Input data requirements for performance modelling and monitoring of photovoltaic plants
DEFF Research Database (Denmark)
Gavriluta, Anamaria Florina; Spataru, Sergiu; Sera, Dezso
2018-01-01
This work investigates the input data requirements in the context of performance modeling of thin-film photovoltaic (PV) systems. The analysis focuses on the PVWatts performance model, well suited for on-line performance monitoring of PV strings, due to its low number of parameters and high......, modelling the performance of the PV modules at high irradiances requires a dataset of only a few hundred samples in order to obtain a power estimation accuracy of ~1-2\\%....
MARS code manual volume II: input requirements
International Nuclear Information System (INIS)
Chung, Bub Dong; Kim, Kyung Doo; Bae, Sung Won; Jeong, Jae Jun; Lee, Seung Wook; Hwang, Moon Kyu
2010-02-01
Korea Advanced Energy Research Institute (KAERI) conceived and started the development of MARS code with the main objective of producing a state-of-the-art realistic thermal hydraulic systems analysis code with multi-dimensional analysis capability. MARS achieves this objective by very tightly integrating the one dimensional RELAP5/MOD3 with the multi-dimensional COBRA-TF codes. The method of integration of the two codes is based on the dynamic link library techniques, and the system pressure equation matrices of both codes are implicitly integrated and solved simultaneously. In addition, the Equation-Of-State (EOS) for the light water was unified by replacing the EOS of COBRA-TF by that of the RELAP5. This input manual provides a complete list of input required to run MARS. The manual is divided largely into two parts, namely, the one-dimensional part and the multi-dimensional part. The inputs for auxiliary parts such as minor edit requests and graph formatting inputs are shared by the two parts and as such mixed input is possible. The overall structure of the input is modeled on the structure of the RELAP5 and as such the layout of the manual is very similar to that of the RELAP. This similitude to RELAP5 input is intentional as this input scheme will allow minimum modification between the inputs of RELAP5 and MARS3.1. MARS3.1 development team would like to express its appreciation to the RELAP5 Development Team and the USNRC for making this manual possible
International Nuclear Information System (INIS)
Aberg, Magnus; Widén, Joakim
2013-01-01
Highlights: • A fixed model structure for cost-optimisaton studies of DH systems is developed. • A method for approximating heat demands using outdoor temperature data is developed. • Six different Swedish district heating systems are modelled and studied. • The impact of heat demand change on heat and electricity production is examined. • Reduced heat demand leads to less use of fossil fuels and biomass in the modelled systems. - Abstract: Reducing the energy use of buildings is an important part in reaching the European energy efficiency targets. Consequently, local energy systems need to adapt to a lower demand for heating. A 90% of Swedish multi-family residential buildings use district heating (DH) produced in Sweden’s over 400 DH systems, which use different heat production technologies and fuels. DH system modelling results obtained until now are mostly for particular DH systems and cannot be easily generalised. Here, a fixed model structure (FMS) based on linear programming for cost-optimisaton studies of DH systems is developed requiring only general DH system information. A method for approximating heat demands based on local outdoor temperature data is also developed. A scenario is studied where the FMS is applied to six Swedish DH systems and heat demands are reduced due to energy efficiency improvements in buildings. The results show that the FMS is a useful tool for DH system optimisation studies and that building energy efficiency improvements lead to reduced use of fossil fuels and biomass in DH systems. Also, the share of CHP in the production mix is increased in five of the six DH systems when the heat demand is reduced
Mars 2.2 code manual: input requirements
International Nuclear Information System (INIS)
Chung, Bub Dong; Lee, Won Jae; Jeong, Jae Jun; Lee, Young Jin; Hwang, Moon Kyu; Kim, Kyung Doo; Lee, Seung Wook; Bae, Sung Won
2003-07-01
Korea Advanced Energy Research Institute (KAERI) conceived and started the development of MARS code with the main objective of producing a state-of-the-art realistic thermal hydraulic systems analysis code with multi-dimensional analysis capability. MARS achieves this objective by very tightly integrating the one dimensional RELAP5/MOD3 with the multi-dimensional COBRA-TF codes. The method of integration of the two codes is based on the dynamic link library techniques, and the system pressure equation matrices of both codes are implicitly integrated and solved simultaneously. In addition, the Equation-of-State (EOS) for the light water was unified by replacing the EOS of COBRA-TF by that of the RELAP5. This input manual provides a complete list of input required to run MARS. The manual is divided largely into two parts, namely, the one-dimensional part and the multi-dimensional part. The inputs for auxiliary parts such as minor edit requests and graph formatting inputs are shared by the two parts and as such mixed input is possible. The overall structure of the input is modeled on the structure of the RELAP5 and as such the layout of the manual is very similar to that of the RELAP. This similitude to RELAP5 input is intentional as this input scheme will allow minimum modification between the inputs of RELAP5 and MARS. MARS development team would like to express its appreciation to the RELAP5 Development Team and the USNRC for making this manual possible
Modeling and generating input processes
Energy Technology Data Exchange (ETDEWEB)
Johnson, M.E.
1987-01-01
This tutorial paper provides information relevant to the selection and generation of stochastic inputs to simulation studies. The primary area considered is multivariate but much of the philosophy at least is relevant to univariate inputs as well. 14 refs.
Input data required for specific performance assessment codes
International Nuclear Information System (INIS)
Seitz, R.R.; Garcia, R.S.; Starmer, R.J.; Dicke, C.A.; Leonard, P.R.; Maheras, S.J.; Rood, A.S.; Smith, R.W.
1992-02-01
The Department of Energy's National Low-Level Waste Management Program at the Idaho National Engineering Laboratory generated this report on input data requirements for computer codes to assist States and compacts in their performance assessments. This report gives generators, developers, operators, and users some guidelines on what input data is required to satisfy 22 common performance assessment codes. Each of the codes is summarized and a matrix table is provided to allow comparison of the various input required by the codes. This report does not determine or recommend which codes are preferable
Fishing input requirements of artisanal fishers in coastal ...
African Journals Online (AJOL)
Efforts towards increase in fish production through artisanal fishery can be achieved by making needed inputs available. Fishing requirements of artisanal fishers in coastal communities of Ondo State, Nigeria were studied. Data were obtained from two hundred and sixteen artisans using multistage random sampling ...
Reducing external speedup requirements for input-queued crossbars
DEFF Research Database (Denmark)
Berger, Michael Stubert
2005-01-01
performance degradation. This implies, that the required bandwidth between port card and switch card is 2 times the actual port speed, adding to cost and complexity. To reduce this bandwidth, a modified architecture is proposed that introduces a small amount of input and output memory on the switch card chip...
Remote sensing inputs to water demand modeling
Estes, J. E.; Jensen, J. R.; Tinney, L. R.; Rector, M.
1975-01-01
In an attempt to determine the ability of remote sensing techniques to economically generate data required by water demand models, the Geography Remote Sensing Unit, in conjunction with the Kern County Water Agency of California, developed an analysis model. As a result it was determined that agricultural cropland inventories utilizing both high altitude photography and LANDSAT imagery can be conducted cost effectively. In addition, by using average irrigation application rates in conjunction with cropland data, estimates of agricultural water demand can be generated. However, more accurate estimates are possible if crop type, acreage, and crop specific application rates are employed. An analysis of the effect of saline-alkali soils on water demand in the study area is also examined. Finally, reference is made to the detection and delineation of water tables that are perched near the surface by semi-permeable clay layers. Soil salinity prediction, automated crop identification on a by-field basis, and a potential input to the determination of zones of equal benefit taxation are briefly touched upon.
International Nuclear Information System (INIS)
Koh, Kwang Yong; Seong, Poong Hyun
2005-01-01
Safety-critical software process is composed of development process, verification and validation (V and V) process and safety analysis process. Safety analysis process has been often treated as an additional process and not found in a conventional software process. But software safety analysis (SSA) is required if software is applied to a safety system, and the SSA shall be performed independently for the safety software through software development life cycle (SDLC). Of all the phases in software development, requirements engineering is generally considered to play the most critical role in determining the overall software quality. NASA data demonstrate that nearly 75% of failures found in operational software were caused by errors in the requirements. The verification process in requirements phase checks the correctness of software requirements specification, and the safety analysis process analyzes the safety-related properties in detail. In this paper, the method for safety analysis at requirements phase of software development life cycle using symbolic model verifier (SMV) is proposed. Hazard is discovered by hazard analysis and in other to use SMV for the safety analysis, the safety-related properties are expressed by computation tree logic (CTL)
Modeling inputs to computer models used in risk assessment
International Nuclear Information System (INIS)
Iman, R.L.
1987-01-01
Computer models for various risk assessment applications are closely scrutinized both from the standpoint of questioning the correctness of the underlying mathematical model with respect to the process it is attempting to model and from the standpoint of verifying that the computer model correctly implements the underlying mathematical model. A process that receives less scrutiny, but is nonetheless of equal importance, concerns the individual and joint modeling of the inputs. This modeling effort clearly has a great impact on the credibility of results. Model characteristics are reviewed in this paper that have a direct bearing on the model input process and reasons are given for using probabilities-based modeling with the inputs. The authors also present ways to model distributions for individual inputs and multivariate input structures when dependence and other constraints may be present
Agricultural and Environmental Input Parameters for the Biosphere Model
International Nuclear Information System (INIS)
Kaylie Rasmuson; Kurt Rautenstrauch
2003-01-01
This analysis is one of nine technical reports that support the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN) biosphere model. It documents input parameters for the biosphere model, and supports the use of the model to develop Biosphere Dose Conversion Factors (BDCF). The biosphere model is one of a series of process models supporting the Total System Performance Assessment (TSPA) for the repository at Yucca Mountain. The ERMYN provides the TSPA with the capability to perform dose assessments. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships between the major activities and their products (the analysis and model reports) that were planned in the biosphere Technical Work Plan (TWP, BSC 2003a). It should be noted that some documents identified in Figure 1-1 may be under development and therefore not available at the time this document is issued. The ''Biosphere Model Report'' (BSC 2003b) describes the ERMYN and its input parameters. This analysis report, ANL-MGR-MD-000006, ''Agricultural and Environmental Input Parameters for the Biosphere Model'', is one of the five reports that develop input parameters for the biosphere model. This report defines and justifies values for twelve parameters required in the biosphere model. These parameters are related to use of contaminated groundwater to grow crops. The parameter values recommended in this report are used in the soil, plant, and carbon-14 submodels of the ERMYN
Agricultural and Environmental Input Parameters for the Biosphere Model
Energy Technology Data Exchange (ETDEWEB)
Kaylie Rasmuson; Kurt Rautenstrauch
2003-06-20
This analysis is one of nine technical reports that support the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN) biosphere model. It documents input parameters for the biosphere model, and supports the use of the model to develop Biosphere Dose Conversion Factors (BDCF). The biosphere model is one of a series of process models supporting the Total System Performance Assessment (TSPA) for the repository at Yucca Mountain. The ERMYN provides the TSPA with the capability to perform dose assessments. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships between the major activities and their products (the analysis and model reports) that were planned in the biosphere Technical Work Plan (TWP, BSC 2003a). It should be noted that some documents identified in Figure 1-1 may be under development and therefore not available at the time this document is issued. The ''Biosphere Model Report'' (BSC 2003b) describes the ERMYN and its input parameters. This analysis report, ANL-MGR-MD-000006, ''Agricultural and Environmental Input Parameters for the Biosphere Model'', is one of the five reports that develop input parameters for the biosphere model. This report defines and justifies values for twelve parameters required in the biosphere model. These parameters are related to use of contaminated groundwater to grow crops. The parameter values recommended in this report are used in the soil, plant, and carbon-14 submodels of the ERMYN.
Robust input design for nonlinear dynamic modeling of AUV.
Nouri, Nowrouz Mohammad; Valadi, Mehrdad
2017-09-01
Input design has a dominant role in developing the dynamic model of autonomous underwater vehicles (AUVs) through system identification. Optimal input design is the process of generating informative inputs that can be used to generate the good quality dynamic model of AUVs. In a problem with optimal input design, the desired input signal depends on the unknown system which is intended to be identified. In this paper, the input design approach which is robust to uncertainties in model parameters is used. The Bayesian robust design strategy is applied to design input signals for dynamic modeling of AUVs. The employed approach can design multiple inputs and apply constraints on an AUV system's inputs and outputs. Particle swarm optimization (PSO) is employed to solve the constraint robust optimization problem. The presented algorithm is used for designing the input signals for an AUV, and the estimate obtained by robust input design is compared with that of the optimal input design. According to the results, proposed input design can satisfy both robustness of constraints and optimality. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Hydrogen Generation Rate Model Calculation Input Data
International Nuclear Information System (INIS)
KUFAHL, M.A.
2000-01-01
This report documents the procedures and techniques utilized in the collection and analysis of analyte input data values in support of the flammable gas hazard safety analyses. This document represents the analyses of data current at the time of its writing and does not account for data available since then
A probabilistic graphical model based stochastic input model construction
International Nuclear Information System (INIS)
Wan, Jiang; Zabaras, Nicholas
2014-01-01
Model reduction techniques have been widely used in modeling of high-dimensional stochastic input in uncertainty quantification tasks. However, the probabilistic modeling of random variables projected into reduced-order spaces presents a number of computational challenges. Due to the curse of dimensionality, the underlying dependence relationships between these random variables are difficult to capture. In this work, a probabilistic graphical model based approach is employed to learn the dependence by running a number of conditional independence tests using observation data. Thus a probabilistic model of the joint PDF is obtained and the PDF is factorized into a set of conditional distributions based on the dependence structure of the variables. The estimation of the joint PDF from data is then transformed to estimating conditional distributions under reduced dimensions. To improve the computational efficiency, a polynomial chaos expansion is further applied to represent the random field in terms of a set of standard random variables. This technique is combined with both linear and nonlinear model reduction methods. Numerical examples are presented to demonstrate the accuracy and efficiency of the probabilistic graphical model based stochastic input models. - Highlights: • Data-driven stochastic input models without the assumption of independence of the reduced random variables. • The problem is transformed to a Bayesian network structure learning problem. • Examples are given in flows in random media
Inhalation Exposure Input Parameters for the Biosphere Model
Energy Technology Data Exchange (ETDEWEB)
M. A. Wasiolek
2003-09-24
This analysis is one of the nine reports that support the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN) biosphere model. The ''Biosphere Model Report'' (BSC 2003a) describes in detail the conceptual model as well as the mathematical model and its input parameters. This report documents a set of input parameters for the biosphere model, and supports the use of the model to develop biosphere dose conversion factors (BDCFs). The biosphere model is one of a series of process models supporting the Total System Performance Assessment (TSPA) for a Yucca Mountain repository. This report, ''Inhalation Exposure Input Parameters for the Biosphere Model'', is one of the five reports that develop input parameters for the biosphere model. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling, and the plan for development of the biosphere abstraction products for TSPA, as identified in the ''Technical Work Plan: for Biosphere Modeling and Expert Support'' (BSC 2003b). It should be noted that some documents identified in Figure 1-1 may be under development at the time this report is issued and therefore not available at that time. This figure is included to provide an understanding of how this analysis report contributes to biosphere modeling in support of the license application, and is not intended to imply that access to the listed documents is required to understand the contents of this analysis report. This analysis report defines and justifies values of mass loading, which is the total mass concentration of resuspended particles (e.g., dust, ash) in a volume of air. Measurements of mass loading are used in the air submodel of ERMYN to calculate concentrations of radionuclides in air surrounding crops and concentrations in air
Inhalation Exposure Input Parameters for the Biosphere Model
International Nuclear Information System (INIS)
M. A. Wasiolek
2003-01-01
This analysis is one of the nine reports that support the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN) biosphere model. The ''Biosphere Model Report'' (BSC 2003a) describes in detail the conceptual model as well as the mathematical model and its input parameters. This report documents a set of input parameters for the biosphere model, and supports the use of the model to develop biosphere dose conversion factors (BDCFs). The biosphere model is one of a series of process models supporting the Total System Performance Assessment (TSPA) for a Yucca Mountain repository. This report, ''Inhalation Exposure Input Parameters for the Biosphere Model'', is one of the five reports that develop input parameters for the biosphere model. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling, and the plan for development of the biosphere abstraction products for TSPA, as identified in the ''Technical Work Plan: for Biosphere Modeling and Expert Support'' (BSC 2003b). It should be noted that some documents identified in Figure 1-1 may be under development at the time this report is issued and therefore not available at that time. This figure is included to provide an understanding of how this analysis report contributes to biosphere modeling in support of the license application, and is not intended to imply that access to the listed documents is required to understand the contents of this analysis report. This analysis report defines and justifies values of mass loading, which is the total mass concentration of resuspended particles (e.g., dust, ash) in a volume of air. Measurements of mass loading are used in the air submodel of ERMYN to calculate concentrations of radionuclides in air surrounding crops and concentrations in air inhaled by a receptor. Concentrations in air to which the
Simplifying BRDF input data for optical signature modeling
Hallberg, Tomas; Pohl, Anna; Fagerström, Jan
2017-05-01
Scene simulations of optical signature properties using signature codes normally requires input of various parameterized measurement data of surfaces and coatings in order to achieve realistic scene object features. Some of the most important parameters are used in the model of the Bidirectional Reflectance Distribution Function (BRDF) and are normally determined by surface reflectance and scattering measurements. Reflectance measurements of the spectral Directional Hemispherical Reflectance (DHR) at various incident angles can normally be performed in most spectroscopy labs, while measuring the BRDF is more complicated or may not be available at all in many optical labs. We will present a method in order to achieve the necessary BRDF data directly from DHR measurements for modeling software using the Sandford-Robertson BRDF model. The accuracy of the method is tested by modeling a test surface by comparing results from using estimated and measured BRDF data as input to the model. These results show that using this method gives no significant loss in modeling accuracy.
Modeling Recognition Memory Using the Similarity Structure of Natural Input
Lacroix, Joyca P. W.; Murre, Jaap M. J.; Postma, Eric O.; van den Herik, H. Jaap
2006-01-01
The natural input memory (NAM) model is a new model for recognition memory that operates on natural visual input. A biologically informed perceptual preprocessing method takes local samples (eye fixations) from a natural image and translates these into a feature-vector representation. During recognition, the model compares incoming preprocessed…
Soil-related Input Parameters for the Biosphere Model
International Nuclear Information System (INIS)
A. J. Smith
2003-01-01
This analysis is one of the technical reports containing documentation of the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN), a biosphere model supporting the Total System Performance Assessment (TSPA) for the geologic repository at Yucca Mountain. The biosphere model is one of a series of process models supporting the Total System Performance Assessment (TSPA) for the Yucca Mountain repository. A graphical representation of the documentation hierarchy for the ERMYN biosphere model is presented in Figure 1-1. This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling, and the plan for development of the biosphere abstraction products for TSPA, as identified in the ''Technical Work Plan: for Biosphere Modeling and Expert Support'' (BSC 2003 [163602]). It should be noted that some documents identified in Figure 1-1 may be under development at the time this report is issued and therefore not available. This figure is included to provide an understanding of how this analysis report contributes to biosphere modeling in support of the license application, and is not intended to imply that access to the listed documents is required to understand the contents of this report. This report, ''Soil Related Input Parameters for the Biosphere Model'', is one of the five analysis reports that develop input parameters for use in the ERMYN model. This report is the source documentation for the six biosphere parameters identified in Table 1-1. ''The Biosphere Model Report'' (BSC 2003 [160699]) describes in detail the conceptual model as well as the mathematical model and its input parameters. The purpose of this analysis was to develop the biosphere model parameters needed to evaluate doses from pathways associated with the accumulation and depletion of radionuclides in the soil. These parameters support the calculation of radionuclide concentrations in soil from on-going irrigation and ash
On Optimal Input Design and Model Selection for Communication Channels
Energy Technology Data Exchange (ETDEWEB)
Li, Yanyan [ORNL; Djouadi, Seddik M [ORNL; Olama, Mohammed M [ORNL
2013-01-01
In this paper, the optimal model (structure) selection and input design which minimize the worst case identification error for communication systems are provided. The problem is formulated using metric complexity theory in a Hilbert space setting. It is pointed out that model selection and input design can be handled independently. Kolmogorov n-width is used to characterize the representation error introduced by model selection, while Gel fand and Time n-widths are used to represent the inherent error introduced by input design. After the model is selected, an optimal input which minimizes the worst case identification error is shown to exist. In particular, it is proven that the optimal model for reducing the representation error is a Finite Impulse Response (FIR) model, and the optimal input is an impulse at the start of the observation interval. FIR models are widely popular in communication systems, such as, in Orthogonal Frequency Division Multiplexing (OFDM) systems.
Analytic uncertainty and sensitivity analysis of models with input correlations
Zhu, Yueying; Wang, Qiuping A.; Li, Wei; Cai, Xu
2018-03-01
Probabilistic uncertainty analysis is a common means of evaluating mathematical models. In mathematical modeling, the uncertainty in input variables is specified through distribution laws. Its contribution to the uncertainty in model response is usually analyzed by assuming that input variables are independent of each other. However, correlated parameters are often happened in practical applications. In the present paper, an analytic method is built for the uncertainty and sensitivity analysis of models in the presence of input correlations. With the method, it is straightforward to identify the importance of the independence and correlations of input variables in determining the model response. This allows one to decide whether or not the input correlations should be considered in practice. Numerical examples suggest the effectiveness and validation of our analytic method in the analysis of general models. A practical application of the method is also proposed to the uncertainty and sensitivity analysis of a deterministic HIV model.
Modeling recognition memory using the similarity structure of natural input
Lacroix, J.P.W.; Murre, J.M.J.; Postma, E.O.; van den Herik, H.J.
2006-01-01
The natural input memory (NIM) model is a new model for recognition memory that operates on natural visual input. A biologically informed perceptual preprocessing method takes local samples (eye fixations) from a natural image and translates these into a feature-vector representation. During
Variance-based sensitivity indices for models with dependent inputs
International Nuclear Information System (INIS)
Mara, Thierry A.; Tarantola, Stefano
2012-01-01
Computational models are intensively used in engineering for risk analysis or prediction of future outcomes. Uncertainty and sensitivity analyses are of great help in these purposes. Although several methods exist to perform variance-based sensitivity analysis of model output with independent inputs only a few are proposed in the literature in the case of dependent inputs. This is explained by the fact that the theoretical framework for the independent case is set and a univocal set of variance-based sensitivity indices is defined. In the present work, we propose a set of variance-based sensitivity indices to perform sensitivity analysis of models with dependent inputs. These measures allow us to distinguish between the mutual dependent contribution and the independent contribution of an input to the model response variance. Their definition relies on a specific orthogonalisation of the inputs and ANOVA-representations of the model output. In the applications, we show the interest of the new sensitivity indices for model simplification setting. - Highlights: ► Uncertainty and sensitivity analyses are of great help in engineering. ► Several methods exist to perform variance-based sensitivity analysis of model output with independent inputs. ► We define a set of variance-based sensitivity indices for models with dependent inputs. ► Inputs mutual contributions are distinguished from their independent contributions. ► Analytical and computational tests are performed and discussed.
Soil-Related Input Parameters for the Biosphere Model
International Nuclear Information System (INIS)
Smith, A. J.
2004-01-01
This report presents one of the analyses that support the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN). The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes the details of the conceptual model as well as the mathematical model and the required input parameters. The biosphere model is one of a series of process models supporting the postclosure Total System Performance Assessment (TSPA) for the Yucca Mountain repository. A schematic representation of the documentation flow for the Biosphere input to TSPA is presented in Figure 1-1. This figure shows the evolutionary relationships among the products (i.e., analysis and model reports) developed for biosphere modeling, and the biosphere abstraction products for TSPA, as identified in the ''Technical Work Plan for Biosphere Modeling and Expert Support'' (TWP) (BSC 2004 [DIRS 169573]). This figure is included to provide an understanding of how this analysis report contributes to biosphere modeling in support of the license application, and is not intended to imply that access to the listed documents is required to understand the contents of this report. This report, ''Soil-Related Input Parameters for the Biosphere Model'', is one of the five analysis reports that develop input parameters for use in the ERMYN model. This report is the source documentation for the six biosphere parameters identified in Table 1-1. The purpose of this analysis was to develop the biosphere model parameters associated with the accumulation and depletion of radionuclides in the soil. These parameters support the calculation of radionuclide concentrations in soil from on-going irrigation or ash deposition and, as a direct consequence, radionuclide concentration in other environmental media that are affected by radionuclide concentrations in soil. The analysis was performed in accordance with the TWP (BSC 2004 [DIRS 169573]) where the governing procedure was defined as AP-SIII.9Q, ''Scientific Analyses''. This
Soil-Related Input Parameters for the Biosphere Model
Energy Technology Data Exchange (ETDEWEB)
A. J. Smith
2004-09-09
This report presents one of the analyses that support the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN). The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes the details of the conceptual model as well as the mathematical model and the required input parameters. The biosphere model is one of a series of process models supporting the postclosure Total System Performance Assessment (TSPA) for the Yucca Mountain repository. A schematic representation of the documentation flow for the Biosphere input to TSPA is presented in Figure 1-1. This figure shows the evolutionary relationships among the products (i.e., analysis and model reports) developed for biosphere modeling, and the biosphere abstraction products for TSPA, as identified in the ''Technical Work Plan for Biosphere Modeling and Expert Support'' (TWP) (BSC 2004 [DIRS 169573]). This figure is included to provide an understanding of how this analysis report contributes to biosphere modeling in support of the license application, and is not intended to imply that access to the listed documents is required to understand the contents of this report. This report, ''Soil-Related Input Parameters for the Biosphere Model'', is one of the five analysis reports that develop input parameters for use in the ERMYN model. This report is the source documentation for the six biosphere parameters identified in Table 1-1. The purpose of this analysis was to develop the biosphere model parameters associated with the accumulation and depletion of radionuclides in the soil. These parameters support the calculation of radionuclide concentrations in soil from on-going irrigation or ash deposition and, as a direct consequence, radionuclide concentration in other environmental media that are affected by radionuclide concentrations in soil. The analysis was performed in accordance with the TWP (BSC 2004 [DIRS 169573]) where the governing procedure
Stein's neuronal model with pooled renewal input
Czech Academy of Sciences Publication Activity Database
Rajdl, K.; Lánský, Petr
2015-01-01
Roč. 109, č. 3 (2015), s. 389-399 ISSN 0340-1200 Institutional support: RVO:67985823 Keywords : Stein’s model * Poisson process * pooled renewal processes * first-passage time Subject RIV: BA - General Mathematics Impact factor: 1.611, year: 2015
Environmental Transport Input Parameters for the Biosphere Model
International Nuclear Information System (INIS)
Wasiolek, M. A.
2003-01-01
This analysis report is one of the technical reports documenting the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN), a biosphere model supporting the total system performance assessment (TSPA) for the geologic repository at Yucca Mountain. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows relationships among the reports developed for biosphere modeling and biosphere abstraction products for the TSPA, as identified in the ''Technical Work Plan: for Biosphere Modeling and Expert Support'' (TWP) (BSC 2003 [163602]). Some documents in Figure 1-1 may be under development and not available when this report is issued. This figure provides an understanding of how this report contributes to biosphere modeling in support of the license application (LA), but access to the listed documents is not required to understand the contents of this report. This report is one of the reports that develops input parameter values for the biosphere model. The ''Biosphere Model Report'' (BSC 2003 [160699]) describes the conceptual model, the mathematical model, and the input parameters. The purpose of this analysis is to develop biosphere model parameter values related to radionuclide transport and accumulation in the environment. These parameters support calculations of radionuclide concentrations in the environmental media (e.g., soil, crops, animal products, and air) resulting from a given radionuclide concentration at the source of contamination (i.e., either in groundwater or volcanic ash). The analysis was performed in accordance with the TWP (BSC 2003 [163602]). This analysis develops values of parameters associated with many features, events, and processes (FEPs) applicable to the reference biosphere (DTN: M00303SEPFEPS2.000 [162452]), which are addressed in the biosphere model (BSC 2003 [160699]). The treatment of these FEPs is described in BSC (2003 [160699], Section 6.2). Parameter values
Environmental Transport Input Parameters for the Biosphere Model
Energy Technology Data Exchange (ETDEWEB)
M. A. Wasiolek
2003-06-27
This analysis report is one of the technical reports documenting the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN), a biosphere model supporting the total system performance assessment (TSPA) for the geologic repository at Yucca Mountain. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows relationships among the reports developed for biosphere modeling and biosphere abstraction products for the TSPA, as identified in the ''Technical Work Plan: for Biosphere Modeling and Expert Support'' (TWP) (BSC 2003 [163602]). Some documents in Figure 1-1 may be under development and not available when this report is issued. This figure provides an understanding of how this report contributes to biosphere modeling in support of the license application (LA), but access to the listed documents is not required to understand the contents of this report. This report is one of the reports that develops input parameter values for the biosphere model. The ''Biosphere Model Report'' (BSC 2003 [160699]) describes the conceptual model, the mathematical model, and the input parameters. The purpose of this analysis is to develop biosphere model parameter values related to radionuclide transport and accumulation in the environment. These parameters support calculations of radionuclide concentrations in the environmental media (e.g., soil, crops, animal products, and air) resulting from a given radionuclide concentration at the source of contamination (i.e., either in groundwater or volcanic ash). The analysis was performed in accordance with the TWP (BSC 2003 [163602]). This analysis develops values of parameters associated with many features, events, and processes (FEPs) applicable to the reference biosphere (DTN: M00303SEPFEPS2.000 [162452]), which are addressed in the biosphere model (BSC 2003 [160699]). The treatment of these FEPs is described in BSC (2003 [160699
Global sensitivity analysis of computer models with functional inputs
International Nuclear Information System (INIS)
Iooss, Bertrand; Ribatet, Mathieu
2009-01-01
Global sensitivity analysis is used to quantify the influence of uncertain model inputs on the response variability of a numerical model. The common quantitative methods are appropriate with computer codes having scalar model inputs. This paper aims at illustrating different variance-based sensitivity analysis techniques, based on the so-called Sobol's indices, when some model inputs are functional, such as stochastic processes or random spatial fields. In this work, we focus on large cpu time computer codes which need a preliminary metamodeling step before performing the sensitivity analysis. We propose the use of the joint modeling approach, i.e., modeling simultaneously the mean and the dispersion of the code outputs using two interlinked generalized linear models (GLMs) or generalized additive models (GAMs). The 'mean model' allows to estimate the sensitivity indices of each scalar model inputs, while the 'dispersion model' allows to derive the total sensitivity index of the functional model inputs. The proposed approach is compared to some classical sensitivity analysis methodologies on an analytical function. Lastly, the new methodology is applied to an industrial computer code that simulates the nuclear fuel irradiation.
Myers, Jerry G.; Young, M.; Goodenow, Debra A.; Keenan, A.; Walton, M.; Boley, L.
2015-01-01
Model and simulation (MS) credibility is defined as, the quality to elicit belief or trust in MS results. NASA-STD-7009 [1] delineates eight components (Verification, Validation, Input Pedigree, Results Uncertainty, Results Robustness, Use History, MS Management, People Qualifications) that address quantifying model credibility, and provides guidance to the model developers, analysts, and end users for assessing the MS credibility. Of the eight characteristics, input pedigree, or the quality of the data used to develop model input parameters, governing functions, or initial conditions, can vary significantly. These data quality differences have varying consequences across the range of MS application. NASA-STD-7009 requires that the lowest input data quality be used to represent the entire set of input data when scoring the input pedigree credibility of the model. This requirement provides a conservative assessment of model inputs, and maximizes the communication of the potential level of risk of using model outputs. Unfortunately, in practice, this may result in overly pessimistic communication of the MS output, undermining the credibility of simulation predictions to decision makers. This presentation proposes an alternative assessment mechanism, utilizing results parameter robustness, also known as model input sensitivity, to improve the credibility scoring process for specific simulations.
Calibration of controlling input models for pavement management system.
2013-07-01
The Oklahoma Department of Transportation (ODOT) is currently using the Deighton Total Infrastructure Management System (dTIMS) software for pavement management. This system is based on several input models which are computational backbones to dev...
Akhtar, M.; Ahmad, N.; Booij, Martijn J.
2009-01-01
The most important climatological inputs required for the calibration and validation of hydrological models are temperature and precipitation that can be derived from observational records or alternatively from regional climate models (RCMs). In this paper, meteorological station observations and
Metocean input data for drift models applications: Loustic study
International Nuclear Information System (INIS)
Michon, P.; Bossart, C.; Cabioc'h, M.
1995-01-01
Real-time monitoring and crisis management of oil slicks or floating structures displacement require a good knowledge of local winds, waves and currents used as input data for operational drift models. Fortunately, thanks to world-wide and all-weather coverage, satellite measurements have recently enabled the introduction of new methods for the remote sensing of the marine environment. Within a French joint industry project, a procedure has been developed using basically satellite measurements combined to metocean models in order to provide marine operators' drift models with reliable wind, wave and current analyses and short term forecasts. Particularly, a model now allows the calculation of the drift current, under the joint action of wind and sea-state, thus radically improving the classical laws. This global procedure either directly uses satellite wind and waves measurements (if available on the study area) or indirectly, as calibration of metocean models results which are brought to the oil slick or floating structure location. The operational use of this procedure is reported here with an example of floating structure drift offshore from the Brittany coasts
The Gift Code User Manual. Volume I. Introduction and Input Requirements
1975-07-01
REPORT & PERIOD COVERED ‘TII~ GIFT CODE USER MANUAL; VOLUME 1. INTRODUCTION AND INPUT REQUIREMENTS FINAL 6. PERFORMING ORG. REPORT NUMBER ?. AuTHOR(#) 8...reverua side if neceaeary and identify by block number] (k St) The GIFT code is a FORTRANcomputerprogram. The basic input to the GIFT ode is data called
Input-output analysis of energy requirements for short rotation, intensive culture, woody biomass
International Nuclear Information System (INIS)
Strauss, C.H.; Grado, S.C.
1992-01-01
A production model for short rotation, intensive culture (SRIC) plantations was developed to determine the energy and financial cost of woody biomass. The model was based on hybrid poplars planted on good quality agricultural sites at a density of 2100 cuttings ha -1 , with average annual growth forecast at 16 metric tonne, oven dry (mg(OD)). Energy and financial analyses showed preharvest cost 4381 megajoules (MJ) Mg -1 (OD) and $16 (US) Mg -1 (OD). Harvesting and transportation requirements increased the total costs 6130 MJ Mg -1 (OD) and $39 Mg -1 (OD) for the delivered material. On an energy cost basis, the principal input was land, whereas on a financial basis, costs were more uniformly distributed among equipment, land, labor, and materials and fuel
Agricultural and Environmental Input Parameters for the Biosphere Model
International Nuclear Information System (INIS)
K. Rasmuson; K. Rautenstrauch
2004-01-01
This analysis is one of 10 technical reports that support the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN) (i.e., the biosphere model). It documents development of agricultural and environmental input parameters for the biosphere model, and supports the use of the model to develop biosphere dose conversion factors (BDCFs). The biosphere model is one of a series of process models supporting the total system performance assessment (TSPA) for the repository at Yucca Mountain. The ERMYN provides the TSPA with the capability to perform dose assessments. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships between the major activities and their products (the analysis and model reports) that were planned in ''Technical Work Plan for Biosphere Modeling and Expert Support'' (BSC 2004 [DIRS 169573]). The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes the ERMYN and its input parameters
Quality assurance of weather data for agricultural system model input
It is well known that crop production and hydrologic variation on watersheds is weather related. Rarely, however, is meteorological data quality checks reported for agricultural systems model research. We present quality assurance procedures for agricultural system model weather data input. Problems...
Inhalation Exposure Input Parameters for the Biosphere Model
Energy Technology Data Exchange (ETDEWEB)
K. Rautenstrauch
2004-09-10
This analysis is one of 10 reports that support the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN) biosphere model. The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes in detail the conceptual model as well as the mathematical model and its input parameters. This report documents development of input parameters for the biosphere model that are related to atmospheric mass loading and supports the use of the model to develop biosphere dose conversion factors (BDCFs). The biosphere model is one of a series of process models supporting the total system performance assessment (TSPA) for a Yucca Mountain repository. Inhalation Exposure Input Parameters for the Biosphere Model is one of five reports that develop input parameters for the biosphere model. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling, and the plan for development of the biosphere abstraction products for TSPA, as identified in the Technical Work Plan for Biosphere Modeling and Expert Support (BSC 2004 [DIRS 169573]). This analysis report defines and justifies values of mass loading for the biosphere model. Mass loading is the total mass concentration of resuspended particles (e.g., dust, ash) in a volume of air. Mass loading values are used in the air submodel of ERMYN to calculate concentrations of radionuclides in air inhaled by a receptor and concentrations in air surrounding crops. Concentrations in air to which the receptor is exposed are then used in the inhalation submodel to calculate the dose contribution to the receptor from inhalation of contaminated airborne particles. Concentrations in air surrounding plants are used in the plant submodel to calculate the concentrations of radionuclides in foodstuffs contributed from uptake by foliar interception.
Inhalation Exposure Input Parameters for the Biosphere Model
International Nuclear Information System (INIS)
K. Rautenstrauch
2004-01-01
This analysis is one of 10 reports that support the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN) biosphere model. The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes in detail the conceptual model as well as the mathematical model and its input parameters. This report documents development of input parameters for the biosphere model that are related to atmospheric mass loading and supports the use of the model to develop biosphere dose conversion factors (BDCFs). The biosphere model is one of a series of process models supporting the total system performance assessment (TSPA) for a Yucca Mountain repository. Inhalation Exposure Input Parameters for the Biosphere Model is one of five reports that develop input parameters for the biosphere model. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling, and the plan for development of the biosphere abstraction products for TSPA, as identified in the Technical Work Plan for Biosphere Modeling and Expert Support (BSC 2004 [DIRS 169573]). This analysis report defines and justifies values of mass loading for the biosphere model. Mass loading is the total mass concentration of resuspended particles (e.g., dust, ash) in a volume of air. Mass loading values are used in the air submodel of ERMYN to calculate concentrations of radionuclides in air inhaled by a receptor and concentrations in air surrounding crops. Concentrations in air to which the receptor is exposed are then used in the inhalation submodel to calculate the dose contribution to the receptor from inhalation of contaminated airborne particles. Concentrations in air surrounding plants are used in the plant submodel to calculate the concentrations of radionuclides in foodstuffs contributed from uptake by foliar interception
Evaluating nuclear physics inputs in core-collapse supernova models
Lentz, E.; Hix, W. R.; Baird, M. L.; Messer, O. E. B.; Mezzacappa, A.
Core-collapse supernova models depend on the details of the nuclear and weak interaction physics inputs just as they depend on the details of the macroscopic physics (transport, hydrodynamics, etc.), numerical methods, and progenitors. We present preliminary results from our ongoing comparison studies of nuclear and weak interaction physics inputs to core collapse supernova models using the spherically-symmetric, general relativistic, neutrino radiation hydrodynamics code Agile-Boltztran. We focus on comparisons of the effects of the nuclear EoS and the effects of improving the opacities, particularly neutrino--nucleon interactions.
Investigation of RADTRAN Stop Model input parameters for truck stops
International Nuclear Information System (INIS)
Griego, N.R.; Smith, J.D.; Neuhauser, K.S.
1996-01-01
RADTRAN is a computer code for estimating the risks and consequences as transport of radioactive materials (RAM). RADTRAN was developed and is maintained by Sandia National Laboratories for the US Department of Energy (DOE). For incident-free transportation, the dose to persons exposed while the shipment is stopped is frequently a major percentage of the overall dose. This dose is referred to as Stop Dose and is calculated by the Stop Model. Because stop dose is a significant portion of the overall dose associated with RAM transport, the values used as input for the Stop Model are important. Therefore, an investigation of typical values for RADTRAN Stop Parameters for truck stops was performed. The resulting data from these investigations were analyzed to provide mean values, standard deviations, and histograms. Hence, the mean values can be used when an analyst does not have a basis for selecting other input values for the Stop Model. In addition, the histograms and their characteristics can be used to guide statistical sampling techniques to measure sensitivity of the RADTRAN calculated Stop Dose to the uncertainties in the stop model input parameters. This paper discusses the details and presents the results of the investigation of stop model input parameters at truck stops
The use of synthetic input sequences in time series modeling
International Nuclear Information System (INIS)
Oliveira, Dair Jose de; Letellier, Christophe; Gomes, Murilo E.D.; Aguirre, Luis A.
2008-01-01
In many situations time series models obtained from noise-like data settle to trivial solutions under iteration. This Letter proposes a way of producing a synthetic (dummy) input, that is included to prevent the model from settling down to a trivial solution, while maintaining features of the original signal. Simulated benchmark models and a real time series of RR intervals from an ECG are used to illustrate the procedure
Environmental Transport Input Parameters for the Biosphere Model
Energy Technology Data Exchange (ETDEWEB)
M. Wasiolek
2004-09-10
This analysis report is one of the technical reports documenting the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), a biosphere model supporting the total system performance assessment for the license application (TSPA-LA) for the geologic repository at Yucca Mountain. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows relationships among the reports developed for biosphere modeling and biosphere abstraction products for the TSPA-LA, as identified in the ''Technical Work Plan for Biosphere Modeling and Expert Support'' (BSC 2004 [DIRS 169573]) (TWP). This figure provides an understanding of how this report contributes to biosphere modeling in support of the license application (LA). This report is one of the five reports that develop input parameter values for the biosphere model. The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes the conceptual model and the mathematical model. The input parameter reports, shown to the right of the Biosphere Model Report in Figure 1-1, contain detailed description of the model input parameters. The output of this report is used as direct input in the ''Nominal Performance Biosphere Dose Conversion Factor Analysis'' and in the ''Disruptive Event Biosphere Dose Conversion Factor Analysis'' that calculate the values of biosphere dose conversion factors (BDCFs) for the groundwater and volcanic ash exposure scenarios, respectively. The purpose of this analysis was to develop biosphere model parameter values related to radionuclide transport and accumulation in the environment. These parameters support calculations of radionuclide concentrations in the environmental media (e.g., soil, crops, animal products, and air) resulting from a given radionuclide concentration at the source of contamination (i.e., either in groundwater or in volcanic ash). The analysis
Environmental Transport Input Parameters for the Biosphere Model
International Nuclear Information System (INIS)
M. Wasiolek
2004-01-01
This analysis report is one of the technical reports documenting the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), a biosphere model supporting the total system performance assessment for the license application (TSPA-LA) for the geologic repository at Yucca Mountain. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows relationships among the reports developed for biosphere modeling and biosphere abstraction products for the TSPA-LA, as identified in the ''Technical Work Plan for Biosphere Modeling and Expert Support'' (BSC 2004 [DIRS 169573]) (TWP). This figure provides an understanding of how this report contributes to biosphere modeling in support of the license application (LA). This report is one of the five reports that develop input parameter values for the biosphere model. The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes the conceptual model and the mathematical model. The input parameter reports, shown to the right of the Biosphere Model Report in Figure 1-1, contain detailed description of the model input parameters. The output of this report is used as direct input in the ''Nominal Performance Biosphere Dose Conversion Factor Analysis'' and in the ''Disruptive Event Biosphere Dose Conversion Factor Analysis'' that calculate the values of biosphere dose conversion factors (BDCFs) for the groundwater and volcanic ash exposure scenarios, respectively. The purpose of this analysis was to develop biosphere model parameter values related to radionuclide transport and accumulation in the environment. These parameters support calculations of radionuclide concentrations in the environmental media (e.g., soil, crops, animal products, and air) resulting from a given radionuclide concentration at the source of contamination (i.e., either in groundwater or in volcanic ash). The analysis was performed in accordance with the TWP (BSC 2004 [DIRS 169573])
Substantial reductions of input energy and peak power requirements in targets for heavy ion fusion
International Nuclear Information System (INIS)
Mark, J.W.K.; Pan, Y.L.
1986-01-01
Two ways of reducing the requirements of the heavy ion driver for inertial confinement fusion (ICF) target implosion are described. Compared to estimates of target gain not using these methods, the target input energy and peak power may be reduced by about a factor of two with the use of the hybrid-implosion concept. Another factor of two reduction in input energy may be obtained with the use of spin-polarized DT fuel in the ICF target
TASS/SMR Code Topical Report for SMART Plant, Vol II: User's Guide and Input Requirement
International Nuclear Information System (INIS)
Kim, See Darl; Kim, Soo Hyoung; Kim, Hyung Rae
2008-10-01
The TASS/SMR code has been developed with domestic technologies for the safety analysis of the SMART plant which is an integral type pressurized water reactor. It can be applied to the analysis of design basis accidents including non-LOCA (loss of coolant accident) and LOCA of the SMART plant. The TASS/SMR code can be applied to any plant regardless of the structural characteristics of a reactor since the code solves the same governing equations for both the primary and secondary system. The code has been developed to meet the requirements of the safety analysis code. This report describes the overall structure of the TASS/SMR, input processing, and the processes of a steady state and transient calculations. In addition, basic differential equations, finite difference equations, state relationships, and constitutive models are described in the report. First, the conservation equations, a discretization process for numerical analysis, search method for state relationship are described. Then, a core power model, heat transfer models, physical models for various components, and control and trip models are explained
GASFLOW computer code (physical models and input data)
International Nuclear Information System (INIS)
Muehlbauer, Petr
2007-11-01
The GASFLOW computer code was developed jointly by the Los Alamos National Laboratory, USA, and Forschungszentrum Karlsruhe, Germany. The code is primarily intended for calculations of the transport, mixing, and combustion of hydrogen and other gases in nuclear reactor containments and in other facilities. The physical models and the input data are described, and a commented simple calculation is presented
Framework for Modelling Multiple Input Complex Aggregations for Interactive Installations
DEFF Research Database (Denmark)
Padfield, Nicolas; Andreasen, Troels
2012-01-01
on fuzzy logic and provides a method for variably balancing interaction and user input with the intention of the artist or director. An experimental design is presented, demonstrating an intuitive interface for parametric modelling of a complex aggregation function. The aggregation function unifies...
Key processes and input parameters for environmental tritium models
International Nuclear Information System (INIS)
Bunnenberg, C.; Taschner, M.; Ogram, G.L.
1994-01-01
The primary objective of the work reported here is to define key processes and input parameters for mathematical models of environmental tritium behaviour adequate for use in safety analysis and licensing of fusion devices like NET and associated tritium handling facilities. (author). 45 refs., 3 figs
Key processes and input parameters for environmental tritium models
Energy Technology Data Exchange (ETDEWEB)
Bunnenberg, C; Taschner, M [Niedersaechsisches Inst. fuer Radiooekologie, Hannover (Germany); Ogram, G L [Ontario Hydro, Toronto, ON (Canada)
1994-12-31
The primary objective of the work reported here is to define key processes and input parameters for mathematical models of environmental tritium behaviour adequate for use in safety analysis and licensing of fusion devices like NET and associated tritium handling facilities. (author). 45 refs., 3 figs.
Model reduction of nonlinear systems subject to input disturbances
Ndoye, Ibrahima
2017-07-10
The method of convex optimization is used as a tool for model reduction of a class of nonlinear systems in the presence of disturbances. It is shown that under some conditions the nonlinear disturbed system can be approximated by a reduced order nonlinear system with similar disturbance-output properties to the original plant. The proposed model reduction strategy preserves the nonlinearity and the input disturbance nature of the model. It guarantees a sufficiently small error between the outputs of the original and the reduced-order systems, and also maintains the properties of input-to-state stability. The matrices of the reduced order system are given in terms of a set of linear matrix inequalities (LMIs). The paper concludes with a demonstration of the proposed approach on model reduction of a nonlinear electronic circuit with additive disturbances.
Effects of input uncertainty on cross-scale crop modeling
Waha, Katharina; Huth, Neil; Carberry, Peter
2014-05-01
The quality of data on climate, soils and agricultural management in the tropics is in general low or data is scarce leading to uncertainty in process-based modeling of cropping systems. Process-based crop models are common tools for simulating crop yields and crop production in climate change impact studies, studies on mitigation and adaptation options or food security studies. Crop modelers are concerned about input data accuracy as this, together with an adequate representation of plant physiology processes and choice of model parameters, are the key factors for a reliable simulation. For example, assuming an error in measurements of air temperature, radiation and precipitation of ± 0.2°C, ± 2 % and ± 3 % respectively, Fodor & Kovacs (2005) estimate that this translates into an uncertainty of 5-7 % in yield and biomass simulations. In our study we seek to answer the following questions: (1) are there important uncertainties in the spatial variability of simulated crop yields on the grid-cell level displayed on maps, (2) are there important uncertainties in the temporal variability of simulated crop yields on the aggregated, national level displayed in time-series, and (3) how does the accuracy of different soil, climate and management information influence the simulated crop yields in two crop models designed for use at different spatial scales? The study will help to determine whether more detailed information improves the simulations and to advise model users on the uncertainty related to input data. We analyse the performance of the point-scale crop model APSIM (Keating et al., 2003) and the global scale crop model LPJmL (Bondeau et al., 2007) with different climate information (monthly and daily) and soil conditions (global soil map and African soil map) under different agricultural management (uniform and variable sowing dates) for the low-input maize-growing areas in Burkina Faso/West Africa. We test the models' response to different levels of input
A PRODUCTIVITY EVALUATION MODEL BASED ON INPUT AND OUTPUT ORIENTATIONS
Directory of Open Access Journals (Sweden)
C.O. Anyaeche
2012-01-01
Full Text Available
ENGLISH ABSTRACT: Many productivity models evaluate either the input or the output performances using standalone techniques. This sometimes gives divergent views of the same system’s results. The work reported in this article, which simultaneously evaluated productivity from both orientations, was applied on real life data. The results showed losses in productivity (–2% and price recovery (–8% for the outputs; the inputs showed productivity gain (145% but price recovery loss (–63%. These imply losses in product performances but a productivity gain in inputs. The loss in the price recovery of inputs indicates a problem in the pricing policy. This model is applicable in product diversification.
AFRIKAANSE OPSOMMING: Die meeste produktiwiteitsmodelle evalueer of die inset- of die uitsetverrigting deur gebruik te maak van geïsoleerde tegnieke. Dit lei soms tot uiteenlopende perspektiewe van dieselfde sisteem se verrigting. Hierdie artikel evalueer verrigting uit beide perspektiewe en gebruik ware data. Die resultate toon ‘n afname in produktiwiteit (-2% en prysherwinning (-8% vir die uitsette. Die insette toon ‘n toename in produktiwiteit (145%, maar ‘n afname in prysherwinning (-63%. Dit impliseer ‘n afname in produkverrigting, maar ‘n produktiwiteitstoename in insette. Die afname in die prysherwinning van insette dui op ‘n problem in die prysvasstellingbeleid. Hierdie model is geskik vir produkdiversifikasie.
Inhalation Exposure Input Parameters for the Biosphere Model
Energy Technology Data Exchange (ETDEWEB)
M. Wasiolek
2006-06-05
This analysis is one of the technical reports that support the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), referred to in this report as the biosphere model. ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes in detail the conceptual model as well as the mathematical model and its input parameters. This report documents development of input parameters for the biosphere model that are related to atmospheric mass loading and supports the use of the model to develop biosphere dose conversion factors (BDCFs). The biosphere model is one of a series of process models supporting the total system performance assessment (TSPA) for a Yucca Mountain repository. ''Inhalation Exposure Input Parameters for the Biosphere Model'' is one of five reports that develop input parameters for the biosphere model. A graphical representation of the documentation hierarchy for the biosphere model is presented in Figure 1-1 (based on BSC 2006 [DIRS 176938]). This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling and how this analysis report contributes to biosphere modeling. This analysis report defines and justifies values of atmospheric mass loading for the biosphere model. Mass loading is the total mass concentration of resuspended particles (e.g., dust, ash) in a volume of air. Mass loading values are used in the air submodel of the biosphere model to calculate concentrations of radionuclides in air inhaled by a receptor and concentrations in air surrounding crops. Concentrations in air to which the receptor is exposed are then used in the inhalation submodel to calculate the dose contribution to the receptor from inhalation of contaminated airborne particles. Concentrations in air surrounding plants are used in the plant submodel to calculate the concentrations of radionuclides in foodstuffs contributed from uptake by foliar interception. This
Inhalation Exposure Input Parameters for the Biosphere Model
International Nuclear Information System (INIS)
M. Wasiolek
2006-01-01
This analysis is one of the technical reports that support the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), referred to in this report as the biosphere model. ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes in detail the conceptual model as well as the mathematical model and its input parameters. This report documents development of input parameters for the biosphere model that are related to atmospheric mass loading and supports the use of the model to develop biosphere dose conversion factors (BDCFs). The biosphere model is one of a series of process models supporting the total system performance assessment (TSPA) for a Yucca Mountain repository. ''Inhalation Exposure Input Parameters for the Biosphere Model'' is one of five reports that develop input parameters for the biosphere model. A graphical representation of the documentation hierarchy for the biosphere model is presented in Figure 1-1 (based on BSC 2006 [DIRS 176938]). This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling and how this analysis report contributes to biosphere modeling. This analysis report defines and justifies values of atmospheric mass loading for the biosphere model. Mass loading is the total mass concentration of resuspended particles (e.g., dust, ash) in a volume of air. Mass loading values are used in the air submodel of the biosphere model to calculate concentrations of radionuclides in air inhaled by a receptor and concentrations in air surrounding crops. Concentrations in air to which the receptor is exposed are then used in the inhalation submodel to calculate the dose contribution to the receptor from inhalation of contaminated airborne particles. Concentrations in air surrounding plants are used in the plant submodel to calculate the concentrations of radionuclides in foodstuffs contributed from uptake by foliar interception. This report is concerned primarily with the
Glotter, Michael J.; Ruane, Alex C.; Moyer, Elisabeth J.; Elliott, Joshua W.
2015-01-01
Projections of future food production necessarily rely on models, which must themselves be validated through historical assessments comparing modeled and observed yields. Reliable historical validation requires both accurate agricultural models and accurate climate inputs. Problems with either may compromise the validation exercise. Previous studies have compared the effects of different climate inputs on agricultural projections but either incompletely or without a ground truth of observed yields that would allow distinguishing errors due to climate inputs from those intrinsic to the crop model. This study is a systematic evaluation of the reliability of a widely used crop model for simulating U.S. maize yields when driven by multiple observational data products. The parallelized Decision Support System for Agrotechnology Transfer (pDSSAT) is driven with climate inputs from multiple sources reanalysis, reanalysis that is bias corrected with observed climate, and a control dataset and compared with observed historical yields. The simulations show that model output is more accurate when driven by any observation-based precipitation product than when driven by non-bias-corrected reanalysis. The simulations also suggest, in contrast to previous studies, that biased precipitation distribution is significant for yields only in arid regions. Some issues persist for all choices of climate inputs: crop yields appear to be oversensitive to precipitation fluctuations but under sensitive to floods and heat waves. These results suggest that the most important issue for agricultural projections may be not climate inputs but structural limitations in the crop models themselves.
Agricultural and Environmental Input Parameters for the Biosphere Model
Energy Technology Data Exchange (ETDEWEB)
K. Rasmuson; K. Rautenstrauch
2004-09-14
This analysis is one of 10 technical reports that support the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN) (i.e., the biosphere model). It documents development of agricultural and environmental input parameters for the biosphere model, and supports the use of the model to develop biosphere dose conversion factors (BDCFs). The biosphere model is one of a series of process models supporting the total system performance assessment (TSPA) for the repository at Yucca Mountain. The ERMYN provides the TSPA with the capability to perform dose assessments. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships between the major activities and their products (the analysis and model reports) that were planned in ''Technical Work Plan for Biosphere Modeling and Expert Support'' (BSC 2004 [DIRS 169573]). The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes the ERMYN and its input parameters.
Screening important inputs in models with strong interaction properties
International Nuclear Information System (INIS)
Saltelli, Andrea; Campolongo, Francesca; Cariboni, Jessica
2009-01-01
We introduce a new method for screening inputs in mathematical or computational models with large numbers of inputs. The method proposed here represents an improvement over the best available practice for this setting when dealing with models having strong interaction effects. When the sample size is sufficiently high the same design can also be used to obtain accurate quantitative estimates of the variance-based sensitivity measures: the same simulations can be used to obtain estimates of the variance-based measures according to the Sobol' and the Jansen formulas. Results demonstrate that Sobol' is more efficient for the computation of the first-order indices, while Jansen performs better for the computation of the total indices.
Screening important inputs in models with strong interaction properties
Energy Technology Data Exchange (ETDEWEB)
Saltelli, Andrea [European Commission, Joint Research Centre, 21020 Ispra, Varese (Italy); Campolongo, Francesca [European Commission, Joint Research Centre, 21020 Ispra, Varese (Italy)], E-mail: francesca.campolongo@jrc.it; Cariboni, Jessica [European Commission, Joint Research Centre, 21020 Ispra, Varese (Italy)
2009-07-15
We introduce a new method for screening inputs in mathematical or computational models with large numbers of inputs. The method proposed here represents an improvement over the best available practice for this setting when dealing with models having strong interaction effects. When the sample size is sufficiently high the same design can also be used to obtain accurate quantitative estimates of the variance-based sensitivity measures: the same simulations can be used to obtain estimates of the variance-based measures according to the Sobol' and the Jansen formulas. Results demonstrate that Sobol' is more efficient for the computation of the first-order indices, while Jansen performs better for the computation of the total indices.
Development of the RETRAN input model for Ulchin 3/4 visual system analyzer
International Nuclear Information System (INIS)
Lee, S. W.; Kim, K. D.; Lee, Y. J.; Lee, W. J.; Chung, B. D.; Jeong, J. J.; Hwang, M. K.
2004-01-01
As a part of the Long-Term Nuclear R and D program, KAERI has developed the so-called Visual System Analyzer (ViSA) based on best-estimate codes. The MARS and RETRAN codes are used as the best-estimate codes for ViSA. Between these two codes, the RETRAN code is used for realistic analysis of Non-LOCA transients and small-break loss-of-coolant accidents, of which break size is less than 3 inch diameter. So it is necessary to develop the RETRAN input model for Ulchin 3/4 plants (KSNP). In recognition of this, the RETRAN input model for Ulchin 3/4 plants has been developed. This report includes the input model requirements and the calculation note for the input data generation (see the Appendix). In order to confirm the validity of the input data, the calculations are performed for a steady state at 100 % power operation condition, inadvertent reactor trip and RCP trip. The results of the steady-state calculation agree well with the design data. The results of the other transient calculations seem to be reasonable and consistent with those of other best-estimate calculations. Therefore, the RETRAN input data can be used as a base input deck for the RETRAN transient analyzer for Ulchin 3/4. Moreover, it is found that Core Protection Calculator (CPC) module, which is modified by Korea Electric Power Research Institute (KEPRI), is well adapted to ViSA
Temporal rainfall estimation using input data reduction and model inversion
Wright, A. J.; Vrugt, J. A.; Walker, J. P.; Pauwels, V. R. N.
2016-12-01
Floods are devastating natural hazards. To provide accurate, precise and timely flood forecasts there is a need to understand the uncertainties associated with temporal rainfall and model parameters. The estimation of temporal rainfall and model parameter distributions from streamflow observations in complex dynamic catchments adds skill to current areal rainfall estimation methods, allows for the uncertainty of rainfall input to be considered when estimating model parameters and provides the ability to estimate rainfall from poorly gauged catchments. Current methods to estimate temporal rainfall distributions from streamflow are unable to adequately explain and invert complex non-linear hydrologic systems. This study uses the Discrete Wavelet Transform (DWT) to reduce rainfall dimensionality for the catchment of Warwick, Queensland, Australia. The reduction of rainfall to DWT coefficients allows the input rainfall time series to be simultaneously estimated along with model parameters. The estimation process is conducted using multi-chain Markov chain Monte Carlo simulation with the DREAMZS algorithm. The use of a likelihood function that considers both rainfall and streamflow error allows for model parameter and temporal rainfall distributions to be estimated. Estimation of the wavelet approximation coefficients of lower order decomposition structures was able to estimate the most realistic temporal rainfall distributions. These rainfall estimates were all able to simulate streamflow that was superior to the results of a traditional calibration approach. It is shown that the choice of wavelet has a considerable impact on the robustness of the inversion. The results demonstrate that streamflow data contains sufficient information to estimate temporal rainfall and model parameter distributions. The extent and variance of rainfall time series that are able to simulate streamflow that is superior to that simulated by a traditional calibration approach is a
Evaluating the uncertainty of input quantities in measurement models
Possolo, Antonio; Elster, Clemens
2014-06-01
The Guide to the Expression of Uncertainty in Measurement (GUM) gives guidance about how values and uncertainties should be assigned to the input quantities that appear in measurement models. This contribution offers a concrete proposal for how that guidance may be updated in light of the advances in the evaluation and expression of measurement uncertainty that were made in the course of the twenty years that have elapsed since the publication of the GUM, and also considering situations that the GUM does not yet contemplate. Our motivation is the ongoing conversation about a new edition of the GUM. While generally we favour a Bayesian approach to uncertainty evaluation, we also recognize the value that other approaches may bring to the problems considered here, and focus on methods for uncertainty evaluation and propagation that are widely applicable, including to cases that the GUM has not yet addressed. In addition to Bayesian methods, we discuss maximum-likelihood estimation, robust statistical methods, and measurement models where values of nominal properties play the same role that input quantities play in traditional models. We illustrate these general-purpose techniques in concrete examples, employing data sets that are realistic but that also are of conveniently small sizes. The supplementary material available online lists the R computer code that we have used to produce these examples (stacks.iop.org/Met/51/3/339/mmedia). Although we strive to stay close to clause 4 of the GUM, which addresses the evaluation of uncertainty for input quantities, we depart from it as we review the classes of measurement models that we believe are generally useful in contemporary measurement science. We also considerably expand and update the treatment that the GUM gives to Type B evaluations of uncertainty: reviewing the state-of-the-art, disciplined approach to the elicitation of expert knowledge, and its encapsulation in probability distributions that are usable in
International Nuclear Information System (INIS)
Vondy, D.R.; Fowler, T.B.; Cunningham, G.W.
1979-07-01
User input data requirements are presented for certain special processors in a nuclear reactor computation system. These processors generally read data in formatted form and generate binary interface data files. Some data processing is done to convert from the user oriented form to the interface file forms. The VENTURE diffusion theory neutronics code and other computation modules in this system use the interface data files which are generated
International Nuclear Information System (INIS)
Vondy, D.R.; Fowler, T.B.; Cunningham, G.W.
1976-11-01
This report presents user input data requirements for certain special processors in a nuclear reactor computation system. These processors generally read data in formatted form and generate binary interface data files. Some data processing is done to convert from the user-oriented form to the interface file forms. The VENTURE diffusion theory neutronics code and other computation modules in this system use the interface data files which are generated
Using Random Forests to Select Optimal Input Variables for Short-Term Wind Speed Forecasting Models
Directory of Open Access Journals (Sweden)
Hui Wang
2017-10-01
Full Text Available Achieving relatively high-accuracy short-term wind speed forecasting estimates is a precondition for the construction and grid-connected operation of wind power forecasting systems for wind farms. Currently, most research is focused on the structure of forecasting models and does not consider the selection of input variables, which can have significant impacts on forecasting performance. This paper presents an input variable selection method for wind speed forecasting models. The candidate input variables for various leading periods are selected and random forests (RF is employed to evaluate the importance of all variable as features. The feature subset with the best evaluation performance is selected as the optimal feature set. Then, kernel-based extreme learning machine is constructed to evaluate the performance of input variables selection based on RF. The results of the case study show that by removing the uncorrelated and redundant features, RF effectively extracts the most strongly correlated set of features from the candidate input variables. By finding the optimal feature combination to represent the original information, RF simplifies the structure of the wind speed forecasting model, shortens the training time required, and substantially improves the model’s accuracy and generalization ability, demonstrating that the input variables selected by RF are effective.
Development of the MARS input model for Kori nuclear units 1 transient analyzer
International Nuclear Information System (INIS)
Hwang, M.; Kim, K. D.; Lee, S. W.; Lee, Y. J.; Lee, W. J.; Chung, B. D.; Jeong, J. J.
2004-11-01
KAERI has been developing the 'NSSS transient analyzer' based on best-estimate codes for Kori Nuclear Units 1 plants. The MARS and RETRAN codes have been used as the best-estimate codes for the NSSS transient analyzer. Among these codes, the MARS code is adopted for realistic analysis of small- and large-break loss-of-coolant accidents, of which break size is greater than 2 inch diameter. So it is necessary to develop the MARS input model for Kori Nuclear Units 1 plants. This report includes the input model (hydrodynamic component and heat structure models) requirements and the calculation note for the MARS input data generation for Kori Nuclear Units 1 plant analyzer (see the Appendix). In order to confirm the validity of the input data, we performed the calculations for a steady state at 100 % power operation condition and a double-ended cold leg break LOCA. The results of the steady-state calculation agree well with the design data. The results of the LOCA calculation seem to be reasonable and consistent with those of other best-estimate calculations. Therefore, the MARS input data can be used as a base input deck for the MARS transient analyzer for Kori Nuclear Units 1
Influential input parameters for reflood model of MARS code
Energy Technology Data Exchange (ETDEWEB)
Oh, Deog Yeon; Bang, Young Seok [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)
2012-10-15
Best Estimate (BE) calculation has been more broadly used in nuclear industries and regulations to reduce the significant conservatism for evaluating Loss of Coolant Accident (LOCA). Reflood model has been identified as one of the problems in BE calculation. The objective of the Post BEMUSE Reflood Model Input Uncertainty Methods (PREMIUM) program of OECD/NEA is to make progress the issue of the quantification of the uncertainty of the physical models in system thermal hydraulic codes, by considering an experimental result especially for reflood. It is important to establish a methodology to identify and select the parameters influential to the response of reflood phenomena following Large Break LOCA. For this aspect, a reference calculation and sensitivity analysis to select the dominant influential parameters for FEBA experiment are performed.
Comprehensive Information Retrieval and Model Input Sequence (CIRMIS)
International Nuclear Information System (INIS)
Friedrichs, D.R.
1977-04-01
The Comprehensive Information Retrieval and Model Input Sequence (CIRMIS) was developed to provide the research scientist with man--machine interactive capabilities in a real-time environment, and thereby produce results more quickly and efficiently. The CIRMIS system was originally developed to increase data storage and retrieval capabilities and ground-water model control for the Hanford site. The overall configuration, however, can be used in other areas. The CIRMIS system provides the user with three major functions: retrieval of well-based data, special application for manipulating surface data or background maps, and the manipulation and control of ground-water models. These programs comprise only a portion of the entire CIRMIS system. A complete description of the CIRMIS system is given in this report. 25 figures, 7 tables
Bowblis, John R; Hyer, Kathryn
2013-08-01
To study the effect of minimum nurse staffing requirements on the subsequent employment of nursing home support staff. Nursing home data from the Online Survey Certification and Reporting (OSCAR) System merged with state nurse staffing requirements. Facility-level housekeeping, food service, and activities staff levels are regressed on nurse staffing requirements and other controls using fixed effect panel regression. OSCAR surveys from 1999 to 2004. Increases in state direct care and licensed nurse staffing requirements are associated with decreases in the staffing levels of all types of support staff. Increased nursing home nurse staffing requirements lead to input substitution in the form of reduced support staffing levels. © Health Research and Educational Trust.
Multiple-Input Subject-Specific Modeling of Plasma Glucose Concentration for Feedforward Control.
Kotz, Kaylee; Cinar, Ali; Mei, Yong; Roggendorf, Amy; Littlejohn, Elizabeth; Quinn, Laurie; Rollins, Derrick K
2014-11-26
The ability to accurately develop subject-specific, input causation models, for blood glucose concentration (BGC) for large input sets can have a significant impact on tightening control for insulin dependent diabetes. More specifically, for Type 1 diabetics (T1Ds), it can lead to an effective artificial pancreas (i.e., an automatic control system that delivers exogenous insulin) under extreme changes in critical disturbances. These disturbances include food consumption, activity variations, and physiological stress changes. Thus, this paper presents a free-living, outpatient, multiple-input, modeling method for BGC with strong causation attributes that is stable and guards against overfitting to provide an effective modeling approach for feedforward control (FFC). This approach is a Wiener block-oriented methodology, which has unique attributes for meeting critical requirements for effective, long-term, FFC.
Lysimeter data as input to performance assessment models
International Nuclear Information System (INIS)
McConnell, J.W. Jr.
1998-01-01
The Field Lysimeter Investigations: Low-Level Waste Data Base Development Program is obtaining information on the performance of radioactive waste forms in a disposal environment. Waste forms fabricated using ion-exchange resins from EPICOR-117 prefilters employed in the cleanup of the Three Mile Island (TMI) Nuclear Power Station are being tested to develop a low-level waste data base and to obtain information on survivability of waste forms in a disposal environment. The program includes reviewing radionuclide releases from those waste forms in the first 7 years of sampling and examining the relationship between code input parameters and lysimeter data. Also, lysimeter data are applied to performance assessment source term models, and initial results from use of data in two models are presented
Measurement of Laser Weld Temperatures for 3D Model Input
Energy Technology Data Exchange (ETDEWEB)
Dagel, Daryl [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Grossetete, Grant [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Maccallum, Danny O. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2016-10-01
Laser welding is a key joining process used extensively in the manufacture and assembly of critical components for several weapons systems. Sandia National Laboratories advances the understanding of the laser welding process through coupled experimentation and modeling. This report summarizes the experimental portion of the research program, which focused on measuring temperatures and thermal history of laser welds on steel plates. To increase confidence in measurement accuracy, researchers utilized multiple complementary techniques to acquire temperatures during laser welding. This data serves as input to and validation of 3D laser welding models aimed at predicting microstructure and the formation of defects and their impact on weld-joint reliability, a crucial step in rapid prototyping of weapons components.
RELAP5/MOD3 code manual: User's guide and input requirements. Volume 2
International Nuclear Information System (INIS)
1995-08-01
The RELAP5 code has been developed for best estimate transient simulation of light water reactor coolant systems during postulated accidents. The code models the coupled behavior of the reactor coolant system and the core for loss-of-coolant accidents, and operational transients, such as anticipated transient without scram, loss of offsite power, loss of feedwater, and loss of flow. A generic modeling approach is used that permits simulating a variety of thermal hydraulic systems. Control system and secondary system components are included to permit modeling of plant controls, turbines, condensers, and secondary feedwater systems. Volume II contains detailed instructions for code application and input data preparation
Phylogenetic mixtures and linear invariants for equal input models.
Casanellas, Marta; Steel, Mike
2017-04-01
The reconstruction of phylogenetic trees from molecular sequence data relies on modelling site substitutions by a Markov process, or a mixture of such processes. In general, allowing mixed processes can result in different tree topologies becoming indistinguishable from the data, even for infinitely long sequences. However, when the underlying Markov process supports linear phylogenetic invariants, then provided these are sufficiently informative, the identifiability of the tree topology can be restored. In this paper, we investigate a class of processes that support linear invariants once the stationary distribution is fixed, the 'equal input model'. This model generalizes the 'Felsenstein 1981' model (and thereby the Jukes-Cantor model) from four states to an arbitrary number of states (finite or infinite), and it can also be described by a 'random cluster' process. We describe the structure and dimension of the vector spaces of phylogenetic mixtures and of linear invariants for any fixed phylogenetic tree (and for all trees-the so called 'model invariants'), on any number n of leaves. We also provide a precise description of the space of mixtures and linear invariants for the special case of [Formula: see text] leaves. By combining techniques from discrete random processes and (multi-) linear algebra, our results build on a classic result that was first established by James Lake (Mol Biol Evol 4:167-191, 1987).
Assigning probability distributions to input parameters of performance assessment models
Energy Technology Data Exchange (ETDEWEB)
Mishra, Srikanta [INTERA Inc., Austin, TX (United States)
2002-02-01
This study presents an overview of various approaches for assigning probability distributions to input parameters and/or future states of performance assessment models. Specifically,three broad approaches are discussed for developing input distributions: (a) fitting continuous distributions to data, (b) subjective assessment of probabilities, and (c) Bayesian updating of prior knowledge based on new information. The report begins with a summary of the nature of data and distributions, followed by a discussion of several common theoretical parametric models for characterizing distributions. Next, various techniques are presented for fitting continuous distributions to data. These include probability plotting, method of moments, maximum likelihood estimation and nonlinear least squares analysis. The techniques are demonstrated using data from a recent performance assessment study for the Yucca Mountain project. Goodness of fit techniques are also discussed, followed by an overview of how distribution fitting is accomplished in commercial software packages. The issue of subjective assessment of probabilities is dealt with in terms of the maximum entropy distribution selection approach, as well as some common rules for codifying informal expert judgment. Formal expert elicitation protocols are discussed next, and are based primarily on the guidance provided by the US NRC. The Bayesian framework for updating prior distributions (beliefs) when new information becomes available is discussed. A simple numerical approach is presented for facilitating practical applications of the Bayes theorem. Finally, a systematic framework for assigning distributions is presented: (a) for the situation where enough data are available to define an empirical CDF or fit a parametric model to the data, and (b) to deal with the situation where only a limited amount of information is available.
Assigning probability distributions to input parameters of performance assessment models
International Nuclear Information System (INIS)
Mishra, Srikanta
2002-02-01
This study presents an overview of various approaches for assigning probability distributions to input parameters and/or future states of performance assessment models. Specifically,three broad approaches are discussed for developing input distributions: (a) fitting continuous distributions to data, (b) subjective assessment of probabilities, and (c) Bayesian updating of prior knowledge based on new information. The report begins with a summary of the nature of data and distributions, followed by a discussion of several common theoretical parametric models for characterizing distributions. Next, various techniques are presented for fitting continuous distributions to data. These include probability plotting, method of moments, maximum likelihood estimation and nonlinear least squares analysis. The techniques are demonstrated using data from a recent performance assessment study for the Yucca Mountain project. Goodness of fit techniques are also discussed, followed by an overview of how distribution fitting is accomplished in commercial software packages. The issue of subjective assessment of probabilities is dealt with in terms of the maximum entropy distribution selection approach, as well as some common rules for codifying informal expert judgment. Formal expert elicitation protocols are discussed next, and are based primarily on the guidance provided by the US NRC. The Bayesian framework for updating prior distributions (beliefs) when new information becomes available is discussed. A simple numerical approach is presented for facilitating practical applications of the Bayes theorem. Finally, a systematic framework for assigning distributions is presented: (a) for the situation where enough data are available to define an empirical CDF or fit a parametric model to the data, and (b) to deal with the situation where only a limited amount of information is available
COGEDIF - automatic TORT and DORT input generation from MORSE combinatorial geometry models
International Nuclear Information System (INIS)
Castelli, R.A.; Barnett, D.A.
1992-01-01
COGEDIF is an interactive utility which was developed to automate the preparation of two and three dimensional geometrical inputs for the ORNL-TORT and DORT discrete ordinates programs from complex three dimensional models described using the MORSE combinatorial geometry input description. The program creates either continuous or disjoint mesh input based upon the intersections of user defined meshing planes and the MORSE body definitions. The composition overlay of the combinatorial geometry is used to create the composition mapping of the discretized geometry based upon the composition found at the centroid of each of the mesh cells. This program simplifies the process of using discrete orthogonal mesh cells to represent non-orthogonal geometries in large models which require mesh sizes of the order of a million cells or more. The program was specifically written to take advantage of the new TORT disjoint mesh option which was developed at ORNL
An improved robust model predictive control for linear parameter-varying input-output models
Abbas, H.S.; Hanema, J.; Tóth, R.; Mohammadpour, J.; Meskin, N.
2018-01-01
This paper describes a new robust model predictive control (MPC) scheme to control the discrete-time linear parameter-varying input-output models subject to input and output constraints. Closed-loop asymptotic stability is guaranteed by including a quadratic terminal cost and an ellipsoidal terminal
Sensitivity of a complex urban air quality model to input data
International Nuclear Information System (INIS)
Seigneur, C.; Tesche, T.W.; Roth, P.M.; Reid, L.E.
1981-01-01
In recent years, urban-scale photochemical simulation models have been developed that are of practical value for predicting air quality and analyzing the impacts of alternative emission control strategies. Although the performance of some urban-scale models appears to be acceptable, the demanding data requirements of such models have prompted concern about the costs of data acquistion, which might be high enough to preclude use of photochemical models for many urban areas. To explore this issue, sensitivity studies with the Systems Applications, Inc. (SAI) Airshed Model, a grid-based time-dependent photochemical dispersion model, have been carried out for the Los Angeles basin. Reductions in the amount and quality of meteorological, air quality and emission data, as well as modifications of the model gridded structure, have been analyzed. This paper presents and interprets the results of 22 sensitivity studies. A sensitivity-uncertainty index is defined to rank input data needs for an urban photochemical model. The index takes into account the sensitivity of model predictions to the amount of input data, the costs of data acquistion, and the uncertainties in the air quality model input variables. The results of these sensitivity studies are considered in light of the limitations of specific attributes of the Los Angeles basin and of the modeling conditions (e.g., choice of wind model, length of simulation time). The extent to which the results may be applied to other urban areas also is discussed
Lin, I-Chun; Xing, Dajun; Shapley, Robert
2012-12-01
One of the reasons the visual cortex has attracted the interest of computational neuroscience is that it has well-defined inputs. The lateral geniculate nucleus (LGN) of the thalamus is the source of visual signals to the primary visual cortex (V1). Most large-scale cortical network models approximate the spike trains of LGN neurons as simple Poisson point processes. However, many studies have shown that neurons in the early visual pathway are capable of spiking with high temporal precision and their discharges are not Poisson-like. To gain an understanding of how response variability in the LGN influences the behavior of V1, we study response properties of model V1 neurons that receive purely feedforward inputs from LGN cells modeled either as noisy leaky integrate-and-fire (NLIF) neurons or as inhomogeneous Poisson processes. We first demonstrate that the NLIF model is capable of reproducing many experimentally observed statistical properties of LGN neurons. Then we show that a V1 model in which the LGN input to a V1 neuron is modeled as a group of NLIF neurons produces higher orientation selectivity than the one with Poisson LGN input. The second result implies that statistical characteristics of LGN spike trains are important for V1's function. We conclude that physiologically motivated models of V1 need to include more realistic LGN spike trains that are less noisy than inhomogeneous Poisson processes.
Modelling Analysis of Forestry Input-Output Elasticity in China
Directory of Open Access Journals (Sweden)
Guofeng Wang
2016-01-01
Full Text Available Based on an extended economic model and space econometrics, this essay analyzed the spatial distributions and interdependent relationships of the production of forestry in China; also the input-output elasticity of forestry production were calculated. Results figure out there exists significant spatial correlation in forestry production in China. Spatial distribution is mainly manifested as spatial agglomeration. The output elasticity of labor force is equal to 0.6649, and that of capital is equal to 0.8412. The contribution of land is significantly negative. Labor and capital are the main determinants for the province-level forestry production in China. Thus, research on the province-level forestry production should not ignore the spatial effect. The policy-making process should take into consideration the effects between provinces on the production of forestry. This study provides some scientific technical support for forestry production.
Prioritizing Interdependent Production Processes using Leontief Input-Output Model
Directory of Open Access Journals (Sweden)
Masbad Jesah Grace
2016-03-01
Full Text Available This paper proposes a methodology in identifying key production processes in an interdependent production system. Previous approaches on this domain have drawbacks that may potentially affect the reliability of decision-making. The proposed approach adopts the Leontief input-output model (L-IOM which was proven successful in analyzing interdependent economic systems. The motivation behind such adoption lies in the strength of L-IOM in providing a rigorous quantitative framework in identifying key components of interdependent systems. In this proposed approach, the consumption and production flows of each process are represented respectively by the material inventory produced by the prior process and the material inventory produced by the current process, both in monetary values. A case study in a furniture production system located in central Philippines was carried out to elucidate the proposed approach. Results of the case were reported in this work
Input modeling with phase-type distributions and Markov models theory and applications
Buchholz, Peter; Felko, Iryna
2014-01-01
Containing a summary of several recent results on Markov-based input modeling in a coherent notation, this book introduces and compares algorithms for parameter fitting and gives an overview of available software tools in the area. Due to progress made in recent years with respect to new algorithms to generate PH distributions and Markovian arrival processes from measured data, the models outlined are useful alternatives to other distributions or stochastic processes used for input modeling. Graduate students and researchers in applied probability, operations research and computer science along with practitioners using simulation or analytical models for performance analysis and capacity planning will find the unified notation and up-to-date results presented useful. Input modeling is the key step in model based system analysis to adequately describe the load of a system using stochastic models. The goal of input modeling is to find a stochastic model to describe a sequence of measurements from a real system...
An analytical model for an input/output-subsystem
International Nuclear Information System (INIS)
Roemgens, J.
1983-05-01
An input/output-subsystem of one or several computers if formed by the external memory units and the peripheral units of a computer system. For these subsystems mathematical models are established, taking into account the special properties of the I/O-subsystems, in order to avoid planning errors and to allow for predictions of the capacity of such systems. Here an analytical model is presented for the magnetic discs of a I/O-subsystem, using analytical methods for the individual waiting queues or waiting queue networks. Only I/O-subsystems of IBM-computer configurations are considered, which can be controlled by the MVS operating system. After a description of the hardware and software components of these I/O-systems, possible solutions from the literature are presented and discussed with respect to their applicability in IBM-I/O-subsystems. Based on these models a special scheme is developed which combines the advantages of the literature models and avoids the disadvantages in part. (orig./RW) [de
Recurrent network models for perfect temporal integration of fluctuating correlated inputs.
Directory of Open Access Journals (Sweden)
Hiroshi Okamoto
2009-06-01
Full Text Available Temporal integration of input is essential to the accumulation of information in various cognitive and behavioral processes, and gradually increasing neuronal activity, typically occurring within a range of seconds, is considered to reflect such computation by the brain. Some psychological evidence suggests that temporal integration by the brain is nearly perfect, that is, the integration is non-leaky, and the output of a neural integrator is accurately proportional to the strength of input. Neural mechanisms of perfect temporal integration, however, remain largely unknown. Here, we propose a recurrent network model of cortical neurons that perfectly integrates partially correlated, irregular input spike trains. We demonstrate that the rate of this temporal integration changes proportionately to the probability of spike coincidences in synaptic inputs. We analytically prove that this highly accurate integration of synaptic inputs emerges from integration of the variance of the fluctuating synaptic inputs, when their mean component is kept constant. Highly irregular neuronal firing and spike coincidences are the major features of cortical activity, but they have been separately addressed so far. Our results suggest that the efficient protocol of information integration by cortical networks essentially requires both features and hence is heterotic.
Optimal input shaping for Fisher identifiability of control-oriented lithium-ion battery models
Rothenberger, Michael J.
This dissertation examines the fundamental challenge of optimally shaping input trajectories to maximize parameter identifiability of control-oriented lithium-ion battery models. Identifiability is a property from information theory that determines the solvability of parameter estimation for mathematical models using input-output measurements. This dissertation creates a framework that exploits the Fisher information metric to quantify the level of battery parameter identifiability, optimizes this metric through input shaping, and facilitates faster and more accurate estimation. The popularity of lithium-ion batteries is growing significantly in the energy storage domain, especially for stationary and transportation applications. While these cells have excellent power and energy densities, they are plagued with safety and lifespan concerns. These concerns are often resolved in the industry through conservative current and voltage operating limits, which reduce the overall performance and still lack robustness in detecting catastrophic failure modes. New advances in automotive battery management systems mitigate these challenges through the incorporation of model-based control to increase performance, safety, and lifespan. To achieve these goals, model-based control requires accurate parameterization of the battery model. While many groups in the literature study a variety of methods to perform battery parameter estimation, a fundamental issue of poor parameter identifiability remains apparent for lithium-ion battery models. This fundamental challenge of battery identifiability is studied extensively in the literature, and some groups are even approaching the problem of improving the ability to estimate the model parameters. The first approach is to add additional sensors to the battery to gain more information that is used for estimation. The other main approach is to shape the input trajectories to increase the amount of information that can be gained from input
A Markovian model of evolving world input-output network.
Directory of Open Access Journals (Sweden)
Vahid Moosavi
Full Text Available The initial theoretical connections between Leontief input-output models and Markov chains were established back in 1950s. However, considering the wide variety of mathematical properties of Markov chains, so far there has not been a full investigation of evolving world economic networks with Markov chain formalism. In this work, using the recently available world input-output database, we investigated the evolution of the world economic network from 1995 to 2011 through analysis of a time series of finite Markov chains. We assessed different aspects of this evolving system via different known properties of the Markov chains such as mixing time, Kemeny constant, steady state probabilities and perturbation analysis of the transition matrices. First, we showed how the time series of mixing times and Kemeny constants could be used as an aggregate index of globalization. Next, we focused on the steady state probabilities as a measure of structural power of the economies that are comparable to GDP shares of economies as the traditional index of economies welfare. Further, we introduced two measures of systemic risk, called systemic influence and systemic fragility, where the former is the ratio of number of influenced nodes to the total number of nodes, caused by a shock in the activity of a node, and the latter is based on the number of times a specific economic node is affected by a shock in the activity of any of the other nodes. Finally, focusing on Kemeny constant as a global indicator of monetary flow across the network, we showed that there is a paradoxical effect of a change in activity levels of economic nodes on the overall flow of the world economic network. While the economic slowdown of the majority of nodes with high structural power results to a slower average monetary flow over the network, there are some nodes, where their slowdowns improve the overall quality of the network in terms of connectivity and the average flow of the money.
A Markovian model of evolving world input-output network.
Moosavi, Vahid; Isacchini, Giulio
2017-01-01
The initial theoretical connections between Leontief input-output models and Markov chains were established back in 1950s. However, considering the wide variety of mathematical properties of Markov chains, so far there has not been a full investigation of evolving world economic networks with Markov chain formalism. In this work, using the recently available world input-output database, we investigated the evolution of the world economic network from 1995 to 2011 through analysis of a time series of finite Markov chains. We assessed different aspects of this evolving system via different known properties of the Markov chains such as mixing time, Kemeny constant, steady state probabilities and perturbation analysis of the transition matrices. First, we showed how the time series of mixing times and Kemeny constants could be used as an aggregate index of globalization. Next, we focused on the steady state probabilities as a measure of structural power of the economies that are comparable to GDP shares of economies as the traditional index of economies welfare. Further, we introduced two measures of systemic risk, called systemic influence and systemic fragility, where the former is the ratio of number of influenced nodes to the total number of nodes, caused by a shock in the activity of a node, and the latter is based on the number of times a specific economic node is affected by a shock in the activity of any of the other nodes. Finally, focusing on Kemeny constant as a global indicator of monetary flow across the network, we showed that there is a paradoxical effect of a change in activity levels of economic nodes on the overall flow of the world economic network. While the economic slowdown of the majority of nodes with high structural power results to a slower average monetary flow over the network, there are some nodes, where their slowdowns improve the overall quality of the network in terms of connectivity and the average flow of the money.
Statistical Analysis of Input Parameters Impact on the Modelling of Underground Structures
Directory of Open Access Journals (Sweden)
M. Hilar
2008-01-01
Full Text Available The behaviour of a geomechanical model and its final results are strongly affected by the input parameters. As the inherent variability of rock mass is difficult to model, engineers are frequently forced to face the question “Which input values should be used for analyses?” The correct answer to such a question requires a probabilistic approach, considering the uncertainty of site investigations and variation in the ground. This paper describes the statistical analysis of input parameters for FEM calculations of traffic tunnels in the city of Prague. At the beginning of the paper, the inaccuracy in the geotechnical modelling is discussed. In the following part the Fuzzy techniques are summarized, including information about an application of the Fuzzy arithmetic on the shotcrete parameters. The next part of the paper is focused on the stochastic simulation – Monte Carlo Simulation is briefly described, Latin Hypercubes method is described more in details. At the end several practical examples are described: statistical analysis of the input parameters on the numerical modelling of the completed Mrázovka tunnel (profile West Tunnel Tube km 5.160 and modelling of the constructed tunnel Špejchar – Pelc Tyrolka.
Regulation of Wnt signaling by nociceptive input in animal models
Directory of Open Access Journals (Sweden)
Shi Yuqiang
2012-06-01
Full Text Available Abstract Background Central sensitization-associated synaptic plasticity in the spinal cord dorsal horn (SCDH critically contributes to the development of chronic pain, but understanding of the underlying molecular pathways is still incomplete. Emerging evidence suggests that Wnt signaling plays a crucial role in regulation of synaptic plasticity. Little is known about the potential function of the Wnt signaling cascades in chronic pain development. Results Fluorescent immunostaining results indicate that β-catenin, an essential protein in the canonical Wnt signaling pathway, is expressed in the superficial layers of the mouse SCDH with enrichment at synapses in lamina II. In addition, Wnt3a, a prototypic Wnt ligand that activates the canonical pathway, is also enriched in the superficial layers. Immunoblotting analysis indicates that both Wnt3a a β-catenin are up-regulated in the SCDH of various mouse pain models created by hind-paw injection of capsaicin, intrathecal (i.t. injection of HIV-gp120 protein or spinal nerve ligation (SNL. Furthermore, Wnt5a, a prototypic Wnt ligand for non-canonical pathways, and its receptor Ror2 are also up-regulated in the SCDH of these models. Conclusion Our results suggest that Wnt signaling pathways are regulated by nociceptive input. The activation of Wnt signaling may regulate the expression of spinal central sensitization during the development of acute and chronic pain.
Prediction of Chl-a concentrations in an eutrophic lake using ANN models with hybrid inputs
Aksoy, A.; Yuzugullu, O.
2017-12-01
Chlorophyll-a (Chl-a) concentrations in water bodies exhibit both spatial and temporal variations. As a result, frequent sampling is required with higher number of samples. This motivates the use of remote sensing as a monitoring tool. Yet, prediction performances of models that convert radiance values into Chl-a concentrations can be poor in shallow lakes. In this study, Chl-a concentrations in Lake Eymir, a shallow eutrophic lake in Ankara (Turkey), are determined using artificial neural network (ANN) models that use hybrid inputs composed of water quality and meteorological data as well as remotely sensed radiance values to improve prediction performance. Following a screening based on multi-collinearity and principal component analysis (PCA), dissolved-oxygen concentration (DO), pH, turbidity, and humidity were selected among several parameters as the constituents of the hybrid input dataset. Radiance values were obtained from QuickBird-2 satellite. Conversion of the hybrid input into Chl-a concentrations were studied for two different periods in the lake. ANN models were successful in predicting Chl-a concentrations. Yet, prediction performance declined for low Chl-a concentrations in the lake. In general, models with hybrid inputs were superior over the ones that solely used remotely sensed data.
Development of the MARS input model for Ulchin 1/2 transient analyzer
International Nuclear Information System (INIS)
Jeong, J. J.; Kim, K. D.; Lee, S. W.; Lee, Y. J.; Chung, B. D.; Hwang, M.
2003-03-01
KAERI has been developing the NSSS transient analyzer based on best-estimate codes for Ulchin 1/2 plants. The MARS and RETRAN code are used as the best-estimate codes for the NSSS transient analyzer. Among the two codes, the MARS code is to be used for realistic analysis of small- and large-break loss-of-coolant accidents, of which break size is greater than 2 inch diameter. This report includes the input model requirements and the calculation note for the Ulchin 1/2 MARS input data generation (see the Appendix). In order to confirm the validity of the input data, we performed the calculations for a steady state at 100 % power operation condition and a double-ended cold leg break LOCA. The results of the steady-state calculation agree well with the design data. The results of the LOCA calculation seem to be reasonable and consistent with those of other best-estimate calculations. Therefore, the MARS input data can be used as a base input deck for the MARS transient analyzer for Ulchin 1/2
Development of the MARS input model for Ulchin 3/4 transient analyzer
International Nuclear Information System (INIS)
Jeong, J. J.; Kim, K. D.; Lee, S. W.; Lee, Y. J.; Lee, W. J.; Chung, B. D.; Hwang, M. G.
2003-12-01
KAERI has been developing the NSSS transient analyzer based on best-estimate codes.The MARS and RETRAN code are adopted as the best-estimate codes for the NSSS transient analyzer. Among these two codes, the MARS code is to be used for realistic analysis of small- and large-break loss-of-coolant accidents, of which break size is greater than 2 inch diameter. This report includes the MARS input model requirements and the calculation note for the MARS input data generation (see the Appendix) for Ulchin 3/4 plant analyzer. In order to confirm the validity of the input data, we performed the calculations for a steady state at 100 % power operation condition and a double-ended cold leg break LOCA. The results of the steady-state calculation agree well with the design data. The results of the LOCA calculation seem to be reasonable and consistent with those of other best-estimate calculations. Therefore, the MARS input data can be used as a base input deck for the MARS transient analyzer for Ulchin 3/4
ETFOD: a point model physics code with arbitrary input
International Nuclear Information System (INIS)
Rothe, K.E.; Attenberger, S.E.
1980-06-01
ETFOD is a zero-dimensional code which solves a set of physics equations by minimization. The technique used is different than normally used, in that the input is arbitrary. The user is supplied with a set of variables from which he specifies which variables are input (unchanging). The remaining variables become the output. Presently the code is being used for ETF reactor design studies. The code was written in a manner to allow easy modificaton of equations, variables, and physics calculations. The solution technique is presented along with hints for using the code
Alternative to Ritt's pseudodivision for finding the input-output equations of multi-output models.
Meshkat, Nicolette; Anderson, Chris; DiStefano, Joseph J
2012-09-01
Differential algebra approaches to structural identifiability analysis of a dynamic system model in many instances heavily depend upon Ritt's pseudodivision at an early step in analysis. The pseudodivision algorithm is used to find the characteristic set, of which a subset, the input-output equations, is used for identifiability analysis. A simpler algorithm is proposed for this step, using Gröbner Bases, along with a proof of the method that includes a reduced upper bound on derivative requirements. Efficacy of the new algorithm is illustrated with several biosystem model examples. Copyright © 2012 Elsevier Inc. All rights reserved.
High Temperature Test Facility Preliminary RELAP5-3D Input Model Description
Energy Technology Data Exchange (ETDEWEB)
Bayless, Paul David [Idaho National Lab. (INL), Idaho Falls, ID (United States)
2015-12-01
A RELAP5-3D input model is being developed for the High Temperature Test Facility at Oregon State University. The current model is described in detail. Further refinements will be made to the model as final as-built drawings are released and when system characterization data are available for benchmarking the input model.
Anterior Cingulate Cortex Input to the Claustrum Is Required for Top-Down Action Control
Directory of Open Access Journals (Sweden)
Michael G. White
2018-01-01
Full Text Available Summary: Cognitive abilities, such as volitional attention, operate under top-down, executive frontal cortical control of hierarchically lower structures. The circuit mechanisms underlying this process are unresolved. The claustrum possesses interconnectivity with many cortical areas and, thus, is hypothesized to orchestrate the cortical mantle for top-down control. Whether the claustrum receives top-down input and how this input may be processed by the claustrum have yet to be formally tested, however. We reveal that a rich anterior cingulate cortex (ACC input to the claustrum encodes a preparatory top-down information signal on a five-choice response assay that is necessary for optimal task performance. We further show that ACC input monosynaptically targets claustrum inhibitory interneurons and spiny glutamatergic projection neurons, the latter of which amplify ACC input in a manner that is powerfully constrained by claustrum inhibitory microcircuitry. These results demonstrate ACC input to the claustrum is critical for top-down control guiding action. : White et al. show that anterior cingulate cortex (ACC input to the claustrum encodes a top-down preparatory signal on a 5-choice response assay that is critical for task performance. Claustrum microcircuitry amplifies top-down ACC input in a frequency-dependent manner for eventual propagation to the cortex for cognitive control of action. Keywords: 5CSRTT, optogenetics, fiber photometry, microcircuit, attention, bottom-up, sensory cortices, motor cortices
Modelling of Multi Input Transfer Function for Rainfall Forecasting in Batu City
Priska Arindya Purnama
2017-01-01
The aim of this research is to model and forecast the rainfall in Batu City using multi input transfer function model based on air temperature, humidity, wind speed and cloud. Transfer function model is a multivariate time series model which consists of an output series (Yt) sequence expected to be effected by an input series (Xt) and other inputs in a group called a noise series (Nt). Multi input transfer function model obtained is (b1,s1,r1) (b2,s2,r2) (b3,s3,r3) (b4,s4,r4)(pn,qn) = (0,0,0)...
Modeling Input Errors to Improve Uncertainty Estimates for Sediment Transport Model Predictions
Jung, J. Y.; Niemann, J. D.; Greimann, B. P.
2016-12-01
Bayesian methods using Markov chain Monte Carlo algorithms have recently been applied to sediment transport models to assess the uncertainty in the model predictions due to the parameter values. Unfortunately, the existing approaches can only attribute overall uncertainty to the parameters. This limitation is critical because no model can produce accurate forecasts if forced with inaccurate input data, even if the model is well founded in physical theory. In this research, an existing Bayesian method is modified to consider the potential errors in input data during the uncertainty evaluation process. The input error is modeled using Gaussian distributions, and the means and standard deviations are treated as uncertain parameters. The proposed approach is tested by coupling it to the Sedimentation and River Hydraulics - One Dimension (SRH-1D) model and simulating a 23-km reach of the Tachia River in Taiwan. The Wu equation in SRH-1D is used for computing the transport capacity for a bed material load of non-cohesive material. Three types of input data are considered uncertain: (1) the input flowrate at the upstream boundary, (2) the water surface elevation at the downstream boundary, and (3) the water surface elevation at a hydraulic structure in the middle of the reach. The benefits of modeling the input errors in the uncertainty analysis are evaluated by comparing the accuracy of the most likely forecast and the coverage of the observed data by the credible intervals to those of the existing method. The results indicate that the internal boundary condition has the largest uncertainty among those considered. Overall, the uncertainty estimates from the new method are notably different from those of the existing method for both the calibration and forecast periods.
Hao, Wenrui; Lu, Zhenzhou; Li, Luyi
2013-05-01
In order to explore the contributions by correlated input variables to the variance of the output, a novel interpretation framework of importance measure indices is proposed for a model with correlated inputs, which includes the indices of the total correlated contribution and the total uncorrelated contribution. The proposed indices accurately describe the connotations of the contributions by the correlated input to the variance of output, and they can be viewed as the complement and correction of the interpretation about the contributions by the correlated inputs presented in "Estimation of global sensitivity indices for models with dependent variables, Computer Physics Communications, 183 (2012) 937-946". Both of them contain the independent contribution by an individual input. Taking the general form of quadratic polynomial as an illustration, the total correlated contribution and the independent contribution by an individual input are derived analytically, from which the components and their origins of both contributions of correlated input can be clarified without any ambiguity. In the special case that no square term is included in the quadratic polynomial model, the total correlated contribution by the input can be further decomposed into the variance contribution related to the correlation of the input with other inputs and the independent contribution by the input itself, and the total uncorrelated contribution can be further decomposed into the independent part by interaction between the input and others and the independent part by the input itself. Numerical examples are employed and their results demonstrate that the derived analytical expressions of the variance-based importance measure are correct, and the clarification of the correlated input contribution to model output by the analytical derivation is very important for expanding the theory and solutions of uncorrelated input to those of the correlated one.
TASS/SMR Code Topical Report for SMART Plant, Vol II: User's Guide and Input Requirement
Energy Technology Data Exchange (ETDEWEB)
Kim, See Darl; Kim, Soo Hyoung; Kim, Hyung Rae (and others)
2008-10-15
The TASS/SMR code has been developed with domestic technologies for the safety analysis of the SMART plant which is an integral type pressurized water reactor. It can be applied to the analysis of design basis accidents including non-LOCA (loss of coolant accident) and LOCA of the SMART plant. The TASS/SMR code can be applied to any plant regardless of the structural characteristics of a reactor since the code solves the same governing equations for both the primary and secondary system. The code has been developed to meet the requirements of the safety analysis code. This report describes the overall structure of the TASS/SMR, input processing, and the processes of a steady state and transient calculations. In addition, basic differential equations, finite difference equations, state relationships, and constitutive models are described in the report. First, the conservation equations, a discretization process for numerical analysis, search method for state relationship are described. Then, a core power model, heat transfer models, physical models for various components, and control and trip models are explained.
A time-resolved model of the mesospheric Na layer: constraints on the meteor input function
Directory of Open Access Journals (Sweden)
J. M. C. Plane
2004-01-01
Full Text Available A time-resolved model of the Na layer in the mesosphere/lower thermosphere region is described, where the continuity equations for the major sodium species Na, Na+ and NaHCO3 are solved explicity, and the other short-lived species are treated in steady-state. It is shown that the diurnal variation of the Na layer can only be modelled satisfactorily if sodium species are permanently removed below about 85 km, both through the dimerization of NaHCO3 and the uptake of sodium species on meteoric smoke particles that are assumed to have formed from the recondensation of vaporized meteoroids. When the sensitivity of the Na layer to the meteoroid input function is considered, an inconsistent picture emerges. The ratio of the column abundance of Na+ to Na is shown to increase strongly with the average meteoroid velocity, because the Na is injected at higher altitudes. Comparison with a limited set of Na+ measurements indicates that the average meteoroid velocity is probably less than about 25 km s-1, in agreement with velocity estimates from conventional meteor radars, and considerably slower than recent observations made by wide aperture incoherent scatter radars. The Na column abundance is shown to be very sensitive to the meteoroid mass input rate, and to the rate of vertical transport by eddy diffusion. Although the magnitude of the eddy diffusion coefficient in the 80–90 km region is uncertain, there is a consensus between recent models using parameterisations of gravity wave momentum deposition that the average value is less than 3×105 cm2 s-1. This requires that the global meteoric mass input rate is less than about 20 td-1, which is closest to estimates from incoherent scatter radar observations. Finally, the diurnal variation in the meteoroid input rate only slight perturbs the Na layer, because the residence time of Na in the layer is several days, and diurnal effects are effectively averaged out.
Specification and Aggregation Errors in Environmentally Extended Input-Output Models
Bouwmeester, Maaike C.; Oosterhaven, Jan
This article considers the specification and aggregation errors that arise from estimating embodied emissions and embodied water use with environmentally extended national input-output (IO) models, instead of with an environmentally extended international IO model. Model specification errors result
Low-level waste shallow land disposal source term model: Data input guides
International Nuclear Information System (INIS)
Sullivan, T.M.; Suen, C.J.
1989-07-01
This report provides an input guide for the computational models developed to predict the rate of radionuclide release from shallow land disposal of low-level waste. Release of contaminants depends on four processes: water flow, container degradation, waste from leaching, and contaminant transport. The computer code FEMWATER has been selected to predict the movement of water in an unsaturated porous media. The computer code BLT (Breach, Leach, and Transport), a modification of FEMWASTE, has been selected to predict the processes of container degradation (Breach), contaminant release from the waste form (Leach), and contaminant migration (Transport). In conjunction, these two codes have the capability to account for the effects of disposal geometry, unsaturated/water flow, container degradation, waste form leaching, and migration of contaminants releases within a single disposal trench. In addition to the input requirements, this report presents the fundamental equations and relationships used to model the four different processes previously discussed. Further, the appendices provide a representative sample of data required by the different models. 14 figs., 27 tabs
The MARINA model (Model to Assess River Inputs of Nutrients to seAs)
Strokal, Maryna; Kroeze, Carolien; Wang, Mengru; Bai, Zhaohai; Ma, Lin
2016-01-01
Chinese agriculture has been developing fast towards industrial food production systems that discharge nutrient-rich wastewater into rivers. As a result, nutrient export by rivers has been increasing, resulting in coastal water pollution. We developed a Model to Assess River Inputs of Nutrients
Han, Feng; Zheng, Yi
2018-06-01
Significant Input uncertainty is a major source of error in watershed water quality (WWQ) modeling. It remains challenging to address the input uncertainty in a rigorous Bayesian framework. This study develops the Bayesian Analysis of Input and Parametric Uncertainties (BAIPU), an approach for the joint analysis of input and parametric uncertainties through a tight coupling of Markov Chain Monte Carlo (MCMC) analysis and Bayesian Model Averaging (BMA). The formal likelihood function for this approach is derived considering a lag-1 autocorrelated, heteroscedastic, and Skew Exponential Power (SEP) distributed error model. A series of numerical experiments were performed based on a synthetic nitrate pollution case and on a real study case in the Newport Bay Watershed, California. The Soil and Water Assessment Tool (SWAT) and Differential Evolution Adaptive Metropolis (DREAM(ZS)) were used as the representative WWQ model and MCMC algorithm, respectively. The major findings include the following: (1) the BAIPU can be implemented and used to appropriately identify the uncertain parameters and characterize the predictive uncertainty; (2) the compensation effect between the input and parametric uncertainties can seriously mislead the modeling based management decisions, if the input uncertainty is not explicitly accounted for; (3) the BAIPU accounts for the interaction between the input and parametric uncertainties and therefore provides more accurate calibration and uncertainty results than a sequential analysis of the uncertainties; and (4) the BAIPU quantifies the credibility of different input assumptions on a statistical basis and can be implemented as an effective inverse modeling approach to the joint inference of parameters and inputs.
Motivation Monitoring and Assessment Extension for Input-Process-Outcome Game Model
Ghergulescu, Ioana; Muntean, Cristina Hava
2014-01-01
This article proposes a Motivation Assessment-oriented Input-Process-Outcome Game Model (MotIPO), which extends the Input-Process-Outcome game model with game-centred and player-centred motivation assessments performed right from the beginning of the game-play. A feasibility case-study involving 67 participants playing an educational game and…
Characteristic length scale of input data in distributed models: implications for modeling grid size
Artan, G. A.; Neale, C. M. U.; Tarboton, D. G.
2000-01-01
The appropriate spatial scale for a distributed energy balance model was investigated by: (a) determining the scale of variability associated with the remotely sensed and GIS-generated model input data; and (b) examining the effects of input data spatial aggregation on model response. The semi-variogram and the characteristic length calculated from the spatial autocorrelation were used to determine the scale of variability of the remotely sensed and GIS-generated model input data. The data were collected from two hillsides at Upper Sheep Creek, a sub-basin of the Reynolds Creek Experimental Watershed, in southwest Idaho. The data were analyzed in terms of the semivariance and the integral of the autocorrelation. The minimum characteristic length associated with the variability of the data used in the analysis was 15 m. Simulated and observed radiometric surface temperature fields at different spatial resolutions were compared. The correlation between agreement simulated and observed fields sharply declined after a 10×10 m2 modeling grid size. A modeling grid size of about 10×10 m2 was deemed to be the best compromise to achieve: (a) reduction of computation time and the size of the support data; and (b) a reproduction of the observed radiometric surface temperature.
Artan, Guleid A.; Neale, C. M. U.; Tarboton, D. G.
2000-01-01
The appropriate spatial scale for a distributed energy balance model was investigated by: (a) determining the scale of variability associated with the remotely sensed and GIS-generated model input data; and (b) examining the effects of input data spatial aggregation on model response. The semi-variogram and the characteristic length calculated from the spatial autocorrelation were used to determine the scale of variability of the remotely sensed and GIS-generated model input data. The data were collected from two hillsides at Upper Sheep Creek, a sub-basin of the Reynolds Creek Experimental Watershed, in southwest Idaho. The data were analyzed in terms of the semivariance and the integral of the autocorrelation. The minimum characteristic length associated with the variability of the data used in the analysis was 15 m. Simulated and observed radiometric surface temperature fields at different spatial resolutions were compared. The correlation between agreement simulated and observed fields sharply declined after a 10×10 m2 modeling grid size. A modeling grid size of about 10×10 m2 was deemed to be the best compromise to achieve: (a) reduction of computation time and the size of the support data; and (b) a reproduction of the observed radiometric surface temperature.
Teland, J.A.; Doormaal, J.C.A.M. van; Horst, M.J. van der; Svinsås, E.
2010-01-01
Blast injury models, like Axelsson and Stuhmiller, require four pressure signals as input. Those pressure signals must be acquired by a Blast Test Device (BTD) that has four pressure transducers placed in a horizontal plane at intervals of 90 degrees. This can be either in a physical test setup or
Modelling groundwater discharge areas using only digital elevation models as input data
Energy Technology Data Exchange (ETDEWEB)
Brydsten, Lars [Umeaa Univ. (Sweden). Dept. of Biology and Environmental Science
2006-10-15
Advanced geohydrological models require data on topography, soil distribution in three dimensions, vegetation, land use, bedrock fracture zones. To model present geohydrological conditions, these factors can be gathered with different techniques. If a future geohydrological condition is modelled in an area with positive shore displacement (say 5,000 or 10,000 years), some of these factors can be difficult to measure. This could include the development of wetlands and the filling of lakes. If the goal of the model is to predict distribution of groundwater recharge and discharge areas in the landscape, the most important factor is topography. The question is how much can topography alone explain the distribution of geohydrological objects in the landscape. A simplified description of the distribution of geohydrological objects in the landscape is that groundwater recharge areas occur at local elevation curvatures and discharge occurs in lakes, brooks, and low situated slopes. Areas in-between these make up discharge areas during wet periods and recharge areas during dry periods. A model that could predict this pattern only using topography data needs to be able to predict high ridges and future lakes and brooks. This study uses GIS software with four different functions using digital elevation models as input data, geomorphometrical parameters to predict landscape ridges, basin fill for predicting lakes, flow accumulations for predicting future waterways, and topographical wetness indexes for dividing in-between areas based on degree of wetness. An area between the village of and Forsmarks' Nuclear Power Plant has been used to calibrate the model. The area is within the SKB 10-metre Elevation Model (DEM) and has a high-resolution orienteering map for wetlands. Wetlands are assumed to be groundwater discharge areas. Five hundred points were randomly distributed across the wetlands. These are potential discharge points. Model parameters were chosen with the
Modelling groundwater discharge areas using only digital elevation models as input data
International Nuclear Information System (INIS)
Brydsten, Lars
2006-10-01
Advanced geohydrological models require data on topography, soil distribution in three dimensions, vegetation, land use, bedrock fracture zones. To model present geohydrological conditions, these factors can be gathered with different techniques. If a future geohydrological condition is modelled in an area with positive shore displacement (say 5,000 or 10,000 years), some of these factors can be difficult to measure. This could include the development of wetlands and the filling of lakes. If the goal of the model is to predict distribution of groundwater recharge and discharge areas in the landscape, the most important factor is topography. The question is how much can topography alone explain the distribution of geohydrological objects in the landscape. A simplified description of the distribution of geohydrological objects in the landscape is that groundwater recharge areas occur at local elevation curvatures and discharge occurs in lakes, brooks, and low situated slopes. Areas in-between these make up discharge areas during wet periods and recharge areas during dry periods. A model that could predict this pattern only using topography data needs to be able to predict high ridges and future lakes and brooks. This study uses GIS software with four different functions using digital elevation models as input data, geomorphometrical parameters to predict landscape ridges, basin fill for predicting lakes, flow accumulations for predicting future waterways, and topographical wetness indexes for dividing in-between areas based on degree of wetness. An area between the village of and Forsmarks' Nuclear Power Plant has been used to calibrate the model. The area is within the SKB 10-metre Elevation Model (DEM) and has a high-resolution orienteering map for wetlands. Wetlands are assumed to be groundwater discharge areas. Five hundred points were randomly distributed across the wetlands. These are potential discharge points. Model parameters were chosen with the
Influence of input matrix representation on topic modelling performance
CSIR Research Space (South Africa)
De Waal, A
2010-11-01
Full Text Available Topic models explain a collection of documents with a small set of distributions over terms. These distributions over terms define the topics. Topic models ignore the structure of documents and use a bag-of-words approach which relies solely...
"Updates to Model Algorithms & Inputs for the Biogenic ...
We have developed new canopy emission algorithms and land use data for BEIS. Simulations with BEIS v3.4 and these updates in CMAQ v5.0.2 are compared these changes to the Model of Emissions of Gases and Aerosols from Nature (MEGAN) and evaluated the simulations against observations. This has resulted in improvements in model evaluations of modeled isoprene, NOx, and O3. The National Exposure Research Laboratory (NERL) Atmospheric Modeling and Analysis Division (AMAD) conducts research in support of EPA mission to protect human health and the environment. AMAD research program is engaged in developing and evaluating predictive atmospheric models on all spatial and temporal scales for forecasting the air quality and for assessing changes in air quality and air pollutant exposures, as affected by changes in ecosystem management and regulatory decisions. AMAD is responsible for providing a sound scientific and technical basis for regulatory policies based on air quality models to improve ambient air quality. The models developed by AMAD are being used by EPA, NOAA, and the air pollution community in understanding and forecasting not only the magnitude of the air pollution problem, but also in developing emission control policies and regulations for air quality improvements.
Identifying best-fitting inputs in health-economic model calibration: a Pareto frontier approach.
Enns, Eva A; Cipriano, Lauren E; Simons, Cyrena T; Kong, Chung Yin
2015-02-01
To identify best-fitting input sets using model calibration, individual calibration target fits are often combined into a single goodness-of-fit (GOF) measure using a set of weights. Decisions in the calibration process, such as which weights to use, influence which sets of model inputs are identified as best-fitting, potentially leading to different health economic conclusions. We present an alternative approach to identifying best-fitting input sets based on the concept of Pareto-optimality. A set of model inputs is on the Pareto frontier if no other input set simultaneously fits all calibration targets as well or better. We demonstrate the Pareto frontier approach in the calibration of 2 models: a simple, illustrative Markov model and a previously published cost-effectiveness model of transcatheter aortic valve replacement (TAVR). For each model, we compare the input sets on the Pareto frontier to an equal number of best-fitting input sets according to 2 possible weighted-sum GOF scoring systems, and we compare the health economic conclusions arising from these different definitions of best-fitting. For the simple model, outcomes evaluated over the best-fitting input sets according to the 2 weighted-sum GOF schemes were virtually nonoverlapping on the cost-effectiveness plane and resulted in very different incremental cost-effectiveness ratios ($79,300 [95% CI 72,500-87,600] v. $139,700 [95% CI 79,900-182,800] per quality-adjusted life-year [QALY] gained). Input sets on the Pareto frontier spanned both regions ($79,000 [95% CI 64,900-156,200] per QALY gained). The TAVR model yielded similar results. Choices in generating a summary GOF score may result in different health economic conclusions. The Pareto frontier approach eliminates the need to make these choices by using an intuitive and transparent notion of optimality as the basis for identifying best-fitting input sets. © The Author(s) 2014.
Sensitivity analysis of complex models: Coping with dynamic and static inputs
International Nuclear Information System (INIS)
Anstett-Collin, F.; Goffart, J.; Mara, T.; Denis-Vidal, L.
2015-01-01
In this paper, we address the issue of conducting a sensitivity analysis of complex models with both static and dynamic uncertain inputs. While several approaches have been proposed to compute the sensitivity indices of the static inputs (i.e. parameters), the one of the dynamic inputs (i.e. stochastic fields) have been rarely addressed. For this purpose, we first treat each dynamic as a Gaussian process. Then, the truncated Karhunen–Loève expansion of each dynamic input is performed. Such an expansion allows to generate independent Gaussian processes from a finite number of independent random variables. Given that a dynamic input is represented by a finite number of random variables, its variance-based sensitivity index is defined by the sensitivity index of this group of variables. Besides, an efficient sampling-based strategy is described to estimate the first-order indices of all the input factors by only using two input samples. The approach is applied to a building energy model, in order to assess the impact of the uncertainties of the material properties (static inputs) and the weather data (dynamic inputs) on the energy performance of a real low energy consumption house. - Highlights: • Sensitivity analysis of models with uncertain static and dynamic inputs is performed. • Karhunen–Loève (KL) decomposition of the spatio/temporal inputs is performed. • The influence of the dynamic inputs is studied through the modes of the KL expansion. • The proposed approach is applied to a building energy model. • Impact of weather data and material properties on performance of real house is given
Modelling the soil microclimate: does the spatial or temporal resolution of input parameters matter?
Directory of Open Access Journals (Sweden)
Anna Carter
2016-01-01
Full Text Available The urgency of predicting future impacts of environmental change on vulnerable populations is advancing the development of spatially explicit habitat models. Continental-scale climate and microclimate layers are now widely available. However, most terrestrial organisms exist within microclimate spaces that are very small, relative to the spatial resolution of those layers. We examined the effects of multi-resolution, multi-extent topographic and climate inputs on the accuracy of hourly soil temperature predictions for a small island generated at a very high spatial resolution (<1 m2 using the mechanistic microclimate model in NicheMapR. Achieving an accuracy comparable to lower-resolution, continental-scale microclimate layers (within about 2–3°C of observed values required the use of daily weather data as well as high resolution topographic layers (elevation, slope, aspect, horizon angles, while inclusion of site-specific soil properties did not markedly improve predictions. Our results suggest that large-extent microclimate layers may not provide accurate estimates of microclimate conditions when the spatial extent of a habitat or other area of interest is similar to or smaller than the spatial resolution of the layers themselves. Thus, effort in sourcing model inputs should be focused on obtaining high resolution terrain data, e.g., via LiDAR or photogrammetry, and local weather information rather than in situ sampling of microclimate characteristics.
On Input Vector Representation for the SVR model of Reactor Core Loading Pattern Critical Parameters
International Nuclear Information System (INIS)
Trontl, K.; Pevec, D.; Smuc, T.
2008-01-01
Determination and optimization of reactor core loading pattern is an important factor in nuclear power plant operation. The goal is to minimize the amount of enriched uranium (fresh fuel) and burnable absorbers placed in the core, while maintaining nuclear power plant operational and safety characteristics. The usual approach to loading pattern optimization involves high degree of engineering judgment, a set of heuristic rules, an optimization algorithm and a computer code used for evaluating proposed loading patterns. The speed of the optimization process is highly dependent on the computer code used for the evaluation. Recently, we proposed a new method for fast loading pattern evaluation based on general robust regression model relying on the state of the art research in the field of machine learning. We employed Support Vector Regression (SVR) technique. SVR is a supervised learning method in which model parameters are automatically determined by solving a quadratic optimization problem. The preliminary tests revealed a good potential of the SVR method application for fast and accurate reactor core loading pattern evaluation. However, some aspects of model development are still unresolved. The main objective of the work reported in this paper was to conduct additional tests and analyses required for full clarification of the SVR applicability for loading pattern evaluation. We focused our attention on the parameters defining input vector, primarily its structure and complexity, and parameters defining kernel functions. All the tests were conducted on the NPP Krsko reactor core, using MCRAC code for the calculation of reactor core loading pattern critical parameters. The tested input vector structures did not influence the accuracy of the models suggesting that the initially tested input vector, consisted of the number of IFBAs and the k-inf at the beginning of the cycle, is adequate. The influence of kernel function specific parameters (σ for RBF kernel
High Flux Isotope Reactor system RELAP5 input model
International Nuclear Information System (INIS)
Morris, D.G.; Wendel, M.W.
1993-01-01
A thermal-hydraulic computational model of the High Flux Isotope Reactor (HFIR) has been developed using the RELAP5 program. The purpose of the model is to provide a state-of-the art thermal-hydraulic simulation tool for analyzing selected hypothetical accident scenarios for a revised HFIR Safety Analysis Report (SAR). The model includes (1) a detailed representation of the reactor core and other vessel components, (2) three heat exchanger/pump cells, (3) pressurizing pumps and letdown valves, and (4) secondary coolant system (with less detail than the primary system). Data from HFIR operation, component tests, tests in facility mockups and the HFIR, HFIR specific experiments, and other pertinent experiments performed independent of HFIR were used to construct the model and validate it to the extent permitted by the data. The detailed version of the model has been used to simulate loss-of-coolant accidents (LOCAs), while the abbreviated version has been developed for the operational transients that allow use of a less detailed nodalization. Analysis of station blackout with core long-term decay heat removal via natural convection has been performed using the core and vessel portions of the detailed model
Requirements Modeling with Agent Programming
Dasgupta, Aniruddha; Krishna, Aneesh; Ghose, Aditya K.
Agent-oriented conceptual modeling notations are highly effective in representing requirements from an intentional stance and answering questions such as what goals exist, how key actors depend on each other, and what alternatives must be considered. In this chapter, we review an approach to executing i* models by translating these into set of interacting agents implemented in the CASO language and suggest how we can perform reasoning with requirements modeled (both functional and non-functional) using i* models. In this chapter we particularly incorporate deliberation into the agent design. This allows us to benefit from the complementary representational capabilities of the two frameworks.
Determining input values for a simple parametric model to estimate ...
African Journals Online (AJOL)
Estimating soil evaporation (Es) is an important part of modelling vineyard evapotranspiration for irrigation purposes. Furthermore, quantification of possible soil texture and trellis effects is essential. Daily Es from six topsoils packed into lysimeters was measured under grapevines on slanting and vertical trellises, ...
Reissner-Mindlin plate model with uncertain input data
Czech Academy of Sciences Publication Activity Database
Hlaváček, Ivan; Chleboun, J.
2014-01-01
Roč. 17, Jun (2014), s. 71-88 ISSN 1468-1218 Institutional support: RVO:67985840 Keywords : Reissner-Mindlin model * orthotropic plate Subject RIV: BA - General Mathematics Impact factor: 2.519, year: 2014 http://www.sciencedirect.com/science/article/pii/S1468121813001077
Model reduction of nonlinear systems subject to input disturbances
Ndoye, Ibrahima; Laleg-Kirati, Taous-Meriem
2017-01-01
The method of convex optimization is used as a tool for model reduction of a class of nonlinear systems in the presence of disturbances. It is shown that under some conditions the nonlinear disturbed system can be approximated by a reduced order
Little Higgs model limits from LHC - Input for Snowmass 2013
International Nuclear Information System (INIS)
Reuter, Juergen; Tonini, Marco; Vries, Maikel de
2013-07-01
The status of the most prominent model implementations of the Little Higgs paradigm, the Littlest Higgs with and without discrete T parity as well as the Simplest Little Higgs are reviewed. For this, we are taking into account a fit to 21 electroweak precision observables from LEP, SLC, Tevatron together with the full 25 fb -1 of Higgs data reported from ATLAS and CMS at Moriond 2013. We also - focusing on the Littlest Higgs with T parity - include an outlook on corresponding direct searches at the 8 TeV LHC and their competitiveness with the EW and Higgs data regarding their exclusion potential. This contribution to the Snowmass procedure serves as a guideline which regions in parameter space of Little Higgs models are still compatible for the upcoming LHC runs and future experiments at the energy frontier. For this we propose two different benchmark scenarios for the Littlest Higgs with T parity, one with heavy mirror quarks, one with light ones.
Scientific and technical advisory committee review of the nutrient inputs to the watershed model
The following is a report by a STAC Review Team concerning the methods and documentation used by the Chesapeake Bay Partnership for evaluation of nutrient inputs to Phase 6 of the Chesapeake Bay Watershed Model. The “STAC Review of the Nutrient Inputs to the Watershed Model” (previously referred to...
From LCC to LCA Using a Hybrid Input Output Model – A Maritime Case Study
DEFF Research Database (Denmark)
Kjær, Louise Laumann; Pagoropoulos, Aris; Hauschild, Michael Zwicky
2015-01-01
As companies try to embrace life cycle thinking, Life Cycle Assessment (LCA) and Life Cycle Costing (LCC) have proven to be powerful tools. In this paper, an Environmental Input-Output model is used for analysis as it enables an LCA using the same economic input data as LCC. This approach helps...
Wideband Small-Signal Input dq Admittance Modeling of Six-Pulse Diode Rectifiers
DEFF Research Database (Denmark)
Yue, Xiaolong; Wang, Xiongfei; Blaabjerg, Frede
2018-01-01
This paper studies the wideband small-signal input dq admittance of six-pulse diode rectifiers. Considering the frequency coupling introduced by ripple frequency harmonics of d-and q-channel switching function, the proposed model successfully predicts the small-signal input dq admittance of six......-pulse diode rectifiers in high frequency regions that existing models fail to explain. Simulation and experimental results verify the accuracy of the proposed model....
A Design Method of Robust Servo Internal Model Control with Control Input Saturation
山田, 功; 舩見, 洋祐
2001-01-01
In the present paper, we examine a design method of robust servo Internal Model Control with control input saturation. First of all, we clarify the condition that Internal Model Control has robust servo characteristics for the system with control input saturation. From this consideration, we propose new design method of Internal Model Control with robust servo characteristics. A numerical example to illustrate the effectiveness of the proposed method is shown.
Tumor Growth Model with PK Input for Neuroblastoma Drug Development
2015-09-01
Your credit card order has been processed on Tuesday 2 December 2014 at 3:05 PM. Status: Complete 12/3/2014 Oasis, The Online Abstract Submission System...pharmacokinetic models. Toxicol Ind Health, 1997. 13(4): p. 407-84. PMID: 9249929 4. Davies, B. and T. Morris , Physiological parameters in laboratory animals and humans. Pharm Res, 1993. 10(7): p. 1093-5. PMID: 8378254
Description of the CONTAIN input model for the Dodewaard nuclear power plant
International Nuclear Information System (INIS)
Velema, E.J.
1992-02-01
This report describes the ECN standard CONTAIN input model for the Dodewaard Nuclear Power Plant (NPP) that has been developed by ECN. This standard input model will serve as a basis for analyses of the phenomena which may occur inside the Dodewaard containment in the event of a postulated severe accident. Boundary conditions for specific containment analyses can easily be implemented in the input model. as a result ECN will be able to respond quickly on requests for analyses from the utilities of the authorities. The report also includes brief descriptions of the Dodewaard NPP and the CONTAIN computer program. (author). 7 refs.; 5 figs.; 3 tabs
Little Higgs model limits from LHC - Input for Snowmass 2013
Energy Technology Data Exchange (ETDEWEB)
Reuter, Juergen; Tonini, Marco; Vries, Maikel. de
2013-07-15
The status of the most prominent model implementations of the Little Higgs paradigm, the Littlest Higgs with and without discrete T parity as well as the Simplest Little Higgs are reviewed. For this, we are taking into account a fit to 21 electroweak precision observables from LEP, SLC, Tevatron together with the full 25 fb{sup -1} of Higgs data reported from ATLAS and CMS at Moriond 2013. We also - focusing on the Littlest Higgs with T parity - include an outlook on corresponding direct searches at the 8 TeV LHC and their competitiveness with the EW and Higgs data regarding their exclusion potential. This contribution to the Snowmass procedure serves as a guideline which regions in parameter space of Little Higgs models are still compatible for the upcoming LHC runs and future experiments at the energy frontier. For this we propose two different benchmark scenarios for the Littlest Higgs with T parity, one with heavy mirror quarks, one with light ones.
Lessons learned using HAMMLAB experimenter systems: Input for HAMMLAB 2000 functional requirements
International Nuclear Information System (INIS)
Sebok, Angelia L.
1998-02-01
To design a usable HAMMLAB 2000, lessons learned from use of the existing HAMMLAB must be documented. User suggestions are important and must be taken into account. Different roles in HAMMLAB experimental sessions are identified, and major functions of each role were specified. A series of questionnaires were developed and administered to different users of HAMMLAB, each tailored to the individual job description. The results of those questionnaires are included in this report. Previous HAMMLAB modification recommendations were also reviewed, to provide input to this document. A trial experimental session was also conducted, to give an overview of the tasks in HAMMLAB. (author)
Modeling and Control of a Dual-Input Isolated Full-Bridge Boost Converter
DEFF Research Database (Denmark)
Zhang, Zhe; Thomsen, Ole Cornelius; Andersen, Michael A. E.
2012-01-01
In this paper, a steady-state model, a large-signal (LS) model and an ac small-signal (SS) model for a recently proposed dual-input transformer-isolated boost converter are derived respectively by the switching flow-graph (SFG) nonlinear modeling technique. Based upon the converter’s model...
Mechanistic interpretation of glass reaction: Input to kinetic model development
International Nuclear Information System (INIS)
Bates, J.K.; Ebert, W.L.; Bradley, J.P.; Bourcier, W.L.
1991-05-01
Actinide-doped SRL 165 type glass was reacted in J-13 groundwater at 90 degree C for times up to 278 days. The reaction was characterized by both solution and solid analyses. The glass was seen to react nonstoichiometrically with preferred leaching of alkali metals and boron. High resolution electron microscopy revealed the formation of a complex layer structure which became separated from the underlying glass as the reaction progressed. The formation of the layer and its effect on continued glass reaction are discussed with respect to the current model for glass reaction used in the EQ3/6 computer simulation. It is concluded that the layer formed after 278 days is not protective and may eventually become fractured and generate particulates that may be transported by liquid water. 5 refs., 5 figs. , 3 tabs
Miller, L. D.; Tom, C.; Nualchawee, K.
1977-01-01
A tropical forest area of Northern Thailand provided a test case of the application of the approach in more natural surroundings. Remote sensing imagery subjected to proper computer analysis has been shown to be a very useful means of collecting spatial data for the science of hydrology. Remote sensing products provide direct input to hydrologic models and practical data bases for planning large and small-scale hydrologic developments. Combining the available remote sensing imagery together with available map information in the landscape model provides a basis for substantial improvements in these applications.
Feeney, Daniel F; Meyer, François G; Noone, Nicholas; Enoka, Roger M
2017-10-01
Motor neurons appear to be activated with a common input signal that modulates the discharge activity of all neurons in the motor nucleus. It has proven difficult for neurophysiologists to quantify the variability in a common input signal, but characterization of such a signal may improve our understanding of how the activation signal varies across motor tasks. Contemporary methods of quantifying the common input to motor neurons rely on compiling discrete action potentials into continuous time series, assuming the motor pool acts as a linear filter, and requiring signals to be of sufficient duration for frequency analysis. We introduce a space-state model in which the discharge activity of motor neurons is modeled as inhomogeneous Poisson processes and propose a method to quantify an abstract latent trajectory that represents the common input received by motor neurons. The approach also approximates the variation in synaptic noise in the common input signal. The model is validated with four data sets: a simulation of 120 motor units, a pair of integrate-and-fire neurons with a Renshaw cell providing inhibitory feedback, the discharge activity of 10 integrate-and-fire neurons, and the discharge times of concurrently active motor units during an isometric voluntary contraction. The simulations revealed that a latent state-space model is able to quantify the trajectory and variability of the common input signal across all four conditions. When compared with the cumulative spike train method of characterizing common input, the state-space approach was more sensitive to the details of the common input current and was less influenced by the duration of the signal. The state-space approach appears to be capable of detecting rather modest changes in common input signals across conditions. NEW & NOTEWORTHY We propose a state-space model that explicitly delineates a common input signal sent to motor neurons and the physiological noise inherent in synaptic signal
Analyzing Requirements for and Designing a Collaborative Tool Based on Functional and User Input
National Research Council Canada - National Science Library
Curtis, Christopher K; Burneka, Chris; Whited, Vaughan; Kancler, David E
2006-01-01
.... Technology provides a multitude of potential collaborative tools and techniques, and this must be balanced against the requirement to leverage and/or support maintainer's existing interaction skills...
Modelling of Multi Input Transfer Function for Rainfall Forecasting in Batu City
Directory of Open Access Journals (Sweden)
Priska Arindya Purnama
2017-11-01
Full Text Available The aim of this research is to model and forecast the rainfall in Batu City using multi input transfer function model based on air temperature, humidity, wind speed and cloud. Transfer function model is a multivariate time series model which consists of an output series (Yt sequence expected to be effected by an input series (Xt and other inputs in a group called a noise series (Nt. Multi input transfer function model obtained is (b1,s1,r1 (b2,s2,r2 (b3,s3,r3 (b4,s4,r4(pn,qn = (0,0,0 (23,0,0 (1,2,0 (0,0,0 ([5,8],2 and shows that air temperature on t-day affects rainfall on t-day, rainfall on t-day is influenced by air humidity in the previous 23 days, rainfall on t-day is affected by wind speed in the previous day , and rainfall on day t is affected by clouds on day t. The results of rainfall forecasting in Batu City with multi input transfer function model can be said to be accurate, because it produces relatively small RMSE value. The value of RMSE data forecasting training is 7.7921 while forecasting data testing is 4.2184. Multi-input transfer function model is suitable for rainfall in Batu City.
International Nuclear Information System (INIS)
Scott, T.C.; Sisson, W.G.
1987-01-01
Experimental methods have been developed to measure droplet size characteristics and energy inputs associated with the rupture of aqueous droplets by high-intensity-pulsed electric fields. The combination of in situ microscope optics and high-speed video cameras allows reliable observation of liquid droplets down to 0.5 μm in size. Videotapes of electric-field-created emulsions reveal that average droplet sizes of less than 5 μm are easily obtained in such systems. Analysis of the energy inputs into the fluids indicates that the electric field method requires less than 1% of the energy required from mechanical agitation to create comparable droplet sizes. 11 refs., 3 figs., 2 tabs
Loss of GABAergic inputs in APP/PS1 mouse model of Alzheimer's disease
Directory of Open Access Journals (Sweden)
Tutu Oyelami
2014-04-01
Full Text Available Alzheimer's disease (AD is characterized by symptoms which include seizures, sleep disruption, loss of memory as well as anxiety in patients. Of particular importance is the possibility of preventing the progressive loss of neuronal projections in the disease. Transgenic mice overexpressing EOFAD mutant PS1 (L166P and mutant APP (APP KM670/671NL Swedish (APP/PS1 develop a very early and robust Amyloid pathology and display synaptic plasticity impairments and cognitive dysfunction. Here we investigated GABAergic neurotransmission, using multi-electrode array (MEA technology and pharmacological manipulation to quantify the effect of GABA Blockers on field excitatory postsynaptic potentials (fEPSP, and immunostaining of GABAergic neurons. Using MEA technology we confirm impaired LTP induction by high frequency stimulation in APPPS1 hippocampal CA1 region that was associated with reduced alteration of the pair pulse ratio after LTP induction. Synaptic dysfunction was also observed under manipulation of external Calcium concentration and input-output curve. Electrophysiological recordings from brain slice of CA1 hippocampus area, in the presence of GABAergic receptors blockers cocktails further demonstrated significant reduction in the GABAergic inputs in APP/PS1 mice. Moreover, immunostaining of GAD65 a specific marker for GABAergic neurons revealed reduction of the GABAergic inputs in CA1 area of the hippocampus. These results might be linked to increased seizure sensitivity, premature death and cognitive dysfunction in this animal model of AD. Further in depth analysis of GABAergic dysfunction in APP/PS1 mice is required and may open new perspectives for AD therapy by restoring GABAergic function.
Pandemic recovery analysis using the dynamic inoperability input-output model.
Santos, Joost R; Orsi, Mark J; Bond, Erik J
2009-12-01
Economists have long conceptualized and modeled the inherent interdependent relationships among different sectors of the economy. This concept paved the way for input-output modeling, a methodology that accounts for sector interdependencies governing the magnitude and extent of ripple effects due to changes in the economic structure of a region or nation. Recent extensions to input-output modeling have enhanced the model's capabilities to account for the impact of an economic perturbation; two such examples are the inoperability input-output model((1,2)) and the dynamic inoperability input-output model (DIIM).((3)) These models introduced sector inoperability, or the inability to satisfy as-planned production levels, into input-output modeling. While these models provide insights for understanding the impacts of inoperability, there are several aspects of the current formulation that do not account for complexities associated with certain disasters, such as a pandemic. This article proposes further enhancements to the DIIM to account for economic productivity losses resulting primarily from workforce disruptions. A pandemic is a unique disaster because the majority of its direct impacts are workforce related. The article develops a modeling framework to account for workforce inoperability and recovery factors. The proposed workforce-explicit enhancements to the DIIM are demonstrated in a case study to simulate a pandemic scenario in the Commonwealth of Virginia.
Development of an Input Model to MELCOR 1.8.5 for the Ringhals 3 PWR
International Nuclear Information System (INIS)
Nilsson, Lars
2004-12-01
An input file to the severe accident code MELCOR 1.8.5 has been developed for the Swedish pressurized water reactor Ringhals 3. The aim was to produce a file that can be used for calculations of various postulated severe accident scenarios, although the first application is specifically on cases involving large hydrogen production. The input file is rather detailed with individual modelling of all three cooling loops. The report describes the basis for the Ringhals 3 model and the input preparation step by step and is illustrated by nodalization schemes of the different plant systems. Present version of the report is restricted to the fundamental MELCOR input preparation, and therefore most of the figures of Ringhals 3 measurements and operating parameters are excluded here. These are given in another, complete version of the report, for limited distribution, which includes tables for pertinent data of all components. That version contains appendices with a complete listing of the input files as well as tables of data compiled from a RELAP5 file, that was a major basis for the MELCOR input for the cooling loops. The input was tested in steady-state calculations in order to simulate the initial conditions at current nominal operating conditions in Ringhals 3 for 2775 MW thermal power. The results of the steady-state calculations are presented in the report. Calculations with the MELCOR model will then be carried out of certain accident sequences for comparison with results from earlier MAAP4 calculations. That work will be reported separately
Astroza, Rodrigo; Ebrahimian, Hamed; Li, Yong; Conte, Joel P.
2017-09-01
A methodology is proposed to update mechanics-based nonlinear finite element (FE) models of civil structures subjected to unknown input excitation. The approach allows to jointly estimate unknown time-invariant model parameters of a nonlinear FE model of the structure and the unknown time histories of input excitations using spatially-sparse output response measurements recorded during an earthquake event. The unscented Kalman filter, which circumvents the computation of FE response sensitivities with respect to the unknown model parameters and unknown input excitations by using a deterministic sampling approach, is employed as the estimation tool. The use of measurement data obtained from arrays of heterogeneous sensors, including accelerometers, displacement sensors, and strain gauges is investigated. Based on the estimated FE model parameters and input excitations, the updated nonlinear FE model can be interrogated to detect, localize, classify, and assess damage in the structure. Numerically simulated response data of a three-dimensional 4-story 2-by-1 bay steel frame structure with six unknown model parameters subjected to unknown bi-directional horizontal seismic excitation, and a three-dimensional 5-story 2-by-1 bay reinforced concrete frame structure with nine unknown model parameters subjected to unknown bi-directional horizontal seismic excitation are used to illustrate and validate the proposed methodology. The results of the validation studies show the excellent performance and robustness of the proposed algorithm to jointly estimate unknown FE model parameters and unknown input excitations.
Modeling of heat transfer into a heat pipe for a localized heat input zone
International Nuclear Information System (INIS)
Rosenfeld, J.H.
1987-01-01
A general model is presented for heat transfer into a heat pipe using a localized heat input. Conduction in the wall of the heat pipe and boiling in the interior structure are treated simultaneously. The model is derived from circumferential heat transfer in a cylindrical heat pipe evaporator and for radial heat transfer in a circular disk with boiling from the interior surface. A comparison is made with data for a localized heat input zone. Agreement between the theory and the model is good. This model can be used for design purposes if a boiling correlation is available. The model can be extended to provide improved predictions of heat pipe performance
Moreland, Leslie D; Gore, Fiona M; Andre, Nathalie; Cairncross, Sandy; Ensink, Jeroen H J
2016-08-01
There are significant gaps in information about the inputs required to effectively extend and sustain hygiene promotion activities to improve people's health outcomes through water, sanitation and hygiene (WASH) interventions. We sought to analyse current country and global trends in the use of key inputs required for effective and sustainable implementation of hygiene promotion to help guide hygiene promotion policy and decision-making after 2015. Data collected in response to the GLAAS 2013/2014 survey from 93 countries of 94 were included, and responses were analysed for 12 questions assessing the inputs and enabling environment for hygiene promotion under four thematic areas. Data were included and analysed from 20 External Support Agencies (ESA) of 23 collected through self-administered surveys. Firstly, the data showed a large variation in the way in which hygiene promotion is defined and what constitutes key activities in this area. Secondly, challenges to implement hygiene promotion are considerable: include poor implementation of policies and plans, weak coordination mechanisms, human resource limitations and a lack of available hygiene promotion budget data. Despite the proven benefits of hand washing with soap, a critical hygiene-related factor in minimising infection, GLAAS 2013/2014 survey data showed that hygiene promotion remains a neglected component of WASH. Additional research to identify the context-specific strategies and inputs required to enhance the effectiveness of hygiene promotion at scale are needed. Improved data collection methods are also necessary to advance the availability and reliability of hygiene-specific information. © 2016 John Wiley & Sons Ltd.
Input-output model for MACCS nuclear accident impacts estimation¹
Energy Technology Data Exchange (ETDEWEB)
Outkin, Alexander V. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bixler, Nathan E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Vargas, Vanessa N [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2015-01-27
Since the original economic model for MACCS was developed, better quality economic data (as well as the tools to gather and process it) and better computational capabilities have become available. The update of the economic impacts component of the MACCS legacy model will provide improved estimates of business disruptions through the use of Input-Output based economic impact estimation. This paper presents an updated MACCS model, bases on Input-Output methodology, in which economic impacts are calculated using the Regional Economic Accounting analysis tool (REAcct) created at Sandia National Laboratories. This new GDP-based model allows quick and consistent estimation of gross domestic product (GDP) losses due to nuclear power plant accidents. This paper outlines the steps taken to combine the REAcct Input-Output-based model with the MACCS code, describes the GDP loss calculation, and discusses the parameters and modeling assumptions necessary for the estimation of long-term effects of nuclear power plant accidents.
Multivariate Self-Exciting Threshold Autoregressive Models with eXogenous Input
Addo, Peter Martey
2014-01-01
This study defines a multivariate Self--Exciting Threshold Autoregressive with eXogenous input (MSETARX) models and present an estimation procedure for the parameters. The conditions for stationarity of the nonlinear MSETARX models is provided. In particular, the efficiency of an adaptive parameter estimation algorithm and LSE (least squares estimate) algorithm for this class of models is then provided via simulations.
Reconstruction of neuronal input through modeling single-neuron dynamics and computations
International Nuclear Information System (INIS)
Qin, Qing; Wang, Jiang; Yu, Haitao; Deng, Bin; Chan, Wai-lok
2016-01-01
Mathematical models provide a mathematical description of neuron activity, which can better understand and quantify neural computations and corresponding biophysical mechanisms evoked by stimulus. In this paper, based on the output spike train evoked by the acupuncture mechanical stimulus, we present two different levels of models to describe the input-output system to achieve the reconstruction of neuronal input. The reconstruction process is divided into two steps: First, considering the neuronal spiking event as a Gamma stochastic process. The scale parameter and the shape parameter of Gamma process are, respectively, defined as two spiking characteristics, which are estimated by a state-space method. Then, leaky integrate-and-fire (LIF) model is used to mimic the response system and the estimated spiking characteristics are transformed into two temporal input parameters of LIF model, through two conversion formulas. We test this reconstruction method by three different groups of simulation data. All three groups of estimates reconstruct input parameters with fairly high accuracy. We then use this reconstruction method to estimate the non-measurable acupuncture input parameters. Results show that under three different frequencies of acupuncture stimulus conditions, estimated input parameters have an obvious difference. The higher the frequency of the acupuncture stimulus is, the higher the accuracy of reconstruction is.
Reconstruction of neuronal input through modeling single-neuron dynamics and computations
Energy Technology Data Exchange (ETDEWEB)
Qin, Qing; Wang, Jiang; Yu, Haitao; Deng, Bin, E-mail: dengbin@tju.edu.cn; Chan, Wai-lok [School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072 (China)
2016-06-15
Mathematical models provide a mathematical description of neuron activity, which can better understand and quantify neural computations and corresponding biophysical mechanisms evoked by stimulus. In this paper, based on the output spike train evoked by the acupuncture mechanical stimulus, we present two different levels of models to describe the input-output system to achieve the reconstruction of neuronal input. The reconstruction process is divided into two steps: First, considering the neuronal spiking event as a Gamma stochastic process. The scale parameter and the shape parameter of Gamma process are, respectively, defined as two spiking characteristics, which are estimated by a state-space method. Then, leaky integrate-and-fire (LIF) model is used to mimic the response system and the estimated spiking characteristics are transformed into two temporal input parameters of LIF model, through two conversion formulas. We test this reconstruction method by three different groups of simulation data. All three groups of estimates reconstruct input parameters with fairly high accuracy. We then use this reconstruction method to estimate the non-measurable acupuncture input parameters. Results show that under three different frequencies of acupuncture stimulus conditions, estimated input parameters have an obvious difference. The higher the frequency of the acupuncture stimulus is, the higher the accuracy of reconstruction is.
2010-06-01
... peak flow as part of an SSO rulemaking to allow for a holistic and integrated approach to reducing SSOs... Charles Glass, EPA Headquarters, Office of Water, Office of Wastewater Management at tel.: 202-564-0418 or... principles with the following suggested NPDES permit requirements: (1) Capacity, management, operation and...
International Nuclear Information System (INIS)
Stripling, H.F.; McClarren, R.G.; Kuranz, C.C.; Grosskopf, M.J.; Rutter, E.; Torralva, B.R.
2011-01-01
We present a method for calibrating the uncertain inputs to a computer model using available experimental data. The goal of the procedure is to produce posterior distributions of the uncertain inputs such that when samples from the posteriors are used as inputs to future model runs, the model is more likely to replicate (or predict) the experimental response. The calibration is performed by sampling the space of the uncertain inputs, using the computer model (or, more likely, an emulator for the computer model) to assign weights to the samples, and applying the weights to produce the posterior distributions and generate predictions of new experiments within confidence bounds. The method is similar to the Markov chain Monte Carlo (MCMC) calibration methods with independent sampling with the exception that we generate samples beforehand and replace the candidate acceptance routine with a weighting scheme. We apply our method to the calibration of a Hyades 2D model of laser energy deposition in beryllium. We employ a Bayesian Multivariate Adaptive Regression Splines (BMARS) emulator as a surrogate for Hyades 2D. We treat a range of uncertainties in our system, including uncertainties in the experimental inputs, experimental measurement error, and systematic experimental timing errors. The results of the calibration are posterior distributions that both agree with intuition and improve the accuracy and decrease the uncertainty in experimental predictions. (author)
Sensitivity Analysis of Input Parameters for a Dynamic Food Chain Model DYNACON
International Nuclear Information System (INIS)
Hwang, Won Tae; Lee, Geun Chang; Han, Moon Hee; Cho, Gyu Seong
2000-01-01
The sensitivity analysis of input parameters for a dynamic food chain model DYNACON was conducted as a function of deposition data for the long-lived radionuclides ( 137 Cs, 90 Sr). Also, the influence of input parameters for the short and long-terms contamination of selected foodstuffs (cereals, leafy vegetables, milk) was investigated. The input parameters were sampled using the LHS technique, and their sensitivity indices represented as PRCC. The sensitivity index was strongly dependent on contamination period as well as deposition data. In case of deposition during the growing stages of plants, the input parameters associated with contamination by foliar absorption were relatively important in long-term contamination as well as short-term contamination. They were also important in short-term contamination in case of deposition during the non-growing stages. In long-term contamination, the influence of input parameters associated with foliar absorption decreased, while the influence of input parameters associated with root uptake increased. These phenomena were more remarkable in case of the deposition of non-growing stages than growing stages, and in case of 90 Sr deposition than 137 Cs deposition. In case of deposition during growing stages of pasture, the input parameters associated with the characteristics of cattle such as feed-milk transfer factor and daily intake rate of cattle were relatively important in contamination of milk
Directory of Open Access Journals (Sweden)
Iván Plaza-Menacho
2016-12-01
Full Text Available Receptor tyrosine kinases exhibit a variety of activation mechanisms despite highly homologous catalytic domains. Such diversity arises through coupling of extracellular ligand-binding portions with highly variable intracellular sequences flanking the tyrosine kinase domain and specific patterns of autophosphorylation sites. Here, we show that the juxtamembrane (JM segment enhances RET catalytic domain activity through Y687. This phospho-site is also required by the JM region to rescue an otherwise catalytically deficient RET activation-loop mutant lacking tyrosines. Structure-function analyses identified interactions between the JM hinge, αC helix, and an unconventional activation-loop serine phosphorylation site that engages the HRD motif and promotes phospho-tyrosine conformational accessibility and regulatory spine assembly. We demonstrate that this phospho-S909 arises from an intrinsic RET dual-specificity kinase activity and show that an equivalent serine is required for RET signaling in Drosophila. Our findings reveal dual-specificity and allosteric components for the mechanism of RET activation and signaling with direct implications for drug discovery.
Multi input single output model predictive control of non-linear bio-polymerization process
Energy Technology Data Exchange (ETDEWEB)
Arumugasamy, Senthil Kumar; Ahmad, Z. [School of Chemical Engineering, Univerisiti Sains Malaysia, Engineering Campus, Seri Ampangan,14300 Nibong Tebal, Seberang Perai Selatan, Pulau Pinang (Malaysia)
2015-05-15
This paper focuses on Multi Input Single Output (MISO) Model Predictive Control of bio-polymerization process in which mechanistic model is developed and linked with the feedforward neural network model to obtain a hybrid model (Mechanistic-FANN) of lipase-catalyzed ring-opening polymerization of ε-caprolactone (ε-CL) for Poly (ε-caprolactone) production. In this research, state space model was used, in which the input to the model were the reactor temperatures and reactor impeller speeds and the output were the molecular weight of polymer (M{sub n}) and polymer polydispersity index. State space model for MISO created using System identification tool box of Matlab™. This state space model is used in MISO MPC. Model predictive control (MPC) has been applied to predict the molecular weight of the biopolymer and consequently control the molecular weight of biopolymer. The result shows that MPC is able to track reference trajectory and give optimum movement of manipulated variable.
International Nuclear Information System (INIS)
Kim, Jong Hyun; Seong, Poong Hyun
2002-01-01
This paper proposes a quantitative approach to modeling the information processing of NPP operators. The aim of this work is to derive the amount of the information processed during a certain control task under input information overload. We primarily develop the information processing model having multiple stages, which contains information flow. Then the uncertainty of the information is quantified using the Conant's model, a kind of information theory. We also investigate the applicability of this approach to quantifying the information reduction of operators under the input information overload
System Identification for Nonlinear FOPDT Model with Input-Dependent Dead-Time
DEFF Research Database (Denmark)
Sun, Zhen; Yang, Zhenyu
2011-01-01
An on-line iterative method of system identification for a kind of nonlinear FOPDT system is proposed in the paper. The considered nonlinear FOPDT model is an extension of the standard FOPDT model by means that its dead time depends on the input signal and the other parameters are time dependent....
Regional disaster impact analysis: comparing Input-Output and Computable General Equilibrium models
Koks, E.E.; Carrera, L.; Jonkeren, O.; Aerts, J.C.J.H.; Husby, T.G.; Thissen, M.; Standardi, G.; Mysiak, J.
2016-01-01
A variety of models have been applied to assess the economic losses of disasters, of which the most common ones are input-output (IO) and computable general equilibrium (CGE) models. In addition, an increasing number of scholars have developed hybrid approaches: one that combines both or either of
DIMITRI 1.0: Beschrijving en toepassing van een dynamisch input-output model
Wilting HC; Blom WF; Thomas R; Idenburg AM; LAE
2001-01-01
DIMITRI, the Dynamic Input-Output Model to study the Impacts of Technology Related Innovations, was developed in the framework of the RIVM Environment and Economy project to answer questions about interrelationships between economy, technology and the environment. DIMITRI, a meso-economic model,
Logistics flows and enterprise input-output models: aggregate and disaggregate analysis
Albino, V.; Yazan, Devrim; Messeni Petruzzelli, A.; Okogbaa, O.G.
2011-01-01
In the present paper, we propose the use of enterprise input-output (EIO) models to describe and analyse the logistics flows considering spatial issues and related environmental effects associated with production and transportation processes. In particular, transportation is modelled as a specific
Modeling the short-run effect of fiscal stimuli on GDP : A new semi-closed input-output model
Chen, Quanrun; Dietzenbacher, Erik; Los, Bart; Yang, Cuihong
In this study, we propose a new semi-closed input-output model, which reconciles input-output analysis with modern consumption theories. It can simulate changes in household consumption behavior when exogenous stimulus policies lead to higher disposable income levels. It is useful for quantifying
Modeling the short-run effect of fiscal stimuli on GDP : A new semi-closed input-output model
Chen, Quanrun; Dietzenbacher, Erik; Los, Bart; Yang, Cuihong
2016-01-01
In this study, we propose a new semi-closed input-output model, which reconciles input-output analysis with modern consumption theories. It can simulate changes in household consumption behavior when exogenous stimulus policies lead to higher disposable income levels. It is useful for quantifying
Modelling pesticide leaching under climate change: parameter vs. climate input uncertainty
Directory of Open Access Journals (Sweden)
K. Steffens
2014-02-01
Full Text Available Assessing climate change impacts on pesticide leaching requires careful consideration of different sources of uncertainty. We investigated the uncertainty related to climate scenario input and its importance relative to parameter uncertainty of the pesticide leaching model. The pesticide fate model MACRO was calibrated against a comprehensive one-year field data set for a well-structured clay soil in south-western Sweden. We obtained an ensemble of 56 acceptable parameter sets that represented the parameter uncertainty. Nine different climate model projections of the regional climate model RCA3 were available as driven by different combinations of global climate models (GCM, greenhouse gas emission scenarios and initial states of the GCM. The future time series of weather data used to drive the MACRO model were generated by scaling a reference climate data set (1970–1999 for an important agricultural production area in south-western Sweden based on monthly change factors for 2070–2099. 30 yr simulations were performed for different combinations of pesticide properties and application seasons. Our analysis showed that both the magnitude and the direction of predicted change in pesticide leaching from present to future depended strongly on the particular climate scenario. The effect of parameter uncertainty was of major importance for simulating absolute pesticide losses, whereas the climate uncertainty was relatively more important for predictions of changes of pesticide losses from present to future. The climate uncertainty should be accounted for by applying an ensemble of different climate scenarios. The aggregated ensemble prediction based on both acceptable parameterizations and different climate scenarios has the potential to provide robust probabilistic estimates of future pesticide losses.
Directory of Open Access Journals (Sweden)
Daniela Molinari
2017-09-01
Full Text Available IN-depth SYnthetic Model for Flood Damage Estimation (INSYDE is a model for the estimation of flood damage to residential buildings at the micro-scale. This study investigates the sensitivity of INSYDE to the accuracy of input data. Starting from the knowledge of input parameters at the scale of individual buildings for a case study, the level of detail of input data is progressively downgraded until the condition in which a representative value is defined for all inputs at the census block scale. The analysis reveals that two conditions are required to limit the errors in damage estimation: the representativeness of representatives values with respect to micro-scale values and the local knowledge of the footprint area of the buildings, being the latter the main extensive variable adopted by INSYDE. Such a result allows for extending the usability of the model at the meso-scale, also in different countries, depending on the availability of aggregated building data.
Input modelling of ASSERT-PV V2R8M1 for RUFIC fuel bundle
Energy Technology Data Exchange (ETDEWEB)
Park, Joo Hwan; Suk, Ho Chun
2001-02-01
This report describes the input modelling for subchannel analysis of CANFLEX-RU (RUFIC) fuel bundle which has been developed for an advanced fuel bundle of CANDU-6 reactor, using ASSERT-PV V2R8M1 code. Execution file of ASSERT-PV V2R8M1 code was recently transferred from AECL under JRDC agreement between KAERI and AECL. SSERT-PV V2R8M1 which is quite different from COBRA-IV-i code has been developed for thermalhydraulic analysis of CANDU-6 fuel channel by subchannel analysis method and updated so that 43-element CANDU fuel geometry can be applied. Hence, ASSERT code can be applied to the subchannel analysis of RUFIC fuel bundle. The present report was prepared for ASSERT input modelling of RUFIC fuel bundle. Since the ASSERT results highly depend on user's input modelling, the calculation results may be quite different among the user's input models. The objective of the present report is the preparation of detail description of the background information for input data and gives credibility of the calculation results.
Input modelling of ASSERT-PV V2R8M1 for RUFIC fuel bundle
Energy Technology Data Exchange (ETDEWEB)
Park, Joo Hwan; Suk, Ho Chun
2001-02-01
This report describes the input modelling for subchannel analysis of CANFLEX-RU (RUFIC) fuel bundle which has been developed for an advanced fuel bundle of CANDU-6 reactor, using ASSERT-PV V2R8M1 code. Execution file of ASSERT-PV V2R8M1 code was recently transferred from AECL under JRDC agreement between KAERI and AECL. SSERT-PV V2R8M1 which is quite different from COBRA-IV-i code has been developed for thermalhydraulic analysis of CANDU-6 fuel channel by subchannel analysis method and updated so that 43-element CANDU fuel geometry can be applied. Hence, ASSERT code can be applied to the subchannel analysis of RUFIC fuel bundle. The present report was prepared for ASSERT input modelling of RUFIC fuel bundle. Since the ASSERT results highly depend on user's input modelling, the calculation results may be quite different among the user's input models. The objective of the present report is the preparation of detail description of the background information for input data and gives credibility of the calculation results.
Input modelling of ASSERT-PV V2R8M1 for RUFIC fuel bundle
International Nuclear Information System (INIS)
Park, Joo Hwan; Suk, Ho Chun
2001-02-01
This report describes the input modelling for subchannel analysis of CANFLEX-RU (RUFIC) fuel bundle which has been developed for an advanced fuel bundle of CANDU-6 reactor, using ASSERT-PV V2R8M1 code. Execution file of ASSERT-PV V2R8M1 code was recently transferred from AECL under JRDC agreement between KAERI and AECL. SSERT-PV V2R8M1 which is quite different from COBRA-IV-i code has been developed for thermalhydraulic analysis of CANDU-6 fuel channel by subchannel analysis method and updated so that 43-element CANDU fuel geometry can be applied. Hence, ASSERT code can be applied to the subchannel analysis of RUFIC fuel bundle. The present report was prepared for ASSERT input modelling of RUFIC fuel bundle. Since the ASSERT results highly depend on user's input modelling, the calculation results may be quite different among the user's input models. The objective of the present report is the preparation of detail description of the background information for input data and gives credibility of the calculation results
Hierarchical Bayesian modelling of mobility metrics for hazard model input calibration
Calder, Eliza; Ogburn, Sarah; Spiller, Elaine; Rutarindwa, Regis; Berger, Jim
2015-04-01
In this work we present a method to constrain flow mobility input parameters for pyroclastic flow models using hierarchical Bayes modeling of standard mobility metrics such as H/L and flow volume etc. The advantage of hierarchical modeling is that it can leverage the information in global dataset for a particular mobility metric in order to reduce the uncertainty in modeling of an individual volcano, especially important where individual volcanoes have only sparse datasets. We use compiled pyroclastic flow runout data from Colima, Merapi, Soufriere Hills, Unzen and Semeru volcanoes, presented in an open-source database FlowDat (https://vhub.org/groups/massflowdatabase). While the exact relationship between flow volume and friction varies somewhat between volcanoes, dome collapse flows originating from the same volcano exhibit similar mobility relationships. Instead of fitting separate regression models for each volcano dataset, we use a variation of the hierarchical linear model (Kass and Steffey, 1989). The model presents a hierarchical structure with two levels; all dome collapse flows and dome collapse flows at specific volcanoes. The hierarchical model allows us to assume that the flows at specific volcanoes share a common distribution of regression slopes, then solves for that distribution. We present comparisons of the 95% confidence intervals on the individual regression lines for the data set from each volcano as well as those obtained from the hierarchical model. The results clearly demonstrate the advantage of considering global datasets using this technique. The technique developed is demonstrated here for mobility metrics, but can be applied to many other global datasets of volcanic parameters. In particular, such methods can provide a means to better contain parameters for volcanoes for which we only have sparse data, a ubiquitous problem in volcanology.
Development of an Input Model to MELCOR 1.8.5 for the Oskarshamn 3 BWR
Energy Technology Data Exchange (ETDEWEB)
Nilsson, Lars [Lentek, Nykoeping (Sweden)
2006-05-15
An input model has been prepared to the code MELCOR 1.8.5 for the Swedish Oskarshamn 3 Boiling Water Reactor (O3). This report describes the modelling work and the various files which comprise the input deck. Input data are mainly based on original drawings and system descriptions made available by courtesy of OKG AB. Comparison and check of some primary system data were made against an O3 input file to the SCDAP/RELAP5 code that was used in the SARA project. Useful information was also obtained from the FSAR (Final Safety Analysis Report) for O3 and the SKI report '2003 Stoerningshandboken BWR'. The input models the O3 reactor at its current state with the operating power of 3300 MW{sub th}. One aim with this work is that the MELCOR input could also be used for power upgrading studies. All fuel assemblies are thus assumed to consist of the new Westinghouse-Atom's SVEA-96 Optima2 fuel. MELCOR is a severe accident code developed by Sandia National Laboratory under contract from the U.S. Nuclear Regulatory Commission (NRC). MELCOR is a successor to STCP (Source Term Code Package) and has thus a long evolutionary history. The input described here is adapted to the latest version 1.8.5 available when the work began. It was released the year 2000, but a new version 1.8.6 was distributed recently. Conversion to the new version is recommended. (During the writing of this report still another code version, MELCOR 2.0, has been announced to be released within short.) In version 1.8.5 there is an option to describe the accident progression in the lower plenum and the melt-through of the reactor vessel bottom in more detail by use of the Bottom Head (BH) package developed by Oak Ridge National Laboratory especially for BWRs. This is in addition to the ordinary MELCOR COR package. Since problems arose running with the BH input two versions of the O3 input deck were produced, a NONBH and a BH deck. The BH package is no longer a separate package in the new 1
Directory of Open Access Journals (Sweden)
Jesús Caja
2016-06-01
Full Text Available A method for analysing the effect of different hypotheses about the type of the input quantities distributions of a measurement model is presented here so that the developed algorithms can be simplified. As an example, a model of indirect measurements with optical coordinate measurement machine was employed to evaluate these different hypotheses. As a result of the different experiments, the assumption that the different variables of the model can be modelled as normal distributions is proved.
How model and input uncertainty impact maize yield simulations in West Africa
Waha, Katharina; Huth, Neil; Carberry, Peter; Wang, Enli
2015-02-01
Crop models are common tools for simulating crop yields and crop production in studies on food security and global change. Various uncertainties however exist, not only in the model design and model parameters, but also and maybe even more important in soil, climate and management input data. We analyze the performance of the point-scale crop model APSIM and the global scale crop model LPJmL with different climate and soil conditions under different agricultural management in the low-input maize-growing areas of Burkina Faso, West Africa. We test the models’ response to different levels of input information from little to detailed information on soil, climate (1961-2000) and agricultural management and compare the models’ ability to represent the observed spatial (between locations) and temporal variability (between years) in crop yields. We found that the resolution of different soil, climate and management information influences the simulated crop yields in both models. However, the difference between models is larger than between input data and larger between simulations with different climate and management information than between simulations with different soil information. The observed spatial variability can be represented well from both models even with little information on soils and management but APSIM simulates a higher variation between single locations than LPJmL. The agreement of simulated and observed temporal variability is lower due to non-climatic factors e.g. investment in agricultural research and development between 1987 and 1991 in Burkina Faso which resulted in a doubling of maize yields. The findings of our study highlight the importance of scale and model choice and show that the most detailed input data does not necessarily improve model performance.
Realistic modeling of seismic input for megacities and large urban areas
International Nuclear Information System (INIS)
Panza, Giuliano F.; Alvarez, Leonardo; Aoudia, Abdelkrim
2002-06-01
The project addressed the problem of pre-disaster orientation: hazard prediction, risk assessment, and hazard mapping, in connection with seismic activity and man-induced vibrations. The definition of realistic seismic input has been obtained from the computation of a wide set of time histories and spectral information, corresponding to possible seismotectonic scenarios for different source and structural models. The innovative modeling technique, that constitutes the common tool to the entire project, takes into account source, propagation and local site effects. This is done using first principles of physics about wave generation and propagation in complex media, and does not require to resort to convolutive approaches, that have been proven to be quite unreliable, mainly when dealing with complex geological structures, the most interesting from the practical point of view. In fact, several techniques that have been proposed to empirically estimate the site effects using observations convolved with theoretically computed signals corresponding to simplified models, supply reliable information about the site response to non-interfering seismic phases. They are not adequate in most of the real cases, when the seismic sequel is formed by several interfering waves. The availability of realistic numerical simulations enables us to reliably estimate the amplification effects even in complex geological structures, exploiting the available geotechnical, lithological, geophysical parameters, topography of the medium, tectonic, historical, palaeoseismological data, and seismotectonic models. The realistic modeling of the ground motion is a very important base of knowledge for the preparation of groundshaking scenarios that represent a valid and economic tool for the seismic microzonation. This knowledge can be very fruitfully used by civil engineers in the design of new seismo-resistant constructions and in the reinforcement of the existing built environment, and, therefore
Fentzke, J. T.; Janches, D.; Sparks, J. J.
2009-05-01
In this work, we use a semi-empirical model of the micrometeor input function (MIF) together with meteor head-echo observations obtained with two high power and large aperture (HPLA) radars, the 430 MHz Arecibo Observatory (AO) radar in Puerto Rico (18°N, 67°W) and the 450 MHz Poker flat incoherent scatter radar (PFISR) in Alaska (65°N, 147°W), to study the seasonal and geographical dependence of the meteoric flux in the upper atmosphere. The model, recently developed by Janches et al. [2006a. Modeling the global micrometeor input function in the upper atmosphere observed by high power and large aperture radars. Journal of Geophysical Research 111] and Fentzke and Janches [2008. A semi-empirical model of the contribution from sporadic meteoroid sources on the meteor input function observed at arecibo. Journal of Geophysical Research (Space Physics) 113 (A03304)], includes an initial mass flux that is provided by the six known meteor sources (i.e. orbital families of dust) as well as detailed modeling of meteoroid atmospheric entry and ablation physics. In addition, we use a simple ionization model to treat radar sensitivity issues by defining minimum electron volume density production thresholds required in the meteor head-echo plasma for detection. This simplified approach works well because we use observations from two radars with similar frequencies, but different sensitivities and locations. This methodology allows us to explore the initial input of particles and how it manifests in different parts of the MLT as observed by these instruments without the need to invoke more sophisticated plasma models, which are under current development. The comparisons between model predictions and radar observations show excellent agreement between diurnal, seasonal, and latitudinal variability of the detected meteor rate and radial velocity distributions, allowing us to understand how individual meteoroid populations contribute to the overall flux at a particular
Variance-based sensitivity indices for stochastic models with correlated inputs
Energy Technology Data Exchange (ETDEWEB)
Kala, Zdeněk [Brno University of Technology, Faculty of Civil Engineering, Department of Structural Mechanics Veveří St. 95, ZIP 602 00, Brno (Czech Republic)
2015-03-10
The goal of this article is the formulation of the principles of one of the possible strategies in implementing correlation between input random variables so as to be usable for algorithm development and the evaluation of Sobol’s sensitivity analysis. With regard to the types of stochastic computational models, which are commonly found in structural mechanics, an algorithm was designed for effective use in conjunction with Monte Carlo methods. Sensitivity indices are evaluated for all possible permutations of the decorrelation procedures for input parameters. The evaluation of Sobol’s sensitivity coefficients is illustrated on an example in which a computational model was used for the analysis of the resistance of a steel bar in tension with statistically dependent input geometric characteristics.
Variance-based sensitivity indices for stochastic models with correlated inputs
International Nuclear Information System (INIS)
Kala, Zdeněk
2015-01-01
The goal of this article is the formulation of the principles of one of the possible strategies in implementing correlation between input random variables so as to be usable for algorithm development and the evaluation of Sobol’s sensitivity analysis. With regard to the types of stochastic computational models, which are commonly found in structural mechanics, an algorithm was designed for effective use in conjunction with Monte Carlo methods. Sensitivity indices are evaluated for all possible permutations of the decorrelation procedures for input parameters. The evaluation of Sobol’s sensitivity coefficients is illustrated on an example in which a computational model was used for the analysis of the resistance of a steel bar in tension with statistically dependent input geometric characteristics
Input-output and energy demand models for Ireland: Data collection report. Part 1: EXPLOR
Energy Technology Data Exchange (ETDEWEB)
Henry, E W; Scott, S
1981-01-01
Data are presented in support of EXPLOR, an input-output economic model for Ireland. The data follow the listing of exogenous data-sets used by Batelle in document X11/515/77. Data are given for 1974, 1980, and 1985 and consist of household consumption, final demand-production, and commodity prices. (ACR)
Comparison of plasma input and reference tissue models for analysing [(11)C]flumazenil studies
Klumpers, Ursula M. H.; Veltman, Dick J.; Boellaard, Ronald; Comans, Emile F.; Zuketto, Cassandra; Yaqub, Maqsood; Mourik, Jurgen E. M.; Lubberink, Mark; Hoogendijk, Witte J. G.; Lammertsma, Adriaan A.
2008-01-01
A single-tissue compartment model with plasma input is the established method for analysing [(11)C]flumazenil ([(11)C]FMZ) studies. However, arterial cannulation and measurement of metabolites are time-consuming. Therefore, a reference tissue approach is appealing, but this approach has not been
Input-Output model for waste management plan for Nigeria | Njoku ...
African Journals Online (AJOL)
An Input-Output Model for Waste Management Plan has been developed for Nigeria based on Leontief concept and life cycle analysis. Waste was considered as source of pollution, loss of resources, and emission of green house gasses from bio-chemical treatment and decomposition, with negative impact on the ...
The economic impact of multifunctional agriculture in Dutch regions: An input-output model
Heringa, P.W.; Heide, van der C.M.; Heijman, W.J.M.
2013-01-01
Multifunctional agriculture is a broad concept lacking a precise definition. Moreover, little is known about the societal importance of multifunctional agriculture. This paper is an empirical attempt to fill this gap. To this end, an input-output model was constructed for multifunctional agriculture
The economic impact of multifunctional agriculture in The Netherlands: A regional input-output model
Heringa, P.W.; Heide, van der C.M.; Heijman, W.J.M.
2012-01-01
Multifunctional agriculture is a broad concept lacking a precise and uniform definition. Moreover, little is known about the societal importance of multifunctional agriculture. This paper is an empirical attempt to fill this gap. To this end, an input-output model is constructed for multifunctional
Linear and quadratic models of point process systems: contributions of patterned input to output.
Lindsay, K A; Rosenberg, J R
2012-08-01
In the 1880's Volterra characterised a nonlinear system using a functional series connecting continuous input and continuous output. Norbert Wiener, in the 1940's, circumvented problems associated with the application of Volterra series to physical problems by deriving from it a new series of terms that are mutually uncorrelated with respect to Gaussian processes. Subsequently, Brillinger, in the 1970's, introduced a point-process analogue of Volterra's series connecting point-process inputs to the instantaneous rate of point-process output. We derive here a new series from this analogue in which its terms are mutually uncorrelated with respect to Poisson processes. This new series expresses how patterned input in a spike train, represented by third-order cross-cumulants, is converted into the instantaneous rate of an output point-process. Given experimental records of suitable duration, the contribution of arbitrary patterned input to an output process can, in principle, be determined. Solutions for linear and quadratic point-process models with one and two inputs and a single output are investigated. Our theoretical results are applied to isolated muscle spindle data in which the spike trains from the primary and secondary endings from the same muscle spindle are recorded in response to stimulation of one and then two static fusimotor axons in the absence and presence of a random length change imposed on the parent muscle. For a fixed mean rate of input spikes, the analysis of the experimental data makes explicit which patterns of two input spikes contribute to an output spike. Copyright © 2012 Elsevier Ltd. All rights reserved.
Design, Fabrication, and Modeling of a Novel Dual-Axis Control Input PZT Gyroscope.
Chang, Cheng-Yang; Chen, Tsung-Lin
2017-10-31
Conventional gyroscopes are equipped with a single-axis control input, limiting their performance. Although researchers have proposed control algorithms with dual-axis control inputs to improve gyroscope performance, most have verified the control algorithms through numerical simulations because they lacked practical devices with dual-axis control inputs. The aim of this study was to design a piezoelectric gyroscope equipped with a dual-axis control input so that researchers may experimentally verify those control algorithms in future. Designing a piezoelectric gyroscope with a dual-axis control input is more difficult than designing a conventional gyroscope because the control input must be effective over a broad frequency range to compensate for imperfections, and the multiple mode shapes in flexural deformations complicate the relation between flexural deformation and the proof mass position. This study solved these problems by using a lead zirconate titanate (PZT) material, introducing additional electrodes for shielding, developing an optimal electrode pattern, and performing calibrations of undesired couplings. The results indicated that the fabricated device could be operated at 5.5±1 kHz to perform dual-axis actuations and position measurements. The calibration of the fabricated device was completed by system identifications of a new dynamic model including gyroscopic motions, electromechanical coupling, mechanical coupling, electrostatic coupling, and capacitive output impedance. Finally, without the assistance of control algorithms, the "open loop sensitivity" of the fabricated gyroscope was 1.82 μV/deg/s with a nonlinearity of 9.5% full-scale output. This sensitivity is comparable with those of other PZT gyroscopes with single-axis control inputs.
Design, Fabrication, and Modeling of a Novel Dual-Axis Control Input PZT Gyroscope
Directory of Open Access Journals (Sweden)
Cheng-Yang Chang
2017-10-01
Full Text Available Conventional gyroscopes are equipped with a single-axis control input, limiting their performance. Although researchers have proposed control algorithms with dual-axis control inputs to improve gyroscope performance, most have verified the control algorithms through numerical simulations because they lacked practical devices with dual-axis control inputs. The aim of this study was to design a piezoelectric gyroscope equipped with a dual-axis control input so that researchers may experimentally verify those control algorithms in future. Designing a piezoelectric gyroscope with a dual-axis control input is more difficult than designing a conventional gyroscope because the control input must be effective over a broad frequency range to compensate for imperfections, and the multiple mode shapes in flexural deformations complicate the relation between flexural deformation and the proof mass position. This study solved these problems by using a lead zirconate titanate (PZT material, introducing additional electrodes for shielding, developing an optimal electrode pattern, and performing calibrations of undesired couplings. The results indicated that the fabricated device could be operated at 5.5±1 kHz to perform dual-axis actuations and position measurements. The calibration of the fabricated device was completed by system identifications of a new dynamic model including gyroscopic motions, electromechanical coupling, mechanical coupling, electrostatic coupling, and capacitive output impedance. Finally, without the assistance of control algorithms, the “open loop sensitivity” of the fabricated gyroscope was 1.82 μV/deg/s with a nonlinearity of 9.5% full-scale output. This sensitivity is comparable with those of other PZT gyroscopes with single-axis control inputs.
Input-constrained model predictive control via the alternating direction method of multipliers
DEFF Research Database (Denmark)
Sokoler, Leo Emil; Frison, Gianluca; Andersen, Martin S.
2014-01-01
This paper presents an algorithm, based on the alternating direction method of multipliers, for the convex optimal control problem arising in input-constrained model predictive control. We develop an efficient implementation of the algorithm for the extended linear quadratic control problem (LQCP......) with input and input-rate limits. The algorithm alternates between solving an extended LQCP and a highly structured quadratic program. These quadratic programs are solved using a Riccati iteration procedure, and a structure-exploiting interior-point method, respectively. The computational cost per iteration...... is quadratic in the dimensions of the controlled system, and linear in the length of the prediction horizon. Simulations show that the approach proposed in this paper is more than an order of magnitude faster than several state-of-the-art quadratic programming algorithms, and that the difference in computation...
ANALYSIS OF THE BANDUNG CHANGES EXCELLENT POTENTIAL THROUGH INPUT-OUTPUT MODEL USING INDEX LE MASNE
Directory of Open Access Journals (Sweden)
Teti Sofia Yanti
2017-03-01
Full Text Available Input-Output Table is arranged to present an overview of the interrelationships and interdependence between units of activity (sector production in the whole economy. Therefore the input-output models are complete and comprehensive analytical tool. The usefulness of input-output tables is an analysis of the economic structure of the national/regional level which covers the structure of production and value-added (GDP of each sector. For the purposes of planning and evaluation of the outcomes of development that is comprehensive both national and smaller scale (district/city, a model for regional development planning approach can use the model input-output analysis. Analysis of Bandung Economic Structure did use Le Masne index, by comparing the coefficients of the technology in 2003 and 2008, of which nearly 50% change. The trade sector has grown very conspicuous than other areas, followed by the services of road transport and air transport services, the development priorities and investment Bandung should be directed to these areas, this is due to these areas can be thrust and be power attraction for the growth of other areas. The areas that experienced the highest decrease was Industrial Chemicals and Goods from Chemistry, followed by Oil and Refinery Industry Textile Industry Except For Garment.
DEFF Research Database (Denmark)
Rasmussen, Bjarne D.; Jakobsen, Arne
1999-01-01
Mathematical models of refrigeration systems are often based on a coupling of component models forming a “closed loop” type of system model. In these models the coupling structure of the component models represents the actual flow path of refrigerant in the system. Very often numerical...... instabilities prevent the practical use of such a system model for more than one input/output combination and for other magnitudes of refrigerating capacities.A higher numerical robustness of system models can be achieved by making a model for the refrigeration cycle the core of the system model and by using...... variables with narrow definition intervals for the exchange of information between the cycle model and the component models.The advantages of the cycle-oriented method are illustrated by an example showing the refrigeration cycle similarities between two very different refrigeration systems....
Liu, Bing; Xu, Ling; Kang, Baolin
2013-01-01
By using pollution model and impulsive delay differential equation, we formulate a pest control model with stage structure for natural enemy in a polluted environment by introducing a constant periodic pollutant input and killing pest at different fixed moments and investigate the dynamics of such a system. We assume only that the natural enemies are affected by pollution, and we choose the method to kill the pest without harming natural enemies. Sufficient conditions for global attractivity ...
CONSTRUCTION OF A DYNAMIC INPUT-OUTPUT MODEL WITH A HUMAN CAPITAL BLOCK
Directory of Open Access Journals (Sweden)
Baranov A. O.
2017-03-01
Full Text Available The accumulation of human capital is an important factor of economic growth. It seems to be useful to include «human capital» as a factor of a macroeconomic model, as it helps to take into account the quality differentiation of the workforce. Most of the models usually distinguish labor force by the levels of education, while some of the factors remain unaccounted. Among them are health status and culture development level, which influence productivity level as well as gross product reproduction. Inclusion of the human capital block to the interindustry model can help to make it more reliable for economic development forecasting. The article presents a mathematical description of the extended dynamic input-output model (DIOM with a human capital block. The extended DIOM is based on the Input-Output Model from The KAMIN system (the System of Integrated Analyses of Interindustrial Information developed at the Institute of Economics and Industrial Engineering of the Siberian Branch of the Academy of Sciences of the Russian Federation and at the Novosibirsk State University. The extended input-output model can be used to analyze and forecast development of Russian economy.
Walterscheid, R. L.; Brinkman, D. G.; Clemmons, J. H.; Hecht, J. H.; Lessard, M.; Fritz, B.; Hysell, D. L.; Clausen, L. B. N.; Moen, J.; Oksavik, K.; Yeoman, T. K.
2017-12-01
The Earth's magnetospheric cusp provides direct access of energetic particles to the thermosphere. These particles produce ionization and kinetic (particle) heating of the atmosphere. The increased ionization coupled with enhanced electric fields in the cusp produces increased Joule heating and ion drag forcing. These energy inputs cause large wind and temperature changes in the cusp region. The Rocket Experiment for Neutral Upwelling -2 (RENU-2) launched from Andoya, Norway at 0745UT on 13 December 2015 into the ionosphere-thermosphere beneath the magnetic cusp. It made measurements of the energy inputs (e.g., precipitating particles, electric fields) and the thermospheric response to these energy inputs (e.g., neutral density and temperature, neutral winds). Complementary ground based measurements were made. In this study, we use a high resolution two-dimensional time-dependent non hydrostatic nonlinear dynamical model driven by rocket and ground based measurements of the energy inputs to simulate the thermospheric response during the RENU-2 flight. Model simulations will be compared to the corresponding measurements of the thermosphere to see what they reveal about thermospheric structure and the nature of magnetosphere-ionosphere-thermosphere coupling in the cusp. Acknowledgements: This material is based upon work supported by the National Aeronautics and Space Administration under Grants: NNX16AH46G and NNX13AJ93G. This research was also supported by The Aerospace Corporation's Technical Investment program
Input vs. Output Taxation—A DSGE Approach to Modelling Resource Decoupling
Directory of Open Access Journals (Sweden)
Marek Antosiewicz
2016-04-01
Full Text Available Environmental taxes constitute a crucial instrument aimed at reducing resource use through lower production losses, resource-leaner products, and more resource-efficient production processes. In this paper we focus on material use and apply a multi-sector dynamic stochastic general equilibrium (DSGE model to study two types of taxation: tax on material inputs used by industry, energy, construction, and transport sectors, and tax on output of these sectors. We allow for endogenous adoption of resource-saving technologies. We calibrate the model for the EU27 area using an IO matrix. We consider taxation introduced from 2021 and simulate its impact until 2050. We compare the taxes along their ability to induce reduction in material use and raise revenue. We also consider the effect of spending this revenue on reduction of labour taxation. We find that input and output taxation create contrasting incentives and have opposite effects on resource efficiency. The material input tax induces investment in efficiency-improving technology which, in the long term, results in GDP and employment by 15%–20% higher than in the case of a comparable output tax. We also find that using revenues to reduce taxes on labour has stronger beneficial effects for the input tax.
Application of a Linear Input/Output Model to Tankless Water Heaters
Energy Technology Data Exchange (ETDEWEB)
Butcher T.; Schoenbauer, B.
2011-12-31
In this study, the applicability of a linear input/output model to gas-fired, tankless water heaters has been evaluated. This simple model assumes that the relationship between input and output, averaged over both active draw and idle periods, is linear. This approach is being applied to boilers in other studies and offers the potential to make a small number of simple measurements to obtain the model parameters. These parameters can then be used to predict performance under complex load patterns. Both condensing and non-condensing water heaters have been tested under a very wide range of load conditions. It is shown that this approach can be used to reproduce performance metrics, such as the energy factor, and can be used to evaluate the impacts of alternative draw patterns and conditions.
DEFF Research Database (Denmark)
Bigoni, Daniele; Engsig-Karup, Allan Peter; Eskilsson, Claes
2016-01-01
A major challenge in next-generation industrial applications is to improve numerical analysis by quantifying uncertainties in predictions. In this work we present a formulation of a fully nonlinear and dispersive potential flow water wave model with random inputs for the probabilistic description...... at different points in the parameter space, allowing for the reuse of existing simulation software. The choice of the applied methods is driven by the number of uncertain input parameters and by the fact that finding the solution of the considered model is computationally intensive. We revisit experimental...... benchmarks often used for validation of deterministic water wave models. Based on numerical experiments and assumed uncertainties in boundary data, our analysis reveals that some of the known discrepancies from deterministic simulation in comparison with experimental measurements could be partially explained...
New Results on Robust Model Predictive Control for Time-Delay Systems with Input Constraints
Directory of Open Access Journals (Sweden)
Qing Lu
2014-01-01
Full Text Available This paper investigates the problem of model predictive control for a class of nonlinear systems subject to state delays and input constraints. The time-varying delay is considered with both upper and lower bounds. A new model is proposed to approximate the delay. And the uncertainty is polytopic type. For the state-feedback MPC design objective, we formulate an optimization problem. Under model transformation, a new model predictive controller is designed such that the robust asymptotical stability of the closed-loop system can be guaranteed. Finally, the applicability of the presented results are demonstrated by a practical example.
Chowdhury, S.; Sharma, A.
2005-12-01
Hydrological model inputs are often derived from measurements at point locations taken at discrete time steps. The nature of uncertainty associated with such inputs is thus a function of the quality and number of measurements available in time. A change in these characteristics (such as a change in the number of rain-gauge inputs used to derive spatially averaged rainfall) results in inhomogeneity in the associated distributional profile. Ignoring such uncertainty can lead to models that aim to simulate based on the observed input variable instead of the true measurement, resulting in a biased representation of the underlying system dynamics as well as an increase in both bias and the predictive uncertainty in simulations. This is especially true of cases where the nature of uncertainty likely in the future is significantly different to that in the past. Possible examples include situations where the accuracy of the catchment averaged rainfall has increased substantially due to an increase in the rain-gauge density, or accuracy of climatic observations (such as sea surface temperatures) increased due to the use of more accurate remote sensing technologies. We introduce here a method to ascertain the true value of parameters in the presence of additive uncertainty in model inputs. This method, known as SIMulation EXtrapolation (SIMEX, [Cook, 1994]) operates on the basis of an empirical relationship between parameters and the level of additive input noise (or uncertainty). The method starts with generating a series of alternate realisations of model inputs by artificially adding white noise in increasing multiples of the known error variance. The alternate realisations lead to alternate sets of parameters that are increasingly biased with respect to the truth due to the increased variability in the inputs. Once several such realisations have been drawn, one is able to formulate an empirical relationship between the parameter values and the level of additive noise
Kennedy, Curtis E; Turley, James P
2011-10-24
Thousands of children experience cardiac arrest events every year in pediatric intensive care units. Most of these children die. Cardiac arrest prediction tools are used as part of medical emergency team evaluations to identify patients in standard hospital beds that are at high risk for cardiac arrest. There are no models to predict cardiac arrest in pediatric intensive care units though, where the risk of an arrest is 10 times higher than for standard hospital beds. Current tools are based on a multivariable approach that does not characterize deterioration, which often precedes cardiac arrests. Characterizing deterioration requires a time series approach. The purpose of this study is to propose a method that will allow for time series data to be used in clinical prediction models. Successful implementation of these methods has the potential to bring arrest prediction to the pediatric intensive care environment, possibly allowing for interventions that can save lives and prevent disabilities. We reviewed prediction models from nonclinical domains that employ time series data, and identified the steps that are necessary for building predictive models using time series clinical data. We illustrate the method by applying it to the specific case of building a predictive model for cardiac arrest in a pediatric intensive care unit. Time course analysis studies from genomic analysis provided a modeling template that was compatible with the steps required to develop a model from clinical time series data. The steps include: 1) selecting candidate variables; 2) specifying measurement parameters; 3) defining data format; 4) defining time window duration and resolution; 5) calculating latent variables for candidate variables not directly measured; 6) calculating time series features as latent variables; 7) creating data subsets to measure model performance effects attributable to various classes of candidate variables; 8) reducing the number of candidate features; 9
A non-linear dimension reduction methodology for generating data-driven stochastic input models
Ganapathysubramanian, Baskar; Zabaras, Nicholas
2008-06-01
Stochastic analysis of random heterogeneous media (polycrystalline materials, porous media, functionally graded materials) provides information of significance only if realistic input models of the topology and property variations are used. This paper proposes a framework to construct such input stochastic models for the topology and thermal diffusivity variations in heterogeneous media using a data-driven strategy. Given a set of microstructure realizations (input samples) generated from given statistical information about the medium topology, the framework constructs a reduced-order stochastic representation of the thermal diffusivity. This problem of constructing a low-dimensional stochastic representation of property variations is analogous to the problem of manifold learning and parametric fitting of hyper-surfaces encountered in image processing and psychology. Denote by M the set of microstructures that satisfy the given experimental statistics. A non-linear dimension reduction strategy is utilized to map M to a low-dimensional region, A. We first show that M is a compact manifold embedded in a high-dimensional input space Rn. An isometric mapping F from M to a low-dimensional, compact, connected set A⊂Rd(d≪n) is constructed. Given only a finite set of samples of the data, the methodology uses arguments from graph theory and differential geometry to construct the isometric transformation F:M→A. Asymptotic convergence of the representation of M by A is shown. This mapping F serves as an accurate, low-dimensional, data-driven representation of the property variations. The reduced-order model of the material topology and thermal diffusivity variations is subsequently used as an input in the solution of stochastic partial differential equations that describe the evolution of dependant variables. A sparse grid collocation strategy (Smolyak algorithm) is utilized to solve these stochastic equations efficiently. We showcase the methodology by constructing low
A non-linear dimension reduction methodology for generating data-driven stochastic input models
International Nuclear Information System (INIS)
Ganapathysubramanian, Baskar; Zabaras, Nicholas
2008-01-01
Stochastic analysis of random heterogeneous media (polycrystalline materials, porous media, functionally graded materials) provides information of significance only if realistic input models of the topology and property variations are used. This paper proposes a framework to construct such input stochastic models for the topology and thermal diffusivity variations in heterogeneous media using a data-driven strategy. Given a set of microstructure realizations (input samples) generated from given statistical information about the medium topology, the framework constructs a reduced-order stochastic representation of the thermal diffusivity. This problem of constructing a low-dimensional stochastic representation of property variations is analogous to the problem of manifold learning and parametric fitting of hyper-surfaces encountered in image processing and psychology. Denote by M the set of microstructures that satisfy the given experimental statistics. A non-linear dimension reduction strategy is utilized to map M to a low-dimensional region, A. We first show that M is a compact manifold embedded in a high-dimensional input space R n . An isometric mapping F from M to a low-dimensional, compact, connected set A is contained in R d (d<< n) is constructed. Given only a finite set of samples of the data, the methodology uses arguments from graph theory and differential geometry to construct the isometric transformation F:M→A. Asymptotic convergence of the representation of M by A is shown. This mapping F serves as an accurate, low-dimensional, data-driven representation of the property variations. The reduced-order model of the material topology and thermal diffusivity variations is subsequently used as an input in the solution of stochastic partial differential equations that describe the evolution of dependant variables. A sparse grid collocation strategy (Smolyak algorithm) is utilized to solve these stochastic equations efficiently. We showcase the methodology
Caridakis, G; Karpouzis, K; Drosopoulos, A; Kollias, S
2012-12-01
Modeling and recognizing spatiotemporal, as opposed to static input, is a challenging task since it incorporates input dynamics as part of the problem. The vast majority of existing methods tackle the problem as an extension of the static counterpart, using dynamics, such as input derivatives, at feature level and adopting artificial intelligence and machine learning techniques originally designed for solving problems that do not specifically address the temporal aspect. The proposed approach deals with temporal and spatial aspects of the spatiotemporal domain in a discriminative as well as coupling manner. Self Organizing Maps (SOM) model the spatial aspect of the problem and Markov models its temporal counterpart. Incorporation of adjacency, both in training and classification, enhances the overall architecture with robustness and adaptability. The proposed scheme is validated both theoretically, through an error propagation study, and experimentally, on the recognition of individual signs, performed by different, native Greek Sign Language users. Results illustrate the architecture's superiority when compared to Hidden Markov Model techniques and variations both in terms of classification performance and computational cost. Copyright © 2012 Elsevier Ltd. All rights reserved.
Input dependent cell assembly dynamics in a model of the striatal medium spiny neuron network
Directory of Open Access Journals (Sweden)
Adam ePonzi
2012-03-01
Full Text Available The striatal medium spiny neuron (MSNs network is sparsely connected with fairly weak GABAergic collaterals receiving an excitatory glutamatergic cortical projection. Peri stimulus time histograms (PSTH of MSN population response investigated in various experimental studies display strong firing rate modulations distributed throughout behavioural task epochs. In previous work we have shown by numerical simulation that sparse random networks of inhibitory spiking neurons with characteristics appropriate for UP state MSNs form cell assemblies which fire together coherently in sequences on long behaviourally relevant timescales when the network receives a fixed pattern of constant input excitation. Here we first extend that model to the case where cortical excitation is composed of many independent noisy Poisson processes and demonstrate that cell assembly dynamics is still observed when the input is sufficiently weak. However if cortical excitation strength is increased more regularly firing and completely quiescent cells are found, which depend on the cortical stimulation. Subsequently we further extend previous work to consider what happens when the excitatory input varies as it would in when the animal is engaged in behavior. We investigate how sudden switches in excitation interact with network generated patterned activity. We show that sequences of cell assembly activations can be locked to the excitatory input sequence and delineate the range of parameters where this behaviour is shown. Model cell population PSTH display both stimulus and temporal specificity, with large population firing rate modulations locked to elapsed time from task events. Thus the random network can generate a large diversity of temporally evolving stimulus dependent responses even though the input is fixed between switches. We suggest the MSN network is well suited to the generation of such slow coherent task dependent response
Input dependent cell assembly dynamics in a model of the striatal medium spiny neuron network.
Ponzi, Adam; Wickens, Jeff
2012-01-01
The striatal medium spiny neuron (MSN) network is sparsely connected with fairly weak GABAergic collaterals receiving an excitatory glutamatergic cortical projection. Peri-stimulus time histograms (PSTH) of MSN population response investigated in various experimental studies display strong firing rate modulations distributed throughout behavioral task epochs. In previous work we have shown by numerical simulation that sparse random networks of inhibitory spiking neurons with characteristics appropriate for UP state MSNs form cell assemblies which fire together coherently in sequences on long behaviorally relevant timescales when the network receives a fixed pattern of constant input excitation. Here we first extend that model to the case where cortical excitation is composed of many independent noisy Poisson processes and demonstrate that cell assembly dynamics is still observed when the input is sufficiently weak. However if cortical excitation strength is increased more regularly firing and completely quiescent cells are found, which depend on the cortical stimulation. Subsequently we further extend previous work to consider what happens when the excitatory input varies as it would when the animal is engaged in behavior. We investigate how sudden switches in excitation interact with network generated patterned activity. We show that sequences of cell assembly activations can be locked to the excitatory input sequence and outline the range of parameters where this behavior is shown. Model cell population PSTH display both stimulus and temporal specificity, with large population firing rate modulations locked to elapsed time from task events. Thus the random network can generate a large diversity of temporally evolving stimulus dependent responses even though the input is fixed between switches. We suggest the MSN network is well suited to the generation of such slow coherent task dependent response which could be utilized by the animal in behavior.
Directory of Open Access Journals (Sweden)
Koichi Kobayashi
2013-01-01
Full Text Available We propose computational techniques for model predictive control of large-scale systems with both continuous-valued control inputs and discrete-valued control inputs, which are a class of hybrid systems. In the proposed method, we introduce the notion of virtual control inputs, which are obtained by relaxing discrete-valued control inputs to continuous variables. In online computation, first, we find continuous-valued control inputs and virtual control inputs minimizing a cost function. Next, using the obtained virtual control inputs, only discrete-valued control inputs at the current time are computed in each subsystem. In addition, we also discuss the effect of quantization errors. Finally, the effectiveness of the proposed method is shown by a numerical example. The proposed method enables us to reduce and decentralize the computation load.
On the redistribution of existing inputs using the spherical frontier dea model
Directory of Open Access Journals (Sweden)
José Virgilio Guedes de Avellar
2010-04-01
Full Text Available The Spherical Frontier DEA Model (SFM (Avellar et al., 2007 was developed to be used when one wants to fairly distribute a new and fixed input to a group of Decision Making Units (DMU's. SFM's basic idea is to distribute this new and fixed input in such a way that every DMU will be placed on an efficiency frontier with a spherical shape. We use SFM to analyze the problems that appear when one wants to redistribute an already existing input to a group of DMU's such that the total sum of this input will remain constant. We also analyze the case in which this total sum may vary.O Modelo de Fronteira Esférica (MFE (Avellar et al., 2007 foi desenvolvido para ser usado quando se deseja distribuir de maneira justa um novo insumo a um conjunto de unidades tomadoras de decisão (DMU's, da sigla em inglês, Decision Making Units. A ideia básica do MFE é a de distribuir esse novo insumo de maneira que todas as DMU's sejam colocadas numa fronteira de eficiência com um formato esférico. Neste artigo, usamos MFE para analisar o problema que surge quando se deseja redistribuir um insumo já existente para um grupo de DMU's de tal forma que a soma desse insumo para todas as DMU's se mantenha constante. Também analisamos o caso em que essa soma possa variar.
Directory of Open Access Journals (Sweden)
Peter A Appleby
Full Text Available Recently, we presented a study of adult neurogenesis in a simplified hippocampal memory model. The network was required to encode and decode memory patterns despite changing input statistics. We showed that additive neurogenesis was a more effective adaptation strategy compared to neuronal turnover and conventional synaptic plasticity as it allowed the network to respond to changes in the input statistics while preserving representations of earlier environments. Here we extend our model to include realistic, spatially driven input firing patterns in the form of grid cells in the entorhinal cortex. We compare network performance across a sequence of spatial environments using three distinct adaptation strategies: conventional synaptic plasticity, where the network is of fixed size but the connectivity is plastic; neuronal turnover, where the network is of fixed size but units in the network may die and be replaced; and additive neurogenesis, where the network starts out with fewer initial units but grows over time. We confirm that additive neurogenesis is a superior adaptation strategy when using realistic, spatially structured input patterns. We then show that a more biologically plausible neurogenesis rule that incorporates cell death and enhanced plasticity of new granule cells has an overall performance significantly better than any one of the three individual strategies operating alone. This adaptation rule can be tailored to maximise performance of the network when operating as either a short- or long-term memory store. We also examine the time course of adult neurogenesis over the lifetime of an animal raised under different hypothetical rearing conditions. These growth profiles have several distinct features that form a theoretical prediction that could be tested experimentally. Finally, we show that place cells can emerge and refine in a realistic manner in our model as a direct result of the sparsification performed by the dentate gyrus
Zhao, Wencai; Li, Juan; Zhang, Tongqian; Meng, Xinzhu; Zhang, Tonghua
2017-07-01
Taking into account of both white and colored noises, a stochastic mathematical model with impulsive toxicant input is formulated. Based on this model, we investigate dynamics, such as the persistence and ergodicity, of plant infectious disease model with Markov conversion in a polluted environment. The thresholds of extinction and persistence in mean are obtained. By using Lyapunov functions, we prove that the system is ergodic and has a stationary distribution under certain sufficient conditions. Finally, numerical simulations are employed to illustrate our theoretical analysis.
International Nuclear Information System (INIS)
Kovtonyuk, A.; Petruzzi, A.; D'Auria, F.
2015-01-01
The objective of the Post-BEMUSE Reflood Model Input Uncertainty Methods (PREMIUM) benchmark is to progress on the issue of the quantification of the uncertainty of the physical models in system thermal-hydraulic codes by considering a concrete case: the physical models involved in the prediction of core reflooding. The PREMIUM benchmark consists of five phases. This report presents the results of Phase II dedicated to the identification of the uncertain code parameters associated with physical models used in the simulation of reflooding conditions. This identification is made on the basis of the Test 216 of the FEBA/SEFLEX programme according to the following steps: - identification of influential phenomena; - identification of the associated physical models and parameters, depending on the used code; - quantification of the variation range of identified input parameters through a series of sensitivity calculations. A procedure for the identification of potentially influential code input parameters has been set up in the Specifications of Phase II of PREMIUM benchmark. A set of quantitative criteria has been as well proposed for the identification of influential IP and their respective variation range. Thirteen participating organisations, using 8 different codes (7 system thermal-hydraulic codes and 1 sub-channel module of a system thermal-hydraulic code) submitted Phase II results. The base case calculations show spread in predicted cladding temperatures and quench front propagation that has been characterized. All the participants, except one, predict a too fast quench front progression. Besides, the cladding temperature time trends obtained by almost all the participants show oscillatory behaviour which may have numeric origins. Adopted criteria for identification of influential input parameters differ between the participants: some organisations used the set of criteria proposed in Specifications 'as is', some modified the quantitative thresholds
A New Ensemble of Perturbed-Input-Parameter Simulations by the Community Atmosphere Model
Energy Technology Data Exchange (ETDEWEB)
Covey, C; Brandon, S; Bremer, P T; Domyancis, D; Garaizar, X; Johannesson, G; Klein, R; Klein, S A; Lucas, D D; Tannahill, J; Zhang, Y
2011-10-27
Uncertainty quantification (UQ) is a fundamental challenge in the numerical simulation of Earth's weather and climate, and other complex systems. It entails much more than attaching defensible error bars to predictions: in particular it includes assessing low-probability but high-consequence events. To achieve these goals with models containing a large number of uncertain input parameters, structural uncertainties, etc., raw computational power is needed. An automated, self-adapting search of the possible model configurations is also useful. Our UQ initiative at the Lawrence Livermore National Laboratory has produced the most extensive set to date of simulations from the US Community Atmosphere Model. We are examining output from about 3,000 twelve-year climate simulations generated with a specialized UQ software framework, and assessing the model's accuracy as a function of 21 to 28 uncertain input parameter values. Most of the input parameters we vary are related to the boundary layer, clouds, and other sub-grid scale processes. Our simulations prescribe surface boundary conditions (sea surface temperatures and sea ice amounts) to match recent observations. Fully searching this 21+ dimensional space is impossible, but sensitivity and ranking algorithms can identify input parameters having relatively little effect on a variety of output fields, either individually or in nonlinear combination. Bayesian statistical constraints, employing a variety of climate observations as metrics, also seem promising. Observational constraints will be important in the next step of our project, which will compute sea surface temperatures and sea ice interactively, and will study climate change due to increasing atmospheric carbon dioxide.
The Canadian Defence Input-Output Model DIO Version 4.41
2011-09-01
Request to develop DND tailored Input/Output Model. Electronic communication from AllenWeldon to Team Leader, Defence Economics Team onMarch 12, 2011...and similar contain- ers 166 1440 Handbags, wallets and similar personal articles such as eyeglass and cigar cases and coin purses 167 1450 Cotton yarn...408 3600 Radar and radio navigation equipment 409 3619 Semi-conductors 410 3621 Printed circuits 411 3622 Integrated circuits 412 3623 Other electronic
Urban Landscape Characterization Using Remote Sensing Data For Input into Air Quality Modeling
Quattrochi, Dale A.; Estes, Maurice G., Jr.; Crosson, William; Khan, Maudood
2005-01-01
The urban landscape is inherently complex and this complexity is not adequately captured in air quality models that are used to assess whether urban areas are in attainment of EPA air quality standards, particularly for ground level ozone. This inadequacy of air quality models to sufficiently respond to the heterogeneous nature of the urban landscape can impact how well these models predict ozone pollutant levels over metropolitan areas and ultimately, whether cities exceed EPA ozone air quality standards. We are exploring the utility of high-resolution remote sensing data and urban growth projections as improved inputs to meteorological and air quality models focusing on the Atlanta, Georgia metropolitan area as a case study. The National Land Cover Dataset at 30m resolution is being used as the land use/land cover input and aggregated to the 4km scale for the MM5 mesoscale meteorological model and the Community Multiscale Air Quality (CMAQ) modeling schemes. Use of these data have been found to better characterize low density/suburban development as compared with USGS 1 km land use/land cover data that have traditionally been used in modeling. Air quality prediction for future scenarios to 2030 is being facilitated by land use projections using a spatial growth model. Land use projections were developed using the 2030 Regional Transportation Plan developed by the Atlanta Regional Commission. This allows the State Environmental Protection agency to evaluate how these transportation plans will affect future air quality.
Development of an Input Suite for an Orthotropic Composite Material Model
Hoffarth, Canio; Shyamsunder, Loukham; Khaled, Bilal; Rajan, Subramaniam; Goldberg, Robert K.; Carney, Kelly S.; Dubois, Paul; Blankenhorn, Gunther
2017-01-01
An orthotropic three-dimensional material model suitable for use in modeling impact tests has been developed that has three major components elastic and inelastic deformations, damage and failure. The material model has been implemented as MAT213 into a special version of LS-DYNA and uses tabulated data obtained from experiments. The prominent features of the constitutive model are illustrated using a widely-used aerospace composite the T800S3900-2B[P2352W-19] BMS8-276 Rev-H-Unitape fiber resin unidirectional composite. The input for the deformation model consists of experimental data from 12 distinct experiments at a known temperature and strain rate: tension and compression along all three principal directions, shear in all three principal planes, and off axis tension or compression tests in all three principal planes, along with other material constants. There are additional input associated with the damage and failure models. The steps in using this model are illustrated composite characterization tests, verification tests and a validation test. The results show that the developed and implemented model is stable and yields acceptably accurate results.
International Nuclear Information System (INIS)
Wang, Lijuan; Yan, Yong; Wang, Xue; Wang, Tao
2017-01-01
Input variable selection is an essential step in the development of data-driven models for environmental, biological and industrial applications. Through input variable selection to eliminate the irrelevant or redundant variables, a suitable subset of variables is identified as the input of a model. Meanwhile, through input variable selection the complexity of the model structure is simplified and the computational efficiency is improved. This paper describes the procedures of the input variable selection for the data-driven models for the measurement of liquid mass flowrate and gas volume fraction under two-phase flow conditions using Coriolis flowmeters. Three advanced input variable selection methods, including partial mutual information (PMI), genetic algorithm-artificial neural network (GA-ANN) and tree-based iterative input selection (IIS) are applied in this study. Typical data-driven models incorporating support vector machine (SVM) are established individually based on the input candidates resulting from the selection methods. The validity of the selection outcomes is assessed through an output performance comparison of the SVM based data-driven models and sensitivity analysis. The validation and analysis results suggest that the input variables selected from the PMI algorithm provide more effective information for the models to measure liquid mass flowrate while the IIS algorithm provides a fewer but more effective variables for the models to predict gas volume fraction. (paper)
International Nuclear Information System (INIS)
Serfontein, Dawid E.; Mulder, Eben J.; Reitsma, Frederik
2014-01-01
A computer code was developed for the semi-automatic translation of input models for the VSOP-A diffusion neutronics simulation code to the format of the newer VSOP 99/05 code. In this paper, this algorithm is presented as a generic method for producing codes for the automatic translation of input models from the format of one code version to another, or even to that of a completely different code. Normally, such translations are done manually. However, input model files, such as for the VSOP codes, often are very large and may consist of many thousands of numeric entries that make no particular sense to the human eye. Therefore the task, of for instance nuclear regulators, to verify the accuracy of such translated files can be very difficult and cumbersome. This may cause translation errors not to be picked up, which may have disastrous consequences later on when a reactor with such a faulty design is built. Therefore a generic algorithm for producing such automatic translation codes may ease the translation and verification process to a great extent. It will also remove human error from the process, which may significantly enhance the accuracy and reliability of the process. The developed algorithm also automatically creates a verification log file which permanently record the names and values of each variable used, as well as the list of meanings of all the possible values. This should greatly facilitate reactor licensing applications
Energy Technology Data Exchange (ETDEWEB)
Serfontein, Dawid E., E-mail: Dawid.Serfontein@nwu.ac.za [School of Mechanical and Nuclear Engineering, North West University (PUK-Campus), PRIVATE BAG X6001 (Internal Post Box 360), Potchefstroom 2520 (South Africa); Mulder, Eben J. [School of Mechanical and Nuclear Engineering, North West University (South Africa); Reitsma, Frederik [Calvera Consultants (South Africa)
2014-05-01
A computer code was developed for the semi-automatic translation of input models for the VSOP-A diffusion neutronics simulation code to the format of the newer VSOP 99/05 code. In this paper, this algorithm is presented as a generic method for producing codes for the automatic translation of input models from the format of one code version to another, or even to that of a completely different code. Normally, such translations are done manually. However, input model files, such as for the VSOP codes, often are very large and may consist of many thousands of numeric entries that make no particular sense to the human eye. Therefore the task, of for instance nuclear regulators, to verify the accuracy of such translated files can be very difficult and cumbersome. This may cause translation errors not to be picked up, which may have disastrous consequences later on when a reactor with such a faulty design is built. Therefore a generic algorithm for producing such automatic translation codes may ease the translation and verification process to a great extent. It will also remove human error from the process, which may significantly enhance the accuracy and reliability of the process. The developed algorithm also automatically creates a verification log file which permanently record the names and values of each variable used, as well as the list of meanings of all the possible values. This should greatly facilitate reactor licensing applications.
Directory of Open Access Journals (Sweden)
Keller Alevtina
2017-01-01
Full Text Available The article considers the issue of allocation of depreciation costs in the dynamic inputoutput model of an industrial enterprise. Accounting the depreciation costs in such a model improves the policy of fixed assets management. It is particularly relevant to develop the algorithm for the allocation of depreciation costs in the construction of dynamic input-output model of an industrial enterprise, since such enterprises have a significant amount of fixed assets. Implementation of terms of the adequacy of such an algorithm itself allows: evaluating the appropriateness of investments in fixed assets, studying the final financial results of an industrial enterprise, depending on management decisions in the depreciation policy. It is necessary to note that the model in question for the enterprise is always degenerate. It is caused by the presence of zero rows in the matrix of capital expenditures by lines of structural elements unable to generate fixed assets (part of the service units, households, corporate consumers. The paper presents the algorithm for the allocation of depreciation costs for the model. This algorithm was developed by the authors and served as the basis for further development of the flowchart for subsequent implementation with use of software. The construction of such algorithm and its use for dynamic input-output models of industrial enterprises is actualized by international acceptance of the effectiveness of the use of input-output models for national and regional economic systems. This is what allows us to consider that the solutions discussed in the article are of interest to economists of various industrial enterprises.
DEFF Research Database (Denmark)
Sin, Gürkan; Gernaey, Krist; Eliasson Lantz, Anna
2009-01-01
The uncertainty and sensitivity analysis are evaluated for their usefulness as part of the model-building within Process Analytical Technology applications. A mechanistic model describing a batch cultivation of Streptomyces coelicolor for antibiotic production was used as case study. The input...... compared to the large uncertainty observed in the antibiotic and off-gas CO2 predictions. The output uncertainty was observed to be lower during the exponential growth phase, while higher in the stationary and death phases - meaning the model describes some periods better than others. To understand which...... promising for helping to build reliable mechanistic models and to interpret the model outputs properly. These tools make part of good modeling practice, which can contribute to successful PAT applications for increased process understanding, operation and control purposes. © 2009 American Institute...
Dalsgaard, Lise; Astrup, Rasmus; Antón-Fernández, Clara; Borgen, Signe Kynding; Breidenbach, Johannes; Lange, Holger; Lehtonen, Aleksi; Liski, Jari
2016-01-01
Boreal forests contain 30% of the global forest carbon with the majority residing in soils. While challenging to quantify, soil carbon changes comprise a significant, and potentially increasing, part of the terrestrial carbon cycle. Thus, their estimation is important when designing forest-based climate change mitigation strategies and soil carbon change estimates are required for the reporting of greenhouse gas emissions. Organic matter decomposition varies with climate in complex nonlinear ways, rendering data aggregation nontrivial. Here, we explored the effects of temporal and spatial aggregation of climatic and litter input data on regional estimates of soil organic carbon stocks and changes for upland forests. We used the soil carbon and decomposition model Yasso07 with input from the Norwegian National Forest Inventory (11275 plots, 1960-2012). Estimates were produced at three spatial and three temporal scales. Results showed that a national level average soil carbon stock estimate varied by 10% depending on the applied spatial and temporal scale of aggregation. Higher stocks were found when applying plot-level input compared to country-level input and when long-term climate was used as compared to annual or 5-year mean values. A national level estimate for soil carbon change was similar across spatial scales, but was considerably (60-70%) lower when applying annual or 5-year mean climate compared to long-term mean climate reflecting the recent climatic changes in Norway. This was particularly evident for the forest-dominated districts in the southeastern and central parts of Norway and in the far north. We concluded that the sensitivity of model estimates to spatial aggregation will depend on the region of interest. Further, that using long-term climate averages during periods with strong climatic trends results in large differences in soil carbon estimates. The largest differences in this study were observed in central and northern regions with strongly
Unitary input DEA model to identify beef cattle production systems typologies
Directory of Open Access Journals (Sweden)
Eliane Gonçalves Gomes
2012-08-01
Full Text Available The cow-calf beef production sector in Brazil has a wide variety of operating systems. This suggests the identification and the characterization of homogeneous regions of production, with consequent implementation of actions to achieve its sustainability. In this paper we attempted to measure the performance of 21 livestock modal production systems, in their cow-calf phase. We measured the performance of these systems, considering husbandry and production variables. The proposed approach is based on data envelopment analysis (DEA. We used unitary input DEA model, with apparent input orientation, together with the efficiency measurements generated by the inverted DEA frontier. We identified five modal production systems typologies, using the isoefficiency layers approach. The results showed that the knowledge and the processes management are the most important factors for improving the efficiency of beef cattle production systems.
The sensitivity of ecosystem service models to choices of input data and spatial resolution
Bagstad, Kenneth J.; Cohen, Erika; Ancona, Zachary H.; McNulty, Steven; Sun, Ge
2018-01-01
Although ecosystem service (ES) modeling has progressed rapidly in the last 10–15 years, comparative studies on data and model selection effects have become more common only recently. Such studies have drawn mixed conclusions about whether different data and model choices yield divergent results. In this study, we compared the results of different models to address these questions at national, provincial, and subwatershed scales in Rwanda. We compared results for carbon, water, and sediment as modeled using InVEST and WaSSI using (1) land cover data at 30 and 300 m resolution and (2) three different input land cover datasets. WaSSI and simpler InVEST models (carbon storage and annual water yield) were relatively insensitive to the choice of spatial resolution, but more complex InVEST models (seasonal water yield and sediment regulation) produced large differences when applied at differing resolution. Six out of nine ES metrics (InVEST annual and seasonal water yield and WaSSI) gave similar predictions for at least two different input land cover datasets. Despite differences in mean values when using different data sources and resolution, we found significant and highly correlated results when using Spearman's rank correlation, indicating consistent spatial patterns of high and low values. Our results confirm and extend conclusions of past studies, showing that in certain cases (e.g., simpler models and national-scale analyses), results can be robust to data and modeling choices. For more complex models, those with different output metrics, and subnational to site-based analyses in heterogeneous environments, data and model choices may strongly influence study findings.
DEFF Research Database (Denmark)
Harnefors, Lennart; Finger, Raphael; Wang, Xiongfei
2017-01-01
The interconnection stability of a gridconnected voltage-source converter (VSC) can be assessed via the dissipative properties of its input admittance. In this paper, the modeling of the current control loop is revisited with the aim to improve the accuracy of the input-admittance model above...
'Fingerprints' of four crop models as affected by soil input data aggregation
DEFF Research Database (Denmark)
Angulo, Carlos; Gaiser, Thomas; Rötter, Reimund P
2014-01-01
for all models. Further analysis revealed that the small influence of spatial resolution of soil input data might be related to: (a) the high precipitation amount in the region which partly masked differences in soil characteristics for water holding capacity, (b) the loss of variability in hydraulic soil...... properties due to the methods applied to calculate water retention properties of the used soil profiles, and (c) the method of soil data aggregation. No characteristic “fingerprint” between sites, years and resolutions could be found for any of the models. Our results support earlier recommendation....... In this study we used four crop models (SIMPLACE, DSSAT-CSM, EPIC and DAISY) differing in the detail of modeling above-ground biomass and yield as well as of modeling soil water dynamics, water uptake and drought effects on plants to simulate winter wheat in two (agro-climatologically and geo...
Investigations of the sensitivity of a coronal mass ejection model (ENLIL) to solar input parameters
DEFF Research Database (Denmark)
Falkenberg, Thea Vilstrup; Vršnak, B.; Taktakishvili, A.
2010-01-01
Understanding space weather is not only important for satellite operations and human exploration of the solar system but also to phenomena here on Earth that may potentially disturb and disrupt electrical signals. Some of the most violent space weather effects are caused by coronal mass ejections...... (CMEs), but in order to predict the caused effects, we need to be able to model their propagation from their origin in the solar corona to the point of interest, e.g., Earth. Many such models exist, but to understand the models in detail we must understand the primary input parameters. Here we...... investigate the parameter space of the ENLILv2.5b model using the CME event of 25 July 2004. ENLIL is a time‐dependent 3‐D MHD model that can simulate the propagation of cone‐shaped interplanetary coronal mass ejections (ICMEs) through the solar system. Excepting the cone parameters (radius, position...
International Nuclear Information System (INIS)
Meyer, Carsten; Peligrad, Dragos-Nicolae; Weibrecht, Martin
2007-01-01
Cardiac 82 rubidium dynamic PET studies allow quantifying absolute myocardial perfusion by using tracer kinetic modeling. Here, the accurate measurement of the input function, i.e. the tracer concentration in blood plasma, is a major challenge. This measurement is deteriorated by inappropriate temporal sampling, spillover, etc. Such effects may influence the measured input peak value and the measured blood pool clearance. The aim of our study is to evaluate the effect of input function distortions on the myocardial perfusion as estimated by the model. To this end, we simulate noise-free myocardium time activity curves (TACs) with a two-compartment kinetic model. The input function to the model is a generic analytical function. Distortions of this function have been introduced by varying its parameters. Using the distorted input function, the compartment model has been fitted to the simulated myocardium TAC. This analysis has been performed for various sets of model parameters covering a physiologically relevant range. The evaluation shows that ±10% error in the input peak value can easily lead to ±10-25% error in the model parameter K 1 , which relates to myocardial perfusion. Variations in the input function tail are generally less relevant. We conclude that an accurate estimation especially of the plasma input peak is crucial for a reliable kinetic analysis and blood flow estimation
Directory of Open Access Journals (Sweden)
Christian Vögeli
2016-12-01
Full Text Available Accurate knowledge on snow distribution in alpine terrain is crucial for various applicationssuch as flood risk assessment, avalanche warning or managing water supply and hydro-power.To simulate the seasonal snow cover development in alpine terrain, the spatially distributed,physics-based model Alpine3D is suitable. The model is typically driven by spatial interpolationsof observations from automatic weather stations (AWS, leading to errors in the spatial distributionof atmospheric forcing. With recent advances in remote sensing techniques, maps of snowdepth can be acquired with high spatial resolution and accuracy. In this work, maps of the snowdepth distribution, calculated from summer and winter digital surface models based on AirborneDigital Sensors (ADS, are used to scale precipitation input data, with the aim to improve theaccuracy of simulation of the spatial distribution of snow with Alpine3D. A simple method toscale and redistribute precipitation is presented and the performance is analysed. The scalingmethod is only applied if it is snowing. For rainfall the precipitation is distributed by interpolation,with a simple air temperature threshold used for the determination of the precipitation phase.It was found that the accuracy of spatial snow distribution could be improved significantly forthe simulated domain. The standard deviation of absolute snow depth error is reduced up toa factor 3.4 to less than 20 cm. The mean absolute error in snow distribution was reducedwhen using representative input sources for the simulation domain. For inter-annual scaling, themodel performance could also be improved, even when using a remote sensing dataset from adifferent winter. In conclusion, using remote sensing data to process precipitation input, complexprocesses such as preferential snow deposition and snow relocation due to wind or avalanches,can be substituted and modelling performance of spatial snow distribution is improved.
PERMODELAN INDEKS HARGA KONSUMEN INDONESIA DENGAN MENGGUNAKAN MODEL INTERVENSI MULTI INPUT
Novianti, Putri Wikie
2017-01-24
There are some events which are expected effecting CPI’s fluctuation, i.e. financial crisis 1997/1998, fuel price risings, base year changing’s, independence of Timor-Timur (October 1999), and Tsunami disaster in Aceh (December 2004). During re-search period, there were eight fuel price risings and four base year changing’s. The objective of this research is to obtain multi input intervention model which can des-cribe magnitude and duration of each event effected to CPI. Most of intervention re-searches that have been done are only contain of an intervention with single input, ei-ther step or pulse function. Multi input intervention was used in Indonesia CPI case because there are some events which are expected effecting CPI. Based on the result, those events were affecting CPI. Additionally, other events, such as Ied on January 1999, events on April 2002, July 2003, December 2005, and September 2008, were affecting CPI too. In general, those events gave positive effect to CPI, except events on April 2002 and July 2003 which gave negative effects.
Detection of no-model input-output pairs in closed-loop systems.
Potts, Alain Segundo; Alvarado, Christiam Segundo Morales; Garcia, Claudio
2017-11-01
The detection of no-model input-output (IO) pairs is important because it can speed up the multivariable system identification process, since all the pairs with null transfer functions are previously discarded and it can also improve the identified model quality, thus improving the performance of model based controllers. In the available literature, the methods focus just on the open-loop case, since in this case there is not the effect of the controller forcing the main diagonal in the transfer matrix to one and all the other terms to zero. In this paper, a modification of a previous method able to detect no-model IO pairs in open-loop systems is presented, but adapted to perform this duty in closed-loop systems. Tests are performed by using the traditional methods and the proposed one to show its effectiveness. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Karandish, Fatemeh; Šimůnek, Jiří
2016-12-01
Soil water content (SWC) is a key factor in optimizing the usage of water resources in agriculture since it provides information to make an accurate estimation of crop water demand. Methods for predicting SWC that have simple data requirements are needed to achieve an optimal irrigation schedule, especially for various water-saving irrigation strategies that are required to resolve both food and water security issues under conditions of water shortages. Thus, a two-year field investigation was carried out to provide a dataset to compare the effectiveness of HYDRUS-2D, a physically-based numerical model, with various machine-learning models, including Multiple Linear Regressions (MLR), Adaptive Neuro-Fuzzy Inference Systems (ANFIS), and Support Vector Machines (SVM), for simulating time series of SWC data under water stress conditions. SWC was monitored using TDRs during the maize growing seasons of 2010 and 2011. Eight combinations of six, simple, independent parameters, including pan evaporation and average air temperature as atmospheric parameters, cumulative growth degree days (cGDD) and crop coefficient (Kc) as crop factors, and water deficit (WD) and irrigation depth (In) as crop stress factors, were adopted for the estimation of SWCs in the machine-learning models. Having Root Mean Square Errors (RMSE) in the range of 0.54-2.07 mm, HYDRUS-2D ranked first for the SWC estimation, while the ANFIS and SVM models with input datasets of cGDD, Kc, WD and In ranked next with RMSEs ranging from 1.27 to 1.9 mm and mean bias errors of -0.07 to 0.27 mm, respectively. However, the MLR models did not perform well for SWC forecasting, mainly due to non-linear changes of SWCs under the irrigation process. The results demonstrated that despite requiring only simple input data, the ANFIS and SVM models could be favorably used for SWC predictions under water stress conditions, especially when there is a lack of data. However, process-based numerical models are undoubtedly a
RdgB2 is required for dim-light input into intrinsically photosensitive retinal ganglion cells.
Walker, Marquis T; Rupp, Alan; Elsaesser, Rebecca; Güler, Ali D; Sheng, Wenlong; Weng, Shijun; Berson, David M; Hattar, Samer; Montell, Craig
2015-10-15
A subset of retinal ganglion cells is intrinsically photosensitive (ipRGCs) and contributes directly to the pupillary light reflex and circadian photoentrainment under bright-light conditions. ipRGCs are also indirectly activated by light through cellular circuits initiated in rods and cones. A mammalian homologue (RdgB2) of a phosphoinositide transfer/exchange protein that functions in Drosophila phototransduction is expressed in the retinal ganglion cell layer. This raised the possibility that RdgB2 might function in the intrinsic light response in ipRGCs, which depends on a cascade reminiscent of Drosophila phototransduction. Here we found that under high light intensities, RdgB2(-/-) mutant mice showed normal pupillary light responses and circadian photoentrainment. Consistent with this behavioral phenotype, the intrinsic light responses of ipRGCs in RdgB2(-/-) were indistinguishable from wild-type. In contrast, under low-light conditions, RdgB2(-/-) mutants displayed defects in both circadian photoentrainment and the pupillary light response. The RdgB2 protein was not expressed in ipRGCs but was in GABAergic amacrine cells, which provided inhibitory feedback onto bipolar cells. We propose that RdgB2 is required in a cellular circuit that transduces light input from rods to bipolar cells that are coupled to GABAergic amacrine cells and ultimately to ipRGCs, thereby enabling ipRGCs to respond to dim light. © 2015 Walker et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
Input-output model of regional environmental and economic impacts of nuclear power plants
International Nuclear Information System (INIS)
Johnson, M.H.; Bennett, J.T.
1979-01-01
The costs of delayed licensing of nuclear power plants calls for a more-comprehensive method of quantifying the economic and environmental impacts on a region. A traditional input-output (I-O) analysis approach is extended to assess the effects of changes in output, income, employment, pollution, water consumption, and the costs and revenues of local government disaggregated among 23 industry sectors during the construction and operating phases. Unlike earlier studies, this model uses nonlinear environmental interactions and specifies environmental feedbacks to the economic sector. 20 references
Using Whole-House Field Tests to Empirically Derive Moisture Buffering Model Inputs
Energy Technology Data Exchange (ETDEWEB)
Woods, J.; Winkler, J.; Christensen, D.; Hancock, E.
2014-08-01
Building energy simulations can be used to predict a building's interior conditions, along with the energy use associated with keeping these conditions comfortable. These models simulate the loads on the building (e.g., internal gains, envelope heat transfer), determine the operation of the space conditioning equipment, and then calculate the building's temperature and humidity throughout the year. The indoor temperature and humidity are affected not only by the loads and the space conditioning equipment, but also by the capacitance of the building materials, which buffer changes in temperature and humidity. This research developed an empirical method to extract whole-house model inputs for use with a more accurate moisture capacitance model (the effective moisture penetration depth model). The experimental approach was to subject the materials in the house to a square-wave relative humidity profile, measure all of the moisture transfer terms (e.g., infiltration, air conditioner condensate) and calculate the only unmeasured term: the moisture absorption into the materials. After validating the method with laboratory measurements, we performed the tests in a field house. A least-squares fit of an analytical solution to the measured moisture absorption curves was used to determine the three independent model parameters representing the moisture buffering potential of this house and its furnishings. Follow on tests with realistic latent and sensible loads showed good agreement with the derived parameters, especially compared to the commonly-used effective capacitance approach. These results show that the EMPD model, once the inputs are known, is an accurate moisture buffering model.
Transport coefficient computation based on input/output reduced order models
Hurst, Joshua L.
The guiding purpose of this thesis is to address the optimal material design problem when the material description is a molecular dynamics model. The end goal is to obtain a simplified and fast model that captures the property of interest such that it can be used in controller design and optimization. The approach is to examine model reduction analysis and methods to capture a specific property of interest, in this case viscosity, or more generally complex modulus or complex viscosity. This property and other transport coefficients are defined by a input/output relationship and this motivates model reduction techniques that are tailored to preserve input/output behavior. In particular Singular Value Decomposition (SVD) based methods are investigated. First simulation methods are identified that are amenable to systems theory analysis. For viscosity, these models are of the Gosling and Lees-Edwards type. They are high order nonlinear Ordinary Differential Equations (ODEs) that employ Periodic Boundary Conditions. Properties can be calculated from the state trajectories of these ODEs. In this research local linear approximations are rigorously derived and special attention is given to potentials that are evaluated with Periodic Boundary Conditions (PBC). For the Gosling description LTI models are developed from state trajectories but are found to have limited success in capturing the system property, even though it is shown that full order LTI models can be well approximated by reduced order LTI models. For the Lees-Edwards SLLOD type model nonlinear ODEs will be approximated by a Linear Time Varying (LTV) model about some nominal trajectory and both balanced truncation and Proper Orthogonal Decomposition (POD) will be used to assess the plausibility of reduced order models to this system description. An immediate application of the derived LTV models is Quasilinearization or Waveform Relaxation. Quasilinearization is a Newton's method applied to the ODE operator
Fuzzy portfolio model with fuzzy-input return rates and fuzzy-output proportions
Tsaur, Ruey-Chyn
2015-02-01
In the finance market, a short-term investment strategy is usually applied in portfolio selection in order to reduce investment risk; however, the economy is uncertain and the investment period is short. Further, an investor has incomplete information for selecting a portfolio with crisp proportions for each chosen security. In this paper we present a new method of constructing fuzzy portfolio model for the parameters of fuzzy-input return rates and fuzzy-output proportions, based on possibilistic mean-standard deviation models. Furthermore, we consider both excess or shortage of investment in different economic periods by using fuzzy constraint for the sum of the fuzzy proportions, and we also refer to risks of securities investment and vagueness of incomplete information during the period of depression economics for the portfolio selection. Finally, we present a numerical example of a portfolio selection problem to illustrate the proposed model and a sensitivity analysis is realised based on the results.
A Water-Withdrawal Input-Output Model of the Indian Economy.
Bogra, Shelly; Bakshi, Bhavik R; Mathur, Ritu
2016-02-02
Managing freshwater allocation for a highly populated and growing economy like India can benefit from knowledge about the effect of economic activities. This study transforms the 2003-2004 economic input-output (IO) table of India into a water withdrawal input-output model to quantify direct and indirect flows. This unique model is based on a comprehensive database compiled from diverse public sources, and estimates direct and indirect water withdrawal of all economic sectors. It distinguishes between green (rainfall), blue (surface and ground), and scarce groundwater. Results indicate that the total direct water withdrawal is nearly 3052 billion cubic meter (BCM) and 96% of this is used in agriculture sectors with the contribution of direct green water being about 1145 BCM, excluding forestry. Apart from 727 BCM direct blue water withdrawal for agricultural, other significant users include "Electricity" with 64 BCM, "Water supply" with 44 BCM and other industrial sectors with nearly 14 BCM. "Construction", "miscellaneous food products"; "Hotels and restaurants"; "Paper, paper products, and newsprint" are other significant indirect withdrawers. The net virtual water import is found to be insignificant compared to direct water used in agriculture nationally, while scarce ground water associated with crops is largely contributed by northern states.
International trade inoperability input-output model (IT-IIM): theory and application.
Jung, Jeesang; Santos, Joost R; Haimes, Yacov Y
2009-01-01
The inoperability input-output model (IIM) has been used for analyzing disruptions due to man-made or natural disasters that can adversely affect the operation of economic systems or critical infrastructures. Taking economic perturbation for each sector as inputs, the IIM provides the degree of economic production impacts on all industry sectors as the outputs for the model. The current version of the IIM does not provide a separate analysis for the international trade component of the inoperability. If an important port of entry (e.g., Port of Los Angeles) is disrupted, then international trade inoperability becomes a highly relevant subject for analysis. To complement the current IIM, this article develops the International Trade-IIM (IT-IIM). The IT-IIM investigates the resulting international trade inoperability for all industry sectors resulting from disruptions to a major port of entry. Similar to traditional IIM analysis, the inoperability metrics that the IT-IIM provides can be used to prioritize economic sectors based on the losses they could potentially incur. The IT-IIM is used to analyze two types of direct perturbations: (1) the reduced capacity of ports of entry, including harbors and airports (e.g., a shutdown of any port of entry); and (2) restrictions on commercial goods that foreign countries trade with the base nation (e.g., embargo).
Multiregional input-output model for the evaluation of Spanish water flows.
Cazcarro, Ignacio; Duarte, Rosa; Sánchez Chóliz, Julio
2013-01-01
We construct a multiregional input-output model for Spain, in order to evaluate the pressures on the water resources, virtual water flows, and water footprints of the regions, and the water impact of trade relationships within Spain and abroad. The study is framed with those interregional input-output models constructed to study water flows and impacts of regions in China, Australia, Mexico, or the UK. To build our database, we reconcile regional IO tables, national and regional accountancy of Spain, trade and water data. Results show an important imbalance between origin of water resources and final destination, with significant water pressures in the South, Mediterranean, and some central regions. The most populated and dynamic regions of Madrid and Barcelona are important drivers of water consumption in Spain. Main virtual water exporters are the South and Central agrarian regions: Andalusia, Castile-La Mancha, Castile-Leon, Aragon, and Extremadura, while the main virtual water importers are the industrialized regions of Madrid, Basque country, and the Mediterranean coast. The paper shows the different location of direct and indirect consumers of water in Spain and how the economic trade and consumption pattern of certain areas has significant impacts on the availability of water resources in other different and often drier regions.
McKane, R. B.; M, S.; F, P.; Kwiatkowski, B. L.; Rastetter, E. B.
2006-12-01
Federal and state agencies responsible for protecting water quality rely mainly on statistically-based methods to assess and manage risks to the nation's streams, lakes and estuaries. Although statistical approaches provide valuable information on current trends in water quality, process-based simulation models are essential for understanding and forecasting how changes in human activities across complex landscapes impact the transport of nutrients and contaminants to surface waters. To address this need, we developed a broadly applicable, process-based watershed simulator that links a spatially-explicit hydrologic model and a terrestrial biogeochemistry model (MEL). See Stieglitz et al. and Pan et al., this meeting, for details on the design and verification of this simulator. Here we apply the watershed simulator to a generalized agricultural setting to demonstrate its potential for informing policy and management decisions concerning water quality. This demonstration specifically explores the effectiveness of riparian buffers for reducing the transport of nitrogenous fertilizers from agricultural fields to streams. The interaction of hydrologic and biogeochemical processes represented in our simulator allows several important questions to be addressed. (1) For a range of upland fertilization rates, to what extent do riparian buffers reduce nitrogen inputs to streams? (2) How does buffer effectiveness change over time as the plant-soil system approaches N-saturation? (3) How can buffers be managed to increase their effectiveness, e.g., through periodic harvest and replanting? The model results illustrate that, while the answers to these questions depend to some extent on site factors (climatic regime, soil properties and vegetation type), in all cases riparian buffers have a limited capacity to reduce nitrogen inputs to streams where fertilization rates approach those typically used for intensive agriculture (e.g., 200 kg N per ha per year for corn in the U
INPUT DATA OF BURNING WOOD FOR CFD MODELLING USING SMALL-SCALE EXPERIMENTS
Directory of Open Access Journals (Sweden)
Petr Hejtmánek
2017-12-01
Full Text Available The paper presents an option how to acquire simplified input data for modelling of burning wood in CFD programmes. The option lies in combination of data from small- and molecular-scale experiments in order to describe the material as a one-reaction material property. Such virtual material would spread fire, develop the fire according to surrounding environment and it could be extinguished without using complex reaction molecular description. Series of experiments including elemental analysis, thermogravimetric analysis and difference thermal analysis, and combustion analysis were performed. Then the FDS model of burning pine wood in a cone calorimeter was built. In the model where those values were used. The model was validated to HRR (Heat Release Rate from the real cone calorimeter experiment. The results show that for the purpose of CFD modelling the effective heat of combustion, which is one of the basic material property for fire modelling affecting the total intensity of burning, should be used. Using the net heat of combustion in the model leads to higher values of HRR in comparison to the real experiment data. Considering all the results shown in this paper, it was shown that it is possible to simulate burning of wood using the extrapolated data obtained in small-size experiments.
Targeting the right input data to improve crop modeling at global level
Adam, M.; Robertson, R.; Gbegbelegbe, S.; Jones, J. W.; Boote, K. J.; Asseng, S.
2012-12-01
Designed for location-specific simulations, the use of crop models at a global level raises important questions. Crop models are originally premised on small unit areas where environmental conditions and management practices are considered homogeneous. Specific information describing soils, climate, management, and crop characteristics are used in the calibration process. However, when scaling up for global application, we rely on information derived from geographical information systems and weather generators. To run crop models at broad, we use a modeling platform that assumes a uniformly generated grid cell as a unit area. Specific weather, specific soil and specific management practices for each crop are represented for each of the cell grids. Studies on the impacts of the uncertainties of weather information and climate change on crop yield at a global level have been carried out (Osborne et al, 2007, Nelson et al., 2010, van Bussel et al, 2011). Detailed information on soils and management practices at global level are very scarce but recognized to be of critical importance (Reidsma et al., 2009). Few attempts to assess the impact of their uncertainties on cropping systems performances can be found. The objectives of this study are (i) to determine sensitivities of a crop model to soil and management practices, inputs most relevant to low input rainfed cropping systems, and (ii) to define hotspots of sensitivity according to the input data. We ran DSSAT v4.5 globally (CERES-CROPSIM) to simulate wheat yields at 45arc-minute resolution. Cultivar parameters were calibrated and validated for different mega-environments (results not shown). The model was run for nitrogen-limited production systems. This setting was chosen as the most representative to simulate actual yield (especially for low-input rainfed agricultural systems) and assumes crop growth to be free of any pest and diseases damages. We conducted a sensitivity analysis on contrasting management
Energy Technology Data Exchange (ETDEWEB)
Whitehead, Camilla Dunham; Melody, Moya; Lutz, James
2009-05-29
Lawrence Berkeley National Laboratory (LBNL) is developing a computer model and spreadsheet tool for the United States Environmental Protection Agency (EPA) to help estimate the water savings attributable to their WaterSense program. WaterSense has developed a labeling program for three types of plumbing fixtures commonly used in commercial and institutional settings: flushometer valve toilets, urinals, and pre-rinse spray valves. This National Water Savings-Commercial/Institutional (NWS-CI) model is patterned after the National Water Savings-Residential model, which was completed in 2008. Calculating the quantity of water and money saved through the WaterSense labeling program requires three primary inputs: (1) the quantity of a given product in use; (2) the frequency with which units of the product are replaced or are installed in new construction; and (3) the number of times or the duration the product is used in various settings. To obtain the information required for developing the NWS-CI model, LBNL reviewed various resources pertaining to the three WaterSense-labeled commercial/institutional products. The data gathered ranged from the number of commercial buildings in the United States to numbers of employees in various sectors of the economy and plumbing codes for commercial buildings. This document summarizes information obtained about the three products' attributes, quantities, and use in commercial and institutional settings that is needed to estimate how much water EPA's WaterSense program saves.
Data requirements for integrated near field models
International Nuclear Information System (INIS)
Wilems, R.E.; Pearson, F.J. Jr.; Faust, C.R.; Brecher, A.
1981-01-01
The coupled nature of the various processes in the near field require that integrated models be employed to assess long term performance of the waste package and repository. The nature of the integrated near field models being compiled under the SCEPTER program are discussed. The interfaces between these near field models and far field models are described. Finally, near field data requirements are outlined in sufficient detail to indicate overall programmatic guidance for data gathering activities
An Approach for Generating Precipitation Input for Worst-Case Flood Modelling
Felder, Guido; Weingartner, Rolf
2015-04-01
There is a lack of suitable methods for creating precipitation scenarios that can be used to realistically estimate peak discharges with very low probabilities. On the one hand, existing methods are methodically questionable when it comes to physical system boundaries. On the other hand, the spatio-temporal representativeness of precipitation patterns as system input is limited. In response, this study proposes a method of deriving representative spatio-temporal precipitation patterns and presents a step towards making methodically correct estimations of infrequent floods by using a worst-case approach. A Monte-Carlo rainfall-runoff model allows for the testing of a wide range of different spatio-temporal distributions of an extreme precipitation event and therefore for the generation of a hydrograph for each of these distributions. Out of these numerous hydrographs and their corresponding peak discharges, the worst-case catchment reactions on the system input can be derived. The spatio-temporal distributions leading to the highest peak discharges are identified and can eventually be used for further investigations.
Model-based human reliability analysis: prospects and requirements
International Nuclear Information System (INIS)
Mosleh, A.; Chang, Y.H.
2004-01-01
Major limitations of the conventional methods for human reliability analysis (HRA), particularly those developed for operator response analysis in probabilistic safety assessments (PSA) of nuclear power plants, are summarized as a motivation for the need and a basis for developing requirements for the next generation HRA methods. It is argued that a model-based approach that provides explicit cognitive causal links between operator behaviors and directly or indirectly measurable causal factors should be at the core of the advanced methods. An example of such causal model is briefly reviewed, where due to the model complexity and input requirements can only be currently implemented in a dynamic PSA environment. The computer simulation code developed for this purpose is also described briefly, together with current limitations in the models, data, and the computer implementation
Multivariate sensitivity analysis to measure global contribution of input factors in dynamic models
International Nuclear Information System (INIS)
Lamboni, Matieyendou; Monod, Herve; Makowski, David
2011-01-01
Many dynamic models are used for risk assessment and decision support in ecology and crop science. Such models generate time-dependent model predictions, with time either discretised or continuous. Their global sensitivity analysis is usually applied separately on each time output, but Campbell et al. (2006 ) advocated global sensitivity analyses on the expansion of the dynamics in a well-chosen functional basis. This paper focuses on the particular case when principal components analysis is combined with analysis of variance. In addition to the indices associated with the principal components, generalised sensitivity indices are proposed to synthesize the influence of each parameter on the whole time series output. Index definitions are given when the uncertainty on the input factors is either discrete or continuous and when the dynamic model is either discrete or functional. A general estimation algorithm is proposed, based on classical methods of global sensitivity analysis. The method is applied to a dynamic wheat crop model with 13 uncertain parameters. Three methods of global sensitivity analysis are compared: the Sobol'-Saltelli method, the extended FAST method, and the fractional factorial design of resolution 6.
Comparison of several climate indices as inputs in modelling of the Baltic Sea runoff
Energy Technology Data Exchange (ETDEWEB)
Hanninen, J.; Vuorinen, I. [Turku Univ. (Finland). Archipelaco Research Inst.], e-mail: jari.hanninen@utu.fi
2012-11-01
Using Transfer function (TF) models, we have earlier presented a chain of events between changes in the North Atlantic Oscillation (NAO) and their oceanographical and ecological consequences in the Baltic Sea. Here we tested whether other climate indices as inputs would improve TF models, and our understanding of the Baltic Sea ecosystem. Besides NAO, the predictors were the Arctic Oscillation (AO), sea-level air pressures at Iceland (SLP), and wind speeds at Hoburg (Gotland). All indices produced good TF models when the total riverine runoff to the Baltic Sea was used as a modelling basis. AO was not applicable in all study areas, showing a delay of about half a year between climate and runoff events, connected with freezing and melting time of ice and snow in the northern catchment area of the Baltic Sea. NAO appeared to be most useful modelling tool as its area of applicability was the widest of the tested indices, and the time lag between climate and runoff events was the shortest. SLP and Hoburg wind speeds showed largely same results as NAO, but with smaller areal applicability. Thus AO and NAO were both mostly contributing to the general understanding of climate control of runoff events in the Baltic Sea ecosystem. (orig.)
Multivariate sensitivity analysis to measure global contribution of input factors in dynamic models
Energy Technology Data Exchange (ETDEWEB)
Lamboni, Matieyendou [INRA, Unite MIA (UR341), F78352 Jouy en Josas Cedex (France); Monod, Herve, E-mail: herve.monod@jouy.inra.f [INRA, Unite MIA (UR341), F78352 Jouy en Josas Cedex (France); Makowski, David [INRA, UMR Agronomie INRA/AgroParisTech (UMR 211), BP 01, F78850 Thiverval-Grignon (France)
2011-04-15
Many dynamic models are used for risk assessment and decision support in ecology and crop science. Such models generate time-dependent model predictions, with time either discretised or continuous. Their global sensitivity analysis is usually applied separately on each time output, but Campbell et al. (2006) advocated global sensitivity analyses on the expansion of the dynamics in a well-chosen functional basis. This paper focuses on the particular case when principal components analysis is combined with analysis of variance. In addition to the indices associated with the principal components, generalised sensitivity indices are proposed to synthesize the influence of each parameter on the whole time series output. Index definitions are given when the uncertainty on the input factors is either discrete or continuous and when the dynamic model is either discrete or functional. A general estimation algorithm is proposed, based on classical methods of global sensitivity analysis. The method is applied to a dynamic wheat crop model with 13 uncertain parameters. Three methods of global sensitivity analysis are compared: the Sobol'-Saltelli method, the extended FAST method, and the fractional factorial design of resolution 6.
National Research Council Canada - National Science Library
Matthew, William
2001-01-01
This report describes processes we have implemented to use global pyranometer-based estimates of mean radiant temperature as the common solar load input for the Scenario model, the USARIEM heat strain...
Tillman, Fred D.
2015-01-01
The Colorado River and its tributaries supply water to more than 35 million people in the United States and 3 million people in Mexico, irrigating more than 4.5 million acres of farmland, and generating about 12 billion kilowatt hours of hydroelectric power annually. The Upper Colorado River Basin, encompassing more than 110,000 square miles (mi2), contains the headwaters of the Colorado River (also known as the River) and is an important source of snowmelt runoff to the River. Groundwater discharge also is an important source of water in the River and its tributaries, with estimates ranging from 21 to 58 percent of streamflow in the upper basin. Planning for the sustainable management of the Colorado River in future climates requires an understanding of the Upper Colorado River Basin groundwater system. This report documents input datasets for a Soil-Water Balance groundwater recharge model that was developed for the Upper Colorado River Basin.
Realistic modeling of seismic input for megacities and large urban areas
Panza, G. F.; Unesco/Iugs/Igcp Project 414 Team
2003-04-01
The project addressed the problem of pre-disaster orientation: hazard prediction, risk assessment, and hazard mapping, in connection with seismic activity and man-induced vibrations. The definition of realistic seismic input has been obtained from the computation of a wide set of time histories and spectral information, corresponding to possible seismotectonic scenarios for different source and structural models. The innovative modeling technique, that constitutes the common tool to the entire project, takes into account source, propagation and local site effects. This is done using first principles of physics about wave generation and propagation in complex media, and does not require to resort to convolutive approaches, that have been proven to be quite unreliable, mainly when dealing with complex geological structures, the most interesting from the practical point of view. In fact, several techniques that have been proposed to empirically estimate the site effects using observations convolved with theoretically computed signals corresponding to simplified models, supply reliable information about the site response to non-interfering seismic phases. They are not adequate in most of the real cases, when the seismic sequel is formed by several interfering waves. The availability of realistic numerical simulations enables us to reliably estimate the amplification effects even in complex geological structures, exploiting the available geotechnical, lithological, geophysical parameters, topography of the medium, tectonic, historical, palaeoseismological data, and seismotectonic models. The realistic modeling of the ground motion is a very important base of knowledge for the preparation of groundshaking scenarios that represent a valid and economic tool for the seismic microzonation. This knowledge can be very fruitfully used by civil engineers in the design of new seismo-resistant constructions and in the reinforcement of the existing built environment, and, therefore
Alacron, Vladimir J.; Nigro, Joseph D.; McAnally, William H.; OHara, Charles G.; Engman, Edwin Ted; Toll, David
2011-01-01
This paper documents the use of simulated Moderate Resolution Imaging Spectroradiometer land use/land cover (MODIS-LULC), NASA-LIS generated precipitation and evapo-transpiration (ET), and Shuttle Radar Topography Mission (SRTM) datasets (in conjunction with standard land use, topographical and meteorological datasets) as input to hydrological models routinely used by the watershed hydrology modeling community. The study is focused in coastal watersheds in the Mississippi Gulf Coast although one of the test cases focuses in an inland watershed located in northeastern State of Mississippi, USA. The decision support tools (DSTs) into which the NASA datasets were assimilated were the Soil Water & Assessment Tool (SWAT) and the Hydrological Simulation Program FORTRAN (HSPF). These DSTs are endorsed by several US government agencies (EPA, FEMA, USGS) for water resources management strategies. These models use physiographic and meteorological data extensively. Precipitation gages and USGS gage stations in the region were used to calibrate several HSPF and SWAT model applications. Land use and topographical datasets were swapped to assess model output sensitivities. NASA-LIS meteorological data were introduced in the calibrated model applications for simulation of watershed hydrology for a time period in which no weather data were available (1997-2006). The performance of the NASA datasets in the context of hydrological modeling was assessed through comparison of measured and model-simulated hydrographs. Overall, NASA datasets were as useful as standard land use, topographical , and meteorological datasets. Moreover, NASA datasets were used for performing analyses that the standard datasets could not made possible, e.g., introduction of land use dynamics into hydrological simulations
Gao, Feng-Yin; Kang, Yan-Mei; Chen, Xi; Chen, Guanrong
2018-05-01
This paper reveals the effect of fractional Gaussian noise with Hurst exponent H ∈(1 /2 ,1 ) on the information capacity of a general nonlinear neuron model with binary signal input. The fGn and its corresponding fractional Brownian motion exhibit long-range, strong-dependent increments. It extends standard Brownian motion to many types of fractional processes found in nature, such as the synaptic noise. In the paper, for the subthreshold binary signal, sufficient conditions are given based on the "forbidden interval" theorem to guarantee the occurrence of stochastic resonance, while for the suprathreshold binary signal, the simulated results show that additive fGn with Hurst exponent H ∈(1 /2 ,1 ) could increase the mutual information or bits count. The investigation indicated that the synaptic noise with the characters of long-range dependence and self-similarity might be the driving factor for the efficient encoding and decoding of the nervous system.
Evaluation of globally available precipitation data products as input for water balance models
Lebrenz, H.; Bárdossy, A.
2009-04-01
Subject of this study is the evaluation of globally available precipitation data products, which are intended to be used as input variables for water balance models in ungauged basins. The selected data sources are a) the Global Precipitation Climatology Centre (GPCC), b) the Global Precipitation Climatology Project (GPCP) and c) the Climate Research Unit (CRU), resulting into twelve globally available data products. The data products imply different data bases, different derivation routines and varying resolutions in time and space. For validation purposes, the ground data from South Africa were screened on homogeneity and consistency by various tests and an outlier detection using multi-linear regression was performed. External Drift Kriging was subsequently applied on the ground data and the resulting precipitation arrays were compared to the different products with respect to quantity and variance.
Energy Technology Data Exchange (ETDEWEB)
Skretas, Sotirios B.; Papadopoulos, Demetrios P. [Electrical Machines Laboratory, Department of Electrical and Computer Engineering, Democritos University of Thrace (DUTH), 12 V. Sofias, 67100 Xanthi (Greece)
2009-09-15
In this paper an efficient design along with modeling and simulation of a transformer-less small-scale centralized DC - bus Grid Connected Hybrid (Wind-PV) power system for supplying electric power to a single phase of a three phase low voltage (LV) strong distribution grid are proposed and presented. The main components of the hybrid system are: a PV generator (PVG); and an array of horizontal-axis, fixed-pitch, small-size, variable-speed wind turbines (WTs) with direct-driven permanent magnet synchronous generator (PMSG) having an embedded uncontrolled bridge rectifier. An overview of the basic theory of such systems along with their modeling and simulation via Simulink/MATLAB software package are presented. An intelligent control method is applied to the proposed configuration to simultaneously achieve three desired goals: to extract maximum power from each hybrid power system component (PVG and WTs); to guarantee DC voltage regulation/stabilization at the input of the inverter; to transfer the total produced electric power to the electric grid, while fulfilling all necessary interconnection requirements. Finally, a practical case study is conducted for the purpose of fully evaluating a possible installation in a city site of Xanthi/Greece, and the practical results of the simulations are presented. (author)
Piquado, Tepring; Cousins, Katheryn A Q; Wingfield, Arthur; Miller, Paul
2010-12-13
Poor hearing acuity reduces memory for spoken words, even when the words are presented with enough clarity for correct recognition. An "effortful hypothesis" suggests that the perceptual effort needed for recognition draws from resources that would otherwise be available for encoding the word in memory. To assess this hypothesis, we conducted a behavioral task requiring immediate free recall of word-lists, some of which contained an acoustically masked word that was just above perceptual threshold. Results show that masking a word reduces the recall of that word and words prior to it, as well as weakening the linking associations between the masked and prior words. In contrast, recall probabilities of words following the masked word are not affected. To account for this effect we conducted computational simulations testing two classes of models: Associative Linking Models and Short-Term Memory Buffer Models. Only a model that integrated both contextual linking and buffer components matched all of the effects of masking observed in our behavioral data. In this Linking-Buffer Model, the masked word disrupts a short-term memory buffer, causing associative links of words in the buffer to be weakened, affecting memory for the masked word and the word prior to it, while allowing links of words following the masked word to be spared. We suggest that these data account for the so-called "effortful hypothesis", where distorted input has a detrimental impact on prior information stored in short-term memory. Copyright © 2010 Elsevier B.V. All rights reserved.
Directory of Open Access Journals (Sweden)
P.-L. Blelly
2005-02-01
Full Text Available The TRANSCAR ionospheric model was extended to account for the convection of the magnetic field lines in the auroral and polar ionosphere. A mixed Eulerian-Lagrangian 13-moment approach was used to describe the dynamics of an ionospheric plasma tube. In the present study, one focuses on large scale transports in the polar ionosphere. The model was used to simulate a 35-h period of EISCAT-UHF observations on 16-17 February 1993. The first day was magnetically quiet, and characterized by elevated electron concentrations: the diurnal F_{2} layer reached as much as 10^{12}m^{-3}, which is unusual for a winter and moderate solar activity (F_{10.7}=130 period. An intense geomagnetic event occurred on the second day, seen in the data as a strong intensification of the ionosphere convection velocities in the early afternoon (with the northward electric field reaching 150mVm^{-1} and corresponding frictional heating of the ions up to 2500K. The simulation used time-dependent AMIE outputs to infer flux-tube transports in the polar region, and to provide magnetospheric particle and energy inputs to the ionosphere. The overall very good agreement, obtained between the model and the observations, demonstrates the high ability of the extended TRANSCAR model for quantitative modelling of the high-latitude ionosphere; however, some differences are found which are attributed to the precipitation of electrons with very low energy. All these results are finally discussed in the frame of modelling the auroral ionosphere with space weather applications in mind.
Directory of Open Access Journals (Sweden)
P.-L. Blelly
2005-02-01
Full Text Available The TRANSCAR ionospheric model was extended to account for the convection of the magnetic field lines in the auroral and polar ionosphere. A mixed Eulerian-Lagrangian 13-moment approach was used to describe the dynamics of an ionospheric plasma tube. In the present study, one focuses on large scale transports in the polar ionosphere. The model was used to simulate a 35-h period of EISCAT-UHF observations on 16-17 February 1993. The first day was magnetically quiet, and characterized by elevated electron concentrations: the diurnal F2 layer reached as much as 1012m-3, which is unusual for a winter and moderate solar activity (F10.7=130 period. An intense geomagnetic event occurred on the second day, seen in the data as a strong intensification of the ionosphere convection velocities in the early afternoon (with the northward electric field reaching 150mVm-1 and corresponding frictional heating of the ions up to 2500K. The simulation used time-dependent AMIE outputs to infer flux-tube transports in the polar region, and to provide magnetospheric particle and energy inputs to the ionosphere. The overall very good agreement, obtained between the model and the observations, demonstrates the high ability of the extended TRANSCAR model for quantitative modelling of the high-latitude ionosphere; however, some differences are found which are attributed to the precipitation of electrons with very low energy. All these results are finally discussed in the frame of modelling the auroral ionosphere with space weather applications in mind.
A new chance-constrained DEA model with birandom input and output data
Tavana, M.; Shiraz, R. K.; Hatami-Marbini, A.
2013-01-01
The purpose of conventional Data Envelopment Analysis (DEA) is to evaluate the performance of a set of firms or Decision-Making Units using deterministic input and output data. However, the input and output data in the real-life performance evaluation problems are often stochastic. The stochastic input and output data in DEA can be represented with random variables. Several methods have been proposed to deal with the random input and output data in DEA. In this paper, we propose a new chance-...
Predicting musically induced emotions from physiological inputs: linear and neural network models.
Russo, Frank A; Vempala, Naresh N; Sandstrom, Gillian M
2013-01-01
Listening to music often leads to physiological responses. Do these physiological responses contain sufficient information to infer emotion induced in the listener? The current study explores this question by attempting to predict judgments of "felt" emotion from physiological responses alone using linear and neural network models. We measured five channels of peripheral physiology from 20 participants-heart rate (HR), respiration, galvanic skin response, and activity in corrugator supercilii and zygomaticus major facial muscles. Using valence and arousal (VA) dimensions, participants rated their felt emotion after listening to each of 12 classical music excerpts. After extracting features from the five channels, we examined their correlation with VA ratings, and then performed multiple linear regression to see if a linear relationship between the physiological responses could account for the ratings. Although linear models predicted a significant amount of variance in arousal ratings, they were unable to do so with valence ratings. We then used a neural network to provide a non-linear account of the ratings. The network was trained on the mean ratings of eight of the 12 excerpts and tested on the remainder. Performance of the neural network confirms that physiological responses alone can be used to predict musically induced emotion. The non-linear model derived from the neural network was more accurate than linear models derived from multiple linear regression, particularly along the valence dimension. A secondary analysis allowed us to quantify the relative contributions of inputs to the non-linear model. The study represents a novel approach to understanding the complex relationship between physiological responses and musically induced emotion.
International Nuclear Information System (INIS)
Kaplan, D; Margaret Millings, M
2006-01-01
Stochastic modeling is being used in the Performance Assessment program to provide a probabilistic estimate of the range of risk that buried waste may pose. The objective of this task was to provide early guidance for stochastic modelers for the selection of the range and distribution (e.g., normal, log-normal) of distribution coefficients (K d ) and solubility values (K sp ) to be used in modeling subsurface radionuclide transport in E- and Z-Area on the Savannah River Site (SRS). Due to the project's schedule, some modeling had to be started prior to collecting the necessary field and laboratory data needed to fully populate these models. For the interim, the project will rely on literature values and some statistical analyses of literature data as inputs. Based on statistical analyses of some literature sorption tests, the following early guidance was provided: (1) Set the range to an order of magnitude for radionuclides with K d values >1000 mL/g and to a factor of two for K d values of sp values -6 M and to a factor of two for K d values of >10 -6 M. This decision is based on the literature. (3) The distribution of K d values with a mean >1000 mL/g will be log-normally distributed. Those with a K d value <1000 mL/g will be assigned a normal distribution. This is based on statistical analysis of non-site-specific data. Results from on-going site-specific field/laboratory research involving E-Area sediments will supersede this guidance; these results are expected in 2007
Predicting musically induced emotions from physiological inputs: Linear and neural network models
Directory of Open Access Journals (Sweden)
Frank A. Russo
2013-08-01
Full Text Available Listening to music often leads to physiological responses. Do these physiological responses contain sufficient information to infer emotion induced in the listener? The current study explores this question by attempting to predict judgments of 'felt' emotion from physiological responses alone using linear and neural network models. We measured five channels of peripheral physiology from 20 participants – heart rate, respiration, galvanic skin response, and activity in corrugator supercilii and zygomaticus major facial muscles. Using valence and arousal (VA dimensions, participants rated their felt emotion after listening to each of 12 classical music excerpts. After extracting features from the five channels, we examined their correlation with VA ratings, and then performed multiple linear regression to see if a linear relationship between the physiological responses could account for the ratings. Although linear models predicted a significant amount of variance in arousal ratings, they were unable to do so with valence ratings. We then used a neural network to provide a nonlinear account of the ratings. The network was trained on the mean ratings of eight of the 12 excerpts and tested on the remainder. Performance of the neural network confirms that physiological responses alone can be used to predict musically induced emotion. The nonlinear model derived from the neural network was more accurate than linear models derived from multiple linear regression, particularly along the valence dimension. A secondary analysis allowed us to quantify the relative contributions of inputs to the nonlinear model. The study represents a novel approach to understanding the complex relationship between physiological responses and musically induced emotion.
"Updates to Model Algorithms & Inputs for the Biogenic Emissions Inventory System (BEIS) Model"
We have developed new canopy emission algorithms and land use data for BEIS. Simulations with BEIS v3.4 and these updates in CMAQ v5.0.2 are compared these changes to the Model of Emissions of Gases and Aerosols from Nature (MEGAN) and evaluated the simulations against observatio...
Energy Technology Data Exchange (ETDEWEB)
McKinley, I.G.; Hardie, S.M.L.; Klein, E. [MCM Consulting, Baden-Dättwil (Switzerland); Kawamura, H. [Obayashi Corporation, Nuclear Facilities Division, Tokyo (Japan); Beattie, T.M. [MCM Consulting, Bristol (United Kingdom)
2015-06-15
Natural analogues have been previously used to support the safety case for direct disposal of spent nuclear fuel, but the focus of such work was very dependent on the key barriers of specific national disposal concepts. Investigations of the feasibility of such disposal in Japan are at an early stage but, nevertheless, it is clear that building a robust safety case will be very challenging and would benefit from focused support from natural analogue studies—both in terms of developing/testing required models and, as importantly, presenting safety arguments to a wide range of stakeholders. This paper identifies key analogues that support both longevity and spread of failure times of massive steel overpacks, the effectiveness of buffering of radiolytic oxidants and the chemical and physical mechanisms retarding release of radionuclides from the engineered barriers. It is concluded that, for countries like Japan where performance needs to be assessed as realistically as possible, natural analogues can complement the existing laboratory and theoretical knowledge base and contribute towards development of a robust safety case. (authors)
Directory of Open Access Journals (Sweden)
Robert B. Gramacy
2010-02-01
Full Text Available This document describes the new features in version 2.x of the tgp package for R, implementing treed Gaussian process (GP models. The topics covered include methods for dealing with categorical inputs and excluding inputs from the tree or GP part of the model; fully Bayesian sensitivity analysis for inputs/covariates; sequential optimization of black-box functions; and a new Monte Carlo method for inference in multi-modal posterior distributions that combines simulated tempering and importance sampling. These additions extend the functionality of tgp across all models in the hierarchy: from Bayesian linear models, to classification and regression trees (CART, to treed Gaussian processes with jumps to the limiting linear model. It is assumed that the reader is familiar with the baseline functionality of the package, outlined in the first vignette (Gramacy 2007.
Modeling imbalanced economic recovery following a natural disaster using input-output analysis.
Li, Jun; Crawford-Brown, Douglas; Syddall, Mark; Guan, Dabo
2013-10-01
Input-output analysis is frequently used in studies of large-scale weather-related (e.g., Hurricanes and flooding) disruption of a regional economy. The economy after a sudden catastrophe shows a multitude of imbalances with respect to demand and production and may take months or years to recover. However, there is no consensus about how the economy recovers. This article presents a theoretical route map for imbalanced economic recovery called dynamic inequalities. Subsequently, it is applied to a hypothetical postdisaster economic scenario of flooding in London around the year 2020 to assess the influence of future shocks to a regional economy and suggest adaptation measures. Economic projections are produced by a macro econometric model and used as baseline conditions. The results suggest that London's economy would recover over approximately 70 months by applying a proportional rationing scheme under the assumption of initial 50% labor loss (with full recovery in six months), 40% initial loss to service sectors, and 10-30% initial loss to other sectors. The results also suggest that imbalance will be the norm during the postdisaster period of economic recovery even though balance may occur temporarily. Model sensitivity analysis suggests that a proportional rationing scheme may be an effective strategy to apply during postdisaster economic reconstruction, and that policies in transportation recovery and in health care are essential for effective postdisaster economic recovery. © 2013 Society for Risk Analysis.
The efficiency of the agricultural sector in Poland in the light output-input model1
Directory of Open Access Journals (Sweden)
Czyżewski Andrzej
2015-05-01
Full Text Available The study turns attention to the use of the input-output model (account of interbranch flows in macroeconomic assessments of the effectiveness of the agricultural sector. In the introductory part the essence of the account of interbranch flows has been specified, pointing to its historical origin and place in the economic theory, and the morphological structure of the individual parts (quarters of the model has been presented. Then the study discusses the application of the account of interbranch flows in macroeconomic assessments of the effectiveness of the agricultural sector, defining and characterizing a number of indicators which allow to conclude on the effectiveness of the agricultural sector on the basis of the account of interbranch flows. The last, empirical part of the study assesses the effectiveness of the agricultural sector in Poland on the basis of interbranch flows statistics for the years 2000 and 2005. The analyses allowed to demonstrate increased efficiency of the agricultural sector in Poland after Poland joined the EU, and also to say that the account of interbranch flows is an important tool enabling comprehensive assessment of the effectiveness of the agricultural sector in the macro-scale, through the prism of the effect - disbursement, which accounts for its exceptional suitability in this kind of analyses.
El Haimar, Amine; Santos, Joost R
2014-03-01
Influenza pandemic is a serious disaster that can pose significant disruptions to the workforce and associated economic sectors. This article examines the impact of influenza pandemic on workforce availability within an interdependent set of economic sectors. We introduce a simulation model based on the dynamic input-output model to capture the propagation of pandemic consequences through the National Capital Region (NCR). The analysis conducted in this article is based on the 2009 H1N1 pandemic data. Two metrics were used to assess the impacts of the influenza pandemic on the economic sectors: (i) inoperability, which measures the percentage gap between the as-planned output and the actual output of a sector, and (ii) economic loss, which quantifies the associated monetary value of the degraded output. The inoperability and economic loss metrics generate two different rankings of the critical economic sectors. Results show that most of the critical sectors in terms of inoperability are sectors that are related to hospitals and health-care providers. On the other hand, most of the sectors that are critically ranked in terms of economic loss are sectors with significant total production outputs in the NCR such as federal government agencies. Therefore, policy recommendations relating to potential mitigation and recovery strategies should take into account the balance between the inoperability and economic loss metrics. © 2013 Society for Risk Analysis.
Modelling Implicit Communication in Multi-Agent Systems with Hybrid Input/Output Automata
Directory of Open Access Journals (Sweden)
Marta Capiluppi
2012-10-01
Full Text Available We propose an extension of Hybrid I/O Automata (HIOAs to model agent systems and their implicit communication through perturbation of the environment, like localization of objects or radio signals diffusion and detection. To this end we decided to specialize some variables of the HIOAs whose values are functions both of time and space. We call them world variables. Basically they are treated similarly to the other variables of HIOAs, but they have the function of representing the interaction of each automaton with the surrounding environment, hence they can be output, input or internal variables. Since these special variables have the role of simulating implicit communication, their dynamics are specified both in time and space, because they model the perturbations induced by the agent to the environment, and the perturbations of the environment as perceived by the agent. Parallel composition of world variables is slightly different from parallel composition of the other variables, since their signals are summed. The theory is illustrated through a simple example of agents systems.
Ning, Jia; Schubert, Tilman; Johnson, Kevin M; Roldán-Alzate, Alejandro; Chen, Huijun; Yuan, Chun; Reeder, Scott B
2018-06-01
To propose a simple method to correct vascular input function (VIF) due to inflow effects and to test whether the proposed method can provide more accurate VIFs for improved pharmacokinetic modeling. A spoiled gradient echo sequence-based inflow quantification and contrast agent concentration correction method was proposed. Simulations were conducted to illustrate improvement in the accuracy of VIF estimation and pharmacokinetic fitting. Animal studies with dynamic contrast-enhanced MR scans were conducted before, 1 week after, and 2 weeks after portal vein embolization (PVE) was performed in the left portal circulation of pigs. The proposed method was applied to correct the VIFs for model fitting. Pharmacokinetic parameters fitted using corrected and uncorrected VIFs were compared between different lobes and visits. Simulation results demonstrated that the proposed method can improve accuracy of VIF estimation and pharmacokinetic fitting. In animal study results, pharmacokinetic fitting using corrected VIFs demonstrated changes in perfusion consistent with changes expected after PVE, whereas the perfusion estimates derived by uncorrected VIFs showed no significant changes. The proposed correction method improves accuracy of VIFs and therefore provides more precise pharmacokinetic fitting. This method may be promising in improving the reliability of perfusion quantification. Magn Reson Med 79:3093-3102, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
Realistic modelling of the seismic input: Site effects and parametric studies
International Nuclear Information System (INIS)
Romanelli, F.; Vaccari, F.; Panza, G.F.
2002-11-01
We illustrate the work done in the framework of a large international cooperation, showing the very recent numerical experiments carried out within the framework of the EC project 'Advanced methods for assessing the seismic vulnerability of existing motorway bridges' (VAB) to assess the importance of non-synchronous seismic excitation of long structures. The definition of the seismic input at the Warth bridge site, i.e. the determination of the seismic ground motion due to an earthquake with a given magnitude and epicentral distance from the site, has been done following a theoretical approach. In order to perform an accurate and realistic estimate of site effects and of differential motion it is necessary to make a parametric study that takes into account the complex combination of the source and propagation parameters, in realistic geological structures. The computation of a wide set of time histories and spectral information, corresponding to possible seismotectonic scenarios for different sources and structural models, allows us the construction of damage scenarios that are out of the reach of stochastic models, at a very low cost/benefit ratio. (author)
PERMODELAN INDEKS HARGA KONSUMEN INDONESIA DENGAN MENGGUNAKAN MODEL INTERVENSI MULTI INPUT
Novianti, Putri Wikie; Suhartono, Suhartono
2017-01-01
-searches that have been done are only contain of an intervention with single input, ei-ther step or pulse function. Multi input intervention was used in Indonesia CPI case because there are some events which are expected effecting CPI. Based on the result, those
Schattan, Paul; Bellinger, Johannes; Förster, Kristian; Schöber, Johannes; Huttenlau, Matthias; Kirnbauer, Robert; Achleitner, Stefan
2017-04-01
Modelling water resources in snow-dominated mountainous catchments is challenging due to both, short concentration times and a highly variable contribution of snow melt in space and time from complex terrain. A number of model setups exist ranging from physically based models to conceptional models which do not attempt to represent the natural processes in a physically meaningful way. Within the flood forecasting system for the Tyrolean Inn River two serially linked hydrological models with differing process representation are used. Non- glacierized catchments are modelled by a semi-distributed, water balance model (HQsim) based on the HRU-approach. A fully-distributed energy and mass balance model (SES), purpose-built for snow- and icemelt, is used for highly glacierized headwater catchments. Previous work revealed uncertainties and limitations within the models' structures regarding (i) the representation of snow processes in HQsim, (ii) the runoff routing of SES, and (iii) the spatial resolution of the meteorological input data in both models. To overcome these limitations, a "strengths driven" model coupling is applied. Instead of linking the models serially, a vertical one-way coupling of models has been implemented. The fully-distributed snow modelling of SES is combined with the semi-distributed HQsim structure, allowing to benefit from soil and runoff routing schemes in HQsim. A monte-carlo based modelling experiment was set up to evaluate the resulting differences in the runoff prediction due to the improved model coupling and a refined spatial resolution of the meteorological forcing. The experiment design follows a gradient of spatial discretisation of hydrological processes and meteorological forcing data with a total of six different model setups for the alpine headwater basin of the Fagge River in the Tyrolean Alps. In general, all setups show a good performance for this particular basin. It is therefore planned to include other basins with differing
A Requirements Analysis Model Based on QFD
Institute of Scientific and Technical Information of China (English)
TANG Zhi-wei; Nelson K.H.Tang
2004-01-01
The enterprise resource planning (ERP) system has emerged to offer an integrated IT solution and more and more enterprises are increasing by adopting this system and regarding it as an important innovation. However, there is already evidence of high failure risks in ERP project implementation, one major reason is poor analysis of the requirements for system implementation. In this paper, the importance of requirements analysis for ERP project implementation is highlighted, and a requirements analysis model by applying quality function deployment (QFD) is presented, which will support to conduct requirements analysis for ERP project.
Nsamba, B.; Campante, T. L.; Monteiro, M. J. P. F. G.; Cunha, M. S.; Rendle, B. M.; Reese, D. R.; Verma, K.
2018-04-01
Asteroseismic forward modelling techniques are being used to determine fundamental properties (e.g. mass, radius, and age) of solar-type stars. The need to take into account all possible sources of error is of paramount importance towards a robust determination of stellar properties. We present a study of 34 solar-type stars for which high signal-to-noise asteroseismic data is available from multi-year Kepler photometry. We explore the internal systematics on the stellar properties, that is, associated with the uncertainty in the input physics used to construct the stellar models. In particular, we explore the systematics arising from: (i) the inclusion of the diffusion of helium and heavy elements; and (ii) the uncertainty in solar metallicity mixture. We also assess the systematics arising from (iii) different surface correction methods used in optimisation/fitting procedures. The systematics arising from comparing results of models with and without diffusion are found to be 0.5%, 0.8%, 2.1%, and 16% in mean density, radius, mass, and age, respectively. The internal systematics in age are significantly larger than the statistical uncertainties. We find the internal systematics resulting from the uncertainty in solar metallicity mixture to be 0.7% in mean density, 0.5% in radius, 1.4% in mass, and 6.7% in age. The surface correction method by Sonoi et al. and Ball & Gizon's two-term correction produce the lowest internal systematics among the different correction methods, namely, ˜1%, ˜1%, ˜2%, and ˜8% in mean density, radius, mass, and age, respectively. Stellar masses obtained using the surface correction methods by Kjeldsen et al. and Ball & Gizon's one-term correction are systematically higher than those obtained using frequency ratios.
International Nuclear Information System (INIS)
Penner, J.E.; Haselman, L.C. Jr.
1985-04-01
Smoke from fires produced in the aftermath of a major nuclear exchange has been predicted to cause large decreases in land surface temperatures. The extent of the decrease and even the sign of the temperature change depend on the optical characteristics of the smoke and how it is distributed with altitude. The height distribution of smoke over a fire is determined by the amount of buoyant energy produced by the fire and the amount of energy released by the latent heat of condensation of water vapor. The optical properties of the smoke depend on the size distribution of smoke particles which changes due to coagulation within the lofted plume. We present calculations demonstrating these processes and estimate their importance for the smoke source term input for climate models. For high initial smoke densities and for absorbing smoke ( m = 1.75 - 0.3i), coagulation of smoke particles within the smoke plume is predicted to first increase, then decrease, the size-integrated extinction cross section. However, at the smoke densities predicted in our model (assuming a 3% emission rate for smoke) and for our assumed initial size distribution, the attachment rates for brownian and turbulent collision processes are not fast enough to alter the smoke size distribution enough to significantly change the integrated extinction cross section. Early-time coagulation is, however, fast enough to allow further coagulation, on longer time scales, to act to decrease the extinction cross section. On these longer time scales appropriate to climate models, coagulation can decrease the extinction cross section by almost a factor of two before the smoke becomes well mixed around the globe. This process has been neglected in past climate effect evaluations, but could have a significant effect, since the extinction cross section enters as an exponential factor in calculating the light attenuation due to smoke. 10 refs., 20 figs
A response analysis with effective stress model by using vertical input motions
International Nuclear Information System (INIS)
Yamanouchi, H.; Ohkawa, I.; Chiba, O.; Tohdo, M.; Kaneko, O.
1987-01-01
The nuclear power plant reactor buildings are to be directly supported on a hard soil as a rule in Japan. In case of determining the input motions in order to design those buildings, the amplifications of the hard soil deposits are examined by the total stress analysis in general. However, when the supporting hard soil is replaced with the slightly softer medium such as sandy or gravelly soil, the existence of pore water, in other words, the contribution of the pore water pressure to the total stress cannot be ignored even in a practical sense. In this paper the authors defined an analytical model considering the effective stress-strain relation. In the analyses, the response in the vertical direction is used to evaluate the confining pressure, at first. In the next step, the process of the generation and dissipation of the pore water pressure, is taken into account, together with the effect of the confining pressure. They applied these procedures for the response computations of the horizontally layered soil deposits
Determination of the arterial input function in mouse-models using clinical MRI
International Nuclear Information System (INIS)
Theis, D.; Fachhochschule Giessen-Friedberg; Keil, B.; Heverhagen, J.T.; Klose, K.J.; Behe, M.; Fiebich, M.
2008-01-01
Dynamic contrast enhanced magnetic resonance imaging is a promising method for quantitative analysis of tumor perfusion and is increasingly used in study of cancer in small animal models. In those studies the determination of the arterial input function (AIF) of the target tissue can be the first step. Series of short-axis images of the heart were acquired during administration of a bolus of Gd-DTPA using saturation-recovery gradient echo pulse sequences. The AIF was determined from the changes of the signal intensity in the left ventricle. The native T1 relaxation times and AIF were determined for 11 mice. An average value of (1.16 ± 0.09) s for the native T1 relaxation time was measured. However, the AIF showed significant inter animal variability, as previously observed by other authors. The inter-animal variability shows, that a direct measurement of the AIF is reasonable to avoid significant errors. The proposed method for determination of the AIF proved to be reliable. (orig.)
Multiregional input-output model for China's farm land and water use.
Guo, Shan; Shen, Geoffrey Qiping
2015-01-06
Land and water are the two main drivers of agricultural production. Pressure on farm land and water resources is increasing in China due to rising food demand. Domestic trade affects China's regional farm land and water use by distributing resources associated with the production of goods and services. This study constructs a multiregional input-output model to simultaneously analyze China's farm land and water uses embodied in consumption and interregional trade. Results show a great similarity for both China's farm land and water endowments. Shandong, Henan, Guangdong, and Yunnan are the most important drivers of farm land and water consumption in China, even though they have relatively few land and water resource endowments. Significant net transfers of embodied farm land and water flows are identified from the central and western areas to the eastern area via interregional trade. Heilongjiang is the largest farm land and water supplier, in contrast to Shanghai as the largest receiver. The results help policy makers to comprehensively understand embodied farm land and water flows in a complex economy network. Improving resource utilization efficiency and reshaping the embodied resource trade nexus should be addressed by considering the transfer of regional responsibilities.
Directory of Open Access Journals (Sweden)
May Tan May
2018-01-01
Full Text Available In recent years, there has been an increase in crude palm oil (CPO demand, resulting in palm oil mills (POMs seizing the opportunity to increase CPO production to make more profits. A series of equipment are designed to operate in their optimum capacities in the current existing POMs. Some equipment may be limited by their maximum design capacities when there is a need to increase CPO production, resulting in process bottlenecks. In this research, a framework is developed to provide stepwise procedures on identifying bottlenecks and retrofitting a POM process to cater for the increase in production capacity. This framework adapts an algebraic approach known as Inoperability Input-Output Modelling (IIM. To illustrate the application of the framework, an industrial POM case study was solved using LINGO software in this work, by maximising its production capacity. Benefit-to-Cost Ratio (BCR analysis was also performed to assess the economic feasibility. As results, the Screw Press was identified as the bottleneck. The retrofitting recommendation was to purchase an additional Screw Press to cater for the new throughput with BCR of 54.57. It was found the POM to be able to achieve the maximum targeted production capacity of 8,139.65 kg/hr of CPO without any bottlenecks.
Modeling and Testing Legacy Data Consistency Requirements
DEFF Research Database (Denmark)
Nytun, J. P.; Jensen, Christian Søndergaard
2003-01-01
An increasing number of data sources are available on the Internet, many of which offer semantically overlapping data, but based on different schemas, or models. While it is often of interest to integrate such data sources, the lack of consistency among them makes this integration difficult....... This paper addresses the need for new techniques that enable the modeling and consistency checking for legacy data sources. Specifically, the paper contributes to the development of a framework that enables consistency testing of data coming from different types of data sources. The vehicle is UML and its...... accompanying XMI. The paper presents techniques for modeling consistency requirements using OCL and other UML modeling elements: it studies how models that describe the required consistencies among instances of legacy models can be designed in standard UML tools that support XMI. The paper also considers...
Usefulness of non-linear input-output models for economic impact analyses in tourism and recreation
Klijs, J.; Peerlings, J.H.M.; Heijman, W.J.M.
2015-01-01
In tourism and recreation management it is still common practice to apply traditional input–output (IO) economic impact models, despite their well-known limitations. In this study the authors analyse the usefulness of applying a non-linear input–output (NLIO) model, in which price-induced input
RUSLE2015: Modelling soil erosion at continental scale using high resolution input layers
Panagos, Panos; Borrelli, Pasquale; Meusburger, Katrin; Poesen, Jean; Ballabio, Cristiano; Lugato, Emanuele; Montanarella, Luca; Alewell, Christine
2016-04-01
Soil erosion by water is one of the most widespread forms of soil degradation in the Europe. On the occasion of the 2015 celebration of the International Year of Soils, the European Commission's Joint Research Centre (JRC) published the RUSLE2015, a modified modelling approach for assessing soil erosion in Europe by using the best available input data layers. The objective of the recent assessment performed with RUSLE2015 was to improve our knowledge and understanding of soil erosion by water across the European Union and to accentuate the differences and similarities between different regions and countries beyond national borders and nationally adapted models. RUSLE2015 has maximized the use of available homogeneous, updated, pan-European datasets (LUCAS topsoil, LUCAS survey, GAEC, Eurostat crops, Eurostat Management Practices, REDES, DEM 25m, CORINE, European Soil Database) and have used the best suited approach at European scale for modelling soil erosion. The collaboration of JRC with many scientists around Europe and numerous prominent European universities and institutes resulted in an improved assessment of individual risk factors (rainfall erosivity, soil erodibility, cover-management, topography and support practices) and a final harmonized European soil erosion map at high resolution. The mean soil loss rate in the European Union's erosion-prone lands (agricultural, forests and semi-natural areas) was found to be 2.46 t ha-1 yr-1, resulting in a total soil loss of 970 Mt annually; equal to an area the size of Berlin (assuming a removal of 1 meter). According to the RUSLE2015 model approximately 12.7% of arable lands in the European Union is estimated to suffer from moderate to high erosion(>5 t ha-1 yr-1). This equates to an area of 140,373 km2 which equals to the surface area of Greece (Environmental Science & Policy, 54, 438-447; 2015). Even the mean erosion rate outstrips the mean formation rate (walls and contouring) through the common agricultural
Modeling DPOAE input/output function compression: comparisons with hearing thresholds.
Bhagat, Shaum P
2014-09-01
Basilar membrane input/output (I/O) functions in mammalian animal models are characterized by linear and compressed segments when measured near the location corresponding to the characteristic frequency. A method of studying basilar membrane compression indirectly in humans involves measuring distortion-product otoacoustic emission (DPOAE) I/O functions. Previous research has linked compression estimates from behavioral growth-of-masking functions to hearing thresholds. The aim of this study was to compare compression estimates from DPOAE I/O functions and hearing thresholds at 1 and 2 kHz. A prospective correlational research design was performed. The relationship between DPOAE I/O function compression estimates and hearing thresholds was evaluated with Pearson product-moment correlations. Normal-hearing adults (n = 16) aged 22-42 yr were recruited. DPOAE I/O functions (L₂ = 45-70 dB SPL) and two-interval forced-choice hearing thresholds were measured in normal-hearing adults. A three-segment linear regression model applied to DPOAE I/O functions supplied estimates of compression thresholds, defined as breakpoints between linear and compressed segments and the slopes of the compressed segments. Pearson product-moment correlations between DPOAE compression estimates and hearing thresholds were evaluated. A high correlation between DPOAE compression thresholds and hearing thresholds was observed at 2 kHz, but not at 1 kHz. Compression slopes also correlated highly with hearing thresholds only at 2 kHz. The derivation of cochlear compression estimates from DPOAE I/O functions provides a means to characterize basilar membrane mechanics in humans and elucidates the role of compression in tone detection in the 1-2 kHz frequency range. American Academy of Audiology.
Modelling human resource requirements for the nuclear industry in Europe
Energy Technology Data Exchange (ETDEWEB)
Roelofs, Ferry [Nuclear Research and Consultancy Group (NRG) (Netherlands); Flore, Massimo; Estorff, Ulrik von [Joint Research Center (JRC) (Netherlands)
2017-11-15
The European Human Resource Observatory for Nuclear (EHRO-N) provides the European Commission with essential data related to supply and demand for nuclear experts in the EU-28 and the enlargement and integration countries based on bottom-up information from the nuclear industry. The objective is to assess how the supply of experts for the nuclear industry responds to the needs for the same experts for present and future nuclear projects in the region. Complementary to the bottom-up approach taken by the EHRO-N team at JRC, a top-down modelling approach has been taken in a collaboration with NRG in the Netherlands. This top-down modelling approach focuses on the human resource requirements for operation, construction, decommissioning, and efforts for long term operation of nuclear power plants. This paper describes the top-down methodology, the model input, the main assumptions, and the results of the analyses.
Modelling human resource requirements for the nuclear industry in Europe
International Nuclear Information System (INIS)
Roelofs, Ferry; Flore, Massimo; Estorff, Ulrik von
2017-01-01
The European Human Resource Observatory for Nuclear (EHRO-N) provides the European Commission with essential data related to supply and demand for nuclear experts in the EU-28 and the enlargement and integration countries based on bottom-up information from the nuclear industry. The objective is to assess how the supply of experts for the nuclear industry responds to the needs for the same experts for present and future nuclear projects in the region. Complementary to the bottom-up approach taken by the EHRO-N team at JRC, a top-down modelling approach has been taken in a collaboration with NRG in the Netherlands. This top-down modelling approach focuses on the human resource requirements for operation, construction, decommissioning, and efforts for long term operation of nuclear power plants. This paper describes the top-down methodology, the model input, the main assumptions, and the results of the analyses.
Lee, Cameron C; Sheridan, Scott C
2018-07-01
Temperature-mortality relationships are nonlinear, time-lagged, and can vary depending on the time of year and geographic location, all of which limits the applicability of simple regression models in describing these associations. This research demonstrates the utility of an alternative method for modeling such complex relationships that has gained recent traction in other environmental fields: nonlinear autoregressive models with exogenous input (NARX models). All-cause mortality data and multiple temperature-based data sets were gathered from 41 different US cities, for the period 1975-2010, and subjected to ensemble NARX modeling. Models generally performed better in larger cities and during the winter season. Across the US, median absolute percentage errors were 10% (ranging from 4% to 15% in various cities), the average improvement in the r-squared over that of a simple persistence model was 17% (6-24%), and the hit rate for modeling spike days in mortality (>80th percentile) was 54% (34-71%). Mortality responded acutely to hot summer days, peaking at 0-2 days of lag before dropping precipitously, and there was an extended mortality response to cold winter days, peaking at 2-4 days of lag and dropping slowly and continuing for multiple weeks. Spring and autumn showed both of the aforementioned temperature-mortality relationships, but generally to a lesser magnitude than what was seen in summer or winter. When compared to distributed lag nonlinear models, NARX model output was nearly identical. These results highlight the applicability of NARX models for use in modeling complex and time-dependent relationships for various applications in epidemiology and environmental sciences. Copyright © 2018 Elsevier Inc. All rights reserved.
A fuzzy model for exploiting customer requirements
Directory of Open Access Journals (Sweden)
Zahra Javadirad
2016-09-01
Full Text Available Nowadays, Quality function deployment (QFD is one of the total quality management tools, where customers’ views and requirements are perceived and using various techniques improves the production requirements and operations. The QFD department, after identification and analysis of the competitors, takes customers’ feedbacks to meet the customers’ demands for the products compared with the competitors. In this study, a comprehensive model for assessing the importance of the customer requirements in the products or services for an organization is proposed. The proposed study uses linguistic variables, as a more comprehensive approach, to increase the precision of the expression evaluations. The importance of these requirements specifies the strengths and weaknesses of the organization in meeting the requirements relative to competitors. The results of these experiments show that the proposed method performs better than the other methods.
Pritchard, David; Fowler, Hayley; Forsythe, Nathan; O'Donnell, Greg; Rutter, Nick; Bardossy, Andras
2017-04-01
Snow and glacier melt in the mountainous Upper Indus Basin (UIB) sustain water supplies, irrigation networks, hydropower production and ecosystems in extensive downstream lowlands. Understanding hydrological and cryospheric sensitivities to climatic variability and change in the basin is therefore critical for local, national and regional water resources management. Assessing these sensitivities using numerical modelling is challenging, due to limitations in the quality and quantity of input and evaluation data, as well as uncertainties in model structures and parameters. This study explores how these uncertainties in inputs and process parameterisations affect distributed simulations of ablation in the complex climatic setting of the UIB. The role of model forcing uncertainties is explored using combinations of local observations, remote sensing and reanalysis - including the high resolution High Asia Refined Analysis - to generate multiple realisations of spatiotemporal model input fields. Forcing a range of model structures with these input fields then provides an indication of how different ablation parameterisations respond to uncertainties and perturbations in climatic drivers. Model structures considered include simple, empirical representations of melt processes through to physically based, full energy balance models with multi-physics options for simulating snowpack evolution (including an adapted version of FSM). Analysing model input and structural uncertainties in this way provides insights for methodological choices in climate sensitivity assessments of data-sparse, high mountain catchments. Such assessments are key for supporting water resource management in these catchments, particularly given the potential complications of enhanced warming through elevation effects or, in the case of the UIB, limited understanding of how and why local climate change signals differ from broader patterns.
Tuo, Ye; Duan, Zheng; Disse, Markus; Chiogna, Gabriele
2016-12-15
Precipitation is often the most important input data in hydrological models when simulating streamflow. The Soil and Water Assessment Tool (SWAT), a widely used hydrological model, only makes use of data from one precipitation gauge station that is nearest to the centroid of each subbasin, which is eventually corrected using the elevation band method. This leads in general to inaccurate representation of subbasin precipitation input data, particularly in catchments with complex topography. To investigate the impact of different precipitation inputs on the SWAT model simulations in Alpine catchments, 13years (1998-2010) of daily precipitation data from four datasets including OP (Observed precipitation), IDW (Inverse Distance Weighting data), CHIRPS (Climate Hazards Group InfraRed Precipitation with Station data) and TRMM (Tropical Rainfall Measuring Mission) has been considered. Both model performances (comparing simulated and measured streamflow data at the catchment outlet) as well as parameter and prediction uncertainties have been quantified. For all three subbasins, the use of elevation bands is fundamental to match the water budget. Streamflow predictions obtained using IDW inputs are better than those obtained using the other datasets in terms of both model performance and prediction uncertainty. Models using the CHIRPS product as input provide satisfactory streamflow estimation, suggesting that this satellite product can be applied to this data-scarce Alpine region. Comparing the performance of SWAT models using different precipitation datasets is therefore important in data-scarce regions. This study has shown that, precipitation is the main source of uncertainty, and different precipitation datasets in SWAT models lead to different best estimate ranges for the calibrated parameters. This has important implications for the interpretation of the simulated hydrological processes. Copyright Â© 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Rogge, Nicky; De Jaeger, Simon
2012-10-01
This paper proposed an adjusted "shared-input" version of the popular efficiency measurement technique Data Envelopment Analysis (DEA) that enables evaluating municipality waste collection and processing performances in settings in which one input (waste costs) is shared among treatment efforts of multiple municipal solid waste fractions. The main advantage of this version of DEA is that it not only provides an estimate of the municipalities overall cost efficiency but also estimates of the municipalities' cost efficiency in the treatment of the different fractions of municipal solid waste (MSW). To illustrate the practical usefulness of the shared input DEA-model, we apply the model to data on 293 municipalities in Flanders, Belgium, for the year 2008. Copyright © 2012 Elsevier Ltd. All rights reserved.
International Nuclear Information System (INIS)
Rogge, Nicky; De Jaeger, Simon
2012-01-01
Highlights: ► Complexity in local waste management calls for more in depth efficiency analysis. ► Shared-input Data Envelopment Analysis can provide solution. ► Considerable room for the Flemish municipalities to improve their cost efficiency. - Abstract: This paper proposed an adjusted “shared-input” version of the popular efficiency measurement technique Data Envelopment Analysis (DEA) that enables evaluating municipality waste collection and processing performances in settings in which one input (waste costs) is shared among treatment efforts of multiple municipal solid waste fractions. The main advantage of this version of DEA is that it not only provides an estimate of the municipalities overall cost efficiency but also estimates of the municipalities’ cost efficiency in the treatment of the different fractions of municipal solid waste (MSW). To illustrate the practical usefulness of the shared input DEA-model, we apply the model to data on 293 municipalities in Flanders, Belgium, for the year 2008.
TRANSIT: model for providing generic transportation input for preliminary siting analysis
International Nuclear Information System (INIS)
McNair, G.W.; Cashwell, J.W.
1985-02-01
To assist the US Department of Energy's efforts in potential facility site screening in the nuclear waste management program, a computerized model, TRANSIT, is being developed. Utilizing existing data on the location and inventory characteristics of spent nuclear fuel at reactor sites, TRANSIT derives isopleths of transportation mileage, costs, risks and fleet requirements for shipments to storage sites and/or repository sites. This technique provides a graphic, first-order method for use by the Department in future site screening efforts. 2 refs
Modelling of capital requirements in the energy sector: capital market access. Final memorandum
Energy Technology Data Exchange (ETDEWEB)
1978-04-01
Formal modelling techniques for analyzing the capital requirements of energy industries have been performed at DOE. A survey has been undertaken of a number of models which forecast energy-sector capital requirements or which detail the interactions of the energy sector and the economy. Models are identified which can be useful as prototypes for some portion of DOE's modelling needs. The models are examined to determine any useful data bases which could serve as inputs to an original DOE model. A selected group of models are examined which can comply with the stated capabilities. The data sources being used by these models are covered and a catalog of the relevant data bases is provided. The models covered are: capital markets and capital availability models (Fossil 1, Bankers Trust Co., DRI Macro Model); models of physical capital requirements (Bechtel Supply Planning Model, ICF Oil and Gas Model and Coal Model, Stanford Research Institute National Energy Model); macroeconomic forecasting models with input-output analysis capabilities (Wharton Annual Long-Term Forecasting Model, Brookhaven/University of Illinois Model, Hudson-Jorgenson/Brookhaven Model); utility models (MIT Regional Electricity Model-Baughman Joskow, Teknekron Electric Utility Simulation Model); and others (DRI Energy Model, DRI/Zimmerman Coal Model, and Oak Ridge Residential Energy Use Model).
Kawaguchi, Minato; Mino, Hiroyuki; Durand, Dominique M
2007-01-01
Stochastic resonance (SR) has been shown to enhance the signal to noise ratio or detection of signals in neurons. It is not yet clear how this effect of SR on the signal to noise ratio affects signal processing in neural networks. In this paper, we investigate the effects of the location of background noise input on information transmission in a hippocampal CA1 neuron model. In the computer simulation, random sub-threshold spike trains (signal) generated by a filtered homogeneous Poisson process were presented repeatedly to the middle point of the main apical branch, while the homogeneous Poisson shot noise (background noise) was applied to a location of the dendrite in the hippocampal CA1 model consisting of the soma with a sodium, a calcium, and five potassium channels. The location of the background noise input was varied along the dendrites to investigate the effects of background noise input location on information transmission. The computer simulation results show that the information rate reached a maximum value for an optimal amplitude of the background noise amplitude. It is also shown that this optimal amplitude of the background noise is independent of the distance between the soma and the noise input location. The results also show that the location of the background noise input does not significantly affect the maximum values of the information rates generated by stochastic resonance.
Output from Statistical Predictive Models as Input to eLearning Dashboards
Directory of Open Access Journals (Sweden)
Marlene A. Smith
2015-06-01
Full Text Available We describe how statistical predictive models might play an expanded role in educational analytics by giving students automated, real-time information about what their current performance means for eventual success in eLearning environments. We discuss how an online messaging system might tailor information to individual students using predictive analytics. The proposed system would be data-driven and quantitative; e.g., a message might furnish the probability that a student will successfully complete the certificate requirements of a massive open online course. Repeated messages would prod underperforming students and alert instructors to those in need of intervention. Administrators responsible for accreditation or outcomes assessment would have ready documentation of learning outcomes and actions taken to address unsatisfactory student performance. The article’s brief introduction to statistical predictive models sets the stage for a description of the messaging system. Resources and methods needed to develop and implement the system are discussed.
Modeling requirements for in situ vitrification
International Nuclear Information System (INIS)
MacKinnon, R.J.; Mecham, D.C.; Hagrman, D.L.; Johnson, R.W.; Murray, P.E.; Slater, C.E.; Marwil, E.S.; Weaver, R.A.; Argyle, M.D.
1991-11-01
This document outlines the requirements for the model being developed at the INEL which will provide analytical support for the ISV technology assessment program. The model includes representations of the electric potential field, thermal transport with melting, gas and particulate release, vapor migration, off-gas combustion and process chemistry. The modeling objectives are to (1) help determine the safety of the process by assessing the air and surrounding soil radionuclide and chemical pollution hazards, the nuclear criticality hazard, and the explosion and fire hazards, (2) help determine the suitability of the ISV process for stabilizing the buried wastes involved, and (3) help design laboratory and field tests and interpret results therefrom
SKIRT: The design of a suite of input models for Monte Carlo radiative transfer simulations
Baes, M.; Camps, P.
2015-09-01
The Monte Carlo method is the most popular technique to perform radiative transfer simulations in a general 3D geometry. The algorithms behind and acceleration techniques for Monte Carlo radiative transfer are discussed extensively in the literature, and many different Monte Carlo codes are publicly available. On the contrary, the design of a suite of components that can be used for the distribution of sources and sinks in radiative transfer codes has received very little attention. The availability of such models, with different degrees of complexity, has many benefits. For example, they can serve as toy models to test new physical ingredients, or as parameterised models for inverse radiative transfer fitting. For 3D Monte Carlo codes, this requires algorithms to efficiently generate random positions from 3D density distributions. We describe the design of a flexible suite of components for the Monte Carlo radiative transfer code SKIRT. The design is based on a combination of basic building blocks (which can be either analytical toy models or numerical models defined on grids or a set of particles) and the extensive use of decorators that combine and alter these building blocks to more complex structures. For a number of decorators, e.g. those that add spiral structure or clumpiness, we provide a detailed description of the algorithms that can be used to generate random positions. Advantages of this decorator-based design include code transparency, the avoidance of code duplication, and an increase in code maintainability. Moreover, since decorators can be chained without problems, very complex models can easily be constructed out of simple building blocks. Finally, based on a number of test simulations, we demonstrate that our design using customised random position generators is superior to a simpler design based on a generic black-box random position generator.
International Nuclear Information System (INIS)
Mihai, Maria; Popescu, I.V.
2003-01-01
In this paper we report a physical-mathematical model for studying the organs and humans fluids by cybernetic principle. The input variables represent the trace elements which are determined by atomic and nuclear methods of elemental analysis. We have determined the health limits between which the organs might function. (authors)
Effect of stimulation on the input parameters of stochastic leaky integrate-and-fire neuronal model
Czech Academy of Sciences Publication Activity Database
Lánský, Petr; Šanda, Pavel; He, J.
2010-01-01
Roč. 104, 3-4 (2010), s. 160-166 ISSN 0928-4257 R&D Projects: GA MŠk(CZ) LC554; GA AV ČR(CZ) IAA101120604 Institutional research plan: CEZ:AV0Z50110509 Keywords : membrane depolarization * input parameters * diffusion Subject RIV: BO - Biophysics Impact factor: 3.030, year: 2010
Enhancement of regional wet deposition estimates based on modeled precipitation inputs
James A. Lynch; Jeffery W. Grimm; Edward S. Corbett
1996-01-01
Application of a variety of two-dimensional interpolation algorithms to precipitation chemistry data gathered at scattered monitoring sites for the purpose of estimating precipitation- born ionic inputs for specific points or regions have failed to produce accurate estimates. The accuracy of these estimates is particularly poor in areas of high topographic relief....
Impact of Infralimbic Inputs on Intercalated Amygdale Neurons: A Biophysical Modeling Study
Li, Guoshi; Amano, Taiju; Pare, Denis; Nair, Satish S.
2011-01-01
Intercalated (ITC) amygdala neurons regulate fear expression by controlling impulse traffic between the input (basolateral amygdala; BLA) and output (central nucleus; Ce) stations of the amygdala for conditioned fear responses. Previously, stimulation of the infralimbic (IL) cortex was found to reduce fear expression and the responsiveness of Ce…
International Nuclear Information System (INIS)
Dupuy, R.
1970-01-01
The input-output supervisor is the program which monitors the flow of informations between core storage and peripheral equipments of a computer. This work is composed of three parts: 1 - Study of a generalized input-output supervisor. With sample modifications it looks like most of input-output supervisors which are running now on computers. 2 - Application of this theory on a magnetic drum. 3 - Hardware requirement for time-sharing. (author) [fr
Directory of Open Access Journals (Sweden)
Gharib Shahla
2006-08-01
Full Text Available Abstract Background The Caenorhabditis elegans male exhibits a stereotypic behavioral pattern when attempting to mate. This behavior has been divided into the following steps: response, backing, turning, vulva location, spicule insertion, and sperm transfer. We and others have begun in-depth analyses of all these steps in order to understand how complex behaviors are generated. Here we extend our understanding of the sperm-transfer step of male mating behavior. Results Based on observation of wild-type males and on genetic analysis, we have divided the sperm-transfer step of mating behavior into four sub-steps: initiation, release, continued transfer, and cessation. To begin to understand how these sub-steps of sperm transfer are regulated, we screened for ethylmethanesulfonate (EMS-induced mutations that cause males to transfer sperm aberrantly. We isolated an allele of unc-18, a previously reported member of the Sec1/Munc-18 (SM family of proteins that is necessary for regulated exocytosis in C. elegans motor neurons. Our allele, sy671, is defective in two distinct sub-steps of sperm transfer: initiation and continued transfer. By a series of transgenic site-of-action experiments, we found that motor neurons in the ventral nerve cord require UNC-18 for the initiation of sperm transfer, and that UNC-18 acts downstream or in parallel to the SPV sensory neurons in this process. In addition to this neuronal requirement, we found that non-neuronal expression of UNC-18, in the male gonad, is necessary for the continuation of sperm transfer. Conclusion Our division of sperm-transfer behavior into sub-steps has provided a framework for the further detailed analysis of sperm transfer and its integration with other aspects of mating behavior. By determining the site of action of UNC-18 in sperm-transfer behavior, and its relation to the SPV sensory neurons, we have further defined the cells and tissues involved in the generation of this behavior. We
Schindelman, Gary; Whittaker, Allyson J; Thum, Jian Yuan; Gharib, Shahla; Sternberg, Paul W
2006-08-15
The Caenorhabditis elegans male exhibits a stereotypic behavioral pattern when attempting to mate. This behavior has been divided into the following steps: response, backing, turning, vulva location, spicule insertion, and sperm transfer. We and others have begun in-depth analyses of all these steps in order to understand how complex behaviors are generated. Here we extend our understanding of the sperm-transfer step of male mating behavior. Based on observation of wild-type males and on genetic analysis, we have divided the sperm-transfer step of mating behavior into four sub-steps: initiation, release, continued transfer, and cessation. To begin to understand how these sub-steps of sperm transfer are regulated, we screened for ethylmethanesulfonate (EMS)-induced mutations that cause males to transfer sperm aberrantly. We isolated an allele of unc-18, a previously reported member of the Sec1/Munc-18 (SM) family of proteins that is necessary for regulated exocytosis in C. elegans motor neurons. Our allele, sy671, is defective in two distinct sub-steps of sperm transfer: initiation and continued transfer. By a series of transgenic site-of-action experiments, we found that motor neurons in the ventral nerve cord require UNC-18 for the initiation of sperm transfer, and that UNC-18 acts downstream or in parallel to the SPV sensory neurons in this process. In addition to this neuronal requirement, we found that non-neuronal expression of UNC-18, in the male gonad, is necessary for the continuation of sperm transfer. Our division of sperm-transfer behavior into sub-steps has provided a framework for the further detailed analysis of sperm transfer and its integration with other aspects of mating behavior. By determining the site of action of UNC-18 in sperm-transfer behavior, and its relation to the SPV sensory neurons, we have further defined the cells and tissues involved in the generation of this behavior. We have shown both a neuronal and non-neuronal requirement for
Wang, Guobao; Corwin, Michael T; Olson, Kristin A; Badawi, Ramsey D; Sarkar, Souvik
2018-05-30
The hallmark of nonalcoholic steatohepatitis is hepatocellular inflammation and injury in the setting of hepatic steatosis. Recent work has indicated that dynamic 18F-FDG PET with kinetic modeling has the potential to assess hepatic inflammation noninvasively, while static FDG-PET did not show a promise. Because the liver has dual blood supplies, kinetic modeling of dynamic liver PET data is challenging in human studies. The objective of this study is to evaluate and identify a dual-input kinetic modeling approach for dynamic FDG-PET of human liver inflammation. Fourteen human patients with nonalcoholic fatty liver disease were included in the study. Each patient underwent one-hour dynamic FDG-PET/CT scan and had liver biopsy within six weeks. Three models were tested for kinetic analysis: traditional two-tissue compartmental model with an image-derived single-blood input function (SBIF), model with population-based dual-blood input function (DBIF), and modified model with optimization-derived DBIF through a joint estimation framework. The three models were compared using Akaike information criterion (AIC), F test and histopathologic inflammation reference. The results showed that the optimization-derived DBIF model improved the fitting of liver time activity curves and achieved lower AIC values and higher F values than the SBIF and population-based DBIF models in all patients. The optimization-derived model significantly increased FDG K1 estimates by 101% and 27% as compared with traditional SBIF and population-based DBIF. K1 by the optimization-derived model was significantly associated with histopathologic grades of liver inflammation while the other two models did not provide a statistical significance. In conclusion, modeling of DBIF is critical for kinetic analysis of dynamic liver FDG-PET data in human studies. The optimization-derived DBIF model is more appropriate than SBIF and population-based DBIF for dynamic FDG-PET of liver inflammation. © 2018
The input and output management of solid waste using DEA models: A case study at Jengka, Pahang
Mohamed, Siti Rosiah; Ghazali, Nur Fadzrina Mohd; Mohd, Ainun Hafizah
2017-08-01
Data Envelopment Analysis (DEA) as a tool for obtaining performance indices has been used extensively in several of organizations sector. The ways to improve the efficiency of Decision Making Units (DMUs) is impractical because some of inputs and outputs are uncontrollable and in certain situation its produce weak efficiency which often reflect the impact for operating environment. Based on the data from Alam Flora Sdn. Bhd Jengka, the researcher wants to determine the efficiency of solid waste management (SWM) in town Jengka Pahang using CCRI and CCRO model of DEA and duality formulation with vector average input and output. Three input variables (length collection in meter, frequency time per week in hour and number of garbage truck) and 2 outputs variables (frequency collection and the total solid waste collection in kilogram) are analyzed. As a conclusion, it shows only three roads from 23 roads are efficient that achieve efficiency score 1. Meanwhile, 20 other roads are in an inefficient management.
Meshkat, Nicolette; Anderson, Chris; Distefano, Joseph J
2011-09-01
When examining the structural identifiability properties of dynamic system models, some parameters can take on an infinite number of values and yet yield identical input-output data. These parameters and the model are then said to be unidentifiable. Finding identifiable combinations of parameters with which to reparameterize the model provides a means for quantitatively analyzing the model and computing solutions in terms of the combinations. In this paper, we revisit and explore the properties of an algorithm for finding identifiable parameter combinations using Gröbner Bases and prove useful theoretical properties of these parameter combinations. We prove a set of M algebraically independent identifiable parameter combinations can be found using this algorithm and that there exists a unique rational reparameterization of the input-output equations over these parameter combinations. We also demonstrate application of the procedure to a nonlinear biomodel. Copyright © 2011 Elsevier Inc. All rights reserved.
Information Models, Data Requirements, and Agile Data Curation
Hughes, John S.; Crichton, Dan; Ritschel, Bernd; Hardman, Sean; Joyner, Ron
2015-04-01
The Planetary Data System's next generation system, PDS4, is an example of the successful use of an ontology-based Information Model (IM) to drive the development and operations of a data system. In traditional systems engineering, requirements or statements about what is necessary for the system are collected and analyzed for input into the design stage of systems development. With the advent of big data the requirements associated with data have begun to dominate and an ontology-based information model can be used to provide a formalized and rigorous set of data requirements. These requirements address not only the usual issues of data quantity, quality, and disposition but also data representation, integrity, provenance, context, and semantics. In addition the use of these data requirements during system's development has many characteristics of Agile Curation as proposed by Young et al. [Taking Another Look at the Data Management Life Cycle: Deconstruction, Agile, and Community, AGU 2014], namely adaptive planning, evolutionary development, early delivery, continuous improvement, and rapid and flexible response to change. For example customers can be satisfied through early and continuous delivery of system software and services that are configured directly from the information model. This presentation will describe the PDS4 architecture and its three principle parts: the ontology-based Information Model (IM), the federated registries and repositories, and the REST-based service layer for search, retrieval, and distribution. The development of the IM will be highlighted with special emphasis on knowledge acquisition, the impact of the IM on development and operations, and the use of shared ontologies at multiple governance levels to promote system interoperability and data correlation.
Experimental and theoretical requirements for fuel modelling
International Nuclear Information System (INIS)
Gatesoupe, J.P.
1979-01-01
From a scientific point of view it may be considered that any event in the life of a fuel pin under irradiation should be perfectly well understood and foreseen from that deterministic point of view, the whole behaviour of the pin maybe analysed and dismantled with a specific function for every component part and each component part related to one basic phenomenon which can be independently studied on pure physical grounds. When extracted from the code structure the subroutine is studied for itself by specialists who try to keep as close as possible to the physics involved in the phenomenon; that often leads to an impressive luxury in details and a subsequent need for many unavailable input data. It might seem more secure to follow that approach since it tries to be firmly based on theoretical grounds. One should think so if the phenomenological situation in the pin were less complex than it is. The codes would not be adequate for off-normal operating conditions since for the accidental transient conditions the key-phenomena would not be the same as for steady-state or slow transient conditions. The orientation given to fuel modelling is based on our two main technological constraints which are: no fuel melting; no cladding failure; no excessive cladding deformation. In this context, the only relevant models are those which have a significant influence on the maximum temperatures in the fuel or on the cladding damage hence the selection between key models and irrelevant models which will next be done. A rather pragmatic view is kept on codification with a special focus on a few determinant aspects of fuel behaviour and no attention to models which are nothing but decorative. Fuel modeling is merely considered as a link between experimental knowledge; it serves as a guide for further improvements in fuel design and as so happens to be quite useful. On this basis the main lacks in of fuel behaviour is described. These are mainly concerning: thermal transfer through
International Nuclear Information System (INIS)
Liu, Xiuli; Moreno, Blanca; García, Ana Salomé
2016-01-01
A combined forecast of Grey forecasting method and neural network back propagation model, which is called Grey Neural Network and Input-Output Combined Forecasting Model (GNF-IO model), is proposed. A real case of energy consumption forecast is used to validate the effectiveness of the proposed model. The GNF-IO model predicts coal, crude oil, natural gas, renewable and nuclear primary energy consumption volumes by Spain's 36 sub-sectors from 2010 to 2015 according to three different GDP growth scenarios (optimistic, baseline and pessimistic). Model test shows that the proposed model has higher simulation and forecasting accuracy on energy consumption than Grey models separately and other combination methods. The forecasts indicate that the primary energies as coal, crude oil and natural gas will represent on average the 83.6% percent of the total of primary energy consumption, raising concerns about security of supply and energy cost and adding risk for some industrial production processes. Thus, Spanish industry must speed up its transition to an energy-efficiency economy, achieving a cost reduction and increase in the level of self-supply. - Highlights: • Forecasting System Using Grey Models combined with Input-Output Models is proposed. • Primary energy consumption in Spain is used to validate the model. • The grey-based combined model has good forecasting performance. • Natural gas will represent the majority of the total of primary energy consumption. • Concerns about security of supply, energy cost and industry competitiveness are raised.
Langseth, Brian J.; Jones, Michael L.; Riley, Stephen C.
2014-01-01
Ecopath with Ecosim (EwE) is a widely used modeling tool in fishery research and management. Ecopath requires a mass-balanced snapshot of a food web at a particular point in time, which Ecosim then uses to simulate changes in biomass over time. Initial inputs to Ecopath, including estimates for biomasses, production to biomass ratios, consumption to biomass ratios, and diets, rarely produce mass balance, and thus ad hoc changes to inputs are required to balance the model. There has been little previous research of whether ad hoc changes to achieve mass balance affect Ecosim simulations. We constructed an EwE model for the offshore community of Lake Huron, and balanced the model using four contrasting but realistic methods. The four balancing methods were based on two contrasting approaches; in the first approach, production of unbalanced groups was increased by increasing either biomass or the production to biomass ratio, while in the second approach, consumption of predators on unbalanced groups was decreased by decreasing either biomass or the consumption to biomass ratio. We compared six simulation scenarios based on three alternative assumptions about the extent to which mortality rates of prey can change in response to changes in predator biomass (i.e., vulnerabilities) under perturbations to either fishing mortality or environmental production. Changes in simulated biomass values over time were used in a principal components analysis to assess the comparative effect of balancing method, vulnerabilities, and perturbation types. Vulnerabilities explained the most variation in biomass, followed by the type of perturbation. Choice of balancing method explained little of the overall variation in biomass. Under scenarios where changes in predator biomass caused large changes in mortality rates of prey (i.e., high vulnerabilities), variation in biomass was greater than when changes in predator biomass caused only small changes in mortality rates of prey (i.e., low
2017-05-01
2) TREECS™ has a tool for estimating soil Kd values given Koc, the soil tex- ture (percent sand, silt, and clay ), and the percent organic matter...respectively. Mulherin et al. (2005) studied the stability of NQ in three moist, unsatu- rated soils under laboratory conditions. This study yielded a range...of the uncertain input properties (degrada- tion rates and water-to- soil and water-to-sediment adsorption partitioning distribution coefficients, or
Goldberg, Robert K.; Carney, Kelly S.; Dubois, Paul; Hoffarth, Canio; Khaled, Bilal; Rajan, Subramaniam; Blankenhorn, Gunther
2016-01-01
A material model which incorporates several key capabilities which have been identified by the aerospace community as lacking in the composite impact models currently available in LS-DYNA(Registered Trademark) is under development. In particular, the material model, which is being implemented as MAT 213 into a tailored version of LS-DYNA being jointly developed by the FAA and NASA, incorporates both plasticity and damage within the material model, utilizes experimentally based tabulated input to define the evolution of plasticity and damage as opposed to specifying discrete input parameters (such as modulus and strength), and is able to analyze the response of composites composed with a variety of fiber architectures. The plasticity portion of the orthotropic, three-dimensional, macroscopic composite constitutive model is based on an extension of the Tsai-Wu composite failure model into a generalized yield function with a non-associative flow rule. The capability to account for the rate and temperature dependent deformation response of composites has also been incorporated into the material model. For the damage model, a strain equivalent formulation is utilized to allow for the uncoupling of the deformation and damage analyses. In the damage model, a diagonal damage tensor is defined to account for the directionally dependent variation of damage. However, in composites it has been found that loading in one direction can lead to damage in multiple coordinate directions. To account for this phenomena, the terms in the damage matrix are semi-coupled such that the damage in a particular coordinate direction is a function of the stresses and plastic strains in all of the coordinate directions. The onset of material failure, and thus element deletion, is being developed to be a function of the stresses and plastic strains in the various coordinate directions. Systematic procedures are being developed to generate the required input parameters based on the results of
International Nuclear Information System (INIS)
Suzuki, K.; Sato, H.
1975-01-01
The power and the cross power spectrum analysis by which the vibration characteristic of structures, such as natural frequency, mode of vibration and damping ratio, can be identified would be effective for the confirmation of the characteristics after the construction is completed by using the response for small earthquakes or the micro-tremor under the operating condition. This method of analysis previously utilized only from the view point of systems with single input so far, is extensively applied for the analysis of a medium scale model of a piping system subjected to two seismic inputs. The piping system attached to a three storied concrete structure model which is constructed on a shaking table was excited due to earthquake motions. The inputs to the piping system were recorded at the second floor and the ceiling of the third floor where the system was attached to. The output, the response of the piping system, was instrumented at a middle point on the system. As a result, the multi-dimensional power spectrum analysis is effective for a more reliable identification of the vibration characteristics of the multi-input structure system
Sherwood, John; Clabeaux, Raeanne; Carbajales-Dale, Michael
2017-10-01
We developed a physically-based environmental account of US food production systems and integrated these data into the environmental-input-output life cycle assessment (EIO-LCA) model. The extended model was used to characterize the food, energy, and water (FEW) intensities of every US economic sector. The model was then applied to every Bureau of Economic Analysis metropolitan statistical area (MSA) to determine their FEW usages. The extended EIO-LCA model can determine the water resource use (kGal), energy resource use (TJ), and food resource use in units of mass (kg) or energy content (kcal) of any economic activity within the United States. We analyzed every economic sector to determine its FEW intensities per dollar of economic output. This data was applied to each of the 382 MSAs to determine their total and per dollar of GDP FEW usages by allocating MSA economic production to the corresponding FEW intensities of US economic sectors. Additionally, a longitudinal study was performed for the Los Angeles-Long Beach-Anaheim, CA, metropolitan statistical area to examine trends from this singular MSA and compare it to the overall results. Results show a strong correlation between GDP and energy use, and between food and water use across MSAs. There is also a correlation between GDP and greenhouse gas emissions. The longitudinal study indicates that these correlations can shift alongside a shifting industrial composition. Comparing MSAs on a per GDP basis reveals that central and southern California tend to be more resource intensive than many other parts of the country, while much of Florida has abnormally low resource requirements. Results of this study enable a more complete understanding of food, energy, and water as key ingredients to a functioning economy. With the addition of the food data to the EIO-LCA framework, researchers will be able to better study the food-energy-water nexus and gain insight into how these three vital resources are interconnected
Directory of Open Access Journals (Sweden)
S.N.M.P. Simamora
2014-10-01
Full Text Available Efficiency condition occurs when the value of the used outputs compared to the resource total that has been used almost close to the value 1 (absolute environment. An instrument to achieve efficiency if the power output level has decreased significantly in the life of the instrument used, if it compared to the previous condition, when the instrument is not equipped with additional systems (or proposed model improvement. Even more effective if the inputs model that are used in unison to achieve a homogeneous output. On this research has been designed and implemented the automatic control system for models of single input-dual-output, wherein the sampling instruments used are lamp and fan. Source voltage used is AC (alternate-current and tested using quantitative research methods and instrumentation (with measuring instruments are observed. The results obtained demonstrate the efficiency of the instrument experienced a significant current model of single-input-dual-output applied separately instrument trials such as lamp and fan when it compared to the condition or state before. And the result show that the design has been built, can also run well.
Ngan, Fong; Byun, Daewon; Kim, Hyuncheol; Lee, Daegyun; Rappenglück, Bernhard; Pour-Biazar, Arastoo
2012-07-01
To achieve more accurate meteorological inputs than was used in the daily forecast for studying the TexAQS 2006 air quality, retrospective simulations were conducted using objective analysis and 3D/surface analysis nudging with surface and upper observations. Model ozone using the assimilated meteorological fields with improved wind fields shows better agreement with the observation compared to the forecasting results. In the post-frontal conditions, important factors for ozone modeling in terms of wind patterns are the weak easterlies in the morning for bringing in industrial emissions to the city and the subsequent clockwise turning of the wind direction induced by the Coriolis force superimposing the sea breeze, which keeps pollutants in the urban area. Objective analysis and nudging employed in the retrospective simulation minimize the wind bias but are not able to compensate for the general flow pattern biases inherited from large scale inputs. By using an alternative analyses data for initializing the meteorological simulation, the model can re-produce the flow pattern and generate the ozone peak location closer to the reality. The inaccurate simulation of precipitation and cloudiness cause over-prediction of ozone occasionally. Since there are limitations in the meteorological model to simulate precipitation and cloudiness in the fine scale domain (less than 4-km grid), the satellite-based cloud is an alternative way to provide necessary inputs for the retrospective study of air quality.
International Nuclear Information System (INIS)
Park, Hi-Chun; Heo, Eunnyeong
2007-01-01
As energy conservation can be realized through changes in the composition of goods and services consumed, there is a need to assess indirect and total household energy requirements. The Korean household sector was responsible for about 52% of the national primary energy requirement in the period from 1980 to 2000. Of this total, more than 60% of household energy requirement was indirect. Thus, not only direct but also indirect household energy requirement should be the target of energy conservation policies. Electricity became the main fuel in household energy use in 2000. Households consume more and more electricity intensive goods and services, a sign of increasing living standards. Increases in household consumption expenditure were responsible for a relatively high growth of energy consumption. Switching to consumption of less energy intensive products and decrease in energy intensities of products in 1990s contributed substantially to reduce the increase in the total household energy requirement. A future Korean study should apply a hybrid method as to reduce errors occurred by using uniform (average) prices in constructing energy input-output tables and as to make energy intensities of different years more comparable. (author)
Holcomb, Paul S; Hoffpauir, Brian K; Hoyson, Mitchell C; Jackson, Dakota R; Deerinck, Thomas J; Marrs, Glenn S; Dehoff, Marlin; Wu, Jonathan; Ellisman, Mark H; Spirou, George A
2013-08-07
Hallmark features of neural circuit development include early exuberant innervation followed by competition and pruning to mature innervation topography. Several neural systems, including the neuromuscular junction and climbing fiber innervation of Purkinje cells, are models to study neural development in part because they establish a recognizable endpoint of monoinnervation of their targets and because the presynaptic terminals are large and easily monitored. We demonstrate here that calyx of Held (CH) innervation of its target, which forms a key element of auditory brainstem binaural circuitry, exhibits all of these characteristics. To investigate CH development, we made the first application of serial block-face scanning electron microscopy to neural development with fine temporal resolution and thereby accomplished the first time series for 3D ultrastructural analysis of neural circuit formation. This approach revealed a growth spurt of added apposed surface area (ASA)>200 μm2/d centered on a single age at postnatal day 3 in mice and an initial rapid phase of growth and competition that resolved to monoinnervation in two-thirds of cells within 3 d. This rapid growth occurred in parallel with an increase in action potential threshold, which may mediate selection of the strongest input as the winning competitor. ASAs of competing inputs were segregated on the cell body surface. These data suggest mechanisms to select "winning" inputs by regional reinforcement of postsynaptic membrane to mediate size and strength of competing synaptic inputs.
van Hirtum, Annemie; Lopez, Ines; Hirschberg, Abraham; Pelorson, Xavier
2003-01-01
In this paper the sensitivity of the two-mass model with acoustical coupling to the model input-parameters is assessed. The model-output or the glottal volume air flow is characterised by signal-parameters in the time-domain. The influence of changing input-parameters on the signal-parameters is
Hirtum, van A.; Lopez Arteaga, I.; Hirschberg, A.; Pelorson, X.
2003-01-01
In this paper the sensitivity of the two-mass model with acoustical coupling to the model input-parameters is assessed. The model-output or the glottal volume air flow is characterised by signal-parameters in the time-domain. The influence of changing input-parameters on the signal-parameters is
Energy Technology Data Exchange (ETDEWEB)
Maclaurin, Galen [National Renewable Energy Lab. (NREL), Golden, CO (United States); Sengupta, Manajit [National Renewable Energy Lab. (NREL), Golden, CO (United States); Xie, Yu [National Renewable Energy Lab. (NREL), Golden, CO (United States); Gilroy, Nicholas [National Renewable Energy Lab. (NREL), Golden, CO (United States)
2016-12-01
A significant source of bias in the transposition of global horizontal irradiance to plane-of-array (POA) irradiance arises from inaccurate estimations of surface albedo. The current physics-based model used to produce the National Solar Radiation Database (NSRDB) relies on model estimations of surface albedo from a reanalysis climatalogy produced at relatively coarse spatial resolution compared to that of the NSRDB. As an input to spectral decomposition and transposition models, more accurate surface albedo data from remotely sensed imagery at finer spatial resolutions would improve accuracy in the final product. The National Renewable Energy Laboratory (NREL) developed an improved white-sky (bi-hemispherical reflectance) broadband (0.3-5.0 ..mu..m) surface albedo data set for processing the NSRDB from two existing data sets: a gap-filled albedo product and a daily snow cover product. The Moderate Resolution Imaging Spectroradiometer (MODIS) sensors onboard the Terra and Aqua satellites have provided high-quality measurements of surface albedo at 30 arc-second spatial resolution and 8-day temporal resolution since 2001. The high spatial and temporal resolutions and the temporal coverage of the MODIS sensor will allow for improved modeling of POA irradiance in the NSRDB. However, cloud and snow cover interfere with MODIS observations of ground surface albedo, and thus they require post-processing. The MODIS production team applied a gap-filling methodology to interpolate observations obscured by clouds or ephemeral snow. This approach filled pixels with ephemeral snow cover because the 8-day temporal resolution is too coarse to accurately capture the variability of snow cover and its impact on albedo estimates. However, for this project, accurate representation of daily snow cover change is important in producing the NSRDB. Therefore, NREL also used the Integrated Multisensor Snow and Ice Mapping System data set, which provides daily snow cover observations of the
Nonlinear neural network for hemodynamic model state and input estimation using fMRI data
Karam, Ayman M.
2014-11-01
Originally inspired by biological neural networks, artificial neural networks (ANNs) are powerful mathematical tools that can solve complex nonlinear problems such as filtering, classification, prediction and more. This paper demonstrates the first successful implementation of ANN, specifically nonlinear autoregressive with exogenous input (NARX) networks, to estimate the hemodynamic states and neural activity from simulated and measured real blood oxygenation level dependent (BOLD) signals. Blocked and event-related BOLD data are used to test the algorithm on real experiments. The proposed method is accurate and robust even in the presence of signal noise and it does not depend on sampling interval. Moreover, the structure of the NARX networks is optimized to yield the best estimate with minimal network architecture. The results of the estimated neural activity are also discussed in terms of their potential use.
Embodied water analysis for Hebei Province, China by input-output modelling
Liu, Siyuan; Han, Mengyao; Wu, Xudong; Wu, Xiaofang; Li, Zhi; Xia, Xiaohua; Ji, Xi
2018-03-01
With the accelerating coordinated development of the Beijing-Tianjin-Hebei region, regional economic integration is recognized as a national strategy. As water scarcity places Hebei Province in a dilemma, it is of critical importance for Hebei Province to balance water resources as well as make full use of its unique advantages in the transition to sustainable development. To our knowledge, related embodied water accounting analysis has been conducted for Beijing and Tianjin, while similar works with the focus on Hebei are not found. In this paper, using the most complete and recent statistics available for Hebei Province, the embodied water use in Hebei Province is analyzed in detail. Based on input-output analysis, it presents a complete set of systems accounting framework for water resources. In addition, a database of embodied water intensity is proposed which is applicable to both intermediate inputs and final demand. The result suggests that the total amount of embodied water in final demand is 10.62 billion m3, of which the water embodied in urban household consumption accounts for more than half. As a net embodied water importer, the water embodied in the commodity trade in Hebei Province is 17.20 billion m3. The outcome of this work implies that it is particularly urgent to adjust industrial structure and trade policies for water conservation, to upgrade technology and to improve water utilization. As a result, to relieve water shortages in Hebei Province, it is of crucial importance to regulate the balance of water use within the province, thus balancing water distribution in the various industrial sectors.
The sensitivity of ecosystem service models to choices of input data and spatial resolution
Kenneth J. Bagstad; Erika Cohen; Zachary H. Ancona; Steven. G. McNulty; Ge Sun
2018-01-01
Although ecosystem service (ES) modeling has progressed rapidly in the last 10â15 years, comparative studies on data and model selection effects have become more common only recently. Such studies have drawn mixed conclusions about whether different data and model choices yield divergent results. In this study, we compared the results of different models to address...
Tian, Zhen; Yuan, Jingqi; Zhang, Xiang; Kong, Lei; Wang, Jingcheng
2018-05-01
The coordinated control system (CCS) serves as an important role in load regulation, efficiency optimization and pollutant reduction for coal-fired power plants. The CCS faces with tough challenges, such as the wide-range load variation, various uncertainties and constraints. This paper aims to improve the load tacking ability and robustness for boiler-turbine units under wide-range operation. To capture the key dynamics of the ultra-supercritical boiler-turbine system, a nonlinear control-oriented model is developed based on mechanism analysis and model reduction techniques, which is validated with the history operation data of a real 1000 MW unit. To simultaneously address the issues of uncertainties and input constraints, a discrete-time sliding mode predictive controller (SMPC) is designed with the dual-mode control law. Moreover, the input-to-state stability and robustness of the closed-loop system are proved. Simulation results are presented to illustrate the effectiveness of the proposed control scheme, which achieves good tracking performance, disturbance rejection ability and compatibility to input constraints. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
International Nuclear Information System (INIS)
Vomvoris, S.; Andrews, R.W.; Lanyon, G.W.; Voborny, O.; Wilson, W.
1996-04-01
Switzerland is one of many nations with nuclear power that is seeking to identify rock types and locations that would be suitable for the underground disposal of nuclear waste. A common challenge among these programs is to provide engineering designers and safety analysts with a reasonably representative hydrogeological input dataset that synthesizes the relevant information from direct field observations as well as inferences and model results derived from those observations. Needed are estimates of the volumetric flux through a volume of rock and the distribution of that flux into discrete pathways between the repository zones and the biosphere. These fluxes are not directly measurable but must be derived based on understandings of the range of plausible hydrogeologic conditions expected at the location investigated. The methodology described in this report utilizes conceptual and numerical models at various scales to derive the input dataset. The methodology incorporates an innovative approach, called the geometric approach, in which field observations and their associated uncertainty, together with a conceptual representation of those features that most significantly affect the groundwater flow regime, were rigorously applied to generate alternative possible realizations of hydrogeologic features in the geosphere. In this approach, the ranges in the output values directly reflect uncertainties in the input values. As a demonstration, the methodology is applied to the derivation of the hydrogeological dataset for the crystalline basement of Northern Switzerland. (author) figs., tabs., refs
Directory of Open Access Journals (Sweden)
Chang Che
2018-01-01
Full Text Available This paper focuses on the problem of nonlinear systems with input and state delays. The considered nonlinear systems are represented by Takagi-Sugeno (T-S fuzzy model. A new state feedback control approach is introduced for T-S fuzzy systems with input delay and state delays. A new Lyapunov-Krasovskii functional is employed to derive less conservative stability conditions by incorporating a recently developed Wirtinger-based integral inequality. Based on the Lyapunov stability criterion, a series of linear matrix inequalities (LMIs are obtained by using the slack variables and integral inequality, which guarantees the asymptotic stability of the closed-loop system. Several numerical examples are given to show the advantages of the proposed results.
Effect of manure vs. fertilizer inputs on productivity of forage crop models.
Annicchiarico, Giovanni; Caternolo, Giovanni; Rossi, Emanuela; Martiniello, Pasquale
2011-06-01
Manure produced by livestock activity is a dangerous product capable of causing serious environmental pollution. Agronomic management practices on the use of manure may transform the target from a waste to a resource product. Experiments performed on comparison of manure with standard chemical fertilizers (CF) were studied under a double cropping per year regime (alfalfa, model I; Italian ryegrass-corn, model II; barley-seed sorghum, model III; and horse-bean-silage sorghum, model IV). The total amount of manure applied in the annual forage crops of the model II, III and IV was 158, 140 and 80 m3 ha(-1), respectively. The manure applied to soil by broadcast and injection procedure provides an amount of nitrogen equal to that supplied by CF. The effect of manure applications on animal feeding production and biochemical soil characteristics was related to the models. The weather condition and manures and CF showed small interaction among treatments. The number of MFU ha(-1) of biomass crop gross product produced in autumn and spring sowing models under manure applications was 11,769, 20,525, 11,342, 21,397 in models I through IV, respectively. The reduction of MFU ha(-1) under CF ranges from 10.7% to 13.2% those of the manure models. The effect of manure on organic carbon and total nitrogen of topsoil, compared to model I, stressed the parameters as CF whose amount was higher in models II and III than model IV. In term of percentage the organic carbon and total nitrogen of model I and treatment with manure was reduced by about 18.5 and 21.9% in model II and model III and 8.8 and 6.3% in model IV, respectively. Manure management may substitute CF without reducing gross production and sustainability of cropping systems, thus allowing the opportunity to recycle the waste product for animal forage feeding.
Effect of Manure vs. Fertilizer Inputs on Productivity of Forage Crop Models
Directory of Open Access Journals (Sweden)
Pasquale Martiniello
2011-06-01
Full Text Available Manure produced by livestock activity is a dangerous product capable of causing serious environmental pollution. Agronomic management practices on the use of manure may transform the target from a waste to a resource product. Experiments performed on comparison of manure with standard chemical fertilizers (CF were studied under a double cropping per year regime (alfalfa, model I; Italian ryegrass-corn, model II; barley-seed sorghum, model III; and horse-bean-silage sorghum, model IV. The total amount of manure applied in the annual forage crops of the model II, III and IV was 158, 140 and 80 m3 ha−1, respectively. The manure applied to soil by broadcast and injection procedure provides an amount of nitrogen equal to that supplied by CF. The effect of manure applications on animal feeding production and biochemical soil characteristics was related to the models. The weather condition and manures and CF showed small interaction among treatments. The number of MFU ha−1 of biomass crop gross product produced in autumn and spring sowing models under manure applications was 11,769, 20,525, 11,342, 21,397 in models I through IV, respectively. The reduction of MFU ha−1 under CF ranges from 10.7% to 13.2% those of the manure models. The effect of manure on organic carbon and total nitrogen of topsoil, compared to model I, stressed the parameters as CF whose amount was higher in models II and III than model IV. In term of percentage the organic carbon and total nitrogen of model I and treatment with manure was reduced by about 18.5 and 21.9% in model II and model III and 8.8 and 6.3% in model IV, respectively. Manure management may substitute CF without reducing gross production and sustainability of cropping systems, thus allowing the opportunity to recycle the waste product for animal forage feeding.
Roushangar, Kiyoumars; Mehrabani, Fatemeh Vojoudi; Shiri, Jalal
2014-06-01
This study presents Artificial Intelligence (AI)-based modeling of total bed material load through developing the accuracy level of the predictions of traditional models. Gene expression programming (GEP) and adaptive neuro-fuzzy inference system (ANFIS)-based models were developed and validated for estimations. Sediment data from Qotur River (Northwestern Iran) were used for developing and validation of the applied techniques. In order to assess the applied techniques in relation to traditional models, stream power-based and shear stress-based physical models were also applied in the studied case. The obtained results reveal that developed AI-based models using minimum number of dominant factors, give more accurate results than the other applied models. Nonetheless, it was revealed that k-fold test is a practical but high-cost technique for complete scanning of applied data and avoiding the over-fitting.
Directory of Open Access Journals (Sweden)
Rajib Kar
2010-09-01
Full Text Available This work presents an accurate and efficient model to compute the delay and slew metric of on-chip interconnect of high speed CMOS circuits foe ramp input. Our metric assumption is based on the Burr’s Distribution function. The Burr’s distribution is used to characterize the normalized homogeneous portion of the step response. We used the PERI (Probability distribution function Extension for Ramp Inputs technique that extends delay metrics and slew metric for step inputs to the more general and realistic non-step inputs. The accuracy of our models is justified with the results compared with that of SPICE simulations.
Energy Technology Data Exchange (ETDEWEB)
Vollan, A.; Soederberg, M. (Aeronautical Research Inst. of Sweden, Bromma (Sweden))
1989-01-01
This report describes the input for the programs GAROS1 and GAROS2, version 5.8 and later, February 1988. The GAROS system, developed by Arne Vollan, Omega GmbH, is used for the analysis of the mechanical and aeroelastic properties for general rotating systems. It has been specially designed to meet the requirements of aeroelastic stability and dynamic response of horizontal axis wind energy converters. Some of the special characteristics are: * The rotor may have one or more blades. * The blades may be rigidly attached to the hub, or they may be fully articulated. * The full elastic properties of the blades, the hub, the machine house and the tower are taken into account. * With the same basic model, a number of different analyses can be performed: Snap-shot analysis, Floquet method, transient response analysis, frequency response analysis etc.
DEFF Research Database (Denmark)
2013-01-01
This is a very simple program to help you put together input files for use in Gries' (2007) R-based collostruction analysis program. It basically puts together a text file with a frequency list of lexemes in the construction and inserts a column where you can add the corpus frequencies. It requires...... it as input for basic collexeme collostructional analysis (Stefanowitsch & Gries 2003) in Gries' (2007) program. ColloInputGenerator is, in its current state, based on programming commands introduced in Gries (2009). Projected updates: Generation of complete work-ready frequency lists....
A simple technique for obtaining future climate data inputs for natural resource models
Those conducting impact studies using natural resource models need to be able to quickly and easily obtain downscaled future climate data from multiple models, scenarios, and timescales for multiple locations. This paper describes a method of quickly obtaining future climate data over a wide range o...
Better temperature predictions in geothermal modelling by improved quality of input parameters
DEFF Research Database (Denmark)
Fuchs, Sven; Bording, Thue Sylvester; Balling, N.
2015-01-01
Thermal modelling is used to examine the subsurface temperature field and geothermal conditions at various scales (e.g. sedimentary basins, deep crust) and in the framework of different problem settings (e.g. scientific or industrial use). In such models, knowledge of rock thermal properties...
Directory of Open Access Journals (Sweden)
Muayad Al-Qaisy
2015-02-01
Full Text Available In this article, multi-input multi-output (MIMO linear model predictive controller (LMPC based on state space model and nonlinear model predictive controller based on neural network (NNMPC are applied on a continuous stirred tank reactor (CSTR. The idea is to have a good control system that will be able to give optimal performance, reject high load disturbance, and track set point change. In order to study the performance of the two model predictive controllers, MIMO Proportional-Integral-Derivative controller (PID strategy is used as benchmark. The LMPC, NNMPC, and PID strategies are used for controlling the residual concentration (CA and reactor temperature (T. NNMPC control shows a superior performance over the LMPC and PID controllers by presenting a smaller overshoot and shorter settling time.
Evaluating meteo marine climatic model inputs for the investigation of coastal hydrodynamics
Bellafiore, D.; Bucchignani, E.; Umgiesser, G.
2010-09-01
One of the major aspects discussed in the recent works on climate change is how to provide information from the global scale to the local one. In fact the influence of sea level rise and changes in the meteorological conditions due to climate change in strategic areas like the coastal zone is at the base of the well known mitigation and risk assessment plans. The investigation of the coastal zone hydrodynamics, from a modeling point of view, has been the field for the connection between hydraulic models and ocean models and, in terms of process studies, finite element models have demonstrated their suitability in the reproduction of complex coastal morphology and in the capability to reproduce different spatial scale hydrodynamic processes. In this work the connection between two different model families, the climate models and the hydrodynamic models usually implemented for process studies, is tested. Together, they can be the most suitable tool for the investigation of climate change on coastal systems. A finite element model, SHYFEM (Shallow water Hydrodynamic Finite Element Model), is implemented on the Adriatic Sea, to investigate the effect of wind forcing datasets produced by different downscaling from global climate models in terms of surge and its coastal effects. The wind datasets are produced by the regional climate model COSMO-CLM (CIRA), and by EBU-POM model (Belgrade University), both downscaling from ECHAM4. As a first step the downscaled wind datasets, that have different spatial resolutions, has been analyzed for the period 1960-1990 to compare what is their capability to reproduce the measured wind statistics in the coastal zone in front of the Venice Lagoon. The particularity of the Adriatic Sea meteo climate is connected with the influence of the orography in the strengthening of winds like Bora, from North-East. The increase in spatial resolution permits the more resolved wind dataset to better reproduce meteorology and to provide a more
Modeling spray drift and runoff-related inputs of pesticides to receiving water.
Zhang, Xuyang; Luo, Yuzhou; Goh, Kean S
2018-03-01
Pesticides move to surface water via various pathways including surface runoff, spray drift and subsurface flow. Little is known about the relative contributions of surface runoff and spray drift in agricultural watersheds. This study develops a modeling framework to address the contribution of spray drift to the total loadings of pesticides in receiving water bodies. The modeling framework consists of a GIS module for identifying drift potential, the AgDRIFT model for simulating spray drift, and the Soil and Water Assessment Tool (SWAT) for simulating various hydrological and landscape processes including surface runoff and transport of pesticides. The modeling framework was applied on the Orestimba Creek Watershed, California. Monitoring data collected from daily samples were used for model evaluation. Pesticide mass deposition on the Orestimba Creek ranged from 0.08 to 6.09% of applied mass. Monitoring data suggests that surface runoff was the major pathway for pesticide entering water bodies, accounting for 76% of the annual loading; the rest 24% from spray drift. The results from the modeling framework showed 81 and 19%, respectively, for runoff and spray drift. Spray drift contributed over half of the mass loading during summer months. The slightly lower spray drift contribution as predicted by the modeling framework was mainly due to SWAT's under-prediction of pesticide mass loading during summer and over-prediction of the loading during winter. Although model simulations were associated with various sources of uncertainties, the overall performance of the modeling framework was satisfactory as evaluated by multiple statistics: for simulation of daily flow, the Nash-Sutcliffe Efficiency Coefficient (NSE) ranged from 0.61 to 0.74 and the percent bias (PBIAS) runoff in receiving waters and the design of management practices for mitigating pesticide exposure within a watershed. Published by Elsevier Ltd.
Czech Academy of Sciences Publication Activity Database
Kainen, P.C.; Kůrková, Věra; Sanguineti, M.
2012-01-01
Roč. 58, č. 2 (2012), s. 1203-1214 ISSN 0018-9448 R&D Projects: GA MŠk(CZ) ME10023; GA ČR GA201/08/1744; GA ČR GAP202/11/1368 Grant - others:CNR-AV ČR(CZ-IT) Project 2010–2012 Complexity of Neural -Network and Kernel Computational Models Institutional research plan: CEZ:AV0Z10300504 Keywords : dictionary-based computational models * high-dimensional approximation and optimization * model complexity * polynomial upper bounds Subject RIV: IN - Informatics, Computer Science Impact factor: 2.621, year: 2012
Solar Sail Models and Test Measurements Correspondence for Validation Requirements Definition
Ewing, Anthony; Adams, Charles
2004-01-01
Solar sails are being developed as a mission-enabling technology in support of future NASA science missions. Current efforts have advanced solar sail technology sufficient to justify a flight validation program. A primary objective of this activity is to test and validate solar sail models that are currently under development so that they may be used with confidence in future science mission development (e.g., scalable to larger sails). Both system and model validation requirements must be defined early in the program to guide design cycles and to ensure that relevant and sufficient test data will be obtained to conduct model validation to the level required. A process of model identification, model input/output documentation, model sensitivity analyses, and test measurement correspondence is required so that decisions can be made to satisfy validation requirements within program constraints.
Chen, Jui-Sheng; Li, Loretta Y.; Lai, Keng-Hsin; Liang, Ching-Ping
2017-11-01
A novel solution method is presented which leads to an analytical model for the advective-dispersive transport in a semi-infinite domain involving a wide spectrum of boundary inputs, initial distributions, and zero-order productions. The novel solution method applies the Laplace transform in combination with the generalized integral transform technique (GITT) to obtain the generalized analytical solution. Based on this generalized analytical expression, we derive a comprehensive set of special-case solutions for some time-dependent boundary distributions and zero-order productions, described by the Dirac delta, constant, Heaviside, exponentially-decaying, or periodically sinusoidal functions as well as some position-dependent initial conditions and zero-order productions specified by the Dirac delta, constant, Heaviside, or exponentially-decaying functions. The developed solutions are tested against an analytical solution from the literature. The excellent agreement between the analytical solutions confirms that the new model can serve as an effective tool for investigating transport behaviors under different scenarios. Several examples of applications, are given to explore transport behaviors which are rarely noted in the literature. The results show that the concentration waves resulting from the periodically sinusoidal input are sensitive to dispersion coefficient. The implication of this new finding is that a tracer test with a periodic input may provide additional information when for identifying the dispersion coefficients. Moreover, the solution strategy presented in this study can be extended to derive analytical models for handling more complicated problems of solute transport in multi-dimensional media subjected to sequential decay chain reactions, for which analytical solutions are not currently available.
International Nuclear Information System (INIS)
Lanyon, G.W.; Marschall, P.; Vomvoris, S.; Jaquet, O.; Mazurek, M.
1998-01-01
This paper describes the methodology used to estimate effective hydraulic properties for input into a regional geostatistical model of groundwater flow at the Wellenberg site in Switzerland. The methodology uses a geologically-based discrete fracture network model to calculate effective hydraulic properties for 100m blocks along each borehole. A description of the most transmissive features (Water Conducting Features or WCFs) in each borehole is used to determine local transmissivity distributions which are combined with descriptions of WCF extent, orientation and channelling to create fracture network models. WCF geometry is dependent on the class of WCF. WCF classes are defined for each type of geological structure associated with identified borehole inflows. Local to each borehole, models are conditioned on the observed transmissivity and occurrence of WCFs. Multiple realisations are calculated for each 100m block over approximately 400m of borehole. The results from the numerical upscaling are compared with conservative estimates of hydraulic conductivity. Results from unconditioned models are also compared to identify the consequences of conditioning and interval of boreholes that appear to be atypical. An inverse method is also described by which realisations of the geostatistical model can be used to condition discrete fracture network models away from the boreholes. The method can be used as a verification of the modelling approach by prediction of data at borehole locations. Applications of the models to estimation of post-closure repository performance, including cavern inflow and seal zone modelling, are illustrated
Development of a General Form CO_{2} and Brine Flux Input Model
Energy Technology Data Exchange (ETDEWEB)
Mansoor, K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Sun, Y. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Carroll, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2014-08-01
The National Risk Assessment Partnership (NRAP) project is developing a science-based toolset for the quantitative analysis of the potential risks associated with changes in groundwater chemistry from CO_{2} injection. In order to address uncertainty probabilistically, NRAP is developing efficient, reduced-order models (ROMs) as part of its approach. These ROMs are built from detailed, physics-based process models to provide confidence in the predictions over a range of conditions. The ROMs are designed to reproduce accurately the predictions from the computationally intensive process models at a fraction of the computational time, thereby allowing the utilization of Monte Carlo methods to probe variability in key parameters. This report presents the procedures used to develop a generalized model for CO_{2} and brine leakage fluxes based on the output of a numerical wellbore simulation. The resulting generalized parameters and ranges reported here will be used for the development of third-generation groundwater ROMs.
Weaver, Robert J.; Taeb, Peyman; Lazarus, Steven; Splitt, Michael; Holman, Bryan P.; Colvin, Jeffrey
2016-12-01
In this study, a four member ensemble of meteorological forcing is generated using the Weather Research and Forecasting (WRF) model in order to simulate a frontal passage event that impacted the Indian River Lagoon (IRL) during March 2015. The WRF model is run to provide high and low, spatial (0.005° and 0.1°) and temporal (30 min and 6 h) input wind and pressure fields. The four member ensemble is used to force the Advanced Circulation model (ADCIRC) coupled with Simulating Waves Nearshore (SWAN) and compute the hydrodynamic and wave response. Results indicate that increasing the spatial resolution of the meteorological forcing has a greater impact on the results than increasing the temporal resolution in coastal systems like the IRL where the length scales are smaller than the resolution of the operational meteorological model being used to generate the forecast. Changes in predicted water elevations are due in part to the upwind and downwind behavior of the input wind forcing. The significant wave height is more sensitive to the meteorological forcing, exhibited by greater ensemble spread throughout the simulation. It is important that the land mask, seen by the meteorological model, is representative of the geography of the coastal estuary as resolved by the hydrodynamic model. As long as the temporal resolution of the wind field captures the bulk characteristics of the frontal passage, computational resources should be focused so as to ensure that the meteorological model resolves the spatial complexities, such as the land-water interface, that drive the land use responsible for dynamic downscaling of the winds.
International Nuclear Information System (INIS)
Ukidwe, Nandan U.; Bakshi, Bhavik R.
2007-01-01
This paper develops a thermodynamic input-output (TIO) model of the 1997 United States economy that accounts for the flow of cumulative exergy in the 488-sector benchmark economic input-output model in two different ways. Industrial cumulative exergy consumption (ICEC) captures the exergy of all natural resources consumed directly and indirectly by each economic sector, while ecological cumulative exergy consumption (ECEC) also accounts for the exergy consumed in ecological systems for producing each natural resource. Information about exergy consumed in nature is obtained from the thermodynamics of biogeochemical cycles. As used in this work, ECEC is analogous to the concept of emergy, but does not rely on any of its controversial claims. The TIO model can also account for emissions from each sector and their impact and the role of labor. The use of consistent exergetic units permits the combination of various streams to define aggregate metrics that may provide insight into aspects related to the impact of economic sectors on the environment. Accounting for the contribution of natural capital by ECEC has been claimed to permit better representation of the quality of ecosystem goods and services than ICEC. The results of this work are expected to permit evaluation of these claims. If validated, this work is expected to lay the foundation for thermodynamic life cycle assessment, particularly of emerging technologies and with limited information
Gamified Requirements Engineering: Model and Experimentation
Lombriser, Philipp; Dalpiaz, Fabiano; Lucassen, Garm; Brinkkemper, Sjaak
2016-01-01
[Context & Motivation] Engaging stakeholders in requirements engineering (RE) influences the quality of the requirements and ultimately of the system to-be. Unfortunately, stakeholder engagement is often insufficient, leading to too few, low-quality requirements. [Question/problem] We aim to
Comparison of squashing and self-consistent input-output models of quantum feedback
Peřinová, V.; Lukš, A.; Křepelka, J.
2018-03-01
The paper (Yanagisawa and Hope, 2010) opens with two ways of analysis of a measurement-based quantum feedback. The scheme of the feedback includes, along with the homodyne detector, a modulator and a beamsplitter, which does not enable one to extract the nonclassical field. In the present scheme, the beamsplitter is replaced by the quantum noise evader, which makes it possible to extract the nonclassical field. We re-approach the comparison of two models related to the same scheme. The first one admits that in the feedback loop between the photon annihilation and creation operators, unusual commutation relations hold. As a consequence, in the feedback loop, squashing of the light occurs. In the second one, the description arrives at the feedback loop via unitary transformations. But it is obvious that the unitary transformation which describes the modulator changes even the annihilation operator of the mode which passes by the modulator which is not natural. The first model could be called "squashing model" and the second one could be named "self-consistent model". Although the predictions of the two models differ only a little and both the ways of analysis have their advantages, they have also their drawbacks and further investigation is possible.
Modeling microstructure of incudostapedial joint and the effect on cochlear input
Gan, Rong Z.; Wang, Xuelin
2015-12-01
The incudostapedial joint (ISJ) connects the incus to stapes in human ear and plays an important role for sound transmission from the tympanic membrane (TM) to cochlea. ISJ is a synovial joint composed of articular cartilage on the lenticular process and stapes head with the synovial fluid between them. However, there is no study on how the synovial ISJ affects the middle ear and cochlear functions. Recently, we have developed a 3-dimensinal finite element (FE) model of synovial ISJ and connected the model to our comprehensive FE model of the human ear. The motions of TM, stapes footplate, and basilar membrane and the pressures in scala vestibule and scala tympani were derived over frequencies and compared with experimental measurements. Results show that the synovial ISJ affects sound transmission into cochlea and the frequency-dependent viscoelastic behavior of ISJ provides protection for cochlea from high intensity sound.
Simplified models for new physics in vector boson scattering. Input for Snowmass 2013
International Nuclear Information System (INIS)
Reuter, Juergen; Kilian, Wolfgang; Sekulla, Marco
2013-07-01
In this contribution to the Snowmass process 2013 we give a brief review of how new physics could enter in the electroweak (EW) sector of the Standard Model (SM). This new physics, if it is directly accessible at low energies, can be parameterized by explicit resonances having certain quantum numbers. The extreme case is the decoupling limit where those resonances are very heavy and leave only traces in the form of deviations in the SM couplings. Translations are given into higher-dimensional operators leading to such deviations. As long as such resonances are introduced without a UV-complete theory behind it, these models suffer from unitarity violation of perturbative scattering amplitudes. We show explicitly how theoretically sane descriptions could be achieved by using a unitarization prescription that allows a correct description of such a resonance without specifying a UV-complete model.
Simplified models for new physics in vector boson scattering. Input for Snowmass 2013
Energy Technology Data Exchange (ETDEWEB)
Reuter, Juergen [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Kilian, Wolfgang; Sekulla, Marco [Siegen Univ. (Germany). Theoretische Physik I
2013-07-15
In this contribution to the Snowmass process 2013 we give a brief review of how new physics could enter in the electroweak (EW) sector of the Standard Model (SM). This new physics, if it is directly accessible at low energies, can be parameterized by explicit resonances having certain quantum numbers. The extreme case is the decoupling limit where those resonances are very heavy and leave only traces in the form of deviations in the SM couplings. Translations are given into higher-dimensional operators leading to such deviations. As long as such resonances are introduced without a UV-complete theory behind it, these models suffer from unitarity violation of perturbative scattering amplitudes. We show explicitly how theoretically sane descriptions could be achieved by using a unitarization prescription that allows a correct description of such a resonance without specifying a UV-complete model.
SPY: a new scission-point model based on microscopic inputs to predict fission fragment properties
Energy Technology Data Exchange (ETDEWEB)
Panebianco, Stefano; Lemaître, Jean-Francois; Sida, Jean-Luc [CEA Centre de Saclay, Gif-sur-Ivette (France); Dubray, Noëel [CEA, DAM, DIF, Arpajon (France); Goriely, Stephane [Institut d' Astronomie et d' Astrophisique, Universite Libre de Bruxelles, Brussels (Belgium)
2014-07-01
Despite the difficulty in describing the whole fission dynamics, the main fragment characteristics can be determined in a static approach based on a so-called scission-point model. Within this framework, a new Scission-Point model for the calculations of fission fragment Yields (SPY) has been developed. This model, initially based on the approach developed by Wilkins in the late seventies, consists in performing a static energy balance at scission, where the two fragments are supposed to be completely separated so that their macroscopic properties (mass and charge) can be considered as fixed. Given the knowledge of the system state density, averaged quantities such as mass and charge yields, mean kinetic and excitation energy can then be extracted in the framework of a microcanonical statistical description. The main advantage of the SPY model is the introduction of one of the most up-to-date microscopic descriptions of the nucleus for the individual energy of each fragment and, in the future, for their state density. These quantities are obtained in the framework of HFB calculations using the Gogny nucleon-nucleon interaction, ensuring an overall coherence of the model. Starting from a description of the SPY model and its main features, a comparison between the SPY predictions and experimental data will be discussed for some specific cases, from light nuclei around mercury to major actinides. Moreover, extensive predictions over the whole chart of nuclides will be discussed, with particular attention to their implication in stellar nucleosynthesis. Finally, future developments, mainly concerning the introduction of microscopic state densities, will be briefly discussed. (author)
A Hierarchical multi-input and output Bi-GRU Model for Sentiment Analysis on Customer Reviews
Zhang, Liujie; Zhou, Yanquan; Duan, Xiuyu; Chen, Ruiqi
2018-03-01
Multi-label sentiment classification on customer reviews is a practical challenging task in Natural Language Processing. In this paper, we propose a hierarchical multi-input and output model based bi-directional recurrent neural network, which both considers the semantic and lexical information of emotional expression. Our model applies two independent Bi-GRU layer to generate part of speech and sentence representation. Then the lexical information is considered via attention over output of softmax activation on part of speech representation. In addition, we combine probability of auxiliary labels as feature with hidden layer to capturing crucial correlation between output labels. The experimental result shows that our model is computationally efficient and achieves breakthrough improvements on customer reviews dataset.
Progress on reference input parameter library for nuclear model calculations of nuclear data (III)
International Nuclear Information System (INIS)
Su Zongdi; Liu Jianfeng; Huang Zhongfu
1997-01-01
A new set of the average neutron resonance spacings D 0 and neutron strength functions S 0 for 309 nuclei were reestimated on the basis of the resolved resonance parameters reevaluated from BNL-325, ENDF/B-6, JEF-2, and JENDL-3, and the cumulative number N 0 of low low lying levels for 344 nuclei were also reevaluated by means of histograms. Three sets of level density parameters for the Gilbert-Cameron (GC) formula, back-shifted Fermi gas model(BS) and generated superfluid model (GSM) have been reesitmated by fitting the D 0 and N 0 values of CENPL.LRD-2
van der Zijden, A M; Groen, B E; Tanck, E; Nienhuis, B; Verdonschot, N; Weerdesteyn, V
2017-03-21
Many research groups have studied fall impact mechanics to understand how fall severity can be reduced to prevent hip fractures. Yet, direct impact force measurements with force plates are restricted to a very limited repertoire of experimental falls. The purpose of this study was to develop a generic model for estimating hip impact forces (i.e. fall severity) in in vivo sideways falls without the use of force plates. Twelve experienced judokas performed sideways Martial Arts (MA) and Block ('natural') falls on a force plate, both with and without a mat on top. Data were analyzed to determine the hip impact force and to derive 11 selected (subject-specific and kinematic) variables. Falls from kneeling height were used to perform a stepwise regression procedure to assess the effects of these input variables and build the model. The final model includes four input variables, involving one subject-specific measure and three kinematic variables: maximum upper body deceleration, body mass, shoulder angle at the instant of 'maximum impact' and maximum hip deceleration. The results showed that estimated and measured hip impact forces were linearly related (explained variances ranging from 46 to 63%). Hip impact forces of MA falls onto the mat from a standing position (3650±916N) estimated by the final model were comparable with measured values (3698±689N), even though these data were not used for training the model. In conclusion, a generic linear regression model was developed that enables the assessment of fall severity through kinematic measures of sideways falls, without using force plates. Copyright © 2017 Elsevier Ltd. All rights reserved.
GALEV evolutionary synthesis models – I. Code, input physics and web
Kotulla, R.; Fritze, U.; Weilbacher, P.; Anders, P.
2009-01-01
GALEV (GALaxy EVolution) evolutionary synthesis models describe the evolution of stellar populations in general, of star clusters as well as of galaxies, both in terms of resolved stellar populations and of integrated light properties over cosmological time-scales of ≥13 Gyr from the onset of star
Model-based extraction of input and organ functions in dynamic scintigraphic imaging
Czech Academy of Sciences Publication Activity Database
Tichý, Ondřej; Šmídl, Václav; Šámal, M.
2016-01-01
Roč. 4, 3-4 (2016), s. 135-145 ISSN 2168-1171 R&D Projects: GA ČR GA13-29225S Institutional support: RVO:67985556 Keywords : blind source separation * convolution * dynamic medical imaging * compartment modelling Subject RIV: BB - Applied Statistics, Operational Research http://library.utia.cas.cz/separaty/2014/AS/tichy-0428540.pdf
Modeling chronic diseases: the diabetes module. Justification of (new) input data
Baan CA; Bos G; Jacobs-van der Bruggen MAM; Baan CA; Bos G; Jacobs-van der Bruggen MAM; PZO
2005-01-01
The RIVM chronic disease model (CDM) is an instrument designed to estimate the effects of changes in the prevalence of risk factors for chronic diseases on disease burden and mortality. To enable the computation of the effects of various diabetes prevention scenarios, the CDM has been updated and
The effective temperature of the DBV's, and the sensitivity of DB model atmospheres to input physics
International Nuclear Information System (INIS)
Thejll, P.; Delaware Univ., Newark, DE; Vennes, S.; Shipman, H.L.
1990-01-01
A new grid of DB models is applied to the problem of the DBV temperatures and the DB gap. It is found that the DBV instability strip lies lower than thought before. This has consequences for the calibration of mixing-length theories and the reality of the DB gap. The DBV GD358 is discussed in detail. (orig.)
Evapotranspiration and Precipitation inputs for SWAT model using remotely sensed observations
The ability of numerical models, such as the Soil and Water Assessment Tool (or SWAT), to accurately represent the partition of the water budget and describe sediment loads and other pollutant conditions related to water quality strongly depends on how well spatiotemporal variability in precipitatio...
Vrugt, J.A.; Braak, ter C.J.F.; Clark, M.P.; Hyman, J.M.; Robinson, B.A.
2008-01-01
There is increasing consensus in the hydrologic literature that an appropriate framework for streamflow forecasting and simulation should include explicit recognition of forcing and parameter and model structural error. This paper presents a novel Markov chain Monte Carlo (MCMC) sampler, entitled
Berg, Matthew; Hartley, Brian; Richters, Oliver
2015-01-01
By synthesizing stock-flow consistent models, input-output models, and aspects of ecological macroeconomics, a method is developed to simultaneously model monetary flows through the financial system, flows of produced goods and services through the real economy, and flows of physical materials through the natural environment. This paper highlights the linkages between the physical environment and the economic system by emphasizing the role of the energy industry. A conceptual model is developed in general form with an arbitrary number of sectors, while emphasizing connections with the agent-based, econophysics, and complexity economics literature. First, we use the model to challenge claims that 0% interest rates are a necessary condition for a stationary economy and conduct a stability analysis within the parameter space of interest rates and consumption parameters of an economy in stock-flow equilibrium. Second, we analyze the role of energy price shocks in contributing to recessions, incorporating several propagation and amplification mechanisms. Third, implied heat emissions from energy conversion and the effect of anthropogenic heat flux on climate change are considered in light of a minimal single-layer atmosphere climate model, although the model is only implicitly, not explicitly, linked to the economic model.
Energy Technology Data Exchange (ETDEWEB)
2017-02-01
The PLEXOS Input Data Generator (PIDG) is a tool that enables PLEXOS users to better version their data, automate data processing, collaborate in developing inputs, and transfer data between different production cost modeling and other power systems analysis software. PIDG can process data that is in a generalized format from multiple input sources, including CSV files, PostgreSQL databases, and PSS/E .raw files and write it to an Excel file that can be imported into PLEXOS with only limited manual intervention.
Modelling Effects on Grid Cells of Sensory Input During Self-motion
2016-04-20
individual oscillators. These oscillatory interference models effectively simulate the theta rhythmic firing of grid cells (Hafting et al. 2008; Jeewajee...et al. 2008; Brandon et al. 2011; Koenig et al. 2011; Stensola et al. 2012), and the changes in rhythmic firing frequency based on running speed and...Fiete, 2009; Couey et al. 2013), and equate head direction with movement direction. However, an analysis of behavioural data shows that the head
A normalization model suggests that attention changes the weighting of inputs between visual areas.
Ruff, Douglas A; Cohen, Marlene R
2017-05-16
Models of divisive normalization can explain the trial-averaged responses of neurons in sensory, association, and motor areas under a wide range of conditions, including how visual attention changes the gains of neurons in visual cortex. Attention, like other modulatory processes, is also associated with changes in the extent to which pairs of neurons share trial-to-trial variability. We showed recently that in addition to decreasing correlations between similarly tuned neurons within the same visual area, attention increases correlations between neurons in primary visual cortex (V1) and the middle temporal area (MT) and that an extension of a classic normalization model can account for this correlation increase. One of the benefits of having a descriptive model that can account for many physiological observations is that it can be used to probe the mechanisms underlying processes such as attention. Here, we use electrical microstimulation in V1 paired with recording in MT to provide causal evidence that the relationship between V1 and MT activity is nonlinear and is well described by divisive normalization. We then use the normalization model and recording and microstimulation experiments to show that the attention dependence of V1-MT correlations is better explained by a mechanism in which attention changes the weights of connections between V1 and MT than by a mechanism that modulates responses in either area. Our study shows that normalization can explain interactions between neurons in different areas and provides a framework for using multiarea recording and stimulation to probe the neural mechanisms underlying neuronal computations.
Fingerprints of four crop models as affected by soil input data aggregation
Czech Academy of Sciences Publication Activity Database
Angulo, C.; Gaiser, T.; Rötter, R. P.; Børgesen, C. D.; Hlavinka, Petr; Trnka, Miroslav; Ewert, F.
2014-01-01
Roč. 61, NOV 2014 (2014), s. 35-48 ISSN 1161-0301 R&D Projects: GA MŠk(CZ) EE2.3.20.0248; GA MŠk(CZ) EE2.4.31.0056; GA MZe QJ1310123 Institutional support: RVO:67179843 Keywords : crop model * soil data * spatial resolution * yield distribution * aggregation Subject RIV: EH - Ecology, Behaviour Impact factor: 2.704, year: 2014
Czech Academy of Sciences Publication Activity Database
Angulo, C.; Rotter, R.; Trnka, Miroslav; Pirttioja, N. K.; Gaiser, T.; Hlavinka, Petr; Ewert, F.
2013-01-01
Roč. 49, AUG 2013 (2013), s. 104-114 ISSN 1161-0301 R&D Projects: GA MŠk(CZ) EE2.3.20.0248; GA MŠk(CZ) EE2.4.31.0056 Institutional support: RVO:67179843 Keywords : Crop model * Weather data resolution * Aggregation * Yield distribution Subject RIV: EH - Ecology, Behaviour Impact factor: 2.918, year: 2013
Errors in estimation of the input signal for integrate-and-fire neuronal models
Czech Academy of Sciences Publication Activity Database
Bibbona, E.; Lánský, Petr; Sacerdote, L.; Sirovich, R.
2008-01-01
Roč. 78, č. 1 (2008), s. 1-10 ISSN 1539-3755 R&D Projects: GA MŠk(CZ) LC554; GA AV ČR(CZ) 1ET400110401 Grant - others:EC(XE) MIUR PRIN 2005 Institutional research plan: CEZ:AV0Z50110509 Keywords : parameter estimation * stochastic neuronal model Subject RIV: BO - Biophysics Impact factor: 2.508, year: 2008 http://link.aps.org/abstract/PRE/v78/e011918
Hyer, E. J.; Reid, J. S.; Schmidt, C. C.; Giglio, L.; Prins, E.
2009-12-01
The diurnal cycle of fire activity is crucial for accurate simulation of atmospheric effects of fire emissions, especially at finer spatial and temporal scales. Estimating diurnal variability in emissions is also a critical problem for construction of emissions estimates from multiple sensors with variable coverage patterns. An optimal diurnal emissions estimate will use as much information as possible from satellite fire observations, compensate known biases in those observations, and use detailed theoretical models of the diurnal cycle to fill in missing information. As part of ongoing improvements to the Fire Location and Monitoring of Burning Emissions (FLAMBE) fire monitoring system, we evaluated several different methods of integrating observations with different temporal sampling. We used geostationary fire detections from WF_ABBA, fire detection data from MODIS, empirical diurnal cycles from TRMM, and simple theoretical diurnal curves based on surface heating. Our experiments integrated these data in different combinations to estimate the diurnal cycles of emissions for each location and time. Hourly emissions estimates derived using these methods were tested using an aerosol transport model. We present results of this comparison, and discuss the implications of our results for the broader problem of multi-sensor data fusion in fire emissions modeling.
Optimization modeling of U.S. renewable electricity deployment using local input variables
Bernstein, Adam
For the past five years, state Renewable Portfolio Standard (RPS) laws have been a primary driver of renewable electricity (RE) deployments in the United States. However, four key trends currently developing: (i) lower natural gas prices, (ii) slower growth in electricity demand, (iii) challenges of system balancing intermittent RE within the U.S. transmission regions, and (iv) fewer economical sites for RE development, may limit the efficacy of RPS laws over the remainder of the current RPS statutes' lifetime. An outsized proportion of U.S. RE build occurs in a small number of favorable locations, increasing the effects of these variables on marginal RE capacity additions. A state-by-state analysis is necessary to study the U.S. electric sector and to generate technology specific generation forecasts. We used LP optimization modeling similar to the National Renewable Energy Laboratory (NREL) Renewable Energy Development System (ReEDS) to forecast RE deployment across the 8 U.S. states with the largest electricity load, and found state-level RE projections to Year 2031 significantly lower than thoseimplied in the Energy Information Administration (EIA) 2013 Annual Energy Outlook forecast. Additionally, the majority of states do not achieve their RPS targets in our forecast. Combined with the tendency of prior research and RE forecasts to focus on larger national and global scale models, we posit that further bottom-up state and local analysis is needed for more accurate policy assessment, forecasting, and ongoing revision of variables as parameter values evolve through time. Current optimization software eliminates much of the need for algorithm coding and programming, allowing for rapid model construction and updating across many customized state and local RE parameters. Further, our results can be tested against the empirical outcomes that will be observed over the coming years, and the forecast deviation from the actuals can be attributed to discrete parameter
Directory of Open Access Journals (Sweden)
Deyin Yao
2014-01-01
Full Text Available This paper deals with the problem of robust model predictive control (RMPC for a class of linear time-varying systems with constraints and data losses. We take the polytopic uncertainties into account to describe the uncertain systems. First, we design a robust state observer by using the linear matrix inequality (LMI constraints so that the original system state can be tracked. Second, the MPC gain is calculated by minimizing the upper bound of infinite horizon robust performance objective in terms of linear matrix inequality conditions. The method of robust MPC and state observer design is illustrated by a numerical example.
A Novel Approach to Develop the Lower Order Model of Multi-Input Multi-Output System
Rajalakshmy, P.; Dharmalingam, S.; Jayakumar, J.
2017-10-01
A mathematical model is a virtual entity that uses mathematical language to describe the behavior of a system. Mathematical models are used particularly in the natural sciences and engineering disciplines like physics, biology, and electrical engineering as well as in the social sciences like economics, sociology and political science. Physicists, Engineers, Computer scientists, and Economists use mathematical models most extensively. With the advent of high performance processors and advanced mathematical computations, it is possible to develop high performing simulators for complicated Multi Input Multi Ouptut (MIMO) systems like Quadruple tank systems, Aircrafts, Boilers etc. This paper presents the development of the mathematical model of a 500 MW utility boiler which is a highly complex system. A synergistic combination of operational experience, system identification and lower order modeling philosophy has been effectively used to develop a simplified but accurate model of a circulation system of a utility boiler which is a MIMO system. The results obtained are found to be in good agreement with the physics of the process and with the results obtained through design procedure. The model obtained can be directly used for control system studies and to realize hardware simulators for boiler testing and operator training.
Hall, Alix E; Bryant, Jamie; Sanson-Fisher, Rob W; Fradgley, Elizabeth A; Proietto, Anthony M; Roos, Ian
2018-03-07
To ensure the provision of patient-centred health care, it is essential that consumers are actively involved in the process of determining and implementing health-care quality improvements. However, common strategies used to involve consumers in quality improvements, such as consumer membership on committees and collection of patient feedback via surveys, are ineffective and have a number of limitations, including: limited representativeness; tokenism; a lack of reliable and valid patient feedback data; infrequent assessment of patient feedback; delays in acquiring feedback; and how collected feedback is used to drive health-care improvements. We propose a new active model of consumer engagement that aims to overcome these limitations. This model involves the following: (i) the development of a new measure of consumer perceptions; (ii) low cost and frequent electronic data collection of patient views of quality improvements; (iii) efficient feedback to the health-care decision makers; and (iv) active involvement of consumers that fosters power to influence health system changes. © 2018 The Authors Health Expectations published by John Wiley & Sons Ltd.
Estimation of Global 1km-grid Terrestrial Carbon Exchange Part I: Developing Inputs and Modelling
Sasai, T.; Murakami, K.; Kato, S.; Matsunaga, T.; Saigusa, N.; Hiraki, K.
2015-12-01
Global terrestrial carbon cycle largely depends on a spatial pattern in land cover type, which is heterogeneously-distributed over regional and global scales. However, most studies, which aimed at the estimation of carbon exchanges between ecosystem and atmosphere, remained within several tens of kilometers grid spatial resolution, and the results have not been enough to understand the detailed pattern of carbon exchanges based on ecological community. Improving the sophistication of spatial resolution is obviously necessary to enhance the accuracy of carbon exchanges. Moreover, the improvement may contribute to global warming awareness, policy makers and other social activities. In this study, we show global terrestrial carbon exchanges (net ecosystem production, net primary production, and gross primary production) with 1km-grid resolution. As methodology for computing the exchanges, we 1) developed a global 1km-grid climate and satellite dataset based on the approach in Setoyama and Sasai (2013); 2) used the satellite-driven biosphere model (Biosphere model integrating Eco-physiological And Mechanistic approaches using Satellite data: BEAMS) (Sasai et al., 2005, 2007, 2011); 3) simulated the carbon exchanges by using the new dataset and BEAMS by the use of a supercomputer that includes 1280 CPU and 320 GPGPU cores (GOSAT RCF of NIES). As a result, we could develop a global uniform system for realistically estimating terrestrial carbon exchange, and evaluate net ecosystem production in each community level; leading to obtain highly detailed understanding of terrestrial carbon exchanges.
From requirements to Java in a snap model-driven requirements engineering in practice
Smialek, Michal
2015-01-01
This book provides a coherent methodology for Model-Driven Requirements Engineering which stresses the systematic treatment of requirements within the realm of modelling and model transformations. The underlying basic assumption is that detailed requirements models are used as first-class artefacts playing a direct role in constructing software. To this end, the book presents the Requirements Specification Language (RSL) that allows precision and formality, which eventually permits automation of the process of turning requirements into a working system by applying model transformations and co
Modeling uncertainty in requirements engineering decision support
Feather, Martin S.; Maynard-Zhang, Pedrito; Kiper, James D.
2005-01-01
One inherent characteristic of requrements engineering is a lack of certainty during this early phase of a project. Nevertheless, decisions about requirements must be made in spite of this uncertainty. Here we describe the context in which we are exploring this, and some initial work to support elicitation of uncertain requirements, and to deal with the combination of such information from multiple stakeholders.
Modeling of the impact of Rhone River nutrient inputs on the dynamics of planktonic diversity
Alekseenko, Elena; Baklouti, Melika; Garreau, Pierre; Guyennon, Arnaud; Carlotti, François
2014-05-01
Recent studies devoted to the Mediterranean Sea highlight that a large number of uncertainties still exist particularly as regards the variations of elemental stoichiometry of all compartments of pelagic ecosystems (The MerMex Group, 2011, Pujo-Pay et al., 2011, Malatonne-Rizotti and the Pan-Med Group, 2012). Moreover, during the last two decades, it was observed that the inorganic ratio N:P ratio in among all the Mediterranean rivers, including the Rhone River, has dramatically increased, thus strengthening the P-limitation in the Mediterranean waters (Ludwig et al, 2009, The MerMex group, 2011) and increasing the anomaly in the ratio N:P of the Gulf of Lions and all the western part of NW Mediterranean. At which time scales such a change will impact the biogeochemical stocks and fluxes of the Gulf of Lion and of the whole NW Mediterranean sea still remains unknown. In the same way, it is still uncertain how this increase in the N:P ratio will modify the composition of the trophic web, and potentially lead to regime shifts by favouring for example one of the classical food chains of the sea considered in Parsons & Lalli (2002). To address this question, the Eco3M-MED biogeochemical model (Baklouti et al., 2006a,b, Alekseenko et al., 2014) representing the first trophic levels from bacteria to mesozooplankton, coupled with the hydrodynamical model MARS3D (Lazure&Dumas, 2008) is used. This model has already been partially validated (Alekseenko et al., 2014) and the fact that it describes each biogenic compartment in terms of its abundance (for organisms), and carbon, phosphorus, nitrogen and chlorophyll (for autotrophs) implies that all the information on the intracellular status of organisms and on the element(s) that limit(s) their growth will be available. The N:P ratios in water, organisms and in the exported material will also be analyzed. In practice, the work will first consist in running different scenarios starting from similar initial early winter
Vergara, H. J.; Kirstetter, P.; Hong, Y.; Gourley, J. J.; Wang, X.
2013-12-01
The Ensemble Kalman Filter (EnKF) is arguably the assimilation approach that has found the widest application in hydrologic modeling. Its relatively easy implementation and computational efficiency makes it an attractive method for research and operational purposes. However, the scientific literature featuring this approach lacks guidance on how the errors in the forecast need to be characterized so as to get the required corrections from the assimilation process. Moreover, several studies have indicated that the performance of the EnKF is 'sub-optimal' when assimilating certain hydrologic observations. Likewise, some authors have suggested that the underlying assumptions of the Kalman Filter and its dependence on linear dynamics make the EnKF unsuitable for hydrologic modeling. Such assertions are often based on ineffectiveness and poor robustness of EnKF implementations resulting from restrictive specification of error characteristics and the absence of a-priori information of error magnitudes. Therefore, understanding the capabilities and limitations of the EnKF to improve hydrologic forecasts require studying its sensitivity to the manner in which errors in the hydrologic modeling system are represented through ensembles. This study presents a methodology that explores various uncertainty representation configurations to characterize the errors in the hydrologic forecasts in a data assimilation context. The uncertainty in rainfall inputs is represented through a Generalized Additive Model for Location, Scale, and Shape (GAMLSS), which provides information about second-order statistics of quantitative precipitation estimates (QPE) error. The uncertainty in model parameters is described adding perturbations based on parameters covariance information. The method allows for the identification of rainfall and parameter perturbation combinations for which the performance of the EnKF is 'optimal' given a set of objective functions. In this process, information about
Input Harmonic Analysis on the Slim DC-Link Drive Using Harmonic State Space Model
DEFF Research Database (Denmark)
Yang, Feng; Kwon, Jun Bum; Wang, Xiongfei
2017-01-01
The harmonic performance of the slim dc-link adjustable speed drives has shown good performance in some studies but poor in some others. The contradiction indicates that a feasible theoretical analysis is still lacking to characterize the harmonic distortion for the slim dc-link drive. Considerin...... results of the slim dc-link drive, loaded up to 2.0 kW, are presented to validate the theoretical analysis....... variation according to the switching instant, the harmonics at the steady-state condition, as well as the coupling between the multiple harmonic impedances. By using this model, the impaction on the harmonics performance by the film capacitor and the grid inductance is derived. Simulation and experimental...
Effect of delayed response in growth on the dynamics of a chemostat model with impulsive input
International Nuclear Information System (INIS)
Jiao Jianjun; Yang Xiaosong; Chen Lansun; Cai Shaohong
2009-01-01
In this paper, a chemostat model with delayed response in growth and impulsive perturbations on the substrate is considered. Using the discrete dynamical system determined by the stroboscopic map, we obtain a microorganism-extinction periodic solution, further, the globally attractive condition of the microorganism-extinction periodic solution is obtained. By the use of the theory on delay functional and impulsive differential equation, we also obtain the permanent condition of the investigated system. Our results indicate that the discrete time delay has influence to the dynamics behaviors of the investigated system, and provide tactical basis for the experimenters to control the outcome of the chemostat. Furthermore, numerical analysis is inserted to illuminate the dynamics of the system affected by the discrete time delay.
Moreno Ródenas, Antonio Manuel; Cecinati, Francesca; ten Veldhuis, Marie-Claire; Langeveld, Jeroen; Clemens, Francois
2016-04-01
Maintaining water quality standards in highly urbanised hydrological catchments is a worldwide challenge. Water management authorities struggle to cope with changing climate and an increase in pollution pressures. Water quality modelling has been used as a decision support tool for investment and regulatory developments. This approach led to the development of integrated catchment models (ICM), which account for the link between the urban/rural hydrology and the in-river pollutant dynamics. In the modelled system, rainfall triggers the drainage systems of urban areas scattered along a river. When flow exceeds the sewer infrastructure capacity, untreated wastewater enters the natural system by combined sewer overflows. This results in a degradation of the river water quality, depending on the magnitude of the emission and river conditions. Thus, being capable of representing these dynamics in the modelling process is key for a correct assessment of the water quality. In many urbanised hydrological systems the distances between draining sewer infrastructures go beyond the de-correlation length of rainfall processes, especially, for convective summer storms. Hence, spatial and temporal scales of selected rainfall inputs are expected to affect water quality dynamics. The objective of this work is to evaluate how the use of rainfall data from different sources and with different space-time characteristics affects modelled output concentrations of dissolved oxygen in a simplified ICM. The study area is located at the Dommel, a relatively small and sensitive river flowing through the city of Eindhoven (The Netherlands). This river stretch receives the discharge of the 750,000 p.e. WWTP of Eindhoven and from over 200 combined sewer overflows scattered along its length. A pseudo-distributed water quality model has been developed in WEST (mikedhi.com); this is a lumped-physically based model that accounts for urban drainage processes, WWTP and river dynamics for several
A goal-oriented requirements modelling language for enterprise architecture
Quartel, Dick; Engelsman, W.; Jonkers, Henk; van Sinderen, Marten J.
2009-01-01
Methods for enterprise architecture, such as TOGAF, acknowledge the importance of requirements engineering in the development of enterprise architectures. Modelling support is needed to specify, document, communicate and reason about goals and requirements. Current modelling techniques for
Thekdi, Shital A; Santos, Joost R
2016-05-01
Disruptive events such as natural disasters, loss or reduction of resources, work stoppages, and emergent conditions have potential to propagate economic losses across trade networks. In particular, disruptions to the operation of container port activity can be detrimental for international trade and commerce. Risk assessment should anticipate the impact of port operation disruptions with consideration of how priorities change due to uncertain scenarios and guide investments that are effective and feasible for implementation. Priorities for protective measures and continuity of operations planning must consider the economic impact of such disruptions across a variety of scenarios. This article introduces new performance metrics to characterize resiliency in interdependency modeling and also integrates scenario-based methods to measure economic sensitivity to sudden-onset disruptions. The methods will be demonstrated on a U.S. port responsible for handling $36.1 billion of cargo annually. The methods will be useful to port management, private industry supply chain planning, and transportation infrastructure management. © 2015 Society for Risk Analysis.
International Nuclear Information System (INIS)
Ghatrehsamani, Shirin; Ebrahimi, Rahim; Kazi, Salim Newaz; Badarudin Badry, Ahmad; Sadeghinezhad, Emad
2016-01-01
The aim of this study was to determine the amount of input–output energy used in peach production and to develop an optimal model of production in Chaharmahal va Bakhtiari province, Iran. Data were collected from 100 producers by administering a questionnaire in face-to-face interviews. Farms were selected based on random sampling method. Results revealed that the total energy of production is 47,951.52 MJ/ha and the highest share of energy consumption belongs to chemical fertilizers (35.37%). Consumption of direct energy was 47.4% while indirect energy was 52.6%. Also, Total energy consumption was divided into two groups; renewable and non-renewable (19.2% and 80.8% respectively). Energy use efficiency, Energy productivity, Specific energy and Net energy were calculated as 0.433, 0.228 (kg/MJ), 4.38 (MJ/kg) and −27,161.722 (MJ/ha), respectively. According to the negative sign for Net energy, if special strategy is used, energy dismiss will decrease and negative effect of some parameters could be omitted. In the present case the amount is indicating decimate of production energy. In addition, energy efficiency was not high enough. Some of the input energies were applied to machinery, chemical fertilizer, water irrigation and electricity which had significant effect on increasing production and MPP (marginal physical productivity) was determined for variables. This parameter was positive for energy groups namely; machinery, diesel fuel, chemical fertilizer, water irrigation and electricity while it was negative for other kind of energy such as chemical pesticides and human labor. Finally, there is a need to pursue a new policy to force producers to undertake energy-efficient practices to establish sustainable production systems without disrupting the natural resources. In addition, extension activities are needed to improve the efficiency of energy consumption and to sustain the natural resources. - Highlights: • Replacing non-renewable energy with renewable
Robert E. Keane; Janice L. Garner; Kirsten M. Schmidt; Donald G. Long; James P. Menakis; Mark A. Finney
1998-01-01
Fuel and vegetation spatial data layers required by the spatially explicit fire growth model FARSITE were developed for all lands in and around the Selway-Bitterroot Wilderness Area in Idaho and Montana. Satellite imagery and terrain modeling were used to create the three base vegetation spatial data layers of potential vegetation, cover type, and structural stage....
Energy Technology Data Exchange (ETDEWEB)
Achatz, M. [Bundesamt fuer Strahlenschutz, Berlin (Germany); Urso, L. [Bundesamt fuer Strahlenschutz, Oberschleissheim (Germany)
2016-07-01
87 % of mineral phosphate fertilizers are produced of sedimentary rock phosphate, which generally contains heavy metals, like uranium. The solution and migration behavior of uranium is apart from its redox ratio, determined by its pH conditions as well as its ligand quality and quantity. A further important role in sorption is played by soil components like clay minerals, pedogenic oxides and soil organic matter. To provide a preferably detailed speciation model of U in soil several physical and chemical components have to be included to be able to state distribution coefficients (k{sub D}) and sorption processes. The model of Hormann and Fischer served as the basis of modelling uranium mobility in soil by using the program PhreeqC. The usage of real soil and soil water measurements may contribute to identify factors and processes influencing the mobility of uranium under preferably realistic conditions. Additionally, the assessment of further predictions towards uranium migration in soil can be made based on a modelling with PhreeqC. The modelling of uranium inputs and its fate in soil can help to elucidate the human caused occurrence or geogenic origin of uranium in soil.
Lewis, Rebecca; Liddick, Sean; Spyrou, Artemis; Crider, Benjamin; Dombos, Alexander; Naqvi, Farheen; Prokop, Christopher; Quinn, Stephen; Larsen, Ann-Cecilie; Crespo Campo, Lucia; Guttormsen, Magne; Renstrom, Therese; Siem, Sunniva; Bleuel, Darren; Couture, Aaron; Mosby, Shea; Perdikakis, George
2017-09-01
A majority of the abundance of the elements above iron are produced by neutron capture reactions, and, in explosive stellar processes, many of these reactions take place on unstable nuclei. Direct neutron capture experiments can only be performed on stable and long-lived nuclei, requiring indirect methods for the remaining isotopes. Statistical neutron capture can be described using the nuclear level density (NLD), the γ strength function (γSF), and an optical model. The NLD and γSF can be obtained using the β-Oslo method. The NLD and γSF were recently determined for 74Zn using the β-Oslo method, and were used in both TALYS and CoH to calculate the 73Zn(n, γ)74Zn neutron capture cross section. The cross sections calculated in TALYS and CoH are expected to be identical if the inputs for both codes are the same, however, after a thorough investigation into the inputs for the 73Zn(n, γ)74Zn reaction there is still a factor of two discrepancy between the two codes.
Jolliet, O; Munday, G L
1985-01-01
A model which allows accurate prediction of energy consumption of a greenhouse is a useful tool for production planning and optimisation of greenhouse components. To date two types of model have been developed; some very simple models of low precision, others, precise dynamic models unsuitable for employment over long periods and too complex for use in practice. A theoretical study and measurements at the CERN trial greenhouse have allowed development of a new static model named "HORTICERN", easy to use and as precise as more complex dynamic models. This paper demonstrates the potential of this model for long-term production planning. The model gives precise predictions of energy consumption when given greenhouse conditions of use (inside temperatures, dehumidification by ventilation, …) and takes into account local climatic conditions (wind radiative losses to the sky and solar gains), type of greenhouse (cladding, thermal screen …). The HORTICERN method has been developed for PC use and requires less...
Arsad, Roslah; Nasir Abdullah, Mohammad; Alias, Suriana; Isa, Zaidi
2017-09-01
Stock evaluation has always been an interesting problem for investors. In this paper, a comparison regarding the efficiency stocks of listed companies in Bursa Malaysia were made through the application of estimation method of Data Envelopment Analysis (DEA). One of the interesting research subjects in DEA is the selection of appropriate input and output parameter. In this study, DEA was used to measure efficiency of stocks of listed companies in Bursa Malaysia in terms of the financial ratio to evaluate performance of stocks. Based on previous studies and Fuzzy Delphi Method (FDM), the most important financial ratio was selected. The results indicated that return on equity, return on assets, net profit margin, operating profit margin, earnings per share, price to earnings and debt to equity were the most important ratios. Using expert information, all the parameter were clarified as inputs and outputs. The main objectives were to identify most critical financial ratio, clarify them based on expert information and compute the relative efficiency scores of stocks as well as rank them in the construction industry and material completely. The methods of analysis using Alirezaee and Afsharian’s model were employed in this study, where the originality of Charnes, Cooper and Rhodes (CCR) with the assumption of Constant Return to Scale (CSR) still holds. This method of ranking relative efficiency of decision making units (DMUs) was value-added by the Balance Index. The interested data was made for year 2015 and the population of the research includes accepted companies in stock markets in the construction industry and material (63 companies). According to the ranking, the proposed model can rank completely for 63 companies using selected financial ratio.
Directory of Open Access Journals (Sweden)
Mansoureh Ashghali-Farahani
2018-01-01
Full Text Available Background: Weakness of curriculum development in nursing education results in lack of professional skills in graduates. This study was done on master's students in nursing to evaluate challenges of neonatal intensive care nursing curriculum based on context, input, process, and product (CIPP evaluation model. Materials and Methods: This study was conducted with qualitative approach, which was completed according to the CIPP evaluation model. The study was conducted from May 2014 to April 2015. The research community included neonatal intensive care nursing master's students, the graduates, faculty members, neonatologists, nurses working in neonatal intensive care unit (NICU, and mothers of infants who were hospitalized in such wards. Purposeful sampling was applied. Results: The data analysis showed that there were two main categories: “inappropriate infrastructure” and “unknown duties,” which influenced the context formation of NICU master's curriculum. The input was formed by five categories, including “biomedical approach,” “incomprehensive curriculum,” “lack of professional NICU nursing mentors,” “inappropriate admission process of NICU students,” and “lack of NICU skill labs.” Three categories were extracted in the process, including “more emphasize on theoretical education,” “the overlap of credits with each other and the inconsistency among the mentors,” and “ineffective assessment.” Finally, five categories were extracted in the product, including “preferring routine work instead of professional job,” “tendency to leave the job,” “clinical incompetency of graduates,” “the conflict between graduates and nursing staff expectations,” and “dissatisfaction of graduates.” Conclusions: Some changes are needed in NICU master's curriculum by considering the nursing experts' comments and evaluating the consequences of such program by them.
International Nuclear Information System (INIS)
Wu, Kuei-Yen; Wu, Jung-Hua; Huang, Yun-Hsun; Fu, Szu-Chi; Chen, Chia-Yon
2016-01-01
Most existing literature focuses on the direct rebound effect on the demand side for consumers. This study analyses direct and indirect rebound effects in Taiwan's industry from the perspective of producers. However, most studies on the producers' viewpoint may overlook inter-industry linkages. This study applies a supply-driven input-output model to quantify the magnitude of rebound effects by explicitly considering inter-industry linkages. Empirical results showed that total rebound effects for most Taiwan's sectors were less than 10% in 2011. A comparison among the sectors yields that sectors with lower energy efficiency had higher direct rebound effects, while sectors with higher forward linkages generated higher indirect rebound effects. Taking the Mining sector (S3) as an example, which is an upstream supplier and has high forward linkages; it showed high indirect rebound effects that are derived from the accumulation of additional energy consumption by its downstream producers. The findings also showed that in almost all sectors, indirect rebound effects were higher than direct rebound effects. In other words, if indirect rebound effects are neglected, the total rebound effects will be underestimated. Hence, the energy-saving potential may be overestimated. - Highlights: • This study quantifies rebound effects by a supply-driven input-output model. • For most Taiwan's sectors, total rebound magnitudes were less than 10% in 2011. • Direct rebound effects and energy efficiency were inverse correlation. • Indirect rebound effects and industrial forward linkages were positive correlation. • Indirect rebound effects were generally higher than direct rebound effects.
Requirements model generation to support requirements elicitation: The Secure Tropos experience
Kiyavitskaya, N.; Zannone, N.
2008-01-01
In recent years several efforts have been devoted by researchers in the Requirements Engineering community to the development of methodologies for supporting designers during requirements elicitation, modeling, and analysis. However, these methodologies often lack tool support to facilitate their
Pirovano, G.; Coll, I.; Bedogni, M.; Alessandrini, S.; Costa, M. P.; Gabusi, V.; Lasry, F.; Menut, L.; Vautard, R.
The modelling reconstruction of the processes determining the transport and mixing of ozone and its precursors in complex terrain areas is a challenging task, particularly when local-scale circulations, such as sea breeze, take place. Within this frame, the ESCOMPTE European campaign took place in the vicinity of Marseille (south-east of France) in summer 2001. The main objectives of the field campaign were to document several photochemical episodes, as well as to constitute a detailed database for chemistry transport models intercomparison. CAMx model has been applied on the largest intense observation periods (IOP) (June 21-26, 2001) in order to evaluate the impacts of two state-of-the-art meteorological models, RAMS and MM5, on chemical model outputs. The meteorological models have been used as best as possible in analysis mode, thus allowing to identify the spread arising in pollutant concentrations as an indication of the intrinsic uncertainty associated to the meteorological input. Simulations have been deeply investigated and compared with a considerable subset of observations both at ground level and along vertical profiles. The analysis has shown that both models were able to reproduce the main circulation features of the IOP. The strongest discrepancies are confined to the Planetary Boundary Layer, consisting of a clear tendency to underestimate or overestimate wind speed over the whole domain. The photochemical simulations showed that variability in circulation intensity was crucial mainly for the representation of the ozone peaks and of the shape of ozone plumes at the ground that have been affected in the same way over the whole domain and all along the simulated period. As a consequence, such differences can be thought of as a possible indicator for the uncertainty related to the definition of meteorological fields in a complex terrain area.
DECISION MAKING MODELING OF CONCRETE REQUIREMENTS
Directory of Open Access Journals (Sweden)
Suhartono Irawan
2001-01-01
Full Text Available This paper presents the results of an experimental evaluation between predicted and practice concrete strength. The scope of the evaluation is the optimisation of the cement content for different concrete grades as a result of bringing the target mean value of tests cubes closer to the required characteristic strength value by reducing the standard deviation. Abstract in Bahasa Indonesia : concrete+mix+design%2C+acceptance+control%2C+optimisation%2C+cement+content.
Šiljić, Aleksandra; Antanasijević, Davor; Perić-Grujić, Aleksandra; Ristić, Mirjana; Pocajt, Viktor
2015-03-01
Biological oxygen demand (BOD) is the most significant water quality parameter and indicates water pollution with respect to the present biodegradable organic matter content. European countries are therefore obliged to report annual BOD values to Eurostat; however, BOD data at the national level is only available for 28 of 35 listed European countries for the period prior to 2008, among which 46% of data is missing. This paper describes the development of an artificial neural network model for the forecasting of annual BOD values at the national level, using widely available sustainability and economical/industrial parameters as inputs. The initial general regression neural network (GRNN) model was trained, validated and tested utilizing 20 inputs. The number of inputs was reduced to 15 using the Monte Carlo simulation technique as the input selection method. The best results were achieved with the GRNN model utilizing 25% less inputs than the initial model and a comparison with a multiple linear regression model trained and tested using the same input variables using multiple statistical performance indicators confirmed the advantage of the GRNN model. Sensitivity analysis has shown that inputs with the greatest effect on the GRNN model were (in descending order) precipitation, rural population with access to improved water sources, treatment capacity of wastewater treatment plants (urban) and treatment of municipal waste, with the last two having an equal effect. Finally, it was concluded that the developed GRNN model can be useful as a tool to support the decision-making process on sustainable development at a regional, national and international level.
Akçay, A.E.; Biller, B.
2014-01-01
We consider an assemble-to-order production system where the product demands and the time since the last customer arrival are not independent. The simulation of this system requires a multivariate input model that generates random input vectors with correlated discrete and continuous components. In
International Nuclear Information System (INIS)
Chang Yuan; Ries, Robert J.; Wang Yaowu
2010-01-01
A complete understanding of the resource consumption, embodied energy, and environmental emissions of civil projects in China is difficult due to the lack of comprehensive national statistics. To quantitatively assess the energy and environmental impacts of civil construction at a macro-level, this study developed a 24 sector environmental input-output life-cycle assessment model (I-O LCA) based on 2002 Chinese national economic and environmental data. The model generates an economy-wide inventory of energy use and environmental emissions. Estimates based on the level of economic activity related to planned future civil works in 2015 are made. Results indicate that the embodied energy of construction projects accounts for nearly one-sixth of the total economy's energy consumption in 2007, and may account for approximately one-fifth of the total energy use by 2015. This energy consumption is dominated by coal and oil consumptions. Energy-related emissions are the main polluters of the country's atmosphere and environment. If the industry's energy use and manufacturing techniques remain the same as in 2002, challenges to the goals for total energy consumption in China will appear in the next decade. Thus, effective implementation of efficient energy technologies and regulations are indispensable for achieving China's energy and environmental quality goals.
Spreadsheet Decision Support Model for Training Exercise Material Requirements Planning
National Research Council Canada - National Science Library
Tringali, Arthur
1997-01-01
... associated with military training exercises. The model combines the business practice of Material Requirements Planning and the commercial spreadsheet software capabilities of Lotus 1-2-3 to calculate the requirements for food, consumable...
Extending enterprise architecture modelling with business goals and requirements
Engelsman, W.; Quartel, Dick; Jonkers, Henk; van Sinderen, Marten J.
The methods for enterprise architecture (EA), such as The Open Group Architecture Framework, acknowledge the importance of requirements modelling in the development of EAs. Modelling support is needed to specify, document, communicate and reason about goals and requirements. The current modelling
Badrzadeh, Honey; Sarukkalige, Ranjan; Jayawardena, A. W.
2013-12-01
Discrete wavelet transform was applied to decomposed ANN and ANFIS inputs.Novel approach of WNF with subtractive clustering applied for flow forecasting.Forecasting was performed in 1-5 step ahead, using multi-variate inputs.Forecasting accuracy of peak values and longer lead-time significantly improved.
Gayet, S.; van Maanen, L.; Heilbron, M.; Paffen, C.L.E.; Van Der Stigchel, S.
2016-01-01
The content of visual working memory (VWM) affects the processing of concurrent visual input. Recently, it has been demonstrated that stimuli are released from interocular suppression faster when they match rather than mismatch a color that is memorized for subsequent recall. In order to investigate
Mosier, A.; Kroeze, C.
2000-01-01
In most soils, biogenic formation of N2O is enhanced by an increase in available mineral N through increased nitrification and denitrification. N-fertilization, therefore, directly results in additional N2O formation. In addition, these inputs may lead to indirect formation of N2O after N leaching
Murata, Atsuo; Fukunaga, Daichi
2018-04-01
This study attempted to investigate the effects of the target shape and the movement direction on the pointing time using an eye-gaze input system and extend Fitts' model so that these factors are incorporated into the model and the predictive power of Fitts' model is enhanced. The target shape, the target size, the movement distance, and the direction of target presentation were set as within-subject experimental variables. The target shape included: a circle, and rectangles with an aspect ratio of 1:1, 1:2, 1:3, and 1:4. The movement direction included eight directions: upper, lower, left, right, upper left, upper right, lower left, and lower right. On the basis of the data for identifying the effects of the target shape and the movement direction on the pointing time, an attempt was made to develop a generalized and extended Fitts' model that took into account the movement direction and the target shape. As a result, the generalized and extended model was found to fit better to the experimental data, and be more effective for predicting the pointing time for a variety of human-computer interaction (HCI) task using an eye-gaze input system. Copyright © 2017. Published by Elsevier Ltd.
Extending enterprise architecture modelling with business goals and requirements
Engelsman, Wilco; Quartel, Dick; Jonkers, Henk; van Sinderen, Marten
2011-02-01
The methods for enterprise architecture (EA), such as The Open Group Architecture Framework, acknowledge the importance of requirements modelling in the development of EAs. Modelling support is needed to specify, document, communicate and reason about goals and requirements. The current modelling techniques for EA focus on the products, services, processes and applications of an enterprise. In addition, techniques may be provided to describe structured requirements lists and use cases. Little support is available however for modelling the underlying motivation of EAs in terms of stakeholder concerns and the high-level goals that address these concerns. This article describes a language that supports the modelling of this motivation. The definition of the language is based on existing work on high-level goal and requirements modelling and is aligned with an existing standard for enterprise modelling: the ArchiMate language. Furthermore, the article illustrates how EA can benefit from analysis techniques from the requirements engineering domain.
International Nuclear Information System (INIS)
French McCay, Deborah; Reich, Danielle; Rowe, Jill; Schroeder, Melanie; Graham, Eileen
2011-01-01
This paper simulates the consequences of oil spills using a planning model known as the Offshore Environmental Cost Model (OECM). This study aims at creating various predictive models for possible oil spill scenarios in marine waters. A crucial part of this investigation was the SIMAP model. It analyzes the distance and the direction covered by the spill under certain test conditions, generating a regression equation that simulates the impact of the spill. Tests were run in two different regions; the Mid-Atlantic region and the Chukchi Sea. Results showed that the higher wind speeds and higher water temperature of the Mid-Atlantic region had greater impact on wildlife and the water column respectively. However, short-line impact was higher in the Chukchi area due to the multi-directional wind. It was also shown that, because of their higher diffusivity in water, lighter crude oils had more impact than heavier oils. It was suggested that this model could ultimately be applied to other oil spill scenarios happening under similar conditions.
Systems and context modeling approach to requirements analysis
Ahuja, Amrit; Muralikrishna, G.; Patwari, Puneet; Subhrojyoti, C.; Swaminathan, N.; Vin, Harrick
2014-08-01
Ensuring completeness and correctness of the requirements for a complex system such as the SKA is challenging. Current system engineering practice includes developing a stakeholder needs definition, a concept of operations, and defining system requirements in terms of use cases and requirements statements. We present a method that enhances this current practice into a collection of system models with mutual consistency relationships. These include stakeholder goals, needs definition and system-of-interest models, together with a context model that participates in the consistency relationships among these models. We illustrate this approach by using it to analyze the SKA system requirements.
Directory of Open Access Journals (Sweden)
Yuqiao Gu
Full Text Available In the antennal lobe of the noctuid moth Agrotis ipsilon, most pheromone-sensitive projection neurons (PNs exhibit a triphasic firing pattern of excitation (E1-inhibition (I-excitation (E2 in response to a pulse of the sex pheromone. To understand the mechanisms underlying this stereotypical discharge, we developed a biophysical model of a PN receiving inputs from olfactory receptor neurons (ORNs via nicotinic cholinergic synapses. The ORN is modeled as an inhomogeneous Poisson process whose firing rate is a function of time and is fitted to extracellular data recorded in response to pheromone stimulations at various concentrations and durations. The PN model is based on the Hodgkin-Huxley formalism with realistic ionic currents whose parameters were derived from previous studies. Simulations revealed that the inhibitory phase I can be produced by a SK current (Ca2+-gated small conductance K+ current and that the excitatory phase E2 can result from the long-lasting response of the ORNs. Parameter analysis further revealed that the ending time of E1 depends on some parameters of SK, Ca2+, nACh and Na+ currents; I duration mainly depends on the time constant of intracellular Ca2+ dynamics, conductance of Ca2+ currents and some parameters of nACh currents; The mean firing frequency of E1 and E2 depends differentially on the interaction of various currents. Thus it is likely that the interplay between PN intrinsic currents and feedforward synaptic currents are sufficient to generate the triphasic firing patterns observed in the noctuid moth A. ipsilon.
Customer requirement modeling and mapping of numerical control machine
Directory of Open Access Journals (Sweden)
Zhongqi Sheng
2015-10-01
Full Text Available In order to better obtain information about customer requirement and develop products meeting customer requirement, it is necessary to systematically analyze and handle the customer requirement. This article uses the product service system of numerical control machine as research objective and studies the customer requirement modeling and mapping oriented toward configuration design. It introduces the conception of requirement unit, expounds the customer requirement decomposition rules, and establishes customer requirement model; it builds the house of quality using quality function deployment and confirms the weight of technical feature of product and service; it explores the relevance rules between data using rough set theory, establishes rule database, and solves the target value of technical feature of product. Using economical turning center series numerical control machine as an example, it verifies the rationality of proposed customer requirement model.
International Nuclear Information System (INIS)
Jensen, B.S.
1982-01-01
It is probably obvious to all, that establishing the scientific basis of geological waste disposal by going deeper and deeper in detail, may fill out the working hours of hundreds of scientists for hundreds of years. Such an endeavor is, however, impossible to attain, and we are forced to define some criteria telling us and others when knowledge and insight is sufficient. In thepresent case of geological disposal one need to be able to predict migration behavior of a series of radionuclides under diverse conditions to ascertain that unacceptable transfer to the biosphere never occurs. We have already collected a huge amount of data concerning migration phenomena, some very useful, oter less so, but we still need investigatoins departing from the simple ideal concepts, which most often have provided modellers with input data to their calculations. I therefore advocate that basic research is pursued to the point where it is possible to put limits on the effect of the lesser known factors on the migration behavior of radionuclides. When such limits have been established, it will be possible to make calculations on the worst cases, which may also occur. Although I personally believe, that these extra investigations will prove additional safety in geological disposal, this fact will convince nobody, only experimental facts will do
Using cognitive modeling for requirements engineering in anesthesiology
Pott, C; le Feber, J
2005-01-01
Cognitive modeling is a complexity reducing method to describe significant cognitive processes under a specified research focus. Here, a cognitive process model for decision making in anesthesiology is presented and applied in requirements engineering. Three decision making situations of
Fully automated calculation of image-derived input function in simultaneous PET/MRI in a sheep model
International Nuclear Information System (INIS)
Jochimsen, Thies H.; Zeisig, Vilia; Schulz, Jessica; Werner, Peter; Patt, Marianne; Patt, Jörg; Dreyer, Antje Y.; Boltze, Johannes; Barthel, Henryk; Sabri, Osama; Sattler, Bernhard
2016-01-01
Obtaining the arterial input function (AIF) from image data in dynamic positron emission tomography (PET) examinations is a non-invasive alternative to arterial blood sampling. In simultaneous PET/magnetic resonance imaging (PET/MRI), high-resolution MRI angiographies can be used to define major arteries for correction of partial-volume effects (PVE) and point spread function (PSF) response in the PET data. The present study describes a fully automated method to obtain the image-derived input function (IDIF) in PET/MRI. Results are compared to those obtained by arterial blood sampling. To segment the trunk of the major arteries in the neck, a high-resolution time-of-flight MRI angiography was postprocessed by a vessel-enhancement filter based on the inertia tensor. Together with the measured PSF of the PET subsystem, the arterial mask was used for geometrical deconvolution, yielding the time-resolved activity concentration averaged over a major artery. The method was compared to manual arterial blood sampling at the hind leg of 21 sheep (animal stroke model) during measurement of blood flow with O15-water. Absolute quantification of activity concentration was compared after bolus passage during steady state, i.e., between 2.5- and 5-min post injection. Cerebral blood flow (CBF) values from blood sampling and IDIF were also compared. The cross-calibration factor obtained by comparing activity concentrations in blood samples and IDIF during steady state is 0.98 ± 0.10. In all examinations, the IDIF provided a much earlier and sharper bolus peak than in the time course of activity concentration obtained by arterial blood sampling. CBF using the IDIF was 22 % higher than CBF obtained by using the AIF yielded by blood sampling. The small deviation between arterial blood sampling and IDIF during steady state indicates that correction of PVE and PSF is possible with the method presented. The differences in bolus dynamics and, hence, CBF values can be explained by the
Fully automated calculation of image-derived input function in simultaneous PET/MRI in a sheep model
Energy Technology Data Exchange (ETDEWEB)
Jochimsen, Thies H.; Zeisig, Vilia [Department of Nuclear Medicine, Leipzig University Hospital, Liebigstr. 18, Leipzig (Germany); Schulz, Jessica [Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstr. 1a, Leipzig, D-04103 (Germany); Werner, Peter; Patt, Marianne; Patt, Jörg [Department of Nuclear Medicine, Leipzig University Hospital, Liebigstr. 18, Leipzig (Germany); Dreyer, Antje Y. [Fraunhofer Institute of Cell Therapy and Immunology, Perlickstr. 1, Leipzig, D-04103 (Germany); Translational Centre for Regenerative Medicine, University Leipzig, Philipp-Rosenthal-Str. 55, Leipzig, D-04103 (Germany); Boltze, Johannes [Fraunhofer Institute of Cell Therapy and Immunology, Perlickstr. 1, Leipzig, D-04103 (Germany); Translational Centre for Regenerative Medicine, University Leipzig, Philipp-Rosenthal-Str. 55, Leipzig, D-04103 (Germany); Fraunhofer Research Institution of Marine Biotechnology and Institute for Medical and Marine Biotechnology, University of Lübeck, Lübeck (Germany); Barthel, Henryk; Sabri, Osama; Sattler, Bernhard [Department of Nuclear Medicine, Leipzig University Hospital, Liebigstr. 18, Leipzig (Germany)
2016-02-13
Obtaining the arterial input function (AIF) from image data in dynamic positron emission tomography (PET) examinations is a non-invasive alternative to arterial blood sampling. In simultaneous PET/magnetic resonance imaging (PET/MRI), high-resolution MRI angiographies can be used to define major arteries for correction of partial-volume effects (PVE) and point spread function (PSF) response in the PET data. The present study describes a fully automated method to obtain the image-derived input function (IDIF) in PET/MRI. Results are compared to those obtained by arterial blood sampling. To segment the trunk of the major arteries in the neck, a high-resolution time-of-flight MRI angiography was postprocessed by a vessel-enhancement filter based on the inertia tensor. Together with the measured PSF of the PET subsystem, the arterial mask was used for geometrical deconvolution, yielding the time-resolved activity concentration averaged over a major artery. The method was compared to manual arterial blood sampling at the hind leg of 21 sheep (animal stroke model) during measurement of blood flow with O15-water. Absolute quantification of activity concentration was compared after bolus passage during steady state, i.e., between 2.5- and 5-min post injection. Cerebral blood flow (CBF) values from blood sampling and IDIF were also compared. The cross-calibration factor obtained by comparing activity concentrations in blood samples and IDIF during steady state is 0.98 ± 0.10. In all examinations, the IDIF provided a much earlier and sharper bolus peak than in the time course of activity concentration obtained by arterial blood sampling. CBF using the IDIF was 22 % higher than CBF obtained by using the AIF yielded by blood sampling. The small deviation between arterial blood sampling and IDIF during steady state indicates that correction of PVE and PSF is possible with the method presented. The differences in bolus dynamics and, hence, CBF values can be explained by the
D'Ambrosio, Michele; Tofani, Veronica; Rossi, Guglielmo; Salvatici, Teresa; Tacconi Stefanelli, Carlo; Rosi, Ascanio; Benedetta Masi, Elena; Pazzi, Veronica; Vannocci, Pietro; Catani, Filippo; Casagli, Nicola
2017-04-01
The Aosta Valley region is located in North-West Alpine mountain chain. The geomorphology of the region is characterized by steep slopes, high climatic and altitude (ranging from 400 m a.s.l of Dora Baltea's river floodplain to 4810 m a.s.l. of Mont Blanc) variability. In the study area (zone B), located in Eastern part of Aosta Valley, heavy rainfall of about 800-900 mm per year is the main landslides trigger. These features lead to a high hydrogeological risk in all territory, as mass movements interest the 70% of the municipality areas (mainly shallow rapid landslides and rock falls). An in-depth study of the geotechnical and hydrological properties of hillslopes controlling shallow landslides formation was conducted, with the aim to improve the reliability of deterministic model, named HIRESS (HIgh REsolution Stability Simulator). In particular, two campaigns of on site measurements and laboratory experiments were performed. The data obtained have been studied in order to assess the relationships existing among the different parameters and the bedrock lithology. The analyzed soils in 12 survey points are mainly composed of sand and gravel, with highly variable contents of silt. The range of effective internal friction angle (from 25.6° to 34.3°) and effective cohesion (from 0 kPa to 9.3 kPa) measured and the median ks (10E-6 m/s) value are consistent with the average grain sizes (gravelly sand). The data collected contributes to generate input map of parameters for HIRESS (static data). More static data are: volume weight, residual water content, porosity and grain size index. In order to improve the original formulation of the model, the contribution of the root cohesion has been also taken into account based on the vegetation map and literature values. HIRESS is a physically based distributed slope stability simulator for analyzing shallow landslide triggering conditions in real time and in large areas using parallel computational techniques. The software
Energy Technology Data Exchange (ETDEWEB)
Klein, Olaf, E-mail: Olaf.Klein@wias-berlin.de
2014-02-15
In this work, hysteresis operators mapping continuous vector-valued input functions being piecewise monotaffine, i.e. being piecewise the composition of a monotone with an affine function, to vector-valued output functions are considered. It is shown that the operator can be generated by a unique defined function on the convexity triple free strings. A formulation of a congruence property for periodic inputs is presented and reformulated as a condition for the generating string function.
Capabilities and requirements for modelling radionuclide transport in the geosphere
International Nuclear Information System (INIS)
Paige, R.W.; Piper, D.
1989-02-01
This report gives an overview of geosphere flow and transport models suitable for use by the Department of the Environment in the performance assessment of radioactive waste disposal sites. An outline methodology for geosphere modelling is proposed, consisting of a number of different types of model. A brief description of each of the component models is given, indicating the purpose of the model, the processes being modelled and the methodologies adopted. Areas requiring development are noted. (author)
O'Doherty, Jim; Chilcott, Anna; Dunn, Joel
2015-11-01
Arterial sampling with dispersion correction is routinely performed for kinetic analysis of PET studies. Because of the the advent of PET-MRI systems, non-MR safe instrumentation will be required to be kept outside the scan room, which requires the length of the tubing between the patient and detector to increase, thus worsening the effects of dispersion. We examined the effects of dispersion in idealized radioactive blood studies using various lengths of tubing (1.5, 3, and 4.5 m) and applied a well-known transmission-dispersion model to attempt to correct the resulting traces. A simulation study was also carried out to examine noise characteristics of the model. The model was applied to patient traces using a 1.5 m acquisition tubing and extended to its use at 3 m. Satisfactory dispersion correction of the blood traces was achieved in the 1.5 m line. Predictions on the basis of experimental measurements, numerical simulations and noise analysis of resulting traces show that corrections of blood data can also be achieved using the 3 m tubing. The effects of dispersion could not be corrected for the 4.5 m line by the selected transmission-dispersion model. On the basis of our setup, correction of dispersion in arterial sampling tubing up to 3 m by the transmission-dispersion model can be performed. The model could not dispersion correct data acquired using a 4.5 m arterial tubing.
Requirements Validation: Execution of UML Models with CPN Tools
DEFF Research Database (Denmark)
Machado, Ricardo J.; Lassen, Kristian Bisgaard; Oliveira, Sérgio
2007-01-01
Requirements validation is a critical task in any engineering project. The confrontation of stakeholders with static requirements models is not enough, since stakeholders with non-computer science education are not able to discover all the inter-dependencies between the elicited requirements. Eve...... requirements, where the system to be built must explicitly support the interaction between people within a pervasive cooperative workflow execution. A case study from a real project is used to illustrate the proposed approach....
He, Yan-Lin; Geng, Zhi-Qiang; Xu, Yuan; Zhu, Qun-Xiong
2015-09-01
In this paper, a robust hybrid model integrating an enhanced inputs based extreme learning machine with the partial least square regression (PLSR-EIELM) was proposed. The proposed PLSR-EIELM model can overcome two main flaws in the extreme learning machine (ELM), i.e. the intractable problem in determining the optimal number of the hidden layer neurons and the over-fitting phenomenon. First, a traditional extreme learning machine (ELM) is selected. Second, a method of randomly assigning is applied to the weights between the input layer and the hidden layer, and then the nonlinear transformation for independent variables can be obtained from the output of the hidden layer neurons. Especially, the original input variables are regarded as enhanced inputs; then the enhanced inputs and the nonlinear transformed variables are tied together as the whole independent variables. In this way, the PLSR can be carried out to identify the PLS components not only from the nonlinear transformed variables but also from the original input variables, which can remove the correlation among the whole independent variables and the expected outputs. Finally, the optimal relationship model of the whole independent variables with the expected outputs can be achieved by using PLSR. Thus, the PLSR-EIELM model is developed. Then the PLSR-EIELM model served as an intelligent measurement tool for the key variables of the Purified Terephthalic Acid (PTA) process and the High Density Polyethylene (HDPE) process. The experimental results show that the predictive accuracy of PLSR-EIELM is stable, which indicate that PLSR-EIELM has good robust character. Moreover, compared with ELM, PLSR, hierarchical ELM (HELM), and PLSR-ELM, PLSR-EIELM can achieve much smaller predicted relative errors in these two applications. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Moore, Aleisha M; Prescott, Mel; Marshall, Christopher J; Yip, Siew Hoong; Campbell, Rebecca E
2015-01-13
Polycystic ovarian syndrome (PCOS), the leading cause of female infertility, is associated with an increase in luteinizing hormone (LH) pulse frequency, implicating abnormal steroid hormone feedback to gonadotropin-releasing hormone (GnRH) neurons. This study investigated whether modifications in the synaptically connected neuronal network of GnRH neurons could account for this pathology. The PCOS phenotype was induced in mice following prenatal androgen (PNA) exposure. Serial blood sampling confirmed that PNA elicits increased LH pulse frequency and impaired progesterone negative feedback in adult females, mimicking the neuroendocrine abnormalities of the clinical syndrome. Imaging of GnRH neurons revealed greater dendritic spine density that correlated with increased putative GABAergic but not glutamatergic inputs in PNA mice. Mapping of steroid hormone receptor expression revealed that PNA mice had 59% fewer progesterone receptor-expressing cells in the arcuate nucleus of the hypothalamus (ARN). To address whether increased GABA innervation to GnRH neurons originates in the ARN, a viral-mediated Cre-lox approach was taken to trace the projections of ARN GABA neurons in vivo. Remarkably, projections from ARN GABAergic neurons heavily contacted and even bundled with GnRH neuron dendrites, and the density of fibers apposing GnRH neurons was even greater in PNA mice (56%). Additionally, this ARN GABA population showed significantly less colocalization with progesterone receptor in PNA animals compared with controls. Together, these data describe a robust GABAergic circuit originating in the ARN that is enhanced in a model of PCOS and may underpin the neuroendocrine pathophysiology of the syndrome.
International Nuclear Information System (INIS)
1978-07-01
A static model in the form of a regional input-output model was constructed for Eddy and Lea Counties, New Mexico. Besides the WIPP project, the model was also used for several other projects to determine the economic impact of proposed new facilities and developments. Both private and public sectors are covered. Sub-sectors for WIPP below-ground construction, above-ground construction, and operation and transport are included
Ngeo, Jimson G; Tamei, Tomoya; Shibata, Tomohiro
2014-08-14
Surface electromyography (EMG) signals are often used in many robot and rehabilitation applications because these reflect motor intentions of users very well. However, very few studies have focused on the accurate and proportional control of the human hand using EMG signals. Many have focused on discrete gesture classification and some have encountered inherent problems such as electro-mechanical delays (EMD). Here, we present a new method for estimating simultaneous and multiple finger kinematics from multi-channel surface EMG signals. In this study, surface EMG signals from the forearm and finger kinematic data were extracted from ten able-bodied subjects while they were tasked to do individual and simultaneous multiple finger flexion and extension movements in free space. Instead of using traditional time-domain features of EMG, an EMG-to-Muscle Activation model that parameterizes EMD was used and shown to give better estimation performance. A fast feed forward artificial neural network (ANN) and a nonparametric Gaussian Process (GP) regressor were both used and evaluated to estimate complex finger kinematics, with the latter rarely used in the other related literature. The estimation accuracies, in terms of mean correlation coefficient, were 0.85 ± 0.07, 0.78 ± 0.06 and 0.73 ± 0.04 for the metacarpophalangeal (MCP), proximal interphalangeal (PIP) and the distal interphalangeal (DIP) finger joint DOFs, respectively. The mean root-mean-square error in each individual DOF ranged from 5 to 15%. We show that estimation improved using the proposed muscle activation inputs compared to other features, and that using GP regression gave better estimation results when using fewer training samples. The proposed method provides a viable means of capturing the general trend of finger movements and shows a good way of estimating finger joint kinematics using a muscle activation model that parameterizes EMD. The results from this study demonstrates a potential control
International Nuclear Information System (INIS)
Salo, H.
1988-01-01
A Monte Carlo simulation method is presented that can, to an accuracy of a few percent, calculate the effects of a dusty coma on the total energy input to the cometary nucleus. This method treats nonconservative nonisotropic scattering, as well as the reflection from the nucleus surface. Results are presented as a function of the optical thickness of the dust column in the sun-comet axis. The total energy input to the nucleus appears to be only weakly dependent on the opacity of the coma, the radial distribution of the dust, or the details of the extinction processes. 18 references
Response sensitivity of barrel neuron subpopulations to simulated thalamic input.
Pesavento, Michael J; Rittenhouse, Cynthia D; Pinto, David J
2010-06-01
Our goal is to examine the relationship between neuron- and network-level processing in the context of a well-studied cortical function, the processing of thalamic input by whisker-barrel circuits in rodent neocortex. Here we focus on neuron-level processing and investigate the responses of excitatory and inhibitory barrel neurons to simulated thalamic inputs applied using the dynamic clamp method in brain slices. Simulated inputs are modeled after real thalamic inputs recorded in vivo in response to brief whisker deflections. Our results suggest that inhibitory neurons require more input to reach firing threshold, but then fire earlier, with less variability, and respond to a broader range of inputs than do excitatory neurons. Differences in the responses of barrel neuron subtypes depend on their intrinsic membrane properties. Neurons with a low input resistance require more input to reach threshold but then fire earlier than neurons with a higher input resistance, regardless of the neuron's classification. Our results also suggest that the response properties of excitatory versus inhibitory barrel neurons are consistent with the response sensitivities of the ensemble barrel network. The short response latency of inhibitory neurons may serve to suppress ensemble barrel responses to asynchronous thalamic input. Correspondingly, whereas neurons acting as part of the barrel circuit in vivo are highly selective for temporally correlated thalamic input, excitatory barrel neurons acting alone in vitro are less so. These data suggest that network-level processing of thalamic input in barrel cortex depends on neuron-level processing of the same input by excitatory and inhibitory barrel neurons.
GENERAL REQUIREMENTS FOR SIMULATION MODELS IN WASTE MANAGEMENT
International Nuclear Information System (INIS)
Miller, Ian; Kossik, Rick; Voss, Charlie
2003-01-01
Most waste management activities are decided upon and carried out in a public or semi-public arena, typically involving the waste management organization, one or more regulators, and often other stakeholders and members of the public. In these environments, simulation modeling can be a powerful tool in reaching a consensus on the best path forward, but only if the models that are developed are understood and accepted by all of the parties involved. These requirements for understanding and acceptance of the models constrain the appropriate software and model development procedures that are employed. This paper discusses requirements for both simulation software and for the models that are developed using the software. Requirements for the software include transparency, accessibility, flexibility, extensibility, quality assurance, ability to do discrete and/or continuous simulation, and efficiency. Requirements for the models that are developed include traceability, transparency, credibility/validity, and quality control. The paper discusses these requirements with specific reference to the requirements for performance assessment models that are used for predicting the long-term safety of waste disposal facilities, such as the proposed Yucca Mountain repository
Spreadsheet Decision Support Model for Training Exercise Material Requirements Planning
National Research Council Canada - National Science Library
Tringali, Arthur
1997-01-01
This thesis focuses on developing a spreadsheet decision support model that can be used by combat engineer platoon and company commanders in determining the material requirements and estimated costs...
Commonsense Psychology and the Functional Requirements of Cognitive Models
National Research Council Canada - National Science Library
Gordon, Andrew S
2005-01-01
In this paper we argue that previous models of cognitive abilities (e.g. memory, analogy) have been constructed to satisfy functional requirements of implicit commonsense psychological theories held by researchers and nonresearchers alike...
A Compositional Knowledge Level Process Model of Requirements Engineering
Herlea, D.E.; Jonker, C.M.; Treur, J.; Wijngaards, W.C.A.
2002-01-01
In current literature few detailed process models for Requirements Engineering are presented: usually high-level activities are distinguished, without a more precise specification of each activity. In this paper the process of Requirements Engineering has been analyzed using knowledge-level
International Nuclear Information System (INIS)
Reeves, M.; Ward, D.S.; Johns, N.D.; Cranwell, R.M.
1986-04-01
This report is one of three which describes the SWIFT II computer code. The code simulates flow and transport processes in geologic media which may be fractured. SWIFT II was developed for use in the analysis of deep geologic facilities for nuclear-waste disposal. This user's manual should permit the analyst to use the code effectively by facilitating the preparation of input data. A second companion document discusses the theory and implementation of the models employed by the SWIFT II code. A third document provides illustrative problems for instructional purposes. This report contains detailed descriptions of the input data along with an appendix of the input diagnostics. The use of auxiliary files, unit conversions, and program variable descriptors also are included in this document
Directory of Open Access Journals (Sweden)
Connor Hyunju Kim
2016-01-01
Full Text Available The magnetosphere is a major source of energy for the Earth’s ionosphere and thermosphere (IT system. Current IT models drive the upper atmosphere using empirically calculated magnetospheric energy input. Thus, they do not sufficiently capture the storm-time dynamics, particularly at high latitudes. To improve the prediction capability of IT models, a physics-based magnetospheric input is necessary. Here, we use the Open Global General Circulation Model (OpenGGCM coupled with the Coupled Thermosphere Ionosphere Model (CTIM. OpenGGCM calculates a three-dimensional global magnetosphere and a two-dimensional high-latitude ionosphere by solving resistive magnetohydrodynamic (MHD equations with solar wind input. CTIM calculates a global thermosphere and a high-latitude ionosphere in three dimensions using realistic magnetospheric inputs from the OpenGGCM. We investigate whether the coupled model improves the storm-time IT responses by simulating a geomagnetic storm that is preceded by a strong solar wind pressure front on August 24, 2005. We compare the OpenGGCM-CTIM results with low-earth-orbit satellite observations and with the model results of Coupled Thermosphere-Ionosphere-Plasmasphere electrodynamics (CTIPe. CTIPe is an up-to-date version of CTIM that incorporates more IT dynamics such as a low-latitude ionosphere and a plasmasphere, but uses empirical magnetospheric input. OpenGGCM-CTIM reproduces localized neutral density peaks at ~ 400 km altitude in the high-latitude dayside regions in agreement with in situ observations during the pressure shock and the early phase of the storm. Although CTIPe is in some sense a much superior model than CTIM, it misses these localized enhancements. Unlike the CTIPe empirical input models, OpenGGCM-CTIM more faithfully produces localized increases of both auroral precipitation and ionospheric electric fields near the high-latitude dayside region after the pressure shock and after the storm onset
Requirements Modeling with the Aspect-oriented User Requirements Notation (AoURN): A Case Study
Mussbacher, Gunter; Amyot, Daniel; Araújo, João; Moreira, Ana
The User Requirements Notation (URN) is a recent ITU-T standard that supports requirements engineering activities. The Aspect-oriented URN (AoURN) adds aspect-oriented concepts to URN, creating a unified framework that allows for scenario-based, goal-oriented, and aspect-oriented modeling. AoURN is applied to the car crash crisis management system (CCCMS), modeling its functional and non-functional requirements (NFRs). AoURN generally models all use cases, NFRs, and stakeholders as individual concerns and provides general guidelines for concern identification. AoURN handles interactions between concerns, capturing their dependencies and conflicts as well as the resolutions. We present a qualitative comparison of aspect-oriented techniques for scenario-based and goal-oriented requirements engineering. An evaluation carried out based on the metrics adapted from literature and a task-based evaluation suggest that AoURN models are more scalable than URN models and exhibit better modularity, reusability, and maintainability.
Irrigation Requirement Estimation Using Vegetation Indices and Inverse Biophysical Modeling
Bounoua, Lahouari; Imhoff, Marc L.; Franks, Shannon
2010-01-01
We explore an inverse biophysical modeling process forced by satellite and climatological data to quantify irrigation requirements in semi-arid agricultural areas. We constrain the carbon and water cycles modeled under both equilibrium, balance between vegetation and climate, and non-equilibrium, water added through irrigation. We postulate that the degree to which irrigated dry lands vary from equilibrium climate conditions is related to the amount of irrigation. The amount of water required over and above precipitation is considered as an irrigation requirement. For July, results show that spray irrigation resulted in an additional amount of water of 1.3 mm per occurrence with a frequency of 24.6 hours. In contrast, the drip irrigation required only 0.6 mm every 45.6 hours or 46% of that simulated by the spray irrigation. The modeled estimates account for 87% of the total reported irrigation water use, when soil salinity is not important and 66% in saline lands.
Directory of Open Access Journals (Sweden)
Meng Liu
2013-10-01
Full Text Available A stochastic single-species population system in a polluted environment with impulsive toxicant input is proposed and studied. Sufficient conditions for extinction, non-persistence in the mean, strong persistence in the mean and stochastic permanence of the population are established. The threshold between strong persistence in the mean and extinction is obtained. Some simulation figures are introduced to illustrate the main results.
Validation of Power Requirement Model for Active Loudspeakers
DEFF Research Database (Denmark)
Schneider, Henrik; Madsen, Anders Normann; Bjerregaard, Ruben
2015-01-01
. There are however many advantages that could be harvested from such knowledge like size, cost and efficiency improvements. In this paper a recently proposed power requirement model for active loudspeakers is experimentally validated and the model is expanded to include the closed and vented type enclosures...
International Nuclear Information System (INIS)
Kovalets, I.; Andronopoulos, S.; Bartzis, J.G.
2003-01-01
Full text: The Atmospheric Dispersion Models (ADMs) play a key role in decision support systems for nuclear emergency management, as they are used to determine the current, and predict the future spatial distribution of radionuclides after an accidental release of radioactivity to the atmosphere. Meteorological pre-processors (MPPs), usually act as interface between the ADMs and the incoming meteorological data. Therefore the quality of the results of the ADMs crucially depends on the input that they receive from the MPPs. The meteorological data are measurements from one or more stations in the vicinity of the nuclear power plant and/or prognostic data from Numerical Weather Prediction (NWP) models of National Weather Services. The measurements are representative of the past and current local conditions, while the NWP data cover a wider range in space and future time, where no measurements exist. In this respect, the simultaneous use of both by an MPP immediately poses the questions of consistency and of the appropriate methodology for reconciliation of the two kinds of meteorological data. The main objective of the work presented in this paper is the introduction of data assimilation (DA) techniques in the MPP of the RODOS (Real-time On-line Decision Support) system for nuclear emergency management in Europe, developed under the European Project 'RODOS-Migration', to reconcile the NWP data with the local observations coming from the meteorological stations. More specifically, in this paper: the methodological approach for simultaneous use of both meteorological measurements and NWP data in the MPP is presented; the method is validated by comparing results of calculations with experimental data; future ways of improvement of the meteorological input for the calculations of the atmospheric dispersion in the RODOS system are discussed. The methodological approach for solving the DA problem developed in this work is based on the method of optimal interpolation (OI
International Nuclear Information System (INIS)
Adar, E.M.; Kuells, C.
2002-01-01
The following MIG computer code is restricted to a steady flow and steady hydrochemical system. The code for a non-steady hydrological system is still heavily dependant on external optimization libraries, such as the NAG Library. Therefore, a stand-alone 'friendly' code or solver for the non-steady system has yet to be compiled. Readers looking to implement the mixing-cell approach in a non-steady hydrological flow system are encouraged to contact the authors. In order to simplify the procedure of preparing the data and running the Mixing-Cell Model for steady flow system (MCMsf), a special Mixing Input Generator (MIG) has been programmed. MIG is a Visual Basic Microsoft application that runs within Excel 5.0 (and with more advanced versions such as Office 2000) via Windows 95 or newer environment. The program has been tested and used successfully in Windows NT, Windows 95 and Windows 98 together with Excel 5.0, 7.0 and 2000. The development of the standalone Version MIGSA that will run on a Windows system without Microsoft Excel is under development. Section 1 provides some clarifications of terms that are used both in MCMsf and MIG, whereas Section 2 briefly reviews the mathematical algorithm. For elaboration of the basic assumptions and for further mathematical description, the user is referred to the explanations provided in the Model Simplification and to the references provided in this publication
Business Process Simulation: Requirements for Business and Resource Models
Directory of Open Access Journals (Sweden)
Audrius Rima
2015-07-01
Full Text Available The purpose of Business Process Model and Notation (BPMN is to provide easily understandable graphical representation of business process. Thus BPMN is widely used and applied in various areas one of them being a business process simulation. This paper addresses some BPMN model based business process simulation problems. The paper formulate requirements for business process and resource models in enabling their use for business process simulation.
Models of Human Information Requirements: "When Reasonable Aiding Systems Disagree"
Corker, Kevin; Pisanich, Gregory; Shafto, Michael (Technical Monitor)
1994-01-01
Aircraft flight management and Air Traffic Control (ATC) automation are under development to maximize the economy of flight and to increase the capacity of the terminal area airspace while maintaining levels of flight safety equal to or better than current system performance. These goals are being realized by the introduction of flight management automation aiding and operations support systems on the flight deck and by new developments of ATC aiding systems that seek to optimize scheduling of aircraft while potentially reducing required separation and accounting for weather and wake vortex turbulence. Aiding systems on both the flight deck and the ground operate through algorithmic functions on models of the aircraft and of the airspace. These models may differ from each other as a result of variations in their models of the immediate environment. The resultant flight operations or ATC commands may differ in their response requirements (e.g. different preferred descent speeds or descent initiation points). The human operators in the system must then interact with the automation to reconcile differences and resolve conflicts. We have developed a model of human performance including cognitive functions (decision-making, rule-based reasoning, procedural interruption recovery and forgetting) that supports analysis of the information requirements for resolution of flight aiding and ATC conflicts. The model represents multiple individuals in the flight crew and in ATC. The model is supported in simulation on a Silicon Graphics' workstation using Allegro Lisp. Design guidelines for aviation automation aiding systems have been developed using the model's specification of information and team procedural requirements. Empirical data on flight deck operations from full-mission flight simulation are provided to support the model's predictions. The paper describes the model, its development and implementation, the simulation test of the model predictions, and the empirical
DEFF Research Database (Denmark)
Brandt, J.; Bastrup-Birk, A.; Christensen, J.H.
1998-01-01
A tracer model, the DREAM, which is based on a combination of a near-range Lagrangian model and a long-range Eulerian model, has been developed. The meteorological meso-scale model, MM5V1, is implemented as a meteorological driver for the tracer model. The model system is used for studying...
International Nuclear Information System (INIS)
1978-07-01
A static model in the form of a regional input-output model was constructed for Eddy and Lea Counties, New Mexico. This modeling process has been used to assess the economic impacts of the following activities and for the following agencies: San Juan Generating Units Nos. 1, 3, and 4 for Public Service Company of New Mexico, and general economic impacts (an ongoing process) for the Bureau of Business and Economic Research, University of New Mexico. The regional modeling process adjusts a national model by means of location quotients and aggregating techniques. The national model, or base model, used in this process contains 407 economic categories or subsectors of the economy, 389 of which represent the private economy, and 18 of which represent activities mostly dealing with the public sector. The 389 identified sub-sectors were used in the modeling process; the government impact was computed after the private sector analysis
Fuchs, Sven; Bording, Thue S.; Balling, Niels
2015-04-01
Thermal modelling is used to examine the subsurface temperature field and geothermal conditions at various scales (e.g. sedimentary basins, deep crust) and in the framework of different problem settings (e.g. scientific or industrial use). In such models, knowledge of rock thermal properties is prerequisites for the parameterisation of boundary conditions and layer properties. In contrast to hydrogeological ground-water models, where parameterization of the major rock property (i.e. hydraulic conductivity) is generally conducted considering lateral variations within geological layers, parameterization of thermal models (in particular regarding thermal conductivity but also radiogenic heat production and specific heat capacity) in most cases is conducted using constant parameters for each modelled layer. For such constant thermal parameter values, moreover, initial values are normally obtained from rare core measurements and/or literature values, which raise questions for their representativeness. Some few studies have considered lithological composition or well log information, but still keeping the layer values constant. In the present thermal-modelling scenario analysis, we demonstrate how the use of different parameter input type (from literature, well logs and lithology) and parameter input style (constant or laterally varying layer values) affects the temperature model prediction in sedimentary basins. For this purpose, rock thermal properties are deduced from standard petrophysical well logs and lithological descriptions for several wells in a project area. Statistical values of thermal properties (mean, standard deviation, moments, etc.) are calculated at each borehole location for each geological formation and, moreover, for the entire dataset. Our case study is located at the Danish-German border region (model dimension: 135 x115 km, depth: 20 km). Results clearly show that (i) the use of location-specific well-log derived rock thermal properties and (i
Muszynska, Agnes; Bently, Donald E.
1991-01-01
Perturbation techniques used for identification of rotating system dynamic characteristics are described. A comparison between two periodic frequency-swept perturbation methods applied in identification of fluid forces of rotating machines is presented. The description of the fluid force model identified by inputting circular periodic frequency-swept force is given. This model is based on the existence and strength of the circumferential flow, most often generated by the shaft rotation. The application of the fluid force model in rotor dynamic analysis is presented. It is shown that the rotor stability is an entire rotating system property. Some areas for further research are discussed.
International Nuclear Information System (INIS)
Oblozinsky, P.
1997-09-01
The report contains the summary of the third and the last Research Co-ordination Meeting on ''Development of Reference Input Parameter Library for Nuclear Model Calculations of Nuclear Data (Phase I: Starter File)'', held at the ICTP, Trieste, Italy, from 26 to 29 May 1997. Details are given on the status of the Handbook and the Starter File - two major results of the project. (author)
Formal Requirements Modeling for Reactive Systems with Coloured Petri Nets
DEFF Research Database (Denmark)
Tjell, Simon
This dissertation presents the contributions of seven publications all concerned with the application of Coloured Petri Nets (CPN) to requirements modeling for reactive systems. The publications are introduced along with relevant background material and related work, and their contributions...... to take into concern that the behavior of human actors is less likely to be predictable than the behavior of e.g. mechanical components. In the second approach, the CPN model is parameterized and utilizes a generic and reusable CPN module operating as an SD interpreter. In addition to distinguishing...... and events. A tool is presented that allows automated validation of the structure of CPN models with respect to the guidelines. Next, three publications on integrating Jackson's Problem Frames with CPN requirements models are presented: The first publication introduces a method for systematically structuring...
Critical Business Requirements Model and Metrics for Intranet ROI
Luqi; Jacoby, Grant A.
2005-01-01
Journal of Electronic Commerce Research, Vol. 6, No. 1, pp. 1-30. This research provides the first theoretical model, the Intranet Efficiency and Effectiveness Model (IEEM), to measure intranet overall value contributions based on a corporation’s critical business requirements by applying a balanced baseline of metrics and conversion ratios linked to key business processes of knowledge workers, IT managers and business decision makers -- in effect, closing the gap of understanding...
NASA Standard for Models and Simulations: Philosophy and Requirements Overview
Blattnig, Steve R.; Luckring, James M.; Morrison, Joseph H.; Sylvester, Andre J.; Tripathi, Ram K.; Zang, Thomas A.
2013-01-01
Following the Columbia Accident Investigation Board report, the NASA Administrator chartered an executive team (known as the Diaz Team) to identify those CAIB report elements with NASA-wide applicability and to develop corrective measures to address each element. One such measure was the development of a standard for the development, documentation, and operation of models and simulations. This report describes the philosophy and requirements overview of the resulting NASA Standard for Models and Simulations.
A New Rapid Simplified Model for Urban Rainstorm Inundation with Low Data Requirements
Directory of Open Access Journals (Sweden)
Ji Shen
2016-11-01
Full Text Available This paper proposes a new rapid simplified inundation model (NRSIM for flood inundation caused by rainstorms in an urban setting that can simulate the urban rainstorm inundation extent and depth in a data-scarce area. Drainage basins delineated from a floodplain map according to the distribution of the inundation sources serve as the calculation cells of NRSIM. To reduce data requirements and computational costs of the model, the internal topography of each calculation cell is simplified to a circular cone, and a mass conservation equation based on a volume spreading algorithm is established to simulate the interior water filling process. Moreover, an improved D8 algorithm is outlined for the simulation of water spilling between different cells. The performance of NRSIM is evaluated by comparing the simulated results with those from a traditional rapid flood spreading model (TRFSM for various resolutions of digital elevation model (DEM data. The results are as follows: (1 given high-resolution DEM data input, the TRFSM model has better performance in terms of precision than NRSIM; (2 the results from TRFSM are seriously affected by the decrease in DEM data resolution, whereas those from NRSIM are not; and (3 NRSIM always requires less computational time than TRFSM. Apparently, compared with the complex hydrodynamic or traditional rapid flood spreading model, NRSIM has much better applicability and cost-efficiency in real-time urban inundation forecasting for data-sparse areas.
Generic skills requirements (KSA model) towards future mechanical ...
African Journals Online (AJOL)
... Statistics and Discriminant Analysis (DA) as required to achieve the objective of the study. This study will guide all future engineers, especially in the field of Mechanical Engineering in Malaysia to penetrate the job market according to the current market needs. Keywords: generic skills; KSA model; mechanical engineers; ...
Fusing Quantitative Requirements Analysis with Model-based Systems Engineering
Cornford, Steven L.; Feather, Martin S.; Heron, Vance A.; Jenkins, J. Steven
2006-01-01
A vision is presented for fusing quantitative requirements analysis with model-based systems engineering. This vision draws upon and combines emergent themes in the engineering milieu. "Requirements engineering" provides means to explicitly represent requirements (both functional and non-functional) as constraints and preferences on acceptable solutions, and emphasizes early-lifecycle review, analysis and verification of design and development plans. "Design by shopping" emphasizes revealing the space of options available from which to choose (without presuming that all selection criteria have previously been elicited), and provides means to make understandable the range of choices and their ramifications. "Model-based engineering" emphasizes the goal of utilizing a formal representation of all aspects of system design, from development through operations, and provides powerful tool suites that support the practical application of these principles. A first step prototype towards this vision is described, embodying the key capabilities. Illustrations, implications, further challenges and opportunities are outlined.
Models of protein and amino acid requirements for cattle
Directory of Open Access Journals (Sweden)
Luis Orlindo Tedeschi
2015-03-01
Full Text Available Protein supply and requirements by ruminants have been studied for more than a century. These studies led to the accumulation of lots of scientific information about digestion and metabolism of protein by ruminants as well as the characterization of the dietary protein in order to maximize animal performance. During the 1980s and 1990s, when computers became more accessible and powerful, scientists began to conceptualize and develop mathematical nutrition models, and to program them into computers to assist with ration balancing and formulation for domesticated ruminants, specifically dairy and beef cattle. The most commonly known nutrition models developed during this period were the National Research Council (NRC in the United States, Agricultural Research Council (ARC in the United Kingdom, Institut National de la Recherche Agronomique (INRA in France, and the Commonwealth Scientific and Industrial Research Organization (CSIRO in Australia. Others were derivative works from these models with different degrees of modifications in the supply or requirement calculations, and the modeling nature (e.g., static or dynamic, mechanistic, or deterministic. Circa 1990s, most models adopted the metabolizable protein (MP system over the crude protein (CP and digestible CP systems to estimate supply of MP and the factorial system to calculate MP required by the animal. The MP system included two portions of protein (i.e., the rumen-undegraded dietary CP - RUP - and the contributions of microbial CP - MCP as the main sources of MP for the animal. Some models would explicitly account for the impact of dry matter intake (DMI on the MP required for maintenance (MPm; e.g., Cornell Net Carbohydrate and Protein System - CNCPS, the Dutch system - DVE/OEB, while others would simply account for scurf, urinary, metabolic fecal, and endogenous contributions independently of DMI. All models included milk yield and its components in estimating MP required for lactation
Required experimental accuracy to select between supersymmetrical models
Grellscheid, David
2004-03-01
We will present a method to decide a priori whether various supersymmetrical scenarios can be distinguished based on sparticle mass data alone. For each model, a scan over all free SUSY breaking parameters reveals the extent of that model's physically allowed region of sparticle-mass-space. Based on the geometrical configuration of these regions in mass-space, it is possible to obtain an estimate of the required accuracy of future sparticle mass measurements to distinguish between the models. We will illustrate this algorithm with an example. This talk is based on work done in collaboration with B C Allanach (LAPTH, Annecy) and F Quevedo (DAMTP, Cambridge).
Eriksson, Clas
2015-01-01
This paper explores economic policies related to the potential conflict between economic growth and the environment. It applies a model with directed technological change and focuses on the case with low elasticity of substitution between clean and dirty inputs in production. New technology is substituted for the polluting input, which results in a gradual decline in pollution along the optimal long-run growth path. In contrast to some recent work, the era of pollution and environmental polic...
WORM: A general-purpose input deck specification language
International Nuclear Information System (INIS)
Jones, T.
1999-01-01
Using computer codes to perform criticality safety calculations has become common practice in the industry. The vast majority of these codes use simple text-based input decks to represent the geometry, materials, and other parameters that describe the problem. However, the data specified in input files are usually processed results themselves. For example, input decks tend to require the geometry specification in linear dimensions and materials in atom or weight fractions, while the parameter of interest might be mass or concentration. The calculations needed to convert from the item of interest to the required parameter in the input deck are usually performed separately and then incorporated into the input deck. This process of calculating, editing, and renaming files to perform a simple parameter study is tedious at best. In addition, most computer codes require dimensions to be specified in centimeters, while drawings or other materials used to create the input decks might be in other units. This also requires additional calculation or conversion prior to composition of the input deck. These additional calculations, while extremely simple, introduce a source for error in both the calculations and transcriptions. To overcome these difficulties, WORM (Write One, Run Many) was created. It is an easy-to-use programming language to describe input decks and can be used with any computer code that uses standard text files for input. WORM is available, via the Internet, at worm.lanl.gov. A user's guide, tutorials, example models, and other WORM-related materials are also available at this Web site. Questions regarding WORM should be directed to wormatlanl.gov
Directory of Open Access Journals (Sweden)
R. Cardinael
2018-01-01
Full Text Available Agroforestry is an increasingly popular farming system enabling agricultural diversification and providing several ecosystem services. In agroforestry systems, soil organic carbon (SOC stocks are generally increased, but it is difficult to disentangle the different factors responsible for this storage. Organic carbon (OC inputs to the soil may be larger, but SOC decomposition rates may be modified owing to microclimate, physical protection, or priming effect from roots, especially at depth. We used an 18-year-old silvoarable system associating hybrid walnut trees (Juglans regia × nigra and durum wheat (Triticum turgidum L. subsp. durum and an adjacent agricultural control plot to quantify all OC inputs to the soil – leaf litter, tree fine root senescence, crop residues, and tree row herbaceous vegetation – and measured SOC stocks down to 2 m of depth at varying distances from the trees. We then proposed a model that simulates SOC dynamics in agroforestry accounting for both the whole soil profile and the lateral spatial heterogeneity. The model was calibrated to the control plot only. Measured OC inputs to soil were increased by about 40 % (+ 1.11 t C ha−1 yr−1 down to 2 m of depth in the agroforestry plot compared to the control, resulting in an additional SOC stock of 6.3 t C ha−1 down to 1 m of depth. However, most of the SOC storage occurred in the first 30 cm of soil and in the tree rows. The model was strongly validated, properly describing the measured SOC stocks and distribution with depth in agroforestry tree rows and alleys. It showed that the increased inputs of fresh biomass to soil explained the observed additional SOC storage in the agroforestry plot. Moreover, only a priming effect variant of the model was able to capture the depth distribution of SOC stocks, suggesting the priming effect as a possible mechanism driving deep SOC dynamics. This result questions the potential of soils to
Cardinael, Rémi; Guenet, Bertrand; Chevallier, Tiphaine; Dupraz, Christian; Cozzi, Thomas; Chenu, Claire
2018-01-01
Agroforestry is an increasingly popular farming system enabling agricultural diversification and providing several ecosystem services. In agroforestry systems, soil organic carbon (SOC) stocks are generally increased, but it is difficult to disentangle the different factors responsible for this storage. Organic carbon (OC) inputs to the soil may be larger, but SOC decomposition rates may be modified owing to microclimate, physical protection, or priming effect from roots, especially at depth. We used an 18-year-old silvoarable system associating hybrid walnut trees (Juglans regia × nigra) and durum wheat (Triticum turgidum L. subsp. durum) and an adjacent agricultural control plot to quantify all OC inputs to the soil - leaf litter, tree fine root senescence, crop residues, and tree row herbaceous vegetation - and measured SOC stocks down to 2 m of depth at varying distances from the trees. We then proposed a model that simulates SOC dynamics in agroforestry accounting for both the whole soil profile and the lateral spatial heterogeneity. The model was calibrated to the control plot only. Measured OC inputs to soil were increased by about 40 % (+ 1.11 t C ha-1 yr-1) down to 2 m of depth in the agroforestry plot compared to the control, resulting in an additional SOC stock of 6.3 t C ha-1 down to 1 m of depth. However, most of the SOC storage occurred in the first 30 cm of soil and in the tree rows. The model was strongly validated, properly describing the measured SOC stocks and distribution with depth in agroforestry tree rows and alleys. It showed that the increased inputs of fresh biomass to soil explained the observed additional SOC storage in the agroforestry plot. Moreover, only a priming effect variant of the model was able to capture the depth distribution of SOC stocks, suggesting the priming effect as a possible mechanism driving deep SOC dynamics. This result questions the potential of soils to store large amounts of carbon, especially at depth. Deep
Cognition and procedure representational requirements for predictive human performance models
Corker, K.
1992-01-01
Models and modeling environments for human performance are becoming significant contributors to early system design and analysis procedures. Issues of levels of automation, physical environment, informational environment, and manning requirements are being addressed by such man/machine analysis systems. The research reported here investigates the close interaction between models of human cognition and models that described procedural performance. We describe a methodology for the decomposition of aircrew procedures that supports interaction with models of cognition on the basis of procedures observed; that serves to identify cockpit/avionics information sources and crew information requirements; and that provides the structure to support methods for function allocation among crew and aiding systems. Our approach is to develop an object-oriented, modular, executable software representation of the aircrew, the aircraft, and the procedures necessary to satisfy flight-phase goals. We then encode in a time-based language, taxonomies of the conceptual, relational, and procedural constraints among the cockpit avionics and control system and the aircrew. We have designed and implemented a goals/procedures hierarchic representation sufficient to describe procedural flow in the cockpit. We then execute the procedural representation in simulation software and calculate the values of the flight instruments, aircraft state variables and crew resources using the constraints available from the relationship taxonomies. The system provides a flexible, extensible, manipulative and executable representation of aircrew and procedures that is generally applicable to crew/procedure task-analysis. The representation supports developed methods of intent inference, and is extensible to include issues of information requirements and functional allocation. We are attempting to link the procedural representation to models of cognitive functions to establish several intent inference methods
International Nuclear Information System (INIS)
Kimlinger, J.R.; Plechaty, E.F.
1982-01-01
The TART code is a Monte Carlo neutron/photon transport code that is only on the CRAY computer. All the input cards for the TART code are listed, and definitions for all input parameters are given. The execution and limitations of the code are described, and input for two sample problems are given
International Nuclear Information System (INIS)
Borgwaldt, H.; Baumann, W.; Willerding, G.
1991-05-01
FLUTAN is a highly vectorized computer code for 3-D fluiddynamic and thermal-hydraulic analyses in cartesian and cylinder coordinates. It is related to the family of COMMIX codes originally developed at Argonne National Laboratory, USA. To a large extent, FLUTAN relies on basic concepts and structures imported from COMMIX-1B and COMMIX-2 which were made available to KfK in the frame of cooperation contracts in the fast reactor safety field. While on the one hand not all features of the original COMMIX versions have been implemented in FLUTAN, the code on the other hand includes some essential innovative options like CRESOR solution algorithm, general 3-dimensional rebalacing scheme for solving the pressure equation, and LECUSSO-QUICK-FRAM techniques suitable for reducing 'numerical diffusion' in both the enthalphy and momentum equations. This report provides users with detailed input instructions, presents formulations of the various model options, and explains by means of comprehensive sample input, how to use the code. (orig.) [de
Energy Technology Data Exchange (ETDEWEB)
Zdunek, A.; Soederberg, M. (Aeronautical Research Inst. of Sweden, Bromma (Sweden))
1989-01-01
The input card deck for the finite element program GARFEM version 3.2 is described in this manual. The program includes, but is not limited to, capabilities to handle the following problems: * Linear bar and beam element structures, * Geometrically non-linear problems (bar and beam), both static and transient dynamic analysis, * Transient response dynamics from a catalog of time varying external forcing function types or input function tables, * Eigenvalue solution (modes and frequencies), * Multi point constraints (MPC) for the modelling of mechanisms and e.g. rigid links. The MPC definition is used only in the geometrically linearized sense, * Beams with disjunct shear axis and neutral axis, * Beams with rigid offset. An interface exist that connects GARFEM with the program GAROS. GAROS is a program for aeroelastic analysis of rotating structures. Since this interface was developed GARFEM now serves as a preprocessor program in place of NASTRAN which was formerly used. Documentation of the methods applied in GARFEM exists but is so far limited to the capacities in existence before the GAROS interface was developed.
Energy Technology Data Exchange (ETDEWEB)
Biyanto, Totok R. [Department of Engineering Physics, Institute Technology of Sepuluh Nopember Surabaya, Surabaya, Indonesia 60111 (Indonesia)
2016-06-03
Fouling in a heat exchanger in Crude Preheat Train (CPT) refinery is an unsolved problem that reduces the plant efficiency, increases fuel consumption and CO{sub 2} emission. The fouling resistance behavior is very complex. It is difficult to develop a model using first principle equation to predict the fouling resistance due to different operating conditions and different crude blends. In this paper, Artificial Neural Networks (ANN) MultiLayer Perceptron (MLP) with input structure using Nonlinear Auto-Regressive with eXogenous (NARX) is utilized to build the fouling resistance model in shell and tube heat exchanger (STHX). The input data of the model are flow rates and temperatures of the streams of the heat exchanger, physical properties of product and crude blend data. This model serves as a predicting tool to optimize operating conditions and preventive maintenance of STHX. The results show that the model can capture the complexity of fouling characteristics in heat exchanger due to thermodynamic conditions and variations in crude oil properties (blends). It was found that the Root Mean Square Error (RMSE) are suitable to capture the nonlinearity and complexity of the STHX fouling resistance during phases of training and validation.
International Nuclear Information System (INIS)
Santos, P.J.; Martins, A.G.; Pires, A.J.
2007-01-01
The present trend to electricity market restructuring increases the need for reliable short-term load forecast (STLF) algorithms, in order to assist electric utilities in activities such as planning, operating and controlling electric energy systems. Methodologies such as artificial neural networks (ANN) have been widely used in the next hour load forecast horizon with satisfactory results. However, this type of approach has had some shortcomings. Usually, the input vector (IV) is defined in a arbitrary way, mainly based on experience, on engineering judgment criteria and on concern about the ANN dimension, always taking into consideration the apparent correlations within the available endogenous and exogenous data. In this paper, a proposal is made of an approach to define the IV composition, with the main focus on reducing the influence of trial-and-error and common sense judgments, which usually are not based on sufficient evidence of comparative advantages over previous alternatives. The proposal includes the assessment of the strictly necessary instances of the endogenous variable, both from the point of view of the contiguous values prior to the forecast to be made, and of the past values representing the trend of consumption at homologous time intervals of the past. It also assesses the influence of exogenous variables, again limiting their presence at the IV to the indispensable minimum. A comparison is made with two alternative IV structures previously proposed in the literature, also applied to the distribution sector. The paper is supported by a real case study at the distribution sector. (author)
International Nuclear Information System (INIS)
Zerbino, H.
1997-01-01
The physical models implemented in power plant simulators have greatly increased in performance and complexity in recent years. This process has been enabled by the ever increasing computing power available at affordable prices. This paper describes this process from several angles: First the operational requirements which are more critical from the point of view of model performance, both for normal and off-normal operating conditions; A second section discusses core model characteristics in the light of the solutions implemented by Thomson Training and Simulation (TT and S) in several full-scope simulators recently built and delivered for Dutch, German, and French nuclear power plants; finally we consider the model validation procedures, which are of course an integral part of model development, and which are becoming more and more severe as performance expectations increase. As a conclusion, it may be asserted that in the core modeling field, as in other areas, the general improvement in the quality of simulation codes has resulted in a fairly rapid convergence towards mainstream engineering-grade calculations. This is remarkable performance in view of the stringent real-time requirements which the simulation codes must satisfy as well as the extremely wide range of operating conditions that they are called upon to cover with good accuracy. (author)
Energy Technology Data Exchange (ETDEWEB)
Lee, S; Rimner, A; Hayes, S; Hunt, M; Deasy, J; Zauderer, M; Rusch, V; Tyagi, N [Memorial Sloan Kettering Cancer Center, New York, NY (United States)
2016-06-15
Purpose: To use dual-input tracer kinetic modeling of the lung for mapping spatial heterogeneity of various kinetic parameters in malignant MPM Methods: Six MPM patients received DCE-MRI as part of their radiation therapy simulation scan. 5 patients had the epitheloid subtype of MPM, while one was biphasic. A 3D fast-field echo sequence with TR/TE/Flip angle of 3.62ms/1.69ms/15° was used for DCE-MRI acquisition. The scan was collected for 5 minutes with a temporal resolution of 5-9 seconds depending on the spatial extent of the tumor. A principal component analysis-based groupwise deformable registration was used to co-register all the DCE-MRI series for motion compensation. All the images were analyzed using five different dual-input tracer kinetic models implemented in analog continuous-time formalism: the Tofts-Kety (TK), extended TK (ETK), two compartment exchange (2CX), adiabatic approximation to the tissue homogeneity (AATH), and distributed parameter (DP) models. The following parameters were computed for each model: total blood flow (BF), pulmonary flow fraction (γ), pulmonary blood flow (BF-pa), systemic blood flow (BF-a), blood volume (BV), mean transit time (MTT), permeability-surface area product (PS), fractional interstitial volume (vi), extraction fraction (E), volume transfer constant (Ktrans) and efflux rate constant (kep). Results: Although the majority of patients had epitheloid histologies, kinetic parameter values varied across different models. One patient showed a higher total BF value in all models among the epitheloid histologies, although the γ value was varying among these different models. In one tumor with a large area of necrosis, the TK and ETK models showed higher E, Ktrans, and kep values and lower interstitial volume as compared to AATH and DP and 2CX models. Kinetic parameters such as BF-pa, BF-a, PS, Ktrans values were higher in surviving group compared to non-surviving group across most models. Conclusion: Dual-input tracer
Wen, Jessica; Koo, Soh Myoung; Lape, Nancy
2018-02-01
While predictive models of transdermal transport have the potential to reduce human and animal testing, microscopic stratum corneum (SC) model output is highly dependent on idealized SC geometry, transport pathway (transcellular vs. intercellular), and penetrant transport parameters (e.g., compound diffusivity in lipids). Most microscopic models are limited to a simple rectangular brick-and-mortar SC geometry and do not account for variability across delivery sites, hydration levels, and populations. In addition, these models rely on transport parameters obtained from pure theory, parameter fitting to match in vivo experiments, and time-intensive diffusion experiments for each compound. In this work, we develop a microscopic finite element model that allows us to probe model sensitivity to variations in geometry, transport pathway, and hydration level. Given the dearth of experimentally-validated transport data and the wide range in theoretically-predicted transport parameters, we examine the model's response to a variety of transport parameters reported in the literature. Results show that model predictions are strongly dependent on all aforementioned variations, resulting in order-of-magnitude differences in lag times and permeabilities for distinct structure, hydration, and parameter combinations. This work demonstrates that universally predictive models cannot fully succeed without employing experimentally verified transport parameters and individualized SC structures. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Goldberg, Robert K.; Carney, Kelly S.; Dubois, Paul; Hoffarth, Canio; Rajan,Subramaniam; Blackenhorn, Gunther
2015-01-01
The need for accurate material models to simulate the deformation, damage and failure of polymer matrix composites under impact conditions is becoming critical as these materials are gaining increased usage in the aerospace and automotive industries. While there are several composite material models currently available within commercial transient dynamic finite element codes, several features have been identified as being lacking in the currently available material models that could substantially enhance the predictive capability of the impact simulations. A specific desired feature pertains to the incorporation of both plasticity and damage within the material model. Another desired feature relates to using experimentally based tabulated stress-strain input to define the evolution of plasticity and damage as opposed to specifying discrete input properties (such as modulus and strength) and employing analytical functions to track the response of the material. To begin to address these needs, a combined plasticity and damage model suitable for use with both solid and shell elements is being developed for implementation within the commercial code LS-DYNA. The plasticity model is based on extending the Tsai-Wu composite failure model into a strain-hardening based orthotropic plasticity model with a non-associative flow rule. The evolution of the yield surface is determined based on tabulated stress-strain curves in the various normal and shear directions and is tracked using the effective plastic strain. The effective plastic strain is computed by using the non-associative flow rule in combination with appropriate numerical methods. To compute the evolution of damage, a strain equivalent semi-coupled formulation is used, in which a load in one direction results in a stiffness reduction in multiple coordinate directions. A specific laminated composite is examined to demonstrate the process of characterizing and analyzing the response of a composite using the developed
A critical review of the data requirements for fluid flow models through fractured rock
International Nuclear Information System (INIS)
Priest, S.D.
1986-01-01
The report is a comprehensive critical review of the data requirements for ten models of fluid flow through fractured rock, developed in Europe and North America. The first part of the report contains a detailed review of rock discontinuities and how their important geometrical properties can be quantified. This is followed by a brief summary of the fundamental principles in the analysis of fluid flow through two-dimensional discontinuity networks and an explanation of a new approach to the incorporation of variability and uncertainty into geotechnical models. The report also contains a review of the geological and geotechnical properties of anhydrite and granite. Of the ten fluid flow models reviewed, only three offer a realistic fracture network model for which it is feasible to obtain the input data. Although some of the other models have some valuable or novel features, there is a tendency to concentrate on the simulation of contaminant transport processes, at the expense of providing a realistic fracture network model. Only two of the models reviewed, neither of them developed in Europe, have seriously addressed the problem of analysing fluid flow in three-dimensional networks. (author)
DEFF Research Database (Denmark)
Pedersen, Lisbeth
The Local Area Weather Radar (LAWR) is a small scale weather radar providing distributed measurements of rainfall primarily for use as input in hydrological applications. As any other weather radar the LAWR measurement of the rainfall is an indirect measurement since it does not measure the rainf......The Local Area Weather Radar (LAWR) is a small scale weather radar providing distributed measurements of rainfall primarily for use as input in hydrological applications. As any other weather radar the LAWR measurement of the rainfall is an indirect measurement since it does not measure...... are quantified using statistical methods. Furthermore, the present calibration method is reviewed and a new extended calibration method has been developed and tested resulting in improved rainfall estimates. As part of the calibration analysis a number of elements affecting the LAWR performance were identified...... in connection with boundary assignment besides general improved understanding of the benefits and pitfalls in using distributed rainfall data as input to models. In connection with the use of LAWR data in urban drainage context, the potential for using LAWR data for extreme rainfall statistics has been studied...
The Benefit of Ambiguity in Understanding Goals in Requirements Modelling
DEFF Research Database (Denmark)
Paay, Jeni; Pedell, Sonja; Sterling, Leon
2011-01-01
This paper examines the benefit of ambiguity in describing goals in requirements modelling for the design of socio-technical systems using concepts from Agent-Oriented Software Engineering (AOSE) and ethnographic and cultural probe methods from Human Computer Interaction (HCI). The authors’ aim...... ambiguity in the process of elicitation and analysis through the use of empirically informed quality goals attached to functional goals. The authors demonstrate the benefit of articulating a quality goal without turning it into a functional goal. Their study shows that quality goals kept at a high level...... of abstraction, ambiguous and open for conversations through the modelling process add richness to goal models, and communicate quality attributes of the interaction being modelled to the design phase, where this ambiguity is regarded as a resource for design....
Directory of Open Access Journals (Sweden)
Omotayo Olugbenga Alabi
2014-01-01
Full Text Available This study examined Probit model analysis of smallholder’s farmers decision to use agrochemical inputs in Gwagwalada and Kuje Area Councils of Federal Capital Territory, Abuja, Nigeria. Primary data were used for this study. Data were obtained using structured questionnaire. The questionnaires were administered to sixty smallholder’s farmers sampled using a two-stage sampling technique. Data obtained were analyzed using descriptive statistics and Probit model. Eight estimators, age; farm-size; education–level; extension services; access to credit; off-farm income; experiences in farming; in the Probit model were found statistically significant. Results show that the probability of using agrochemical inputs increases with age; farm-size; family-size; education-level; extension services; experiences in farming but decreases where they have off-farm income and access to credits. Mc Fadden Pseudo-R 2 gives 0.6866 and Probit model correctly classified 93%. This study concluded that capacity of agricultural extension agents needs to be improved in the study area to educate farmers to invest in agrochemicals and improved agricultural technologies. Also, Government needs to improve on good road networks and appropriate policies to regulate standard, use, safety needs and environment of use of agrochemicals in the study area.
Salcedo, Diana M.
2010-01-01
This article, the first of two, presents the introduction, context, and analysis of professor experiences in an on-going research project for implementing a new educational model in a bilingual teacher's college in Bogotá, Colombia. The model, the sheltered instruction observation protocol (SIOP) promotes eight components for a bilingual education…
Sensitivity of IFM/GAIM-GM Model to High-cadence Kp and F10.7 Input
2014-03-27
reproducing the ground truth value. Similarly, a high skill score simply means that the GAIM-GM model outperformed the IRI model, but the GAIM-GM output...Kusnierkiewicz, S. C. Lee, L. A. Linstrom, J. J. Maynard, K. Peacock , D. F. Persons, and B. E. Smith. Special Sensor Ultraviolet Spectrographic Imager
International Nuclear Information System (INIS)
Clifton, P.M.
1985-03-01
This study examines the sensitivity of the travel time distribution predicted by a reference case model to (1) scale of representation of the model parameters, (2) size of the model domain, (3) correlation range of log-transmissivity, and (4) cross correlations between transmissivity and effective thickness. The basis for the reference model is the preliminary stochastic travel time model previously documented by the Basalt Waste Isolation Project. Results of this study show the following. The variability of the predicted travel times can be adequately represented when the ratio between the size of the zones used to represent the model parameters and the log-transmissivity correlation range is less than about one-fifth. The size of the model domain and the types of boundary conditions can have a strong impact on the distribution of travel times. Longer log-transmissivity correlation ranges cause larger variability in the predicted travel times. Positive cross correlation between transmissivity and effective thickness causes a decrease in the travel time variability. These results demonstrate the need for a sound conceptual model prior to conducting a stochastic travel time analysis
Constituency Input into Budget Management.
Miller, Norman E.
1995-01-01
Presents techniques for ensuring constituency involvement in district- and site-level budget management. Outlines four models for securing constituent input and focuses on strategies to orchestrate the more complex model for staff and community participation. Two figures are included. (LMI)
Specification of advanced safety modeling requirements (Rev. 0)
International Nuclear Information System (INIS)
Fanning, T. H.; Tautges, T. J.
2008-01-01
The U.S. Department of Energy's Global Nuclear Energy Partnership has lead to renewed interest in liquid-metal-cooled fast reactors for the purpose of closing the nuclear fuel cycle and making more efficient use of future repository capacity. However, the U.S. has not designed or constructed a fast reactor in nearly 30 years. Accurate, high-fidelity, whole-plant dynamics safety simulations will play a crucial role by providing confidence that component and system designs will satisfy established design limits and safety margins under a wide variety of operational, design basis, and beyond design basis transient conditions. Current modeling capabilities for fast reactor safety analyses have resulted from several hundred person-years of code development effort supported by experimental validation. The broad spectrum of mechanistic and phenomenological models that have been developed represent an enormous amount of institutional knowledge that needs to be maintained. Complicating this, the existing code architectures for safety modeling evolved from programming practices of the 1970s. This has lead to monolithic applications with interdependent data models which require significant knowledge of the complexities of the entire code in order for each component to be maintained. In order to develop an advanced fast reactor safety modeling capability, the limitations of the existing code architecture must be overcome while preserving the capabilities that already exist. To accomplish this, a set of advanced safety modeling requirements is defined, based on modern programming practices, that focuses on modular development within a flexible coupling framework. An approach for integrating the existing capabilities of the SAS4A/SASSYS-1 fast reactor safety analysis code into the SHARP framework is provided in order to preserve existing capabilities while providing a smooth transition to advanced modeling capabilities. In doing this, the advanced fast reactor safety models will
Rotstein, Horacio G
2014-01-01
We investigate the dynamic mechanisms of generation of subthreshold and phase resonance in two-dimensional linear and linearized biophysical (conductance-based) models, and we extend our analysis to account for the effect of simple, but not necessarily weak, types of nonlinearities. Subthreshold resonance refers to the ability of neurons to exhibit a peak in their voltage amplitude response to oscillatory input currents at a preferred non-zero (resonant) frequency. Phase-resonance refers to the ability of neurons to exhibit a zero-phase (or zero-phase-shift) response to oscillatory input currents at a non-zero (phase-resonant) frequency. We adapt the classical phase-plane analysis approach to account for the dynamic effects of oscillatory inputs and develop a tool, the envelope-plane diagrams, that captures the role that conductances and time scales play in amplifying the voltage response at the resonant frequency band as compared to smaller and larger frequencies. We use envelope-plane diagrams in our analysis. We explain why the resonance phenomena do not necessarily arise from the presence of imaginary eigenvalues at rest, but rather they emerge from the interplay of the intrinsic and input time scales. We further explain why an increase in the time-scale separation causes an amplification of the voltage response in addition to shifting the resonant and phase-resonant frequencies. This is of fundamental importance for neural models since neurons typically exhibit a strong separation of time scales. We extend this approach to explain the effects of nonlinearities on both resonance and phase-resonance. We demonstrate that nonlinearities in the voltage equation cause amplifications of the voltage response and shifts in the resonant and phase-resonant frequencies that are not predicted by the corresponding linearized model. The differences between the nonlinear response and the linear prediction increase with increasing levels of the time scale separation between
Modelling requirements for future assessments based on FEP analysis
International Nuclear Information System (INIS)
Locke, J.; Bailey, L.
1998-01-01
This report forms part of a suite of documents describing the Nirex model development programme. The programme is designed to provide a clear audit trail from the identification of significant features, events and processes (FEPs) to the models and modelling processes employed within a detailed safety assessment. A scenario approach to performance assessment has been adopted. It is proposed that potential evolutions of a deep geological radioactive waste repository can be represented by a base scenario and a number of variant scenarios. The base scenario is chosen to be broad-ranging and to represent the natural evolution of the repository system and its surrounding environment. The base scenario is defined to include all those FEPs that are certain to occur and those which are judged likely to occur for a significant period of the assessment timescale. The structuring of FEPs on a Master Directed Diagram (MDD) provides a systematic framework for identifying those FEPs that form part of the natural evolution of the system and those, which may define alternative potential evolutions of the repository system. In order to construct a description of the base scenario, FEPs have been grouped into a series of conceptual models. Conceptual models are groups of FEPs, identified from the MDD, representing a specific component or process within the disposal system. It has been found appropriate to define conceptual models in terms of the three main components of the disposal system: the repository engineered system, the surrounding geosphere and the biosphere. For each of these components, conceptual models provide a description of the relevant subsystem in terms of its initial characteristics, subsequent evolution and the processes affecting radionuclide transport for the groundwater and gas pathways. The aim of this document is to present the methodology that has been developed for deriving modelling requirements and to illustrate the application of the methodology by
Haveman, Steven P.; Bonnema, G. Maarten
2013-01-01
Most formal models are used in detailed design and focus on a single domain. Few effective approaches exist that can effectively tie these lower level models to a high level system model during design space exploration. This complicates the validation of high level system requirements during detailed design. In this paper, we define requirements for a high level model that is firstly driven by key systems engineering challenges present in industry and secondly connects to several formal and d...
International Nuclear Information System (INIS)
Hess, G.D.; Mills, G.A.; Draxler, R.R.
1997-01-01
Model simulations of air concentrations during ETEX-1 using the HYSPLIT-4 (HYbrid Single-Particle Lagrangian Integrated Trajectories, version 4) code and analysed meteorological data fields provided by ECMWF and the Australian Bureau of Meteorology are presented here. The HYSPLIT-4 model is a complete system for computing simple trajectories to complex dispersion and deposition simulations using either puff or particle approaches. A mixed dispersion algorithm is employed in this study: puffs in the horizontal and particles in the vertical
Wang, Weizong; Berthelot, Antonin; Zhang, Quanzhi; Bogaerts, Annemie
2018-05-01
One of the main issues in plasma chemistry modeling is that the cross sections and rate coefficients are subject to uncertainties, which yields uncertainties in the modeling results and hence hinders the predictive capabilities. In this paper, we reveal the impact of these uncertainties on the model predictions of plasma-based dry reforming in a dielectric barrier discharge. For this purpose, we performed a detailed uncertainty analysis and sensitivity study. 2000 different combinations of rate coefficients, based on the uncertainty from a log-normal distribution, are used to predict the uncertainties in the model output. The uncertainties in the electron density and electron temperature are around 11% and 8% at the maximum of the power deposition for a 70% confidence level. Still, this can have a major effect on the electron impact rates and hence on the calculated conversions of CO2 and CH4, as well as on the selectivities of CO and H2. For the CO2 and CH4 conversion, we obtain uncertainties of 24% and 33%, respectively. For the CO and H2 selectivity, the corresponding uncertainties are 28% and 14%, respectively. We also identify which reactions contribute most to the uncertainty in the model predictions. In order to improve the accuracy and reliability of plasma chemistry models, we recommend using only verified rate coefficients, and we point out the need for dedicated verification experiments.
Temmer, Manuela; Hinterreiter, Jürgen; Reiss, Martin A.
2018-03-01
We present a concept study of a solar wind forecasting method for Earth, based on persistence modeling from STEREO in situ measurements combined with multi-viewpoint EUV observational data. By comparing the fractional areas of coronal holes (CHs) extracted from EUV data of STEREO and SoHO/SDO, we perform an uncertainty assessment derived from changes in the CHs and apply those changes to the predicted solar wind speed profile at 1 AU. We evaluate the method for the time period 2008-2012, and compare the results to a persistence model based on ACE in situ measurements and to the STEREO persistence model without implementing the information on CH evolution. Compared to an ACE based persistence model, the performance of the STEREO persistence model which takes into account the evolution of CHs, is able to increase the number of correctly predicted high-speed streams by about 12%, and to decrease the number of missed streams by about 23%, and the number of false alarms by about 19%. However, the added information on CH evolution is not able to deliver more accurate speed values for the forecast than using the STEREO persistence model without CH information which performs better than an ACE based persistence model. Investigating the CH evolution between STEREO and Earth view for varying separation angles over ˜25-140° East of Earth, we derive some relation between expanding CHs and increasing solar wind speed, but a less clear relation for decaying CHs and decreasing solar wind speed. This fact most likely prevents the method from making more precise forecasts. The obtained results support a future L5 mission and show the importance and valuable contribution using multi-viewpoint data.
Directory of Open Access Journals (Sweden)
Temmer Manuela
2018-01-01
Full Text Available We present a concept study of a solar wind forecasting method for Earth, based on persistence modeling from STEREO in situ measurements combined with multi-viewpoint EUV observational data. By comparing the fractional areas of coronal holes (CHs extracted from EUV data of STEREO and SoHO/SDO, we perform an uncertainty assessment derived from changes in the CHs and apply those changes to the predicted solar wind speed profile at 1 AU. We evaluate the method for the time period 2008–2012, and compare the results to a persistence model based on ACE in situ measurements and to the STEREO persistence model without implementing the information on CH evolution. Compared to an ACE based persistence model, the performance of the STEREO persistence model which takes into account the evolution of CHs, is able to increase the number of correctly predicted high-speed streams by about 12%, and to decrease the number of missed streams by about 23%, and the number of false alarms by about 19%. However, the added information on CH evolution is not able to deliver more accurate speed values for the forecast than using the STEREO persistence model without CH information which performs better than an ACE based persistence model. Investigating the CH evolution between STEREO and Earth view for varying separation angles over ∼25–140° East of Earth, we derive some relation between expanding CHs and increasing solar wind speed, but a less clear relation for decaying CHs and decreasing solar wind speed. This fact most likely prevents the method from making more precise forecasts. The obtained results support a future L5 mission and show the importance and valuable contribution using multi-viewpoint data.
International Nuclear Information System (INIS)
Fattebert, J.-L.; Wickett, M.E.; Turchi, P.E.A.
2014-01-01
A numerical method for the simulation of microstructure evolution during the solidification of an alloy is presented. The approach is based on a phase-field model including a phase variable, an orientation variable given by a quaternion, the alloy composition and a uniform temperature field. Energies and diffusion coefficients used in the model rely on thermodynamic and kinetic databases in the framework of the CALPHAD methodology. The numerical approach is based on a finite volume discretization and an implicit time-stepping algorithm. Numerical results for solidification and accompanying coring effect in a Au–Ni alloy are used to illustrate the methodology
Directory of Open Access Journals (Sweden)
Shu Wing Ho
2011-12-01
Full Text Available The valuation of options and many other derivative instruments requires an estimation of exante or forward looking volatility. This paper adopts a Bayesian approach to estimate stock price volatility. We find evidence that overall Bayesian volatility estimates more closely approximate the implied volatility of stocks derived from traded call and put options prices compared to historical volatility estimates sourced from IVolatility.com (“IVolatility”. Our evidence suggests use of the Bayesian approach to estimate volatility can provide a more accurate measure of ex-ante stock price volatility and will be useful in the pricing of derivative securities where the implied stock price volatility cannot be observed.
Directory of Open Access Journals (Sweden)
Orlov Alexey A.
2017-01-01
Full Text Available The article presents results of research filling gas centrifuge cascade by process gas fed into different stages. The modeling of filling cascade was done for nickel isotope separation. Analysis of the research results shows that nickel isotope concentrations of light and heavy fraction flows after filling cascade depend on feed stage number.
2011-05-01
This report describes an assessment of digital elevation models (DEMs) derived from : LiDAR data for a subset of the Ports of Los Angeles and Long Beach. A methodology : based on Monte Carlo simulation was applied to investigate the accuracy of DEMs ...
Model of an aquaponic system for minimised water, energy and nitrogen requirements.
Reyes Lastiri, D; Slinkert, T; Cappon, H J; Baganz, D; Staaks, G; Keesman, K J
2016-01-01
Water and nutrient savings can be established by coupling water streams between interacting processes. Wastewater from production processes contains nutrients like nitrogen (N), which can and should be recycled in order to meet future regulatory discharge demands. Optimisation of interacting water systems is a complex task. An effective way of understanding, analysing and optimising such systems is by applying mathematical models. The present modelling work aims at supporting the design of a nearly emission-free aquaculture and hydroponic system (aquaponics), thus contributing to sustainable production and to food security for the 21st century. Based on the model, a system that couples 40 m(3) fish tanks and a hydroponic system of 1,000 m(2) can produce 5 tons of tilapia and 75 tons of tomato yearly. The system requires energy to condense and recover evaporated water, for lighting and heating, adding up to 1.3 GJ/m(2) every year. In the suggested configuration, the fish can provide about 26% of the N required in a plant cycle. A coupling strategy that sends water from the fish to the plants in amounts proportional to the fish feed input, reduces the standard deviation of the NO3(-) level in the fish cycle by 35%.
Minimum requirements for predictive pore-network modeling of solute transport in micromodels
Mehmani, Yashar; Tchelepi, Hamdi A.
2017-10-01
Pore-scale models are now an integral part of analyzing fluid dynamics in porous materials (e.g., rocks, soils, fuel cells). Pore network models (PNM) are particularly attractive due to their computational efficiency. However, quantitative predictions with PNM have not always been successful. We focus on single-phase transport of a passive tracer under advection-dominated regimes and compare PNM with high-fidelity direct numerical simulations (DNS) for a range of micromodel heterogeneities. We identify the minimum requirements for predictive PNM of transport. They are: (a) flow-based network extraction, i.e., discretizing the pore space based on the underlying velocity field, (b) a Lagrangian (particle tracking) simulation framework, and (c) accurate transfer of particles from one pore throat to the next. We develop novel network extraction and particle tracking PNM methods that meet these requirements. Moreover, we show that certain established PNM practices in the literature can result in first-order errors in modeling advection-dominated transport. They include: all Eulerian PNMs, networks extracted based on geometric metrics only, and flux-based nodal transfer probabilities. Preliminary results for a 3D sphere pack are also presented. The simulation inputs for this work are made public to serve as a benchmark for the research community.
ten Veldhuis, Marie-claire; van Riemsdijk, Birna
2013-04-01
Hydrological analysis of urban catchments requires high resolution rainfall and catchment information because of the small size of these catchments, high spatial variability of the urban fabric, fast runoff processes and related short response times. Rainfall information available from traditional radar and rain gauge networks does no not meet the relevant scales of urban hydrology. A new type of weather radars, based on X-band frequency and equipped with Doppler and dual polarimetry capabilities, promises to provide more accurate rainfall estimates at the spatial and temporal scales that are required for urban hydrological analysis. Recently, the RAINGAIN project was started to analyse the applicability of this new type of radars in the context of urban hydrological modelling. In this project, meteorologists and hydrologists work closely together in several stages of urban hydrological analysis: from the acquisition procedure of novel and high-end radar products to data acquisition and processing, rainfall data retrieval, hydrological event analysis and forecasting. The project comprises of four pilot locations with various characteristics of weather radar equipment, ground stations, urban hydrological systems, modelling approaches and requirements. Access to data processing and modelling software is handled in different ways in the pilots, depending on ownership and user context. Sharing of data and software among pilots and with the outside world is an ongoing topic of discussion. The availability of high resolution weather data augments requirements with respect to the resolution of hydrological models and input data. This has led to the development of fully distributed hydrological models, the implementation of which remains limited by the unavailability of hydrological input data. On the other hand, if models are to be used in flood forecasting, hydrological models need to be computationally efficient to enable fast responses to extreme event conditions. This
A Practical pedestrian approach to parsimonious regression with inaccurate inputs
Directory of Open Access Journals (Sweden)
Seppo Karrila
2014-04-01
Full Text Available A measurement result often dictates an interval containing the correct value. Interval data is also created by roundoff, truncation, and binning. We focus on such common interval uncertainty in data. Inaccuracy in model inputs is typically ignored on model fitting. We provide a practical approach for regression with inaccurate data: the mathematics is easy, and the linear programming formulations simple to use even in a spreadsheet. This self-contained elementary presentation introduces interval linear systems and requires only basic knowledge of algebra. Feature selection is automatic; but can be controlled to find only a few most relevant inputs; and joint feature selection is enabled for multiple modeled outputs. With more features than cases, a novel connection to compressed sensing emerges: robustness against interval errors-in-variables implies model parsimony, and the input inaccuracies determine the regularization term. A small numerical example highlights counterintuitive results and a dramatic difference to total least squares.
Energy Technology Data Exchange (ETDEWEB)
Yoon, C.; Rhee, B. W.; Chung, B. D. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Ahn, S. H.; Kim, M. W. [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)
2009-05-15
Korea currently has four operating units of the CANDU-6 type reactor in Wolsong. However, the safety assessment system for CANDU reactors has not been fully established due to a lack of self-reliance technology. Although the CATHENA code had been introduced from AECL, it is undesirable to use a vendor's code for a regulatory auditing analysis. In Korea, the MARS code has been developed for decades and is being considered by KINS as a thermal hydraulic regulatory auditing tool for nuclear power plants. Before this decision, KINS (Korea Institute of Nuclear Safety) had developed the RELAP5/MOD3/CANDU code for CANDU safety analyses by modifying the model of the existing PWR auditing tool, RELAP5/MOD3. The main purpose of this study is to transplant the CANDU models of the RELAP5/MOD3/CANDU code to the MARS code including a quality assurance of the developed models.
International Nuclear Information System (INIS)
Yoon, C.; Rhee, B. W.; Chung, B. D.; Ahn, S. H.; Kim, M. W.
2009-01-01
Korea currently has four operating units of the CANDU-6 type reactor in Wolsong. However, the safety assessment system for CANDU reactors has not been fully established due to a lack of self-reliance technology. Although the CATHENA code had been introduced from AECL, it is undesirable to use a vendor's code for a regulatory auditing analysis. In Korea, the MARS code has been developed for decades and is being considered by KINS as a thermal hydraulic regulatory auditing tool for nuclear power plants. Before this decision, KINS (Korea Institute of Nuclear Safety) had developed the RELAP5/MOD3/CANDU code for CANDU safety analyses by modifying the model of the existing PWR auditing tool, RELAP5/MOD3. The main purpose of this study is to transplant the CANDU models of the RELAP5/MOD3/CANDU code to the MARS code including a quality assurance of the developed models
International Nuclear Information System (INIS)
Clifton, P.M.
1984-12-01
The deep basalt formations beneath the Hanford Site are being investigated for the Department of Energy (DOE) to assess their suitability as a host medium for a high level nuclear waste repository. Predicted performance of the proposed repository is an important part of the investigation. One of the performance measures being used to gauge the suitability of the host medium is pre-waste-emplacement groundwater travel times to the accessible environment. Many deterministic analyses of groundwater travel times have been completed by Rockwell and other independent organizations. Recently, Rockwell has completed a preliminary stochastic analysis of groundwater travel times. This document presents analyses that show the sensitivity of the results from the previous stochastic travel time study to: (1) scale of representation of model parameters, (2) size of the model domain, (3) correlation range of log-transmissivity, and (4) cross-correlation between transmissivity and effective thickness. 40 refs., 29 figs., 6 tabs
Directory of Open Access Journals (Sweden)
RB. Prado
Full Text Available In this study multi-criteria modeling tools are applied to map the spatial distribution of drainage basin potential to pollute Barra Bonita Reservoir, São Paulo State, Brasil. Barra Bonita Reservoir Basin had undergone intense land use/land cover changes in the last decades, including the fast conversion from pasture into sugarcane. In this respect, this study answers to the lack of information about the variables (criteria which affect the pollution potential of the drainage basin by building a Geographic Information System which provides their spatial distribution at sub-basin level. The GIS was fed by several data (geomorphology, pedology, geology, drainage network and rainfall provided by public agencies. Landsat satellite images provided land use/land cover map for 2002. Ratings and weights of each criterion defined by specialists supported the modeling process. The results showed a wide variability in the pollution potential of different sub-basins according to the application of different criterion. If only land use is analyzed, for instance, less than 50% of the basin is classified as highly threatening to water quality and include sub basins located near the reservoir, indicating the importance of protection areas at the margins. Despite the subjectivity involved in the weighing processes, the multi-criteria analysis model allowed the simulation of scenarios which support rational land use polices at sub-basin level regarding the protection of water resources.
Irimoto, Hiroshi; Shibusawa, Hiroyuki; Miyata, Yuzuru
2017-10-01
Damage to transportation networks as a result of natural disasters can lead to economic losses due to lost trade along those links in addition to the costs of damage to the infrastructure itself. This study evaluates the economic damages of transport disruptions such as highways, tunnels, bridges, and ports using a transnational and interregional Input-Output Model that divides the world into 23 regions: 9 regions in Japan, 7 regions in China, and 4 regions in Korea, Taiwan, ASEAN5, and the USA to allow us to focus on Japan's regional and international links. In our simulation, economic ripple effects of both international and interregional transport disruptions are measured by changes in the trade coefficients in the input-output model. The simulation showed that, in the case of regional links in Japan, a transport disruption in the Kanmon Straits causes the most damage to our targeted world, resulting in economic damage of approximately 36.3 billion. In the case of international links among Japan, China, and Korea, damage to the link between Kanto in Japan and Huabei in China causes economic losses of approximately 31.1 billion. Our result highlights the importance of disaster prevention in the Kanmon Straits, Kanto, and Huabei to help ensure economic resilience.
Specification of advanced safety modeling requirements (Rev. 0).
Energy Technology Data Exchange (ETDEWEB)
Fanning, T. H.; Tautges, T. J.
2008-06-30
The U.S. Department of Energy's Global Nuclear Energy Partnership has lead to renewed interest in liquid-metal-cooled fast reactors for the purpose of closing the nuclear fuel cycle and making more efficient use of future repository capacity. However, the U.S. has not designed or constructed a fast reactor in nearly 30 years. Accurate, high-fidelity, whole-plant dynamics safety simulations will play a crucial role by providing confidence that component and system designs will satisfy established design limits and safety margins under a wide variety of operational, design basis, and beyond design basis transient conditions. Current modeling capabilities for fast reactor safety analyses have resulted from several hundred person-years of code development effort supported by experimental validation. The broad spectrum of mechanistic and phenomenological models that have been developed represent an enormous amount of institutional knowledge that needs to be maintained. Complicating this, the existing code architectures for safety modeling evolved from programming practices of the 1970s. This has lead to monolithic applications with interdependent data models which require significant knowledge of the complexities of the entire code in order for each component to be maintained. In order to develop an advanced fast reactor safety modeling capability, the limitations of the existing code architecture must be overcome while preserving the capabilities that already exist. To accomplish this, a set of advanced safety modeling requirements is defined, based on modern programming practices, that focuses on modular development within a flexible coupling framework. An approach for integrating the existing capabilities of the SAS4A/SASSYS-1 fast reactor safety analysis code into the SHARP framework is provided in order to preserve existing capabilities while providing a smooth transition to advanced modeling capabilities. In doing this, the advanced fast reactor safety models
Life sciences research in space: The requirement for animal models
Fuller, C. A.; Philips, R. W.; Ballard, R. W.
1987-01-01
Use of animals in NASA space programs is reviewed. Animals are needed because life science experimentation frequently requires long-term controlled exposure to environments, statistical validation, invasive instrumentation or biological tissue sampling, tissue destruction, exposure to dangerous or unknown agents, or sacrifice of the subject. The availability and use of human subjects inflight is complicated by the multiple needs and demands upon crew time. Because only living organisms can sense, integrate and respond to the environment around them, the sole use of tissue culture and computer models is insufficient for understanding the influence of the space environment on intact organisms. Equipment for spaceborne experiments with animals is described.
Modeling of the global carbon cycle - isotopic data requirements
International Nuclear Information System (INIS)
Ciais, P.
1994-01-01
Isotopes are powerful tools to constrain carbon cycle models. For example, the combinations of the CO 2 and the 13 C budget allows to calculate the net-carbon fluxes between atmosphere, ocean, and biosphere. Observations of natural and bomb-produced radiocarbon allow to estimate gross carbon exchange fluxes between different reservoirs and to deduce time scales of carbon overturning in important reservoirs. 18 O in CO 2 is potentially a tool to make the deconvolution of C fluxes within the land biosphere (assimilation vs respirations). The scope of this article is to identify gaps in our present knowledge about isotopes in the light of their use as constraint for the global carbon cycle. In the following we will present a list of some future data requirements for carbon cycle models. (authors)
Model Penentuan Nilai Target Functional Requirement Berbasis Utilitas
Directory of Open Access Journals (Sweden)
Cucuk Nur Rosyidi
2012-01-01
Full Text Available In a product design and development process, a designer faces a problem to decide functional requirement (FR target values. That decision is made under a risk since it is conducted in the early design phase using incomplete information. Utility function can be used to reflect the decision maker attitude towards the risk in making such decision. In this research, we develop a utility-based model to determine FR target values using quadratic utility function and information from Quality Function Deployment (QFD. A pencil design is used as a numerical example using quadratic utility function for each FR. The model can be applied for balancing customer and designer interest in determining FR target values.
Xie, Xing Long; Xian Xue, Wei
2017-12-01
The aim of this study is to qualitatively and quantitatively explore an energy engineering model termed quaternity-dominating pattern emerging in North China’s countryside. This study finds methane produced in this mod