WorldWideScience

Sample records for model inputs include

  1. An extended TRANSCAR model including ionospheric convection: simulation of EISCAT observations using inputs from AMIE

    Directory of Open Access Journals (Sweden)

    P.-L. Blelly

    2005-02-01

    Full Text Available The TRANSCAR ionospheric model was extended to account for the convection of the magnetic field lines in the auroral and polar ionosphere. A mixed Eulerian-Lagrangian 13-moment approach was used to describe the dynamics of an ionospheric plasma tube. In the present study, one focuses on large scale transports in the polar ionosphere. The model was used to simulate a 35-h period of EISCAT-UHF observations on 16-17 February 1993. The first day was magnetically quiet, and characterized by elevated electron concentrations: the diurnal F2 layer reached as much as 1012m-3, which is unusual for a winter and moderate solar activity (F10.7=130 period. An intense geomagnetic event occurred on the second day, seen in the data as a strong intensification of the ionosphere convection velocities in the early afternoon (with the northward electric field reaching 150mVm-1 and corresponding frictional heating of the ions up to 2500K. The simulation used time-dependent AMIE outputs to infer flux-tube transports in the polar region, and to provide magnetospheric particle and energy inputs to the ionosphere. The overall very good agreement, obtained between the model and the observations, demonstrates the high ability of the extended TRANSCAR model for quantitative modelling of the high-latitude ionosphere; however, some differences are found which are attributed to the precipitation of electrons with very low energy. All these results are finally discussed in the frame of modelling the auroral ionosphere with space weather applications in mind.

  2. An extended TRANSCAR model including ionospheric convection: simulation of EISCAT observations using inputs from AMIE

    Directory of Open Access Journals (Sweden)

    P.-L. Blelly

    2005-02-01

    Full Text Available The TRANSCAR ionospheric model was extended to account for the convection of the magnetic field lines in the auroral and polar ionosphere. A mixed Eulerian-Lagrangian 13-moment approach was used to describe the dynamics of an ionospheric plasma tube. In the present study, one focuses on large scale transports in the polar ionosphere. The model was used to simulate a 35-h period of EISCAT-UHF observations on 16-17 February 1993. The first day was magnetically quiet, and characterized by elevated electron concentrations: the diurnal F2 layer reached as much as 1012m-3, which is unusual for a winter and moderate solar activity (F10.7=130 period. An intense geomagnetic event occurred on the second day, seen in the data as a strong intensification of the ionosphere convection velocities in the early afternoon (with the northward electric field reaching 150mVm-1 and corresponding frictional heating of the ions up to 2500K. The simulation used time-dependent AMIE outputs to infer flux-tube transports in the polar region, and to provide magnetospheric particle and energy inputs to the ionosphere. The overall very good agreement, obtained between the model and the observations, demonstrates the high ability of the extended TRANSCAR model for quantitative modelling of the high-latitude ionosphere; however, some differences are found which are attributed to the precipitation of electrons with very low energy. All these results are finally discussed in the frame of modelling the auroral ionosphere with space weather applications in mind.

  3. Modeling and generating input processes

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, M.E.

    1987-01-01

    This tutorial paper provides information relevant to the selection and generation of stochastic inputs to simulation studies. The primary area considered is multivariate but much of the philosophy at least is relevant to univariate inputs as well. 14 refs.

  4. Input-output linearizing tracking control of induction machine with the included magnetic saturation

    DEFF Research Database (Denmark)

    Dolinar, Drago; Ljusev, Petar; Stumberger, Gorazd

    2003-01-01

    The tracking control design of an induction motor, based on input-output linearisation with magnetic saturation included is addressed. The magnetic saturation is represented by a nonlinear magnetising curve for the iron core and is used in the control, the observer of the state variables......, and in the load torque estimator. An input-output linearising control is used to achieve better tracking performances. It is based on the mixed 'stator current - rotor flux linkage' induction motor model with magnetic saturation considered in the stationary reference frame. Experimental results show...... that the proposed input-output linearising tracking control with saturation included behaves considerably better than the one without saturation, and that it introduces smaller position and speed errors, and better motor stiffness on account of the increased computational complexity....

  5. Modeling inputs to computer models used in risk assessment

    International Nuclear Information System (INIS)

    Iman, R.L.

    1987-01-01

    Computer models for various risk assessment applications are closely scrutinized both from the standpoint of questioning the correctness of the underlying mathematical model with respect to the process it is attempting to model and from the standpoint of verifying that the computer model correctly implements the underlying mathematical model. A process that receives less scrutiny, but is nonetheless of equal importance, concerns the individual and joint modeling of the inputs. This modeling effort clearly has a great impact on the credibility of results. Model characteristics are reviewed in this paper that have a direct bearing on the model input process and reasons are given for using probabilities-based modeling with the inputs. The authors also present ways to model distributions for individual inputs and multivariate input structures when dependence and other constraints may be present

  6. The use of synthetic input sequences in time series modeling

    International Nuclear Information System (INIS)

    Oliveira, Dair Jose de; Letellier, Christophe; Gomes, Murilo E.D.; Aguirre, Luis A.

    2008-01-01

    In many situations time series models obtained from noise-like data settle to trivial solutions under iteration. This Letter proposes a way of producing a synthetic (dummy) input, that is included to prevent the model from settling down to a trivial solution, while maintaining features of the original signal. Simulated benchmark models and a real time series of RR intervals from an ECG are used to illustrate the procedure

  7. Remote sensing inputs to water demand modeling

    Science.gov (United States)

    Estes, J. E.; Jensen, J. R.; Tinney, L. R.; Rector, M.

    1975-01-01

    In an attempt to determine the ability of remote sensing techniques to economically generate data required by water demand models, the Geography Remote Sensing Unit, in conjunction with the Kern County Water Agency of California, developed an analysis model. As a result it was determined that agricultural cropland inventories utilizing both high altitude photography and LANDSAT imagery can be conducted cost effectively. In addition, by using average irrigation application rates in conjunction with cropland data, estimates of agricultural water demand can be generated. However, more accurate estimates are possible if crop type, acreage, and crop specific application rates are employed. An analysis of the effect of saline-alkali soils on water demand in the study area is also examined. Finally, reference is made to the detection and delineation of water tables that are perched near the surface by semi-permeable clay layers. Soil salinity prediction, automated crop identification on a by-field basis, and a potential input to the determination of zones of equal benefit taxation are briefly touched upon.

  8. An improved robust model predictive control for linear parameter-varying input-output models

    NARCIS (Netherlands)

    Abbas, H.S.; Hanema, J.; Tóth, R.; Mohammadpour, J.; Meskin, N.

    2018-01-01

    This paper describes a new robust model predictive control (MPC) scheme to control the discrete-time linear parameter-varying input-output models subject to input and output constraints. Closed-loop asymptotic stability is guaranteed by including a quadratic terminal cost and an ellipsoidal terminal

  9. Robust input design for nonlinear dynamic modeling of AUV.

    Science.gov (United States)

    Nouri, Nowrouz Mohammad; Valadi, Mehrdad

    2017-09-01

    Input design has a dominant role in developing the dynamic model of autonomous underwater vehicles (AUVs) through system identification. Optimal input design is the process of generating informative inputs that can be used to generate the good quality dynamic model of AUVs. In a problem with optimal input design, the desired input signal depends on the unknown system which is intended to be identified. In this paper, the input design approach which is robust to uncertainties in model parameters is used. The Bayesian robust design strategy is applied to design input signals for dynamic modeling of AUVs. The employed approach can design multiple inputs and apply constraints on an AUV system's inputs and outputs. Particle swarm optimization (PSO) is employed to solve the constraint robust optimization problem. The presented algorithm is used for designing the input signals for an AUV, and the estimate obtained by robust input design is compared with that of the optimal input design. According to the results, proposed input design can satisfy both robustness of constraints and optimality. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  10. Hydrogen Generation Rate Model Calculation Input Data

    International Nuclear Information System (INIS)

    KUFAHL, M.A.

    2000-01-01

    This report documents the procedures and techniques utilized in the collection and analysis of analyte input data values in support of the flammable gas hazard safety analyses. This document represents the analyses of data current at the time of its writing and does not account for data available since then

  11. A probabilistic graphical model based stochastic input model construction

    International Nuclear Information System (INIS)

    Wan, Jiang; Zabaras, Nicholas

    2014-01-01

    Model reduction techniques have been widely used in modeling of high-dimensional stochastic input in uncertainty quantification tasks. However, the probabilistic modeling of random variables projected into reduced-order spaces presents a number of computational challenges. Due to the curse of dimensionality, the underlying dependence relationships between these random variables are difficult to capture. In this work, a probabilistic graphical model based approach is employed to learn the dependence by running a number of conditional independence tests using observation data. Thus a probabilistic model of the joint PDF is obtained and the PDF is factorized into a set of conditional distributions based on the dependence structure of the variables. The estimation of the joint PDF from data is then transformed to estimating conditional distributions under reduced dimensions. To improve the computational efficiency, a polynomial chaos expansion is further applied to represent the random field in terms of a set of standard random variables. This technique is combined with both linear and nonlinear model reduction methods. Numerical examples are presented to demonstrate the accuracy and efficiency of the probabilistic graphical model based stochastic input models. - Highlights: • Data-driven stochastic input models without the assumption of independence of the reduced random variables. • The problem is transformed to a Bayesian network structure learning problem. • Examples are given in flows in random media

  12. Inhalation Exposure Input Parameters for the Biosphere Model

    Energy Technology Data Exchange (ETDEWEB)

    M. A. Wasiolek

    2003-09-24

    This analysis is one of the nine reports that support the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN) biosphere model. The ''Biosphere Model Report'' (BSC 2003a) describes in detail the conceptual model as well as the mathematical model and its input parameters. This report documents a set of input parameters for the biosphere model, and supports the use of the model to develop biosphere dose conversion factors (BDCFs). The biosphere model is one of a series of process models supporting the Total System Performance Assessment (TSPA) for a Yucca Mountain repository. This report, ''Inhalation Exposure Input Parameters for the Biosphere Model'', is one of the five reports that develop input parameters for the biosphere model. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling, and the plan for development of the biosphere abstraction products for TSPA, as identified in the ''Technical Work Plan: for Biosphere Modeling and Expert Support'' (BSC 2003b). It should be noted that some documents identified in Figure 1-1 may be under development at the time this report is issued and therefore not available at that time. This figure is included to provide an understanding of how this analysis report contributes to biosphere modeling in support of the license application, and is not intended to imply that access to the listed documents is required to understand the contents of this analysis report. This analysis report defines and justifies values of mass loading, which is the total mass concentration of resuspended particles (e.g., dust, ash) in a volume of air. Measurements of mass loading are used in the air submodel of ERMYN to calculate concentrations of radionuclides in air surrounding crops and concentrations in air

  13. Inhalation Exposure Input Parameters for the Biosphere Model

    International Nuclear Information System (INIS)

    M. A. Wasiolek

    2003-01-01

    This analysis is one of the nine reports that support the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN) biosphere model. The ''Biosphere Model Report'' (BSC 2003a) describes in detail the conceptual model as well as the mathematical model and its input parameters. This report documents a set of input parameters for the biosphere model, and supports the use of the model to develop biosphere dose conversion factors (BDCFs). The biosphere model is one of a series of process models supporting the Total System Performance Assessment (TSPA) for a Yucca Mountain repository. This report, ''Inhalation Exposure Input Parameters for the Biosphere Model'', is one of the five reports that develop input parameters for the biosphere model. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling, and the plan for development of the biosphere abstraction products for TSPA, as identified in the ''Technical Work Plan: for Biosphere Modeling and Expert Support'' (BSC 2003b). It should be noted that some documents identified in Figure 1-1 may be under development at the time this report is issued and therefore not available at that time. This figure is included to provide an understanding of how this analysis report contributes to biosphere modeling in support of the license application, and is not intended to imply that access to the listed documents is required to understand the contents of this analysis report. This analysis report defines and justifies values of mass loading, which is the total mass concentration of resuspended particles (e.g., dust, ash) in a volume of air. Measurements of mass loading are used in the air submodel of ERMYN to calculate concentrations of radionuclides in air surrounding crops and concentrations in air inhaled by a receptor. Concentrations in air to which the

  14. Modeling Recognition Memory Using the Similarity Structure of Natural Input

    Science.gov (United States)

    Lacroix, Joyca P. W.; Murre, Jaap M. J.; Postma, Eric O.; van den Herik, H. Jaap

    2006-01-01

    The natural input memory (NAM) model is a new model for recognition memory that operates on natural visual input. A biologically informed perceptual preprocessing method takes local samples (eye fixations) from a natural image and translates these into a feature-vector representation. During recognition, the model compares incoming preprocessed…

  15. On Optimal Input Design and Model Selection for Communication Channels

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yanyan [ORNL; Djouadi, Seddik M [ORNL; Olama, Mohammed M [ORNL

    2013-01-01

    In this paper, the optimal model (structure) selection and input design which minimize the worst case identification error for communication systems are provided. The problem is formulated using metric complexity theory in a Hilbert space setting. It is pointed out that model selection and input design can be handled independently. Kolmogorov n-width is used to characterize the representation error introduced by model selection, while Gel fand and Time n-widths are used to represent the inherent error introduced by input design. After the model is selected, an optimal input which minimizes the worst case identification error is shown to exist. In particular, it is proven that the optimal model for reducing the representation error is a Finite Impulse Response (FIR) model, and the optimal input is an impulse at the start of the observation interval. FIR models are widely popular in communication systems, such as, in Orthogonal Frequency Division Multiplexing (OFDM) systems.

  16. Analytic uncertainty and sensitivity analysis of models with input correlations

    Science.gov (United States)

    Zhu, Yueying; Wang, Qiuping A.; Li, Wei; Cai, Xu

    2018-03-01

    Probabilistic uncertainty analysis is a common means of evaluating mathematical models. In mathematical modeling, the uncertainty in input variables is specified through distribution laws. Its contribution to the uncertainty in model response is usually analyzed by assuming that input variables are independent of each other. However, correlated parameters are often happened in practical applications. In the present paper, an analytic method is built for the uncertainty and sensitivity analysis of models in the presence of input correlations. With the method, it is straightforward to identify the importance of the independence and correlations of input variables in determining the model response. This allows one to decide whether or not the input correlations should be considered in practice. Numerical examples suggest the effectiveness and validation of our analytic method in the analysis of general models. A practical application of the method is also proposed to the uncertainty and sensitivity analysis of a deterministic HIV model.

  17. Modeling recognition memory using the similarity structure of natural input

    NARCIS (Netherlands)

    Lacroix, J.P.W.; Murre, J.M.J.; Postma, E.O.; van den Herik, H.J.

    2006-01-01

    The natural input memory (NIM) model is a new model for recognition memory that operates on natural visual input. A biologically informed perceptual preprocessing method takes local samples (eye fixations) from a natural image and translates these into a feature-vector representation. During

  18. Variance-based sensitivity indices for models with dependent inputs

    International Nuclear Information System (INIS)

    Mara, Thierry A.; Tarantola, Stefano

    2012-01-01

    Computational models are intensively used in engineering for risk analysis or prediction of future outcomes. Uncertainty and sensitivity analyses are of great help in these purposes. Although several methods exist to perform variance-based sensitivity analysis of model output with independent inputs only a few are proposed in the literature in the case of dependent inputs. This is explained by the fact that the theoretical framework for the independent case is set and a univocal set of variance-based sensitivity indices is defined. In the present work, we propose a set of variance-based sensitivity indices to perform sensitivity analysis of models with dependent inputs. These measures allow us to distinguish between the mutual dependent contribution and the independent contribution of an input to the model response variance. Their definition relies on a specific orthogonalisation of the inputs and ANOVA-representations of the model output. In the applications, we show the interest of the new sensitivity indices for model simplification setting. - Highlights: ► Uncertainty and sensitivity analyses are of great help in engineering. ► Several methods exist to perform variance-based sensitivity analysis of model output with independent inputs. ► We define a set of variance-based sensitivity indices for models with dependent inputs. ► Inputs mutual contributions are distinguished from their independent contributions. ► Analytical and computational tests are performed and discussed.

  19. Soil-related Input Parameters for the Biosphere Model

    International Nuclear Information System (INIS)

    A. J. Smith

    2003-01-01

    This analysis is one of the technical reports containing documentation of the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN), a biosphere model supporting the Total System Performance Assessment (TSPA) for the geologic repository at Yucca Mountain. The biosphere model is one of a series of process models supporting the Total System Performance Assessment (TSPA) for the Yucca Mountain repository. A graphical representation of the documentation hierarchy for the ERMYN biosphere model is presented in Figure 1-1. This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling, and the plan for development of the biosphere abstraction products for TSPA, as identified in the ''Technical Work Plan: for Biosphere Modeling and Expert Support'' (BSC 2003 [163602]). It should be noted that some documents identified in Figure 1-1 may be under development at the time this report is issued and therefore not available. This figure is included to provide an understanding of how this analysis report contributes to biosphere modeling in support of the license application, and is not intended to imply that access to the listed documents is required to understand the contents of this report. This report, ''Soil Related Input Parameters for the Biosphere Model'', is one of the five analysis reports that develop input parameters for use in the ERMYN model. This report is the source documentation for the six biosphere parameters identified in Table 1-1. ''The Biosphere Model Report'' (BSC 2003 [160699]) describes in detail the conceptual model as well as the mathematical model and its input parameters. The purpose of this analysis was to develop the biosphere model parameters needed to evaluate doses from pathways associated with the accumulation and depletion of radionuclides in the soil. These parameters support the calculation of radionuclide concentrations in soil from on-going irrigation and ash

  20. Integrate-and-fire vs Poisson models of LGN input to V1 cortex: noisier inputs reduce orientation selectivity.

    Science.gov (United States)

    Lin, I-Chun; Xing, Dajun; Shapley, Robert

    2012-12-01

    One of the reasons the visual cortex has attracted the interest of computational neuroscience is that it has well-defined inputs. The lateral geniculate nucleus (LGN) of the thalamus is the source of visual signals to the primary visual cortex (V1). Most large-scale cortical network models approximate the spike trains of LGN neurons as simple Poisson point processes. However, many studies have shown that neurons in the early visual pathway are capable of spiking with high temporal precision and their discharges are not Poisson-like. To gain an understanding of how response variability in the LGN influences the behavior of V1, we study response properties of model V1 neurons that receive purely feedforward inputs from LGN cells modeled either as noisy leaky integrate-and-fire (NLIF) neurons or as inhomogeneous Poisson processes. We first demonstrate that the NLIF model is capable of reproducing many experimentally observed statistical properties of LGN neurons. Then we show that a V1 model in which the LGN input to a V1 neuron is modeled as a group of NLIF neurons produces higher orientation selectivity than the one with Poisson LGN input. The second result implies that statistical characteristics of LGN spike trains are important for V1's function. We conclude that physiologically motivated models of V1 need to include more realistic LGN spike trains that are less noisy than inhomogeneous Poisson processes.

  1. Stein's neuronal model with pooled renewal input

    Czech Academy of Sciences Publication Activity Database

    Rajdl, K.; Lánský, Petr

    2015-01-01

    Roč. 109, č. 3 (2015), s. 389-399 ISSN 0340-1200 Institutional support: RVO:67985823 Keywords : Stein’s model * Poisson process * pooled renewal processes * first-passage time Subject RIV: BA - General Mathematics Impact factor: 1.611, year: 2015

  2. Global sensitivity analysis of computer models with functional inputs

    International Nuclear Information System (INIS)

    Iooss, Bertrand; Ribatet, Mathieu

    2009-01-01

    Global sensitivity analysis is used to quantify the influence of uncertain model inputs on the response variability of a numerical model. The common quantitative methods are appropriate with computer codes having scalar model inputs. This paper aims at illustrating different variance-based sensitivity analysis techniques, based on the so-called Sobol's indices, when some model inputs are functional, such as stochastic processes or random spatial fields. In this work, we focus on large cpu time computer codes which need a preliminary metamodeling step before performing the sensitivity analysis. We propose the use of the joint modeling approach, i.e., modeling simultaneously the mean and the dispersion of the code outputs using two interlinked generalized linear models (GLMs) or generalized additive models (GAMs). The 'mean model' allows to estimate the sensitivity indices of each scalar model inputs, while the 'dispersion model' allows to derive the total sensitivity index of the functional model inputs. The proposed approach is compared to some classical sensitivity analysis methodologies on an analytical function. Lastly, the new methodology is applied to an industrial computer code that simulates the nuclear fuel irradiation.

  3. Soil-Related Input Parameters for the Biosphere Model

    International Nuclear Information System (INIS)

    Smith, A. J.

    2004-01-01

    This report presents one of the analyses that support the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN). The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes the details of the conceptual model as well as the mathematical model and the required input parameters. The biosphere model is one of a series of process models supporting the postclosure Total System Performance Assessment (TSPA) for the Yucca Mountain repository. A schematic representation of the documentation flow for the Biosphere input to TSPA is presented in Figure 1-1. This figure shows the evolutionary relationships among the products (i.e., analysis and model reports) developed for biosphere modeling, and the biosphere abstraction products for TSPA, as identified in the ''Technical Work Plan for Biosphere Modeling and Expert Support'' (TWP) (BSC 2004 [DIRS 169573]). This figure is included to provide an understanding of how this analysis report contributes to biosphere modeling in support of the license application, and is not intended to imply that access to the listed documents is required to understand the contents of this report. This report, ''Soil-Related Input Parameters for the Biosphere Model'', is one of the five analysis reports that develop input parameters for use in the ERMYN model. This report is the source documentation for the six biosphere parameters identified in Table 1-1. The purpose of this analysis was to develop the biosphere model parameters associated with the accumulation and depletion of radionuclides in the soil. These parameters support the calculation of radionuclide concentrations in soil from on-going irrigation or ash deposition and, as a direct consequence, radionuclide concentration in other environmental media that are affected by radionuclide concentrations in soil. The analysis was performed in accordance with the TWP (BSC 2004 [DIRS 169573]) where the governing procedure was defined as AP-SIII.9Q, ''Scientific Analyses''. This

  4. Soil-Related Input Parameters for the Biosphere Model

    Energy Technology Data Exchange (ETDEWEB)

    A. J. Smith

    2004-09-09

    This report presents one of the analyses that support the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN). The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes the details of the conceptual model as well as the mathematical model and the required input parameters. The biosphere model is one of a series of process models supporting the postclosure Total System Performance Assessment (TSPA) for the Yucca Mountain repository. A schematic representation of the documentation flow for the Biosphere input to TSPA is presented in Figure 1-1. This figure shows the evolutionary relationships among the products (i.e., analysis and model reports) developed for biosphere modeling, and the biosphere abstraction products for TSPA, as identified in the ''Technical Work Plan for Biosphere Modeling and Expert Support'' (TWP) (BSC 2004 [DIRS 169573]). This figure is included to provide an understanding of how this analysis report contributes to biosphere modeling in support of the license application, and is not intended to imply that access to the listed documents is required to understand the contents of this report. This report, ''Soil-Related Input Parameters for the Biosphere Model'', is one of the five analysis reports that develop input parameters for use in the ERMYN model. This report is the source documentation for the six biosphere parameters identified in Table 1-1. The purpose of this analysis was to develop the biosphere model parameters associated with the accumulation and depletion of radionuclides in the soil. These parameters support the calculation of radionuclide concentrations in soil from on-going irrigation or ash deposition and, as a direct consequence, radionuclide concentration in other environmental media that are affected by radionuclide concentrations in soil. The analysis was performed in accordance with the TWP (BSC 2004 [DIRS 169573]) where the governing procedure

  5. Calibration of controlling input models for pavement management system.

    Science.gov (United States)

    2013-07-01

    The Oklahoma Department of Transportation (ODOT) is currently using the Deighton Total Infrastructure Management System (dTIMS) software for pavement management. This system is based on several input models which are computational backbones to dev...

  6. Evaluating the uncertainty of input quantities in measurement models

    Science.gov (United States)

    Possolo, Antonio; Elster, Clemens

    2014-06-01

    The Guide to the Expression of Uncertainty in Measurement (GUM) gives guidance about how values and uncertainties should be assigned to the input quantities that appear in measurement models. This contribution offers a concrete proposal for how that guidance may be updated in light of the advances in the evaluation and expression of measurement uncertainty that were made in the course of the twenty years that have elapsed since the publication of the GUM, and also considering situations that the GUM does not yet contemplate. Our motivation is the ongoing conversation about a new edition of the GUM. While generally we favour a Bayesian approach to uncertainty evaluation, we also recognize the value that other approaches may bring to the problems considered here, and focus on methods for uncertainty evaluation and propagation that are widely applicable, including to cases that the GUM has not yet addressed. In addition to Bayesian methods, we discuss maximum-likelihood estimation, robust statistical methods, and measurement models where values of nominal properties play the same role that input quantities play in traditional models. We illustrate these general-purpose techniques in concrete examples, employing data sets that are realistic but that also are of conveniently small sizes. The supplementary material available online lists the R computer code that we have used to produce these examples (stacks.iop.org/Met/51/3/339/mmedia). Although we strive to stay close to clause 4 of the GUM, which addresses the evaluation of uncertainty for input quantities, we depart from it as we review the classes of measurement models that we believe are generally useful in contemporary measurement science. We also considerably expand and update the treatment that the GUM gives to Type B evaluations of uncertainty: reviewing the state-of-the-art, disciplined approach to the elicitation of expert knowledge, and its encapsulation in probability distributions that are usable in

  7. Environmental impact assessment including indirect effects--a case study using input-output analysis

    International Nuclear Information System (INIS)

    Lenzen, Manfred; Murray, Shauna A.; Korte, Britta; Dey, Christopher J.

    2003-01-01

    Environmental impact assessment (EIA) is a process covered by several international standards, dictating that as many environmental aspects as possible should be identified in a project appraisal. While the ISO 14011 standard stipulates a broad-ranging study, off-site, indirect impacts are not specifically required for an Environmental Impact Statement (EIS). The reasons for this may relate to the perceived difficulty of measuring off-site impacts, or the assumption that these are a relatively insignificant component of the total impact. In this work, we describe a method that uses input-output analysis to calculate the indirect effects of a development proposal in terms of several indicator variables. The results of our case study of a Second Sydney Airport show that the total impacts are considerably higher than the on-site impacts for the indicators land disturbance, greenhouse gas emissions, water use, emissions of NO x and SO 2 , and employment. We conclude that employing input-output analysis enhances conventional EIA, as it allows for national and international effects to be taken into account in the decision-making process

  8. A new interpretation and validation of variance based importance measures for models with correlated inputs

    Science.gov (United States)

    Hao, Wenrui; Lu, Zhenzhou; Li, Luyi

    2013-05-01

    In order to explore the contributions by correlated input variables to the variance of the output, a novel interpretation framework of importance measure indices is proposed for a model with correlated inputs, which includes the indices of the total correlated contribution and the total uncorrelated contribution. The proposed indices accurately describe the connotations of the contributions by the correlated input to the variance of output, and they can be viewed as the complement and correction of the interpretation about the contributions by the correlated inputs presented in "Estimation of global sensitivity indices for models with dependent variables, Computer Physics Communications, 183 (2012) 937-946". Both of them contain the independent contribution by an individual input. Taking the general form of quadratic polynomial as an illustration, the total correlated contribution and the independent contribution by an individual input are derived analytically, from which the components and their origins of both contributions of correlated input can be clarified without any ambiguity. In the special case that no square term is included in the quadratic polynomial model, the total correlated contribution by the input can be further decomposed into the variance contribution related to the correlation of the input with other inputs and the independent contribution by the input itself, and the total uncorrelated contribution can be further decomposed into the independent part by interaction between the input and others and the independent part by the input itself. Numerical examples are employed and their results demonstrate that the derived analytical expressions of the variance-based importance measure are correct, and the clarification of the correlated input contribution to model output by the analytical derivation is very important for expanding the theory and solutions of uncorrelated input to those of the correlated one.

  9. Lysimeter data as input to performance assessment models

    International Nuclear Information System (INIS)

    McConnell, J.W. Jr.

    1998-01-01

    The Field Lysimeter Investigations: Low-Level Waste Data Base Development Program is obtaining information on the performance of radioactive waste forms in a disposal environment. Waste forms fabricated using ion-exchange resins from EPICOR-117 prefilters employed in the cleanup of the Three Mile Island (TMI) Nuclear Power Station are being tested to develop a low-level waste data base and to obtain information on survivability of waste forms in a disposal environment. The program includes reviewing radionuclide releases from those waste forms in the first 7 years of sampling and examining the relationship between code input parameters and lysimeter data. Also, lysimeter data are applied to performance assessment source term models, and initial results from use of data in two models are presented

  10. Agricultural and Environmental Input Parameters for the Biosphere Model

    International Nuclear Information System (INIS)

    Kaylie Rasmuson; Kurt Rautenstrauch

    2003-01-01

    This analysis is one of nine technical reports that support the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN) biosphere model. It documents input parameters for the biosphere model, and supports the use of the model to develop Biosphere Dose Conversion Factors (BDCF). The biosphere model is one of a series of process models supporting the Total System Performance Assessment (TSPA) for the repository at Yucca Mountain. The ERMYN provides the TSPA with the capability to perform dose assessments. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships between the major activities and their products (the analysis and model reports) that were planned in the biosphere Technical Work Plan (TWP, BSC 2003a). It should be noted that some documents identified in Figure 1-1 may be under development and therefore not available at the time this document is issued. The ''Biosphere Model Report'' (BSC 2003b) describes the ERMYN and its input parameters. This analysis report, ANL-MGR-MD-000006, ''Agricultural and Environmental Input Parameters for the Biosphere Model'', is one of the five reports that develop input parameters for the biosphere model. This report defines and justifies values for twelve parameters required in the biosphere model. These parameters are related to use of contaminated groundwater to grow crops. The parameter values recommended in this report are used in the soil, plant, and carbon-14 submodels of the ERMYN

  11. Environmental Transport Input Parameters for the Biosphere Model

    International Nuclear Information System (INIS)

    Wasiolek, M. A.

    2003-01-01

    developed in this report, and the related FEPs, are listed in Table 1-1. The relationship between the parameters and FEPs was based on a comparison of the parameter definition and the FEP descriptions as presented in BSC (2003 [160699], Section 6.2). The parameter values developed in this report support the biosphere model and are reflected in the TSPA through the biosphere dose conversion factors (BDCFs). Biosphere modeling focuses on radionuclides screened for the TSPA-LA (BSC 2002 [160059]). The same list of radionuclides is used in this analysis (Section 6.1.4). The analysis considers two human exposure scenarios (groundwater and volcanic ash) and climate change (Section 6.1.5). This analysis combines and revises two previous reports, ''Transfer Coefficient Analysis'' (CRWMS MandO 2000 [152435]) and ''Environmental Transport Parameter Analysis'' (CRWMS MandO 2001 [152434]), because the new ERMYN biosphere model requires a redefined set of input parameters. The scope of this analysis includes providing a technical basis for the selection of radionuclide- and element-specific biosphere parameters (except for Kd) that are important for calculating BDCFs based on the available radionuclide inventory abstraction data. The environmental transport parameter values were developed specifically for use in the biosphere model and may not be appropriate for other applications

  12. Environmental Transport Input Parameters for the Biosphere Model

    Energy Technology Data Exchange (ETDEWEB)

    M. A. Wasiolek

    2003-06-27

    ], Section 6.2). Parameter values developed in this report, and the related FEPs, are listed in Table 1-1. The relationship between the parameters and FEPs was based on a comparison of the parameter definition and the FEP descriptions as presented in BSC (2003 [160699], Section 6.2). The parameter values developed in this report support the biosphere model and are reflected in the TSPA through the biosphere dose conversion factors (BDCFs). Biosphere modeling focuses on radionuclides screened for the TSPA-LA (BSC 2002 [160059]). The same list of radionuclides is used in this analysis (Section 6.1.4). The analysis considers two human exposure scenarios (groundwater and volcanic ash) and climate change (Section 6.1.5). This analysis combines and revises two previous reports, ''Transfer Coefficient Analysis'' (CRWMS M&O 2000 [152435]) and ''Environmental Transport Parameter Analysis'' (CRWMS M&O 2001 [152434]), because the new ERMYN biosphere model requires a redefined set of input parameters. The scope of this analysis includes providing a technical basis for the selection of radionuclide- and element-specific biosphere parameters (except for Kd) that are important for calculating BDCFs based on the available radionuclide inventory abstraction data. The environmental transport parameter values were developed specifically for use in the biosphere model and may not be appropriate for other applications.

  13. Assigning probability distributions to input parameters of performance assessment models

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, Srikanta [INTERA Inc., Austin, TX (United States)

    2002-02-01

    This study presents an overview of various approaches for assigning probability distributions to input parameters and/or future states of performance assessment models. Specifically,three broad approaches are discussed for developing input distributions: (a) fitting continuous distributions to data, (b) subjective assessment of probabilities, and (c) Bayesian updating of prior knowledge based on new information. The report begins with a summary of the nature of data and distributions, followed by a discussion of several common theoretical parametric models for characterizing distributions. Next, various techniques are presented for fitting continuous distributions to data. These include probability plotting, method of moments, maximum likelihood estimation and nonlinear least squares analysis. The techniques are demonstrated using data from a recent performance assessment study for the Yucca Mountain project. Goodness of fit techniques are also discussed, followed by an overview of how distribution fitting is accomplished in commercial software packages. The issue of subjective assessment of probabilities is dealt with in terms of the maximum entropy distribution selection approach, as well as some common rules for codifying informal expert judgment. Formal expert elicitation protocols are discussed next, and are based primarily on the guidance provided by the US NRC. The Bayesian framework for updating prior distributions (beliefs) when new information becomes available is discussed. A simple numerical approach is presented for facilitating practical applications of the Bayes theorem. Finally, a systematic framework for assigning distributions is presented: (a) for the situation where enough data are available to define an empirical CDF or fit a parametric model to the data, and (b) to deal with the situation where only a limited amount of information is available.

  14. Assigning probability distributions to input parameters of performance assessment models

    International Nuclear Information System (INIS)

    Mishra, Srikanta

    2002-02-01

    This study presents an overview of various approaches for assigning probability distributions to input parameters and/or future states of performance assessment models. Specifically,three broad approaches are discussed for developing input distributions: (a) fitting continuous distributions to data, (b) subjective assessment of probabilities, and (c) Bayesian updating of prior knowledge based on new information. The report begins with a summary of the nature of data and distributions, followed by a discussion of several common theoretical parametric models for characterizing distributions. Next, various techniques are presented for fitting continuous distributions to data. These include probability plotting, method of moments, maximum likelihood estimation and nonlinear least squares analysis. The techniques are demonstrated using data from a recent performance assessment study for the Yucca Mountain project. Goodness of fit techniques are also discussed, followed by an overview of how distribution fitting is accomplished in commercial software packages. The issue of subjective assessment of probabilities is dealt with in terms of the maximum entropy distribution selection approach, as well as some common rules for codifying informal expert judgment. Formal expert elicitation protocols are discussed next, and are based primarily on the guidance provided by the US NRC. The Bayesian framework for updating prior distributions (beliefs) when new information becomes available is discussed. A simple numerical approach is presented for facilitating practical applications of the Bayes theorem. Finally, a systematic framework for assigning distributions is presented: (a) for the situation where enough data are available to define an empirical CDF or fit a parametric model to the data, and (b) to deal with the situation where only a limited amount of information is available

  15. Agricultural and Environmental Input Parameters for the Biosphere Model

    International Nuclear Information System (INIS)

    K. Rasmuson; K. Rautenstrauch

    2004-01-01

    This analysis is one of 10 technical reports that support the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN) (i.e., the biosphere model). It documents development of agricultural and environmental input parameters for the biosphere model, and supports the use of the model to develop biosphere dose conversion factors (BDCFs). The biosphere model is one of a series of process models supporting the total system performance assessment (TSPA) for the repository at Yucca Mountain. The ERMYN provides the TSPA with the capability to perform dose assessments. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships between the major activities and their products (the analysis and model reports) that were planned in ''Technical Work Plan for Biosphere Modeling and Expert Support'' (BSC 2004 [DIRS 169573]). The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes the ERMYN and its input parameters

  16. Joint analysis of input and parametric uncertainties in watershed water quality modeling: A formal Bayesian approach

    Science.gov (United States)

    Han, Feng; Zheng, Yi

    2018-06-01

    Significant Input uncertainty is a major source of error in watershed water quality (WWQ) modeling. It remains challenging to address the input uncertainty in a rigorous Bayesian framework. This study develops the Bayesian Analysis of Input and Parametric Uncertainties (BAIPU), an approach for the joint analysis of input and parametric uncertainties through a tight coupling of Markov Chain Monte Carlo (MCMC) analysis and Bayesian Model Averaging (BMA). The formal likelihood function for this approach is derived considering a lag-1 autocorrelated, heteroscedastic, and Skew Exponential Power (SEP) distributed error model. A series of numerical experiments were performed based on a synthetic nitrate pollution case and on a real study case in the Newport Bay Watershed, California. The Soil and Water Assessment Tool (SWAT) and Differential Evolution Adaptive Metropolis (DREAM(ZS)) were used as the representative WWQ model and MCMC algorithm, respectively. The major findings include the following: (1) the BAIPU can be implemented and used to appropriately identify the uncertain parameters and characterize the predictive uncertainty; (2) the compensation effect between the input and parametric uncertainties can seriously mislead the modeling based management decisions, if the input uncertainty is not explicitly accounted for; (3) the BAIPU accounts for the interaction between the input and parametric uncertainties and therefore provides more accurate calibration and uncertainty results than a sequential analysis of the uncertainties; and (4) the BAIPU quantifies the credibility of different input assumptions on a statistical basis and can be implemented as an effective inverse modeling approach to the joint inference of parameters and inputs.

  17. Quality assurance of weather data for agricultural system model input

    Science.gov (United States)

    It is well known that crop production and hydrologic variation on watersheds is weather related. Rarely, however, is meteorological data quality checks reported for agricultural systems model research. We present quality assurance procedures for agricultural system model weather data input. Problems...

  18. Inhalation Exposure Input Parameters for the Biosphere Model

    Energy Technology Data Exchange (ETDEWEB)

    K. Rautenstrauch

    2004-09-10

    This analysis is one of 10 reports that support the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN) biosphere model. The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes in detail the conceptual model as well as the mathematical model and its input parameters. This report documents development of input parameters for the biosphere model that are related to atmospheric mass loading and supports the use of the model to develop biosphere dose conversion factors (BDCFs). The biosphere model is one of a series of process models supporting the total system performance assessment (TSPA) for a Yucca Mountain repository. Inhalation Exposure Input Parameters for the Biosphere Model is one of five reports that develop input parameters for the biosphere model. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling, and the plan for development of the biosphere abstraction products for TSPA, as identified in the Technical Work Plan for Biosphere Modeling and Expert Support (BSC 2004 [DIRS 169573]). This analysis report defines and justifies values of mass loading for the biosphere model. Mass loading is the total mass concentration of resuspended particles (e.g., dust, ash) in a volume of air. Mass loading values are used in the air submodel of ERMYN to calculate concentrations of radionuclides in air inhaled by a receptor and concentrations in air surrounding crops. Concentrations in air to which the receptor is exposed are then used in the inhalation submodel to calculate the dose contribution to the receptor from inhalation of contaminated airborne particles. Concentrations in air surrounding plants are used in the plant submodel to calculate the concentrations of radionuclides in foodstuffs contributed from uptake by foliar interception.

  19. Inhalation Exposure Input Parameters for the Biosphere Model

    International Nuclear Information System (INIS)

    K. Rautenstrauch

    2004-01-01

    This analysis is one of 10 reports that support the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN) biosphere model. The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes in detail the conceptual model as well as the mathematical model and its input parameters. This report documents development of input parameters for the biosphere model that are related to atmospheric mass loading and supports the use of the model to develop biosphere dose conversion factors (BDCFs). The biosphere model is one of a series of process models supporting the total system performance assessment (TSPA) for a Yucca Mountain repository. Inhalation Exposure Input Parameters for the Biosphere Model is one of five reports that develop input parameters for the biosphere model. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling, and the plan for development of the biosphere abstraction products for TSPA, as identified in the Technical Work Plan for Biosphere Modeling and Expert Support (BSC 2004 [DIRS 169573]). This analysis report defines and justifies values of mass loading for the biosphere model. Mass loading is the total mass concentration of resuspended particles (e.g., dust, ash) in a volume of air. Mass loading values are used in the air submodel of ERMYN to calculate concentrations of radionuclides in air inhaled by a receptor and concentrations in air surrounding crops. Concentrations in air to which the receptor is exposed are then used in the inhalation submodel to calculate the dose contribution to the receptor from inhalation of contaminated airborne particles. Concentrations in air surrounding plants are used in the plant submodel to calculate the concentrations of radionuclides in foodstuffs contributed from uptake by foliar interception

  20. Evaluating nuclear physics inputs in core-collapse supernova models

    Science.gov (United States)

    Lentz, E.; Hix, W. R.; Baird, M. L.; Messer, O. E. B.; Mezzacappa, A.

    Core-collapse supernova models depend on the details of the nuclear and weak interaction physics inputs just as they depend on the details of the macroscopic physics (transport, hydrodynamics, etc.), numerical methods, and progenitors. We present preliminary results from our ongoing comparison studies of nuclear and weak interaction physics inputs to core collapse supernova models using the spherically-symmetric, general relativistic, neutrino radiation hydrodynamics code Agile-Boltztran. We focus on comparisons of the effects of the nuclear EoS and the effects of improving the opacities, particularly neutrino--nucleon interactions.

  1. MOS modeling hierarchy including radiation effects

    International Nuclear Information System (INIS)

    Alexander, D.R.; Turfler, R.M.

    1975-01-01

    A hierarchy of modeling procedures has been developed for MOS transistors, circuit blocks, and integrated circuits which include the effects of total dose radiation and photocurrent response. The models were developed for use with the SCEPTRE circuit analysis program, but the techniques are suitable for other modern computer aided analysis programs. The modeling hierarchy permits the designer or analyst to select the level of modeling complexity consistent with circuit size, parametric information, and accuracy requirements. Improvements have been made in the implementation of important second order effects in the transistor MOS model, in the definition of MOS building block models, and in the development of composite terminal models for MOS integrated circuits

  2. Investigation of RADTRAN Stop Model input parameters for truck stops

    International Nuclear Information System (INIS)

    Griego, N.R.; Smith, J.D.; Neuhauser, K.S.

    1996-01-01

    RADTRAN is a computer code for estimating the risks and consequences as transport of radioactive materials (RAM). RADTRAN was developed and is maintained by Sandia National Laboratories for the US Department of Energy (DOE). For incident-free transportation, the dose to persons exposed while the shipment is stopped is frequently a major percentage of the overall dose. This dose is referred to as Stop Dose and is calculated by the Stop Model. Because stop dose is a significant portion of the overall dose associated with RAM transport, the values used as input for the Stop Model are important. Therefore, an investigation of typical values for RADTRAN Stop Parameters for truck stops was performed. The resulting data from these investigations were analyzed to provide mean values, standard deviations, and histograms. Hence, the mean values can be used when an analyst does not have a basis for selecting other input values for the Stop Model. In addition, the histograms and their characteristics can be used to guide statistical sampling techniques to measure sensitivity of the RADTRAN calculated Stop Dose to the uncertainties in the stop model input parameters. This paper discusses the details and presents the results of the investigation of stop model input parameters at truck stops

  3. Environmental Transport Input Parameters for the Biosphere Model

    Energy Technology Data Exchange (ETDEWEB)

    M. Wasiolek

    2004-09-10

    This analysis report is one of the technical reports documenting the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), a biosphere model supporting the total system performance assessment for the license application (TSPA-LA) for the geologic repository at Yucca Mountain. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows relationships among the reports developed for biosphere modeling and biosphere abstraction products for the TSPA-LA, as identified in the ''Technical Work Plan for Biosphere Modeling and Expert Support'' (BSC 2004 [DIRS 169573]) (TWP). This figure provides an understanding of how this report contributes to biosphere modeling in support of the license application (LA). This report is one of the five reports that develop input parameter values for the biosphere model. The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes the conceptual model and the mathematical model. The input parameter reports, shown to the right of the Biosphere Model Report in Figure 1-1, contain detailed description of the model input parameters. The output of this report is used as direct input in the ''Nominal Performance Biosphere Dose Conversion Factor Analysis'' and in the ''Disruptive Event Biosphere Dose Conversion Factor Analysis'' that calculate the values of biosphere dose conversion factors (BDCFs) for the groundwater and volcanic ash exposure scenarios, respectively. The purpose of this analysis was to develop biosphere model parameter values related to radionuclide transport and accumulation in the environment. These parameters support calculations of radionuclide concentrations in the environmental media (e.g., soil, crops, animal products, and air) resulting from a given radionuclide concentration at the source of contamination (i.e., either in groundwater or in volcanic ash). The analysis

  4. Environmental Transport Input Parameters for the Biosphere Model

    International Nuclear Information System (INIS)

    M. Wasiolek

    2004-01-01

    This analysis report is one of the technical reports documenting the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), a biosphere model supporting the total system performance assessment for the license application (TSPA-LA) for the geologic repository at Yucca Mountain. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows relationships among the reports developed for biosphere modeling and biosphere abstraction products for the TSPA-LA, as identified in the ''Technical Work Plan for Biosphere Modeling and Expert Support'' (BSC 2004 [DIRS 169573]) (TWP). This figure provides an understanding of how this report contributes to biosphere modeling in support of the license application (LA). This report is one of the five reports that develop input parameter values for the biosphere model. The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes the conceptual model and the mathematical model. The input parameter reports, shown to the right of the Biosphere Model Report in Figure 1-1, contain detailed description of the model input parameters. The output of this report is used as direct input in the ''Nominal Performance Biosphere Dose Conversion Factor Analysis'' and in the ''Disruptive Event Biosphere Dose Conversion Factor Analysis'' that calculate the values of biosphere dose conversion factors (BDCFs) for the groundwater and volcanic ash exposure scenarios, respectively. The purpose of this analysis was to develop biosphere model parameter values related to radionuclide transport and accumulation in the environment. These parameters support calculations of radionuclide concentrations in the environmental media (e.g., soil, crops, animal products, and air) resulting from a given radionuclide concentration at the source of contamination (i.e., either in groundwater or in volcanic ash). The analysis was performed in accordance with the TWP (BSC 2004 [DIRS 169573])

  5. Agricultural and Environmental Input Parameters for the Biosphere Model

    Energy Technology Data Exchange (ETDEWEB)

    Kaylie Rasmuson; Kurt Rautenstrauch

    2003-06-20

    This analysis is one of nine technical reports that support the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN) biosphere model. It documents input parameters for the biosphere model, and supports the use of the model to develop Biosphere Dose Conversion Factors (BDCF). The biosphere model is one of a series of process models supporting the Total System Performance Assessment (TSPA) for the repository at Yucca Mountain. The ERMYN provides the TSPA with the capability to perform dose assessments. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships between the major activities and their products (the analysis and model reports) that were planned in the biosphere Technical Work Plan (TWP, BSC 2003a). It should be noted that some documents identified in Figure 1-1 may be under development and therefore not available at the time this document is issued. The ''Biosphere Model Report'' (BSC 2003b) describes the ERMYN and its input parameters. This analysis report, ANL-MGR-MD-000006, ''Agricultural and Environmental Input Parameters for the Biosphere Model'', is one of the five reports that develop input parameters for the biosphere model. This report defines and justifies values for twelve parameters required in the biosphere model. These parameters are related to use of contaminated groundwater to grow crops. The parameter values recommended in this report are used in the soil, plant, and carbon-14 submodels of the ERMYN.

  6. GASFLOW computer code (physical models and input data)

    International Nuclear Information System (INIS)

    Muehlbauer, Petr

    2007-11-01

    The GASFLOW computer code was developed jointly by the Los Alamos National Laboratory, USA, and Forschungszentrum Karlsruhe, Germany. The code is primarily intended for calculations of the transport, mixing, and combustion of hydrogen and other gases in nuclear reactor containments and in other facilities. The physical models and the input data are described, and a commented simple calculation is presented

  7. Framework for Modelling Multiple Input Complex Aggregations for Interactive Installations

    DEFF Research Database (Denmark)

    Padfield, Nicolas; Andreasen, Troels

    2012-01-01

    on fuzzy logic and provides a method for variably balancing interaction and user input with the intention of the artist or director. An experimental design is presented, demonstrating an intuitive interface for parametric modelling of a complex aggregation function. The aggregation function unifies...

  8. Key processes and input parameters for environmental tritium models

    International Nuclear Information System (INIS)

    Bunnenberg, C.; Taschner, M.; Ogram, G.L.

    1994-01-01

    The primary objective of the work reported here is to define key processes and input parameters for mathematical models of environmental tritium behaviour adequate for use in safety analysis and licensing of fusion devices like NET and associated tritium handling facilities. (author). 45 refs., 3 figs

  9. Key processes and input parameters for environmental tritium models

    Energy Technology Data Exchange (ETDEWEB)

    Bunnenberg, C; Taschner, M [Niedersaechsisches Inst. fuer Radiooekologie, Hannover (Germany); Ogram, G L [Ontario Hydro, Toronto, ON (Canada)

    1994-12-31

    The primary objective of the work reported here is to define key processes and input parameters for mathematical models of environmental tritium behaviour adequate for use in safety analysis and licensing of fusion devices like NET and associated tritium handling facilities. (author). 45 refs., 3 figs.

  10. Description of the CONTAIN input model for the Dodewaard nuclear power plant

    International Nuclear Information System (INIS)

    Velema, E.J.

    1992-02-01

    This report describes the ECN standard CONTAIN input model for the Dodewaard Nuclear Power Plant (NPP) that has been developed by ECN. This standard input model will serve as a basis for analyses of the phenomena which may occur inside the Dodewaard containment in the event of a postulated severe accident. Boundary conditions for specific containment analyses can easily be implemented in the input model. as a result ECN will be able to respond quickly on requests for analyses from the utilities of the authorities. The report also includes brief descriptions of the Dodewaard NPP and the CONTAIN computer program. (author). 7 refs.; 5 figs.; 3 tabs

  11. Model reduction of nonlinear systems subject to input disturbances

    KAUST Repository

    Ndoye, Ibrahima

    2017-07-10

    The method of convex optimization is used as a tool for model reduction of a class of nonlinear systems in the presence of disturbances. It is shown that under some conditions the nonlinear disturbed system can be approximated by a reduced order nonlinear system with similar disturbance-output properties to the original plant. The proposed model reduction strategy preserves the nonlinearity and the input disturbance nature of the model. It guarantees a sufficiently small error between the outputs of the original and the reduced-order systems, and also maintains the properties of input-to-state stability. The matrices of the reduced order system are given in terms of a set of linear matrix inequalities (LMIs). The paper concludes with a demonstration of the proposed approach on model reduction of a nonlinear electronic circuit with additive disturbances.

  12. Effects of input uncertainty on cross-scale crop modeling

    Science.gov (United States)

    Waha, Katharina; Huth, Neil; Carberry, Peter

    2014-05-01

    The quality of data on climate, soils and agricultural management in the tropics is in general low or data is scarce leading to uncertainty in process-based modeling of cropping systems. Process-based crop models are common tools for simulating crop yields and crop production in climate change impact studies, studies on mitigation and adaptation options or food security studies. Crop modelers are concerned about input data accuracy as this, together with an adequate representation of plant physiology processes and choice of model parameters, are the key factors for a reliable simulation. For example, assuming an error in measurements of air temperature, radiation and precipitation of ± 0.2°C, ± 2 % and ± 3 % respectively, Fodor & Kovacs (2005) estimate that this translates into an uncertainty of 5-7 % in yield and biomass simulations. In our study we seek to answer the following questions: (1) are there important uncertainties in the spatial variability of simulated crop yields on the grid-cell level displayed on maps, (2) are there important uncertainties in the temporal variability of simulated crop yields on the aggregated, national level displayed in time-series, and (3) how does the accuracy of different soil, climate and management information influence the simulated crop yields in two crop models designed for use at different spatial scales? The study will help to determine whether more detailed information improves the simulations and to advise model users on the uncertainty related to input data. We analyse the performance of the point-scale crop model APSIM (Keating et al., 2003) and the global scale crop model LPJmL (Bondeau et al., 2007) with different climate information (monthly and daily) and soil conditions (global soil map and African soil map) under different agricultural management (uniform and variable sowing dates) for the low-input maize-growing areas in Burkina Faso/West Africa. We test the models' response to different levels of input

  13. A PRODUCTIVITY EVALUATION MODEL BASED ON INPUT AND OUTPUT ORIENTATIONS

    Directory of Open Access Journals (Sweden)

    C.O. Anyaeche

    2012-01-01

    Full Text Available

    ENGLISH ABSTRACT: Many productivity models evaluate either the input or the output performances using standalone techniques. This sometimes gives divergent views of the same system’s results. The work reported in this article, which simultaneously evaluated productivity from both orientations, was applied on real life data. The results showed losses in productivity (–2% and price recovery (–8% for the outputs; the inputs showed productivity gain (145% but price recovery loss (–63%. These imply losses in product performances but a productivity gain in inputs. The loss in the price recovery of inputs indicates a problem in the pricing policy. This model is applicable in product diversification.

    AFRIKAANSE OPSOMMING: Die meeste produktiwiteitsmodelle evalueer of die inset- of die uitsetverrigting deur gebruik te maak van geïsoleerde tegnieke. Dit lei soms tot uiteenlopende perspektiewe van dieselfde sisteem se verrigting. Hierdie artikel evalueer verrigting uit beide perspektiewe en gebruik ware data. Die resultate toon ‘n afname in produktiwiteit (-2% en prysherwinning (-8% vir die uitsette. Die insette toon ‘n toename in produktiwiteit (145%, maar ‘n afname in prysherwinning (-63%. Dit impliseer ‘n afname in produkverrigting, maar ‘n produktiwiteitstoename in insette. Die afname in die prysherwinning van insette dui op ‘n problem in die prysvasstellingbeleid. Hierdie model is geskik vir produkdiversifikasie.

  14. Seepage Model for PA Including Drift Collapse

    International Nuclear Information System (INIS)

    Li, G.; Tsang, C.

    2000-01-01

    The purpose of this Analysis/Model Report (AMR) is to document the predictions and analysis performed using the Seepage Model for Performance Assessment (PA) and the Disturbed Drift Seepage Submodel for both the Topopah Spring middle nonlithophysal and lower lithophysal lithostratigraphic units at Yucca Mountain. These results will be used by PA to develop the probability distribution of water seepage into waste-emplacement drifts at Yucca Mountain, Nevada, as part of the evaluation of the long term performance of the potential repository. This AMR is in accordance with the ''Technical Work Plan for Unsaturated Zone (UZ) Flow and Transport Process Model Report'' (CRWMS M andO 2000 [153447]). This purpose is accomplished by performing numerical simulations with stochastic representations of hydrological properties, using the Seepage Model for PA, and evaluating the effects of an alternative drift geometry representing a partially collapsed drift using the Disturbed Drift Seepage Submodel. Seepage of water into waste-emplacement drifts is considered one of the principal factors having the greatest impact of long-term safety of the repository system (CRWMS M andO 2000 [153225], Table 4-1). This AMR supports the analysis and simulation that are used by PA to develop the probability distribution of water seepage into drift, and is therefore a model of primary (Level 1) importance (AP-3.15Q, ''Managing Technical Product Inputs''). The intended purpose of the Seepage Model for PA is to support: (1) PA; (2) Abstraction of Drift-Scale Seepage; and (3) Unsaturated Zone (UZ) Flow and Transport Process Model Report (PMR). Seepage into drifts is evaluated by applying numerical models with stochastic representations of hydrological properties and performing flow simulations with multiple realizations of the permeability field around the drift. The Seepage Model for PA uses the distribution of permeabilities derived from air injection testing in niches and in the cross drift to

  15. Seepage Model for PA Including Dift Collapse

    Energy Technology Data Exchange (ETDEWEB)

    G. Li; C. Tsang

    2000-12-20

    The purpose of this Analysis/Model Report (AMR) is to document the predictions and analysis performed using the Seepage Model for Performance Assessment (PA) and the Disturbed Drift Seepage Submodel for both the Topopah Spring middle nonlithophysal and lower lithophysal lithostratigraphic units at Yucca Mountain. These results will be used by PA to develop the probability distribution of water seepage into waste-emplacement drifts at Yucca Mountain, Nevada, as part of the evaluation of the long term performance of the potential repository. This AMR is in accordance with the ''Technical Work Plan for Unsaturated Zone (UZ) Flow and Transport Process Model Report'' (CRWMS M&O 2000 [153447]). This purpose is accomplished by performing numerical simulations with stochastic representations of hydrological properties, using the Seepage Model for PA, and evaluating the effects of an alternative drift geometry representing a partially collapsed drift using the Disturbed Drift Seepage Submodel. Seepage of water into waste-emplacement drifts is considered one of the principal factors having the greatest impact of long-term safety of the repository system (CRWMS M&O 2000 [153225], Table 4-1). This AMR supports the analysis and simulation that are used by PA to develop the probability distribution of water seepage into drift, and is therefore a model of primary (Level 1) importance (AP-3.15Q, ''Managing Technical Product Inputs''). The intended purpose of the Seepage Model for PA is to support: (1) PA; (2) Abstraction of Drift-Scale Seepage; and (3) Unsaturated Zone (UZ) Flow and Transport Process Model Report (PMR). Seepage into drifts is evaluated by applying numerical models with stochastic representations of hydrological properties and performing flow simulations with multiple realizations of the permeability field around the drift. The Seepage Model for PA uses the distribution of permeabilities derived from air injection testing in

  16. Inhalation Exposure Input Parameters for the Biosphere Model

    Energy Technology Data Exchange (ETDEWEB)

    M. Wasiolek

    2006-06-05

    This analysis is one of the technical reports that support the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), referred to in this report as the biosphere model. ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes in detail the conceptual model as well as the mathematical model and its input parameters. This report documents development of input parameters for the biosphere model that are related to atmospheric mass loading and supports the use of the model to develop biosphere dose conversion factors (BDCFs). The biosphere model is one of a series of process models supporting the total system performance assessment (TSPA) for a Yucca Mountain repository. ''Inhalation Exposure Input Parameters for the Biosphere Model'' is one of five reports that develop input parameters for the biosphere model. A graphical representation of the documentation hierarchy for the biosphere model is presented in Figure 1-1 (based on BSC 2006 [DIRS 176938]). This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling and how this analysis report contributes to biosphere modeling. This analysis report defines and justifies values of atmospheric mass loading for the biosphere model. Mass loading is the total mass concentration of resuspended particles (e.g., dust, ash) in a volume of air. Mass loading values are used in the air submodel of the biosphere model to calculate concentrations of radionuclides in air inhaled by a receptor and concentrations in air surrounding crops. Concentrations in air to which the receptor is exposed are then used in the inhalation submodel to calculate the dose contribution to the receptor from inhalation of contaminated airborne particles. Concentrations in air surrounding plants are used in the plant submodel to calculate the concentrations of radionuclides in foodstuffs contributed from uptake by foliar interception. This

  17. Inhalation Exposure Input Parameters for the Biosphere Model

    International Nuclear Information System (INIS)

    M. Wasiolek

    2006-01-01

    This analysis is one of the technical reports that support the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), referred to in this report as the biosphere model. ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes in detail the conceptual model as well as the mathematical model and its input parameters. This report documents development of input parameters for the biosphere model that are related to atmospheric mass loading and supports the use of the model to develop biosphere dose conversion factors (BDCFs). The biosphere model is one of a series of process models supporting the total system performance assessment (TSPA) for a Yucca Mountain repository. ''Inhalation Exposure Input Parameters for the Biosphere Model'' is one of five reports that develop input parameters for the biosphere model. A graphical representation of the documentation hierarchy for the biosphere model is presented in Figure 1-1 (based on BSC 2006 [DIRS 176938]). This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling and how this analysis report contributes to biosphere modeling. This analysis report defines and justifies values of atmospheric mass loading for the biosphere model. Mass loading is the total mass concentration of resuspended particles (e.g., dust, ash) in a volume of air. Mass loading values are used in the air submodel of the biosphere model to calculate concentrations of radionuclides in air inhaled by a receptor and concentrations in air surrounding crops. Concentrations in air to which the receptor is exposed are then used in the inhalation submodel to calculate the dose contribution to the receptor from inhalation of contaminated airborne particles. Concentrations in air surrounding plants are used in the plant submodel to calculate the concentrations of radionuclides in foodstuffs contributed from uptake by foliar interception. This report is concerned primarily with the

  18. Agricultural and Environmental Input Parameters for the Biosphere Model

    Energy Technology Data Exchange (ETDEWEB)

    K. Rasmuson; K. Rautenstrauch

    2004-09-14

    This analysis is one of 10 technical reports that support the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN) (i.e., the biosphere model). It documents development of agricultural and environmental input parameters for the biosphere model, and supports the use of the model to develop biosphere dose conversion factors (BDCFs). The biosphere model is one of a series of process models supporting the total system performance assessment (TSPA) for the repository at Yucca Mountain. The ERMYN provides the TSPA with the capability to perform dose assessments. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships between the major activities and their products (the analysis and model reports) that were planned in ''Technical Work Plan for Biosphere Modeling and Expert Support'' (BSC 2004 [DIRS 169573]). The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes the ERMYN and its input parameters.

  19. Screening important inputs in models with strong interaction properties

    International Nuclear Information System (INIS)

    Saltelli, Andrea; Campolongo, Francesca; Cariboni, Jessica

    2009-01-01

    We introduce a new method for screening inputs in mathematical or computational models with large numbers of inputs. The method proposed here represents an improvement over the best available practice for this setting when dealing with models having strong interaction effects. When the sample size is sufficiently high the same design can also be used to obtain accurate quantitative estimates of the variance-based sensitivity measures: the same simulations can be used to obtain estimates of the variance-based measures according to the Sobol' and the Jansen formulas. Results demonstrate that Sobol' is more efficient for the computation of the first-order indices, while Jansen performs better for the computation of the total indices.

  20. Screening important inputs in models with strong interaction properties

    Energy Technology Data Exchange (ETDEWEB)

    Saltelli, Andrea [European Commission, Joint Research Centre, 21020 Ispra, Varese (Italy); Campolongo, Francesca [European Commission, Joint Research Centre, 21020 Ispra, Varese (Italy)], E-mail: francesca.campolongo@jrc.it; Cariboni, Jessica [European Commission, Joint Research Centre, 21020 Ispra, Varese (Italy)

    2009-07-15

    We introduce a new method for screening inputs in mathematical or computational models with large numbers of inputs. The method proposed here represents an improvement over the best available practice for this setting when dealing with models having strong interaction effects. When the sample size is sufficiently high the same design can also be used to obtain accurate quantitative estimates of the variance-based sensitivity measures: the same simulations can be used to obtain estimates of the variance-based measures according to the Sobol' and the Jansen formulas. Results demonstrate that Sobol' is more efficient for the computation of the first-order indices, while Jansen performs better for the computation of the total indices.

  1. Simplifying BRDF input data for optical signature modeling

    Science.gov (United States)

    Hallberg, Tomas; Pohl, Anna; Fagerström, Jan

    2017-05-01

    Scene simulations of optical signature properties using signature codes normally requires input of various parameterized measurement data of surfaces and coatings in order to achieve realistic scene object features. Some of the most important parameters are used in the model of the Bidirectional Reflectance Distribution Function (BRDF) and are normally determined by surface reflectance and scattering measurements. Reflectance measurements of the spectral Directional Hemispherical Reflectance (DHR) at various incident angles can normally be performed in most spectroscopy labs, while measuring the BRDF is more complicated or may not be available at all in many optical labs. We will present a method in order to achieve the necessary BRDF data directly from DHR measurements for modeling software using the Sandford-Robertson BRDF model. The accuracy of the method is tested by modeling a test surface by comparing results from using estimated and measured BRDF data as input to the model. These results show that using this method gives no significant loss in modeling accuracy.

  2. Model for safety reports including descriptive examples

    International Nuclear Information System (INIS)

    1995-12-01

    Several safety reports will be produced in the process of planning and constructing the system for disposal of high-level radioactive waste in Sweden. The present report gives a model, with detailed examples, of how these reports should be organized and what steps they should include. In the near future safety reports will deal with the encapsulation plant and the repository. Later reports will treat operation of the handling systems and the repository

  3. Development of an Input Model to MELCOR 1.8.5 for the Ringhals 3 PWR

    International Nuclear Information System (INIS)

    Nilsson, Lars

    2004-12-01

    An input file to the severe accident code MELCOR 1.8.5 has been developed for the Swedish pressurized water reactor Ringhals 3. The aim was to produce a file that can be used for calculations of various postulated severe accident scenarios, although the first application is specifically on cases involving large hydrogen production. The input file is rather detailed with individual modelling of all three cooling loops. The report describes the basis for the Ringhals 3 model and the input preparation step by step and is illustrated by nodalization schemes of the different plant systems. Present version of the report is restricted to the fundamental MELCOR input preparation, and therefore most of the figures of Ringhals 3 measurements and operating parameters are excluded here. These are given in another, complete version of the report, for limited distribution, which includes tables for pertinent data of all components. That version contains appendices with a complete listing of the input files as well as tables of data compiled from a RELAP5 file, that was a major basis for the MELCOR input for the cooling loops. The input was tested in steady-state calculations in order to simulate the initial conditions at current nominal operating conditions in Ringhals 3 for 2775 MW thermal power. The results of the steady-state calculations are presented in the report. Calculations with the MELCOR model will then be carried out of certain accident sequences for comparison with results from earlier MAAP4 calculations. That work will be reported separately

  4. Development of the RETRAN input model for Ulchin 3/4 visual system analyzer

    International Nuclear Information System (INIS)

    Lee, S. W.; Kim, K. D.; Lee, Y. J.; Lee, W. J.; Chung, B. D.; Jeong, J. J.; Hwang, M. K.

    2004-01-01

    As a part of the Long-Term Nuclear R and D program, KAERI has developed the so-called Visual System Analyzer (ViSA) based on best-estimate codes. The MARS and RETRAN codes are used as the best-estimate codes for ViSA. Between these two codes, the RETRAN code is used for realistic analysis of Non-LOCA transients and small-break loss-of-coolant accidents, of which break size is less than 3 inch diameter. So it is necessary to develop the RETRAN input model for Ulchin 3/4 plants (KSNP). In recognition of this, the RETRAN input model for Ulchin 3/4 plants has been developed. This report includes the input model requirements and the calculation note for the input data generation (see the Appendix). In order to confirm the validity of the input data, the calculations are performed for a steady state at 100 % power operation condition, inadvertent reactor trip and RCP trip. The results of the steady-state calculation agree well with the design data. The results of the other transient calculations seem to be reasonable and consistent with those of other best-estimate calculations. Therefore, the RETRAN input data can be used as a base input deck for the RETRAN transient analyzer for Ulchin 3/4. Moreover, it is found that Core Protection Calculator (CPC) module, which is modified by Korea Electric Power Research Institute (KEPRI), is well adapted to ViSA

  5. Temporal rainfall estimation using input data reduction and model inversion

    Science.gov (United States)

    Wright, A. J.; Vrugt, J. A.; Walker, J. P.; Pauwels, V. R. N.

    2016-12-01

    Floods are devastating natural hazards. To provide accurate, precise and timely flood forecasts there is a need to understand the uncertainties associated with temporal rainfall and model parameters. The estimation of temporal rainfall and model parameter distributions from streamflow observations in complex dynamic catchments adds skill to current areal rainfall estimation methods, allows for the uncertainty of rainfall input to be considered when estimating model parameters and provides the ability to estimate rainfall from poorly gauged catchments. Current methods to estimate temporal rainfall distributions from streamflow are unable to adequately explain and invert complex non-linear hydrologic systems. This study uses the Discrete Wavelet Transform (DWT) to reduce rainfall dimensionality for the catchment of Warwick, Queensland, Australia. The reduction of rainfall to DWT coefficients allows the input rainfall time series to be simultaneously estimated along with model parameters. The estimation process is conducted using multi-chain Markov chain Monte Carlo simulation with the DREAMZS algorithm. The use of a likelihood function that considers both rainfall and streamflow error allows for model parameter and temporal rainfall distributions to be estimated. Estimation of the wavelet approximation coefficients of lower order decomposition structures was able to estimate the most realistic temporal rainfall distributions. These rainfall estimates were all able to simulate streamflow that was superior to the results of a traditional calibration approach. It is shown that the choice of wavelet has a considerable impact on the robustness of the inversion. The results demonstrate that streamflow data contains sufficient information to estimate temporal rainfall and model parameter distributions. The extent and variance of rainfall time series that are able to simulate streamflow that is superior to that simulated by a traditional calibration approach is a

  6. Bayesian nonlinear structural FE model and seismic input identification for damage assessment of civil structures

    Science.gov (United States)

    Astroza, Rodrigo; Ebrahimian, Hamed; Li, Yong; Conte, Joel P.

    2017-09-01

    A methodology is proposed to update mechanics-based nonlinear finite element (FE) models of civil structures subjected to unknown input excitation. The approach allows to jointly estimate unknown time-invariant model parameters of a nonlinear FE model of the structure and the unknown time histories of input excitations using spatially-sparse output response measurements recorded during an earthquake event. The unscented Kalman filter, which circumvents the computation of FE response sensitivities with respect to the unknown model parameters and unknown input excitations by using a deterministic sampling approach, is employed as the estimation tool. The use of measurement data obtained from arrays of heterogeneous sensors, including accelerometers, displacement sensors, and strain gauges is investigated. Based on the estimated FE model parameters and input excitations, the updated nonlinear FE model can be interrogated to detect, localize, classify, and assess damage in the structure. Numerically simulated response data of a three-dimensional 4-story 2-by-1 bay steel frame structure with six unknown model parameters subjected to unknown bi-directional horizontal seismic excitation, and a three-dimensional 5-story 2-by-1 bay reinforced concrete frame structure with nine unknown model parameters subjected to unknown bi-directional horizontal seismic excitation are used to illustrate and validate the proposed methodology. The results of the validation studies show the excellent performance and robustness of the proposed algorithm to jointly estimate unknown FE model parameters and unknown input excitations.

  7. SEEPAGE MODEL FOR PA INCLUDING DRIFT COLLAPSE

    International Nuclear Information System (INIS)

    C. Tsang

    2004-01-01

    The purpose of this report is to document the predictions and analyses performed using the seepage model for performance assessment (SMPA) for both the Topopah Spring middle nonlithophysal (Tptpmn) and lower lithophysal (Tptpll) lithostratigraphic units at Yucca Mountain, Nevada. Look-up tables of seepage flow rates into a drift (and their uncertainty) are generated by performing numerical simulations with the seepage model for many combinations of the three most important seepage-relevant parameters: the fracture permeability, the capillary-strength parameter 1/a, and the percolation flux. The percolation flux values chosen take into account flow focusing effects, which are evaluated based on a flow-focusing model. Moreover, multiple realizations of the underlying stochastic permeability field are conducted. Selected sensitivity studies are performed, including the effects of an alternative drift geometry representing a partially collapsed drift from an independent drift-degradation analysis (BSC 2004 [DIRS 166107]). The intended purpose of the seepage model is to provide results of drift-scale seepage rates under a series of parameters and scenarios in support of the Total System Performance Assessment for License Application (TSPA-LA). The SMPA is intended for the evaluation of drift-scale seepage rates under the full range of parameter values for three parameters found to be key (fracture permeability, the van Genuchten 1/a parameter, and percolation flux) and drift degradation shape scenarios in support of the TSPA-LA during the period of compliance for postclosure performance [Technical Work Plan for: Performance Assessment Unsaturated Zone (BSC 2002 [DIRS 160819], Section I-4-2-1)]. The flow-focusing model in the Topopah Spring welded (TSw) unit is intended to provide an estimate of flow focusing factors (FFFs) that (1) bridge the gap between the mountain-scale and drift-scale models, and (2) account for variability in local percolation flux due to

  8. Influential input parameters for reflood model of MARS code

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Deog Yeon; Bang, Young Seok [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2012-10-15

    Best Estimate (BE) calculation has been more broadly used in nuclear industries and regulations to reduce the significant conservatism for evaluating Loss of Coolant Accident (LOCA). Reflood model has been identified as one of the problems in BE calculation. The objective of the Post BEMUSE Reflood Model Input Uncertainty Methods (PREMIUM) program of OECD/NEA is to make progress the issue of the quantification of the uncertainty of the physical models in system thermal hydraulic codes, by considering an experimental result especially for reflood. It is important to establish a methodology to identify and select the parameters influential to the response of reflood phenomena following Large Break LOCA. For this aspect, a reference calculation and sensitivity analysis to select the dominant influential parameters for FEBA experiment are performed.

  9. Comprehensive Information Retrieval and Model Input Sequence (CIRMIS)

    International Nuclear Information System (INIS)

    Friedrichs, D.R.

    1977-04-01

    The Comprehensive Information Retrieval and Model Input Sequence (CIRMIS) was developed to provide the research scientist with man--machine interactive capabilities in a real-time environment, and thereby produce results more quickly and efficiently. The CIRMIS system was originally developed to increase data storage and retrieval capabilities and ground-water model control for the Hanford site. The overall configuration, however, can be used in other areas. The CIRMIS system provides the user with three major functions: retrieval of well-based data, special application for manipulating surface data or background maps, and the manipulation and control of ground-water models. These programs comprise only a portion of the entire CIRMIS system. A complete description of the CIRMIS system is given in this report. 25 figures, 7 tables

  10. Olkiluoto surface hydrological modelling: Update 2012 including salt transport modelling

    International Nuclear Information System (INIS)

    Karvonen, T.

    2013-11-01

    Posiva Oy is responsible for implementing a final disposal program for spent nuclear fuel of its owners Teollisuuden Voima Oyj and Fortum Power and Heat Oy. The spent nuclear fuel is planned to be disposed at a depth of about 400-450 meters in the crystalline bedrock at the Olkiluoto site. Leakages located at or close to spent fuel repository may give rise to the upconing of deep highly saline groundwater and this is a concern with regard to the performance of the tunnel backfill material after the closure of the tunnels. Therefore a salt transport sub-model was added to the Olkiluoto surface hydrological model (SHYD). The other improvements include update of the particle tracking algorithm and possibility to estimate the influence of open drillholes in a case where overpressure in inflatable packers decreases causing a hydraulic short-circuit between hydrogeological zones HZ19 and HZ20 along the drillhole. Four new hydrogeological zones HZ056, HZ146, BFZ100 and HZ039 were added to the model. In addition, zones HZ20A and HZ20B intersect with each other in the new structure model, which influences salinity upconing caused by leakages in shafts. The aim of the modelling of long-term influence of ONKALO, shafts and repository tunnels provide computational results that can be used to suggest limits for allowed leakages. The model input data included all the existing leakages into ONKALO (35-38 l/min) and shafts in the present day conditions. The influence of shafts was computed using eight different values for total shaft leakage: 5, 11, 20, 30, 40, 50, 60 and 70 l/min. The selection of the leakage criteria for shafts was influenced by the fact that upconing of saline water increases TDS-values close to the repository areas although HZ20B does not intersect any deposition tunnels. The total limit for all leakages was suggested to be 120 l/min. The limit for HZ20 zones was proposed to be 40 l/min: about 5 l/min the present day leakages to access tunnel, 25 l/min from

  11. Olkiluoto surface hydrological modelling: Update 2012 including salt transport modelling

    Energy Technology Data Exchange (ETDEWEB)

    Karvonen, T. [WaterHope, Helsinki (Finland)

    2013-11-15

    Posiva Oy is responsible for implementing a final disposal program for spent nuclear fuel of its owners Teollisuuden Voima Oyj and Fortum Power and Heat Oy. The spent nuclear fuel is planned to be disposed at a depth of about 400-450 meters in the crystalline bedrock at the Olkiluoto site. Leakages located at or close to spent fuel repository may give rise to the upconing of deep highly saline groundwater and this is a concern with regard to the performance of the tunnel backfill material after the closure of the tunnels. Therefore a salt transport sub-model was added to the Olkiluoto surface hydrological model (SHYD). The other improvements include update of the particle tracking algorithm and possibility to estimate the influence of open drillholes in a case where overpressure in inflatable packers decreases causing a hydraulic short-circuit between hydrogeological zones HZ19 and HZ20 along the drillhole. Four new hydrogeological zones HZ056, HZ146, BFZ100 and HZ039 were added to the model. In addition, zones HZ20A and HZ20B intersect with each other in the new structure model, which influences salinity upconing caused by leakages in shafts. The aim of the modelling of long-term influence of ONKALO, shafts and repository tunnels provide computational results that can be used to suggest limits for allowed leakages. The model input data included all the existing leakages into ONKALO (35-38 l/min) and shafts in the present day conditions. The influence of shafts was computed using eight different values for total shaft leakage: 5, 11, 20, 30, 40, 50, 60 and 70 l/min. The selection of the leakage criteria for shafts was influenced by the fact that upconing of saline water increases TDS-values close to the repository areas although HZ20B does not intersect any deposition tunnels. The total limit for all leakages was suggested to be 120 l/min. The limit for HZ20 zones was proposed to be 40 l/min: about 5 l/min the present day leakages to access tunnel, 25 l/min from

  12. Grand unified models including extra Z bosons

    International Nuclear Information System (INIS)

    Li Tiezhong

    1989-01-01

    The grand unified theories (GUT) of the simple Lie groups including extra Z bosons are discussed. Under authors's hypothesis there are only SU 5+m SO 6+4n and E 6 groups. The general discussion of SU 5+m is given, then the SU 6 and SU 7 are considered. In SU 6 the 15+6 * +6 * fermion representations are used, which are not same as others in fermion content, Yukawa coupling and broken scales. A conception of clans of particles, which are not families, is suggested. These clans consist of extra Z bosons and the corresponding fermions of the scale. The all of fermions in the clans are down quarks except for the standard model which consists of Z bosons and 15 fermions, therefore, the spectrum of the hadrons which are composed of these down quarks are different from hadrons at present

  13. Measurement of Laser Weld Temperatures for 3D Model Input

    Energy Technology Data Exchange (ETDEWEB)

    Dagel, Daryl [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Grossetete, Grant [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Maccallum, Danny O. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-10-01

    Laser welding is a key joining process used extensively in the manufacture and assembly of critical components for several weapons systems. Sandia National Laboratories advances the understanding of the laser welding process through coupled experimentation and modeling. This report summarizes the experimental portion of the research program, which focused on measuring temperatures and thermal history of laser welds on steel plates. To increase confidence in measurement accuracy, researchers utilized multiple complementary techniques to acquire temperatures during laser welding. This data serves as input to and validation of 3D laser welding models aimed at predicting microstructure and the formation of defects and their impact on weld-joint reliability, a crucial step in rapid prototyping of weapons components.

  14. Phylogenetic mixtures and linear invariants for equal input models.

    Science.gov (United States)

    Casanellas, Marta; Steel, Mike

    2017-04-01

    The reconstruction of phylogenetic trees from molecular sequence data relies on modelling site substitutions by a Markov process, or a mixture of such processes. In general, allowing mixed processes can result in different tree topologies becoming indistinguishable from the data, even for infinitely long sequences. However, when the underlying Markov process supports linear phylogenetic invariants, then provided these are sufficiently informative, the identifiability of the tree topology can be restored. In this paper, we investigate a class of processes that support linear invariants once the stationary distribution is fixed, the 'equal input model'. This model generalizes the 'Felsenstein 1981' model (and thereby the Jukes-Cantor model) from four states to an arbitrary number of states (finite or infinite), and it can also be described by a 'random cluster' process. We describe the structure and dimension of the vector spaces of phylogenetic mixtures and of linear invariants for any fixed phylogenetic tree (and for all trees-the so called 'model invariants'), on any number n of leaves. We also provide a precise description of the space of mixtures and linear invariants for the special case of [Formula: see text] leaves. By combining techniques from discrete random processes and (multi-) linear algebra, our results build on a classic result that was first established by James Lake (Mol Biol Evol 4:167-191, 1987).

  15. Calibration of uncertain inputs to computer models using experimentally measured quantities and the BMARS emulator

    International Nuclear Information System (INIS)

    Stripling, H.F.; McClarren, R.G.; Kuranz, C.C.; Grosskopf, M.J.; Rutter, E.; Torralva, B.R.

    2011-01-01

    We present a method for calibrating the uncertain inputs to a computer model using available experimental data. The goal of the procedure is to produce posterior distributions of the uncertain inputs such that when samples from the posteriors are used as inputs to future model runs, the model is more likely to replicate (or predict) the experimental response. The calibration is performed by sampling the space of the uncertain inputs, using the computer model (or, more likely, an emulator for the computer model) to assign weights to the samples, and applying the weights to produce the posterior distributions and generate predictions of new experiments within confidence bounds. The method is similar to the Markov chain Monte Carlo (MCMC) calibration methods with independent sampling with the exception that we generate samples beforehand and replace the candidate acceptance routine with a weighting scheme. We apply our method to the calibration of a Hyades 2D model of laser energy deposition in beryllium. We employ a Bayesian Multivariate Adaptive Regression Splines (BMARS) emulator as a surrogate for Hyades 2D. We treat a range of uncertainties in our system, including uncertainties in the experimental inputs, experimental measurement error, and systematic experimental timing errors. The results of the calibration are posterior distributions that both agree with intuition and improve the accuracy and decrease the uncertainty in experimental predictions. (author)

  16. Development of the MARS input model for Kori nuclear units 1 transient analyzer

    International Nuclear Information System (INIS)

    Hwang, M.; Kim, K. D.; Lee, S. W.; Lee, Y. J.; Lee, W. J.; Chung, B. D.; Jeong, J. J.

    2004-11-01

    KAERI has been developing the 'NSSS transient analyzer' based on best-estimate codes for Kori Nuclear Units 1 plants. The MARS and RETRAN codes have been used as the best-estimate codes for the NSSS transient analyzer. Among these codes, the MARS code is adopted for realistic analysis of small- and large-break loss-of-coolant accidents, of which break size is greater than 2 inch diameter. So it is necessary to develop the MARS input model for Kori Nuclear Units 1 plants. This report includes the input model (hydrodynamic component and heat structure models) requirements and the calculation note for the MARS input data generation for Kori Nuclear Units 1 plant analyzer (see the Appendix). In order to confirm the validity of the input data, we performed the calculations for a steady state at 100 % power operation condition and a double-ended cold leg break LOCA. The results of the steady-state calculation agree well with the design data. The results of the LOCA calculation seem to be reasonable and consistent with those of other best-estimate calculations. Therefore, the MARS input data can be used as a base input deck for the MARS transient analyzer for Kori Nuclear Units 1

  17. Metocean input data for drift models applications: Loustic study

    International Nuclear Information System (INIS)

    Michon, P.; Bossart, C.; Cabioc'h, M.

    1995-01-01

    Real-time monitoring and crisis management of oil slicks or floating structures displacement require a good knowledge of local winds, waves and currents used as input data for operational drift models. Fortunately, thanks to world-wide and all-weather coverage, satellite measurements have recently enabled the introduction of new methods for the remote sensing of the marine environment. Within a French joint industry project, a procedure has been developed using basically satellite measurements combined to metocean models in order to provide marine operators' drift models with reliable wind, wave and current analyses and short term forecasts. Particularly, a model now allows the calculation of the drift current, under the joint action of wind and sea-state, thus radically improving the classical laws. This global procedure either directly uses satellite wind and waves measurements (if available on the study area) or indirectly, as calibration of metocean models results which are brought to the oil slick or floating structure location. The operational use of this procedure is reported here with an example of floating structure drift offshore from the Brittany coasts

  18. Modelling Analysis of Forestry Input-Output Elasticity in China

    Directory of Open Access Journals (Sweden)

    Guofeng Wang

    2016-01-01

    Full Text Available Based on an extended economic model and space econometrics, this essay analyzed the spatial distributions and interdependent relationships of the production of forestry in China; also the input-output elasticity of forestry production were calculated. Results figure out there exists significant spatial correlation in forestry production in China. Spatial distribution is mainly manifested as spatial agglomeration. The output elasticity of labor force is equal to 0.6649, and that of capital is equal to 0.8412. The contribution of land is significantly negative. Labor and capital are the main determinants for the province-level forestry production in China. Thus, research on the province-level forestry production should not ignore the spatial effect. The policy-making process should take into consideration the effects between provinces on the production of forestry. This study provides some scientific technical support for forestry production.

  19. Prioritizing Interdependent Production Processes using Leontief Input-Output Model

    Directory of Open Access Journals (Sweden)

    Masbad Jesah Grace

    2016-03-01

    Full Text Available This paper proposes a methodology in identifying key production processes in an interdependent production system. Previous approaches on this domain have drawbacks that may potentially affect the reliability of decision-making. The proposed approach adopts the Leontief input-output model (L-IOM which was proven successful in analyzing interdependent economic systems. The motivation behind such adoption lies in the strength of L-IOM in providing a rigorous quantitative framework in identifying key components of interdependent systems. In this proposed approach, the consumption and production flows of each process are represented respectively by the material inventory produced by the prior process and the material inventory produced by the current process, both in monetary values. A case study in a furniture production system located in central Philippines was carried out to elucidate the proposed approach. Results of the case were reported in this work

  20. Input modeling with phase-type distributions and Markov models theory and applications

    CERN Document Server

    Buchholz, Peter; Felko, Iryna

    2014-01-01

    Containing a summary of several recent results on Markov-based input modeling in a coherent notation, this book introduces and compares algorithms for parameter fitting and gives an overview of available software tools in the area. Due to progress made in recent years with respect to new algorithms to generate PH distributions and Markovian arrival processes from measured data, the models outlined are useful alternatives to other distributions or stochastic processes used for input modeling. Graduate students and researchers in applied probability, operations research and computer science along with practitioners using simulation or analytical models for performance analysis and capacity planning will find the unified notation and up-to-date results presented useful. Input modeling is the key step in model based system analysis to adequately describe the load of a system using stochastic models. The goal of input modeling is to find a stochastic model to describe a sequence of measurements from a real system...

  1. An analytical model for an input/output-subsystem

    International Nuclear Information System (INIS)

    Roemgens, J.

    1983-05-01

    An input/output-subsystem of one or several computers if formed by the external memory units and the peripheral units of a computer system. For these subsystems mathematical models are established, taking into account the special properties of the I/O-subsystems, in order to avoid planning errors and to allow for predictions of the capacity of such systems. Here an analytical model is presented for the magnetic discs of a I/O-subsystem, using analytical methods for the individual waiting queues or waiting queue networks. Only I/O-subsystems of IBM-computer configurations are considered, which can be controlled by the MVS operating system. After a description of the hardware and software components of these I/O-systems, possible solutions from the literature are presented and discussed with respect to their applicability in IBM-I/O-subsystems. Based on these models a special scheme is developed which combines the advantages of the literature models and avoids the disadvantages in part. (orig./RW) [de

  2. Multiple-Input Subject-Specific Modeling of Plasma Glucose Concentration for Feedforward Control.

    Science.gov (United States)

    Kotz, Kaylee; Cinar, Ali; Mei, Yong; Roggendorf, Amy; Littlejohn, Elizabeth; Quinn, Laurie; Rollins, Derrick K

    2014-11-26

    The ability to accurately develop subject-specific, input causation models, for blood glucose concentration (BGC) for large input sets can have a significant impact on tightening control for insulin dependent diabetes. More specifically, for Type 1 diabetics (T1Ds), it can lead to an effective artificial pancreas (i.e., an automatic control system that delivers exogenous insulin) under extreme changes in critical disturbances. These disturbances include food consumption, activity variations, and physiological stress changes. Thus, this paper presents a free-living, outpatient, multiple-input, modeling method for BGC with strong causation attributes that is stable and guards against overfitting to provide an effective modeling approach for feedforward control (FFC). This approach is a Wiener block-oriented methodology, which has unique attributes for meeting critical requirements for effective, long-term, FFC.

  3. An Integrated Biochemistry Laboratory, Including Molecular Modeling

    Science.gov (United States)

    Hall, Adele J. Wolfson Mona L.; Branham, Thomas R.

    1996-11-01

    ) experience with methods of protein purification; (iii) incorporation of appropriate controls into experiments; (iv) use of basic statistics in data analysis; (v) writing papers and grant proposals in accepted scientific style; (vi) peer review; (vii) oral presentation of results and proposals; and (viii) introduction to molecular modeling. Figure 1 illustrates the modular nature of the lab curriculum. Elements from each of the exercises can be separated and treated as stand-alone exercises, or combined into short or long projects. We have been able to offer the opportunity to use sophisticated molecular modeling in the final module through funding from an NSF-ILI grant. However, many of the benefits of the research proposal can be achieved with other computer programs, or even by literature survey alone. Figure 1.Design of project-based biochemistry laboratory. Modules (projects, or portions of projects) are indicated as boxes. Each of these can be treated independently, or used as part of a larger project. Solid lines indicate some suggested paths from one module to the next. The skills and knowledge required for protein purification and design are developed in three units: (i) an introduction to critical assays needed to monitor degree of purification, including an evaluation of assay parameters; (ii) partial purification by ion-exchange techniques; and (iii) preparation of a grant proposal on protein design by mutagenesis. Brief descriptions of each of these units follow, with experimental details of each project at the end of this paper. Assays for Lysozyme Activity and Protein Concentration (4 weeks) The assays mastered during the first unit are a necessary tool for determining the purity of the enzyme during the second unit on purification by ion exchange. These assays allow an introduction to the concept of specific activity (units of enzyme activity per milligram of total protein) as a measure of purity. In this first sequence, students learn a turbidimetric assay

  4. A Markovian model of evolving world input-output network.

    Directory of Open Access Journals (Sweden)

    Vahid Moosavi

    Full Text Available The initial theoretical connections between Leontief input-output models and Markov chains were established back in 1950s. However, considering the wide variety of mathematical properties of Markov chains, so far there has not been a full investigation of evolving world economic networks with Markov chain formalism. In this work, using the recently available world input-output database, we investigated the evolution of the world economic network from 1995 to 2011 through analysis of a time series of finite Markov chains. We assessed different aspects of this evolving system via different known properties of the Markov chains such as mixing time, Kemeny constant, steady state probabilities and perturbation analysis of the transition matrices. First, we showed how the time series of mixing times and Kemeny constants could be used as an aggregate index of globalization. Next, we focused on the steady state probabilities as a measure of structural power of the economies that are comparable to GDP shares of economies as the traditional index of economies welfare. Further, we introduced two measures of systemic risk, called systemic influence and systemic fragility, where the former is the ratio of number of influenced nodes to the total number of nodes, caused by a shock in the activity of a node, and the latter is based on the number of times a specific economic node is affected by a shock in the activity of any of the other nodes. Finally, focusing on Kemeny constant as a global indicator of monetary flow across the network, we showed that there is a paradoxical effect of a change in activity levels of economic nodes on the overall flow of the world economic network. While the economic slowdown of the majority of nodes with high structural power results to a slower average monetary flow over the network, there are some nodes, where their slowdowns improve the overall quality of the network in terms of connectivity and the average flow of the money.

  5. A Markovian model of evolving world input-output network.

    Science.gov (United States)

    Moosavi, Vahid; Isacchini, Giulio

    2017-01-01

    The initial theoretical connections between Leontief input-output models and Markov chains were established back in 1950s. However, considering the wide variety of mathematical properties of Markov chains, so far there has not been a full investigation of evolving world economic networks with Markov chain formalism. In this work, using the recently available world input-output database, we investigated the evolution of the world economic network from 1995 to 2011 through analysis of a time series of finite Markov chains. We assessed different aspects of this evolving system via different known properties of the Markov chains such as mixing time, Kemeny constant, steady state probabilities and perturbation analysis of the transition matrices. First, we showed how the time series of mixing times and Kemeny constants could be used as an aggregate index of globalization. Next, we focused on the steady state probabilities as a measure of structural power of the economies that are comparable to GDP shares of economies as the traditional index of economies welfare. Further, we introduced two measures of systemic risk, called systemic influence and systemic fragility, where the former is the ratio of number of influenced nodes to the total number of nodes, caused by a shock in the activity of a node, and the latter is based on the number of times a specific economic node is affected by a shock in the activity of any of the other nodes. Finally, focusing on Kemeny constant as a global indicator of monetary flow across the network, we showed that there is a paradoxical effect of a change in activity levels of economic nodes on the overall flow of the world economic network. While the economic slowdown of the majority of nodes with high structural power results to a slower average monetary flow over the network, there are some nodes, where their slowdowns improve the overall quality of the network in terms of connectivity and the average flow of the money.

  6. Input variable selection for data-driven models of Coriolis flowmeters for two-phase flow measurement

    International Nuclear Information System (INIS)

    Wang, Lijuan; Yan, Yong; Wang, Xue; Wang, Tao

    2017-01-01

    Input variable selection is an essential step in the development of data-driven models for environmental, biological and industrial applications. Through input variable selection to eliminate the irrelevant or redundant variables, a suitable subset of variables is identified as the input of a model. Meanwhile, through input variable selection the complexity of the model structure is simplified and the computational efficiency is improved. This paper describes the procedures of the input variable selection for the data-driven models for the measurement of liquid mass flowrate and gas volume fraction under two-phase flow conditions using Coriolis flowmeters. Three advanced input variable selection methods, including partial mutual information (PMI), genetic algorithm-artificial neural network (GA-ANN) and tree-based iterative input selection (IIS) are applied in this study. Typical data-driven models incorporating support vector machine (SVM) are established individually based on the input candidates resulting from the selection methods. The validity of the selection outcomes is assessed through an output performance comparison of the SVM based data-driven models and sensitivity analysis. The validation and analysis results suggest that the input variables selected from the PMI algorithm provide more effective information for the models to measure liquid mass flowrate while the IIS algorithm provides a fewer but more effective variables for the models to predict gas volume fraction. (paper)

  7. Regulation of Wnt signaling by nociceptive input in animal models

    Directory of Open Access Journals (Sweden)

    Shi Yuqiang

    2012-06-01

    Full Text Available Abstract Background Central sensitization-associated synaptic plasticity in the spinal cord dorsal horn (SCDH critically contributes to the development of chronic pain, but understanding of the underlying molecular pathways is still incomplete. Emerging evidence suggests that Wnt signaling plays a crucial role in regulation of synaptic plasticity. Little is known about the potential function of the Wnt signaling cascades in chronic pain development. Results Fluorescent immunostaining results indicate that β-catenin, an essential protein in the canonical Wnt signaling pathway, is expressed in the superficial layers of the mouse SCDH with enrichment at synapses in lamina II. In addition, Wnt3a, a prototypic Wnt ligand that activates the canonical pathway, is also enriched in the superficial layers. Immunoblotting analysis indicates that both Wnt3a a β-catenin are up-regulated in the SCDH of various mouse pain models created by hind-paw injection of capsaicin, intrathecal (i.t. injection of HIV-gp120 protein or spinal nerve ligation (SNL. Furthermore, Wnt5a, a prototypic Wnt ligand for non-canonical pathways, and its receptor Ror2 are also up-regulated in the SCDH of these models. Conclusion Our results suggest that Wnt signaling pathways are regulated by nociceptive input. The activation of Wnt signaling may regulate the expression of spinal central sensitization during the development of acute and chronic pain.

  8. Development of an Input Model to MELCOR 1.8.5 for the Oskarshamn 3 BWR

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, Lars [Lentek, Nykoeping (Sweden)

    2006-05-15

    .8.6 code, but its models are incorporated in the COR package. Two demonstration runs with the NONBH version were carried out, a total loss of power case and a case simulating a large steam line LOCA. The results are briefly presented and discussed in the report. Complete lists of the input files can be found in the appendices. However, the appendices are not included in the report for disclosure reasons.

  9. Enhanced battery model including temperature effects

    NARCIS (Netherlands)

    Rosca, B.; Wilkins, S.

    2013-01-01

    Within electric and hybrid vehicles, batteries are used to provide/buffer the energy required for driving. However, battery performance varies throughout the temperature range specific to automotive applications, and as such, models that describe this behaviour are required. This paper presents a

  10. Statistical Analysis of Input Parameters Impact on the Modelling of Underground Structures

    Directory of Open Access Journals (Sweden)

    M. Hilar

    2008-01-01

    Full Text Available The behaviour of a geomechanical model and its final results are strongly affected by the input parameters. As the inherent variability of rock mass is difficult to model, engineers are frequently forced to face the question “Which input values should be used for analyses?” The correct answer to such a question requires a probabilistic approach, considering the uncertainty of site investigations and variation in the ground. This paper describes the statistical analysis of input parameters for FEM calculations of traffic tunnels in the city of Prague. At the beginning of the paper, the inaccuracy in the geotechnical modelling is discussed. In the following part the Fuzzy techniques are summarized, including information about an application of the Fuzzy arithmetic on the shotcrete parameters. The next part of the paper is focused on the stochastic simulation – Monte Carlo Simulation is briefly described, Latin Hypercubes method is described more in details. At the end several practical examples are described: statistical analysis of the input parameters on the numerical modelling of the completed Mrázovka tunnel (profile West Tunnel Tube km 5.160 and modelling of the constructed tunnel Špejchar – Pelc Tyrolka. 

  11. Pilot monitoring program: geologic input for the hillslope component (includes a discussion of Caspar Creek geology and geomorphology)

    Science.gov (United States)

    T. E. Spittler

    1995-01-01

    The California Department of Conservation, Division of Mines and Geology (DMG) is submitting this report and accompanying maps to the California Department of Forestry and Fire Protection (CDF) to fulfill Interagency Agreement number 8CA38400, Pilot Monitoring Program -- Geologic Input for the Hillslope Component. Under this agreement, DMG has assisted CDF in the...

  12. Including spatial data in nutrient balance modelling on dairy farms

    Science.gov (United States)

    van Leeuwen, Maricke; van Middelaar, Corina; Stoof, Cathelijne; Oenema, Jouke; Stoorvogel, Jetse; de Boer, Imke

    2017-04-01

    The Annual Nutrient Cycle Assessment (ANCA) calculates the nitrogen (N) and phosphorus (P) balance at a dairy farm, while taking into account the subsequent nutrient cycles of the herd, manure, soil and crop components. Since January 2016, Dutch dairy farmers are required to use ANCA in order to increase understanding of nutrient flows and to minimize nutrient losses to the environment. A nutrient balance calculates the difference between nutrient inputs and outputs. Nutrients enter the farm via purchased feed, fertilizers, deposition and fixation by legumes (nitrogen), and leave the farm via milk, livestock, manure, and roughages. A positive balance indicates to which extent N and/or P are lost to the environment via gaseous emissions (N), leaching, run-off and accumulation in soil. A negative balance indicates that N and/or P are depleted from soil. ANCA was designed to calculate average nutrient flows on farm level (for the herd, manure, soil and crop components). ANCA was not designed to perform calculations of nutrient flows at the field level, as it uses averaged nutrient inputs and outputs across all fields, and it does not include field specific soil characteristics. Land management decisions, however, such as the level of N and P application, are typically taken at the field level given the specific crop and soil characteristics. Therefore the information that ANCA provides is likely not sufficient to support farmers' decisions on land management to minimize nutrient losses to the environment. This is particularly a problem when land management and soils vary between fields. For an accurate estimate of nutrient flows in a given farming system that can be used to optimize land management, the spatial scale of nutrient inputs and outputs (and thus the effect of land management and soil variation) could be essential. Our aim was to determine the effect of the spatial scale of nutrient inputs and outputs on modelled nutrient flows and nutrient use efficiencies

  13. Design, Fabrication, and Modeling of a Novel Dual-Axis Control Input PZT Gyroscope.

    Science.gov (United States)

    Chang, Cheng-Yang; Chen, Tsung-Lin

    2017-10-31

    Conventional gyroscopes are equipped with a single-axis control input, limiting their performance. Although researchers have proposed control algorithms with dual-axis control inputs to improve gyroscope performance, most have verified the control algorithms through numerical simulations because they lacked practical devices with dual-axis control inputs. The aim of this study was to design a piezoelectric gyroscope equipped with a dual-axis control input so that researchers may experimentally verify those control algorithms in future. Designing a piezoelectric gyroscope with a dual-axis control input is more difficult than designing a conventional gyroscope because the control input must be effective over a broad frequency range to compensate for imperfections, and the multiple mode shapes in flexural deformations complicate the relation between flexural deformation and the proof mass position. This study solved these problems by using a lead zirconate titanate (PZT) material, introducing additional electrodes for shielding, developing an optimal electrode pattern, and performing calibrations of undesired couplings. The results indicated that the fabricated device could be operated at 5.5±1 kHz to perform dual-axis actuations and position measurements. The calibration of the fabricated device was completed by system identifications of a new dynamic model including gyroscopic motions, electromechanical coupling, mechanical coupling, electrostatic coupling, and capacitive output impedance. Finally, without the assistance of control algorithms, the "open loop sensitivity" of the fabricated gyroscope was 1.82 μV/deg/s with a nonlinearity of 9.5% full-scale output. This sensitivity is comparable with those of other PZT gyroscopes with single-axis control inputs.

  14. Design, Fabrication, and Modeling of a Novel Dual-Axis Control Input PZT Gyroscope

    Directory of Open Access Journals (Sweden)

    Cheng-Yang Chang

    2017-10-01

    Full Text Available Conventional gyroscopes are equipped with a single-axis control input, limiting their performance. Although researchers have proposed control algorithms with dual-axis control inputs to improve gyroscope performance, most have verified the control algorithms through numerical simulations because they lacked practical devices with dual-axis control inputs. The aim of this study was to design a piezoelectric gyroscope equipped with a dual-axis control input so that researchers may experimentally verify those control algorithms in future. Designing a piezoelectric gyroscope with a dual-axis control input is more difficult than designing a conventional gyroscope because the control input must be effective over a broad frequency range to compensate for imperfections, and the multiple mode shapes in flexural deformations complicate the relation between flexural deformation and the proof mass position. This study solved these problems by using a lead zirconate titanate (PZT material, introducing additional electrodes for shielding, developing an optimal electrode pattern, and performing calibrations of undesired couplings. The results indicated that the fabricated device could be operated at 5.5±1 kHz to perform dual-axis actuations and position measurements. The calibration of the fabricated device was completed by system identifications of a new dynamic model including gyroscopic motions, electromechanical coupling, mechanical coupling, electrostatic coupling, and capacitive output impedance. Finally, without the assistance of control algorithms, the “open loop sensitivity” of the fabricated gyroscope was 1.82 μV/deg/s with a nonlinearity of 9.5% full-scale output. This sensitivity is comparable with those of other PZT gyroscopes with single-axis control inputs.

  15. Development of the MARS input model for Ulchin 1/2 transient analyzer

    International Nuclear Information System (INIS)

    Jeong, J. J.; Kim, K. D.; Lee, S. W.; Lee, Y. J.; Chung, B. D.; Hwang, M.

    2003-03-01

    KAERI has been developing the NSSS transient analyzer based on best-estimate codes for Ulchin 1/2 plants. The MARS and RETRAN code are used as the best-estimate codes for the NSSS transient analyzer. Among the two codes, the MARS code is to be used for realistic analysis of small- and large-break loss-of-coolant accidents, of which break size is greater than 2 inch diameter. This report includes the input model requirements and the calculation note for the Ulchin 1/2 MARS input data generation (see the Appendix). In order to confirm the validity of the input data, we performed the calculations for a steady state at 100 % power operation condition and a double-ended cold leg break LOCA. The results of the steady-state calculation agree well with the design data. The results of the LOCA calculation seem to be reasonable and consistent with those of other best-estimate calculations. Therefore, the MARS input data can be used as a base input deck for the MARS transient analyzer for Ulchin 1/2

  16. Development of the MARS input model for Ulchin 3/4 transient analyzer

    International Nuclear Information System (INIS)

    Jeong, J. J.; Kim, K. D.; Lee, S. W.; Lee, Y. J.; Lee, W. J.; Chung, B. D.; Hwang, M. G.

    2003-12-01

    KAERI has been developing the NSSS transient analyzer based on best-estimate codes.The MARS and RETRAN code are adopted as the best-estimate codes for the NSSS transient analyzer. Among these two codes, the MARS code is to be used for realistic analysis of small- and large-break loss-of-coolant accidents, of which break size is greater than 2 inch diameter. This report includes the MARS input model requirements and the calculation note for the MARS input data generation (see the Appendix) for Ulchin 3/4 plant analyzer. In order to confirm the validity of the input data, we performed the calculations for a steady state at 100 % power operation condition and a double-ended cold leg break LOCA. The results of the steady-state calculation agree well with the design data. The results of the LOCA calculation seem to be reasonable and consistent with those of other best-estimate calculations. Therefore, the MARS input data can be used as a base input deck for the MARS transient analyzer for Ulchin 3/4

  17. ETFOD: a point model physics code with arbitrary input

    International Nuclear Information System (INIS)

    Rothe, K.E.; Attenberger, S.E.

    1980-06-01

    ETFOD is a zero-dimensional code which solves a set of physics equations by minimization. The technique used is different than normally used, in that the input is arbitrary. The user is supplied with a set of variables from which he specifies which variables are input (unchanging). The remaining variables become the output. Presently the code is being used for ETF reactor design studies. The code was written in a manner to allow easy modificaton of equations, variables, and physics calculations. The solution technique is presented along with hints for using the code

  18. High Flux Isotope Reactor system RELAP5 input model

    International Nuclear Information System (INIS)

    Morris, D.G.; Wendel, M.W.

    1993-01-01

    A thermal-hydraulic computational model of the High Flux Isotope Reactor (HFIR) has been developed using the RELAP5 program. The purpose of the model is to provide a state-of-the art thermal-hydraulic simulation tool for analyzing selected hypothetical accident scenarios for a revised HFIR Safety Analysis Report (SAR). The model includes (1) a detailed representation of the reactor core and other vessel components, (2) three heat exchanger/pump cells, (3) pressurizing pumps and letdown valves, and (4) secondary coolant system (with less detail than the primary system). Data from HFIR operation, component tests, tests in facility mockups and the HFIR, HFIR specific experiments, and other pertinent experiments performed independent of HFIR were used to construct the model and validate it to the extent permitted by the data. The detailed version of the model has been used to simulate loss-of-coolant accidents (LOCAs), while the abbreviated version has been developed for the operational transients that allow use of a less detailed nodalization. Analysis of station blackout with core long-term decay heat removal via natural convection has been performed using the core and vessel portions of the detailed model

  19. Input parameters and scenarios, including economic inputs

    DEFF Research Database (Denmark)

    Boklund, Anette; Hisham Beshara Halasa, Tariq

    2012-01-01

    scenarios, we excluded hobby-type farms1 In the vaccination scenarios, herds within the vaccination zone were simulated to be vaccinated 14 days after detection of the first herd or when 10, 20, 30 or 50 herds were infected. All herds within the zones were simulated to be vaccinated. We used vaccination...... zones of either a 1, 2, 3 or 5 km. In some scenarios, hobby herds were not vaccinated. In one scenario, no sheep were vaccinated, and in another scenario no swine were vaccinated. from depopulation in zones. The resources for depopulation were estimated to 4,800 swine and 2,000 ruminants a day...

  20. CONSTRUCTION OF A DYNAMIC INPUT-OUTPUT MODEL WITH A HUMAN CAPITAL BLOCK

    Directory of Open Access Journals (Sweden)

    Baranov A. O.

    2017-03-01

    Full Text Available The accumulation of human capital is an important factor of economic growth. It seems to be useful to include «human capital» as a factor of a macroeconomic model, as it helps to take into account the quality differentiation of the workforce. Most of the models usually distinguish labor force by the levels of education, while some of the factors remain unaccounted. Among them are health status and culture development level, which influence productivity level as well as gross product reproduction. Inclusion of the human capital block to the interindustry model can help to make it more reliable for economic development forecasting. The article presents a mathematical description of the extended dynamic input-output model (DIOM with a human capital block. The extended DIOM is based on the Input-Output Model from The KAMIN system (the System of Integrated Analyses of Interindustrial Information developed at the Institute of Economics and Industrial Engineering of the Siberian Branch of the Academy of Sciences of the Russian Federation and at the Novosibirsk State University. The extended input-output model can be used to analyze and forecast development of Russian economy.

  1. Little Higgs model limits from LHC - Input for Snowmass 2013

    International Nuclear Information System (INIS)

    Reuter, Juergen; Tonini, Marco; Vries, Maikel de

    2013-07-01

    The status of the most prominent model implementations of the Little Higgs paradigm, the Littlest Higgs with and without discrete T parity as well as the Simplest Little Higgs are reviewed. For this, we are taking into account a fit to 21 electroweak precision observables from LEP, SLC, Tevatron together with the full 25 fb -1 of Higgs data reported from ATLAS and CMS at Moriond 2013. We also - focusing on the Littlest Higgs with T parity - include an outlook on corresponding direct searches at the 8 TeV LHC and their competitiveness with the EW and Higgs data regarding their exclusion potential. This contribution to the Snowmass procedure serves as a guideline which regions in parameter space of Little Higgs models are still compatible for the upcoming LHC runs and future experiments at the energy frontier. For this we propose two different benchmark scenarios for the Littlest Higgs with T parity, one with heavy mirror quarks, one with light ones.

  2. High Temperature Test Facility Preliminary RELAP5-3D Input Model Description

    Energy Technology Data Exchange (ETDEWEB)

    Bayless, Paul David [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-12-01

    A RELAP5-3D input model is being developed for the High Temperature Test Facility at Oregon State University. The current model is described in detail. Further refinements will be made to the model as final as-built drawings are released and when system characterization data are available for benchmarking the input model.

  3. Modelling of Multi Input Transfer Function for Rainfall Forecasting in Batu City

    OpenAIRE

    Priska Arindya Purnama

    2017-01-01

    The aim of this research is to model and forecast the rainfall in Batu City using multi input transfer function model based on air temperature, humidity, wind speed and cloud. Transfer function model is a multivariate time series model which consists of an output series (Yt) sequence expected to be effected by an input series (Xt) and other inputs in a group called a noise series (Nt). Multi input transfer function model obtained is (b1,s1,r1) (b2,s2,r2) (b3,s3,r3) (b4,s4,r4)(pn,qn) = (0,0,0)...

  4. Modeling Input Errors to Improve Uncertainty Estimates for Sediment Transport Model Predictions

    Science.gov (United States)

    Jung, J. Y.; Niemann, J. D.; Greimann, B. P.

    2016-12-01

    Bayesian methods using Markov chain Monte Carlo algorithms have recently been applied to sediment transport models to assess the uncertainty in the model predictions due to the parameter values. Unfortunately, the existing approaches can only attribute overall uncertainty to the parameters. This limitation is critical because no model can produce accurate forecasts if forced with inaccurate input data, even if the model is well founded in physical theory. In this research, an existing Bayesian method is modified to consider the potential errors in input data during the uncertainty evaluation process. The input error is modeled using Gaussian distributions, and the means and standard deviations are treated as uncertain parameters. The proposed approach is tested by coupling it to the Sedimentation and River Hydraulics - One Dimension (SRH-1D) model and simulating a 23-km reach of the Tachia River in Taiwan. The Wu equation in SRH-1D is used for computing the transport capacity for a bed material load of non-cohesive material. Three types of input data are considered uncertain: (1) the input flowrate at the upstream boundary, (2) the water surface elevation at the downstream boundary, and (3) the water surface elevation at a hydraulic structure in the middle of the reach. The benefits of modeling the input errors in the uncertainty analysis are evaluated by comparing the accuracy of the most likely forecast and the coverage of the observed data by the credible intervals to those of the existing method. The results indicate that the internal boundary condition has the largest uncertainty among those considered. Overall, the uncertainty estimates from the new method are notably different from those of the existing method for both the calibration and forecast periods.

  5. Input Uncertainty and its Implications on Parameter Assessment in Hydrologic and Hydroclimatic Modelling Studies

    Science.gov (United States)

    Chowdhury, S.; Sharma, A.

    2005-12-01

    Hydrological model inputs are often derived from measurements at point locations taken at discrete time steps. The nature of uncertainty associated with such inputs is thus a function of the quality and number of measurements available in time. A change in these characteristics (such as a change in the number of rain-gauge inputs used to derive spatially averaged rainfall) results in inhomogeneity in the associated distributional profile. Ignoring such uncertainty can lead to models that aim to simulate based on the observed input variable instead of the true measurement, resulting in a biased representation of the underlying system dynamics as well as an increase in both bias and the predictive uncertainty in simulations. This is especially true of cases where the nature of uncertainty likely in the future is significantly different to that in the past. Possible examples include situations where the accuracy of the catchment averaged rainfall has increased substantially due to an increase in the rain-gauge density, or accuracy of climatic observations (such as sea surface temperatures) increased due to the use of more accurate remote sensing technologies. We introduce here a method to ascertain the true value of parameters in the presence of additive uncertainty in model inputs. This method, known as SIMulation EXtrapolation (SIMEX, [Cook, 1994]) operates on the basis of an empirical relationship between parameters and the level of additive input noise (or uncertainty). The method starts with generating a series of alternate realisations of model inputs by artificially adding white noise in increasing multiples of the known error variance. The alternate realisations lead to alternate sets of parameters that are increasingly biased with respect to the truth due to the increased variability in the inputs. Once several such realisations have been drawn, one is able to formulate an empirical relationship between the parameter values and the level of additive noise

  6. Little Higgs model limits from LHC - Input for Snowmass 2013

    Energy Technology Data Exchange (ETDEWEB)

    Reuter, Juergen; Tonini, Marco; Vries, Maikel. de

    2013-07-15

    The status of the most prominent model implementations of the Little Higgs paradigm, the Littlest Higgs with and without discrete T parity as well as the Simplest Little Higgs are reviewed. For this, we are taking into account a fit to 21 electroweak precision observables from LEP, SLC, Tevatron together with the full 25 fb{sup -1} of Higgs data reported from ATLAS and CMS at Moriond 2013. We also - focusing on the Littlest Higgs with T parity - include an outlook on corresponding direct searches at the 8 TeV LHC and their competitiveness with the EW and Higgs data regarding their exclusion potential. This contribution to the Snowmass procedure serves as a guideline which regions in parameter space of Little Higgs models are still compatible for the upcoming LHC runs and future experiments at the energy frontier. For this we propose two different benchmark scenarios for the Littlest Higgs with T parity, one with heavy mirror quarks, one with light ones.

  7. Alternative to Ritt's pseudodivision for finding the input-output equations of multi-output models.

    Science.gov (United States)

    Meshkat, Nicolette; Anderson, Chris; DiStefano, Joseph J

    2012-09-01

    Differential algebra approaches to structural identifiability analysis of a dynamic system model in many instances heavily depend upon Ritt's pseudodivision at an early step in analysis. The pseudodivision algorithm is used to find the characteristic set, of which a subset, the input-output equations, is used for identifiability analysis. A simpler algorithm is proposed for this step, using Gröbner Bases, along with a proof of the method that includes a reduced upper bound on derivative requirements. Efficacy of the new algorithm is illustrated with several biosystem model examples. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Specification and Aggregation Errors in Environmentally Extended Input-Output Models

    NARCIS (Netherlands)

    Bouwmeester, Maaike C.; Oosterhaven, Jan

    This article considers the specification and aggregation errors that arise from estimating embodied emissions and embodied water use with environmentally extended national input-output (IO) models, instead of with an environmentally extended international IO model. Model specification errors result

  9. A New Ensemble of Perturbed-Input-Parameter Simulations by the Community Atmosphere Model

    Energy Technology Data Exchange (ETDEWEB)

    Covey, C; Brandon, S; Bremer, P T; Domyancis, D; Garaizar, X; Johannesson, G; Klein, R; Klein, S A; Lucas, D D; Tannahill, J; Zhang, Y

    2011-10-27

    Uncertainty quantification (UQ) is a fundamental challenge in the numerical simulation of Earth's weather and climate, and other complex systems. It entails much more than attaching defensible error bars to predictions: in particular it includes assessing low-probability but high-consequence events. To achieve these goals with models containing a large number of uncertain input parameters, structural uncertainties, etc., raw computational power is needed. An automated, self-adapting search of the possible model configurations is also useful. Our UQ initiative at the Lawrence Livermore National Laboratory has produced the most extensive set to date of simulations from the US Community Atmosphere Model. We are examining output from about 3,000 twelve-year climate simulations generated with a specialized UQ software framework, and assessing the model's accuracy as a function of 21 to 28 uncertain input parameter values. Most of the input parameters we vary are related to the boundary layer, clouds, and other sub-grid scale processes. Our simulations prescribe surface boundary conditions (sea surface temperatures and sea ice amounts) to match recent observations. Fully searching this 21+ dimensional space is impossible, but sensitivity and ranking algorithms can identify input parameters having relatively little effect on a variety of output fields, either individually or in nonlinear combination. Bayesian statistical constraints, employing a variety of climate observations as metrics, also seem promising. Observational constraints will be important in the next step of our project, which will compute sea surface temperatures and sea ice interactively, and will study climate change due to increasing atmospheric carbon dioxide.

  10. The MARINA model (Model to Assess River Inputs of Nutrients to seAs)

    NARCIS (Netherlands)

    Strokal, Maryna; Kroeze, Carolien; Wang, Mengru; Bai, Zhaohai; Ma, Lin

    2016-01-01

    Chinese agriculture has been developing fast towards industrial food production systems that discharge nutrient-rich wastewater into rivers. As a result, nutrient export by rivers has been increasing, resulting in coastal water pollution. We developed a Model to Assess River Inputs of Nutrients

  11. Can Simulation Credibility Be Improved Using Sensitivity Analysis to Understand Input Data Effects on Model Outcome?

    Science.gov (United States)

    Myers, Jerry G.; Young, M.; Goodenow, Debra A.; Keenan, A.; Walton, M.; Boley, L.

    2015-01-01

    Model and simulation (MS) credibility is defined as, the quality to elicit belief or trust in MS results. NASA-STD-7009 [1] delineates eight components (Verification, Validation, Input Pedigree, Results Uncertainty, Results Robustness, Use History, MS Management, People Qualifications) that address quantifying model credibility, and provides guidance to the model developers, analysts, and end users for assessing the MS credibility. Of the eight characteristics, input pedigree, or the quality of the data used to develop model input parameters, governing functions, or initial conditions, can vary significantly. These data quality differences have varying consequences across the range of MS application. NASA-STD-7009 requires that the lowest input data quality be used to represent the entire set of input data when scoring the input pedigree credibility of the model. This requirement provides a conservative assessment of model inputs, and maximizes the communication of the potential level of risk of using model outputs. Unfortunately, in practice, this may result in overly pessimistic communication of the MS output, undermining the credibility of simulation predictions to decision makers. This presentation proposes an alternative assessment mechanism, utilizing results parameter robustness, also known as model input sensitivity, to improve the credibility scoring process for specific simulations.

  12. Motivation Monitoring and Assessment Extension for Input-Process-Outcome Game Model

    Science.gov (United States)

    Ghergulescu, Ioana; Muntean, Cristina Hava

    2014-01-01

    This article proposes a Motivation Assessment-oriented Input-Process-Outcome Game Model (MotIPO), which extends the Input-Process-Outcome game model with game-centred and player-centred motivation assessments performed right from the beginning of the game-play. A feasibility case-study involving 67 participants playing an educational game and…

  13. Characteristic length scale of input data in distributed models: implications for modeling grid size

    Science.gov (United States)

    Artan, G. A.; Neale, C. M. U.; Tarboton, D. G.

    2000-01-01

    The appropriate spatial scale for a distributed energy balance model was investigated by: (a) determining the scale of variability associated with the remotely sensed and GIS-generated model input data; and (b) examining the effects of input data spatial aggregation on model response. The semi-variogram and the characteristic length calculated from the spatial autocorrelation were used to determine the scale of variability of the remotely sensed and GIS-generated model input data. The data were collected from two hillsides at Upper Sheep Creek, a sub-basin of the Reynolds Creek Experimental Watershed, in southwest Idaho. The data were analyzed in terms of the semivariance and the integral of the autocorrelation. The minimum characteristic length associated with the variability of the data used in the analysis was 15 m. Simulated and observed radiometric surface temperature fields at different spatial resolutions were compared. The correlation between agreement simulated and observed fields sharply declined after a 10×10 m2 modeling grid size. A modeling grid size of about 10×10 m2 was deemed to be the best compromise to achieve: (a) reduction of computation time and the size of the support data; and (b) a reproduction of the observed radiometric surface temperature.

  14. Characteristic length scale of input data in distributed models: implications for modeling grain size

    Science.gov (United States)

    Artan, Guleid A.; Neale, C. M. U.; Tarboton, D. G.

    2000-01-01

    The appropriate spatial scale for a distributed energy balance model was investigated by: (a) determining the scale of variability associated with the remotely sensed and GIS-generated model input data; and (b) examining the effects of input data spatial aggregation on model response. The semi-variogram and the characteristic length calculated from the spatial autocorrelation were used to determine the scale of variability of the remotely sensed and GIS-generated model input data. The data were collected from two hillsides at Upper Sheep Creek, a sub-basin of the Reynolds Creek Experimental Watershed, in southwest Idaho. The data were analyzed in terms of the semivariance and the integral of the autocorrelation. The minimum characteristic length associated with the variability of the data used in the analysis was 15 m. Simulated and observed radiometric surface temperature fields at different spatial resolutions were compared. The correlation between agreement simulated and observed fields sharply declined after a 10×10 m2 modeling grid size. A modeling grid size of about 10×10 m2 was deemed to be the best compromise to achieve: (a) reduction of computation time and the size of the support data; and (b) a reproduction of the observed radiometric surface temperature.

  15. Influence of input matrix representation on topic modelling performance

    CSIR Research Space (South Africa)

    De Waal, A

    2010-11-01

    Full Text Available Topic models explain a collection of documents with a small set of distributions over terms. These distributions over terms define the topics. Topic models ignore the structure of documents and use a bag-of-words approach which relies solely...

  16. "Updates to Model Algorithms & Inputs for the Biogenic ...

    Science.gov (United States)

    We have developed new canopy emission algorithms and land use data for BEIS. Simulations with BEIS v3.4 and these updates in CMAQ v5.0.2 are compared these changes to the Model of Emissions of Gases and Aerosols from Nature (MEGAN) and evaluated the simulations against observations. This has resulted in improvements in model evaluations of modeled isoprene, NOx, and O3. The National Exposure Research Laboratory (NERL) Atmospheric Modeling and Analysis Division (AMAD) conducts research in support of EPA mission to protect human health and the environment. AMAD research program is engaged in developing and evaluating predictive atmospheric models on all spatial and temporal scales for forecasting the air quality and for assessing changes in air quality and air pollutant exposures, as affected by changes in ecosystem management and regulatory decisions. AMAD is responsible for providing a sound scientific and technical basis for regulatory policies based on air quality models to improve ambient air quality. The models developed by AMAD are being used by EPA, NOAA, and the air pollution community in understanding and forecasting not only the magnitude of the air pollution problem, but also in developing emission control policies and regulations for air quality improvements.

  17. Identifying best-fitting inputs in health-economic model calibration: a Pareto frontier approach.

    Science.gov (United States)

    Enns, Eva A; Cipriano, Lauren E; Simons, Cyrena T; Kong, Chung Yin

    2015-02-01

    To identify best-fitting input sets using model calibration, individual calibration target fits are often combined into a single goodness-of-fit (GOF) measure using a set of weights. Decisions in the calibration process, such as which weights to use, influence which sets of model inputs are identified as best-fitting, potentially leading to different health economic conclusions. We present an alternative approach to identifying best-fitting input sets based on the concept of Pareto-optimality. A set of model inputs is on the Pareto frontier if no other input set simultaneously fits all calibration targets as well or better. We demonstrate the Pareto frontier approach in the calibration of 2 models: a simple, illustrative Markov model and a previously published cost-effectiveness model of transcatheter aortic valve replacement (TAVR). For each model, we compare the input sets on the Pareto frontier to an equal number of best-fitting input sets according to 2 possible weighted-sum GOF scoring systems, and we compare the health economic conclusions arising from these different definitions of best-fitting. For the simple model, outcomes evaluated over the best-fitting input sets according to the 2 weighted-sum GOF schemes were virtually nonoverlapping on the cost-effectiveness plane and resulted in very different incremental cost-effectiveness ratios ($79,300 [95% CI 72,500-87,600] v. $139,700 [95% CI 79,900-182,800] per quality-adjusted life-year [QALY] gained). Input sets on the Pareto frontier spanned both regions ($79,000 [95% CI 64,900-156,200] per QALY gained). The TAVR model yielded similar results. Choices in generating a summary GOF score may result in different health economic conclusions. The Pareto frontier approach eliminates the need to make these choices by using an intuitive and transparent notion of optimality as the basis for identifying best-fitting input sets. © The Author(s) 2014.

  18. Sensitivity analysis of complex models: Coping with dynamic and static inputs

    International Nuclear Information System (INIS)

    Anstett-Collin, F.; Goffart, J.; Mara, T.; Denis-Vidal, L.

    2015-01-01

    In this paper, we address the issue of conducting a sensitivity analysis of complex models with both static and dynamic uncertain inputs. While several approaches have been proposed to compute the sensitivity indices of the static inputs (i.e. parameters), the one of the dynamic inputs (i.e. stochastic fields) have been rarely addressed. For this purpose, we first treat each dynamic as a Gaussian process. Then, the truncated Karhunen–Loève expansion of each dynamic input is performed. Such an expansion allows to generate independent Gaussian processes from a finite number of independent random variables. Given that a dynamic input is represented by a finite number of random variables, its variance-based sensitivity index is defined by the sensitivity index of this group of variables. Besides, an efficient sampling-based strategy is described to estimate the first-order indices of all the input factors by only using two input samples. The approach is applied to a building energy model, in order to assess the impact of the uncertainties of the material properties (static inputs) and the weather data (dynamic inputs) on the energy performance of a real low energy consumption house. - Highlights: • Sensitivity analysis of models with uncertain static and dynamic inputs is performed. • Karhunen–Loève (KL) decomposition of the spatio/temporal inputs is performed. • The influence of the dynamic inputs is studied through the modes of the KL expansion. • The proposed approach is applied to a building energy model. • Impact of weather data and material properties on performance of real house is given

  19. Categorical Inputs, Sensitivity Analysis, Optimization and Importance Tempering with tgp Version 2, an R Package for Treed Gaussian Process Models

    Directory of Open Access Journals (Sweden)

    Robert B. Gramacy

    2010-02-01

    Full Text Available This document describes the new features in version 2.x of the tgp package for R, implementing treed Gaussian process (GP models. The topics covered include methods for dealing with categorical inputs and excluding inputs from the tree or GP part of the model; fully Bayesian sensitivity analysis for inputs/covariates; sequential optimization of black-box functions; and a new Monte Carlo method for inference in multi-modal posterior distributions that combines simulated tempering and importance sampling. These additions extend the functionality of tgp across all models in the hierarchy: from Bayesian linear models, to classification and regression trees (CART, to treed Gaussian processes with jumps to the limiting linear model. It is assumed that the reader is familiar with the baseline functionality of the package, outlined in the first vignette (Gramacy 2007.

  20. Determining input values for a simple parametric model to estimate ...

    African Journals Online (AJOL)

    Estimating soil evaporation (Es) is an important part of modelling vineyard evapotranspiration for irrigation purposes. Furthermore, quantification of possible soil texture and trellis effects is essential. Daily Es from six topsoils packed into lysimeters was measured under grapevines on slanting and vertical trellises, ...

  1. Reissner-Mindlin plate model with uncertain input data

    Czech Academy of Sciences Publication Activity Database

    Hlaváček, Ivan; Chleboun, J.

    2014-01-01

    Roč. 17, Jun (2014), s. 71-88 ISSN 1468-1218 Institutional support: RVO:67985840 Keywords : Reissner-Mindlin model * orthotropic plate Subject RIV: BA - General Mathematics Impact factor: 2.519, year: 2014 http://www.sciencedirect.com/science/article/pii/S1468121813001077

  2. Model reduction of nonlinear systems subject to input disturbances

    KAUST Repository

    Ndoye, Ibrahima; Laleg-Kirati, Taous-Meriem

    2017-01-01

    The method of convex optimization is used as a tool for model reduction of a class of nonlinear systems in the presence of disturbances. It is shown that under some conditions the nonlinear disturbed system can be approximated by a reduced order

  3. Modelling groundwater discharge areas using only digital elevation models as input data

    Energy Technology Data Exchange (ETDEWEB)

    Brydsten, Lars [Umeaa Univ. (Sweden). Dept. of Biology and Environmental Science

    2006-10-15

    Advanced geohydrological models require data on topography, soil distribution in three dimensions, vegetation, land use, bedrock fracture zones. To model present geohydrological conditions, these factors can be gathered with different techniques. If a future geohydrological condition is modelled in an area with positive shore displacement (say 5,000 or 10,000 years), some of these factors can be difficult to measure. This could include the development of wetlands and the filling of lakes. If the goal of the model is to predict distribution of groundwater recharge and discharge areas in the landscape, the most important factor is topography. The question is how much can topography alone explain the distribution of geohydrological objects in the landscape. A simplified description of the distribution of geohydrological objects in the landscape is that groundwater recharge areas occur at local elevation curvatures and discharge occurs in lakes, brooks, and low situated slopes. Areas in-between these make up discharge areas during wet periods and recharge areas during dry periods. A model that could predict this pattern only using topography data needs to be able to predict high ridges and future lakes and brooks. This study uses GIS software with four different functions using digital elevation models as input data, geomorphometrical parameters to predict landscape ridges, basin fill for predicting lakes, flow accumulations for predicting future waterways, and topographical wetness indexes for dividing in-between areas based on degree of wetness. An area between the village of and Forsmarks' Nuclear Power Plant has been used to calibrate the model. The area is within the SKB 10-metre Elevation Model (DEM) and has a high-resolution orienteering map for wetlands. Wetlands are assumed to be groundwater discharge areas. Five hundred points were randomly distributed across the wetlands. These are potential discharge points. Model parameters were chosen with the

  4. Modelling groundwater discharge areas using only digital elevation models as input data

    International Nuclear Information System (INIS)

    Brydsten, Lars

    2006-10-01

    Advanced geohydrological models require data on topography, soil distribution in three dimensions, vegetation, land use, bedrock fracture zones. To model present geohydrological conditions, these factors can be gathered with different techniques. If a future geohydrological condition is modelled in an area with positive shore displacement (say 5,000 or 10,000 years), some of these factors can be difficult to measure. This could include the development of wetlands and the filling of lakes. If the goal of the model is to predict distribution of groundwater recharge and discharge areas in the landscape, the most important factor is topography. The question is how much can topography alone explain the distribution of geohydrological objects in the landscape. A simplified description of the distribution of geohydrological objects in the landscape is that groundwater recharge areas occur at local elevation curvatures and discharge occurs in lakes, brooks, and low situated slopes. Areas in-between these make up discharge areas during wet periods and recharge areas during dry periods. A model that could predict this pattern only using topography data needs to be able to predict high ridges and future lakes and brooks. This study uses GIS software with four different functions using digital elevation models as input data, geomorphometrical parameters to predict landscape ridges, basin fill for predicting lakes, flow accumulations for predicting future waterways, and topographical wetness indexes for dividing in-between areas based on degree of wetness. An area between the village of and Forsmarks' Nuclear Power Plant has been used to calibrate the model. The area is within the SKB 10-metre Elevation Model (DEM) and has a high-resolution orienteering map for wetlands. Wetlands are assumed to be groundwater discharge areas. Five hundred points were randomly distributed across the wetlands. These are potential discharge points. Model parameters were chosen with the

  5. Scientific and technical advisory committee review of the nutrient inputs to the watershed model

    Science.gov (United States)

    The following is a report by a STAC Review Team concerning the methods and documentation used by the Chesapeake Bay Partnership for evaluation of nutrient inputs to Phase 6 of the Chesapeake Bay Watershed Model. The “STAC Review of the Nutrient Inputs to the Watershed Model” (previously referred to...

  6. From LCC to LCA Using a Hybrid Input Output Model – A Maritime Case Study

    DEFF Research Database (Denmark)

    Kjær, Louise Laumann; Pagoropoulos, Aris; Hauschild, Michael Zwicky

    2015-01-01

    As companies try to embrace life cycle thinking, Life Cycle Assessment (LCA) and Life Cycle Costing (LCC) have proven to be powerful tools. In this paper, an Environmental Input-Output model is used for analysis as it enables an LCA using the same economic input data as LCC. This approach helps...

  7. Wideband Small-Signal Input dq Admittance Modeling of Six-Pulse Diode Rectifiers

    DEFF Research Database (Denmark)

    Yue, Xiaolong; Wang, Xiongfei; Blaabjerg, Frede

    2018-01-01

    This paper studies the wideband small-signal input dq admittance of six-pulse diode rectifiers. Considering the frequency coupling introduced by ripple frequency harmonics of d-and q-channel switching function, the proposed model successfully predicts the small-signal input dq admittance of six......-pulse diode rectifiers in high frequency regions that existing models fail to explain. Simulation and experimental results verify the accuracy of the proposed model....

  8. A Design Method of Robust Servo Internal Model Control with Control Input Saturation

    OpenAIRE

    山田, 功; 舩見, 洋祐

    2001-01-01

    In the present paper, we examine a design method of robust servo Internal Model Control with control input saturation. First of all, we clarify the condition that Internal Model Control has robust servo characteristics for the system with control input saturation. From this consideration, we propose new design method of Internal Model Control with robust servo characteristics. A numerical example to illustrate the effectiveness of the proposed method is shown.

  9. Tumor Growth Model with PK Input for Neuroblastoma Drug Development

    Science.gov (United States)

    2015-09-01

    Your credit card order has been processed on  Tuesday  2 December 2014 at 3:05 PM. Status: Complete 12/3/2014 Oasis, The Online Abstract Submission System...pharmacokinetic models. Toxicol Ind Health, 1997. 13(4): p. 407-84. PMID: 9249929 4. Davies, B. and T. Morris , Physiological parameters in laboratory animals and humans. Pharm Res, 1993. 10(7): p. 1093-5. PMID: 8378254

  10. Modeling and Control of a Dual-Input Isolated Full-Bridge Boost Converter

    DEFF Research Database (Denmark)

    Zhang, Zhe; Thomsen, Ole Cornelius; Andersen, Michael A. E.

    2012-01-01

    In this paper, a steady-state model, a large-signal (LS) model and an ac small-signal (SS) model for a recently proposed dual-input transformer-isolated boost converter are derived respectively by the switching flow-graph (SFG) nonlinear modeling technique. Based upon the converter’s model...

  11. Mechanistic interpretation of glass reaction: Input to kinetic model development

    International Nuclear Information System (INIS)

    Bates, J.K.; Ebert, W.L.; Bradley, J.P.; Bourcier, W.L.

    1991-05-01

    Actinide-doped SRL 165 type glass was reacted in J-13 groundwater at 90 degree C for times up to 278 days. The reaction was characterized by both solution and solid analyses. The glass was seen to react nonstoichiometrically with preferred leaching of alkali metals and boron. High resolution electron microscopy revealed the formation of a complex layer structure which became separated from the underlying glass as the reaction progressed. The formation of the layer and its effect on continued glass reaction are discussed with respect to the current model for glass reaction used in the EQ3/6 computer simulation. It is concluded that the layer formed after 278 days is not protective and may eventually become fractured and generate particulates that may be transported by liquid water. 5 refs., 5 figs. , 3 tabs

  12. Remote sensing inputs to landscape models which predict future spatial land use patterns for hydrologic models

    Science.gov (United States)

    Miller, L. D.; Tom, C.; Nualchawee, K.

    1977-01-01

    A tropical forest area of Northern Thailand provided a test case of the application of the approach in more natural surroundings. Remote sensing imagery subjected to proper computer analysis has been shown to be a very useful means of collecting spatial data for the science of hydrology. Remote sensing products provide direct input to hydrologic models and practical data bases for planning large and small-scale hydrologic developments. Combining the available remote sensing imagery together with available map information in the landscape model provides a basis for substantial improvements in these applications.

  13. Modelling of Multi Input Transfer Function for Rainfall Forecasting in Batu City

    Directory of Open Access Journals (Sweden)

    Priska Arindya Purnama

    2017-11-01

    Full Text Available The aim of this research is to model and forecast the rainfall in Batu City using multi input transfer function model based on air temperature, humidity, wind speed and cloud. Transfer function model is a multivariate time series model which consists of an output series (Yt sequence expected to be effected by an input series (Xt and other inputs in a group called a noise series (Nt. Multi input transfer function model obtained is (b1,s1,r1 (b2,s2,r2 (b3,s3,r3 (b4,s4,r4(pn,qn = (0,0,0 (23,0,0 (1,2,0 (0,0,0 ([5,8],2 and shows that air temperature on t-day affects rainfall on t-day, rainfall on t-day is influenced by air humidity in the previous 23 days, rainfall on t-day is affected by wind speed in the previous day , and rainfall on day t is affected by clouds on day t. The results of rainfall forecasting in Batu City with multi input transfer function model can be said to be accurate, because it produces relatively small RMSE value. The value of RMSE data forecasting training is 7.7921 while forecasting data testing is 4.2184. Multi-input transfer function model is suitable for rainfall in Batu City.

  14. Evaluating the Sensitivity of Agricultural Model Performance to Different Climate Inputs: Supplemental Material

    Science.gov (United States)

    Glotter, Michael J.; Ruane, Alex C.; Moyer, Elisabeth J.; Elliott, Joshua W.

    2015-01-01

    Projections of future food production necessarily rely on models, which must themselves be validated through historical assessments comparing modeled and observed yields. Reliable historical validation requires both accurate agricultural models and accurate climate inputs. Problems with either may compromise the validation exercise. Previous studies have compared the effects of different climate inputs on agricultural projections but either incompletely or without a ground truth of observed yields that would allow distinguishing errors due to climate inputs from those intrinsic to the crop model. This study is a systematic evaluation of the reliability of a widely used crop model for simulating U.S. maize yields when driven by multiple observational data products. The parallelized Decision Support System for Agrotechnology Transfer (pDSSAT) is driven with climate inputs from multiple sources reanalysis, reanalysis that is bias corrected with observed climate, and a control dataset and compared with observed historical yields. The simulations show that model output is more accurate when driven by any observation-based precipitation product than when driven by non-bias-corrected reanalysis. The simulations also suggest, in contrast to previous studies, that biased precipitation distribution is significant for yields only in arid regions. Some issues persist for all choices of climate inputs: crop yields appear to be oversensitive to precipitation fluctuations but under sensitive to floods and heat waves. These results suggest that the most important issue for agricultural projections may be not climate inputs but structural limitations in the crop models themselves.

  15. Pandemic recovery analysis using the dynamic inoperability input-output model.

    Science.gov (United States)

    Santos, Joost R; Orsi, Mark J; Bond, Erik J

    2009-12-01

    Economists have long conceptualized and modeled the inherent interdependent relationships among different sectors of the economy. This concept paved the way for input-output modeling, a methodology that accounts for sector interdependencies governing the magnitude and extent of ripple effects due to changes in the economic structure of a region or nation. Recent extensions to input-output modeling have enhanced the model's capabilities to account for the impact of an economic perturbation; two such examples are the inoperability input-output model((1,2)) and the dynamic inoperability input-output model (DIIM).((3)) These models introduced sector inoperability, or the inability to satisfy as-planned production levels, into input-output modeling. While these models provide insights for understanding the impacts of inoperability, there are several aspects of the current formulation that do not account for complexities associated with certain disasters, such as a pandemic. This article proposes further enhancements to the DIIM to account for economic productivity losses resulting primarily from workforce disruptions. A pandemic is a unique disaster because the majority of its direct impacts are workforce related. The article develops a modeling framework to account for workforce inoperability and recovery factors. The proposed workforce-explicit enhancements to the DIIM are demonstrated in a case study to simulate a pandemic scenario in the Commonwealth of Virginia.

  16. A Water-Withdrawal Input-Output Model of the Indian Economy.

    Science.gov (United States)

    Bogra, Shelly; Bakshi, Bhavik R; Mathur, Ritu

    2016-02-02

    Managing freshwater allocation for a highly populated and growing economy like India can benefit from knowledge about the effect of economic activities. This study transforms the 2003-2004 economic input-output (IO) table of India into a water withdrawal input-output model to quantify direct and indirect flows. This unique model is based on a comprehensive database compiled from diverse public sources, and estimates direct and indirect water withdrawal of all economic sectors. It distinguishes between green (rainfall), blue (surface and ground), and scarce groundwater. Results indicate that the total direct water withdrawal is nearly 3052 billion cubic meter (BCM) and 96% of this is used in agriculture sectors with the contribution of direct green water being about 1145 BCM, excluding forestry. Apart from 727 BCM direct blue water withdrawal for agricultural, other significant users include "Electricity" with 64 BCM, "Water supply" with 44 BCM and other industrial sectors with nearly 14 BCM. "Construction", "miscellaneous food products"; "Hotels and restaurants"; "Paper, paper products, and newsprint" are other significant indirect withdrawers. The net virtual water import is found to be insignificant compared to direct water used in agriculture nationally, while scarce ground water associated with crops is largely contributed by northern states.

  17. International trade inoperability input-output model (IT-IIM): theory and application.

    Science.gov (United States)

    Jung, Jeesang; Santos, Joost R; Haimes, Yacov Y

    2009-01-01

    The inoperability input-output model (IIM) has been used for analyzing disruptions due to man-made or natural disasters that can adversely affect the operation of economic systems or critical infrastructures. Taking economic perturbation for each sector as inputs, the IIM provides the degree of economic production impacts on all industry sectors as the outputs for the model. The current version of the IIM does not provide a separate analysis for the international trade component of the inoperability. If an important port of entry (e.g., Port of Los Angeles) is disrupted, then international trade inoperability becomes a highly relevant subject for analysis. To complement the current IIM, this article develops the International Trade-IIM (IT-IIM). The IT-IIM investigates the resulting international trade inoperability for all industry sectors resulting from disruptions to a major port of entry. Similar to traditional IIM analysis, the inoperability metrics that the IT-IIM provides can be used to prioritize economic sectors based on the losses they could potentially incur. The IT-IIM is used to analyze two types of direct perturbations: (1) the reduced capacity of ports of entry, including harbors and airports (e.g., a shutdown of any port of entry); and (2) restrictions on commercial goods that foreign countries trade with the base nation (e.g., embargo).

  18. Modeling of heat transfer into a heat pipe for a localized heat input zone

    International Nuclear Information System (INIS)

    Rosenfeld, J.H.

    1987-01-01

    A general model is presented for heat transfer into a heat pipe using a localized heat input. Conduction in the wall of the heat pipe and boiling in the interior structure are treated simultaneously. The model is derived from circumferential heat transfer in a cylindrical heat pipe evaporator and for radial heat transfer in a circular disk with boiling from the interior surface. A comparison is made with data for a localized heat input zone. Agreement between the theory and the model is good. This model can be used for design purposes if a boiling correlation is available. The model can be extended to provide improved predictions of heat pipe performance

  19. INPUT DATA OF BURNING WOOD FOR CFD MODELLING USING SMALL-SCALE EXPERIMENTS

    Directory of Open Access Journals (Sweden)

    Petr Hejtmánek

    2017-12-01

    Full Text Available The paper presents an option how to acquire simplified input data for modelling of burning wood in CFD programmes. The option lies in combination of data from small- and molecular-scale experiments in order to describe the material as a one-reaction material property. Such virtual material would spread fire, develop the fire according to surrounding environment and it could be extinguished without using complex reaction molecular description. Series of experiments including elemental analysis, thermogravimetric analysis and difference thermal analysis, and combustion analysis were performed. Then the FDS model of burning pine wood in a cone calorimeter was built. In the model where those values were used. The model was validated to HRR (Heat Release Rate from the real cone calorimeter experiment. The results show that for the purpose of CFD modelling the effective heat of combustion, which is one of the basic material property for fire modelling affecting the total intensity of burning, should be used. Using the net heat of combustion in the model leads to higher values of HRR in comparison to the real experiment data. Considering all the results shown in this paper, it was shown that it is possible to simulate burning of wood using the extrapolated data obtained in small-size experiments.

  20. Comparison of different snow model formulations and their responses to input uncertainties in the Upper Indus Basin

    Science.gov (United States)

    Pritchard, David; Fowler, Hayley; Forsythe, Nathan; O'Donnell, Greg; Rutter, Nick; Bardossy, Andras

    2017-04-01

    Snow and glacier melt in the mountainous Upper Indus Basin (UIB) sustain water supplies, irrigation networks, hydropower production and ecosystems in extensive downstream lowlands. Understanding hydrological and cryospheric sensitivities to climatic variability and change in the basin is therefore critical for local, national and regional water resources management. Assessing these sensitivities using numerical modelling is challenging, due to limitations in the quality and quantity of input and evaluation data, as well as uncertainties in model structures and parameters. This study explores how these uncertainties in inputs and process parameterisations affect distributed simulations of ablation in the complex climatic setting of the UIB. The role of model forcing uncertainties is explored using combinations of local observations, remote sensing and reanalysis - including the high resolution High Asia Refined Analysis - to generate multiple realisations of spatiotemporal model input fields. Forcing a range of model structures with these input fields then provides an indication of how different ablation parameterisations respond to uncertainties and perturbations in climatic drivers. Model structures considered include simple, empirical representations of melt processes through to physically based, full energy balance models with multi-physics options for simulating snowpack evolution (including an adapted version of FSM). Analysing model input and structural uncertainties in this way provides insights for methodological choices in climate sensitivity assessments of data-sparse, high mountain catchments. Such assessments are key for supporting water resource management in these catchments, particularly given the potential complications of enhanced warming through elevation effects or, in the case of the UIB, limited understanding of how and why local climate change signals differ from broader patterns.

  1. Stochastic modelling of two-phase flows including phase change

    International Nuclear Information System (INIS)

    Hurisse, O.; Minier, J.P.

    2011-01-01

    Stochastic modelling has already been developed and applied for single-phase flows and incompressible two-phase flows. In this article, we propose an extension of this modelling approach to two-phase flows including phase change (e.g. for steam-water flows). Two aspects are emphasised: a stochastic model accounting for phase transition and a modelling constraint which arises from volume conservation. To illustrate the whole approach, some remarks are eventually proposed for two-fluid models. (authors)

  2. Input-output model for MACCS nuclear accident impacts estimation¹

    Energy Technology Data Exchange (ETDEWEB)

    Outkin, Alexander V. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bixler, Nathan E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Vargas, Vanessa N [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-01-27

    Since the original economic model for MACCS was developed, better quality economic data (as well as the tools to gather and process it) and better computational capabilities have become available. The update of the economic impacts component of the MACCS legacy model will provide improved estimates of business disruptions through the use of Input-Output based economic impact estimation. This paper presents an updated MACCS model, bases on Input-Output methodology, in which economic impacts are calculated using the Regional Economic Accounting analysis tool (REAcct) created at Sandia National Laboratories. This new GDP-based model allows quick and consistent estimation of gross domestic product (GDP) losses due to nuclear power plant accidents. This paper outlines the steps taken to combine the REAcct Input-Output-based model with the MACCS code, describes the GDP loss calculation, and discusses the parameters and modeling assumptions necessary for the estimation of long-term effects of nuclear power plant accidents.

  3. Multivariate Self-Exciting Threshold Autoregressive Models with eXogenous Input

    OpenAIRE

    Addo, Peter Martey

    2014-01-01

    This study defines a multivariate Self--Exciting Threshold Autoregressive with eXogenous input (MSETARX) models and present an estimation procedure for the parameters. The conditions for stationarity of the nonlinear MSETARX models is provided. In particular, the efficiency of an adaptive parameter estimation algorithm and LSE (least squares estimate) algorithm for this class of models is then provided via simulations.

  4. Reconstruction of neuronal input through modeling single-neuron dynamics and computations

    International Nuclear Information System (INIS)

    Qin, Qing; Wang, Jiang; Yu, Haitao; Deng, Bin; Chan, Wai-lok

    2016-01-01

    Mathematical models provide a mathematical description of neuron activity, which can better understand and quantify neural computations and corresponding biophysical mechanisms evoked by stimulus. In this paper, based on the output spike train evoked by the acupuncture mechanical stimulus, we present two different levels of models to describe the input-output system to achieve the reconstruction of neuronal input. The reconstruction process is divided into two steps: First, considering the neuronal spiking event as a Gamma stochastic process. The scale parameter and the shape parameter of Gamma process are, respectively, defined as two spiking characteristics, which are estimated by a state-space method. Then, leaky integrate-and-fire (LIF) model is used to mimic the response system and the estimated spiking characteristics are transformed into two temporal input parameters of LIF model, through two conversion formulas. We test this reconstruction method by three different groups of simulation data. All three groups of estimates reconstruct input parameters with fairly high accuracy. We then use this reconstruction method to estimate the non-measurable acupuncture input parameters. Results show that under three different frequencies of acupuncture stimulus conditions, estimated input parameters have an obvious difference. The higher the frequency of the acupuncture stimulus is, the higher the accuracy of reconstruction is.

  5. Reconstruction of neuronal input through modeling single-neuron dynamics and computations

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Qing; Wang, Jiang; Yu, Haitao; Deng, Bin, E-mail: dengbin@tju.edu.cn; Chan, Wai-lok [School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072 (China)

    2016-06-15

    Mathematical models provide a mathematical description of neuron activity, which can better understand and quantify neural computations and corresponding biophysical mechanisms evoked by stimulus. In this paper, based on the output spike train evoked by the acupuncture mechanical stimulus, we present two different levels of models to describe the input-output system to achieve the reconstruction of neuronal input. The reconstruction process is divided into two steps: First, considering the neuronal spiking event as a Gamma stochastic process. The scale parameter and the shape parameter of Gamma process are, respectively, defined as two spiking characteristics, which are estimated by a state-space method. Then, leaky integrate-and-fire (LIF) model is used to mimic the response system and the estimated spiking characteristics are transformed into two temporal input parameters of LIF model, through two conversion formulas. We test this reconstruction method by three different groups of simulation data. All three groups of estimates reconstruct input parameters with fairly high accuracy. We then use this reconstruction method to estimate the non-measurable acupuncture input parameters. Results show that under three different frequencies of acupuncture stimulus conditions, estimated input parameters have an obvious difference. The higher the frequency of the acupuncture stimulus is, the higher the accuracy of reconstruction is.

  6. Unsteady panel method for complex configurations including wake modeling

    CSIR Research Space (South Africa)

    Van Zyl, Lourens H

    2008-01-01

    Full Text Available implementations of the DLM are however not very versatile in terms of geometries that can be modeled. The ZONA6 code offers a versatile surface panel body model including a separated wake model, but uses a pressure panel method for lifting surfaces. This paper...

  7. Loss of GABAergic inputs in APP/PS1 mouse model of Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Tutu Oyelami

    2014-04-01

    Full Text Available Alzheimer's disease (AD is characterized by symptoms which include seizures, sleep disruption, loss of memory as well as anxiety in patients. Of particular importance is the possibility of preventing the progressive loss of neuronal projections in the disease. Transgenic mice overexpressing EOFAD mutant PS1 (L166P and mutant APP (APP KM670/671NL Swedish (APP/PS1 develop a very early and robust Amyloid pathology and display synaptic plasticity impairments and cognitive dysfunction. Here we investigated GABAergic neurotransmission, using multi-electrode array (MEA technology and pharmacological manipulation to quantify the effect of GABA Blockers on field excitatory postsynaptic potentials (fEPSP, and immunostaining of GABAergic neurons. Using MEA technology we confirm impaired LTP induction by high frequency stimulation in APPPS1 hippocampal CA1 region that was associated with reduced alteration of the pair pulse ratio after LTP induction. Synaptic dysfunction was also observed under manipulation of external Calcium concentration and input-output curve. Electrophysiological recordings from brain slice of CA1 hippocampus area, in the presence of GABAergic receptors blockers cocktails further demonstrated significant reduction in the GABAergic inputs in APP/PS1 mice. Moreover, immunostaining of GAD65 a specific marker for GABAergic neurons revealed reduction of the GABAergic inputs in CA1 area of the hippocampus. These results might be linked to increased seizure sensitivity, premature death and cognitive dysfunction in this animal model of AD. Further in depth analysis of GABAergic dysfunction in APP/PS1 mice is required and may open new perspectives for AD therapy by restoring GABAergic function.

  8. Use of regional climate model simulations as an input for hydrological models for the Hindukush-Karakorum-Himalaya region

    NARCIS (Netherlands)

    Akhtar, M.; Ahmad, N.; Booij, Martijn J.

    2009-01-01

    The most important climatological inputs required for the calibration and validation of hydrological models are temperature and precipitation that can be derived from observational records or alternatively from regional climate models (RCMs). In this paper, meteorological station observations and

  9. Using Random Forests to Select Optimal Input Variables for Short-Term Wind Speed Forecasting Models

    Directory of Open Access Journals (Sweden)

    Hui Wang

    2017-10-01

    Full Text Available Achieving relatively high-accuracy short-term wind speed forecasting estimates is a precondition for the construction and grid-connected operation of wind power forecasting systems for wind farms. Currently, most research is focused on the structure of forecasting models and does not consider the selection of input variables, which can have significant impacts on forecasting performance. This paper presents an input variable selection method for wind speed forecasting models. The candidate input variables for various leading periods are selected and random forests (RF is employed to evaluate the importance of all variable as features. The feature subset with the best evaluation performance is selected as the optimal feature set. Then, kernel-based extreme learning machine is constructed to evaluate the performance of input variables selection based on RF. The results of the case study show that by removing the uncorrelated and redundant features, RF effectively extracts the most strongly correlated set of features from the candidate input variables. By finding the optimal feature combination to represent the original information, RF simplifies the structure of the wind speed forecasting model, shortens the training time required, and substantially improves the model’s accuracy and generalization ability, demonstrating that the input variables selected by RF are effective.

  10. Sensitivity Analysis of Input Parameters for a Dynamic Food Chain Model DYNACON

    International Nuclear Information System (INIS)

    Hwang, Won Tae; Lee, Geun Chang; Han, Moon Hee; Cho, Gyu Seong

    2000-01-01

    The sensitivity analysis of input parameters for a dynamic food chain model DYNACON was conducted as a function of deposition data for the long-lived radionuclides ( 137 Cs, 90 Sr). Also, the influence of input parameters for the short and long-terms contamination of selected foodstuffs (cereals, leafy vegetables, milk) was investigated. The input parameters were sampled using the LHS technique, and their sensitivity indices represented as PRCC. The sensitivity index was strongly dependent on contamination period as well as deposition data. In case of deposition during the growing stages of plants, the input parameters associated with contamination by foliar absorption were relatively important in long-term contamination as well as short-term contamination. They were also important in short-term contamination in case of deposition during the non-growing stages. In long-term contamination, the influence of input parameters associated with foliar absorption decreased, while the influence of input parameters associated with root uptake increased. These phenomena were more remarkable in case of the deposition of non-growing stages than growing stages, and in case of 90 Sr deposition than 137 Cs deposition. In case of deposition during growing stages of pasture, the input parameters associated with the characteristics of cattle such as feed-milk transfer factor and daily intake rate of cattle were relatively important in contamination of milk

  11. Including investment risk in large-scale power market models

    DEFF Research Database (Denmark)

    Lemming, Jørgen Kjærgaard; Meibom, P.

    2003-01-01

    Long-term energy market models can be used to examine investments in production technologies, however, with market liberalisation it is crucial that such models include investment risks and investor behaviour. This paper analyses how the effect of investment risk on production technology selection...... can be included in large-scale partial equilibrium models of the power market. The analyses are divided into a part about risk measures appropriate for power market investors and a more technical part about the combination of a risk-adjustment model and a partial-equilibrium model. To illustrate...... the analyses quantitatively, a framework based on an iterative interaction between the equilibrium model and a separate risk-adjustment module was constructed. To illustrate the features of the proposed modelling approach we examined how uncertainty in demand and variable costs affects the optimal choice...

  12. MODEL OF THE TOKAMAK EDGE DENSITY PEDESTAL INCLUDING DIFFUSIVE NEUTRALS

    International Nuclear Information System (INIS)

    BURRELL, K.H.

    2003-01-01

    OAK-B135 Several previous analytic models of the tokamak edge density pedestal have been based on diffusive transport of plasma plus free-streaming of neutrals. This latter neutral model includes only the effect of ionization and neglects charge exchange. The present work models the edge density pedestal using diffusive transport for both the plasma and the neutrals. In contrast to the free-streaming model, a diffusion model for the neutrals includes the effect of both charge exchange and ionization and is valid when charge exchange is the dominant interaction. Surprisingly, the functional forms for the electron and neutral density profiles from the present calculation are identical to the results of the previous analytic models. There are some differences in the detailed definition of various parameters in the solution. For experimentally relevant cases where ionization and charge exchange rate are comparable, both models predict approximately the same width for the edge density pedestal

  13. Multi input single output model predictive control of non-linear bio-polymerization process

    Energy Technology Data Exchange (ETDEWEB)

    Arumugasamy, Senthil Kumar; Ahmad, Z. [School of Chemical Engineering, Univerisiti Sains Malaysia, Engineering Campus, Seri Ampangan,14300 Nibong Tebal, Seberang Perai Selatan, Pulau Pinang (Malaysia)

    2015-05-15

    This paper focuses on Multi Input Single Output (MISO) Model Predictive Control of bio-polymerization process in which mechanistic model is developed and linked with the feedforward neural network model to obtain a hybrid model (Mechanistic-FANN) of lipase-catalyzed ring-opening polymerization of ε-caprolactone (ε-CL) for Poly (ε-caprolactone) production. In this research, state space model was used, in which the input to the model were the reactor temperatures and reactor impeller speeds and the output were the molecular weight of polymer (M{sub n}) and polymer polydispersity index. State space model for MISO created using System identification tool box of Matlab™. This state space model is used in MISO MPC. Model predictive control (MPC) has been applied to predict the molecular weight of the biopolymer and consequently control the molecular weight of biopolymer. The result shows that MPC is able to track reference trajectory and give optimum movement of manipulated variable.

  14. A quantitative approach to modeling the information processing of NPP operators under input information overload

    International Nuclear Information System (INIS)

    Kim, Jong Hyun; Seong, Poong Hyun

    2002-01-01

    This paper proposes a quantitative approach to modeling the information processing of NPP operators. The aim of this work is to derive the amount of the information processed during a certain control task under input information overload. We primarily develop the information processing model having multiple stages, which contains information flow. Then the uncertainty of the information is quantified using the Conant's model, a kind of information theory. We also investigate the applicability of this approach to quantifying the information reduction of operators under the input information overload

  15. System Identification for Nonlinear FOPDT Model with Input-Dependent Dead-Time

    DEFF Research Database (Denmark)

    Sun, Zhen; Yang, Zhenyu

    2011-01-01

    An on-line iterative method of system identification for a kind of nonlinear FOPDT system is proposed in the paper. The considered nonlinear FOPDT model is an extension of the standard FOPDT model by means that its dead time depends on the input signal and the other parameters are time dependent....

  16. Regional disaster impact analysis: comparing Input-Output and Computable General Equilibrium models

    NARCIS (Netherlands)

    Koks, E.E.; Carrera, L.; Jonkeren, O.; Aerts, J.C.J.H.; Husby, T.G.; Thissen, M.; Standardi, G.; Mysiak, J.

    2016-01-01

    A variety of models have been applied to assess the economic losses of disasters, of which the most common ones are input-output (IO) and computable general equilibrium (CGE) models. In addition, an increasing number of scholars have developed hybrid approaches: one that combines both or either of

  17. DIMITRI 1.0: Beschrijving en toepassing van een dynamisch input-output model

    NARCIS (Netherlands)

    Wilting HC; Blom WF; Thomas R; Idenburg AM; LAE

    2001-01-01

    DIMITRI, the Dynamic Input-Output Model to study the Impacts of Technology Related Innovations, was developed in the framework of the RIVM Environment and Economy project to answer questions about interrelationships between economy, technology and the environment. DIMITRI, a meso-economic model,

  18. Logistics flows and enterprise input-output models: aggregate and disaggregate analysis

    NARCIS (Netherlands)

    Albino, V.; Yazan, Devrim; Messeni Petruzzelli, A.; Okogbaa, O.G.

    2011-01-01

    In the present paper, we propose the use of enterprise input-output (EIO) models to describe and analyse the logistics flows considering spatial issues and related environmental effects associated with production and transportation processes. In particular, transportation is modelled as a specific

  19. Evaluation of precipitation input for SWAT modeling in Alpine catchment: A case study in the Adige river basin (Italy).

    Science.gov (United States)

    Tuo, Ye; Duan, Zheng; Disse, Markus; Chiogna, Gabriele

    2016-12-15

    Precipitation is often the most important input data in hydrological models when simulating streamflow. The Soil and Water Assessment Tool (SWAT), a widely used hydrological model, only makes use of data from one precipitation gauge station that is nearest to the centroid of each subbasin, which is eventually corrected using the elevation band method. This leads in general to inaccurate representation of subbasin precipitation input data, particularly in catchments with complex topography. To investigate the impact of different precipitation inputs on the SWAT model simulations in Alpine catchments, 13years (1998-2010) of daily precipitation data from four datasets including OP (Observed precipitation), IDW (Inverse Distance Weighting data), CHIRPS (Climate Hazards Group InfraRed Precipitation with Station data) and TRMM (Tropical Rainfall Measuring Mission) has been considered. Both model performances (comparing simulated and measured streamflow data at the catchment outlet) as well as parameter and prediction uncertainties have been quantified. For all three subbasins, the use of elevation bands is fundamental to match the water budget. Streamflow predictions obtained using IDW inputs are better than those obtained using the other datasets in terms of both model performance and prediction uncertainty. Models using the CHIRPS product as input provide satisfactory streamflow estimation, suggesting that this satellite product can be applied to this data-scarce Alpine region. Comparing the performance of SWAT models using different precipitation datasets is therefore important in data-scarce regions. This study has shown that, precipitation is the main source of uncertainty, and different precipitation datasets in SWAT models lead to different best estimate ranges for the calibrated parameters. This has important implications for the interpretation of the simulated hydrological processes. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  20. Modeling the short-run effect of fiscal stimuli on GDP : A new semi-closed input-output model

    NARCIS (Netherlands)

    Chen, Quanrun; Dietzenbacher, Erik; Los, Bart; Yang, Cuihong

    In this study, we propose a new semi-closed input-output model, which reconciles input-output analysis with modern consumption theories. It can simulate changes in household consumption behavior when exogenous stimulus policies lead to higher disposable income levels. It is useful for quantifying

  1. Modeling the short-run effect of fiscal stimuli on GDP : A new semi-closed input-output model

    NARCIS (Netherlands)

    Chen, Quanrun; Dietzenbacher, Erik; Los, Bart; Yang, Cuihong

    2016-01-01

    In this study, we propose a new semi-closed input-output model, which reconciles input-output analysis with modern consumption theories. It can simulate changes in household consumption behavior when exogenous stimulus policies lead to higher disposable income levels. It is useful for quantifying

  2. Input modelling of ASSERT-PV V2R8M1 for RUFIC fuel bundle

    Energy Technology Data Exchange (ETDEWEB)

    Park, Joo Hwan; Suk, Ho Chun

    2001-02-01

    This report describes the input modelling for subchannel analysis of CANFLEX-RU (RUFIC) fuel bundle which has been developed for an advanced fuel bundle of CANDU-6 reactor, using ASSERT-PV V2R8M1 code. Execution file of ASSERT-PV V2R8M1 code was recently transferred from AECL under JRDC agreement between KAERI and AECL. SSERT-PV V2R8M1 which is quite different from COBRA-IV-i code has been developed for thermalhydraulic analysis of CANDU-6 fuel channel by subchannel analysis method and updated so that 43-element CANDU fuel geometry can be applied. Hence, ASSERT code can be applied to the subchannel analysis of RUFIC fuel bundle. The present report was prepared for ASSERT input modelling of RUFIC fuel bundle. Since the ASSERT results highly depend on user's input modelling, the calculation results may be quite different among the user's input models. The objective of the present report is the preparation of detail description of the background information for input data and gives credibility of the calculation results.

  3. Input modelling of ASSERT-PV V2R8M1 for RUFIC fuel bundle

    Energy Technology Data Exchange (ETDEWEB)

    Park, Joo Hwan; Suk, Ho Chun

    2001-02-01

    This report describes the input modelling for subchannel analysis of CANFLEX-RU (RUFIC) fuel bundle which has been developed for an advanced fuel bundle of CANDU-6 reactor, using ASSERT-PV V2R8M1 code. Execution file of ASSERT-PV V2R8M1 code was recently transferred from AECL under JRDC agreement between KAERI and AECL. SSERT-PV V2R8M1 which is quite different from COBRA-IV-i code has been developed for thermalhydraulic analysis of CANDU-6 fuel channel by subchannel analysis method and updated so that 43-element CANDU fuel geometry can be applied. Hence, ASSERT code can be applied to the subchannel analysis of RUFIC fuel bundle. The present report was prepared for ASSERT input modelling of RUFIC fuel bundle. Since the ASSERT results highly depend on user's input modelling, the calculation results may be quite different among the user's input models. The objective of the present report is the preparation of detail description of the background information for input data and gives credibility of the calculation results.

  4. Input modelling of ASSERT-PV V2R8M1 for RUFIC fuel bundle

    International Nuclear Information System (INIS)

    Park, Joo Hwan; Suk, Ho Chun

    2001-02-01

    This report describes the input modelling for subchannel analysis of CANFLEX-RU (RUFIC) fuel bundle which has been developed for an advanced fuel bundle of CANDU-6 reactor, using ASSERT-PV V2R8M1 code. Execution file of ASSERT-PV V2R8M1 code was recently transferred from AECL under JRDC agreement between KAERI and AECL. SSERT-PV V2R8M1 which is quite different from COBRA-IV-i code has been developed for thermalhydraulic analysis of CANDU-6 fuel channel by subchannel analysis method and updated so that 43-element CANDU fuel geometry can be applied. Hence, ASSERT code can be applied to the subchannel analysis of RUFIC fuel bundle. The present report was prepared for ASSERT input modelling of RUFIC fuel bundle. Since the ASSERT results highly depend on user's input modelling, the calculation results may be quite different among the user's input models. The objective of the present report is the preparation of detail description of the background information for input data and gives credibility of the calculation results

  5. Hierarchical Bayesian modelling of mobility metrics for hazard model input calibration

    Science.gov (United States)

    Calder, Eliza; Ogburn, Sarah; Spiller, Elaine; Rutarindwa, Regis; Berger, Jim

    2015-04-01

    In this work we present a method to constrain flow mobility input parameters for pyroclastic flow models using hierarchical Bayes modeling of standard mobility metrics such as H/L and flow volume etc. The advantage of hierarchical modeling is that it can leverage the information in global dataset for a particular mobility metric in order to reduce the uncertainty in modeling of an individual volcano, especially important where individual volcanoes have only sparse datasets. We use compiled pyroclastic flow runout data from Colima, Merapi, Soufriere Hills, Unzen and Semeru volcanoes, presented in an open-source database FlowDat (https://vhub.org/groups/massflowdatabase). While the exact relationship between flow volume and friction varies somewhat between volcanoes, dome collapse flows originating from the same volcano exhibit similar mobility relationships. Instead of fitting separate regression models for each volcano dataset, we use a variation of the hierarchical linear model (Kass and Steffey, 1989). The model presents a hierarchical structure with two levels; all dome collapse flows and dome collapse flows at specific volcanoes. The hierarchical model allows us to assume that the flows at specific volcanoes share a common distribution of regression slopes, then solves for that distribution. We present comparisons of the 95% confidence intervals on the individual regression lines for the data set from each volcano as well as those obtained from the hierarchical model. The results clearly demonstrate the advantage of considering global datasets using this technique. The technique developed is demonstrated here for mobility metrics, but can be applied to many other global datasets of volcanic parameters. In particular, such methods can provide a means to better contain parameters for volcanoes for which we only have sparse data, a ubiquitous problem in volcanology.

  6. A Model to Determinate the Influence of Probability Density Functions (PDFs of Input Quantities in Measurements

    Directory of Open Access Journals (Sweden)

    Jesús Caja

    2016-06-01

    Full Text Available A method for analysing the effect of different hypotheses about the type of the input quantities distributions of a measurement model is presented here so that the developed algorithms can be simplified. As an example, a model of indirect measurements with optical coordinate measurement machine was employed to evaluate these different hypotheses. As a result of the different experiments, the assumption that the different variables of the model can be modelled as normal distributions is proved.

  7. How model and input uncertainty impact maize yield simulations in West Africa

    Science.gov (United States)

    Waha, Katharina; Huth, Neil; Carberry, Peter; Wang, Enli

    2015-02-01

    Crop models are common tools for simulating crop yields and crop production in studies on food security and global change. Various uncertainties however exist, not only in the model design and model parameters, but also and maybe even more important in soil, climate and management input data. We analyze the performance of the point-scale crop model APSIM and the global scale crop model LPJmL with different climate and soil conditions under different agricultural management in the low-input maize-growing areas of Burkina Faso, West Africa. We test the models’ response to different levels of input information from little to detailed information on soil, climate (1961-2000) and agricultural management and compare the models’ ability to represent the observed spatial (between locations) and temporal variability (between years) in crop yields. We found that the resolution of different soil, climate and management information influences the simulated crop yields in both models. However, the difference between models is larger than between input data and larger between simulations with different climate and management information than between simulations with different soil information. The observed spatial variability can be represented well from both models even with little information on soils and management but APSIM simulates a higher variation between single locations than LPJmL. The agreement of simulated and observed temporal variability is lower due to non-climatic factors e.g. investment in agricultural research and development between 1987 and 1991 in Burkina Faso which resulted in a doubling of maize yields. The findings of our study highlight the importance of scale and model choice and show that the most detailed input data does not necessarily improve model performance.

  8. Optimal input shaping for Fisher identifiability of control-oriented lithium-ion battery models

    Science.gov (United States)

    Rothenberger, Michael J.

    This dissertation examines the fundamental challenge of optimally shaping input trajectories to maximize parameter identifiability of control-oriented lithium-ion battery models. Identifiability is a property from information theory that determines the solvability of parameter estimation for mathematical models using input-output measurements. This dissertation creates a framework that exploits the Fisher information metric to quantify the level of battery parameter identifiability, optimizes this metric through input shaping, and facilitates faster and more accurate estimation. The popularity of lithium-ion batteries is growing significantly in the energy storage domain, especially for stationary and transportation applications. While these cells have excellent power and energy densities, they are plagued with safety and lifespan concerns. These concerns are often resolved in the industry through conservative current and voltage operating limits, which reduce the overall performance and still lack robustness in detecting catastrophic failure modes. New advances in automotive battery management systems mitigate these challenges through the incorporation of model-based control to increase performance, safety, and lifespan. To achieve these goals, model-based control requires accurate parameterization of the battery model. While many groups in the literature study a variety of methods to perform battery parameter estimation, a fundamental issue of poor parameter identifiability remains apparent for lithium-ion battery models. This fundamental challenge of battery identifiability is studied extensively in the literature, and some groups are even approaching the problem of improving the ability to estimate the model parameters. The first approach is to add additional sensors to the battery to gain more information that is used for estimation. The other main approach is to shape the input trajectories to increase the amount of information that can be gained from input

  9. Sensitivity of a complex urban air quality model to input data

    International Nuclear Information System (INIS)

    Seigneur, C.; Tesche, T.W.; Roth, P.M.; Reid, L.E.

    1981-01-01

    In recent years, urban-scale photochemical simulation models have been developed that are of practical value for predicting air quality and analyzing the impacts of alternative emission control strategies. Although the performance of some urban-scale models appears to be acceptable, the demanding data requirements of such models have prompted concern about the costs of data acquistion, which might be high enough to preclude use of photochemical models for many urban areas. To explore this issue, sensitivity studies with the Systems Applications, Inc. (SAI) Airshed Model, a grid-based time-dependent photochemical dispersion model, have been carried out for the Los Angeles basin. Reductions in the amount and quality of meteorological, air quality and emission data, as well as modifications of the model gridded structure, have been analyzed. This paper presents and interprets the results of 22 sensitivity studies. A sensitivity-uncertainty index is defined to rank input data needs for an urban photochemical model. The index takes into account the sensitivity of model predictions to the amount of input data, the costs of data acquistion, and the uncertainties in the air quality model input variables. The results of these sensitivity studies are considered in light of the limitations of specific attributes of the Los Angeles basin and of the modeling conditions (e.g., choice of wind model, length of simulation time). The extent to which the results may be applied to other urban areas also is discussed

  10. Progressive IRP Models for Power Resources Including EPP

    Directory of Open Access Journals (Sweden)

    Yiping Zhu

    2017-01-01

    Full Text Available In the view of optimizing regional power supply and demand, the paper makes effective planning scheduling of supply and demand side resources including energy efficiency power plant (EPP, to achieve the target of benefit, cost, and environmental constraints. In order to highlight the characteristics of different supply and demand resources in economic, environmental, and carbon constraints, three planning models with progressive constraints are constructed. Results of three models by the same example show that the best solutions to different models are different. The planning model including EPP has obvious advantages considering pollutant and carbon emission constraints, which confirms the advantages of low cost and emissions of EPP. The construction of progressive IRP models for power resources considering EPP has a certain reference value for guiding the planning and layout of EPP within other power resources and achieving cost and environmental objectives.

  11. Evaluating the effects of model structure and meteorological input data on runoff modelling in an alpine headwater basin

    Science.gov (United States)

    Schattan, Paul; Bellinger, Johannes; Förster, Kristian; Schöber, Johannes; Huttenlau, Matthias; Kirnbauer, Robert; Achleitner, Stefan

    2017-04-01

    Modelling water resources in snow-dominated mountainous catchments is challenging due to both, short concentration times and a highly variable contribution of snow melt in space and time from complex terrain. A number of model setups exist ranging from physically based models to conceptional models which do not attempt to represent the natural processes in a physically meaningful way. Within the flood forecasting system for the Tyrolean Inn River two serially linked hydrological models with differing process representation are used. Non- glacierized catchments are modelled by a semi-distributed, water balance model (HQsim) based on the HRU-approach. A fully-distributed energy and mass balance model (SES), purpose-built for snow- and icemelt, is used for highly glacierized headwater catchments. Previous work revealed uncertainties and limitations within the models' structures regarding (i) the representation of snow processes in HQsim, (ii) the runoff routing of SES, and (iii) the spatial resolution of the meteorological input data in both models. To overcome these limitations, a "strengths driven" model coupling is applied. Instead of linking the models serially, a vertical one-way coupling of models has been implemented. The fully-distributed snow modelling of SES is combined with the semi-distributed HQsim structure, allowing to benefit from soil and runoff routing schemes in HQsim. A monte-carlo based modelling experiment was set up to evaluate the resulting differences in the runoff prediction due to the improved model coupling and a refined spatial resolution of the meteorological forcing. The experiment design follows a gradient of spatial discretisation of hydrological processes and meteorological forcing data with a total of six different model setups for the alpine headwater basin of the Fagge River in the Tyrolean Alps. In general, all setups show a good performance for this particular basin. It is therefore planned to include other basins with differing

  12. Recurrent network models for perfect temporal integration of fluctuating correlated inputs.

    Directory of Open Access Journals (Sweden)

    Hiroshi Okamoto

    2009-06-01

    Full Text Available Temporal integration of input is essential to the accumulation of information in various cognitive and behavioral processes, and gradually increasing neuronal activity, typically occurring within a range of seconds, is considered to reflect such computation by the brain. Some psychological evidence suggests that temporal integration by the brain is nearly perfect, that is, the integration is non-leaky, and the output of a neural integrator is accurately proportional to the strength of input. Neural mechanisms of perfect temporal integration, however, remain largely unknown. Here, we propose a recurrent network model of cortical neurons that perfectly integrates partially correlated, irregular input spike trains. We demonstrate that the rate of this temporal integration changes proportionately to the probability of spike coincidences in synaptic inputs. We analytically prove that this highly accurate integration of synaptic inputs emerges from integration of the variance of the fluctuating synaptic inputs, when their mean component is kept constant. Highly irregular neuronal firing and spike coincidences are the major features of cortical activity, but they have been separately addressed so far. Our results suggest that the efficient protocol of information integration by cortical networks essentially requires both features and hence is heterotic.

  13. Variance-based sensitivity indices for stochastic models with correlated inputs

    Energy Technology Data Exchange (ETDEWEB)

    Kala, Zdeněk [Brno University of Technology, Faculty of Civil Engineering, Department of Structural Mechanics Veveří St. 95, ZIP 602 00, Brno (Czech Republic)

    2015-03-10

    The goal of this article is the formulation of the principles of one of the possible strategies in implementing correlation between input random variables so as to be usable for algorithm development and the evaluation of Sobol’s sensitivity analysis. With regard to the types of stochastic computational models, which are commonly found in structural mechanics, an algorithm was designed for effective use in conjunction with Monte Carlo methods. Sensitivity indices are evaluated for all possible permutations of the decorrelation procedures for input parameters. The evaluation of Sobol’s sensitivity coefficients is illustrated on an example in which a computational model was used for the analysis of the resistance of a steel bar in tension with statistically dependent input geometric characteristics.

  14. Variance-based sensitivity indices for stochastic models with correlated inputs

    International Nuclear Information System (INIS)

    Kala, Zdeněk

    2015-01-01

    The goal of this article is the formulation of the principles of one of the possible strategies in implementing correlation between input random variables so as to be usable for algorithm development and the evaluation of Sobol’s sensitivity analysis. With regard to the types of stochastic computational models, which are commonly found in structural mechanics, an algorithm was designed for effective use in conjunction with Monte Carlo methods. Sensitivity indices are evaluated for all possible permutations of the decorrelation procedures for input parameters. The evaluation of Sobol’s sensitivity coefficients is illustrated on an example in which a computational model was used for the analysis of the resistance of a steel bar in tension with statistically dependent input geometric characteristics

  15. COGEDIF - automatic TORT and DORT input generation from MORSE combinatorial geometry models

    International Nuclear Information System (INIS)

    Castelli, R.A.; Barnett, D.A.

    1992-01-01

    COGEDIF is an interactive utility which was developed to automate the preparation of two and three dimensional geometrical inputs for the ORNL-TORT and DORT discrete ordinates programs from complex three dimensional models described using the MORSE combinatorial geometry input description. The program creates either continuous or disjoint mesh input based upon the intersections of user defined meshing planes and the MORSE body definitions. The composition overlay of the combinatorial geometry is used to create the composition mapping of the discretized geometry based upon the composition found at the centroid of each of the mesh cells. This program simplifies the process of using discrete orthogonal mesh cells to represent non-orthogonal geometries in large models which require mesh sizes of the order of a million cells or more. The program was specifically written to take advantage of the new TORT disjoint mesh option which was developed at ORNL

  16. Input data requirements for performance modelling and monitoring of photovoltaic plants

    DEFF Research Database (Denmark)

    Gavriluta, Anamaria Florina; Spataru, Sergiu; Sera, Dezso

    2018-01-01

    This work investigates the input data requirements in the context of performance modeling of thin-film photovoltaic (PV) systems. The analysis focuses on the PVWatts performance model, well suited for on-line performance monitoring of PV strings, due to its low number of parameters and high......, modelling the performance of the PV modules at high irradiances requires a dataset of only a few hundred samples in order to obtain a power estimation accuracy of ~1-2\\%....

  17. A hydrodynamic model for granular material flows including segregation effects

    Science.gov (United States)

    Gilberg, Dominik; Klar, Axel; Steiner, Konrad

    2017-06-01

    The simulation of granular flows including segregation effects in large industrial processes using particle methods is accurate, but very time-consuming. To overcome the long computation times a macroscopic model is a natural choice. Therefore, we couple a mixture theory based segregation model to a hydrodynamic model of Navier-Stokes-type, describing the flow behavior of the granular material. The granular flow model is a hybrid model derived from kinetic theory and a soil mechanical approach to cover the regime of fast dilute flow, as well as slow dense flow, where the density of the granular material is close to the maximum packing density. Originally, the segregation model has been formulated by Thornton and Gray for idealized avalanches. It is modified and adapted to be in the preferred form for the coupling. In the final coupled model the segregation process depends on the local state of the granular system. On the other hand, the granular system changes as differently mixed regions of the granular material differ i.e. in the packing density. For the modeling process the focus lies on dry granular material flows of two particle types differing only in size but can be easily extended to arbitrary granular mixtures of different particle size and density. To solve the coupled system a finite volume approach is used. To test the model the rotational mixing of small and large particles in a tumbler is simulated.

  18. Dynamic PET of human liver inflammation: impact of kinetic modeling with optimization-derived dual-blood input function.

    Science.gov (United States)

    Wang, Guobao; Corwin, Michael T; Olson, Kristin A; Badawi, Ramsey D; Sarkar, Souvik

    2018-05-30

    The hallmark of nonalcoholic steatohepatitis is hepatocellular inflammation and injury in the setting of hepatic steatosis. Recent work has indicated that dynamic 18F-FDG PET with kinetic modeling has the potential to assess hepatic inflammation noninvasively, while static FDG-PET did not show a promise. Because the liver has dual blood supplies, kinetic modeling of dynamic liver PET data is challenging in human studies. The objective of this study is to evaluate and identify a dual-input kinetic modeling approach for dynamic FDG-PET of human liver inflammation. Fourteen human patients with nonalcoholic fatty liver disease were included in the study. Each patient underwent one-hour dynamic FDG-PET/CT scan and had liver biopsy within six weeks. Three models were tested for kinetic analysis: traditional two-tissue compartmental model with an image-derived single-blood input function (SBIF), model with population-based dual-blood input function (DBIF), and modified model with optimization-derived DBIF through a joint estimation framework. The three models were compared using Akaike information criterion (AIC), F test and histopathologic inflammation reference. The results showed that the optimization-derived DBIF model improved the fitting of liver time activity curves and achieved lower AIC values and higher F values than the SBIF and population-based DBIF models in all patients. The optimization-derived model significantly increased FDG K1 estimates by 101% and 27% as compared with traditional SBIF and population-based DBIF. K1 by the optimization-derived model was significantly associated with histopathologic grades of liver inflammation while the other two models did not provide a statistical significance. In conclusion, modeling of DBIF is critical for kinetic analysis of dynamic liver FDG-PET data in human studies. The optimization-derived DBIF model is more appropriate than SBIF and population-based DBIF for dynamic FDG-PET of liver inflammation. © 2018

  19. Input-output and energy demand models for Ireland: Data collection report. Part 1: EXPLOR

    Energy Technology Data Exchange (ETDEWEB)

    Henry, E W; Scott, S

    1981-01-01

    Data are presented in support of EXPLOR, an input-output economic model for Ireland. The data follow the listing of exogenous data-sets used by Batelle in document X11/515/77. Data are given for 1974, 1980, and 1985 and consist of household consumption, final demand-production, and commodity prices. (ACR)

  20. Comparison of plasma input and reference tissue models for analysing [(11)C]flumazenil studies

    NARCIS (Netherlands)

    Klumpers, Ursula M. H.; Veltman, Dick J.; Boellaard, Ronald; Comans, Emile F.; Zuketto, Cassandra; Yaqub, Maqsood; Mourik, Jurgen E. M.; Lubberink, Mark; Hoogendijk, Witte J. G.; Lammertsma, Adriaan A.

    2008-01-01

    A single-tissue compartment model with plasma input is the established method for analysing [(11)C]flumazenil ([(11)C]FMZ) studies. However, arterial cannulation and measurement of metabolites are time-consuming. Therefore, a reference tissue approach is appealing, but this approach has not been

  1. Input-Output model for waste management plan for Nigeria | Njoku ...

    African Journals Online (AJOL)

    An Input-Output Model for Waste Management Plan has been developed for Nigeria based on Leontief concept and life cycle analysis. Waste was considered as source of pollution, loss of resources, and emission of green house gasses from bio-chemical treatment and decomposition, with negative impact on the ...

  2. The economic impact of multifunctional agriculture in Dutch regions: An input-output model

    NARCIS (Netherlands)

    Heringa, P.W.; Heide, van der C.M.; Heijman, W.J.M.

    2013-01-01

    Multifunctional agriculture is a broad concept lacking a precise definition. Moreover, little is known about the societal importance of multifunctional agriculture. This paper is an empirical attempt to fill this gap. To this end, an input-output model was constructed for multifunctional agriculture

  3. The economic impact of multifunctional agriculture in The Netherlands: A regional input-output model

    NARCIS (Netherlands)

    Heringa, P.W.; Heide, van der C.M.; Heijman, W.J.M.

    2012-01-01

    Multifunctional agriculture is a broad concept lacking a precise and uniform definition. Moreover, little is known about the societal importance of multifunctional agriculture. This paper is an empirical attempt to fill this gap. To this end, an input-output model is constructed for multifunctional

  4. Prediction of Chl-a concentrations in an eutrophic lake using ANN models with hybrid inputs

    Science.gov (United States)

    Aksoy, A.; Yuzugullu, O.

    2017-12-01

    Chlorophyll-a (Chl-a) concentrations in water bodies exhibit both spatial and temporal variations. As a result, frequent sampling is required with higher number of samples. This motivates the use of remote sensing as a monitoring tool. Yet, prediction performances of models that convert radiance values into Chl-a concentrations can be poor in shallow lakes. In this study, Chl-a concentrations in Lake Eymir, a shallow eutrophic lake in Ankara (Turkey), are determined using artificial neural network (ANN) models that use hybrid inputs composed of water quality and meteorological data as well as remotely sensed radiance values to improve prediction performance. Following a screening based on multi-collinearity and principal component analysis (PCA), dissolved-oxygen concentration (DO), pH, turbidity, and humidity were selected among several parameters as the constituents of the hybrid input dataset. Radiance values were obtained from QuickBird-2 satellite. Conversion of the hybrid input into Chl-a concentrations were studied for two different periods in the lake. ANN models were successful in predicting Chl-a concentrations. Yet, prediction performance declined for low Chl-a concentrations in the lake. In general, models with hybrid inputs were superior over the ones that solely used remotely sensed data.

  5. Modelling a linear PM motor including magnetic saturation

    NARCIS (Netherlands)

    Polinder, H.; Slootweg, J.G.; Compter, J.C.; Hoeijmakers, M.J.

    2002-01-01

    The use of linear permanent-magnet (PM) actuators increases in a wide variety of applications because of the high force density, robustness and accuracy. The paper describes the modelling of a linear PM motor applied in, for example, wafer steppers, including magnetic saturation. This is important

  6. Simple suggestions for including vertical physics in oil spill models

    International Nuclear Information System (INIS)

    D'Asaro, Eric; University of Washington, Seatle, WA

    2001-01-01

    Current models of oil spills include no vertical physics. They neglect the effect of vertical water motions on the transport and concentration of floating oil. Some simple ways to introduce vertical physics are suggested here. The major suggestion is to routinely measure the density stratification of the upper ocean during oil spills in order to develop a database on the effect of stratification. (Author)

  7. Linear and quadratic models of point process systems: contributions of patterned input to output.

    Science.gov (United States)

    Lindsay, K A; Rosenberg, J R

    2012-08-01

    In the 1880's Volterra characterised a nonlinear system using a functional series connecting continuous input and continuous output. Norbert Wiener, in the 1940's, circumvented problems associated with the application of Volterra series to physical problems by deriving from it a new series of terms that are mutually uncorrelated with respect to Gaussian processes. Subsequently, Brillinger, in the 1970's, introduced a point-process analogue of Volterra's series connecting point-process inputs to the instantaneous rate of point-process output. We derive here a new series from this analogue in which its terms are mutually uncorrelated with respect to Poisson processes. This new series expresses how patterned input in a spike train, represented by third-order cross-cumulants, is converted into the instantaneous rate of an output point-process. Given experimental records of suitable duration, the contribution of arbitrary patterned input to an output process can, in principle, be determined. Solutions for linear and quadratic point-process models with one and two inputs and a single output are investigated. Our theoretical results are applied to isolated muscle spindle data in which the spike trains from the primary and secondary endings from the same muscle spindle are recorded in response to stimulation of one and then two static fusimotor axons in the absence and presence of a random length change imposed on the parent muscle. For a fixed mean rate of input spikes, the analysis of the experimental data makes explicit which patterns of two input spikes contribute to an output spike. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Latitudinal and seasonal variability of the micrometeor input function: A study using model predictions and observations from Arecibo and PFISR

    Science.gov (United States)

    Fentzke, J. T.; Janches, D.; Sparks, J. J.

    2009-05-01

    In this work, we use a semi-empirical model of the micrometeor input function (MIF) together with meteor head-echo observations obtained with two high power and large aperture (HPLA) radars, the 430 MHz Arecibo Observatory (AO) radar in Puerto Rico (18°N, 67°W) and the 450 MHz Poker flat incoherent scatter radar (PFISR) in Alaska (65°N, 147°W), to study the seasonal and geographical dependence of the meteoric flux in the upper atmosphere. The model, recently developed by Janches et al. [2006a. Modeling the global micrometeor input function in the upper atmosphere observed by high power and large aperture radars. Journal of Geophysical Research 111] and Fentzke and Janches [2008. A semi-empirical model of the contribution from sporadic meteoroid sources on the meteor input function observed at arecibo. Journal of Geophysical Research (Space Physics) 113 (A03304)], includes an initial mass flux that is provided by the six known meteor sources (i.e. orbital families of dust) as well as detailed modeling of meteoroid atmospheric entry and ablation physics. In addition, we use a simple ionization model to treat radar sensitivity issues by defining minimum electron volume density production thresholds required in the meteor head-echo plasma for detection. This simplified approach works well because we use observations from two radars with similar frequencies, but different sensitivities and locations. This methodology allows us to explore the initial input of particles and how it manifests in different parts of the MLT as observed by these instruments without the need to invoke more sophisticated plasma models, which are under current development. The comparisons between model predictions and radar observations show excellent agreement between diurnal, seasonal, and latitudinal variability of the detected meteor rate and radial velocity distributions, allowing us to understand how individual meteoroid populations contribute to the overall flux at a particular

  9. Input-constrained model predictive control via the alternating direction method of multipliers

    DEFF Research Database (Denmark)

    Sokoler, Leo Emil; Frison, Gianluca; Andersen, Martin S.

    2014-01-01

    This paper presents an algorithm, based on the alternating direction method of multipliers, for the convex optimal control problem arising in input-constrained model predictive control. We develop an efficient implementation of the algorithm for the extended linear quadratic control problem (LQCP......) with input and input-rate limits. The algorithm alternates between solving an extended LQCP and a highly structured quadratic program. These quadratic programs are solved using a Riccati iteration procedure, and a structure-exploiting interior-point method, respectively. The computational cost per iteration...... is quadratic in the dimensions of the controlled system, and linear in the length of the prediction horizon. Simulations show that the approach proposed in this paper is more than an order of magnitude faster than several state-of-the-art quadratic programming algorithms, and that the difference in computation...

  10. ANALYSIS OF THE BANDUNG CHANGES EXCELLENT POTENTIAL THROUGH INPUT-OUTPUT MODEL USING INDEX LE MASNE

    Directory of Open Access Journals (Sweden)

    Teti Sofia Yanti

    2017-03-01

    Full Text Available Input-Output Table is arranged to present an overview of the interrelationships and interdependence between units of activity (sector production in the whole economy. Therefore the input-output models are complete and comprehensive analytical tool. The usefulness of input-output tables is an analysis of the economic structure of the national/regional level which covers the structure of production and value-added (GDP of each sector. For the purposes of planning and evaluation of the outcomes of development that is comprehensive both national and smaller scale (district/city, a model for regional development planning approach can use the model input-output analysis. Analysis of Bandung Economic Structure did use Le Masne index, by comparing the coefficients of the technology in 2003 and 2008, of which nearly 50% change. The trade sector has grown very conspicuous than other areas, followed by the services of road transport and air transport services, the development priorities and investment Bandung should be directed to these areas, this is due to these areas can be thrust and be power attraction for the growth of other areas. The areas that experienced the highest decrease was Industrial Chemicals and Goods from Chemistry, followed by Oil and Refinery Industry Textile Industry Except For Garment.

  11. Simulation model structure numerically robust to changes in magnitude and combination of input and output variables

    DEFF Research Database (Denmark)

    Rasmussen, Bjarne D.; Jakobsen, Arne

    1999-01-01

    Mathematical models of refrigeration systems are often based on a coupling of component models forming a “closed loop” type of system model. In these models the coupling structure of the component models represents the actual flow path of refrigerant in the system. Very often numerical...... instabilities prevent the practical use of such a system model for more than one input/output combination and for other magnitudes of refrigerating capacities.A higher numerical robustness of system models can be achieved by making a model for the refrigeration cycle the core of the system model and by using...... variables with narrow definition intervals for the exchange of information between the cycle model and the component models.The advantages of the cycle-oriented method are illustrated by an example showing the refrigeration cycle similarities between two very different refrigeration systems....

  12. Dynamics of a Stage Structured Pest Control Model in a Polluted Environment with Pulse Pollution Input

    OpenAIRE

    Liu, Bing; Xu, Ling; Kang, Baolin

    2013-01-01

    By using pollution model and impulsive delay differential equation, we formulate a pest control model with stage structure for natural enemy in a polluted environment by introducing a constant periodic pollutant input and killing pest at different fixed moments and investigate the dynamics of such a system. We assume only that the natural enemies are affected by pollution, and we choose the method to kill the pest without harming natural enemies. Sufficient conditions for global attractivity ...

  13. Synaptic inputs compete during rapid formation of the calyx of Held: a new model system for neural development.

    Science.gov (United States)

    Holcomb, Paul S; Hoffpauir, Brian K; Hoyson, Mitchell C; Jackson, Dakota R; Deerinck, Thomas J; Marrs, Glenn S; Dehoff, Marlin; Wu, Jonathan; Ellisman, Mark H; Spirou, George A

    2013-08-07

    Hallmark features of neural circuit development include early exuberant innervation followed by competition and pruning to mature innervation topography. Several neural systems, including the neuromuscular junction and climbing fiber innervation of Purkinje cells, are models to study neural development in part because they establish a recognizable endpoint of monoinnervation of their targets and because the presynaptic terminals are large and easily monitored. We demonstrate here that calyx of Held (CH) innervation of its target, which forms a key element of auditory brainstem binaural circuitry, exhibits all of these characteristics. To investigate CH development, we made the first application of serial block-face scanning electron microscopy to neural development with fine temporal resolution and thereby accomplished the first time series for 3D ultrastructural analysis of neural circuit formation. This approach revealed a growth spurt of added apposed surface area (ASA)>200 μm2/d centered on a single age at postnatal day 3 in mice and an initial rapid phase of growth and competition that resolved to monoinnervation in two-thirds of cells within 3 d. This rapid growth occurred in parallel with an increase in action potential threshold, which may mediate selection of the strongest input as the winning competitor. ASAs of competing inputs were segregated on the cell body surface. These data suggest mechanisms to select "winning" inputs by regional reinforcement of postsynaptic membrane to mediate size and strength of competing synaptic inputs.

  14. Aggregated Demand Modelling Including Distributed Generation, Storage and Demand Response

    OpenAIRE

    Marzooghi, Hesamoddin; Hill, David J.; Verbic, Gregor

    2014-01-01

    It is anticipated that penetration of renewable energy sources (RESs) in power systems will increase further in the next decades mainly due to environmental issues. In the long term of several decades, which we refer to in terms of the future grid (FG), balancing between supply and demand will become dependent on demand actions including demand response (DR) and energy storage. So far, FG feasibility studies have not considered these new demand-side developments for modelling future demand. I...

  15. MEMLS3&a: Microwave Emission Model of Layered Snowpacks adapted to include backscattering

    Directory of Open Access Journals (Sweden)

    M. Proksch

    2015-08-01

    Full Text Available The Microwave Emission Model of Layered Snowpacks (MEMLS was originally developed for microwave emissions of snowpacks in the frequency range 5–100 GHz. It is based on six-flux theory to describe radiative transfer in snow including absorption, multiple volume scattering, radiation trapping due to internal reflection and a combination of coherent and incoherent superposition of reflections between horizontal layer interfaces. Here we introduce MEMLS3&a, an extension of MEMLS, which includes a backscatter model for active microwave remote sensing of snow. The reflectivity is decomposed into diffuse and specular components. Slight undulations of the snow surface are taken into account. The treatment of like- and cross-polarization is accomplished by an empirical splitting parameter q. MEMLS3&a (as well as MEMLS is set up in a way that snow input parameters can be derived by objective measurement methods which avoid fitting procedures of the scattering efficiency of snow, required by several other models. For the validation of the model we have used a combination of active and passive measurements from the NoSREx (Nordic Snow Radar Experiment campaign in Sodankylä, Finland. We find a reasonable agreement between the measurements and simulations, subject to uncertainties in hitherto unmeasured input parameters of the backscatter model. The model is written in Matlab and the code is publicly available for download through the following website: http://www.iapmw.unibe.ch/research/projects/snowtools/memls.html.

  16. PLEXOS Input Data Generator

    Energy Technology Data Exchange (ETDEWEB)

    2017-02-01

    The PLEXOS Input Data Generator (PIDG) is a tool that enables PLEXOS users to better version their data, automate data processing, collaborate in developing inputs, and transfer data between different production cost modeling and other power systems analysis software. PIDG can process data that is in a generalized format from multiple input sources, including CSV files, PostgreSQL databases, and PSS/E .raw files and write it to an Excel file that can be imported into PLEXOS with only limited manual intervention.

  17. Modeling Electric Double-Layers Including Chemical Reaction Effects

    DEFF Research Database (Denmark)

    Paz-Garcia, Juan Manuel; Johannesson, Björn; Ottosen, Lisbeth M.

    2014-01-01

    A physicochemical and numerical model for the transient formation of an electric double-layer between an electrolyte and a chemically-active flat surface is presented, based on a finite elements integration of the nonlinear Nernst-Planck-Poisson model including chemical reactions. The model works...... for symmetric and asymmetric multi-species electrolytes and is not limited to a range of surface potentials. Numerical simulations are presented, for the case of a CaCO3 electrolyte solution in contact with a surface with rate-controlled protonation/deprotonation reactions. The surface charge and potential...... are determined by the surface reactions, and therefore they depends on the bulk solution composition and concentration...

  18. High Resolution Modeling of the Thermospheric Response to Energy Inputs During the RENU-2 Rocket Flight

    Science.gov (United States)

    Walterscheid, R. L.; Brinkman, D. G.; Clemmons, J. H.; Hecht, J. H.; Lessard, M.; Fritz, B.; Hysell, D. L.; Clausen, L. B. N.; Moen, J.; Oksavik, K.; Yeoman, T. K.

    2017-12-01

    The Earth's magnetospheric cusp provides direct access of energetic particles to the thermosphere. These particles produce ionization and kinetic (particle) heating of the atmosphere. The increased ionization coupled with enhanced electric fields in the cusp produces increased Joule heating and ion drag forcing. These energy inputs cause large wind and temperature changes in the cusp region. The Rocket Experiment for Neutral Upwelling -2 (RENU-2) launched from Andoya, Norway at 0745UT on 13 December 2015 into the ionosphere-thermosphere beneath the magnetic cusp. It made measurements of the energy inputs (e.g., precipitating particles, electric fields) and the thermospheric response to these energy inputs (e.g., neutral density and temperature, neutral winds). Complementary ground based measurements were made. In this study, we use a high resolution two-dimensional time-dependent non hydrostatic nonlinear dynamical model driven by rocket and ground based measurements of the energy inputs to simulate the thermospheric response during the RENU-2 flight. Model simulations will be compared to the corresponding measurements of the thermosphere to see what they reveal about thermospheric structure and the nature of magnetosphere-ionosphere-thermosphere coupling in the cusp. Acknowledgements: This material is based upon work supported by the National Aeronautics and Space Administration under Grants: NNX16AH46G and NNX13AJ93G. This research was also supported by The Aerospace Corporation's Technical Investment program

  19. Input vs. Output Taxation—A DSGE Approach to Modelling Resource Decoupling

    Directory of Open Access Journals (Sweden)

    Marek Antosiewicz

    2016-04-01

    Full Text Available Environmental taxes constitute a crucial instrument aimed at reducing resource use through lower production losses, resource-leaner products, and more resource-efficient production processes. In this paper we focus on material use and apply a multi-sector dynamic stochastic general equilibrium (DSGE model to study two types of taxation: tax on material inputs used by industry, energy, construction, and transport sectors, and tax on output of these sectors. We allow for endogenous adoption of resource-saving technologies. We calibrate the model for the EU27 area using an IO matrix. We consider taxation introduced from 2021 and simulate its impact until 2050. We compare the taxes along their ability to induce reduction in material use and raise revenue. We also consider the effect of spending this revenue on reduction of labour taxation. We find that input and output taxation create contrasting incentives and have opposite effects on resource efficiency. The material input tax induces investment in efficiency-improving technology which, in the long term, results in GDP and employment by 15%–20% higher than in the case of a comparable output tax. We also find that using revenues to reduce taxes on labour has stronger beneficial effects for the input tax.

  20. Application of a Linear Input/Output Model to Tankless Water Heaters

    Energy Technology Data Exchange (ETDEWEB)

    Butcher T.; Schoenbauer, B.

    2011-12-31

    In this study, the applicability of a linear input/output model to gas-fired, tankless water heaters has been evaluated. This simple model assumes that the relationship between input and output, averaged over both active draw and idle periods, is linear. This approach is being applied to boilers in other studies and offers the potential to make a small number of simple measurements to obtain the model parameters. These parameters can then be used to predict performance under complex load patterns. Both condensing and non-condensing water heaters have been tested under a very wide range of load conditions. It is shown that this approach can be used to reproduce performance metrics, such as the energy factor, and can be used to evaluate the impacts of alternative draw patterns and conditions.

  1. Efficient uncertainty quantification of a fully nonlinear and dispersive water wave model with random inputs

    DEFF Research Database (Denmark)

    Bigoni, Daniele; Engsig-Karup, Allan Peter; Eskilsson, Claes

    2016-01-01

    A major challenge in next-generation industrial applications is to improve numerical analysis by quantifying uncertainties in predictions. In this work we present a formulation of a fully nonlinear and dispersive potential flow water wave model with random inputs for the probabilistic description...... at different points in the parameter space, allowing for the reuse of existing simulation software. The choice of the applied methods is driven by the number of uncertain input parameters and by the fact that finding the solution of the considered model is computationally intensive. We revisit experimental...... benchmarks often used for validation of deterministic water wave models. Based on numerical experiments and assumed uncertainties in boundary data, our analysis reveals that some of the known discrepancies from deterministic simulation in comparison with experimental measurements could be partially explained...

  2. New Results on Robust Model Predictive Control for Time-Delay Systems with Input Constraints

    Directory of Open Access Journals (Sweden)

    Qing Lu

    2014-01-01

    Full Text Available This paper investigates the problem of model predictive control for a class of nonlinear systems subject to state delays and input constraints. The time-varying delay is considered with both upper and lower bounds. A new model is proposed to approximate the delay. And the uncertainty is polytopic type. For the state-feedback MPC design objective, we formulate an optimization problem. Under model transformation, a new model predictive controller is designed such that the robust asymptotical stability of the closed-loop system can be guaranteed. Finally, the applicability of the presented results are demonstrated by a practical example.

  3. Exclusive queueing model including the choice of service windows

    Science.gov (United States)

    Tanaka, Masahiro; Yanagisawa, Daichi; Nishinari, Katsuhiro

    2018-01-01

    In a queueing system involving multiple service windows, choice behavior is a significant concern. This paper incorporates the choice of service windows into a queueing model with a floor represented by discrete cells. We contrived a logit-based choice algorithm for agents considering the numbers of agents and the distances to all service windows. Simulations were conducted with various parameters of agent choice preference for these two elements and for different floor configurations, including the floor length and the number of service windows. We investigated the model from the viewpoint of transit times and entrance block rates. The influences of the parameters on these factors were surveyed in detail and we determined that there are optimum floor lengths that minimize the transit times. In addition, we observed that the transit times were determined almost entirely by the entrance block rates. The results of the presented model are relevant to understanding queueing systems including the choice of service windows and can be employed to optimize facility design and floor management.

  4. A non-linear dimension reduction methodology for generating data-driven stochastic input models

    Science.gov (United States)

    Ganapathysubramanian, Baskar; Zabaras, Nicholas

    2008-06-01

    Stochastic analysis of random heterogeneous media (polycrystalline materials, porous media, functionally graded materials) provides information of significance only if realistic input models of the topology and property variations are used. This paper proposes a framework to construct such input stochastic models for the topology and thermal diffusivity variations in heterogeneous media using a data-driven strategy. Given a set of microstructure realizations (input samples) generated from given statistical information about the medium topology, the framework constructs a reduced-order stochastic representation of the thermal diffusivity. This problem of constructing a low-dimensional stochastic representation of property variations is analogous to the problem of manifold learning and parametric fitting of hyper-surfaces encountered in image processing and psychology. Denote by M the set of microstructures that satisfy the given experimental statistics. A non-linear dimension reduction strategy is utilized to map M to a low-dimensional region, A. We first show that M is a compact manifold embedded in a high-dimensional input space Rn. An isometric mapping F from M to a low-dimensional, compact, connected set A⊂Rd(d≪n) is constructed. Given only a finite set of samples of the data, the methodology uses arguments from graph theory and differential geometry to construct the isometric transformation F:M→A. Asymptotic convergence of the representation of M by A is shown. This mapping F serves as an accurate, low-dimensional, data-driven representation of the property variations. The reduced-order model of the material topology and thermal diffusivity variations is subsequently used as an input in the solution of stochastic partial differential equations that describe the evolution of dependant variables. A sparse grid collocation strategy (Smolyak algorithm) is utilized to solve these stochastic equations efficiently. We showcase the methodology by constructing low

  5. A non-linear dimension reduction methodology for generating data-driven stochastic input models

    International Nuclear Information System (INIS)

    Ganapathysubramanian, Baskar; Zabaras, Nicholas

    2008-01-01

    Stochastic analysis of random heterogeneous media (polycrystalline materials, porous media, functionally graded materials) provides information of significance only if realistic input models of the topology and property variations are used. This paper proposes a framework to construct such input stochastic models for the topology and thermal diffusivity variations in heterogeneous media using a data-driven strategy. Given a set of microstructure realizations (input samples) generated from given statistical information about the medium topology, the framework constructs a reduced-order stochastic representation of the thermal diffusivity. This problem of constructing a low-dimensional stochastic representation of property variations is analogous to the problem of manifold learning and parametric fitting of hyper-surfaces encountered in image processing and psychology. Denote by M the set of microstructures that satisfy the given experimental statistics. A non-linear dimension reduction strategy is utilized to map M to a low-dimensional region, A. We first show that M is a compact manifold embedded in a high-dimensional input space R n . An isometric mapping F from M to a low-dimensional, compact, connected set A is contained in R d (d<< n) is constructed. Given only a finite set of samples of the data, the methodology uses arguments from graph theory and differential geometry to construct the isometric transformation F:M→A. Asymptotic convergence of the representation of M by A is shown. This mapping F serves as an accurate, low-dimensional, data-driven representation of the property variations. The reduced-order model of the material topology and thermal diffusivity variations is subsequently used as an input in the solution of stochastic partial differential equations that describe the evolution of dependant variables. A sparse grid collocation strategy (Smolyak algorithm) is utilized to solve these stochastic equations efficiently. We showcase the methodology

  6. Non parametric, self organizing, scalable modeling of spatiotemporal inputs: the sign language paradigm.

    Science.gov (United States)

    Caridakis, G; Karpouzis, K; Drosopoulos, A; Kollias, S

    2012-12-01

    Modeling and recognizing spatiotemporal, as opposed to static input, is a challenging task since it incorporates input dynamics as part of the problem. The vast majority of existing methods tackle the problem as an extension of the static counterpart, using dynamics, such as input derivatives, at feature level and adopting artificial intelligence and machine learning techniques originally designed for solving problems that do not specifically address the temporal aspect. The proposed approach deals with temporal and spatial aspects of the spatiotemporal domain in a discriminative as well as coupling manner. Self Organizing Maps (SOM) model the spatial aspect of the problem and Markov models its temporal counterpart. Incorporation of adjacency, both in training and classification, enhances the overall architecture with robustness and adaptability. The proposed scheme is validated both theoretically, through an error propagation study, and experimentally, on the recognition of individual signs, performed by different, native Greek Sign Language users. Results illustrate the architecture's superiority when compared to Hidden Markov Model techniques and variations both in terms of classification performance and computational cost. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Input dependent cell assembly dynamics in a model of the striatal medium spiny neuron network

    Directory of Open Access Journals (Sweden)

    Adam ePonzi

    2012-03-01

    Full Text Available The striatal medium spiny neuron (MSNs network is sparsely connected with fairly weak GABAergic collaterals receiving an excitatory glutamatergic cortical projection. Peri stimulus time histograms (PSTH of MSN population response investigated in various experimental studies display strong firing rate modulations distributed throughout behavioural task epochs. In previous work we have shown by numerical simulation that sparse random networks of inhibitory spiking neurons with characteristics appropriate for UP state MSNs form cell assemblies which fire together coherently in sequences on long behaviourally relevant timescales when the network receives a fixed pattern of constant input excitation. Here we first extend that model to the case where cortical excitation is composed of many independent noisy Poisson processes and demonstrate that cell assembly dynamics is still observed when the input is sufficiently weak. However if cortical excitation strength is increased more regularly firing and completely quiescent cells are found, which depend on the cortical stimulation. Subsequently we further extend previous work to consider what happens when the excitatory input varies as it would in when the animal is engaged in behavior. We investigate how sudden switches in excitation interact with network generated patterned activity. We show that sequences of cell assembly activations can be locked to the excitatory input sequence and delineate the range of parameters where this behaviour is shown. Model cell population PSTH display both stimulus and temporal specificity, with large population firing rate modulations locked to elapsed time from task events. Thus the random network can generate a large diversity of temporally evolving stimulus dependent responses even though the input is fixed between switches. We suggest the MSN network is well suited to the generation of such slow coherent task dependent response

  8. Input dependent cell assembly dynamics in a model of the striatal medium spiny neuron network.

    Science.gov (United States)

    Ponzi, Adam; Wickens, Jeff

    2012-01-01

    The striatal medium spiny neuron (MSN) network is sparsely connected with fairly weak GABAergic collaterals receiving an excitatory glutamatergic cortical projection. Peri-stimulus time histograms (PSTH) of MSN population response investigated in various experimental studies display strong firing rate modulations distributed throughout behavioral task epochs. In previous work we have shown by numerical simulation that sparse random networks of inhibitory spiking neurons with characteristics appropriate for UP state MSNs form cell assemblies which fire together coherently in sequences on long behaviorally relevant timescales when the network receives a fixed pattern of constant input excitation. Here we first extend that model to the case where cortical excitation is composed of many independent noisy Poisson processes and demonstrate that cell assembly dynamics is still observed when the input is sufficiently weak. However if cortical excitation strength is increased more regularly firing and completely quiescent cells are found, which depend on the cortical stimulation. Subsequently we further extend previous work to consider what happens when the excitatory input varies as it would when the animal is engaged in behavior. We investigate how sudden switches in excitation interact with network generated patterned activity. We show that sequences of cell assembly activations can be locked to the excitatory input sequence and outline the range of parameters where this behavior is shown. Model cell population PSTH display both stimulus and temporal specificity, with large population firing rate modulations locked to elapsed time from task events. Thus the random network can generate a large diversity of temporally evolving stimulus dependent responses even though the input is fixed between switches. We suggest the MSN network is well suited to the generation of such slow coherent task dependent response which could be utilized by the animal in behavior.

  9. Computational Techniques for Model Predictive Control of Large-Scale Systems with Continuous-Valued and Discrete-Valued Inputs

    Directory of Open Access Journals (Sweden)

    Koichi Kobayashi

    2013-01-01

    Full Text Available We propose computational techniques for model predictive control of large-scale systems with both continuous-valued control inputs and discrete-valued control inputs, which are a class of hybrid systems. In the proposed method, we introduce the notion of virtual control inputs, which are obtained by relaxing discrete-valued control inputs to continuous variables. In online computation, first, we find continuous-valued control inputs and virtual control inputs minimizing a cost function. Next, using the obtained virtual control inputs, only discrete-valued control inputs at the current time are computed in each subsystem. In addition, we also discuss the effect of quantization errors. Finally, the effectiveness of the proposed method is shown by a numerical example. The proposed method enables us to reduce and decentralize the computation load.

  10. On the redistribution of existing inputs using the spherical frontier dea model

    Directory of Open Access Journals (Sweden)

    José Virgilio Guedes de Avellar

    2010-04-01

    Full Text Available The Spherical Frontier DEA Model (SFM (Avellar et al., 2007 was developed to be used when one wants to fairly distribute a new and fixed input to a group of Decision Making Units (DMU's. SFM's basic idea is to distribute this new and fixed input in such a way that every DMU will be placed on an efficiency frontier with a spherical shape. We use SFM to analyze the problems that appear when one wants to redistribute an already existing input to a group of DMU's such that the total sum of this input will remain constant. We also analyze the case in which this total sum may vary.O Modelo de Fronteira Esférica (MFE (Avellar et al., 2007 foi desenvolvido para ser usado quando se deseja distribuir de maneira justa um novo insumo a um conjunto de unidades tomadoras de decisão (DMU's, da sigla em inglês, Decision Making Units. A ideia básica do MFE é a de distribuir esse novo insumo de maneira que todas as DMU's sejam colocadas numa fronteira de eficiência com um formato esférico. Neste artigo, usamos MFE para analisar o problema que surge quando se deseja redistribuir um insumo já existente para um grupo de DMU's de tal forma que a soma desse insumo para todas as DMU's se mantenha constante. Também analisamos o caso em que essa soma possa variar.

  11. Persistence and ergodicity of plant disease model with markov conversion and impulsive toxicant input

    Science.gov (United States)

    Zhao, Wencai; Li, Juan; Zhang, Tongqian; Meng, Xinzhu; Zhang, Tonghua

    2017-07-01

    Taking into account of both white and colored noises, a stochastic mathematical model with impulsive toxicant input is formulated. Based on this model, we investigate dynamics, such as the persistence and ergodicity, of plant infectious disease model with Markov conversion in a polluted environment. The thresholds of extinction and persistence in mean are obtained. By using Lyapunov functions, we prove that the system is ergodic and has a stationary distribution under certain sufficient conditions. Finally, numerical simulations are employed to illustrate our theoretical analysis.

  12. Post-BEMUSE Reflood Model Input Uncertainty Methods (PREMIUM) Benchmark Phase II: Identification of Influential Parameters

    International Nuclear Information System (INIS)

    Kovtonyuk, A.; Petruzzi, A.; D'Auria, F.

    2015-01-01

    The objective of the Post-BEMUSE Reflood Model Input Uncertainty Methods (PREMIUM) benchmark is to progress on the issue of the quantification of the uncertainty of the physical models in system thermal-hydraulic codes by considering a concrete case: the physical models involved in the prediction of core reflooding. The PREMIUM benchmark consists of five phases. This report presents the results of Phase II dedicated to the identification of the uncertain code parameters associated with physical models used in the simulation of reflooding conditions. This identification is made on the basis of the Test 216 of the FEBA/SEFLEX programme according to the following steps: - identification of influential phenomena; - identification of the associated physical models and parameters, depending on the used code; - quantification of the variation range of identified input parameters through a series of sensitivity calculations. A procedure for the identification of potentially influential code input parameters has been set up in the Specifications of Phase II of PREMIUM benchmark. A set of quantitative criteria has been as well proposed for the identification of influential IP and their respective variation range. Thirteen participating organisations, using 8 different codes (7 system thermal-hydraulic codes and 1 sub-channel module of a system thermal-hydraulic code) submitted Phase II results. The base case calculations show spread in predicted cladding temperatures and quench front propagation that has been characterized. All the participants, except one, predict a too fast quench front progression. Besides, the cladding temperature time trends obtained by almost all the participants show oscillatory behaviour which may have numeric origins. Adopted criteria for identification of influential input parameters differ between the participants: some organisations used the set of criteria proposed in Specifications 'as is', some modified the quantitative thresholds

  13. The Canadian Defence Input-Output Model DIO Version 4.41

    Science.gov (United States)

    2011-09-01

    Request to develop DND tailored Input/Output Model. Electronic communication from AllenWeldon to Team Leader, Defence Economics Team onMarch 12, 2011...and similar contain- ers 166 1440 Handbags, wallets and similar personal articles such as eyeglass and cigar cases and coin purses 167 1450 Cotton yarn...408 3600 Radar and radio navigation equipment 409 3619 Semi-conductors 410 3621 Printed circuits 411 3622 Integrated circuits 412 3623 Other electronic

  14. Urban Landscape Characterization Using Remote Sensing Data For Input into Air Quality Modeling

    Science.gov (United States)

    Quattrochi, Dale A.; Estes, Maurice G., Jr.; Crosson, William; Khan, Maudood

    2005-01-01

    The urban landscape is inherently complex and this complexity is not adequately captured in air quality models that are used to assess whether urban areas are in attainment of EPA air quality standards, particularly for ground level ozone. This inadequacy of air quality models to sufficiently respond to the heterogeneous nature of the urban landscape can impact how well these models predict ozone pollutant levels over metropolitan areas and ultimately, whether cities exceed EPA ozone air quality standards. We are exploring the utility of high-resolution remote sensing data and urban growth projections as improved inputs to meteorological and air quality models focusing on the Atlanta, Georgia metropolitan area as a case study. The National Land Cover Dataset at 30m resolution is being used as the land use/land cover input and aggregated to the 4km scale for the MM5 mesoscale meteorological model and the Community Multiscale Air Quality (CMAQ) modeling schemes. Use of these data have been found to better characterize low density/suburban development as compared with USGS 1 km land use/land cover data that have traditionally been used in modeling. Air quality prediction for future scenarios to 2030 is being facilitated by land use projections using a spatial growth model. Land use projections were developed using the 2030 Regional Transportation Plan developed by the Atlanta Regional Commission. This allows the State Environmental Protection agency to evaluate how these transportation plans will affect future air quality.

  15. Development of an Input Suite for an Orthotropic Composite Material Model

    Science.gov (United States)

    Hoffarth, Canio; Shyamsunder, Loukham; Khaled, Bilal; Rajan, Subramaniam; Goldberg, Robert K.; Carney, Kelly S.; Dubois, Paul; Blankenhorn, Gunther

    2017-01-01

    An orthotropic three-dimensional material model suitable for use in modeling impact tests has been developed that has three major components elastic and inelastic deformations, damage and failure. The material model has been implemented as MAT213 into a special version of LS-DYNA and uses tabulated data obtained from experiments. The prominent features of the constitutive model are illustrated using a widely-used aerospace composite the T800S3900-2B[P2352W-19] BMS8-276 Rev-H-Unitape fiber resin unidirectional composite. The input for the deformation model consists of experimental data from 12 distinct experiments at a known temperature and strain rate: tension and compression along all three principal directions, shear in all three principal planes, and off axis tension or compression tests in all three principal planes, along with other material constants. There are additional input associated with the damage and failure models. The steps in using this model are illustrated composite characterization tests, verification tests and a validation test. The results show that the developed and implemented model is stable and yields acceptably accurate results.

  16. Kinetic models of gene expression including non-coding RNAs

    Energy Technology Data Exchange (ETDEWEB)

    Zhdanov, Vladimir P., E-mail: zhdanov@catalysis.r

    2011-03-15

    In cells, genes are transcribed into mRNAs, and the latter are translated into proteins. Due to the feedbacks between these processes, the kinetics of gene expression may be complex even in the simplest genetic networks. The corresponding models have already been reviewed in the literature. A new avenue in this field is related to the recognition that the conventional scenario of gene expression is fully applicable only to prokaryotes whose genomes consist of tightly packed protein-coding sequences. In eukaryotic cells, in contrast, such sequences are relatively rare, and the rest of the genome includes numerous transcript units representing non-coding RNAs (ncRNAs). During the past decade, it has become clear that such RNAs play a crucial role in gene expression and accordingly influence a multitude of cellular processes both in the normal state and during diseases. The numerous biological functions of ncRNAs are based primarily on their abilities to silence genes via pairing with a target mRNA and subsequently preventing its translation or facilitating degradation of the mRNA-ncRNA complex. Many other abilities of ncRNAs have been discovered as well. Our review is focused on the available kinetic models describing the mRNA, ncRNA and protein interplay. In particular, we systematically present the simplest models without kinetic feedbacks, models containing feedbacks and predicting bistability and oscillations in simple genetic networks, and models describing the effect of ncRNAs on complex genetic networks. Mathematically, the presentation is based primarily on temporal mean-field kinetic equations. The stochastic and spatio-temporal effects are also briefly discussed.

  17. A generic method for automatic translation between input models for different versions of simulation codes

    International Nuclear Information System (INIS)

    Serfontein, Dawid E.; Mulder, Eben J.; Reitsma, Frederik

    2014-01-01

    A computer code was developed for the semi-automatic translation of input models for the VSOP-A diffusion neutronics simulation code to the format of the newer VSOP 99/05 code. In this paper, this algorithm is presented as a generic method for producing codes for the automatic translation of input models from the format of one code version to another, or even to that of a completely different code. Normally, such translations are done manually. However, input model files, such as for the VSOP codes, often are very large and may consist of many thousands of numeric entries that make no particular sense to the human eye. Therefore the task, of for instance nuclear regulators, to verify the accuracy of such translated files can be very difficult and cumbersome. This may cause translation errors not to be picked up, which may have disastrous consequences later on when a reactor with such a faulty design is built. Therefore a generic algorithm for producing such automatic translation codes may ease the translation and verification process to a great extent. It will also remove human error from the process, which may significantly enhance the accuracy and reliability of the process. The developed algorithm also automatically creates a verification log file which permanently record the names and values of each variable used, as well as the list of meanings of all the possible values. This should greatly facilitate reactor licensing applications

  18. A generic method for automatic translation between input models for different versions of simulation codes

    Energy Technology Data Exchange (ETDEWEB)

    Serfontein, Dawid E., E-mail: Dawid.Serfontein@nwu.ac.za [School of Mechanical and Nuclear Engineering, North West University (PUK-Campus), PRIVATE BAG X6001 (Internal Post Box 360), Potchefstroom 2520 (South Africa); Mulder, Eben J. [School of Mechanical and Nuclear Engineering, North West University (South Africa); Reitsma, Frederik [Calvera Consultants (South Africa)

    2014-05-01

    A computer code was developed for the semi-automatic translation of input models for the VSOP-A diffusion neutronics simulation code to the format of the newer VSOP 99/05 code. In this paper, this algorithm is presented as a generic method for producing codes for the automatic translation of input models from the format of one code version to another, or even to that of a completely different code. Normally, such translations are done manually. However, input model files, such as for the VSOP codes, often are very large and may consist of many thousands of numeric entries that make no particular sense to the human eye. Therefore the task, of for instance nuclear regulators, to verify the accuracy of such translated files can be very difficult and cumbersome. This may cause translation errors not to be picked up, which may have disastrous consequences later on when a reactor with such a faulty design is built. Therefore a generic algorithm for producing such automatic translation codes may ease the translation and verification process to a great extent. It will also remove human error from the process, which may significantly enhance the accuracy and reliability of the process. The developed algorithm also automatically creates a verification log file which permanently record the names and values of each variable used, as well as the list of meanings of all the possible values. This should greatly facilitate reactor licensing applications.

  19. Progress Towards an LES Wall Model Including Unresolved Roughness

    Science.gov (United States)

    Craft, Kyle; Redman, Andrew; Aikens, Kurt

    2015-11-01

    Wall models used in large eddy simulations (LES) are often based on theories for hydraulically smooth walls. While this is reasonable for many applications, there are also many where the impact of surface roughness is important. A previously developed wall model has been used primarily for jet engine aeroacoustics. However, jet simulations have not accurately captured thick initial shear layers found in some experimental data. This may partly be due to nozzle wall roughness used in the experiments to promote turbulent boundary layers. As a result, the wall model is extended to include the effects of unresolved wall roughness through appropriate alterations to the log-law. The methodology is tested for incompressible flat plate boundary layers with different surface roughness. Correct trends are noted for the impact of surface roughness on the velocity profile. However, velocity deficit profiles and the Reynolds stresses do not collapse as well as expected. Possible reasons for the discrepancies as well as future work will be presented. This work used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation grant number ACI-1053575. Computational resources on TACC Stampede were provided under XSEDE allocation ENG150001.

  20. Extending Primitive Spatial Data Models to Include Semantics

    Science.gov (United States)

    Reitsma, F.; Batcheller, J.

    2009-04-01

    Our traditional geospatial data model involves associating some measurable quality, such as temperature, or observable feature, such as a tree, with a point or region in space and time. When capturing data we implicitly subscribe to some kind of conceptualisation. If we can make this explicit in an ontology and associate it with the captured data, we can leverage formal semantics to reason with the concepts represented in our spatial data sets. To do so, we extend our fundamental representation of geospatial data in a data model by including a URI in our basic data model that links it to our ontology defining our conceptualisation, We thus extend Goodchild et al's geo-atom [1] with the addition of a URI: (x, Z, z(x), URI) . This provides us with pixel or feature level knowledge and the ability to create layers of data from a set of pixels or features that might be drawn from a database based on their semantics. Using open source tools, we present a prototype that involves simple reasoning as a proof of concept. References [1] M.F. Goodchild, M. Yuan, and T.J. Cova. Towards a general theory of geographic representation in gis. International Journal of Geographical Information Science, 21(3):239-260, 2007.

  1. Accurate SHAPE-directed RNA secondary structure modeling, including pseudoknots.

    Science.gov (United States)

    Hajdin, Christine E; Bellaousov, Stanislav; Huggins, Wayne; Leonard, Christopher W; Mathews, David H; Weeks, Kevin M

    2013-04-02

    A pseudoknot forms in an RNA when nucleotides in a loop pair with a region outside the helices that close the loop. Pseudoknots occur relatively rarely in RNA but are highly overrepresented in functionally critical motifs in large catalytic RNAs, in riboswitches, and in regulatory elements of viruses. Pseudoknots are usually excluded from RNA structure prediction algorithms. When included, these pairings are difficult to model accurately, especially in large RNAs, because allowing this structure dramatically increases the number of possible incorrect folds and because it is difficult to search the fold space for an optimal structure. We have developed a concise secondary structure modeling approach that combines SHAPE (selective 2'-hydroxyl acylation analyzed by primer extension) experimental chemical probing information and a simple, but robust, energy model for the entropic cost of single pseudoknot formation. Structures are predicted with iterative refinement, using a dynamic programming algorithm. This melded experimental and thermodynamic energy function predicted the secondary structures and the pseudoknots for a set of 21 challenging RNAs of known structure ranging in size from 34 to 530 nt. On average, 93% of known base pairs were predicted, and all pseudoknots in well-folded RNAs were identified.

  2. Development of algorithm for depreciation costs allocation in dynamic input-output industrial enterprise model

    Directory of Open Access Journals (Sweden)

    Keller Alevtina

    2017-01-01

    Full Text Available The article considers the issue of allocation of depreciation costs in the dynamic inputoutput model of an industrial enterprise. Accounting the depreciation costs in such a model improves the policy of fixed assets management. It is particularly relevant to develop the algorithm for the allocation of depreciation costs in the construction of dynamic input-output model of an industrial enterprise, since such enterprises have a significant amount of fixed assets. Implementation of terms of the adequacy of such an algorithm itself allows: evaluating the appropriateness of investments in fixed assets, studying the final financial results of an industrial enterprise, depending on management decisions in the depreciation policy. It is necessary to note that the model in question for the enterprise is always degenerate. It is caused by the presence of zero rows in the matrix of capital expenditures by lines of structural elements unable to generate fixed assets (part of the service units, households, corporate consumers. The paper presents the algorithm for the allocation of depreciation costs for the model. This algorithm was developed by the authors and served as the basis for further development of the flowchart for subsequent implementation with use of software. The construction of such algorithm and its use for dynamic input-output models of industrial enterprises is actualized by international acceptance of the effectiveness of the use of input-output models for national and regional economic systems. This is what allows us to consider that the solutions discussed in the article are of interest to economists of various industrial enterprises.

  3. A time-resolved model of the mesospheric Na layer: constraints on the meteor input function

    Directory of Open Access Journals (Sweden)

    J. M. C. Plane

    2004-01-01

    Full Text Available A time-resolved model of the Na layer in the mesosphere/lower thermosphere region is described, where the continuity equations for the major sodium species Na, Na+ and NaHCO3 are solved explicity, and the other short-lived species are treated in steady-state. It is shown that the diurnal variation of the Na layer can only be modelled satisfactorily if sodium species are permanently removed below about 85 km, both through the dimerization of NaHCO3 and the uptake of sodium species on meteoric smoke particles that are assumed to have formed from the recondensation of vaporized meteoroids. When the sensitivity of the Na layer to the meteoroid input function is considered, an inconsistent picture emerges. The ratio of the column abundance of Na+ to Na is shown to increase strongly with the average meteoroid velocity, because the Na is injected at higher altitudes. Comparison with a limited set of Na+ measurements indicates that the average meteoroid velocity is probably less than about 25 km s-1, in agreement with velocity estimates from conventional meteor radars, and considerably slower than recent observations made by wide aperture incoherent scatter radars. The Na column abundance is shown to be very sensitive to the meteoroid mass input rate, and to the rate of vertical transport by eddy diffusion. Although the magnitude of the eddy diffusion coefficient in the 80–90 km region is uncertain, there is a consensus between recent models using parameterisations of gravity wave momentum deposition that the average value is less than 3×105 cm2 s-1. This requires that the global meteoric mass input rate is less than about 20 td-1, which is closest to estimates from incoherent scatter radar observations. Finally, the diurnal variation in the meteoroid input rate only slight perturbs the Na layer, because the residence time of Na in the layer is several days, and diurnal effects are effectively averaged out.

  4. Good Modeling Practice for PAT Applications: Propagation of Input Uncertainty and Sensitivity Analysis

    DEFF Research Database (Denmark)

    Sin, Gürkan; Gernaey, Krist; Eliasson Lantz, Anna

    2009-01-01

    The uncertainty and sensitivity analysis are evaluated for their usefulness as part of the model-building within Process Analytical Technology applications. A mechanistic model describing a batch cultivation of Streptomyces coelicolor for antibiotic production was used as case study. The input...... compared to the large uncertainty observed in the antibiotic and off-gas CO2 predictions. The output uncertainty was observed to be lower during the exponential growth phase, while higher in the stationary and death phases - meaning the model describes some periods better than others. To understand which...... promising for helping to build reliable mechanistic models and to interpret the model outputs properly. These tools make part of good modeling practice, which can contribute to successful PAT applications for increased process understanding, operation and control purposes. © 2009 American Institute...

  5. A speech production model including the nasal Cavity

    DEFF Research Database (Denmark)

    Olesen, Morten

    In order to obtain articulatory analysis of speech production the model is improved. the standard model, as used in LPC analysis, to a large extent only models the acoustic properties of speech signal as opposed to articulatory modelling of the speech production. In spite of this the LPC model...... is by far the most widely used model in speech technology....

  6. Medellin, a model that includes poverty as a business

    Directory of Open Access Journals (Sweden)

    Janeth Restrepo Marín

    2016-05-01

    Full Text Available This paper presents inputs discussions Kavilando research group, around Medellin today, in terms of poverty; of how that category proves to be an excellent place which places the bulk of the population as worthy of technical-social intervention, to restore their dignity and change the system inequitable distribution of wealth, but rather as a mechanism that circulates the budget private to public, altruism faced with the discourse of inclusion, seeking demagogically making new poor consumers, entrepreneurs, etc., thus further delaying the essential discussion.

  7. Unitary input DEA model to identify beef cattle production systems typologies

    Directory of Open Access Journals (Sweden)

    Eliane Gonçalves Gomes

    2012-08-01

    Full Text Available The cow-calf beef production sector in Brazil has a wide variety of operating systems. This suggests the identification and the characterization of homogeneous regions of production, with consequent implementation of actions to achieve its sustainability. In this paper we attempted to measure the performance of 21 livestock modal production systems, in their cow-calf phase. We measured the performance of these systems, considering husbandry and production variables. The proposed approach is based on data envelopment analysis (DEA. We used unitary input DEA model, with apparent input orientation, together with the efficiency measurements generated by the inverted DEA frontier. We identified five modal production systems typologies, using the isoefficiency layers approach. The results showed that the knowledge and the processes management are the most important factors for improving the efficiency of beef cattle production systems.

  8. Time series analysis as input for clinical predictive modeling: modeling cardiac arrest in a pediatric ICU.

    Science.gov (United States)

    Kennedy, Curtis E; Turley, James P

    2011-10-24

    Thousands of children experience cardiac arrest events every year in pediatric intensive care units. Most of these children die. Cardiac arrest prediction tools are used as part of medical emergency team evaluations to identify patients in standard hospital beds that are at high risk for cardiac arrest. There are no models to predict cardiac arrest in pediatric intensive care units though, where the risk of an arrest is 10 times higher than for standard hospital beds. Current tools are based on a multivariable approach that does not characterize deterioration, which often precedes cardiac arrests. Characterizing deterioration requires a time series approach. The purpose of this study is to propose a method that will allow for time series data to be used in clinical prediction models. Successful implementation of these methods has the potential to bring arrest prediction to the pediatric intensive care environment, possibly allowing for interventions that can save lives and prevent disabilities. We reviewed prediction models from nonclinical domains that employ time series data, and identified the steps that are necessary for building predictive models using time series clinical data. We illustrate the method by applying it to the specific case of building a predictive model for cardiac arrest in a pediatric intensive care unit. Time course analysis studies from genomic analysis provided a modeling template that was compatible with the steps required to develop a model from clinical time series data. The steps include: 1) selecting candidate variables; 2) specifying measurement parameters; 3) defining data format; 4) defining time window duration and resolution; 5) calculating latent variables for candidate variables not directly measured; 6) calculating time series features as latent variables; 7) creating data subsets to measure model performance effects attributable to various classes of candidate variables; 8) reducing the number of candidate features; 9

  9. The sensitivity of ecosystem service models to choices of input data and spatial resolution

    Science.gov (United States)

    Bagstad, Kenneth J.; Cohen, Erika; Ancona, Zachary H.; McNulty, Steven; Sun, Ge

    2018-01-01

    Although ecosystem service (ES) modeling has progressed rapidly in the last 10–15 years, comparative studies on data and model selection effects have become more common only recently. Such studies have drawn mixed conclusions about whether different data and model choices yield divergent results. In this study, we compared the results of different models to address these questions at national, provincial, and subwatershed scales in Rwanda. We compared results for carbon, water, and sediment as modeled using InVEST and WaSSI using (1) land cover data at 30 and 300 m resolution and (2) three different input land cover datasets. WaSSI and simpler InVEST models (carbon storage and annual water yield) were relatively insensitive to the choice of spatial resolution, but more complex InVEST models (seasonal water yield and sediment regulation) produced large differences when applied at differing resolution. Six out of nine ES metrics (InVEST annual and seasonal water yield and WaSSI) gave similar predictions for at least two different input land cover datasets. Despite differences in mean values when using different data sources and resolution, we found significant and highly correlated results when using Spearman's rank correlation, indicating consistent spatial patterns of high and low values. Our results confirm and extend conclusions of past studies, showing that in certain cases (e.g., simpler models and national-scale analyses), results can be robust to data and modeling choices. For more complex models, those with different output metrics, and subnational to site-based analyses in heterogeneous environments, data and model choices may strongly influence study findings.

  10. Hydromechanical modeling of clay rock including fracture damage

    Science.gov (United States)

    Asahina, D.; Houseworth, J. E.; Birkholzer, J. T.

    2012-12-01

    Argillaceous rock typically acts as a flow barrier, but under certain conditions significant and potentially conductive fractures may be present. Fracture formation is well-known to occur in the vicinity of underground excavations in a region known as the excavation disturbed zone. Such problems are of particular importance for low-permeability, mechanically weak rock such as clays and shales because fractures can be relatively transient as a result of fracture self-sealing processes. Perhaps not as well appreciated is the fact that natural fractures can form in argillaceous rock as a result of hydraulic overpressure caused by phenomena such as disequlibrium compaction, changes in tectonic stress, and mineral dehydration. Overpressure conditions can cause hydraulic fracturing if the fluid pressure leads to tensile effective stresses that exceed the tensile strength of the material. Quantitative modeling of this type of process requires coupling between hydrogeologic processes and geomechanical processes including fracture initiation and propagation. Here we present a computational method for three-dimensional, hydromechanical coupled processes including fracture damage. Fractures are represented as discrete features in a fracture network that interact with a porous rock matrix. Fracture configurations are mapped onto an unstructured, three-dimensonal, Voronoi grid, which is based on a random set of spatial points. Discrete fracture networks (DFN) are represented by the connections of the edges of a Voronoi cells. This methodology has the advantage that fractures can be more easily introduced in response to coupled hydro-mechanical processes and generally eliminates several potential issues associated with the geometry of DFN and numerical gridding. A geomechanical and fracture-damage model is developed here using the Rigid-Body-Spring-Network (RBSN) numerical method. The hydrogelogic and geomechanical models share the same geometrical information from a 3D Voronoi

  11. The role of additive neurogenesis and synaptic plasticity in a hippocampal memory model with grid-cell like input.

    Directory of Open Access Journals (Sweden)

    Peter A Appleby

    Full Text Available Recently, we presented a study of adult neurogenesis in a simplified hippocampal memory model. The network was required to encode and decode memory patterns despite changing input statistics. We showed that additive neurogenesis was a more effective adaptation strategy compared to neuronal turnover and conventional synaptic plasticity as it allowed the network to respond to changes in the input statistics while preserving representations of earlier environments. Here we extend our model to include realistic, spatially driven input firing patterns in the form of grid cells in the entorhinal cortex. We compare network performance across a sequence of spatial environments using three distinct adaptation strategies: conventional synaptic plasticity, where the network is of fixed size but the connectivity is plastic; neuronal turnover, where the network is of fixed size but units in the network may die and be replaced; and additive neurogenesis, where the network starts out with fewer initial units but grows over time. We confirm that additive neurogenesis is a superior adaptation strategy when using realistic, spatially structured input patterns. We then show that a more biologically plausible neurogenesis rule that incorporates cell death and enhanced plasticity of new granule cells has an overall performance significantly better than any one of the three individual strategies operating alone. This adaptation rule can be tailored to maximise performance of the network when operating as either a short- or long-term memory store. We also examine the time course of adult neurogenesis over the lifetime of an animal raised under different hypothetical rearing conditions. These growth profiles have several distinct features that form a theoretical prediction that could be tested experimentally. Finally, we show that place cells can emerge and refine in a realistic manner in our model as a direct result of the sparsification performed by the dentate gyrus

  12. VSC Input-Admittance Modeling and Analysis Above the Nyquist Frequency for Passivity-Based Stability Assessment

    DEFF Research Database (Denmark)

    Harnefors, Lennart; Finger, Raphael; Wang, Xiongfei

    2017-01-01

    The interconnection stability of a gridconnected voltage-source converter (VSC) can be assessed via the dissipative properties of its input admittance. In this paper, the modeling of the current control loop is revisited with the aim to improve the accuracy of the input-admittance model above...

  13. 'Fingerprints' of four crop models as affected by soil input data aggregation

    DEFF Research Database (Denmark)

    Angulo, Carlos; Gaiser, Thomas; Rötter, Reimund P

    2014-01-01

    for all models. Further analysis revealed that the small influence of spatial resolution of soil input data might be related to: (a) the high precipitation amount in the region which partly masked differences in soil characteristics for water holding capacity, (b) the loss of variability in hydraulic soil...... properties due to the methods applied to calculate water retention properties of the used soil profiles, and (c) the method of soil data aggregation. No characteristic “fingerprint” between sites, years and resolutions could be found for any of the models. Our results support earlier recommendation....... In this study we used four crop models (SIMPLACE, DSSAT-CSM, EPIC and DAISY) differing in the detail of modeling above-ground biomass and yield as well as of modeling soil water dynamics, water uptake and drought effects on plants to simulate winter wheat in two (agro-climatologically and geo...

  14. Investigations of the sensitivity of a coronal mass ejection model (ENLIL) to solar input parameters

    DEFF Research Database (Denmark)

    Falkenberg, Thea Vilstrup; Vršnak, B.; Taktakishvili, A.

    2010-01-01

    Understanding space weather is not only important for satellite operations and human exploration of the solar system but also to phenomena here on Earth that may potentially disturb and disrupt electrical signals. Some of the most violent space weather effects are caused by coronal mass ejections...... (CMEs), but in order to predict the caused effects, we need to be able to model their propagation from their origin in the solar corona to the point of interest, e.g., Earth. Many such models exist, but to understand the models in detail we must understand the primary input parameters. Here we...... investigate the parameter space of the ENLILv2.5b model using the CME event of 25 July 2004. ENLIL is a time‐dependent 3‐D MHD model that can simulate the propagation of cone‐shaped interplanetary coronal mass ejections (ICMEs) through the solar system. Excepting the cone parameters (radius, position...

  15. Assessment of input function distortions on kinetic model parameters in simulated dynamic 82Rb PET perfusion studies

    International Nuclear Information System (INIS)

    Meyer, Carsten; Peligrad, Dragos-Nicolae; Weibrecht, Martin

    2007-01-01

    Cardiac 82 rubidium dynamic PET studies allow quantifying absolute myocardial perfusion by using tracer kinetic modeling. Here, the accurate measurement of the input function, i.e. the tracer concentration in blood plasma, is a major challenge. This measurement is deteriorated by inappropriate temporal sampling, spillover, etc. Such effects may influence the measured input peak value and the measured blood pool clearance. The aim of our study is to evaluate the effect of input function distortions on the myocardial perfusion as estimated by the model. To this end, we simulate noise-free myocardium time activity curves (TACs) with a two-compartment kinetic model. The input function to the model is a generic analytical function. Distortions of this function have been introduced by varying its parameters. Using the distorted input function, the compartment model has been fitted to the simulated myocardium TAC. This analysis has been performed for various sets of model parameters covering a physiologically relevant range. The evaluation shows that ±10% error in the input peak value can easily lead to ±10-25% error in the model parameter K 1 , which relates to myocardial perfusion. Variations in the input function tail are generally less relevant. We conclude that an accurate estimation especially of the plasma input peak is crucial for a reliable kinetic analysis and blood flow estimation

  16. Scaling precipitation input to spatially distributed hydrological models by measured snow distribution

    Directory of Open Access Journals (Sweden)

    Christian Vögeli

    2016-12-01

    Full Text Available Accurate knowledge on snow distribution in alpine terrain is crucial for various applicationssuch as flood risk assessment, avalanche warning or managing water supply and hydro-power.To simulate the seasonal snow cover development in alpine terrain, the spatially distributed,physics-based model Alpine3D is suitable. The model is typically driven by spatial interpolationsof observations from automatic weather stations (AWS, leading to errors in the spatial distributionof atmospheric forcing. With recent advances in remote sensing techniques, maps of snowdepth can be acquired with high spatial resolution and accuracy. In this work, maps of the snowdepth distribution, calculated from summer and winter digital surface models based on AirborneDigital Sensors (ADS, are used to scale precipitation input data, with the aim to improve theaccuracy of simulation of the spatial distribution of snow with Alpine3D. A simple method toscale and redistribute precipitation is presented and the performance is analysed. The scalingmethod is only applied if it is snowing. For rainfall the precipitation is distributed by interpolation,with a simple air temperature threshold used for the determination of the precipitation phase.It was found that the accuracy of spatial snow distribution could be improved significantly forthe simulated domain. The standard deviation of absolute snow depth error is reduced up toa factor 3.4 to less than 20 cm. The mean absolute error in snow distribution was reducedwhen using representative input sources for the simulation domain. For inter-annual scaling, themodel performance could also be improved, even when using a remote sensing dataset from adifferent winter. In conclusion, using remote sensing data to process precipitation input, complexprocesses such as preferential snow deposition and snow relocation due to wind or avalanches,can be substituted and modelling performance of spatial snow distribution is improved.

  17. PERMODELAN INDEKS HARGA KONSUMEN INDONESIA DENGAN MENGGUNAKAN MODEL INTERVENSI MULTI INPUT

    KAUST Repository

    Novianti, Putri Wikie

    2017-01-24

    There are some events which are expected effecting CPI’s fluctuation, i.e. financial crisis 1997/1998, fuel price risings, base year changing’s, independence of Timor-Timur (October 1999), and Tsunami disaster in Aceh (December 2004). During re-search period, there were eight fuel price risings and four base year changing’s. The objective of this research is to obtain multi input intervention model which can des-cribe magnitude and duration of each event effected to CPI. Most of intervention re-searches that have been done are only contain of an intervention with single input, ei-ther step or pulse function. Multi input intervention was used in Indonesia CPI case because there are some events which are expected effecting CPI. Based on the result, those events were affecting CPI. Additionally, other events, such as Ied on January 1999, events on April 2002, July 2003, December 2005, and September 2008, were affecting CPI too. In general, those events gave positive effect to CPI, except events on April 2002 and July 2003 which gave negative effects.

  18. Detection of no-model input-output pairs in closed-loop systems.

    Science.gov (United States)

    Potts, Alain Segundo; Alvarado, Christiam Segundo Morales; Garcia, Claudio

    2017-11-01

    The detection of no-model input-output (IO) pairs is important because it can speed up the multivariable system identification process, since all the pairs with null transfer functions are previously discarded and it can also improve the identified model quality, thus improving the performance of model based controllers. In the available literature, the methods focus just on the open-loop case, since in this case there is not the effect of the controller forcing the main diagonal in the transfer matrix to one and all the other terms to zero. In this paper, a modification of a previous method able to detect no-model IO pairs in open-loop systems is presented, but adapted to perform this duty in closed-loop systems. Tests are performed by using the traditional methods and the proposed one to show its effectiveness. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  19. Input-output model of regional environmental and economic impacts of nuclear power plants

    International Nuclear Information System (INIS)

    Johnson, M.H.; Bennett, J.T.

    1979-01-01

    The costs of delayed licensing of nuclear power plants calls for a more-comprehensive method of quantifying the economic and environmental impacts on a region. A traditional input-output (I-O) analysis approach is extended to assess the effects of changes in output, income, employment, pollution, water consumption, and the costs and revenues of local government disaggregated among 23 industry sectors during the construction and operating phases. Unlike earlier studies, this model uses nonlinear environmental interactions and specifies environmental feedbacks to the economic sector. 20 references

  20. Using Whole-House Field Tests to Empirically Derive Moisture Buffering Model Inputs

    Energy Technology Data Exchange (ETDEWEB)

    Woods, J.; Winkler, J.; Christensen, D.; Hancock, E.

    2014-08-01

    Building energy simulations can be used to predict a building's interior conditions, along with the energy use associated with keeping these conditions comfortable. These models simulate the loads on the building (e.g., internal gains, envelope heat transfer), determine the operation of the space conditioning equipment, and then calculate the building's temperature and humidity throughout the year. The indoor temperature and humidity are affected not only by the loads and the space conditioning equipment, but also by the capacitance of the building materials, which buffer changes in temperature and humidity. This research developed an empirical method to extract whole-house model inputs for use with a more accurate moisture capacitance model (the effective moisture penetration depth model). The experimental approach was to subject the materials in the house to a square-wave relative humidity profile, measure all of the moisture transfer terms (e.g., infiltration, air conditioner condensate) and calculate the only unmeasured term: the moisture absorption into the materials. After validating the method with laboratory measurements, we performed the tests in a field house. A least-squares fit of an analytical solution to the measured moisture absorption curves was used to determine the three independent model parameters representing the moisture buffering potential of this house and its furnishings. Follow on tests with realistic latent and sensible loads showed good agreement with the derived parameters, especially compared to the commonly-used effective capacitance approach. These results show that the EMPD model, once the inputs are known, is an accurate moisture buffering model.

  1. Low-level waste shallow land disposal source term model: Data input guides

    International Nuclear Information System (INIS)

    Sullivan, T.M.; Suen, C.J.

    1989-07-01

    This report provides an input guide for the computational models developed to predict the rate of radionuclide release from shallow land disposal of low-level waste. Release of contaminants depends on four processes: water flow, container degradation, waste from leaching, and contaminant transport. The computer code FEMWATER has been selected to predict the movement of water in an unsaturated porous media. The computer code BLT (Breach, Leach, and Transport), a modification of FEMWASTE, has been selected to predict the processes of container degradation (Breach), contaminant release from the waste form (Leach), and contaminant migration (Transport). In conjunction, these two codes have the capability to account for the effects of disposal geometry, unsaturated/water flow, container degradation, waste form leaching, and migration of contaminants releases within a single disposal trench. In addition to the input requirements, this report presents the fundamental equations and relationships used to model the four different processes previously discussed. Further, the appendices provide a representative sample of data required by the different models. 14 figs., 27 tabs

  2. Modelling the soil microclimate: does the spatial or temporal resolution of input parameters matter?

    Directory of Open Access Journals (Sweden)

    Anna Carter

    2016-01-01

    Full Text Available The urgency of predicting future impacts of environmental change on vulnerable populations is advancing the development of spatially explicit habitat models. Continental-scale climate and microclimate layers are now widely available. However, most terrestrial organisms exist within microclimate spaces that are very small, relative to the spatial resolution of those layers. We examined the effects of multi-resolution, multi-extent topographic and climate inputs on the accuracy of hourly soil temperature predictions for a small island generated at a very high spatial resolution (<1 m2 using the mechanistic microclimate model in NicheMapR. Achieving an accuracy comparable to lower-resolution, continental-scale microclimate layers (within about 2–3°C of observed values required the use of daily weather data as well as high resolution topographic layers (elevation, slope, aspect, horizon angles, while inclusion of site-specific soil properties did not markedly improve predictions. Our results suggest that large-extent microclimate layers may not provide accurate estimates of microclimate conditions when the spatial extent of a habitat or other area of interest is similar to or smaller than the spatial resolution of the layers themselves. Thus, effort in sourcing model inputs should be focused on obtaining high resolution terrain data, e.g., via LiDAR or photogrammetry, and local weather information rather than in situ sampling of microclimate characteristics.

  3. Transport coefficient computation based on input/output reduced order models

    Science.gov (United States)

    Hurst, Joshua L.

    The guiding purpose of this thesis is to address the optimal material design problem when the material description is a molecular dynamics model. The end goal is to obtain a simplified and fast model that captures the property of interest such that it can be used in controller design and optimization. The approach is to examine model reduction analysis and methods to capture a specific property of interest, in this case viscosity, or more generally complex modulus or complex viscosity. This property and other transport coefficients are defined by a input/output relationship and this motivates model reduction techniques that are tailored to preserve input/output behavior. In particular Singular Value Decomposition (SVD) based methods are investigated. First simulation methods are identified that are amenable to systems theory analysis. For viscosity, these models are of the Gosling and Lees-Edwards type. They are high order nonlinear Ordinary Differential Equations (ODEs) that employ Periodic Boundary Conditions. Properties can be calculated from the state trajectories of these ODEs. In this research local linear approximations are rigorously derived and special attention is given to potentials that are evaluated with Periodic Boundary Conditions (PBC). For the Gosling description LTI models are developed from state trajectories but are found to have limited success in capturing the system property, even though it is shown that full order LTI models can be well approximated by reduced order LTI models. For the Lees-Edwards SLLOD type model nonlinear ODEs will be approximated by a Linear Time Varying (LTV) model about some nominal trajectory and both balanced truncation and Proper Orthogonal Decomposition (POD) will be used to assess the plausibility of reduced order models to this system description. An immediate application of the derived LTV models is Quasilinearization or Waveform Relaxation. Quasilinearization is a Newton's method applied to the ODE operator

  4. Fuzzy portfolio model with fuzzy-input return rates and fuzzy-output proportions

    Science.gov (United States)

    Tsaur, Ruey-Chyn

    2015-02-01

    In the finance market, a short-term investment strategy is usually applied in portfolio selection in order to reduce investment risk; however, the economy is uncertain and the investment period is short. Further, an investor has incomplete information for selecting a portfolio with crisp proportions for each chosen security. In this paper we present a new method of constructing fuzzy portfolio model for the parameters of fuzzy-input return rates and fuzzy-output proportions, based on possibilistic mean-standard deviation models. Furthermore, we consider both excess or shortage of investment in different economic periods by using fuzzy constraint for the sum of the fuzzy proportions, and we also refer to risks of securities investment and vagueness of incomplete information during the period of depression economics for the portfolio selection. Finally, we present a numerical example of a portfolio selection problem to illustrate the proposed model and a sensitivity analysis is realised based on the results.

  5. Single-Phase Bundle Flows Including Macroscopic Turbulence Model

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Jun; Yoon, Han Young [KAERI, Daejeon (Korea, Republic of); Yoon, Seok Jong; Cho, Hyoung Kyu [Seoul National University, Seoul (Korea, Republic of)

    2016-05-15

    To deal with various thermal hydraulic phenomena due to rapid change of fluid properties when an accident happens, securing mechanistic approaches as much as possible may reduce the uncertainty arising from improper applications of the experimental models. In this study, the turbulence mixing model, which is well defined in the subchannel analysis code such as VIPRE, COBRA, and MATRA by experiments, is replaced by a macroscopic k-e turbulence model, which represents the aspect of mathematical derivation. The performance of CUPID with macroscopic turbulence model is validated against several bundle experiments: CNEN 4x4 and PNL 7x7 rod bundle tests. In this study, the macroscopic k-e model has been validated for the application to subchannel analysis. It has been implemented in the CUPID code and validated against CNEN 4x4 and PNL 7x7 rod bundle tests. The results showed that the macroscopic k-e turbulence model can estimate the experiments properly.

  6. Multiregional input-output model for the evaluation of Spanish water flows.

    Science.gov (United States)

    Cazcarro, Ignacio; Duarte, Rosa; Sánchez Chóliz, Julio

    2013-01-01

    We construct a multiregional input-output model for Spain, in order to evaluate the pressures on the water resources, virtual water flows, and water footprints of the regions, and the water impact of trade relationships within Spain and abroad. The study is framed with those interregional input-output models constructed to study water flows and impacts of regions in China, Australia, Mexico, or the UK. To build our database, we reconcile regional IO tables, national and regional accountancy of Spain, trade and water data. Results show an important imbalance between origin of water resources and final destination, with significant water pressures in the South, Mediterranean, and some central regions. The most populated and dynamic regions of Madrid and Barcelona are important drivers of water consumption in Spain. Main virtual water exporters are the South and Central agrarian regions: Andalusia, Castile-La Mancha, Castile-Leon, Aragon, and Extremadura, while the main virtual water importers are the industrialized regions of Madrid, Basque country, and the Mediterranean coast. The paper shows the different location of direct and indirect consumers of water in Spain and how the economic trade and consumption pattern of certain areas has significant impacts on the availability of water resources in other different and often drier regions.

  7. A unitarized meson model including color Coulomb interaction

    International Nuclear Information System (INIS)

    Metzger, Kees.

    1990-01-01

    Ch. 1 gives a general introduction into the problem field of the thesis. It discusses in how far the internal structure of mesons is understood theoretically and which models exist. It discusses from a phenomenological point of view the problem of confinement indicates how quark models of mesons may provide insight in this phenomenon. In ch. 2 the formal theory of scattering in a system with confinement is given. It is shown how a coupled channel (CC) description and the work of other authors fit into this general framework. Explicit examples and arguments are given to support the CC treatment of such a system. In ch. 3 the full coupled-channel model as is employed in this thesis is presented. On the basis of arguments from the former chapters and the observed regularities in the experimental data, the choices underlying the model are supported. In this model confinement is described with a mass-dependent harmonic-oscillator potential and the presence of open (meson-meson) channels plays an essential role. In ch. 4 the unitarized model is applied to light scalar meson resonances. In this regime the contribution of the open channels is considerable. It is demonstrated that the model parameters as used for the description of the pseudo-scalar and vector mesons, unchanged can be used for the description of these mesons. Ch. 5 treats the color-Coulomb interaction. There the effect of the Coulomb interaction is studied in simple models without decay. The results of incorporating the color-Coulomb interaction into the full CC model are given in ch.6. Ch. 7 discusses the results of the previous chapters and the present status of the model. (author). 182 refs.; 16 figs.; 33 tabs

  8. Model analysis of riparian buffer effectiveness for reducing nutrient inputs to streams in agricultural landscapes

    Science.gov (United States)

    McKane, R. B.; M, S.; F, P.; Kwiatkowski, B. L.; Rastetter, E. B.

    2006-12-01

    Federal and state agencies responsible for protecting water quality rely mainly on statistically-based methods to assess and manage risks to the nation's streams, lakes and estuaries. Although statistical approaches provide valuable information on current trends in water quality, process-based simulation models are essential for understanding and forecasting how changes in human activities across complex landscapes impact the transport of nutrients and contaminants to surface waters. To address this need, we developed a broadly applicable, process-based watershed simulator that links a spatially-explicit hydrologic model and a terrestrial biogeochemistry model (MEL). See Stieglitz et al. and Pan et al., this meeting, for details on the design and verification of this simulator. Here we apply the watershed simulator to a generalized agricultural setting to demonstrate its potential for informing policy and management decisions concerning water quality. This demonstration specifically explores the effectiveness of riparian buffers for reducing the transport of nitrogenous fertilizers from agricultural fields to streams. The interaction of hydrologic and biogeochemical processes represented in our simulator allows several important questions to be addressed. (1) For a range of upland fertilization rates, to what extent do riparian buffers reduce nitrogen inputs to streams? (2) How does buffer effectiveness change over time as the plant-soil system approaches N-saturation? (3) How can buffers be managed to increase their effectiveness, e.g., through periodic harvest and replanting? The model results illustrate that, while the answers to these questions depend to some extent on site factors (climatic regime, soil properties and vegetation type), in all cases riparian buffers have a limited capacity to reduce nitrogen inputs to streams where fertilization rates approach those typically used for intensive agriculture (e.g., 200 kg N per ha per year for corn in the U

  9. Global atmospheric model for mercury including oxidation by bromine atoms

    Directory of Open Access Journals (Sweden)

    C. D. Holmes

    2010-12-01

    Full Text Available Global models of atmospheric mercury generally assume that gas-phase OH and ozone are the main oxidants converting Hg0 to HgII and thus driving mercury deposition to ecosystems. However, thermodynamic considerations argue against the importance of these reactions. We demonstrate here the viability of atomic bromine (Br as an alternative Hg0 oxidant. We conduct a global 3-D simulation with the GEOS-Chem model assuming gas-phase Br to be the sole Hg0 oxidant (Hg + Br model and compare to the previous version of the model with OH and ozone as the sole oxidants (Hg + OH/O3 model. We specify global 3-D Br concentration fields based on our best understanding of tropospheric and stratospheric Br chemistry. In both the Hg + Br and Hg + OH/O3 models, we add an aqueous photochemical reduction of HgII in cloud to impose a tropospheric lifetime for mercury of 6.5 months against deposition, as needed to reconcile observed total gaseous mercury (TGM concentrations with current estimates of anthropogenic emissions. This added reduction would not be necessary in the Hg + Br model if we adjusted the Br oxidation kinetics downward within their range of uncertainty. We find that the Hg + Br and Hg + OH/O3 models are equally capable of reproducing the spatial distribution of TGM and its seasonal cycle at northern mid-latitudes. The Hg + Br model shows a steeper decline of TGM concentrations from the tropics to southern mid-latitudes. Only the Hg + Br model can reproduce the springtime depletion and summer rebound of TGM observed at polar sites; the snowpack component of GEOS-Chem suggests that 40% of HgII deposited to snow in the Arctic is transferred to the ocean and land reservoirs, amounting to a net deposition flux to the Arctic of 60 Mg a−1. Summertime events of depleted Hg0 at Antarctic sites due to subsidence are much better simulated by

  10. On Input Vector Representation for the SVR model of Reactor Core Loading Pattern Critical Parameters

    International Nuclear Information System (INIS)

    Trontl, K.; Pevec, D.; Smuc, T.

    2008-01-01

    Determination and optimization of reactor core loading pattern is an important factor in nuclear power plant operation. The goal is to minimize the amount of enriched uranium (fresh fuel) and burnable absorbers placed in the core, while maintaining nuclear power plant operational and safety characteristics. The usual approach to loading pattern optimization involves high degree of engineering judgment, a set of heuristic rules, an optimization algorithm and a computer code used for evaluating proposed loading patterns. The speed of the optimization process is highly dependent on the computer code used for the evaluation. Recently, we proposed a new method for fast loading pattern evaluation based on general robust regression model relying on the state of the art research in the field of machine learning. We employed Support Vector Regression (SVR) technique. SVR is a supervised learning method in which model parameters are automatically determined by solving a quadratic optimization problem. The preliminary tests revealed a good potential of the SVR method application for fast and accurate reactor core loading pattern evaluation. However, some aspects of model development are still unresolved. The main objective of the work reported in this paper was to conduct additional tests and analyses required for full clarification of the SVR applicability for loading pattern evaluation. We focused our attention on the parameters defining input vector, primarily its structure and complexity, and parameters defining kernel functions. All the tests were conducted on the NPP Krsko reactor core, using MCRAC code for the calculation of reactor core loading pattern critical parameters. The tested input vector structures did not influence the accuracy of the models suggesting that the initially tested input vector, consisted of the number of IFBAs and the k-inf at the beginning of the cycle, is adequate. The influence of kernel function specific parameters (σ for RBF kernel

  11. The prediction of the cavitation phenomena including population balance modeling

    Science.gov (United States)

    Bannari, Rachid; Hliwa, Ghizlane Zineb; Bannari, Abdelfettah; Belghiti, Mly Taib

    2017-07-01

    Cavitation is the principal reason behind the behavior's modification of the hydraulic turbines. However, the experimental observations can not be appropriate to all cases due to the limitations in the measurement techniques. The mathematical models which have been implemented, use the mixture multiphase frame. As well as, most of the published work is limited by considering a constant bubble size distribution. However, this assumption is not realist. The aim of this article is the implementation and the use of a non-homogeneous multiphase model which solve two phases transport equation. The evolution of bubble size is considered by the population balance equation. This study is based on the eulerian-eulerian model, associated to the cavitation model. All the inter-phase forces such as drag, lift and virtual mass are used.

  12. Effective property determination for input to a geostatistical model of regional groundwater flow: Wellenberg T→K

    International Nuclear Information System (INIS)

    Lanyon, G.W.; Marschall, P.; Vomvoris, S.; Jaquet, O.; Mazurek, M.

    1998-01-01

    This paper describes the methodology used to estimate effective hydraulic properties for input into a regional geostatistical model of groundwater flow at the Wellenberg site in Switzerland. The methodology uses a geologically-based discrete fracture network model to calculate effective hydraulic properties for 100m blocks along each borehole. A description of the most transmissive features (Water Conducting Features or WCFs) in each borehole is used to determine local transmissivity distributions which are combined with descriptions of WCF extent, orientation and channelling to create fracture network models. WCF geometry is dependent on the class of WCF. WCF classes are defined for each type of geological structure associated with identified borehole inflows. Local to each borehole, models are conditioned on the observed transmissivity and occurrence of WCFs. Multiple realisations are calculated for each 100m block over approximately 400m of borehole. The results from the numerical upscaling are compared with conservative estimates of hydraulic conductivity. Results from unconditioned models are also compared to identify the consequences of conditioning and interval of boreholes that appear to be atypical. An inverse method is also described by which realisations of the geostatistical model can be used to condition discrete fracture network models away from the boreholes. The method can be used as a verification of the modelling approach by prediction of data at borehole locations. Applications of the models to estimation of post-closure repository performance, including cavern inflow and seal zone modelling, are illustrated

  13. Including model uncertainty in risk-informed decision making

    International Nuclear Information System (INIS)

    Reinert, Joshua M.; Apostolakis, George E.

    2006-01-01

    Model uncertainties can have a significant impact on decisions regarding licensing basis changes. We present a methodology to identify basic events in the risk assessment that have the potential to change the decision and are known to have significant model uncertainties. Because we work with basic event probabilities, this methodology is not appropriate for analyzing uncertainties that cause a structural change to the model, such as success criteria. We use the risk achievement worth (RAW) importance measure with respect to both the core damage frequency (CDF) and the change in core damage frequency (ΔCDF) to identify potentially important basic events. We cross-check these with generically important model uncertainties. Then, sensitivity analysis is performed on the basic event probabilities, which are used as a proxy for the model parameters, to determine how much error in these probabilities would need to be present in order to impact the decision. A previously submitted licensing basis change is used as a case study. Analysis using the SAPHIRE program identifies 20 basic events as important, four of which have model uncertainties that have been identified in the literature as generally important. The decision is fairly insensitive to uncertainties in these basic events. In three of these cases, one would need to show that model uncertainties would lead to basic event probabilities that would be between two and four orders of magnitude larger than modeled in the risk assessment before they would become important to the decision. More detailed analysis would be required to determine whether these higher probabilities are reasonable. Methods to perform this analysis from the literature are reviewed and an example is demonstrated using the case study

  14. Targeting the right input data to improve crop modeling at global level

    Science.gov (United States)

    Adam, M.; Robertson, R.; Gbegbelegbe, S.; Jones, J. W.; Boote, K. J.; Asseng, S.

    2012-12-01

    Designed for location-specific simulations, the use of crop models at a global level raises important questions. Crop models are originally premised on small unit areas where environmental conditions and management practices are considered homogeneous. Specific information describing soils, climate, management, and crop characteristics are used in the calibration process. However, when scaling up for global application, we rely on information derived from geographical information systems and weather generators. To run crop models at broad, we use a modeling platform that assumes a uniformly generated grid cell as a unit area. Specific weather, specific soil and specific management practices for each crop are represented for each of the cell grids. Studies on the impacts of the uncertainties of weather information and climate change on crop yield at a global level have been carried out (Osborne et al, 2007, Nelson et al., 2010, van Bussel et al, 2011). Detailed information on soils and management practices at global level are very scarce but recognized to be of critical importance (Reidsma et al., 2009). Few attempts to assess the impact of their uncertainties on cropping systems performances can be found. The objectives of this study are (i) to determine sensitivities of a crop model to soil and management practices, inputs most relevant to low input rainfed cropping systems, and (ii) to define hotspots of sensitivity according to the input data. We ran DSSAT v4.5 globally (CERES-CROPSIM) to simulate wheat yields at 45arc-minute resolution. Cultivar parameters were calibrated and validated for different mega-environments (results not shown). The model was run for nitrogen-limited production systems. This setting was chosen as the most representative to simulate actual yield (especially for low-input rainfed agricultural systems) and assumes crop growth to be free of any pest and diseases damages. We conducted a sensitivity analysis on contrasting management

  15. ATEFlap aerodynamic model, a dynamic stall model including the effects of trailing edge flap deflection

    Energy Technology Data Exchange (ETDEWEB)

    Bergami, L.; Gaunaa, M.

    2012-02-15

    The report presents the ATEFlap aerodynamic model, which computes the unsteady lift, drag and moment on a 2D airfoil section equipped with Adaptive Trailing Edge Flap. The model captures the unsteady response related to the effects of the vorticity shed into the wake, and the dynamics of flow separation a thin-airfoil potential flow model is merged with a dynamic stall model of the Beddoes-Leishmann type. The inputs required by the model are steady data for lift, drag, and moment coefficients as function of angle of attack and flap deflection. Further steady data used by the Beddoes- Leishmann dynamic stall model are computed in an external preprocessor application, which gives the user the possibility to verify, and eventually correct, the steady data passed to the aerodynamic model. The ATEFlap aerodynamic model is integrated in the aeroelastic simulation tool HAWC2, thus al- lowing to simulate the response of a wind turbine with trailing edge flaps on the rotor. The algorithms used by the preprocessor, and by aerodynamic model are presented, and modifications to previous implementations of the aerodynamic model are briefly discussed. The performance and the validity of the model are verified by comparing the dynamic response computed by the ATEFlap with solutions from CFD simulations. (Author)

  16. Transport modelling including radial electric field and plasma rotation

    International Nuclear Information System (INIS)

    Fukuyama, A.; Fuji, Y.; Itoh, S.-I.

    1994-01-01

    Using a simple turbulent transport model with a constant diffusion coefficient and a fixed temperature profile, the density profile in a steady state and the transient behaviour during the co and counter neutral beam injection are studied. More consistent analysis has been initiated with a turbulent transport model based on the current diffusive high-n ballooning mode. The enhancement of the radial electric field due to ion orbit losses and the reduction of the transport due to the poloidal rotation shear are demonstrated. The preliminary calculation indicates a sensitive temperature dependence of the density profile. (author)

  17. Identifying Clusters with Mixture Models that Include Radial Velocity Observations

    Science.gov (United States)

    Czarnatowicz, Alexis; Ybarra, Jason E.

    2018-01-01

    The study of stellar clusters plays an integral role in the study of star formation. We present a cluster mixture model that considers radial velocity data in addition to spatial data. Maximum likelihood estimation through the Expectation-Maximization (EM) algorithm is used for parameter estimation. Our mixture model analysis can be used to distinguish adjacent or overlapping clusters, and estimate properties for each cluster.Work supported by awards from the Virginia Foundation for Independent Colleges (VFIC) Undergraduate Science Research Fellowship and The Research Experience @Bridgewater (TREB).

  18. Constitutive modeling of multiphase materials including phase transformations

    NARCIS (Netherlands)

    Perdahcioglu, Emin Semih; Geijselaers, Hubertus J.M.; Khan, A.S.; Meredith, C; Farrokh, B

    2011-01-01

    A constitutive model is developed for materials involving two or more different phases in their microstructure such as DP (Dual Phase) or TRIP (TRansformation Induced Plasticity) steels. Homogenization of the response of the phases is achieved by the Mean-Field method. One of the phases in TRIP

  19. Development of realistic concrete models including scaling effects

    International Nuclear Information System (INIS)

    Carpinteri, A.

    1989-09-01

    Progressive cracking in structural elements of concrete is considered. Two simple models are applied, which, even though different, lead to similar predictions for the fracture behaviour. Both Virtual Crack Propagation Model and Cohesive Limit Analysis (Section 2), show a trend towards brittle behaviour and catastrophical events for large structural sizes. A numerical Cohesive Crack Model is proposed (Section 3) to describe strain softening and strain localization in concrete. Such a model is able to predict the size effects of fracture mechanics accurately. Whereas for Mode I, only untieing of the finite element nodes is applied to simulate crack growth, for Mixed Mode a topological variation is required at each step (Section 4). In the case of the four point shear specimen, the load vs. deflection diagrams reveal snap-back instability for large sizes. By increasing the specimen sizes, such instability tends to reproduce the classical LEFM instability. Remarkable size effects are theoretically predicted and experimentally confirmed also for reinforced concrete (Section 5). The brittleness of the flexural members increases by increasing size and/or decreasing steel content. On the basis of these results, the empirical code rules regarding the minimum amount of reinforcement could be considerably revised

  20. Dynamic model including piping acoustics of a centrifugal compression system

    NARCIS (Netherlands)

    Helvoirt, van J.; Jager, de A.G.

    2007-01-01

    This paper deals with low frequency pulsation phenomena in full-scale centrifugal compression systems associated with compressor surge. The Greitzer lumped parameter model is applied to describe the dynamic behavior of an industrial compressor test rig and experimental evidence is provided for the

  1. An Approach for Generating Precipitation Input for Worst-Case Flood Modelling

    Science.gov (United States)

    Felder, Guido; Weingartner, Rolf

    2015-04-01

    There is a lack of suitable methods for creating precipitation scenarios that can be used to realistically estimate peak discharges with very low probabilities. On the one hand, existing methods are methodically questionable when it comes to physical system boundaries. On the other hand, the spatio-temporal representativeness of precipitation patterns as system input is limited. In response, this study proposes a method of deriving representative spatio-temporal precipitation patterns and presents a step towards making methodically correct estimations of infrequent floods by using a worst-case approach. A Monte-Carlo rainfall-runoff model allows for the testing of a wide range of different spatio-temporal distributions of an extreme precipitation event and therefore for the generation of a hydrograph for each of these distributions. Out of these numerous hydrographs and their corresponding peak discharges, the worst-case catchment reactions on the system input can be derived. The spatio-temporal distributions leading to the highest peak discharges are identified and can eventually be used for further investigations.

  2. Including lateral interactions into microkinetic models of catalytic reactions

    DEFF Research Database (Denmark)

    Hellman, Anders; Honkala, Johanna Karoliina

    2007-01-01

    In many catalytic reactions lateral interactions between adsorbates are believed to have a strong influence on the reaction rates. We apply a microkinetic model to explore the effect of lateral interactions and how to efficiently take them into account in a simple catalytic reaction. Three differ...... different approximations are investigated: site, mean-field, and quasichemical approximations. The obtained results are compared to accurate Monte Carlo numbers. In the end, we apply the approximations to a real catalytic reaction, namely, ammonia synthesis....

  3. Multivariate sensitivity analysis to measure global contribution of input factors in dynamic models

    International Nuclear Information System (INIS)

    Lamboni, Matieyendou; Monod, Herve; Makowski, David

    2011-01-01

    Many dynamic models are used for risk assessment and decision support in ecology and crop science. Such models generate time-dependent model predictions, with time either discretised or continuous. Their global sensitivity analysis is usually applied separately on each time output, but Campbell et al. (2006 ) advocated global sensitivity analyses on the expansion of the dynamics in a well-chosen functional basis. This paper focuses on the particular case when principal components analysis is combined with analysis of variance. In addition to the indices associated with the principal components, generalised sensitivity indices are proposed to synthesize the influence of each parameter on the whole time series output. Index definitions are given when the uncertainty on the input factors is either discrete or continuous and when the dynamic model is either discrete or functional. A general estimation algorithm is proposed, based on classical methods of global sensitivity analysis. The method is applied to a dynamic wheat crop model with 13 uncertain parameters. Three methods of global sensitivity analysis are compared: the Sobol'-Saltelli method, the extended FAST method, and the fractional factorial design of resolution 6.

  4. Comparison of several climate indices as inputs in modelling of the Baltic Sea runoff

    Energy Technology Data Exchange (ETDEWEB)

    Hanninen, J.; Vuorinen, I. [Turku Univ. (Finland). Archipelaco Research Inst.], e-mail: jari.hanninen@utu.fi

    2012-11-01

    Using Transfer function (TF) models, we have earlier presented a chain of events between changes in the North Atlantic Oscillation (NAO) and their oceanographical and ecological consequences in the Baltic Sea. Here we tested whether other climate indices as inputs would improve TF models, and our understanding of the Baltic Sea ecosystem. Besides NAO, the predictors were the Arctic Oscillation (AO), sea-level air pressures at Iceland (SLP), and wind speeds at Hoburg (Gotland). All indices produced good TF models when the total riverine runoff to the Baltic Sea was used as a modelling basis. AO was not applicable in all study areas, showing a delay of about half a year between climate and runoff events, connected with freezing and melting time of ice and snow in the northern catchment area of the Baltic Sea. NAO appeared to be most useful modelling tool as its area of applicability was the widest of the tested indices, and the time lag between climate and runoff events was the shortest. SLP and Hoburg wind speeds showed largely same results as NAO, but with smaller areal applicability. Thus AO and NAO were both mostly contributing to the general understanding of climate control of runoff events in the Baltic Sea ecosystem. (orig.)

  5. Multivariate sensitivity analysis to measure global contribution of input factors in dynamic models

    Energy Technology Data Exchange (ETDEWEB)

    Lamboni, Matieyendou [INRA, Unite MIA (UR341), F78352 Jouy en Josas Cedex (France); Monod, Herve, E-mail: herve.monod@jouy.inra.f [INRA, Unite MIA (UR341), F78352 Jouy en Josas Cedex (France); Makowski, David [INRA, UMR Agronomie INRA/AgroParisTech (UMR 211), BP 01, F78850 Thiverval-Grignon (France)

    2011-04-15

    Many dynamic models are used for risk assessment and decision support in ecology and crop science. Such models generate time-dependent model predictions, with time either discretised or continuous. Their global sensitivity analysis is usually applied separately on each time output, but Campbell et al. (2006) advocated global sensitivity analyses on the expansion of the dynamics in a well-chosen functional basis. This paper focuses on the particular case when principal components analysis is combined with analysis of variance. In addition to the indices associated with the principal components, generalised sensitivity indices are proposed to synthesize the influence of each parameter on the whole time series output. Index definitions are given when the uncertainty on the input factors is either discrete or continuous and when the dynamic model is either discrete or functional. A general estimation algorithm is proposed, based on classical methods of global sensitivity analysis. The method is applied to a dynamic wheat crop model with 13 uncertain parameters. Three methods of global sensitivity analysis are compared: the Sobol'-Saltelli method, the extended FAST method, and the fractional factorial design of resolution 6.

  6. Solar Load Inputs for USARIEM Thermal Strain Models and the Solar Radiation-Sensitive Components of the WBGT Index

    National Research Council Canada - National Science Library

    Matthew, William

    2001-01-01

    This report describes processes we have implemented to use global pyranometer-based estimates of mean radiant temperature as the common solar load input for the Scenario model, the USARIEM heat strain...

  7. Parton recombination model including resonance production. RL-78-040

    International Nuclear Information System (INIS)

    Roberts, R.G.; Hwa, R.C.; Matsuda, S.

    1978-05-01

    Possible effects of resonance production on the meson inclusive distribution in the fragmentation region are investigated in the framework of the parton recombination model. From a detailed study of the data on vector-meson production, a reliable ratio of the vector-to-pseudoscalar rates is determined. Then the influence of the decay of the vector mesons on the pseudoscalar spectrum is examined, and the effect found to be no more than 25% for x > 0.5. The normalization of the non-strange antiquark distributions are still higher than those in a quiescent proton. The agreement between the calculated results and data remain very good. 36 references

  8. Parton recombination model including resonance production. RL-78-040

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, R. G.; Hwa, R. C.; Matsuda, S.

    1978-05-01

    Possible effects of resonance production on the meson inclusive distribution in the fragmentation region are investigated in the framework of the parton recombination model. From a detailed study of the data on vector-meson production, a reliable ratio of the vector-to-pseudoscalar rates is determined. Then the influence of the decay of the vector mesons on the pseudoscalar spectrum is examined, and the effect found to be no more than 25% for x > 0.5. The normalization of the non-strange antiquark distributions are still higher than those in a quiescent proton. The agreement between the calculated results and data remain very good. 36 references.

  9. Extending PSA models including ageing and asset management - 15291

    International Nuclear Information System (INIS)

    Martorell, S.; Marton, I.; Carlos, S.; Sanchez, A.I.

    2015-01-01

    This paper proposes a new approach to Ageing Probabilistic Safety Assessment (APSA) modelling, which is intended to be used to support risk-informed decisions on the effectiveness of maintenance management programs and technical specification requirements of critical equipment of Nuclear Power Plants (NPP) within the framework of the Risk Informed Decision Making according to R.G. 1.174 principles. This approach focuses on the incorporation of not only equipment ageing but also effectiveness of maintenance and efficiency of surveillance testing explicitly into APSA models and data. This methodology is applied to a motor-operated valve of the auxiliary feed water system (AFWS) of a PWR. This simple example of application focuses on a critical safety-related equipment of a NPP in order to evaluate the risk impact of considering different approaches to APSA and the combined effect of equipment ageing and maintenance and testing alternatives along NPP design life. The risk impact of several alternatives in maintenance strategy is discussed

  10. Modelling and control of a microgrid including photovoltaic and wind generation

    Science.gov (United States)

    Hussain, Mohammed Touseef

    Extensive increase of distributed generation (DG) penetration and the existence of multiple DG units at distribution level have introduced the notion of micro-grid. This thesis develops a detailed non-linear and small-signal dynamic model of a microgrid that includes PV, wind and conventional small scale generation along with their power electronics interfaces and the filters. The models developed evaluate the amount of generation mix from various DGs for satisfactory steady state operation of the microgrid. In order to understand the interaction of the DGs on microgrid system initially two simpler configurations were considered. The first one consists of microalternator, PV and their electronics, and the second system consists of microalternator and wind system each connected to the power system grid. Nonlinear and linear state space model of each microgrid are developed. Small signal analysis showed that the large participation of PV/wind can drive the microgrid to the brink of unstable region without adequate control. Non-linear simulations are carried out to verify the results obtained through small-signal analysis. The role of the extent of generation mix of a composite microgrid consisting of wind, PV and conventional generation was investigated next. The findings of the smaller systems were verified through nonlinear and small signal modeling. A central supervisory capacitor energy storage controller interfaced through a STATCOM was proposed to monitor and enhance the microgrid operation. The potential of various control inputs to provide additional damping to the system has been evaluated through decomposition techniques. The signals identified to have damping contents were employed to design the supervisory control system. The controller gains were tuned through an optimal pole placement technique. Simulation studies demonstrate that the STATCOM voltage phase angle and PV inverter phase angle were the best inputs for enhanced stability boundaries.

  11. Assessment of NASA's Physiographic and Meteorological Datasets as Input to HSPF and SWAT Hydrological Models

    Science.gov (United States)

    Alacron, Vladimir J.; Nigro, Joseph D.; McAnally, William H.; OHara, Charles G.; Engman, Edwin Ted; Toll, David

    2011-01-01

    This paper documents the use of simulated Moderate Resolution Imaging Spectroradiometer land use/land cover (MODIS-LULC), NASA-LIS generated precipitation and evapo-transpiration (ET), and Shuttle Radar Topography Mission (SRTM) datasets (in conjunction with standard land use, topographical and meteorological datasets) as input to hydrological models routinely used by the watershed hydrology modeling community. The study is focused in coastal watersheds in the Mississippi Gulf Coast although one of the test cases focuses in an inland watershed located in northeastern State of Mississippi, USA. The decision support tools (DSTs) into which the NASA datasets were assimilated were the Soil Water & Assessment Tool (SWAT) and the Hydrological Simulation Program FORTRAN (HSPF). These DSTs are endorsed by several US government agencies (EPA, FEMA, USGS) for water resources management strategies. These models use physiographic and meteorological data extensively. Precipitation gages and USGS gage stations in the region were used to calibrate several HSPF and SWAT model applications. Land use and topographical datasets were swapped to assess model output sensitivities. NASA-LIS meteorological data were introduced in the calibrated model applications for simulation of watershed hydrology for a time period in which no weather data were available (1997-2006). The performance of the NASA datasets in the context of hydrological modeling was assessed through comparison of measured and model-simulated hydrographs. Overall, NASA datasets were as useful as standard land use, topographical , and meteorological datasets. Moreover, NASA datasets were used for performing analyses that the standard datasets could not made possible, e.g., introduction of land use dynamics into hydrological simulations

  12. Estimating severity of sideways fall using a generic multi linear regression model based on kinematic input variables.

    Science.gov (United States)

    van der Zijden, A M; Groen, B E; Tanck, E; Nienhuis, B; Verdonschot, N; Weerdesteyn, V

    2017-03-21

    Many research groups have studied fall impact mechanics to understand how fall severity can be reduced to prevent hip fractures. Yet, direct impact force measurements with force plates are restricted to a very limited repertoire of experimental falls. The purpose of this study was to develop a generic model for estimating hip impact forces (i.e. fall severity) in in vivo sideways falls without the use of force plates. Twelve experienced judokas performed sideways Martial Arts (MA) and Block ('natural') falls on a force plate, both with and without a mat on top. Data were analyzed to determine the hip impact force and to derive 11 selected (subject-specific and kinematic) variables. Falls from kneeling height were used to perform a stepwise regression procedure to assess the effects of these input variables and build the model. The final model includes four input variables, involving one subject-specific measure and three kinematic variables: maximum upper body deceleration, body mass, shoulder angle at the instant of 'maximum impact' and maximum hip deceleration. The results showed that estimated and measured hip impact forces were linearly related (explained variances ranging from 46 to 63%). Hip impact forces of MA falls onto the mat from a standing position (3650±916N) estimated by the final model were comparable with measured values (3698±689N), even though these data were not used for training the model. In conclusion, a generic linear regression model was developed that enables the assessment of fall severity through kinematic measures of sideways falls, without using force plates. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Fractional Gaussian noise-enhanced information capacity of a nonlinear neuron model with binary signal input

    Science.gov (United States)

    Gao, Feng-Yin; Kang, Yan-Mei; Chen, Xi; Chen, Guanrong

    2018-05-01

    This paper reveals the effect of fractional Gaussian noise with Hurst exponent H ∈(1 /2 ,1 ) on the information capacity of a general nonlinear neuron model with binary signal input. The fGn and its corresponding fractional Brownian motion exhibit long-range, strong-dependent increments. It extends standard Brownian motion to many types of fractional processes found in nature, such as the synaptic noise. In the paper, for the subthreshold binary signal, sufficient conditions are given based on the "forbidden interval" theorem to guarantee the occurrence of stochastic resonance, while for the suprathreshold binary signal, the simulated results show that additive fGn with Hurst exponent H ∈(1 /2 ,1 ) could increase the mutual information or bits count. The investigation indicated that the synaptic noise with the characters of long-range dependence and self-similarity might be the driving factor for the efficient encoding and decoding of the nervous system.

  14. Evaluation of globally available precipitation data products as input for water balance models

    Science.gov (United States)

    Lebrenz, H.; Bárdossy, A.

    2009-04-01

    Subject of this study is the evaluation of globally available precipitation data products, which are intended to be used as input variables for water balance models in ungauged basins. The selected data sources are a) the Global Precipitation Climatology Centre (GPCC), b) the Global Precipitation Climatology Project (GPCP) and c) the Climate Research Unit (CRU), resulting into twelve globally available data products. The data products imply different data bases, different derivation routines and varying resolutions in time and space. For validation purposes, the ground data from South Africa were screened on homogeneity and consistency by various tests and an outlier detection using multi-linear regression was performed. External Drift Kriging was subsequently applied on the ground data and the resulting precipitation arrays were compared to the different products with respect to quantity and variance.

  15. TURTLE with MAD input (Trace Unlimited Rays Through Lumped Elements) -- A computer program for simulating charged particle beam transport systems and DECAY TURTLE including decay calculations

    Energy Technology Data Exchange (ETDEWEB)

    Carey, D.C.

    1999-12-09

    TURTLE is a computer program useful for determining many characteristics of a particle beam once an initial design has been achieved, Charged particle beams are usually designed by adjusting various beam line parameters to obtain desired values of certain elements of a transfer or beam matrix. Such beam line parameters may describe certain magnetic fields and their gradients, lengths and shapes of magnets, spacings between magnetic elements, or the initial beam accepted into the system. For such purposes one typically employs a matrix multiplication and fitting program such as TRANSPORT. TURTLE is designed to be used after TRANSPORT. For convenience of the user, the input formats of the two programs have been made compatible. The use of TURTLE should be restricted to beams with small phase space. The lumped element approximation, described below, precludes the inclusion of the effect of conventional local geometric aberrations (due to large phase space) or fourth and higher order. A reading of the discussion below will indicate clearly the exact uses and limitations of the approach taken in TURTLE.

  16. TURTLE with MAD input (Trace Unlimited Rays Through Lumped Elements) -- A computer program for simulating charged particle beam transport systems and DECAY TURTLE including decay calculations

    International Nuclear Information System (INIS)

    Carey, D.C.

    1999-01-01

    TURTLE is a computer program useful for determining many characteristics of a particle beam once an initial design has been achieved, Charged particle beams are usually designed by adjusting various beam line parameters to obtain desired values of certain elements of a transfer or beam matrix. Such beam line parameters may describe certain magnetic fields and their gradients, lengths and shapes of magnets, spacings between magnetic elements, or the initial beam accepted into the system. For such purposes one typically employs a matrix multiplication and fitting program such as TRANSPORT. TURTLE is designed to be used after TRANSPORT. For convenience of the user, the input formats of the two programs have been made compatible. The use of TURTLE should be restricted to beams with small phase space. The lumped element approximation, described below, precludes the inclusion of the effect of conventional local geometric aberrations (due to large phase space) or fourth and higher order. A reading of the discussion below will indicate clearly the exact uses and limitations of the approach taken in TURTLE

  17. Waste Isolation Pilot Plant environmental impact report: an outline of the input--output model and the impact projections methodology. Technical document, socioeconomic portion

    International Nuclear Information System (INIS)

    1978-07-01

    A static model in the form of a regional input-output model was constructed for Eddy and Lea Counties, New Mexico. Besides the WIPP project, the model was also used for several other projects to determine the economic impact of proposed new facilities and developments. Both private and public sectors are covered. Sub-sectors for WIPP below-ground construction, above-ground construction, and operation and transport are included

  18. Neonatal intensive care nursing curriculum challenges based on context, input, process, and product evaluation model: A qualitative study

    Directory of Open Access Journals (Sweden)

    Mansoureh Ashghali-Farahani

    2018-01-01

    Full Text Available Background: Weakness of curriculum development in nursing education results in lack of professional skills in graduates. This study was done on master's students in nursing to evaluate challenges of neonatal intensive care nursing curriculum based on context, input, process, and product (CIPP evaluation model. Materials and Methods: This study was conducted with qualitative approach, which was completed according to the CIPP evaluation model. The study was conducted from May 2014 to April 2015. The research community included neonatal intensive care nursing master's students, the graduates, faculty members, neonatologists, nurses working in neonatal intensive care unit (NICU, and mothers of infants who were hospitalized in such wards. Purposeful sampling was applied. Results: The data analysis showed that there were two main categories: “inappropriate infrastructure” and “unknown duties,” which influenced the context formation of NICU master's curriculum. The input was formed by five categories, including “biomedical approach,” “incomprehensive curriculum,” “lack of professional NICU nursing mentors,” “inappropriate admission process of NICU students,” and “lack of NICU skill labs.” Three categories were extracted in the process, including “more emphasize on theoretical education,” “the overlap of credits with each other and the inconsistency among the mentors,” and “ineffective assessment.” Finally, five categories were extracted in the product, including “preferring routine work instead of professional job,” “tendency to leave the job,” “clinical incompetency of graduates,” “the conflict between graduates and nursing staff expectations,” and “dissatisfaction of graduates.” Conclusions: Some changes are needed in NICU master's curriculum by considering the nursing experts' comments and evaluating the consequences of such program by them.

  19. Modelling pesticide leaching under climate change: parameter vs. climate input uncertainty

    Directory of Open Access Journals (Sweden)

    K. Steffens

    2014-02-01

    Full Text Available Assessing climate change impacts on pesticide leaching requires careful consideration of different sources of uncertainty. We investigated the uncertainty related to climate scenario input and its importance relative to parameter uncertainty of the pesticide leaching model. The pesticide fate model MACRO was calibrated against a comprehensive one-year field data set for a well-structured clay soil in south-western Sweden. We obtained an ensemble of 56 acceptable parameter sets that represented the parameter uncertainty. Nine different climate model projections of the regional climate model RCA3 were available as driven by different combinations of global climate models (GCM, greenhouse gas emission scenarios and initial states of the GCM. The future time series of weather data used to drive the MACRO model were generated by scaling a reference climate data set (1970–1999 for an important agricultural production area in south-western Sweden based on monthly change factors for 2070–2099. 30 yr simulations were performed for different combinations of pesticide properties and application seasons. Our analysis showed that both the magnitude and the direction of predicted change in pesticide leaching from present to future depended strongly on the particular climate scenario. The effect of parameter uncertainty was of major importance for simulating absolute pesticide losses, whereas the climate uncertainty was relatively more important for predictions of changes of pesticide losses from present to future. The climate uncertainty should be accounted for by applying an ensemble of different climate scenarios. The aggregated ensemble prediction based on both acceptable parameterizations and different climate scenarios has the potential to provide robust probabilistic estimates of future pesticide losses.

  20. A new chance-constrained DEA model with birandom input and output data

    OpenAIRE

    Tavana, M.; Shiraz, R. K.; Hatami-Marbini, A.

    2013-01-01

    The purpose of conventional Data Envelopment Analysis (DEA) is to evaluate the performance of a set of firms or Decision-Making Units using deterministic input and output data. However, the input and output data in the real-life performance evaluation problems are often stochastic. The stochastic input and output data in DEA can be represented with random variables. Several methods have been proposed to deal with the random input and output data in DEA. In this paper, we propose a new chance-...

  1. Predicting musically induced emotions from physiological inputs: linear and neural network models.

    Science.gov (United States)

    Russo, Frank A; Vempala, Naresh N; Sandstrom, Gillian M

    2013-01-01

    Listening to music often leads to physiological responses. Do these physiological responses contain sufficient information to infer emotion induced in the listener? The current study explores this question by attempting to predict judgments of "felt" emotion from physiological responses alone using linear and neural network models. We measured five channels of peripheral physiology from 20 participants-heart rate (HR), respiration, galvanic skin response, and activity in corrugator supercilii and zygomaticus major facial muscles. Using valence and arousal (VA) dimensions, participants rated their felt emotion after listening to each of 12 classical music excerpts. After extracting features from the five channels, we examined their correlation with VA ratings, and then performed multiple linear regression to see if a linear relationship between the physiological responses could account for the ratings. Although linear models predicted a significant amount of variance in arousal ratings, they were unable to do so with valence ratings. We then used a neural network to provide a non-linear account of the ratings. The network was trained on the mean ratings of eight of the 12 excerpts and tested on the remainder. Performance of the neural network confirms that physiological responses alone can be used to predict musically induced emotion. The non-linear model derived from the neural network was more accurate than linear models derived from multiple linear regression, particularly along the valence dimension. A secondary analysis allowed us to quantify the relative contributions of inputs to the non-linear model. The study represents a novel approach to understanding the complex relationship between physiological responses and musically induced emotion.

  2. EARLY GUIDANCE FOR ASSIGNING DISTRIBUTION PARAMETERS TO GEOCHEMICAL INPUT TERMS TO STOCHASTIC TRANSPORT MODELS

    International Nuclear Information System (INIS)

    Kaplan, D; Margaret Millings, M

    2006-01-01

    Stochastic modeling is being used in the Performance Assessment program to provide a probabilistic estimate of the range of risk that buried waste may pose. The objective of this task was to provide early guidance for stochastic modelers for the selection of the range and distribution (e.g., normal, log-normal) of distribution coefficients (K d ) and solubility values (K sp ) to be used in modeling subsurface radionuclide transport in E- and Z-Area on the Savannah River Site (SRS). Due to the project's schedule, some modeling had to be started prior to collecting the necessary field and laboratory data needed to fully populate these models. For the interim, the project will rely on literature values and some statistical analyses of literature data as inputs. Based on statistical analyses of some literature sorption tests, the following early guidance was provided: (1) Set the range to an order of magnitude for radionuclides with K d values >1000 mL/g and to a factor of two for K d values of sp values -6 M and to a factor of two for K d values of >10 -6 M. This decision is based on the literature. (3) The distribution of K d values with a mean >1000 mL/g will be log-normally distributed. Those with a K d value <1000 mL/g will be assigned a normal distribution. This is based on statistical analysis of non-site-specific data. Results from on-going site-specific field/laboratory research involving E-Area sediments will supersede this guidance; these results are expected in 2007

  3. Realistic modeling of seismic input for megacities and large urban areas

    International Nuclear Information System (INIS)

    Panza, Giuliano F.; Alvarez, Leonardo; Aoudia, Abdelkrim

    2002-06-01

    The project addressed the problem of pre-disaster orientation: hazard prediction, risk assessment, and hazard mapping, in connection with seismic activity and man-induced vibrations. The definition of realistic seismic input has been obtained from the computation of a wide set of time histories and spectral information, corresponding to possible seismotectonic scenarios for different source and structural models. The innovative modeling technique, that constitutes the common tool to the entire project, takes into account source, propagation and local site effects. This is done using first principles of physics about wave generation and propagation in complex media, and does not require to resort to convolutive approaches, that have been proven to be quite unreliable, mainly when dealing with complex geological structures, the most interesting from the practical point of view. In fact, several techniques that have been proposed to empirically estimate the site effects using observations convolved with theoretically computed signals corresponding to simplified models, supply reliable information about the site response to non-interfering seismic phases. They are not adequate in most of the real cases, when the seismic sequel is formed by several interfering waves. The availability of realistic numerical simulations enables us to reliably estimate the amplification effects even in complex geological structures, exploiting the available geotechnical, lithological, geophysical parameters, topography of the medium, tectonic, historical, palaeoseismological data, and seismotectonic models. The realistic modeling of the ground motion is a very important base of knowledge for the preparation of groundshaking scenarios that represent a valid and economic tool for the seismic microzonation. This knowledge can be very fruitfully used by civil engineers in the design of new seismo-resistant constructions and in the reinforcement of the existing built environment, and, therefore

  4. Predicting musically induced emotions from physiological inputs: Linear and neural network models

    Directory of Open Access Journals (Sweden)

    Frank A. Russo

    2013-08-01

    Full Text Available Listening to music often leads to physiological responses. Do these physiological responses contain sufficient information to infer emotion induced in the listener? The current study explores this question by attempting to predict judgments of 'felt' emotion from physiological responses alone using linear and neural network models. We measured five channels of peripheral physiology from 20 participants – heart rate, respiration, galvanic skin response, and activity in corrugator supercilii and zygomaticus major facial muscles. Using valence and arousal (VA dimensions, participants rated their felt emotion after listening to each of 12 classical music excerpts. After extracting features from the five channels, we examined their correlation with VA ratings, and then performed multiple linear regression to see if a linear relationship between the physiological responses could account for the ratings. Although linear models predicted a significant amount of variance in arousal ratings, they were unable to do so with valence ratings. We then used a neural network to provide a nonlinear account of the ratings. The network was trained on the mean ratings of eight of the 12 excerpts and tested on the remainder. Performance of the neural network confirms that physiological responses alone can be used to predict musically induced emotion. The nonlinear model derived from the neural network was more accurate than linear models derived from multiple linear regression, particularly along the valence dimension. A secondary analysis allowed us to quantify the relative contributions of inputs to the nonlinear model. The study represents a novel approach to understanding the complex relationship between physiological responses and musically induced emotion.

  5. "Updates to Model Algorithms & Inputs for the Biogenic Emissions Inventory System (BEIS) Model"

    Science.gov (United States)

    We have developed new canopy emission algorithms and land use data for BEIS. Simulations with BEIS v3.4 and these updates in CMAQ v5.0.2 are compared these changes to the Model of Emissions of Gases and Aerosols from Nature (MEGAN) and evaluated the simulations against observatio...

  6. Extended Fitts' model of pointing time in eye-gaze input system - Incorporating effects of target shape and movement direction into modeling.

    Science.gov (United States)

    Murata, Atsuo; Fukunaga, Daichi

    2018-04-01

    This study attempted to investigate the effects of the target shape and the movement direction on the pointing time using an eye-gaze input system and extend Fitts' model so that these factors are incorporated into the model and the predictive power of Fitts' model is enhanced. The target shape, the target size, the movement distance, and the direction of target presentation were set as within-subject experimental variables. The target shape included: a circle, and rectangles with an aspect ratio of 1:1, 1:2, 1:3, and 1:4. The movement direction included eight directions: upper, lower, left, right, upper left, upper right, lower left, and lower right. On the basis of the data for identifying the effects of the target shape and the movement direction on the pointing time, an attempt was made to develop a generalized and extended Fitts' model that took into account the movement direction and the target shape. As a result, the generalized and extended model was found to fit better to the experimental data, and be more effective for predicting the pointing time for a variety of human-computer interaction (HCI) task using an eye-gaze input system. Copyright © 2017. Published by Elsevier Ltd.

  7. A generalized model for optimal transport of images including dissipation and density modulation

    KAUST Repository

    Maas, Jan

    2015-11-01

    © EDP Sciences, SMAI 2015. In this paper the optimal transport and the metamorphosis perspectives are combined. For a pair of given input images geodesic paths in the space of images are defined as minimizers of a resulting path energy. To this end, the underlying Riemannian metric measures the rate of transport cost and the rate of viscous dissipation. Furthermore, the model is capable to deal with strongly varying image contrast and explicitly allows for sources and sinks in the transport equations which are incorporated in the metric related to the metamorphosis approach by Trouvé and Younes. In the non-viscous case with source term existence of geodesic paths is proven in the space of measures. The proposed model is explored on the range from merely optimal transport to strongly dissipative dynamics. For this model a robust and effective variational time discretization of geodesic paths is proposed. This requires to minimize a discrete path energy consisting of a sum of consecutive image matching functionals. These functionals are defined on corresponding pairs of intensity functions and on associated pairwise matching deformations. Existence of time discrete geodesics is demonstrated. Furthermore, a finite element implementation is proposed and applied to instructive test cases and to real images. In the non-viscous case this is compared to the algorithm proposed by Benamou and Brenier including a discretization of the source term. Finally, the model is generalized to define discrete weighted barycentres with applications to textures and objects.

  8. Modeling imbalanced economic recovery following a natural disaster using input-output analysis.

    Science.gov (United States)

    Li, Jun; Crawford-Brown, Douglas; Syddall, Mark; Guan, Dabo

    2013-10-01

    Input-output analysis is frequently used in studies of large-scale weather-related (e.g., Hurricanes and flooding) disruption of a regional economy. The economy after a sudden catastrophe shows a multitude of imbalances with respect to demand and production and may take months or years to recover. However, there is no consensus about how the economy recovers. This article presents a theoretical route map for imbalanced economic recovery called dynamic inequalities. Subsequently, it is applied to a hypothetical postdisaster economic scenario of flooding in London around the year 2020 to assess the influence of future shocks to a regional economy and suggest adaptation measures. Economic projections are produced by a macro econometric model and used as baseline conditions. The results suggest that London's economy would recover over approximately 70 months by applying a proportional rationing scheme under the assumption of initial 50% labor loss (with full recovery in six months), 40% initial loss to service sectors, and 10-30% initial loss to other sectors. The results also suggest that imbalance will be the norm during the postdisaster period of economic recovery even though balance may occur temporarily. Model sensitivity analysis suggests that a proportional rationing scheme may be an effective strategy to apply during postdisaster economic reconstruction, and that policies in transportation recovery and in health care are essential for effective postdisaster economic recovery. © 2013 Society for Risk Analysis.

  9. The efficiency of the agricultural sector in Poland in the light output-input model1

    Directory of Open Access Journals (Sweden)

    Czyżewski Andrzej

    2015-05-01

    Full Text Available The study turns attention to the use of the input-output model (account of interbranch flows in macroeconomic assessments of the effectiveness of the agricultural sector. In the introductory part the essence of the account of interbranch flows has been specified, pointing to its historical origin and place in the economic theory, and the morphological structure of the individual parts (quarters of the model has been presented. Then the study discusses the application of the account of interbranch flows in macroeconomic assessments of the effectiveness of the agricultural sector, defining and characterizing a number of indicators which allow to conclude on the effectiveness of the agricultural sector on the basis of the account of interbranch flows. The last, empirical part of the study assesses the effectiveness of the agricultural sector in Poland on the basis of interbranch flows statistics for the years 2000 and 2005. The analyses allowed to demonstrate increased efficiency of the agricultural sector in Poland after Poland joined the EU, and also to say that the account of interbranch flows is an important tool enabling comprehensive assessment of the effectiveness of the agricultural sector in the macro-scale, through the prism of the effect - disbursement, which accounts for its exceptional suitability in this kind of analyses.

  10. Modeling uncertainties in workforce disruptions from influenza pandemics using dynamic input-output analysis.

    Science.gov (United States)

    El Haimar, Amine; Santos, Joost R

    2014-03-01

    Influenza pandemic is a serious disaster that can pose significant disruptions to the workforce and associated economic sectors. This article examines the impact of influenza pandemic on workforce availability within an interdependent set of economic sectors. We introduce a simulation model based on the dynamic input-output model to capture the propagation of pandemic consequences through the National Capital Region (NCR). The analysis conducted in this article is based on the 2009 H1N1 pandemic data. Two metrics were used to assess the impacts of the influenza pandemic on the economic sectors: (i) inoperability, which measures the percentage gap between the as-planned output and the actual output of a sector, and (ii) economic loss, which quantifies the associated monetary value of the degraded output. The inoperability and economic loss metrics generate two different rankings of the critical economic sectors. Results show that most of the critical sectors in terms of inoperability are sectors that are related to hospitals and health-care providers. On the other hand, most of the sectors that are critically ranked in terms of economic loss are sectors with significant total production outputs in the NCR such as federal government agencies. Therefore, policy recommendations relating to potential mitigation and recovery strategies should take into account the balance between the inoperability and economic loss metrics. © 2013 Society for Risk Analysis.

  11. Modelling Implicit Communication in Multi-Agent Systems with Hybrid Input/Output Automata

    Directory of Open Access Journals (Sweden)

    Marta Capiluppi

    2012-10-01

    Full Text Available We propose an extension of Hybrid I/O Automata (HIOAs to model agent systems and their implicit communication through perturbation of the environment, like localization of objects or radio signals diffusion and detection. To this end we decided to specialize some variables of the HIOAs whose values are functions both of time and space. We call them world variables. Basically they are treated similarly to the other variables of HIOAs, but they have the function of representing the interaction of each automaton with the surrounding environment, hence they can be output, input or internal variables. Since these special variables have the role of simulating implicit communication, their dynamics are specified both in time and space, because they model the perturbations induced by the agent to the environment, and the perturbations of the environment as perceived by the agent. Parallel composition of world variables is slightly different from parallel composition of the other variables, since their signals are summed. The theory is illustrated through a simple example of agents systems.

  12. Vascular input function correction of inflow enhancement for improved pharmacokinetic modeling of liver DCE-MRI.

    Science.gov (United States)

    Ning, Jia; Schubert, Tilman; Johnson, Kevin M; Roldán-Alzate, Alejandro; Chen, Huijun; Yuan, Chun; Reeder, Scott B

    2018-06-01

    To propose a simple method to correct vascular input function (VIF) due to inflow effects and to test whether the proposed method can provide more accurate VIFs for improved pharmacokinetic modeling. A spoiled gradient echo sequence-based inflow quantification and contrast agent concentration correction method was proposed. Simulations were conducted to illustrate improvement in the accuracy of VIF estimation and pharmacokinetic fitting. Animal studies with dynamic contrast-enhanced MR scans were conducted before, 1 week after, and 2 weeks after portal vein embolization (PVE) was performed in the left portal circulation of pigs. The proposed method was applied to correct the VIFs for model fitting. Pharmacokinetic parameters fitted using corrected and uncorrected VIFs were compared between different lobes and visits. Simulation results demonstrated that the proposed method can improve accuracy of VIF estimation and pharmacokinetic fitting. In animal study results, pharmacokinetic fitting using corrected VIFs demonstrated changes in perfusion consistent with changes expected after PVE, whereas the perfusion estimates derived by uncorrected VIFs showed no significant changes. The proposed correction method improves accuracy of VIFs and therefore provides more precise pharmacokinetic fitting. This method may be promising in improving the reliability of perfusion quantification. Magn Reson Med 79:3093-3102, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  13. Realistic modelling of the seismic input: Site effects and parametric studies

    International Nuclear Information System (INIS)

    Romanelli, F.; Vaccari, F.; Panza, G.F.

    2002-11-01

    We illustrate the work done in the framework of a large international cooperation, showing the very recent numerical experiments carried out within the framework of the EC project 'Advanced methods for assessing the seismic vulnerability of existing motorway bridges' (VAB) to assess the importance of non-synchronous seismic excitation of long structures. The definition of the seismic input at the Warth bridge site, i.e. the determination of the seismic ground motion due to an earthquake with a given magnitude and epicentral distance from the site, has been done following a theoretical approach. In order to perform an accurate and realistic estimate of site effects and of differential motion it is necessary to make a parametric study that takes into account the complex combination of the source and propagation parameters, in realistic geological structures. The computation of a wide set of time histories and spectral information, corresponding to possible seismotectonic scenarios for different sources and structural models, allows us the construction of damage scenarios that are out of the reach of stochastic models, at a very low cost/benefit ratio. (author)

  14. PERMODELAN INDEKS HARGA KONSUMEN INDONESIA DENGAN MENGGUNAKAN MODEL INTERVENSI MULTI INPUT

    KAUST Repository

    Novianti, Putri Wikie; Suhartono, Suhartono

    2017-01-01

    -searches that have been done are only contain of an intervention with single input, ei-ther step or pulse function. Multi input intervention was used in Indonesia CPI case because there are some events which are expected effecting CPI. Based on the result, those

  15. A comparison of numerical and machine-learning modeling of soil water content with limited input data

    Science.gov (United States)

    Karandish, Fatemeh; Šimůnek, Jiří

    2016-12-01

    Soil water content (SWC) is a key factor in optimizing the usage of water resources in agriculture since it provides information to make an accurate estimation of crop water demand. Methods for predicting SWC that have simple data requirements are needed to achieve an optimal irrigation schedule, especially for various water-saving irrigation strategies that are required to resolve both food and water security issues under conditions of water shortages. Thus, a two-year field investigation was carried out to provide a dataset to compare the effectiveness of HYDRUS-2D, a physically-based numerical model, with various machine-learning models, including Multiple Linear Regressions (MLR), Adaptive Neuro-Fuzzy Inference Systems (ANFIS), and Support Vector Machines (SVM), for simulating time series of SWC data under water stress conditions. SWC was monitored using TDRs during the maize growing seasons of 2010 and 2011. Eight combinations of six, simple, independent parameters, including pan evaporation and average air temperature as atmospheric parameters, cumulative growth degree days (cGDD) and crop coefficient (Kc) as crop factors, and water deficit (WD) and irrigation depth (In) as crop stress factors, were adopted for the estimation of SWCs in the machine-learning models. Having Root Mean Square Errors (RMSE) in the range of 0.54-2.07 mm, HYDRUS-2D ranked first for the SWC estimation, while the ANFIS and SVM models with input datasets of cGDD, Kc, WD and In ranked next with RMSEs ranging from 1.27 to 1.9 mm and mean bias errors of -0.07 to 0.27 mm, respectively. However, the MLR models did not perform well for SWC forecasting, mainly due to non-linear changes of SWCs under the irrigation process. The results demonstrated that despite requiring only simple input data, the ANFIS and SVM models could be favorably used for SWC predictions under water stress conditions, especially when there is a lack of data. However, process-based numerical models are undoubtedly a

  16. Modelling of uranium inputs and its fate in soil; Modellierung von Uraneintraegen aus Duengern und ihr Verbleib im Boden

    Energy Technology Data Exchange (ETDEWEB)

    Achatz, M. [Bundesamt fuer Strahlenschutz, Berlin (Germany); Urso, L. [Bundesamt fuer Strahlenschutz, Oberschleissheim (Germany)

    2016-07-01

    87 % of mineral phosphate fertilizers are produced of sedimentary rock phosphate, which generally contains heavy metals, like uranium. The solution and migration behavior of uranium is apart from its redox ratio, determined by its pH conditions as well as its ligand quality and quantity. A further important role in sorption is played by soil components like clay minerals, pedogenic oxides and soil organic matter. To provide a preferably detailed speciation model of U in soil several physical and chemical components have to be included to be able to state distribution coefficients (k{sub D}) and sorption processes. The model of Hormann and Fischer served as the basis of modelling uranium mobility in soil by using the program PhreeqC. The usage of real soil and soil water measurements may contribute to identify factors and processes influencing the mobility of uranium under preferably realistic conditions. Additionally, the assessment of further predictions towards uranium migration in soil can be made based on a modelling with PhreeqC. The modelling of uranium inputs and its fate in soil can help to elucidate the human caused occurrence or geogenic origin of uranium in soil.

  17. Preliminary site description Laxemar stage 2.1. Feedback for completion of the site investigation including input from safety assessment and repository engineering

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-09-15

    The Laxemar subarea is the focus for the complete site investigations in the Simpevarp area. The south and southwestern parts of the subarea (the so-called 'focused area') have been designated for focused studies during the remainder of the site investigations. This area, some 5.3 square kilometres in size, is characterised on the surface by an arc shaped body of quartz monzodiorite gently dipping to the north, flanked in the north and south by Aevroe granite. The current report documents work conducted during stage 2.1 of the site-descriptive modelling of the Laxemar subarea. The primary objective of the work performed is to provide feedback to the site investigations at Laxemar to ensure that adequate and timely data and information are obtained during the remaining investigation stage. The work has been conducted in cooperation with the site investigation team at Laxemar and representatives from safety assessment and repository engineering. The principal aim of this joint effort has been to safeguard that adequate data are collected that resolve the remaining issues/uncertainties which are of importance for repository layout and long-term safety. The proposed additional works presented in this report should be regarded as recommended additions and/or modifications in relation to the CSI programme published early 2006. The overall conclusion of the discipline-wise review of critical issues is that the CSI programme overall satisfies the demands to resolve the remaining uncertainties. This is interpreted to be partly a result of the close interaction between the site modelling team, site investigation team and the repository engineering teams, which has been in operation since early 2005. In summary, the performed interpretations and modelling have overall confirmed the version 1.2 results. The exception being Hydrogeology where the new Laxemar 2.1 borehole data suggest more favourable conditions in the south and west parts of the focused area compared

  18. Preliminary site description Laxemar stage 2.1. Feedback for completion of the site investigation including input from safety assessment and repository engineering

    International Nuclear Information System (INIS)

    2006-09-01

    The Laxemar subarea is the focus for the complete site investigations in the Simpevarp area. The south and southwestern parts of the subarea (the so-called 'focused area') have been designated for focused studies during the remainder of the site investigations. This area, some 5.3 square kilometres in size, is characterised on the surface by an arc shaped body of quartz monzodiorite gently dipping to the north, flanked in the north and south by Aevroe granite. The current report documents work conducted during stage 2.1 of the site-descriptive modelling of the Laxemar subarea. The primary objective of the work performed is to provide feedback to the site investigations at Laxemar to ensure that adequate and timely data and information are obtained during the remaining investigation stage. The work has been conducted in cooperation with the site investigation team at Laxemar and representatives from safety assessment and repository engineering. The principal aim of this joint effort has been to safeguard that adequate data are collected that resolve the remaining issues/uncertainties which are of importance for repository layout and long-term safety. The proposed additional works presented in this report should be regarded as recommended additions and/or modifications in relation to the CSI programme published early 2006. The overall conclusion of the discipline-wise review of critical issues is that the CSI programme overall satisfies the demands to resolve the remaining uncertainties. This is interpreted to be partly a result of the close interaction between the site modelling team, site investigation team and the repository engineering teams, which has been in operation since early 2005. In summary, the performed interpretations and modelling have overall confirmed the version 1.2 results. The exception being Hydrogeology where the new Laxemar 2.1 borehole data suggest more favourable conditions in the south and west parts of the focused area compared with the

  19. A latent low-dimensional common input drives a pool of motor neurons: a probabilistic latent state-space model.

    Science.gov (United States)

    Feeney, Daniel F; Meyer, François G; Noone, Nicholas; Enoka, Roger M

    2017-10-01

    Motor neurons appear to be activated with a common input signal that modulates the discharge activity of all neurons in the motor nucleus. It has proven difficult for neurophysiologists to quantify the variability in a common input signal, but characterization of such a signal may improve our understanding of how the activation signal varies across motor tasks. Contemporary methods of quantifying the common input to motor neurons rely on compiling discrete action potentials into continuous time series, assuming the motor pool acts as a linear filter, and requiring signals to be of sufficient duration for frequency analysis. We introduce a space-state model in which the discharge activity of motor neurons is modeled as inhomogeneous Poisson processes and propose a method to quantify an abstract latent trajectory that represents the common input received by motor neurons. The approach also approximates the variation in synaptic noise in the common input signal. The model is validated with four data sets: a simulation of 120 motor units, a pair of integrate-and-fire neurons with a Renshaw cell providing inhibitory feedback, the discharge activity of 10 integrate-and-fire neurons, and the discharge times of concurrently active motor units during an isometric voluntary contraction. The simulations revealed that a latent state-space model is able to quantify the trajectory and variability of the common input signal across all four conditions. When compared with the cumulative spike train method of characterizing common input, the state-space approach was more sensitive to the details of the common input current and was less influenced by the duration of the signal. The state-space approach appears to be capable of detecting rather modest changes in common input signals across conditions. NEW & NOTEWORTHY We propose a state-space model that explicitly delineates a common input signal sent to motor neurons and the physiological noise inherent in synaptic signal

  20. Asteroseismic modelling of solar-type stars: internal systematics from input physics and surface correction methods

    Science.gov (United States)

    Nsamba, B.; Campante, T. L.; Monteiro, M. J. P. F. G.; Cunha, M. S.; Rendle, B. M.; Reese, D. R.; Verma, K.

    2018-04-01

    Asteroseismic forward modelling techniques are being used to determine fundamental properties (e.g. mass, radius, and age) of solar-type stars. The need to take into account all possible sources of error is of paramount importance towards a robust determination of stellar properties. We present a study of 34 solar-type stars for which high signal-to-noise asteroseismic data is available from multi-year Kepler photometry. We explore the internal systematics on the stellar properties, that is, associated with the uncertainty in the input physics used to construct the stellar models. In particular, we explore the systematics arising from: (i) the inclusion of the diffusion of helium and heavy elements; and (ii) the uncertainty in solar metallicity mixture. We also assess the systematics arising from (iii) different surface correction methods used in optimisation/fitting procedures. The systematics arising from comparing results of models with and without diffusion are found to be 0.5%, 0.8%, 2.1%, and 16% in mean density, radius, mass, and age, respectively. The internal systematics in age are significantly larger than the statistical uncertainties. We find the internal systematics resulting from the uncertainty in solar metallicity mixture to be 0.7% in mean density, 0.5% in radius, 1.4% in mass, and 6.7% in age. The surface correction method by Sonoi et al. and Ball & Gizon's two-term correction produce the lowest internal systematics among the different correction methods, namely, ˜1%, ˜1%, ˜2%, and ˜8% in mean density, radius, mass, and age, respectively. Stellar masses obtained using the surface correction methods by Kjeldsen et al. and Ball & Gizon's one-term correction are systematically higher than those obtained using frequency ratios.

  1. Smoke inputs to climate models: optical properties and height distribution for nuclear winter studies

    International Nuclear Information System (INIS)

    Penner, J.E.; Haselman, L.C. Jr.

    1985-04-01

    Smoke from fires produced in the aftermath of a major nuclear exchange has been predicted to cause large decreases in land surface temperatures. The extent of the decrease and even the sign of the temperature change depend on the optical characteristics of the smoke and how it is distributed with altitude. The height distribution of smoke over a fire is determined by the amount of buoyant energy produced by the fire and the amount of energy released by the latent heat of condensation of water vapor. The optical properties of the smoke depend on the size distribution of smoke particles which changes due to coagulation within the lofted plume. We present calculations demonstrating these processes and estimate their importance for the smoke source term input for climate models. For high initial smoke densities and for absorbing smoke ( m = 1.75 - 0.3i), coagulation of smoke particles within the smoke plume is predicted to first increase, then decrease, the size-integrated extinction cross section. However, at the smoke densities predicted in our model (assuming a 3% emission rate for smoke) and for our assumed initial size distribution, the attachment rates for brownian and turbulent collision processes are not fast enough to alter the smoke size distribution enough to significantly change the integrated extinction cross section. Early-time coagulation is, however, fast enough to allow further coagulation, on longer time scales, to act to decrease the extinction cross section. On these longer time scales appropriate to climate models, coagulation can decrease the extinction cross section by almost a factor of two before the smoke becomes well mixed around the globe. This process has been neglected in past climate effect evaluations, but could have a significant effect, since the extinction cross section enters as an exponential factor in calculating the light attenuation due to smoke. 10 refs., 20 figs

  2. A response analysis with effective stress model by using vertical input motions

    International Nuclear Information System (INIS)

    Yamanouchi, H.; Ohkawa, I.; Chiba, O.; Tohdo, M.; Kaneko, O.

    1987-01-01

    The nuclear power plant reactor buildings are to be directly supported on a hard soil as a rule in Japan. In case of determining the input motions in order to design those buildings, the amplifications of the hard soil deposits are examined by the total stress analysis in general. However, when the supporting hard soil is replaced with the slightly softer medium such as sandy or gravelly soil, the existence of pore water, in other words, the contribution of the pore water pressure to the total stress cannot be ignored even in a practical sense. In this paper the authors defined an analytical model considering the effective stress-strain relation. In the analyses, the response in the vertical direction is used to evaluate the confining pressure, at first. In the next step, the process of the generation and dissipation of the pore water pressure, is taken into account, together with the effect of the confining pressure. They applied these procedures for the response computations of the horizontally layered soil deposits

  3. Determination of the arterial input function in mouse-models using clinical MRI

    International Nuclear Information System (INIS)

    Theis, D.; Fachhochschule Giessen-Friedberg; Keil, B.; Heverhagen, J.T.; Klose, K.J.; Behe, M.; Fiebich, M.

    2008-01-01

    Dynamic contrast enhanced magnetic resonance imaging is a promising method for quantitative analysis of tumor perfusion and is increasingly used in study of cancer in small animal models. In those studies the determination of the arterial input function (AIF) of the target tissue can be the first step. Series of short-axis images of the heart were acquired during administration of a bolus of Gd-DTPA using saturation-recovery gradient echo pulse sequences. The AIF was determined from the changes of the signal intensity in the left ventricle. The native T1 relaxation times and AIF were determined for 11 mice. An average value of (1.16 ± 0.09) s for the native T1 relaxation time was measured. However, the AIF showed significant inter animal variability, as previously observed by other authors. The inter-animal variability shows, that a direct measurement of the AIF is reasonable to avoid significant errors. The proposed method for determination of the AIF proved to be reliable. (orig.)

  4. Multiregional input-output model for China's farm land and water use.

    Science.gov (United States)

    Guo, Shan; Shen, Geoffrey Qiping

    2015-01-06

    Land and water are the two main drivers of agricultural production. Pressure on farm land and water resources is increasing in China due to rising food demand. Domestic trade affects China's regional farm land and water use by distributing resources associated with the production of goods and services. This study constructs a multiregional input-output model to simultaneously analyze China's farm land and water uses embodied in consumption and interregional trade. Results show a great similarity for both China's farm land and water endowments. Shandong, Henan, Guangdong, and Yunnan are the most important drivers of farm land and water consumption in China, even though they have relatively few land and water resource endowments. Significant net transfers of embodied farm land and water flows are identified from the central and western areas to the eastern area via interregional trade. Heilongjiang is the largest farm land and water supplier, in contrast to Shanghai as the largest receiver. The results help policy makers to comprehensively understand embodied farm land and water flows in a complex economy network. Improving resource utilization efficiency and reshaping the embodied resource trade nexus should be addressed by considering the transfer of regional responsibilities.

  5. Process Debottlenecking and Retrofit of Palm Oil Milling Process via Inoperability Input-Output Modelling

    Directory of Open Access Journals (Sweden)

    May Tan May

    2018-01-01

    Full Text Available In recent years, there has been an increase in crude palm oil (CPO demand, resulting in palm oil mills (POMs seizing the opportunity to increase CPO production to make more profits. A series of equipment are designed to operate in their optimum capacities in the current existing POMs. Some equipment may be limited by their maximum design capacities when there is a need to increase CPO production, resulting in process bottlenecks. In this research, a framework is developed to provide stepwise procedures on identifying bottlenecks and retrofitting a POM process to cater for the increase in production capacity. This framework adapts an algebraic approach known as Inoperability Input-Output Modelling (IIM. To illustrate the application of the framework, an industrial POM case study was solved using LINGO software in this work, by maximising its production capacity. Benefit-to-Cost Ratio (BCR analysis was also performed to assess the economic feasibility. As results, the Screw Press was identified as the bottleneck. The retrofitting recommendation was to purchase an additional Screw Press to cater for the new throughput with BCR of 54.57. It was found the POM to be able to achieve the maximum targeted production capacity of 8,139.65 kg/hr of CPO without any bottlenecks.

  6. Usefulness of non-linear input-output models for economic impact analyses in tourism and recreation

    NARCIS (Netherlands)

    Klijs, J.; Peerlings, J.H.M.; Heijman, W.J.M.

    2015-01-01

    In tourism and recreation management it is still common practice to apply traditional input–output (IO) economic impact models, despite their well-known limitations. In this study the authors analyse the usefulness of applying a non-linear input–output (NLIO) model, in which price-induced input

  7. RUSLE2015: Modelling soil erosion at continental scale using high resolution input layers

    Science.gov (United States)

    Panagos, Panos; Borrelli, Pasquale; Meusburger, Katrin; Poesen, Jean; Ballabio, Cristiano; Lugato, Emanuele; Montanarella, Luca; Alewell, Christine

    2016-04-01

    Soil erosion by water is one of the most widespread forms of soil degradation in the Europe. On the occasion of the 2015 celebration of the International Year of Soils, the European Commission's Joint Research Centre (JRC) published the RUSLE2015, a modified modelling approach for assessing soil erosion in Europe by using the best available input data layers. The objective of the recent assessment performed with RUSLE2015 was to improve our knowledge and understanding of soil erosion by water across the European Union and to accentuate the differences and similarities between different regions and countries beyond national borders and nationally adapted models. RUSLE2015 has maximized the use of available homogeneous, updated, pan-European datasets (LUCAS topsoil, LUCAS survey, GAEC, Eurostat crops, Eurostat Management Practices, REDES, DEM 25m, CORINE, European Soil Database) and have used the best suited approach at European scale for modelling soil erosion. The collaboration of JRC with many scientists around Europe and numerous prominent European universities and institutes resulted in an improved assessment of individual risk factors (rainfall erosivity, soil erodibility, cover-management, topography and support practices) and a final harmonized European soil erosion map at high resolution. The mean soil loss rate in the European Union's erosion-prone lands (agricultural, forests and semi-natural areas) was found to be 2.46 t ha-1 yr-1, resulting in a total soil loss of 970 Mt annually; equal to an area the size of Berlin (assuming a removal of 1 meter). According to the RUSLE2015 model approximately 12.7% of arable lands in the European Union is estimated to suffer from moderate to high erosion(>5 t ha-1 yr-1). This equates to an area of 140,373 km2 which equals to the surface area of Greece (Environmental Science & Policy, 54, 438-447; 2015). Even the mean erosion rate outstrips the mean formation rate (walls and contouring) through the common agricultural

  8. Modeling DPOAE input/output function compression: comparisons with hearing thresholds.

    Science.gov (United States)

    Bhagat, Shaum P

    2014-09-01

    Basilar membrane input/output (I/O) functions in mammalian animal models are characterized by linear and compressed segments when measured near the location corresponding to the characteristic frequency. A method of studying basilar membrane compression indirectly in humans involves measuring distortion-product otoacoustic emission (DPOAE) I/O functions. Previous research has linked compression estimates from behavioral growth-of-masking functions to hearing thresholds. The aim of this study was to compare compression estimates from DPOAE I/O functions and hearing thresholds at 1 and 2 kHz. A prospective correlational research design was performed. The relationship between DPOAE I/O function compression estimates and hearing thresholds was evaluated with Pearson product-moment correlations. Normal-hearing adults (n = 16) aged 22-42 yr were recruited. DPOAE I/O functions (L₂ = 45-70 dB SPL) and two-interval forced-choice hearing thresholds were measured in normal-hearing adults. A three-segment linear regression model applied to DPOAE I/O functions supplied estimates of compression thresholds, defined as breakpoints between linear and compressed segments and the slopes of the compressed segments. Pearson product-moment correlations between DPOAE compression estimates and hearing thresholds were evaluated. A high correlation between DPOAE compression thresholds and hearing thresholds was observed at 2 kHz, but not at 1 kHz. Compression slopes also correlated highly with hearing thresholds only at 2 kHz. The derivation of cochlear compression estimates from DPOAE I/O functions provides a means to characterize basilar membrane mechanics in humans and elucidates the role of compression in tone detection in the 1-2 kHz frequency range. American Academy of Audiology.

  9. A new approach to modeling temperature-related mortality: Non-linear autoregressive models with exogenous input.

    Science.gov (United States)

    Lee, Cameron C; Sheridan, Scott C

    2018-07-01

    Temperature-mortality relationships are nonlinear, time-lagged, and can vary depending on the time of year and geographic location, all of which limits the applicability of simple regression models in describing these associations. This research demonstrates the utility of an alternative method for modeling such complex relationships that has gained recent traction in other environmental fields: nonlinear autoregressive models with exogenous input (NARX models). All-cause mortality data and multiple temperature-based data sets were gathered from 41 different US cities, for the period 1975-2010, and subjected to ensemble NARX modeling. Models generally performed better in larger cities and during the winter season. Across the US, median absolute percentage errors were 10% (ranging from 4% to 15% in various cities), the average improvement in the r-squared over that of a simple persistence model was 17% (6-24%), and the hit rate for modeling spike days in mortality (>80th percentile) was 54% (34-71%). Mortality responded acutely to hot summer days, peaking at 0-2 days of lag before dropping precipitously, and there was an extended mortality response to cold winter days, peaking at 2-4 days of lag and dropping slowly and continuing for multiple weeks. Spring and autumn showed both of the aforementioned temperature-mortality relationships, but generally to a lesser magnitude than what was seen in summer or winter. When compared to distributed lag nonlinear models, NARX model output was nearly identical. These results highlight the applicability of NARX models for use in modeling complex and time-dependent relationships for various applications in epidemiology and environmental sciences. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Selection Input Output by Restriction Using DEA Models Based on a Fuzzy Delphi Approach and Expert Information

    Science.gov (United States)

    Arsad, Roslah; Nasir Abdullah, Mohammad; Alias, Suriana; Isa, Zaidi

    2017-09-01

    Stock evaluation has always been an interesting problem for investors. In this paper, a comparison regarding the efficiency stocks of listed companies in Bursa Malaysia were made through the application of estimation method of Data Envelopment Analysis (DEA). One of the interesting research subjects in DEA is the selection of appropriate input and output parameter. In this study, DEA was used to measure efficiency of stocks of listed companies in Bursa Malaysia in terms of the financial ratio to evaluate performance of stocks. Based on previous studies and Fuzzy Delphi Method (FDM), the most important financial ratio was selected. The results indicated that return on equity, return on assets, net profit margin, operating profit margin, earnings per share, price to earnings and debt to equity were the most important ratios. Using expert information, all the parameter were clarified as inputs and outputs. The main objectives were to identify most critical financial ratio, clarify them based on expert information and compute the relative efficiency scores of stocks as well as rank them in the construction industry and material completely. The methods of analysis using Alirezaee and Afsharian’s model were employed in this study, where the originality of Charnes, Cooper and Rhodes (CCR) with the assumption of Constant Return to Scale (CSR) still holds. This method of ranking relative efficiency of decision making units (DMUs) was value-added by the Balance Index. The interested data was made for year 2015 and the population of the research includes accepted companies in stock markets in the construction industry and material (63 companies). According to the ranking, the proposed model can rank completely for 63 companies using selected financial ratio.

  11. Treatment of input uncertainty in hydrologic modeling: Doing hydrology backward with Markov chain Monte Carlo simulation

    NARCIS (Netherlands)

    Vrugt, J.A.; Braak, ter C.J.F.; Clark, M.P.; Hyman, J.M.; Robinson, B.A.

    2008-01-01

    There is increasing consensus in the hydrologic literature that an appropriate framework for streamflow forecasting and simulation should include explicit recognition of forcing and parameter and model structural error. This paper presents a novel Markov chain Monte Carlo (MCMC) sampler, entitled

  12. Data input guide for SWIFT II. The Sandia waste-isolation flow and transport model for fractured media, Release 4.84

    International Nuclear Information System (INIS)

    Reeves, M.; Ward, D.S.; Johns, N.D.; Cranwell, R.M.

    1986-04-01

    This report is one of three which describes the SWIFT II computer code. The code simulates flow and transport processes in geologic media which may be fractured. SWIFT II was developed for use in the analysis of deep geologic facilities for nuclear-waste disposal. This user's manual should permit the analyst to use the code effectively by facilitating the preparation of input data. A second companion document discusses the theory and implementation of the models employed by the SWIFT II code. A third document provides illustrative problems for instructional purposes. This report contains detailed descriptions of the input data along with an appendix of the input diagnostics. The use of auxiliary files, unit conversions, and program variable descriptors also are included in this document

  13. Modeling spray drift and runoff-related inputs of pesticides to receiving water.

    Science.gov (United States)

    Zhang, Xuyang; Luo, Yuzhou; Goh, Kean S

    2018-03-01

    Pesticides move to surface water via various pathways including surface runoff, spray drift and subsurface flow. Little is known about the relative contributions of surface runoff and spray drift in agricultural watersheds. This study develops a modeling framework to address the contribution of spray drift to the total loadings of pesticides in receiving water bodies. The modeling framework consists of a GIS module for identifying drift potential, the AgDRIFT model for simulating spray drift, and the Soil and Water Assessment Tool (SWAT) for simulating various hydrological and landscape processes including surface runoff and transport of pesticides. The modeling framework was applied on the Orestimba Creek Watershed, California. Monitoring data collected from daily samples were used for model evaluation. Pesticide mass deposition on the Orestimba Creek ranged from 0.08 to 6.09% of applied mass. Monitoring data suggests that surface runoff was the major pathway for pesticide entering water bodies, accounting for 76% of the annual loading; the rest 24% from spray drift. The results from the modeling framework showed 81 and 19%, respectively, for runoff and spray drift. Spray drift contributed over half of the mass loading during summer months. The slightly lower spray drift contribution as predicted by the modeling framework was mainly due to SWAT's under-prediction of pesticide mass loading during summer and over-prediction of the loading during winter. Although model simulations were associated with various sources of uncertainties, the overall performance of the modeling framework was satisfactory as evaluated by multiple statistics: for simulation of daily flow, the Nash-Sutcliffe Efficiency Coefficient (NSE) ranged from 0.61 to 0.74 and the percent bias (PBIAS) runoff in receiving waters and the design of management practices for mitigating pesticide exposure within a watershed. Published by Elsevier Ltd.

  14. Constituency Input into Budget Management.

    Science.gov (United States)

    Miller, Norman E.

    1995-01-01

    Presents techniques for ensuring constituency involvement in district- and site-level budget management. Outlines four models for securing constituent input and focuses on strategies to orchestrate the more complex model for staff and community participation. Two figures are included. (LMI)

  15. Evaluating the efficiency of municipalities in collecting and processing municipal solid waste: a shared input DEA-model.

    Science.gov (United States)

    Rogge, Nicky; De Jaeger, Simon

    2012-10-01

    This paper proposed an adjusted "shared-input" version of the popular efficiency measurement technique Data Envelopment Analysis (DEA) that enables evaluating municipality waste collection and processing performances in settings in which one input (waste costs) is shared among treatment efforts of multiple municipal solid waste fractions. The main advantage of this version of DEA is that it not only provides an estimate of the municipalities overall cost efficiency but also estimates of the municipalities' cost efficiency in the treatment of the different fractions of municipal solid waste (MSW). To illustrate the practical usefulness of the shared input DEA-model, we apply the model to data on 293 municipalities in Flanders, Belgium, for the year 2008. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Evaluating the efficiency of municipalities in collecting and processing municipal solid waste: A shared input DEA-model

    International Nuclear Information System (INIS)

    Rogge, Nicky; De Jaeger, Simon

    2012-01-01

    Highlights: ► Complexity in local waste management calls for more in depth efficiency analysis. ► Shared-input Data Envelopment Analysis can provide solution. ► Considerable room for the Flemish municipalities to improve their cost efficiency. - Abstract: This paper proposed an adjusted “shared-input” version of the popular efficiency measurement technique Data Envelopment Analysis (DEA) that enables evaluating municipality waste collection and processing performances in settings in which one input (waste costs) is shared among treatment efforts of multiple municipal solid waste fractions. The main advantage of this version of DEA is that it not only provides an estimate of the municipalities overall cost efficiency but also estimates of the municipalities’ cost efficiency in the treatment of the different fractions of municipal solid waste (MSW). To illustrate the practical usefulness of the shared input DEA-model, we apply the model to data on 293 municipalities in Flanders, Belgium, for the year 2008.

  17. Enhancement of information transmission with stochastic resonance in hippocampal CA1 neuron models: effects of noise input location.

    Science.gov (United States)

    Kawaguchi, Minato; Mino, Hiroyuki; Durand, Dominique M

    2007-01-01

    Stochastic resonance (SR) has been shown to enhance the signal to noise ratio or detection of signals in neurons. It is not yet clear how this effect of SR on the signal to noise ratio affects signal processing in neural networks. In this paper, we investigate the effects of the location of background noise input on information transmission in a hippocampal CA1 neuron model. In the computer simulation, random sub-threshold spike trains (signal) generated by a filtered homogeneous Poisson process were presented repeatedly to the middle point of the main apical branch, while the homogeneous Poisson shot noise (background noise) was applied to a location of the dendrite in the hippocampal CA1 model consisting of the soma with a sodium, a calcium, and five potassium channels. The location of the background noise input was varied along the dendrites to investigate the effects of background noise input location on information transmission. The computer simulation results show that the information rate reached a maximum value for an optimal amplitude of the background noise amplitude. It is also shown that this optimal amplitude of the background noise is independent of the distance between the soma and the noise input location. The results also show that the location of the background noise input does not significantly affect the maximum values of the information rates generated by stochastic resonance.

  18. Physical-mathematical model for cybernetic description of the human organs with trace element concentrations as input variables

    International Nuclear Information System (INIS)

    Mihai, Maria; Popescu, I.V.

    2003-01-01

    In this paper we report a physical-mathematical model for studying the organs and humans fluids by cybernetic principle. The input variables represent the trace elements which are determined by atomic and nuclear methods of elemental analysis. We have determined the health limits between which the organs might function. (authors)

  19. A single point of pressure approach as input for injury models with respect to complex blast loading conditions

    NARCIS (Netherlands)

    Teland, J.A.; Doormaal, J.C.A.M. van; Horst, M.J. van der; Svinsås, E.

    2010-01-01

    Blast injury models, like Axelsson and Stuhmiller, require four pressure signals as input. Those pressure signals must be acquired by a Blast Test Device (BTD) that has four pressure transducers placed in a horizontal plane at intervals of 90 degrees. This can be either in a physical test setup or

  20. BALANCED SCORECARDS EVALUATION MODEL THAT INCLUDES ELEMENTS OF ENVIRONMENTAL MANAGEMENT SYSTEM USING AHP MODEL

    Directory of Open Access Journals (Sweden)

    Jelena Jovanović

    2010-03-01

    Full Text Available The research is oriented on improvement of environmental management system (EMS using BSC (Balanced Scorecard model that presents strategic model of measurem ents and improvement of organisational performance. The research will present approach of objectives and environmental management me trics involvement (proposed by literature review in conventional BSC in "Ad Barska plovi dba" organisation. Further we will test creation of ECO-BSC model based on business activities of non-profit organisations in order to improve envir onmental management system in parallel with other systems of management. Using this approach we may obtain 4 models of BSC that includ es elements of environmen tal management system for AD "Barska plovidba". Taking into acc ount that implementation and evaluation need long period of time in AD "Barska plovidba", the final choice will be based on 14598 (Information technology - Software product evaluation and ISO 9126 (Software engineering - Product quality using AHP method. Those standards are usually used for evaluation of quality software product and computer programs that serve in organisation as support and factors for development. So, AHP model will be bas ed on evolution criteria based on suggestion of ISO 9126 standards and types of evaluation from two evaluation teams. Members of team & will be experts in BSC and environmental management system that are not em ployed in AD "Barska Plovidba" organisation. The members of team 2 will be managers of AD "Barska Plovidba" organisation (including manage rs from environmental department. Merging results based on previously cr eated two AHP models, one can obtain the most appropriate BSC that includes elements of environmental management system. The chosen model will present at the same time suggestion for approach choice including ecological metrics in conventional BSC model for firm that has at least one ECO strategic orientation.

  1. SPheno 3.1: extensions including flavour, CP-phases and models beyond the MSSM

    Science.gov (United States)

    Porod, W.; Staub, F.

    2012-11-01

    We describe recent extensions of the program SPhenoincluding flavour aspects, CP-phases, R-parity violation and low energy observables. In case of flavour mixing all masses of supersymmetric particles are calculated including the complete flavour structure and all possible CP-phases at the 1-loop level. We give details on implemented seesaw models, low energy observables and the corresponding extension of the SUSY Les Houches Accord. Moreover, we comment on the possibilities to include MSSM extensions in SPheno. Catalogue identifier: ADRV_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADRV_v2_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 154062 No. of bytes in distributed program, including test data, etc.: 1336037 Distribution format: tar.gz Programming language: Fortran95. Computer: PC running under Linux, should run in every Unix environment. Operating system: Linux, Unix. Classification: 11.6. Catalogue identifier of previous version: ADRV_v1_0 Journal reference of previous version: Comput. Phys. Comm. 153(2003)275 Does the new version supersede the previous version?: Yes Nature of problem: The first issue is the determination of the masses and couplings of supersymmetric particles in various supersymmetric models, the R-parity conserved MSSM with generation mixing and including CP-violating phases, various seesaw extensions of the MSSM and the MSSM with bilinear R-parity breaking. Low energy data on Standard Model fermion masses, gauge couplings and electroweak gauge boson masses serve as constraints. Radiative corrections from supersymmetric particles to these inputs must be calculated. Theoretical constraints on the soft SUSY breaking parameters from a high scale theory are imposed and the parameters at the electroweak scale are obtained from the

  2. Effect of stimulation on the input parameters of stochastic leaky integrate-and-fire neuronal model

    Czech Academy of Sciences Publication Activity Database

    Lánský, Petr; Šanda, Pavel; He, J.

    2010-01-01

    Roč. 104, 3-4 (2010), s. 160-166 ISSN 0928-4257 R&D Projects: GA MŠk(CZ) LC554; GA AV ČR(CZ) IAA101120604 Institutional research plan: CEZ:AV0Z50110509 Keywords : membrane depolarization * input parameters * diffusion Subject RIV: BO - Biophysics Impact factor: 3.030, year: 2010

  3. Enhancement of regional wet deposition estimates based on modeled precipitation inputs

    Science.gov (United States)

    James A. Lynch; Jeffery W. Grimm; Edward S. Corbett

    1996-01-01

    Application of a variety of two-dimensional interpolation algorithms to precipitation chemistry data gathered at scattered monitoring sites for the purpose of estimating precipitation- born ionic inputs for specific points or regions have failed to produce accurate estimates. The accuracy of these estimates is particularly poor in areas of high topographic relief....

  4. Impact of Infralimbic Inputs on Intercalated Amygdale Neurons: A Biophysical Modeling Study

    Science.gov (United States)

    Li, Guoshi; Amano, Taiju; Pare, Denis; Nair, Satish S.

    2011-01-01

    Intercalated (ITC) amygdala neurons regulate fear expression by controlling impulse traffic between the input (basolateral amygdala; BLA) and output (central nucleus; Ce) stations of the amygdala for conditioned fear responses. Previously, stimulation of the infralimbic (IL) cortex was found to reduce fear expression and the responsiveness of Ce…

  5. Comparison of squashing and self-consistent input-output models of quantum feedback

    Science.gov (United States)

    Peřinová, V.; Lukš, A.; Křepelka, J.

    2018-03-01

    The paper (Yanagisawa and Hope, 2010) opens with two ways of analysis of a measurement-based quantum feedback. The scheme of the feedback includes, along with the homodyne detector, a modulator and a beamsplitter, which does not enable one to extract the nonclassical field. In the present scheme, the beamsplitter is replaced by the quantum noise evader, which makes it possible to extract the nonclassical field. We re-approach the comparison of two models related to the same scheme. The first one admits that in the feedback loop between the photon annihilation and creation operators, unusual commutation relations hold. As a consequence, in the feedback loop, squashing of the light occurs. In the second one, the description arrives at the feedback loop via unitary transformations. But it is obvious that the unitary transformation which describes the modulator changes even the annihilation operator of the mode which passes by the modulator which is not natural. The first model could be called "squashing model" and the second one could be named "self-consistent model". Although the predictions of the two models differ only a little and both the ways of analysis have their advantages, they have also their drawbacks and further investigation is possible.

  6. The input and output management of solid waste using DEA models: A case study at Jengka, Pahang

    Science.gov (United States)

    Mohamed, Siti Rosiah; Ghazali, Nur Fadzrina Mohd; Mohd, Ainun Hafizah

    2017-08-01

    Data Envelopment Analysis (DEA) as a tool for obtaining performance indices has been used extensively in several of organizations sector. The ways to improve the efficiency of Decision Making Units (DMUs) is impractical because some of inputs and outputs are uncontrollable and in certain situation its produce weak efficiency which often reflect the impact for operating environment. Based on the data from Alam Flora Sdn. Bhd Jengka, the researcher wants to determine the efficiency of solid waste management (SWM) in town Jengka Pahang using CCRI and CCRO model of DEA and duality formulation with vector average input and output. Three input variables (length collection in meter, frequency time per week in hour and number of garbage truck) and 2 outputs variables (frequency collection and the total solid waste collection in kilogram) are analyzed. As a conclusion, it shows only three roads from 23 roads are efficient that achieve efficiency score 1. Meanwhile, 20 other roads are in an inefficient management.

  7. Finding identifiable parameter combinations in nonlinear ODE models and the rational reparameterization of their input-output equations.

    Science.gov (United States)

    Meshkat, Nicolette; Anderson, Chris; Distefano, Joseph J

    2011-09-01

    When examining the structural identifiability properties of dynamic system models, some parameters can take on an infinite number of values and yet yield identical input-output data. These parameters and the model are then said to be unidentifiable. Finding identifiable combinations of parameters with which to reparameterize the model provides a means for quantitatively analyzing the model and computing solutions in terms of the combinations. In this paper, we revisit and explore the properties of an algorithm for finding identifiable parameter combinations using Gröbner Bases and prove useful theoretical properties of these parameter combinations. We prove a set of M algebraically independent identifiable parameter combinations can be found using this algorithm and that there exists a unique rational reparameterization of the input-output equations over these parameter combinations. We also demonstrate application of the procedure to a nonlinear biomodel. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. On the Influence of Input Data Quality to Flood Damage Estimation: The Performance of the INSYDE Model

    Directory of Open Access Journals (Sweden)

    Daniela Molinari

    2017-09-01

    Full Text Available IN-depth SYnthetic Model for Flood Damage Estimation (INSYDE is a model for the estimation of flood damage to residential buildings at the micro-scale. This study investigates the sensitivity of INSYDE to the accuracy of input data. Starting from the knowledge of input parameters at the scale of individual buildings for a case study, the level of detail of input data is progressively downgraded until the condition in which a representative value is defined for all inputs at the census block scale. The analysis reveals that two conditions are required to limit the errors in damage estimation: the representativeness of representatives values with respect to micro-scale values and the local knowledge of the footprint area of the buildings, being the latter the main extensive variable adopted by INSYDE. Such a result allows for extending the usability of the model at the meso-scale, also in different countries, depending on the availability of aggregated building data.

  9. SKIRT: The design of a suite of input models for Monte Carlo radiative transfer simulations

    Science.gov (United States)

    Baes, M.; Camps, P.

    2015-09-01

    The Monte Carlo method is the most popular technique to perform radiative transfer simulations in a general 3D geometry. The algorithms behind and acceleration techniques for Monte Carlo radiative transfer are discussed extensively in the literature, and many different Monte Carlo codes are publicly available. On the contrary, the design of a suite of components that can be used for the distribution of sources and sinks in radiative transfer codes has received very little attention. The availability of such models, with different degrees of complexity, has many benefits. For example, they can serve as toy models to test new physical ingredients, or as parameterised models for inverse radiative transfer fitting. For 3D Monte Carlo codes, this requires algorithms to efficiently generate random positions from 3D density distributions. We describe the design of a flexible suite of components for the Monte Carlo radiative transfer code SKIRT. The design is based on a combination of basic building blocks (which can be either analytical toy models or numerical models defined on grids or a set of particles) and the extensive use of decorators that combine and alter these building blocks to more complex structures. For a number of decorators, e.g. those that add spiral structure or clumpiness, we provide a detailed description of the algorithms that can be used to generate random positions. Advantages of this decorator-based design include code transparency, the avoidance of code duplication, and an increase in code maintainability. Moreover, since decorators can be chained without problems, very complex models can easily be constructed out of simple building blocks. Finally, based on a number of test simulations, we demonstrate that our design using customised random position generators is superior to a simpler design based on a generic black-box random position generator.

  10. A grey neural network and input-output combined forecasting model. Primary energy consumption forecasts in Spanish economic sectors

    International Nuclear Information System (INIS)

    Liu, Xiuli; Moreno, Blanca; García, Ana Salomé

    2016-01-01

    A combined forecast of Grey forecasting method and neural network back propagation model, which is called Grey Neural Network and Input-Output Combined Forecasting Model (GNF-IO model), is proposed. A real case of energy consumption forecast is used to validate the effectiveness of the proposed model. The GNF-IO model predicts coal, crude oil, natural gas, renewable and nuclear primary energy consumption volumes by Spain's 36 sub-sectors from 2010 to 2015 according to three different GDP growth scenarios (optimistic, baseline and pessimistic). Model test shows that the proposed model has higher simulation and forecasting accuracy on energy consumption than Grey models separately and other combination methods. The forecasts indicate that the primary energies as coal, crude oil and natural gas will represent on average the 83.6% percent of the total of primary energy consumption, raising concerns about security of supply and energy cost and adding risk for some industrial production processes. Thus, Spanish industry must speed up its transition to an energy-efficiency economy, achieving a cost reduction and increase in the level of self-supply. - Highlights: • Forecasting System Using Grey Models combined with Input-Output Models is proposed. • Primary energy consumption in Spain is used to validate the model. • The grey-based combined model has good forecasting performance. • Natural gas will represent the majority of the total of primary energy consumption. • Concerns about security of supply, energy cost and industry competitiveness are raised.

  11. Modelling the long-term consequences of a hypothetical dispersal of radioactivity in an urban area including remediation alternatives

    DEFF Research Database (Denmark)

    Thiessen, K.M.; Andersson, Kasper Grann; Batandjieva, B.

    2009-01-01

    The Urban Remediation Working Group of the International Atomic Energy Agency's EMRAS (Environmental Modelling for Radiation Safety) program was organized to address issues of remediation assessment modelling for urban areas contaminated with dispersed radionuclides. The present paper describes...... the second of two modelling exercises. This exercise was based on a hypothetical dispersal of radioactivity in an urban area from a radiological dispersal device, with reference surface contamination at selected sites used as the primary input information. Modelling endpoints for the exercise included...... radionuclide concentrations and external dose rates at specified locations, contributions to the dose rates from individual surfaces, and annual and cumulative external doses to specified reference individuals. Model predictions were performed for a "no action" situation (with no remedial measures...

  12. Realistic modeling of seismic input for megacities and large urban areas

    Science.gov (United States)

    Panza, G. F.; Unesco/Iugs/Igcp Project 414 Team

    2003-04-01

    The project addressed the problem of pre-disaster orientation: hazard prediction, risk assessment, and hazard mapping, in connection with seismic activity and man-induced vibrations. The definition of realistic seismic input has been obtained from the computation of a wide set of time histories and spectral information, corresponding to possible seismotectonic scenarios for different source and structural models. The innovative modeling technique, that constitutes the common tool to the entire project, takes into account source, propagation and local site effects. This is done using first principles of physics about wave generation and propagation in complex media, and does not require to resort to convolutive approaches, that have been proven to be quite unreliable, mainly when dealing with complex geological structures, the most interesting from the practical point of view. In fact, several techniques that have been proposed to empirically estimate the site effects using observations convolved with theoretically computed signals corresponding to simplified models, supply reliable information about the site response to non-interfering seismic phases. They are not adequate in most of the real cases, when the seismic sequel is formed by several interfering waves. The availability of realistic numerical simulations enables us to reliably estimate the amplification effects even in complex geological structures, exploiting the available geotechnical, lithological, geophysical parameters, topography of the medium, tectonic, historical, palaeoseismological data, and seismotectonic models. The realistic modeling of the ground motion is a very important base of knowledge for the preparation of groundshaking scenarios that represent a valid and economic tool for the seismic microzonation. This knowledge can be very fruitfully used by civil engineers in the design of new seismo-resistant constructions and in the reinforcement of the existing built environment, and, therefore

  13. Evaluation of Uncertainty in Constituent Input Parameters for Modeling the Fate of IMX 101 Components

    Science.gov (United States)

    2017-05-01

    2) TREECS™ has a tool for estimating soil Kd values given Koc, the soil tex- ture (percent sand, silt, and clay ), and the percent organic matter...respectively. Mulherin et al. (2005) studied the stability of NQ in three moist, unsatu- rated soils under laboratory conditions. This study yielded a range...of the uncertain input properties (degrada- tion rates and water-to- soil and water-to-sediment adsorption partitioning distribution coefficients, or

  14. A study on the multi-dimensional spectral analysis for response of a piping model with two-seismic inputs

    International Nuclear Information System (INIS)

    Suzuki, K.; Sato, H.

    1975-01-01

    The power and the cross power spectrum analysis by which the vibration characteristic of structures, such as natural frequency, mode of vibration and damping ratio, can be identified would be effective for the confirmation of the characteristics after the construction is completed by using the response for small earthquakes or the micro-tremor under the operating condition. This method of analysis previously utilized only from the view point of systems with single input so far, is extensively applied for the analysis of a medium scale model of a piping system subjected to two seismic inputs. The piping system attached to a three storied concrete structure model which is constructed on a shaking table was excited due to earthquake motions. The inputs to the piping system were recorded at the second floor and the ceiling of the third floor where the system was attached to. The output, the response of the piping system, was instrumented at a middle point on the system. As a result, the multi-dimensional power spectrum analysis is effective for a more reliable identification of the vibration characteristics of the multi-input structure system

  15. A normalization model suggests that attention changes the weighting of inputs between visual areas.

    Science.gov (United States)

    Ruff, Douglas A; Cohen, Marlene R

    2017-05-16

    Models of divisive normalization can explain the trial-averaged responses of neurons in sensory, association, and motor areas under a wide range of conditions, including how visual attention changes the gains of neurons in visual cortex. Attention, like other modulatory processes, is also associated with changes in the extent to which pairs of neurons share trial-to-trial variability. We showed recently that in addition to decreasing correlations between similarly tuned neurons within the same visual area, attention increases correlations between neurons in primary visual cortex (V1) and the middle temporal area (MT) and that an extension of a classic normalization model can account for this correlation increase. One of the benefits of having a descriptive model that can account for many physiological observations is that it can be used to probe the mechanisms underlying processes such as attention. Here, we use electrical microstimulation in V1 paired with recording in MT to provide causal evidence that the relationship between V1 and MT activity is nonlinear and is well described by divisive normalization. We then use the normalization model and recording and microstimulation experiments to show that the attention dependence of V1-MT correlations is better explained by a mechanism in which attention changes the weights of connections between V1 and MT than by a mechanism that modulates responses in either area. Our study shows that normalization can explain interactions between neurons in different areas and provides a framework for using multiarea recording and stimulation to probe the neural mechanisms underlying neuronal computations.

  16. SISTEM KONTROL OTOMATIK DENGAN MODEL SINGLE-INPUT-DUAL-OUTPUT DALAM KENDALI EFISIENSI UMUR-PEMAKAIAN INSTRUMEN

    Directory of Open Access Journals (Sweden)

    S.N.M.P. Simamora

    2014-10-01

    Full Text Available Efficiency condition occurs when the value of the used outputs compared to the resource total that has been used almost close to the value 1 (absolute environment. An instrument to achieve efficiency if the power output level has decreased significantly in the life of the instrument used, if it compared to the previous condition, when the instrument is not equipped with additional systems (or proposed model improvement. Even more effective if the inputs model that are used in unison to achieve a homogeneous output. On this research has been designed and implemented the automatic control system for models of single input-dual-output, wherein the sampling instruments used are lamp and fan. Source voltage used is AC (alternate-current and tested using quantitative research methods and instrumentation (with measuring instruments are observed. The results obtained demonstrate the efficiency of the instrument experienced a significant current model of single-input-dual-output applied separately instrument trials such as lamp and fan when it compared to the condition or state before. And the result show that the design has been built, can also run well.

  17. Performance assessment of retrospective meteorological inputs for use in air quality modeling during TexAQS 2006

    Science.gov (United States)

    Ngan, Fong; Byun, Daewon; Kim, Hyuncheol; Lee, Daegyun; Rappenglück, Bernhard; Pour-Biazar, Arastoo

    2012-07-01

    To achieve more accurate meteorological inputs than was used in the daily forecast for studying the TexAQS 2006 air quality, retrospective simulations were conducted using objective analysis and 3D/surface analysis nudging with surface and upper observations. Model ozone using the assimilated meteorological fields with improved wind fields shows better agreement with the observation compared to the forecasting results. In the post-frontal conditions, important factors for ozone modeling in terms of wind patterns are the weak easterlies in the morning for bringing in industrial emissions to the city and the subsequent clockwise turning of the wind direction induced by the Coriolis force superimposing the sea breeze, which keeps pollutants in the urban area. Objective analysis and nudging employed in the retrospective simulation minimize the wind bias but are not able to compensate for the general flow pattern biases inherited from large scale inputs. By using an alternative analyses data for initializing the meteorological simulation, the model can re-produce the flow pattern and generate the ozone peak location closer to the reality. The inaccurate simulation of precipitation and cloudiness cause over-prediction of ozone occasionally. Since there are limitations in the meteorological model to simulate precipitation and cloudiness in the fine scale domain (less than 4-km grid), the satellite-based cloud is an alternative way to provide necessary inputs for the retrospective study of air quality.

  18. Consumer input into health care: Time for a new active and comprehensive model of consumer involvement.

    Science.gov (United States)

    Hall, Alix E; Bryant, Jamie; Sanson-Fisher, Rob W; Fradgley, Elizabeth A; Proietto, Anthony M; Roos, Ian

    2018-03-07

    To ensure the provision of patient-centred health care, it is essential that consumers are actively involved in the process of determining and implementing health-care quality improvements. However, common strategies used to involve consumers in quality improvements, such as consumer membership on committees and collection of patient feedback via surveys, are ineffective and have a number of limitations, including: limited representativeness; tokenism; a lack of reliable and valid patient feedback data; infrequent assessment of patient feedback; delays in acquiring feedback; and how collected feedback is used to drive health-care improvements. We propose a new active model of consumer engagement that aims to overcome these limitations. This model involves the following: (i) the development of a new measure of consumer perceptions; (ii) low cost and frequent electronic data collection of patient views of quality improvements; (iii) efficient feedback to the health-care decision makers; and (iv) active involvement of consumers that fosters power to influence health system changes. © 2018 The Authors Health Expectations published by John Wiley & Sons Ltd.

  19. Estimation of Global 1km-grid Terrestrial Carbon Exchange Part I: Developing Inputs and Modelling

    Science.gov (United States)

    Sasai, T.; Murakami, K.; Kato, S.; Matsunaga, T.; Saigusa, N.; Hiraki, K.

    2015-12-01

    Global terrestrial carbon cycle largely depends on a spatial pattern in land cover type, which is heterogeneously-distributed over regional and global scales. However, most studies, which aimed at the estimation of carbon exchanges between ecosystem and atmosphere, remained within several tens of kilometers grid spatial resolution, and the results have not been enough to understand the detailed pattern of carbon exchanges based on ecological community. Improving the sophistication of spatial resolution is obviously necessary to enhance the accuracy of carbon exchanges. Moreover, the improvement may contribute to global warming awareness, policy makers and other social activities. In this study, we show global terrestrial carbon exchanges (net ecosystem production, net primary production, and gross primary production) with 1km-grid resolution. As methodology for computing the exchanges, we 1) developed a global 1km-grid climate and satellite dataset based on the approach in Setoyama and Sasai (2013); 2) used the satellite-driven biosphere model (Biosphere model integrating Eco-physiological And Mechanistic approaches using Satellite data: BEAMS) (Sasai et al., 2005, 2007, 2011); 3) simulated the carbon exchanges by using the new dataset and BEAMS by the use of a supercomputer that includes 1280 CPU and 320 GPGPU cores (GOSAT RCF of NIES). As a result, we could develop a global uniform system for realistically estimating terrestrial carbon exchange, and evaluate net ecosystem production in each community level; leading to obtain highly detailed understanding of terrestrial carbon exchanges.

  20. On the relationship between input parameters in two-mass vocal-fold model with acoustical coupling an signal parameters of the glottal flow

    NARCIS (Netherlands)

    van Hirtum, Annemie; Lopez, Ines; Hirschberg, Abraham; Pelorson, Xavier

    2003-01-01

    In this paper the sensitivity of the two-mass model with acoustical coupling to the model input-parameters is assessed. The model-output or the glottal volume air flow is characterised by signal-parameters in the time-domain. The influence of changing input-parameters on the signal-parameters is

  1. On the relationship between input parameters in the two-mass vocal-fold model with acoustical coupling and signal parameters of the glottal flow

    NARCIS (Netherlands)

    Hirtum, van A.; Lopez Arteaga, I.; Hirschberg, A.; Pelorson, X.

    2003-01-01

    In this paper the sensitivity of the two-mass model with acoustical coupling to the model input-parameters is assessed. The model-output or the glottal volume air flow is characterised by signal-parameters in the time-domain. The influence of changing input-parameters on the signal-parameters is

  2. Spectral element modelling of seismic wave propagation in visco-elastoplastic media including excess-pore pressure development

    Science.gov (United States)

    Oral, Elif; Gélis, Céline; Bonilla, Luis Fabián; Delavaud, Elise

    2017-12-01

    Numerical modelling of seismic wave propagation, considering soil nonlinearity, has become a major topic in seismic hazard studies when strong shaking is involved under particular soil conditions. Indeed, when strong ground motion propagates in saturated soils, pore pressure is another important parameter to take into account when successive phases of contractive and dilatant soil behaviour are expected. Here, we model 1-D seismic wave propagation in linear and nonlinear media using the spectral element numerical method. The study uses a three-component (3C) nonlinear rheology and includes pore-pressure excess. The 1-D-3C model is used to study the 1987 Superstition Hills earthquake (ML 6.6), which was recorded at the Wildlife Refuge Liquefaction Array, USA. The data of this event present strong soil nonlinearity involving pore-pressure effects. The ground motion is numerically modelled for different assumptions on soil rheology and input motion (1C versus 3C), using the recorded borehole signals as input motion. The computed acceleration-time histories show low-frequency amplification and strong high-frequency damping due to the development of pore pressure in one of the soil layers. Furthermore, the soil is found to be more nonlinear and more dilatant under triaxial loading compared to the classical 1C analysis, and significant differences in surface displacements are observed between the 1C and 3C approaches. This study contributes to identify and understand the dominant phenomena occurring in superficial layers, depending on local soil properties and input motions, conditions relevant for site-specific studies.

  3. Nonlinear neural network for hemodynamic model state and input estimation using fMRI data

    KAUST Repository

    Karam, Ayman M.

    2014-11-01

    Originally inspired by biological neural networks, artificial neural networks (ANNs) are powerful mathematical tools that can solve complex nonlinear problems such as filtering, classification, prediction and more. This paper demonstrates the first successful implementation of ANN, specifically nonlinear autoregressive with exogenous input (NARX) networks, to estimate the hemodynamic states and neural activity from simulated and measured real blood oxygenation level dependent (BOLD) signals. Blocked and event-related BOLD data are used to test the algorithm on real experiments. The proposed method is accurate and robust even in the presence of signal noise and it does not depend on sampling interval. Moreover, the structure of the NARX networks is optimized to yield the best estimate with minimal network architecture. The results of the estimated neural activity are also discussed in terms of their potential use.

  4. Embodied water analysis for Hebei Province, China by input-output modelling

    Science.gov (United States)

    Liu, Siyuan; Han, Mengyao; Wu, Xudong; Wu, Xiaofang; Li, Zhi; Xia, Xiaohua; Ji, Xi

    2018-03-01

    With the accelerating coordinated development of the Beijing-Tianjin-Hebei region, regional economic integration is recognized as a national strategy. As water scarcity places Hebei Province in a dilemma, it is of critical importance for Hebei Province to balance water resources as well as make full use of its unique advantages in the transition to sustainable development. To our knowledge, related embodied water accounting analysis has been conducted for Beijing and Tianjin, while similar works with the focus on Hebei are not found. In this paper, using the most complete and recent statistics available for Hebei Province, the embodied water use in Hebei Province is analyzed in detail. Based on input-output analysis, it presents a complete set of systems accounting framework for water resources. In addition, a database of embodied water intensity is proposed which is applicable to both intermediate inputs and final demand. The result suggests that the total amount of embodied water in final demand is 10.62 billion m3, of which the water embodied in urban household consumption accounts for more than half. As a net embodied water importer, the water embodied in the commodity trade in Hebei Province is 17.20 billion m3. The outcome of this work implies that it is particularly urgent to adjust industrial structure and trade policies for water conservation, to upgrade technology and to improve water utilization. As a result, to relieve water shortages in Hebei Province, it is of crucial importance to regulate the balance of water use within the province, thus balancing water distribution in the various industrial sectors.

  5. The sensitivity of ecosystem service models to choices of input data and spatial resolution

    Science.gov (United States)

    Kenneth J. Bagstad; Erika Cohen; Zachary H. Ancona; Steven. G. McNulty; Ge   Sun

    2018-01-01

    Although ecosystem service (ES) modeling has progressed rapidly in the last 10–15 years, comparative studies on data and model selection effects have become more common only recently. Such studies have drawn mixed conclusions about whether different data and model choices yield divergent results. In this study, we compared the results of different models to address...

  6. Modeling and sliding mode predictive control of the ultra-supercritical boiler-turbine system with uncertainties and input constraints.

    Science.gov (United States)

    Tian, Zhen; Yuan, Jingqi; Zhang, Xiang; Kong, Lei; Wang, Jingcheng

    2018-05-01

    The coordinated control system (CCS) serves as an important role in load regulation, efficiency optimization and pollutant reduction for coal-fired power plants. The CCS faces with tough challenges, such as the wide-range load variation, various uncertainties and constraints. This paper aims to improve the load tacking ability and robustness for boiler-turbine units under wide-range operation. To capture the key dynamics of the ultra-supercritical boiler-turbine system, a nonlinear control-oriented model is developed based on mechanism analysis and model reduction techniques, which is validated with the history operation data of a real 1000 MW unit. To simultaneously address the issues of uncertainties and input constraints, a discrete-time sliding mode predictive controller (SMPC) is designed with the dual-mode control law. Moreover, the input-to-state stability and robustness of the closed-loop system are proved. Simulation results are presented to illustrate the effectiveness of the proposed control scheme, which achieves good tracking performance, disturbance rejection ability and compatibility to input constraints. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  7. Methodology for deriving hydrogeological input parameters for safety-analysis models - application to fractured crystalline rocks of Northern Switzerland

    International Nuclear Information System (INIS)

    Vomvoris, S.; Andrews, R.W.; Lanyon, G.W.; Voborny, O.; Wilson, W.

    1996-04-01

    Switzerland is one of many nations with nuclear power that is seeking to identify rock types and locations that would be suitable for the underground disposal of nuclear waste. A common challenge among these programs is to provide engineering designers and safety analysts with a reasonably representative hydrogeological input dataset that synthesizes the relevant information from direct field observations as well as inferences and model results derived from those observations. Needed are estimates of the volumetric flux through a volume of rock and the distribution of that flux into discrete pathways between the repository zones and the biosphere. These fluxes are not directly measurable but must be derived based on understandings of the range of plausible hydrogeologic conditions expected at the location investigated. The methodology described in this report utilizes conceptual and numerical models at various scales to derive the input dataset. The methodology incorporates an innovative approach, called the geometric approach, in which field observations and their associated uncertainty, together with a conceptual representation of those features that most significantly affect the groundwater flow regime, were rigorously applied to generate alternative possible realizations of hydrogeologic features in the geosphere. In this approach, the ranges in the output values directly reflect uncertainties in the input values. As a demonstration, the methodology is applied to the derivation of the hydrogeological dataset for the crystalline basement of Northern Switzerland. (author) figs., tabs., refs

  8. Improved Stabilization Conditions for Nonlinear Systems with Input and State Delays via T-S Fuzzy Model

    Directory of Open Access Journals (Sweden)

    Chang Che

    2018-01-01

    Full Text Available This paper focuses on the problem of nonlinear systems with input and state delays. The considered nonlinear systems are represented by Takagi-Sugeno (T-S fuzzy model. A new state feedback control approach is introduced for T-S fuzzy systems with input delay and state delays. A new Lyapunov-Krasovskii functional is employed to derive less conservative stability conditions by incorporating a recently developed Wirtinger-based integral inequality. Based on the Lyapunov stability criterion, a series of linear matrix inequalities (LMIs are obtained by using the slack variables and integral inequality, which guarantees the asymptotic stability of the closed-loop system. Several numerical examples are given to show the advantages of the proposed results.

  9. Study of a diffusion flamelet model, with preferential diffusion effects included

    NARCIS (Netherlands)

    Delhaye, S.; Somers, L.M.T.; Bongers, H.; Oijen, van J.A.; Goey, de L.P.H.; Dias, V.

    2005-01-01

    The non-premixed flamelet model of Peters [1] (model1), which does not include preferential diffusion effects is investigated. Two similar models are presented, but without the assumption of unity Lewis numbers. One of these models was derived by Peters & Pitsch [2] (model2), while the other one was

  10. Modeling Soil Carbon Dynamics in Northern Forests: Effects of Spatial and Temporal Aggregation of Climatic Input Data.

    Science.gov (United States)

    Dalsgaard, Lise; Astrup, Rasmus; Antón-Fernández, Clara; Borgen, Signe Kynding; Breidenbach, Johannes; Lange, Holger; Lehtonen, Aleksi; Liski, Jari

    2016-01-01

    Boreal forests contain 30% of the global forest carbon with the majority residing in soils. While challenging to quantify, soil carbon changes comprise a significant, and potentially increasing, part of the terrestrial carbon cycle. Thus, their estimation is important when designing forest-based climate change mitigation strategies and soil carbon change estimates are required for the reporting of greenhouse gas emissions. Organic matter decomposition varies with climate in complex nonlinear ways, rendering data aggregation nontrivial. Here, we explored the effects of temporal and spatial aggregation of climatic and litter input data on regional estimates of soil organic carbon stocks and changes for upland forests. We used the soil carbon and decomposition model Yasso07 with input from the Norwegian National Forest Inventory (11275 plots, 1960-2012). Estimates were produced at three spatial and three temporal scales. Results showed that a national level average soil carbon stock estimate varied by 10% depending on the applied spatial and temporal scale of aggregation. Higher stocks were found when applying plot-level input compared to country-level input and when long-term climate was used as compared to annual or 5-year mean values. A national level estimate for soil carbon change was similar across spatial scales, but was considerably (60-70%) lower when applying annual or 5-year mean climate compared to long-term mean climate reflecting the recent climatic changes in Norway. This was particularly evident for the forest-dominated districts in the southeastern and central parts of Norway and in the far north. We concluded that the sensitivity of model estimates to spatial aggregation will depend on the region of interest. Further, that using long-term climate averages during periods with strong climatic trends results in large differences in soil carbon estimates. The largest differences in this study were observed in central and northern regions with strongly

  11. Effect of manure vs. fertilizer inputs on productivity of forage crop models.

    Science.gov (United States)

    Annicchiarico, Giovanni; Caternolo, Giovanni; Rossi, Emanuela; Martiniello, Pasquale

    2011-06-01

    Manure produced by livestock activity is a dangerous product capable of causing serious environmental pollution. Agronomic management practices on the use of manure may transform the target from a waste to a resource product. Experiments performed on comparison of manure with standard chemical fertilizers (CF) were studied under a double cropping per year regime (alfalfa, model I; Italian ryegrass-corn, model II; barley-seed sorghum, model III; and horse-bean-silage sorghum, model IV). The total amount of manure applied in the annual forage crops of the model II, III and IV was 158, 140 and 80 m3 ha(-1), respectively. The manure applied to soil by broadcast and injection procedure provides an amount of nitrogen equal to that supplied by CF. The effect of manure applications on animal feeding production and biochemical soil characteristics was related to the models. The weather condition and manures and CF showed small interaction among treatments. The number of MFU ha(-1) of biomass crop gross product produced in autumn and spring sowing models under manure applications was 11,769, 20,525, 11,342, 21,397 in models I through IV, respectively. The reduction of MFU ha(-1) under CF ranges from 10.7% to 13.2% those of the manure models. The effect of manure on organic carbon and total nitrogen of topsoil, compared to model I, stressed the parameters as CF whose amount was higher in models II and III than model IV. In term of percentage the organic carbon and total nitrogen of model I and treatment with manure was reduced by about 18.5 and 21.9% in model II and model III and 8.8 and 6.3% in model IV, respectively. Manure management may substitute CF without reducing gross production and sustainability of cropping systems, thus allowing the opportunity to recycle the waste product for animal forage feeding.

  12. Effect of Manure vs. Fertilizer Inputs on Productivity of Forage Crop Models

    Directory of Open Access Journals (Sweden)

    Pasquale Martiniello

    2011-06-01

    Full Text Available Manure produced by livestock activity is a dangerous product capable of causing serious environmental pollution. Agronomic management practices on the use of manure may transform the target from a waste to a resource product. Experiments performed on comparison of manure with standard chemical fertilizers (CF were studied under a double cropping per year regime (alfalfa, model I; Italian ryegrass-corn, model II; barley-seed sorghum, model III; and horse-bean-silage sorghum, model IV. The total amount of manure applied in the annual forage crops of the model II, III and IV was 158, 140 and 80 m3 ha−1, respectively. The manure applied to soil by broadcast and injection procedure provides an amount of nitrogen equal to that supplied by CF. The effect of manure applications on animal feeding production and biochemical soil characteristics was related to the models. The weather condition and manures and CF showed small interaction among treatments. The number of MFU ha−1 of biomass crop gross product produced in autumn and spring sowing models under manure applications was 11,769, 20,525, 11,342, 21,397 in models I through IV, respectively. The reduction of MFU ha−1 under CF ranges from 10.7% to 13.2% those of the manure models. The effect of manure on organic carbon and total nitrogen of topsoil, compared to model I, stressed the parameters as CF whose amount was higher in models II and III than model IV. In term of percentage the organic carbon and total nitrogen of model I and treatment with manure was reduced by about 18.5 and 21.9% in model II and model III and 8.8 and 6.3% in model IV, respectively. Manure management may substitute CF without reducing gross production and sustainability of cropping systems, thus allowing the opportunity to recycle the waste product for animal forage feeding.

  13. Modeling of the impact of Rhone River nutrient inputs on the dynamics of planktonic diversity

    Science.gov (United States)

    Alekseenko, Elena; Baklouti, Melika; Garreau, Pierre; Guyennon, Arnaud; Carlotti, François

    2014-05-01

    Recent studies devoted to the Mediterranean Sea highlight that a large number of uncertainties still exist particularly as regards the variations of elemental stoichiometry of all compartments of pelagic ecosystems (The MerMex Group, 2011, Pujo-Pay et al., 2011, Malatonne-Rizotti and the Pan-Med Group, 2012). Moreover, during the last two decades, it was observed that the inorganic ratio N:P ratio in among all the Mediterranean rivers, including the Rhone River, has dramatically increased, thus strengthening the P-limitation in the Mediterranean waters (Ludwig et al, 2009, The MerMex group, 2011) and increasing the anomaly in the ratio N:P of the Gulf of Lions and all the western part of NW Mediterranean. At which time scales such a change will impact the biogeochemical stocks and fluxes of the Gulf of Lion and of the whole NW Mediterranean sea still remains unknown. In the same way, it is still uncertain how this increase in the N:P ratio will modify the composition of the trophic web, and potentially lead to regime shifts by favouring for example one of the classical food chains of the sea considered in Parsons & Lalli (2002). To address this question, the Eco3M-MED biogeochemical model (Baklouti et al., 2006a,b, Alekseenko et al., 2014) representing the first trophic levels from bacteria to mesozooplankton, coupled with the hydrodynamical model MARS3D (Lazure&Dumas, 2008) is used. This model has already been partially validated (Alekseenko et al., 2014) and the fact that it describes each biogenic compartment in terms of its abundance (for organisms), and carbon, phosphorus, nitrogen and chlorophyll (for autotrophs) implies that all the information on the intracellular status of organisms and on the element(s) that limit(s) their growth will be available. The N:P ratios in water, organisms and in the exported material will also be analyzed. In practice, the work will first consist in running different scenarios starting from similar initial early winter

  14. The effect of adjusting model inputs to achieve mass balance on time-dynamic simulations in a food-web model of Lake Huron

    Science.gov (United States)

    Langseth, Brian J.; Jones, Michael L.; Riley, Stephen C.

    2014-01-01

    Ecopath with Ecosim (EwE) is a widely used modeling tool in fishery research and management. Ecopath requires a mass-balanced snapshot of a food web at a particular point in time, which Ecosim then uses to simulate changes in biomass over time. Initial inputs to Ecopath, including estimates for biomasses, production to biomass ratios, consumption to biomass ratios, and diets, rarely produce mass balance, and thus ad hoc changes to inputs are required to balance the model. There has been little previous research of whether ad hoc changes to achieve mass balance affect Ecosim simulations. We constructed an EwE model for the offshore community of Lake Huron, and balanced the model using four contrasting but realistic methods. The four balancing methods were based on two contrasting approaches; in the first approach, production of unbalanced groups was increased by increasing either biomass or the production to biomass ratio, while in the second approach, consumption of predators on unbalanced groups was decreased by decreasing either biomass or the consumption to biomass ratio. We compared six simulation scenarios based on three alternative assumptions about the extent to which mortality rates of prey can change in response to changes in predator biomass (i.e., vulnerabilities) under perturbations to either fishing mortality or environmental production. Changes in simulated biomass values over time were used in a principal components analysis to assess the comparative effect of balancing method, vulnerabilities, and perturbation types. Vulnerabilities explained the most variation in biomass, followed by the type of perturbation. Choice of balancing method explained little of the overall variation in biomass. Under scenarios where changes in predator biomass caused large changes in mortality rates of prey (i.e., high vulnerabilities), variation in biomass was greater than when changes in predator biomass caused only small changes in mortality rates of prey (i.e., low

  15. Modeling river total bed material load discharge using artificial intelligence approaches (based on conceptual inputs)

    Science.gov (United States)

    Roushangar, Kiyoumars; Mehrabani, Fatemeh Vojoudi; Shiri, Jalal

    2014-06-01

    This study presents Artificial Intelligence (AI)-based modeling of total bed material load through developing the accuracy level of the predictions of traditional models. Gene expression programming (GEP) and adaptive neuro-fuzzy inference system (ANFIS)-based models were developed and validated for estimations. Sediment data from Qotur River (Northwestern Iran) were used for developing and validation of the applied techniques. In order to assess the applied techniques in relation to traditional models, stream power-based and shear stress-based physical models were also applied in the studied case. The obtained results reveal that developed AI-based models using minimum number of dominant factors, give more accurate results than the other applied models. Nonetheless, it was revealed that k-fold test is a practical but high-cost technique for complete scanning of applied data and avoiding the over-fitting.

  16. AN ACCURATE MODELING OF DELAY AND SLEW METRICS FOR ON-CHIP VLSI RC INTERCONNECTS FOR RAMP INPUTS USING BURR’S DISTRIBUTION FUNCTION

    Directory of Open Access Journals (Sweden)

    Rajib Kar

    2010-09-01

    Full Text Available This work presents an accurate and efficient model to compute the delay and slew metric of on-chip interconnect of high speed CMOS circuits foe ramp input. Our metric assumption is based on the Burr’s Distribution function. The Burr’s distribution is used to characterize the normalized homogeneous portion of the step response. We used the PERI (Probability distribution function Extension for Ramp Inputs technique that extends delay metrics and slew metric for step inputs to the more general and realistic non-step inputs. The accuracy of our models is justified with the results compared with that of SPICE simulations.

  17. A simple technique for obtaining future climate data inputs for natural resource models

    Science.gov (United States)

    Those conducting impact studies using natural resource models need to be able to quickly and easily obtain downscaled future climate data from multiple models, scenarios, and timescales for multiple locations. This paper describes a method of quickly obtaining future climate data over a wide range o...

  18. Better temperature predictions in geothermal modelling by improved quality of input parameters

    DEFF Research Database (Denmark)

    Fuchs, Sven; Bording, Thue Sylvester; Balling, N.

    2015-01-01

    Thermal modelling is used to examine the subsurface temperature field and geothermal conditions at various scales (e.g. sedimentary basins, deep crust) and in the framework of different problem settings (e.g. scientific or industrial use). In such models, knowledge of rock thermal properties...

  19. Linear and Non-linear Multi-Input Multi-Output Model Predictive Control of Continuous Stirred Tank Reactor

    Directory of Open Access Journals (Sweden)

    Muayad Al-Qaisy

    2015-02-01

    Full Text Available In this article, multi-input multi-output (MIMO linear model predictive controller (LMPC based on state space model and nonlinear model predictive controller based on neural network (NNMPC are applied on a continuous stirred tank reactor (CSTR. The idea is to have a good control system that will be able to give optimal performance, reject high load disturbance, and track set point change. In order to study the performance of the two model predictive controllers, MIMO Proportional-Integral-Derivative controller (PID strategy is used as benchmark. The LMPC, NNMPC, and PID strategies are used for controlling the residual concentration (CA and reactor temperature (T. NNMPC control shows a superior performance over the LMPC and PID controllers by presenting a smaller overshoot and shorter settling time.

  20. Evaluating meteo marine climatic model inputs for the investigation of coastal hydrodynamics

    Science.gov (United States)

    Bellafiore, D.; Bucchignani, E.; Umgiesser, G.

    2010-09-01

    One of the major aspects discussed in the recent works on climate change is how to provide information from the global scale to the local one. In fact the influence of sea level rise and changes in the meteorological conditions due to climate change in strategic areas like the coastal zone is at the base of the well known mitigation and risk assessment plans. The investigation of the coastal zone hydrodynamics, from a modeling point of view, has been the field for the connection between hydraulic models and ocean models and, in terms of process studies, finite element models have demonstrated their suitability in the reproduction of complex coastal morphology and in the capability to reproduce different spatial scale hydrodynamic processes. In this work the connection between two different model families, the climate models and the hydrodynamic models usually implemented for process studies, is tested. Together, they can be the most suitable tool for the investigation of climate change on coastal systems. A finite element model, SHYFEM (Shallow water Hydrodynamic Finite Element Model), is implemented on the Adriatic Sea, to investigate the effect of wind forcing datasets produced by different downscaling from global climate models in terms of surge and its coastal effects. The wind datasets are produced by the regional climate model COSMO-CLM (CIRA), and by EBU-POM model (Belgrade University), both downscaling from ECHAM4. As a first step the downscaled wind datasets, that have different spatial resolutions, has been analyzed for the period 1960-1990 to compare what is their capability to reproduce the measured wind statistics in the coastal zone in front of the Venice Lagoon. The particularity of the Adriatic Sea meteo climate is connected with the influence of the orography in the strengthening of winds like Bora, from North-East. The increase in spatial resolution permits the more resolved wind dataset to better reproduce meteorology and to provide a more

  1. INCLUDING RISK IN ECONOMIC FEASIBILITY ANALYSIS:A STOCHASTIC SIMULATION MODEL FOR BLUEBERRY INVESTMENT DECISIONS IN CHILE

    Directory of Open Access Journals (Sweden)

    GERMÁN LOBOS

    2015-12-01

    Full Text Available ABSTRACT The traditional method of net present value (NPV to analyze the economic profitability of an investment (based on a deterministic approach does not adequately represent the implicit risk associated with different but correlated input variables. Using a stochastic simulation approach for evaluating the profitability of blueberry (Vaccinium corymbosum L. production in Chile, the objective of this study is to illustrate the complexity of including risk in economic feasibility analysis when the project is subject to several but correlated risks. The results of the simulation analysis suggest that the non-inclusion of the intratemporal correlation between input variables underestimate the risk associated with investment decisions. The methodological contribution of this study illustrates the complexity of the interrelationships between uncertain variables and their impact on the convenience of carrying out this type of business in Chile. The steps for the analysis of economic viability were: First, adjusted probability distributions for stochastic input variables (SIV were simulated and validated. Second, the random values of SIV were used to calculate random values of variables such as production, revenues, costs, depreciation, taxes and net cash flows. Third, the complete stochastic model was simulated with 10,000 iterations using random values for SIV. This result gave information to estimate the probability distributions of the stochastic output variables (SOV such as the net present value, internal rate of return, value at risk, average cost of production, contribution margin and return on capital. Fourth, the complete stochastic model simulation results were used to analyze alternative scenarios and provide the results to decision makers in the form of probabilities, probability distributions, and for the SOV probabilistic forecasts. The main conclusion shown that this project is a profitable alternative investment in fruit trees in

  2. Dependence of Computational Models on Input Dimension: Tractability of Approximation and Optimization Tasks

    Czech Academy of Sciences Publication Activity Database

    Kainen, P.C.; Kůrková, Věra; Sanguineti, M.

    2012-01-01

    Roč. 58, č. 2 (2012), s. 1203-1214 ISSN 0018-9448 R&D Projects: GA MŠk(CZ) ME10023; GA ČR GA201/08/1744; GA ČR GAP202/11/1368 Grant - others:CNR-AV ČR(CZ-IT) Project 2010–2012 Complexity of Neural -Network and Kernel Computational Models Institutional research plan: CEZ:AV0Z10300504 Keywords : dictionary-based computational models * high-dimensional approximation and optimization * model complexity * polynomial upper bounds Subject RIV: IN - Informatics, Computer Science Impact factor: 2.621, year: 2012

  3. Analytical model for advective-dispersive transport involving flexible boundary inputs, initial distributions and zero-order productions

    Science.gov (United States)

    Chen, Jui-Sheng; Li, Loretta Y.; Lai, Keng-Hsin; Liang, Ching-Ping

    2017-11-01

    A novel solution method is presented which leads to an analytical model for the advective-dispersive transport in a semi-infinite domain involving a wide spectrum of boundary inputs, initial distributions, and zero-order productions. The novel solution method applies the Laplace transform in combination with the generalized integral transform technique (GITT) to obtain the generalized analytical solution. Based on this generalized analytical expression, we derive a comprehensive set of special-case solutions for some time-dependent boundary distributions and zero-order productions, described by the Dirac delta, constant, Heaviside, exponentially-decaying, or periodically sinusoidal functions as well as some position-dependent initial conditions and zero-order productions specified by the Dirac delta, constant, Heaviside, or exponentially-decaying functions. The developed solutions are tested against an analytical solution from the literature. The excellent agreement between the analytical solutions confirms that the new model can serve as an effective tool for investigating transport behaviors under different scenarios. Several examples of applications, are given to explore transport behaviors which are rarely noted in the literature. The results show that the concentration waves resulting from the periodically sinusoidal input are sensitive to dispersion coefficient. The implication of this new finding is that a tracer test with a periodic input may provide additional information when for identifying the dispersion coefficients. Moreover, the solution strategy presented in this study can be extended to derive analytical models for handling more complicated problems of solute transport in multi-dimensional media subjected to sequential decay chain reactions, for which analytical solutions are not currently available.

  4. Development of a General Form CO2 and Brine Flux Input Model

    Energy Technology Data Exchange (ETDEWEB)

    Mansoor, K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Sun, Y. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Carroll, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-08-01

    The National Risk Assessment Partnership (NRAP) project is developing a science-based toolset for the quantitative analysis of the potential risks associated with changes in groundwater chemistry from CO2 injection. In order to address uncertainty probabilistically, NRAP is developing efficient, reduced-order models (ROMs) as part of its approach. These ROMs are built from detailed, physics-based process models to provide confidence in the predictions over a range of conditions. The ROMs are designed to reproduce accurately the predictions from the computationally intensive process models at a fraction of the computational time, thereby allowing the utilization of Monte Carlo methods to probe variability in key parameters. This report presents the procedures used to develop a generalized model for CO2 and brine leakage fluxes based on the output of a numerical wellbore simulation. The resulting generalized parameters and ranges reported here will be used for the development of third-generation groundwater ROMs.

  5. Sensitivity of modeled estuarine circulation to spatial and temporal resolution of input meteorological forcing of a cold frontal passage

    Science.gov (United States)

    Weaver, Robert J.; Taeb, Peyman; Lazarus, Steven; Splitt, Michael; Holman, Bryan P.; Colvin, Jeffrey

    2016-12-01

    In this study, a four member ensemble of meteorological forcing is generated using the Weather Research and Forecasting (WRF) model in order to simulate a frontal passage event that impacted the Indian River Lagoon (IRL) during March 2015. The WRF model is run to provide high and low, spatial (0.005° and 0.1°) and temporal (30 min and 6 h) input wind and pressure fields. The four member ensemble is used to force the Advanced Circulation model (ADCIRC) coupled with Simulating Waves Nearshore (SWAN) and compute the hydrodynamic and wave response. Results indicate that increasing the spatial resolution of the meteorological forcing has a greater impact on the results than increasing the temporal resolution in coastal systems like the IRL where the length scales are smaller than the resolution of the operational meteorological model being used to generate the forecast. Changes in predicted water elevations are due in part to the upwind and downwind behavior of the input wind forcing. The significant wave height is more sensitive to the meteorological forcing, exhibited by greater ensemble spread throughout the simulation. It is important that the land mask, seen by the meteorological model, is representative of the geography of the coastal estuary as resolved by the hydrodynamic model. As long as the temporal resolution of the wind field captures the bulk characteristics of the frontal passage, computational resources should be focused so as to ensure that the meteorological model resolves the spatial complexities, such as the land-water interface, that drive the land use responsible for dynamic downscaling of the winds.

  6. Industrial and ecological cumulative exergy consumption of the United States via the 1997 input-output benchmark model

    International Nuclear Information System (INIS)

    Ukidwe, Nandan U.; Bakshi, Bhavik R.

    2007-01-01

    This paper develops a thermodynamic input-output (TIO) model of the 1997 United States economy that accounts for the flow of cumulative exergy in the 488-sector benchmark economic input-output model in two different ways. Industrial cumulative exergy consumption (ICEC) captures the exergy of all natural resources consumed directly and indirectly by each economic sector, while ecological cumulative exergy consumption (ECEC) also accounts for the exergy consumed in ecological systems for producing each natural resource. Information about exergy consumed in nature is obtained from the thermodynamics of biogeochemical cycles. As used in this work, ECEC is analogous to the concept of emergy, but does not rely on any of its controversial claims. The TIO model can also account for emissions from each sector and their impact and the role of labor. The use of consistent exergetic units permits the combination of various streams to define aggregate metrics that may provide insight into aspects related to the impact of economic sectors on the environment. Accounting for the contribution of natural capital by ECEC has been claimed to permit better representation of the quality of ecosystem goods and services than ICEC. The results of this work are expected to permit evaluation of these claims. If validated, this work is expected to lay the foundation for thermodynamic life cycle assessment, particularly of emerging technologies and with limited information

  7. Modeling microstructure of incudostapedial joint and the effect on cochlear input

    Science.gov (United States)

    Gan, Rong Z.; Wang, Xuelin

    2015-12-01

    The incudostapedial joint (ISJ) connects the incus to stapes in human ear and plays an important role for sound transmission from the tympanic membrane (TM) to cochlea. ISJ is a synovial joint composed of articular cartilage on the lenticular process and stapes head with the synovial fluid between them. However, there is no study on how the synovial ISJ affects the middle ear and cochlear functions. Recently, we have developed a 3-dimensinal finite element (FE) model of synovial ISJ and connected the model to our comprehensive FE model of the human ear. The motions of TM, stapes footplate, and basilar membrane and the pressures in scala vestibule and scala tympani were derived over frequencies and compared with experimental measurements. Results show that the synovial ISJ affects sound transmission into cochlea and the frequency-dependent viscoelastic behavior of ISJ provides protection for cochlea from high intensity sound.

  8. Simplified models for new physics in vector boson scattering. Input for Snowmass 2013

    International Nuclear Information System (INIS)

    Reuter, Juergen; Kilian, Wolfgang; Sekulla, Marco

    2013-07-01

    In this contribution to the Snowmass process 2013 we give a brief review of how new physics could enter in the electroweak (EW) sector of the Standard Model (SM). This new physics, if it is directly accessible at low energies, can be parameterized by explicit resonances having certain quantum numbers. The extreme case is the decoupling limit where those resonances are very heavy and leave only traces in the form of deviations in the SM couplings. Translations are given into higher-dimensional operators leading to such deviations. As long as such resonances are introduced without a UV-complete theory behind it, these models suffer from unitarity violation of perturbative scattering amplitudes. We show explicitly how theoretically sane descriptions could be achieved by using a unitarization prescription that allows a correct description of such a resonance without specifying a UV-complete model.

  9. Simplified models for new physics in vector boson scattering. Input for Snowmass 2013

    Energy Technology Data Exchange (ETDEWEB)

    Reuter, Juergen [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Kilian, Wolfgang; Sekulla, Marco [Siegen Univ. (Germany). Theoretische Physik I

    2013-07-15

    In this contribution to the Snowmass process 2013 we give a brief review of how new physics could enter in the electroweak (EW) sector of the Standard Model (SM). This new physics, if it is directly accessible at low energies, can be parameterized by explicit resonances having certain quantum numbers. The extreme case is the decoupling limit where those resonances are very heavy and leave only traces in the form of deviations in the SM couplings. Translations are given into higher-dimensional operators leading to such deviations. As long as such resonances are introduced without a UV-complete theory behind it, these models suffer from unitarity violation of perturbative scattering amplitudes. We show explicitly how theoretically sane descriptions could be achieved by using a unitarization prescription that allows a correct description of such a resonance without specifying a UV-complete model.

  10. SPY: a new scission-point model based on microscopic inputs to predict fission fragment properties

    Energy Technology Data Exchange (ETDEWEB)

    Panebianco, Stefano; Lemaître, Jean-Francois; Sida, Jean-Luc [CEA Centre de Saclay, Gif-sur-Ivette (France); Dubray, Noëel [CEA, DAM, DIF, Arpajon (France); Goriely, Stephane [Institut d' Astronomie et d' Astrophisique, Universite Libre de Bruxelles, Brussels (Belgium)

    2014-07-01

    Despite the difficulty in describing the whole fission dynamics, the main fragment characteristics can be determined in a static approach based on a so-called scission-point model. Within this framework, a new Scission-Point model for the calculations of fission fragment Yields (SPY) has been developed. This model, initially based on the approach developed by Wilkins in the late seventies, consists in performing a static energy balance at scission, where the two fragments are supposed to be completely separated so that their macroscopic properties (mass and charge) can be considered as fixed. Given the knowledge of the system state density, averaged quantities such as mass and charge yields, mean kinetic and excitation energy can then be extracted in the framework of a microcanonical statistical description. The main advantage of the SPY model is the introduction of one of the most up-to-date microscopic descriptions of the nucleus for the individual energy of each fragment and, in the future, for their state density. These quantities are obtained in the framework of HFB calculations using the Gogny nucleon-nucleon interaction, ensuring an overall coherence of the model. Starting from a description of the SPY model and its main features, a comparison between the SPY predictions and experimental data will be discussed for some specific cases, from light nuclei around mercury to major actinides. Moreover, extensive predictions over the whole chart of nuclides will be discussed, with particular attention to their implication in stellar nucleosynthesis. Finally, future developments, mainly concerning the introduction of microscopic state densities, will be briefly discussed. (author)

  11. A Hierarchical multi-input and output Bi-GRU Model for Sentiment Analysis on Customer Reviews

    Science.gov (United States)

    Zhang, Liujie; Zhou, Yanquan; Duan, Xiuyu; Chen, Ruiqi

    2018-03-01

    Multi-label sentiment classification on customer reviews is a practical challenging task in Natural Language Processing. In this paper, we propose a hierarchical multi-input and output model based bi-directional recurrent neural network, which both considers the semantic and lexical information of emotional expression. Our model applies two independent Bi-GRU layer to generate part of speech and sentence representation. Then the lexical information is considered via attention over output of softmax activation on part of speech representation. In addition, we combine probability of auxiliary labels as feature with hidden layer to capturing crucial correlation between output labels. The experimental result shows that our model is computationally efficient and achieves breakthrough improvements on customer reviews dataset.

  12. BioModels: expanding horizons to include more modelling approaches and formats.

    Science.gov (United States)

    Glont, Mihai; Nguyen, Tung V N; Graesslin, Martin; Hälke, Robert; Ali, Raza; Schramm, Jochen; Wimalaratne, Sarala M; Kothamachu, Varun B; Rodriguez, Nicolas; Swat, Maciej J; Eils, Jurgen; Eils, Roland; Laibe, Camille; Malik-Sheriff, Rahuman S; Chelliah, Vijayalakshmi; Le Novère, Nicolas; Hermjakob, Henning

    2018-01-04

    BioModels serves as a central repository of mathematical models representing biological processes. It offers a platform to make mathematical models easily shareable across the systems modelling community, thereby supporting model reuse. To facilitate hosting a broader range of model formats derived from diverse modelling approaches and tools, a new infrastructure for BioModels has been developed that is available at http://www.ebi.ac.uk/biomodels. This new system allows submitting and sharing of a wide range of models with improved support for formats other than SBML. It also offers a version-control backed environment in which authors and curators can work collaboratively to curate models. This article summarises the features available in the current system and discusses the potential benefit they offer to the users over the previous system. In summary, the new portal broadens the scope of models accepted in BioModels and supports collaborative model curation which is crucial for model reproducibility and sharing. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  13. Progress on reference input parameter library for nuclear model calculations of nuclear data (III)

    International Nuclear Information System (INIS)

    Su Zongdi; Liu Jianfeng; Huang Zhongfu

    1997-01-01

    A new set of the average neutron resonance spacings D 0 and neutron strength functions S 0 for 309 nuclei were reestimated on the basis of the resolved resonance parameters reevaluated from BNL-325, ENDF/B-6, JEF-2, and JENDL-3, and the cumulative number N 0 of low low lying levels for 344 nuclei were also reevaluated by means of histograms. Three sets of level density parameters for the Gilbert-Cameron (GC) formula, back-shifted Fermi gas model(BS) and generated superfluid model (GSM) have been reesitmated by fitting the D 0 and N 0 values of CENPL.LRD-2

  14. Spatial modelling of marine organisms in Forsmark and Oskarshamn. Including calculation of physical predictor variables

    Energy Technology Data Exchange (ETDEWEB)

    Carlen, Ida; Nikolopoulos, Anna; Isaeus, Martin (AquaBiota Water Research, Stockholm (SE))

    2007-06-15

    GIS grids (maps) of marine parameters were created using point data from previous site investigations in the Forsmark and Oskarshamn areas. The proportion of global radiation reaching the sea bottom in Forsmark and Oskarshamn was calculated in ArcView, using Secchi depth measurements and the digital elevation models for the respective area. The number of days per year when the incoming light exceeds 5 MJ/m2 at the bottom was then calculated using the result of the previous calculations together with measured global radiation. Existing modelled grid-point data on bottom and pelagic temperature for Forsmark were interpolated to create surface covering grids. Bottom and pelagic temperature grids for Oskarshamn were calculated using point measurements to achieve yearly averages for a few points and then using regressions with existing grids to create new maps. Phytoplankton primary production in Forsmark was calculated using point measurements of chlorophyll and irradiance, and a regression with a modelled grid of Secchi depth. Distribution of biomass of macrophyte communities in Forsmark and Oskarshamn was calculated using spatial modelling in GRASP, based on field data from previous surveys. Physical parameters such as those described above were used as predictor variables. Distribution of biomass of different functional groups of fish in Forsmark was calculated using spatial modelling based on previous surveys and with predictor variables such as physical parameters and results from macrophyte modelling. All results are presented as maps in the report. The quality of the modelled predictions varies as a consequence of the quality and amount of the input data, the ecology and knowledge of the predicted phenomena, and by the modelling technique used. A substantial part of the variation is not described by the models, which should be expected for biological modelling. Therefore, the resulting grids should be used with caution and with this uncertainty kept in mind. All

  15. Spatial modelling of marine organisms in Forsmark and Oskarshamn. Including calculation of physical predictor variables

    International Nuclear Information System (INIS)

    Carlen, Ida; Nikolopoulos, Anna; Isaeus, Martin

    2007-06-01

    GIS grids (maps) of marine parameters were created using point data from previous site investigations in the Forsmark and Oskarshamn areas. The proportion of global radiation reaching the sea bottom in Forsmark and Oskarshamn was calculated in ArcView, using Secchi depth measurements and the digital elevation models for the respective area. The number of days per year when the incoming light exceeds 5 MJ/m2 at the bottom was then calculated using the result of the previous calculations together with measured global radiation. Existing modelled grid-point data on bottom and pelagic temperature for Forsmark were interpolated to create surface covering grids. Bottom and pelagic temperature grids for Oskarshamn were calculated using point measurements to achieve yearly averages for a few points and then using regressions with existing grids to create new maps. Phytoplankton primary production in Forsmark was calculated using point measurements of chlorophyll and irradiance, and a regression with a modelled grid of Secchi depth. Distribution of biomass of macrophyte communities in Forsmark and Oskarshamn was calculated using spatial modelling in GRASP, based on field data from previous surveys. Physical parameters such as those described above were used as predictor variables. Distribution of biomass of different functional groups of fish in Forsmark was calculated using spatial modelling based on previous surveys and with predictor variables such as physical parameters and results from macrophyte modelling. All results are presented as maps in the report. The quality of the modelled predictions varies as a consequence of the quality and amount of the input data, the ecology and knowledge of the predicted phenomena, and by the modelling technique used. A substantial part of the variation is not described by the models, which should be expected for biological modelling. Therefore, the resulting grids should be used with caution and with this uncertainty kept in mind. All

  16. GALEV evolutionary synthesis models – I. Code, input physics and web

    NARCIS (Netherlands)

    Kotulla, R.; Fritze, U.; Weilbacher, P.; Anders, P.

    2009-01-01

    GALEV (GALaxy EVolution) evolutionary synthesis models describe the evolution of stellar populations in general, of star clusters as well as of galaxies, both in terms of resolved stellar populations and of integrated light properties over cosmological time-scales of ≥13 Gyr from the onset of star

  17. Model-based extraction of input and organ functions in dynamic scintigraphic imaging

    Czech Academy of Sciences Publication Activity Database

    Tichý, Ondřej; Šmídl, Václav; Šámal, M.

    2016-01-01

    Roč. 4, 3-4 (2016), s. 135-145 ISSN 2168-1171 R&D Projects: GA ČR GA13-29225S Institutional support: RVO:67985556 Keywords : blind source separation * convolution * dynamic medical imaging * compartment modelling Subject RIV: BB - Applied Statistics, Operational Research http://library.utia.cas.cz/separaty/2014/AS/tichy-0428540.pdf

  18. Modeling chronic diseases: the diabetes module. Justification of (new) input data

    NARCIS (Netherlands)

    Baan CA; Bos G; Jacobs-van der Bruggen MAM; Baan CA; Bos G; Jacobs-van der Bruggen MAM; PZO

    2005-01-01

    The RIVM chronic disease model (CDM) is an instrument designed to estimate the effects of changes in the prevalence of risk factors for chronic diseases on disease burden and mortality. To enable the computation of the effects of various diabetes prevention scenarios, the CDM has been updated and

  19. The effective temperature of the DBV's, and the sensitivity of DB model atmospheres to input physics

    International Nuclear Information System (INIS)

    Thejll, P.; Delaware Univ., Newark, DE; Vennes, S.; Shipman, H.L.

    1990-01-01

    A new grid of DB models is applied to the problem of the DBV temperatures and the DB gap. It is found that the DBV instability strip lies lower than thought before. This has consequences for the calibration of mixing-length theories and the reality of the DB gap. The DBV GD358 is discussed in detail. (orig.)

  20. Evapotranspiration and Precipitation inputs for SWAT model using remotely sensed observations

    Science.gov (United States)

    The ability of numerical models, such as the Soil and Water Assessment Tool (or SWAT), to accurately represent the partition of the water budget and describe sediment loads and other pollutant conditions related to water quality strongly depends on how well spatiotemporal variability in precipitatio...

  1. A Variable Input-Output Model for Inflation, Growth, and Energy for the Korean Economy.

    Science.gov (United States)

    1983-12-01

    and the sales price of cukput as determinan -s of the technical coefficients were suggested by Walras [Ref. 4] and many other eco.cmis.s. (Ref. 5] Arrow...34included in manufacturing and construction secter. The other industries include the social and government services. 32 Ii. * 1.’ *. - .-- :~ ~~\\ ~~ v...e3lectricity, government enterprise, and other social commercial industries. The rate of growth of the money suiply and interest ratqs on loans are the key

  2. Sampling forest regeneration across northern U.S. forests: filling a void in regeneration model input

    Science.gov (United States)

    William H. McWilliams; Charles D. Canham; Randall S. Morin; Katherine Johnson; Paul Roth; James A. Westfall

    2012-01-01

    The Forest Inventory and Analysis Program of the Northern Research Station (NRS-FIA) has implemented new Advance Tree Seedling Regeneration (ATSR) protocols that include measurements of seedlings down to 2 inches in height. The addition of ATSR protocols is part of an evaluation of NRS-FIA Phase 3 indicator variables to increase sampling intensity from 1/96,000 acres...

  3. Predicted fuel consumption in the Burnup model: sensitivity to four user inputs

    Science.gov (United States)

    D. C. Lutes

    2013-01-01

    Fuelbeds consist of a number of combustible components that are consumed during a fire, including duff, litter, vegetation (herbs, shrub, foliage, and branches) and down dead woody material (DWM). Combustion of DWM during a fire has a well-documented role in determining fire effects and fire behavior impacts such as emissions (Sandberg and others 2002), vegetative...

  4. A stock-flow consistent input-output model with applications to energy price shocks, interest rates, and heat emissions

    Science.gov (United States)

    Berg, Matthew; Hartley, Brian; Richters, Oliver

    2015-01-01

    By synthesizing stock-flow consistent models, input-output models, and aspects of ecological macroeconomics, a method is developed to simultaneously model monetary flows through the financial system, flows of produced goods and services through the real economy, and flows of physical materials through the natural environment. This paper highlights the linkages between the physical environment and the economic system by emphasizing the role of the energy industry. A conceptual model is developed in general form with an arbitrary number of sectors, while emphasizing connections with the agent-based, econophysics, and complexity economics literature. First, we use the model to challenge claims that 0% interest rates are a necessary condition for a stationary economy and conduct a stability analysis within the parameter space of interest rates and consumption parameters of an economy in stock-flow equilibrium. Second, we analyze the role of energy price shocks in contributing to recessions, incorporating several propagation and amplification mechanisms. Third, implied heat emissions from energy conversion and the effect of anthropogenic heat flux on climate change are considered in light of a minimal single-layer atmosphere climate model, although the model is only implicitly, not explicitly, linked to the economic model.

  5. Output from Statistical Predictive Models as Input to eLearning Dashboards

    Directory of Open Access Journals (Sweden)

    Marlene A. Smith

    2015-06-01

    Full Text Available We describe how statistical predictive models might play an expanded role in educational analytics by giving students automated, real-time information about what their current performance means for eventual success in eLearning environments. We discuss how an online messaging system might tailor information to individual students using predictive analytics. The proposed system would be data-driven and quantitative; e.g., a message might furnish the probability that a student will successfully complete the certificate requirements of a massive open online course. Repeated messages would prod underperforming students and alert instructors to those in need of intervention. Administrators responsible for accreditation or outcomes assessment would have ready documentation of learning outcomes and actions taken to address unsatisfactory student performance. The article’s brief introduction to statistical predictive models sets the stage for a description of the messaging system. Resources and methods needed to develop and implement the system are discussed.

  6. ANALISIS KEBERHASILAN PRAKTIK KERJA INDUSTRI (PRAKERIN SEBAGAI IMPLEMENTASI PENDIDIKAN SISTEM GANDA (PSG DENGAN MODEL EVALUASI CIPP (CONTEXT, INPUT, PROCESS, PRODUCT DI SMK BARDAN WASALAMAN BATANG

    Directory of Open Access Journals (Sweden)

    Ikke Tutiana Mustiany

    2017-02-01

    Full Text Available Industrial Work Practices (Prakerin is a implementation of the Dual System Education. Prakerin for vocational students is very important to do, because the purpose of vocational education is to prepare students to be ready and independent in the face of the work world. The purpose of this research is to analyze the success of prakerin in vocational Bardan Wasalaman with models CIPP (Context, Input, Process, Product. This type of research used in this study is an evaluative research with quantitative descriptive analysis. This study is a population, where there are 91 respondents composed of 27 people from the accounting and 64 people from the pharmacy. And to support the respondents researchers also conducted interviews with five speakers consisting of Vice Principal of Public Relations, Chairman of Pharmacy Department, Chairman of the Accounting Studies Program, Teacher of Productive Pharmacy and Accounting. Data analysis techniques used in this study presented is the percentage descriptive statistics.The results showed that the average aspect in the context prakerin of 32.54 is included in the excellent category. Average in the input aspects of 48.07 is included in the good categories. Aspects process in prakerin showed an average of 33.65 is included in the good categories. As for the average product in prakerin aspects of 24.79 is included in the high category.

  7. Modelling Effects on Grid Cells of Sensory Input During Self-motion

    Science.gov (United States)

    2016-04-20

    individual oscillators. These oscillatory interference models effectively simulate the theta rhythmic firing of grid cells (Hafting et al. 2008; Jeewajee...et al. 2008; Brandon et al. 2011; Koenig et al. 2011; Stensola et al. 2012), and the changes in rhythmic firing frequency based on running speed and...Fiete, 2009; Couey et al. 2013), and equate head direction with movement direction. However, an analysis of behavioural data shows that the head

  8. Fingerprints of four crop models as affected by soil input data aggregation

    Czech Academy of Sciences Publication Activity Database

    Angulo, C.; Gaiser, T.; Rötter, R. P.; Børgesen, C. D.; Hlavinka, Petr; Trnka, Miroslav; Ewert, F.

    2014-01-01

    Roč. 61, NOV 2014 (2014), s. 35-48 ISSN 1161-0301 R&D Projects: GA MŠk(CZ) EE2.3.20.0248; GA MŠk(CZ) EE2.4.31.0056; GA MZe QJ1310123 Institutional support: RVO:67179843 Keywords : crop model * soil data * spatial resolution * yield distribution * aggregation Subject RIV: EH - Ecology, Behaviour Impact factor: 2.704, year: 2014

  9. Characteristic 'fingerprints' of crop model responses data at different spatial resolutions to weather input

    Czech Academy of Sciences Publication Activity Database

    Angulo, C.; Rotter, R.; Trnka, Miroslav; Pirttioja, N. K.; Gaiser, T.; Hlavinka, Petr; Ewert, F.

    2013-01-01

    Roč. 49, AUG 2013 (2013), s. 104-114 ISSN 1161-0301 R&D Projects: GA MŠk(CZ) EE2.3.20.0248; GA MŠk(CZ) EE2.4.31.0056 Institutional support: RVO:67179843 Keywords : Crop model * Weather data resolution * Aggregation * Yield distribution Subject RIV: EH - Ecology, Behaviour Impact factor: 2.918, year: 2013

  10. Errors in estimation of the input signal for integrate-and-fire neuronal models

    Czech Academy of Sciences Publication Activity Database

    Bibbona, E.; Lánský, Petr; Sacerdote, L.; Sirovich, R.

    2008-01-01

    Roč. 78, č. 1 (2008), s. 1-10 ISSN 1539-3755 R&D Projects: GA MŠk(CZ) LC554; GA AV ČR(CZ) 1ET400110401 Grant - others:EC(XE) MIUR PRIN 2005 Institutional research plan: CEZ:AV0Z50110509 Keywords : parameter estimation * stochastic neuronal model Subject RIV: BO - Biophysics Impact factor: 2.508, year: 2008 http://link.aps.org/abstract/PRE/v78/e011918

  11. Satellite, climatological, and theoretical inputs for modeling of the diurnal cycle of fire emissions

    Science.gov (United States)

    Hyer, E. J.; Reid, J. S.; Schmidt, C. C.; Giglio, L.; Prins, E.

    2009-12-01

    The diurnal cycle of fire activity is crucial for accurate simulation of atmospheric effects of fire emissions, especially at finer spatial and temporal scales. Estimating diurnal variability in emissions is also a critical problem for construction of emissions estimates from multiple sensors with variable coverage patterns. An optimal diurnal emissions estimate will use as much information as possible from satellite fire observations, compensate known biases in those observations, and use detailed theoretical models of the diurnal cycle to fill in missing information. As part of ongoing improvements to the Fire Location and Monitoring of Burning Emissions (FLAMBE) fire monitoring system, we evaluated several different methods of integrating observations with different temporal sampling. We used geostationary fire detections from WF_ABBA, fire detection data from MODIS, empirical diurnal cycles from TRMM, and simple theoretical diurnal curves based on surface heating. Our experiments integrated these data in different combinations to estimate the diurnal cycles of emissions for each location and time. Hourly emissions estimates derived using these methods were tested using an aerosol transport model. We present results of this comparison, and discuss the implications of our results for the broader problem of multi-sensor data fusion in fire emissions modeling.

  12. Modelling the long-term consequences of a hypothetical dispersal of radioactivity in an urban area including remediation alternatives

    International Nuclear Information System (INIS)

    Thiessen, K.M.; Andersson, K.G.; Batandjieva, B.; Cheng, J.-J.; Hwang, W.T.; Kaiser, J.C.; Kamboj, S.; Steiner, M.; Tomas, J.; Trifunovic, D.; Yu, C.

    2009-01-01

    The Urban Remediation Working Group of the International Atomic Energy Agency's EMRAS (Environmental Modelling for Radiation Safety) program was organized to address issues of remediation assessment modelling for urban areas contaminated with dispersed radionuclides. The present paper describes the second of two modelling exercises. This exercise was based on a hypothetical dispersal of radioactivity in an urban area from a radiological dispersal device, with reference surface contamination at selected sites used as the primary input information. Modelling endpoints for the exercise included radionuclide concentrations and external dose rates at specified locations, contributions to the dose rates from individual surfaces, and annual and cumulative external doses to specified reference individuals. Model predictions were performed for a 'no action' situation (with no remedial measures) and for selected countermeasures. The exercise provided an opportunity for comparison of three modelling approaches, as well as a comparison of the predicted effectiveness of various countermeasures in terms of their short-term and long-term effects on predicted doses to humans.

  13. Integrated model of port oil piping transportation system safety including operating environment threats

    OpenAIRE

    Kołowrocki, Krzysztof; Kuligowska, Ewa; Soszyńska-Budny, Joanna

    2017-01-01

    The paper presents an integrated general model of complex technical system, linking its multistate safety model and the model of its operation process including operating environment threats and considering variable at different operation states its safety structures and its components safety parameters. Under the assumption that the system has exponential safety function, the safety characteristics of the port oil piping transportation system are determined.

  14. Optimization modeling of U.S. renewable electricity deployment using local input variables

    Science.gov (United States)

    Bernstein, Adam

    For the past five years, state Renewable Portfolio Standard (RPS) laws have been a primary driver of renewable electricity (RE) deployments in the United States. However, four key trends currently developing: (i) lower natural gas prices, (ii) slower growth in electricity demand, (iii) challenges of system balancing intermittent RE within the U.S. transmission regions, and (iv) fewer economical sites for RE development, may limit the efficacy of RPS laws over the remainder of the current RPS statutes' lifetime. An outsized proportion of U.S. RE build occurs in a small number of favorable locations, increasing the effects of these variables on marginal RE capacity additions. A state-by-state analysis is necessary to study the U.S. electric sector and to generate technology specific generation forecasts. We used LP optimization modeling similar to the National Renewable Energy Laboratory (NREL) Renewable Energy Development System (ReEDS) to forecast RE deployment across the 8 U.S. states with the largest electricity load, and found state-level RE projections to Year 2031 significantly lower than thoseimplied in the Energy Information Administration (EIA) 2013 Annual Energy Outlook forecast. Additionally, the majority of states do not achieve their RPS targets in our forecast. Combined with the tendency of prior research and RE forecasts to focus on larger national and global scale models, we posit that further bottom-up state and local analysis is needed for more accurate policy assessment, forecasting, and ongoing revision of variables as parameter values evolve through time. Current optimization software eliminates much of the need for algorithm coding and programming, allowing for rapid model construction and updating across many customized state and local RE parameters. Further, our results can be tested against the empirical outcomes that will be observed over the coming years, and the forecast deviation from the actuals can be attributed to discrete parameter

  15. TRANSIT: model for providing generic transportation input for preliminary siting analysis

    International Nuclear Information System (INIS)

    McNair, G.W.; Cashwell, J.W.

    1985-02-01

    To assist the US Department of Energy's efforts in potential facility site screening in the nuclear waste management program, a computerized model, TRANSIT, is being developed. Utilizing existing data on the location and inventory characteristics of spent nuclear fuel at reactor sites, TRANSIT derives isopleths of transportation mileage, costs, risks and fleet requirements for shipments to storage sites and/or repository sites. This technique provides a graphic, first-order method for use by the Department in future site screening efforts. 2 refs

  16. Robust Model Predictive Control of Networked Control Systems under Input Constraints and Packet Dropouts

    Directory of Open Access Journals (Sweden)

    Deyin Yao

    2014-01-01

    Full Text Available This paper deals with the problem of robust model predictive control (RMPC for a class of linear time-varying systems with constraints and data losses. We take the polytopic uncertainties into account to describe the uncertain systems. First, we design a robust state observer by using the linear matrix inequality (LMI constraints so that the original system state can be tracked. Second, the MPC gain is calculated by minimizing the upper bound of infinite horizon robust performance objective in terms of linear matrix inequality conditions. The method of robust MPC and state observer design is illustrated by a numerical example.

  17. FLUTAN input specifications

    International Nuclear Information System (INIS)

    Borgwaldt, H.; Baumann, W.; Willerding, G.

    1991-05-01

    FLUTAN is a highly vectorized computer code for 3-D fluiddynamic and thermal-hydraulic analyses in cartesian and cylinder coordinates. It is related to the family of COMMIX codes originally developed at Argonne National Laboratory, USA. To a large extent, FLUTAN relies on basic concepts and structures imported from COMMIX-1B and COMMIX-2 which were made available to KfK in the frame of cooperation contracts in the fast reactor safety field. While on the one hand not all features of the original COMMIX versions have been implemented in FLUTAN, the code on the other hand includes some essential innovative options like CRESOR solution algorithm, general 3-dimensional rebalacing scheme for solving the pressure equation, and LECUSSO-QUICK-FRAM techniques suitable for reducing 'numerical diffusion' in both the enthalphy and momentum equations. This report provides users with detailed input instructions, presents formulations of the various model options, and explains by means of comprehensive sample input, how to use the code. (orig.) [de

  18. GARFEM input deck description

    Energy Technology Data Exchange (ETDEWEB)

    Zdunek, A.; Soederberg, M. (Aeronautical Research Inst. of Sweden, Bromma (Sweden))

    1989-01-01

    The input card deck for the finite element program GARFEM version 3.2 is described in this manual. The program includes, but is not limited to, capabilities to handle the following problems: * Linear bar and beam element structures, * Geometrically non-linear problems (bar and beam), both static and transient dynamic analysis, * Transient response dynamics from a catalog of time varying external forcing function types or input function tables, * Eigenvalue solution (modes and frequencies), * Multi point constraints (MPC) for the modelling of mechanisms and e.g. rigid links. The MPC definition is used only in the geometrically linearized sense, * Beams with disjunct shear axis and neutral axis, * Beams with rigid offset. An interface exist that connects GARFEM with the program GAROS. GAROS is a program for aeroelastic analysis of rotating structures. Since this interface was developed GARFEM now serves as a preprocessor program in place of NASTRAN which was formerly used. Documentation of the methods applied in GARFEM exists but is so far limited to the capacities in existence before the GAROS interface was developed.

  19. Inputs and spatial distribution patterns of Cr in Jiaozhou Bay

    Science.gov (United States)

    Yang, Dongfang; Miao, Zhenqing; Huang, Xinmin; Wei, Linzhen; Feng, Ming

    2018-03-01

    Cr pollution in marine bays has been one of the critical environmental issues, and understanding the input and spatial distribution patterns is essential to pollution control. In according to the source strengths of the major pollution sources, the input patterns of pollutants to marine bay include slight, moderate and heavy, and the spatial distribution are corresponding to three block models respectively. This paper analyzed input patterns and distributions of Cr in Jiaozhou Bay, eastern China based on investigation on Cr in surface waters during 1979-1983. Results showed that the input strengths of Cr in Jiaozhou Bay could be classified as moderate input and slight input, and the input strengths were 32.32-112.30 μg L-1 and 4.17-19.76 μg L-1, respectively. The input patterns of Cr included two patterns of moderate input and slight input, and the horizontal distributions could be defined by means of Block Model 2 and Block Model 3, respectively. In case of moderate input pattern via overland runoff, Cr contents were decreasing from the estuaries to the bay mouth, and the distribution pattern was parallel. In case of moderate input pattern via marine current, Cr contents were decreasing from the bay mouth to the bay, and the distribution pattern was parallel to circular. The Block Models were able to reveal the transferring process of various pollutants, and were helpful to understand the distributions of pollutants in marine bay.

  20. A Novel Approach to Develop the Lower Order Model of Multi-Input Multi-Output System

    Science.gov (United States)

    Rajalakshmy, P.; Dharmalingam, S.; Jayakumar, J.

    2017-10-01

    A mathematical model is a virtual entity that uses mathematical language to describe the behavior of a system. Mathematical models are used particularly in the natural sciences and engineering disciplines like physics, biology, and electrical engineering as well as in the social sciences like economics, sociology and political science. Physicists, Engineers, Computer scientists, and Economists use mathematical models most extensively. With the advent of high performance processors and advanced mathematical computations, it is possible to develop high performing simulators for complicated Multi Input Multi Ouptut (MIMO) systems like Quadruple tank systems, Aircrafts, Boilers etc. This paper presents the development of the mathematical model of a 500 MW utility boiler which is a highly complex system. A synergistic combination of operational experience, system identification and lower order modeling philosophy has been effectively used to develop a simplified but accurate model of a circulation system of a utility boiler which is a MIMO system. The results obtained are found to be in good agreement with the physics of the process and with the results obtained through design procedure. The model obtained can be directly used for control system studies and to realize hardware simulators for boiler testing and operator training.

  1. Input Harmonic Analysis on the Slim DC-Link Drive Using Harmonic State Space Model

    DEFF Research Database (Denmark)

    Yang, Feng; Kwon, Jun Bum; Wang, Xiongfei

    2017-01-01

    The harmonic performance of the slim dc-link adjustable speed drives has shown good performance in some studies but poor in some others. The contradiction indicates that a feasible theoretical analysis is still lacking to characterize the harmonic distortion for the slim dc-link drive. Considerin...... results of the slim dc-link drive, loaded up to 2.0 kW, are presented to validate the theoretical analysis....... variation according to the switching instant, the harmonics at the steady-state condition, as well as the coupling between the multiple harmonic impedances. By using this model, the impaction on the harmonics performance by the film capacitor and the grid inductance is derived. Simulation and experimental...

  2. Effect of delayed response in growth on the dynamics of a chemostat model with impulsive input

    International Nuclear Information System (INIS)

    Jiao Jianjun; Yang Xiaosong; Chen Lansun; Cai Shaohong

    2009-01-01

    In this paper, a chemostat model with delayed response in growth and impulsive perturbations on the substrate is considered. Using the discrete dynamical system determined by the stroboscopic map, we obtain a microorganism-extinction periodic solution, further, the globally attractive condition of the microorganism-extinction periodic solution is obtained. By the use of the theory on delay functional and impulsive differential equation, we also obtain the permanent condition of the investigated system. Our results indicate that the discrete time delay has influence to the dynamics behaviors of the investigated system, and provide tactical basis for the experimenters to control the outcome of the chemostat. Furthermore, numerical analysis is inserted to illuminate the dynamics of the system affected by the discrete time delay.

  3. Effect of the spatiotemporal variability of rainfall inputs in water quality integrated catchment modelling for dissolved oxygen concentrations

    Science.gov (United States)

    Moreno Ródenas, Antonio Manuel; Cecinati, Francesca; ten Veldhuis, Marie-Claire; Langeveld, Jeroen; Clemens, Francois

    2016-04-01

    Maintaining water quality standards in highly urbanised hydrological catchments is a worldwide challenge. Water management authorities struggle to cope with changing climate and an increase in pollution pressures. Water quality modelling has been used as a decision support tool for investment and regulatory developments. This approach led to the development of integrated catchment models (ICM), which account for the link between the urban/rural hydrology and the in-river pollutant dynamics. In the modelled system, rainfall triggers the drainage systems of urban areas scattered along a river. When flow exceeds the sewer infrastructure capacity, untreated wastewater enters the natural system by combined sewer overflows. This results in a degradation of the river water quality, depending on the magnitude of the emission and river conditions. Thus, being capable of representing these dynamics in the modelling process is key for a correct assessment of the water quality. In many urbanised hydrological systems the distances between draining sewer infrastructures go beyond the de-correlation length of rainfall processes, especially, for convective summer storms. Hence, spatial and temporal scales of selected rainfall inputs are expected to affect water quality dynamics. The objective of this work is to evaluate how the use of rainfall data from different sources and with different space-time characteristics affects modelled output concentrations of dissolved oxygen in a simplified ICM. The study area is located at the Dommel, a relatively small and sensitive river flowing through the city of Eindhoven (The Netherlands). This river stretch receives the discharge of the 750,000 p.e. WWTP of Eindhoven and from over 200 combined sewer overflows scattered along its length. A pseudo-distributed water quality model has been developed in WEST (mikedhi.com); this is a lumped-physically based model that accounts for urban drainage processes, WWTP and river dynamics for several

  4. Supply Chain Vulnerability Analysis Using Scenario-Based Input-Output Modeling: Application to Port Operations.

    Science.gov (United States)

    Thekdi, Shital A; Santos, Joost R

    2016-05-01

    Disruptive events such as natural disasters, loss or reduction of resources, work stoppages, and emergent conditions have potential to propagate economic losses across trade networks. In particular, disruptions to the operation of container port activity can be detrimental for international trade and commerce. Risk assessment should anticipate the impact of port operation disruptions with consideration of how priorities change due to uncertain scenarios and guide investments that are effective and feasible for implementation. Priorities for protective measures and continuity of operations planning must consider the economic impact of such disruptions across a variety of scenarios. This article introduces new performance metrics to characterize resiliency in interdependency modeling and also integrates scenario-based methods to measure economic sensitivity to sudden-onset disruptions. The methods will be demonstrated on a U.S. port responsible for handling $36.1 billion of cargo annually. The methods will be useful to port management, private industry supply chain planning, and transportation infrastructure management. © 2015 Society for Risk Analysis.

  5. Time domain contact model for tyre/road interaction including nonlinear contact stiffness due to small-scale roughness

    Science.gov (United States)

    Andersson, P. B. U.; Kropp, W.

    2008-11-01

    Rolling resistance, traction, wear, excitation of vibrations, and noise generation are all attributes to consider in optimisation of the interaction between automotive tyres and wearing courses of roads. The key to understand and describe the interaction is to include a wide range of length scales in the description of the contact geometry. This means including scales on the order of micrometres that have been neglected in previous tyre/road interaction models. A time domain contact model for the tyre/road interaction that includes interfacial details is presented. The contact geometry is discretised into multiple elements forming pairs of matching points. The dynamic response of the tyre is calculated by convolving the contact forces with pre-calculated Green's functions. The smaller-length scales are included by using constitutive interfacial relations, i.e. by using nonlinear contact springs, for each pair of contact elements. The method is presented for normal (out-of-plane) contact and a method for assessing the stiffness of the nonlinear springs based on detailed geometry and elastic data of the tread is suggested. The governing equations of the nonlinear contact problem are solved with the Newton-Raphson iterative scheme. Relations between force, indentation, and contact stiffness are calculated for a single tread block in contact with a road surface. The calculated results have the same character as results from measurements found in literature. Comparison to traditional contact formulations shows that the effect of the small-scale roughness is large; the contact stiffness is only up to half of the stiffness that would result if contact is made over the whole element directly to the bulk of the tread. It is concluded that the suggested contact formulation is a suitable model to include more details of the contact interface. Further, the presented result for the tread block in contact with the road is a suitable input for a global tyre/road interaction model

  6. Optimization model of peach production relevant to input energies – Yield function in Chaharmahal va Bakhtiari province, Iran

    International Nuclear Information System (INIS)

    Ghatrehsamani, Shirin; Ebrahimi, Rahim; Kazi, Salim Newaz; Badarudin Badry, Ahmad; Sadeghinezhad, Emad

    2016-01-01

    The aim of this study was to determine the amount of input–output energy used in peach production and to develop an optimal model of production in Chaharmahal va Bakhtiari province, Iran. Data were collected from 100 producers by administering a questionnaire in face-to-face interviews. Farms were selected based on random sampling method. Results revealed that the total energy of production is 47,951.52 MJ/ha and the highest share of energy consumption belongs to chemical fertilizers (35.37%). Consumption of direct energy was 47.4% while indirect energy was 52.6%. Also, Total energy consumption was divided into two groups; renewable and non-renewable (19.2% and 80.8% respectively). Energy use efficiency, Energy productivity, Specific energy and Net energy were calculated as 0.433, 0.228 (kg/MJ), 4.38 (MJ/kg) and −27,161.722 (MJ/ha), respectively. According to the negative sign for Net energy, if special strategy is used, energy dismiss will decrease and negative effect of some parameters could be omitted. In the present case the amount is indicating decimate of production energy. In addition, energy efficiency was not high enough. Some of the input energies were applied to machinery, chemical fertilizer, water irrigation and electricity which had significant effect on increasing production and MPP (marginal physical productivity) was determined for variables. This parameter was positive for energy groups namely; machinery, diesel fuel, chemical fertilizer, water irrigation and electricity while it was negative for other kind of energy such as chemical pesticides and human labor. Finally, there is a need to pursue a new policy to force producers to undertake energy-efficient practices to establish sustainable production systems without disrupting the natural resources. In addition, extension activities are needed to improve the efficiency of energy consumption and to sustain the natural resources. - Highlights: • Replacing non-renewable energy with renewable

  7. Effects of degraded sensory input on memory for speech: behavioral data and a test of biologically constrained computational models.

    Science.gov (United States)

    Piquado, Tepring; Cousins, Katheryn A Q; Wingfield, Arthur; Miller, Paul

    2010-12-13

    Poor hearing acuity reduces memory for spoken words, even when the words are presented with enough clarity for correct recognition. An "effortful hypothesis" suggests that the perceptual effort needed for recognition draws from resources that would otherwise be available for encoding the word in memory. To assess this hypothesis, we conducted a behavioral task requiring immediate free recall of word-lists, some of which contained an acoustically masked word that was just above perceptual threshold. Results show that masking a word reduces the recall of that word and words prior to it, as well as weakening the linking associations between the masked and prior words. In contrast, recall probabilities of words following the masked word are not affected. To account for this effect we conducted computational simulations testing two classes of models: Associative Linking Models and Short-Term Memory Buffer Models. Only a model that integrated both contextual linking and buffer components matched all of the effects of masking observed in our behavioral data. In this Linking-Buffer Model, the masked word disrupts a short-term memory buffer, causing associative links of words in the buffer to be weakened, affecting memory for the masked word and the word prior to it, while allowing links of words following the masked word to be spared. We suggest that these data account for the so-called "effortful hypothesis", where distorted input has a detrimental impact on prior information stored in short-term memory. Copyright © 2010 Elsevier B.V. All rights reserved.

  8. Mathematical model of thyristor inverter including a series-parallel resonant circuit

    OpenAIRE

    Luft, M.; Szychta, E.

    2008-01-01

    The article presents a mathematical model of thyristor inverter including a series-parallel resonant circuit with the aid of state variable method. Maple procedures are used to compute current and voltage waveforms in the inverter.

  9. Mathematical Model of Thyristor Inverter Including a Series-parallel Resonant Circuit

    OpenAIRE

    Miroslaw Luft; Elzbieta Szychta

    2008-01-01

    The article presents a mathematical model of thyristor inverter including a series-parallel resonant circuit with theaid of state variable method. Maple procedures are used to compute current and voltage waveforms in the inverter.

  10. Mathematical Model of Thyristor Inverter Including a Series-parallel Resonant Circuit

    Directory of Open Access Journals (Sweden)

    Miroslaw Luft

    2008-01-01

    Full Text Available The article presents a mathematical model of thyristor inverter including a series-parallel resonant circuit with theaid of state variable method. Maple procedures are used to compute current and voltage waveforms in the inverter.

  11. Modeling of Pem Fuel Cell Systems Including Controls and Reforming Effects for Hybrid Automotive Applications

    National Research Council Canada - National Science Library

    Boettner, Daisie

    2001-01-01

    .... This study develops models for a stand-alone Proton Exchange Membrane (PEM) fuel cell stack, a direct-hydrogen fuel cell system including auxiliaries, and a methanol reforming fuel cell system for integration into a vehicle performance simulator...

  12. Atmosphere-soil-vegetation model including CO2 exchange processes: SOLVEG2

    International Nuclear Information System (INIS)

    Nagai, Haruyasu

    2004-11-01

    A new atmosphere-soil-vegetation model named SOLVEG2 (SOLVEG version 2) was developed to study the heat, water, and CO 2 exchanges between the atmosphere and land-surface. The model consists of one-dimensional multilayer sub-models for the atmosphere, soil, and vegetation. It also includes sophisticated processes for solar and long-wave radiation transmission in vegetation canopy and CO 2 exchanges among the atmosphere, soil, and vegetation. Although the model usually simulates only vertical variation of variables in the surface-layer atmosphere, soil, and vegetation canopy by using meteorological data as top boundary conditions, it can be used by coupling with a three-dimensional atmosphere model. In this paper, details of SOLVEG2, which includes the function of coupling with atmosphere model MM5, are described. (author)

  13. Documentation of input datasets for the soil-water balance groundwater recharge model of the Upper Colorado River Basin

    Science.gov (United States)

    Tillman, Fred D.

    2015-01-01

    The Colorado River and its tributaries supply water to more than 35 million people in the United States and 3 million people in Mexico, irrigating more than 4.5 million acres of farmland, and generating about 12 billion kilowatt hours of hydroelectric power annually. The Upper Colorado River Basin, encompassing more than 110,000 square miles (mi2), contains the headwaters of the Colorado River (also known as the River) and is an important source of snowmelt runoff to the River. Groundwater discharge also is an important source of water in the River and its tributaries, with estimates ranging from 21 to 58 percent of streamflow in the upper basin. Planning for the sustainable management of the Colorado River in future climates requires an understanding of the Upper Colorado River Basin groundwater system. This report documents input datasets for a Soil-Water Balance groundwater recharge model that was developed for the Upper Colorado River Basin.

  14. Modeling of the Direct Current Generator Including the Magnetic Saturation and Temperature Effects

    Directory of Open Access Journals (Sweden)

    Alfonso J. Mercado-Samur

    2013-11-01

    Full Text Available In this paper the inclusion of temperature effect on the field resistance on the direct current generator model DC1A, which is valid to stability studies is proposed. First, the linear generator model is presented, after the effect of magnetic saturation and the change in the resistance value due to temperature produced by the field current are included. The comparison of experimental results and model simulations to validate the model is used. A direct current generator model which is a better representation of the generator is obtained. Visual comparison between simulations and experimental results shows the success of the proposed model, because it presents the lowest error of the compared models. The accuracy of the proposed model is observed via Modified Normalized Sum of Squared Errors index equal to 3.8979%.

  15. Enhanced UWB Radio Channel Model for Short-Range Communication Scenarios Including User Dynamics

    DEFF Research Database (Denmark)

    Kovacs, Istvan Zsolt; Nguyen, Tuan Hung; Eggers, Patrick Claus F.

    2005-01-01

    channel model represents an enhancement of the existing IEEE 802.15.3a/4a PAN channel model, where antenna and user-proximity effects are not included. Our investigations showed that significant variations of the received wideband power and time-delay signal clustering are possible due the human body...

  16. Influence of structural parameter included in nonlocal rock mass model on stress concentration around circular tunnel

    Science.gov (United States)

    Lavrikov, SV; Mikenina, OA; Revuzhenko, AF

    2018-03-01

    A model of elastic body, including local curvature of elementary volume, is matched with a nonlocal model with a linear structural parameter in the differential approximation. The problem on deformation of rock mass around a circular cross section tunnel is solved numerically. The contours of the calculated stresses are plotted. It is shown that inclusion of local bends in the model results in expansion of influence zone of the tunnel and reduces stress concentration factor at the tunnel boundary.

  17. Integrated model of port oil piping transportation system safety including operating environment threats

    Directory of Open Access Journals (Sweden)

    Kołowrocki Krzysztof

    2017-06-01

    Full Text Available The paper presents an integrated general model of complex technical system, linking its multistate safety model and the model of its operation process including operating environment threats and considering variable at different operation states its safety structures and its components safety parameters. Under the assumption that the system has exponential safety function, the safety characteristics of the port oil piping transportation system are determined.

  18. Estimating direct and indirect rebound effects by supply-driven input-output model: A case study of Taiwan's industry

    International Nuclear Information System (INIS)

    Wu, Kuei-Yen; Wu, Jung-Hua; Huang, Yun-Hsun; Fu, Szu-Chi; Chen, Chia-Yon

    2016-01-01

    Most existing literature focuses on the direct rebound effect on the demand side for consumers. This study analyses direct and indirect rebound effects in Taiwan's industry from the perspective of producers. However, most studies on the producers' viewpoint may overlook inter-industry linkages. This study applies a supply-driven input-output model to quantify the magnitude of rebound effects by explicitly considering inter-industry linkages. Empirical results showed that total rebound effects for most Taiwan's sectors were less than 10% in 2011. A comparison among the sectors yields that sectors with lower energy efficiency had higher direct rebound effects, while sectors with higher forward linkages generated higher indirect rebound effects. Taking the Mining sector (S3) as an example, which is an upstream supplier and has high forward linkages; it showed high indirect rebound effects that are derived from the accumulation of additional energy consumption by its downstream producers. The findings also showed that in almost all sectors, indirect rebound effects were higher than direct rebound effects. In other words, if indirect rebound effects are neglected, the total rebound effects will be underestimated. Hence, the energy-saving potential may be overestimated. - Highlights: • This study quantifies rebound effects by a supply-driven input-output model. • For most Taiwan's sectors, total rebound magnitudes were less than 10% in 2011. • Direct rebound effects and energy efficiency were inverse correlation. • Indirect rebound effects and industrial forward linkages were positive correlation. • Indirect rebound effects were generally higher than direct rebound effects.

  19. Review of Literature for Inputs to the National Water Savings Model and Spreadsheet Tool-Commercial/Institutional

    Energy Technology Data Exchange (ETDEWEB)

    Whitehead, Camilla Dunham; Melody, Moya; Lutz, James

    2009-05-29

    Lawrence Berkeley National Laboratory (LBNL) is developing a computer model and spreadsheet tool for the United States Environmental Protection Agency (EPA) to help estimate the water savings attributable to their WaterSense program. WaterSense has developed a labeling program for three types of plumbing fixtures commonly used in commercial and institutional settings: flushometer valve toilets, urinals, and pre-rinse spray valves. This National Water Savings-Commercial/Institutional (NWS-CI) model is patterned after the National Water Savings-Residential model, which was completed in 2008. Calculating the quantity of water and money saved through the WaterSense labeling program requires three primary inputs: (1) the quantity of a given product in use; (2) the frequency with which units of the product are replaced or are installed in new construction; and (3) the number of times or the duration the product is used in various settings. To obtain the information required for developing the NWS-CI model, LBNL reviewed various resources pertaining to the three WaterSense-labeled commercial/institutional products. The data gathered ranged from the number of commercial buildings in the United States to numbers of employees in various sectors of the economy and plumbing codes for commercial buildings. This document summarizes information obtained about the three products' attributes, quantities, and use in commercial and institutional settings that is needed to estimate how much water EPA's WaterSense program saves.

  20. Including model uncertainty in the model predictive control with output feedback

    Directory of Open Access Journals (Sweden)

    Rodrigues M.A.

    2002-01-01

    Full Text Available This paper addresses the development of an efficient numerical output feedback robust model predictive controller for open-loop stable systems. Stability of the closed loop is guaranteed by using an infinite horizon predictive controller and a stable state observer. The performance and the computational burden of this approach are compared to a robust predictive controller from the literature. The case used for this study is based on an industrial gasoline debutanizer column.

  1. A constitutive model for the forces of a magnetic bearing including eddy currents

    Science.gov (United States)

    Taylor, D. L.; Hebbale, K. V.

    1993-01-01

    A multiple magnet bearing can be developed from N individual electromagnets. The constitutive relationships for a single magnet in such a bearing is presented. Analytical expressions are developed for a magnet with poles arranged circumferencially. Maxwell's field equations are used so the model easily includes the effects of induced eddy currents due to the rotation of the journal. Eddy currents must be included in any dynamic model because they are the only speed dependent parameter and may lead to a critical speed for the bearing. The model is applicable to bearings using attraction or repulsion.

  2. On the influence of meteorological input on photochemical modelling of a severe episode over a coastal area

    Science.gov (United States)

    Pirovano, G.; Coll, I.; Bedogni, M.; Alessandrini, S.; Costa, M. P.; Gabusi, V.; Lasry, F.; Menut, L.; Vautard, R.

    The modelling reconstruction of the processes determining the transport and mixing of ozone and its precursors in complex terrain areas is a challenging task, particularly when local-scale circulations, such as sea breeze, take place. Within this frame, the ESCOMPTE European campaign took place in the vicinity of Marseille (south-east of France) in summer 2001. The main objectives of the field campaign were to document several photochemical episodes, as well as to constitute a detailed database for chemistry transport models intercomparison. CAMx model has been applied on the largest intense observation periods (IOP) (June 21-26, 2001) in order to evaluate the impacts of two state-of-the-art meteorological models, RAMS and MM5, on chemical model outputs. The meteorological models have been used as best as possible in analysis mode, thus allowing to identify the spread arising in pollutant concentrations as an indication of the intrinsic uncertainty associated to the meteorological input. Simulations have been deeply investigated and compared with a considerable subset of observations both at ground level and along vertical profiles. The analysis has shown that both models were able to reproduce the main circulation features of the IOP. The strongest discrepancies are confined to the Planetary Boundary Layer, consisting of a clear tendency to underestimate or overestimate wind speed over the whole domain. The photochemical simulations showed that variability in circulation intensity was crucial mainly for the representation of the ozone peaks and of the shape of ozone plumes at the ground that have been affected in the same way over the whole domain and all along the simulated period. As a consequence, such differences can be thought of as a possible indicator for the uncertainty related to the definition of meteorological fields in a complex terrain area.

  3. A thermal conductivity model for nanofluids including effect of the temperature-dependent interfacial layer

    International Nuclear Information System (INIS)

    Sitprasert, Chatcharin; Dechaumphai, Pramote; Juntasaro, Varangrat

    2009-01-01

    The interfacial layer of nanoparticles has been recently shown to have an effect on the thermal conductivity of nanofluids. There is, however, still no thermal conductivity model that includes the effects of temperature and nanoparticle size variations on the thickness and consequently on the thermal conductivity of the interfacial layer. In the present work, the stationary model developed by Leong et al. (J Nanopart Res 8:245-254, 2006) is initially modified to include the thermal dispersion effect due to the Brownian motion of nanoparticles. This model is called the 'Leong et al.'s dynamic model'. However, the Leong et al.'s dynamic model over-predicts the thermal conductivity of nanofluids in the case of the flowing fluid. This suggests that the enhancement in the thermal conductivity of the flowing nanofluids due to the increase in temperature does not come from the thermal dispersion effect. It is more likely that the enhancement in heat transfer of the flowing nanofluids comes from the temperature-dependent interfacial layer effect. Therefore, the Leong et al.'s stationary model is again modified to include the effect of temperature variation on the thermal conductivity of the interfacial layer for different sizes of nanoparticles. This present model is then evaluated and compared with the other thermal conductivity models for the turbulent convective heat transfer in nanofluids along a uniformly heated tube. The results show that the present model is more general than the other models in the sense that it can predict both the temperature and the volume fraction dependence of the thermal conductivity of nanofluids for both non-flowing and flowing fluids. Also, it is found to be more accurate than the other models due to the inclusion of the effect of the temperature-dependent interfacial layer. In conclusion, the present model can accurately predict the changes in thermal conductivity of nanofluids due to the changes in volume fraction and temperature for

  4. Direct-phase-variable model of a synchronous reluctance motor including all slot and winding harmonics

    International Nuclear Information System (INIS)

    Obe, Emeka S.; Binder, A.

    2011-01-01

    A detailed model in direct-phase variables of a synchronous reluctance motor operating at mains voltage and frequency is presented. The model includes the stator and rotor slot openings, the actual winding layout and the reluctance rotor geometry. Hence, all mmf and permeance harmonics are taken into account. It is seen that non-negligible harmonics introduced by slots are present in the inductances computed by the winding function procedure. These harmonics are usually ignored in d-q models. The machine performance is simulated in the stator reference frame to depict the difference between this new direct-phase model including all harmonics and the conventional rotor reference frame d-q model. Saturation is included by using a polynomial fitting the variation of d-axis inductance with stator current obtained by finite-element software FEMAG DC (registered) . The detailed phase-variable model can yield torque pulsations comparable to those obtained from finite elements while the d-q model cannot.

  5. Artificial neural network modelling of biological oxygen demand in rivers at the national level with input selection based on Monte Carlo simulations.

    Science.gov (United States)

    Šiljić, Aleksandra; Antanasijević, Davor; Perić-Grujić, Aleksandra; Ristić, Mirjana; Pocajt, Viktor

    2015-03-01

    Biological oxygen demand (BOD) is the most significant water quality parameter and indicates water pollution with respect to the present biodegradable organic matter content. European countries are therefore obliged to report annual BOD values to Eurostat; however, BOD data at the national level is only available for 28 of 35 listed European countries for the period prior to 2008, among which 46% of data is missing. This paper describes the development of an artificial neural network model for the forecasting of annual BOD values at the national level, using widely available sustainability and economical/industrial parameters as inputs. The initial general regression neural network (GRNN) model was trained, validated and tested utilizing 20 inputs. The number of inputs was reduced to 15 using the Monte Carlo simulation technique as the input selection method. The best results were achieved with the GRNN model utilizing 25% less inputs than the initial model and a comparison with a multiple linear regression model trained and tested using the same input variables using multiple statistical performance indicators confirmed the advantage of the GRNN model. Sensitivity analysis has shown that inputs with the greatest effect on the GRNN model were (in descending order) precipitation, rural population with access to improved water sources, treatment capacity of wastewater treatment plants (urban) and treatment of municipal waste, with the last two having an equal effect. Finally, it was concluded that the developed GRNN model can be useful as a tool to support the decision-making process on sustainable development at a regional, national and international level.

  6. Dipole model analysis of highest precision HERA data, including very low Q"2's

    International Nuclear Information System (INIS)

    Luszczak, A.; Kowalski, H.

    2016-12-01

    We analyse, within a dipole model, the final, inclusive HERA DIS cross section data in the low χ region, using fully correlated errors. We show, that these highest precision data are very well described within the dipole model framework starting from Q"2 values of 3.5 GeV"2 to the highest values of Q"2=250 GeV"2. To analyze the saturation effects we evaluated the data including also the very low 0.35< Q"2 GeV"2 region. The fits including this region show a preference of the saturation ansatz.

  7. Key Characteristics of Combined Accident including TLOFW accident for PSA Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bo Gyung; Kang, Hyun Gook [KAIST, Daejeon (Korea, Republic of); Yoon, Ho Joon [Khalifa University of Science, Technology and Research, Abu Dhabi (United Arab Emirates)

    2015-05-15

    The conventional PSA techniques cannot adequately evaluate all events. The conventional PSA models usually focus on single internal events such as DBAs, the external hazards such as fire, seismic. However, the Fukushima accident of Japan in 2011 reveals that very rare event is necessary to be considered in the PSA model to prevent the radioactive release to environment caused by poor treatment based on lack of the information, and to improve the emergency operation procedure. Especially, the results from PSA can be used to decision making for regulators. Moreover, designers can consider the weakness of plant safety based on the quantified results and understand accident sequence based on human actions and system availability. This study is for PSA modeling of combined accidents including total loss of feedwater (TLOFW) accident. The TLOFW accident is a representative accident involving the failure of cooling through secondary side. If the amount of heat transfer is not enough due to the failure of secondary side, the heat will be accumulated to the primary side by continuous core decay heat. Transients with loss of feedwater include total loss of feedwater accident, loss of condenser vacuum accident, and closure of all MSIVs. When residual heat removal by the secondary side is terminated, the safety injection into the RCS with direct primary depressurization would provide alternative heat removal. This operation is called feed and bleed (F and B) operation. Combined accidents including TLOFW accident are very rare event and partially considered in conventional PSA model. Since the necessity of F and B operation is related to plant conditions, the PSA modeling for combined accidents including TLOFW accident is necessary to identify the design and operational vulnerabilities.The PSA is significant to assess the risk of NPPs, and to identify the design and operational vulnerabilities. Even though the combined accident is very rare event, the consequence of combined

  8. The embodied energy and environmental emissions of construction projects in China: An economic input-output LCA model

    International Nuclear Information System (INIS)

    Chang Yuan; Ries, Robert J.; Wang Yaowu

    2010-01-01

    A complete understanding of the resource consumption, embodied energy, and environmental emissions of civil projects in China is difficult due to the lack of comprehensive national statistics. To quantitatively assess the energy and environmental impacts of civil construction at a macro-level, this study developed a 24 sector environmental input-output life-cycle assessment model (I-O LCA) based on 2002 Chinese national economic and environmental data. The model generates an economy-wide inventory of energy use and environmental emissions. Estimates based on the level of economic activity related to planned future civil works in 2015 are made. Results indicate that the embodied energy of construction projects accounts for nearly one-sixth of the total economy's energy consumption in 2007, and may account for approximately one-fifth of the total energy use by 2015. This energy consumption is dominated by coal and oil consumptions. Energy-related emissions are the main polluters of the country's atmosphere and environment. If the industry's energy use and manufacturing techniques remain the same as in 2002, challenges to the goals for total energy consumption in China will appear in the next decade. Thus, effective implementation of efficient energy technologies and regulations are indispensable for achieving China's energy and environmental quality goals.

  9. Identifying weaknesses in undergraduate programs within the context input process product model framework in view of faculty and library staff in 2014

    Directory of Open Access Journals (Sweden)

    Narges Neyazi

    2016-06-01

    Full Text Available Purpose: Objective of this research is to find out weaknesses of undergraduate programs in terms of personnel and financial, organizational management and facilities in view of faculty and library staff, and determining factors that may facilitate program quality–improvement. Methods: This is a descriptive analytical survey research and from purpose aspect is an application evaluation study that undergraduate groups of selected faculties (Public Health, Nursing and Midwifery, Allied Medical Sciences and Rehabilitation at Tehran University of Medical Sciences (TUMS have been surveyed using context input process product model in 2014. Statistical population were consist of three subgroups including department head (n=10, faculty members (n=61, and library staff (n=10 with total population of 81 people. Data collected through three researcher-made questionnaires which were based on Likert scale. The data were then analyzed using descriptive and inferential statistics. Results: Results showed desirable and relatively desirable situation for factors in context, input, process, and product fields except for factors of administration and financial; and research and educational spaces and equipment which were in undesirable situation. Conclusion: Based on results, researcher highlighted weaknesses in the undergraduate programs of TUMS in terms of research and educational spaces and facilities, educational curriculum, administration and financial; and recommended some steps in terms of financial, organizational management and communication with graduates in order to improve the quality of this system.

  10. Automatic individual arterial input functions calculated from PCA outperform manual and population-averaged approaches for the pharmacokinetic modeling of DCE-MR images.

    Science.gov (United States)

    Sanz-Requena, Roberto; Prats-Montalbán, José Manuel; Martí-Bonmatí, Luis; Alberich-Bayarri, Ángel; García-Martí, Gracián; Pérez, Rosario; Ferrer, Alberto

    2015-08-01

    To introduce a segmentation method to calculate an automatic arterial input function (AIF) based on principal component analysis (PCA) of dynamic contrast enhanced MR (DCE-MR) imaging and compare it with individual manually selected and population-averaged AIFs using calculated pharmacokinetic parameters. The study included 65 individuals with prostate examinations (27 tumors and 38 controls). Manual AIFs were individually extracted and also averaged to obtain a population AIF. Automatic AIFs were individually obtained by applying PCA to volumetric DCE-MR imaging data and finding the highest correlation of the PCs with a reference AIF. Variability was assessed using coefficients of variation and repeated measures tests. The different AIFs were used as inputs to the pharmacokinetic model and correlation coefficients, Bland-Altman plots and analysis of variance tests were obtained to compare the results. Automatic PCA-based AIFs were successfully extracted in all cases. The manual and PCA-based AIFs showed good correlation (r between pharmacokinetic parameters ranging from 0.74 to 0.95), with differences below the manual individual variability (RMSCV up to 27.3%). The population-averaged AIF showed larger differences (r from 0.30 to 0.61). The automatic PCA-based approach minimizes the variability associated to obtaining individual volume-based AIFs in DCE-MR studies of the prostate. © 2014 Wiley Periodicals, Inc.

  11. Impact of multi-resolution analysis of artificial intelligence models inputs on multi-step ahead river flow forecasting

    Science.gov (United States)

    Badrzadeh, Honey; Sarukkalige, Ranjan; Jayawardena, A. W.

    2013-12-01

    Discrete wavelet transform was applied to decomposed ANN and ANFIS inputs.Novel approach of WNF with subtractive clustering applied for flow forecasting.Forecasting was performed in 1-5 step ahead, using multi-variate inputs.Forecasting accuracy of peak values and longer lead-time significantly improved.

  12. Conceptualizing a Dynamic Fall Risk Model Including Intrinsic Risks and Exposures.

    Science.gov (United States)

    Klenk, Jochen; Becker, Clemens; Palumbo, Pierpaolo; Schwickert, Lars; Rapp, Kilan; Helbostad, Jorunn L; Todd, Chris; Lord, Stephen R; Kerse, Ngaire

    2017-11-01

    Falls are a major cause of injury and disability in older people, leading to serious health and social consequences including fractures, poor quality of life, loss of independence, and institutionalization. To design and provide adequate prevention measures, accurate understanding and identification of person's individual fall risk is important. However, to date, the performance of fall risk models is weak compared with models estimating, for example, cardiovascular risk. This deficiency may result from 2 factors. First, current models consider risk factors to be stable for each person and not change over time, an assumption that does not reflect real-life experience. Second, current models do not consider the interplay of individual exposure including type of activity (eg, walking, undertaking transfers) and environmental risks (eg, lighting, floor conditions) in which activity is performed. Therefore, we posit a dynamic fall risk model consisting of intrinsic risk factors that vary over time and exposure (activity in context). eHealth sensor technology (eg, smartphones) begins to enable the continuous measurement of both the above factors. We illustrate our model with examples of real-world falls from the FARSEEING database. This dynamic framework for fall risk adds important aspects that may improve understanding of fall mechanisms, fall risk models, and the development of fall prevention interventions. Copyright © 2017 AMDA – The Society for Post-Acute and Long-Term Care Medicine. Published by Elsevier Inc. All rights reserved.

  13. The Watts-Strogatz network model developed by including degree distribution: theory and computer simulation

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Y W [Surface Physics Laboratory and Department of Physics, Fudan University, Shanghai 200433 (China); Zhang, L F [Surface Physics Laboratory and Department of Physics, Fudan University, Shanghai 200433 (China); Huang, J P [Surface Physics Laboratory and Department of Physics, Fudan University, Shanghai 200433 (China)

    2007-07-20

    By using theoretical analysis and computer simulations, we develop the Watts-Strogatz network model by including degree distribution, in an attempt to improve the comparison between characteristic path lengths and clustering coefficients predicted by the original Watts-Strogatz network model and those of the real networks with the small-world property. Good agreement between the predictions of the theoretical analysis and those of the computer simulations has been shown. It is found that the developed Watts-Strogatz network model can fit the real small-world networks more satisfactorily. Some other interesting results are also reported by adjusting the parameters in a model degree-distribution function. The developed Watts-Strogatz network model is expected to help in the future analysis of various social problems as well as financial markets with the small-world property.

  14. The Watts-Strogatz network model developed by including degree distribution: theory and computer simulation

    International Nuclear Information System (INIS)

    Chen, Y W; Zhang, L F; Huang, J P

    2007-01-01

    By using theoretical analysis and computer simulations, we develop the Watts-Strogatz network model by including degree distribution, in an attempt to improve the comparison between characteristic path lengths and clustering coefficients predicted by the original Watts-Strogatz network model and those of the real networks with the small-world property. Good agreement between the predictions of the theoretical analysis and those of the computer simulations has been shown. It is found that the developed Watts-Strogatz network model can fit the real small-world networks more satisfactorily. Some other interesting results are also reported by adjusting the parameters in a model degree-distribution function. The developed Watts-Strogatz network model is expected to help in the future analysis of various social problems as well as financial markets with the small-world property

  15. Modeling of cylindrical surrounding gate MOSFETs including the fringing field effects

    International Nuclear Information System (INIS)

    Gupta, Santosh K.; Baishya, Srimanta

    2013-01-01

    A physically based analytical model for surface potential and threshold voltage including the fringing gate capacitances in cylindrical surround gate (CSG) MOSFETs has been developed. Based on this a subthreshold drain current model has also been derived. This model first computes the charge induced in the drain/source region due to the fringing capacitances and considers an effective charge distribution in the cylindrically extended source/drain region for the development of a simple and compact model. The fringing gate capacitances taken into account are outer fringe capacitance, inner fringe capacitance, overlap capacitance, and sidewall capacitance. The model has been verified with the data extracted from 3D TCAD simulations of CSG MOSFETs and was found to be working satisfactorily. (semiconductor devices)

  16. Modeling of the dynamics of wind to power conversion including high wind speed behavior

    DEFF Research Database (Denmark)

    Litong-Palima, Marisciel; Bjerge, Martin Huus; Cutululis, Nicolaos Antonio

    2016-01-01

    This paper proposes and validates an efficient, generic and computationally simple dynamic model for the conversion of the wind speed at hub height into the electrical power by a wind turbine. This proposed wind turbine model was developed as a first step to simulate wind power time series...... for power system studies. This paper focuses on describing and validating the single wind turbine model, and is therefore neither describing wind speed modeling nor aggregation of contributions from a whole wind farm or a power system area. The state-of-the-art is to use static power curves for the purpose...... of power system studies, but the idea of the proposed wind turbine model is to include the main dynamic effects in order to have a better representation of the fluctuations in the output power and of the fast power ramping especially because of high wind speed shutdowns of the wind turbine. The high wind...

  17. Including Effects of Water Stress on Dead Organic Matter Decay to a Forest Carbon Model

    Science.gov (United States)

    Kim, H.; Lee, J.; Han, S. H.; Kim, S.; Son, Y.

    2017-12-01

    Decay of dead organic matter is a key process of carbon (C) cycling in forest ecosystems. The change in decay rate depends on temperature sensitivity and moisture conditions. The Forest Biomass and Dead organic matter Carbon (FBDC) model includes a decay sub-model considering temperature sensitivity, yet does not consider moisture conditions as drivers of the decay rate change. This study aimed to improve the FBDC model by including a water stress function to the decay sub-model. Also, soil C sequestration under climate change with the FBDC model including the water stress function was simulated. The water stress functions were determined with data from decomposition study on Quercus variabilis forests and Pinus densiflora forests of Korea, and adjustment parameters of the functions were determined for both species. The water stress functions were based on the ratio of precipitation to potential evapotranspiration. Including the water stress function increased the explained variances of the decay rate by 19% for the Q. variabilis forests and 7% for the P. densiflora forests, respectively. The increase of the explained variances resulted from large difference in temperature range and precipitation range across the decomposition study plots. During the period of experiment, the mean annual temperature range was less than 3°C, while the annual precipitation ranged from 720mm to 1466mm. Application of the water stress functions to the FBDC model constrained increasing trend of temperature sensitivity under climate change, and thus increased the model-estimated soil C sequestration (Mg C ha-1) by 6.6 for the Q. variabilis forests and by 3.1 for the P. densiflora forests, respectively. The addition of water stress functions increased reliability of the decay rate estimation and could contribute to reducing the bias in estimating soil C sequestration under varying moisture condition. Acknowledgement: This study was supported by Korea Forest Service (2017044B10-1719-BB01)

  18. Including an ocean carbon cycle model into iLOVECLIM (v1.0)

    NARCIS (Netherlands)

    Bouttes, N.; Roche, D.M.V.A.P.; Mariotti, V.; Bopp, L.

    2015-01-01

    The atmospheric carbon dioxide concentration plays a crucial role in the radiative balance and as such has a strong influence on the evolution of climate. Because of the numerous interactions between climate and the carbon cycle, it is necessary to include a model of the carbon cycle within a

  19. The Model of the Software Running on a Computer Equipment Hardware Included in the Grid network

    Directory of Open Access Journals (Sweden)

    T. A. Mityushkina

    2012-12-01

    Full Text Available A new approach to building a cloud computing environment using Grid networks is proposed in this paper. The authors describe the functional capabilities, algorithm, model of software running on a computer equipment hardware included in the Grid network, that will allow to implement cloud computing environment using Grid technologies.

  20. Children and adolescents' internal models of food-sharing behavior include complex evaluations of contextual factors.

    Science.gov (United States)

    Markovits, Henry; Benenson, Joyce F; Kramer, Donald L

    2003-01-01

    This study examined internal representations of food sharing in 589 children and adolescents (8-19 years of age). Questionnaires, depicting a variety of contexts in which one person was asked to share a resource with another, were used to examine participants' expectations of food-sharing behavior. Factors that were varied included the value of the resource, the relation between the two depicted actors, the quality of this relation, and gender. Results indicate that internal models of food-sharing behavior showed systematic patterns of variation, demonstrating that individuals have complex contextually based internal models at all ages, including the youngest. Examination of developmental changes in use of individual patterns is consistent with the idea that internal models reflect age-specific patterns of interactions while undergoing a process of progressive consolidation.

  1. Oil spill modeling input to the offshore environmental cost model (OECM) for US-BOEMRE's spill risk and costs evaluations

    International Nuclear Information System (INIS)

    French McCay, Deborah; Reich, Danielle; Rowe, Jill; Schroeder, Melanie; Graham, Eileen

    2011-01-01

    This paper simulates the consequences of oil spills using a planning model known as the Offshore Environmental Cost Model (OECM). This study aims at creating various predictive models for possible oil spill scenarios in marine waters. A crucial part of this investigation was the SIMAP model. It analyzes the distance and the direction covered by the spill under certain test conditions, generating a regression equation that simulates the impact of the spill. Tests were run in two different regions; the Mid-Atlantic region and the Chukchi Sea. Results showed that the higher wind speeds and higher water temperature of the Mid-Atlantic region had greater impact on wildlife and the water column respectively. However, short-line impact was higher in the Chukchi area due to the multi-directional wind. It was also shown that, because of their higher diffusivity in water, lighter crude oils had more impact than heavier oils. It was suggested that this model could ultimately be applied to other oil spill scenarios happening under similar conditions.

  2. Observational constraint on the interacting dark energy models including the Sandage-Loeb test

    Science.gov (United States)

    Zhang, Ming-Jian; Liu, Wen-Biao

    2014-05-01

    Two types of interacting dark energy models are investigated using the type Ia supernova (SNIa), observational data (OHD), cosmic microwave background shift parameter, and the secular Sandage-Loeb (SL) test. In the investigation, we have used two sets of parameter priors including WMAP-9 and Planck 2013. They have shown some interesting differences. We find that the inclusion of SL test can obviously provide a more stringent constraint on the parameters in both models. For the constant coupling model, the interaction term has been improved to be only a half of the original scale on corresponding errors. Comparing with only SNIa and OHD, we find that the inclusion of the SL test almost reduces the best-fit interaction to zero, which indicates that the higher-redshift observation including the SL test is necessary to track the evolution of the interaction. For the varying coupling model, data with the inclusion of the SL test show that the parameter at C.L. in Planck priors is , where the constant is characteristic for the severity of the coincidence problem. This indicates that the coincidence problem will be less severe. We then reconstruct the interaction , and we find that the best-fit interaction is also negative, similar to the constant coupling model. However, for a high redshift, the interaction generally vanishes at infinity. We also find that the phantom-like dark energy with is favored over the CDM model.

  3. Safe distance car-following model including backward-looking and its stability analysis

    Science.gov (United States)

    Yang, Da; Jin, Peter Jing; Pu, Yun; Ran, Bin

    2013-03-01

    The focus of this paper is the car-following behavior including backward-looking, simply called the bi-directional looking car-following behavior. This study is motivated by the potential changes of the physical properties of traffic flow caused by the fast developing intelligent transportation system (ITS), especially the new connected vehicle technology. Existing studies on this topic focused on general motors (GM) models and optimal velocity (OV) models. The safe distance car-following model, Gipps' model, which is more widely used in practice have not drawn too much attention in the bi-directional looking context. This paper explores the property of the bi-directional looking extension of Gipps' safe distance model. The stability condition of the proposed model is derived using the linear stability theory and is verified using numerical simulations. The impacts of the driver and vehicle characteristics appeared in the proposed model on the traffic flow stability are also investigated. It is found that taking into account the backward-looking effect in car-following has three types of effect on traffic flow: stabilizing, destabilizing and producing non-physical phenomenon. This conclusion is more sophisticated than the study results based on the OV bi-directional looking car-following models. Moreover, the drivers who have the smaller reaction time or the larger additional delay and think the other vehicles have larger maximum decelerations can stabilize traffic flow.

  4. An imprecise Dirichlet model for Bayesian analysis of failure data including right-censored observations

    International Nuclear Information System (INIS)

    Coolen, F.P.A.

    1997-01-01

    This paper is intended to make researchers in reliability theory aware of a recently introduced Bayesian model with imprecise prior distributions for statistical inference on failure data, that can also be considered as a robust Bayesian model. The model consists of a multinomial distribution with Dirichlet priors, making the approach basically nonparametric. New results for the model are presented, related to right-censored observations, where estimation based on this model is closely related to the product-limit estimator, which is an important statistical method to deal with reliability or survival data including right-censored observations. As for the product-limit estimator, the model considered in this paper aims at not using any information other than that provided by observed data, but our model fits into the robust Bayesian context which has the advantage that all inferences can be based on probabilities or expectations, or bounds for probabilities or expectations. The model uses a finite partition of the time-axis, and as such it is also related to life-tables

  5. Modeling the cellular mechanisms and olfactory input underlying the triphasic response of moth pheromone-sensitive projection neurons.

    Directory of Open Access Journals (Sweden)

    Yuqiao Gu

    Full Text Available In the antennal lobe of the noctuid moth Agrotis ipsilon, most pheromone-sensitive projection neurons (PNs exhibit a triphasic firing pattern of excitation (E1-inhibition (I-excitation (E2 in response to a pulse of the sex pheromone. To understand the mechanisms underlying this stereotypical discharge, we developed a biophysical model of a PN receiving inputs from olfactory receptor neurons (ORNs via nicotinic cholinergic synapses. The ORN is modeled as an inhomogeneous Poisson process whose firing rate is a function of time and is fitted to extracellular data recorded in response to pheromone stimulations at various concentrations and durations. The PN model is based on the Hodgkin-Huxley formalism with realistic ionic currents whose parameters were derived from previous studies. Simulations revealed that the inhibitory phase I can be produced by a SK current (Ca2+-gated small conductance K+ current and that the excitatory phase E2 can result from the long-lasting response of the ORNs. Parameter analysis further revealed that the ending time of E1 depends on some parameters of SK, Ca2+, nACh and Na+ currents; I duration mainly depends on the time constant of intracellular Ca2+ dynamics, conductance of Ca2+ currents and some parameters of nACh currents; The mean firing frequency of E1 and E2 depends differentially on the interaction of various currents. Thus it is likely that the interplay between PN intrinsic currents and feedforward synaptic currents are sufficient to generate the triphasic firing patterns observed in the noctuid moth A. ipsilon.

  6. Including local rainfall dynamics and uncertain boundary conditions into a 2-D regional-local flood modelling cascade

    Science.gov (United States)

    Bermúdez, María; Neal, Jeffrey C.; Bates, Paul D.; Coxon, Gemma; Freer, Jim E.; Cea, Luis; Puertas, Jerónimo

    2016-04-01

    Flood inundation models require appropriate boundary conditions to be specified at the limits of the domain, which commonly consist of upstream flow rate and downstream water level. These data are usually acquired from gauging stations on the river network where measured water levels are converted to discharge via a rating curve. Derived streamflow estimates are therefore subject to uncertainties in this rating curve, including extrapolating beyond the maximum observed ratings magnitude. In addition, the limited number of gauges in reach-scale studies often requires flow to be routed from the nearest upstream gauge to the boundary of the model domain. This introduces additional uncertainty, derived not only from the flow routing method used, but also from the additional lateral rainfall-runoff contributions downstream of the gauging point. Although generally assumed to have a minor impact on discharge in fluvial flood modeling, this local hydrological input may become important in a sparse gauge network or in events with significant local rainfall. In this study, a method to incorporate rating curve uncertainty and the local rainfall-runoff dynamics into the predictions of a reach-scale flood inundation model is proposed. Discharge uncertainty bounds are generated by applying a non-parametric local weighted regression approach to stage-discharge measurements for two gauging stations, while measured rainfall downstream from these locations is cascaded into a hydrological model to quantify additional inflows along the main channel. A regional simplified-physics hydraulic model is then applied to combine these inputs and generate an ensemble of discharge and water elevation time series at the boundaries of a local-scale high complexity hydraulic model. Finally, the effect of these rainfall dynamics and uncertain boundary conditions are evaluated on the local-scale model. Improvements in model performance when incorporating these processes are quantified using observed

  7. Numerical Modeling of the Effects of Nutrient-rich Coastal-water Input on the Phytoplankton in the Gulf of California

    Science.gov (United States)

    Bermudez, A.; Rivas, D.

    2015-12-01

    Phytoplankton bloom dynamics depends on the interactions of favorable physical, chemical, and biotic conditions, particularly on the available nutrients that enhance phytoplankton growth, like nitrogen. Costal and estuarine environments are heavily influenced by exogenous sources of nitrogen; the anthropogenic inputs include urban and rural wastewater coming from agricultural activities (i.e., fertilizers and animal waste). In response, new production is often enhanced, leading eutrophication and phytoplankton blooms, including harmful taxa. These events have become more frequent, and with it the interest to evaluate their effects on marine ecosystems and the impact on human health. In the Gulf of California the harmful algal blooms (HABs) had affected aquaculture, fisheries, and even tourism, thereby it is important to generate information about biological and physical factors that can influence their appearance. A numerical model is a tool that may bring key information about the origin and distribution of phytoplankton blooms. Herein the analysis is based on a three-dimensional, hydrodynamical numerical model, coupled to a Nitrogen-Phytoplankton-Zooplankton-Detritus (NPZD) model. Several numerical simulations using different forcing and scenarios are carried out in order to evaluate the processes that influence the phytoplankton growth. These numerical results are compared to available observations. Thus, the main environmental factors triggering the generation of HABs can be identified.

  8. Migration of radionuclides with ground water: a discussion of the relevance of the input parameters used in model calculations

    International Nuclear Information System (INIS)

    Jensen, B.S.

    1982-01-01

    It is probably obvious to all, that establishing the scientific basis of geological waste disposal by going deeper and deeper in detail, may fill out the working hours of hundreds of scientists for hundreds of years. Such an endeavor is, however, impossible to attain, and we are forced to define some criteria telling us and others when knowledge and insight is sufficient. In thepresent case of geological disposal one need to be able to predict migration behavior of a series of radionuclides under diverse conditions to ascertain that unacceptable transfer to the biosphere never occurs. We have already collected a huge amount of data concerning migration phenomena, some very useful, oter less so, but we still need investigatoins departing from the simple ideal concepts, which most often have provided modellers with input data to their calculations. I therefore advocate that basic research is pursued to the point where it is possible to put limits on the effect of the lesser known factors on the migration behavior of radionuclides. When such limits have been established, it will be possible to make calculations on the worst cases, which may also occur. Although I personally believe, that these extra investigations will prove additional safety in geological disposal, this fact will convince nobody, only experimental facts will do

  9. Improving weather predictability by including land-surface model parameter uncertainty

    Science.gov (United States)

    Orth, Rene; Dutra, Emanuel; Pappenberger, Florian

    2016-04-01

    The land surface forms an important component of Earth system models and interacts nonlinearly with other parts such as ocean and atmosphere. To capture the complex and heterogenous hydrology of the land surface, land surface models include a large number of parameters impacting the coupling to other components of the Earth system model. Focusing on ECMWF's land-surface model HTESSEL we present in this study a comprehensive parameter sensitivity evaluation using multiple observational datasets in Europe. We select 6 poorly constrained effective parameters (surface runoff effective depth, skin conductivity, minimum stomatal resistance, maximum interception, soil moisture stress function shape, total soil depth) and explore their sensitivity to model outputs such as soil moisture, evapotranspiration and runoff using uncoupled simulations and coupled seasonal forecasts. Additionally we investigate the possibility to construct ensembles from the multiple land surface parameters. In the uncoupled runs we find that minimum stomatal resistance and total soil depth have the most influence on model performance. Forecast skill scores are moreover sensitive to the same parameters as HTESSEL performance in the uncoupled analysis. We demonstrate the robustness of our findings by comparing multiple best performing parameter sets and multiple randomly chosen parameter sets. We find better temperature and precipitation forecast skill with the best-performing parameter perturbations demonstrating representativeness of model performance across uncoupled (and hence less computationally demanding) and coupled settings. Finally, we construct ensemble forecasts from ensemble members derived with different best-performing parameterizations of HTESSEL. This incorporation of parameter uncertainty in the ensemble generation yields an increase in forecast skill, even beyond the skill of the default system. Orth, R., E. Dutra, and F. Pappenberger, 2016: Improving weather predictability by

  10. Finite element modeling of contaminant transport in soils including the effect of chemical reactions.

    Science.gov (United States)

    Javadi, A A; Al-Najjar, M M

    2007-05-17

    The movement of chemicals through soils to the groundwater is a major cause of degradation of water resources. In many cases, serious human and stock health implications are associated with this form of pollution. Recent studies have shown that the current models and methods are not able to adequately describe the leaching of nutrients through soils, often underestimating the risk of groundwater contamination by surface-applied chemicals, and overestimating the concentration of resident solutes. Furthermore, the effect of chemical reactions on the fate and transport of contaminants is not included in many of the existing numerical models for contaminant transport. In this paper a numerical model is presented for simulation of the flow of water and air and contaminant transport through unsaturated soils with the main focus being on the effects of chemical reactions. The governing equations of miscible contaminant transport including advection, dispersion-diffusion and adsorption effects together with the effect of chemical reactions are presented. The mathematical framework and the numerical implementation of the model are described in detail. The model is validated by application to a number of test cases from the literature and is then applied to the simulation of a physical model test involving transport of contaminants in a block of soil with particular reference to the effects of chemical reactions. Comparison of the results of the numerical model with the experimental results shows that the model is capable of predicting the effects of chemical reactions with very high accuracy. The importance of consideration of the effects of chemical reactions is highlighted.

  11. Fully automated calculation of image-derived input function in simultaneous PET/MRI in a sheep model

    International Nuclear Information System (INIS)

    Jochimsen, Thies H.; Zeisig, Vilia; Schulz, Jessica; Werner, Peter; Patt, Marianne; Patt, Jörg; Dreyer, Antje Y.; Boltze, Johannes; Barthel, Henryk; Sabri, Osama; Sattler, Bernhard

    2016-01-01

    Obtaining the arterial input function (AIF) from image data in dynamic positron emission tomography (PET) examinations is a non-invasive alternative to arterial blood sampling. In simultaneous PET/magnetic resonance imaging (PET/MRI), high-resolution MRI angiographies can be used to define major arteries for correction of partial-volume effects (PVE) and point spread function (PSF) response in the PET data. The present study describes a fully automated method to obtain the image-derived input function (IDIF) in PET/MRI. Results are compared to those obtained by arterial blood sampling. To segment the trunk of the major arteries in the neck, a high-resolution time-of-flight MRI angiography was postprocessed by a vessel-enhancement filter based on the inertia tensor. Together with the measured PSF of the PET subsystem, the arterial mask was used for geometrical deconvolution, yielding the time-resolved activity concentration averaged over a major artery. The method was compared to manual arterial blood sampling at the hind leg of 21 sheep (animal stroke model) during measurement of blood flow with O15-water. Absolute quantification of activity concentration was compared after bolus passage during steady state, i.e., between 2.5- and 5-min post injection. Cerebral blood flow (CBF) values from blood sampling and IDIF were also compared. The cross-calibration factor obtained by comparing activity concentrations in blood samples and IDIF during steady state is 0.98 ± 0.10. In all examinations, the IDIF provided a much earlier and sharper bolus peak than in the time course of activity concentration obtained by arterial blood sampling. CBF using the IDIF was 22 % higher than CBF obtained by using the AIF yielded by blood sampling. The small deviation between arterial blood sampling and IDIF during steady state indicates that correction of PVE and PSF is possible with the method presented. The differences in bolus dynamics and, hence, CBF values can be explained by the

  12. Fully automated calculation of image-derived input function in simultaneous PET/MRI in a sheep model

    Energy Technology Data Exchange (ETDEWEB)

    Jochimsen, Thies H.; Zeisig, Vilia [Department of Nuclear Medicine, Leipzig University Hospital, Liebigstr. 18, Leipzig (Germany); Schulz, Jessica [Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstr. 1a, Leipzig, D-04103 (Germany); Werner, Peter; Patt, Marianne; Patt, Jörg [Department of Nuclear Medicine, Leipzig University Hospital, Liebigstr. 18, Leipzig (Germany); Dreyer, Antje Y. [Fraunhofer Institute of Cell Therapy and Immunology, Perlickstr. 1, Leipzig, D-04103 (Germany); Translational Centre for Regenerative Medicine, University Leipzig, Philipp-Rosenthal-Str. 55, Leipzig, D-04103 (Germany); Boltze, Johannes [Fraunhofer Institute of Cell Therapy and Immunology, Perlickstr. 1, Leipzig, D-04103 (Germany); Translational Centre for Regenerative Medicine, University Leipzig, Philipp-Rosenthal-Str. 55, Leipzig, D-04103 (Germany); Fraunhofer Research Institution of Marine Biotechnology and Institute for Medical and Marine Biotechnology, University of Lübeck, Lübeck (Germany); Barthel, Henryk; Sabri, Osama; Sattler, Bernhard [Department of Nuclear Medicine, Leipzig University Hospital, Liebigstr. 18, Leipzig (Germany)

    2016-02-13

    Obtaining the arterial input function (AIF) from image data in dynamic positron emission tomography (PET) examinations is a non-invasive alternative to arterial blood sampling. In simultaneous PET/magnetic resonance imaging (PET/MRI), high-resolution MRI angiographies can be used to define major arteries for correction of partial-volume effects (PVE) and point spread function (PSF) response in the PET data. The present study describes a fully automated method to obtain the image-derived input function (IDIF) in PET/MRI. Results are compared to those obtained by arterial blood sampling. To segment the trunk of the major arteries in the neck, a high-resolution time-of-flight MRI angiography was postprocessed by a vessel-enhancement filter based on the inertia tensor. Together with the measured PSF of the PET subsystem, the arterial mask was used for geometrical deconvolution, yielding the time-resolved activity concentration averaged over a major artery. The method was compared to manual arterial blood sampling at the hind leg of 21 sheep (animal stroke model) during measurement of blood flow with O15-water. Absolute quantification of activity concentration was compared after bolus passage during steady state, i.e., between 2.5- and 5-min post injection. Cerebral blood flow (CBF) values from blood sampling and IDIF were also compared. The cross-calibration factor obtained by comparing activity concentrations in blood samples and IDIF during steady state is 0.98 ± 0.10. In all examinations, the IDIF provided a much earlier and sharper bolus peak than in the time course of activity concentration obtained by arterial blood sampling. CBF using the IDIF was 22 % higher than CBF obtained by using the AIF yielded by blood sampling. The small deviation between arterial blood sampling and IDIF during steady state indicates that correction of PVE and PSF is possible with the method presented. The differences in bolus dynamics and, hence, CBF values can be explained by the

  13. Designing the input vector to ANN-based models for short-term load forecast in electricity distribution systems

    International Nuclear Information System (INIS)

    Santos, P.J.; Martins, A.G.; Pires, A.J.

    2007-01-01

    The present trend to electricity market restructuring increases the need for reliable short-term load forecast (STLF) algorithms, in order to assist electric utilities in activities such as planning, operating and controlling electric energy systems. Methodologies such as artificial neural networks (ANN) have been widely used in the next hour load forecast horizon with satisfactory results. However, this type of approach has had some shortcomings. Usually, the input vector (IV) is defined in a arbitrary way, mainly based on experience, on engineering judgment criteria and on concern about the ANN dimension, always taking into consideration the apparent correlations within the available endogenous and exogenous data. In this paper, a proposal is made of an approach to define the IV composition, with the main focus on reducing the influence of trial-and-error and common sense judgments, which usually are not based on sufficient evidence of comparative advantages over previous alternatives. The proposal includes the assessment of the strictly necessary instances of the endogenous variable, both from the point of view of the contiguous values prior to the forecast to be made, and of the past values representing the trend of consumption at homologous time intervals of the past. It also assesses the influence of exogenous variables, again limiting their presence at the IV to the indispensable minimum. A comparison is made with two alternative IV structures previously proposed in the literature, also applied to the distribution sector. The paper is supported by a real case study at the distribution sector. (author)

  14. A numerical model including PID control of a multizone crystal growth furnace

    Science.gov (United States)

    Panzarella, Charles H.; Kassemi, Mohammad

    1992-01-01

    This paper presents a 2D axisymmetric combined conduction and radiation model of a multizone crystal growth furnace. The model is based on a programmable multizone furnace (PMZF) designed and built at NASA Lewis Research Center for growing high quality semiconductor crystals. A novel feature of this model is a control algorithm which automatically adjusts the power in any number of independently controlled heaters to establish the desired crystal temperatures in the furnace model. The control algorithm eliminates the need for numerous trial and error runs previously required to obtain the same results. The finite element code, FIDAP, used to develop the furnace model, was modified to directly incorporate the control algorithm. This algorithm, which presently uses PID control, and the associated heat transfer model are briefly discussed. Together, they have been used to predict the heater power distributions for a variety of furnace configurations and desired temperature profiles. Examples are included to demonstrate the effectiveness of the PID controlled model in establishing isothermal, Bridgman, and other complicated temperature profies in the sample. Finally, an example is given to show how the algorithm can be used to change the desired profile with time according to a prescribed temperature-time evolution.

  15. A New Circuit Model for Spin-Torque Oscillator Including Perpendicular Torque of Magnetic Tunnel Junction

    Directory of Open Access Journals (Sweden)

    Hyein Lim

    2013-01-01

    Full Text Available Spin-torque oscillator (STO is a promising new technology for the future RF oscillators, which is based on the spin-transfer torque (STT effect in magnetic multilayered nanostructure. It is expected to provide a larger tunability, smaller size, lower power consumption, and higher level of integration than the semiconductor-based oscillators. In our previous work, a circuit-level model of the giant magnetoresistance (GMR STO was proposed. In this paper, we present a physics-based circuit-level model of the magnetic tunnel junction (MTJ-based STO. MTJ-STO model includes the effect of perpendicular torque that has been ignored in the GMR-STO model. The variations of three major characteristics, generation frequency, mean oscillation power, and generation linewidth of an MTJ-STO with respect to the amount of perpendicular torque, are investigated, and the results are applied to our model. The operation of the model was verified by HSPICE simulation, and the results show an excellent agreement with the experimental data. The results also prove that a full circuit-level simulation with MJT-STO devices can be made with our proposed model.

  16. Fuzzy Control of Yaw and Roll Angles of a Simulated Helicopter Model Includes Articulated Manipulators

    Directory of Open Access Journals (Sweden)

    Hossein Sadegh Lafmejani

    2015-09-01

    Full Text Available Fuzzy logic controller (FLC is a heuristic method by If-Then Rules which resembles human intelligence and it is a good method for designing Non-linear control systems. In this paper, an arbitrary helicopter model includes articulated manipulators has been simulated with Matlab SimMechanics toolbox. Due to the difficulties of modeling this complex system, a fuzzy controller with simple fuzzy rules has been designed for its yaw and roll angles in order to stabilize the helicopter while it is in the presence of disturbances or its manipulators are moving for a task. Results reveal that a simple FLC can appropriately control this system.

  17. A roller chain drive model including contact with guide-bars

    DEFF Research Database (Denmark)

    Pedersen, Sine Leergaard; Hansen, John Michael; Ambrósio, J. A. C.

    2004-01-01

    A model of a roller chain drive is developed and applied to the simulation and analysis of roller chain drives of large marine diesel engines. The model includes the impact with guide-bars that are the motion delimiter components on the chain strands between the sprockets. The main components...... and the sprocket centre, i.e. a constraint is added when such distance is less than the pitch radius. The unilateral kinematic constraint is removed when its associated constraint reaction force, applied on the roller, is in the direction of the root of the sprocket teeth. In order to improve the numerical...

  18. TS Fuzzy Model-Based Controller Design for a Class of Nonlinear Systems Including Nonsmooth Functions

    DEFF Research Database (Denmark)

    Vafamand, Navid; Asemani, Mohammad Hassan; Khayatiyan, Alireza

    2018-01-01

    This paper proposes a novel robust controller design for a class of nonlinear systems including hard nonlinearity functions. The proposed approach is based on Takagi-Sugeno (TS) fuzzy modeling, nonquadratic Lyapunov function, and nonparallel distributed compensation scheme. In this paper, a novel...... criterion, new robust controller design conditions in terms of linear matrix inequalities are derived. Three practical case studies, electric power steering system, a helicopter model and servo-mechanical system, are presented to demonstrate the importance of such class of nonlinear systems comprising...

  19. Application of regional physically-based landslide early warning model: tuning of the input parameters and validation of the results

    Science.gov (United States)

    D'Ambrosio, Michele; Tofani, Veronica; Rossi, Guglielmo; Salvatici, Teresa; Tacconi Stefanelli, Carlo; Rosi, Ascanio; Benedetta Masi, Elena; Pazzi, Veronica; Vannocci, Pietro; Catani, Filippo; Casagli, Nicola

    2017-04-01

    The Aosta Valley region is located in North-West Alpine mountain chain. The geomorphology of the region is characterized by steep slopes, high climatic and altitude (ranging from 400 m a.s.l of Dora Baltea's river floodplain to 4810 m a.s.l. of Mont Blanc) variability. In the study area (zone B), located in Eastern part of Aosta Valley, heavy rainfall of about 800-900 mm per year is the main landslides trigger. These features lead to a high hydrogeological risk in all territory, as mass movements interest the 70% of the municipality areas (mainly shallow rapid landslides and rock falls). An in-depth study of the geotechnical and hydrological properties of hillslopes controlling shallow landslides formation was conducted, with the aim to improve the reliability of deterministic model, named HIRESS (HIgh REsolution Stability Simulator). In particular, two campaigns of on site measurements and laboratory experiments were performed. The data obtained have been studied in order to assess the relationships existing among the different parameters and the bedrock lithology. The analyzed soils in 12 survey points are mainly composed of sand and gravel, with highly variable contents of silt. The range of effective internal friction angle (from 25.6° to 34.3°) and effective cohesion (from 0 kPa to 9.3 kPa) measured and the median ks (10E-6 m/s) value are consistent with the average grain sizes (gravelly sand). The data collected contributes to generate input map of parameters for HIRESS (static data). More static data are: volume weight, residual water content, porosity and grain size index. In order to improve the original formulation of the model, the contribution of the root cohesion has been also taken into account based on the vegetation map and literature values. HIRESS is a physically based distributed slope stability simulator for analyzing shallow landslide triggering conditions in real time and in large areas using parallel computational techniques. The software

  20. An extended environmental input-output lifecycle assessment model to study the urban food-energy-water nexus

    Science.gov (United States)

    Sherwood, John; Clabeaux, Raeanne; Carbajales-Dale, Michael

    2017-10-01

    We developed a physically-based environmental account of US food production systems and integrated these data into the environmental-input-output life cycle assessment (EIO-LCA) model. The extended model was used to characterize the food, energy, and water (FEW) intensities of every US economic sector. The model was then applied to every Bureau of Economic Analysis metropolitan statistical area (MSA) to determine their FEW usages. The extended EIO-LCA model can determine the water resource use (kGal), energy resource use (TJ), and food resource use in units of mass (kg) or energy content (kcal) of any economic activity within the United States. We analyzed every economic sector to determine its FEW intensities per dollar of economic output. This data was applied to each of the 382 MSAs to determine their total and per dollar of GDP FEW usages by allocating MSA economic production to the corresponding FEW intensities of US economic sectors. Additionally, a longitudinal study was performed for the Los Angeles-Long Beach-Anaheim, CA, metropolitan statistical area to examine trends from this singular MSA and compare it to the overall results. Results show a strong correlation between GDP and energy use, and between food and water use across MSAs. There is also a correlation between GDP and greenhouse gas emissions. The longitudinal study indicates that these correlations can shift alongside a shifting industrial composition. Comparing MSAs on a per GDP basis reveals that central and southern California tend to be more resource intensive than many other parts of the country, while much of Florida has abnormally low resource requirements. Results of this study enable a more complete understanding of food, energy, and water as key ingredients to a functioning economy. With the addition of the food data to the EIO-LCA framework, researchers will be able to better study the food-energy-water nexus and gain insight into how these three vital resources are interconnected

  1. Validation of lumbar spine loading from a musculoskeletal model including the lower limbs and lumbar spine.

    Science.gov (United States)

    Actis, Jason A; Honegger, Jasmin D; Gates, Deanna H; Petrella, Anthony J; Nolasco, Luis A; Silverman, Anne K

    2018-02-08

    Low back mechanics are important to quantify to study injury, pain and disability. As in vivo forces are difficult to measure directly, modeling approaches are commonly used to estimate these forces. Validation of model estimates is critical to gain confidence in modeling results across populations of interest, such as people with lower-limb amputation. Motion capture, ground reaction force and electromyographic data were collected from ten participants without an amputation (five male/five female) and five participants with a unilateral transtibial amputation (four male/one female) during trunk-pelvis range of motion trials in flexion/extension, lateral bending and axial rotation. A musculoskeletal model with a detailed lumbar spine and the legs including 294 muscles was used to predict L4-L5 loading and muscle activations using static optimization. Model estimates of L4-L5 intervertebral joint loading were compared to measured intradiscal pressures from the literature and muscle activations were compared to electromyographic signals. Model loading estimates were only significantly different from experimental measurements during trunk extension for males without an amputation and for people with an amputation, which may suggest a greater portion of L4-L5 axial load transfer through the facet joints, as facet loads are not captured by intradiscal pressure transducers. Pressure estimates between the model and previous work were not significantly different for flexion, lateral bending or axial rotation. Timing of model-estimated muscle activations compared well with electromyographic activity of the lumbar paraspinals and upper erector spinae. Validated estimates of low back loading can increase the applicability of musculoskeletal models to clinical diagnosis and treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. A representation result for hysteresis operators with vector valued inputs and its application to models for magnetic materials

    Energy Technology Data Exchange (ETDEWEB)

    Klein, Olaf, E-mail: Olaf.Klein@wias-berlin.de

    2014-02-15

    In this work, hysteresis operators mapping continuous vector-valued input functions being piecewise monotaffine, i.e. being piecewise the composition of a monotone with an affine function, to vector-valued output functions are considered. It is shown that the operator can be generated by a unique defined function on the convexity triple free strings. A formulation of a congruence property for periodic inputs is presented and reformulated as a condition for the generating string function.

  3. Modeling of Temperature-Dependent Noise in Silicon Nanowire FETs including Self-Heating Effects

    Directory of Open Access Journals (Sweden)

    P. Anandan

    2014-01-01

    Full Text Available Silicon nanowires are leading the CMOS era towards the downsizing limit and its nature will be effectively suppress the short channel effects. Accurate modeling of thermal noise in nanowires is crucial for RF applications of nano-CMOS emerging technologies. In this work, a perfect temperature-dependent model for silicon nanowires including the self-heating effects has been derived and its effects on device parameters have been observed. The power spectral density as a function of thermal resistance shows significant improvement as the channel length decreases. The effects of thermal noise including self-heating of the device are explored. Moreover, significant reduction in noise with respect to channel thermal resistance, gate length, and biasing is analyzed.

  4. Model for safety reports including descriptive examples; Mall foer saekerhetsrapporter med beskrivande exempel

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-01

    Several safety reports will be produced in the process of planning and constructing the system for disposal of high-level radioactive waste in Sweden. The present report gives a model, with detailed examples, of how these reports should be organized and what steps they should include. In the near future safety reports will deal with the encapsulation plant and the repository. Later reports will treat operation of the handling systems and the repository.

  5. A High-Rate, Single-Crystal Model including Phase Transformations, Plastic Slip, and Twinning

    Energy Technology Data Exchange (ETDEWEB)

    Addessio, Francis L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Bronkhorst, Curt Allan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Bolme, Cynthia Anne [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Explosive Science and Shock Physics Division; Brown, Donald William [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science and Technology Division; Cerreta, Ellen Kathleen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science and Technology Division; Lebensohn, Ricardo A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science and Technology Division; Lookman, Turab [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Luscher, Darby Jon [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Mayeur, Jason Rhea [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Morrow, Benjamin M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science and Technology Division; Rigg, Paulo A. [Washington State Univ., Pullman, WA (United States). Dept. of Physics. Inst. for Shock Physics

    2016-08-09

    An anisotropic, rate-­dependent, single-­crystal approach for modeling materials under the conditions of high strain rates and pressures is provided. The model includes the effects of large deformations, nonlinear elasticity, phase transformations, and plastic slip and twinning. It is envisioned that the model may be used to examine these coupled effects on the local deformation of materials that are subjected to ballistic impact or explosive loading. The model is formulated using a multiplicative decomposition of the deformation gradient. A plate impact experiment on a multi-­crystal sample of titanium was conducted. The particle velocities at the back surface of three crystal orientations relative to the direction of impact were measured. Molecular dynamics simulations were conducted to investigate the details of the high-­rate deformation and pursue issues related to the phase transformation for titanium. Simulations using the single crystal model were conducted and compared to the high-­rate experimental data for the impact loaded single crystals. The model was found to capture the features of the experiments.

  6. Collisional-radiative model including recombination processes for W27+ ion★

    Science.gov (United States)

    Murakami, Izumi; Sasaki, Akira; Kato, Daiji; Koike, Fumihiro

    2017-10-01

    We have constructed a collisional-radiative (CR) model for W27+ ions including 226 configurations with n ≤ 9 and ł ≤ 5 for spectroscopic diagnostics. We newly include recombination processes in the model and this is the first result of extreme ultraviolet spectrum calculated for recombining plasma component. Calculated spectra in 40-70 Å range in ionizing and recombining plasma components show similar 3 strong lines and 1 line weak in recombining plasma component at 45-50 Å and many weak lines at 50-65 Å for both components. Recombination processes do not contribute much to the spectrum at around 60 Å for W27+ ion. Dielectronic satellite lines are also minor contribution to the spectrum of recombining plasma component. Dielectronic recombination (DR) rate coefficient from W28+ to W27+ ions is also calculated with the same atomic data in the CR model. We found that larger set of energy levels including many autoionizing states gave larger DR rate coefficients but our rate agree within factor 6 with other works at electron temperature around 1 keV in which W27+ and W28+ ions are usually observed in plasmas. Contribution to the Topical Issue "Atomic and Molecular Data and their Applications", edited by Gordon W.F. Drake, Jung-Sik Yoon, Daiji Kato, and Grzegorz Karwasz.

  7. Development of a MODIS-Derived Surface Albedo Data Set: An Improved Model Input for Processing the NSRDB

    Energy Technology Data Exchange (ETDEWEB)

    Maclaurin, Galen [National Renewable Energy Lab. (NREL), Golden, CO (United States); Sengupta, Manajit [National Renewable Energy Lab. (NREL), Golden, CO (United States); Xie, Yu [National Renewable Energy Lab. (NREL), Golden, CO (United States); Gilroy, Nicholas [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-12-01

    A significant source of bias in the transposition of global horizontal irradiance to plane-of-array (POA) irradiance arises from inaccurate estimations of surface albedo. The current physics-based model used to produce the National Solar Radiation Database (NSRDB) relies on model estimations of surface albedo from a reanalysis climatalogy produced at relatively coarse spatial resolution compared to that of the NSRDB. As an input to spectral decomposition and transposition models, more accurate surface albedo data from remotely sensed imagery at finer spatial resolutions would improve accuracy in the final product. The National Renewable Energy Laboratory (NREL) developed an improved white-sky (bi-hemispherical reflectance) broadband (0.3-5.0 ..mu..m) surface albedo data set for processing the NSRDB from two existing data sets: a gap-filled albedo product and a daily snow cover product. The Moderate Resolution Imaging Spectroradiometer (MODIS) sensors onboard the Terra and Aqua satellites have provided high-quality measurements of surface albedo at 30 arc-second spatial resolution and 8-day temporal resolution since 2001. The high spatial and temporal resolutions and the temporal coverage of the MODIS sensor will allow for improved modeling of POA irradiance in the NSRDB. However, cloud and snow cover interfere with MODIS observations of ground surface albedo, and thus they require post-processing. The MODIS production team applied a gap-filling methodology to interpolate observations obscured by clouds or ephemeral snow. This approach filled pixels with ephemeral snow cover because the 8-day temporal resolution is too coarse to accurately capture the variability of snow cover and its impact on albedo estimates. However, for this project, accurate representation of daily snow cover change is important in producing the NSRDB. Therefore, NREL also used the Integrated Multisensor Snow and Ice Mapping System data set, which provides daily snow cover observations of the

  8. How to include frequency dependent complex permeability Into SPICE models to improve EMI filters design?

    Science.gov (United States)

    Sixdenier, Fabien; Yade, Ousseynou; Martin, Christian; Bréard, Arnaud; Vollaire, Christian

    2018-05-01

    Electromagnetic interference (EMI) filters design is a rather difficult task where engineers have to choose adequate magnetic materials, design the magnetic circuit and choose the size and number of turns. The final design must achieve the attenuation requirements (constraints) and has to be as compact as possible (goal). Alternating current (AC) analysis is a powerful tool to predict global impedance or attenuation of any filter. However, AC analysis are generally performed without taking into account the frequency-dependent complex permeability behaviour of soft magnetic materials. That's why, we developed two frequency-dependent complex permeability models able to be included into SPICE models. After an identification process, the performances of each model are compared to measurements made on a realistic EMI filter prototype in common mode (CM) and differential mode (DM) to see the benefit of the approach. Simulation results are in good agreement with the measured ones especially in the middle frequency range.

  9. RELAP5-3D Code Includes ATHENA Features and Models

    International Nuclear Information System (INIS)

    Riemke, Richard A.; Davis, Cliff B.; Schultz, Richard R.

    2006-01-01

    Version 2.3 of the RELAP5-3D computer program includes all features and models previously available only in the ATHENA version of the code. These include the addition of new working fluids (i.e., ammonia, blood, carbon dioxide, glycerol, helium, hydrogen, lead-bismuth, lithium, lithium-lead, nitrogen, potassium, sodium, and sodium-potassium) and a magnetohydrodynamic model that expands the capability of the code to model many more thermal-hydraulic systems. In addition to the new working fluids along with the standard working fluid water, one or more noncondensable gases (e.g., air, argon, carbon dioxide, carbon monoxide, helium, hydrogen, krypton, nitrogen, oxygen, SF 6 , xenon) can be specified as part of the vapor/gas phase of the working fluid. These noncondensable gases were in previous versions of RELAP5-3D. Recently four molten salts have been added as working fluids to RELAP5-3D Version 2.4, which has had limited release. These molten salts will be in RELAP5-3D Version 2.5, which will have a general release like RELAP5-3D Version 2.3. Applications that use these new features and models are discussed in this paper. (authors)

  10. Double-gate junctionless transistor model including short-channel effects

    International Nuclear Information System (INIS)

    Paz, B C; Pavanello, M A; Ávila-Herrera, F; Cerdeira, A

    2015-01-01

    This work presents a physically based model for double-gate junctionless transistors (JLTs), continuous in all operation regimes. To describe short-channel transistors, short-channel effects (SCEs), such as increase of the channel potential due to drain bias, carrier velocity saturation and mobility degradation due to vertical and longitudinal electric fields, are included in a previous model developed for long-channel double-gate JLTs. To validate the model, an analysis is made by using three-dimensional numerical simulations performed in a Sentaurus Device Simulator from Synopsys. Different doping concentrations, channel widths and channel lengths are considered in this work. Besides that, the series resistance influence is numerically included and validated for a wide range of source and drain extensions. In order to check if the SCEs are appropriately described, besides drain current, transconductance and output conductance characteristics, the following parameters are analyzed to demonstrate the good agreement between model and simulation and the SCEs occurrence in this technology: threshold voltage (V TH ), subthreshold slope (S) and drain induced barrier lowering. (paper)

  11. Refitting density dependent relativistic model parameters including Center-of-Mass corrections

    International Nuclear Information System (INIS)

    Avancini, Sidney S.; Marinelli, Jose R.; Carlson, Brett Vern

    2011-01-01

    Full text: Relativistic mean field models have become a standard approach for precise nuclear structure calculations. After the seminal work of Serot and Walecka, which introduced a model Lagrangian density where the nucleons interact through the exchange of scalar and vector mesons, several models were obtained through its generalization, including other meson degrees of freedom, non-linear meson interactions, meson-meson interactions, etc. More recently density dependent coupling constants were incorporated into the Walecka-like models, which are then extensively used. In particular, for these models a connection with the density functional theory can be established. Due to the inherent difficulties presented by field theoretical models, only the mean field approximation is used for the solution of these models. In order to calculate finite nuclei properties in the mean field approximation, a reference set has to be fixed and therefore the translational symmetry is violated. It is well known that in such case spurious effects due to the center-of-mass (COM) motion are present, which are more pronounced for light nuclei. In a previous work we have proposed a technique based on the Pierls-Yoccoz projection operator applied to the mean-field relativistic solution, in order to project out spurious COM contributions. In this work we obtain a new fitting for the density dependent parameters of a density dependent hadronic model, taking into account the COM corrections. Our fitting is obtained taking into account the charge radii and binding energies for He 4 , O 16 , Ca 40 , Ca 48 , Ni 56 , Ni 68 , Sn 100 , Sn 132 and Pb 208 . We show that the nuclear observables calculated using our fit are of a quality comparable to others that can be found in the literature, with the advantage that now a translational invariant many-body wave function is at our disposal. (author)

  12. Including policy and management in socio-hydrology models: initial conceptualizations

    Science.gov (United States)

    Hermans, Leon; Korbee, Dorien

    2017-04-01

    Socio-hydrology studies the interactions in coupled human-water systems. So far, the use of dynamic models that capture the direct feedback between societal and hydrological systems has been dominant. What has not yet been included with any particular emphasis, is the policy or management layer, which is a central element in for instance integrated water resources management (IWRM) or adaptive delta management (ADM). Studying the direct interactions between human-water systems generates knowledges that eventually helps influence these interactions in ways that may ensure better outcomes - for society and for the health and sustainability of water systems. This influence sometimes occurs through spontaneous emergence, uncoordinated by societal agents - private sector, citizens, consumers, water users. However, the term 'management' in IWRM and ADM also implies an additional coordinated attempt through various public actors. This contribution is a call to include the policy and management dimension more prominently into the research focus of the socio-hydrology field, and offers first conceptual variables that should be considered in attempts to include this policy or management layer in socio-hydrology models. This is done by drawing on existing frameworks to study policy processes throughout both planning and implementation phases. These include frameworks such as the advocacy coalition framework, collective learning and policy arrangements, which all emphasis longer-term dynamics and feedbacks between actor coalitions in strategic planning and implementation processes. A case about longter-term dynamics in the management of the Haringvliet in the Netherlands is used to illustrate the paper.

  13. Modelling of Water Cooled Fuel Including Design Basis and Severe Accidents. Proceedings of a Technical Meeting

    International Nuclear Information System (INIS)

    2015-11-01

    The demands on nuclear fuel have recently been increasing, and include transient regimes, higher discharge burnup and longer fuel cycles. This has resulted in an increase of loads on fuel and core internals. In order to satisfy these demands while ensuring compliance with safety criteria, new national and international programmes have been launched and advanced modelling codes are being developed. The Fukushima Daiichi accident has particularly demonstrated the need for adequate analysis of all aspects of fuel performance to prevent a failure and also to predict fuel behaviour were an accident to occur.This publication presents the Proceedings of the Technical Meeting on Modelling of Water Cooled Fuel Including Design Basis and Severe Accidents, which was hosted by the Nuclear Power Institute of China (NPIC) in Chengdu, China, following the recommendation made in 2013 at the IAEA Technical Working Group on Fuel Performance and Technology. This recommendation was in agreement with IAEA mid-term initiatives, linked to the post-Fukushima IAEA Nuclear Safety Action Plan, as well as the forthcoming Coordinated Research Project (CRP) on Fuel Modelling in Accident Conditions. At the technical meeting in Chengdu, major areas and physical phenomena, as well as types of code and experiment to be studied and used in the CRP, were discussed. The technical meeting provided a forum for international experts to review the state of the art of code development for modelling fuel performance of nuclear fuel for water cooled reactors with regard to steady state and transient conditions, and for design basis and early phases of severe accidents, including experimental support for code validation. A round table discussion focused on the needs and perspectives on fuel modelling in accident conditions. This meeting was the ninth in a series of IAEA meetings, which reflects Member States’ continuing interest in nuclear fuel issues. The previous meetings were held in 1980 (jointly with

  14. Modeling of in-vessel fission product release including fuel morphology effects for severe accident analyses

    International Nuclear Information System (INIS)

    Suh, K.Y.

    1989-10-01

    A new in-vessel fission product release model has been developed and implemented to perform best-estimate calculations of realistic source terms including fuel morphology effects. The proposed bulk mass transfer correlation determines the product of fission product release and equiaxed grain size as a function of the inverse fuel temperature. The model accounts for the fuel-cladding interaction over the temperature range between 770 K and 3000 K in the steam environment. A separate driver has been developed for the in-vessel thermal hydraulic and fission product behavior models that were developed by the Department of Energy for the Modular Accident Analysis Package (MAAP). Calculational results of these models have been compared to the results of the Power Burst Facility Severe Fuel Damage tests. The code predictions utilizing the mass transfer correlation agreed with the experimentally determined fractional release rates during the course of the heatup, power hold, and cooldown phases of the high temperature transients. Compared to such conventional literature correlations as the steam oxidation model and the NUREG-0956 correlation, the mass transfer correlation resulted in lower and less rapid releases in closer agreement with the on-line and grab sample data from the Severe Fuel Damage tests. The proposed mass transfer correlation can be applied for best-estimate calculations of fission products release from the UO 2 fuel in both nominal and severe accident conditions. 15 refs., 10 figs., 2 tabs

  15. Health Promotion Behavior of Chinese International Students in Korea Including Acculturation Factors: A Structural Equation Model.

    Science.gov (United States)

    Kim, Sun Jung; Yoo, Il Young

    2016-03-01

    The purpose of this study was to explain the health promotion behavior of Chinese international students in Korea using a structural equation model including acculturation factors. A survey using self-administered questionnaires was employed. Data were collected from 272 Chinese students who have resided in Korea for longer than 6 months. The data were analyzed using structural equation modeling. The p value of final model is .31. The fitness parameters of the final model such as goodness of fit index, adjusted goodness of fit index, normed fit index, non-normed fit index, and comparative fit index were more than .95. Root mean square of residual and root mean square error of approximation also met the criteria. Self-esteem, perceived health status, acculturative stress and acculturation level had direct effects on health promotion behavior of the participants and the model explained 30.0% of variance. The Chinese students in Korea with higher self-esteem, perceived health status, acculturation level, and lower acculturative stress reported higher health promotion behavior. The findings can be applied to develop health promotion strategies for this population. Copyright © 2016. Published by Elsevier B.V.

  16. Include dispersion in quantum chemical modeling of enzymatic reactions: the case of isoaspartyl dipeptidase.

    Science.gov (United States)

    Zhang, Hai-Mei; Chen, Shi-Lu

    2015-06-09

    The lack of dispersion in the B3LYP functional has been proposed to be the main origin of big errors in quantum chemical modeling of a few enzymes and transition metal complexes. In this work, the essential dispersion effects that affect quantum chemical modeling are investigated. With binuclear zinc isoaspartyl dipeptidase (IAD) as an example, dispersion is included in the modeling of enzymatic reactions by two different procedures, i.e., (i) geometry optimizations followed by single-point calculations of dispersion (approach I) and (ii) the inclusion of dispersion throughout geometry optimization and energy evaluation (approach II). Based on a 169-atom chemical model, the calculations show a qualitative consistency between approaches I and II in energetics and most key geometries, demonstrating that both approaches are available with the latter preferential since both geometry and energy are dispersion-corrected in approach II. When a smaller model without Arg233 (147 atoms) was used, an inconsistency was observed, indicating that the missing dispersion interactions are essentially responsible for determining equilibrium geometries. Other technical issues and mechanistic characteristics of IAD are also discussed, in particular with respect to the effects of Arg233.

  17. S5-4: Formal Modeling of Affordance in Human-Included Systems

    Directory of Open Access Journals (Sweden)

    Namhun Kim

    2012-10-01

    Full Text Available In spite of it being necessary for humans to consider modeling, analysis, and control of human-included systems, it has been considered a challenging problem because of the critical role of humans in complex systems and of humans' capability of executing unanticipated actions–both beneficial and detrimental ones. Thus, to provide systematic approaches to modeling human actions as a part of system behaviors, a formal modeling framework for human-involved systems in which humans play a controlling role based on their perceptual information is presented. The theory of affordance provides definitions of human actions and their associated properties; Finite State Automata (FSA based modeling is capable of mapping nondeterministic humans into computable components in the system representation. In this talk, we investigate the role of perception in human actions in the system operation and examine the representation of perceptual elements in affordance-based modeling formalism. The proposed framework is expected to capture the natural ways in which humans participate in the system as part of its operation. A human-machine cooperative manufacturing system control example and a human agent simulation example will be introduced for the illustrative purposes at the end of the presentation.

  18. A robust hybrid model integrating enhanced inputs based extreme learning machine with PLSR (PLSR-EIELM) and its application to intelligent measurement.

    Science.gov (United States)

    He, Yan-Lin; Geng, Zhi-Qiang; Xu, Yuan; Zhu, Qun-Xiong

    2015-09-01

    In this paper, a robust hybrid model integrating an enhanced inputs based extreme learning machine with the partial least square regression (PLSR-EIELM) was proposed. The proposed PLSR-EIELM model can overcome two main flaws in the extreme learning machine (ELM), i.e. the intractable problem in determining the optimal number of the hidden layer neurons and the over-fitting phenomenon. First, a traditional extreme learning machine (ELM) is selected. Second, a method of randomly assigning is applied to the weights between the input layer and the hidden layer, and then the nonlinear transformation for independent variables can be obtained from the output of the hidden layer neurons. Especially, the original input variables are regarded as enhanced inputs; then the enhanced inputs and the nonlinear transformed variables are tied together as the whole independent variables. In this way, the PLSR can be carried out to identify the PLS components not only from the nonlinear transformed variables but also from the original input variables, which can remove the correlation among the whole independent variables and the expected outputs. Finally, the optimal relationship model of the whole independent variables with the expected outputs can be achieved by using PLSR. Thus, the PLSR-EIELM model is developed. Then the PLSR-EIELM model served as an intelligent measurement tool for the key variables of the Purified Terephthalic Acid (PTA) process and the High Density Polyethylene (HDPE) process. The experimental results show that the predictive accuracy of PLSR-EIELM is stable, which indicate that PLSR-EIELM has good robust character. Moreover, compared with ELM, PLSR, hierarchical ELM (HELM), and PLSR-ELM, PLSR-EIELM can achieve much smaller predicted relative errors in these two applications. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  19. Enhancement of a robust arcuate GABAergic input to gonadotropin-releasing hormone neurons in a model of polycystic ovarian syndrome.

    Science.gov (United States)

    Moore, Aleisha M; Prescott, Mel; Marshall, Christopher J; Yip, Siew Hoong; Campbell, Rebecca E

    2015-01-13

    Polycystic ovarian syndrome (PCOS), the leading cause of female infertility, is associated with an increase in luteinizing hormone (LH) pulse frequency, implicating abnormal steroid hormone feedback to gonadotropin-releasing hormone (GnRH) neurons. This study investigated whether modifications in the synaptically connected neuronal network of GnRH neurons could account for this pathology. The PCOS phenotype was induced in mice following prenatal androgen (PNA) exposure. Serial blood sampling confirmed that PNA elicits increased LH pulse frequency and impaired progesterone negative feedback in adult females, mimicking the neuroendocrine abnormalities of the clinical syndrome. Imaging of GnRH neurons revealed greater dendritic spine density that correlated with increased putative GABAergic but not glutamatergic inputs in PNA mice. Mapping of steroid hormone receptor expression revealed that PNA mice had 59% fewer progesterone receptor-expressing cells in the arcuate nucleus of the hypothalamus (ARN). To address whether increased GABA innervation to GnRH neurons originates in the ARN, a viral-mediated Cre-lox approach was taken to trace the projections of ARN GABA neurons in vivo. Remarkably, projections from ARN GABAergic neurons heavily contacted and even bundled with GnRH neuron dendrites, and the density of fibers apposing GnRH neurons was even greater in PNA mice (56%). Additionally, this ARN GABA population showed significantly less colocalization with progesterone receptor in PNA animals compared with controls. Together, these data describe a robust GABAergic circuit originating in the ARN that is enhanced in a model of PCOS and may underpin the neuroendocrine pathophysiology of the syndrome.

  20. Impact of including surface currents on simulation of Indian Ocean variability with the POAMA coupled model

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Mei; Wang, Guomin; Hendon, Harry H.; Alves, Oscar [Bureau of Meteorology, Centre for Australian Weather and Climate Research, Melbourne (Australia)

    2011-04-15

    Impacts on the coupled variability of the Indo-Pacific by including the effects of surface currents on surface stress are explored in four extended integrations of an experimental version of the Bureau of Meteorology's coupled seasonal forecast model POAMA. The first pair of simulations differs only in their treatment of momentum coupling: one version includes the effects of surface currents on the surface stress computation and the other does not. The version that includes the effect of surface currents has less mean-state bias in the equatorial Pacific cold tongue but produces relatively weak coupled variability in the Tropics, especially that related to the Indian Ocean dipole (IOD) and El Nino/Southern Oscillation (ENSO). The version without the effects of surface currents has greater bias in the Pacific cold tongue but stronger IOD and ENSO variability. In order to diagnose the role of changes in local coupling from changes in remote forcing by ENSO for causing changes in IOD variability, a second set of simulations is conducted where effects of surface currents are included only in the Indian Ocean and only in the Pacific Ocean. IOD variability is found to be equally reduced by inclusion of the local effects of surface currents in the Indian Ocean and by the reduction of ENSO variability as a result of including effects of surface currents in the Pacific. Some implications of these results for predictability of the IOD and its dependence on ENSO, and for ocean subsurface data assimilation are discussed. (orig.)

  1. A new model for including the effect of fly ash on biochemical methane potential.

    Science.gov (United States)

    Gertner, Pablo; Huiliñir, César; Pinto-Villegas, Paula; Castillo, Alejandra; Montalvo, Silvio; Guerrero, Lorna

    2017-10-01

    The modelling of the effect of trace elements on anaerobic digestion, and specifically the effect of fly ash, has been scarcely studied. Thus, the present work was aimed at the development of a new function that allows accumulated methane models to predict the effect of FA on the volume of methane accumulation. For this, purpose five fly ash concentrations (10, 25, 50, 250 and 500mg/L) using raw and pre-treated sewage sludge were used to calibrate the new function, while three fly ash concentrations were used (40, 150 and 350mg/L) for validation. Three models for accumulated methane volume (the modified Gompertz equation, the logistic function, and the transfer function) were evaluated. The results showed that methane production increased in the presence of FA when the sewage sludge was not pre-treated, while with pretreated sludge there is inhibition of methane production at FA concentrations higher than 50mg/L. In the calibration of the proposed function, it fits well with the experimental data under all the conditions, including the inhibition and stimulating zones, with the values of the parameters of the methane production models falling in the range of those reported in the literature. For validation experiments, the model succeeded in representing the behavior of new experiments in both the stimulating and inhibiting zones, with NRMSE and R 2 ranging from 0.3577 to 0.03714 and 0.2209 to 0.9911, respectively. Thus, the proposed model is robust and valid for the studied conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Models of epidemics: when contact repetition and clustering should be included

    Directory of Open Access Journals (Sweden)

    Scholz Roland W

    2009-06-01

    Full Text Available Abstract Background The spread of infectious disease is determined by biological factors, e.g. the duration of the infectious period, and social factors, e.g. the arrangement of potentially contagious contacts. Repetitiveness and clustering of contacts are known to be relevant factors influencing the transmission of droplet or contact transmitted diseases. However, we do not yet completely know under what conditions repetitiveness and clustering should be included for realistically modelling disease spread. Methods We compare two different types of individual-based models: One assumes random mixing without repetition of contacts, whereas the other assumes that the same contacts repeat day-by-day. The latter exists in two variants, with and without clustering. We systematically test and compare how the total size of an outbreak differs between these model types depending on the key parameters transmission probability, number of contacts per day, duration of the infectious period, different levels of clustering and varying proportions of repetitive contacts. Results The simulation runs under different parameter constellations provide the following results: The difference between both model types is highest for low numbers of contacts per day and low transmission probabilities. The number of contacts and the transmission probability have a higher influence on this difference than the duration of the infectious period. Even when only minor parts of the daily contacts are repetitive and clustered can there be relevant differences compared to a purely random mixing model. Conclusion We show that random mixing models provide acceptable estimates of the total outbreak size if the number of contacts per day is high or if the per-contact transmission probability is high, as seen in typical childhood diseases such as measles. In the case of very short infectious periods, for instance, as in Norovirus, models assuming repeating contacts will also behave

  3. Particle-based modeling of heterogeneous chemical kinetics including mass transfer

    Science.gov (United States)

    Sengar, A.; Kuipers, J. A. M.; van Santen, Rutger A.; Padding, J. T.

    2017-08-01

    Connecting the macroscopic world of continuous fields to the microscopic world of discrete molecular events is important for understanding several phenomena occurring at physical boundaries of systems. An important example is heterogeneous catalysis, where reactions take place at active surfaces, but the effective reaction rates are determined by transport limitations in the bulk fluid and reaction limitations on the catalyst surface. In this work we study the macro-micro connection in a model heterogeneous catalytic reactor by means of stochastic rotation dynamics. The model is able to resolve the convective and diffusive interplay between participating species, while including adsorption, desorption, and reaction processes on the catalytic surface. Here we apply the simulation methodology to a simple straight microchannel with a catalytic strip. Dimensionless Damkohler numbers are used to comment on the spatial concentration profiles of reactants and products near the catalyst strip and in the bulk. We end the discussion with an outlook on more complicated geometries and increasingly complex reactions.

  4. Analysis of electronic models for solar cells including energy resolved defect densities

    Energy Technology Data Exchange (ETDEWEB)

    Glitzky, Annegret

    2010-07-01

    We introduce an electronic model for solar cells including energy resolved defect densities. The resulting drift-diffusion model corresponds to a generalized van Roosbroeck system with additional source terms coupled with ODEs containing space and energy as parameters for all defect densities. The system has to be considered in heterostructures and with mixed boundary conditions from device simulation. We give a weak formulation of the problem. If the boundary data and the sources are compatible with thermodynamic equilibrium the free energy along solutions decays monotonously. In other cases it may be increasing, but we estimate its growth. We establish boundedness and uniqueness results and prove the existence of a weak solution. This is done by considering a regularized problem, showing its solvability and the boundedness of its solutions independent of the regularization level. (orig.)

  5. Particle-based modeling of heterogeneous chemical kinetics including mass transfer.

    Science.gov (United States)

    Sengar, A; Kuipers, J A M; van Santen, Rutger A; Padding, J T

    2017-08-01

    Connecting the macroscopic world of continuous fields to the microscopic world of discrete molecular events is important for understanding several phenomena occurring at physical boundaries of systems. An important example is heterogeneous catalysis, where reactions take place at active surfaces, but the effective reaction rates are determined by transport limitations in the bulk fluid and reaction limitations on the catalyst surface. In this work we study the macro-micro connection in a model heterogeneous catalytic reactor by means of stochastic rotation dynamics. The model is able to resolve the convective and diffusive interplay between participating species, while including adsorption, desorption, and reaction processes on the catalytic surface. Here we apply the simulation methodology to a simple straight microchannel with a catalytic strip. Dimensionless Damkohler numbers are used to comment on the spatial concentration profiles of reactants and products near the catalyst strip and in the bulk. We end the discussion with an outlook on more complicated geometries and increasingly complex reactions.

  6. Effect of including decay chains on predictions of equilibrium-type terrestrial food chain models

    International Nuclear Information System (INIS)

    Kirchner, G.

    1990-01-01

    Equilibrium-type food chain models are commonly used for assessing the radiological impact to man from environmental releases of radionuclides. Usually these do not take into account build-up of radioactive decay products during environmental transport. This may be a potential source of underprediction. For estimating consequences of this simplification, the equations of an internationally recognised terrestrial food chain model have been extended to include decay chains of variable length. Example calculations show that for releases from light water reactors as expected both during routine operation and in the case of severe accidents, the build-up of decay products during environmental transport is generally of minor importance. However, a considerable number of radionuclides of potential radiological significance have been identified which show marked contributions of decay products to calculated contamination of human food and resulting radiation dose rates. (author)

  7. A temperature dependent cyclic plasticity model for hot work tool steel including particle coarsening

    Science.gov (United States)

    Jilg, Andreas; Seifert, Thomas

    2018-05-01

    Hot work tools are subjected to complex thermal and mechanical loads during hot forming processes. Locally, the stresses can exceed the material's yield strength in highly loaded areas as e.g. in small radii in die cavities. To sustain the high loads, the hot forming tools are typically made of martensitic hot work steels. While temperatures for annealing of the tool steels usually lie in the range between 400 and 600 °C, the steels may experience even higher temperatures during hot forming, resulting in softening of the material due to coarsening of strengthening particles. In this paper, a temperature dependent cyclic plasticity model for the martensitic hot work tool steel 1.2367 (X38CrMoV5-3) is presented that includes softening due to particle coarsening and that can be applied in finite-element calculations to assess the effect of softening on the thermomechanical fatigue life of hot work tools. To this end, a kinetic model for the evolution of the mean size of secondary carbides based on Ostwald ripening is coupled with a cyclic plasticity model with kinematic hardening. Mechanism-based relations are developed to describe the dependency of the mechanical properties on carbide size and temperature. The material properties of the mechanical and kinetic model are determined on the basis of tempering hardness curves as well as monotonic and cyclic tests.

  8. Fluid-structure interaction including volumetric coupling with homogenised subdomains for modeling respiratory mechanics.

    Science.gov (United States)

    Yoshihara, Lena; Roth, Christian J; Wall, Wolfgang A

    2017-04-01

    In this article, a novel approach is presented for combining standard fluid-structure interaction with additional volumetric constraints to model fluid flow into and from homogenised solid domains. The proposed algorithm is particularly interesting for investigations in the field of respiratory mechanics as it enables the mutual coupling of airflow in the conducting part and local tissue deformation in the respiratory part of the lung by means of a volume constraint. In combination with a classical monolithic fluid-structure interaction approach, a comprehensive model of the human lung can be established that will be useful to gain new insights into respiratory mechanics in health and disease. To illustrate the validity and versatility of the novel approach, three numerical examples including a patient-specific lung model are presented. The proposed algorithm proves its capability of computing clinically relevant airflow distribution and tissue strain data at a level of detail that is not yet achievable, neither with current imaging techniques nor with existing computational models. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  9. Habitability of super-Earth planets around other suns: models including Red Giant Branch evolution.

    Science.gov (United States)

    von Bloh, W; Cuntz, M; Schröder, K-P; Bounama, C; Franck, S

    2009-01-01

    The unexpected diversity of exoplanets includes a growing number of super-Earth planets, i.e., exoplanets with masses of up to several Earth masses and a similar chemical and mineralogical composition as Earth. We present a thermal evolution model for a 10 Earth-mass planet orbiting a star like the Sun. Our model is based on the integrated system approach, which describes the photosynthet