.; Kim, Kyu-Myong; Shi, Jainn-Jong; Matsui, T.; Chin, M.; Tan, Qian; Peters-Lidard, C.; Tao, W. K.

    2016-01-01

    The boreal summer of 2008 was unusual for the Indian monsoon, featuring exceptional heavy loading of dust aerosols over the Arabian Sea and northern-central India, near normal all- India rainfall, but excessive heavy rain, causing disastrous flooding in the Northern Indian Himalaya Foothills (NIHF) regions, accompanied by persistent drought conditions in central and southern India. Using NASA Unified-physics Weather Research Forecast (NUWRF) model with fully interactive aerosol physics and dynamics, we carried out three sets of 7-day ensemble model forecast experiments: 1) control with no aerosol, 2) aerosol radiative effect only and 3) aerosol radiative and aerosol-cloud-microphysics effects, to study the impacts of aerosol monsoon interactions on monsoon variability over the NIHF during the summer of 2008. Results show that aerosol-radiation interaction (ARI), i.e., dust aerosol transport, and dynamical feedback processes induced by aerosol-radiative heating, plays a key role in altering the large scale monsoon circulation system, reflected by an increased north-south tropospheric temperature gradient, a northward shift of heavy monsoon rainfall, advancing the monsoon onset by 1-5 days over the HF, consistent with the EHP hypothesis (Lau et al. 2006). Additionally, we found that dust aerosols, via the semi-direct effect, increase atmospheric stability, and cause the dissipation of a developing monsoon onset cyclone over northeastern India northern Bay of Bengal. Eventually, in a matter of several days, ARI transforms the developing monsoon cyclone into mesoscale convective cells along the HF slopes. Aerosol-Cloud-microphysics Interaction (ACI) further enhances the ARI effect in invigorating the deep convection cells and speeding up the transformation processes. Results indicate that even in short-term (up to weekly) numerical forecasting of monsoon circulation and rainfall, effects of aerosol-monsoon interaction can be substantial and cannot be ignored.

  6. A mechanism for land-ocean contrasts in global monsoon trends in a warming climate

    Energy Technology Data Exchange (ETDEWEB)

    Fasullo, J. [National Center for Atmospheric Research, CAS/NCAR, Boulder, CO (United States)

    2012-09-15

    A central paradox of the global monsoon record involves reported decreases in rainfall over land during an era in which the global hydrologic cycle is both expected and observed to intensify. It is within this context that this work develops a physical basis for both interpreting the observed record and anticipating changes in the monsoons in a warming climate while bolstering the concept of the global monsoon in the context of shared feedbacks. The global-land monsoon record across multiple reanalyses is first assessed. Trends that in other studies have been taken as real are shown to likely be spurious as a result of changes in the assimilated data streams both prior to and during the satellite era. Nonetheless, based on satellite estimates, robust increases in monsoon rainfall over ocean do exist and a physical basis for this land-ocean contrast remains lacking. To address the contrast's causes, simulated trends are therefore assessed. While projections of total rainfall are inconsistent across models, the robust land-ocean contrast identified in observations is confirmed. A feedback mechanism is proposed rooted in the facts that land areas warm disproportionately relative to ocean, and onshore flow is the chief source of monsoonal moisture. Reductions in lower tropospheric relative humidity over land domains are therefore inevitable and these have direct consequences for the monsoonal convective environment including an increase in the lifting condensation level and a shift in the distribution of convection generally towards less frequent and potentially more intense events. The mechanism is interpreted as an important modulating influence on the ''rich-get-richer'' mechanism. Caveats for regional monsoons exist and are discussed. (orig.)

  7. Regional trends in early-monsoon rainfall over Vietnam and CCSM4 attribution

    Science.gov (United States)

    Li, R.; Wang, S. S.-Y.; Gillies, R. R.; Buckley, B. M.; Yoon, J.-H.; Cho, C.

    2018-04-01

    The analysis of precipitation trends for Vietnam revealed that early-monsoon precipitation has increased over the past three decades but to varying degrees over the northern, central and southern portions of the country. Upon investigation, it was found that the change in early-monsoon precipitation is associated with changes in the low-level cyclonic airflow over the South China Sea and Indochina that is embedded in the large-scale atmospheric circulation associated with a "La Niña-like" anomalous sea surface temperature pattern with warming in the western Pacific and Indian Oceans and cooling in the eastern Pacific. The Community Climate System Model version 4 (CCSM4) was subsequently used for an attribution analysis. Over northern Vietnam an early-monsoon increase in precipitation is attributed to changes in both greenhouse gases and natural forcing. For central Vietnam, the observed increase in early-monsoon precipitation is reproduced by the simulation forced with greenhouse gases. However, over southern Vietnam the early-monsoon precipitation increase is less definitive where aerosols were seen to be preponderant but natural forcing through the role of the Interdecadal Pacific Oscillation may well be a factor that is not resolved by CCSM4. Increased early-monsoonal precipitation over the coastal lowland and deltas has the potential to amplify economic and human losses.

  8. Effect of Floodplain Inundation on River Pollution in Taiwan's Strong Monsoonal Climate

    Science.gov (United States)

    Hester, E. T.; Lin, A. Y. C.

    2017-12-01

    River-floodplain interaction provides important benefits such as flood mitigation, provision of ecological habitat, and improved water quality. Human actions have historically reduced such interaction and associated benefits by diking, floodplain fill, and river regulation. In response, floodplain restoration has become popular in North America and Europe, but is less practiced in Asia. In Taiwan, unusually strong monsoons and steep terrain alter floodplain dynamics relative to elsewhere around the world, and provide a unique environment for floodplain management. We used numerical models of flow, transport, and reaction in river channels and floodplains to quantify the effect of river-floodplain interaction on water quality in Taiwan's strong monsoon and high topographic relief. We conducted sensitivity analyses of parameters such as river slope, monsoon severity, reservoir operation mode, degree of floodplain reconnection, contaminant reaction rate, and contaminant reaction type on floodplain connectivity and contaminant mitigation. We found significant differences in floodplain hydraulics and residence times in Taiwan's steep monsoonal environment relative to the shallower non-monsoonal environment typical of the eastern USA, with significant implications for water quality. For example, greater flashiness of floodplain inundation in Taiwan provides greater challenges for reconnecting sufficient floodplain volume to handle monsoonal runoff. Yet longer periods when floodplains are reliably dry means that such lands may have greater value for seasonal use such as parks or agriculture. The potential for floodplain restoration in Taiwan is thus significant, but qualitatively different than in the eastern USA.

  9. Multiscale sampling model for motion integration.

    Science.gov (United States)

    Sherbakov, Lena; Yazdanbakhsh, Arash

    2013-09-30

    Biologically plausible strategies for visual scene integration across spatial and temporal domains continues to be a challenging topic. The fundamental question we address is whether classical problems in motion integration, such as the aperture problem, can be solved in a model that samples the visual scene at multiple spatial and temporal scales in parallel. We hypothesize that fast interareal connections that allow feedback of information between cortical layers are the key processes that disambiguate motion direction. We developed a neural model showing how the aperture problem can be solved using different spatial sampling scales between LGN, V1 layer 4, V1 layer 6, and area MT. Our results suggest that multiscale sampling, rather than feedback explicitly, is the key process that gives rise to end-stopped cells in V1 and enables area MT to solve the aperture problem without the need for calculating intersecting constraints or crafting intricate patterns of spatiotemporal receptive fields. Furthermore, the model explains why end-stopped cells no longer emerge in the absence of V1 layer 6 activity (Bolz & Gilbert, 1986), why V1 layer 4 cells are significantly more end-stopped than V1 layer 6 cells (Pack, Livingstone, Duffy, & Born, 2003), and how it is possible to have a solution to the aperture problem in area MT with no solution in V1 in the presence of driving feedback. In summary, while much research in the field focuses on how a laminar architecture can give rise to complicated spatiotemporal receptive fields to solve problems in the motion domain, we show that one can reframe motion integration as an emergent property of multiscale sampling achieved concurrently within lamina and across multiple visual areas.

  10. Organizational buying behavior: An integrated model

    Directory of Open Access Journals (Sweden)

    Rakić Beba

    2002-01-01

    Full Text Available Organizational buying behavior is decision making process by which formal organizations establish the need for purchased products and services, and identify, evaluate, and choose among alternative brands and suppliers. Understanding the buying decision processes is essential to developing the marketing programs of companies that sell to organizations, or to 'industrial customers'. In business (industrial marketing, exchange relationships between the organizational selling center and the organizational buying center are crucial. Integrative model of organizational buying behavior offers a systematic framework in analyzing the complementary factors and what effect they have on the behavior of those involved in making buying decisions.

  11. Differential and Integral Models of TOKAMAK

    Directory of Open Access Journals (Sweden)

    Ivo Dolezel

    2004-01-01

    Full Text Available Modeling of 3D electromagnetic phenomena in TOKAMAK with typically distributed main and additional coils is not an easy business. Evaluated must be not only distribution of the magnetic field, but also forces acting in particular coils. Use of differential methods (such as FDM or FEM for this purpose may be complicated because of geometrical incommensurability of particular subregions in the investigated area or problems with the boundary conditions. That is why integral formulation of the problem may sometimes be an advantages. The theoretical analysis is illustrated on an example processed by both methods, whose results are compared and discussed.

  12. INTEGRATED SPEED ESTIMATION MODEL FOR MULTILANE EXPREESSWAYS

    Science.gov (United States)

    Hong, Sungjoon; Oguchi, Takashi

    In this paper, an integrated speed-estimation model is developed based on empirical analyses for the basic sections of intercity multilane expressway un der the uncongested condition. This model enables a speed estimation for each lane at any site under arb itrary highway-alignment, traffic (traffic flow and truck percentage), and rainfall conditions. By combin ing this model and a lane-use model which estimates traffic distribution on the lanes by each vehicle type, it is also possible to es timate an average speed across all the lanes of one direction from a traffic demand by vehicle type under specific highway-alignment and rainfall conditions. This model is exp ected to be a tool for the evaluation of traffic performance for expressways when the performance me asure is travel speed, which is necessary for Performance-Oriented Highway Planning and Design. Regarding the highway-alignment condition, two new estimators, called effective horizo ntal curvature and effective vertical grade, are proposed in this paper which take into account the influence of upstream and downstream alignment conditions. They are applied to the speed-estimation model, and it shows increased accuracy of the estimation.

  13. Integrated Modeling of Complex Optomechanical Systems

    Science.gov (United States)

    Andersen, Torben; Enmark, Anita

    2011-09-01

    Mathematical modeling and performance simulation are playing an increasing role in large, high-technology projects. There are two reasons; first, projects are now larger than they were before, and the high cost calls for detailed performance prediction before construction. Second, in particular for space-related designs, it is often difficult to test systems under realistic conditions beforehand, and mathematical modeling is then needed to verify in advance that a system will work as planned. Computers have become much more powerful, permitting calculations that were not possible before. At the same time mathematical tools have been further developed and found acceptance in the community. Particular progress has been made in the fields of structural mechanics, optics and control engineering, where new methods have gained importance over the last few decades. Also, methods for combining optical, structural and control system models into global models have found widespread use. Such combined models are usually called integrated models and were the subject of this symposium. The objective was to bring together people working in the fields of groundbased optical telescopes, ground-based radio telescopes, and space telescopes. We succeeded in doing so and had 39 interesting presentations and many fruitful discussions during coffee and lunch breaks and social arrangements. We are grateful that so many top ranked specialists found their way to Kiruna and we believe that these proceedings will prove valuable during much future work.

  14. Treatment of pathological gambling - integrative systemic model.

    Science.gov (United States)

    Mladenović, Ivica; Lažetić, Goran; Lečić-Toševski, Dušica; Dimitrijević, Ivan

    2015-03-01

    Pathological gambling was classified under impulse control disorders within the International Classification of Diseases (ICD-10) (WHO 1992), but the most recent Diagnostic and Statistical Manual, 5th edition (DSM-V), (APA 2013), has recognized pathological gambling as a first disorder within a new diagnostic category of behavioral addictions - Gambling disorder. Pathological gambling is a disorder in progression, and we hope that our experience in the treatment of pathological gambling in the Daily Hospital for Addictions at The Institute of Mental Health, through the original "Integrative - systemic model" would be of use to colleagues, dealing with this pathology. This model of treatment of pathological gambling is based on multi-systemic approach and it primarily represents an integration of family and cognitive-behavioral therapy, with traces of psychodynamic, existential and pharmacotherapy. The model is based on the book "Pathological gambling - with self-help manual" by Dr Mladenovic and Dr Lazetic, and has been designed in the form of a program that lasts 10 weeks in the intensive phase, and then continues for two years in the form of "extended treatment" ("After care"). The intensive phase is divided into three segments: educational, insight with initial changes and analysis of the achieved changes with the definition of plans and areas that need to be addressed in the extended treatment. "Extended treatment" lasts for two years in the form of group therapy, during which there is a second order change of the identified patient, but also of other family members. Pathological gambling has been treated in the form of systemic-family therapy for more than 10 years at the Institute of Mental Health (IMH), in Belgrade. For second year in a row the treatment is carried out by the modern "Integrative-systemic model". If abstinence from gambling witihin the period of one year after completion of the intensive phase of treatment is taken as the main criterion of

  15. Learning models for multi-source integration

    Energy Technology Data Exchange (ETDEWEB)

    Tejada, S.; Knoblock, C.A.; Minton, S. [Univ. of Southern California/ISI, Marina del Rey, CA (United States)

    1996-12-31

    Because of the growing number of information sources available through the internet there are many cases in which information needed to solve a problem or answer a question is spread across several information sources. For example, when given two sources, one about comic books and the other about super heroes, you might want to ask the question {open_quotes}Is Spiderman a Marvel Super Hero?{close_quotes} This query accesses both sources; therefore, it is necessary to have information about the relationships of the data within each source and between sources to properly access and integrate the data retrieved. The SIMS information broker captures this type of information in the form of a model. All the information sources map into the model providing the user a single interface to multiple sources.

  16. Regional simulation of Indian summer monsoon intraseasonal oscillations at gray-zone resolution

    Science.gov (United States)

    Chen, Xingchao; Pauluis, Olivier M.; Zhang, Fuqing

    2018-01-01

    Simulations of the Indian summer monsoon by the cloud-permitting Weather Research and Forecasting (WRF) model at gray-zone resolution are described in this study, with a particular emphasis on the model ability to capture the monsoon intraseasonal oscillations (MISOs). Five boreal summers are simulated from 2007 to 2011 using the ERA-Interim reanalysis as the lateral boundary forcing data. Our experimental setup relies on a horizontal grid spacing of 9 km to explicitly simulate deep convection without the use of cumulus parameterizations. When compared to simulations with coarser grid spacing (27 km) and using a cumulus scheme, the 9 km simulations reduce the biases in mean precipitation and produce more realistic low-frequency variability associated with MISOs. Results show that the model at the 9 km gray-zone resolution captures the salient features of the summer monsoon. The spatial distributions and temporal evolutions of monsoon rainfall in the WRF simulations verify qualitatively well against observations from the Tropical Rainfall Measurement Mission (TRMM), with regional maxima located over Western Ghats, central India, Himalaya foothills, and the west coast of Myanmar. The onset, breaks, and withdrawal of the summer monsoon in each year are also realistically captured by the model. The MISO-phase composites of monsoon rainfall, low-level wind, and precipitable water anomalies in the simulations also agree qualitatively with the observations. Both the simulations and observations show a northeastward propagation of the MISOs, with the intensification and weakening of the Somali Jet over the Arabian Sea during the active and break phases of the Indian summer monsoon.

  17. Dynamics and Composition of the Asian Summer Monsoon Anticyclone

    Science.gov (United States)

    Gottschaldt, K. D.; Schlager, H.; Baumann, R.; Bozem, H.; Cai, D. S.; Eyring, V.; Hoor, P. M.; Graf, P.; Joeckel, P.; Jurkat, T.; Voigt, C.; Grewe, V.; Zahn, A.; Ziereis, H.

    2017-12-01

    This study places trace gas observations in the upper-tropospheric Asian summer monsoon anticyclone (ASMA) obtained with the HALO research aircraft during the ESMVal campaign into the context of regional, intra-annual variability by hindcasts with the EMAC model. The simulations demonstrate that tropospheric trace gas profiles in the monsoon season are distinct from the rest of the year. Air uplifted from the lower troposphere to the tropopause layer dominates the eastern part of the ASMA's interior, while the western part is characterized by subsidence down to the mid-troposphere. Soluble compounds are being washed out when uplifted by convection in the eastern part, where lightning simultaneously replenishes reactive nitrogen in the upper troposphere. Net photochemical ozone production is significantly enhanced in the ASMA, contrasted by an ozone depleting regime in the mid-troposphere and more neutral conditions in autumn and winter. An analysis of multiple monsoon seasons in the simulation shows that stratospherically influenced tropopause layer air is regularly entrained at the eastern ASMA flank, and then transported in the southern fringe around the interior region. Observed and simulated tracer-tracer relations reflect photochemical O3 production, as well as in-mixing from the lower troposphere and the tropopause layer. The simulation additionally shows entrainment of clean air from the equatorial region by northerly winds at the western ASMA flank. Although the in situ measurements were performed towards the end of summer, the main ingredients needed for their interpretation are present throughout the monsoon season.Subseasonal dynamical instabilities of the ASMA effectively overcome horizontal transport barriers, occur quite frequently, and are of paramount importance for the trace gas composition of the ASMA and its outflow into regions around the world.

  18. Gauge theories and integrable lattice models

    International Nuclear Information System (INIS)

    Witten, E.

    1989-01-01

    Investigations of new knot polynomials discovered in the last few years have shown them to be intimately connected with soluble models of two dimensional lattice statistical mechanics. In this paper, these results, which in time may illuminate the whole question of why integrable lattice models exist, are reconsidered from the point of view of three dimensional gauge theory. Expectation values of Wilson lines in three dimensional Chern-Simons gauge theories can be computed by evaluating the partition functions of certain lattice models on finite graphs obtained by projecting the Wilson lines to the plane. The models in question - previously considered in both the knot theory and statistical mechanics literature - are IRF models in which the local Boltzmann weights are the matrix elements of braiding matrices in rational conformal field theories. These matrix elements, in turn, can be represented in three dimensional gauge theory in terms of the expectation value of a certain tetrahedral configuration of Wilson lines. This representation makes manifest a surprising symmetry of the braiding matrix elements in conformal field theory. (orig.)

  19. Identification of tipping elements of the Indian Summer Monsoon using climate network approach

    Science.gov (United States)

    Stolbova, Veronika; Surovyatkina, Elena; Kurths, Jurgen

    2015-04-01

    Spatial and temporal variability of the rainfall is a vital question for more than one billion of people inhabiting the Indian subcontinent. Indian Summer Monsoon (ISM) rainfall is crucial for India's economy, social welfare, and environment and large efforts are being put into predicting the Indian Summer Monsoon. For predictability of the ISM, it is crucial to identify tipping elements - regions over the Indian subcontinent which play a key role in the spatial organization of the Indian monsoon system. Here, we use climate network approach for identification of such tipping elements of the ISM. First, we build climate networks of the extreme rainfall, surface air temperature and pressure over the Indian subcontinent for pre-monsoon, monsoon and post-monsoon seasons. We construct network of extreme rainfall event using observational satellite data from 1998 to 2012 from the Tropical Rainfall Measuring Mission (TRMM 3B42V7) and reanalysis gridded daily rainfall data for a time period of 57 years (1951-2007) (Asian Precipitation Highly Resolved Observational Data Integration Towards the Evaluation of Water Resources, APHRODITE). For the network of surface air temperature and pressure fields, we use re-analysis data provided by the National Center for Environmental Prediction and National Center for Atmospheric Research (NCEP/NCAR). Second, we filter out data by coarse-graining the network through network measures, and identify tipping regions of the ISM. Finally, we compare obtained results of the network analysis with surface wind fields and show that occurrence of the tipping elements is mostly caused by monsoonal wind circulation, migration of the Intertropical Convergence Zone (ITCZ) and Westerlies. We conclude that climate network approach enables to select the most informative regions for the ISM, providing realistic description of the ISM dynamics with fewer data, and also help to identify tipping regions of the ISM. Obtained tipping elements deserve a

  20. A numerical study of the South China Sea Warm Current during winter monsoon relaxation

    Science.gov (United States)

    Zhang, Cong; Ding, Yang; Bao, Xianwen; Bi, Congcong; Li, Ruixiang; Zhang, Cunjie; Shen, Biao; Wan, Kai

    2018-03-01

    Using a Finite-Volume Community Ocean Model, we investigated the dynamic mechanism of the South China Sea Warm Current (SCSWC) in the northern South China Sea (NSCS) during winter monsoon relaxation. The model reproduces the mean surface circulation of the NSCS during winter, while model-simulated subtidal currents generally capture its current pattern. The model shows that the current over the continental shelf is generally southwestward, under a strong winter monsoon condition, but a northeastward counter-wind current usually develops between 50-and 100-m isobaths, when the monsoon relaxes. Model experiments, focusing on the wind relaxation process, show that sea level is elevated in the northwestern South China Sea (SCS), related to the persistent northeasterly monsoon. Following wind relaxation, a high sea level band builds up along the mid-shelf, and a northeastward current develops, having an obvious vertical barotropic structure. Momentum balance analysis indicates that an along-shelf pressure gradient provides the initial driving force for the SCSWC during the first few days following wind relaxation. The SCSWC subsequently reaches a steady quasi-geostrophic balance in the cross-shelf direction, mainly linked to sea level adjustment over the shelf. Lagrangian particle tracking experiments show that both the southwestward coastal current and slope current contribute to the northeastward movement of the SCSWC during winter monsoon relaxation.

  1. Advances in NLTE Modeling for Integrated Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Scott, H A; Hansen, S B

    2009-07-08

    The last few years have seen significant progress in constructing the atomic models required for non-local thermodynamic equilibrium (NLTE) simulations. Along with this has come an increased understanding of the requirements for accurately modeling the ionization balance, energy content and radiative properties of different elements for a wide range of densities and temperatures. Much of this progress is the result of a series of workshops dedicated to comparing the results from different codes and computational approaches applied to a series of test problems. The results of these workshops emphasized the importance of atomic model completeness, especially in doubly excited states and autoionization transitions, to calculating ionization balance, and the importance of accurate, detailed atomic data to producing reliable spectra. We describe a simple screened-hydrogenic model that calculates NLTE ionization balance with surprising accuracy, at a low enough computational cost for routine use in radiation-hydrodynamics codes. The model incorporates term splitting, {Delta}n = 0 transitions, and approximate UTA widths for spectral calculations, with results comparable to those of much more detailed codes. Simulations done with this model have been increasingly successful at matching experimental data for laser-driven systems and hohlraums. Accurate and efficient atomic models are just one requirement for integrated NLTE simulations. Coupling the atomic kinetics to hydrodynamics and radiation transport constrains both discretizations and algorithms to retain energy conservation, accuracy and stability. In particular, the strong coupling between radiation and populations can require either very short timesteps or significantly modified radiation transport algorithms to account for NLTE material response. Considerations such as these continue to provide challenges for NLTE simulations.

  2. Integrated Safety Culture Model and Application

    Institute of Scientific and Technical Information of China (English)

    汪磊; 孙瑞山; 刘汉辉

    2009-01-01

    A new safety culture model is constructed and is applied to analyze the correlations between safety culture and SMS. On the basis of previous typical definitions, models and theories of safety culture, an in-depth analysis on safety culture's structure, composing elements and their correlations was conducted. A new definition of safety culture was proposed from the perspective of sub-cuhure. 7 types of safety sub-culture, which are safety priority culture, standardizing culture, flexible culture, learning culture, teamwork culture, reporting culture and justice culture were defined later. Then integrated safety culture model (ISCM) was put forward based on the definition. The model divided safety culture into intrinsic latency level and extrinsic indication level and explained the potential relationship between safety sub-culture and all safety culture dimensions. Finally in the analyzing of safety culture and SMS, it concluded that positive safety culture is the basis of im-plementing SMS effectively and an advanced SMS will improve safety culture from all around.

  3. Integrated multiscale modeling of molecular computing devices

    International Nuclear Information System (INIS)

    Cummings, Peter T; Leng Yongsheng

    2005-01-01

    Molecular electronics, in which single organic molecules are designed to perform the functions of transistors, diodes, switches and other circuit elements used in current siliconbased microelecronics, is drawing wide interest as a potential replacement technology for conventional silicon-based lithographically etched microelectronic devices. In addition to their nanoscopic scale, the additional advantage of molecular electronics devices compared to silicon-based lithographically etched devices is the promise of being able to produce them cheaply on an industrial scale using wet chemistry methods (i.e., self-assembly from solution). The design of molecular electronics devices, and the processes to make them on an industrial scale, will require a thorough theoretical understanding of the molecular and higher level processes involved. Hence, the development of modeling techniques for molecular electronics devices is a high priority from both a basic science point of view (to understand the experimental studies in this field) and from an applied nanotechnology (manufacturing) point of view. Modeling molecular electronics devices requires computational methods at all length scales - electronic structure methods for calculating electron transport through organic molecules bonded to inorganic surfaces, molecular simulation methods for determining the structure of self-assembled films of organic molecules on inorganic surfaces, mesoscale methods to understand and predict the formation of mesoscale patterns on surfaces (including interconnect architecture), and macroscopic scale methods (including finite element methods) for simulating the behavior of molecular electronic circuit elements in a larger integrated device. Here we describe a large Department of Energy project involving six universities and one national laboratory aimed at developing integrated multiscale methods for modeling molecular electronics devices. The project is funded equally by the Office of Basic

  4. Integrated core-edge-divertor modeling studies

    International Nuclear Information System (INIS)

    Stacey, W.M.

    2001-01-01

    An integrated calculation model for simulating the interaction of physics phenomena taking place in the plasma core, in the plasma edge and in the SOL and divertor of tokamaks has been developed and applied to study such interactions. The model synthesises a combination of numerical calculations (1) the power and particle balances for the core plasma, using empirical confinement scaling laws and taking into account radiation losses (2), the particle, momentum and power balances in the SOL and divertor, taking into account the effects of radiation and recycling neutrals, (3) the transport of feeling and recycling neutrals, explicitly representing divertor and pumping geometry, and (4) edge pedestal gradient scale lengths and widths, evaluation of theoretical predictions (5) confinement degradation due to thermal instabilities in the edge pedestals, (6) detachment and divertor MARFE onset, (7) core MARFE onsets leading to a H-L transition, and (8) radiative collapse leading to a disruption and evaluation of empirical fits (9) power thresholds for the L-H and H-L transitions and (10) the width of the edge pedestals. The various components of the calculation model are coupled and must be iterated to a self-consistent convergence. The model was developed over several years for the purpose of interpreting various edge phenomena observed in DIII-D experiments and thereby, to some extent, has been benchmarked against experiment. Because the model treats the interactions of various phenomena in the core, edge and divertor, yet is computationally efficient, it lends itself to the investigation of the effects of different choices of various edge plasma operating conditions on overall divertor and core plasma performance. Studies of the effect of feeling location and rate, divertor geometry, plasma shape, pumping and over 'edge parameters' on core plasma properties (line average density, confinement, density limit, etc.) have been performed for DIII-D model problems. A

  5. Deep learning for predicting the monsoon over the homogeneous regions of India

    Science.gov (United States)

    Saha, Moumita; Mitra, Pabitra; Nanjundiah, Ravi S.

    2017-06-01

    Indian monsoon varies in its nature over the geographical regions. Predicting the rainfall not just at the national level, but at the regional level is an important task. In this article, we used a deep neural network, namely, the stacked autoencoder to automatically identify climatic factors that are capable of predicting the rainfall over the homogeneous regions of India. An ensemble regression tree model is used for monsoon prediction using the identified climatic predictors. The proposed model provides forecast of the monsoon at a long lead time which supports the government to implement appropriate policies for the economic growth of the country. The monsoon of the central, north-east, north-west, and south-peninsular India regions are predicted with errors of 4.1%, 5.1%, 5.5%, and 6.4%, respectively. The identified predictors show high skill in predicting the regional monsoon having high variability. The proposed model is observed to be competitive with the state-of-the-art prediction models.

  6. Interaction of Convective Organization and Monsoon Precipitation, Atmosphere, Surface and Sea (INCOMPASS)

    Science.gov (United States)

    Turner, A. G.; Bhat, G. S.; Evans, J. G.; Madan, R.; Marsham, J. H.; Martin, G.; Mitra, A. K.; Mrudula, G.; Parker, D. J.; Pattnaik, S.; Rajagopal, E. N.; Taylor, C.; Tripathi, S. N.

    2016-12-01

    INCOMPASS will build on a field and aircraft measurement campaign from the 2016 monsoon onset to better understand and predict monsoon rainfall. The monsoon supplies the majority of water in South Asia, however modelling and forecasting the monsoon from days to the season ahead is limited by large model errors that develop quickly. Likely problems lie in physical parametrizations such as convection, the boundary layer and land surface. At the same time, lack of detailed observations prevents more thorough understanding of monsoon circulation and its interaction with the land surface; a process governed by boundary layer and convective cloud dynamics. From May to July 2016, INCOMPASS used a modified BAe-146 jet aircraft operated by the UK Facility for Airborne Atmospheric Measurements (FAAM), for the first project of this scale in India. The India and UK team flew around 100 hours of science sorties from bases in northern and southern India. Flights from Lucknow in the northern plains took measurements to the west and southeast to allow sampling of the complete contrast from dry desert air to the humid environment over the north Bay of Bengal. These routes were repeated in the pre-monsoon and monsoon phases, measuring contrasting surface and boundary layer structures. In addition, flights from the southern base in Bengaluru measured contrasts from the Arabian Sea, across the intense rains of the Western Ghats mountains, over the rain shadow in southeast India and over the southern Bay of Bengal. Flight planning was performed with the aid of forecasts from a new UK Met Office 4km limited area model. INCOMPASS also installed a network of surface flux towers, as well as operating a cloud-base ceilometer and performing intensive radiosonde launches from a supersite in Kanpur. This presentation will outline preliminary results from the field campaign including new observations of the surface, boundary layer structure and atmospheric profiles together with detailed

  7. Key Issues for Seamless Integrated Chemistry–Meteorology Modeling

    Science.gov (United States)

    Online coupled meteorology–atmospheric chemistry models have greatly evolved in recent years. Although mainly developed by the air quality modeling community, these integrated models are also of interest for numerical weather prediction and climate modeling, as they can con...

  8. Modelling Spark Integration in Science Classroom

    Directory of Open Access Journals (Sweden)

    Marie Paz E. Morales

    2014-02-01

    Full Text Available The study critically explored how a PASCO-designed technology (SPARK ScienceLearning System is meaningfully integrated into the teaching of selected topics in Earth and Environmental Science. It highlights on modelling the effectiveness of using the SPARK Learning System as a primary tool in learning science that leads to learning and achievement of the students. Data and observation gathered and correlation of the ability of the technology to develop high intrinsic motivation to student achievement were used to design framework on how to meaningfully integrate SPARK ScienceLearning System in teaching Earth and Environmental Science. Research instruments used in this study were adopted from standardized questionnaires available from literature. Achievement test and evaluation form were developed and validated for the purpose of deducing data needed for the study. Interviews were done to delve into the deeper thoughts and emotions of the respondents. Data from the interviews served to validate all numerical data culled from this study. Cross-case analysis of the data was done to reveal some recurring themes, problems and benefits derived by the students in using the SPARK Science Learning System to further establish its effectiveness in the curriculum as a forerunner to the shift towards the 21st Century Learning.

  9. Schizophrenia: an integrated sociodevelopmental-cognitive model

    Science.gov (United States)

    Howes, Oliver D; Murray, Robin M

    2014-01-01

    Schizophrenia remains a major burden1. The dopamine (DA) and neurodevelopmental hypotheses attempt to explain the pathogenic mechanisms and origins of the disorder respectively2-4. Recently an alternative, the cognitive model, has gained popularity5. However the first two theories have not been satisfactorily integrated, and the most influential iteration of the cognitive model makes no mention of DA, neurodevelopment, or indeed the brain5. Here we show that developmental alterations secondary to variant genes, early hazards to the brain and childhood adversity, sensitise the DA system, and result in excessive presynaptic DA synthesis and DA release. Social adversity biases the cognitive schema that the individual uses to interpret experiences towards paranoid interpretations. Subsequent stress results in dysregulated DA release, causing the misattribution of salience to stimuli, which are then misinterpreted by the biased cognitive processes. The resulting paranoia and hallucinations in turn cause further stress, and eventually repeated DA dysregulation hard-wires the psychotic beliefs. Finally we consider the implications of this model for understanding and treating schizophrenia. PMID:24315522

  10. The asymmetric effects of El Niño and La Niña on the East Asian winter monsoon and their simulation by CMIP5 atmospheric models

    Science.gov (United States)

    Guo, Zhun; Zhou, Tianjun; Wu, Bo

    2017-02-01

    El Niño-Southern Oscillation (ENSO) events significantly affect the year-by-year variations of the East Asian winter monsoon (EAWM). However, the effect of La Niña events on the EAWM is not a mirror image of that of El Niño events. Although the EAWM becomes generally weaker during El Niño events and stronger during La Niña winters, the enhanced precipitation over the southeastern China and warmer surface air temperature along the East Asian coastline during El Niño years are more significant. These asymmetric effects are caused by the asymmetric longitudinal positions of the western North Pacific (WNP) anticyclone during El Niño events and the WNP cyclone during La Niña events; specifically, the center of the WNP cyclone during La Niña events is westward-shifted relative to its El Niño counterpart. This central-position shift results from the longitudinal shift of remote El Niño and La Niña anomalous heating, and asymmetry in the amplitude of local sea surface temperature anomalies over the WNP. However, such asymmetric effects of ENSO on the EAWM are barely reproduced by the atmospheric models of Phase 5 of the Coupled Model Intercomparison Project (CMIP5), although the spatial patterns of anomalous circulations are reasonably reproduced. The major limitation of the CMIP5 models is an overestimation of the anomalous WNP anticyclone/cyclone, which leads to stronger EAWM rainfall responses. The overestimated latent heat flux anomalies near the South China Sea and the northern WNP might be a key factor behind the overestimated anomalous circulations.

  11. Prediction of a thermodynamic wave train from the monsoon to the Arctic following extreme rainfall events

    Science.gov (United States)

    Krishnamurti, T. N.; Kumar, Vinay

    2017-04-01

    This study addresses numerical prediction of atmospheric wave trains that provide a monsoonal link to the Arctic ice melt. The monsoonal link is one of several ways that heat is conveyed to the Arctic region. This study follows a detailed observational study on thermodynamic wave trains that are initiated by extreme rain events of the northern summer south Asian monsoon. These wave trains carry large values of heat content anomalies, heat transports and convergence of flux of heat. These features seem to be important candidates for the rapid melt scenario. This present study addresses numerical simulation of the extreme rains, over India and Pakistan, and the generation of thermodynamic wave trains, simulations of large heat content anomalies, heat transports along pathways and heat flux convergences, potential vorticity and the diabatic generation of potential vorticity. We compare model based simulation of many features such as precipitation, divergence and the divergent wind with those evaluated from the reanalysis fields. We have also examined the snow and ice cover data sets during and after these events. This modeling study supports our recent observational findings on the monsoonal link to the rapid Arctic ice melt of the Canadian Arctic. This numerical modeling suggests ways to interpret some recent episodes of rapid ice melts that may require a well-coordinated field experiment among atmosphere, ocean, ice and snow cover scientists. Such a well-coordinated study would sharpen our understanding of this one component of the ice melt, i.e. the monsoonal link, which appears to be fairly robust.

  12. Extended Range Prediction of Indian Summer Monsoon: Current status

    Science.gov (United States)

    Sahai, A. K.; Abhilash, S.; Borah, N.; Joseph, S.; Chattopadhyay, R.; S, S.; Rajeevan, M.; Mandal, R.; Dey, A.

    2014-12-01

    The main focus of this study is to develop forecast consensus in the extended range prediction (ERP) of monsoon Intraseasonal oscillations using a suit of different variants of Climate Forecast system (CFS) model. In this CFS based Grand MME prediction system (CGMME), the ensemble members are generated by perturbing the initial condition and using different configurations of CFSv2. This is to address the role of different physical mechanisms known to have control on the error growth in the ERP in the 15-20 day time scale. The final formulation of CGMME is based on 21 ensembles of the standalone Global Forecast System (GFS) forced with bias corrected forecasted SST from CFS, 11 low resolution CFST126 and 11 high resolution CFST382. Thus, we develop the multi-model consensus forecast for the ERP of Indian summer monsoon (ISM) using a suite of different variants of CFS model. This coordinated international effort lead towards the development of specific tailor made regional forecast products over Indian region. Skill of deterministic and probabilistic categorical rainfall forecast as well the verification of large-scale low frequency monsoon intraseasonal oscillations has been carried out using hindcast from 2001-2012 during the monsoon season in which all models are initialized at every five days starting from 16May to 28 September. The skill of deterministic forecast from CGMME is better than the best participating single model ensemble configuration (SME). The CGMME approach is believed to quantify the uncertainty in both initial conditions and model formulation. Main improvement is attained in probabilistic forecast which is because of an increase in the ensemble spread, thereby reducing the error due to over-confident ensembles in a single model configuration. For probabilistic forecast, three tercile ranges are determined by ranking method based on the percentage of ensemble members from all the participating models falls in those three categories. CGMME further

  13. Monsoon signatures in recent corals from the Laccadive Islands

    Digital Repository Service at National Institute of Oceanography (India)

    Naqvi, S.A.S.

    X-radiographs of the coral (Porites sp.) collected from several atolls of Lakshadweep show alternate bands of low and high density, formed in non-monsoon period and monsoon period, respectively. The results reveal annual density variations as well...

  14. Hydrography of the Wadge bank - premonsoon and monsoon seasons

    Digital Repository Service at National Institute of Oceanography (India)

    RamaRaju, V.S.; Rao, T.V.N.; RameshBabu, V.; Anto, A.F.

    The hydrography of the Wadge Bank during premonsoon and monsoon seasons is presented. The thermocline slopes downward towards the central region. Upwelling is prominent in the entire region during monsoon and is observed only in the western...

  15. The monsoon system: Land-sea breeze or the ITCZ?

    Science.gov (United States)

    Gadgil, Sulochana

    2018-02-01

    For well over 300 years, the monsoon has been considered to be a gigantic land-sea breeze driven by the land-ocean contrast in surface temperature. In this paper, this hypothesis and its implications for the variability of the monsoon are discussed and it is shown that the observations of monsoon variability do not support this popular theory of the monsoon. An alternative hypothesis (whose origins can be traced to Blanford's (1886) remarkably perceptive analysis) in which the basic system responsible for the Indian summer monsoon is considered to be the Intertropical Convergence Zone (ITCZ) or the equatorial trough, is then examined and shown to be consistent with the observations. The implications of considering the monsoon as a manifestation of the seasonal migration of the ITCZ for the variability of the Indian summer monsoon and for identification of the monsoonal regions of the world are briefly discussed.

  16. Climatic Changes and Evaluation of Their Effects on Agriculture in Asian Monsoon Region- A project of GRENE-ei programs in Japan

    Science.gov (United States)

    Mizoguchi, M.; Matsumoto, J.; Takahashi, H. G.; Tanaka, K.; Kuwagata, T.

    2015-12-01

    It is important to predict climate change correctly in regional scale and to build adaptation measures and mitigation measures in the Asian monsoon region where more than 60 % of the world's population are living. The reliability of climate change prediction model is evaluated by the reproducibility of past climate in general. However, because there are many developing countries in the Asian monsoon region, adequate documentations of past climate which are needed to evaluate the climate reproducibility have not been prepared. In addition, at present it is difficult to get information on wide-area agricultural meteorological data which affect the growth of agricultural crops when considering the impact on agriculture of climate. Therefore, we have started a research project entitled "Climatic changes and evaluation of their effects on agriculture in Asian monsoon region (CAAM)" under the research framework of the Green Network of Excellence (GRENE) for the Japanese fiscal years from 2011 to 2015 supported by the Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT). This project aims to improve the reliability of future climate prediction and to develop the information platform which will be useful to design adaptation and mitigation strategies in agriculture against the predicted climatic changes in Asian monsoon regions. What is GRENE?Based on the new growth strategy which was approved by the Cabinet of Japan in June 2010, Green Network of Excellence program (GRENE) has started under MEXT from FY 2011. The objectives of this program are that the domestic leading universities work together strategically and promote a comprehensive human resource development and research of the highest level in the world while sharing research resources and research goals. In the field of environmental information, it is required that universities and research institutions, which are working on issues such as adaptation to climate change, cooperate to

  17. Integrated soft sensor model for flow control.

    Science.gov (United States)

    Aijälä, G; Lumley, D

    2006-01-01

    Tighter discharge permits often require wastewater treatment plants to maximize utilization of available facilities in order to cost-effectively reach these goals. Important aspects are minimizing internal disturbances and using available information in a smart way to improve plant performance. In this study, flow control throughout a large highly automated wastewater treatment plant (WWTP) was implemented in order to reduce internal disturbances and to provide a firm foundation for more advanced process control. A modular flow control system was constructed based on existing instrumentation and soft sensor flow models. Modules were constructed for every unit process in water treatment and integrated into a plant-wide model. The flow control system is used to automatically control recirculation flows and bypass flows at the plant. The system was also successful in making accurate flow estimations at points in the plant where it is not possible to have conventional flow meter instrumentation. The system provides fault detection for physical flow measuring devices. The module construction allows easy adaptation for new unit processes added to the treatment plant.

  18. Integrated Environmental Modelling: Human decisions, human challenges

    Science.gov (United States)

    Glynn, Pierre D.

    2015-01-01

    Integrated Environmental Modelling (IEM) is an invaluable tool for understanding the complex, dynamic ecosystems that house our natural resources and control our environments. Human behaviour affects the ways in which the science of IEM is assembled and used for meaningful societal applications. In particular, human biases and heuristics reflect adaptation and experiential learning to issues with frequent, sharply distinguished, feedbacks. Unfortunately, human behaviour is not adapted to the more diffusely experienced problems that IEM typically seeks to address. Twelve biases are identified that affect IEM (and science in general). These biases are supported by personal observations and by the findings of behavioural scientists. A process for critical analysis is proposed that addresses some human challenges of IEM and solicits explicit description of (1) represented processes and information, (2) unrepresented processes and information, and (3) accounting for, and cognizance of, potential human biases. Several other suggestions are also made that generally complement maintaining attitudes of watchful humility, open-mindedness, honesty and transparent accountability. These suggestions include (1) creating a new area of study in the behavioural biogeosciences, (2) using structured processes for engaging the modelling and stakeholder communities in IEM, and (3) using ‘red teams’ to increase resilience of IEM constructs and use.

  19. World Integrated Nuclear Evaluation System: Model documentation

    International Nuclear Information System (INIS)

    1991-12-01

    The World Integrated Nuclear Evaluation System (WINES) is an aggregate demand-based partial equilibrium model used by the Energy Information Administration (EIA) to project long-term domestic and international nuclear energy requirements. WINES follows a top-down approach in which economic growth rates, delivered energy demand growth rates, and electricity demand are projected successively to ultimately forecast total nuclear generation and nuclear capacity. WINES could be potentially used to produce forecasts for any country or region in the world. Presently, WINES is being used to generate long-term forecasts for the United States, and for all countries with commercial nuclear programs in the world, excluding countries located in centrally planned economic areas. Projections for the United States are developed for the period from 2010 through 2030, and for other countries for the period starting in 2000 or 2005 (depending on the country) through 2010. EIA uses a pipeline approach to project nuclear capacity for the period between 1990 and the starting year for which the WINES model is used. This approach involves a detailed accounting of existing nuclear generating units and units under construction, their capacities, their actual or estimated time of completion, and the estimated date of retirements. Further detail on this approach can be found in Appendix B of Commercial Nuclear Power 1991: Prospects for the United States and the World

  20. Integrated modelling of near field and engineered barrier system processes

    International Nuclear Information System (INIS)

    Lamont, A.; Gansemer, J.

    1994-01-01

    The Yucca Mountain Integrating Model (YMIM) is an integrated model of the Engineered barrier System has been developed to assist project managers at LLNL in identifying areas where research emphasis should be placed. The model was designed to be highly modular so that a model of an individual process could be easily modified or replaced without interfering with the models of other processes. The modules modelling container failure and the dissolution of nuclides include particularly detailed, temperature dependent models of their corresponding processes

  1. Business Model Innovation: An Integrative Conceptual Framework

    Directory of Open Access Journals (Sweden)

    Bernd Wirtz

    2017-01-01

    Full Text Available Purpose: The point of departure of this exploratory study is the gap between the increasing importance of business model innovation (BMI in science and management and the limited conceptual assistance available. Therefore, the study identi es and explores scattered BMI insights and deduces them into an integrative framework to enhance our understanding about this phenomenon and to present a helpful guidance for researchers and practitioners. Design/Methodology/Approach: The study identi es BMI insights through a literature-based investigation and consolidates them into an integrative BMI framework that presents the key elements and dimensions of BMI as well as their presumed relationships. Findings: The study enhances our understanding about the key elements and dimensions of BMI, presents further conceptual insights into the BMI phenomenon, supplies implications for science and management, and may serve as a helpful guidance for future research. Practical Implications: The presented framework provides managers with a tool to identify critical BMI issues and can serve as a conceptual BMI guideline. Research limitations: Given the vast amount of academic journals, it is unlikely that every applicable scienti c publication is included in the analysis. The illustrative examples are descriptive in nature, and thus do not provide empirical validity. Several implications for future research are provided. Originality/Value: The study’s main contribution lies in the unifying approach of the dispersed BMI knowledge. Since our understanding of BMI is still limited, this study should provide the necessary insights and conceptual assistance to further develop the concept and guide its practical application.

  2. Future changes in Asian summer monsoon precipitation extremes as inferred from 20-km AGCM simulations

    Science.gov (United States)

    Lui, Yuk Sing; Tam, Chi-Yung; Lau, Ngar-Cheung

    2018-04-01

    This study examines the impacts of climate change on precipitation extremes in the Asian monsoon region during boreal summer, based on simulations from the 20-km Meteorological Research Institute atmospheric general circulation model. The model can capture the summertime monsoon rainfall, with characteristics similar to those from Tropical Rainfall Measuring Mission and Asian Precipitation-Highly-Resolved Observational Data Integration Towards Evaluation. By comparing the 2075-2099 with the present-day climate simulations, there is a robust increase of the mean rainfall in many locations due to a warmer climate. Over southeastern China, the Baiu rainband, Bay of Bengal and central India, extreme precipitation rates are also enhanced in the future, which can be inferred from increases of the 95th percentile of daily precipitation, the maximum accumulated precipitation in 5 consecutive days, the simple daily precipitation intensity index, and the scale parameter of the fitted gamma distribution. In these regions, with the exception of the Baiu rainband, most of these metrics give a fractional change of extreme rainfall per degree increase of the lower-tropospheric temperature of 5 to 8.5% K-1, roughly consistent with the Clausius-Clapeyron relation. However, over the Baiu area extreme precipitation change scales as 3.5% K-1 only. We have also stratified the rainfall data into those associated with tropical cyclones (TC) and those with other weather systems. The AGCM gives an increase of the accumulated TC rainfall over southeastern China, and a decrease in southern Japan in the future climate. The latter can be attributed to suppressed TC occurrence in southern Japan, whereas increased accumulated rainfall over southeastern China is due to more intense TC rain rate under global warming. Overall, non-TC weather systems are the main contributor to enhanced precipitation extremes in various locations. In the future, TC activities over southeastern China tend to further

  3. Samdrup Jongkhar Initiative : a Model of Integrated Ecologically ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Samdrup Jongkhar Initiative : a Model of Integrated Ecologically-friendly ... which endeavors to integrate social, economic, cultural and environmental objectives. ... Brown Cloud penetrates Bhutan : ambient air quality and trans-boundary ...

  4. Integrated corporate structure life cycle management modeling and organization

    OpenAIRE

    Naumenko, M.; Morozova, L.

    2011-01-01

    Integrated business structure presented as complementary pool of its participants skills. The methodical approach to integrated business structure life cycle modeling proposed. Recommendations of enterprises life cycles stages correlate are submitted.

  5. On the shortening of Indian summer monsoon season in a warming scenario

    Science.gov (United States)

    Sabeerali, C. T.; Ajayamohan, R. S.

    2018-03-01

    Assessing the future projections of the length of rainy season (LRS) has paramount societal impact considering its potential to alter the seasonal mean rainfall over the Indian subcontinent. Here, we explored the projections of LRS using both historical and Representative Concentration Pathways 8.5 (RCP8.5) simulations of the Coupled Model Intercomparison Project Phase5 (CMIP5). RCP8.5 simulations project shortening of the LRS of Indian summer monsoon by altering the timing of onset and withdrawal dates. Most CMIP5 RCP8.5 model simulations indicate a faster warming rate over the western tropical Indian Ocean compared to other regions of the Indian Ocean. It is found that the pronounced western Indian Ocean warming and associated increase in convection results in warmer upper troposphere over the Indian Ocean compared to the Indian subcontinent, reducing the meridional gradient in upper tropospheric temperature (UTT) over the Asian summer monsoon (ASM) domain. The weakening of the meridional gradient in UTT induces weakening of easterly vertical wind shear over the ASM domain during first and last phase of monsoon, facilitate delayed (advanced) monsoon onset (withdrawal) dates, ensues the shortening of LRS of the Indian summer monsoon in a warming scenario.

  6. Simulation of monsoon intraseasonal variability in NCEP CFSv2 and its role on systematic bias

    Science.gov (United States)

    Goswami, Bidyut B.; Deshpande, Medha; Mukhopadhyay, P.; Saha, Subodh K.; Rao, Suryachandra A.; Murthugudde, Raghu; Goswami, B. N.

    2014-11-01

    We have evaluated the simulation of Indian summer monsoon and its intraseasonal oscillations in the National Centers for Environmental Prediction climate forecast system model version 2 (CFSv2). The dry bias over the Indian landmass in the mean monsoon rainfall is one of the major concerns. In spite of this dry bias, CFSv2 shows a reasonable northward propagation of convection at intraseasonal (30-60 day) time scale. In order to document and understand this dry bias over the Indian landmass in CFSv2 simulations, a two pronged investigation is carried out on the two major facets of Indian summer monsoon: one, the air-sea interactions and two, the large scale vertical heating structure in the model. Our analysis shows a possible bias in the co-evolution of convection and sea surface temperature in CFSv2 over the equatorial Indian Ocean. It is also found that the simulated large scale vertical heat source (Q1) and moisture sink (Q2) over the Indian region are biased relative to observational estimates. Finally, this study provides a possible explanation for the dry precipitation bias over the Indian landmass in the simulated mean monsoon on the basis of the biases associated with the simulated ocean-atmospheric processes and the vertical heating structure. This study also throws some light on the puzzle of CFSv2 exhibiting a reasonable northward propagation at the intraseasonal time scale (30-60 day) despite a drier monsoon over the Indian land mass.

  7. Changes of extreme precipitation and nonlinear influence of climate variables over monsoon region in China

    KAUST Repository

    Gao, Tao

    2017-07-19

    The El Niño-Southern Oscillation (ENSO), Indian Ocean Dipole (IOD), North Atlantic Oscillation (NAO), Atlantic Multidecadal Oscillation (AMO) and Pacific decadal oscillation (PDO) are well understood to be major drivers for the variability of precipitation extremes over monsoon regions in China (MRC). However, research on monsoon extremes in China and their associations with climate variables is limited. In this study, we examine the space-time variations of extreme precipitation across the MRC, and assess the time-varying influences of the climate drivers using Bayesian dynamic linear regression and their combined nonlinear effects through fitting generalized additive models. Results suggest that the central-east and south China is dominated by less frequent but more intense precipitation. Extreme rainfalls show significant positive trends, coupled with a significant decline of dry spells, indicating an increasing chance of occurrence of flood-induced disasters in the MRC during 1960–2014. Majority of the regional indices display some abrupt shifts during the 1990s. The influences of climate variables on monsoon extremes exhibit distinct interannual or interdecadal variations. IOD, ENSO and AMO have strong impacts on monsoon and extreme precipitation, especially during the 1990s, which is generally consistent with the abrupt shifts in precipitation regimes around this period. Moreover, ENSO mainly affects moderate rainfalls and dry spells, while IOD has a more significant impact on precipitation extremes. These findings could be helpful for improving the forecasting of monsoon extremes in China and the evaluations of climate models.

  8. Model-integrating software components engineering flexible software systems

    CERN Document Server

    Derakhshanmanesh, Mahdi

    2015-01-01

    In his study, Mahdi Derakhshanmanesh builds on the state of the art in modeling by proposing to integrate models into running software on the component-level without translating them to code. Such so-called model-integrating software exploits all advantages of models: models implicitly support a good separation of concerns, they are self-documenting and thus improve understandability and maintainability and in contrast to model-driven approaches there is no synchronization problem anymore between the models and the code generated from them. Using model-integrating components, software will be

  9. Anomalous behaviour of the Indian summer monsoon 2009

    Indian Academy of Sciences (India)

    The Indian subcontinent witnessed a severe monsoon drought in the year 2009. India as a whole received. 77% of its long period average during summer monsoon season (1 June to 30 September) of 2009, which is the third highest deficient all India monsoon season rainfall year during the period 1901–2009. Therefore,.

  10. Integrated Space Asset Management Database and Modeling

    Science.gov (United States)

    MacLeod, Todd; Gagliano, Larry; Percy, Thomas; Mason, Shane

    2015-01-01

    Effective Space Asset Management is one key to addressing the ever-growing issue of space congestion. It is imperative that agencies around the world have access to data regarding the numerous active assets and pieces of space junk currently tracked in orbit around the Earth. At the center of this issues is the effective management of data of many types related to orbiting objects. As the population of tracked objects grows, so too should the data management structure used to catalog technical specifications, orbital information, and metadata related to those populations. Marshall Space Flight Center's Space Asset Management Database (SAM-D) was implemented in order to effectively catalog a broad set of data related to known objects in space by ingesting information from a variety of database and processing that data into useful technical information. Using the universal NORAD number as a unique identifier, the SAM-D processes two-line element data into orbital characteristics and cross-references this technical data with metadata related to functional status, country of ownership, and application category. The SAM-D began as an Excel spreadsheet and was later upgraded to an Access database. While SAM-D performs its task very well, it is limited by its current platform and is not available outside of the local user base. Further, while modeling and simulation can be powerful tools to exploit the information contained in SAM-D, the current system does not allow proper integration options for combining the data with both legacy and new M&S tools. This paper provides a summary of SAM-D development efforts to date and outlines a proposed data management infrastructure that extends SAM-D to support the larger data sets to be generated. A service-oriented architecture model using an information sharing platform named SIMON will allow it to easily expand to incorporate new capabilities, including advanced analytics, M&S tools, fusion techniques and user interface for

  11. Non-linear regime shifts in Holocene Asian monsoon variability: potential impacts on cultural change and migratory patterns

    Science.gov (United States)

    Donges, J. F.; Donner, R. V.; Marwan, N.; Breitenbach, S. F. M.; Rehfeld, K.; Kurths, J.

    2015-05-01

    The Asian monsoon system is an important tipping element in Earth's climate with a large impact on human societies in the past and present. In light of the potentially severe impacts of present and future anthropogenic climate change on Asian hydrology, it is vital to understand the forcing mechanisms of past climatic regime shifts in the Asian monsoon domain. Here we use novel recurrence network analysis techniques for detecting episodes with pronounced non-linear changes in Holocene Asian monsoon dynamics recorded in speleothems from caves distributed throughout the major branches of the Asian monsoon system. A newly developed multi-proxy methodology explicitly considers dating uncertainties with the COPRA (COnstructing Proxy Records from Age models) approach and allows for detection of continental-scale regime shifts in the complexity of monsoon dynamics. Several epochs are characterised by non-linear regime shifts in Asian monsoon variability, including the periods around 8.5-7.9, 5.7-5.0, 4.1-3.7, and 3.0-2.4 ka BP. The timing of these regime shifts is consistent with known episodes of Holocene rapid climate change (RCC) and high-latitude Bond events. Additionally, we observe a previously rarely reported non-linear regime shift around 7.3 ka BP, a timing that matches the typical 1.0-1.5 ky return intervals of Bond events. A detailed review of previously suggested links between Holocene climatic changes in the Asian monsoon domain and the archaeological record indicates that, in addition to previously considered longer-term changes in mean monsoon intensity and other climatic parameters, regime shifts in monsoon complexity might have played an important role as drivers of migration, pronounced cultural changes, and the collapse of ancient human societies.

  12. Indian monsoon variations during three contrasting climatic periods: the Holocene, Heinrich Stadial 2 and the last interglacial-glacial transition

    Science.gov (United States)

    Zorzi, Coralie; Fernanda Sanchez Goñi, Maria; Anupama, Krishnamurthy; Prasad, Srinivasan; Hanquiez, Vincent; Johnson, Joel; Giosan, Liviu

    2016-04-01

    In contrast to the East Asian and African monsoons the Indian monsoon is still poorly documented throughout the last climatic cycle (last 135,000 years). Pollen analysis from two marine sediment cores (NGHP-01-16A and NGHP-01-19B) collected from the offshore Godavari and Mahanadi basins, both located in the Core Monsoon Zone (CMZ) reveals changes in Indian summer monsoon variability and intensity during three contrasting climatic periods: the Holocene, the Heinrich Stadial (HS) 2 and the Marine Isotopic Stage (MIS) 5/4 during the ice sheet growth transition. During the first part of the Holocene between 11,300 and 4,200 cal years BP, characterized by high insolation (minimum precession, maximum obliquity), the maximum extension of the coastal forest and mangrove reflects high monsoon rainfall. This climatic regime contrasts with that of the second phase of the Holocene, from 4,200 cal years BP to the present, marked by the development of drier vegetation in a context of low insolation (maximum precession, minimum obliquity). The historical period in India is characterized by an alternation of strong and weak monsoon centennial phases that may reflect the Medieval Climate Anomaly and the Little Ice Age, respectively. During the HS 2, a period of low insolation and extensive iceberg discharge in the North Atlantic Ocean, vegetation was dominated by grassland and dry flora indicating pronounced aridity as the result of a weak Indian summer monsoon. The MIS 5/4 glaciation, also associated with low insolation but moderate freshwater fluxes, was characterized by a weaker reduction of the Indian summer monsoon and a decrease of seasonal contrast as recorded by the expansion of dry vegetation and the development of Artemisia, respectively. Our results support model predictions suggesting that insolation changes control the long term trend of the Indian monsoon precipitation, but its millennial scale variability and intensity are instead modulated by atmospheric

  13. Relationship between summer monsoon rainfall and cyclogenesis over Bay of Bengal during post-monsoon (October-December) season

    Digital Repository Service at National Institute of Oceanography (India)

    Sadhuram, Y; Maneesha, K.

    peak monsoon (October–November) season and concluded that the frequency of cyclones is modulated by negative and positive IOD rather than El-Nino and La-Nina. In this study, the relationship between southwest monsoon rainfall (June–September) and TNDC... Relationship between summer monsoon rainfall and cyclogenesis over Bay of Bengal during post-monsoon (October–December) season Y Sadhuram∗ and K Maneesha CSIR–National Institute of Oceanography, 176, Lawsons Bay Colony, Visakhapatnam 530 017, India...

  14. Integration of Simulink Models with Component-based Software Models

    Directory of Open Access Journals (Sweden)

    MARIAN, N.

    2008-06-01

    Full Text Available Model based development aims to facilitate the development of embedded control systems by emphasizing the separation of the design level from the implementation level. Model based design involves the use of multiple models that represent different views of a system, having different semantics of abstract system descriptions. Usually, in mechatronics systems, design proceeds by iterating model construction, model analysis, and model transformation. Constructing a MATLAB/Simulink model, a plant and controller behavior is simulated using graphical blocks to represent mathematical and logical constructs and process flow, then software code is generated. A Simulink model is a representation of the design or implementation of a physical system that satisfies a set of requirements. A software component-based system aims to organize system architecture and behavior as a means of computation, communication and constraints, using computational blocks and aggregates for both discrete and continuous behavior, different interconnection and execution disciplines for event-based and time-based controllers, and so on, to encompass the demands to more functionality, at even lower prices, and with opposite constraints. COMDES (Component-based Design of Software for Distributed Embedded Systems is such a component-based system framework developed by the software engineering group of Mads Clausen Institute for Product Innovation (MCI, University of Southern Denmark. Once specified, the software model has to be analyzed. One way of doing that is to integrate in wrapper files the model back into Simulink S-functions, and use its extensive simulation features, thus allowing an early exploration of the possible design choices over multiple disciplines. The paper describes a safe translation of a restricted set of MATLAB/Simulink blocks to COMDES software components, both for continuous and discrete behavior, and the transformation of the software system into the S

  15. Response of the Asian summer monsoons to idealized precession and obliquity forcing in a set of GCMs

    Science.gov (United States)

    Bosmans, J. H. C.; Erb, M. P.; Dolan, A. M.; Drijfhout, S. S.; Tuenter, E.; Hilgen, F. J.; Edge, D.; Pope, J. O.; Lourens, L. J.

    2018-05-01

    We examine the response of the Indian and East Asian summer monsoons to separate precession and obliquity forcing, using a set of fully coupled high-resolution models for the first time: EC-Earth, GFDL CM2.1, CESM and HadCM3. We focus on the effect of insolation changes on monsoon precipitation and underlying circulation changes, and find strong model agreement despite a range of model physics, parameterization, and resolution. Our results show increased summer monsoon precipitation at times of increased summer insolation, i.e. minimum precession and maximum obliquity, accompanied by a redistribution of precipitation and convection from ocean to land. Southerly monsoon winds over East Asia are strengthened as a consequence of an intensified land-sea pressure gradient. The response of the Indian summer monsoon is less straightforward. Over south-east Asia low surface pressure is less pronounced and winds over the northern Indian Ocean are directed more westward. An Indian Ocean Dipole pattern emerges, with increased precipitation and convection over the western Indian Ocean. Increased temperatures occur during minimum precession over the Indian Ocean, but not during maximum obliquity when insolation is reduced over the tropics and southern hemisphere during northern hemisphere summer. Evaporation is reduced over the northern Indian Ocean, which together with increased precipitation over the western Indian Ocean dampens the increase of monsoonal precipitation over the continent. The southern tropical Indian Ocean as well as the western tropical Pacific (for precession) act as a moisture source for enhanced monsoonal precipitation. The models are in closest agreement for precession-induced changes, with more model spread for obliquity-induced changes, possibly related to a smaller insolation forcing. Our results indicate that a direct response of the Indian and East Asian summer monsoons to insolation forcing is possible, in line with speleothem records but in

  16. Detecting human impacts on the flora, fauna, and summer monsoon of Pleistocene Australia

    Directory of Open Access Journals (Sweden)

    G. H. Miller

    2007-08-01

    Full Text Available The moisture balance across northern and central Australia is dominated by changes in the strength of the Australian Summer Monsoon. Lake-level records that record changes in monsoon strength on orbital timescales are most consistent with a Northern Hemisphere insolation control on monsoon strength, a result consistent with recent modeling studies. A weak Holocene monsoon relative to monsoon strength 65–60 ka, despite stronger forcing, suggests a changed monsoon regime after 60 ka. Shortly after 60 ka humans colonized Australia and all of Australia's largest mammals became extinct. Between 60 and 40 ka Australian climate was similar to present and not changing rapidly. Consequently, attention has turned toward plausible human mechanisms for the extinction, with proponents for over-hunting, ecosystem change, and introduced disease. To differentiate between these options we utilize isotopic tracers of diet preserved in eggshells of two large, flightless birds to track the status of ecosystems before and after human colonization. More than 800 dated eggshells of the Australian emu (Dromaius novaehollandiae, an opportunistic, dominantly herbivorous feeder, provide a 140-kyr dietary reconstruction that reveals unprecedented reduction in the bird's food resources about 50 ka, coeval in three distant regions. These data suggest a tree/shrub savannah with occasionally rich grasslands was converted abruptly to the modern desert scrub. The diet of the heavier, extinct Genyornis newtoni, derived from >550 dated eggshells, was more restricted than in co-existing Dromaius, implying a more specialized feeding strategy. We suggest that generalist feeders, such as Dromaius, were able to adapt to a changed vegetation regime, whereas more specialized feeders, such as Genyornis, became extinct. We speculate that ecosystem collapse across arid and semi-arid zones was a consequence of systematic burning by early humans

  17. Atomic data for integrated tokamak modelling

    International Nuclear Information System (INIS)

    Toekesi, K.

    2013-01-01

    The Integrated Tokamak Modeling Task Force (ITM-TF) was set up in 2004. The main target is to coordinate the European fusion modeling effort and providing a complete European modeling structure for International Thermonuclear Experimental Reactor (ITER), with the highest degree of flexibility. For the accurate simulation of the processes in the active fusion reactor in the ITM-TF, numerous atomic, molecular, nuclear and surface related data are required. In this work we present total-, single- and multiple-ionization and charge exchange cross sections in close connection to the ITM-TF. Interpretation of these cross sections in multi-electron ion-atom collisions is a challenging task for theories. The main difficulty is caused by the many-body feature of the collision, involving the projectile, projectile electron(s), target nucleus, and target electron(s). The classical trajectory Monte Carlo (CTMC) method has been quite successful in dealing with the atomic processes in ion-atom collisions. One of the advantages of the CTMC method is that many-body interactions are exactly taken into account related CTMC simulations for a various collision systems are presented. To highlight the efficiency of the method we present electron emission cross sections in collision between dressed Al q+ ions with He target. The theory delivers separate spectra for electrons emitted from the target and the projectile. By summing these two components in the rest frame of the target we may make a comparison with available experimental data. For the collision system in question, a significant contribution from Fermi-shuttle ionization has to be expected in the spectra at energies higher than E=0.5 m e (nV) 2 , where m e is the mass of the electron, V the projectile velocity and n an integer greater than 1. We found enhanced electron yields compared to first order theory in this region of CTMC spectra, which can be directly attributed to the contribution of Fermi-shuttle type multiple

  18. Distribution and sources of particulate organic matter in the Indian monsoonal estuaries during monsoon

    Digital Repository Service at National Institute of Oceanography (India)

    Sarma, V.V.S.S.; Krishna, M.S.; Prasad, V.R.; Kumar, B.S.K.; Naidu, S.A.; Rao, G.D.; Viswanadham, R.; Sridevi, T.; Kumar, P.P.; Reddy, N.P.C.

    The distribution and sources of particulate organic carbon (POC) and nitrogen (PN) in 27 Indian estuaries were examined during the monsoon using the content and isotopic composition of carbon and nitrogen. Higher phytoplankton biomass was noticed...

  19. Theories and Frameworks for Online Education: Seeking an Integrated Model

    Science.gov (United States)

    Picciano, Anthony G.

    2017-01-01

    This article examines theoretical frameworks and models that focus on the pedagogical aspects of online education. After a review of learning theory as applied to online education, a proposal for an integrated "Multimodal Model for Online Education" is provided based on pedagogical purpose. The model attempts to integrate the work of…

  20. ENSO, IOD and Indian Summer Monsoon in NCEP climate forecast system

    Energy Technology Data Exchange (ETDEWEB)

    Pokhrel, Samir; Chaudhari, H.S.; Saha, Subodh K.; Dhakate, Ashish; Yadav, R.K.; Salunke, Kiran; Mahapatra, S.; Rao, Suryachandra A. [Indian Institute of Tropical Meteorology, Pashan, Pune (India)

    2012-11-15

    El Nino-Southern Oscillation (ENSO), Indian Ocean Dipole (IOD) and Indian Summer Monsoon rainfall features are explored statistically and dynamically using National Centers for Environment Prediction (NCEP) Climate Forecast System (CFSv1) freerun in relation to observations. The 100 years of freerun provides a sufficiently long homogeneous data set to find out the mean state, periodicity, coherence among these climatic events and also the influence of ENSO and IOD on the Indian monsoon. Differences in the occurrence of seasonal precipitation between the observations and CFS freerun are examined as a coupled ocean-atmosphere system. CFS simulated ENSO and IOD patterns and their associated tropical Walker and regional Hadley circulation in pure ENSO (PEN), pure IOD (PIO) and coexisting ENSO-IOD (PEI) events have some similarity to the observations. PEN composites are much closer to the observation as compared to PIO and PEI composites, which suggest a better ENSO prediction and its associated teleconnections as compared to IOD and combined phenomenon. Similar to the observation, the model simulation also show that the decrease in the Indian summer monsoon rainfall during ENSO phases is associated with a descending motion of anomalous Walker circulation and the increase in the Indian summer monsoon rainfall during IOD phase is associated with the ascending branch of anomalous regional Hadley circulation. During co-existing ENSO and IOD years, however, the fate of Indian summer monsoon is dictated by the combined influence of both of them. The shift in the anomalous descending and ascending branches of the Walker and Hadley circulation may be somewhat attributed to the cold (warm) bias over eastern (western) equatorial Indian Ocean basin, respectively in the model. This study will be useful for identifying some of the limitations of the CFS model and consequently it will be helpful in improving the model to unravel the realistic coupled ocean-atmosphere interactions

  1. The effect of monsoon variability on fish landing in the Sadeng Fishing Port of Yogyakarta, Indonesia

    Science.gov (United States)

    Subarna, D.

    2018-03-01

    The volume of landing fish of the Sadeng Fishing Port within certain months showed an increase from year to year, especially during June, July and August (JJA). While in other months the fish production was low. The purpose of this research was to understand the influence of monsoon variability on fish landing in the Sadeng Fishing Port. Data were analyzed descriptively as spatial and temporal catch. Data were namely catch fish production collected from fishing port, while satellite and HYCOM model during 2011–2012 period were selected. The wind data, sea surface temperature (SST) and chlorophyll-a were analyzed from ASCAT and MODIS sensors during the Southeast Monsoon. The result showed the wind from the southeasterly provide wind stress at sea level and caused Ekman Transport to move away water mass from the sea shore. The lost water mass in the ocean surface was replaced by cold water from deeper layer which was rich in nutrients. The distribution of chlorophyll-a during the Southeast Monsoon was relatively higher in the southern coast of Java than during the Northwest monsoon. The SST showed approximately 25.3 °C. The abundance of nutrients indicated by the distribution of chlorophyll-a around the coast during the Southeast Monsoon, will enhance the arrival of larger fish. Thus, it can be understood that during June, July, and August the catch production is higher than the other months.

  2. Climate and land use controls over terrestrial water use efficiency in monsoon Asia.

    Science.gov (United States)

    Hanqin Tian; Chaoqun Lu; Guangsheng Chen; Xiaofeng Xu; Mingliang Liu; et al

    2011-01-01

    Much concern has been raised regarding how and to what extent climate change and intensive human activities have altered water use efficiency (WUE, amount of carbon uptake per unit of water use) in monsoon Asia. By using a process-based ecosystem model [dynamic land ecosystem model (DLEM)], we examined effects of climate change, land use/cover change, and land...

  3. The crucial role of ocean-atmosphere coupling on the Indian monsoon anomalous response during dipole events

    Energy Technology Data Exchange (ETDEWEB)

    Krishnan, R.; Swapna, P.; Ayantika, D.C.; Mujumdar, M. [Indian Institute of Tropical Meteorology, Climate and Global Modelling Division, Pune (India); Sundaram, Suchithra [Indian Institute of Tropical Meteorology, Climate and Global Modelling Division, Pune (India); Universite Catholique de Louvain, Institut d' Astronomie de Geophysique G. Lemaitre, Louvain-La-Neuve (Belgium); Kumar, Vinay [Indian Institute of Tropical Meteorology, Climate and Global Modelling Division, Pune (India); Florida State University, Department of Meteorology, Tallahassee, FL (United States)

    2011-07-15

    This paper examines an issue concerning the simulation of anomalously wet Indian summer monsoons like 1994 which co-occurred with strong positive Indian Ocean Dipole (IOD) conditions in the tropical Indian Ocean. Contrary to observations it has been noticed that standalone atmospheric general circulation models (AGCM) forced with observed SST boundary condition, consistently depicted a decrease of the summer monsoon rainfall during 1994 over the Indian region. Given the ocean-atmosphere coupling during IOD events, we have examined whether the failure of standalone AGCM simulations in capturing wet Indian monsoons like 1994 can be remedied by including a simple form of coupling that allows the monsoon circulation to dynamically interact with the IOD anomalies. With this view, we have performed a suite of simulations by coupling an AGCM to a slab-ocean model with spatially varying mixed-layer-depth (MLD) specified from observations for the 1994 IOD; as well as four other cases (1983, 1997, 2006, 2007). The specification of spatially varying MLD from observations allows us to constrain the model to observed IOD conditions. It is seen that the inclusion of coupling significantly improves the large-scale circulation response by strengthening the monsoon cross-equatorial flow; leading to precipitation enhancement over the subcontinent and rainfall decrease over south-eastern tropical Indian Ocean - in a manner broadly consistent with observations. A plausible physical mechanism is suggested to explain the monsoonal response in the coupled frame-work. These results warrant the need for improved monsoon simulations with fully coupled models to be able to better capture the observed monsoon interannual variability. (orig.)

  4. Impact of geographic variations of the convective and dehydration center on stratospheric water vapor over the Asian monsoon region

    Directory of Open Access Journals (Sweden)

    K. Zhang

    2016-06-01

    Full Text Available The Asian monsoon region is the most prominent moisture center of water vapor in the lower stratosphere (LS during boreal summer. Previous studies have suggested that the transport of water vapor to the Asian monsoon LS is controlled by dehydration temperatures and convection mainly over the Bay of Bengal and Southeast Asia. However, there is a clear geographic variation of convection associated with the seasonal and intra-seasonal variations of the Asian monsoon circulation, and the relative influence of such a geographic variation of convection vs. the variation of local dehydration temperatures on water vapor transport is still not clear. Using satellite observations from the Aura Microwave Limb Sounder (MLS and a domain-filling forward trajectory model, we show that almost half of the seasonal water vapor increase in the Asian monsoon LS are attributable to geographic variations of convection and resultant variations of the dehydration center, of which the influence is comparable to the influence of the local dehydration temperature increase. In particular, dehydration temperatures are coldest over the southeast and warmest over the northwest Asian monsoon region. Although the convective center is located over Southeast Asia, an anomalous increase of convection over the northwest Asia monsoon region increases local diabatic heating in the tropopause layer and air masses entering the LS are dehydrated at relatively warmer temperatures. Due to warmer dehydration temperatures, anomalously moist air enters the LS and moves eastward along the northern flank of the monsoon anticyclonic flow, leading to wet anomalies in the LS over the Asian monsoon region. Likewise, when convection increases over the Southeast Asia monsoon region, dry anomalies appear in the LS. On a seasonal scale, this feature is associated with the monsoon circulation, convection and diabatic heating marching towards the northwest Asia monsoon region from June to August. The

  5. Numerical time integration for air pollution models

    NARCIS (Netherlands)

    J.G. Verwer (Jan); W. Hundsdorfer (Willem); J.G. Blom (Joke)

    1998-01-01

    textabstractDue to the large number of chemical species and the three space dimensions, off-the-shelf stiff ODE integrators are not feasible for the numerical time integration of stiff systems of advection-diffusion-reaction equations [ fracpar{c{t + nabla cdot left( vu{u c right) = nabla cdot left(

  6. Coupling Between The North Indian Ocean And The Monsoons: A Model Based Study Of The Thermal Structure Cycling In The Central Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Nayak, R.K.

    To examine the role of various intervening processes in controlling the upper ocean thermal structure in the central Arabian Sea, a 1-D mixed-layer model based on turbulent closure scheme is forced by atmospheric fluxes and advective heat fluxes...

  7. Integrated Intelligent Modeling, Design and Control of Crystal Growth Processes

    National Research Council Canada - National Science Library

    Prasad, V

    2000-01-01

    .... This MURI program took an integrated approach towards modeling, design and control of crystal growth processes and in conjunction with growth and characterization experiments developed much better...

  8. CREATING EFFECTIVE MODELS OF VERTICAL INTEGRATED STRUCTURES IN UKRAINE

    Directory of Open Access Journals (Sweden)

    D. V. Koliesnikov

    2011-01-01

    Full Text Available The results of scientific research aimed at development of methodology-theoretical mechanisms of building the effective models of vertically-integrated structures are presented. A presence of vertically-integrated structures on natural-monopolistic markets at private and governmental sectors of economy and priority directions of integration are given.

  9. Performance Evaluation of PBL Schemes of ARW Model in Simulating Thermo-Dynamical Structure of Pre-Monsoon Convective Episodes over Kharagpur Using STORM Data Sets

    Science.gov (United States)

    Madala, Srikanth; Satyanarayana, A. N. V.; Srinivas, C. V.; Tyagi, Bhishma

    2016-05-01

    In the present study, advanced research WRF (ARW) model is employed to simulate convective thunderstorm episodes over Kharagpur (22°30'N, 87°20'E) region of Gangetic West Bengal, India. High-resolution simulations are conducted using 1 × 1 degree NCEP final analysis meteorological fields for initial and boundary conditions for events. The performance of two non-local [Yonsei University (YSU), Asymmetric Convective Model version 2 (ACM2)] and two local turbulence kinetic energy closures [Mellor-Yamada-Janjic (MYJ), Bougeault-Lacarrere (BouLac)] are evaluated in simulating planetary boundary layer (PBL) parameters and thermodynamic structure of the atmosphere. The model-simulated parameters are validated with available in situ meteorological observations obtained from micro-meteorological tower as well has high-resolution DigiCORA radiosonde ascents during STORM-2007 field experiment at the study location and Doppler Weather Radar (DWR) imageries. It has been found that the PBL structure simulated with the TKE closures MYJ and BouLac are in better agreement with observations than the non-local closures. The model simulations with these schemes also captured the reflectivity, surface pressure patterns such as wake-low, meso-high, pre-squall low and the convective updrafts and downdrafts reasonably well. Qualitative and quantitative comparisons reveal that the MYJ followed by BouLac schemes better simulated various features of the thunderstorm events over Kharagpur region. The better performance of MYJ followed by BouLac is evident in the lesser mean bias, mean absolute error, root mean square error and good correlation coefficient for various surface meteorological variables as well as thermo-dynamical structure of the atmosphere relative to other PBL schemes. The better performance of the TKE closures may be attributed to their higher mixing efficiency, larger convective energy and better simulation of humidity promoting moist convection relative to non

  10. Integrated Human Futures Modeling in Egypt

    Energy Technology Data Exchange (ETDEWEB)

    Passell, Howard D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Aamir, Munaf Syed [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bernard, Michael Lewis [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Beyeler, Walter E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Fellner, Karen Marie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hayden, Nancy Kay [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jeffers, Robert Fredric [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Keller, Elizabeth James Kistin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Malczynski, Leonard A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mitchell, Michael David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Silver, Emily [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Tidwell, Vincent C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Villa, Daniel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Vugrin, Eric D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Engelke, Peter [Atlantic Council, Washington, D.C. (United States); Burrow, Mat [Atlantic Council, Washington, D.C. (United States); Keith, Bruce [United States Military Academy, West Point, NY (United States)

    2016-01-01

    The Integrated Human Futures Project provides a set of analytical and quantitative modeling and simulation tools that help explore the links among human social, economic, and ecological conditions, human resilience, conflict, and peace, and allows users to simulate tradeoffs and consequences associated with different future development and mitigation scenarios. In the current study, we integrate five distinct modeling platforms to simulate the potential risk of social unrest in Egypt resulting from the Grand Ethiopian Renaissance Dam (GERD) on the Blue Nile in Ethiopia. The five platforms simulate hydrology, agriculture, economy, human ecology, and human psychology/behavior, and show how impacts derived from development initiatives in one sector (e.g., hydrology) might ripple through to affect other sectors and how development and security concerns may be triggered across the region. This approach evaluates potential consequences, intended and unintended, associated with strategic policy actions that span the development-security nexus at the national, regional, and international levels. Model results are not intended to provide explicit predictions, but rather to provide system-level insight for policy makers into the dynamics among these interacting sectors, and to demonstrate an approach to evaluating short- and long-term policy trade-offs across different policy domains and stakeholders. The GERD project is critical to government-planned development efforts in Ethiopia but is expected to reduce downstream freshwater availability in the Nile Basin, fueling fears of negative social and economic impacts that could threaten stability and security in Egypt. We tested these hypotheses and came to the following preliminary conclusions. First, the GERD will have an important short-term impact on water availability, food production, and hydropower production in Egypt, depending on the short- term reservoir fill rate. Second, the GERD will have a very small impact on

  11. Quantifying pollution transport from the Asian monsoon anticyclone into the lower stratosphere

    Directory of Open Access Journals (Sweden)

    F. Ploeger

    2017-06-01

    Full Text Available Pollution transport from the surface to the stratosphere within the Asian monsoon circulation may cause harmful effects on stratospheric chemistry and climate. Here, we investigate air mass transport from the monsoon anticyclone into the stratosphere using a Lagrangian chemistry transport model. We show how two main transport pathways from the anticyclone emerge: (i into the tropical stratosphere (tropical pipe, and (ii into the Northern Hemisphere (NH extratropical lower stratosphere. Maximum anticyclone air mass fractions reach around 5 % in the tropical pipe and 15 % in the extratropical lowermost stratosphere over the course of a year. The anticyclone air mass fraction correlates well with satellite hydrogen cyanide (HCN and carbon monoxide (CO observations, confirming that pollution is transported deep into the tropical stratosphere from the Asian monsoon anticyclone. Cross-tropopause transport occurs in a vertical chimney, but with the pollutants transported quasi-horizontally along isentropes above the tropopause into the tropics and NH.

  12. Biogenic nitrogen oxide emissions from soils ─ impact on NOx and ozone over West Africa during AMMA (African Monsoon Multidisciplinary Experiment: modelling study

    Directory of Open Access Journals (Sweden)

    J.-P. Chaboureau

    2008-05-01

    Full Text Available Nitrogen oxide biogenic emissions from soils are driven by soil and environmental parameters. The relationship between these parameters and NO fluxes is highly non linear. A new algorithm, based on a neural network calculation, is used to reproduce the NO biogenic emissions linked to precipitations in the Sahel on the 6 August 2006 during the AMMA campaign. This algorithm has been coupled in the surface scheme of a coupled chemistry dynamics model (MesoNH Chemistry to estimate the impact of the NO emissions on NOx and O3 formation in the lower troposphere for this particular episode. Four different simulations on the same domain and at the same period are compared: one with anthropogenic emissions only, one with soil NO emissions from a static inventory, at low time and space resolution, one with NO emissions from neural network, and one with NO from neural network plus lightning NOx. The influence of NOx from lightning is limited to the upper troposphere. The NO emission from soils calculated with neural network responds to changes in soil moisture giving enhanced emissions over the wetted soil, as observed by aircraft measurements after the passing of a convective system. The subsequent enhancement of NOx and ozone is limited to the lowest layers of the atmosphere in modelling, whereas measurements show higher concentrations above 1000 m. The neural network algorithm, applied in the Sahel region for one particular day of the wet season, allows an immediate response of fluxes to environmental parameters, unlike static emission inventories. Stewart et al (2008 is a companion paper to this one which looks at NOx and ozone concentrations in the boundary layer as measured on a research aircraft, examines how they vary with respect to the soil moisture, as indicated by surface temperature anomalies, and deduces NOx fluxes. In this current paper the model-derived results are compared to the observations and calculated fluxes presented by Stewart et

  13. Shared mental models of integrated care: aligning multiple stakeholder perspectives.

    Science.gov (United States)

    Evans, Jenna M; Baker, G Ross

    2012-01-01

    Health service organizations and professionals are under increasing pressure to work together to deliver integrated patient care. A common understanding of integration strategies may facilitate the delivery of integrated care across inter-organizational and inter-professional boundaries. This paper aims to build a framework for exploring and potentially aligning multiple stakeholder perspectives of systems integration. The authors draw from the literature on shared mental models, strategic management and change, framing, stakeholder management, and systems theory to develop a new construct, Mental Models of Integrated Care (MMIC), which consists of three types of mental models, i.e. integration-task, system-role, and integration-belief. The MMIC construct encompasses many of the known barriers and enablers to integrating care while also providing a comprehensive, theory-based framework of psychological factors that may influence inter-organizational and inter-professional relations. While the existing literature on integration focuses on optimizing structures and processes, the MMIC construct emphasizes the convergence and divergence of stakeholders' knowledge and beliefs, and how these underlying cognitions influence interactions (or lack thereof) across the continuum of care. MMIC may help to: explain what differentiates effective from ineffective integration initiatives; determine system readiness to integrate; diagnose integration problems; and develop interventions for enhancing integrative processes and ultimately the delivery of integrated care. Global interest and ongoing challenges in integrating care underline the need for research on the mental models that characterize the behaviors of actors within health systems; the proposed framework offers a starting point for applying a cognitive perspective to health systems integration.

  14. Impacts of interannual variation of the East Asian winter monsoon on aerosol concentrations over eastern China

    Science.gov (United States)

    Zhu, J.; Liao, H.; Li, J.; Feng, J.

    2012-04-01

    China has been experiencing increased concentrations of aerosols, commonly attributed to the large increases in emissions associated with the rapid economic development. We apply a global three-dimensional Goddard Earth Observing System chemical transport model (GEOS-Chem) driven by the NASA/GEOS-4 assimilated meteorological data to quantify the impacts of East Asian winter monsoon (EAWM) on the aerosol concentrations over eastern China. We found that the simulated aerosol concentrations over eastern China have strong interannual variation and negative correlations with the strength of EAWM. Model results show that, accounting for sulfate, nitrate, ammonium, black carbon, and organic carbon aerosols, the winter surface layer PM2.5 concentration averaged over eastern China (110°-125°E, 20°-45°N) can be 17.97% (4.78 µg m-3) higher in the weak monsoon years than that in the strong monsoon years. Regionally, the weakening of EAWM is shown to be able to increase PM2.5 concentration in the middle and lower reach of the Yellow River by 12 µg m-3. This point indicates that climate change associated with variation of EAWM has an essential influence on worsening air quality over eastern China. The possible causes of higher aerosol concentrations in the weak monsoon years may be attributed to the changing in wind fields and planetary boundary layer height between the weak and strong monsoon years. Sensitivity studies are performed to identify the role of chemical reaction associated with temperature and humidity on the higher aerosol concentrations in the weak monsoon years over eastern China.

  15. Integrating Seasonal Oscillations into Basel II Behavioural Scoring Models

    Directory of Open Access Journals (Sweden)

    Goran Klepac

    2007-09-01

    Full Text Available The article introduces a new methodology of temporal influence measurement (seasonal oscillations, temporal patterns for behavioural scoring development purposes. The paper shows how significant temporal variables can be recognised and then integrated into the behavioural scoring models in order to improve model performance. Behavioural scoring models are integral parts of the Basel II standard on Internal Ratings-Based Approaches (IRB. The IRB approach much more precisely reflects individual risk bank profile.A solution of the problem of how to analyze and integrate macroeconomic and microeconomic factors represented in time series into behavioural scorecard models will be shown in the paper by using the REF II model.

  16. Developing engineering processes through integrated modelling of product and process

    DEFF Research Database (Denmark)

    Nielsen, Jeppe Bjerrum; Hvam, Lars

    2012-01-01

    This article aims at developing an operational tool for integrated modelling of product assortments and engineering processes in companies making customer specific products. Integrating a product model in the design of engineering processes will provide a deeper understanding of the engineering...... activities as well as insight into how product features affect the engineering processes. The article suggests possible ways of integrating models of products with models of engineering processes. The models have been tested and further developed in an action research study carried out in collaboration...... with a major international engineering company....

  17. Integrated modeling of ozonation for optimization of drinking water treatment

    NARCIS (Netherlands)

    van der Helm, A.W.C.

    2007-01-01

    Drinking water treatment plants automation becomes more sophisticated, more on-line monitoring systems become available and integration of modeling environments with control systems becomes easier. This gives possibilities for model-based optimization. In operation of drinking water treatment

  18. Integrated Biosphere Simulator Model (IBIS), Version 2.5

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: The Integrated Biosphere Simulator (or IBIS) is designed to be a comprehensive model of the terrestrial biosphere. Tthe model represents a wide range of...

  19. Integrated Biosphere Simulator Model (IBIS), Version 2.5

    Data.gov (United States)

    National Aeronautics and Space Administration — The Integrated Biosphere Simulator (or IBIS) is designed to be a comprehensive model of the terrestrial biosphere. Tthe model represents a wide range of processes,...

  20. Irreducible integrable theories form tensor products of conformal models

    International Nuclear Information System (INIS)

    Mathur, S.D.; Warner, N.P.

    1991-01-01

    By using Toda field theories we show that there are perturbations of direct products of conformal theories that lead to irreducible integrable field theories. The same affine Toda theory can be truncated to different quantum integrable models for different choices of the charge at infinity and the coupling. The classification of integrable models that can be obtained in this fashion follows the classification of symmetric spaces of type G/H with rank H = rank G. (orig.)

  1. Integration of Simulink Models with Component-based Software Models

    DEFF Research Database (Denmark)

    Marian, Nicolae; Top, Søren

    2008-01-01

    , communication and constraints, using computational blocks and aggregates for both discrete and continuous behaviour, different interconnection and execution disciplines for event-based and time-based controllers, and so on, to encompass the demands to more functionality, at even lower prices, and with opposite...... to be analyzed. One way of doing that is to integrate in wrapper files the model back into Simulink S-functions, and use its extensive simulation features, thus allowing an early exploration of the possible design choices over multiple disciplines. The paper describes a safe translation of a restricted set...... of MATLAB/Simulink blocks to COMDES software components, both for continuous and discrete behaviour, and the transformation of the software system into the S-functions. The general aim of this work is the improvement of multi-disciplinary development of embedded systems with the focus on the relation...

  2. [The dual process model of addiction. Towards an integrated model?].

    Science.gov (United States)

    Vandermeeren, R; Hebbrecht, M

    2012-01-01

    Neurobiology and cognitive psychology have provided us with a dual process model of addiction. According to this model, behavior is considered to be the dynamic result of a combination of automatic and controlling processes. In cases of addiction the balance between these two processes is severely disturbed. Automated processes will continue to produce impulses that ensure the continuance of addictive behavior. Weak, reflective or controlling processes are both the reason for and the result of the inability to forgo addiction. To identify features that are common to current neurocognitive insights into addiction and psychodynamic views on addiction. The picture that emerges from research is not clear. There is some evidence that attentional bias has a causal effect on addiction. There is no evidence that automatic associations have a causal effect, but there is some evidence that automatic action-tendencies do have a causal effect. Current neurocognitive views on the dual process model of addiction can be integrated with an evidence-based approach to addiction and with psychodynamic views on addiction.

  3. Integrated Space Asset Management Database and Modeling

    Science.gov (United States)

    Gagliano, L.; MacLeod, T.; Mason, S.; Percy, T.; Prescott, J.

    The Space Asset Management Database (SAM-D) was implemented in order to effectively track known objects in space by ingesting information from a variety of databases and performing calculations to determine the expected position of the object at a specified time. While SAM-D performs this task very well, it is limited by technology and is not available outside of the local user base. Modeling and simulation can be powerful tools to exploit the information contained in SAM-D. However, the current system does not allow proper integration options for combining the data with both legacy and new M&S tools. A more capable data management infrastructure would extend SAM-D to support the larger data sets to be generated by the COI. A service-oriented architecture model will allow it to easily expand to incorporate new capabilities, including advanced analytics, M&S tools, fusion techniques and user interface for visualizations. Based on a web-centric approach, the entire COI will be able to access the data and related analytics. In addition, tight control of information sharing policy will increase confidence in the system, which would encourage industry partners to provide commercial data. SIMON is a Government off the Shelf information sharing platform in use throughout DoD and DHS information sharing and situation awareness communities. SIMON providing fine grained control to data owners allowing them to determine exactly how and when their data is shared. SIMON supports a micro-service approach to system development, meaning M&S and analytic services can be easily built or adapted. It is uniquely positioned to fill this need as an information-sharing platform with a proven track record of successful situational awareness system deployments. Combined with the integration of new and legacy M&S tools, a SIMON-based architecture will provide a robust SA environment for the NASA SA COI that can be extended and expanded indefinitely. First Results of Coherent Uplink from a

  4. An IT perspective on integrated environmental modelling: The SIAT case

    NARCIS (Netherlands)

    Verweij, P.J.F.M.; Knapen, M.J.R.; Winter, de W.P.; Wien, J.J.F.; Roller, te J.A.; Sieber, S.; Jansen, J.M.L.

    2010-01-01

    Policy makers have a growing interest in integrated assessments of policies. The Integrated Assessment Modelling (IAM) community is reacting to this interest by extending the application of model development from pure scientific analysis towards application in decision making or policy context by

  5. Integrating semantic data models with project management

    Energy Technology Data Exchange (ETDEWEB)

    Wachter, R

    1982-01-01

    Summary form only given, as follows. The development of a data model for a project on the test and certification of computer-based information systems required a more expressive data model than that supplied by either the network, hierarchical or relational models. A data model was developed to describe the work environment and the work itself. This model is based on the entity-relationship data model of Chen and on heuristic principles of knowledge organisation used in artificial intelligence. The ER data model is reviewed and the extensions to the model are discussed.

  6. Transport of sulfonamide antibiotics in crop fields during monsoon season.

    Science.gov (United States)

    Park, Jong Yol; Ruidisch, Marianne; Huwe, Bernd

    2016-11-01

    Previous studies have documented the occurrence of veterinary sulfonamide antibiotics in groundwater and rivers located far from pollution sources, although their transport and fate is relatively unknown. In mountainous agricultural fields, the transport behaviour can be influenced by climate, slope and physico-chemical properties of the sulfonamides. The objective of this research is to describe the transport behaviour of three sulfonamide antibiotics (sulfamethoxazole, sulfadimethoxine and sulfamethazine) in sloped agricultural fields located in the Haean catchment, South Korea. During dry and monsoon seasons, a solute transport experiment was conducted in two typical sandy loam agricultural fields after application of antibiotics and potassium bromide as conservative tracers. Field measurement and modelling revealed that frequency and amount of runoff generation indicate a relation between slope and rain intensity during monsoon season. Since the steepness of slope influenced partitioning of precipitation between runoff and subsurface flow, higher loss of sulfonamide antibiotics and bromide by runoff was observed at the steeper sloped field. Bromide on topsoil rapidly infiltrated at high infiltration rates. On the contrary, the sulfonamides were relatively retarded in the upper soil layer due to adsorption onto soil particles. Presence of furrows and ridges affected the distribution of sulfonamide antibiotics in the subsurface due to gradient from wetter furrows to drier ridges induced by topography. Modelling results with HydroGeoSphere matched with background studies that describe physico-chemical properties of the sulfonamides interaction between soil and the antibiotic group, solute transport through vadose zone and runoff generation by storm events.

  7. Hydrography and circulation in the western Bay of Bengal during the northeast monsoon

    Digital Repository Service at National Institute of Oceanography (India)

    Shetye, S.R.; Gouveia, A.D.; Shankar, D.; Shenoi, S.S.C.; Vinayachandran, P.N.; Sundar, D.; Michael, G.S.; Nampoothiri, G.

    , the transport is 7.7 x 10 sup(6) m sup(3) s sup(-1) . Recent model studies lead us to conclude that the EICC during the northeast monsoon is driven by winds along the east coast of India and Ekman pumping in the interior bay. In the south, Ekman pumping over...

  8. Impacts of half a degree additional warming on the Asian summer monsoon rainfall characteristics

    Science.gov (United States)

    Lee, Donghyun; Min, Seung-Ki; Fischer, Erich; Shiogama, Hideo; Bethke, Ingo; Lierhammer, Ludwig; Scinocca, John F.

    2018-04-01

    This study investigates the impacts of global warming of 1.5 °C and 2.0 °C above pre-industrial conditions (Paris Agreement target temperatures) on the South Asian and East Asian monsoon rainfall using five atmospheric global climate models participating in the ‘Half a degree Additional warming, Prognosis and Projected Impacts’ (HAPPI) project. Mean and extreme precipitation is projected to increase under warming over the two monsoon regions, more strongly in the 2.0 °C warmer world. Moisture budget analysis shows that increases in evaporation and atmospheric moisture lead to the additional increases in mean precipitation with good inter-model agreement. Analysis of daily precipitation characteristics reveals that more-extreme precipitation will have larger increase in intensity and frequency responding to the half a degree additional warming, which is more clearly seen over the South Asian monsoon region, indicating non-linear scaling of precipitation extremes with temperature. Strong inter-model relationship between temperature and precipitation intensity further demonstrates that the increased moisture with warming (Clausius-Clapeyron relation) plays a critical role in the stronger intensification of more-extreme rainfall with warming. Results from CMIP5 coupled global climate models under a transient warming scenario confirm that half a degree additional warming would bring more frequent and stronger heavy precipitation events, exerting devastating impacts on the human and natural system over the Asian monsoon region.

  9. Influence of eastern Arabian Sea on summer monsoon rainfall over west coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    RameshBabu, V.; Rao, M.S.; Rao, M.V.

    and distant nature. In order to realise the model results and the influence of Arabian sea in the context of long range forecasting of monsoon rainfall, we have examined the correlation between the rainfall over west coast of India and premonsoon thermal...

  10. On the relationship between the Indian summer monsoon rainfall and the EQUINOO in the CFSv2

    Science.gov (United States)

    Vishnu, S.; Francis, P. A.; Ramakrishna, S. S. V. S.; Shenoi, S. S. C.

    2018-03-01

    Several recent studies have shown that positive (negative) phase of Equatorial Indian Ocean Oscillation (EQUINOO) is favourable (unfavourable) to the Indian summer monsoon. However, many ocean-atmosphere global coupled models, including the state-of-the-art Climate Forecast System (CFS) version 2 have difficulty in reproducing this link realistically. In this study, we analyze the retrospective forecasts by the CFS model for the period 1982-2010 with an objective to identify the reasons behind the failure of the model to simulate the observed links between Indian summer monsoon and EQUINOO. It is found that, in the model hindcasts, the rainfall in the core monsoon region was mainly due to westward propagating synoptic scale systems, that originated from the vicinity of the tropical convergence zone (TCZ). Our analysis shows that unlike in observations, in the CFS, majority of positive (negative) EQUINOO events are associated with El Niño (La Niña) events in the Pacific. In addition to this, there is a strong link between EQUINOO and Indian Ocean Dipole (IOD) in the model. We show that, during the negative phase of EQUINOO/IOD, northward propagating TCZs remained stationary over the Bay of Bengal for longer period compared to the positive phase of EQUINOO/IOD. As a result, compared to the positive phase of EQUINOO/IOD, during a negative phase of EQUINOO/IOD, more westward propagating synoptic scale systems originated from the vicinity of TCZ and moved on to the core monsoon region, which resulted in higher rainfall over this region in the CFS. We further show that frequent, though short-lived, westward propagating systems, generated near the vicinity of TCZ over the Bay moved onto the mainland were responsible for less number of break monsoon spells during the negative phase of EQUINOO/IOD in the model hindcasts. This study underlines the necessity for improving the skill of the coupled models, particularly CFS model, to simulate the links between EQUINOO/IOD and

  11. Toward an Integrative Model of Professional Practice.

    Science.gov (United States)

    Newman, Margaret A.

    1990-01-01

    The cycles of growth of the nursing profession depict subordination of nursing to hospital administration and medicine. Nursing is ready to move into an integrative, collaborative stage of development that places nurses directly responsible to patients, and this would facilitate nursing's response to clients' health concerns wherever they occur.…

  12. The Kurzweil integral in financial market modeling

    Czech Academy of Sciences Publication Activity Database

    Krejčí, Pavel; Lamba, H.; Monteiro, Giselle Antunes; Rachinskii, D.

    2016-01-01

    Roč. 141, č. 2 (2016), s. 261-286 ISSN 0862-7959 R&D Projects: GA ČR(CZ) GA15-12227S Institutional support: RVO:67985840 Keywords : hysteresis * Prandtl-Ishlinskii operator * Kurzweil integral Subject RIV: BA - General Mathematics http://hdl.handle.net/10338.dmlcz/145715

  13. Development of Multisensory Integration Approach Model

    Science.gov (United States)

    Kumar, S. Prasanna; Nathan, B. Sami

    2016-01-01

    Every teacher expects optimum level of processing in mind of them students. The level of processing is mainly depends upon memory process. Most of the students have retrieval difficulties on past learning. Memory difficulties directly related to sensory integration. In these circumstances the investigator made an attempt to construct Multisensory…

  14. A Liouville integrable hierarchy, symmetry constraint, new finite-dimensional integrable systems, involutive solution and expanding integrable models

    International Nuclear Information System (INIS)

    Sun Yepeng; Chen Dengyuan

    2006-01-01

    A new spectral problem and the associated integrable hierarchy of nonlinear evolution equations are presented in this paper. It is shown that the hierarchy is completely integrable in the Liouville sense and possesses bi-Hamiltonian structure. An explicit symmetry constraint is proposed for the Lax pairs and the adjoint Lax pairs of the hierarchy. Moreover, the corresponding Lax pairs and adjoint Lax pairs are nonlinearized into a hierarchy of commutative, new finite-dimensional completely integrable Hamiltonian systems in the Liouville sense. Further, an involutive representation of solution of each equation in the hierarchy is given. Finally, expanding integrable models of the hierarchy are constructed by using a new Loop algebra

  15. The Diurnal Cycle of the Boundary Layer, Convection, Clouds, and Surface Radiation in a Coastal Monsoon Environment (Darwin Australia)

    Energy Technology Data Exchange (ETDEWEB)

    May, Peter T.; Long, Charles N.; Protat, Alain

    2012-08-01

    The diurnal variation of convection and associated cloud and radiative properties remains a significant issue in global NWP and climate models. This study analyzes observed diurnal variability of convection in a coastal monsoonal environment examining the interaction of convective rain clouds, their associated cloud properties, and the impact on the surface radiation and corresponding boundary layer structure during periods where convection is suppressed or active on the large scale. The analysis uses data from the Tropical Warm Pool International Cloud Experiment (TWP-ICE) as well as routine measurements from the Australian Bureau of Meteorology and the U.S. Department of Energy Atmospheric Radiation Measurement (ARM) program. Both active monsoonal and large-scale suppressed (buildup and break) conditions are examined and demonstrate that the diurnal variation of rainfall is much larger during the break periods and the spatial distribution of rainfall is very different between the monsoon and break regimes. During the active monsoon the total net radiative input to the surface is decreased by more than 3 times the amount than during the break regime - this total radiative cloud forcing is found to be dominated by the shortwave (SW) cloud effects because of the much larger optical thicknesses and persistence of long-lasting anvils and cirrus cloud decks associated with the monsoon regime. These differences in monsoon versus break surface radiative energy contribute to low-level air temperature differences in the boundary layer over the land surfaces.

  16. Automated software configuration in the MONSOON system

    Science.gov (United States)

    Daly, Philip N.; Buchholz, Nick C.; Moore, Peter C.

    2004-09-01

    MONSOON is the next generation OUV-IR controller project being developed at NOAO. The design is flexible, emphasizing code re-use, maintainability and scalability as key factors. The software needs to support widely divergent detector systems ranging from multi-chip mosaics (for LSST, QUOTA, ODI and NEWFIRM) down to large single or multi-detector laboratory development systems. In order for this flexibility to be effective and safe, the software must be able to configure itself to the requirements of the attached detector system at startup. The basic building block of all MONSOON systems is the PAN-DHE pair which make up a single data acquisition node. In this paper we discuss the software solutions used in the automatic PAN configuration system.

  17. Development of summer monsoon and onset of continuous rains over central west coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Varkey, M.J.

    rains happening during the last phase of monsoon development as a consequence of and after (2-5 weeks) the establishment of monsoon circulation or monsoon front. Summer monsoon front, as the term 'monsoon' originally meant, is to be delineated from...

  18. Integrating Behaviour in Software Models: An Event Coordination Notation

    DEFF Research Database (Denmark)

    Kindler, Ekkart

    2011-01-01

    One of the main problems in model-based software engineering is modelling behaviour in such a way that the behaviour models can be easily integrated with each other, with the structural software models and with pre-existing software. In this paper, we propose an event coordination notation (ECNO)...

  19. Towards Finite-Gap Integration of the Inozemtsev Model

    Directory of Open Access Journals (Sweden)

    Kouichi Takemura

    2007-03-01

    Full Text Available The Inozemtsev model is considered to be a multivaluable generalization of Heun's equation. We review results on Heun's equation, the elliptic Calogero-Moser-Sutherland model and the Inozemtsev model, and discuss some approaches to the finite-gap integration for multivariable models.

  20. The dynamics of multimodal integration: The averaging diffusion model.

    Science.gov (United States)

    Turner, Brandon M; Gao, Juan; Koenig, Scott; Palfy, Dylan; L McClelland, James

    2017-12-01

    We combine extant theories of evidence accumulation and multi-modal integration to develop an integrated framework for modeling multimodal integration as a process that unfolds in real time. Many studies have formulated sensory processing as a dynamic process where noisy samples of evidence are accumulated until a decision is made. However, these studies are often limited to a single sensory modality. Studies of multimodal stimulus integration have focused on how best to combine different sources of information to elicit a judgment. These studies are often limited to a single time point, typically after the integration process has occurred. We address these limitations by combining the two approaches. Experimentally, we present data that allow us to study the time course of evidence accumulation within each of the visual and auditory domains as well as in a bimodal condition. Theoretically, we develop a new Averaging Diffusion Model in which the decision variable is the mean rather than the sum of evidence samples and use it as a base for comparing three alternative models of multimodal integration, allowing us to assess the optimality of this integration. The outcome reveals rich individual differences in multimodal integration: while some subjects' data are consistent with adaptive optimal integration, reweighting sources of evidence as their relative reliability changes during evidence integration, others exhibit patterns inconsistent with optimality.

  1. Plasma Process Modeling for Integrated Circuits Manufacturing

    OpenAIRE

    M. Meyyappan; T. R. Govindan

    1998-01-01

    A reactor model for plasma-based deposition and etching is presented. Two-dimensional results are discussed in terms of plasma density, ion flux, and ion energy. Approaches to develop rapid CAD-type models are discussed.

  2. An Integrative Model of Internationalization Strategies

    DEFF Research Database (Denmark)

    Li, Xin; Gammelgaard, Jens

    2012-01-01

    This paper critically reviews the ownership, location, and internalization (OLI) model, and the Uppsala internationalization process (UIP) framework. Both the OLI model and the UIP model ignore to incorporate the insights of each other and fail to include corporate entrepreneurship in their analy...

  3. Integration models: multicultural and liberal approaches confronted

    Science.gov (United States)

    Janicki, Wojciech

    2012-01-01

    European societies have been shaped by their Christian past, upsurge of international migration, democratic rule and liberal tradition rooted in religious tolerance. Boosting globalization processes impose new challenges on European societies, striving to protect their diversity. This struggle is especially clearly visible in case of minorities trying to resist melting into mainstream culture. European countries' legal systems and cultural policies respond to these efforts in many ways. Respecting identity politics-driven group rights seems to be the most common approach, resulting in creation of a multicultural society. However, the outcome of respecting group rights may be remarkably contradictory to both individual rights growing out from liberal tradition, and to reinforced concept of integration of immigrants into host societies. The hereby paper discusses identity politics upturn in the context of both individual rights and integration of European societies.

  4. Model integration and the economics of nuclear power

    International Nuclear Information System (INIS)

    Lundgren, S.

    1985-01-01

    The author proposes and applies a specific approach to model integration, i.e. the merger of two or several independently developed models. The approach is intended for integrations of activity analysis sector models and applied general equilibrium models. Model integration makes it possible to extend the range of applicability of applied general equilibrium models by exploiting the information contained in sector models. It also makes it possible to evaluate the validity of the partial equilibrium analyses in which sector models often are employed. The proposed approach is used to integrate a sector model of electricity and heat production with a general equilibrium model of the Swedish economy. Both models have been constructed within the research programme. The author uses the integrated model to look at two issues concerning the role of nuclear power on the Swedish electricity market: What are the likely consequences of a nuclear power discontinuation and how does the nuclear power investment programme of the 1970's and the early 1980's compare with a socially efficient one. (Author)

  5. Theory, modeling, and integrated studies in the Arase (ERG) project

    Science.gov (United States)

    Seki, Kanako; Miyoshi, Yoshizumi; Ebihara, Yusuke; Katoh, Yuto; Amano, Takanobu; Saito, Shinji; Shoji, Masafumi; Nakamizo, Aoi; Keika, Kunihiro; Hori, Tomoaki; Nakano, Shin'ya; Watanabe, Shigeto; Kamiya, Kei; Takahashi, Naoko; Omura, Yoshiharu; Nose, Masahito; Fok, Mei-Ching; Tanaka, Takashi; Ieda, Akimasa; Yoshikawa, Akimasa

    2018-02-01

    Understanding of underlying mechanisms of drastic variations of the near-Earth space (geospace) is one of the current focuses of the magnetospheric physics. The science target of the geospace research project Exploration of energization and Radiation in Geospace (ERG) is to understand the geospace variations with a focus on the relativistic electron acceleration and loss processes. In order to achieve the goal, the ERG project consists of the three parts: the Arase (ERG) satellite, ground-based observations, and theory/modeling/integrated studies. The role of theory/modeling/integrated studies part is to promote relevant theoretical and simulation studies as well as integrated data analysis to combine different kinds of observations and modeling. Here we provide technical reports on simulation and empirical models related to the ERG project together with their roles in the integrated studies of dynamic geospace variations. The simulation and empirical models covered include the radial diffusion model of the radiation belt electrons, GEMSIS-RB and RBW models, CIMI model with global MHD simulation REPPU, GEMSIS-RC model, plasmasphere thermosphere model, self-consistent wave-particle interaction simulations (electron hybrid code and ion hybrid code), the ionospheric electric potential (GEMSIS-POT) model, and SuperDARN electric field models with data assimilation. ERG (Arase) science center tools to support integrated studies with various kinds of data are also briefly introduced.[Figure not available: see fulltext.

  6. Monsoon signatures in trace gas records from Cape Rama, India

    International Nuclear Information System (INIS)

    Bhattacharya, S.K.; Jani, R.A.; Borole, D.V.; Francey, R.J.; Allison, C.E.; Masarie, K.A.

    2002-01-01

    Concentrations of trace gases CO 2 , CH 4 , CO, N 2 O and H 2 , and the stable carbon and oxygen isotopic composition of CO 2 have been measured in air samples collected from Cape Rama, a coastal station on the west coast of India, since 1993. The data show clear signatures of continental and oceanic air mass resulting in complex seasonal variation of trace gas characteristics. The regional atmospheric circulation in the Indian Ocean and Arabian Sea undergoes biannual reversal in low-level winds associated with the yearly migration of the inter-tropical convergence zone (ITCZ). From June to September, the wind is from the equatorial Indian Ocean to the Indian subcontinent (southwest monsoon) and brings in pristine marine air. From December to February, dry continental winds blow from the northeast and transport continental emissions to the ocean (northeast monsoon). Detailed transport and chemical modelling will be necessary to interpret these records, however the potential to identify and constrain the regional trace gas emissions appears to be high. (author)

  7. A Few Expanding Integrable Models, Hamiltonian Structures and Constrained Flows

    International Nuclear Information System (INIS)

    Zhang Yufeng

    2011-01-01

    Two kinds of higher-dimensional Lie algebras and their loop algebras are introduced, for which a few expanding integrable models including the coupling integrable couplings of the Broer-Kaup (BK) hierarchy and the dispersive long wave (DLW) hierarchy as well as the TB hierarchy are obtained. From the reductions of the coupling integrable couplings, the corresponding coupled integrable couplings of the BK equation, the DLW equation, and the TB equation are obtained, respectively. Especially, the coupling integrable coupling of the TB equation reduces to a few integrable couplings of the well-known mKdV equation. The Hamiltonian structures of the coupling integrable couplings of the three kinds of soliton hierarchies are worked out, respectively, by employing the variational identity. Finally, we decompose the BK hierarchy of evolution equations into x-constrained flows and t n -constrained flows whose adjoint representations and the Lax pairs are given. (general)

  8. Modular Architecture for Integrated Model-Based Decision Support.

    Science.gov (United States)

    Gaebel, Jan; Schreiber, Erik; Oeser, Alexander; Oeltze-Jafra, Steffen

    2018-01-01

    Model-based decision support systems promise to be a valuable addition to oncological treatments and the implementation of personalized therapies. For the integration and sharing of decision models, the involved systems must be able to communicate with each other. In this paper, we propose a modularized architecture of dedicated systems for the integration of probabilistic decision models into existing hospital environments. These systems interconnect via web services and provide model sharing and processing capabilities for clinical information systems. Along the lines of IHE integration profiles from other disciplines and the meaningful reuse of routinely recorded patient data, our approach aims for the seamless integration of decision models into hospital infrastructure and the physicians' daily work.

  9. Model-Based Integration and Interpretation of Data

    DEFF Research Database (Denmark)

    Petersen, Johannes

    2004-01-01

    Data integration and interpretation plays a crucial role in supervisory control. The paper defines a set of generic inference steps for the data integration and interpretation process based on a three-layer model of system representations. The three-layer model is used to clarify the combination...... of constraint and object-centered representations of the work domain throwing new light on the basic principles underlying the data integration and interpretation process of Rasmussen's abstraction hierarchy as well as other model-based approaches combining constraint and object-centered representations. Based...

  10. Integration of Design and Control through Model Analysis

    DEFF Research Database (Denmark)

    Russel, Boris Mariboe; Henriksen, Jens Peter; Jørgensen, Sten Bay

    2002-01-01

    A systematic computer aided analysis of the process model is proposed as a pre-solution step for integration of design and control problems. The process model equations are classified in terms of balance equations, constitutive equations and conditional equations. Analysis of the phenomena models...... (structure selection) issues for the integrated problems are considered. (C) 2002 Elsevier Science Ltd. All rights reserved....... representing the constitutive equations identify the relationships between the important process and design variables, which help to understand, define and address some of the issues related to integration of design and control. Furthermore, the analysis is able to identify a set of process (control) variables...

  11. Non-integrable quantum field theories as perturbations of certain integrable models

    International Nuclear Information System (INIS)

    Delfino, G.; Simonetti, P.

    1996-03-01

    We approach the study of non-integrable models of two-dimensional quantum field theory as perturbations of the integrable ones. By exploiting the knowledge of the exact S-matrix and Form Factors of the integrable field theories we obtain the first order corrections to the mass ratios, the vacuum energy density and the S-matrix of the non-integrable theories. As interesting applications of the formalism, we study the scaling region of the Ising model in an external magnetic field at T ∼ T c and the scaling region around the minimal model M 2 , τ . For these models, a remarkable agreement is observed between the theoretical predictions and the data extracted by a numerical diagonalization of their Hamiltonian. (author). 41 refs, 9 figs, 1 tab

  12. An integrated model for supplier selection process

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    In today's highly competitive manufacturing environment, the supplier selection process becomes one of crucial activities in supply chain management. In order to select the best supplier(s) it is not only necessary to continuously tracking and benchmarking performance of suppliers but also to make a tradeoff between tangible and intangible factors some of which may conflict. In this paper an integration of case-based reasoning (CBR), analytical network process (ANP) and linear programming (LP) is proposed to solve the supplier selection problem.

  13. Buried Waste Integrated Demonstration stakeholder involvement model

    International Nuclear Information System (INIS)

    Kaupanger, R.M.; Kostelnik, K.M.; Milam, L.M.

    1994-04-01

    The Buried Waste Integrated Demonstration (BWID) is a program funded by the US Department of Energy (DOE) Office of Technology Development. BWID supports the applied research, development, demonstration, and evaluation of a suite of advanced technologies that together form a comprehensive remediation system for the effective and efficient remediation of buried waste. Stakeholder participation in the DOE Environmental Management decision-making process is critical to remediation efforts. Appropriate mechanisms for communication with the public, private sector, regulators, elected officials, and others are being aggressively pursued by BWID to permit informed participation. This document summarizes public outreach efforts during FY-93 and presents a strategy for expanded stakeholder involvement during FY-94

  14. Continual integration method in the polaron model

    International Nuclear Information System (INIS)

    Kochetov, E.A.; Kuleshov, S.P.; Smondyrev, M.A.

    1981-01-01

    The article is devoted to the investigation of a polaron system on the base of a variational approach formulated on the language of continuum integration. The variational method generalizing the Feynman one for the case of the system pulse different from zero has been formulated. The polaron state has been investigated at zero temperature. A problem of the bound state of two polarons exchanging quanta of a scalar field as well as a problem of polaron scattering with an external field in the Born approximation have been considered. Thermodynamics of the polaron system has been investigated, namely, high-temperature expansions for mean energy and effective polaron mass have been studied [ru

  15. Integrated Spatio-Temporal Ecological Modeling System

    Science.gov (United States)

    1998-07-01

    models that we hold in our conscious (and subconscious ) minds. Chapter 3 explores how this approach is being augmented with the more formal capture...This approach makes it possible to add new simulation model components to I- STEMS without having to reprogram existing components. The steps required

  16. Owen's Intentionality Model in Integrative Psychotherapy

    African Journals Online (AJOL)

    denise

    The IPJP is a joint project of the Humanities Faculty of the University of Johannesburg (South Africa) and Edith Cowan ... Talk, Action, Belief: How the Intentionality Model Combines Attachment-Oriented .... application of the intentionality model in relation to ... Dr Guse's research interests include the training of psychologists,.

  17. Sensitivity of convective precipitation to soil moisture and vegetation during break spell of Indian summer monsoon

    Science.gov (United States)

    Kutty, Govindan; Sandeep, S.; Vinodkumar; Nhaloor, Sreejith

    2017-07-01

    Indian summer monsoon rainfall is characterized by large intra-seasonal fluctuations in the form of active and break spells in rainfall. This study investigates the role of soil moisture and vegetation on 30-h precipitation forecasts during the break monsoon period using Weather Research and Forecast (WRF) model. The working hypothesis is that reduced rainfall, clear skies, and wet soil condition during the break monsoon period enhance land-atmosphere coupling over central India. Sensitivity experiments are conducted with modified initial soil moisture and vegetation. The results suggest that an increase in antecedent soil moisture would lead to an increase in precipitation, in general. The precipitation over the core monsoon region has increased by enhancing forest cover in the model simulations. Parameters such as Lifting Condensation Level, Level of Free Convection, and Convective Available Potential Energy indicate favorable atmospheric conditions for convection over forests, when wet soil conditions prevail. On spatial scales, the precipitation is more sensitive to soil moisture conditions over northeastern parts of India. Strong horizontal gradient in soil moisture and orographic uplift along the upslopes of Himalaya enhanced rainfall over the east of Indian subcontinent.

  18. The Indian summer monsoon rainfall: interplay of coupled dynamics, radiation and cloud microphysics

    Directory of Open Access Journals (Sweden)

    P. K. Patra

    2005-01-01

    Full Text Available The Indian summer monsoon rainfall (ISMR, which has a strong connection to agricultural food production, has been less predictable by conventional models in recent times. Two distinct years 2002 and 2003 with lower and higher July rainfall, respectively, are selected to help understand the natural and anthropogenic influences on ISMR. We show that heating gradients along the meridional monsoon circulation are reduced due to aerosol radiative forcing and the Indian Ocean Dipole in 2002. An increase in the dust and biomass-burning component of the aerosols through the zonal monsoon circulation resulted in reduction of cloud droplet growth in July 2002. These conditions were opposite to those in July 2003 which led to an above average ISMR. In this study, we have utilized NCEP/NCAR reanalyses for meteorological data (e.g. sea-surface temperature, horizontal winds, and precipitable water, NOAA interpolated outgoing long-wave radiation, IITM constructed all-India rainfall amounts, aerosol parameters as observed from the TOMS and MODIS satellites, and ATSR fire count maps. Based on this analysis, we suggest that monsoon rainfall prediction models should include synoptic as well as interannual variability in both atmospheric dynamics and chemical composition.

  19. Transport of regional pollutions to UTLS during Asian Summer Monsoon - A CTM study

    Science.gov (United States)

    Li, Qian; Bian, Jianchun; Lu, Daren

    2013-04-01

    We use a 3-D global Chemical Transport Model (CTM) GEOS-Chem to simulate the observed Asian Summer Monsoon transport of biomass burning tracers HCN and CO from local emissions to UTLS. By analyzing the satellite observations, we focus on the distribution and spatial-temporal variation of HCN and CO concentration in UTLS. The model simulations capture well the main features of distribution of HCN and CO compared with satellite observations. Recent studies (Li et al., 2009; Randel et al., 2010) indicated that regional emissions may play an important role controlling the distribution and variation of HCN in tropical UTLS during Asian Summer Monsoon seasons, mainly due to the local dynamical uplift of Asian Summer Monsoon. By using GEOS-Chem simulations, we will analyze the UTLS distribution and variation of HCN and CO from emissions of different regions including S.E. Asia, Boreal Asia, Indonesia and Australia, Africa, Europe, Northern America and Southern America. According to the amount and seasonal variability of emissions, the contribution of biomass burning and biofuel burning emissions of different regions to the highly concentrated HCN and CO in UTLS during Asian Summer Monsoon seasons will be discussed, individually.

  20. Integrated catchment modelling in a Semi-arid area

    CSIR Research Space (South Africa)

    Bugan, Richard DH

    2010-09-01

    Full Text Available , will increasingly need water quality and quantity management tools to be able to make informed decisions. Integrated catchment modelling (ICM) is regarded as being a valuable tool for integrated water resource management. It enables officials and scientists to make...

  1. The Intersystem Model of Psychotherapy: An Integrated Systems Treatment Approach

    Science.gov (United States)

    Weeks, Gerald R.; Cross, Chad L.

    2004-01-01

    This article introduces the intersystem model of psychotherapy and discusses its utility as a truly integrative and comprehensive approach. The foundation of this conceptually complex approach comes from dialectic metatheory; hence, its derivation requires an understanding of both foundational and integrational constructs. The article provides a…

  2. Onset, active and break periods of the Australian monsoon

    International Nuclear Information System (INIS)

    Shaik, Hakeem A; Cleland, Samuel J

    2010-01-01

    Four operational techniques of monsoon monitoring the Australian monsoon at Darwin have been developed in the Darwin Regional Specialised Meteorological Centre. Two techniques used the rainfall only criteria and look into the onset of wet season rainfall/monsoon rainfall. The other two techniques are based purely on Darwin wind data. The data used for the study ranges from 14 to 21 years. The main purpose of the study is to develop near-real time monitoring tools for the Australian monsoon at Darwin. The average date of onset of the monsoon ranges from 19 December to 30 December. The average date of monsoon onset is 28 December. In eleven out of twenty-one years the onset date remained within three days range between the two rainfall techniques, whereas it is eleven out of fourteen years between the wind techniques. The median number of active monsoon spells in a wet season is 3 for the rainfall techniques and 6 for the wind techniques. The average length of each active monsoon spell is around 4 days for all of the techniques. The date of onset of the monsoon has shown negative correlation with the Southern Oscillation Index (SOI) that is late onset is found to occur in El Nino years while early onset is more likely in La Nina years.

  3. An integrated development environment for PMESII model authoring, integration, validation, and debugging

    Science.gov (United States)

    Pioch, Nicholas J.; Lofdahl, Corey; Sao Pedro, Michael; Krikeles, Basil; Morley, Liam

    2007-04-01

    To foster shared battlespace awareness in Air Operations Centers supporting the Joint Forces Commander and Joint Force Air Component Commander, BAE Systems is developing a Commander's Model Integration and Simulation Toolkit (CMIST), an Integrated Development Environment (IDE) for model authoring, integration, validation, and debugging. CMIST is built on the versatile Eclipse framework, a widely used open development platform comprised of extensible frameworks that enable development of tools for building, deploying, and managing software. CMIST provides two distinct layers: 1) a Commander's IDE for supporting staff to author models spanning the Political, Military, Economic, Social, Infrastructure, Information (PMESII) taxonomy; integrate multiple native (third-party) models; validate model interfaces and outputs; and debug the integrated models via intuitive controls and time series visualization, and 2) a PMESII IDE for modeling and simulation developers to rapidly incorporate new native simulation tools and models to make them available for use in the Commander's IDE. The PMESII IDE provides shared ontologies and repositories for world state, modeling concepts, and native tool characterization. CMIST includes extensible libraries for 1) reusable data transforms for semantic alignment of native data with the shared ontology, and 2) interaction patterns to synchronize multiple native simulations with disparate modeling paradigms, such as continuous-time system dynamics, agent-based discrete event simulation, and aggregate solution methods such as Monte Carlo sampling over dynamic Bayesian networks. This paper describes the CMIST system architecture, our technical approach to addressing these semantic alignment and synchronization problems, and initial results from integrating Political-Military-Economic models of post-war Iraq spanning multiple modeling paradigms.

  4. A lidar study of atmospheric aerosols during two contrasting monsoon seasons

    Energy Technology Data Exchange (ETDEWEB)

    Devara, P.C.S.; Raj, P.E. [Indian Institute of Tropical Meteorology (India)

    1998-10-01

    The vertical profiles of the boundary-layer aerosols obtained with a bistatic argon ion lidar system at the Indian Institute of Tropical Meteorology (IITM), Pune, India, during two contrasting, successive south-west (summer) monsoon seasons of 1987 (weak monsoon year) and 1988 (active monsoon year) have been examined. The concurrent meteorological parameters such as temperature, relative humidity and rainfall over Pune have also been studied. It is noticed that the aerosol columnar content (integration of vertical profile throughout the height range) is greater during the active monsoon months and less during the weak monsoon months. Thus the monsoon season total rainfall during 1987 and 1988, apart from other meteorological parameters, shows close correspondence with the aerosol columnar content over the experimental station. A brief description of the lidar experimental setup and the database is given. The observed association between the aerosol columnar content and the monsoon activity is explained in terms of the environmental and meteorological conditions prevailing over Pune. [Spanish] Los perfiles verticales de los aerosoles de la capa fronteriza obtenidos mediante un sistema de Lidar biestatico de iones de argon en el Instituto de Meteorologia Tropical (IITM) en Pune, India, durante dos estaciones contrastantes y suscesivas del monzon del SW (verano) de 1987 (ano de monzon debil) y 1988 (ano activo de monzon) han sido estudiados. Los parametros meteorologicos concurrentes tales como temperatura, humedad relativa y lluvia en Pune, han sido tambien estudiados. Se observa que el contenido columnar de aerosoles (integracion del perfil vertical en toda la gama de alturas) es mayor durante los meses del monzon activo y menor en los meses del monzon debil. De manera que, el total de la lluvia monzonica durante 1987 y 1988, aparte de otros parametros meteorologicos, muestran una correspondencia intima con el contenido columnar de a erosoles sobre la estacion

  5. Exploring RNA structure by integrative molecular modelling

    DEFF Research Database (Denmark)

    Masquida, Benoît; Beckert, Bertrand; Jossinet, Fabrice

    2010-01-01

    RNA molecular modelling is adequate to rapidly tackle the structure of RNA molecules. With new structured RNAs constituting a central class of cellular regulators discovered every year, the need for swift and reliable modelling methods is more crucial than ever. The pragmatic method based...... on interactive all-atom molecular modelling relies on the observation that specific structural motifs are recurrently found in RNA sequences. Once identified by a combination of comparative sequence analysis and biochemical data, the motifs composing the secondary structure of a given RNA can be extruded...

  6. Sea surface temperature variability over North Indian Ocean - A study of two contrasting monsoon seasons

    Digital Repository Service at National Institute of Oceanography (India)

    RameshKumar, M.R.; Sathyendranath, S.; Viswambharan, N.K.; Rao, L.V.G.

    Using the satellite derived sea surface temperature (SST) data for 1979 (bad monsoon) and 1983 (good monsoon), the SST variability for two contrasting monsoon seasons is studied. The study indicates that large negative anomalies off the Somali...

  7. Integrated Visualization Environment for Science Mission Modeling, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA is emphasizing the use of larger, more integrated models in conjunction with systems engineering tools and decision support systems. These tools place a...

  8. Integrated Age-based Krill Model Fish Res 2015

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — An integrated, age-structured model was fitted to different combinations of survey data using two forms of selectivity (logistic or double-logistic) with...

  9. A simple flow-concentration modelling method for integrating water ...

    African Journals Online (AJOL)

    A simple flow-concentration modelling method for integrating water quality and ... flow requirements are assessed for maintenance low flow, drought low flow ... the instream concentrations of chemical constituents that will arise from different ...

  10. Integrated Care Model Developed by the Rwanda Biomedical ...

    African Journals Online (AJOL)

    : Integrated Care Model, psychological Interventions, genocide, ... ate a resurgence of memories from the genocide itself. ... interventions to be available throughout the commemo- .... allows easier accessibility with a strong professionally net-.

  11. Ground Vehicle System Integration (GVSI) and Design Optimization Model

    National Research Council Canada - National Science Library

    Horton, William

    1996-01-01

    This report documents the Ground Vehicle System Integration (GVSI) and Design Optimization Model GVSI is a top-level analysis tool designed to support engineering tradeoff studies and vehicle design optimization efforts...

  12. Integrated Main Propulsion System Performance Reconstruction Process/Models

    Science.gov (United States)

    Lopez, Eduardo; Elliott, Katie; Snell, Steven; Evans, Michael

    2013-01-01

    The Integrated Main Propulsion System (MPS) Performance Reconstruction process provides the MPS post-flight data files needed for postflight reporting to the project integration management and key customers to verify flight performance. This process/model was used as the baseline for the currently ongoing Space Launch System (SLS) work. The process utilizes several methodologies, including multiple software programs, to model integrated propulsion system performance through space shuttle ascent. It is used to evaluate integrated propulsion systems, including propellant tanks, feed systems, rocket engine, and pressurization systems performance throughout ascent based on flight pressure and temperature data. The latest revision incorporates new methods based on main engine power balance model updates to model higher mixture ratio operation at lower engine power levels.

  13. Integrated Krill Model WG-SAM-14/20

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The integrated modeling framework for Antarctic krill (Euphausia superba) has been extended to include estimates of krill growth consistent with survey data and to...

  14. Logistic Regression Modeling of Diminishing Manufacturing Sources for Integrated Circuits

    National Research Council Canada - National Science Library

    Gravier, Michael

    1999-01-01

    .... This thesis draws on available data from the electronics integrated circuit industry to attempt to assess whether statistical modeling offers a viable method for predicting the presence of DMSMS...

  15. An Integrated Approach to Modeling Evacuation Behavior

    Science.gov (United States)

    2011-02-01

    A spate of recent hurricanes and other natural disasters have drawn a lot of attention to the evacuation decision of individuals. Here we focus on evacuation models that incorporate two economic phenomena that seem to be increasingly important in exp...

  16. Systems Integration Operations/Logistics Model (SOLMOD)

    International Nuclear Information System (INIS)

    Vogel, L.W.; Joy, D.S.

    1990-01-01

    SOLMOD is a discrete event simulation model written in FORTRAN 77 and operates in a VAX or PC environment. The model emulates the movement and interaction of equipment and radioactive waste as it is processed through the FWMS. SOLMOD can be used to measure the impacts of different operating schedules and rules, system configurations, reliability, availability, maintainability (RAM) considerations, and equipment and other resource availabilities on the performance of processes comprising the FWMS and how these factors combine to determine overall system performance. Model outputs are a series of measurements of the amount and characteristics of waste at selected points in the FWMS and the utilization of resources needed to transport and process the waste. The model results may be reported on a yearly, monthly, weekly, or daily basis to facilitate analysis. 3 refs., 3 figs., 2 tabs

  17. Integrated thermodynamic model for ignition target performance

    Directory of Open Access Journals (Sweden)

    Springer P.T.

    2013-11-01

    Full Text Available We have derived a 3-dimensional synthetic model for NIF implosion conditions, by predicting and optimizing fits to a broad set of x-ray and nuclear diagnostics obtained on each shot. By matching x-ray images, burn width, neutron time-of-flight ion temperature, yield, and fuel ρr, we obtain nearly unique constraints on conditions in the hotspot and fuel in a model that is entirely consistent with the observables. This model allows us to determine hotspot density, pressure, areal density (ρr, total energy, and other ignition-relevant parameters not available from any single diagnostic. This article describes the model and its application to National Ignition Facility (NIF tritium–hydrogen–deuterium (THD and DT implosion data, and provides an explanation for the large yield and ρr degradation compared to numerical code predictions.

  18. Integrated modeling of software cost and quality

    International Nuclear Information System (INIS)

    Rone, K.Y.; Olson, K.M.

    1994-01-01

    In modeling the cost and quality of software systems, the relationship between cost and quality must be considered. This explicit relationship is dictated by the criticality of the software being developed. The balance between cost and quality is a viable software engineering trade-off throughout the life cycle. Therefore, the ability to accurately estimate the cost and quality of software systems is essential to providing reliable software on time and within budget. Software cost models relate the product error rate to the percent of the project labor that is required for independent verification and validation. The criticality of the software determines which cost model is used to estimate the labor required to develop the software. Software quality models yield an expected error discovery rate based on the software size, criticality, software development environment, and the level of competence of the project and the developers with respect to the processes being employed

  19. Integrating a Decision Management Tool with UML Modeling Tools

    DEFF Research Database (Denmark)

    Könemann, Patrick

    by proposing potential subsequent design issues. In model-based software development, many decisions directly affect the structural and behavioral models used to describe and develop a software system and its architecture. However, these decisions are typically not connected to the models created during...... integration of formerly disconnected tools improves tool usability as well as decision maker productivity....

  20. Integration of Design and Control Through Model Analysis

    DEFF Research Database (Denmark)

    Russel, Boris Mariboe; Henriksen, Jens Peter; Jørgensen, Sten Bay

    2000-01-01

    of the phenomena models representing the process model identify the relationships between the important process and design variables, which help to understand, define and address some of the issues related to integration of design and control issues. The model analysis is highlighted through examples involving...... processes with mass and/or energy recycle. (C) 2000 Elsevier Science Ltd. All rights reserved....

  1. Constrained KP models as integrable matrix hierarchies

    International Nuclear Information System (INIS)

    Aratyn, H.; Ferreira, L.A.; Gomes, J.F.; Zimerman, A.H.

    1997-01-01

    We formulate the constrained KP hierarchy (denoted by cKP K+1,M ) as an affine [cflx sl](M+K+1) matrix integrable hierarchy generalizing the Drinfeld endash Sokolov hierarchy. Using an algebraic approach, including the graded structure of the generalized Drinfeld endash Sokolov hierarchy, we are able to find several new universal results valid for the cKP hierarchy. In particular, our method yields a closed expression for the second bracket obtained through Dirac reduction of any untwisted affine Kac endash Moody current algebra. An explicit example is given for the case [cflx sl](M+K+1), for which a closed expression for the general recursion operator is also obtained. We show how isospectral flows are characterized and grouped according to the semisimple non-regular element E of sl(M+K+1) and the content of the center of the kernel of E. copyright 1997 American Institute of Physics

  2. Integrative Modeling of Electrical Properties of Pacemaker Cardiac Cells

    Science.gov (United States)

    Grigoriev, M.; Babich, L.

    2016-06-01

    This work represents modeling of electrical properties of pacemaker (sinus) cardiac cells. Special attention is paid to electrical potential arising from transmembrane current of Na+, K+ and Ca2+ ions. This potential is calculated using the NaCaX model. In this respect, molar concentration of ions in the intercellular space which is calculated on the basis of the GENTEX model is essential. Combined use of two different models allows referring this approach to integrative modeling.

  3. Black carbon and West African Monsoon precipitation. Observations and simulations

    International Nuclear Information System (INIS)

    Huang, J.; Adams, A.; Zhang, C.; Wang, C.

    2009-01-01

    We have recently investigated large-scale co-variability between aerosol and precipitation and other meteorological variables in the West African Monsoon (WAM) region using long term satellite observations and reanalysis data. In this study we compared the observational results to a global model simulation including only direct radiative forcing of black carbon (BC). From both observations and model simulations we found that in boreal cold seasons anomalously high African aerosols are associated with significant reductions in cloud amount, cloud top height, and surface precipitation. These results suggest that the observed precipitation reduction in the WAM region is caused by radiative effect of BC. The result also suggests that the BC effect on precipitation is nonlinear. (orig.)

  4. Adaptation in integrated assessment modeling: where do we stand?

    OpenAIRE

    Patt, A.; van Vuuren, D.P.; Berkhout, F.G.H.; Aaheim, A.; Hof, A.F.; Isaac, M.; Mechler, R.

    2010-01-01

    Adaptation is an important element on the climate change policy agenda. Integrated assessment models, which are key tools to assess climate change policies, have begun to address adaptation, either by including it implicitly in damage cost estimates, or by making it an explicit control variable. We analyze how modelers have chosen to describe adaptation within an integrated framework, and suggest many ways they could improve the treatment of adaptation by considering more of its bottom-up cha...

  5. Integrated Control Modeling for Propulsion Systems Using NPSS

    Science.gov (United States)

    Parker, Khary I.; Felder, James L.; Lavelle, Thomas M.; Withrow, Colleen A.; Yu, Albert Y.; Lehmann, William V. A.

    2004-01-01

    The Numerical Propulsion System Simulation (NPSS), an advanced engineering simulation environment used to design and analyze aircraft engines, has been enhanced by integrating control development tools into it. One of these tools is a generic controller interface that allows NPSS to communicate with control development software environments such as MATLAB and EASY5. The other tool is a linear model generator (LMG) that gives NPSS the ability to generate linear, time-invariant state-space models. Integrating these tools into NPSS enables it to be used for control system development. This paper will discuss the development and integration of these tools into NPSS. In addition, it will show a comparison of transient model results of a generic, dual-spool, military-type engine model that has been implemented in NPSS and Simulink. It will also show the linear model generator s ability to approximate the dynamics of a nonlinear NPSS engine model.

  6. Integrative change model in psychotherapy: Perspectives from Indian thought.

    Science.gov (United States)

    Manickam, L S S

    2013-01-01

    Different psychotherapeutic approaches claim positive changes in patients as a result of therapy. Explanations related to the change process led to different change models. Some of the change models are experimentally oriented whereas some are theoretical. Apart from the core models of behavioral, psychodynamic, humanistic, cognitive and spiritually oriented models there are specific models, within psychotherapy that explains the change process. Integrative theory of a person as depicted in Indian thought provides a common ground for the integration of various therapies. Integrative model of change based on Indian thought, with specific reference to psychological concepts in Upanishads, Ayurveda, Bhagavad Gita and Yoga are presented. Appropriate psychological tools may be developed in order to help the clinicians to choose the techniques that match the problem and the origin of the dimension. Explorations have to be conducted to develop more techniques that are culturally appropriate and clinically useful. Research has to be initiated to validate the identified concepts.

  7. Integration of QSAR models for bioconcentration suitable for REACH

    International Nuclear Information System (INIS)

    Gissi, Andrea; Nicolotti, Orazio; Carotti, Angelo; Gadaleta, Domenico; Lombardo, Anna; Benfenati, Emilio

    2013-01-01

    QSAR (Quantitative Structure Activity Relationship) models can be a valuable alternative method to replace or reduce animal test required by REACH. In particular, some endpoints such as bioconcentration factor (BCF) are easier to predict and many useful models have been already developed. In this paper we describe how to integrate two popular BCF models to obtain more reliable predictions. In particular, the herein presented integrated model relies on the predictions of two among the most used BCF models (CAESAR and Meylan), together with the Applicability Domain Index (ADI) provided by the software VEGA. Using a set of simple rules, the integrated model selects the most reliable and conservative predictions and discards possible outliers. In this way, for the prediction of the 851 compounds included in the ANTARES BCF dataset, the integrated model discloses a R 2 (coefficient of determination) of 0.80, a RMSE (Root Mean Square Error) of 0.61 log units and a sensitivity of 76%, with a considerable improvement in respect to the CAESAR (R 2 = 0.63; RMSE = 0.84 log units; sensitivity 55%) and Meylan (R 2 = 0.66; RMSE = 0.77 log units; sensitivity 65%) without discarding too many predictions (118 out of 851). Importantly, considering solely the compounds within the new integrated ADI, the R 2 increased to 0.92, and the sensitivity to 85%, with a RMSE of 0.44 log units. Finally, the use of properly set safety thresholds applied for monitoring the so called “suspicious” compounds, which are those chemicals predicted in proximity of the border normally accepted to discern non-bioaccumulative from bioaccumulative substances, permitted to obtain an integrated model with sensitivity equal to 100%. - Highlights: • Applying two independent QSAR models for bioconcentration factor increases the prediction. • The concordance of the models is an important component of the integration. • The measurement of the applicability domain improves the prediction. • The use of a

  8. An integrated modeling system for estimating glacier and snow melt driven streamflow from remote sensing and earth system data products in the Himalayas

    Science.gov (United States)

    Brown, M. E.; Racoviteanu, A. E.; Tarboton, D. G.; Gupta, A. Sen; Nigro, J.; Policelli, F.; Habib, S.; Tokay, M.; Shrestha, M. S.; Bajracharya, S.; Hummel, P.; Gray, M.; Duda, P.; Zaitchik, B.; Mahat, V.; Artan, G.; Tokar, S.

    2014-11-01

    Quantification of the contribution of the hydrologic components (snow, ice and rain) to river discharge in the Hindu Kush Himalayan (HKH) region is important for decision-making in water sensitive sectors, and for water resources management and flood risk reduction. In this area, access to and monitoring of the glaciers and their melt outflow is challenging due to difficult access, thus modeling based on remote sensing offers the potential for providing information to improve water resources management and decision making. This paper describes an integrated modeling system developed using downscaled NASA satellite based and earth system data products coupled with in-situ hydrologic data to assess the contribution of snow and glaciers to the flows of the rivers in the HKH region. Snow and glacier melt was estimated using the Utah Energy Balance (UEB) model, further enhanced to accommodate glacier ice melt over clean and debris-covered tongues, then meltwater was input into the USGS Geospatial Stream Flow Model (GeoSFM). The two model components were integrated into Better Assessment Science Integrating point and Nonpoint Sources modeling framework (BASINS) as a user-friendly open source system and was made available to countries in high Asia. Here we present a case study from the Langtang Khola watershed in the monsoon-influenced Nepal Himalaya, used to validate our energy balance approach and to test the applicability of our modeling system. The snow and glacier melt model predicts that for the eight years used for model evaluation (October 2003-September 2010), the total surface water input over the basin was 9.43 m, originating as 62% from glacier melt, 30% from snowmelt and 8% from rainfall. Measured streamflow for those years were 5.02 m, reflecting a runoff coefficient of 0.53. GeoSFM simulated streamflow was 5.31 m indicating reasonable correspondence between measured and model confirming the capability of the integrated system to provide a quantification of

  9. An Integrated Modeling System for Estimating Glacier and Snow Melt Driven Streamflow from Remote Sensing and Earth System Data Products in the Himalayas

    Science.gov (United States)

    Brown, M. E.; Racoviteanu, A. E.; Tarboton, D. G.; Sen Gupta, A.; Nigro, J.; Policelli, F.; Habib, S.; Tokay, M.; Shrestha, M. S.; Bajracharya, S.

    2014-01-01

    Quantification of the contribution of the hydrologic components (snow, ice and rain) to river discharge in the Hindu Kush Himalayan (HKH) region is important for decision-making in water sensitive sectors, and for water resources management and flood risk reduction. In this area, access to and monitoring of the glaciers and their melt outflow is challenging due to difficult access, thus modeling based on remote sensing offers the potential for providing information to improve water resources management and decision making. This paper describes an integrated modeling system developed using downscaled NASA satellite based and earth system data products coupled with in-situ hydrologic data to assess the contribution of snow and glaciers to the flows of the rivers in the HKH region. Snow and glacier melt was estimated using the Utah Energy Balance (UEB) model, further enhanced to accommodate glacier ice melt over clean and debris-covered tongues, then meltwater was input into the USGS Geospatial Stream Flow Model (Geo- SFM). The two model components were integrated into Better Assessment Science Integrating point and Nonpoint Sources modeling framework (BASINS) as a user-friendly open source system and was made available to countries in high Asia. Here we present a case study from the Langtang Khola watershed in the monsoon-influenced Nepal Himalaya, used to validate our energy balance approach and to test the applicability of our modeling system. The snow and glacier melt model predicts that for the eight years used for model evaluation (October 2003-September 2010), the total surface water input over the basin was 9.43 m, originating as 62% from glacier melt, 30% from snowmelt and 8% from rainfall. Measured streamflow for those years were 5.02 m, reflecting a runoff coefficient of 0.53. GeoSFM simulated streamflow was 5.31 m indicating reasonable correspondence between measured and model confirming the capability of the integrated system to provide a quantification

  10. Quasi-biweekly oscillations of the South Asian monsoon and its co-evolution in the upper and lower troposphere

    Science.gov (United States)

    Ortega, Sebastián; Webster, Peter J.; Toma, Violeta; Chang, Hai-Ru

    2017-11-01

    The Upper Tropospheric Quasi-Biweekly Oscillation (UQBW) of the South Asian monsoon is studied using the potential vorticity field on the 370 K isentrope. The UQBW is shown to be a common occurrence in the upper troposphere during the monsoon, and its typical evolution is described. We suggest that the UQBW is a phenomenon of both the middle and tropical latitudes, owing its existence to the presence of the planetary-scale upper-tropospheric monsoon anticyclone. The UQBW is first identified as Rossby waves originating in the northern flank of the monsoon anticyclone. These Rossby waves break when reaching the Pacific Ocean, and their associated cyclonic PV anomalies move southward to the east of Asia and then westward across the Indian Ocean and Africa advected by the monsoon anticyclone. A strong correlation, or co-evolution, between the UQBW and quasi-biweekly oscillations in the lower troposphere (QBW) is also found. In particular, analysis of vertically-integrated horizontal moisture transport, 850 hPa geopotential, and outgoing long-wave radiation show that the UQBW is usually observed at the same time as, and co-evolves with, the lower tropospheric QBW over South Asia. We discuss the nature of the UQBW, and its possible physical link with the QBW.

  11. Development of an Integrated Global Energy Model

    International Nuclear Information System (INIS)

    Krakowski, R.A.

    1999-01-01

    The primary objective of this research was to develop a forefront analysis tool for application to enhance understanding of long-term, global, nuclear-energy and nuclear-material futures. To this end, an existing economics-energy-environmental (E 3 ) model was adopted, modified, and elaborated to examine this problem in a multi-regional (13), long-term (approximately2,100) context. The E 3 model so developed was applied to create a Los Alamos presence in this E 3 area through ''niche analyses'' that provide input to the formulation of policies dealing with and shaping of nuclear-energy and nuclear-materials futures. Results from analyses using the E 3 model have been presented at a variety of national and international conferences and workshops. Through use of the E 3 model Los Alamos was afforded the opportunity to participate in a multi-national E 3 study team that is examining a range of global, long-term nuclear issues under the auspices of the IAEA during the 1998-99 period . Finally, the E 3 model developed under this LDRD project is being used as an important component in more recent Nuclear Material Management Systems (NMMS) project

  12. The More Extreme Nature of North American Monsoon Precipitation in the Southwestern United States as Revealed by a Historical Climatology of Simulated Severe Weather Events

    KAUST Repository

    Luong, Thang M.; Castro, Christopher L.; Chang, Hsin-I; Lahmers, Timothy; Adams, David K.; Ochoa-Moya, Carlos A.

    2017-01-01

    Long-term changes in North American monsoon (NAM) precipitation intensity in the southwestern United States are evaluated through the use of convective-permitting model simulations of objectively identified severe weather events during

  13. The More Extreme Nature of North American Monsoon Precipitation in the Southwestern United States as Revealed by a Historical Climatology of Simulated Severe Weather Events

    KAUST Repository

    Luong, Thang M.

    2017-07-03

    Long-term changes in North American monsoon (NAM) precipitation intensity in the southwestern United States are evaluated through the use of convective-permitting model simulations of objectively identified severe weather events during

  14. Integrated assessment models of climate change. An incomplete overview

    International Nuclear Information System (INIS)

    Dowlatabadi, H.

    1995-01-01

    Integrated assessment is a trendy phrase that has recently entered the vocabulary of folks in Washington, DC and elsewhere. The novelty of the term in policy analysis and policy making circles belies the longevity of this approach in the sciences and past attempts at their application to policy issues. This paper is an attempt at providing an overview of integrated assessment with a special focus on policy motivated integrated assessments of climate change. The first section provides an introduction to integrated assessments in general, followed by a discussion of the bounds to the climate change issue. The next section is devoted to a taxonomy of the policy motivated models. Then the integrated assessment effort at Carnegie Mellon is described briefly. A perspective on the challenges ahead in successful representation of natural and social dynamics in integrated assessments of global climate change is presented in the final section. (Author)

  15. Quantum integrable models of field theory

    International Nuclear Information System (INIS)

    Faddeev, L.D.

    1979-01-01

    Fundamental features of the classical method of the inverse problem have been formulated in the form which is convenient for its quantum reformulation. Typical examples are studied which may help to formulate the quantum method of the inverse problem. Examples are considered for interaction with both attraction and repulsion at a final density. The sine-Gordon model and the XYZ model from the quantum theory of magnetics are examined in short. It is noted that all the achievements of the one-dimensional mathematical physics as applied to exactly solvable quantum models may be put to an extent within the framework of the quantum method of the inverse problem. Unsolved questions are enumerated and perspectives of applying the inverse problem method are shown

  16. Integrating interactive computational modeling in biology curricula.

    Directory of Open Access Journals (Sweden)

    Tomáš Helikar

    2015-03-01

    Full Text Available While the use of computer tools to simulate complex processes such as computer circuits is normal practice in fields like engineering, the majority of life sciences/biological sciences courses continue to rely on the traditional textbook and memorization approach. To address this issue, we explored the use of the Cell Collective platform as a novel, interactive, and evolving pedagogical tool to foster student engagement, creativity, and higher-level thinking. Cell Collective is a Web-based platform used to create and simulate dynamical models of various biological processes. Students can create models of cells, diseases, or pathways themselves or explore existing models. This technology was implemented in both undergraduate and graduate courses as a pilot study to determine the feasibility of such software at the university level. First, a new (In Silico Biology class was developed to enable students to learn biology by "building and breaking it" via computer models and their simulations. This class and technology also provide a non-intimidating way to incorporate mathematical and computational concepts into a class with students who have a limited mathematical background. Second, we used the technology to mediate the use of simulations and modeling modules as a learning tool for traditional biological concepts, such as T cell differentiation or cell cycle regulation, in existing biology courses. Results of this pilot application suggest that there is promise in the use of computational modeling and software tools such as Cell Collective to provide new teaching methods in biology and contribute to the implementation of the "Vision and Change" call to action in undergraduate biology education by providing a hands-on approach to biology.

  17. Integrating interactive computational modeling in biology curricula.

    Science.gov (United States)

    Helikar, Tomáš; Cutucache, Christine E; Dahlquist, Lauren M; Herek, Tyler A; Larson, Joshua J; Rogers, Jim A

    2015-03-01

    While the use of computer tools to simulate complex processes such as computer circuits is normal practice in fields like engineering, the majority of life sciences/biological sciences courses continue to rely on the traditional textbook and memorization approach. To address this issue, we explored the use of the Cell Collective platform as a novel, interactive, and evolving pedagogical tool to foster student engagement, creativity, and higher-level thinking. Cell Collective is a Web-based platform used to create and simulate dynamical models of various biological processes. Students can create models of cells, diseases, or pathways themselves or explore existing models. This technology was implemented in both undergraduate and graduate courses as a pilot study to determine the feasibility of such software at the university level. First, a new (In Silico Biology) class was developed to enable students to learn biology by "building and breaking it" via computer models and their simulations. This class and technology also provide a non-intimidating way to incorporate mathematical and computational concepts into a class with students who have a limited mathematical background. Second, we used the technology to mediate the use of simulations and modeling modules as a learning tool for traditional biological concepts, such as T cell differentiation or cell cycle regulation, in existing biology courses. Results of this pilot application suggest that there is promise in the use of computational modeling and software tools such as Cell Collective to provide new teaching methods in biology and contribute to the implementation of the "Vision and Change" call to action in undergraduate biology education by providing a hands-on approach to biology.

  18. Advanced tokamak research with integrated modeling in JT-60 Upgrade

    International Nuclear Information System (INIS)

    Hayashi, N.

    2010-01-01

    Researches on advanced tokamak (AT) have progressed with integrated modeling in JT-60 Upgrade [N. Oyama et al., Nucl. Fusion 49, 104007 (2009)]. Based on JT-60U experimental analyses and first principle simulations, new models were developed and integrated into core, rotation, edge/pedestal, and scrape-off-layer (SOL)/divertor codes. The integrated models clarified complex and autonomous features in AT. An integrated core model was implemented to take account of an anomalous radial transport of alpha particles caused by Alfven eigenmodes. It showed the reduction in the fusion gain by the anomalous radial transport and further escape of alpha particles. Integrated rotation model showed mechanisms of rotation driven by the magnetic-field-ripple loss of fast ions and the charge separation due to fast-ion drift. An inward pinch model of high-Z impurity due to the atomic process was developed and indicated that the pinch velocity increases with the toroidal rotation. Integrated edge/pedestal model clarified causes of collisionality dependence of energy loss due to the edge localized mode and the enhancement of energy loss by steepening a core pressure gradient just inside the pedestal top. An ideal magnetohydrodynamics stability code was developed to take account of toroidal rotation and clarified a destabilizing effect of rotation on the pedestal. Integrated SOL/divertor model clarified a mechanism of X-point multifaceted asymmetric radiation from edge. A model of the SOL flow driven by core particle orbits which partially enter the SOL was developed by introducing the ion-orbit-induced flow to fluid equations.

  19. Integrability in three dimensions: Algebraic Bethe ansatz for anyonic models

    Directory of Open Access Journals (Sweden)

    Sh. Khachatryan

    2015-10-01

    Full Text Available We extend basic properties of two dimensional integrable models within the Algebraic Bethe Ansatz approach to 2+1 dimensions and formulate the sufficient conditions for the commutativity of transfer matrices of different spectral parameters, in analogy with Yang–Baxter or tetrahedron equations. The basic ingredient of our models is the R-matrix, which describes the scattering of a pair of particles over another pair of particles, the quark-anti-quark (meson scattering on another quark-anti-quark state. We show that the Kitaev model belongs to this class of models and its R-matrix fulfills well-defined equations for integrability.

  20. Arbitrary modeling of TSVs for 3D integrated circuits

    CERN Document Server

    Salah, Khaled; El-Rouby, Alaa

    2014-01-01

    This book presents a wide-band and technology independent, SPICE-compatible RLC model for through-silicon vias (TSVs) in 3D integrated circuits. This model accounts for a variety of effects, including skin effect, depletion capacitance and nearby contact effects. Readers will benefit from in-depth coverage of concepts and technology such as 3D integration, Macro modeling, dimensional analysis and compact modeling, as well as closed form equations for the through silicon via parasitics. Concepts covered are demonstrated by using TSVs in applications such as a spiral inductor?and inductive-based

  1. Uncertainty management in integrated modelling, the IMAGE case

    International Nuclear Information System (INIS)

    Van der Sluijs, J.P.

    1995-01-01

    Integrated assessment models of global environmental problems play an increasingly important role in decision making. This use demands a good insight regarding the reliability of these models. In this paper we analyze uncertainty management in the IMAGE-project (Integrated Model to Assess the Greenhouse Effect). We use a classification scheme comprising type and source of uncertainty. Our analysis shows reliability analysis as main area for improvement. We briefly review a recently developed methodology, NUSAP (Numerical, Unit, Spread, Assessment and Pedigree), that systematically addresses the strength of data in terms of spread, reliability and scientific status (pedigree) of information. This approach is being tested through interviews with model builders. 3 tabs., 20 refs

  2. RAYLEIGH SCATTERING MODELS WITH CORRELATION INTEGRAL

    Directory of Open Access Journals (Sweden)

    S. F. Kolomiets

    2014-01-01

    Full Text Available This article offers one of possible approaches to the use of the classical correlation concept in Rayleigh scattering models. Classical correlation in contrast to three types of correlations corresponding to stochastic point flows opens the door to the efficient explanation of the interaction between periodical structure of incident radiation and discreet stochastic structure of distributed scatters typical for Rayleigh problems.

  3. Integrated Biogeomorphological Modeling Using Delft3D

    Science.gov (United States)

    Ye, Q.; Jagers, B.

    2011-12-01

    The skill of numerical morphological models has improved significantly from the early 2D uniform, total load sediment models (with steady state or infrequent wave updates) to recent 3D hydrodynamic models with multiple suspended and bed load sediment fractions and bed stratigraphy (online coupled with waves). Although there remain many open questions within this combined field of hydro- and morphodynamics, we observe an increasing need to include biological processes in the overall dynamics. In riverine and inter-tidal environments, there is often an important influence by riparian vegetation and macrobenthos. Over the past decade more and more researchers have started to extend the simulation environment with wrapper scripts and other quick code hacks to estimate their influence on morphological development in coastal, estuarine and riverine environments. Although one can in this way quickly analyze different approaches, these research tools have generally not been designed with reuse, performance and portability in mind. We have now implemented a reusable, flexible, and efficient two-way link between the Delft3D open source framework for hydrodynamics, waves and morphology, and the water quality and ecology modules. The same link will be used for 1D, 2D and 3D modeling on networks and both structured and unstructured grids. We will describe the concepts of the overall system, and illustrate it with some first results.

  4. Teleconnections associated with the intensification of the Australian monsoon during El Nino Modoki events

    International Nuclear Information System (INIS)

    Taschetto, A S; Gupta, A Sen; Ummenhofer, C C; England, M H; Haarsma, R J

    2010-01-01

    In this study we investigate the teleconnection between the central-western Pacific sea surface temperature (SST) warming, characteristic of El Nino Modoki events, and Australian rainfall using observations and atmospheric general circulation model experiments. During Modoki events, wet conditions are generally observed over northwestern Australia at the peak of the monsoon season (i.e. January and February) while dry conditions occur in the shoulder-months (i.e. December and March). This results in a shorter but more intense monsoon season over northwestern Australia relative to the climatology. We show that, apart from the well-known displacement of the Walker circulation, the anomalous warming in the central-western equatorial Pacific also induces a westward-propagating disturbance associated with a Gill-type mechanism. This in turn generates an anomalous cyclonic circulation over northwestern Australia that reinforces the climatological mean conditions during the peak of the monsoon season. The anomalous circulation leads to convergence of moisture and increased precipitation over northern Australia. This response, however, only occurs persistently during austral summer when the South Pacific Convergence Zone is climatologically strengthened, phase-locking the Gill-type response to the seasonal cycle. The interaction between the interannual SST variability during El Nino Modoki events and the evolution of the seasonal cycle intensifies deep convection in the central-west Pacific, driving a Gill-type response to diabatic heating. The intensified monsoonal rainfall occurs strongly in February due to the climatological wind conditions that are normally cyclonic over northwestern Australia.

  5. Changes in the Asian monsoon climate during 1700-1850 induced by preindustrial cultivation.

    Science.gov (United States)

    Takata, Kumiko; Saito, Kazuyuki; Yasunari, Tetsuzo

    2009-06-16

    Preindustrial changes in the Asian summer monsoon climate from the 1700s to the 1850s were estimated with an atmospheric general circulation model (AGCM) using historical global land cover/use change data reconstructed for the last 300 years. Extended cultivation resulted in a decrease in monsoon rainfall over the Indian subcontinent and southeastern China and an associated weakening of the Asian summer monsoon circulation. The precipitation decrease in India was marked and was consistent with the observational changes derived from examining the Himalayan ice cores for the concurrent period. Between the 1700s and the 1850s, the anthropogenic increases in greenhouse gases and aerosols were still minor; also, no long-term trends in natural climate variations, such as those caused by the ocean, solar activity, or volcanoes, were reported. Thus, we propose that the land cover/use change was the major source of disturbances to the climate during that period. This report will set forward quantitative examination of the actual impacts of land cover/use changes on Asian monsoons, relative to the impact of greenhouse gases and aerosols, viewed in the context of global warming on the interannual, decadal, and centennial time scales.

  6. Impact of East Asian Summer Monsoon on Surface Ozone Pattern in China

    Science.gov (United States)

    Li, Shu; Wang, Tijian; Huang, Xing; Pu, Xi; Li, Mengmeng; Chen, Pulong; Yang, Xiu-Qun; Wang, Minghuai

    2018-01-01

    Tropospheric ozone plays a key role in regional and global atmospheric and climate systems. In East Asia, ozone can be affected both in concentration level and spatial pattern by typical monsoon climate. This paper uses three different indices to identify the strength of East Asian summer monsoon (EASM) and explores the possible impact of EASM intensity on the ozone pattern through synthetic and process analysis. The difference in ozone between three strong and three weak monsoon years was analyzed using the simulations from regional climate model RegCM4-Chem. It was found that EASM intensity can significantly influence the spatial distribution of ozone in the lower troposphere. When EASM is strong, ozone in the eastern part of China (28°N - 42° N) is reduced, but the inverse is detected in the north and south. The surface ozone difference ranges from -7 to 7 ppbv during the 3 months (June to August) of the EASM, with the most obvious difference in August. Difference of the 3 months' average ozone ranges from -3.5 to 4 ppbv. Process analysis shows that the uppermost factor controlling ozone level during summer monsoon seasons is the chemistry process. Interannual variability of EASM can impact the spatial distribution of ozone through wind in the lower troposphere, cloud cover, and downward shortwave radiation, which affect the transport and chemical formation of ozone. The phenomenon should be addressed when considering the interaction between ozone and the climate in East Asia region.

  7. Asian Eocene monsoons as revealed by leaf architectural signatures

    Science.gov (United States)

    Spicer, Robert A.; Yang, Jian; Herman, Alexei B.; Kodrul, Tatiana; Maslova, Natalia; Spicer, Teresa E. V.; Aleksandrova, Galina; Jin, Jianhua

    2016-09-01

    The onset and development of the Asian monsoon systems is a topic that has attracted considerable research effort but proxy data limitations, coupled with a diversity of definitions and metrics characterizing monsoon phenomena, have generated much debate. Failure of geological proxies to yield metrics capable of distinguishing between rainfall seasonality induced by migrations of the Inter-tropical Convergence Zone (ITCZ) from that attributable to topographically modified seasonal pressure reversals has frustrated attempts to understand mechanisms underpinning monsoon development and dynamics. Here we circumvent the use of such single climate parameter metrics in favor of detecting directly the distinctive attributes of different monsoon regimes encoded in leaf fossils. Leaf form adapts to the prevailing climate, particularly under the extreme seasonal stresses imposed by monsoons, so it is likely that fossil leaves carry a unique signature of past monsoon regimes. Leaf form trait spectra obtained from fossils from Eocene basins in southern China were compared with those seen in modern leaves growing under known climate regimes. The fossil leaf trait spectra, including those derived from previously published fossil floras from northwestern India, were most similar to those found in vegetation exposed to the modern Indonesia-Australia Monsoon (I-AM), which is largely a product of seasonal migrations of the ITCZ. The presence of this distinctive leaf physiognomic signature suggests that although a monsoon climate existed in Eocene time across southern Asia the characteristics of the modern topographically-enhanced South Asia Monsoon had yet to develop. By the Eocene leaves in South Asia had become well adapted to an I-AM type regime across many taxa and points to the existence of a pervasive monsoon climate prior to the Eocene. No fossil trait spectra typical of exposure to the modern East Asia monsoon were seen, suggesting the effects of this system in southern

  8. INTEGRATION OF HETEROGENOUS DIGITAL SURFACE MODELS

    Directory of Open Access Journals (Sweden)

    R. Boesch

    2012-08-01

    Full Text Available The application of extended digital surface models often reveals, that despite an acceptable global accuracy for a given dataset, the local accuracy of the model can vary in a wide range. For high resolution applications which cover the spatial extent of a whole country, this can be a major drawback. Within the Swiss National Forest Inventory (NFI, two digital surface models are available, one derived from LiDAR point data and the other from aerial images. Automatic photogrammetric image matching with ADS80 aerial infrared images with 25cm and 50cm resolution is used to generate a surface model (ADS-DSM with 1m resolution covering whole switzerland (approx. 41000 km2. The spatially corresponding LiDAR dataset has a global point density of 0.5 points per m2 and is mainly used in applications as interpolated grid with 2m resolution (LiDAR-DSM. Although both surface models seem to offer a comparable accuracy from a global view, local analysis shows significant differences. Both datasets have been acquired over several years. Concerning LiDAR-DSM, different flight patterns and inconsistent quality control result in a significantly varying point density. The image acquisition of the ADS-DSM is also stretched over several years and the model generation is hampered by clouds, varying illumination and shadow effects. Nevertheless many classification and feature extraction applications requiring high resolution data depend on the local accuracy of the used surface model, therefore precise knowledge of the local data quality is essential. The commercial photogrammetric software NGATE (part of SOCET SET generates the image based surface model (ADS-DSM and delivers also a map with figures of merit (FOM of the matching process for each calculated height pixel. The FOM-map contains matching codes like high slope, excessive shift or low correlation. For the generation of the LiDAR-DSM only first- and last-pulse data was available. Therefore only the point

  9. Mineralogical evidence of reduced East Asian summer monsoon rainfall on the Chinese loess plateau during the early Pleistocene interglacials

    Science.gov (United States)

    Meng, Xianqiang; Liu, Lianwen; Wang, Xingchen T.; Balsam, William; Chen, Jun; Ji, Junfeng

    2018-03-01

    The East Asian summer monsoon (EASM) is an important component of the global climate system. A better understanding of EASM rainfall variability in the past can help constrain climate models and better predict the response of EASM to ongoing global warming. The warm early Pleistocene, a potential analog of future climate, is an important period to study EASM dynamics. However, existing monsoon proxies for reconstruction of EASM rainfall during the early Pleistocene fail to disentangle monsoon rainfall changes from temperature variations, complicating the comparison of these monsoon records with climate models. Here, we present three 2.6 million-year-long EASM rainfall records from the Chinese Loess Plateau (CLP) based on carbonate dissolution, a novel proxy for rainfall intensity. These records show that the interglacial rainfall on the CLP was lower during the early Pleistocene and then gradually increased with global cooling during the middle and late Pleistocene. These results are contrary to previous suggestions that a warmer climate leads to higher monsoon rainfall on tectonic timescales. We propose that the lower interglacial EASM rainfall during the early Pleistocene was caused by reduced sea surface temperature gradients across the equatorial Pacific, providing a testable hypothesis for climate models.

  10. Climbing the ladder: capability maturity model integration level 3

    Science.gov (United States)

    Day, Bryce; Lutteroth, Christof

    2011-02-01

    This article details the attempt to form a complete workflow model for an information and communication technologies (ICT) company in order to achieve a capability maturity model integration (CMMI) maturity rating of 3. During this project, business processes across the company's core and auxiliary sectors were documented and extended using modern enterprise modelling tools and a The Open Group Architectural Framework (TOGAF) methodology. Different challenges were encountered with regard to process customisation and tool support for enterprise modelling. In particular, there were problems with the reuse of process models, the integration of different project management methodologies and the integration of the Rational Unified Process development process framework that had to be solved. We report on these challenges and the perceived effects of the project on the company. Finally, we point out research directions that could help to improve the situation in the future.

  11. System Dynamics Model for VMI&TPL Integrated Supply Chains

    Directory of Open Access Journals (Sweden)

    Guo Li

    2013-01-01

    Full Text Available This paper establishes VMI-APIOBPCS II model by extending VMI-APIOBPCS model from serial supply chain to distribution supply chain. Then TPL is introduced to this VMI distribution supply chain, and operational framework and process of VMI&TPL integrated supply chain are analyzed deeply. On this basis VMI-APIOBPCS II model is then changed to VMI&TPL-APIOBPCS model and VMI&TPL integrated operation mode is simulated. Finally, compared with VMI-APIOBPCS model, the TPL’s important role of goods consolidation and risk sharing in VMI&TPL integrated supply chain is analyzed in detail from the aspects of bullwhip effect, inventory level, service level, and so on.

  12. Predictive integrated modelling for ITER scenarios

    International Nuclear Information System (INIS)

    Artaud, J.F.; Imbeaux, F.; Aniel, T.; Basiuk, V.; Eriksson, L.G.; Giruzzi, G.; Hoang, G.T.; Huysmans, G.; Joffrin, E.; Peysson, Y.; Schneider, M.; Thomas, P.

    2005-01-01

    The uncertainty on the prediction of ITER scenarios is evaluated. 2 transport models which have been extensively validated against the multi-machine database are used for the computation of the transport coefficients. The first model is GLF23, the second called Kiauto is a model in which the profile of dilution coefficient is a gyro Bohm-like analytical function, renormalized in order to get profiles consistent with a given global energy confinement scaling. The package of codes CRONOS is used, it gives access to the dynamics of the discharge and allows the study of interplay between heat transport, current diffusion and sources. The main motivation of this work is to study the influence of parameters such plasma current, heat, density, impurities and toroidal moment transport. We can draw the following conclusions: 1) the target Q = 10 can be obtained in ITER hybrid scenario at I p = 13 MA, using either the DS03 two terms scaling or the GLF23 model based on the same pedestal; 2) I p = 11.3 MA, Q = 10 can be reached only assuming a very peaked pressure profile and a low pedestal; 3) at fixed Greenwald fraction, Q increases with density peaking; 4) achieving a stationary q-profile with q > 1 requires a large non-inductive current fraction (80%) that could be provided by 20 to 40 MW of LHCD; and 5) owing to the high temperature the q-profile penetration is delayed and q = 1 is reached about 600 s in ITER hybrid scenario at I p = 13 MA, in the absence of active q-profile control. (A.C.)

  13. Vortex Lattice UXO Mobility Model Integration

    Science.gov (United States)

    2015-03-01

    law , no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB...predictions of the fate and transport of a broad-field UXO population are extremely sensitive to the initial state of that population, specifically: the...limit the model’s computational domain. This revised model software was built on the concept of interconnected geomorphic control cells consisting of

  14. Ontological Analysis of Integrated Process Models: testing hypotheses

    Directory of Open Access Journals (Sweden)

    Michael Rosemann

    2001-11-01

    Full Text Available Integrated process modeling is achieving prominence in helping to document and manage business administration and IT processes in organizations. The ARIS framework is a popular example for a framework of integrated process modeling not least because it underlies the 800 or more reference models embedded in the world's most popular ERP package, SAP R/3. This paper demonstrates the usefulness of the Bunge-Wand-Weber (BWW representation model for evaluating modeling grammars such as those constituting ARIS. It reports some initial insights gained from pilot testing Green and Rosemann's (2000 evaluative propositions. Even when considering all five views of ARIS, modelers have problems representing business rules, the scope and boundary of systems, and decomposing models. However, even though it is completely ontologically redundant, users still find the function view useful in modeling.

  15. Application of WRF - SWAT OpenMI 2.0 based models integration for real time hydrological modelling and forecasting

    Science.gov (United States)

    Bugaets, Andrey; Gonchukov, Leonid

    2014-05-01

    Intake of deterministic distributed hydrological models into operational water management requires intensive collection and inputting of spatial distributed climatic information in a timely manner that is both time consuming and laborious. The lead time of the data pre-processing stage could be essentially reduced by coupling of hydrological and numerical weather prediction models. This is especially important for the regions such as the South of the Russian Far East where its geographical position combined with a monsoon climate affected by typhoons and extreme heavy rains caused rapid rising of the mountain rivers water level and led to the flash flooding and enormous damage. The objective of this study is development of end-to-end workflow that executes, in a loosely coupled mode, an integrated modeling system comprised of Weather Research and Forecast (WRF) atmospheric model and Soil and Water Assessment Tool (SWAT 2012) hydrological model using OpenMI 2.0 and web-service technologies. Migration SWAT into OpenMI compliant involves reorganization of the model into a separate initialization, performing timestep and finalization functions that can be accessed from outside. To save SWAT normal behavior, the source code was separated from OpenMI-specific implementation into the static library. Modified code was assembled into dynamic library and wrapped into C# class implemented the OpenMI ILinkableComponent interface. Development of WRF OpenMI-compliant component based on the idea of the wrapping web-service clients into a linkable component and seamlessly access to output netCDF files without actual models connection. The weather state variables (precipitation, wind, solar radiation, air temperature and relative humidity) are processed by automatic input selection algorithm to single out the most relevant values used by SWAT model to yield climatic data at the subbasin scale. Spatial interpolation between the WRF regular grid and SWAT subbasins centroid (which are

  16. Early forecasting of Indian Summer Monsoon: case study 2016

    Science.gov (United States)

    Surovyatkina, Elena; Stolbova, Veronika; Kurths, Jurgen

    2017-04-01

    The prior knowledge of dates of onset and withdrawal of monsoon is of vital importance for the population of the Indian subcontinent. In May 2016 before monsoon season, India recorded its highest-ever temperature of 51C. Hot waves have decimated crops, killed livestock and left 330 million people without enough water. At the end of monsoon season the floods in Indian this year have also broken previous records. Severe and devastating rainfall poured down, triggering dams spilling and floods. Such extreme conditions pose the vital questions such as: When will the monsoon come? When will the monsoon withdraw? More lead time in monsoon forecast warning is crucial for taking appropriate decisions at various levels - from the farmer's field (e.g. plowing day, seeding) to the central government (e.g. managing water and energy resources, food procurement policies). The Indian Meteorological Department issues forecasts of onset of monsoon for Kerala state in South India on May 15-th. It does not give such predictions for the other 28 states of the country. Our study concerns the central part of India. We made the monsoon forecast using our recently developed method which focuses on Tipping elements of the Indian monsoon [1]. Our prediction relies on observations of near-surface air temperature and relative humidity from both the ERA-40 and NCEP/NCAR reanalyses. We performed both of our forecasts for the onset and withdrawal of monsoon for the central part of India, the Eastern Ghats (20N,80E). We predicted the monsoon arrival to the Eastern Ghats (20N,80E) on the 13th of June with a deviation of +/-4 days. The prediction was made on May 6-th, 2016 [2], that is 40 days in advance of the date of the forecast. The actual monsoon arrival was June 17-th. In this day near-surface air temperature and relative humidity overcame the critical values and the monsoon season started, that was confirmed by observations of meteorological stations located around the EG-region. We

  17. A website evaluation model by integration of previous evaluation models using a quantitative approach

    Directory of Open Access Journals (Sweden)

    Ali Moeini

    2015-01-01

    Full Text Available Regarding the ecommerce growth, websites play an essential role in business success. Therefore, many authors have offered website evaluation models since 1995. Although, the multiplicity and diversity of evaluation models make it difficult to integrate them into a single comprehensive model. In this paper a quantitative method has been used to integrate previous models into a comprehensive model that is compatible with them. In this approach the researcher judgment has no role in integration of models and the new model takes its validity from 93 previous models and systematic quantitative approach.

  18. The East Asian Summer Monsoon at mid-Holocene: results from PMIP3 simulations

    Directory of Open Access Journals (Sweden)

    W. Zheng

    2013-02-01

    Full Text Available Ten Coupled General Circulation Models (CGCMs participated in the third phase of Paleoclimate Modelling Intercomparison Project (PMIP3 are assessed for the East Asian Summer Monsoon (EASM in both the pre-Industrial (PI, 0 ka and mid-Holocene (MH, 6 ka simulations. Results show that the PMIP3 model median captures well the large-scale characteristics of the EASM, including the two distinct features of the Meiyu rainbelt and the stepwise meridional displacement of the monsoonal rainbelt. At mid-Holocene, the PMIP3 model median shows significant warming (cooling during boreal summer (winter over Eurasia continent that are dominated by the changes of insolation. However, the PMIP3 models fail to simulate a warmer annual mean and winter surface air temperature (TAS over eastern China as derived from proxy records. The EASM at MH are featured by the changes of large-scale circulation over Eastern China while the changes of precipitation are not significant over its sub-domains of the Southern China and the lower reaches of Yangzi River. The inter-model differences for the monsoon precipitation can be associated with different configurations of the changes in large-scale circulation and the water vapour content, of which the former determines the sign of precipitation changes. The large model spread for the TAS over Tibetan Plateau has a positive relationship with the precipitation in the lower reaches of Yangzi River, yet this relationship does not apply to those PMIP3 models in which the monsoonal precipitation is more sensitive to the changes of large-scale circulation. Except that the PMIP3 model median captured the warming of annual mean TAS over Tibetan Plateau, no significant improvements can be concluded when compared with the PMIP2 models results.

  19. A Multi-Actor Dynamic Integrated Assessment Model (MADIAM)

    OpenAIRE

    Weber, Michael

    2004-01-01

    The interactions between climate and the socio-economic system are investigated with a Multi-Actor Dynamic Integrated Assessment Model (MADIAM) obtained by coupling a nonlinear impulse response model of the climate sub-system (NICCS) to a multi-actor dynamic economic model (MADEM). The main goal is to initiate a model development that is able to treat the dynamics of the coupled climate socio-economic system, including endogenous technological change, in a non-equilibrium situation, thereby o...

  20. Business model driven service architecture design for enterprise application integration

    OpenAIRE

    Gacitua-Decar, Veronica; Pahl, Claus

    2008-01-01

    Increasingly, organisations are using a Service-Oriented Architecture (SOA) as an approach to Enterprise Application Integration (EAI), which is required for the automation of business processes. This paper presents an architecture development process which guides the transition from business models to a service-based software architecture. The process is supported by business reference models and patterns. Firstly, the business process models are enhanced with domain model elements, applicat...

  1. Integrated modeling for the restoration project management

    Directory of Open Access Journals (Sweden)

    Roberto Mingucci

    2012-11-01

    Full Text Available This paper introduces some possibilities offered by the Information Multimedia Archives (A.I.M., methodology aimed at existing architectures and important historic monuments documentation. The A.I.M.’s generation process and its digital archive structure result from studies on digital modeling and computer vision intended to document informative surveys, produced during two distinct acquiring and compiling phases. The data is collected in the A.I.M. through increasing levels of detail and organized through the use of databases developed in order to be queried by mobile devices too.

  2. Map algebra and model algebra for integrated model building

    NARCIS (Netherlands)

    Schmitz, O.; Karssenberg, D.J.; Jong, K. de; Kok, J.-L. de; Jong, S.M. de

    2013-01-01

    Computer models are important tools for the assessment of environmental systems. A seamless workflow of construction and coupling of model components is essential for environmental scientists. However, currently available software packages are often tailored either to the construction of model

  3. Gsflow-py: An integrated hydrologic model development tool

    Science.gov (United States)

    Gardner, M.; Niswonger, R. G.; Morton, C.; Henson, W.; Huntington, J. L.

    2017-12-01

    Integrated hydrologic modeling encompasses a vast number of processes and specifications, variable in time and space, and development of model datasets can be arduous. Model input construction techniques have not been formalized or made easily reproducible. Creating the input files for integrated hydrologic models (IHM) requires complex GIS processing of raster and vector datasets from various sources. Developing stream network topology that is consistent with the model resolution digital elevation model is important for robust simulation of surface water and groundwater exchanges. Distribution of meteorologic parameters over the model domain is difficult in complex terrain at the model resolution scale, but is necessary to drive realistic simulations. Historically, development of input data for IHM models has required extensive GIS and computer programming expertise which has restricted the use of IHMs to research groups with available financial, human, and technical resources. Here we present a series of Python scripts that provide a formalized technique for the parameterization and development of integrated hydrologic model inputs for GSFLOW. With some modifications, this process could be applied to any regular grid hydrologic model. This Python toolkit automates many of the necessary and laborious processes of parameterization, including stream network development and cascade routing, land coverages, and meteorological distribution over the model domain.

  4. THE INTEGRATION PROCESS MERCOSUR IN 2007 BY MODEL OF GLOBAL DIMENSION OF REGIONAL INTEGRATION

    Directory of Open Access Journals (Sweden)

    André Bechlin

    2013-04-01

    Full Text Available This paper aimed to analyze the advance of the regional integration process in the MERCOSUR (Southern Common Market, using a model developed for Professor Mario Ruiz Estrada, of the College of Economy and Administration of the University of Kuala Lumpur in Malaysia, the GDRI (Global Dimension of Regional Integration Model and that as characteristic has differentiated the use of other variable for analysis, that not specifically of economic origin, derivatives of the evolution of the commerce processes. When inferring and comparing the external performance of the economies that compose the Mercosur, evaluating itself the impacts of the advance of the process of regional and commercial integration, are evidents the inequalities that exist in the block. However, a common evolution is observed, in the direction of intensification of the integration between the economies, mainly after the process of opening lived for the continent, beyond the advance of the integration in the context of the Mercosur, from the decade of 1990. The analyzed data show that, in the generality, these economies are if integrating to the world-wide market, and in parallel, accenting the integration degree enters the members of the block.

  5. Evaporation over the Arabian Sea during two contrasting monsoons

    Digital Repository Service at National Institute of Oceanography (India)

    RameshKumar, M.R.; Sadhuram, Y.

    monsoon rainfall. It is noticed that in general, the sea surface temperatures are higher in 1983 throughout the monsoon season than in 1979 in the Arabian Sea excepting western region. The mean rates of evaporation on a seasonal scale are found to be equal...

  6. Reconciling societal and scientific definitions for the monsoon

    Science.gov (United States)

    Reeve, Mathew; Stephenson, David

    2014-05-01

    Science defines the monsoon in numerous ways. We can apply these definitions to forecast data, reanalysis data, observations, GCMs and more. In a basic research setting, we hope that this work will advance science and our understanding of the monsoon system. In an applied research setting, we often hope that this work will benefit a specific stakeholder or community. We may want to inform a stakeholder when the monsoon starts, now and in the future. However, what happens if the stakeholders cannot relate to the information because their perceptions do not align with the monsoon definition we use in our analysis? We can resolve this either by teaching the stakeholders or learning from them about how they define the monsoon and when they perceive it to begin. In this work we reconcile different scientific monsoon definitions with the perceptions of agricultural communities in Bangladesh. We have developed a statistical technique that rates different scientific definitions against the people's perceptions of when the monsoon starts and ends. We construct a probability mass function (pmf) around each of the respondent's answers in a questionnaire survey. We can use this pmf to analyze the time series of monsoon onsets and withdrawals from the different scientific definitions. We can thereby quantitatively judge which definition may be most appropriate for a specific applied research setting.

  7. The monsoon system: Land–sea breeze or the ITCZ?

    Indian Academy of Sciences (India)

    Sulochana Gadgil

    2018-01-27

    Jan 27, 2018 ... ocean contrast is one of the main drivers of the monsoon rainfall, in the 5th Assessment Report of the Inter-governmental Panel on Climate Change. (IPCC Climate Change 2013), the likely enhance- ment of monsoon rainfall has been attributed to increased land–sea contrast, and more abundant.

  8. Impact of Climate Change on India's Monsoonal Climate: Present ...

    Indian Academy of Sciences (India)

    Expected Future Changes in Rainfall and Temperature over India under IPCC SRES A1B GHG Scenarios · Expected Future Change in Monsoon Rainfall and Annual Surface Temp for 2020's, 2050's and 2080's · Likely Future Paradox of Monsoon-ENSO Links · High-Resolution Regional Climate Change Scenarios.

  9. Using models in Integrated Ecosystem Assessment of coastal areas

    Science.gov (United States)

    Solidoro, Cosimo; Bandelj, Vinko; Cossarini, Gianpiero; Melaku Canu, Donata; Libralato, Simone

    2014-05-01

    Numerical Models can greatly contribute to integrated ecological assessment of coastal and marine systems. Indeed, models can: i) assist in the identification of efficient sampling strategy; ii) provide space interpolation and time extrapolation of experiemtanl data which are based on the knowedge on processes dynamics and causal realtionships which is coded within the model, iii) provide estimates of hardly measurable indicators. Furthermore model can provide indication on potential effects of implementation of alternative management policies. Finally, by providing a synthetic representation of an ideal system, based on its essential dynamic, model return a picture of ideal behaviour of a system in the absence of external perturbation, alteration, noise, which might help in the identification of reference behaivuor. As an important example, model based reanalyses of biogeochemical and ecological properties are an urgent need for the estimate of the environmental status and the assessment of efficacy of conservation and environmental policies, also with reference to the enforcement of the European MSFD. However, the use of numerical models, and particularly of ecological models, in modeling and in environmental management still is far from be the rule, possibly because of a lack in realizing the benefits which a full integration of modeling and montoring systems might provide, possibly because of a lack of trust in modeling results, or because many problems still exists in the development, validation and implementation of models. For istance, assessing the validity of model results is a complex process that requires the definition of appropriate indicators, metrics, methodologies and faces with the scarcity of real-time in-situ biogeochemical data. Furthermore, biogeochemical models typically consider dozens of variables which are heavily undersampled. Here we show how the integration of mathematical model and monitoring data can support integrated ecosystem

  10. Integrative Analysis of Metabolic Models – from Structure to Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Hartmann, Anja, E-mail: hartmann@ipk-gatersleben.de [Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben (Germany); Schreiber, Falk [Monash University, Melbourne, VIC (Australia); Martin-Luther-University Halle-Wittenberg, Halle (Germany)

    2015-01-26

    The characterization of biological systems with respect to their behavior and functionality based on versatile biochemical interactions is a major challenge. To understand these complex mechanisms at systems level modeling approaches are investigated. Different modeling formalisms allow metabolic models to be analyzed depending on the question to be solved, the biochemical knowledge and the availability of experimental data. Here, we describe a method for an integrative analysis of the structure and dynamics represented by qualitative and quantitative metabolic models. Using various formalisms, the metabolic model is analyzed from different perspectives. Determined structural and dynamic properties are visualized in the context of the metabolic model. Interaction techniques allow the exploration and visual analysis thereby leading to a broader understanding of the behavior and functionality of the underlying biological system. The System Biology Metabolic Model Framework (SBM{sup 2} – Framework) implements the developed method and, as an example, is applied for the integrative analysis of the crop plant potato.

  11. Models for efficient integration of solar energy

    DEFF Research Database (Denmark)

    Bacher, Peder

    the available flexibility in the system. In the present thesis methods related to operation of solar energy systems and for optimal energy use in buildings are presented. Two approaches for forecasting of solar power based on numerical weather predictions (NWPs) are presented, they are applied to forecast......Efficient operation of energy systems with substantial amount of renewable energy production is becoming increasingly important. Renewables are dependent on the weather conditions and are therefore by nature volatile and uncontrollable, opposed to traditional energy production based on combustion....... The "smart grid" is a broad term for the technology for addressing the challenge of operating the grid with a large share of renewables. The "smart" part is formed by technologies, which models the properties of the systems and efficiently adapt the load to the volatile energy production, by using...

  12. Triangular model integrating clinical teaching and assessment.

    Science.gov (United States)

    Abdelaziz, Adel; Koshak, Emad

    2014-01-01

    Structuring clinical teaching is a challenge facing medical education curriculum designers. A variety of instructional methods on different domains of learning are indicated to accommodate different learning styles. Conventional methods of clinical teaching, like training in ambulatory care settings, are prone to the factor of coincidence in having varieties of patient presentations. Accordingly, alternative methods of instruction are indicated to compensate for the deficiencies of these conventional methods. This paper presents an initiative that can be used to design a checklist as a blueprint to guide appropriate selection and implementation of teaching/learning and assessment methods in each of the educational courses and modules based on educational objectives. Three categories of instructional methods were identified, and within each a variety of methods were included. These categories are classroom-type settings, health services-based settings, and community service-based settings. Such categories have framed our triangular model of clinical teaching and assessment.

  13. Integrated prospecting model in Jinguanchong uranium deposit

    International Nuclear Information System (INIS)

    Xie Yongjian

    2006-01-01

    Jinguanchong uranium deposit is large in scale, which brings difficulties to prospecting and researches. Based on conditions of mineral-formation, geophysics and geochemistry, this paper summarizes a few geophysical and geochemical prospecting methods applied to this deposit. The principles, characteristics, application condition and exploration phases of these prospecting methods are discussed and some prospecting examples are also given in the prospecting for Jinguanchong uranium deposit. Based on summarizing the practice and effects of different methods such as gamma and electromagnetic method, soil emanation prospecting, track etch technique and polonium method used in uranium prospecting, the author finally puts forward a primary uranium prospecting model for the further prospecting in Jinguanchong uranium deposit through combining the author's experience with practice. (authors)

  14. Integrable higher order deformations of Heisenberg supermagnetic model

    International Nuclear Information System (INIS)

    Guo Jiafeng; Yan Zhaowen; Wang Shikun; Wu Ke; Zhao Weizhong

    2009-01-01

    The Heisenberg supermagnet model is an integrable supersymmetric system and has a close relationship with the strong electron correlated Hubbard model. In this paper, we investigate the integrable higher order deformations of Heisenberg supermagnet models with two different constraints: (i) S 2 =3S-2I for S is an element of USPL(2/1)/S(U(2)xU(1)) and (ii) S 2 =S for S is an element of USPL(2/1)/S(L(1/1)xU(1)). In terms of the gauge transformation, their corresponding gauge equivalent counterparts are derived.

  15. An Integrated Simulation Tool for Modeling the Human Circulatory System

    Science.gov (United States)

    Asami, Ken'ichi; Kitamura, Tadashi

    This paper presents an integrated simulation of the circulatory system in physiological movement. The large circulatory system model includes principal organs and functional units in modules in which comprehensive physiological changes such as nerve reflexes, temperature regulation, acid/base balance, O2/CO2 balance, and exercise are simulated. A beat-by-beat heart model, in which the corresponding electrical circuit problems are solved by a numerical analytic method, enables calculation of pulsatile blood flow to the major organs. The integration of different perspectives on physiological changes makes this simulation model applicable for the microscopic evaluation of blood flow under various conditions in the human body.

  16. Chapter 4: Establishment of the integrated modelling system

    International Nuclear Information System (INIS)

    1995-01-01

    This chapter summarizes how the Integrated Modelling System has been established. The Danubian Lowland Information System (DLIS) has been developed, providing a central database and Geographical Information System (GIS) with facilities for data storage, maintenance, processing and presentation. In addition, data can be imported and exported in the file formats readable for the applied modelling system

  17. Modeling of Integrated Security Systems in Higher Education

    Directory of Open Access Journals (Sweden)

    Iskandar Maratovich Azhmuhamedov

    2013-06-01

    Full Text Available It is proposed the model, which takes into account the main features of the integrated system of information security: weak structure, bad formal description, fuzzy description of the status of system components and the relationships between them. Adequacy of the model is tested on the example of Astrakhan State Technical University.

  18. Integrating Tax Preparation with FAFSA Completion: Three Case Models

    Science.gov (United States)

    Daun-Barnett, Nathan; Mabry, Beth

    2012-01-01

    This research compares three different models implemented in four cities. The models integrated free tax-preparation services to assist low-income families with their completion of the Free Application for Federal Student Aid (FAFSA). There has been an increased focus on simplifying the FAFSA process. However, simplification is not the only…

  19. Designing the Distributed Model Integration Framework – DMIF

    NARCIS (Netherlands)

    Belete, Getachew F.; Voinov, Alexey; Morales, Javier

    2017-01-01

    We describe and discuss the design and prototype of the Distributed Model Integration Framework (DMIF) that links models deployed on different hardware and software platforms. We used distributed computing and service-oriented development approaches to address the different aspects of

  20. Principles of integrated modeling of coal seam mining

    Energy Technology Data Exchange (ETDEWEB)

    Magda, R

    1983-01-01

    Mathematical modeling of underground coal mining is discussed. Construction of a mathematical model of an underground mine is analyzed. The model is based on integrating the elementary units (modules). A so-called elementary mining field is defined with the example of a longwall face. A model of an elementary coal seam zone is constructed by integrating the elementary mining fields (in time and space) and supplementing them with a suitable model of mine roadway structure. By integrating the elementary coal seam zones a model of mining level is constructed. Such a mathematical model is used for optimizing the selected mining parameters e.g. structure of mine roadways, size of a coal mine, and organizational scheme of underground mining in a mine or in a mine section using the standardized optimization criterion e.g. investment. Use of the integration model of underground mining for optimizing coal mine construction is evaluated. The following elements of investment and operating cost are considered: shaft excavation, shaft equipment, investment in mining sections, ventilation, mine draining etc. 1 reference.

  1. Integrating Collaborative and Decentralized Models to Support Ubiquitous Learning

    Science.gov (United States)

    Barbosa, Jorge Luis Victória; Barbosa, Débora Nice Ferrari; Rigo, Sandro José; de Oliveira, Jezer Machado; Rabello, Solon Andrade, Jr.

    2014-01-01

    The application of ubiquitous technologies in the improvement of education strategies is called Ubiquitous Learning. This article proposes the integration between two models dedicated to support ubiquitous learning environments, called Global and CoolEdu. CoolEdu is a generic collaboration model for decentralized environments. Global is an…

  2. Effects of Video Modeling on Treatment Integrity of Behavioral Interventions

    Science.gov (United States)

    DiGennaro-Reed, Florence D.; Codding, Robin; Catania, Cynthia N.; Maguire, Helena

    2010-01-01

    We examined the effects of individualized video modeling on the accurate implementation of behavioral interventions using a multiple baseline design across 3 teachers. During video modeling, treatment integrity improved above baseline levels; however, teacher performance remained variable. The addition of verbal performance feedback increased…

  3. Integrating environmental component models. Development of a software framework

    NARCIS (Netherlands)

    Schmitz, O.

    2014-01-01

    Integrated models consist of interacting component models that represent various natural and social systems. They are important tools to improve our understanding of environmental systems, to evaluate cause–effect relationships of human–natural interactions, and to forecast the behaviour of

  4. Integrating models to predict regional haze from wildland fire.

    Science.gov (United States)

    D. McKenzie; S.M. O' Neill; N. Larkin; R.A. Norheim

    2006-01-01

    Visibility impairment from regional haze is a significant problem throughout the continental United States. A substantial portion of regional haze is produced by smoke from prescribed and wildland fires. Here we describe the integration of four simulation models, an array of GIS raster layers, and a set of algorithms for fire-danger calculations into a modeling...

  5. Recent changes in the summer monsoon circulation and their impact on dynamics and thermodynamics of the Arabian Sea

    Science.gov (United States)

    Pratik, Kad; Parekh, Anant; Karmakar, Ananya; Chowdary, Jasti S.; Gnanaseelan, C.

    2018-05-01

    The present study examines changes in the low-level summer monsoon circulation over the Arabian Sea and their impact on the ocean dynamics using reanalysis data. The study confirms intensification and northward migration of low-level jet during 1979 to 2015. Further during the study period, an increase in the Arabian Sea upper ocean heat content is found in spite of a decreasing trend in the net surface heat flux, indicating the possible role of ocean dynamics in the upper ocean warming. Increase in the anti-cyclonic wind stress curl associated with the change in the monsoon circulation induces downwelling over the central Arabian Sea, favoring upper ocean warming. The decreasing trend of southward Ekman transport, a mechanism transporting heat from the land-locked north Indian Ocean to southern latitudes, also supports increasing trend of the upper ocean heat content. To reinstate and quantify the role of changing monsoon circulation in increasing the heat content over the Arabian Sea, sensitivity experiment is carried out using ocean general circulation model. In this experiment, the model is forced by inter-annual momentum forcing while rest of the forcing is climatological. Experiment reveals that the changing monsoon circulation increases the upper ocean heat content, effectively by enhancing downwelling processes and reducing southward heat transport, which strongly endorses our hypothesis that changing ocean dynamics associated with low-level monsoon circulation is causing the increasing trend in the heat content of the Arabian Sea.

  6. Conformal field theories, Coulomb gas picture and integrable models

    International Nuclear Information System (INIS)

    Zuber, J.B.

    1988-01-01

    The aim of the study is to present the links between some results of conformal field theory, the conventional Coulomb gas picture in statistical mechanics and the approach of integrable models. It is shown that families of conformal theories, related by the coset construction to the SU(2) Kac-Moody algebra, may be regarded as obtained from some free field, and modified by the coupling of its winding numbers to floating charges. This representation reflects the procedure of restriction of the corresponding integrable lattice models. The work may be generalized to models based on the coset construction with higher rank algebras. The corresponding integrable models are identified. In the conformal field description, generalized parafermions appear, and are coupled to free fields living on a higher-dimensional torus. The analysis is not as exhaustive as in the SU(2) case: all the various restrictions have not been identified, nor the modular invariants completely classified

  7. Modeling integrated cellular machinery using hybrid Petri-Boolean networks.

    Directory of Open Access Journals (Sweden)

    Natalie Berestovsky

    Full Text Available The behavior and phenotypic changes of cells are governed by a cellular circuitry that represents a set of biochemical reactions. Based on biological functions, this circuitry is divided into three types of networks, each encoding for a major biological process: signal transduction, transcription regulation, and metabolism. This division has generally enabled taming computational complexity dealing with the entire system, allowed for using modeling techniques that are specific to each of the components, and achieved separation of the different time scales at which reactions in each of the three networks occur. Nonetheless, with this division comes loss of information and power needed to elucidate certain cellular phenomena. Within the cell, these three types of networks work in tandem, and each produces signals and/or substances that are used by the others to process information and operate normally. Therefore, computational techniques for modeling integrated cellular machinery are needed. In this work, we propose an integrated hybrid model (IHM that combines Petri nets and Boolean networks to model integrated cellular networks. Coupled with a stochastic simulation mechanism, the model simulates the dynamics of the integrated network, and can be perturbed to generate testable hypotheses. Our model is qualitative and is mostly built upon knowledge from the literature and requires fine-tuning of very few parameters. We validated our model on two systems: the transcriptional regulation of glucose metabolism in human cells, and cellular osmoregulation in S. cerevisiae. The model produced results that are in very good agreement with experimental data, and produces valid hypotheses. The abstract nature of our model and the ease of its construction makes it a very good candidate for modeling integrated networks from qualitative data. The results it produces can guide the practitioner to zoom into components and interconnections and investigate them

  8. Impact of Land Use Land Cover Change on East Asian monsoon

    Science.gov (United States)

    Chilukoti, N.; Xue, Y.; Liu, Y.; Lee, J.

    2017-12-01

    Humans modify the Earth's terrestrial surface on a continental scale by removing natural vegetation for crops/grazing. The current rates, extents and intensities of Land Use and Land Cover Change (LULCC) are greater than ever in history. The earlier studies of Land-atmosphere interactions used specified land surface conditions without interannual variations. In this study using NCEP CFSv2 coupled with Simplified Simple Biosphere (SSiB) model, biogeophysical impacts of LULCC on climate variability, anomaly, and changes are investigated by using the LULCC map from the Hurtt et al. (2006, 2011), which covered 66 years from 1950-2015 with annual variability. We combined the changes in crop and pasture fractions and consider as LULCC. A methodology had been developed to convert the Hurtt LULCC change map with 1° resolution to the GCM grid points. Since the GCM has only one dominant type, when the crop and pasture frction value at one point was larger than the critical value, that grid was assigned as degraded. Comprehensive evaluation was conducted to ensure the consistence of the trend of land degradation in the Hurtt's map and in the GCM LULCC map. In the degraded point, trees were changed to low vegetation or grasses, and low vegetation to bare soil. A set of surface parameters such as leaf area index, vegetation height, roughness length, and soil parameters, associated with vegetation are changed to show the degradation effects. We integrated the model with the potential vegetation map and the map with LULCC from 1950 to 2015, and the results indicate the LULCC causes precipitation reduction globally, with the strongest signals over monsoon regions. For instance, the degradation in Mexico, West Africa, south and East Asia and South America produced significant precipitation anomalies, some of which are consistent with observed regional precipitation anomalies. Meanwhile, it has also found that the LULCC enhances the surface warming during the summer in monsoon

  9. An Agent Model Integrating an Adaptive Model for Environmental Dynamics

    NARCIS (Netherlands)

    Treur, J.; Umair, M.

    2011-01-01

    The environments in which agents are used often may be described by dynamical models, e.g., in the form of a set of differential equations. In this paper, an agent model is proposed that can perform model-based reasoning about the environment, based on a numerical (dynamical system) model of the

  10. Predictability experiments for the Asian summer monsoon impact of SST anomalies on interannual and intraseasonal variability

    CERN Document Server

    Molteni, F; Ferranti, L; Slingo, J M

    2003-01-01

    The effects of SST anomalies on the interannual and intraseasonal variability of the Asian summer monsoon have been studied by multivariate statistical analyses of 850-hPa wind and rainfall fields simulated in a set of ensemble integrations of the ECMWF atmospheric GCM, referred to as the PRISM experiments. The simulations used observed SSTs (PRISM-O), covering 9 years characterised by large variations of the ENSO phenomenon in the 1980's and the early 1990's. A parallel set of simulations was also performed with climatological SSTs (PRISM-C), thus enabling the influence of SST forcing on the modes of interannual and intraseasonal variability to be investigated. As in observations, the model's interannual variability is dominated by a zonally-oriented mode which describes the north-south movement of the tropical convergence zone (TCZ). This mode appears to be independent of SST forcing and its robustness between the PRISM-O and PRISM-C simulations suggests that it is driven by internal atmospheric dynamics. O...

  11. Integrated design approach of the pebble bed modular using models

    International Nuclear Information System (INIS)

    Venter, P.J.

    2005-01-01

    The Pebble Bed Modular Reactor (PBMR) is the first pebble bed reactor that will be utilised in a high temperature direct Brayton cycle configuration. This implies that there are a number of unique features in the PBMR that extend from the German experience base. One of the challenges in the design of the PBMR is managing the integrated design process between the designers, the physicists and the analysts. This integrated design process is managed through model-based development work. Three-dimensional CAD models are constructed of the components and parts in the reactor. From the CAD models, CFD models, neutronic models, shielding models, FEM models and other thermodynamic models are derived. These models range from very simple models to extremely detailed and complex models. The models are used in legacy software as well as commercial off-the-shelf software. The different models are also used in code-to-code comparisons to verify the results. This paper will briefly discuss the different models and the interaction between the models, showing the iterative design process that is used in the development of the reactor at PBMR. (author)

  12. Triangular model integrating clinical teaching and assessment

    Directory of Open Access Journals (Sweden)

    Abdelaziz A

    2014-03-01

    Full Text Available Adel Abdelaziz,1,2 Emad Koshak3 1Medical Education Development Unit, Faculty of Medicine, Al Baha University, Al Baha, Saudi Arabia; 2Medical Education Department, Faculty of Medicine, Suez Canal University, Egypt; 3Dean and Internal Medicine Department, Faculty of Medicine, Al Baha University, Al Baha, Saudi Arabia Abstract: Structuring clinical teaching is a challenge facing medical education curriculum designers. A variety of instructional met