WorldWideScience

Sample records for model including standard

  1. Search for Non-Standard Model Behavior, including CP Violation, in Higgs Production and Decay to $ZZ^{*}$

    CERN Document Server

    Webster, Jordan

    This thesis presents an ATLAS study of the tensor structure characterizing the interaction of the scalar Higgs boson with two $Z$ bosons. The measurement is based on $25~\\textrm{fb}^{-1}$ of proton-proton collision data produced at the Large Hadron Collider with center of mass energy equal to 7 and $8~\\textrm{TeV}$. Nine discriminant observables in the four lepton final state are used to search for CP-odd and CP-even components in the Lagrangian beyond those of the Standard Model. These are represented by $(\\tilde{\\kappa}_{AVV}/\\kappa_{SM})\\tan\\alpha$ and $\\tilde{\\kappa}_{HVV}/\\kappa_{SM}$, respectively. Both of these parameters are found to be consistent with their predicted Standard Model values of zero. Values outside the intervals $-3.24<(\\tilde{\\kappa}_{AVV}/\\kappa_{SM})\\tan\\alpha<0.91$ and $-0.82<\\tilde{\\kappa}_{HVV}/\\kappa_{SM}<0.87$ are excluded at 95\\% confidence level. These results are combined with a search for the same structure in the interaction of the Higgs with pairs of $W$ boson...

  2. Beyond the standard model

    International Nuclear Information System (INIS)

    Cuypers, F.

    1997-05-01

    These lecture notes are intended as a pedagogical introduction to several popular extensions of the standard model of strong and electroweak interactions. The topics include the Higgs sector, the left-right symmetric model, grand unification and supersymmetry. Phenomenological consequences and search procedures are emphasized. (author) figs., tabs., 18 refs

  3. Beyond the Standard Model

    Energy Technology Data Exchange (ETDEWEB)

    Lykken, Joseph D.; /Fermilab

    2010-05-01

    - to those who get close enough to listen - new directions for BSM model building. Contrary to popular shorthand jargon, supersymmetry (SUSY) is not a BSM model: it is a symmetry principle characterizing a BSM framework with an infinite number of models. Indeed we do not even know the full dimensionality of the SUSY parameter space, since this presumably includes as-yet-unexplored SUSY-breaking mechanisms and combinations of SUSY with other BSM principles. The SUSY framework plays an important role in BSM physics partly because it includes examples of models that are 'complete' in the same sense as the Standard Model, i.e. in principle the model predicts consequences for any observable, from cosmology to b physics to precision electroweak data to LHC collisions. Complete models, in addition to being more explanatory and making connections between diverse phenomena, are also much more experimentally constrained than strawman scenarios that focus more narrowly. One sometimes hears: 'Anything that is discovered at the LHC will be called supersymmetry.' There is truth behind this joke in the sense that the SUSY framework incorporates a vast number of possible signatures accessible to TeV colliders. This is not to say that the SUSY framework is not testable, but we are warned that one should pay attention to other promising frameworks, and should be prepared to make experimental distinctions between them. Since there is no formal classification of BSM frameworks I have invented my own. At the highest level there are six parent frameworks: (1) Terascale supersymmetry; (2) PNGB Higgs; (3) New strong dynamics; (4) Warped extra dimensions; (5) Flat extra dimensions; and (6) Hidden valleys. Here is the briefest possible survey of each framework, with the basic idea, the generic new phenomena, and the energy regime over which the framework purports to make comprehensive predictions.

  4. Beyond the standard model

    International Nuclear Information System (INIS)

    Wilczek, F.

    1993-01-01

    The standard model of particle physics is highly successful, although it is obviously not a complete or final theory. In this presentation the author argues that the structure of the standard model gives some quite concrete, compelling hints regarding what lies beyond. Essentially, this presentation is a record of the author's own judgement of what the central clues for physics beyond the standard model are, and also it is an attempt at some pedagogy. 14 refs., 6 figs

  5. Standard Model processes

    CERN Document Server

    Mangano, M.L.; Aguilar-Saavedra, Juan Antonio; Alekhin, S.; Badger, S.; Bauer, C.W.; Becher, T.; Bertone, V.; Bonvini, M.; Boselli, S.; Bothmann, E.; Boughezal, R.; Cacciari, M.; Carloni Calame, C.M.; Caola, F.; Campbell, J.M.; Carrazza, S.; Chiesa, M.; Cieri, L.; Cimaglia, F.; Febres Cordero, F.; Ferrarese, P.; D'Enterria, D.; Ferrera, G.; Garcia i Tormo, X.; Garzelli, M.V.; Germann, E.; Hirschi, V.; Han, T.; Ita, H.; Jäger, B.; Kallweit, S.; Karlberg, A.; Kuttimalai, S.; Krauss, F.; Larkoski, A.J.; Lindert, J.; Luisoni, G.; Maierhöfer, P.; Mattelaer, O.; Martinez, H.; Moch, S.; Montagna, G.; Moretti, M.; Nason, P.; Nicrosini, O.; Oleari, C.; Pagani, D.; Papaefstathiou, A.; Petriello, F.; Piccinini, F.; Pierini, M.; Pierog, T.; Pozzorini, S.; Re, E.; Robens, T.; Rojo, J.; Ruiz, R.; Sakurai, K.; Salam, G.P.; Salfelder, L.; Schönherr, M.; Schulze, M.; Schumann, S.; Selvaggi, M.; Shivaji, A.; Siodmok, A.; Skands, P.; Torrielli, P.; Tramontano, F.; Tsinikos, I.; Tweedie, B.; Vicini, A.; Westhoff, S.; Zaro, M.; Zeppenfeld, D.; CERN. Geneva. ATS Department

    2017-06-22

    This report summarises the properties of Standard Model processes at the 100 TeV pp collider. We document the production rates and typical distributions for a number of benchmark Standard Model processes, and discuss new dynamical phenomena arising at the highest energies available at this collider. We discuss the intrinsic physics interest in the measurement of these Standard Model processes, as well as their role as backgrounds for New Physics searches.

  6. The Standard Model course

    CERN Multimedia

    CERN. Geneva HR-RFA

    2006-01-01

    Suggested Readings: Aspects of Quantum Chromodynamics/A Pich, arXiv:hep-ph/0001118. - The Standard Model of Electroweak Interactions/A Pich, arXiv:hep-ph/0502010. - The Standard Model of Particle Physics/A Pich The Standard Model of Elementary Particle Physics will be described. A detailed discussion of the particle content, structure and symmetries of the theory will be given, together with an overview of the most important experimental facts which have established this theoretical framework as the Standard Theory of particle interactions.

  7. Beyond the standard model

    International Nuclear Information System (INIS)

    Pleitez, V.

    1994-01-01

    The search for physics laws beyond the standard model is discussed in a general way, and also some topics on supersymmetry theories. An approach is made on recent possibilities rise in the leptonic sector. Finally, models with SU(3) c X SU(2) L X U(1) Y symmetry are considered as alternatives for the extensions of the elementary particles standard model. 36 refs., 1 fig., 4 tabs

  8. Beyond the standard model

    International Nuclear Information System (INIS)

    Gaillard, M.K.

    1990-04-01

    The unresolved issues of the standard model are reviewed, with emphasis on the gauge hierarchy problem. A possible mechanism for generating a hierarchy in the context of superstring theory is described. 24 refs

  9. A tool for standardized collector performance calculations including PVT

    DEFF Research Database (Denmark)

    Perers, Bengt; Kovacs, Peter; Olsson, Marcus

    2012-01-01

    A tool for standardized calculation of solar collector performance has been developed in cooperation between SP Technical Research Institute of Sweden, DTU Denmark and SERC Dalarna University. The tool is designed to calculate the annual performance of solar collectors at representative locations...... can be tested and modeled as a thermal collector, when the PV electric part is active with an MPP tracker in operation. The thermal collector parameters from this operation mode are used for the PVT calculations....

  10. Grand unified models including extra Z bosons

    International Nuclear Information System (INIS)

    Li Tiezhong

    1989-01-01

    The grand unified theories (GUT) of the simple Lie groups including extra Z bosons are discussed. Under authors's hypothesis there are only SU 5+m SO 6+4n and E 6 groups. The general discussion of SU 5+m is given, then the SU 6 and SU 7 are considered. In SU 6 the 15+6 * +6 * fermion representations are used, which are not same as others in fermion content, Yukawa coupling and broken scales. A conception of clans of particles, which are not families, is suggested. These clans consist of extra Z bosons and the corresponding fermions of the scale. The all of fermions in the clans are down quarks except for the standard model which consists of Z bosons and 15 fermions, therefore, the spectrum of the hadrons which are composed of these down quarks are different from hadrons at present

  11. Physics beyond the Standard Model

    CERN Document Server

    Valle, José W F

    1991-01-01

    We discuss some of the signatures associated with extensions of the Standard Model related to the neutrino and electroweak symmetry breaking sectors, with and without supersymmetry. The topics include a basic discussion of the theory of neutrino mass and the corresponding extensions of the Standard Model that incorporate massive neutrinos; an overview of the present observational status of neutrino mass searches, with emphasis on solar neutrinos, as well the as cosmological data on the amplitude of primordial density fluctuations; the implications of neutrino mass in cosmological nucleosynthesis, non-accelerator, as well as in high energy particle collider experiments. Turning to the electroweak breaking sector, we discuss the physics potential for Higgs boson searches at LEP200, including Majoron extensions of the Standard Model, and the physics of invisibly decaying Higgs bosons. We discuss the minimal supersymmetric Standard Model phenomenology, as well as some of the laboratory signatures that would be as...

  12. Beyond the standard model; Au-dela du modele standard

    Energy Technology Data Exchange (ETDEWEB)

    Cuypers, F. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-05-01

    These lecture notes are intended as a pedagogical introduction to several popular extensions of the standard model of strong and electroweak interactions. The topics include the Higgs sector, the left-right symmetric model, grand unification and supersymmetry. Phenomenological consequences and search procedures are emphasized. (author) figs., tabs., 18 refs.

  13. Beyond the Standard Model

    Energy Technology Data Exchange (ETDEWEB)

    Peskin, M.E.

    1997-05-01

    These lectures constitute a short course in ``Beyond the Standard Model`` for students of experimental particle physics. The author discusses the general ideas which guide the construction of models of physics beyond the Standard model. The central principle, the one which most directly motivates the search for new physics, is the search for the mechanism of the spontaneous symmetry breaking observed in the theory of weak interactions. To illustrate models of weak-interaction symmetry breaking, the author gives a detailed discussion of the idea of supersymmetry and that of new strong interactions at the TeV energy scale. He discusses experiments that will probe the details of these models at future pp and e{sup +}e{sup {minus}} colliders.

  14. Beyond the Standard Model

    International Nuclear Information System (INIS)

    Peskin, M.E.

    1997-05-01

    These lectures constitute a short course in ''Beyond the Standard Model'' for students of experimental particle physics. The author discusses the general ideas which guide the construction of models of physics beyond the Standard model. The central principle, the one which most directly motivates the search for new physics, is the search for the mechanism of the spontaneous symmetry breaking observed in the theory of weak interactions. To illustrate models of weak-interaction symmetry breaking, the author gives a detailed discussion of the idea of supersymmetry and that of new strong interactions at the TeV energy scale. He discusses experiments that will probe the details of these models at future pp and e + e - colliders

  15. Conference: STANDARD MODEL @ LHC

    CERN Multimedia

    2012-01-01

    HCØ institute Universitetsparken 5 DK-2100 Copenhagen Ø Denmark Room: Auditorium 2 STANDARD MODEL @ LHC Niels Bohr International Academy and Discovery Center 10-13 April 2012 This four day meeting will bring together both experimental and theoretical aspects of Standard Model phenomenology at the LHC. The very latest results from the LHC experiments will be under discussion. Topics covered will be split into the following categories:     * QCD (Hard,Soft & PDFs)     * Vector Boson production     * Higgs searches     * Top Quark Physics     * Flavour physics

  16. The Standard Model

    Science.gov (United States)

    Burgess, Cliff; Moore, Guy

    2012-04-01

    List of illustrations; List of tables; Preface; Acknowledgments; Part I. Theoretical Framework: 1. Field theory review; 2. The standard model: general features; 3. Cross sections and lifetimes; Part II. Applications: Leptons: 4. Elementary boson decays; 5. Leptonic weak interactions: decays; 6. Leptonic weak interactions: collisions; 7. Effective Lagrangians; Part III. Applications: Hadrons: 8. Hadrons and QCD; 9. Hadronic interactions; Part IV. Beyond the Standard Model: 10. Neutrino masses; 11. Open questions, proposed solutions; Appendix A. Experimental values for the parameters; Appendix B. Symmetries and group theory review; Appendix C. Lorentz group and the Dirac algebra; Appendix D. ξ-gauge Feynman rules; Appendix E. Metric convention conversion table; Select bibliography; Index.

  17. Beyond the Standard Model

    CERN Document Server

    Csáki, Csaba

    2015-01-01

    We introduce aspects of physics beyond the Standard Model focusing on supersymmetry, extra dimensions, and a composite Higgs as solutions to the Hierarchy problem. Lectures given at the 2013 European School of High Energy Physics, Parádfürdo, Hungary, 5-18 June 2013.

  18. Beyond the Standard Model

    CERN Multimedia

    CERN. Geneva

    2005-01-01

    The necessity for new physics beyond the Standard Model will be motivated. Theoretical problems will be exposed and possible solutions will be described. The goal is to present the exciting new physics ideas that will be tested in the near future. Supersymmetry, grand unification, extra dimensions and string theory will be presented.

  19. Testing the Standard Model

    CERN Document Server

    Riles, K

    1998-01-01

    The Large Electron Project (LEP) accelerator near Geneva, more than any other instrument, has rigorously tested the predictions of the Standard Model of elementary particles. LEP measurements have probed the theory from many different directions and, so far, the Standard Model has prevailed. The rigour of these tests has allowed LEP physicists to determine unequivocally the number of fundamental 'generations' of elementary particles. These tests also allowed physicists to ascertain the mass of the top quark in advance of its discovery. Recent increases in the accelerator's energy allow new measurements to be undertaken, measurements that may uncover directly or indirectly the long-sought Higgs particle, believed to impart mass to all other particles.

  20. Standard Model physics

    CERN Multimedia

    Altarelli, Guido

    1999-01-01

    Introduction structure of gauge theories. The QEDand QCD examples. Chiral theories. The electroweak theory. Spontaneous symmetry breaking. The Higgs mechanism Gauge boson and fermion masses. Yukawa coupling. Charges current couplings. The Cabibo-Kobayashi-Maskawa matrix and CP violation. Neutral current couplings. The Glasow-Iliopoulos-Maiani mechanism. Gauge boson and Higgs coupling. Radiative corrections and loops. Cancellation of the chiral anomaly. Limits on the Higgs comparaison. Problems of the Standard Model. Outlook.

  1. Standard model and beyond

    International Nuclear Information System (INIS)

    Quigg, C.

    1984-09-01

    The SU(3)/sub c/ circle crossSU(2)/sub L/circle crossU(1)/sub Y/ gauge theory of ineractions among quarks and leptons is briefly described, and some recent notable successes of the theory are mentioned. Some shortcomings in our ability to apply the theory are noted, and the incompleteness of the standard model is exhibited. Experimental hints that Nature may be richer in structure than the minimal theory are discussed. 23 references

  2. Consistency Across Standards or Standards in a New Business Model

    Science.gov (United States)

    Russo, Dane M.

    2010-01-01

    Presentation topics include: standards in a changing business model, the new National Space Policy is driving change, a new paradigm for human spaceflight, consistency across standards, the purpose of standards, danger of over-prescriptive standards, a balance is needed (between prescriptive and general standards), enabling versus inhibiting, characteristics of success-oriented standards, characteristics of success-oriented standards, and conclusions. Additional slides include NASA Procedural Requirements 8705.2B identifies human rating standards and requirements, draft health and medical standards for human rating, what's been done, government oversight models, examples of consistency from anthropometry, examples of inconsistency from air quality and appendices of government and non-governmental human factors standards.

  3. Dynamics of the standard model

    CERN Document Server

    Donoghue, John F; Holstein, Barry R

    2014-01-01

    Describing the fundamental theory of particle physics and its applications, this book provides a detailed account of the Standard Model, focusing on techniques that can produce information about real observed phenomena. The book begins with a pedagogic account of the Standard Model, introducing essential techniques such as effective field theory and path integral methods. It then focuses on the use of the Standard Model in the calculation of physical properties of particles. Rigorous methods are emphasized, but other useful models are also described. This second edition has been updated to include recent theoretical and experimental advances, such as the discovery of the Higgs boson. A new chapter is devoted to the theoretical and experimental understanding of neutrinos, and major advances in CP violation and electroweak physics have been given a modern treatment. This book is valuable to graduate students and researchers in particle physics, nuclear physics and related fields.

  4. Quasi standard model physics

    International Nuclear Information System (INIS)

    Peccei, R.D.

    1986-01-01

    Possible small extensions of the standard model are considered, which are motivated by the strong CP problem and by the baryon asymmetry of the Universe. Phenomenological arguments are given which suggest that imposing a PQ symmetry to solve the strong CP problem is only tenable if the scale of the PQ breakdown is much above M W . Furthermore, an attempt is made to connect the scale of the PQ breakdown to that of the breakdown of lepton number. It is argued that in these theories the same intermediate scale may be responsible for the baryon number of the Universe, provided the Kuzmin Rubakov Shaposhnikov (B+L) erasing mechanism is operative. (orig.)

  5. Standard-model bundles

    CERN Document Server

    Donagi, Ron; Pantev, Tony; Waldram, Dan; Donagi, Ron; Ovrut, Burt; Pantev, Tony; Waldram, Dan

    2002-01-01

    We describe a family of genus one fibered Calabi-Yau threefolds with fundamental group ${\\mathbb Z}/2$. On each Calabi-Yau $Z$ in the family we exhibit a positive dimensional family of Mumford stable bundles whose symmetry group is the Standard Model group $SU(3)\\times SU(2)\\times U(1)$ and which have $c_{3} = 6$. We also show that for each bundle $V$ in our family, $c_{2}(Z) - c_{2}(V)$ is the class of an effective curve on $Z$. These conditions ensure that $Z$ and $V$ can be used for a phenomenologically relevant compactification of Heterotic M-theory.

  6. The standard model

    International Nuclear Information System (INIS)

    Marciano, W.J.

    1994-03-01

    In these lectures, my aim is to provide a survey of the standard model with emphasis on its renormalizability and electroweak radiative corrections. Since this is a school, I will try to be somewhat pedagogical by providing examples of loop calculations. In that way, I hope to illustrate some of the commonly employed tools of particle physics. With those goals in mind, I have organized my presentations as follows: In Section 2, renormalization is discussed from an applied perspective. The technique of dimensional regularization is described and used to define running couplings and masses. The utility of the renormalization group for computing leading logs is illustrated for the muon anomalous magnetic moment. In Section 3 electroweak radiative corrections are discussed. Standard model predictions are surveyed and used to constrain the top quark mass. The S, T, and U parameters are introduced and employed to probe for ''new physics''. The effect of Z' bosons on low energy phenomenology is described. In Section 4, a detailed illustration of electroweak radiative corrections is given for atomic parity violation. Finally, in Section 5, I conclude with an outlook for the future

  7. Physics beyond the standard model

    Energy Technology Data Exchange (ETDEWEB)

    Valle, J.W.F. [Valencia Univ. (Spain). Dept. de Fisica Teorica]. E-mail: valle@flamenco.uv.es

    1996-07-01

    We discuss some of the signatures associated with extensions of the Standard Model related to the neutrino and electroweak symmetry breaking sectors, with and without supersymmetry. The topics include a basic discussion of the theory of neutrino mass and the corresponding extensions of the Standard Model that incorporate massive neutrinos; an overview of the present observational status of neutrino mass searches, with emphasis on solar neutrinos, as well as cosmological data on the amplitude of primordial density fluctuations; the implications of neutrino mass in cosmological nucleosynthesis, non-accelerator, as well as in high energy particle collider experiments. Turning to the electroweak breaking sector, we discuss the physics potential for Higgs boson searches at LEP200, including Majorana extensions of the Standard Model, and the physics of invisibly decaying Higgs bosons. We discuss the minimal supersymmetric Standard Model phenomenology, as well as some of the laboratory signatures that would be associated to models with R parity violation, especially in Z and scalar boson decays. (author)

  8. Standard model of knowledge representation

    Science.gov (United States)

    Yin, Wensheng

    2016-09-01

    Knowledge representation is the core of artificial intelligence research. Knowledge representation methods include predicate logic, semantic network, computer programming language, database, mathematical model, graphics language, natural language, etc. To establish the intrinsic link between various knowledge representation methods, a unified knowledge representation model is necessary. According to ontology, system theory, and control theory, a standard model of knowledge representation that reflects the change of the objective world is proposed. The model is composed of input, processing, and output. This knowledge representation method is not a contradiction to the traditional knowledge representation method. It can express knowledge in terms of multivariate and multidimensional. It can also express process knowledge, and at the same time, it has a strong ability to solve problems. In addition, the standard model of knowledge representation provides a way to solve problems of non-precision and inconsistent knowledge.

  9. A tool for standardized collector performance calculations including PVT

    DEFF Research Database (Denmark)

    Perers, Bengt; Kovacs, Peter; Olsson, Marcus

    2012-01-01

    A tool for standardized calculation of solar collector performance has been developed in cooperation between SP Technical Research Institute of Sweden, DTU Denmark and SERC Dalarna University. The tool is designed to calculate the annual performance of solar collectors at representative locations...

  10. The standard model and beyond

    International Nuclear Information System (INIS)

    Marciano, W.J.

    1989-05-01

    In these lectures, my aim is to present a status report on the standard model and some key tests of electroweak unification. Within that context, I also discuss how and where hints of new physics may emerge. To accomplish those goals, I have organized my presentation as follows. I survey the standard model parameters with particular emphasis on the gauge coupling constants and vector boson masses. Examples of new physics appendages are also commented on. In addition, I have included an appendix on dimensional regularization and a simple example which employs that technique. I focus on weak charged current phenomenology. Precision tests of the standard model are described and up-to-date values for the Cabibbo-Kobayashi-Maskawa (CKM) mixing matrix parameters are presented. Constraints implied by those tests for a 4th generation, extra Z' bosons, and compositeness are discussed. An overview of the physics of tau decays is also included. I discuss weak neutral current phenomenology and the extraction of sin 2 θW from experiment. The results presented there are based on a global analysis of all existing data. I have chosen to concentrate that discussion on radiative corrections, the effect of a heavy top quark mass, implications for grand unified theories (GUTS), extra Z' gauge bosons, and atomic parity violation. The potential for further experimental progress is also commented on. Finally, I depart from the narrowest version of the standard model and discuss effects of neutrino masses, mixings, and electromagnetic moments. 32 refs., 3 figs., 5 tabs

  11. An Integrated Biochemistry Laboratory, Including Molecular Modeling

    Science.gov (United States)

    Hall, Adele J. Wolfson Mona L.; Branham, Thomas R.

    1996-11-01

    ) experience with methods of protein purification; (iii) incorporation of appropriate controls into experiments; (iv) use of basic statistics in data analysis; (v) writing papers and grant proposals in accepted scientific style; (vi) peer review; (vii) oral presentation of results and proposals; and (viii) introduction to molecular modeling. Figure 1 illustrates the modular nature of the lab curriculum. Elements from each of the exercises can be separated and treated as stand-alone exercises, or combined into short or long projects. We have been able to offer the opportunity to use sophisticated molecular modeling in the final module through funding from an NSF-ILI grant. However, many of the benefits of the research proposal can be achieved with other computer programs, or even by literature survey alone. Figure 1.Design of project-based biochemistry laboratory. Modules (projects, or portions of projects) are indicated as boxes. Each of these can be treated independently, or used as part of a larger project. Solid lines indicate some suggested paths from one module to the next. The skills and knowledge required for protein purification and design are developed in three units: (i) an introduction to critical assays needed to monitor degree of purification, including an evaluation of assay parameters; (ii) partial purification by ion-exchange techniques; and (iii) preparation of a grant proposal on protein design by mutagenesis. Brief descriptions of each of these units follow, with experimental details of each project at the end of this paper. Assays for Lysozyme Activity and Protein Concentration (4 weeks) The assays mastered during the first unit are a necessary tool for determining the purity of the enzyme during the second unit on purification by ion exchange. These assays allow an introduction to the concept of specific activity (units of enzyme activity per milligram of total protein) as a measure of purity. In this first sequence, students learn a turbidimetric assay

  12. Structure of the standard model

    Energy Technology Data Exchange (ETDEWEB)

    Langacker, Paul [Pennsylvania Univ., PA (United States). Dept. of Physics

    1996-07-01

    This lecture presents the structure of the standard model, approaching the following aspects: the standard model Lagrangian, spontaneous symmetry breaking, gauge interactions, covering charged currents, quantum electrodynamics, the neutral current and gauge self-interactions, and problems with the standard model, such as gauge, fermion, Higgs and hierarchy, strong C P and graviton problems.

  13. Modular modelling with Physiome standards

    Science.gov (United States)

    Nickerson, David P.; Nielsen, Poul M. F.; Hunter, Peter J.

    2016-01-01

    Key points The complexity of computational models is increasing, supported by research in modelling tools and frameworks. But relatively little thought has gone into design principles for complex models.We propose a set of design principles for complex model construction with the Physiome standard modelling protocol CellML.By following the principles, models are generated that are extensible and are themselves suitable for reuse in larger models of increasing complexity.We illustrate these principles with examples including an architectural prototype linking, for the first time, electrophysiology, thermodynamically compliant metabolism, signal transduction, gene regulation and synthetic biology.The design principles complement other Physiome research projects, facilitating the application of virtual experiment protocols and model analysis techniques to assist the modelling community in creating libraries of composable, characterised and simulatable quantitative descriptions of physiology. Abstract The ability to produce and customise complex computational models has great potential to have a positive impact on human health. As the field develops towards whole‐cell models and linking such models in multi‐scale frameworks to encompass tissue, organ, or organism levels, reuse of previous modelling efforts will become increasingly necessary. Any modelling group wishing to reuse existing computational models as modules for their own work faces many challenges in the context of construction, storage, retrieval, documentation and analysis of such modules. Physiome standards, frameworks and tools seek to address several of these challenges, especially for models expressed in the modular protocol CellML. Aside from providing a general ability to produce modules, there has been relatively little research work on architectural principles of CellML models that will enable reuse at larger scales. To complement and support the existing tools and frameworks, we develop a set

  14. SEEPAGE MODEL FOR PA INCLUDING DRIFT COLLAPSE

    International Nuclear Information System (INIS)

    C. Tsang

    2004-01-01

    The purpose of this report is to document the predictions and analyses performed using the seepage model for performance assessment (SMPA) for both the Topopah Spring middle nonlithophysal (Tptpmn) and lower lithophysal (Tptpll) lithostratigraphic units at Yucca Mountain, Nevada. Look-up tables of seepage flow rates into a drift (and their uncertainty) are generated by performing numerical simulations with the seepage model for many combinations of the three most important seepage-relevant parameters: the fracture permeability, the capillary-strength parameter 1/a, and the percolation flux. The percolation flux values chosen take into account flow focusing effects, which are evaluated based on a flow-focusing model. Moreover, multiple realizations of the underlying stochastic permeability field are conducted. Selected sensitivity studies are performed, including the effects of an alternative drift geometry representing a partially collapsed drift from an independent drift-degradation analysis (BSC 2004 [DIRS 166107]). The intended purpose of the seepage model is to provide results of drift-scale seepage rates under a series of parameters and scenarios in support of the Total System Performance Assessment for License Application (TSPA-LA). The SMPA is intended for the evaluation of drift-scale seepage rates under the full range of parameter values for three parameters found to be key (fracture permeability, the van Genuchten 1/a parameter, and percolation flux) and drift degradation shape scenarios in support of the TSPA-LA during the period of compliance for postclosure performance [Technical Work Plan for: Performance Assessment Unsaturated Zone (BSC 2002 [DIRS 160819], Section I-4-2-1)]. The flow-focusing model in the Topopah Spring welded (TSw) unit is intended to provide an estimate of flow focusing factors (FFFs) that (1) bridge the gap between the mountain-scale and drift-scale models, and (2) account for variability in local percolation flux due to

  15. Beyond Standard Model Physics

    Energy Technology Data Exchange (ETDEWEB)

    Bellantoni, L.

    2009-11-01

    There are many recent results from searches for fundamental new physics using the TeVatron, the SLAC b-factory and HERA. This talk quickly reviewed searches for pair-produced stop, for gauge-mediated SUSY breaking, for Higgs bosons in the MSSM and NMSSM models, for leptoquarks, and v-hadrons. There is a SUSY model which accommodates the recent astrophysical experimental results that suggest that dark matter annihilation is occurring in the center of our galaxy, and a relevant experimental result. Finally, model-independent searches at D0, CDF, and H1 are discussed.

  16. An alternative to the standard model

    International Nuclear Information System (INIS)

    Baek, Seungwon; Ko, Pyungwon; Park, Wan-Il

    2014-01-01

    We present an extension of the standard model to dark sector with an unbroken local dark U(1) X symmetry. Including various singlet portal interactions provided by the standard model Higgs, right-handed neutrinos and kinetic mixing, we show that the model can address most of phenomenological issues (inflation, neutrino mass and mixing, baryon number asymmetry, dark matter, direct/indirect dark matter searches, some scale scale puzzles of the standard collisionless cold dark matter, vacuum stability of the standard model Higgs potential, dark radiation) and be regarded as an alternative to the standard model. The Higgs signal strength is equal to one as in the standard model for unbroken U(1) X case with a scalar dark matter, but it could be less than one independent of decay channels if the dark matter is a dark sector fermion or if U(1) X is spontaneously broken, because of a mixing with a new neutral scalar boson in the models

  17. Chapter 1: Standard Model processes

    OpenAIRE

    Becher, Thomas

    2017-01-01

    This chapter documents the production rates and typical distributions for a number of benchmark Standard Model processes, and discusses new dynamical phenomena arising at the highest energies available at this collider. We discuss the intrinsic physics interest in the measurement of these Standard Model processes, as well as their role as backgrounds for New Physics searches.

  18. Beyond the Standard Model for Montaneros

    CERN Document Server

    Bustamante, M; Ellis, John

    2010-01-01

    These notes cover (i) electroweak symmetry breaking in the Standard Model (SM) and the Higgs boson, (ii) alternatives to the SM Higgs boson} including an introduction to composite Higgs models and Higgsless models that invoke extra dimensions, (iii) the theory and phenomenology of supersymmetry, and (iv) various further beyond topics, including Grand Unification, proton decay and neutrino masses, supergravity, superstrings and extra dimensions.

  19. Control system architecture: The standard and non-standard models

    International Nuclear Information System (INIS)

    Thuot, M.E.; Dalesio, L.R.

    1993-01-01

    Control system architecture development has followed the advances in computer technology through mainframes to minicomputers to micros and workstations. This technology advance and increasingly challenging accelerator data acquisition and automation requirements have driven control system architecture development. In summarizing the progress of control system architecture at the last International Conference on Accelerator and Large Experimental Physics Control Systems (ICALEPCS) B. Kuiper asserted that the system architecture issue was resolved and presented a ''standard model''. The ''standard model'' consists of a local area network (Ethernet or FDDI) providing communication between front end microcomputers, connected to the accelerator, and workstations, providing the operator interface and computational support. Although this model represents many present designs, there are exceptions including reflected memory and hierarchical architectures driven by requirements for widely dispersed, large channel count or tightly coupled systems. This paper describes the performance characteristics and features of the ''standard model'' to determine if the requirements of ''non-standard'' architectures can be met. Several possible extensions to the ''standard model'' are suggested including software as well as the hardware architectural feature

  20. Seepage Model for PA Including Drift Collapse

    International Nuclear Information System (INIS)

    Li, G.; Tsang, C.

    2000-01-01

    The purpose of this Analysis/Model Report (AMR) is to document the predictions and analysis performed using the Seepage Model for Performance Assessment (PA) and the Disturbed Drift Seepage Submodel for both the Topopah Spring middle nonlithophysal and lower lithophysal lithostratigraphic units at Yucca Mountain. These results will be used by PA to develop the probability distribution of water seepage into waste-emplacement drifts at Yucca Mountain, Nevada, as part of the evaluation of the long term performance of the potential repository. This AMR is in accordance with the ''Technical Work Plan for Unsaturated Zone (UZ) Flow and Transport Process Model Report'' (CRWMS M andO 2000 [153447]). This purpose is accomplished by performing numerical simulations with stochastic representations of hydrological properties, using the Seepage Model for PA, and evaluating the effects of an alternative drift geometry representing a partially collapsed drift using the Disturbed Drift Seepage Submodel. Seepage of water into waste-emplacement drifts is considered one of the principal factors having the greatest impact of long-term safety of the repository system (CRWMS M andO 2000 [153225], Table 4-1). This AMR supports the analysis and simulation that are used by PA to develop the probability distribution of water seepage into drift, and is therefore a model of primary (Level 1) importance (AP-3.15Q, ''Managing Technical Product Inputs''). The intended purpose of the Seepage Model for PA is to support: (1) PA; (2) Abstraction of Drift-Scale Seepage; and (3) Unsaturated Zone (UZ) Flow and Transport Process Model Report (PMR). Seepage into drifts is evaluated by applying numerical models with stochastic representations of hydrological properties and performing flow simulations with multiple realizations of the permeability field around the drift. The Seepage Model for PA uses the distribution of permeabilities derived from air injection testing in niches and in the cross drift to

  1. Seepage Model for PA Including Dift Collapse

    Energy Technology Data Exchange (ETDEWEB)

    G. Li; C. Tsang

    2000-12-20

    The purpose of this Analysis/Model Report (AMR) is to document the predictions and analysis performed using the Seepage Model for Performance Assessment (PA) and the Disturbed Drift Seepage Submodel for both the Topopah Spring middle nonlithophysal and lower lithophysal lithostratigraphic units at Yucca Mountain. These results will be used by PA to develop the probability distribution of water seepage into waste-emplacement drifts at Yucca Mountain, Nevada, as part of the evaluation of the long term performance of the potential repository. This AMR is in accordance with the ''Technical Work Plan for Unsaturated Zone (UZ) Flow and Transport Process Model Report'' (CRWMS M&O 2000 [153447]). This purpose is accomplished by performing numerical simulations with stochastic representations of hydrological properties, using the Seepage Model for PA, and evaluating the effects of an alternative drift geometry representing a partially collapsed drift using the Disturbed Drift Seepage Submodel. Seepage of water into waste-emplacement drifts is considered one of the principal factors having the greatest impact of long-term safety of the repository system (CRWMS M&O 2000 [153225], Table 4-1). This AMR supports the analysis and simulation that are used by PA to develop the probability distribution of water seepage into drift, and is therefore a model of primary (Level 1) importance (AP-3.15Q, ''Managing Technical Product Inputs''). The intended purpose of the Seepage Model for PA is to support: (1) PA; (2) Abstraction of Drift-Scale Seepage; and (3) Unsaturated Zone (UZ) Flow and Transport Process Model Report (PMR). Seepage into drifts is evaluated by applying numerical models with stochastic representations of hydrological properties and performing flow simulations with multiple realizations of the permeability field around the drift. The Seepage Model for PA uses the distribution of permeabilities derived from air injection testing in

  2. Physics Beyond the Standard Model

    CERN Document Server

    Ellis, John

    2009-01-01

    The Standard Model is in good shape, apart possibly from g_\\mu - 2 and some niggling doubts about the electroweak data. Something like a Higgs boson is required to provide particle masses, but theorists are actively considering alternatives. The problems of flavour, unification and quantum gravity will require physics beyond the Standard Model, and astrophysics and cosmology also provide reasons to expect physics beyond the Standard Model, in particular to provide the dark matter and explain the origin of the matter in the Universe. Personally, I find supersymmetry to be the most attractive option for new physics at the TeV scale. The LHC should establish the origin of particle masses has good prospects for discovering dark matter, and might also cast light on unification and even quantum gravity. Important roles may also be played by lower-energy experiments, astrophysics and cosmology in the searches for new physics beyond the Standard Model.

  3. Enhanced battery model including temperature effects

    NARCIS (Netherlands)

    Rosca, B.; Wilkins, S.

    2013-01-01

    Within electric and hybrid vehicles, batteries are used to provide/buffer the energy required for driving. However, battery performance varies throughout the temperature range specific to automotive applications, and as such, models that describe this behaviour are required. This paper presents a

  4. The standard model and beyond

    CERN Document Server

    Vergados, J D

    2017-01-01

    This book contains a systematic and pedagogical exposition of recent developments in particle physics and cosmology. It starts with two introductory chapters on group theory and the Dirac theory. Then it proceeds with the formulation of the Standard Model (SM) of Particle Physics, particle content and symmetries, fully exploiting the first chapters. It discusses the concept of gauge symmetries and emphasizes their role in particle physics. It then analyses the Higgs mechanism and the spontaneous symmetry breaking (SSB). It explains how the particles (gauge bosons and fermions) after SSB acquire a mass and get admixed. The various forms of charged currents are discussed in detail as well as how the parameters of the SM, which cannot be determined by the theory, are fixed by experiment, including the recent LHC data and the Higgs discovery. Quantum chromodynamics is discussed and various low energy approximations to it are presented. The Feynman diagrams are introduced and applied, in a way undertandable by fir...

  5. The making of the standard model

    NARCIS (Netherlands)

    Hooft, G. 't

    2007-01-01

    The standard model of particle physics is more than a model. It is a detailed theory that encompasses nearly all that is known about the subatomic particles and forces in a concise set of principles and equations. The extensive research that culminated in this model includes numerous small and

  6. About the standard solar model

    International Nuclear Information System (INIS)

    Cahen, S.

    1986-07-01

    A discussion of the still controversial solar helium content is presented, based on a comparison of recent standard solar models. Our last model yields an helium mass fraction ∼0.276, 6.4 SNU on 37 Cl and 126 SNU on 71 Ga

  7. The standard model and colliders

    International Nuclear Information System (INIS)

    Hinchliffe, I.

    1987-03-01

    Some topics in the standard model of strong and electroweak interactions are discussed, as well as how these topics are relevant for the high energy colliders which will become operational in the next few years. The radiative corrections in the Glashow-Weinberg-Salam model are discussed, stressing how these corrections may be measured at LEP and the SLC. CP violation is discussed briefly, followed by a discussion of the Higgs boson and the searches which are relevant to hadron colliders are then discussed. Some of the problems which the standard model does not solve are discussed, and the energy ranges accessible to the new colliders are indicated

  8. 2016 Updated American Society of Clinical Oncology/Oncology Nursing Society Chemotherapy Administration Safety Standards, Including Standards for Pediatric Oncology.

    Science.gov (United States)

    Neuss, Michael N; Gilmore, Terry R; Belderson, Kristin M; Billett, Amy L; Conti-Kalchik, Tara; Harvey, Brittany E; Hendricks, Carolyn; LeFebvre, Kristine B; Mangu, Pamela B; McNiff, Kristen; Olsen, MiKaela; Schulmeister, Lisa; Von Gehr, Ann; Polovich, Martha

    2016-12-01

    Purpose To update the ASCO/Oncology Nursing Society (ONS) Chemotherapy Administration Safety Standards and to highlight standards for pediatric oncology. Methods The ASCO/ONS Chemotherapy Administration Safety Standards were first published in 2009 and updated in 2011 to include inpatient settings. A subsequent 2013 revision expanded the standards to include the safe administration and management of oral chemotherapy. A joint ASCO/ONS workshop with stakeholder participation, including that of the Association of Pediatric Hematology Oncology Nurses and American Society of Pediatric Hematology/Oncology, was held on May 12, 2015, to review the 2013 standards. An extensive literature search was subsequently conducted, and public comments on the revised draft standards were solicited. Results The updated 2016 standards presented here include clarification and expansion of existing standards to include pediatric oncology and to introduce new standards: most notably, two-person verification of chemotherapy preparation processes, administration of vinca alkaloids via minibags in facilities in which intrathecal medications are administered, and labeling of medications dispensed from the health care setting to be taken by the patient at home. The standards were reordered and renumbered to align with the sequential processes of chemotherapy prescription, preparation, and administration. Several standards were separated into their respective components for clarity and to facilitate measurement of adherence to a standard. Conclusion As oncology practice has changed, so have chemotherapy administration safety standards. Advances in technology, cancer treatment, and education and training have prompted the need for periodic review and revision of the standards. Additional information is available at http://www.asco.org/chemo-standards .

  9. The standard model and beyond

    CERN Document Server

    Langacker, Paul

    2017-01-01

    This new edition of The Standard Model and Beyond presents an advanced introduction to the physics and formalism of the standard model and other non-abelian gauge theories. It provides a solid background for understanding supersymmetry, string theory, extra dimensions, dynamical symmetry breaking, and cosmology. In addition to updating all of the experimental and phenomenological results from the first edition, it contains a new chapter on collider physics; expanded discussions of Higgs, neutrino, and dark matter physics; and many new problems. The book first reviews calculational techniques in field theory and the status of quantum electrodynamics. It then focuses on global and local symmetries and the construction of non-abelian gauge theories. The structure and tests of quantum chromodynamics, collider physics, the electroweak interactions and theory, and the physics of neutrino mass and mixing are thoroughly explored. The final chapter discusses the motivations for extending the standard model and examin...

  10. Modeling heart rate variability including the effect of sleep stages

    Science.gov (United States)

    Soliński, Mateusz; Gierałtowski, Jan; Żebrowski, Jan

    2016-02-01

    We propose a model for heart rate variability (HRV) of a healthy individual during sleep with the assumption that the heart rate variability is predominantly a random process. Autonomic nervous system activity has different properties during different sleep stages, and this affects many physiological systems including the cardiovascular system. Different properties of HRV can be observed during each particular sleep stage. We believe that taking into account the sleep architecture is crucial for modeling the human nighttime HRV. The stochastic model of HRV introduced by Kantelhardt et al. was used as the initial starting point. We studied the statistical properties of sleep in healthy adults, analyzing 30 polysomnographic recordings, which provided realistic information about sleep architecture. Next, we generated synthetic hypnograms and included them in the modeling of nighttime RR interval series. The results of standard HRV linear analysis and of nonlinear analysis (Shannon entropy, Poincaré plots, and multiscale multifractal analysis) show that—in comparison with real data—the HRV signals obtained from our model have very similar properties, in particular including the multifractal characteristics at different time scales. The model described in this paper is discussed in the context of normal sleep. However, its construction is such that it should allow to model heart rate variability in sleep disorders. This possibility is briefly discussed.

  11. Extensions of the Standard Model

    CERN Document Server

    Zwirner, Fabio

    1996-01-01

    Rapporteur talk at the International Europhysics Conference on High Energy Physics, Brussels (Belgium), July 27-August 2, 1995. This talk begins with a brief general introduction to the extensions of the Standard Model, reviewing the ideology of effective field theories and its practical implications. The central part deals with candidate extensions near the Fermi scale, focusing on some phenomenological aspects of the Minimal Supersymmetric Standard Model. The final part discusses some possible low-energy implications of further extensions near the Planck scale, namely superstring theories.

  12. Custom v. Standardized Risk Models

    Directory of Open Access Journals (Sweden)

    Zura Kakushadze

    2015-05-01

    Full Text Available We discuss when and why custom multi-factor risk models are warranted and give source code for computing some risk factors. Pension/mutual funds do not require customization but standardization. However, using standardized risk models in quant trading with much shorter holding horizons is suboptimal: (1 longer horizon risk factors (value, growth, etc. increase noise trades and trading costs; (2 arbitrary risk factors can neutralize alpha; (3 “standardized” industries are artificial and insufficiently granular; (4 normalization of style risk factors is lost for the trading universe; (5 diversifying risk models lowers P&L correlations, reduces turnover and market impact, and increases capacity. We discuss various aspects of custom risk model building.

  13. Standard Model at LHC 2016

    CERN Document Server

    2016-01-01

    The meeting aims to bring together experimentalists and theorists to discuss the phenomenology, observational results and theoretical tools for Standard Model physics at the LHC. The agenda is divided into four working groups: Electroweak physics Higgs physics QCD (hard, soft & PDFs) Top & flavour physics

  14. Beyond the Standard Model course

    CERN Multimedia

    CERN. Geneva HR-RFA

    2006-01-01

    The necessity for new physics beyond the Standard Model will be motivated. Theoretical problems will be exposed and possible solutions will be described. The goal is to present the exciting new physics ideas that will be tested in the near future, at LHC and elsewhere. Supersymmetry, grand unification, extra dimensions and a glimpse of string theory will be presented.

  15. D-brane Standard Model

    CERN Document Server

    Antoniadis, Ignatios; Tomaras, T N

    2001-01-01

    The minimal embedding of the Standard Model in type I string theory is described. The SU(3) color and SU(2) weak interactions arise from two different collections of branes. The correct prediction of the weak angle is obtained for a string scale of 6-8 TeV. Two Higgs doublets are necessary and proton stability is guaranteed. It predicts two massive vector bosons with masses at the TeV scale, as well as a new superweak interaction.

  16. Migration path for structured documentation systems including standardized medical device data.

    Science.gov (United States)

    Kock, Ann-Kristin; Ingenerf, Josef; Halkaliev, Stoyan; Handels, Heinz

    2012-01-01

    A standardized end-to-end solution has been implemented with the aim of supporting the semantic integration of clinical content in institution spanning applications. The approach outlined is a proof-of-concept design. It has shown that the standards chosen are suitable to integrate device data into forms, to document the results consistently and finally enable semantic interoperability. In detail the implementation includes a standardized device interface, a standardized representation of data entry forms and enables the communication of structured data via HL7 CDA. Because the proposed method applies a combination of standards semantic interoperability and the possibility of a contextual interpretation at each stage can be ensured.

  17. The standard model and beyond

    International Nuclear Information System (INIS)

    Gaillard, M.K.

    1989-05-01

    The field of elementary particle, or high energy, physics seeks to identify the most elementary constituents of nature and to study the forces that govern their interactions. Increasing the energy of a probe in a laboratory experiment increases its power as an effective microscope for discerning increasingly smaller structures of matter. Thus we have learned that matter is composed of molecules that are in turn composed of atoms, that the atom consists of a nucleus surrounded by a cloud of electrons, and that the atomic nucleus is a collection of protons and neutrons. The more powerful probes provided by high energy particle accelerators have taught us that a nucleon is itself made of objects called quarks. The forces among quarks and electrons are understood within a general theoretical framework called the ''standard model,'' that accounts for all interactions observed in high energy laboratory experiments to date. These are commonly categorized as the ''strong,'' ''weak'' and ''electromagnetic'' interactions. In this lecture I will describe the standard model, and point out some of its limitations. Probing for deeper structures in quarks and electrons defines the present frontier of particle physics. I will discuss some speculative ideas about extensions of the standard model and/or yet more fundamental forces that may underlie our present picture. 11 figs., 1 tab

  18. Extensions of the standard model

    International Nuclear Information System (INIS)

    Ramond, P.

    1983-01-01

    In these lectures we focus on several issues that arise in theoretical extensions of the standard model. First we describe the kinds of fermions that can be added to the standard model without affecting known phenomenology. We focus in particular on three types: the vector-like completion of the existing fermions as would be predicted by a Kaluza-Klein type theory, which we find cannot be realistically achieved without some chiral symmetry; fermions which are vector-like by themselves, such as do appear in supersymmetric extensions, and finally anomaly-free chiral sets of fermions. We note that a chiral symmetry, such as the Peccei-Quinn symmetry can be used to produce a vector-like theory which, at scales less than M/sub W/, appears to be chiral. Next, we turn to the analysis of the second hierarchy problem which arises in Grand Unified extensions of the standard model, and plays a crucial role in proton decay of supersymmetric extensions. We review the known mechanisms for avoiding this problem and present a new one which seems to lead to the (family) triplication of the gauge group. Finally, this being a summer school, we present a list of homework problems. 44 references

  19. Noncommutative geometry and the standard model vacuum

    International Nuclear Information System (INIS)

    Barrett, John W.; Dawe Martins, Rachel A.

    2006-01-01

    The space of Dirac operators for the Connes-Chamseddine spectral action for the standard model of particle physics coupled to gravity is studied. The model is extended by including right-handed neutrino states, and the S 0 -reality axiom is not assumed. The possibility of allowing more general fluctuations than the inner fluctuations of the vacuum is proposed. The maximal case of all possible fluctuations is studied by considering the equations of motion for the vacuum. While there are interesting nontrivial vacua with Majorana-type mass terms for the leptons, the conclusion is that the equations are too restrictive to allow solutions with the standard model mass matrix

  20. Institutional model for supporting standardization

    International Nuclear Information System (INIS)

    Sanford, M.O.; Jackson, K.J.

    1993-01-01

    Restoring the nuclear option for utilities requires standardized designs. This premise is widely accepted by all parties involved in ALWR development activities. Achieving and maintaining standardization, however, demands new perspectives on the roles and responsibilities for the various commercial organizations involved in nuclear power. Some efforts are needed to define a workable model for a long-term support structure that will allow the benefits of standardization to be realized. The Nuclear Power Oversight Committee (NPOC) has developed a strategic plan that lays out the steps necessary to enable the nuclear industry to be in a position to order a new nuclear power plant by the mid 1990's. One of the key elements of the plan is the, ''industry commitment to standardization: through design certification, combined license, first-of-a-kind engineering, construction, operation, and maintenance of nuclear power plants.'' This commitment is a result of the recognition by utilities of the substantial advantages to standardization. Among these are economic benefits, licensing benefits from being treated as one of a family, sharing risks across a broader ownership group, sharing operating experiences, enhancing public safety, and a more coherent market force. Utilities controlled the construction of the past generation of nuclear units in a largely autonomous fashion procuring equipment and designs from a vendor, engineering services from an architect/engineer, and construction from a construction management firm. This, in addition to forcing the utility to assume virtually all of the risks associated with the project, typically resulted in highly customized designs based on preferences of the individual utility. However, the benefits of standardization can be realized only through cooperative choices and decision making by the utilities and through working as partners with reactor vendors, architect/engineers, and construction firms

  1. Control system architecture: The standard and non-standard models

    International Nuclear Information System (INIS)

    Thuot, M.E.; Dalesio, L.R.

    1993-01-01

    Control system architecture development has followed the advances in computer technology through mainframes to minicomputers to micros and workstations. This technology advance and increasingly challenging accelerator data acquisition and automation requirements have driven control system architecture development. In summarizing the progress of control system architecture at the last International Conference on Accelerator and Large Experimental Physics Control Systems (ICALEPCS) B. Kuiper asserted that the system architecture issue was resolved and presented a open-quotes standard modelclose quotes. The open-quotes standard modelclose quotes consists of a local area network (Ethernet or FDDI) providing communication between front end microcomputers, connected to the accelerator, and workstations, providing the operator interface and computational support. Although this model represents many present designs, there are exceptions including reflected memory and hierarchical architectures driven by requirements for widely dispersed, large channel count or tightly coupled systems. This paper describes the performance characteristics and features of the open-quotes standard modelclose quotes to determine if the requirements of open-quotes non-standardclose quotes architectures can be met. Several possible extensions to the open-quotes standard modelclose quotes are suggested including software as well as the hardware architectural features

  2. Olkiluoto surface hydrological modelling: Update 2012 including salt transport modelling

    International Nuclear Information System (INIS)

    Karvonen, T.

    2013-11-01

    Posiva Oy is responsible for implementing a final disposal program for spent nuclear fuel of its owners Teollisuuden Voima Oyj and Fortum Power and Heat Oy. The spent nuclear fuel is planned to be disposed at a depth of about 400-450 meters in the crystalline bedrock at the Olkiluoto site. Leakages located at or close to spent fuel repository may give rise to the upconing of deep highly saline groundwater and this is a concern with regard to the performance of the tunnel backfill material after the closure of the tunnels. Therefore a salt transport sub-model was added to the Olkiluoto surface hydrological model (SHYD). The other improvements include update of the particle tracking algorithm and possibility to estimate the influence of open drillholes in a case where overpressure in inflatable packers decreases causing a hydraulic short-circuit between hydrogeological zones HZ19 and HZ20 along the drillhole. Four new hydrogeological zones HZ056, HZ146, BFZ100 and HZ039 were added to the model. In addition, zones HZ20A and HZ20B intersect with each other in the new structure model, which influences salinity upconing caused by leakages in shafts. The aim of the modelling of long-term influence of ONKALO, shafts and repository tunnels provide computational results that can be used to suggest limits for allowed leakages. The model input data included all the existing leakages into ONKALO (35-38 l/min) and shafts in the present day conditions. The influence of shafts was computed using eight different values for total shaft leakage: 5, 11, 20, 30, 40, 50, 60 and 70 l/min. The selection of the leakage criteria for shafts was influenced by the fact that upconing of saline water increases TDS-values close to the repository areas although HZ20B does not intersect any deposition tunnels. The total limit for all leakages was suggested to be 120 l/min. The limit for HZ20 zones was proposed to be 40 l/min: about 5 l/min the present day leakages to access tunnel, 25 l/min from

  3. Asymptotically Safe Standard Model via Vectorlike Fermions

    DEFF Research Database (Denmark)

    Mann, R. B.; Meffe, J. R.; Sannino, F.

    2017-01-01

    We construct asymptotically safe extensions of the standard model by adding gauged vectorlike fermions. Using large number-of-flavor techniques we argue that all gauge couplings, including the hypercharge and, under certain conditions, the Higgs coupling, can achieve an interacting ultraviolet...

  4. WHO standards for biotherapeutics, including biosimilars: an example of the evaluation of complex biological products.

    Science.gov (United States)

    Knezevic, Ivana; Griffiths, Elwyn

    2017-11-01

    The most advanced regulatory processes for complex biological products have been put in place in many countries to provide appropriate regulatory oversight of biotherapeutic products in general, and similar biotherapeutics in particular. This process is still ongoing and requires regular updates to national regulatory requirements in line with scientific developments and up-to-date standards. For this purpose, strong knowledge of and expertise in evaluating biotherapeutics in general and similar biotherapeutic products, also called biosimilars, in particular is essential. Here, we discuss the World Health Organization's international standard-setting role in the regulatory evaluation of recombinant DNA-derived biotherapeutic products, including biosimilars, and provide examples that may serve as models for moving forward with nonbiological complex medicinal products. A number of scientific challenges and regulatory considerations imposed by the advent of biosimilars are described, together with the lessons learned, to stimulate future discussions on this topic. In addition, the experiences of facilitating the implementation of guiding principles for evaluation of similar biotherapeutic products into regulatory and manufacturers' practices in various countries over the past 10 years are briefly explained, with the aim of promoting further developments and regulatory convergence of complex biological and nonbiological products. © 2017 The Authors. Annals of the New York Academy of Sciences. The World Health Organization retains copyright and all other rights in the manuscript of this article as submitted for publication.

  5. The Standard Model and Higgs physics

    Science.gov (United States)

    Torassa, Ezio

    2018-05-01

    The Standard Model is a consistent and computable theory that successfully describes the elementary particle interactions. The strong, electromagnetic and weak interactions have been included in the theory exploiting the relation between group symmetries and group generators, in order to smartly introduce the force carriers. The group properties lead to constraints between boson masses and couplings. All the measurements performed at the LEP, Tevatron, LHC and other accelerators proved the consistency of the Standard Model. A key element of the theory is the Higgs field, which together with the spontaneous symmetry breaking, gives mass to the vector bosons and to the fermions. Unlike the case of vector bosons, the theory does not provide prediction for the Higgs boson mass. The LEP experiments, while providing very precise measurements of the Standard Model theory, searched for the evidence of the Higgs boson until the year 2000. The discovery of the top quark in 1994 by the Tevatron experiments and of the Higgs boson in 2012 by the LHC experiments were considered as the completion of the fundamental particles list of the Standard Model theory. Nevertheless the neutrino oscillations, the dark matter and the baryon asymmetry in the Universe evidence that we need a new extended model. In the Standard Model there are also some unattractive theoretical aspects like the divergent loop corrections to the Higgs boson mass and the very small Yukawa couplings needed to describe the neutrino masses. For all these reasons, the hunt of discrepancies between Standard Model and data is still going on with the aim to finally describe the new extended theory.

  6. Preliminary Safety Information Document for the Standard MHTGR. Volume 1, (includes latest Amendments)

    Energy Technology Data Exchange (ETDEWEB)

    None

    1986-01-01

    With NRC concurrence, the Licensing Plan for the Standard HTGR describes an application program consistent with 10CFR50, Appendix O to support a US Nuclear Regulatory Commission (NRC) review and design certification of an advanced Standard modular High Temperature Gas-Cooled Reactor (MHTGR) design. Consistent with the NRC's Advanced Reactor Policy, the Plan also outlines a series of preapplication activities which have as an objective the early issuance of an NRC Licensability Statement on the Standard MHTGR conceptual design. This Preliminary Safety Information Document (PSID) has been prepared as one of the submittals to the NRC by the US Department of Energy in support of preapplication activities on the Standard MHTGR. Other submittals to be provided include a Probabilistic Risk Assessment, a Regulatory Technology Development Plan, and an Emergency Planning Bases Report.

  7. Non-commutative standard model: model building

    CERN Document Server

    Chaichian, Masud; Presnajder, P

    2003-01-01

    A non-commutative version of the usual electro-weak theory is constructed. We discuss how to overcome the two major problems: (1) although we can have non-commutative U(n) (which we denote by U sub * (n)) gauge theory we cannot have non-commutative SU(n) and (2) the charges in non-commutative QED are quantized to just 0,+-1. We show how the latter problem with charge quantization, as well as with the gauge group, can be resolved by taking the U sub * (3) x U sub * (2) x U sub * (1) gauge group and reducing the extra U(1) factors in an appropriate way. Then we proceed with building the non-commutative version of the standard model by specifying the proper representations for the entire particle content of the theory, the gauge bosons, the fermions and Higgs. We also present the full action for the non-commutative standard model (NCSM). In addition, among several peculiar features of our model, we address the inherentCP violation and new neutrino interactions. (orig.)

  8. Status of the electroweak standard model

    International Nuclear Information System (INIS)

    Haidt, D.

    1990-01-01

    It is the aim of this report to confront the results extracted from the experiments in each sector with the electroweak standard model in its minimal form (QFD), to search for internal inconsistencies and, if not found, to obtain best values for the electroweak couplings together with constraints on the as yet unobserved top quark. The e + e - data of the three TRISTAN experiments, even though partly preliminary, are now systematically included in the fits. (orig./HSI)

  9. A revisited standard solar model

    International Nuclear Information System (INIS)

    Casse, M.; Cahen, S.; Doom, C.

    1985-09-01

    Recent models of the Sun, including our own, based on canonical physics and featuring modern reaction rates and radiative opacities are presented. They lead to a presolar helium abundance of approximately 0.28 by mass, at variance with the value of 0.25 proposed by Bahcall et al. (1982, 1985), but in better agreement with the value found in the Orion nebula. Most models predict a neutrino counting rate greater than 6 SNU in the chlorine-argon detector, which is at least 3 times higher than the observed rate. The primordial helium abundance derived from the solar one, on the basis of recent models of helium production from the birth of the Galaxy to the birth of the sun, Ysub(P) approximately 0.26, is significantly higher than the value inferred from observations of extragalactic metal-poor nebulae (Y approximately 0.23). This indicates that the stellar production of helium is probably underestimated by the models considered

  10. 32 CFR 37.620 - What financial management standards do I include for nonprofit participants?

    Science.gov (United States)

    2010-07-01

    ... 32 National Defense 1 2010-07-01 2010-07-01 false What financial management standards do I include... SECRETARY OF DEFENSE DoD GRANT AND AGREEMENT REGULATIONS TECHNOLOGY INVESTMENT AGREEMENTS Award Terms Affecting Participants' Financial, Property, and Purchasing Systems Financial Matters § 37.620 What...

  11. Establishing the isolated Standard Model

    International Nuclear Information System (INIS)

    Wells, James D.; Zhang, Zhengkang; Zhao, Yue

    2017-02-01

    The goal of this article is to initiate a discussion on what it takes to claim ''there is no new physics at the weak scale,'' namely that the Standard Model (SM) is ''isolated.'' The lack of discovery of beyond the SM (BSM) physics suggests that this may be the case. But to truly establish this statement requires proving all ''connected'' BSM theories are false, which presents a significant challenge. We propose a general approach to quantitatively assess the current status and future prospects of establishing the isolated SM (ISM), which we give a reasonable definition of. We consider broad elements of BSM theories, and show many examples where current experimental results are not sufficient to verify the ISM. In some cases, there is a clear roadmap for the future experimental program, which we outline, while in other cases, further efforts - both theoretical and experimental - are needed in order to robustly claim the establishment of the ISM in the absence of new physics discoveries.

  12. Experiments beyond the standard model

    International Nuclear Information System (INIS)

    Perl, M.L.

    1984-09-01

    This paper is based upon lectures in which I have described and explored the ways in which experimenters can try to find answers, or at least clues toward answers, to some of the fundamental questions of elementary particle physics. All of these experimental techniques and directions have been discussed fully in other papers, for example: searches for heavy charged leptons, tests of quantum chromodynamics, searches for Higgs particles, searches for particles predicted by supersymmetric theories, searches for particles predicted by technicolor theories, searches for proton decay, searches for neutrino oscillations, monopole searches, studies of low transfer momentum hadron physics at very high energies, and elementary particle studies using cosmic rays. Each of these subjects requires several lectures by itself to do justice to the large amount of experimental work and theoretical thought which has been devoted to these subjects. My approach in these tutorial lectures is to describe general ways to experiment beyond the standard model. I will use some of the topics listed to illustrate these general ways. Also, in these lectures I present some dreams and challenges about new techniques in experimental particle physics and accelerator technology, I call these Experimental Needs. 92 references

  13. Vacuum Stability of Standard Model^{++}

    CERN Document Server

    Anchordoqui, Luis A.; Goldberg, Haim; Huang, Xing; Lust, Dieter; Taylor, Tomasz R.; Vlcek, Brian

    2013-01-01

    The latest results of the ATLAS and CMS experiments point to a preferred narrow Higgs mass range (m_h \\simeq 124 - 126 GeV) in which the effective potential of the Standard Model (SM) develops a vacuum instability at a scale 10^{9} -10^{11} GeV, with the precise scale depending on the precise value of the top quark mass and the strong coupling constant. Motivated by this experimental situation, we present here a detailed investigation about the stability of the SM^{++} vacuum, which is characterized by a simple extension of the SM obtained by adding to the scalar sector a complex SU(2) singlet that has the quantum numbers of the right-handed neutrino, H", and to the gauge sector an U(1) that is broken by the vacuum expectation value of H". We derive the complete set of renormalization group equations at one loop. We then pursue a numerical study of the system to determine the triviality and vacuum stability bounds, using a scan of 10^4 random set of points to fix the initial conditions. We show that, if there...

  14. Establishing the isolated standard model

    Science.gov (United States)

    Wells, James D.; Zhang, Zhengkang; Zhao, Yue

    2017-07-01

    The goal of this article is to initiate a discussion on what it takes to claim "there is no new physics at the weak scale," namely that the Standard Model (SM) is "isolated." The lack of discovery of beyond the SM (BSM) physics suggests that this may be the case. But to truly establish this statement requires proving all "connected" BSM theories are false, which presents a significant challenge. We propose a general approach to quantitatively assess the current status and future prospects of establishing the isolated SM (ISM), which we give a reasonable definition of. We consider broad elements of BSM theories, and show many examples where current experimental results are not sufficient to verify the ISM. In some cases, there is a clear roadmap for the future experimental program, which we outline, while in other cases, further efforts—both theoretical and experimental—are needed in order to robustly claim the establishment of the ISM in the absence of new physics discoveries.

  15. Dynamic hysteresis modeling including skin effect using diffusion equation model

    Energy Technology Data Exchange (ETDEWEB)

    Hamada, Souad, E-mail: souadhamada@yahoo.fr [LSP-IE: Research Laboratory, Electrical Engineering Department, University of Batna, 05000 Batna (Algeria); Louai, Fatima Zohra, E-mail: fz_louai@yahoo.com [LSP-IE: Research Laboratory, Electrical Engineering Department, University of Batna, 05000 Batna (Algeria); Nait-Said, Nasreddine, E-mail: n_naitsaid@yahoo.com [LSP-IE: Research Laboratory, Electrical Engineering Department, University of Batna, 05000 Batna (Algeria); Benabou, Abdelkader, E-mail: Abdelkader.Benabou@univ-lille1.fr [L2EP, Université de Lille1, 59655 Villeneuve d’Ascq (France)

    2016-07-15

    An improved dynamic hysteresis model is proposed for the prediction of hysteresis loop of electrical steel up to mean frequencies, taking into account the skin effect. In previous works, the analytical solution of the diffusion equation for low frequency (DELF) was coupled with the inverse static Jiles-Atherton (JA) model in order to represent the hysteresis behavior for a lamination. In the present paper, this approach is improved to ensure the reproducibility of measured hysteresis loops at mean frequency. The results of simulation are compared with the experimental ones. The selected results for frequencies 50 Hz, 100 Hz, 200 Hz and 400 Hz are presented and discussed.

  16. Stochastic modelling of two-phase flows including phase change

    International Nuclear Information System (INIS)

    Hurisse, O.; Minier, J.P.

    2011-01-01

    Stochastic modelling has already been developed and applied for single-phase flows and incompressible two-phase flows. In this article, we propose an extension of this modelling approach to two-phase flows including phase change (e.g. for steam-water flows). Two aspects are emphasised: a stochastic model accounting for phase transition and a modelling constraint which arises from volume conservation. To illustrate the whole approach, some remarks are eventually proposed for two-fluid models. (authors)

  17. Standard Model backgrounds to supersymmetry searches

    CERN Document Server

    Mangano, Michelangelo L

    2009-01-01

    This work presents a review of the Standard Model sources of backgrounds to the search of supersymmetry signals. Depending on the specific model, typical signals may include jets, leptons, and missing transverse energy due to the escaping lightest supersymmetric particle. We focus on the simplest case of multijets and missing energy, since this allows us to expose most of the issues common to other more complex cases. The review is not exhaustive, and is aimed at collecting a series of general comments and observations, to serve as guideline for the process that will lead to a complete experimental determination of size and features of such SM processes.

  18. Modeling Electric Double-Layers Including Chemical Reaction Effects

    DEFF Research Database (Denmark)

    Paz-Garcia, Juan Manuel; Johannesson, Björn; Ottosen, Lisbeth M.

    2014-01-01

    A physicochemical and numerical model for the transient formation of an electric double-layer between an electrolyte and a chemically-active flat surface is presented, based on a finite elements integration of the nonlinear Nernst-Planck-Poisson model including chemical reactions. The model works...

  19. Including alternative resources in state renewable portfolio standards: Current design and implementation experience

    International Nuclear Information System (INIS)

    Heeter, Jenny; Bird, Lori

    2013-01-01

    As of October 2012, 29 states, the District of Columbia, and Puerto Rico have instituted a renewable portfolio standard (RPS). Each state policy is unique, varying in percentage targets, timetables, and eligible resources. Increasingly, new RPS polices have included alternative resources. Alternative resources have included energy efficiency, thermal resources, and, to a lesser extent, non-renewables. This paper examines state experience with implementing renewable portfolio standards that include energy efficiency, thermal resources, and non-renewable energy and explores compliance experience, costs, and how states evaluate, measure, and verify energy efficiency and convert thermal energy. It aims to gain insights from the experience of states for possible federal clean energy policy as well as to share experience and lessons for state RPS implementation. - Highlights: • Increasingly, new RPS policies have included alternative resources. • Nearly all states provide a separate tier or cap on the quantity of eligible alternative resources. • Where allowed, non-renewables and energy efficiency are being heavily utilized

  20. Including Alternative Resources in State Renewable Portfolio Standards: Current Design and Implementation Experience

    Energy Technology Data Exchange (ETDEWEB)

    Heeter, J.; Bird, L.

    2012-11-01

    Currently, 29 states, the District of Columbia, and Puerto Rico have instituted a renewable portfolio standard (RPS). An RPS sets a minimum threshold for how much renewable energy must be generated in a given year. Each state policy is unique, varying in percentage targets, timetables, and eligible resources. This paper examines state experience with implementing renewable portfolio standards that include energy efficiency, thermal resources, and non-renewable energy and explores compliance experience, costs, and how states evaluate, measure, and verify energy efficiency and convert thermal energy. It aims to gain insights from the experience of states for possible federal clean energy policy as well as to share experience and lessons for state RPS implementation.

  1. Including investment risk in large-scale power market models

    DEFF Research Database (Denmark)

    Lemming, Jørgen Kjærgaard; Meibom, P.

    2003-01-01

    can be included in large-scale partial equilibrium models of the power market. The analyses are divided into a part about risk measures appropriate for power market investors and a more technical part about the combination of a risk-adjustment model and a partial-equilibrium model. To illustrate...... the analyses quantitatively, a framework based on an iterative interaction between the equilibrium model and a separate risk-adjustment module was constructed. To illustrate the features of the proposed modelling approach we examined how uncertainty in demand and variable costs affects the optimal choice...

  2. Neutrinos: in and out of the standard model

    Energy Technology Data Exchange (ETDEWEB)

    Parke, Stephen; /Fermilab

    2006-07-01

    The particle physics Standard Model has been tremendously successful in predicting the outcome of a large number of experiments. In this model Neutrinos are massless. Yet recent evidence points to the fact that neutrinos are massive particles with tiny masses compared to the other particles in the Standard Model. These tiny masses allow the neutrinos to change flavor and oscillate. In this series of Lectures, I will review the properties of Neutrinos In the Standard Model and then discuss the physics of Neutrinos Beyond the Standard Model. Topics to be covered include Neutrino Flavor Transformations and Oscillations, Majorana versus Dirac Neutrino Masses, the Seesaw Mechanism and Leptogenesis.

  3. Progressive IRP Models for Power Resources Including EPP

    Directory of Open Access Journals (Sweden)

    Yiping Zhu

    2017-01-01

    Full Text Available In the view of optimizing regional power supply and demand, the paper makes effective planning scheduling of supply and demand side resources including energy efficiency power plant (EPP, to achieve the target of benefit, cost, and environmental constraints. In order to highlight the characteristics of different supply and demand resources in economic, environmental, and carbon constraints, three planning models with progressive constraints are constructed. Results of three models by the same example show that the best solutions to different models are different. The planning model including EPP has obvious advantages considering pollutant and carbon emission constraints, which confirms the advantages of low cost and emissions of EPP. The construction of progressive IRP models for power resources considering EPP has a certain reference value for guiding the planning and layout of EPP within other power resources and achieving cost and environmental objectives.

  4. Quality model for semantic IS standards

    NARCIS (Netherlands)

    Folmer, Erwin Johan Albert

    2011-01-01

    Semantic IS (Information Systems) standards are essential for achieving interoperability between organizations. However a recent survey suggests that not the full benefits of standards are achieved, due to the quality issues. This paper presents a quality model for semantic IS standards, that should

  5. Cultural models of linguistic standardization

    Directory of Open Access Journals (Sweden)

    Dirk Geeraerts

    2016-02-01

    Full Text Available In line with well-known trends in cultural theory (see Burke et al., 2000, Cognitive Linguistics has stressed the idea that we think about social reality in terms of models – ‘cultural models’ or ‘folk theories’: from Holland & Quinn (1987 over Lakoff (1996 and Palmer (1996 to Dirven et al. (2001a, 2001b, Cognitive linguists have demonstrated how the technical apparatus of Cognitive Linguistics can be used to analyze how our conception of social reality is shaped by underlying patterns of thought. But if language is a social and cultural reality, what are the models that shape our conception of language? Specifically, what are the models that shape our thinking about language as a social phenomenon? What are the paradigms that we use to think about language, not primarily in terms of linguistic structure (as in Reddy 1979, but in terms of linguistic variation: models about the way in which language varieties are distributed over a language community and about the way in which such distribution should be evaluated?In this paper, I will argue that two basic models may be identified: a rationalist and a romantic one. I will chart the ways in which they interact, describe how they are transformed in the course of time, and explore how the models can be used in the analysis of actual linguistic variation.

  6. BALANCED SCORECARDS EVALUATION MODEL THAT INCLUDES ELEMENTS OF ENVIRONMENTAL MANAGEMENT SYSTEM USING AHP MODEL

    Directory of Open Access Journals (Sweden)

    Jelena Jovanović

    2010-03-01

    Full Text Available The research is oriented on improvement of environmental management system (EMS using BSC (Balanced Scorecard model that presents strategic model of measurem ents and improvement of organisational performance. The research will present approach of objectives and environmental management me trics involvement (proposed by literature review in conventional BSC in "Ad Barska plovi dba" organisation. Further we will test creation of ECO-BSC model based on business activities of non-profit organisations in order to improve envir onmental management system in parallel with other systems of management. Using this approach we may obtain 4 models of BSC that includ es elements of environmen tal management system for AD "Barska plovidba". Taking into acc ount that implementation and evaluation need long period of time in AD "Barska plovidba", the final choice will be based on 14598 (Information technology - Software product evaluation and ISO 9126 (Software engineering - Product quality using AHP method. Those standards are usually used for evaluation of quality software product and computer programs that serve in organisation as support and factors for development. So, AHP model will be bas ed on evolution criteria based on suggestion of ISO 9126 standards and types of evaluation from two evaluation teams. Members of team & will be experts in BSC and environmental management system that are not em ployed in AD "Barska Plovidba" organisation. The members of team 2 will be managers of AD "Barska Plovidba" organisation (including manage rs from environmental department. Merging results based on previously cr eated two AHP models, one can obtain the most appropriate BSC that includes elements of environmental management system. The chosen model will present at the same time suggestion for approach choice including ecological metrics in conventional BSC model for firm that has at least one ECO strategic orientation.

  7. Standard Model, Higgs Boson and What Next?

    Indian Academy of Sciences (India)

    IAS Admin

    RESONANCE | October 2012. GENERAL | ARTICLE. Standard Model is now known to be the basis of almost ALL of known physics except gravity. It is the dynamical theory of electromagnetism and the strong and weak nuclear forces. Standard Model has been constructed by generalizing the century-old electrodynamics of.

  8. Modeling in the Common Core State Standards

    Science.gov (United States)

    Tam, Kai Chung

    2011-01-01

    The inclusion of modeling and applications into the mathematics curriculum has proven to be a challenging task over the last fifty years. The Common Core State Standards (CCSS) has made mathematical modeling both one of its Standards for Mathematical Practice and one of its Conceptual Categories. This article discusses the need for mathematical…

  9. Beyond the Standard Model: Working group report

    Indian Academy of Sciences (India)

    tion within the 'Beyond the Standard Model' working group of WHEPP-6. These problems addressed various extensions of the Standard Model (SM) currently under consideration in the particle physics phenomenology community. Smaller subgroups were formed to focus on each of these problems. The progresstill the end ...

  10. Competency model and standards for media education

    Directory of Open Access Journals (Sweden)

    Gerhard TULODZIECKI

    2012-12-01

    Full Text Available In Germany, educational standards for key school subjects have been developed as a consequence of the results of international comparative studies like PISA. Subsequently, supporters of interdisciplinary fields such as media education have also started calling for goals in the form of competency models and standards. In this context a competency standard model for media education will be developed with regard to the discussion about media competence and media education. In doing so the development of a competency model and the formulation of standards is described consequently as a decision making process. In this process decisions have to be made on competence areas and competence aspects to structure the model, on criteria to differentiate certain levels of competence, on the number of competence levels, on the abstraction level of standard formulations and on the tasks to test the standards. It is shown that the discussion on media education as well as on competencies and standards provides different possibilities of structuring, emphasizing and designing a competence standard model. Against this background we describe and give reasons for our decisions and our competency standards model. At the same time our contribution is meant to initiate further developments, testing and discussion.

  11. Beyond the supersymmetric standard model

    International Nuclear Information System (INIS)

    Hall, L.J.

    1988-02-01

    The possibility of baryon number violation at the weak scale and an alternative primordial nucleosynthesis scheme arising from the decay of gravitations are discussed. The minimal low energy supergravity model is defined and a few of its features are described. Renormalization group scaling and flavor physics are mentioned

  12. Beyond the supersymmetric standard model

    Energy Technology Data Exchange (ETDEWEB)

    Hall, L.J.

    1988-02-01

    The possibility of baryon number violation at the weak scale and an alternative primordial nucleosynthesis scheme arising from the decay of gravitations are discussed. The minimal low energy supergravity model is defined and a few of its features are described. Renormalization group scaling and flavor physics are mentioned.

  13. A hydrodynamic model for granular material flows including segregation effects

    Directory of Open Access Journals (Sweden)

    Gilberg Dominik

    2017-01-01

    Full Text Available The simulation of granular flows including segregation effects in large industrial processes using particle methods is accurate, but very time-consuming. To overcome the long computation times a macroscopic model is a natural choice. Therefore, we couple a mixture theory based segregation model to a hydrodynamic model of Navier-Stokes-type, describing the flow behavior of the granular material. The granular flow model is a hybrid model derived from kinetic theory and a soil mechanical approach to cover the regime of fast dilute flow, as well as slow dense flow, where the density of the granular material is close to the maximum packing density. Originally, the segregation model has been formulated by Thornton and Gray for idealized avalanches. It is modified and adapted to be in the preferred form for the coupling. In the final coupled model the segregation process depends on the local state of the granular system. On the other hand, the granular system changes as differently mixed regions of the granular material differ i.e. in the packing density. For the modeling process the focus lies on dry granular material flows of two particle types differing only in size but can be easily extended to arbitrary granular mixtures of different particle size and density. To solve the coupled system a finite volume approach is used. To test the model the rotational mixing of small and large particles in a tumbler is simulated.

  14. A hydrodynamic model for granular material flows including segregation effects

    Science.gov (United States)

    Gilberg, Dominik; Klar, Axel; Steiner, Konrad

    2017-06-01

    The simulation of granular flows including segregation effects in large industrial processes using particle methods is accurate, but very time-consuming. To overcome the long computation times a macroscopic model is a natural choice. Therefore, we couple a mixture theory based segregation model to a hydrodynamic model of Navier-Stokes-type, describing the flow behavior of the granular material. The granular flow model is a hybrid model derived from kinetic theory and a soil mechanical approach to cover the regime of fast dilute flow, as well as slow dense flow, where the density of the granular material is close to the maximum packing density. Originally, the segregation model has been formulated by Thornton and Gray for idealized avalanches. It is modified and adapted to be in the preferred form for the coupling. In the final coupled model the segregation process depends on the local state of the granular system. On the other hand, the granular system changes as differently mixed regions of the granular material differ i.e. in the packing density. For the modeling process the focus lies on dry granular material flows of two particle types differing only in size but can be easily extended to arbitrary granular mixtures of different particle size and density. To solve the coupled system a finite volume approach is used. To test the model the rotational mixing of small and large particles in a tumbler is simulated.

  15. Simple suggestions for including vertical physics in oil spill models

    International Nuclear Information System (INIS)

    D'Asaro, Eric; University of Washington, Seatle, WA

    2001-01-01

    Current models of oil spills include no vertical physics. They neglect the effect of vertical water motions on the transport and concentration of floating oil. Some simple ways to introduce vertical physics are suggested here. The major suggestion is to routinely measure the density stratification of the upper ocean during oil spills in order to develop a database on the effect of stratification. (Author)

  16. Electroweak baryogenesis and the standard model

    International Nuclear Information System (INIS)

    Huet, P.

    1994-01-01

    Electroweak baryogenesis is addressed within the context of the standard model of particle physics. Although the minimal standard model has the means of fulfilling the three Sakharov's conditions, it falls short to explaining the making of the baryon asymmetry of the universe. In particular, it is demonstrated that the phase of the CKM mixing matrix is an, insufficient source of CP violation. The shortcomings of the standard model could be bypassed by enlarging the symmetry breaking sector and adding a new source of CP violation

  17. Discrete symmetry breaking beyond the standard model

    NARCIS (Netherlands)

    Dekens, Wouter Gerard

    2015-01-01

    The current knowledge of elementary particles and their interactions is summarized in the Standard Model of particle physics. Practically all the predictions of this model, that have been tested, were confirmed experimentally. Nonetheless, there are phenomena which the model cannot explain. For

  18. Is the Standard Model about to crater?

    CERN Multimedia

    Lane, Kenneth

    2015-01-01

    The Standard Model is coming under more and more pressure from experiments. New results from the analysis of LHC's Run 1 data show effects that, if confirmed, would be the signature of new interactions at the TeV scale.

  19. The standard model in a nutshell

    CERN Document Server

    Goldberg, Dave

    2017-01-01

    For a theory as genuinely elegant as the Standard Model--the current framework describing elementary particles and their forces--it can sometimes appear to students to be little more than a complicated collection of particles and ranked list of interactions. The Standard Model in a Nutshell provides a comprehensive and uncommonly accessible introduction to one of the most important subjects in modern physics, revealing why, despite initial appearances, the entire framework really is as elegant as physicists say. Dave Goldberg uses a "just-in-time" approach to instruction that enables students to gradually develop a deep understanding of the Standard Model even if this is their first exposure to it. He covers everything from relativity, group theory, and relativistic quantum mechanics to the Higgs boson, unification schemes, and physics beyond the Standard Model. The book also looks at new avenues of research that could answer still-unresolved questions and features numerous worked examples, helpful illustrat...

  20. Beyond the Standard Model (1/5)

    CERN Multimedia

    CERN. Geneva

    2000-01-01

    After a critical discussion of the questions left unanswered by the Standard Model, I will review the main attemps to construct new theories. In particular, I will discuss grand unification, supersymmetry, technicolour, and theories with extra dimensions.

  1. Beyond the Standard Model (5/5)

    CERN Multimedia

    CERN. Geneva

    2000-01-01

    After a critical discussion of the questions left unanswered by the Standard Model, I will review the main attemps to construct new theories. In particular, I will discuss grand unification, supersymmetry, technicolour, and theories with extra dimensions.

  2. Beyond the Standard Model (3/5)

    CERN Multimedia

    CERN. Geneva

    2000-01-01

    After a critical discussion of the questions left unanswered by the Standard Model, I will review the main attemps to construct new theories. In particular, I will discuss grand unification, supersymmetry, technicolour, and theories with extra dimensions.

  3. Beyond the Standard Model (2/5)

    CERN Multimedia

    CERN. Geneva

    2000-01-01

    After a critical discussion of the questions left unanswered by the Standard Model, I will review the main attemps to construct new theories. In particular, I will discuss grand unification, supersymmetry, technicolour, and theories with extra dimensions.

  4. Beyond the Standard Model (4/5)

    CERN Multimedia

    CERN. Geneva

    2000-01-01

    After a critical discussion of the questions left unanswered by the Standard Model, I will review the main attemps to construct new theories. In particular, I will discuss grand unification, supersymmetry, technicolour, and theories with extra dimensions.

  5. Standard model fermions and N=8 supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Nicolai, Hermann [Max Planck Institute for Gravitational Physics (Albert Einstein Institute), Am Muehlenberg 1, Potsdam-Golm (Germany)

    2016-07-01

    In a scheme originally proposed by Gell-Mann, and subsequently shown to be realized at the SU(3) x U(1) stationary point of maximal gauged SO(8) supergravity, the 48 spin-1/2 fermions of the theory remaining after the removal of eight Goldstinos can be identified with the 48 quarks and leptons (including right-chiral neutrinos) of the Standard model, provided one identifies the residual SU(3) with the diagonal subgroup of the color group SU(3){sub c} and a family symmetry SU(3){sub f}. However, there remained a systematic mismatch in the electric charges by a spurion charge of ± 1/6. We here identify the ''missing'' U(1) that rectifies this mismatch, and that takes a surprisingly simple, though unexpected form, and show how it is related to the conjectured R symmetry K(E10) of M Theory.

  6. From the standard model to dark matter

    International Nuclear Information System (INIS)

    Wilczek, F.

    1995-01-01

    The standard model of particle physics is marvelously successful. However, it is obviously not a complete or final theory. I shall argue here that the structure of the standard model gives some quite concrete, compelling hints regarding what lies beyond. Taking these hints seriously, one is led to predict the existence of new types of very weakly interacting matter, stable on cosmological time scales and produced with cosmologically interesting densities--that is, ''dark matter''. copyright 1995 American Institute of Physics

  7. Standard Model measurements with the ATLAS detector

    Directory of Open Access Journals (Sweden)

    Hassani Samira

    2015-01-01

    Full Text Available Various Standard Model measurements have been performed in proton-proton collisions at a centre-of-mass energy of √s = 7 and 8 TeV using the ATLAS detector at the Large Hadron Collider. A review of a selection of the latest results of electroweak measurements, W/Z production in association with jets, jet physics and soft QCD is given. Measurements are in general found to be well described by the Standard Model predictions.

  8. Exclusive queueing model including the choice of service windows

    Science.gov (United States)

    Tanaka, Masahiro; Yanagisawa, Daichi; Nishinari, Katsuhiro

    2018-01-01

    In a queueing system involving multiple service windows, choice behavior is a significant concern. This paper incorporates the choice of service windows into a queueing model with a floor represented by discrete cells. We contrived a logit-based choice algorithm for agents considering the numbers of agents and the distances to all service windows. Simulations were conducted with various parameters of agent choice preference for these two elements and for different floor configurations, including the floor length and the number of service windows. We investigated the model from the viewpoint of transit times and entrance block rates. The influences of the parameters on these factors were surveyed in detail and we determined that there are optimum floor lengths that minimize the transit times. In addition, we observed that the transit times were determined almost entirely by the entrance block rates. The results of the presented model are relevant to understanding queueing systems including the choice of service windows and can be employed to optimize facility design and floor management.

  9. ATLAS Searches for Beyond the Standard Model Higgs Bosons

    CERN Document Server

    Potter, C T

    2013-01-01

    The present status of ATLAS searches for Higgs bosons in extensions of the Standard Model (SM) is presented. This includes searches for the Higgs bosons of the Two-Higgs-Doublet Model (2HDM), the Minimal Supersymmetric Model (MSSM), the Next-to-Minimal Supersymmetric Model (NMSSM) and models with an invisibly decaying Higgs boson. A review of the phenomenology of the Higgs sectors of these models is given together with the search strategy and the resulting experimental constraints.

  10. Working group report: Beyond the standard model

    Indian Academy of Sciences (India)

    The working group on Beyond the Standard Model concentrated on identifying interesting physics issues in models ... In view of the range of current interest in the high energy physics community, this work- ing group was organised ... the computational tools currently relevant for particle phenomenology. Thus in this group,.

  11. Standard Model Particles from Split Octonions

    Directory of Open Access Journals (Sweden)

    Gogberashvili M.

    2016-01-01

    Full Text Available We model physical signals using elements of the algebra of split octonions over the field of real numbers. Elementary particles are corresponded to the special elements of the algebra that nullify octonionic norms (zero divisors. It is shown that the standard model particle spectrum naturally follows from the classification of the independent primitive zero divisors of split octonions.

  12. Exploring the Standard Model of Particles

    Science.gov (United States)

    Johansson, K. E.; Watkins, P. M.

    2013-01-01

    With the recent discovery of a new particle at the CERN Large Hadron Collider (LHC) the Higgs boson could be about to be discovered. This paper provides a brief summary of the standard model of particle physics and the importance of the Higgs boson and field in that model for non-specialists. The role of Feynman diagrams in making predictions for…

  13. The Cosmological Standard Model and Its Implications for Beyond the Standard Model of Particle Physics

    CERN Multimedia

    CERN. Geneva

    2011-01-01

    While the cosmological standard model has many notable successes, it assumes 95% of the mass-energy density of the universe is dark and of unknown nature, and there was an early stage of inflationary expansion driven by physics far beyond the range of the particle physics standard model. In the colloquium I will discuss potential particle-physics implications of the standard cosmological model.

  14. Experimental tests of the standard model

    International Nuclear Information System (INIS)

    Nodulman, L.

    1998-01-01

    The title implies an impossibly broad field, as the Standard Model includes the fermion matter states, as well as the forces and fields of SU(3) x SU(2) x U(1). For practical purposes, I will confine myself to electroweak unification, as discussed in the lectures of M. Herrero. Quarks and mixing were discussed in the lectures of R. Aleksan, and leptons and mixing were discussed in the lectures of K. Nakamura. I will essentially assume universality, that is flavor independence, rather than discussing tests of it. I will not pursue tests of QED beyond noting the consistency and precision of measurements of α EM in various processes including the Lamb shift, the anomalous magnetic moment (g-2) of the electron, and the quantum Hall effect. The fantastic precision and agreement of these predictions and measurements is something that convinces people that there may be something to this science enterprise. Also impressive is the success of the ''Universal Fermi Interaction'' description of beta decay processes, or in more modern parlance, weak charged current interactions. With one coupling constant G F , most precisely determined in muon decay, a huge number of nuclear instabilities are described. The slightly slow rate for neutron beta decay was one of the initial pieces of evidence for Cabbibo mixing, now generalized so that all charged current decays of any flavor are covered

  15. Experimental tests of the standard model.

    Energy Technology Data Exchange (ETDEWEB)

    Nodulman, L.

    1998-11-11

    The title implies an impossibly broad field, as the Standard Model includes the fermion matter states, as well as the forces and fields of SU(3) x SU(2) x U(1). For practical purposes, I will confine myself to electroweak unification, as discussed in the lectures of M. Herrero. Quarks and mixing were discussed in the lectures of R. Aleksan, and leptons and mixing were discussed in the lectures of K. Nakamura. I will essentially assume universality, that is flavor independence, rather than discussing tests of it. I will not pursue tests of QED beyond noting the consistency and precision of measurements of {alpha}{sub EM} in various processes including the Lamb shift, the anomalous magnetic moment (g-2) of the electron, and the quantum Hall effect. The fantastic precision and agreement of these predictions and measurements is something that convinces people that there may be something to this science enterprise. Also impressive is the success of the ''Universal Fermi Interaction'' description of beta decay processes, or in more modern parlance, weak charged current interactions. With one coupling constant G{sub F}, most precisely determined in muon decay, a huge number of nuclear instabilities are described. The slightly slow rate for neutron beta decay was one of the initial pieces of evidence for Cabbibo mixing, now generalized so that all charged current decays of any flavor are covered.

  16. LHC Higgs physics beyond the Standard Model

    Energy Technology Data Exchange (ETDEWEB)

    Spannowsky, M.

    2007-09-22

    The Large Hadron Collider (LHC) at CERN will be able to perform proton collisions at a much higher center-of-mass energy and luminosity than any other collider. Its main purpose is to detect the Higgs boson, the last unobserved particle of the Standard Model, explaining the riddle of the origin of mass. Studies have shown, that for the whole allowed region of the Higgs mass processes exist to detect the Higgs at the LHC. However, the Standard Model cannot be a theory of everything and is not able to provide a complete understanding of physics. It is at most an effective theory up to a presently unknown energy scale. Hence, extensions of the Standard Model are necessary which can affect the Higgs-boson signals. We discuss these effects in two popular extensions of the Standard Model: the Minimal Supersymmetric Standard Model (MSSM) and the Standard Model with four generations (SM4G). Constraints on these models come predominantly from flavor physics and electroweak precision measurements. We show, that the SM4G is still viable and that a fourth generation has strong impact on decay and production processes of the Higgs boson. Furthermore, we study the charged Higgs boson in the MSSM, yielding a clear signal for physics beyond the Standard Model. For small tan {beta} in minimal flavor violation (MFV) no processes for the detection of a charged Higgs boson do exist at the LHC. However, MFV is just motivated by the experimental agreement of results from flavor physics with Standard Model predictions, but not by any basic theoretical consideration. In this thesis, we calculate charged Higgs boson production cross sections beyond the assumption of MFV, where a large number of free parameters is present in the MSSM. We find that the soft-breaking parameters which enhance the charged-Higgs boson production most are just bound to large values, e.g. by rare B-meson decays. Although the charged-Higgs boson cross sections beyond MFV turn out to be sizeable, only a detailed

  17. LHC Higgs physics beyond the Standard Model

    International Nuclear Information System (INIS)

    Spannowsky, M.

    2007-01-01

    The Large Hadron Collider (LHC) at CERN will be able to perform proton collisions at a much higher center-of-mass energy and luminosity than any other collider. Its main purpose is to detect the Higgs boson, the last unobserved particle of the Standard Model, explaining the riddle of the origin of mass. Studies have shown, that for the whole allowed region of the Higgs mass processes exist to detect the Higgs at the LHC. However, the Standard Model cannot be a theory of everything and is not able to provide a complete understanding of physics. It is at most an effective theory up to a presently unknown energy scale. Hence, extensions of the Standard Model are necessary which can affect the Higgs-boson signals. We discuss these effects in two popular extensions of the Standard Model: the Minimal Supersymmetric Standard Model (MSSM) and the Standard Model with four generations (SM4G). Constraints on these models come predominantly from flavor physics and electroweak precision measurements. We show, that the SM4G is still viable and that a fourth generation has strong impact on decay and production processes of the Higgs boson. Furthermore, we study the charged Higgs boson in the MSSM, yielding a clear signal for physics beyond the Standard Model. For small tan β in minimal flavor violation (MFV) no processes for the detection of a charged Higgs boson do exist at the LHC. However, MFV is just motivated by the experimental agreement of results from flavor physics with Standard Model predictions, but not by any basic theoretical consideration. In this thesis, we calculate charged Higgs boson production cross sections beyond the assumption of MFV, where a large number of free parameters is present in the MSSM. We find that the soft-breaking parameters which enhance the charged-Higgs boson production most are just bound to large values, e.g. by rare B-meson decays. Although the charged-Higgs boson cross sections beyond MFV turn out to be sizeable, only a detailed

  18. CP Violation Beyond the Standard Model

    CERN Document Server

    Fleischer, Robert

    1997-01-01

    Recent developments concerning CP violation beyond the Standard Model are reviewed. The central target of this presentation is the $B$ system, as it plays an outstanding role in the extraction of CKM phases. Besides a general discussion of the appearance of new physics in the corresponding CP-violating asymmetries through $B^0_q$--$\\bar{B^0_q}$ mixing $(q\\in\\{d,s\\})$, it is emphasized that CP violation in non-leptonic penguin modes, e.g. in $B_d\\to\\phi K_{S}$, offers a powerful tool to probe physics beyond the Standard Model. In this respect $B\\to\\pi K$ modes, which have been observed recently by the CLEO collaboration, may also turn out to be very useful. Their combined branching ratios allow us to constrain the CKM angle $\\gamma$ and may indicate the presence of physics beyond the Standard Model.

  19. Industrial diffusion models and technological standardization

    International Nuclear Information System (INIS)

    Carrillo-Hermosilla, J.

    2007-01-01

    Conventional models of technology diffusion have typically focused on the question of the rate of diffusion at which one new technology is fully adopted. The model described here provides a broader approach, from the perspective the extension of the diffusion of multiple technologies, and the related phenomenon of standardization. Moreover, most conventional research has characterized the diffusion process in terms of technology attributes or adopting firms attributes. Alternatively, we propose here a wide-ranging and consistent taxonomy of the relationships between the circumstances of an industry and the attributes of the technology standardization processes taking place within it. (Author) 100 refs

  20. [Investigation of the hygienic standard in two hospitals including the control of disinfection (author's transl)].

    Science.gov (United States)

    Pfanzelt, R; Schassan, H H

    1978-08-01

    In two operative departments with different architectural presuppositions, the hygienic standard was checked up. Under favourable conditions in clinic B (Hosch-filter, sluice-systems) the relative frequency of demonstrable bacteria amounted to 55%. In clinic A, where these conditions failed, it amounted to 80%. Among the non pathogenic bacteria DNase-negative staphylococci were demonstrated more frequently than others. 13.4% and 18.9% resp. of the bacteria were DNase-positive staphylococci. We used Clostridium perfringens for detecting invasion-paths of germs. The most important ones are leaky windows, air conditioning and insufficient sluice-systems. The success of desinfection was examined. It fluctuates from 67% to 100%. One control amounted to 42%. The results show, that it is impossible to establish sterile rooms for common operative departments. But they show as well that a satisfying hygienic standard cannot be arrived without sluice-systems and appropriate air conditioning.

  1. Broadening the Reach of Standardized Patients in Nurse Practitioner Education to Include the Distance Learner.

    Science.gov (United States)

    Ballman, Kathleen; Garritano, Nicole; Beery, Theresa

    2016-01-01

    Using standardized patients (SP) presenting with a specific complaint has been a mainstay in health care education. Increased use of technology has facilitated the move of instruction from the on-campus classroom to distance learning for many nurse practitioner programs. Using interactive case studies provides distance learners SP encounters. This technologically facilitated encounter gives the distance learner the opportunity for integrative thinking and development of problem solving and clinical reasoning skills.

  2. Standard Model mass spectrum in inflationary universe

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xingang [Institute for Theory and Computation, Harvard-Smithsonian Center for Astrophysics,60 Garden Street, Cambridge, MA 02138 (United States); Wang, Yi [Department of Physics, The Hong Kong University of Science and Technology,Clear Water Bay, Kowloon, Hong Kong (China); Xianyu, Zhong-Zhi [Center of Mathematical Sciences and Applications, Harvard University,20 Garden Street, Cambridge, MA 02138 (United States)

    2017-04-11

    We work out the Standard Model (SM) mass spectrum during inflation with quantum corrections, and explore its observable consequences in the squeezed limit of non-Gaussianity. Both non-Higgs and Higgs inflation models are studied in detail. We also illustrate how some inflationary loop diagrams can be computed neatly by Wick-rotating the inflation background to Euclidean signature and by dimensional regularization.

  3. Next to new minimal standard model

    Energy Technology Data Exchange (ETDEWEB)

    Haba, Naoyuki [Graduate School of Science and Engineering, Shimane University, Matsue, Shimane 690-8504 (Japan); Department of Physics, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810 (Japan); Kaneta, Kunio [Department of Physics, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810 (Japan); Kavli IPMU (WPI), The University of Tokyo, Kashiwa, Chiba 277-8568 (Japan); Department of Physics, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043 (Japan); Takahashi, Ryo [Department of Physics, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810 (Japan)

    2014-06-27

    We suggest a minimal extension of the standard model, which can explain current experimental data of the dark matter, small neutrino masses and baryon asymmetry of the universe, inflation, and dark energy, and achieve gauge coupling unification. The gauge coupling unification can explain the charge quantization, and be realized by introducing six new fields. We investigate the vacuum stability, coupling perturbativity, and correct dark matter abundance in this model by use of current experimental data.

  4. Standard Model Effective Potential from Trace Anomalies

    Directory of Open Access Journals (Sweden)

    Renata Jora

    2018-01-01

    Full Text Available By analogy with the low energy QCD effective linear sigma model, we construct a standard model effective potential based entirely on the requirement that the tree level and quantum level trace anomalies must be satisfied. We discuss a particular realization of this potential in connection with the Higgs boson mass and Higgs boson effective couplings to two photons and two gluons. We find that this kind of potential may describe well the known phenomenology of the Higgs boson.

  5. Prospects of experimentally reachable beyond Standard Model ...

    Indian Academy of Sciences (India)

    2016-01-06

    Jan 6, 2016 ... Home; Journals; Pramana – Journal of Physics; Volume 86; Issue 2. Prospects of experimentally reachable beyond Standard Model physics in inverse see-saw motivated SO(10) GUT. Ram Lal Awasthi. Special: Supersymmetric Unified Theories and Higgs Physics Volume 86 Issue 2 February 2016 pp 223- ...

  6. Why supersymmetry? Physics beyond the standard model

    Indian Academy of Sciences (India)

    The Naturalness Principle as a requirement that the heavy mass scales decouple from the physics of light mass scales is reviewed. In quantum field theories containing {\\em elementary} scalar fields, such as the StandardModel of electroweak interactions containing the Higgs particle, mass of the scalar field is not a natural ...

  7. Beyond the Standard Model: Working group report

    Indian Academy of Sciences (India)

    55, Nos 1 & 2. — journal of. July & August 2000 physics pp. 307–313. Beyond the Standard Model: Working group report. GAUTAM BHATTACHARYYA. ½ .... action: ¯Consider the possibility that these neutrinos are of Majorana nature, i.e. r η И r , where η И. ¦½. Then the initial condition of degeneracy stated above.

  8. The race to break the standard model

    CERN Multimedia

    Brumfiel, Geoff

    2008-01-01

    The Large Hadron Collider is the latest attempt to move fundamental physics past the frustratingly successful "standard model". But it is not the only way to do it... The author surveys the contenders attempting to capture the prize before the collider gets up to speed.(4 pages)

  9. Why supersymmetry? Physics beyond the standard model

    Indian Academy of Sciences (India)

    2016-08-23

    Aug 23, 2016 ... Abstract. The Naturalness Principle as a requirement that the heavy mass scales decouple from the physics of light mass scales is reviewed. In quantum field theories containing elementary scalar fields, such as the Standard. Model of electroweak interactions containing the Higgs particle, mass of the ...

  10. Evaluation of Dogs with Border Collie Collapse, Including Response to Two Standardized Strenuous Exercise Protocols.

    Science.gov (United States)

    Taylor, Susan; Shmon, Cindy; Su, Lillian; Epp, Tasha; Minor, Katie; Mickelson, James; Patterson, Edward; Shelton, G Diane

    2016-01-01

    Clinical and metabolic variables were evaluated in 13 dogs with border collie collapse (BCC) before, during, and following completion of standardized strenuous exercise protocols. Six dogs participated in a ball-retrieving protocol, and seven dogs participated in a sheep-herding protocol. Findings were compared with 16 normal border collies participating in the same exercise protocols (11 retrieving, five herding). Twelve dogs with BCC developed abnormal mentation and/or an abnormal gait during evaluation. All dogs had post-exercise elevations in rectal temperature, pulse rate, arterial blood pH, PaO2, and lactate, and decreased PaCO2 and bicarbonate, as expected with strenuous exercise, but there were no significant differences between BCC dogs and normal dogs. Electrocardiography demonstrated sinus tachycardia in all dogs following exercise. Needle electromyography was normal, and evaluation of muscle biopsy cryosections using a standard panel of histochemical stains and reactions did not reveal a reason for collapse in 10 dogs with BCC in which these tests were performed. Genetic testing excluded the dynamin-1 related exercise-induced collapse mutation and the V547A malignant hyperthermia mutation as the cause of BCC. Common reasons for exercise intolerance were eliminated. Although a genetic basis is suspected, the cause of collapse in BCC was not determined.

  11. Connected formulas for amplitudes in standard model

    Energy Technology Data Exchange (ETDEWEB)

    He, Song [CAS Key Laboratory of Theoretical Physics,Institute of Theoretical Physics, Chinese Academy of Sciences,Beijing 100190 (China); School of Physical Sciences, University of Chinese Academy of Sciences,No. 19A Yuquan Road, Beijing 100049 (China); Zhang, Yong [Department of Physics, Beijing Normal University,Beijing 100875 (China); CAS Key Laboratory of Theoretical Physics,Institute of Theoretical Physics, Chinese Academy of Sciences,Beijing 100190 (China)

    2017-03-17

    Witten’s twistor string theory has led to new representations of S-matrix in massless QFT as a single object, including Cachazo-He-Yuan formulas in general and connected formulas in four dimensions. As a first step towards more realistic processes of the standard model, we extend the construction to QCD tree amplitudes with massless quarks and those with a Higgs boson. For both cases, we find connected formulas in four dimensions for all multiplicities which are very similar to the one for Yang-Mills amplitudes. The formula for quark-gluon color-ordered amplitudes differs from the pure-gluon case only by a Jacobian factor that depends on flavors and orderings of the quarks. In the formula for Higgs plus multi-parton amplitudes, the massive Higgs boson is effectively described by two additional massless legs which do not appear in the Parke-Taylor factor. The latter also represents the first twistor-string/connected formula for form factors.

  12. Including spatial data in nutrient balance modelling on dairy farms

    Science.gov (United States)

    van Leeuwen, Maricke; van Middelaar, Corina; Stoof, Cathelijne; Oenema, Jouke; Stoorvogel, Jetse; de Boer, Imke

    2017-04-01

    The Annual Nutrient Cycle Assessment (ANCA) calculates the nitrogen (N) and phosphorus (P) balance at a dairy farm, while taking into account the subsequent nutrient cycles of the herd, manure, soil and crop components. Since January 2016, Dutch dairy farmers are required to use ANCA in order to increase understanding of nutrient flows and to minimize nutrient losses to the environment. A nutrient balance calculates the difference between nutrient inputs and outputs. Nutrients enter the farm via purchased feed, fertilizers, deposition and fixation by legumes (nitrogen), and leave the farm via milk, livestock, manure, and roughages. A positive balance indicates to which extent N and/or P are lost to the environment via gaseous emissions (N), leaching, run-off and accumulation in soil. A negative balance indicates that N and/or P are depleted from soil. ANCA was designed to calculate average nutrient flows on farm level (for the herd, manure, soil and crop components). ANCA was not designed to perform calculations of nutrient flows at the field level, as it uses averaged nutrient inputs and outputs across all fields, and it does not include field specific soil characteristics. Land management decisions, however, such as the level of N and P application, are typically taken at the field level given the specific crop and soil characteristics. Therefore the information that ANCA provides is likely not sufficient to support farmers' decisions on land management to minimize nutrient losses to the environment. This is particularly a problem when land management and soils vary between fields. For an accurate estimate of nutrient flows in a given farming system that can be used to optimize land management, the spatial scale of nutrient inputs and outputs (and thus the effect of land management and soil variation) could be essential. Our aim was to determine the effect of the spatial scale of nutrient inputs and outputs on modelled nutrient flows and nutrient use efficiencies

  13. Working group report: Beyond the standard model

    Indian Academy of Sciences (India)

    Superstring-inspired phenomenology: This included. – models of low-scale quantum gravity with one or more extra dimensions,. – noncommutative geometry and gauge theories,. – string-inspired grand unification. • Models of supersymmetry-breaking: This included. – Supersymmetry-breaking in minimal supergravity ...

  14. Single-Phase Bundle Flows Including Macroscopic Turbulence Model

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Jun; Yoon, Han Young [KAERI, Daejeon (Korea, Republic of); Yoon, Seok Jong; Cho, Hyoung Kyu [Seoul National University, Seoul (Korea, Republic of)

    2016-05-15

    To deal with various thermal hydraulic phenomena due to rapid change of fluid properties when an accident happens, securing mechanistic approaches as much as possible may reduce the uncertainty arising from improper applications of the experimental models. In this study, the turbulence mixing model, which is well defined in the subchannel analysis code such as VIPRE, COBRA, and MATRA by experiments, is replaced by a macroscopic k-e turbulence model, which represents the aspect of mathematical derivation. The performance of CUPID with macroscopic turbulence model is validated against several bundle experiments: CNEN 4x4 and PNL 7x7 rod bundle tests. In this study, the macroscopic k-e model has been validated for the application to subchannel analysis. It has been implemented in the CUPID code and validated against CNEN 4x4 and PNL 7x7 rod bundle tests. The results showed that the macroscopic k-e turbulence model can estimate the experiments properly.

  15. Modern elementary particle physics explaining and extending the standard model

    CERN Document Server

    Kane, Gordon

    2017-01-01

    This book is written for students and scientists wanting to learn about the Standard Model of particle physics. Only an introductory course knowledge about quantum theory is needed. The text provides a pedagogical description of the theory, and incorporates the recent Higgs boson and top quark discoveries. With its clear and engaging style, this new edition retains its essential simplicity. Long and detailed calculations are replaced by simple approximate ones. It includes introductions to accelerators, colliders, and detectors, and several main experimental tests of the Standard Model are explained. Descriptions of some well-motivated extensions of the Standard Model prepare the reader for new developments. It emphasizes the concepts of gauge theories and Higgs physics, electroweak unification and symmetry breaking, and how force strengths vary with energy, providing a solid foundation for those working in the field, and for those who simply want to learn about the Standard Model.

  16. Tests of the standard electroweak model in beta decay

    Energy Technology Data Exchange (ETDEWEB)

    Severijns, N.; Beck, M. [Universite Catholique de Louvain (UCL), Louvain-la-Neuve (Belgium); Naviliat-Cuncic, O. [Caen Univ., CNRS-ENSI, 14 (France). Lab. de Physique Corpusculaire

    2006-05-15

    We review the current status of precision measurements in allowed nuclear beta decay, including neutron decay, with emphasis on their potential to look for new physics beyond the standard electroweak model. The experimental results are interpreted in the framework of phenomenological model-independent descriptions of nuclear beta decay as well as in some specific extensions of the standard model. The values of the standard couplings and the constraints on the exotic couplings of the general beta decay Hamiltonian are updated. For the ratio between the axial and the vector couplings we obtain C{sub A},/C{sub V} = -1.26992(69) under the standard model assumptions. Particular attention is devoted to the discussion of the sensitivity and complementarity of different precision experiments in direct beta decay. The prospects and the impact of recent developments of precision tools and of high intensity low energy beams are also addressed. (author)

  17. CP violation and electroweak baryogenesis in the Standard Model

    Directory of Open Access Journals (Sweden)

    Brauner Tomáš

    2014-04-01

    Full Text Available One of the major unresolved problems in current physics is understanding the origin of the observed asymmetry between matter and antimatter in the Universe. It has become a common lore to claim that the Standard Model of particle physics cannot produce sufficient asymmetry to explain the observation. Our results suggest that this conclusion can be alleviated in the so-called cold electroweak baryogenesis scenario. On the Standard Model side, we continue the program initiated by Smit eight years ago; one derives the effective CP-violating action for the Standard Model bosons and uses the resulting effective theory in numerical simulations. We address a disagreement between two previous computations performed effectively at zero temperature, and demonstrate that it is very important to include temperature effects properly. Our conclusion is that the cold electroweak baryogenesis scenario within the Standard Model is tightly constrained, yet producing enough baryon asymmetry using just known physics still seems possible.

  18. Primordial nucleosynthesis: Beyond the standard model

    International Nuclear Information System (INIS)

    Malaney, R.A.

    1991-01-01

    Non-standard primordial nucleosynthesis merits continued study for several reasons. First and foremost are the important implications determined from primordial nucleosynthesis regarding the composition of the matter in the universe. Second, the production and the subsequent observation of the primordial isotopes is the most direct experimental link with the early (t approx-lt 1 sec) universe. Third, studies of primordial nucleosynthesis allow for important, and otherwise unattainable, constraints on many aspects of particle physics. Finally, there is tentative evidence which suggests that the Standard Big Bang (SBB) model is incorrect in that it cannot reproduce the inferred primordial abundances for a single value of the baryon-to-photon ratio. Reviewed here are some aspects of non-standard primordial nucleosynthesis which mostly overlap with the authors own personal interest. He begins with a short discussion of the SBB nucleosynthesis theory, high-lighting some recent related developments. Next he discusses how recent observations of helium and lithium abundances may indicate looming problems for the SBB model. He then discusses how the QCD phase transition, neutrinos, and cosmic strings can influence primordial nucleosynthesis. He concludes with a short discussion of the multitude of other non-standard nucleosynthesis models found in the literature, and make some comments on possible progress in the future. 58 refs., 7 figs., 2 tabs

  19. Study on Standard Fatigue Vehicle Load Model

    Science.gov (United States)

    Huang, H. Y.; Zhang, J. P.; Li, Y. H.

    2018-02-01

    Based on the measured data of truck from three artery expressways in Guangdong Province, the statistical analysis of truck weight was conducted according to axle number. The standard fatigue vehicle model applied to industrial areas in the middle and late was obtained, which adopted equivalence damage principle, Miner linear accumulation law, water discharge method and damage ratio theory. Compared with the fatigue vehicle model Specified by the current bridge design code, the proposed model has better applicability. It is of certain reference value for the fatigue design of bridge in China.

  20. International Spinal Cord Injury Core Data Set (version 2.0)-including standardization of reporting

    NARCIS (Netherlands)

    Biering-Sorensen, F.; DeVivo, M. J.; Charlifue, S.; Chen, Y.; New, P. W.; Noonan, V.; Post, M. W. M.; Vogel, L.

    Study design: The study design includes expert opinion, feedback, revisions and final consensus. Objectives: The objective of the study was to present the new knowledge obtained since the International Spinal Cord Injury (SCI) Core Data Set (Version 1.0) published in 2006, and describe the

  1. Pfirsch-Tasso versus standard approaches in the plasma stability theory including the resistive wall effects

    Science.gov (United States)

    Pustovitov, V. D.

    2017-11-01

    The study is devoted to theoretical description of plasma stability in toroidal fusion systems with a resistive wall. Its aim is elimination of contradictions between the models recently developed for the resistive wall mode analysis and the Pfirsch-Tasso approach originated from the paper published in 1971 [D. Pfirsch and H. Tasso, Nucl. Fusion 11, 259 (1971)]. The main relations have been given there without detailed proofs. Here, a missing chain of derivations is restored and earlier unknown limitations that restrict the applicability of the Pfirsch-Tasso energy principle are established. Its replacement valid in a wider area is proposed. The new result is free from the constraints implicitly imposed in the Pfirsch-Tasso procedure and can be used with any plasma model (not necessarily ideal) and for arbitrary perturbations. The proposed extensions allow applications for analysis of the rotational stabilization and optimization of the ITER scenarios.

  2. Global atmospheric model for mercury including oxidation by bromine atoms

    Directory of Open Access Journals (Sweden)

    C. D. Holmes

    2010-12-01

    Full Text Available Global models of atmospheric mercury generally assume that gas-phase OH and ozone are the main oxidants converting Hg0 to HgII and thus driving mercury deposition to ecosystems. However, thermodynamic considerations argue against the importance of these reactions. We demonstrate here the viability of atomic bromine (Br as an alternative Hg0 oxidant. We conduct a global 3-D simulation with the GEOS-Chem model assuming gas-phase Br to be the sole Hg0 oxidant (Hg + Br model and compare to the previous version of the model with OH and ozone as the sole oxidants (Hg + OH/O3 model. We specify global 3-D Br concentration fields based on our best understanding of tropospheric and stratospheric Br chemistry. In both the Hg + Br and Hg + OH/O3 models, we add an aqueous photochemical reduction of HgII in cloud to impose a tropospheric lifetime for mercury of 6.5 months against deposition, as needed to reconcile observed total gaseous mercury (TGM concentrations with current estimates of anthropogenic emissions. This added reduction would not be necessary in the Hg + Br model if we adjusted the Br oxidation kinetics downward within their range of uncertainty. We find that the Hg + Br and Hg + OH/O3 models are equally capable of reproducing the spatial distribution of TGM and its seasonal cycle at northern mid-latitudes. The Hg + Br model shows a steeper decline of TGM concentrations from the tropics to southern mid-latitudes. Only the Hg + Br model can reproduce the springtime depletion and summer rebound of TGM observed at polar sites; the snowpack component of GEOS-Chem suggests that 40% of HgII deposited to snow in the Arctic is transferred to the ocean and land reservoirs, amounting to a net deposition flux to the Arctic of 60 Mg a−1. Summertime events of depleted Hg0 at Antarctic sites due to subsidence are much better simulated by

  3. 2013 updated American Society of Clinical Oncology/Oncology Nursing Society chemotherapy administration safety standards including standards for the safe administration and management of oral chemotherapy.

    Science.gov (United States)

    Neuss, Michael N; Polovich, Martha; McNiff, Kristen; Esper, Peg; Gilmore, Terry R; LeFebvre, Kristine B; Schulmeister, Lisa; Jacobson, Joseph O

    2013-05-01

    In 2009, the American Society of Clinical Oncology (ASCO) and the Oncology Nursing Society (ONS) published standards for the safe use of parenteral chemotherapy in the outpatient setting, including issues of practitioner orders, preparation, and administration of medication. In 2011, these were updated to include inpatient facilities. In December 2011, a multistakeholder workgroup met to address the issues associated with orally administered antineoplastics, under the leadership of ASCO and ONS. The workgroup participants developed recommended standards, which were presented for public comment. Public comments informed final edits, and the final standards were reviewed and approved by the ASCO and ONS Boards of Directors. Significant newly identified recommendations include those associated with drug prescription and the necessity of ascertaining that prescriptions are filled. In addition, the importance of patient and family education regarding administration schedules, exception procedures, disposal of unused oral medication, and aspects of continuity of care across settings were identified. This article presents the newly developed standards.

  4. 2013 updated American Society of Clinical Oncology/Oncology Nursing Society chemotherapy administration safety standards including standards for the safe administration and management of oral chemotherapy.

    Science.gov (United States)

    Neuss, Michael N; Polovich, Martha; McNiff, Kristen; Esper, Peg; Gilmore, Terry R; LeFebvre, Kristine B; Schulmeister, Lisa; Jacobson, Joseph O

    2013-03-01

    In 2009, ASCO and the Oncology Nursing Society (ONS) published standards for the safe use of parenteral chemotherapy in the outpatient setting, including issues of practitioner orders, preparation, and administration of medication. In 2011, these were updated to include inpatient facilities. In December 2011, a multistakeholder workgroup met to address the issues associated with orally administered antineoplastics, under the leadership of ASCO and ONS. The workgroup participants developed recommended standards, which were presented for public comment. Public comments informed final edits, and the final standards were reviewed and approved by the ASCO and ONS Boards of Directors. Significant newly identified recommendations include those associated with drug prescription and the necessity of ascertaining that prescriptions are filled. In addition, the importance of patient and family education regarding administration schedules, exception procedures, disposal of unused oral medication, and aspects of continuity of care across settings were identified. This article presents the newly developed standards.

  5. Thematic report: Macroeconomic models including specifically social and environmental aspects

    OpenAIRE

    Kratena, Kurt

    2015-01-01

    WWWforEurope Deliverable No. 8, 30 pages A significant reduction of the global environmental consequences of European consumption and production activities are the main objective of the policy simulations carried out in this paper. For this purpose three different modelling approaches have been chosen. Two macroeconomic models following the philosophy of consistent stock-flow accounting for the main institutional sectors (households, firms, banks, central bank and government) are used for...

  6. Identifying Clusters with Mixture Models that Include Radial Velocity Observations

    Science.gov (United States)

    Czarnatowicz, Alexis; Ybarra, Jason E.

    2018-01-01

    The study of stellar clusters plays an integral role in the study of star formation. We present a cluster mixture model that considers radial velocity data in addition to spatial data. Maximum likelihood estimation through the Expectation-Maximization (EM) algorithm is used for parameter estimation. Our mixture model analysis can be used to distinguish adjacent or overlapping clusters, and estimate properties for each cluster.Work supported by awards from the Virginia Foundation for Independent Colleges (VFIC) Undergraduate Science Research Fellowship and The Research Experience @Bridgewater (TREB).

  7. Superconnections: an interpretation of the standard model

    Directory of Open Access Journals (Sweden)

    Gert Roepstorff

    2000-07-01

    Full Text Available The mathematical framework of superbundles as pioneered by D. Quillen suggests that one consider the Higgs field as a natural constituent of a superconnection. I propose to take as superbundle the exterior algebra obtained from a Hermitian vector bundle of rank n where n=2 for the electroweak theory and n=5 for the full Standard Model. The present setup is similar to but avoids the use of non-commutative geometry.

  8. Indoorgml - a Standard for Indoor Spatial Modeling

    Science.gov (United States)

    Li, Ki-Joune

    2016-06-01

    With recent progress of mobile devices and indoor positioning technologies, it becomes possible to provide location-based services in indoor space as well as outdoor space. It is in a seamless way between indoor and outdoor spaces or in an independent way only for indoor space. However, we cannot simply apply spatial models developed for outdoor space to indoor space due to their differences. For example, coordinate reference systems are employed to indicate a specific position in outdoor space, while the location in indoor space is rather specified by cell number such as room number. Unlike outdoor space, the distance between two points in indoor space is not determined by the length of the straight line but the constraints given by indoor components such as walls, stairs, and doors. For this reason, we need to establish a new framework for indoor space from fundamental theoretical basis, indoor spatial data models, and information systems to store, manage, and analyse indoor spatial data. In order to provide this framework, an international standard, called IndoorGML has been developed and published by OGC (Open Geospatial Consortium). This standard is based on a cellular notion of space, which considers an indoor space as a set of non-overlapping cells. It consists of two types of modules; core module and extension module. While core module consists of four basic conceptual and implementation modeling components (geometric model for cell, topology between cells, semantic model of cell, and multi-layered space model), extension modules may be defined on the top of the core module to support an application area. As the first version of the standard, we provide an extension for indoor navigation.

  9. Unsteady panel method for complex configurations including wake modeling

    CSIR Research Space (South Africa)

    Van Zyl, Lourens H

    2008-01-01

    Full Text Available The calculation of unsteady air loads is an essential step in any aeroelastic analysis. The subsonic doublet lattice method (DLM) is used extensively for this purpose due to its simplicity and reliability. The body models available with the popular...

  10. Beyond the standard model in many directions

    Energy Technology Data Exchange (ETDEWEB)

    Chris Quigg

    2004-04-28

    These four lectures constitute a gentle introduction to what may lie beyond the standard model of quarks and leptons interacting through SU(3){sub c} {direct_product} SU(2){sub L} {direct_product} U(1){sub Y} gauge bosons, prepared for an audience of graduate students in experimental particle physics. In the first lecture, I introduce a novel graphical representation of the particles and interactions, the double simplex, to elicit questions that motivate our interest in physics beyond the standard model, without recourse to equations and formalism. Lecture 2 is devoted to a short review of the current status of the standard model, especially the electroweak theory, which serves as the point of departure for our explorations. The third lecture is concerned with unified theories of the strong, weak, and electromagnetic interactions. In the fourth lecture, I survey some attempts to extend and complete the electroweak theory, emphasizing some of the promise and challenges of supersymmetry. A short concluding section looks forward.

  11. Search for Higgs Bosons Beyond the Standard Model

    CERN Document Server

    Mankel, Rainer

    2015-01-01

    While the existence of a Higgs boson with a mass near 125 GeV has been clearly established, the detailed structure of the entire Higgs sector is yet unclear. Besides the standard model interpretation, various possibilities for extended Higgs sectors are being considered. Such options include the minimal and next-to-minimal supersymmetric extensions (MSSM and NMSSM) of the standard model, more generic Two-Higgs Doublet models (2HDM), as well as truly exotic Higgs bosons decaying e.g. into totally invisible final states are considered. The talk presents recent results from the CMS experiment.

  12. Search for Higgs bosons beyond the Standard Model

    Directory of Open Access Journals (Sweden)

    Mankel Rainer

    2015-01-01

    Full Text Available While the existence of a Higgs boson with a mass near 125 GeV has been clearly established, the detailed structure of the entire Higgs sector is yet unclear. Beyond the standard model interpretation, various scenarios for extended Higgs sectors are being considered. Such options include the minimal and next-to-minimal supersymmetric extensions (MSSM and NMSSM of the standard model, more generic Two-Higgs Doublet models (2HDM, as well as truly exotic Higgs bosons decaying e.g. into totally invisible final states. This article presents recent results from the CMS experiment.

  13. A thermal lens model including the Soret effect

    International Nuclear Information System (INIS)

    Cabrera, Humberto; Sira, Eloy; Rahn, Kareem; Garcia-Sucre, Maximo

    2009-01-01

    In this letter we generalize the thermal lens model to account for the Soret effect in binary liquid mixtures. This formalism permits the precise determination of the Soret coefficient in a steady-state situation. The theory is experimentally verified using the measured values in the ethanol/water mixtures. The time evolution of the Soret signal has been used to derive mass-diffusion times from which mass-diffusion coefficients were calculated. (Author)

  14. Including lateral interactions into microkinetic models of catalytic reactions

    DEFF Research Database (Denmark)

    Hellman, Anders; Honkala, Johanna Karoliina

    2007-01-01

    In many catalytic reactions lateral interactions between adsorbates are believed to have a strong influence on the reaction rates. We apply a microkinetic model to explore the effect of lateral interactions and how to efficiently take them into account in a simple catalytic reaction. Three differ...... different approximations are investigated: site, mean-field, and quasichemical approximations. The obtained results are compared to accurate Monte Carlo numbers. In the end, we apply the approximations to a real catalytic reaction, namely, ammonia synthesis....

  15. A stochastic model of gene expression including splicing events

    OpenAIRE

    Penim, Flávia Alexandra Mendes

    2014-01-01

    Tese de mestrado, Bioinformática e Biologia Computacional, Universidade de Lisboa, Faculdade de Ciências, 2014 Proteins carry out the great majority of the catalytic and structural work within an organism. The RNA templates used in their synthesis determines their identity, and this is dictated by which genes are transcribed. Therefore, gene expression is the fundamental determinant of an organism’s nature. The main objective of this thesis was to develop a stochastic computational model a...

  16. Experimentally testing the standard cosmological model

    Energy Technology Data Exchange (ETDEWEB)

    Schramm, D.N. (Chicago Univ., IL (USA) Fermi National Accelerator Lab., Batavia, IL (USA))

    1990-11-01

    The standard model of cosmology, the big bang, is now being tested and confirmed to remarkable accuracy. Recent high precision measurements relate to the microwave background; and big bang nucleosynthesis. This paper focuses on the latter since that relates more directly to high energy experiments. In particular, the recent LEP (and SLC) results on the number of neutrinos are discussed as a positive laboratory test of the standard cosmology scenario. Discussion is presented on the improved light element observational data as well as the improved neutron lifetime data. alternate nucleosynthesis scenarios of decaying matter or of quark-hadron induced inhomogeneities are discussed. It is shown that when these scenarios are made to fit the observed abundances accurately, the resulting conclusions on the baryonic density relative to the critical density, {Omega}{sub b}, remain approximately the same as in the standard homogeneous case, thus, adding to the robustness of the standard model conclusion that {Omega}{sub b} {approximately} 0.06. This latter point is the deriving force behind the need for non-baryonic dark matter (assuming {Omega}{sub total} = 1) and the need for dark baryonic matter, since {Omega}{sub visible} < {Omega}{sub b}. Recent accelerator constraints on non-baryonic matter are discussed, showing that any massive cold dark matter candidate must now have a mass M{sub x} {approx gt} 20 GeV and an interaction weaker than the Z{sup 0} coupling to a neutrino. It is also noted that recent hints regarding the solar neutrino experiments coupled with the see-saw model for {nu}-masses may imply that the {nu}{sub {tau}} is a good hot dark matter candidate. 73 refs., 5 figs.

  17. Parton recombination model including resonance production. RL-78-040

    International Nuclear Information System (INIS)

    Roberts, R.G.; Hwa, R.C.; Matsuda, S.

    1978-05-01

    Possible effects of resonance production on the meson inclusive distribution in the fragmentation region are investigated in the framework of the parton recombination model. From a detailed study of the data on vector-meson production, a reliable ratio of the vector-to-pseudoscalar rates is determined. Then the influence of the decay of the vector mesons on the pseudoscalar spectrum is examined, and the effect found to be no more than 25% for x > 0.5. The normalization of the non-strange antiquark distributions are still higher than those in a quiescent proton. The agreement between the calculated results and data remain very good. 36 references

  18. Extending PSA models including ageing and asset management - 15291

    International Nuclear Information System (INIS)

    Martorell, S.; Marton, I.; Carlos, S.; Sanchez, A.I.

    2015-01-01

    This paper proposes a new approach to Ageing Probabilistic Safety Assessment (APSA) modelling, which is intended to be used to support risk-informed decisions on the effectiveness of maintenance management programs and technical specification requirements of critical equipment of Nuclear Power Plants (NPP) within the framework of the Risk Informed Decision Making according to R.G. 1.174 principles. This approach focuses on the incorporation of not only equipment ageing but also effectiveness of maintenance and efficiency of surveillance testing explicitly into APSA models and data. This methodology is applied to a motor-operated valve of the auxiliary feed water system (AFWS) of a PWR. This simple example of application focuses on a critical safety-related equipment of a NPP in order to evaluate the risk impact of considering different approaches to APSA and the combined effect of equipment ageing and maintenance and testing alternatives along NPP design life. The risk impact of several alternatives in maintenance strategy is discussed

  19. Skewness of the standard model possible implications

    International Nuclear Information System (INIS)

    Nielsen, H.B.; Brene, N.

    1989-09-01

    In this paper we consider combinations of gauge algebra and set of rules for quantization of gauge charges. We show that the combination of the algebra of the standard model and the rule satisfied by the electric charges of the quarks and leptons has an exceptional high degree of a kind of asymmetry which we call skewness. Assuming that skewness has physical significance and adding two other rather plausible assumptions, we may conclude that space time must have a non simply connected topology on very small distances. Such topology would allow a kind of symmetry breakdown leading to a more skew combination of gauge algebra and set of quantization rules. (orig.)

  20. Non standard analysis, polymer models, quantum fields

    International Nuclear Information System (INIS)

    Albeverio, S.

    1984-01-01

    We give an elementary introduction to non standard analysis and its applications to the theory of stochastic processes. This is based on a joint book with J.E. Fenstad, R. Hoeegh-Krohn and T. Lindstroeem. In particular we give a discussion of an hyperfinite theory of Dirichlet forms with applications to the study of the Hamiltonian for a quantum mechanical particle in the potential created by a polymer. We also discuss new results on the existence of attractive polymer measures in dimension d 1 2 phi 2 2 )sub(d)-model of interacting quantum fields. (orig.)

  1. Search for the standard model Higgs boson

    Science.gov (United States)

    Buskulic, D.; de Bonis, I.; Decamp, D.; Ghez, P.; Goy, C.; Lees, J.-P.; Minard, M.-N.; Pietrzyk, B.; Ariztizabal, F.; Comas, P.; Crespo, J. M.; Delfino, M.; Efthymiopoulos, I.; Fernandez, E.; Fernandez-Bosman, M.; Gaitan, V.; Garrido, Ll.; Mattison, T.; Pacheco, A.; Padilla, C.; Pascual, A.; Creanza, D.; de Palma, M.; Farilla, A.; Iaselli, G.; Maggi, G.; Natali, S.; Nuzzo, S.; Quattromini, M.; Ranieri, A.; Raso, G.; Romano, F.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Zito, G.; Chai, Y.; Hu, H.; Huang, D.; Huang, X.; Lin, J.; Wang, T.; Xie, Y.; Xu, D.; Xu, R.; Zhang, J.; Zhang, L.; Zhao, W.; Blucher, E.; Bonvicini, G.; Boudreau, J.; Casper, D.; Drevermann, H.; Forty, R. W.; Ganis, G.; Gay, C.; Hagelberg, R.; Harvey, J.; Hilgart, J.; Jacobsen, R.; Jost, B.; Knobloch, J.; Lehraus, I.; Lohse, T.; Maggi, M.; Markou, C.; Martinez, M.; Mato, P.; Meinhard, H.; Minten, A.; Miotto, A.; Miguel, R.; Moser, H.-G.; Palazzi, P.; Pater, J. R.; Perlas, J. A.; Pusztaszeri, J.-F.; Ranjard, F.; Redlinger, G.; Rolandi, L.; Rothberg, J.; Ruan, T.; Saich, M.; Schlatter, D.; Schmelling, M.; Sefkow, F.; Tejessy, W.; Tomalin, I. R.; Veenhof, R.; Wachsmuth, H.; Wasserbaech, S.; Wiedenmann, W.; Wildish, T.; Witzeling, W.; Wotschack, J.; Ajaltouni, Z.; Badaud, F.; Bardadin-Otwinowska, M.; El Fellous, R.; Falvard, A.; Gay, P.; Guicheney, C.; Henrard, P.; Jousset, J.; Michel, B.; Montret, J.-C.; Pallin, D.; Perret, P.; Podlyski, F.; Proriol, J.; Prulhière, F.; Saadi, F.; Fearnley, T.; Hansen, J. B.; Hansen, J. D.; Hansen, J. R.; Hansen, P. H.; Møllerud, R.; Nilsson, B. S.; Kyriakis, A.; Simopoulou, E.; Siotis, I.; Vayaki, A.; Zachariadou, K.; Badier, J.; Blondel, A.; Bonneaud, G.; Brient, J. C.; Fouque, G.; Orteu, S.; Rougé, A.; Rumpf, M.; Tanaka, R.; Verderi, M.; Videau, H.; Candlin, D. J.; Parsons, M. I.; Veitch, E.; Focardi, E.; Moneta, L.; Parrini, G.; Corden, M.; Georgiopoulos, C.; Ikeda, M.; Levinthal, D.; Antonelli, A.; Baldini, R.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Cerutti, F.; Chiarella, V.; D'Ettorre-Piazzoli, B.; Felici, G.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G. P.; Passalacqua, L.; Pepe-Altarelli, M.; Picchi, P.; Colrain, P.; Ten Have, I.; Lynch, J. G.; Maitland, W.; Morton, W. T.; Raine, C.; Reeves, P.; Scarr, J. M.; Smith, K.; Thompson, A. S.; Turnbull, R. M.; Brandl, B.; Braun, O.; Geweniger, C.; Hanke, P.; Hepp, V.; Kluge, E. E.; Maumary, Y.; Putzer, A.; Rensch, B.; Stahl, A.; Tittel, K.; Wunsch, M.; Beuselinck, R.; Binnie, D. M.; Cameron, W.; Cattaneo, M.; Colling, D. J.; Dornan, P. J.; Greene, A. M.; Hassard, J. F.; Lieske, N. M.; Moutoussi, A.; Nash, J.; Patton, S.; Payne, D. G.; Phillips, M. J.; San Martin, G.; Sedgbeer, J. K.; Wright, A. G.; Girtler, P.; Kuhn, D.; Rudolph, G.; Vogl, R.; Bowdery, C. K.; Brodbeck, T. J.; Finch, A. J.; Foster, F.; Hughes, G.; Jackson, D.; Keemer, N. R.; Nuttall, M.; Patel, A.; Sloan, T.; Snow, S. W.; Whelan, E. P.; Kleinknecht, K.; Raab, J.; Renk, B.; Sander, H.-G.; Schmidt, H.; Steeg, F.; Walther, S. M.; Wanke, R.; Wolf, B.; Bencheikh, A. M.; Benchouk, C.; Bonissent, A.; Carr, J.; Coyle, P.; Drinkard, J.; Etienne, F.; Nicod, D.; Papalexiou, S.; Payre, P.; Roos, L.; Rousseau, D.; Schwemling, P.; Talby, M.; Adlung, S.; Assmann, R.; Bauer, C.; Blum, W.; Brown, D.; Cattaneo, P.; Dehning, B.; Dietl, H.; Dydak, F.; Frank, M.; Halley, A. W.; Jakobs, K.; Lauber, J.; Lütjens, G.; Lutz, G.; Männer, W.; Richter, R.; Schröder, J.; Schwarz, A. S.; Settles, R.; Seywerd, H.; Stierlin, U.; Stiegler, U.; Dennis, R. St.; Wolf, G.; Alemany, R.; Boucrot, J.; Callot, O.; Cordier, A.; Davier, M.; Duflot, L.; Grivaz, J.-F.; Heusse, Ph.; Jaffe, D. E.; Janot, P.; Kim, D. W.; Le Diberder, F.; Lefrançois, J.; Lutz, A.-M.; Schune, M.-H.; Veillet, J.-J.; Videau, I.; Zhang, Z.; Abbaneo, D.; Bagliesi, G.; Batignani, G.; Bottigli, U.; Bozzi, C.; Calderini, G.; Carpinelli, M.; Ciocci, M. A.; Dell'Orso, R.; Ferrante, I.; Fidecaro, F.; Foà, L.; Forti, F.; Giassi, A.; Giorgi, M. A.; Gregorio, A.; Ligabue, F.; Lusiani, A.; Manneli, E. B.; Marrocchesi, P. S.; Messineo, A.; Palla, F.; Rizzo, G.; Sanguinetti, G.; Spagnolo, P.; Steinberger, J.; Techini, R.; Tonelli, G.; Triggiani, G.; Vannini, C.; Venturi, A.; Verdini, P. G.; Walsh, J.; Betteridge, A. P.; Gao, Y.; Green, M. G.; March, P. V.; Mir, Ll. M.; Medcalf, T.; Quazi, I. S.; Strong, J. A.; West, L. R.; Botterill, D. R.; Clifft, R. W.; Edgecock, T. R.; Haywood, S.; Norton, P. R.; Thompson, J. C.; Bloch-Devaux, B.; Colas, P.; Duarte, H.; Emery, S.; Kozanecki, W.; Lançon, E.; Lemaire, M. C.; Locci, E.; Marx, B.; Perez, P.; Rander, J.; Renardy, J.-F.; Rosowsky, A.; Roussarie, A.; Schuller, J.-P.; Schwindling, J.; Si Mohand, D.; Vallage, B.; Johnson, R. P.; Litke, A. M.; Taylor, G.; Wear, J.; Ashman, J. G.; Babbage, W.; Booth, C. N.; Buttar, C.; Cartwright, S.; Combley, F.; Dawson, I.; Thompson, L. F.; Barberio, E.; Böhrer, A.; Brandt, S.; Cowan, G.; Grupen, C.; Lutters, G.; Rivera, F.; Schäfer, U.; Smolik, L.; Bosisio, L.; Della Marina, R.; Giannini, G.; Gobbo, B.; Ragusa, F.; Bellantoni, L.; Chen, W.; Conway, J. S.; Feng, Z.; Ferguson, D. P. S.; Gao, Y. S.; Grahl, J.; Harton, J. L.; Hayes, O. J.; Nachtman, J. M.; Pan, Y. B.; Saadi, Y.; Schmitt, M.; Scott, I.; Sharma, V.; Shi, Z. H.; Turk, J. D.; Walsh, A. M.; Weber, F. V.; Sau Lan Wu; Wu, X.; Zheng, M.; Zobernig, G.; Aleph Collaboration

    1993-08-01

    Using a data sample corresponding to about 1 233 000 hadronic Z decays collected by the ALEPH experiment at LEP, the reaction e+e- → HZ∗ has been used to search for the standard model Higgs boson, in association with missing energy when Z∗ → v v¯, or with a pair of energetic leptons when Z∗ → e+e-or μ +μ -. No signal was found and, at the 95% confidence level, mH exceeds 58.4 GeV/ c2.

  2. Informatics in radiology: an information model of the DICOM standard.

    Science.gov (United States)

    Kahn, Charles E; Langlotz, Curtis P; Channin, David S; Rubin, Daniel L

    2011-01-01

    The Digital Imaging and Communications in Medicine (DICOM) Standard is a key foundational technology for radiology. However, its complexity creates challenges for information system developers because the current DICOM specification requires human interpretation and is subject to nonstandard implementation. To address this problem, a formally sound and computationally accessible information model of the DICOM Standard was created. The DICOM Standard was modeled as an ontology, a machine-accessible and human-interpretable representation that may be viewed and manipulated by information-modeling tools. The DICOM Ontology includes a real-world model and a DICOM entity model. The real-world model describes patients, studies, images, and other features of medical imaging. The DICOM entity model describes connections between real-world entities and the classes that model the corresponding DICOM information entities. The DICOM Ontology was created to support the Cancer Biomedical Informatics Grid (caBIG) initiative, and it may be extended to encompass the entire DICOM Standard and serve as a foundation of medical imaging systems for research and patient care. RSNA, 2010

  3. 32 CFR 37.615 - What standards do I include for financial systems of for-profit firms?

    Science.gov (United States)

    2010-07-01

    ... 32 National Defense 1 2010-07-01 2010-07-01 false What standards do I include for financial... SECRETARY OF DEFENSE DoD GRANT AND AGREEMENT REGULATIONS TECHNOLOGY INVESTMENT AGREEMENTS Award Terms Affecting Participants' Financial, Property, and Purchasing Systems Financial Matters § 37.615 What...

  4. B physics beyond the Standard Model

    International Nuclear Information System (INIS)

    Hewett, J.A.L.

    1997-12-01

    The ability of present and future experiments to test the Standard Model in the B meson sector is described. The authors examine the loop effects of new interactions in flavor changing neutral current B decays and in Z → b anti b, concentrating on supersymmetry and the left-right symmetric model as specific examples of new physics scenarios. The procedure for performing a global fit to the Wilson coefficients which describe b → s transitions is outlined, and the results of such a fit from Monte Carlo generated data is compared to the predictions of the two sample new physics scenarios. A fit to the Zb anti b couplings from present data is also given

  5. Complex singlet extension of the standard model

    International Nuclear Information System (INIS)

    Barger, V.; Langacker, P.; McCaskey, M.; Ramsey-Musolf, M.; Shaughnessy, G.

    2009-01-01

    We analyze a simple extension of the standard model (SM) obtained by adding a complex singlet to the scalar sector (cxSM). We show that the cxSM can contain one or two viable cold dark matter candidates and analyze the conditions on the parameters of the scalar potential that yield the observed relic density. When the cxSM potential contains a global U(1) symmetry that is both softly and spontaneously broken, it contains both a viable dark matter candidate and the ingredients necessary for a strong first order electroweak phase transition as needed for electroweak baryogenesis. We also study the implications of the model for discovery of a Higgs boson at the Large Hadron Collider

  6. Physics beyond the Standard Model and Collider Phenomenology

    CERN Document Server

    Burikham, P

    2005-01-01

    We briefly review the Standard Model of the particle physics focussing on the gauge hierachy problem and the naturalness problem regarding the stabilization of the light Higgs mass. We list the alternative models which address the hierachy problem in addition to conventional Supersymmetric models and Composite models. They include extra dimensional models and Little Higgs models. We investigate the production of heavy $W_{H}$ at the linear $e^{+}e^{-}$ collider at high centre-of-mass energies at 3 and 5 TeV using the Littlest Higgs model where the global group is $SU(5)/SO(5)$. In certain region of the parameter space, the heavy boson induced signals could be distinguishable from the Standard Model background. Based on tree-level open-string scattering amplitudes in the low string-scale scenario, we derive the massless fermion scattering amplitudes. The amplitudes are required to reproduce those of the Standard Model at tree level in the low energy limit. We then obtain four-fermion contact interactions by ex...

  7. [Standardization and modeling of surgical processes].

    Science.gov (United States)

    Strauss, G; Schmitz, P

    2016-12-01

    Due to the technological developments around the operating room, surgery in the twenty-first century is undergoing a paradigm shift. Which technologies have already been integrated into the surgical routine? How can a favorable cost-benefit balance be achieved by the implementation of new software-based assistance systems? This article presents the state of the art technology as exemplified by a semi-automated operation system for otorhinolaryngology surgery. The main focus is on systems for implementation of digital handbooks and navigational functions in situ. On the basis of continuous development in digital imaging, decisions may by facilitated by individual patient models thus allowing procedures to be optimized. The ongoing digitization and linking of all relevant information enable a high level of standardization in terms of operating procedures. This may be used by assistance systems as a basis for complete documentation and high process reliability. Automation of processes in the operating room results in an increase in quality, precision and standardization so that the effectiveness and efficiency of treatment can be improved; however, care must be taken that detrimental consequences, such as loss of skills and placing too much faith in technology must be avoided by adapted training concepts.

  8. Standardized training in nurse model travel clinics.

    Science.gov (United States)

    Sofarelli, Theresa A; Ricks, Jane H; Anand, Rahul; Hale, Devon C

    2011-01-01

    International travel plays a significant role in the emergence and redistribution of major human diseases. The importance of travel medicine clinics for preventing morbidity and mortality has been increasingly appreciated, although few studies have thus far examined the management and staff training strategies that result in successful travel-clinic operations. Here, we describe an example of travel-clinic operation and management coordinated through the University of Utah School of Medicine, Division of Infectious Diseases. This program, which involves eight separate clinics distributed statewide, functions both to provide patient consult and care services, as well as medical provider training and continuing medical education (CME). Initial training, the use of standardized forms and protocols, routine chart reviews and monthly continuing education meetings are the distinguishing attributes of this program. An Infectious Disease team consisting of one medical doctor (MD) and a physician assistant (PA) act as consultants to travel nurses who comprise the majority of clinic staff. Eight clinics distributed throughout the state of Utah serve approximately 6,000 travelers a year. Pre-travel medical services are provided by 11 nurses, including 10 registered nurses (RNs) and 1 licensed practical nurse (LPN). This trained nursing staff receives continuing travel medical education and participate in the training of new providers. All nurses have completed a full training program and 7 of the 11 (64%) of clinic nursing staff serve more than 10 patients a week. Quality assurance measures show that approximately 0.5% of charts reviewed contain a vaccine or prescription error which require patient notification for correction. Using an initial training program, standardized patient intake forms, vaccine and prescription protocols, preprinted prescriptions, and regular CME, highly trained nurses at travel clinics are able to provide standardized pre-travel care to

  9. Consistency test of the standard model

    International Nuclear Information System (INIS)

    Pawlowski, M.; Raczka, R.

    1997-01-01

    If the 'Higgs mass' is not the physical mass of a real particle but rather an effective ultraviolet cutoff then a process energy dependence of this cutoff must be admitted. Precision data from at least two energy scale experimental points are necessary to test this hypothesis. The first set of precision data is provided by the Z-boson peak experiments. We argue that the second set can be given by 10-20 GeV e + e - colliders. We pay attention to the special role of tau polarization experiments that can be sensitive to the 'Higgs mass' for a sample of ∼ 10 8 produced tau pairs. We argue that such a study may be regarded as a negative selfconsistency test of the Standard Model and of most of its extensions

  10. Symmetry breaking: The standard model and superstrings

    International Nuclear Information System (INIS)

    Gaillard, M.K.

    1988-01-01

    The outstanding unresolved issue of the highly successful standard model is the origin of electroweak symmetry breaking and of the mechanism that determines its scale, namely the vacuum expectation value (vev)v that is fixed by experiment at the value v = 4m//sub w//sup 2///g 2 = (√2G/sub F/)/sup /minus/1/ ≅ 1/4 TeV. In this talk I will discuss aspects of two approaches to this problem. One approach is straightforward and down to earth: the search for experimental signatures, as discussed previously by Pierre Darriulat. This approach covers the energy scales accessible to future and present laboratory experiments: roughly (10/sup /minus/9/ /minus/ 10 3 )GeV. The second approach involves theoretical speculations, such as technicolor and supersymmetry, that attempt to explain the TeV scale. 23 refs., 5 figs

  11. Symmetry breaking: The standard model and superstrings

    Energy Technology Data Exchange (ETDEWEB)

    Gaillard, M.K.

    1988-08-31

    The outstanding unresolved issue of the highly successful standard model is the origin of electroweak symmetry breaking and of the mechanism that determines its scale, namely the vacuum expectation value (vev)v that is fixed by experiment at the value v = 4m//sub w//sup 2///g/sup 2/ = (..sqrt..2G/sub F/)/sup /minus/1/ approx. = 1/4 TeV. In this talk I will discuss aspects of two approaches to this problem. One approach is straightforward and down to earth: the search for experimental signatures, as discussed previously by Pierre Darriulat. This approach covers the energy scales accessible to future and present laboratory experiments: roughly (10/sup /minus/9/ /minus/ 10/sup 3/)GeV. The second approach involves theoretical speculations, such as technicolor and supersymmetry, that attempt to explain the TeV scale. 23 refs., 5 figs.

  12. Outstanding questions: physics beyond the Standard Model

    CERN Document Server

    Ellis, John

    2012-01-01

    The Standard Model of particle physics agrees very well with experiment, but many important questions remain unanswered, among them are the following. What is the origin of particle masses and are they due to a Higgs boson? How does one understand the number of species of matter particles and how do they mix? What is the origin of the difference between matter and antimatter, and is it related to the origin of the matter in the Universe? What is the nature of the astrophysical dark matter? How does one unify the fundamental interactions? How does one quantize gravity? In this article, I introduce these questions and discuss how they may be addressed by experiments at the Large Hadron Collider, with particular attention to the search for the Higgs boson and supersymmetry.

  13. CMS standard model Higgs boson results

    Directory of Open Access Journals (Sweden)

    Garcia-Abia Pablo

    2013-11-01

    Full Text Available In July 2012 CMS announced the discovery of a new boson with properties resembling those of the long-sought Higgs boson. The analysis of the proton-proton collision data recorded by the CMS detector at the LHC, corresponding to integrated luminosities of 5.1 fb−1 at √s = 7 TeV and 19.6 fb−1 at √s = 8 TeV, confirm the Higgs-like nature of the new boson, with a signal strength associated with vector bosons and fermions consistent with the expectations for a standard model (SM Higgs boson, and spin-parity clearly favouring the scalar nature of the new boson. In this note I review the updated results of the CMS experiment.

  14. The standard model 30 years of glory

    International Nuclear Information System (INIS)

    Lefrancois, J.

    2001-03-01

    In these 3 lectures the author reviews the achievements of the past 30 years, which saw the birth and the detailed confirmation of the standard model. The first lecture is dedicated to quantum chromodynamics (QCD), deep inelastic scattering, neutrino scattering results, R(e + ,e - ), scaling violation, Drell-Yan reactions and the observation of jets. The second lecture deals with weak interactions and quark and lepton families, the discovery of W and Z bosons, of charm, of the tau lepton and B quarks are detailed. The third lecture focuses on the stunning progress that have been made in accuracy concerning detectors, the typical level of accuracy of previous e + e - experiments was about 5-10%, while the accuracy obtained at LEP/SLC is of order 0.1% to 0.5%. (A.C.)

  15. Numerical Models of Sewage Dispersion and Statistica Bathing Water Standards

    DEFF Research Database (Denmark)

    Petersen, Ole; Larsen, Torben

    1991-01-01

    As bathing water standards usually are founded in statistical methods, the numerical models used in outfall design should reflect this. A statistical approach, where stochastic variations in source strength and bacterial disappearance is incorporated into a numerical dilution model is presented. ....... It is demonstrated for a specific outfall how the method can be used to estimate the bathing water quality. The ambition with the paper has been to demonstrate how stochastic variations in a simple manner can be included in the analysis of water quality.......As bathing water standards usually are founded in statistical methods, the numerical models used in outfall design should reflect this. A statistical approach, where stochastic variations in source strength and bacterial disappearance is incorporated into a numerical dilution model is presented...

  16. Astrophysical neutrinos flavored with beyond the Standard Model physics

    International Nuclear Information System (INIS)

    Rasmussen, Rasmus W.; Ackermann, Markus; Winter, Walter; Lechner, Lukas; Kowalski, Marek; Humboldt-Universitaet, Berlin

    2017-07-01

    We systematically study the allowed parameter space for the flavor composition of astrophysical neutrinos measured at Earth, including beyond the Standard Model theories at production, during propagation, and at detection. One motivation is to illustrate the discrimination power of the next-generation neutrino telescopes such as IceCube-Gen2. We identify several examples that lead to potential deviations from the standard neutrino mixing expectation such as significant sterile neutrino production at the source, effective operators modifying the neutrino propagation at high energies, dark matter interactions in neutrino propagation, or non-standard interactions in Earth matter. IceCube-Gen2 can exclude about 90% of the allowed parameter space in these cases, and hence will allow to efficiently test and discriminate models. More detailed information can be obtained from additional observables such as the energy-dependence of the effect, fraction of electron antineutrinos at the Glashow resonance, or number of tau neutrino events.

  17. Primordial lithium and the standard model(s)

    International Nuclear Information System (INIS)

    Deliyannis, C.P.; Demarque, P.; Kawaler, S.D.; Krauss, L.M.; Romanelli, P.

    1989-01-01

    We present the results of new theoretical work on surface 7 Li and 6 Li evolution in the oldest halo stars along with a new and refined analysis of the predicted primordial lithium abundance resulting from big-bang nucleosynthesis. This allows us to determine the constraints which can be imposed upon cosmology by a consideration of primordial lithium using both standard big-bang and standard stellar-evolution models. Such considerations lead to a constraint on the baryon density today of 0.0044 2 <0.025 (where the Hubble constant is 100h Km sec/sup -1/ Mpc /sup -1/), and impose limitations on alternative nucleosynthesis scenarios

  18. Exploring and testing the Standard Model and beyond

    International Nuclear Information System (INIS)

    West, G.; Cooper, F.; Ginsparg, P.; Habib, S.; Gupta, R.; Mottola, E.; Nieto, M.; Mattis, M.

    1998-01-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The goal of this project was to extend and develop the predictions of the Standard Model of particle physics in several different directions. This includes various aspects of the strong nuclear interactions in quantum chromodynamics (QCD), electroweak interactions and the origin of baryon asymmetry in the universe, as well as gravitational physics

  19. LEP asymmetries and fits of the standard model

    International Nuclear Information System (INIS)

    Pietrzyk, B.

    1994-01-01

    The lepton and quark asymmetries measured at LEP are presented. The results of the Standard Model fits to the electroweak data presented at this conference are given. The top mass obtained from the fit to the LEP data is 172 -14-20 +13+18 GeV; it is 177 -11-19 +11+18 when also the collider, ν and A LR data are included. (author). 10 refs., 3 figs., 2 tabs

  20. Standardization of A Physiologic Hypoparathyroidism Animal Model.

    Science.gov (United States)

    Jung, Soo Yeon; Kim, Ha Yeong; Park, Hae Sang; Yin, Xiang Yun; Chung, Sung Min; Kim, Han Su

    2016-01-01

    Ideal hypoparathyroidism animal models are a prerequisite to developing new treatment modalities for this disorder. The purpose of this study was to evaluate the feasibility of a model whereby rats were parathyroidectomized (PTX) using a fluorescent-identification method and the ideal calcium content of the diet was determined. Thirty male rats were divided into surgical sham (SHAM, n = 5) and PTX plus 0, 0.5, and 2% calcium diet groups (PTX-FC (n = 5), PTX-NC (n = 10), and PTX-HC (n = 10), respectively). Serum parathyroid hormone levels decreased to non-detectable levels in all PTX groups. All animals in the PTX-FC group died within 4 days after the operation. All animals survived when supplied calcium in the diet. However, serum calcium levels were higher in the PTX-HC than the SHAM group. The PTX-NC group demonstrated the most representative modeling of primary hypothyroidism. Serum calcium levels decreased and phosphorus levels increased, and bone volume was increased. All animals survived without further treatment and did not show nephrotoxicity including calcium deposits. These findings demonstrate that PTX animal models produced by using the fluorescent-identification method, and fed a 0.5% calcium diet, are appropriate for hypoparathyroidism treatment studies.

  1. Standardization of A Physiologic Hypoparathyroidism Animal Model.

    Directory of Open Access Journals (Sweden)

    Soo Yeon Jung

    Full Text Available Ideal hypoparathyroidism animal models are a prerequisite to developing new treatment modalities for this disorder. The purpose of this study was to evaluate the feasibility of a model whereby rats were parathyroidectomized (PTX using a fluorescent-identification method and the ideal calcium content of the diet was determined. Thirty male rats were divided into surgical sham (SHAM, n = 5 and PTX plus 0, 0.5, and 2% calcium diet groups (PTX-FC (n = 5, PTX-NC (n = 10, and PTX-HC (n = 10, respectively. Serum parathyroid hormone levels decreased to non-detectable levels in all PTX groups. All animals in the PTX-FC group died within 4 days after the operation. All animals survived when supplied calcium in the diet. However, serum calcium levels were higher in the PTX-HC than the SHAM group. The PTX-NC group demonstrated the most representative modeling of primary hypothyroidism. Serum calcium levels decreased and phosphorus levels increased, and bone volume was increased. All animals survived without further treatment and did not show nephrotoxicity including calcium deposits. These findings demonstrate that PTX animal models produced by using the fluorescent-identification method, and fed a 0.5% calcium diet, are appropriate for hypoparathyroidism treatment studies.

  2. Searches for Beyond Standard Model Physics with ATLAS and CMS

    CERN Document Server

    Rompotis, Nikolaos; The ATLAS collaboration

    2017-01-01

    The exploration of the high energy frontier with ATLAS and CMS experiments provides one of the best opportunities to look for physics beyond the Standard Model. In this talk, I review the motivation, the strategy and some recent results related to beyond Standard Model physics from these experiments. The review will cover beyond Standard Model Higgs boson searches, supersymmetry and searches for exotic particles.

  3. No Evidence for Extensions to the Standard Cosmological Model

    Science.gov (United States)

    Heavens, Alan; Fantaye, Yabebal; Sellentin, Elena; Eggers, Hans; Hosenie, Zafiirah; Kroon, Steve; Mootoovaloo, Arrykrishna

    2017-09-01

    We compute the Bayesian evidence for models considered in the main analysis of Planck cosmic microwave background data. By utilizing carefully defined nearest-neighbor distances in parameter space, we reuse the Monte Carlo Markov chains already produced for parameter inference to compute Bayes factors B for many different model-data set combinations. The standard 6-parameter flat cold dark matter model with a cosmological constant (Λ CDM ) is favored over all other models considered, with curvature being mildly favored only when cosmic microwave background lensing is not included. Many alternative models are strongly disfavored by the data, including primordial correlated isocurvature models (ln B =-7.8 ), nonzero scalar-to-tensor ratio (ln B =-4.3 ), running of the spectral index (ln B =-4.7 ), curvature (ln B =-3.6 ), nonstandard numbers of neutrinos (ln B =-3.1 ), nonstandard neutrino masses (ln B =-3.2 ), nonstandard lensing potential (ln B =-4.6 ), evolving dark energy (ln B =-3.2 ), sterile neutrinos (ln B =-6.9 ), and extra sterile neutrinos with a nonzero scalar-to-tensor ratio (ln B =-10.8 ). Other models are less strongly disfavored with respect to flat Λ CDM . As with all analyses based on Bayesian evidence, the final numbers depend on the widths of the parameter priors. We adopt the priors used in the Planck analysis, while performing a prior sensitivity analysis. Our quantitative conclusion is that extensions beyond the standard cosmological model are disfavored by Planck data. Only when newer Hubble constant measurements are included does Λ CDM become disfavored, and only mildly, compared with a dynamical dark energy model (ln B ˜+2 ).

  4. Selective experimental review of the Standard Model

    International Nuclear Information System (INIS)

    Bloom, E.D.

    1985-02-01

    Before disussing experimental comparisons with the Standard Model, (S-M) it is probably wise to define more completely what is commonly meant by this popular term. This model is a gauge theory of SU(3)/sub f/ x SU(2)/sub L/ x U(1) with 18 parameters. The parameters are α/sub s/, α/sub qed/, theta/sub W/, M/sub W/ (M/sub Z/ = M/sub W//cos theta/sub W/, and thus is not an independent parameter), M/sub Higgs/; the lepton masses, M/sub e/, Mμ, M/sub r/; the quark masses, M/sub d/, M/sub s/, M/sub b/, and M/sub u/, M/sub c/, M/sub t/; and finally, the quark mixing angles, theta 1 , theta 2 , theta 3 , and the CP violating phase delta. The latter four parameters appear in the quark mixing matrix for the Kobayashi-Maskawa and Maiani forms. Clearly, the present S-M covers an enormous range of physics topics, and the author can only lightly cover a few such topics in this report. The measurement of R/sub hadron/ is fundamental as a test of the running coupling constant α/sub s/ in QCD. The author will discuss a selection of recent precision measurements of R/sub hadron/, as well as some other techniques for measuring α/sub s/. QCD also requires the self interaction of gluons. The search for the three gluon vertex may be practically realized in the clear identification of gluonic mesons. The author will present a limited review of recent progress in the attempt to untangle such mesons from the plethora q anti q states of the same quantum numbers which exist in the same mass range. The electroweak interactions provide some of the strongest evidence supporting the S-M that exists. Given the recent progress in this subfield, and particularly with the discovery of the W and Z bosons at CERN, many recent reviews obviate the need for further discussion in this report. In attempting to validate a theory, one frequently searches for new phenomena which would clearly invalidate it. 49 references, 28 figures

  5. Astrophysical neutrinos flavored with beyond the Standard Model physics

    Science.gov (United States)

    Rasmussen, Rasmus W.; Lechner, Lukas; Ackermann, Markus; Kowalski, Marek; Winter, Walter

    2017-10-01

    We systematically study the allowed parameter space for the flavor composition of astrophysical neutrinos measured at Earth, including beyond the Standard Model theories at production, during propagation, and at detection. One motivation is to illustrate the discrimination power of the next-generation neutrino telescopes such as IceCube-Gen2. We identify several examples that lead to potential deviations from the standard neutrino mixing expectation such as significant sterile neutrino production at the source, effective operators modifying the neutrino propagation at high energies, dark matter interactions in neutrino propagation, or nonstandard interactions in Earth matter. IceCube-Gen2 can exclude about 90% of the allowed parameter space in these cases, and hence will allow us to efficiently test and discriminate between models. More detailed information can be obtained from additional observables such as the energy dependence of the effect, fraction of electron antineutrinos at the Glashow resonance, or number of tau neutrino events.

  6. Tests of the standard model and searches for new physics

    Energy Technology Data Exchange (ETDEWEB)

    Langacker, Paul [Pennsylvania Univ., PA (United States). Dept. of Physics

    1996-07-01

    Earlier chapters of this volume have detailed described the standard model and its renormalization, the various types of precision experiments, and their implications. This chapter is devoted to global analysis of the Z-pole, M{sub W}, and neutral current data, which contains more information that any one class of experiments. The subsequent sections will summarize some of the relevant data and theoretical formulas, the status of the standard model tests and parameter determinations, the possible classes of new physics, and the implications of the precision experiments. In particular, the model independent analysis of neutral current couplings, which establishes the standard model to first approximation; the implication of supersymmetry; supersymmetric grand unification; and a number if specific types of new physics, including heavy Z{sup '} bosons, new sources of SU{sub 2} breaking, new contributions to the gauge boson self-energies, Zb b-bar vertex corrections, certain types of new 4-Fermi operators and leptoquarks, and the exotic fermions are described.

  7. Comparison of cosmological models using standard rulers and candles

    OpenAIRE

    Li, Xiaolei; Cao, Shuo; Zheng, Xiaogang; Li, Song; Biesiada, Marek

    2015-01-01

    In this paper, we used standard rulers and standard candles (separately and jointly) to explore five popular dark energy models under assumption of spatial flatness of the Universe. As standard rulers, we used a data set comprising 118 galactic-scale strong lensing systems (individual standard rulers if properly calibrated for the mass density profile) combined with BAO diagnostics (statistical standard ruler). Supernovae Ia served asstandard candles. Unlike in the most of previous statistica...

  8. Stress-testing the Standard Model at the LHC

    CERN Document Server

    2016-01-01

    With the high-energy run of the LHC now underway, and clear manifestations of beyond-Standard-Model physics not yet seen in data from the previous run, the search for new physics at the LHC may be a quest for small deviations with big consequences. If clear signals are present, precise predictions and measurements will again be crucial for extracting the maximum information from the data, as in the case of the Higgs boson. Precision will therefore remain a key theme for particle physics research in the coming years. The conference will provide a forum for experimentalists and theorists to identify the challenges and refine the tools for high-precision tests of the Standard Model and searches for signals of new physics at Run II of the LHC. Topics to be discussed include: pinning down Standard Model corrections to key LHC processes; combining fixed-order QCD calculations with all-order resummations and parton showers; new developments in jet physics concerning jet substructure, associated jets and boosted je...

  9. Supersymmetry and String Theory: Beyond the Standard Model

    International Nuclear Information System (INIS)

    Rocek, Martin

    2007-01-01

    When I was asked to review Michael Dine's new book, 'Supersymmetry and String Theory', I was pleased to have a chance to read a book by such an established authority on how string theory might become testable. The book is most useful as a list of current topics of interest in modern theoretical physics. It gives a succinct summary of a huge variety of subjects, including the standard model, symmetry, Yang-Mills theory, quantization of gauge theories, the phenomenology of the standard model, the renormalization group, lattice gauge theory, effective field theories, anomalies, instantons, solitons, monopoles, dualities, technicolor, supersymmetry, the minimal supersymmetric standard model, dynamical supersymmetry breaking, extended supersymmetry, Seiberg-Witten theory, general relativity, cosmology, inflation, bosonic string theory, the superstring, the heterotic string, string compactifications, the quintic, string dualities, large extra dimensions, and, in the appendices, Goldstone's theorem, path integrals, and exact beta-functions in supersymmetric gauge theories. Its breadth is both its strength and its weakness: it is not (and could not possibly be) either a definitive reference for experts, where the details of thorny technical issues are carefully explored, or a textbook for graduate students, with detailed pedagogical expositions. As such, it complements rather than replaces the much narrower and more focussed String Theory I and II volumes by Polchinski, with their deep insights, as well the two older volumes by Green, Schwarz, and Witten, which develop string theory pedagogically. (book review)

  10. Review of Current Standard Model Results in ATLAS

    CERN Document Server

    Brandt, Gerhard; The ATLAS collaboration

    2018-01-01

    This talk highlights results selected from the Standard Model research programme of the ATLAS Collaboration at the Large Hadron Collider. Results using data from $p-p$ collisions at $\\sqrt{s}=7,8$~TeV in LHC Run-1 as well as results using data at $\\sqrt{s}=13$~TeV in LHC Run-2 are covered. The status of cross section measurements from soft QCD processes and jet production as well as photon production are presented. The presentation extends to vector boson production with associated jets. Precision measurements of the production of $W$ and $Z$ bosons, including a first measurement of the mass of the $W$ bosons, $m_W$, are discussed. The programme to measure electroweak processes with di-boson and tri-boson final states is outlined. All presented measurements are compatible with Standard Model descriptions and allow to further constrain it. In addition they allow to probe new physics which would manifest through extra gauge couplings, or Standard Model gauge couplings deviating from their predicted value.

  11. Impersonating the Standard Model Higgs boson: alignment without decoupling

    International Nuclear Information System (INIS)

    Carena, Marcela; Low, Ian; Shah, Nausheen R.; Wagner, Carlos E.M.

    2014-01-01

    In models with an extended Higgs sector there exists an alignment limit, in which the lightest CP-even Higgs boson mimics the Standard Model Higgs. The alignment limit is commonly associated with the decoupling limit, where all non-standard scalars are significantly heavier than the Z boson. However, alignment can occur irrespective of the mass scale of the rest of the Higgs sector. In this work we discuss the general conditions that lead to “alignment without decoupling”, therefore allowing for the existence of additional non-standard Higgs bosons at the weak scale. The values of tan β for which this happens are derived in terms of the effective Higgs quartic couplings in general two-Higgs-doublet models as well as in supersymmetric theories, including the MSSM and the NMSSM. Moreover, we study the information encoded in the variations of the SM Higgs-fermion couplings to explore regions in the m A −tan β parameter space

  12. Prospects of experimentally reachable beyond Standard Model ...

    Indian Academy of Sciences (India)

    2016-01-06

    Jan 6, 2016 ... behaviour of the newly discovered particles and their strange interactions, during the first half of the 20th century, was culminated with the introduction of Standard ... various limitations. For a good summary on its excellencies and compulsions see [1], and for extensive details on SM and beyond, see [2].

  13. Why supersymmetry? Physics beyond the standard model

    Indian Academy of Sciences (India)

    2016-08-23

    Aug 23, 2016 ... This leads to an estimate of the naturalness breakdown scale for the electroweak theory as: N ∼ 1 TeV. 3. .... For supersymmetric model build- ing, see ref. [10]. Simplest supersymmetric model is ... gent restrictions for supersymmetry model building come from the requirement of sufficient suppression.

  14. Standard model parameters and the search for new physics

    International Nuclear Information System (INIS)

    Marciano, W.J.

    1988-04-01

    In these lectures, my aim is to present an up-to-date status report on the standard model and some key tests of electroweak unification. Within that context, I also discuss how and where hints of new physics may emerge. To accomplish those goals, I have organized my presentation as follows: I discuss the standard model parameters with particular emphasis on the gauge coupling constants and vector boson masses. Examples of new physics appendages are also briefly commented on. In addition, because these lectures are intended for students and thus somewhat pedagogical, I have included an appendix on dimensional regularization and a simple computational example that employs that technique. Next, I focus on weak charged current phenomenology. Precision tests of the standard model are described and up-to-date values for the Cabibbo-Kobayashi-Maskawa (CKM) mixing matrix parameters are presented. Constraints implied by those tests for a 4th generation, supersymmetry, extra Z/prime/ bosons, and compositeness are also discussed. I discuss weak neutral current phenomenology and the extraction of sin/sup 2/ /theta//sub W/ from experiment. The results presented there are based on a recently completed global analysis of all existing data. I have chosen to concentrate that discussion on radiative corrections, the effect of a heavy top quark mass, and implications for grand unified theories (GUTS). The potential for further experimental progress is also commented on. I depart from the narrowest version of the standard model and discuss effects of neutrino masses and mixings. I have chosen to concentrate on oscillations, the Mikheyev-Smirnov- Wolfenstein (MSW) effect, and electromagnetic properties of neutrinos. On the latter topic, I will describe some recent work on resonant spin-flavor precession. Finally, I conclude with a prospectus on hopes for the future. 76 refs

  15. Gold-standard performance for 2D hydrodynamic modeling

    Science.gov (United States)

    Pasternack, G. B.; MacVicar, B. J.

    2013-12-01

    Two-dimensional, depth-averaged hydrodynamic (2D) models are emerging as an increasingly useful tool for environmental water resources engineering. One of the remaining technical hurdles to the wider adoption and acceptance of 2D modeling is the lack of standards for 2D model performance evaluation when the riverbed undulates, causing lateral flow divergence and convergence. The goal of this study was to establish a gold-standard that quantifies the upper limit of model performance for 2D models of undulating riverbeds when topography is perfectly known and surface roughness is well constrained. A review was conducted of published model performance metrics and the value ranges exhibited by models thus far for each one. Typically predicted velocity differs from observed by 20 to 30 % and the coefficient of determination between the two ranges from 0.5 to 0.8, though there tends to be a bias toward overpredicting low velocity and underpredicting high velocity. To establish a gold standard as to the best performance possible for a 2D model of an undulating bed, two straight, rectangular-walled flume experiments were done with no bed slope and only different bed undulations and water surface slopes. One flume tested model performance in the presence of a porous, homogenous gravel bed with a long flat section, then a linear slope down to a flat pool bottom, and then the same linear slope back up to the flat bed. The other flume had a PVC plastic solid bed with a long flat section followed by a sequence of five identical riffle-pool pairs in close proximity, so it tested model performance given frequent undulations. Detailed water surface elevation and velocity measurements were made for both flumes. Comparing predicted versus observed velocity magnitude for 3 discharges with the gravel-bed flume and 1 discharge for the PVC-bed flume, the coefficient of determination ranged from 0.952 to 0.987 and the slope for the regression line was 0.957 to 1.02. Unsigned velocity

  16. Modeling RHIC using the standard machine formal accelerator description

    International Nuclear Information System (INIS)

    Pilat, F.; Trahern, C.G.; Wei, J.

    1997-01-01

    The Standard Machine Format (SMF) is a structured description of accelerator lattices which supports both the hierarchy of beam lines and generic lattice objects as well as those deviations (field errors, alignment efforts, etc.) associated with each component of the as-installed machine. In this paper we discuss the use of SMF to describe the Relativistic Heavy Ion Collider (RHIC) as well as the ancillary data structures (such as field quality measurements) that are necessarily incorporated into the RHIC SMF model. Future applications of SMF are outlined, including its use in the RHIC operational environment

  17. Heterogeneous information network model for equipment-standard system

    Science.gov (United States)

    Yin, Liang; Shi, Li-Chen; Zhao, Jun-Yan; Du, Song-Yang; Xie, Wen-Bo; Yuan, Fei; Chen, Duan-Bing

    2018-01-01

    Entity information network is used to describe structural relationships between entities. Taking advantage of its extension and heterogeneity, entity information network is more and more widely applied to relationship modeling. Recent years, lots of researches about entity information network modeling have been proposed, while seldom of them concentrate on equipment-standard system with properties of multi-layer, multi-dimension and multi-scale. In order to efficiently deal with some complex issues in equipment-standard system such as standard revising, standard controlling, and production designing, a heterogeneous information network model for equipment-standard system is proposed in this paper. Three types of entities and six types of relationships are considered in the proposed model. Correspondingly, several different similarity-measuring methods are used in the modeling process. The experiments show that the heterogeneous information network model established in this paper can reflect relationships between entities accurately. Meanwhile, the modeling process has a good performance on time consumption.

  18. Modeling RHIC Using the Standard Machine Format Accelerator Description

    Science.gov (United States)

    Pilat, F.; Trahern, C. G.; Wei, J.; Satogata, T.; Tepikian, S.

    1997-05-01

    The Standard Machine Format (SMF)(N. Malitsky, R. Talman, et. al., A Proposed Flat Yet Hierarchical Accelerator Lattice Object Model), Particle Accel. 55, 313(1996). is a structured description of accelerator lattices which supports both the hierarchy of beam lines and generic lattice objects as well as the deviations (field errors, misalignments, etc.) associated with each distinct component which are necessary for accurate modeling of beam dynamics. In this paper we discuss the use of SMF to describe the Relativistic Heavy Ion Collider (RHIC) as well as the ancillary data structures (such as field quality measurements) that are necessarily incorporated into the RHIC SMF model. Future applications of SMF are outlined, including its use in the RHIC operational environment.

  19. Towards a quality model for semantic IS standards

    NARCIS (Netherlands)

    Folmer, Erwin Johan Albert; van Soest, J.

    2012-01-01

    This research focuses on developing a quality model for semantic information system (IS) standards. A lot of semantic IS standards are available in different industries. Often these standards are developed by a dedicated organisation. While these organisations have the goal of increasing

  20. Towards a quality model for semantic IS standards

    NARCIS (Netherlands)

    Folmer, Erwin Johan Albert; van Soest, Joris

    2011-01-01

    This research focuses on developing a quality model for semantic Information System (IS) standards. A lot of semantic IS standards are available in different industries. Often these standards are developed by a dedicated organization. While these organizations have the goal of increasing

  1. The thermal evolution of universe: standard model

    International Nuclear Information System (INIS)

    Nascimento, L.C.S. do.

    1975-08-01

    A description of the dynamical evolution of the Universe following a model based on the theory of General Relativity is made. The model admits the Cosmological principle,the principle of Equivalence and the Robertson-Walker metric (of which an original derivation is presented). In this model, the universe is considered as a perfect fluid, ideal and symmetric relatively to the number of particles and antiparticles. The thermodynamic relations deriving from these hypothesis are derived, and from them the several eras of the thermal evolution of the universe are established. Finally, the problems arising from certain specific predictions of the model are studied, and the predictions of the abundances of the elements according to nucleosynthesis and the actual behavior of the universe are analysed in detail. (author) [pt

  2. Toward a Standard Model of Core Collapse Supernovae

    OpenAIRE

    Mezzacappa, A.

    2000-01-01

    In this paper, we discuss the current status of core collapse supernova models and the future developments needed to achieve significant advances in understanding the supernova mechanism and supernova phenomenology, i.e., in developing a supernova standard model.

  3. Standardization of Thermo-Fluid Modeling in Modelica.Fluid

    Energy Technology Data Exchange (ETDEWEB)

    Franke, Rudiger; Casella, Francesco; Sielemann, Michael; Proelss, Katrin; Otter, Martin; Wetter, Michael

    2009-09-01

    This article discusses the Modelica.Fluid library that has been included in the Modelica Standard Library 3.1. Modelica.Fluid provides interfaces and basic components for the device-oriented modeling of onedimensional thermo-fluid flow in networks containing vessels, pipes, fluid machines, valves and fittings. A unique feature of Modelica.Fluid is that the component equations and the media models as well as pressure loss and heat transfer correlations are decoupled from each other. All components are implemented such that they can be used for media from the Modelica.Media library. This means that an incompressible or compressible medium, a single or a multiple substance medium with one or more phases might be used with one and the same model as long as the modeling assumptions made hold. Furthermore, trace substances are supported. Modeling assumptions can be configured globally in an outer System object. This covers in particular the initialization, uni- or bi-directional flow, and dynamic or steady-state formulation of mass, energy, and momentum balance. All assumptions can be locally refined for every component. While Modelica.Fluid contains a reasonable set of component models, the goal of the library is not to provide a comprehensive set of models, but rather to provide interfaces and best practices for the treatment of issues such as connector design and implementation of energy, mass and momentum balances. Applications from various domains are presented.

  4. Standard Model-like corrections to Dilatonic Dynamics

    DEFF Research Database (Denmark)

    Antipin, Oleg; Krog, Jens; Mølgaard, Esben

    2013-01-01

    We examine the effects of standard model-like interactions on the near-conformal dynamics of a theory featuring a dilatonic state identified with the standard model-like Higgs. As template for near-conformal dynamics we use a gauge theory with fermionic matter and elementary mesons possessing...... conformal dynamics could accommodate the observed Higgs-like properties....

  5. Can An Amended Standard Model Account For Cold Dark Matter?

    International Nuclear Information System (INIS)

    Goldhaber, Maurice

    2004-01-01

    It is generally believed that one has to invoke theories beyond the Standard Model to account for cold dark matter particles. However, there may be undiscovered universal interactions that, if added to the Standard Model, would lead to new members of the three generations of elementary fermions that might be candidates for cold dark matter particles

  6. The Standard Model from LHC to future colliders

    Energy Technology Data Exchange (ETDEWEB)

    Forte, S., E-mail: forte@mi.infn.it [Dipartimento di Fisica, Università di Milano, Via Celoria 16, 20133, Milan (Italy); INFN, Sezione di Milano, Via Celoria 16, 20133, Milan (Italy); Nisati, A. [INFN, Sezione di Roma, Piazzale Aldo Moro 2, 00185, Rome (Italy); Passarino, G. [Dipartimento di Fisica, Università di Torino, Via P. Giuria 1, 10125, Turin (Italy); INFN, Sezione di Torino, Via P. Giuria 1, 10125, Turin (Italy); Tenchini, R. [INFN, Sezione di Pisa, Largo B. Pontecorvo 3, 56127, Pisa (Italy); Calame, C. M. Carloni [Dipartimento di Fisica, Università di Pavia, via Bassi 6, 27100, Pavia (Italy); Chiesa, M. [INFN, Sezione di Pavia, via Bassi 6, 27100, Pavia (Italy); Cobal, M. [Dipartimento di Chimica, Fisica e Ambiente, Università di Udine, Via delle Scienze, 206, 33100, Udine (Italy); INFN, Gruppo Collegato di Udine, Via delle Scienze, 206, 33100, Udine (Italy); Corcella, G. [INFN, Laboratori Nazionali di Frascati, Via E. Fermi 40, 00044, Frascati (Italy); Degrassi, G. [Dipartimento di Matematica e Fisica, Università’ Roma Tre, Via della Vasca Navale 84, 00146, Rome (Italy); INFN, Sezione di Roma Tre, Via della Vasca Navale 84, 00146, Rome (Italy); Ferrera, G. [Dipartimento di Fisica, Università di Milano, Via Celoria 16, 20133, Milan (Italy); INFN, Sezione di Milano, Via Celoria 16, 20133, Milan (Italy); Magnea, L. [Dipartimento di Fisica, Università di Torino, Via P. Giuria 1, 10125, Turin (Italy); INFN, Sezione di Torino, Via P. Giuria 1, 10125, Turin (Italy); Maltoni, F. [Centre for Cosmology, Particle Physics and Phenomenology (CP3), Université Catholique de Louvain, 1348, Louvain-la-Neuve (Belgium); Montagna, G. [Dipartimento di Fisica, Università di Pavia, via Bassi 6, 27100, Pavia (Italy); INFN, Sezione di Pavia, via Bassi 6, 27100, Pavia (Italy); Nason, P. [INFN, Sezione di Milano-Bicocca, Piazza della Scienza 3, 20126, Milan (Italy); Nicrosini, O. [INFN, Sezione di Pavia, via Bassi 6, 27100, Pavia (Italy); Oleari, C. [Dipartimento di Fisica, Università di Milano-Bicocca, Piazza della Scienza 3, 20126, Milan (Italy); INFN, Sezione di Milano-Bicocca, Piazza della Scienza 3, 20126, Milan (Italy); Piccinini, F. [INFN, Sezione di Pavia, via Bassi 6, 27100, Pavia (Italy); Riva, F. [Institut de Théorie des Phénoménes Physiques, École Polytechnique Fédérale de Lausanne, 1015, Lausanne (Switzerland); Vicini, A. [Dipartimento di Fisica, Università di Milano, Via Celoria 16, 20133, Milan (Italy); INFN, Sezione di Milano, Via Celoria 16, 20133, Milan (Italy)

    2015-11-25

    This review summarizes the results of the activities which have taken place in 2014 within the Standard Model Working Group of the “What Next” Workshop organized by INFN, Italy. We present a framework, general questions, and some indications of possible answers on the main issue for Standard Model physics in the LHC era and in view of possible future accelerators.

  7. Neutrinos and Physics Beyond Electroweak and Cosmological Standard Models

    CERN Document Server

    Kirilova, Daniela

    2014-01-01

    This is a short review of the established and the proposed by physics beyond Standard Electroweak Model and beyond Standard Cosmological Model neutrino characteristics. In particular, cosmological effects of and cosmological constraints on: extra neutrino families, neutrino mass differences and mixing, lepton asymmetry in the neutrino sector, neutrino masses, light sterile neutrino, are discussed.

  8. Prospects of experimentally reachable beyond Standard Model ...

    Indian Academy of Sciences (India)

    2016-01-06

    Jan 6, 2016 ... Dirac mass MH = ±M + μS/2. As μS does not play much role in any other prediction, we assume that it fits the neutrino oscillation data and one can determine it by inverting the inverse see-saw formula and using experimental results of neutrino masses and mixings. The model achieves precision gauge ...

  9. Electroweak symmetry breaking beyond the Standard Model

    Indian Academy of Sciences (India)

    In this paper, two key issues related to electroweak symmetry breaking are addressed. First, how fine-tuned different models are that trigger this phenomenon? Second, even if a light Higgs boson exists, does it have to be necessarily elementary? After a brief introduction, the fine-tuning aspects of the MSSM, NMSSM, ...

  10. Big bang nucleosynthesis - The standard model and alternatives

    Science.gov (United States)

    Schramm, David N.

    1991-01-01

    The standard homogeneous-isotropic calculation of the big bang cosmological model is reviewed, and alternate models are discussed. The standard model is shown to agree with the light element abundances for He-4, H-2, He-3, and Li-7 that are available. Improved observational data from recent LEP collider and SLC results are discussed. The data agree with the standard model in terms of the number of neutrinos, and provide improved information regarding neutron lifetimes. Alternate models are reviewed which describe different scenarios for decaying matter or quark-hadron induced inhomogeneities. The baryonic density relative to the critical density in the alternate models is similar to that of the standard model when they are made to fit the abundances. This reinforces the conclusion that the baryonic density relative to critical density is about 0.06, and also reinforces the need for both nonbaryonic dark matter and dark baryonic matter.

  11. Modeling the wet bulb globe temperature using standard meteorological measurements.

    Science.gov (United States)

    Liljegren, James C; Carhart, Richard A; Lawday, Philip; Tschopp, Stephen; Sharp, Robert

    2008-10-01

    The U.S. Army has a need for continuous, accurate estimates of the wet bulb globe temperature to protect soldiers and civilian workers from heat-related injuries, including those involved in the storage and destruction of aging chemical munitions at depots across the United States. At these depots, workers must don protective clothing that increases their risk of heat-related injury. Because of the difficulty in making continuous, accurate measurements of wet bulb globe temperature outdoors, the authors have developed a model of the wet bulb globe temperature that relies only on standard meteorological data available at each storage depot for input. The model is composed of separate submodels of the natural wet bulb and globe temperatures that are based on fundamental principles of heat and mass transfer, has no site-dependent parameters, and achieves an accuracy of better than 1 degree C based on comparisons with wet bulb globe temperature measurements at all depots.

  12. The Standard-Model Extension and Gravitational Tests

    Directory of Open Access Journals (Sweden)

    Jay D. Tasson

    2016-10-01

    Full Text Available The Standard-Model Extension (SME provides a comprehensive effective field-theory framework for the study of CPT and Lorentz symmetry. This work reviews the structure and philosophy of the SME and provides some intuitive examples of symmetry violation. The results of recent gravitational tests performed within the SME are summarized including analysis of results from the Laser Interferometer Gravitational-Wave Observatory (LIGO, sensitivities achieved in short-range gravity experiments, constraints from cosmic-ray data, and results achieved by studying planetary ephemerids. Some proposals and ongoing efforts will also be considered including gravimeter tests, tests of the Weak Equivalence Principle, and antimatter experiments. Our review of the above topics is augmented by several original extensions of the relevant work. We present new examples of symmetry violation in the SME and use the cosmic-ray analysis to place first-ever constraints on 81 additional operators.

  13. Standard State Space Models of Unawareness (Extended Abstract

    Directory of Open Access Journals (Sweden)

    Peter Fritz

    2016-06-01

    Full Text Available The impossibility theorem of Dekel, Lipman and Rustichini has been thought to demonstrate that standard state-space models cannot be used to represent unawareness. We first show that Dekel, Lipman and Rustichini do not establish this claim. We then distinguish three notions of awareness, and argue that although one of them may not be adequately modeled using standard state spaces, there is no reason to think that standard state spaces cannot provide models of the other two notions. In fact, standard space models of these forms of awareness are attractively simple. They allow us to prove completeness and decidability results with ease, to carry over standard techniques from decision theory, and to add propositional quantifiers straightforwardly.

  14. Searching for Physics Beyond the Standard Model

    Energy Technology Data Exchange (ETDEWEB)

    Catterall, Simon [Syracuse Univ., NY (United States)

    2016-12-01

    This final report summarizes the work carried out by the Syracuse component of a multi-institutional SciDAC grant led by USQCD. This grant supported software development for theoretical high energy physics. The Syracuse component specifically targeted the development of code for the numerical simulation of N=4 super Yang-Mills theory. The work described in the final report includes this and a summary of results achieve in exploring the structure of this theory. It also describes the personnel - students and a postdoc who were directly or indirectly involved in this project. A list of publication is also described.

  15. Precision tests of the standard model

    International Nuclear Information System (INIS)

    Lefrancois, J.

    1993-11-01

    Recent measurements of electroweak interaction processes are reviewed. When higher order corrections are included, in the theoretical prediction, an excellent agreement with the experimental results is observed. The fitted magnitudes of the corrections allow a prediction of the top mass to be made: m top =162 GeV -17-21 +16+18 , the last error corresponds to a 60-1000 GeV range for the Higgs boson mass. The data do not have yet significant sensitivity to the Higgs mass. (author) 32 refs., 22 figs., 3 tabs

  16. Physics Beyond the Standard Model: Supersymmetry

    Energy Technology Data Exchange (ETDEWEB)

    Nojiri, M.M.; /KEK, Tsukuba /Tsukuba, Graduate U. Adv. Studies /Tokyo U.; Plehn, T.; /Edinburgh U.; Polesello, G.; /INFN, Pavia; Alexander, John M.; /Edinburgh U.; Allanach, B.C.; /Cambridge U.; Barr, Alan J.; /Oxford U.; Benakli, K.; /Paris U., VI-VII; Boudjema, F.; /Annecy, LAPTH; Freitas, A.; /Zurich U.; Gwenlan, C.; /University Coll. London; Jager, S.; /CERN /LPSC, Grenoble

    2008-02-01

    This collection of studies on new physics at the LHC constitutes the report of the supersymmetry working group at the Workshop 'Physics at TeV Colliders', Les Houches, France, 2007. They cover the wide spectrum of phenomenology in the LHC era, from alternative models and signatures to the extraction of relevant observables, the study of the MSSM parameter space and finally to the interplay of LHC observations with additional data expected on a similar time scale. The special feature of this collection is that while not each of the studies is explicitly performed together by theoretical and experimental LHC physicists, all of them were inspired by and discussed in this particular environment.

  17. Early universe cosmology. In supersymmetric extensions of the standard model

    Energy Technology Data Exchange (ETDEWEB)

    Baumann, Jochen Peter

    2012-03-19

    In this thesis we investigate possible connections between cosmological inflation and leptogenesis on the one side and particle physics on the other side. We work in supersymmetric extensions of the Standard Model. A key role is played by the right-handed sneutrino, the superpartner of the right-handed neutrino involved in the type I seesaw mechanism. We study a combined model of inflation and non-thermal leptogenesis that is a simple extension of the Minimal Supersymmetric Standard Model (MSSM) with conserved R-parity, where we add three right-handed neutrino super fields. The inflaton direction is given by the imaginary components of the corresponding scalar component fields, which are protected from the supergravity (SUGRA) {eta}-problem by a shift symmetry in the Kaehler potential. We discuss the model first in a globally supersymmetric (SUSY) and then in a supergravity context and compute the inflationary predictions of the model. We also study reheating and non-thermal leptogenesis in this model. A numerical simulation shows that shortly after the waterfall phase transition that ends inflation, the universe is dominated by right-handed sneutrinos and their out-of-equilibrium decay can produce the desired matter-antimatter asymmetry. Using a simplified time-averaged description, we derive analytical expressions for the model predictions. Combining the results from inflation and leptogenesis allows us to constrain the allowed parameter space from two different directions, with implications for low energy neutrino physics. As a second thread of investigation, we discuss a generalisation of the inflationary model discussed above to include gauge non-singlet fields as inflatons. This is motivated by the fact that in left-right symmetric, supersymmetric Grand Unified Theories (SUSY GUTs), like SUSY Pati-Salam unification or SUSY SO(10) GUTs, the righthanded (s)neutrino is an indispensable ingredient and does not have to be put in by hand as in the MSSM. We discuss

  18. The Lag Model, a Turbulence Model for Wall Bounded Flows Including Separation

    Science.gov (United States)

    Olsen, Michael E.; Coakley, Thomas J.; Kwak, Dochan (Technical Monitor)

    2001-01-01

    A new class of turbulence model is described for wall bounded, high Reynolds number flows. A specific turbulence model is demonstrated, with results for favorable and adverse pressure gradient flowfields. Separation predictions are as good or better than either Spalart Almaras or SST models, do not require specification of wall distance, and have similar or reduced computational effort compared with these models.

  19. Quality requirements for vegetables and fruit products in the European Union : training manual, product quality standards including UN-ECE quality standards for unions

    NARCIS (Netherlands)

    Voort, van der M.P.J.; Baricicova, V.; Dandar, M.; Grzegorzewska, M.; Schoorlemmer, H.B.; Szabo, C.; Zmarlicji, K.

    2007-01-01

    This training manual is part of the pilot on agricultural quality standards. The objective of this pilot is the development and testing of a training course on quality requirements. The training manual informs growers and trainers on the basic quality requirements and the relationship of these

  20. BioModels: expanding horizons to include more modelling approaches and formats.

    Science.gov (United States)

    Glont, Mihai; Nguyen, Tung V N; Graesslin, Martin; Hälke, Robert; Ali, Raza; Schramm, Jochen; Wimalaratne, Sarala M; Kothamachu, Varun B; Rodriguez, Nicolas; Swat, Maciej J; Eils, Jurgen; Eils, Roland; Laibe, Camille; Malik-Sheriff, Rahuman S; Chelliah, Vijayalakshmi; Le Novère, Nicolas; Hermjakob, Henning

    2018-01-04

    BioModels serves as a central repository of mathematical models representing biological processes. It offers a platform to make mathematical models easily shareable across the systems modelling community, thereby supporting model reuse. To facilitate hosting a broader range of model formats derived from diverse modelling approaches and tools, a new infrastructure for BioModels has been developed that is available at http://www.ebi.ac.uk/biomodels. This new system allows submitting and sharing of a wide range of models with improved support for formats other than SBML. It also offers a version-control backed environment in which authors and curators can work collaboratively to curate models. This article summarises the features available in the current system and discusses the potential benefit they offer to the users over the previous system. In summary, the new portal broadens the scope of models accepted in BioModels and supports collaborative model curation which is crucial for model reproducibility and sharing. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  1. The Standard Model is Natural as Magnetic Gauge Theory

    DEFF Research Database (Denmark)

    Sannino, Francesco

    2011-01-01

    matter. The absence of scalars in the electric theory indicates that the associated magnetic theory is free from quadratic divergences. Our novel solution to the Standard Model hierarchy problem leads also to a new insight on the mystery of the observed number of fundamental fermion generations......We suggest that the Standard Model can be viewed as the magnetic dual of a gauge theory featuring only fermionic matter content. We show this by first introducing a Pati-Salam like extension of the Standard Model and then relating it to a possible dual electric theory featuring only fermionic...

  2. Simulation and Modeling Capability for Standard Modular Hydropower Technology

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, Kevin M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Smith, Brennan T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Witt, Adam M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); DeNeale, Scott T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bevelhimer, Mark S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Pries, Jason L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Burress, Timothy A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kao, Shih-Chieh [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mobley, Miles H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lee, Kyutae [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Curd, Shelaine L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Tsakiris, Achilleas [Univ. of Tennessee, Knoxville, TN (United States); Mooneyham, Christian [Univ. of Tennessee, Knoxville, TN (United States); Papanicolaou, Thanos [Univ. of Tennessee, Knoxville, TN (United States); Ekici, Kivanc [Univ. of Tennessee, Knoxville, TN (United States); Whisenant, Matthew J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Welch, Tim [US Department of Energy, Washington, DC (United States); Rabon, Daniel [US Department of Energy, Washington, DC (United States)

    2017-08-01

    Grounded in the stakeholder-validated framework established in Oak Ridge National Laboratory’s SMH Exemplary Design Envelope Specification, this report on Simulation and Modeling Capability for Standard Modular Hydropower (SMH) Technology provides insight into the concepts, use cases, needs, gaps, and challenges associated with modeling and simulating SMH technologies. The SMH concept envisions a network of generation, passage, and foundation modules that achieve environmentally compatible, cost-optimized hydropower using standardization and modularity. The development of standardized modeling approaches and simulation techniques for SMH (as described in this report) will pave the way for reliable, cost-effective methods for technology evaluation, optimization, and verification.

  3. Slit-scanning technique using standard cell sorter instruments for analyzing and sorting nonacrocentric human chromosomes, including small ones

    NARCIS (Netherlands)

    Rens, W.; van Oven, C. H.; Stap, J.; Jakobs, M. E.; Aten, J. A.

    1994-01-01

    We have investigated the performance of two types of standard flow cell sorter instruments, a System 50 Cytofluorograph and a FACSTar PLUS cell sorter, for the on-line centromeric index (CI) analysis of human chromosomes. To optimize the results, we improved the detection efficiency for centromeres

  4. Comparison of Standard Wind Turbine Models with Vendor Models for Power System Stability Analysis: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Honrubia-Escribano, A.; Gomez Lazaro, E.; Jimenez-Buendia, F.; Muljadi, Eduard

    2016-11-01

    The International Electrotechnical Commission Standard 61400-27-1 was published in February 2015. This standard deals with the development of generic terms and parameters to specify the electrical characteristics of wind turbines. Generic models of very complex technological systems, such as wind turbines, are thus defined based on the four common configurations available in the market. Due to its recent publication, the comparison of the response of generic models with specific vendor models plays a key role in ensuring the widespread use of this standard. This paper compares the response of a specific Gamesa dynamic wind turbine model to the corresponding generic IEC Type III wind turbine model response when the wind turbine is subjected to a three-phase voltage dip. This Type III model represents the doubly-fed induction generator wind turbine, which is not only one of the most commonly sold and installed technologies in the current market but also a complex variable-speed operation implementation. In fact, active and reactive power transients are observed due to the voltage reduction. Special attention is given to the reactive power injection provided by the wind turbine models because it is a requirement of current grid codes. Further, the boundaries of the generic models associated with transient events that cannot be represented exactly are included in the paper.

  5. Detection of superparticles beyond the standard model

    International Nuclear Information System (INIS)

    Bornhauser, Sascha

    2008-07-01

    This Phd thesis deals with supersymmetric particles within the context of astroparticle and collider physics. The first part is about the detection of UHE cosmic particles; it based on the use of the matter of Earth and Moon as detector volume, where in the case of UHE neutralino LSPs the Earth acts in addition as a filter against the background of UHE neutrinos. We present the solutions of the transport equations regarding UHE neutralino LSP and neutrino fluxes; these solutions are given for processes where the total cross section is dominated by t- or s- channel scattering. The last section of the first part provides the final formulas for the calculation of event rates with respect to the Earth, including the background of UHE neutrinos, and the Moon. Here, we are taking into account the energy loss of tau leptons in matter, before they decay back into neutrinos. We then find detectable event rates in experiments of several teratons scale, like a future satellite experiment as EUSO or OWL only if the following conditions are satisfied: the lightest neutralino must be a higgsino, rather than a bino; the X particle must decay via a mode which results in a large ratio of neutralino LSP and proton flux; the X particle mass must be rather close to its lower bound; the experiment must be able to detect Cerenkov light. The second part deals with electroweak contributions, being the result of neutralinos and chargino exchange in the t- and/or u-channel as well as electroweak gauge bosons in the s-channel, to squark pair production at the CERN LHC. The reason for the partly sizable electroweak contributions is the interference between electroweak and QCD interactions. These contributions are most important for two final state SU(2) doublet (L-type) squarks; if one has at least one SU(2) singlet (R-type) squark, the change of the total cross sections decreases to only a few percent. We found that higher squark masses give rise to higher relative electroweak contributions

  6. Detection of superparticles beyond the standard model

    Energy Technology Data Exchange (ETDEWEB)

    Bornhauser, Sascha

    2008-07-15

    This Phd thesis deals with supersymmetric particles within the context of astroparticle and collider physics. The first part is about the detection of UHE cosmic particles; it based on the use of the matter of Earth and Moon as detector volume, where in the case of UHE neutralino LSPs the Earth acts in addition as a filter against the background of UHE neutrinos. We present the solutions of the transport equations regarding UHE neutralino LSP and neutrino fluxes; these solutions are given for processes where the total cross section is dominated by t- or s- channel scattering. The last section of the first part provides the final formulas for the calculation of event rates with respect to the Earth, including the background of UHE neutrinos, and the Moon. Here, we are taking into account the energy loss of tau leptons in matter, before they decay back into neutrinos. We then find detectable event rates in experiments of several teratons scale, like a future satellite experiment as EUSO or OWL only if the following conditions are satisfied: the lightest neutralino must be a higgsino, rather than a bino; the X particle must decay via a mode which results in a large ratio of neutralino LSP and proton flux; the X particle mass must be rather close to its lower bound; the experiment must be able to detect Cerenkov light. The second part deals with electroweak contributions, being the result of neutralinos and chargino exchange in the t- and/or u-channel as well as electroweak gauge bosons in the s-channel, to squark pair production at the CERN LHC. The reason for the partly sizable electroweak contributions is the interference between electroweak and QCD interactions. These contributions are most important for two final state SU(2) doublet (L-type) squarks; if one has at least one SU(2) singlet (R-type) squark, the change of the total cross sections decreases to only a few percent. We found that higher squark masses give rise to higher relative electroweak contributions

  7. Airside HVAC BESTEST: HVAC Air-Distribution System Model Test Cases for ASHRAE Standard 140

    Energy Technology Data Exchange (ETDEWEB)

    Judkoff, Ronald [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Neymark, Joel [J. Neymark & Associates; Kennedy, Mike D. [Mike D. Kennedy, Inc.; Gall, J. [AAON, Inc.; Henninger, R. [GARD Analytics, Inc.; Hong, T. [Lawrence Berkeley National Laboratory; Knebel, D. [AAON, Inc.; McDowell, T. [Thermal Energy System Specialists, LLC; Witte, M. [GARD Analytics, Inc.; Yan, D. [Tsinghua University; Zhou, X. [Tsinghua University

    2017-08-07

    This paper summarizes recent work to develop new airside HVAC equipment model analytical verification test cases for ANSI/ASHRAE Standard 140, Standard Method of Test for the Evaluation of Building Energy Analysis Computer Programs. The analytical verification test method allows comparison of simulation results from a wide variety of building energy simulation programs with quasi-analytical solutions, further described below. Standard 140 is widely cited for evaluating software for use with performance-path energy efficiency analysis, in conjunction with well-known energy-efficiency standards including ASHRAE Standard 90.1, the International Energy Conservation Code, and other international standards. Airside HVAC Equipment is a common area of modelling not previously explicitly tested by Standard 140. Integration of the completed test suite into Standard 140 is in progress.

  8. The Beyond the Standard Model Working Group: Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Rizzo, Thomas G.

    2002-08-08

    Various theoretical aspects of physics beyond the Standard Model at hadron colliders are discussed. Our focus will be on those issues that most immediately impact the projects pursued as part of the BSM group at this meeting.

  9. Workshop on What Comes Beyond the Standard Model?

    CERN Document Server

    Borstnik, N M; Nielsen, Holger Bech; Froggatt, Colin D; What Comes Beyond the Standard Model?

    1999-01-01

    The Proceedings collects the results of ten days of discussions on the open questions of the Standard electroweak model as well as the review of the introductory talks, connected with the discussions.

  10. Standard model status (in search of ''new physics'')

    International Nuclear Information System (INIS)

    Marciano, W.J.

    1993-03-01

    A perspective on successes and shortcomings of the standard model is given. The complementarity between direct high energy probes of new physics and lower energy searches via precision measurements and rare reactions is described. Several illustrative examples are discussed

  11. Overview of the Higgs and Standard Model physics at ATLAS

    CERN Document Server

    Vazquez Schroeder, Tamara; The ATLAS collaboration

    2018-01-01

    This talk presents selected aspects of recent physics results from the ATLAS collaboration in the Standard Model and Higgs sectors, with a focus on the recent evidence for the associated production of the Higgs boson and a top quark pair.

  12. Enhancements to ASHRAE Standard 90.1 Prototype Building Models

    Energy Technology Data Exchange (ETDEWEB)

    Goel, Supriya; Athalye, Rahul A.; Wang, Weimin; Zhang, Jian; Rosenberg, Michael I.; Xie, YuLong; Hart, Philip R.; Mendon, Vrushali V.

    2014-04-16

    This report focuses on enhancements to prototype building models used to determine the energy impact of various versions of ANSI/ASHRAE/IES Standard 90.1. Since the last publication of the prototype building models, PNNL has made numerous enhancements to the original prototype models compliant with the 2004, 2007, and 2010 editions of Standard 90.1. Those enhancements are described here and were made for several reasons: (1) to change or improve prototype design assumptions; (2) to improve the simulation accuracy; (3) to improve the simulation infrastructure; and (4) to add additional detail to the models needed to capture certain energy impacts from Standard 90.1 improvements. These enhancements impact simulated prototype energy use, and consequently impact the savings estimated from edition to edition of Standard 90.1.

  13. Status of standard model predictions and uncertainties for electroweak observables

    International Nuclear Information System (INIS)

    Kniehl, B.A.

    1993-11-01

    Recent progress in theoretical predictions of electroweak parameters beyond one loop in the standard model is reviewed. The topics include universal corrections of O(G F 2 M H 2 M W 2 ), O(G F 2 m t 4 ), O(α s G F M W 2 ), and those due to virtual t anti t threshold effects, as well as specific corrections to Γ(Z → b anti b) of O(G F 2 m t 4 ), O(α s G F m t 2 ), and O(α s 2 m b 2 /M Z 2 ). An update of the hadronic contributions to Δα is presented. Theoretical uncertainties, other than those due to the lack of knowledge of M H and m t , are estimated. (orig.)

  14. Through precision straits to next standard model heights

    CERN Document Server

    David, André

    2016-01-01

    After the LHC Run 1, the standard model (SM) of particle physics has been completed. Yet, despite its successes, the SM has shortcomings vis-\\`{a}-vis cosmological and other observations. At the same time, while the LHC restarts for Run 2 at 13 TeV, there is presently a lack of direct evidence for new physics phenomena at the accelerator energy frontier. From this state of affairs arises the need for a consistent theoretical framework in which deviations from the SM predictions can be calculated and compared to precision measurements. Such a framework should be able to comprehensively make use of all measurements in all sectors of particle physics, including LHC Higgs measurements, past electroweak precision data, electric dipole moment, $g-2$, penguins and flavor physics, neutrino scattering, deep inelastic scattering, low-energy $e^{+}e^{-}$ scattering, mass measurements, and any search for physics beyond the SM. By simultaneously describing all existing measurements, this framework then becomes an intermed...

  15. Consistent constraints on the Standard Model Effective Field Theory

    Energy Technology Data Exchange (ETDEWEB)

    Berthier, Laure; Trott, Michael [Niels Bohr International Academy, University of Copenhagen,Blegdamsvej 17, DK-2100 Copenhagen (Denmark)

    2016-02-10

    We develop the global constraint picture in the (linear) effective field theory generalisation of the Standard Model, incorporating data from detectors that operated at PEP, PETRA, TRISTAN, SpS, Tevatron, SLAC, LEPI and LEP II, as well as low energy precision data. We fit one hundred and three observables. We develop a theory error metric for this effective field theory, which is required when constraints on parameters at leading order in the power counting are to be pushed to the percent level, or beyond, unless the cut off scale is assumed to be large, Λ≳ 3 TeV. We more consistently incorporate theoretical errors in this work, avoiding this assumption, and as a direct consequence bounds on some leading parameters are relaxed. We show how an S,T analysis is modified by the theory errors we include as an illustrative example.

  16. Almost-commutative geometries beyond the standard model

    International Nuclear Information System (INIS)

    Stephan, Christoph A

    2006-01-01

    In Iochum et al (2004 J. Math. Phys. 45 5003), Jureit and Stephan (2005 J. Math. Phys. 46 043512), Schuecker T (2005 Preprint hep-th/0501181) and Jureit et al (2005 J. Math. Phys. 46 072303), a conjecture is presented that almost-commutative geometries, with respect to sensible physical constraints, allow only the standard model of particle physics and electro-strong models as Yang-Mills-Higgs theories. In this paper, a counter-example will be given. The corresponding almost-commutative geometry leads to a Yang-Mills-Higgs model which consists of the standard model of particle physics and two new fermions of opposite electro-magnetic charge. This is the second Yang-Mills-Higgs model within noncommutative geometry, after the standard model, which could be compatible with experiments. Combined to a hydrogen-like composite particle, these new particles provide a novel dark matter candidate

  17. Standard Model Higgs boson searches with the ATLAS detector at ...

    Indian Academy of Sciences (India)

    experimental results on the search of the Standard Model Higgs boson with 1 to 2 fb. −1 of proton– ... expectations from Standard Model processes, and the production of a Higgs boson is excluded at 95% Confidence Level for the mass ... lνlν and H → Z Z. (∗) → 4l,llνν as they play important roles in setting the overall result.

  18. NASA Standard for Models and Simulations: Philosophy and Requirements Overview

    Science.gov (United States)

    Blattnig, Steve R.; Luckring, James M.; Morrison, Joseph H.; Sylvester, Andre J.; Tripathi, Ram K.; Zang, Thomas A.

    2013-01-01

    Following the Columbia Accident Investigation Board report, the NASA Administrator chartered an executive team (known as the Diaz Team) to identify those CAIB report elements with NASA-wide applicability and to develop corrective measures to address each element. One such measure was the development of a standard for the development, documentation, and operation of models and simulations. This report describes the philosophy and requirements overview of the resulting NASA Standard for Models and Simulations.

  19. Neutrinos from the Early Universe and physics beyond standard models

    Directory of Open Access Journals (Sweden)

    Kirilova Daniela

    2015-01-01

    Full Text Available Neutrino oscillations present the only robust example of experimentally detected physics beyond the standard model. This review discusses the established and several hypothetical beyond standard models neutrino characteristics and their cosmological effects and constraints. Particularly, the contemporary cosmological constraints on the number of neutrino families, neutrino mass differences and mixing, lepton asymmetry in the neutrino sector, neutrino masses, light sterile neutrino are briefly reviewed.

  20. The Standard Model from LHC to future colliders

    Energy Technology Data Exchange (ETDEWEB)

    Forte, S.; Ferrera, G.; Vicini, A. [Universita di Milano, Dipartimento di Fisica, Milan (Italy); INFN, Sezione di Milano, Milan (Italy); Nisati, A. [INFN, Sezione di Roma, Rome (Italy); Passarino, G.; Magnea, L. [Universita di Torino, Dipartimento di Fisica, Turin (Italy); INFN, Sezione di Torino, Turin (Italy); Tenchini, R. [INFN, Sezione di Pisa, Pisa (Italy); Calame, C.M.C. [Universita di Pavia, Dipartimento di Fisica, Pavia (Italy); Chiesa, M.; Nicrosini, O.; Piccinini, F. [INFN, Sezione di Pavia, Pavia (Italy); Cobal, M. [Universita di Udine, Dipartimento di Chimica, Fisica e Ambiente, Udine (Italy); INFN, Gruppo Collegato di Udine, Udine (Italy); Corcella, G. [INFN, Laboratori Nazionali di Frascati, Frascati (Italy); Degrassi, G. [Universita' Roma Tre, Dipartimento di Matematica e Fisica, Rome (Italy); INFN, Sezione di Roma Tre, Rome (Italy); Maltoni, F. [Universite Catholique de Louvain, Centre for Cosmology, Particle Physics and Phenomenology (CP3), Louvain-la-Neuve (Belgium); Montagna, G. [Universita di Pavia, Dipartimento di Fisica, Pavia (Italy); INFN, Sezione di Pavia, Pavia (Italy); Nason, P. [INFN, Sezione di Milano-Bicocca, Milan (Italy); Oleari, C. [Universita di Milano-Bicocca, Dipartimento di Fisica, Milan (Italy); INFN, Sezione di Milano-Bicocca, Milan (Italy); Riva, F. [Ecole Polytechnique Federale de Lausanne, Institut de Theorie des Phenomenes Physiques, Lausanne (Switzerland)

    2015-11-15

    This review summarizes the results of the activities which have taken place in 2014 within the Standard Model Working Group of the ''What Next'' Workshop organized by INFN, Italy. We present a framework, general questions, and some indications of possible answers on the main issue for Standard Model physics in the LHC era and in view of possible future accelerators. (orig.)

  1. Prototyping an online wetland ecosystem services model using open model sharing standards

    Science.gov (United States)

    Feng, M.; Liu, S.; Euliss, N.H.; Young, Caitlin; Mushet, D.M.

    2011-01-01

    Great interest currently exists for developing ecosystem models to forecast how ecosystem services may change under alternative land use and climate futures. Ecosystem services are diverse and include supporting services or functions (e.g., primary production, nutrient cycling), provisioning services (e.g., wildlife, groundwater), regulating services (e.g., water purification, floodwater retention), and even cultural services (e.g., ecotourism, cultural heritage). Hence, the knowledge base necessary to quantify ecosystem services is broad and derived from many diverse scientific disciplines. Building the required interdisciplinary models is especially challenging as modelers from different locations and times may develop the disciplinary models needed for ecosystem simulations, and these models must be identified and made accessible to the interdisciplinary simulation. Additional difficulties include inconsistent data structures, formats, and metadata required by geospatial models as well as limitations on computing, storage, and connectivity. Traditional standalone and closed network systems cannot fully support sharing and integrating interdisciplinary geospatial models from variant sources. To address this need, we developed an approach to openly share and access geospatial computational models using distributed Geographic Information System (GIS) techniques and open geospatial standards. We included a means to share computational models compliant with Open Geospatial Consortium (OGC) Web Processing Services (WPS) standard to ensure modelers have an efficient and simplified means to publish new models. To demonstrate our approach, we developed five disciplinary models that can be integrated and shared to simulate a few of the ecosystem services (e.g., water storage, waterfowl breeding) that are provided by wetlands in the Prairie Pothole Region (PPR) of North America.

  2. ENDF/B-5 Standards Data Library (including modifications made in 1986). Summary of contents and documentation

    International Nuclear Information System (INIS)

    DayDay, N.; Lemmel, H.D.

    1986-01-01

    This document summarizes the contents and documentation of the ENDF/B-5 Standards Data Library (EN5-ST) released in September 1979. The library contains complete evaluations for all significant neutron reactions in the energy range 10 -5 eV to 20 MeV for H-1, He-3, Li-6, B-10, C-12, Au-197 and U-235 isotopes. In 1986 the files for C-12, Au-197 and U-235 were slightly modified. The entire library or selective retrievals from it can be obtained free of charge from the IAEA Nuclear Data Section. (author)

  3. New extended standard model, dark matters and relativity theory

    Science.gov (United States)

    Hwang, Jae-Kwang

    2016-03-01

    Three-dimensional quantized space model is newly introduced as the extended standard model. Four three-dimensional quantized spaces with total 12 dimensions are used to explain the universes including ours. Electric (EC), lepton (LC) and color (CC) charges are defined to be the charges of the x1x2x3, x4x5x6 and x7x8x9 warped spaces, respectively. Then, the lepton is the xi(EC) - xj(LC) correlated state which makes 3x3 = 9 leptons and the quark is the xi(EC) - xj(LC) - xk(CC) correlated state which makes 3x3x3 = 27 quarks. The new three bastons with the xi(EC) state are proposed as the dark matters seen in the x1x2x3 space, too. The matter universe question, three generations of the leptons and quarks, dark matter and dark energy, hadronization, the big bang, quantum entanglement, quantum mechanics and general relativity are briefly discussed in terms of this new model. The details can be found in the article titled as ``journey into the universe; three-dimensional quantized spaces, elementary particles and quantum mechanics at https://www.researchgate.net/profile/J_Hwang2''.

  4. Modelling Mediterranean agro-ecosystems by including agricultural trees in the LPJmL model

    Science.gov (United States)

    Fader, M.; von Bloh, W.; Shi, S.; Bondeau, A.; Cramer, W.

    2015-11-01

    In the Mediterranean region, climate and land use change are expected to impact on natural and agricultural ecosystems by warming, reduced rainfall, direct degradation of ecosystems and biodiversity loss. Human population growth and socioeconomic changes, notably on the eastern and southern shores, will require increases in food production and put additional pressure on agro-ecosystems and water resources. Coping with these challenges requires informed decisions that, in turn, require assessments by means of a comprehensive agro-ecosystem and hydrological model. This study presents the inclusion of 10 Mediterranean agricultural plants, mainly perennial crops, in an agro-ecosystem model (Lund-Potsdam-Jena managed Land - LPJmL): nut trees, date palms, citrus trees, orchards, olive trees, grapes, cotton, potatoes, vegetables and fodder grasses. The model was successfully tested in three model outputs: agricultural yields, irrigation requirements and soil carbon density. With the development presented in this study, LPJmL is now able to simulate in good detail and mechanistically the functioning of Mediterranean agriculture with a comprehensive representation of ecophysiological processes for all vegetation types (natural and agricultural) and in a consistent framework that produces estimates of carbon, agricultural and hydrological variables for the entire Mediterranean basin. This development paves the way for further model extensions aiming at the representation of alternative agro-ecosystems (e.g. agroforestry), and opens the door for a large number of applications in the Mediterranean region, for example assessments of the consequences of land use transitions, the influence of management practices and climate change impacts.

  5. Modeling dynamic procurement auctions of standardized supply contracts in electricity markets including bidders adaptation

    Directory of Open Access Journals (Sweden)

    Henry Camilo Torres-Valderrama

    2015-01-01

    Full Text Available Las subastas de reloj descendent e han incrementado su uso en lo s mercados de energía eléctrica. Las aproximaciones tradicional es a estas subastas se han enfocado en encontrar la mejor respuesta de los postores pero desconociendo la adaptación de ellos a lo largo de la subasta. Este artículo presenta un algor itmo basado en la teoría de deci sión para estimar el comportamiento de los postores a lo largo de la subasta. El modelo propuesto usa concepto s de portafolios financieros y datos históricos sobre el mercad o spot de energía eléctrica par a estimar una curva de oferta de contrato de los generadores. El modelo f ue utilizado para evaluar el Mercado Organizado (MOR en Colomb ia. Los parámetros de la curva de demand a y el tamaño de la cada ronda, fueron variados para evaluar el impacto sobre la salida de la subasta. Los resultados muestran que la curva de demanda tiene un pequeña im pacto sobre la adaptación de los pujadores y que el tamaño de r onda es útil para evitar los c omportamientos no comp etitivos. Adicional mente se muestra que los precios de inicio de la subasta tienen una gran influencia sobre los precios de cierre. Los resultados aquí pre sentados son útiles para el dise ño de estructuras de mercado en el sector eléctrico.

  6. Mathematical Model of Thyristor Inverter Including a Series-parallel Resonant Circuit

    Directory of Open Access Journals (Sweden)

    Miroslaw Luft

    2008-01-01

    Full Text Available The article presents a mathematical model of thyristor inverter including a series-parallel resonant circuit with theaid of state variable method. Maple procedures are used to compute current and voltage waveforms in the inverter.

  7. Mathematical model of thyristor inverter including a series-parallel resonant circuit

    OpenAIRE

    Luft, M.; Szychta, E.

    2008-01-01

    The article presents a mathematical model of thyristor inverter including a series-parallel resonant circuit with the aid of state variable method. Maple procedures are used to compute current and voltage waveforms in the inverter.

  8. Mathematical Model of Thyristor Inverter Including a Series-parallel Resonant Circuit

    OpenAIRE

    Miroslaw Luft; Elzbieta Szychta

    2008-01-01

    The article presents a mathematical model of thyristor inverter including a series-parallel resonant circuit with theaid of state variable method. Maple procedures are used to compute current and voltage waveforms in the inverter.

  9. Modeling of Pem Fuel Cell Systems Including Controls and Reforming Effects for Hybrid Automotive Applications

    National Research Council Canada - National Science Library

    Boettner, Daisie

    2001-01-01

    .... This study develops models for a stand-alone Proton Exchange Membrane (PEM) fuel cell stack, a direct-hydrogen fuel cell system including auxiliaries, and a methanol reforming fuel cell system for integration into a vehicle performance simulator...

  10. Precision tests of the standard model at LEP

    International Nuclear Information System (INIS)

    Mele, Barbara; Universita La Sapienza, Rome

    1994-01-01

    Recent LEP results on electroweak precision measurements are reviewed. Line-shape and asymmetries analysis on the Z 0 peak is described. Then, the consistency of the Standard Model predictions with experimental data and consequent limits on the top mass are discussed. Finally, the possibility of extracting information and constrains on new theoretical models from present data is examined. (author). 20 refs., 5 tabs

  11. Higher Education Quality Assessment Model: Towards Achieving Educational Quality Standard

    Science.gov (United States)

    Noaman, Amin Y.; Ragab, Abdul Hamid M.; Madbouly, Ayman I.; Khedra, Ahmed M.; Fayoumi, Ayman G.

    2017-01-01

    This paper presents a developed higher education quality assessment model (HEQAM) that can be applied for enhancement of university services. This is because there is no universal unified quality standard model that can be used to assess the quality criteria of higher education institutes. The analytical hierarchy process is used to identify the…

  12. Open standard CMO for parametric modelling based on semantic web

    NARCIS (Netherlands)

    Bonsma, P.; Bonsma, I.; Zayakova, T.; Van Delft, A.; Sebastian, R.; Böhms, M.

    2015-01-01

    The Open Standard Concept Modelling Ontology (CMO) with Extensions makes it possible to store parametric modelling semantics and parametric geometry in a Semantic Web environment. The parametric and geometrical part of CMO with Extensions is developed within the EU project Proficient. The nature of

  13. Standard model for safety analysis report of fuel reprocessing plants

    International Nuclear Information System (INIS)

    1979-12-01

    A standard model for a safety analysis report of fuel reprocessing plants is established. This model shows the presentation format, the origin, and the details of the minimal information required by CNEN (Comissao Nacional de Energia Nuclear) aiming to evaluate the requests of construction permits and operation licenses made according to the legislation in force. (E.G.) [pt

  14. Standard model for safety analysis report of fuel fabrication plants

    International Nuclear Information System (INIS)

    1980-09-01

    A standard model for a safety analysis report of fuel fabrication plants is established. This model shows the presentation format, the origin, and the details of the minimal information required by CNEN (Comissao Nacional de Energia Nuclear) aiming to evaluate the requests of construction permits and operation licenses made according to the legislation in force. (E.G.) [pt

  15. Physics beyond the standard model and cosmological connections ...

    Indian Academy of Sciences (India)

    tween collider physics and cosmology and how collider searches for dark matter candidates in supersymmetry and other models can lead us to a determination of dark matter parameters and how this precision information may influence cos- mology. This paper presents a summary of the work on beyond standard model.

  16. Conformal Extensions of the Standard Model with Veltman Conditions

    DEFF Research Database (Denmark)

    Antipin, Oleg; Mojaza, Matin; Sannino, Francesco

    2014-01-01

    the Higgs is predicted to have the experimental value of the mass equal to 126 GeV. This model also predicts the existence of one more standard model singlet scalar boson with a mass of 541 GeV and the Higgs self-coupling to emerge radiatively. We study several other PNC examples that generally predict...... a somewhat smaller mass of the Higgs to the perturbative order we have investigated them. Our results can be a useful guide when building extensions of the standard model featuring fundamental scalars....

  17. ATLAS Z Excess in Minimal Supersymmetric Standard Model

    International Nuclear Information System (INIS)

    Lu, Xiaochuan; Terada, Takahiro

    2015-06-01

    Recently the ATLAS collaboration reported a 3 sigma excess in the search for the events containing a dilepton pair from a Z boson and large missing transverse energy. Although the excess is not sufficiently significant yet, it is quite tempting to explain this excess by a well-motivated model beyond the standard model. In this paper we study a possibility of the minimal supersymmetric standard model (MSSM) for this excess. Especially, we focus on the MSSM spectrum where the sfermions are heavier than the gauginos and Higgsinos. We show that the excess can be explained by the reasonable MSSM mass spectrum.

  18. Standard Model Vacuum Stability and Weyl Consistency Conditions

    DEFF Research Database (Denmark)

    Antipin, Oleg; Gillioz, Marc; Krog, Jens

    2013-01-01

    At high energy the standard model possesses conformal symmetry at the classical level. This is reflected at the quantum level by relations between the different beta functions of the model. These relations are known as the Weyl consistency conditions. We show that it is possible to satisfy them...... order by order in perturbation theory, provided that a suitable coupling constant counting scheme is used. As a direct phenomenological application, we study the stability of the standard model vacuum at high energies and compare with previous computations violating the Weyl consistency conditions....

  19. Precision calculations in supersymmetric extensions of the Standard Model

    International Nuclear Information System (INIS)

    Slavich, P.

    2013-01-01

    This dissertation is organized as follows: in the next chapter I will summarize the structure of the supersymmetric extensions of the standard model (SM), namely the MSSM (Minimal Supersymmetric Standard Model) and the NMSSM (Next-to-Minimal Supersymmetric Standard Model), I will provide a brief overview of different patterns of SUSY (supersymmetry) breaking and discuss some issues on the renormalization of the input parameters that are common to all calculations of higher-order corrections in SUSY models. In chapter 3 I will review and describe computations on the production of MSSM Higgs bosons in gluon fusion. In chapter 4 I will review results on the radiative corrections to the Higgs boson masses in the NMSSM. In chapter 5 I will review the calculation of BR(B → X s γ in the MSSM with Minimal Flavor Violation (MFV). Finally, in chapter 6 I will briefly summarize the outlook of my future research. (author)

  20. The Effective Standard Model after LHC Run I

    CERN Document Server

    Ellis, John; You, Tevong

    2015-01-01

    We treat the Standard Model as the low-energy limit of an effective field theory that incorporates higher-dimensional operators to capture the effects of decoupled new physics. We consider the constraints imposed on the coefficients of dimension-6 operators by electroweak precision tests (EWPTs), applying a framework for the effects of dimension-6 operators on electroweak precision tests that is more general than the standard $S,T$ formalism, and use measurements of Higgs couplings and the kinematics of associated Higgs production at the Tevatron and LHC, as well as triple-gauge couplings at the LHC. We highlight the complementarity between EWPTs, Tevatron and LHC measurements in obtaining model-independent limits on the effective Standard Model after LHC Run~1. We illustrate the combined constraints with the example of the two-Higgs doublet model.

  1. The effective Standard Model after LHC Run I

    International Nuclear Information System (INIS)

    Ellis, John; Sanz, Verónica; You, Tevong

    2015-01-01

    We treat the Standard Model as the low-energy limit of an effective field theory that incorporates higher-dimensional operators to capture the effects of decoupled new physics. We consider the constraints imposed on the coefficients of dimension-6 operators by electroweak precision tests (EWPTs), applying a framework for the effects of dimension-6 operators on electroweak precision tests that is more general than the standard S,T formalism, and use measurements of Higgs couplings and the kinematics of associated Higgs production at the Tevatron and LHC, as well as triple-gauge couplings at the LHC. We highlight the complementarity between EWPTs, Tevatron and LHC measurements in obtaining model-independent limits on the effective Standard Model after LHC Run 1. We illustrate the combined constraints with the example of the two-Higgs doublet model.

  2. Modeling of the Direct Current Generator Including the Magnetic Saturation and Temperature Effects

    Directory of Open Access Journals (Sweden)

    Alfonso J. Mercado-Samur

    2013-11-01

    Full Text Available In this paper the inclusion of temperature effect on the field resistance on the direct current generator model DC1A, which is valid to stability studies is proposed. First, the linear generator model is presented, after the effect of magnetic saturation and the change in the resistance value due to temperature produced by the field current are included. The comparison of experimental results and model simulations to validate the model is used. A direct current generator model which is a better representation of the generator is obtained. Visual comparison between simulations and experimental results shows the success of the proposed model, because it presents the lowest error of the compared models. The accuracy of the proposed model is observed via Modified Normalized Sum of Squared Errors index equal to 3.8979%.

  3. Atmosphere-soil-vegetation model including CO2 exchange processes: SOLVEG2

    International Nuclear Information System (INIS)

    Nagai, Haruyasu

    2004-11-01

    A new atmosphere-soil-vegetation model named SOLVEG2 (SOLVEG version 2) was developed to study the heat, water, and CO 2 exchanges between the atmosphere and land-surface. The model consists of one-dimensional multilayer sub-models for the atmosphere, soil, and vegetation. It also includes sophisticated processes for solar and long-wave radiation transmission in vegetation canopy and CO 2 exchanges among the atmosphere, soil, and vegetation. Although the model usually simulates only vertical variation of variables in the surface-layer atmosphere, soil, and vegetation canopy by using meteorological data as top boundary conditions, it can be used by coupling with a three-dimensional atmosphere model. In this paper, details of SOLVEG2, which includes the function of coupling with atmosphere model MM5, are described. (author)

  4. When standards become business models: Reinterpreting "failure" in the standardization paradigm

    NARCIS (Netherlands)

    Hawkins, R.; Ballon, P.

    2007-01-01

    Purpose - This paper aims to explore the question: 'What is the relationship between standards and business models?' and illustrate the conceptual linkage with reference to developments in the mobile communications industry. Design/methodology/approach - A succinct overview of literature on

  5. Combining prior knowledge with data driven modeling of a batch distillation column including start-up

    NARCIS (Netherlands)

    van Lith, PF; Betlem, BHL; Roffel, B

    2003-01-01

    This paper presents the development of a simple model which describes the product quality and production over time of an experimental batch distillation column, including start-up. The model structure is based on a simple physical framework, which is augmented with fuzzy logic. This provides a way

  6. Enhanced UWB Radio Channel Model for Short-Range Communication Scenarios Including User Dynamics

    DEFF Research Database (Denmark)

    Kovacs, Istvan Zsolt; Nguyen, Tuan Hung; Eggers, Patrick Claus F.

    2005-01-01

    channel model represents an enhancement of the existing IEEE 802.15.3a/4a PAN channel model, where antenna and user-proximity effects are not included. Our investigations showed that significant variations of the received wideband power and time-delay signal clustering are possible due the human body...

  7. Including operational data in QMRA model: development and impact of model inputs.

    Science.gov (United States)

    Jaidi, Kenza; Barbeau, Benoit; Carrière, Annie; Desjardins, Raymond; Prévost, Michèle

    2009-03-01

    A Monte Carlo model, based on the Quantitative Microbial Risk Analysis approach (QMRA), has been developed to assess the relative risks of infection associated with the presence of Cryptosporidium and Giardia in drinking water. The impact of various approaches for modelling the initial parameters of the model on the final risk assessments is evaluated. The Monte Carlo simulations that we performed showed that the occurrence of parasites in raw water was best described by a mixed distribution: log-Normal for concentrations > detection limit (DL), and a uniform distribution for concentrations risks significantly. The mean annual risks for conventional treatment are: 1.97E-03 (removal credit adjusted by log parasite = log spores), 1.58E-05 (log parasite = 1.7 x log spores) or 9.33E-03 (regulatory credits based on the turbidity measurement in filtered water). Using full scale validated SCADA data, the simplified calculation of CT performed at the plant was shown to largely underestimate the risk relative to a more detailed CT calculation, which takes into consideration the downtime and system failure events identified at the plant (1.46E-03 vs. 3.93E-02 for the mean risk).

  8. Development of BMD-1 model standard pulse current generator

    International Nuclear Information System (INIS)

    Lai Bingquan

    1998-12-01

    The BMD-1 Model Standard Pulse Current Generator is a pulse current calibration instrument. It is used to calibrate current probe, amplifier of current probe and other current measurement instruments. The standard pulse current generator uses a perfect current switch to transfer the standard direct current into the standard pulse current. It provides a variable output current ranges from 1 mA to 1 A, current accuracy is +-(0.25% + 2μA). The standard pulse generator provides three work modes of output current: DC, signal pulse and variable frequencies from 10 Hz to 1 MHz, and provides a variable pulse current widths from 0.5 to 50 μs

  9. Recent Progress on Labfit: a Multispectrum Analysis Program for Fitting Lineshapes Including the Htp Model and Temperature Dependence

    Science.gov (United States)

    Cich, Matthew J.; Guillaume, Alexandre; Drouin, Brian; Benner, D. Chris

    2017-06-01

    Multispectrum analysis can be a challenge for a variety of reasons. It can be computationally intensive to fit a proper line shape model especially for high resolution experimental data. Band-wide analyses including many transitions along with interactions, across many pressures and temperatures are essential to accurately model, for example, atmospherically relevant systems. Labfit is a fast multispectrum analysis program originally developed by D. Chris Benner with a text-based interface. More recently at JPL a graphical user interface was developed with the goal of increasing the ease of use but also the number of potential users. The HTP lineshape model has been added to Labfit keeping it up-to-date with community standards. Recent analyses using labfit will be shown to demonstrate its ability to competently handle large experimental datasets, including high order lineshape effects, that are otherwise unmanageable.

  10. Higgs Phenomenology in the Standard Model and Beyond

    CERN Document Server

    Field, Bryan Jonathan; Dawson, Sally

    2005-01-01

    The way in which the electroweak symmetry is broken in nature is currently unknown. The electroweak symmetry is theoretically broken in the Standard Model by the Higgs mechanism which generates masses for the particle content and introduces a single scalar to the particle spectrum, the Higgs boson. This particle has not yet been observed and the value of it mass is a free parameter in the Standard Model. The observation of one (or more) Higgs bosons would confirm our understanding of the Standard Model. In this thesis, we study the phenomenology of the Standard Model Higgs boson and compare its production observables to those of the Pseudoscalar Higgs boson and the lightest scalar Higgs boson of the Minimally Supersymmetric Standard Model. We study the production at both the Fermilab Tevatron and the future CERN Large Hadron Collider (LHC). In the first part of the thesis, we present the results of our calculations in the framework of perturbative QCD. In the second part, we present our resummed calculations.

  11. Mathematical modeling of the hypothalamic–pituitary–adrenal gland (HPA) axis, including hippocampal mechanisms

    DEFF Research Database (Denmark)

    Andersen, Morten; Vinther, Frank; Ottesen, Johnny T.

    2013-01-01

    This paper presents a mathematical model of the HPA axis. The HPA axis consists of the hypothalamus, the pituitary and the adrenal glands in which the three hormones CRH, ACTH and cortisol interact through receptor dynamics. Furthermore, it has been suggested that receptors in the hippocampus have...... an influence on the axis.A model is presented with three coupled, non-linear differential equations, with the hormones CRH, ACTH and cortisol as variables. The model includes the known features of the HPA axis, and includes the effects from the hippocampus through its impact on CRH in the hypothalamus...

  12. On the fate of the Standard Model at finite temperature

    Energy Technology Data Exchange (ETDEWEB)

    Rose, Luigi Delle; Marzo, Carlo [Università del Salento, Dipartimento di Matematica e Fisica “Ennio De Giorgi' ,Via Arnesano, 73100 Lecce (Italy); INFN - Sezione di Lecce,via Arnesano, 73100 Lecce (Italy); Urbano, Alfredo [SISSA - International School for Advanced Studies,via Bonomea 256, 34136 Trieste (Italy)

    2016-05-10

    In this paper we revisit and update the computation of thermal corrections to the stability of the electroweak vacuum in the Standard Model. At zero temperature, we make use of the full two-loop effective potential, improved by three-loop beta functions with two-loop matching conditions. At finite temperature, we include one-loop thermal corrections together with resummation of daisy diagrams. We solve numerically — both at zero and finite temperature — the bounce equation, thus providing an accurate description of the thermal tunneling. Assuming a maximum temperature in the early Universe of the order of 10{sup 18} GeV, we find that the instability bound excludes values of the top mass M{sub t}≳173.6 GeV, with M{sub h}≃125 GeV and including uncertainties on the strong coupling. We discuss the validity and temperature-dependence of this bound in the early Universe, with a special focus on the reheating phase after inflation.

  13. Genetic Programming and Standardization in Water Temperature Modelling

    Directory of Open Access Journals (Sweden)

    Maritza Arganis

    2009-01-01

    Full Text Available An application of Genetic Programming (an evolutionary computational tool without and with standardization data is presented with the aim of modeling the behavior of the water temperature in a river in terms of meteorological variables that are easily measured, to explore their explanatory power and to emphasize the utility of the standardization of variables in order to reduce the effect of those with large variance. Recorded data corresponding to the water temperature behavior at the Ebro River, Spain, are used as analysis case, showing a performance improvement on the developed model when data are standardized. This improvement is reflected in a reduction of the mean square error. Finally, the models obtained in this document were applied to estimate the water temperature in 2004, in order to provide evidence about their applicability to forecasting purposes.

  14. Beyond the Standard Model Higgs searches at the LHC

    CERN Document Server

    Meridiani, P

    2015-01-01

    The Run I at the LHC marks the birth of the "Higgs physics", a path which will be followed at its full extent in the future runs of the LHC. Indeed there are two complementary paths to be followed to new physics in the Higgs sector: precision measurements of the Higgs properties (couplings, mass, spin and parity), where new physics can manifest as deviation from the Standard Model, or direct search for processes not foreseen in the Standard Model (Higgs decays not foreseen in the Standard Model, additional scalars which would indicate an extended Higgs sector). The current status of these studies at the LHC is presented, focussing in particular on the direct searches for rare or invisible Higgs decays or for an extended Higgs sector. The results are based on the analysis of the proton-proton collisions at 7 and 8 TeV center-of-mass energy at the LHC by the ATLAS and CMS collaborations.

  15. CP violation in the standard model and beyond

    International Nuclear Information System (INIS)

    Buras, A.J.

    1984-01-01

    The present status of CP violation in the standard six quark model is reviewed and a combined analysis with B-meson decays is presented. The theoretical uncertainties in the analysis are discussed and the resulting KM weak mixing angles, the phase delta and the ratio epsilon'/epsilon are given as functions of Tsub(B), GAMMA(b -> u)/GAMMA(b -> c), msub(t) and the B parameter. For certain ranges of the values of these parameters the standard model is not capable in reproducing the experimental values for epsilon' and epsilon parameters. Anticipating possible difficulties we discuss various alternatives to the standard explanation of CP violation such as horizontal interactions, left-right symmetric models and supersymmetry. CP violation outside the kaon system is also briefly discussed. (orig.)

  16. Search for the Standard Model Higgs Boson at LEP

    CERN Document Server

    CERN. Geneva

    2002-01-01

    The four LEP collaborations, ALEPH, DELPHI, L3 and OPAL, have collected 2465 pb-1 of e+e- collision data at energies between 189 and 209 GeV, of which 542 pb-1 were collected above 206 GeV. Searches for the Standard Model Higgs boson have been performed by each of the LEP collaborations. Their data have been combined and examined for their consistency with the Standard Model background and various Standard Model Higgs boson mass hypotheses. A lower bound of 114.1 GeV has been obtained at the 95% confidence level for the mass of the Higgs boson. The likelihood analysis shows a preference for a Higgs boson with a mass of 115.6 GeV. At this mass, the probability for the background to generate the observed effect is 3.5%.

  17. Lattice Gauge Theories Within and Beyond the Standard Model

    Energy Technology Data Exchange (ETDEWEB)

    Gelzer, Zechariah John [Iowa U.

    2017-01-01

    The Standard Model of particle physics has been very successful in describing fundamental interactions up to the highest energies currently probed in particle accelerator experiments. However, the Standard Model is incomplete and currently exhibits tension with experimental data for interactions involving $B$~mesons. Consequently, $B$-meson physics is of great interest to both experimentalists and theorists. Experimentalists worldwide are studying the decay and mixing processes of $B$~mesons in particle accelerators. Theorists are working to understand the data by employing lattice gauge theories within and beyond the Standard Model. This work addresses the theoretical effort and is divided into two main parts. In the first part, I present a lattice-QCD calculation of form factors for exclusive semileptonic decays of $B$~mesons that are mediated by both charged currents ($B \\to \\pi \\ell \

  18. Applying OGC Standards to Develop a Land Surveying Measurement Model

    Directory of Open Access Journals (Sweden)

    Ioannis Sofos

    2017-02-01

    Full Text Available The Open Geospatial Consortium (OGC is committed to developing quality open standards for the global geospatial community, thus enhancing the interoperability of geographic information. In the domain of sensor networks, the Sensor Web Enablement (SWE initiative has been developed to define the necessary context by introducing modeling standards, like ‘Observation & Measurement’ (O&M and services to provide interaction like ‘Sensor Observation Service’ (SOS. Land surveying measurements on the other hand comprise a domain where observation information structures and services have not been aligned to the OGC observation model. In this paper, an OGC-compatible, aligned to the ‘Observation and Measurements’ standard, model for land surveying observations has been developed and discussed. Furthermore, a case study instantiates the above model, and an SOS implementation has been developed based on the 52° North SOS platform. Finally, a visualization schema is used to produce ‘Web Map Service (WMS’ observation maps. Even though there are elements that differentiate this work from classic ‘O&M’ modeling cases, the proposed model and flows are developed in order to provide the benefits of standardizing land surveying measurement data (cost reducing by reusability, higher precision level, data fusion of multiple sources, raw observation spatiotemporal repository access, development of Measurement-Based GIS (MBGIS to the geoinformation community.

  19. Modification of TOUGH2 to Include the Dusty Gas Model for Gas Diffusion; TOPICAL

    International Nuclear Information System (INIS)

    WEBB, STEPHEN W.

    2001-01-01

    The GEO-SEQ Project is investigating methods for geological sequestration of CO(sub 2). This project, which is directed by LBNL and includes a number of other industrial, university, and national laboratory partners, is evaluating computer simulation methods including TOUGH2 for this problem. The TOUGH2 code, which is a widely used code for flow and transport in porous and fractured media, includes simplified methods for gas diffusion based on a direct application of Fick's law. As shown by Webb (1998) and others, the Dusty Gas Model (DGM) is better than Fick's Law for modeling gas-phase diffusion in porous media. In order to improve gas-phase diffusion modeling for the GEO-SEQ Project, the EOS7R module in the TOUGH2 code has been modified to include the Dusty Gas Model as documented in this report. In addition, the liquid diffusion model has been changed from a mass-based formulation to a mole-based model. Modifications for separate and coupled diffusion in the gas and liquid phases have also been completed. The results from the DGM are compared to the Fick's law behavior for TCE and PCE diffusion across a capillary fringe. The differences are small due to the relatively high permeability (k= 10(sup -11) m(sup 2)) of the problem and the small mole fraction of the gases. Additional comparisons for lower permeabilities and higher mole fractions may be useful

  20. Constraining new physics with collider measurements of Standard Model signatures

    Energy Technology Data Exchange (ETDEWEB)

    Butterworth, Jonathan M. [Department of Physics and Astronomy, University College London,Gower St., London, WC1E 6BT (United Kingdom); Grellscheid, David [IPPP, Department of Physics, Durham University,Durham, DH1 3LE (United Kingdom); Krämer, Michael; Sarrazin, Björn [Institute for Theoretical Particle Physics and Cosmology, RWTH Aachen University,Sommerfeldstr. 16, 52056 Aachen (Germany); Yallup, David [Department of Physics and Astronomy, University College London,Gower St., London, WC1E 6BT (United Kingdom)

    2017-03-14

    A new method providing general consistency constraints for Beyond-the-Standard-Model (BSM) theories, using measurements at particle colliders, is presented. The method, ‘Constraints On New Theories Using Rivet’, CONTUR, exploits the fact that particle-level differential measurements made in fiducial regions of phase-space have a high degree of model-independence. These measurements can therefore be compared to BSM physics implemented in Monte Carlo generators in a very generic way, allowing a wider array of final states to be considered than is typically the case. The CONTUR approach should be seen as complementary to the discovery potential of direct searches, being designed to eliminate inconsistent BSM proposals in a context where many (but perhaps not all) measurements are consistent with the Standard Model. We demonstrate, using a competitive simplified dark matter model, the power of this approach. The CONTUR method is highly scaleable to other models and future measurements.

  1. Testing the minimal supersymmetric standard model with the mass of the W boson

    International Nuclear Information System (INIS)

    Heinemeyer, S.; Hollik, W.; Weber, A.M.; Stoeckinger, D.; Weiglein, G.

    2007-01-01

    We review the currently most accurate evaluation of the W boson mass, Mw, in the minimal supersymmetric standard model (MSSM). It consists of a full one-loop calculation, including the complex phase dependence, all available MSSM two-loop corrections as well as the full standard model result. We analyse the impact of the phases in the scalar quark sector on Mw and compare the prediction for Mw based on all known higher-order contributions with the experimental results. (author)

  2. Numerical Acoustic Models Including Viscous and Thermal losses: Review of Existing and New Methods

    DEFF Research Database (Denmark)

    Andersen, Peter Risby; Cutanda Henriquez, Vicente; Aage, Niels

    2017-01-01

    This work presents an updated overview of numerical methods including acoustic viscous and thermal losses. Numerical modelling of viscothermal losses has gradually become more important due to the general trend of making acoustic devices smaller. Not including viscothermal acoustic losses...... in such numerical computations will therefore lead to inaccurate or even wrong results. Both, Finite Element Method (FEM) and Boundary Element Method (BEM), formulations are available that incorporate these loss mechanisms. Including viscothermal losses in FEM computations can be computationally very demanding, due...... and BEM method including viscothermal dissipation are compared and investigated....

  3. Primordial alchemy: a test of the standard model

    International Nuclear Information System (INIS)

    Steigman, G.

    1987-01-01

    Big Bang Nucleosynthesis provides the only probe of the early evolution of the Universe constrained by observational data. The standard, hot, big bang model predicts the synthesis of the light elements (D, 3 He, 4 He, 7 Li) in astrophysically interesting abundances during the first few minutes in the evolution of the Universe. A quantitative comparison of the predicted abundances with those observed astronomically confirms the consistency of the standard model and yields valuable constraints on the parameters of cosmology and elementary particle physics. The current status of the comparison between theory and observation will be reviewed and the opportunities for future advances outlined

  4. Direct-phase-variable model of a synchronous reluctance motor including all slot and winding harmonics

    International Nuclear Information System (INIS)

    Obe, Emeka S.; Binder, A.

    2011-01-01

    A detailed model in direct-phase variables of a synchronous reluctance motor operating at mains voltage and frequency is presented. The model includes the stator and rotor slot openings, the actual winding layout and the reluctance rotor geometry. Hence, all mmf and permeance harmonics are taken into account. It is seen that non-negligible harmonics introduced by slots are present in the inductances computed by the winding function procedure. These harmonics are usually ignored in d-q models. The machine performance is simulated in the stator reference frame to depict the difference between this new direct-phase model including all harmonics and the conventional rotor reference frame d-q model. Saturation is included by using a polynomial fitting the variation of d-axis inductance with stator current obtained by finite-element software FEMAG DC (registered) . The detailed phase-variable model can yield torque pulsations comparable to those obtained from finite elements while the d-q model cannot.

  5. Implementation of IEC Standard Models for Power System Stability Studies

    DEFF Research Database (Denmark)

    Margaris, Ioannis; Hansen, Anca Daniela; Bech, John

    2012-01-01

    , namely a model for a variable speed wind turbine with full scale power converter WTG including a 2- mass mechanical model. The generic models for fixed and variable speed WTGs models are suitable for fundamental frequency positive sequence response simulations during short events in the power system...

  6. Implementing the Standards: Incorporating Mathematical Modeling into the Curriculum.

    Science.gov (United States)

    Swetz, Frank

    1991-01-01

    Following a brief historical review of the mechanism of mathematical modeling, examples are included that associate a mathematical model with given data (changes in sea level) and that model a real-life situation (process of parallel parking). Also provided is the rationale for the curricular implementation of mathematical modeling. (JJK)

  7. Modeling of Temperature-Dependent Noise in Silicon Nanowire FETs including Self-Heating Effects

    OpenAIRE

    Anandan, P.; Malathi, N.; Mohankumar, N.

    2014-01-01

    Silicon nanowires are leading the CMOS era towards the downsizing limit and its nature will be effectively suppress the short channel effects. Accurate modeling of thermal noise in nanowires is crucial for RF applications of nano-CMOS emerging technologies. In this work, a perfect temperature-dependent model for silicon nanowires including the self-heating effects has been derived and its effects on device parameters have been observed. The power spectral density as a function of thermal resi...

  8. Dipole model analysis of highest precision HERA data, including very low Q2's

    International Nuclear Information System (INIS)

    Luszczak, A.; Kowalski, H.

    2016-12-01

    We analyse, within a dipole model, the final, inclusive HERA DIS cross section data in the low χ region, using fully correlated errors. We show, that these highest precision data are very well described within the dipole model framework starting from Q 2 values of 3.5 GeV 2 to the highest values of Q 2 =250 GeV 2 . To analyze the saturation effects we evaluated the data including also the very low 0.35including this region show a preference of the saturation ansatz.

  9. Standard fire behavior fuel models: a comprehensive set for use with Rothermel's surface fire spread model

    Science.gov (United States)

    Joe H. Scott; Robert E. Burgan

    2005-01-01

    This report describes a new set of standard fire behavior fuel models for use with Rothermel's surface fire spread model and the relationship of the new set to the original set of 13 fire behavior fuel models. To assist with transition to using the new fuel models, a fuel model selection guide, fuel model crosswalk, and set of fuel model photos are provided.

  10. A CDO option market model on standardized CDS index tranches

    DEFF Research Database (Denmark)

    Dorn, Jochen

    We provide a market model which implies a dynamic for standardized CDS index tranche spreads. This model is useful for pricing options on tranches with future Issue Dates as well as for modeling emerging options on struc- tured credit derivatives. With the upcoming regulation of the CDS market...... in perspective, the model presented here is also an attempt to face the e ects on pricing approaches provoked by an eventual Clearing Chamber . It becomes also possible to calibrate Index Tranche Options with bespoke tenors/tranche subordination to market data obtained by more liquid Index Tranche Options...

  11. Search for the standard model Higgs boson in $l\

    Energy Technology Data Exchange (ETDEWEB)

    Li, Dikai [Pierre and Marie Curie Univ., Paris (France)

    2013-01-01

    Humans have always attempted to understand the mystery of Nature, and more recently physicists have established theories to describe the observed phenomena. The most recent theory is a gauge quantum field theory framework, called Standard Model (SM), which proposes a model comprised of elementary matter particles and interaction particles which are fundamental force carriers in the most unified way. The Standard Model contains the internal symmetries of the unitary product group SU(3)c ⓍSU(2)L Ⓧ U(1)Y , describes the electromagnetic, weak and strong interactions; the model also describes how quarks interact with each other through all of these three interactions, how leptons interact with each other through electromagnetic and weak forces, and how force carriers mediate the fundamental interactions.

  12. Supersymmetric standard model from the heterotic string (II)

    Energy Technology Data Exchange (ETDEWEB)

    Buchmueller, W. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Hamaguchi, K. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)]|[Tokyo Univ. (Japan). Dept. of Physics; Lebedev, O.; Ratz, M. [Bonn Univ. (Germany). Physikalisches Inst.

    2006-06-15

    We describe in detail a Z{sub 6} orbifold compactification of the heterotic E{sub 8} x E{sub 8} string which leads to the (supersymmetric) standard model gauge group and matter content. The quarks and leptons appear as three 16-plets of SO(10), two of which are localized at fixed points with local SO(10) symmetry. The model has supersymmetric vacua without exotics at low energies and is consistent with gauge coupling unification. Supersymmetry can be broken via gaugino condensation in the hidden sector. The model has large vacuum degeneracy. Certain vacua with approximate B-L symmetry have attractive phenomenological features. The top quark Yukawa coupling arises from gauge interactions and is of the order of the gauge couplings. The other Yukawa couplings are suppressed by powers of standard model singlet fields, similarly to the Froggatt-Nielsen mechanism. (Orig.)

  13. The No-Core Gamow Shell Model: Including the continuum in the NCSM

    CERN Document Server

    Barrett, B R; Michel, N; Płoszajczak, M

    2015-01-01

    We are witnessing an era of intense experimental efforts that will provide information about the properties of nuclei far from the line of stability, regarding resonant and scattering states as well as (weakly) bound states. This talk describes our formalism for including these necessary ingredients into the No-Core Shell Model by using the Gamow Shell Model approach. Applications of this new approach, known as the No-Core Gamow Shell Model, both to benchmark cases as well as to unstable nuclei will be given.

  14. Non-perturbative effective interactions in the standard model

    CERN Document Server

    Arbuzov, Boris A

    2014-01-01

    This monograph is devoted to the nonperturbative dynamics in the Standard Model (SM), the basic theory of all, but gravity, fundamental interactions in nature. The Standard Model is devided into two parts: the Quantum chromodynamics (QCD) and the Electro-weak theory (EWT) are well-defined renormalizable theories in which the perturbation theory is valid. However, for the adequate description of the real physics nonperturbative effects are inevitable. This book describes how these nonperturbative effects may be obtained in the framework of spontaneous generation of effective interactions. The well-known example of such effective interaction is provided by the famous Nambu--Jona-Lasinio effective interaction. Also a spontaneous generation of this interaction in the framework of QCD is described and applied to the method for other effective interactions in QCD and EWT. The method is based on N.N. Bogoliubov conception of compensation equations. As a result we then describe the principle feathures of the Standard...

  15. ATLAS Standard Model Measurements Using Jet Grooming and Substructure

    CERN Document Server

    Ucchielli, Giulia; The ATLAS collaboration

    2017-01-01

    Boosted topologies allow to explore Standard Model processes in kinematical regimes never tested before. In such LHC challenging environments, standard reconstruction techniques quickly hit the wall. Targeting hadronic final states means to properly reconstruct energy and multiplicity of the jets in the event. In order to be able to identify the decay product of boosted objects, i.e. W bosons, $t\\bar{t}$ pairs or Higgs produced in association with $t\\bar{t}$ pairs, ATLAS experiment is currently exploiting several algorithms using jet grooming and jet substructure. This contribution will mainly cover the following ATLAS measurements: $t\\bar{t}$ differential cross section production and jet mass using the soft drop procedure. Standard Model measurements offer the perfect field to test the performances of new jet tagging techniques which will become even more important in the search for new physics in highly boosted topologies.”

  16. Conceptualizing a Dynamic Fall Risk Model Including Intrinsic Risks and Exposures.

    Science.gov (United States)

    Klenk, Jochen; Becker, Clemens; Palumbo, Pierpaolo; Schwickert, Lars; Rapp, Kilan; Helbostad, Jorunn L; Todd, Chris; Lord, Stephen R; Kerse, Ngaire

    2017-11-01

    Falls are a major cause of injury and disability in older people, leading to serious health and social consequences including fractures, poor quality of life, loss of independence, and institutionalization. To design and provide adequate prevention measures, accurate understanding and identification of person's individual fall risk is important. However, to date, the performance of fall risk models is weak compared with models estimating, for example, cardiovascular risk. This deficiency may result from 2 factors. First, current models consider risk factors to be stable for each person and not change over time, an assumption that does not reflect real-life experience. Second, current models do not consider the interplay of individual exposure including type of activity (eg, walking, undertaking transfers) and environmental risks (eg, lighting, floor conditions) in which activity is performed. Therefore, we posit a dynamic fall risk model consisting of intrinsic risk factors that vary over time and exposure (activity in context). eHealth sensor technology (eg, smartphones) begins to enable the continuous measurement of both the above factors. We illustrate our model with examples of real-world falls from the FARSEEING database. This dynamic framework for fall risk adds important aspects that may improve understanding of fall mechanisms, fall risk models, and the development of fall prevention interventions. Copyright © 2017 AMDA – The Society for Post-Acute and Long-Term Care Medicine. Published by Elsevier Inc. All rights reserved.

  17. Modeling of cylindrical surrounding gate MOSFETs including the fringing field effects

    International Nuclear Information System (INIS)

    Gupta, Santosh K.; Baishya, Srimanta

    2013-01-01

    A physically based analytical model for surface potential and threshold voltage including the fringing gate capacitances in cylindrical surround gate (CSG) MOSFETs has been developed. Based on this a subthreshold drain current model has also been derived. This model first computes the charge induced in the drain/source region due to the fringing capacitances and considers an effective charge distribution in the cylindrically extended source/drain region for the development of a simple and compact model. The fringing gate capacitances taken into account are outer fringe capacitance, inner fringe capacitance, overlap capacitance, and sidewall capacitance. The model has been verified with the data extracted from 3D TCAD simulations of CSG MOSFETs and was found to be working satisfactorily. (semiconductor devices)

  18. The Watts-Strogatz network model developed by including degree distribution: theory and computer simulation

    International Nuclear Information System (INIS)

    Chen, Y W; Zhang, L F; Huang, J P

    2007-01-01

    By using theoretical analysis and computer simulations, we develop the Watts-Strogatz network model by including degree distribution, in an attempt to improve the comparison between characteristic path lengths and clustering coefficients predicted by the original Watts-Strogatz network model and those of the real networks with the small-world property. Good agreement between the predictions of the theoretical analysis and those of the computer simulations has been shown. It is found that the developed Watts-Strogatz network model can fit the real small-world networks more satisfactorily. Some other interesting results are also reported by adjusting the parameters in a model degree-distribution function. The developed Watts-Strogatz network model is expected to help in the future analysis of various social problems as well as financial markets with the small-world property

  19. Including Effects of Water Stress on Dead Organic Matter Decay to a Forest Carbon Model

    Science.gov (United States)

    Kim, H.; Lee, J.; Han, S. H.; Kim, S.; Son, Y.

    2017-12-01

    Decay of dead organic matter is a key process of carbon (C) cycling in forest ecosystems. The change in decay rate depends on temperature sensitivity and moisture conditions. The Forest Biomass and Dead organic matter Carbon (FBDC) model includes a decay sub-model considering temperature sensitivity, yet does not consider moisture conditions as drivers of the decay rate change. This study aimed to improve the FBDC model by including a water stress function to the decay sub-model. Also, soil C sequestration under climate change with the FBDC model including the water stress function was simulated. The water stress functions were determined with data from decomposition study on Quercus variabilis forests and Pinus densiflora forests of Korea, and adjustment parameters of the functions were determined for both species. The water stress functions were based on the ratio of precipitation to potential evapotranspiration. Including the water stress function increased the explained variances of the decay rate by 19% for the Q. variabilis forests and 7% for the P. densiflora forests, respectively. The increase of the explained variances resulted from large difference in temperature range and precipitation range across the decomposition study plots. During the period of experiment, the mean annual temperature range was less than 3°C, while the annual precipitation ranged from 720mm to 1466mm. Application of the water stress functions to the FBDC model constrained increasing trend of temperature sensitivity under climate change, and thus increased the model-estimated soil C sequestration (Mg C ha-1) by 6.6 for the Q. variabilis forests and by 3.1 for the P. densiflora forests, respectively. The addition of water stress functions increased reliability of the decay rate estimation and could contribute to reducing the bias in estimating soil C sequestration under varying moisture condition. Acknowledgement: This study was supported by Korea Forest Service (2017044B10-1719-BB01)

  20. Search for Higgs boson in beyond standard model scenarios at ...

    Indian Academy of Sciences (India)

    The principal physics motivation of the LHC experiments is to search for the Higgs boson and to probe the physics of TeV energy scale. Potential of discovery for Higgs bosons in various scenarios beyond standard model have been estimated for both CMS and ATLAS experiments through detailed detector simulations.

  1. Searches for phenomena beyond the Standard Model at the Large ...

    Indian Academy of Sciences (India)

    Keywords. LHC; ATLAS; CMS; BSM; supersymmetry; exotic. Abstract. The LHC has delivered several fb-1 of data in spring and summer 2011, opening new windows of opportunity for discovering phenomena beyond the Standard Model. A summary of the searches conducted by the ATLAS and CMS experiments based on ...

  2. 15th International Workshop "What Comes Beyond the Standard Models"

    CERN Document Server

    Nielsen, Holger Bech; Lukman, Dragan

    2013-01-01

    The contribution contains the preface to the Proceedings to the 15 th Workshop What Comes Beyond the Standard Models, Bled, July 9 - 19, 2012, published in Bled workshops in physics, Vol.13, No. 2, DMFA-Zaloznistvo, Ljubljana, Dec. 2012, and links to the published contributions.

  3. 14th Workshop on What Comes Beyond the Standard Models

    CERN Document Server

    Nielsen, Holger Bech; Lukman, Dragan; 14th Bled Workshop 2011

    2013-01-01

    The contribution contains the preface to the Proceedings to the 14th Workshop What Comes Beyond the Standard Models, Bled, July 11 - 21, 2011, published in Bled workshops in physics, Vol.12, No. 2, DMFA-Zaloznistvo, Ljubljana, Dec. 2011, and links to the published contributions.

  4. Charged and neutral minimal supersymmetric standard model Higgs ...

    Indian Academy of Sciences (India)

    physics pp. 759–763. Charged and neutral minimal supersymmetric standard model Higgs boson decays and measurement of tan β at the compact linear collider. E CONIAVITIS and A FERRARI∗. Department of Nuclear and Particle Physics, Uppsala University, 75121 Uppsala, Sweden. ∗E-mail: ferrari@tsl.uu.se. Abstract.

  5. Land administration domain model is an ISO standard now

    NARCIS (Netherlands)

    Lemmen, C.H.J.; Van Oosterom, P.J.M.; Uitermark, H.T.; De Zeeuw, K.

    2013-01-01

    A group of land administration professionals initiated the development of a data model that facilitates the quick and efficient set-up of land registrations. Just like social issues benefit from proper land administration, land administration systems themselves benefit from proper data standards. In

  6. The Dawn of physics beyond the standard model

    CERN Multimedia

    Kane, Gordon

    2003-01-01

    "The Standard Model of particle physics is at a pivotal moment in its history: it is both at the height of its success and on the verge of being surpassed [...] A new era in particle physics could soon be heralded by the detection of supersymmetric particles at the Tevatron collider at Fermi National Accelerator Laboratory in Batavia, Ill." (8 pages)

  7. Real gauge singlet scalar extension of the Standard Model: A ...

    Indian Academy of Sciences (India)

    2013-03-05

    Mar 5, 2013 ... Abstract. The simplest extension of Standard Model (SM) is considered in which a real SM gauge singlet scalar with an additional discrete symmetry Z2 is introduced to SM. This additional scalar can be a viable candidate of cold dark matter (CDM) since the stability of S is achieved by the application of Z2 ...

  8. The hierarchy problem and Physics Beyond the Standard Model

    Indian Academy of Sciences (India)

    f . Fine-tuning has to be done order by order in perturbation theory. Hierarchy problem. What guarantees the stability of v against quantum fluctuations? ⇒ Physics Beyond the Standard Model. Experimental side: Dark matter, neutrino mass, matter-antimatter asymmetry, ... Gautam Bhattacharyya. IASc Annual Meeting, IISER, ...

  9. B decays in the standard model and beyond

    International Nuclear Information System (INIS)

    London, D.

    1993-01-01

    This paper is a brief review of a set of B decays in and beyond the standard model. The author discusses only right-handed B decays, certain rare B decays, B c decays, B s 0 B s 0 mixing, and T violation

  10. 2006: Particle Physics in the Standard Model and beyond

    Indian Academy of Sciences (India)

    journal of. October 2006 physics pp. 561–577. 2006: Particle Physics in the Standard Model and beyond. GUIDO ALTARELLI. Department of Physics, Theory Division, ..... that the gauge symmetry is unbroken in the vertices of the theory: all currents and charges ... Here, when talking of divergences, we are not worried of ac-.

  11. Standard Model Higgs boson searches with the ATLAS detector at ...

    Indian Academy of Sciences (India)

    The investigation of the mechanism responsible for electroweak symmetry breaking is one of the most important tasks of the scientific program of the Large Hadron Collider. The experimental results on the search of the Standard Model Higgs boson with 1 to 2 fb-1 of proton–proton collision data at s = 7 TeV recorded by the ...

  12. Challenging the Standard Model with the muon g− 2

    Indian Academy of Sciences (India)

    Abstract. The discrepancy between experiment and the Standard Model prediction of the muon −2 is reviewed. The possibility to bridge it by hypothetical increases in the hadronic cross-section used to determine the leading hadronic contribution to the latter is analysed.

  13. Searches for phenomena beyond the Standard Model at the Large

    Indian Academy of Sciences (India)

    The LHC has delivered several fb-1 of data in spring and summer 2011, opening new windows of opportunity for discovering phenomena beyond the Standard Model. A summary of the searches conducted by the ATLAS and CMS experiments based on about 1 fb-1 of data is presented.

  14. Search for Higgs boson in beyond standard model scenarios

    Indian Academy of Sciences (India)

    The principal physics motivation of the LHC experiments is to search for the Higgs boson and to probe the physics of TeV energy scale. Potential of discovery for Higgs bosons in various scenarios beyond standard model have been estimated for both CMS and ATLAS experiments through detailed detector simulations.

  15. Standard Model Higgs boson searches with the ATLAS detector

    Indian Academy of Sciences (India)

    The investigation of the mechanism responsible for electroweak symmetry breaking is one of the most important tasks of the scientific program of the Large Hadron Collider. The experimental results on the search of the Standard Model Higgs boson with 1 to 2 fb-1 of proton–proton collision data at s = 7 TeV recorded by the ...

  16. Mathematical Modeling, Sense Making, and the Common Core State Standards

    Science.gov (United States)

    Schoenfeld, Alan H.

    2013-01-01

    On October 14, 2013 the Mathematics Education Department at Teachers College hosted a full-day conference focused on the Common Core Standards Mathematical Modeling requirements to be implemented in September 2014 and in honor of Professor Henry Pollak's 25 years of service to the school. This article is adapted from my talk at this conference…

  17. Model food standards regulation. S3. Irradiation of food

    International Nuclear Information System (INIS)

    1987-01-01

    This revised Model Food Standards Regulation S3 for the irradiation of food replaces the regulation adopted in June 1982. It specifies the types of ionizing radiations which may be used, lists the foods which may be processed and describes the requirements for an approved facility. It lists the records which are required to be kept and requirements for labelling of irradiated food

  18. Challenging the Standard Model with the muon g − 2

    Indian Academy of Sciences (India)

    the muon g−2 is reviewed. The possibility to bridge it by hypothetical increases in the hadronic cross-section used to determine the leading hadronic contribution to the latter is analysed. Keywords. Muon anomalous magnetic moment; Standard Model Higgs boson. PACS Nos 13.40.Em; 14.60.Ef; 12.15.Lk; 14.80.Bn. 1.

  19. Baryon asymmetry of the Universe in the standard model

    International Nuclear Information System (INIS)

    Farrar, G.R.; Shaposhnikov, M.E.

    1994-01-01

    We study the interactions of quarks and antiquarks with the changing Higgs field during the electroweak phase transition, including quantum mechanical and some thermal effects, with the only source of CP violation being the known CKM phase. We show that the GIM cancellation, which has been commonly thought to imply a prediction which is at least 10 orders of magnitude too small, can be evaded in certain kinematic regimes, for instance, when the strange quark is totally reflected but the down quark is not. We report on a quantitative calculation of the asymmetry in a one-dimensional approximation based on the present understanding of the physics of the high-temperature environment, but with some aspects of the problem oversimplified. The resulting prediction for the magnitude and sign of the present baryonic asymmetry of the Universe agrees with the observed value, with moderately optimistic assumptions about the dynamics of the phase transition. Both magnitude and sign of the asymmetry have an intricate dependence on quark masses and mixings, so that quantitative agreement between prediction and observation would be highly nontrivial. At present uncertainties related to the dynamics of the EW phase transition and the oversimplifications of our treatment are too great to decide whether or not this is the correct explanation for the presence of remnant matter in our Universe; however, the present work makes it clear that the minimal standard model cannot be discounted as a contender for explaining this phenomenon

  20. Standardized binomial models for risk or prevalence ratios and differences.

    Science.gov (United States)

    Richardson, David B; Kinlaw, Alan C; MacLehose, Richard F; Cole, Stephen R

    2015-10-01

    Epidemiologists often analyse binary outcomes in cohort and cross-sectional studies using multivariable logistic regression models, yielding estimates of adjusted odds ratios. It is widely known that the odds ratio closely approximates the risk or prevalence ratio when the outcome is rare, and it does not do so when the outcome is common. Consequently, investigators may decide to directly estimate the risk or prevalence ratio using a log binomial regression model. We describe the use of a marginal structural binomial regression model to estimate standardized risk or prevalence ratios and differences. We illustrate the proposed approach using data from a cohort study of coronary heart disease status in Evans County, Georgia, USA. The approach reduces problems with model convergence typical of log binomial regression by shifting all explanatory variables except the exposures of primary interest from the linear predictor of the outcome regression model to a model for the standardization weights. The approach also facilitates evaluation of departures from additivity in the joint effects of two exposures. Epidemiologists should consider reporting standardized risk or prevalence ratios and differences in cohort and cross-sectional studies. These are readily-obtained using the SAS, Stata and R statistical software packages. The proposed approach estimates the exposure effect in the total population. © The Author 2015; all rights reserved. Published by Oxford University Press on behalf of the International Epidemiological Association.

  1. Neutral Higgs bosons in the standard model and in the minimal ...

    Indian Academy of Sciences (India)

    assumed to be CP invariant. Finally, we discuss an alternative MSSM scenario including. CP violation in the Higgs sector. Keywords. Higgs bosons; standard model; minimal supersymmetric model; searches at LEP. 1. Introduction. One of the challenges in high-energy particle physics is the discovery of Higgs bosons.

  2. Including an ocean carbon cycle model into iLOVECLIM (v1.0)

    NARCIS (Netherlands)

    Bouttes, N.; Roche, D.M.V.A.P.; Mariotti, V.; Bopp, L.

    2015-01-01

    The atmospheric carbon dioxide concentration plays a crucial role in the radiative balance and as such has a strong influence on the evolution of climate. Because of the numerous interactions between climate and the carbon cycle, it is necessary to include a model of the carbon cycle within a

  3. An imprecise Dirichlet model for Bayesian analysis of failure data including right-censored observations

    International Nuclear Information System (INIS)

    Coolen, F.P.A.

    1997-01-01

    This paper is intended to make researchers in reliability theory aware of a recently introduced Bayesian model with imprecise prior distributions for statistical inference on failure data, that can also be considered as a robust Bayesian model. The model consists of a multinomial distribution with Dirichlet priors, making the approach basically nonparametric. New results for the model are presented, related to right-censored observations, where estimation based on this model is closely related to the product-limit estimator, which is an important statistical method to deal with reliability or survival data including right-censored observations. As for the product-limit estimator, the model considered in this paper aims at not using any information other than that provided by observed data, but our model fits into the robust Bayesian context which has the advantage that all inferences can be based on probabilities or expectations, or bounds for probabilities or expectations. The model uses a finite partition of the time-axis, and as such it is also related to life-tables

  4. MEMLS3&a: Microwave Emission Model of Layered Snowpacks adapted to include backscattering

    Directory of Open Access Journals (Sweden)

    M. Proksch

    2015-08-01

    Full Text Available The Microwave Emission Model of Layered Snowpacks (MEMLS was originally developed for microwave emissions of snowpacks in the frequency range 5–100 GHz. It is based on six-flux theory to describe radiative transfer in snow including absorption, multiple volume scattering, radiation trapping due to internal reflection and a combination of coherent and incoherent superposition of reflections between horizontal layer interfaces. Here we introduce MEMLS3&a, an extension of MEMLS, which includes a backscatter model for active microwave remote sensing of snow. The reflectivity is decomposed into diffuse and specular components. Slight undulations of the snow surface are taken into account. The treatment of like- and cross-polarization is accomplished by an empirical splitting parameter q. MEMLS3&a (as well as MEMLS is set up in a way that snow input parameters can be derived by objective measurement methods which avoid fitting procedures of the scattering efficiency of snow, required by several other models. For the validation of the model we have used a combination of active and passive measurements from the NoSREx (Nordic Snow Radar Experiment campaign in Sodankylä, Finland. We find a reasonable agreement between the measurements and simulations, subject to uncertainties in hitherto unmeasured input parameters of the backscatter model. The model is written in Matlab and the code is publicly available for download through the following website: http://www.iapmw.unibe.ch/research/projects/snowtools/memls.html.

  5. Steady-state analysis of activated sludge processes with a settler model including sludge compression.

    Science.gov (United States)

    Diehl, S; Zambrano, J; Carlsson, B

    2016-01-01

    A reduced model of a completely stirred-tank bioreactor coupled to a settling tank with recycle is analyzed in its steady states. In the reactor, the concentrations of one dominant particulate biomass and one soluble substrate component are modelled. While the biomass decay rate is assumed to be constant, growth kinetics can depend on both substrate and biomass concentrations, and optionally model substrate inhibition. Compressive and hindered settling phenomena are included using the Bürger-Diehl settler model, which consists of a partial differential equation. Steady-state solutions of this partial differential equation are obtained from an ordinary differential equation, making steady-state analysis of the entire plant difficult. A key result showing that the ordinary differential equation can be replaced with an approximate algebraic equation simplifies model analysis. This algebraic equation takes the location of the sludge-blanket during normal operation into account, allowing for the limiting flux capacity caused by compressive settling to easily be included in the steady-state mass balance equations for the entire plant system. This novel approach grants the possibility of more realistic solutions than other previously published reduced models, comprised of yet simpler settler assumptions. The steady-state concentrations, solids residence time, and the wastage flow ratio are functions of the recycle ratio. Solutions are shown for various growth kinetics; with different values of biomass decay rate, influent volumetric flow, and substrate concentration. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. No evidence for extensions to the standard cosmological model

    CSIR Research Space (South Africa)

    Heavens, A

    2017-09-01

    Full Text Available is not included. Many alternative models are strongly disfavoured by the data, including primordial correlated isocurvature models (lnB=-7.8), non-zero scalar-to-tensor ratio (lnB=-4.3), running of the spectral index (lnB=-4.7), curvature (lnB=-3.6), non...

  7. Innovation Process Planning Model in the Bpmn Standard

    Directory of Open Access Journals (Sweden)

    Jurczyk-Bunkowska Magdalena

    2013-12-01

    Full Text Available The aim of the article is to show the relations in the innovation process planning model. The relations argued here guarantee the stable and reliable way to achieve the result in the form of an increased competitiveness by a professionally directed development of the company. The manager needs to specify the effect while initiating the realisation of the process, has to be achieved this by the system of indirect goals. The original model proposed here shows the standard of dependence between the plans of the fragments of the innovation process which make up for achieving its final goal. The relation in the present article was shown by using the standard Business Process Model and Notation. This enabled the specification of interrelations between the decision levels at which subsequent fragments of the innovation process are planned. This gives the possibility of a better coordination of the process, reducing the time needed for the achievement of its effect. The model has been compiled on the basis of the practises followed in Polish companies. It is not, however, the reflection of these practises, but rather an idealised standard of proceedings which aims at improving the effectiveness of the management of innovations on the operational level. The model shown could be the basis of the creation of systems supporting the decision making, supporting the knowledge management or those supporting the communication in the innovation processes.

  8. TS Fuzzy Model-Based Controller Design for a Class of Nonlinear Systems Including Nonsmooth Functions

    DEFF Research Database (Denmark)

    Vafamand, Navid; Asemani, Mohammad Hassan; Khayatiyan, Alireza

    2018-01-01

    criterion, new robust controller design conditions in terms of linear matrix inequalities are derived. Three practical case studies, electric power steering system, a helicopter model and servo-mechanical system, are presented to demonstrate the importance of such class of nonlinear systems comprising......This paper proposes a novel robust controller design for a class of nonlinear systems including hard nonlinearity functions. The proposed approach is based on Takagi-Sugeno (TS) fuzzy modeling, nonquadratic Lyapunov function, and nonparallel distributed compensation scheme. In this paper, a novel...... TS modeling of the nonlinear dynamics with signum functions is proposed. This model can exactly represent the original nonlinear system with hard nonlinearity while the discontinuous signum functions are not approximated. Based on the bounded-input-bounded-output stability scheme and L₁ performance...

  9. A roller chain drive model including contact with guide-bars

    DEFF Research Database (Denmark)

    Pedersen, Sine Leergaard; Hansen, John Michael; Ambrósio, J. A. C.

    2004-01-01

    as continuous force. The model of the roller-chain drive now proposed departs from an earlier model where two contact/impact methods are proposed to describe the contact between the rollers of the chain and the teeth of the sprockets. These different formulations are based on unilateral constraints....... In the continuous force method the roller-sprocket contact, is represented by forces applied on each seated roller and in the respective sprocket teeth. These forces are functions of the pseudo penetrations between roller and sprocket, impacting velocities and a restitution coefficient. In the continuous force......A model of a roller chain drive is developed and applied to the simulation and analysis of roller chain drives of large marine diesel engines. The model includes the impact with guide-bars that are the motion delimiter components on the chain strands between the sprockets. The main components...

  10. Prospects for genetically modified non-human primate models, including the common marmoset.

    Science.gov (United States)

    Sasaki, Erika

    2015-04-01

    Genetically modified mice have contributed much to studies in the life sciences. In some research fields, however, mouse models are insufficient for analyzing the molecular mechanisms of pathology or as disease models. Often, genetically modified non-human primate (NHP) models are desired, as they are more similar to human physiology, morphology, and anatomy. Recent progress in studies of the reproductive biology in NHPs has enabled the introduction of exogenous genes into NHP genomes or the alteration of endogenous NHP genes. This review summarizes recent progress in the production of genetically modified NHPs, including the common marmoset, and future perspectives for realizing genetically modified NHP models for use in life sciences research. Copyright © 2015 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  11. Overview of the Standard Model Measurements with the ATLAS Detector

    CERN Document Server

    Liu, Yanwen; The ATLAS collaboration

    2017-01-01

    The ATLAS Collaboration is engaged in precision measurement of fundamental Standard Model parameters, such as the W boson mass, the weak-mixing angle or the strong coupling constant. In addition, the production cross-sections of a large variety of final states involving high energetic jets, photons as well as single and multi vector bosons are measured multi differentially at several center of mass energies. This allows to test perturbative QCD calculations to highest precision. In addition, these measurements allow also to test models beyond the SM, e.g. those leading to anomalous gauge couplings. In this talk, we give a broad overview of the Standard Model measurement campaign of the ATLAS collaboration, where selected topics will be discussed in more detail.

  12. Neutron electric dipole moment and extension of the standard model

    International Nuclear Information System (INIS)

    Oshimo, Noriyuki

    2001-01-01

    A nonvanishing value for the electric dipole moment (EDM) of the neutron is a prominent signature for CP violation. The EDM induced by the Kobayashi-Maskawa mechanism of the standard model (SM) has a small magnitude and its detection will be very difficult. However, since baryon asymmetry of the universe cannot be accounted for by the SM, there should exist some other source of CP violation, which may generate a large magnitude for the EDM. One of the most hopeful candidates for physics beyond the SM is the supersymmetric standard model, which contains such sources of CP violation. This model suggests that the EDM has a magnitude not much smaller than the present experimental bounds. Progress in measuring the EDM provides very interesting information about extension of the SM. (author)

  13. Improving weather predictability by including land-surface model parameter uncertainty

    Science.gov (United States)

    Orth, Rene; Dutra, Emanuel; Pappenberger, Florian

    2016-04-01

    The land surface forms an important component of Earth system models and interacts nonlinearly with other parts such as ocean and atmosphere. To capture the complex and heterogenous hydrology of the land surface, land surface models include a large number of parameters impacting the coupling to other components of the Earth system model. Focusing on ECMWF's land-surface model HTESSEL we present in this study a comprehensive parameter sensitivity evaluation using multiple observational datasets in Europe. We select 6 poorly constrained effective parameters (surface runoff effective depth, skin conductivity, minimum stomatal resistance, maximum interception, soil moisture stress function shape, total soil depth) and explore their sensitivity to model outputs such as soil moisture, evapotranspiration and runoff using uncoupled simulations and coupled seasonal forecasts. Additionally we investigate the possibility to construct ensembles from the multiple land surface parameters. In the uncoupled runs we find that minimum stomatal resistance and total soil depth have the most influence on model performance. Forecast skill scores are moreover sensitive to the same parameters as HTESSEL performance in the uncoupled analysis. We demonstrate the robustness of our findings by comparing multiple best performing parameter sets and multiple randomly chosen parameter sets. We find better temperature and precipitation forecast skill with the best-performing parameter perturbations demonstrating representativeness of model performance across uncoupled (and hence less computationally demanding) and coupled settings. Finally, we construct ensemble forecasts from ensemble members derived with different best-performing parameterizations of HTESSEL. This incorporation of parameter uncertainty in the ensemble generation yields an increase in forecast skill, even beyond the skill of the default system. Orth, R., E. Dutra, and F. Pappenberger, 2016: Improving weather predictability by

  14. Global Reference Atmospheric Models, Including Thermospheres, for Mars, Venus and Earth

    Science.gov (United States)

    Justh, Hilary L.; Justus, C. G.; Keller, Vernon W.

    2006-01-01

    This document is the viewgraph slides of the presentation. Marshall Space Flight Center's Natural Environments Branch has developed Global Reference Atmospheric Models (GRAMs) for Mars, Venus, Earth, and other solar system destinations. Mars-GRAM has been widely used for engineering applications including systems design, performance analysis, and operations planning for aerobraking, entry descent and landing, and aerocapture. Preliminary results are presented, comparing Mars-GRAM with measurements from Mars Reconnaissance Orbiter (MRO) during its aerobraking in Mars thermosphere. Venus-GRAM is based on the Committee on Space Research (COSPAR) Venus International Reference Atmosphere (VIRA), and is suitable for similar engineering applications in the thermosphere or other altitude regions of the atmosphere of Venus. Until recently, the thermosphere in Earth-GRAM has been represented by the Marshall Engineering Thermosphere (MET) model. Earth-GRAM has recently been revised. In addition to including an updated version of MET, it now includes an option to use the Naval Research Laboratory Mass Spectrometer Incoherent Scatter Radar Extended Model (NRLMSISE-00) as an alternate thermospheric model. Some characteristics and results from Venus-GRAM and Earth-GRAM thermospheres are also presented.

  15. Implementation of Electrical Simulation Model for IEC Standard Type-3A Generator

    DEFF Research Database (Denmark)

    Subramanian, Chandrasekaran; Casadei, Domenico; Tani, Angelo

    2013-01-01

    turbine with partial scale power converter WEG including a two mass mechanical model. The generic models for fixed and variable speed WEGs models are suitable for fundamental frequency positive sequence response simulations during short events in the power system such as voltage dips. The wind power......This paper describes the implementation of electrical simulation model for IEC 61400-27-1 standard Type-3A generator. A general overview of the different wind electric generators(WEG) types are given and the main focused on Type-3A WEG standard models, namely a model for a variable speed wind...... penetration level continue to increase and the dynamic performance of WEG is more important with power system. The general configuration of the Type-3A model is presented and discussed, model implementation and results are provided in order to illustrate the range of applicability of the generic models....

  16. A numerical model including PID control of a multizone crystal growth furnace

    Science.gov (United States)

    Panzarella, Charles H.; Kassemi, Mohammad

    1992-01-01

    This paper presents a 2D axisymmetric combined conduction and radiation model of a multizone crystal growth furnace. The model is based on a programmable multizone furnace (PMZF) designed and built at NASA Lewis Research Center for growing high quality semiconductor crystals. A novel feature of this model is a control algorithm which automatically adjusts the power in any number of independently controlled heaters to establish the desired crystal temperatures in the furnace model. The control algorithm eliminates the need for numerous trial and error runs previously required to obtain the same results. The finite element code, FIDAP, used to develop the furnace model, was modified to directly incorporate the control algorithm. This algorithm, which presently uses PID control, and the associated heat transfer model are briefly discussed. Together, they have been used to predict the heater power distributions for a variety of furnace configurations and desired temperature profiles. Examples are included to demonstrate the effectiveness of the PID controlled model in establishing isothermal, Bridgman, and other complicated temperature profies in the sample. Finally, an example is given to show how the algorithm can be used to change the desired profile with time according to a prescribed temperature-time evolution.

  17. A New Circuit Model for Spin-Torque Oscillator Including Perpendicular Torque of Magnetic Tunnel Junction

    Directory of Open Access Journals (Sweden)

    Hyein Lim

    2013-01-01

    Full Text Available Spin-torque oscillator (STO is a promising new technology for the future RF oscillators, which is based on the spin-transfer torque (STT effect in magnetic multilayered nanostructure. It is expected to provide a larger tunability, smaller size, lower power consumption, and higher level of integration than the semiconductor-based oscillators. In our previous work, a circuit-level model of the giant magnetoresistance (GMR STO was proposed. In this paper, we present a physics-based circuit-level model of the magnetic tunnel junction (MTJ-based STO. MTJ-STO model includes the effect of perpendicular torque that has been ignored in the GMR-STO model. The variations of three major characteristics, generation frequency, mean oscillation power, and generation linewidth of an MTJ-STO with respect to the amount of perpendicular torque, are investigated, and the results are applied to our model. The operation of the model was verified by HSPICE simulation, and the results show an excellent agreement with the experimental data. The results also prove that a full circuit-level simulation with MJT-STO devices can be made with our proposed model.

  18. Including Finite Surface Span Effects in Empirical Jet-Surface Interaction Noise Models

    Science.gov (United States)

    Brown, Clifford A.

    2016-01-01

    The effect of finite span on the jet-surface interaction noise source and the jet mixing noise shielding and reflection effects is considered using recently acquired experimental data. First, the experimental setup and resulting data are presented with particular attention to the role of surface span on far-field noise. These effects are then included in existing empirical models that have previously assumed that all surfaces are semi-infinite. This extended abstract briefly describes the experimental setup and data leaving the empirical modeling aspects for the final paper.

  19. Standard guide for use of modeling for passive gamma measurements

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This guide addresses the use of models with passive gamma-ray measurement systems. Mathematical models based on physical principles can be used to assist in calibration of gamma-ray measurement systems and in analysis of measurement data. Some nondestructive assay (NDA) measurement programs involve the assay of a wide variety of item geometries and matrix combinations for which the development of physical standards are not practical. In these situations, modeling may provide a cost-effective means of meeting user’s data quality objectives. 1.2 A scientific knowledge of radiation sources and detectors, calibration procedures, geometry and error analysis is needed for users of this standard. This guide assumes that the user has, at a minimum, a basic understanding of these principles and good NDA practices (see Guide C1592), as defined for an NDA professional in Guide C1490. The user of this standard must have at least a basic understanding of the software used for modeling. Instructions or further train...

  20. Modeling of Temperature-Dependent Noise in Silicon Nanowire FETs including Self-Heating Effects

    Directory of Open Access Journals (Sweden)

    P. Anandan

    2014-01-01

    Full Text Available Silicon nanowires are leading the CMOS era towards the downsizing limit and its nature will be effectively suppress the short channel effects. Accurate modeling of thermal noise in nanowires is crucial for RF applications of nano-CMOS emerging technologies. In this work, a perfect temperature-dependent model for silicon nanowires including the self-heating effects has been derived and its effects on device parameters have been observed. The power spectral density as a function of thermal resistance shows significant improvement as the channel length decreases. The effects of thermal noise including self-heating of the device are explored. Moreover, significant reduction in noise with respect to channel thermal resistance, gate length, and biasing is analyzed.

  1. Producing high-accuracy lattice models from protein atomic coordinates including side chains.

    Science.gov (United States)

    Mann, Martin; Saunders, Rhodri; Smith, Cameron; Backofen, Rolf; Deane, Charlotte M

    2012-01-01

    Lattice models are a common abstraction used in the study of protein structure, folding, and refinement. They are advantageous because the discretisation of space can make extensive protein evaluations computationally feasible. Various approaches to the protein chain lattice fitting problem have been suggested but only a single backbone-only tool is available currently. We introduce LatFit, a new tool to produce high-accuracy lattice protein models. It generates both backbone-only and backbone-side-chain models in any user defined lattice. LatFit implements a new distance RMSD-optimisation fitting procedure in addition to the known coordinate RMSD method. We tested LatFit's accuracy and speed using a large nonredundant set of high resolution proteins (SCOP database) on three commonly used lattices: 3D cubic, face-centred cubic, and knight's walk. Fitting speed compared favourably to other methods and both backbone-only and backbone-side-chain models show low deviation from the original data (~1.5 Å RMSD in the FCC lattice). To our knowledge this represents the first comprehensive study of lattice quality for on-lattice protein models including side chains while LatFit is the only available tool for such models.

  2. A High-Rate, Single-Crystal Model including Phase Transformations, Plastic Slip, and Twinning

    Energy Technology Data Exchange (ETDEWEB)

    Addessio, Francis L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Bronkhorst, Curt Allan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Bolme, Cynthia Anne [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Explosive Science and Shock Physics Division; Brown, Donald William [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science and Technology Division; Cerreta, Ellen Kathleen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science and Technology Division; Lebensohn, Ricardo A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science and Technology Division; Lookman, Turab [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Luscher, Darby Jon [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Mayeur, Jason Rhea [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Morrow, Benjamin M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science and Technology Division; Rigg, Paulo A. [Washington State Univ., Pullman, WA (United States). Dept. of Physics. Inst. for Shock Physics

    2016-08-09

    An anisotropic, rate-­dependent, single-­crystal approach for modeling materials under the conditions of high strain rates and pressures is provided. The model includes the effects of large deformations, nonlinear elasticity, phase transformations, and plastic slip and twinning. It is envisioned that the model may be used to examine these coupled effects on the local deformation of materials that are subjected to ballistic impact or explosive loading. The model is formulated using a multiplicative decomposition of the deformation gradient. A plate impact experiment on a multi-­crystal sample of titanium was conducted. The particle velocities at the back surface of three crystal orientations relative to the direction of impact were measured. Molecular dynamics simulations were conducted to investigate the details of the high-­rate deformation and pursue issues related to the phase transformation for titanium. Simulations using the single crystal model were conducted and compared to the high-­rate experimental data for the impact loaded single crystals. The model was found to capture the features of the experiments.

  3. Modeling and analysis of the affinity filtration process, including broth feeding, washing, and elution steps.

    Science.gov (United States)

    He, L Z; Dong, X Y; Sun, Y

    1998-01-01

    Affinity filtration is a developing protein purification technique that combines the high selectivity of affinity chromatography and the high processing speed of membrane filtration. In this work a lumped kinetic model was developed to describe the whole affinity filtration process, including broth feeding, contaminant washing, and elution steps. Affinity filtration experiments were conducted to evaluate the model using bovine serum albumin as a model protein and a highly substituted Blue Sepharose as an affinity adsorbent. The model with nonadjustable parameters agreed fairly to the experimental results. Thus, the performance of the affinity filtration in processing a crude broth containing contaminant proteins was analyzed by computer simulations using the lumped model. The simulation results show that there is an optimal protein loading for obtaining the maximum recovery yield of the desired protein with a constant purity at each operating condition. The concentration of a crude broth is beneficial in increasing the recovery yield of the desired protein. Using a constant amount of the affinity adsorbent, the recovery yield can be enhanced by decreasing the solution volume in the stirred tank due to the increase of the adsorbent weight fraction. It was found that the lumped kinetic model was simple and useful in analyzing the whole affinity filtration process.

  4. Model for safety reports including descriptive examples; Mall foer saekerhetsrapporter med beskrivande exempel

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-01

    Several safety reports will be produced in the process of planning and constructing the system for disposal of high-level radioactive waste in Sweden. The present report gives a model, with detailed examples, of how these reports should be organized and what steps they should include. In the near future safety reports will deal with the encapsulation plant and the repository. Later reports will treat operation of the handling systems and the repository.

  5. E-health stakeholders experiences with clinical modelling and standardizations.

    Science.gov (United States)

    Gøeg, Kirstine Rosenbeck; Elberg, Pia Britt; Højen, Anne Randorff

    2015-01-01

    Stakeholders in e-health such as governance officials, health IT-implementers and vendors have to co-operate to achieve the goal of a future-proof interoperable e-health infrastructure. Co-operation requires knowledge on the responsibility and competences of stakeholder groups. To increase awareness on clinical modeling and standardization we conducted a workshop for Danish and a few Norwegian e-health stakeholders' and made them discuss their views on different aspects of clinical modeling using a theoretical model as a point of departure. Based on the model, we traced stakeholders' experiences. Our results showed there was a tendency that stakeholders were more familiar with e-health requirements than with design methods, clinical information models and clinical terminology as they are described in the scientific literature. The workshop made it possible for stakeholders to discuss their roles and expectations to each other.

  6. Collisional-radiative model including recombination processes for W27+ ion★

    Science.gov (United States)

    Murakami, Izumi; Sasaki, Akira; Kato, Daiji; Koike, Fumihiro

    2017-10-01

    We have constructed a collisional-radiative (CR) model for W27+ ions including 226 configurations with n ≤ 9 and ł ≤ 5 for spectroscopic diagnostics. We newly include recombination processes in the model and this is the first result of extreme ultraviolet spectrum calculated for recombining plasma component. Calculated spectra in 40-70 Å range in ionizing and recombining plasma components show similar 3 strong lines and 1 line weak in recombining plasma component at 45-50 Å and many weak lines at 50-65 Å for both components. Recombination processes do not contribute much to the spectrum at around 60 Å for W27+ ion. Dielectronic satellite lines are also minor contribution to the spectrum of recombining plasma component. Dielectronic recombination (DR) rate coefficient from W28+ to W27+ ions is also calculated with the same atomic data in the CR model. We found that larger set of energy levels including many autoionizing states gave larger DR rate coefficients but our rate agree within factor 6 with other works at electron temperature around 1 keV in which W27+ and W28+ ions are usually observed in plasmas. Contribution to the Topical Issue "Atomic and Molecular Data and their Applications", edited by Gordon W.F. Drake, Jung-Sik Yoon, Daiji Kato, and Grzegorz Karwasz.

  7. A 3D model of the oculomotor plant including the pulley system

    Science.gov (United States)

    Viegener, A.; Armentano, R. L.

    2007-11-01

    Early models of the oculomotor plant only considered the eye globes and the muscles that move them. Recently, connective tissue structures have been found enveloping the extraocular muscles (EOMs) and firmly anchored to the orbital wall. These structures act as pulleys; they determine the functional origin of the EOMs and, in consequence, their effective pulling direction. A three dimensional model of the oculomotor plant, including pulleys, has been developed and simulations in Simulink were performed during saccadic eye movements. Listing's law was implemented based on the supposition that there exists an eye orientation related signal. The inclusion of the pulleys in the model makes this assumption plausible and simplifies the problem of the plant noncommutativity.

  8. Double-gate junctionless transistor model including short-channel effects

    International Nuclear Information System (INIS)

    Paz, B C; Pavanello, M A; Ávila-Herrera, F; Cerdeira, A

    2015-01-01

    This work presents a physically based model for double-gate junctionless transistors (JLTs), continuous in all operation regimes. To describe short-channel transistors, short-channel effects (SCEs), such as increase of the channel potential due to drain bias, carrier velocity saturation and mobility degradation due to vertical and longitudinal electric fields, are included in a previous model developed for long-channel double-gate JLTs. To validate the model, an analysis is made by using three-dimensional numerical simulations performed in a Sentaurus Device Simulator from Synopsys. Different doping concentrations, channel widths and channel lengths are considered in this work. Besides that, the series resistance influence is numerically included and validated for a wide range of source and drain extensions. In order to check if the SCEs are appropriately described, besides drain current, transconductance and output conductance characteristics, the following parameters are analyzed to demonstrate the good agreement between model and simulation and the SCEs occurrence in this technology: threshold voltage (V TH ), subthreshold slope (S) and drain induced barrier lowering. (paper)

  9. Modeling the distribution of ammonia across Europe including bi-directional surface–atmosphere exchange

    Directory of Open Access Journals (Sweden)

    R. J. Wichink Kruit

    2012-12-01

    Full Text Available A large shortcoming of current chemistry transport models (CTM for simulating the fate of ammonia in the atmosphere is the lack of a description of the bi-directional surface–atmosphere exchange. In this paper, results of an update of the surface–atmosphere exchange module DEPAC, i.e. DEPosition of Acidifying Compounds, in the chemistry transport model LOTOS-EUROS are discussed. It is shown that with the new description, which includes bi-directional surface–atmosphere exchange, the modeled ammonia concentrations increase almost everywhere, in particular in agricultural source areas. The reason is that by using a compensation point the ammonia lifetime and transport distance is increased. As a consequence, deposition of ammonia and ammonium decreases in agricultural source areas, while it increases in large nature areas and remote regions especially in southern Scandinavia. The inclusion of a compensation point for water reduces the dry deposition over sea and allows reproducing the observed marine background concentrations at coastal locations to a better extent. A comparison with measurements shows that the model results better represent the measured ammonia concentrations. The concentrations in nature areas are slightly overestimated, while the concentrations in agricultural source areas are still underestimated. Although the introduction of the compensation point improves the model performance, the modeling of ammonia remains challenging. Important aspects are emission patterns in space and time as well as a proper approach to deal with the high concentration gradients in relation to model resolution. In short, the inclusion of a bi-directional surface–atmosphere exchange is a significant step forward for modeling ammonia.

  10. Challenges to the standard model of Big Bang nucleosynthesis

    International Nuclear Information System (INIS)

    Steigman, G.

    1993-01-01

    Big Bang nucleosynthesis provides a unique probe of the early evolution of the Universe and a crucial test of the consistency of the standard hot Big Bang cosmological model. Although the primordial abundances of 2 H, 3 He, 4 He, and 7 Li inferred from current observational data are in agreement with those predicted by Big Bang nucleosynthesis, recent analysis has severely restricted the consistent range for the nucleon-to-photon ratio: 3.7 ≤ η 10 ≤ 4.0. Increased accuracy in the estimate of primordial 4 he and observations of Be and B in Pop II stars are offering new challenges to the standard model and suggest that no new light particles may be allowed (N ν BBN ≤ 3.0, where N ν is the number of equivalent light neutrinos). 23 refs

  11. The search for the Standard Model Higgs boson at ALEPH

    CERN Document Server

    McNamara, P A

    2002-01-01

    The standard model of elementary particles is a remarkably successful theory. The Higgs boson, the particle responsible for giving masses to those particles with mass, is the only particle in the standard model which has not been experimentally observed. In data collected in 2000 at the Large Electron-Positron Collider, at center of mass energies up to 209 GeV, an excess of Higgs-like events was observed. This excess is consistent with the production of a Higgs boson with invariant mass 115.6 ± 0.8 GeV/c 2. The effect is dominated by an excess in the four-jet channels in ALEPH caused by three high purity signal candidates.

  12. Search for the Standard Model Higgs Boson at LEP

    CERN Document Server

    Barate, R.; De Bonis, I.; Decamp, D.; Goy, C.; Jezequel, S.; Lees, J.P.; Martin, F.; Merle, E.; Minard, M.N.; Pietrzyk, B.; Trocme, B.; Boix, G.; Bravo, S.; Casado, M.P.; Chmeissani, M.; Crespo, J.M.; Fernandez, E.; Fernandez-Bosman, M.; Garrido, L.; Grauges, E.; Lopez, J.; Martinez, M.; Merino, G.; Miquel, R.; Mir, L.M.; Pacheco, A.; Paneque, D.; Ruiz, H.; Heister, A.; Schael, S.; Colaleo, A.; Creanza, D.; De Filippis, N.; de Palma, M.; Iaselli, G.; Maggi, G.; Maggi, M.; Nuzzo, S.; Ranieri, A.; Raso, G.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Tricomi, A.; Zito, G.; Huang, X.; Lin, J.; Quyang, Q.; Wang, T.; Xie, Y.; Xu, R.; Xue, S.; Zhang, J.; Zhang, L.; Zhao, W.; Abbaneo, D.; Azzurri, P.; Barklow, T.; Buchmuller, O.; Cattaneo, M.; Cerutti, F.; Clerbaux, B.; Drevermann, H.; Forty, R.W.; Frank, M.; Gianotti, F.; Greening, T.C.; Hansen, J.B.; Harvey, J.; Hutchcroft, D.E.; Janot, P.; Jost, B.; Kado, M.; Maley, P.; Mato, P.; Moutoussi, A.; Ranjard, F.; Rolandi, Gigi; Schlatter, D.; Sguazzoni, G.; Tejessy, W.; Teubert, F.; Valassi, A.; Videau, I.; Ward, J.J.; Badaud, F.; Dessagne, S.; Falvard, A.; Fayolle, D.; Gay, P.; Jousset, J.; Michel, B.; Monteil, S.; Pallin, D.; Pascolo, J.M.; Perret, P.; Hansen, J.D.; Hansen, J.R.; Hansen, P.H.; Nilsson, B.S.; Waananen, A.; Kyriakis, A.; Markou, C.; Simopoulou, E.; Vayaki, A.; Zachariadou, K.; Blondel, A.; Brient, J.C.; Machefert, F.; Rouge, A.; Swynghedauw, M.; Tanaka, R.; Videau, H.; Ciulli, V.; Focardi, E.; Parrini, G.; Antonelli, A.; Antonelli, M.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Chiarella, V.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G.P.; Passalacqua, L.; Pepe-Altarelli, M.; Spagnolo, P.; Kennedy, J.; Lynch, J.G.; Negus, P.; O'Shea, V.; Smith, D.; Thompson, A.S.; Wasserbaech, S.; Cavanaugh, R.; Dhamotharan, S.; Geweniger, C.; Hanke, P.; Hepp, V.; Kluge, E.E.; Leibenguth, G.; Putzer, A.; Stenzel, H.; Tittel, K.; Werner, S.; Wunsch, M.; Beuselinck, R.; Binnie, D.M.; Cameron, W.; Davies, G.; Dornan, P.J.; Girone, M.; Hill, R.D.; Marinelli, N.; Nowell, J.; Przysiezniak, H.; Rutherford, S.A.; Sedgbeer, J.K.; Thompson, J.C.; White, R.; Ghete, V.M.; Girtler, P.; Kneringer, E.; Kuhn, D.; Rudolph, G.; Bouhova-Thacker, E.; Bowdery, C.K.; Clarke, D.P.; Ellis, G.; Finch, A.J.; Foster, F.; Hughes, G.; Jones, R.W.L.; Pearson, M.R.; Robertson, N.A.; Smizanska, M.; Lemaitre, V.; Blumenschein, U.; Holldorfer, F.; Jakobs, K.; Kayser, F.; Kleinknecht, K.; Muller, A.S.; Quast, G.; Renk, B.; Sander, H.G.; Schmeling, S.; Wachsmuth, H.; Zeitnitz, C.; Ziegler, T.; Bonissent, A.; Carr, J.; Coyle, P.; Curtil, C.; Ealet, A.; Fouchez, D.; Leroy, O.; Kachelhoffer, T.; Payre, P.; Rousseau, D.; Tilquin, A.; Ragusa, F.; David, A.; Dietl, H.; Ganis, G.; Huttmann, K.; Lutjens, G.; Mannert, C.; Manner, W.; Moser, H.G.; Settles, R.; Wolf, G.; Boucrot, J.; Callot, O.; Davier, M.; Duflot, L.; Grivaz, J.F.; Heusse, P.; Jacholkowska, A.; Loomis, C.; Serin, L.; Veillet, J.J.; de Vivie de Regie, J.B.; Yuan, C.; Bagliesi, Giuseppe; Boccali, T.; Foa, L.; Giammanco, A.; Giassi, A.; Ligabue, F.; Messineo, A.; Palla, F.; Sanguinetti, G.; Sciaba, A.; Tenchini, R.; Venturi, A.; Verdini, P.G.; Awunor, O.; Blair, G.A.; Coles, J.; Cowan, G.; Garcia-Bellido, A.; Green, M.G.; Jones, L.T.; Medcalf, T.; Misiejuk, A.; Strong, J.A.; Teixeira-Dias, P.; Clifft, R.W.; Edgecock, T.R.; Norton, P.R.; Tomalin, I.R.; Bloch-Devaux, Brigitte; Boumediene, D.; Colas, P.; Fabbro, B.; Lancon, E.; Lemaire, M.C.; Locci, E.; Perez, P.; Rander, J.; Renardy, J.F.; Rosowsky, A.; Seager, P.; Trabelsi, A.; Tuchming, B.; Vallage, B.; Konstantinidis, N.; Litke, A.M.; Taylor, G.; Booth, C.N.; Cartwright, S.; Combley, F.; Hodgson, P.N.; Lehto, M.; Thompson, L.F.; Affholderbach, K.; Boehrer, Armin; Brandt, S.; Grupen, C.; Hess, J.; Ngac, A.; Prange, G.; Sieler, U.; Borean, C.; Giannini, G.; He, H.; Putz, J.; Rothberg, J.; Armstrong, S.R.; Berkelman, Karl; Cranmer, K.; Ferguson, D.P.S.; Gao, Y.; Gonzalez, S.; Hayes, O.J.; Hu, H.; Jin, S.; Kile, J.; McNamara, P.A., III; Nielsen, J.; Pan, Y.B.; von Wimmersperg-Toeller, J.H.; Wiedenmann, W.; Wu, J.; Wu, S.L.; Wu, X.; Zobernig, G.; Dissertori, G.; Abdallah, J.; Abreu, P.; Adam, W.; Adzic, P.; Albrecht, T.; Alderweireld, T.; Alemany-Fernandez, R.; Allmendinger, T.; Allport, P.P.; Amaldi, U.; Amapane, N.; Amato, S.; Anashkin, E.; Andreazza, A.; Andringa, S.; Anjos, N.; Antilogus, P.; Apel, W.D.; Arnoud, Y.; Ask, S.; Asman, B.; Augustin, J.E.; Augustinus, A.; Baillon, P.; Ballestrero, A.; Bambade, P.; Barbier, R.; Bardin, D.; Barker, G.J.; Baroncelli, A.; Battaglia, M.; Baubillier, M.; Becks, K.H.; Begalli, M.; Behrmann, A.; Ben-Haim, E.; Benekos, N.; Benvenuti, A.; Berat, C.; Berggren, M.; Berntzon, L.; Bertrand, D.; Besancon, M.; Besson, N.; Bloch, D.; Blom, M.; Bluj, M.; Bonesini, M.; Boonekamp, M.; Booth, P.S.L.; Borisov, G.; Botner, O.; Bouquet, B.; Bowcock, T.J.V.; Boyko, I.; Bracko, M.; Brenner, R.; Brodet, E.; Bruckman, P.; Brunet, J.M.; Bugge, L.; Buschmann, P.; Calvi, M.; Camporesi, T.; Canale, V.; Carena, F.; Castro, Nuno Filipe; Cavallo, F.; Chapkin, M.; Charpentier, P.; Checchia, P.; Chierici, R.; Chliapnikov, P.; Chudoba, J.; Chung, S.U.; Cieslik, K.; Collins, P.; Contri, R.; Cosme, G.; Cossutti, F.; Costa, M.J.; Crawley, B.; Crennell, D.; Cuevas, J.; DHondt, J.; Dalmau, J.; da Silva, T.; Da Silva, W.; Della Ricca, G.; De Angelis, A.; De Boer, W.; De Clercq, C.; De Lotto, B.; De Maria, N.; De Min, A.; de Paula, L.; Di Ciaccio, L.; Di Simone, A.; Doroba, K.; Drees, J.; Dris, M.; Eigen, G.; Ekelof, T.; Ellert, M.; Elsing, M.; Espirito Santo, M.C.; Fanourakis, G.; Fassouliotis, D.; Feindt, M.; Fernandez, J.; Ferrer, A.; Ferro, F.; Flagmeyer, U.; Foeth, H.; Fokitis, E.; Fulda-Quenzer, F.; Fuster, J.; Gandelman, M.; Garcia, C.; Gavillet, P.; Gazis, Evangelos; Gokieli, R.; Golob, B.; Gomez-Ceballos, G.; Goncalves, P.; Graziani, E.; Grosdidier, G.; Grzelak, K.; Guy, J.; Haag, C.; Hallgren, A.; Hamacher, K.; Hamilton, K.; Hansen, J.; Haug, S.; Hauler, F.; Hedberg, V.; Hennecke, M.; Herr, H.; Hoffman, J.; Holmgren, S.O.; Holt, P.J.; Houlden, M.A.; Hultqvist, K.; Jackson, John Neil; Jarlskog, G.; Jarry, P.; Jeans, D.; Johansson, Erik Karl; Johansson, P.D.; Jonsson, P.; Joram, C.; Jungermann, L.; Kapusta, Frederic; Katsanevas, S.; Katsoufis, E.; Kernel, G.; Kersevan, B.P.; Kiiskinen, A.; King, B.T.; Kjaer, N.J.; Kluit, P.; Kokkinias, P.; Kourkoumelis, C.; Kouznetsov, O.; Krumstein, Z.; Kucharczyk, M.; Lamsa, J.; Leder, G.; Ledroit, Fabienne; Leinonen, L.; Leitner, R.; Lemonne, J.; Lepeltier, V.; Lesiak, T.; Liebig, W.; Liko, D.; Lipniacka, A.; Lopes, J.H.; Lopez, J.M.; Loukas, D.; Lutz, P.; Lyons, L.; MacNaughton, J.; Malek, A.; Maltezos, S.; Mandl, F.; Marco, J.; Marco, R.; Marechal, B.; Margoni, M.; Marin, J.C.; Mariotti, C.; Markou, A.; Martinez-Rivero, C.; Masik, J.; Mastroyiannopoulos, N.; Matorras, F.; Matteuzzi, C.; Mazzucato, F.; Mazzucato, M.; McNulty, R.; Meroni, C.; Meyer, W.T.; Migliore, E.; Mitaroff, W.; Mjoernmark, U.; Moa, T.; Moch, M.; Monig, Klaus; Monge, R.; Montenegro, J.; Moraes, D.; Moreno, S.; Morettini, P.; Mueller, U.; Muenich, K.; Mulders, M.; Mundim, L.; Murray, W.; Muryn, B.; Myatt, G.; Myklebust, T.; Nassiakou, M.; Navarria, F.; Nawrocki, K.; Nicolaidou, R.; Nikolenko, M.; Oblakowska-Mucha, A.; Obraztsov, V.; Olshevski, A.; Onofre, A.; Orava, R.; Osterberg, K.; Ouraou, A.; Oyanguren, A.; Paganoni, M.; Paiano, S.; Palacios, J.P.; Palka, H.; Papadopoulou, T.D.; Pape, L.; Parkes, C.; Parodi, F.; Parzefall, U.; Passeri, A.; Passon, O.; Peralta, L.; Perepelitsa, V.; Perrotta, A.; Petrolini, A.; Piedra, J.; Pieri, L.; Pierre, F.; Pimenta, M.; Piotto, E.; Podobnik, T.; Poireau, V.; Pol, M.E.; Polok, G.; Poropat, P.; Pozdniakov, V.; Pukhaeva, N.; Pullia, A.; Rames, J.; Ramler, L.; Read, Alexander L.; Rebecchi, P.; Rehn, J.; Reid, D.; Reinhardt, R.; Renton, P.; Richard, F.; Ridky, J.; Rivero, M.; Rodriguez, D.; Romero, A.; Ronchese, P.; Rosenberg, E.; Roudeau, P.; Rovelli, T.; Ruhlmann-Kleider, V.; Ryabtchikov, D.; Sadovsky, A.; Salmi, L.; Salt, J.; Savoy-Navarro, A.; Schwickerath, U.; Segar, A.; Sekulin, R.; Siebel, M.; Sisakian, A.; Smadja, G.; Smirnova, O.; Sokolov, A.; Sopczak, A.; Sosnowski, R.; Spassov, T.; Stanitzki, M.; Stocchi, A.; Strauss, J.; Stugu, B.; Szczekowski, M.; Szeptycka, M.; Szumlak, T.; Tabarelli, T.; Taffard, A.C.; Tegenfeldt, F.; Timmermans, Jan; Tkatchev, L.; Tobin, M.; Todorovova, S.; Tome, B.; Tonazzo, A.; Tortosa, P.; Travnicek, P.; Treille, D.; Tristram, G.; Trochimczuk, M.; Troncon, C.; Turluer, M.L.; Tyapkin, I.A.; Tyapkin, P.; Tzamarias, S.; Uvarov, V.; Valenti, G.; Van Dam, Piet; Van Eldik, J.; Van Lysebetten, A.; Van Remortel, N.; Van Vulpen, I.; Vegni, G.; Veloso, F.; Venus, W.; Verbeure, F.; Verdier, P.; Verzi, V.; Vilanova, D.; Vitale, L.; Vrba, V.; Wahlen, H.; Washbrook, A.J.; Weiser, C.; Wicke, D.; Wickens, J.; Wilkinson, G.; Winter, M.; Witek, M.; Yushchenko, O.; Zalewska, A.; Zalewski, P.; Zavrtanik, D.; Zhuravlov, V.; Zimine, N.I.; Zintchenko, A.; Zupan, M.; Achard, P.; Adriani, O.; Aguilar-Benitez, M.; Alcaraz, J.; Alemanni, G.; Allaby, J.; Aloisio, A.; Alviggi, M.G.; Anderhub, H.; Andreev, Valery P.; Anselmo, F.; Arefiev, A.; Azemoon, T.; Aziz, T.; Baarmand, M.; Bagnaia, P.; Bajox, A.; Baksay, G.; Baksay, L.; Baldew, S.V.; Banerjee, S.; Barczyk, A.; Barillere, R.; Bartalini, P.; Basile, M.; Batalova, N.; Battiston, R.; Bay, A.; Becattini, F.; Becker, U.; Behner, F.; Bellucci, L.; Berbeco, R.; Berdugo, J.; Berges, P.; Bertucci, B.; Betev, B.L.; Biasini, M.; Biglietti, M.; Biland, A.; Blaising, J.J.; Blyth, S.C.; Bobbink, G.J.; Bohm, A.; Boldizsar, L.; Borgia, B.; Bourilkov, D.; Bourquin, M.; Braccini, S.; Branson, J.G.; Brochu, F.; Buijs, A.; Burger, J.D.; Burger, W.J.; Cai, X.D.; Capell, M.; Cara Romeo, G.; Carlino, G.; Cartacci, A.; Casau, J.; Cavallari, F.; Cavallo, N.; Cecchi, C.; Cerrada, M.; Chamizo, M.; Chang, Y.H.; Chemarin, M.; Chen, A.; Chen, G.; Chen, G.M.; Chen, H.F.; Chen, H.S.; Chiefari, G.; Cifarelli, L.; Cindolo, F.; Clare, I.; Clare, R.; Coignet, G.; Colino, N.; Costantini, S.; de la Cruz, B.; Cucciarelli, S.; Dai, T.S.; van Dalen, J.A.; de Asmundis, R.; Deglont, P.; Debreczeni, J.; Degre, A.; Deiters, K.; della Volpe, D.; Delmeire, E.; Denes, P.; De Notaristefani, F.; De Salvo, A.; Diemoz, M.; Dierckxsens, M.; van Dierendonck, D.; Dionisi, C.; Dittmar, M.; Doria, A.; Dova, M.T.; Duchesneau, D.; Duinker, P.; Echenard, B.; Eline, A.; El Mamouni, H.; Engler, A.; Eppling, F.J.; Ewers, A.; Extermann, P.; Falagan, M.A.; Falciano, S.; Favara, A.; Fay, J.; Fedin, O.; Felcini, M.; Ferguson, T.; Fesefeldt, H.; Fiandrini, E.; Field, J.H.; Filthaut, F.; Fisher, P.H.; Fisher, W.; Fisk, I.; Forconi, G.; Freudenreich, K.; Furetta, C.; Galaktionov, Iouri; Ganguli, S.N.; Garcia-Abia, Pablo; Gataullin, M.; Gentile, S.; Giagu, S.; Gong, Z.F.; Grenier, Gerald Jean; Grimm, O.; Gruenewald, M.W.; Guida, M.; van Gulik, R.; Gupta, V.K.; Gurtu, A.; Gutay, L.J.; Haas, D.; Hatzifotiadou, D.; Hebbeker, T.; Herve, Alain; Hirschfelder, J.; Hofer, H.; Holzner, G.; Hou, S.R.; Hu, Y.; Jin, B.N.; Jones, Lawrence W.; de Jong, P.; Josa-Mutuberria, I.; Kafer, D.; Kaur, M.; Kienzle-Focacci, M.N.; Kim, J.K.; Kirkby, Jasper; Kittel, W.; Klimentov, A.; Konig, A.C.; Kopal, M.; Koutsenko, V.; Kraber, M.; Kraemer, R.W.; Krenz, W.; Kruger, A.; Kunin, A.; Ladron de Guevara, P.; Laktineh, I.; Landi, G.; Lebeau, M.; Lebedev, A.; Lebrun, P.; Lecomte, P.; Lecoq, P.; Le Coultre, P.; Lee, H.J.; Le Goff, J.M.; Leiste, R.; Levtchenko, P.; Li, C.; Likhoded, S.; Lin, C.H.; Lin, W.T.; Linde, F.L.; Lista, L.; Liu, Z.A.; Lohmann, W.; Longo, E.; Lu, Y.S.; Lubelsmeyer, K.; Luci, C.; Luckey, David; Luminari, L.; Lustermann, W.; Ma, W.G.; Malgeri, L.; Malinin, A.; Mana, C.; Mangeol, D.; Mans, J.; Martin, J.P.; Marzano, F.; Mazumdar, K.; McNeil, R.R.; Mele, S.; Merola, L.; Meschini, M.; Metzger, W.J.; Mihul, A.; Milcent, H.; Mirabelli, G.; Mnich, J.; Mohanty, G.B.; Muanza, G.S.; Muijs, A.J.M.; Musicar, B.; Musy, M.; Nagy, S.; Napolitano, M.; Nessi-Tedaldi, F.; Newman, H.; Niessen, T.; Nisati, A.; Kluge, Hannelies; Ofierzynski, R.; Organtini, G.; Palomares, C.; Pandoulas, D.; Paolucci, P.; Paramatti, R.; Passaleva, G.; Patricelli, S.; Paul, Thomas Cantzon; Pauluzzi, M.; Paus, C.; Pauss, F.; Pedace, M.; Pensotti, S.; Perret-Gallix, D.; Petersen, B.; Piccolo, D.; Pierella, F.; Piroue, P.A.; Pistolesi, E.; Plyaskin, V.; Pohl, M.; Pojidaev, V.; Postema, H.; Pothier, J.; Prokofiev, D.O.; Prokofiev, D.; Quartieri, J.; Rahal-Callot, G.; Rahaman, Mohammad Azizur; Raics, P.; Raja, N.; Ramelli, R.; Rancoita, P.G.; Ranieri, R.; Raspereza, A.; Razis, P.; Ren, D.; Rescigno, M.; Reucroft, S.; Riemann, S.; Riles, Keith; Roe, B.P.; Romero, L.; Rosca, A.; Rosier-Lee, S.; Roth, Stefan; Rosenbleck, C.; Roux, B.; Rubio, J.A.; Ruggiero, G.; Rykaczewski, H.; Sakharov, A.; Saremi, S.; Sarkar, S.; Salicio, J.; Sanchez, E.; Sanders, M.P.; Schafer, C.; Schegelsky, V.; Schmidt-Kaerst, S.; Schmitz, D.; Schopper, H.; Schotanus, D.J.; Schwering, G.; Sciacca, C.; Servoli, L.; Shevchenko, S.; Shivarov, N.; Shoutko, V.; Shumilov, E.; Shvorob, A.; Siedenburg, T.; Son, D.; Spillantini, P.; Steuer, M.; Stickland, D.P.; Stoyanov, B.; Straessner, A.; Sudhakar, K.; Sultanov, G.; Sun, L.Z.; Sushkov, S.; Suter, H.; Swain, J.D.; Szillasi, Z.; Tang, X.W.; Tarjan, P.; Tauscher, L.; Taylor, L.; Tellili, B.; Teyssier, D.; Timmermans, Charles; Ting, Samuel C.C.; Ting, S.M.; Tonwar, S.C.; Toth, J.; Tully, C.; Tung, K.L.; Uchida, Y.; Ulbricht, J.; Valente, E.; Van de Walle, R.T.; Veszpremi, V.; Vesztergombi, G.; Vetlitsky, I.; Vicinanza, D.; Viertel, G.; Villa, S.; Vivargent, M.; Vlachos, S.; Vodopianov, I.; Vogel, H.; Vogt, H.; Vorobiev, I.; Vorobyov, A.A.; Wadhwa, M.; Wallraff, W.; Wang, M.; Wang, X.L.; Wang, Z.M.; Weber, M.; Wienemann, P.; Wilkens, H.; Wu, S.X.; Wynhoff, S.; Xia, L.; Xu, Z.Z.; Yamamoto, J.; Yang, B.Z.; Yang, C.G.; Yang, H.J.; Yang, M.; Yeh, S.C.; Zalite, A.; Zalite, Yu.; Zhang, Z.P.; Zhao, J.; Zhu, G.Y.; Zhu, R.Y.; Zhuang, H.L.; Zichichi, A.; Zilizi, G.; Zimmermann, B.; Zoller, M.; Abbiendi, G.; Ainsley, C.; Akesson, P.F.; Alexander, G.; Allison, John; Amaral, P.; Anagnostou, G.; Anderson, K.J.; Arcelli, S.; Asai, S.; Axen, D.; Azuelos, G.; Bailey, I.; Barberio, E.; Barlow, R.J.; Batley, R.J.; Bechtle, P.; Behnke, T.; Bell, Kenneth Watson; Bell, P.J.; Bella, G.; Bellerive, A.; Benelli, G.; Bethke, S.; Biebel, O.; Bloodworth, I.J.; Boeriu, O.; Bock, P.; Bonacorsi, D.; Boutemeur, M.; Braibant, S.; Brigliadori, L.; Brown, Robert M.; Buesser, K.; Burckhart, H.J.; Campana, S.; Carnegie, R.K.; Caron, B.; Carter, A.A.; Carter, J.R.; Chang, C.Y.; Charlton, David G.; Csilling, A.; Cuffiani, M.; Dado, S.; Dallavalle, G.Marco; Dallison, S.; De Roeck, A.; De Wolf, E.A.; Desch, K.; Dienes, B.; Donkers, M.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Duerdoth, I.P.; Elfgren, E.; Etzion, E.; Fabbri, F.; Feld, L.; Ferrari, P.; Fiedler, F.; Fleck, I.; Ford, M.; Frey, A.; Furtjes, A.; Gagnon, P.; Gary, John William; Gaycken, G.; Geich-Gimbel, C.; Giacomelli, G.; Giacomelli, P.; Giunta, Marina; Goldberg, J.; Gross, E.; Grunhaus, J.; Gruwe, M.; Gunther, P.O.; Gupta, A.; Hajdu, C.; Hamann, M.; Hanson, G.G.; Harder, K.; Harel, A.; Harin-Dirac, M.; Hauschild, M.; Hauschildt, J.; Hawkes, C.M.; Hawkings, R.; Hemingway, R.J.; Hensel, C.; Herten, G.; Heuer, R.D.; Hill, J.C.; Hoffman, Kara Dion; Homer, R.J.; Horvath, D.; Howard, R.; Huntemeyer, P.; Igo-Kemenes, P.; Ishii, K.; Jeremie, H.; Jovanovic, P.; Junk, T.R.; Kanaya, N.; Kanzaki, J.; Karapetian, G.; Karlen, D.; Kartvelishvili, V.; Kawagoe, K.; Kawamoto, T.; Keeler, R.K.; Kellogg, R.G.; Kennedy, B.W.; Kim, D.H.; Klein, K.; Klier, A.; Kluth, S.; Kobayashi, T.; Kobel, M.; Komamiya, S.; Kormos, Laura L.; Kowalewski, Robert V.; Kramer, T.; Kress, T.; Krieger, P.; von Krogh, J.; Krop, D.; Kruger, K.; Kupper, M.; Lafferty, G.D.; Landsman, H.; Lanske, D.; Layter, J.G.; Leins, A.; Lellouch, D.; Letts, J.; Levinson, L.; Lillich, J.; Lloyd, S.L.; Loebinger, F.K.; Lu, J.; Ludwig, J.; Macpherson, A.; Mader, W.; Marcellini, S.; Marchant, T.E.; Martin, A.J.; Masetti, G.; Mashimo, T.; Mattig, Peter; McDonald, W.J.; McKenna, J.; McMahon, T.J.; McPherson, R.A.; Meijers, F.; Mendez-Lorenzo, P.; Menges, W.; Merritt, F.S.; Mes, H.; Michelini, A.; Mihara, S.; Mikenberg, G.; Miller, D.J.; Moed, S.; Mohr, W.; Mori, T.; Mutter, A.; Nagai, K.; Nakamura, I.; Neal, H.A.; Nisius, R.; ONeale, S.W.; Oh, A.; Okpara, A.; Oreglia, M.J.; Orito, S.; Pahl, C.; Pasztor, G.; Pater, J.R.; Patrick, G.N.; Pilcher, J.E.; Pinfold, J.; Plane, David E.; Poli, B.; Polok, J.; Pooth, O.; Przybycien, M.; Quadt, A.; Rabbertz, K.; Rembser, C.; Renkel, P.; Rick, H.; Roney, J.M.; Rosati, S.; Rozen, Y.; Runge, K.; Sachs, K.; Saeki, T.; Sahr, O.; Sarkisyan, E.K.G.; Schaile, A.D.; Schaile, O.; Scharff-Hansen, P.; Schieck, J.; Schoerner-Sadenius, Thomas; Schroder, Matthias; Schumacher, M.; Schwick, C.; Scott, W.G.; Seuster, R.; Shears, T.G.; Shen, B.C.; Shepherd-Themistocleous, C.H.; Sherwood, P.; Siroli, G.; Skuja, A.; Smith, A.M.; Sobie, R.; Soldner-Rembold, S.; Spagnolo, S.; Spano, F.; Stahl, A.; Stephens, K.; Strom, David M.; Strohmer, R.; Tarem, S.; Tasevsky, M.; Taylor, R.J.; Teuscher, R.; Thomson, M.A.; Torrence, E.; Toya, D.; Tran, P.; Trefzger, T.; Tricoli, A.; Trigger, I.; Trocsanyi, Z.; Tsur, E.; Turner-Watson, M.F.; Ueda, I.; Ujvari, B.; Vachon, B.; Vollmer, C.F.; Vannerem, P.; Verzocchi, M.; Voss, H.; Vossebeld, J.; Waller, D.; Ward, C.P.; Ward, D.R.; Watkins, P.M.; Watson, A.T.; Watson, N.K.; Wells, P.S.; Wengler, T.; Wermes, N.; Wetterling, D.; Wilson, G.W.; Wilson, J.A.; Wyatt, T.R.; Yamashita, S.; Zer-Zion, D.; Zivkovic, Lidija; Heinemeyer, S.; Weiglein, G.

    2003-01-01

    The four LEP collaborations, ALEPH, DELPHI, L3 and OPAL, have collected a total of 2461 pb-1 of e+e- collision data at centre-of-mass energies between 189 and 209 GeV. The data are used to search for the Standard Model Higgs boson. The search results of the four collaborations are combined and examined in a likelihood test for their consistency with two hypotheses: the background hypothesis and the signal plus background hypothesis. The corresponding confidences have been computed as functions of the hypothetical Higgs boson mass. A lower bound of 114.4 GeV/c2 is established, at the 95% confidence level, on the mass of the Standard Model Higgs boson. The LEP data are also used to set upper bounds on the HZZ coupling for various assumptions concerning the decay of the Higgs boson.

  13. Direct search for the standard model Higgs boson

    CERN Document Server

    Janot, Patrick

    2002-01-01

    For twelve years, LEP revolutionized the knowledge of electroweak symmetry breaking within the standard model, and the direct discovery of the Higgs boson would have been the crowning achievement. Searches at the Z resonance and above the W/sup +/W/sup -/ threshold allowed an unambiguous lower limit on the mass of the standard model Higgs boson to set be at 114.1 GeV.c/sup -2/. After years of efforts to push the LEP performance far beyond the design limits, hints of what could be the first signs of the existence of a 115 GeV-c/sup -2/ Higgs boson appeared in June 2000, were confirmed in September, and were then confirmed again in November. An additional six-month period of LEP operation was enough to provide a definite answer, with an opportunity to make a fundamental discovery of prime importance. (37 refs).

  14. Standards for Documenting Finite‐Fault Earthquake Rupture Models

    KAUST Repository

    Mai, Paul Martin

    2016-04-06

    In this article, we propose standards for documenting and disseminating finite‐fault earthquake rupture models, and related data and metadata. A comprehensive documentation of the rupture models, a detailed description of the data processing steps, and facilitating the access to the actual data that went into the earthquake source inversion are required to promote follow‐up research and to ensure interoperability, transparency, and reproducibility of the published slip‐inversion solutions. We suggest a formatting scheme that describes the kinematic rupture process in an unambiguous way to support subsequent research. We also provide guidelines on how to document the data, metadata, and data processing. The proposed standards and formats represent a first step to establishing best practices for comprehensively documenting input and output of finite‐fault earthquake source studies.

  15. Including policy and management in socio-hydrology models: initial conceptualizations

    Science.gov (United States)

    Hermans, Leon; Korbee, Dorien

    2017-04-01

    Socio-hydrology studies the interactions in coupled human-water systems. So far, the use of dynamic models that capture the direct feedback between societal and hydrological systems has been dominant. What has not yet been included with any particular emphasis, is the policy or management layer, which is a central element in for instance integrated water resources management (IWRM) or adaptive delta management (ADM). Studying the direct interactions between human-water systems generates knowledges that eventually helps influence these interactions in ways that may ensure better outcomes - for society and for the health and sustainability of water systems. This influence sometimes occurs through spontaneous emergence, uncoordinated by societal agents - private sector, citizens, consumers, water users. However, the term 'management' in IWRM and ADM also implies an additional coordinated attempt through various public actors. This contribution is a call to include the policy and management dimension more prominently into the research focus of the socio-hydrology field, and offers first conceptual variables that should be considered in attempts to include this policy or management layer in socio-hydrology models. This is done by drawing on existing frameworks to study policy processes throughout both planning and implementation phases. These include frameworks such as the advocacy coalition framework, collective learning and policy arrangements, which all emphasis longer-term dynamics and feedbacks between actor coalitions in strategic planning and implementation processes. A case about longter-term dynamics in the management of the Haringvliet in the Netherlands is used to illustrate the paper.

  16. Aspects of Particle Physics Beyond the Standard Model

    Science.gov (United States)

    Lu, Xiaochuan

    This dissertation describes a few aspects of particles beyond the Standard Model, with a focus on the remaining questions after the discovery of a Standard Model-like Higgs boson. In specific, three topics are discussed in sequence: neutrino mass and baryon asymmetry, naturalness problem of Higgs mass, and placing constraints on theoretical models from precision measurements. First, the consequence of the neutrino mass anarchy on cosmology is studied. Attentions are paid in particular to the total mass of neutrinos and baryon asymmetry through leptogenesis. With the assumption of independence among mass matrix entries in addition to the basis independence, Gaussian measure is the only choice. On top of Gaussian measure, a simple approximate U(1) flavor symmetry makes leptogenesis highly successful. Correlations between the baryon asymmetry and the light-neutrino quantities are investigated. Also discussed are possible implications of recently suggested large total mass of neutrinos by the SDSS/BOSS data. Second, the Higgs mass implies fine-tuning for minimal theories of weak-scale supersymmetry (SUSY). Non-decoupling effects can boost the Higgs mass when new states interact with the Higgs, but new sources of SUSY breaking that accompany such extensions threaten naturalness. I will show that two singlets with a Dirac mass can increase the Higgs mass while maintaining naturalness in the presence of large SUSY breaking in the singlet sector. The modified Higgs phenomenology of this scenario, termed "Dirac NMSSM", is also studied. Finally, the sensitivities of future precision measurements in probing physics beyond the Standard Model are studied. A practical three-step procedure is presented for using the Standard Model effective field theory (SM EFT) to connect ultraviolet (UV) models of new physics with weak scale precision observables. With this procedure, one can interpret precision measurements as constraints on the UV model concerned. A detailed explanation is

  17. On the modelling of semi-insulating GaAs including surface tension and bulk stresses

    Energy Technology Data Exchange (ETDEWEB)

    Dreyer, W.; Duderstadt, F.

    2004-07-01

    Necessary heat treatment of single crystal semi-insulating Gallium Arsenide (GaAs), which is deployed in micro- and opto- electronic devices, generate undesirable liquid precipitates in the solid phase. The appearance of precipitates is influenced by surface tension at the liquid/solid interface and deviatoric stresses in the solid. The central quantity for the description of the various aspects of phase transitions is the chemical potential, which can be additively decomposed into a chemical and a mechanical part. In particular the calculation of the mechanical part of the chemical potential is of crucial importance. We determine the chemical potential in the framework of the St. Venant-Kirchhoff law which gives an appropriate stress/strain relation for many solids in the small strain regime. We establish criteria, which allow the correct replacement of the St. Venant-Kirchhoff law by the simpler Hooke law. The main objectives of this study are: (i) We develop a thermo-mechanical model that describes diffusion and interface motion, which both are strongly influenced by surface tension effects and deviatoric stresses. (ii) We give an overview and outlook on problems that can be posed and solved within the framework of the model. (iii) We calculate non-standard phase diagrams, i.e. those that take into account surface tension and non-deviatoric stresses, for GaAs above 786 C, and we compare the results with classical phase diagrams without these phenomena. (orig.)

  18. Standard model physics with the ATLAS early data

    CERN Document Server

    Bruckman de Renstrom, Pawel

    2006-01-01

    The Standard Model, despite its open questions, has proved its consistency and predictive power to very high accuracy within the currently available energy reach. LHC, with its high CM energy and luminosity, will give us insight into new processes, possibly showing evidence of “new physics”. Excellent understanding of the SM processes will also be a key to discriminate against any new phenomena. Prospects of selected SM measurements with the ATLAS detector using early LHC luminosity are presented.

  19. Signatures of baryogenesis in the minimal supersymmetric standard model

    International Nuclear Information System (INIS)

    Murayama, Hitoshi; Pierce, Aaron

    2003-01-01

    We reexamine the electroweak baryogenesis within the context of the minimal supersymmetric standard model, studying its potential collider signatures. We find that this mechanism of baryogenesis does not give a new CP violating signal at the B factories. The first circumstantial evidence may come from enhanced B s or B d mixing. If a light right-handed scalar top quark and Higgs boson are found as required, a linear collider represents the best possibility for confirming the scenario

  20. Physics beyond the standard model and cosmological connections ...

    Indian Academy of Sciences (India)

    E-mail: Sridhar@theory.tifr.res.in. Abstract. The international linear collider (ILC) is .... ILC operates at its highest planned centre-of-mass energy of 2 TeV. The alternative is to do a combined LHC/ILC .... A paper which studied the modification of the standard Einstein–Hilbert action in models of TeV-scale gravity through the ...

  1. The Standard Model and the neutron beta-decay

    CERN Document Server

    Abele, H

    2000-01-01

    This article reviews the relationship between the observables in neutron beta-decay and the accepted modern theory of particle physics known as the Standard Model. Recent neutron-decay measurements of various mixed American-British-French-German-Russian collaborations try to shed light on the following topics: the coupling strength of charged weak currents, the universality of the electroweak interaction and the origin of parity violation.

  2. Asymptotically Safe Standard Model Extensions arXiv

    CERN Document Server

    Pelaggi, Giulio Maria; Salvio, Alberto; Sannino, Francesco; Smirnov, Juri; Strumia, Alessandro

    We consider theories with a large number NF of charged fermions and compute the renormalisation group equations for the gauge, Yukawa and quartic couplings resummed at leading order in NF. We construct extensions of the Standard Model where SU(2) and/or SU(3) are asymptotically safe. When the same procedure is applied to the Abelian U(1) factor, we find that the Higgs quartic can not be made asymptotically safe and stay perturbative at the same time.

  3. Observations in particle physics: from two neutrinos to standard model

    International Nuclear Information System (INIS)

    Lederman, L.M.

    1990-01-01

    Experiments, which have made their contribution to creation of the standard model, are discussed. Results of observations on the following concepts: long-lived neutral V-particles, violation of preservation of parity and charge invariance in meson decays, reaction with high-energy neutrino and existence of neutrino of two types, partons and dynamic quarks, dimuon resonance at 9.5 GeV in 400 GeV-proton-nucleus collisions, are considered

  4. Framework for an asymptotically safe standard model via dynamical breaking

    DEFF Research Database (Denmark)

    Abel, Steven; Sannino, Francesco

    2017-01-01

    We present a consistent embedding of the matter and gauge content of the Standard Model into an underlying asymptotically safe theory that has a well-determined interacting UV fixed point in the large color/flavor limit. The scales of symmetry breaking are determined by two mass-squared parameters...... with the breaking of electroweak symmetry being driven radiatively. There are no other free parameters in the theory apart from gauge couplings....

  5. Modelling of Water Cooled Fuel Including Design Basis and Severe Accidents. Proceedings of a Technical Meeting

    International Nuclear Information System (INIS)

    2015-11-01

    The demands on nuclear fuel have recently been increasing, and include transient regimes, higher discharge burnup and longer fuel cycles. This has resulted in an increase of loads on fuel and core internals. In order to satisfy these demands while ensuring compliance with safety criteria, new national and international programmes have been launched and advanced modelling codes are being developed. The Fukushima Daiichi accident has particularly demonstrated the need for adequate analysis of all aspects of fuel performance to prevent a failure and also to predict fuel behaviour were an accident to occur.This publication presents the Proceedings of the Technical Meeting on Modelling of Water Cooled Fuel Including Design Basis and Severe Accidents, which was hosted by the Nuclear Power Institute of China (NPIC) in Chengdu, China, following the recommendation made in 2013 at the IAEA Technical Working Group on Fuel Performance and Technology. This recommendation was in agreement with IAEA mid-term initiatives, linked to the post-Fukushima IAEA Nuclear Safety Action Plan, as well as the forthcoming Coordinated Research Project (CRP) on Fuel Modelling in Accident Conditions. At the technical meeting in Chengdu, major areas and physical phenomena, as well as types of code and experiment to be studied and used in the CRP, were discussed. The technical meeting provided a forum for international experts to review the state of the art of code development for modelling fuel performance of nuclear fuel for water cooled reactors with regard to steady state and transient conditions, and for design basis and early phases of severe accidents, including experimental support for code validation. A round table discussion focused on the needs and perspectives on fuel modelling in accident conditions. This meeting was the ninth in a series of IAEA meetings, which reflects Member States’ continuing interest in nuclear fuel issues. The previous meetings were held in 1980 (jointly with

  6. Health Promotion Behavior of Chinese International Students in Korea Including Acculturation Factors: A Structural Equation Model.

    Science.gov (United States)

    Kim, Sun Jung; Yoo, Il Young

    2016-03-01

    The purpose of this study was to explain the health promotion behavior of Chinese international students in Korea using a structural equation model including acculturation factors. A survey using self-administered questionnaires was employed. Data were collected from 272 Chinese students who have resided in Korea for longer than 6 months. The data were analyzed using structural equation modeling. The p value of final model is .31. The fitness parameters of the final model such as goodness of fit index, adjusted goodness of fit index, normed fit index, non-normed fit index, and comparative fit index were more than .95. Root mean square of residual and root mean square error of approximation also met the criteria. Self-esteem, perceived health status, acculturative stress and acculturation level had direct effects on health promotion behavior of the participants and the model explained 30.0% of variance. The Chinese students in Korea with higher self-esteem, perceived health status, acculturation level, and lower acculturative stress reported higher health promotion behavior. The findings can be applied to develop health promotion strategies for this population. Copyright © 2016. Published by Elsevier B.V.

  7. In Search Of The Standard Model Higgs Boson

    CERN Document Server

    http://inspirehep.net/record/666184/files/fermilab-thesis-2004-35.PDF, R

    2002-01-01

    A search for the Standard Model Higgs boson is conducted using data from the L3 detector at CERN's LEP collider during the year 2000. The integrated luminosity collected was 217.4 pb−1 of electron-positron collisions at center-of-mass energies from 200 to 209 GeV. Presented here is a search for e+ e− → hZ, where the Higgs decays into b quarks and the Z boson decays into undetected neutrinos. Also presented are combined results from the other L3 channels. The L3 combined results are consistent with the Standard Model background. Preliminary results from the LEP-wide combination are also shown. The lower limit on the Standard Model Higgs mass is found to be mh>114.1GeV at95%C.L. In the LEP combination, an excess of data events is observed near mh ∼ 115.6 GeV. Whether this is due to a statistical fluctuation or to Higgs production cannot be determined from the available set of data.

  8. A structural model for the in vivo human cornea including collagen-swelling interaction.

    Science.gov (United States)

    Cheng, Xi; Petsche, Steven J; Pinsky, Peter M

    2015-08-06

    A structural model of the in vivo cornea, which accounts for tissue swelling behaviour, for the three-dimensional organization of stromal fibres and for collagen-swelling interaction, is proposed. Modelled as a binary electrolyte gel in thermodynamic equilibrium, the stromal electrostatic free energy is based on the mean-field approximation. To account for active endothelial ionic transport in the in vivo cornea, which modulates osmotic pressure and hydration, stromal mobile ions are shown to satisfy a modified Boltzmann distribution. The elasticity of the stromal collagen network is modelled based on three-dimensional collagen orientation probability distributions for every point in the stroma obtained by synthesizing X-ray diffraction data for azimuthal angle distributions and second harmonic-generated image processing for inclination angle distributions. The model is implemented in a finite-element framework and employed to predict free and confined swelling of stroma in an ionic bath. For the in vivo cornea, the model is used to predict corneal swelling due to increasing intraocular pressure (IOP) and is adapted to model swelling in Fuchs' corneal dystrophy. The biomechanical response of the in vivo cornea to a typical LASIK surgery for myopia is analysed, including tissue fluid pressure and swelling responses. The model provides a new interpretation of the corneal active hydration control (pump-leak) mechanism based on osmotic pressure modulation. The results also illustrate the structural necessity of fibre inclination in stabilizing the corneal refractive surface with respect to changes in tissue hydration and IOP. © 2015 The Author(s).

  9. Efficient Lattice-Based Signcryption in Standard Model

    Directory of Open Access Journals (Sweden)

    Jianhua Yan

    2013-01-01

    Full Text Available Signcryption is a cryptographic primitive that can perform digital signature and public encryption simultaneously at a significantly reduced cost. This advantage makes it highly useful in many applications. However, most existing signcryption schemes are seriously challenged by the booming of quantum computations. As an interesting stepping stone in the post-quantum cryptographic community, two lattice-based signcryption schemes were proposed recently. But both of them were merely proved to be secure in the random oracle models. Therefore, the main contribution of this paper is to propose a new lattice-based signcryption scheme that can be proved to be secure in the standard model.

  10. Secure Certificateless Signature with Revocation in the Standard Model

    Directory of Open Access Journals (Sweden)

    Tung-Tso Tsai

    2014-01-01

    previously proposed certificateless signature schemes were insecure under a considerably strong security model in the sense that they suffered from outsiders’ key replacement attacks or the attacks from the key generation center (KGC. In this paper, we propose a certificateless signature scheme without random oracles. Moreover, our scheme is secure under the strong security model and provides a public revocation mechanism, called revocable certificateless signature (RCLS. Under the standard computational Diffie-Hellman assumption, we formally demonstrate that our scheme possesses existential unforgeability against adaptive chosen-message attacks.

  11. A comparison of different ways of including baseline counts in negative binomial models for data from falls prevention trials.

    Science.gov (United States)

    Zheng, Han; Kimber, Alan; Goodwin, Victoria A; Pickering, Ruth M

    2018-01-01

    A common design for a falls prevention trial is to assess falling at baseline, randomize participants into an intervention or control group, and ask them to record the number of falls they experience during a follow-up period of time. This paper addresses how best to include the baseline count in the analysis of the follow-up count of falls in negative binomial (NB) regression. We examine the performance of various approaches in simulated datasets where both counts are generated from a mixed Poisson distribution with shared random subject effect. Including the baseline count after log-transformation as a regressor in NB regression (NB-logged) or as an offset (NB-offset) resulted in greater power than including the untransformed baseline count (NB-unlogged). Cook and Wei's conditional negative binomial (CNB) model replicates the underlying process generating the data. In our motivating dataset, a statistically significant intervention effect resulted from the NB-logged, NB-offset, and CNB models, but not from NB-unlogged, and large, outlying baseline counts were overly influential in NB-unlogged but not in NB-logged. We conclude that there is little to lose by including the log-transformed baseline count in standard NB regression compared to CNB for moderate to larger sized datasets. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Comparison of lead isotopes with source apportionment models, including SOM, for air particulates

    International Nuclear Information System (INIS)

    Gulson, Brian; Korsch, Michael; Dickson, Bruce; Cohen, David; Mizon, Karen; Michael Davis, J.

    2007-01-01

    We have measured high precision lead isotopes in PM 2.5 particulates from a highly-trafficked site (Mascot) and rural site (Richmond) in the Sydney Basin, New South Wales, Australia to compare with isotopic data from total suspended particulates (TSP) from other sites in the Sydney Basin and evaluate relationships with source fingerprints obtained from multi-element PM 2.5 data. The isotopic data for the period 1998 to 2004 show seasonal peaks and troughs that are more pronounced in the rural site for the PM 2.5 .samples but are consistent with the TSP. The Self Organising Map (SOM) method has been applied to the multi-element PM 2.5 data to evaluate its use in obtaining fingerprints for comparison with standard statistical procedures (ANSTO model). As seasonal effects are also significant for the multi-element data, the SOM modelling is reported as site and season dependent. At the Mascot site, the ANSTO model exhibits decreasing 206 Pb/ 204 Pb ratios with increasing contributions of fingerprints for 'secondary smoke' (industry), 'soil', 'smoke' and 'seaspray'. Similar patterns were shown by SOM winter fingerprints for both sites. At the rural site, there are large isotopic variations but for the majority of samples these are not associated with increased contributions from the main sources with the ANSTO model. For two winter sampling times, there are increased contributions from 'secondary industry', 'smoke', 'soil' and seaspray with one time having a source or sources of Pb similar to that of Mascot. The only positive relationship between increasing 206 Pb/ 204 Pb ratio and source contributions is found at the rural site using the SOM summer fingerprints, both of which show a significant contribution from sulphur. Several of the fingerprints using either model have significant contributions from black carbon (BC) and/or sulphur (S) that probably derive from diesel fuels and industrial sources. Increased contributions from sources with the SOM summer

  13. A satellite relative motion model including J_2 and J_3 via Vinti's intermediary

    Science.gov (United States)

    Biria, Ashley D.; Russell, Ryan P.

    2018-03-01

    Vinti's potential is revisited for analytical propagation of the main satellite problem, this time in the context of relative motion. A particular version of Vinti's spheroidal method is chosen that is valid for arbitrary elliptical orbits, encapsulating J_2, J_3, and generally a partial J_4 in an orbit propagation theory without recourse to perturbation methods. As a child of Vinti's solution, the proposed relative motion model inherits these properties. Furthermore, the problem is solved in oblate spheroidal elements, leading to large regions of validity for the linearization approximation. After offering several enhancements to Vinti's solution, including boosts in accuracy and removal of some singularities, the proposed model is derived and subsequently reformulated so that Vinti's solution is piecewise differentiable. While the model is valid for the critical inclination and nonsingular in the element space, singularities remain in the linear transformation from Earth-centered inertial coordinates to spheroidal elements when the eccentricity is zero or for nearly equatorial orbits. The new state transition matrix is evaluated against numerical solutions including the J_2 through J_5 terms for a wide range of chief orbits and separation distances. The solution is also compared with side-by-side simulations of the original Gim-Alfriend state transition matrix, which considers the J_2 perturbation. Code for computing the resulting state transition matrix and associated reference frame and coordinate transformations is provided online as supplementary material.

  14. Towards product design automation based on parameterized standard model with diversiform knowledge

    Science.gov (United States)

    Liu, Wei; Zhang, Xiaobing

    2017-04-01

    Product standardization based on CAD software is an effective way to improve design efficiency. In the past, research and development on standardization mainly focused on the level of component, and the standardization of the entire product as a whole is rarely taken into consideration. In this paper, the size and structure of 3D product models are both driven by the Excel datasheets, based on which a parameterized model library is therefore established. Diversiform knowledge including associated parameters and default properties are embedded into the templates in advance to simplify their reuse. Through the simple operation, we can obtain the correct product with the finished 3D models including single parts or complex assemblies. Two examples are illustrated later to invalid the idea, which will greatly improve the design efficiency.

  15. General hypothesis and shell model for the synthesis of semiconductor nanotubes, including carbon nanotubes

    Science.gov (United States)

    Mohammad, S. Noor

    2010-09-01

    Semiconductor nanotubes, including carbon nanotubes, have vast potential for new technology development. The fundamental physics and growth kinetics of these nanotubes are still obscured. Various models developed to elucidate the growth suffer from limited applicability. An in-depth investigation of the fundamentals of nanotube growth has, therefore, been carried out. For this investigation, various features of nanotube growth, and the role of the foreign element catalytic agent (FECA) in this growth, have been considered. Observed growth anomalies have been analyzed. Based on this analysis, a new shell model and a general hypothesis have been proposed for the growth. The essential element of the shell model is the seed generated from segregation during growth. The seed structure has been defined, and the formation of droplet from this seed has been described. A modified definition of the droplet exhibiting adhesive properties has also been presented. Various characteristics of the droplet, required for alignment and organization of atoms into tubular forms, have been discussed. Employing the shell model, plausible scenarios for the formation of carbon nanotubes, and the variation in the characteristics of these carbon nanotubes have been articulated. The experimental evidences, for example, for the formation of shell around a core, dipole characteristics of the seed, and the existence of nanopores in the seed, have been presented. They appear to justify the validity of the proposed model. The diversities of nanotube characteristics, fundamentals underlying the creation of bamboo-shaped carbon nanotubes, and the impurity generation on the surface of carbon nanotubes have been elucidated. The catalytic action of FECA on growth has been quantified. The applicability of the proposed model to the nanotube growth by a variety of mechanisms has been elaborated. These mechanisms include the vapor-liquid-solid mechanism, the oxide-assisted growth mechanism, the self

  16. A new model for including the effect of fly ash on biochemical methane potential.

    Science.gov (United States)

    Gertner, Pablo; Huiliñir, César; Pinto-Villegas, Paula; Castillo, Alejandra; Montalvo, Silvio; Guerrero, Lorna

    2017-10-01

    The modelling of the effect of trace elements on anaerobic digestion, and specifically the effect of fly ash, has been scarcely studied. Thus, the present work was aimed at the development of a new function that allows accumulated methane models to predict the effect of FA on the volume of methane accumulation. For this, purpose five fly ash concentrations (10, 25, 50, 250 and 500mg/L) using raw and pre-treated sewage sludge were used to calibrate the new function, while three fly ash concentrations were used (40, 150 and 350mg/L) for validation. Three models for accumulated methane volume (the modified Gompertz equation, the logistic function, and the transfer function) were evaluated. The results showed that methane production increased in the presence of FA when the sewage sludge was not pre-treated, while with pretreated sludge there is inhibition of methane production at FA concentrations higher than 50mg/L. In the calibration of the proposed function, it fits well with the experimental data under all the conditions, including the inhibition and stimulating zones, with the values of the parameters of the methane production models falling in the range of those reported in the literature. For validation experiments, the model succeeded in representing the behavior of new experiments in both the stimulating and inhibiting zones, with NRMSE and R 2 ranging from 0.3577 to 0.03714 and 0.2209 to 0.9911, respectively. Thus, the proposed model is robust and valid for the studied conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. A curved multi-component aerosol hygroscopicity model framework: Part 2 – Including organic compounds

    Directory of Open Access Journals (Sweden)

    D. O. Topping

    2005-01-01

    Full Text Available This paper describes the inclusion of organic particulate material within the Aerosol Diameter Dependent Equilibrium Model (ADDEM framework described in the companion paper applied to inorganic aerosol components. The performance of ADDEM is analysed in terms of its capability to reproduce the behaviour of various organic and mixed inorganic/organic systems using recently published bulk data. Within the modelling architecture already described two separate thermodynamic models are coupled in an additive approach and combined with a method for solving the Kohler equation in order to develop a tool for predicting the water content associated with an aerosol of known inorganic/organic composition and dry size. For development of the organic module, the widely used group contribution method UNIFAC is employed to explicitly deal with the non-ideality in solution. The UNIFAC predictions for components of atmospheric importance were improved considerably by using revised interaction parameters derived from electro-dynamic balance studies. Using such parameters, the model was found to adequately describe mixed systems including 5–6 dicarboxylic acids, down to low relative humidity conditions. By comparison with electrodynamic balance data, it was also found that the model was capable of capturing the behaviour of aqueous aerosols containing Suwannee River Fulvic acid, a structure previously used to represent the functionality of complex oxidised macromolecules often found in atmospheric aerosols. The additive approach for modelling mixed inorganic/organic systems worked well for a variety of mixtures. As expected, deviations between model predictions and measurements increase with increasing concentration. Available surface tension models, used in evaluating the Kelvin term, were found to reproduce measured data with varying success. Deviations from experimental data increased with increased organic compound complexity. For components only slightly

  18. A curved multi-component aerosol hygroscopicity model framework: Part 2 Including organic compounds

    Science.gov (United States)

    Topping, D. O.; McFiggans, G. B.; Coe, H.

    2005-05-01

    This paper describes the inclusion of organic particulate material within the Aerosol Diameter Dependent Equilibrium Model (ADDEM) framework described in the companion paper applied to inorganic aerosol components. The performance of ADDEM is analysed in terms of its capability to reproduce the behaviour of various organic and mixed inorganic/organic systems using recently published bulk data. Within the modelling architecture already described two separate thermodynamic models are coupled in an additive approach and combined with a method for solving the Kohler equation in order to develop a tool for predicting the water content associated with an aerosol of known inorganic/organic composition and dry size. For development of the organic module, the widely used group contribution method UNIFAC is employed to explicitly deal with the non-ideality in solution. The UNIFAC predictions for components of atmospheric importance were improved considerably by using revised interaction parameters derived from electro-dynamic balance studies. Using such parameters, the model was found to adequately describe mixed systems including 5-6 dicarboxylic acids, down to low relative humidity conditions. By comparison with electrodynamic balance data, it was also found that the model was capable of capturing the behaviour of aqueous aerosols containing Suwannee River Fulvic acid, a structure previously used to represent the functionality of complex oxidised macromolecules often found in atmospheric aerosols. The additive approach for modelling mixed inorganic/organic systems worked well for a variety of mixtures. As expected, deviations between model predictions and measurements increase with increasing concentration. Available surface tension models, used in evaluating the Kelvin term, were found to reproduce measured data with varying success. Deviations from experimental data increased with increased organic compound complexity. For components only slightly soluble in water

  19. A generalized model for optimal transport of images including dissipation and density modulation

    KAUST Repository

    Maas, Jan

    2015-11-01

    © EDP Sciences, SMAI 2015. In this paper the optimal transport and the metamorphosis perspectives are combined. For a pair of given input images geodesic paths in the space of images are defined as minimizers of a resulting path energy. To this end, the underlying Riemannian metric measures the rate of transport cost and the rate of viscous dissipation. Furthermore, the model is capable to deal with strongly varying image contrast and explicitly allows for sources and sinks in the transport equations which are incorporated in the metric related to the metamorphosis approach by Trouvé and Younes. In the non-viscous case with source term existence of geodesic paths is proven in the space of measures. The proposed model is explored on the range from merely optimal transport to strongly dissipative dynamics. For this model a robust and effective variational time discretization of geodesic paths is proposed. This requires to minimize a discrete path energy consisting of a sum of consecutive image matching functionals. These functionals are defined on corresponding pairs of intensity functions and on associated pairwise matching deformations. Existence of time discrete geodesics is demonstrated. Furthermore, a finite element implementation is proposed and applied to instructive test cases and to real images. In the non-viscous case this is compared to the algorithm proposed by Benamou and Brenier including a discretization of the source term. Finally, the model is generalized to define discrete weighted barycentres with applications to textures and objects.

  20. Empirical Validation of a Thermal Model of a Complex Roof Including Phase Change Materials

    Directory of Open Access Journals (Sweden)

    Stéphane Guichard

    2015-12-01

    Full Text Available This paper deals with the empirical validation of a building thermal model of a complex roof including a phase change material (PCM. A mathematical model dedicated to PCMs based on the heat apparent capacity method was implemented in a multi-zone building simulation code, the aim being to increase the understanding of the thermal behavior of the whole building with PCM technologies. In order to empirically validate the model, the methodology is based both on numerical and experimental studies. A parametric sensitivity analysis was performed and a set of parameters of the thermal model has been identified for optimization. The use of the generic optimization program called GenOpt® coupled to the building simulation code enabled to determine the set of adequate parameters. We first present the empirical validation methodology and main results of previous work. We then give an overview of GenOpt® and its coupling with the building simulation code. Finally, once the optimization results are obtained, comparisons of the thermal predictions with measurements are found to be acceptable and are presented.

  1. A multiscale model for glioma spread including cell-tissue interactions and proliferation.

    Science.gov (United States)

    Engwer, Christian; Knappitsch, Markus; Surulescu, Christina

    2016-04-01

    Glioma is a broad class of brain and spinal cord tumors arising from glia cells, which are the main brain cells that can develop into neoplasms. They are highly invasive and lead to irregular tumor margins which are not precisely identifiable by medical imaging, thus rendering a precise enough resection very difficult. The understanding of glioma spread patterns is hence essential for both radiological therapy as well as surgical treatment. In this paper we propose a multiscale model for glioma growth including interactions of the cells with the underlying tissue network, along with proliferative effects. Our current accounting for two subpopulations of cells to accomodate proliferation according to the go-or-grow dichtomoty is an extension of the setting in [16]. As in that paper, we assume that cancer cells use neuronal fiber tracts as invasive pathways. Hence, the individual structure of brain tissue seems to be decisive for the tumor spread. Diffusion tensor imaging (DTI) is able to provide such information, thus opening the way for patient specific modeling of glioma invasion. Starting from a multiscale model involving subcellular (microscopic) and individual (mesoscale) cell dynamics, we perform a parabolic scaling to obtain an approximating reaction-diffusion-transport equation on the macroscale of the tumor cell population. Numerical simulations based on DTI data are carried out in order to assess the performance of our modeling approach.

  2. Habitability of super-Earth planets around other suns: models including Red Giant Branch evolution.

    Science.gov (United States)

    von Bloh, W; Cuntz, M; Schröder, K-P; Bounama, C; Franck, S

    2009-01-01

    The unexpected diversity of exoplanets includes a growing number of super-Earth planets, i.e., exoplanets with masses of up to several Earth masses and a similar chemical and mineralogical composition as Earth. We present a thermal evolution model for a 10 Earth-mass planet orbiting a star like the Sun. Our model is based on the integrated system approach, which describes the photosynthetic biomass production and takes into account a variety of climatological, biogeochemical, and geodynamical processes. This allows us to identify a so-called photosynthesis-sustaining habitable zone (pHZ), as determined by the limits of biological productivity on the planetary surface. Our model considers solar evolution during the main-sequence stage and along the Red Giant Branch as described by the most recent solar model. We obtain a large set of solutions consistent with the principal possibility of life. The highest likelihood of habitability is found for "water worlds." Only mass-rich water worlds are able to realize pHZ-type habitability beyond the stellar main sequence on the Red Giant Branch.

  3. Analysis of electronic models for solar cells including energy resolved defect densities

    Energy Technology Data Exchange (ETDEWEB)

    Glitzky, Annegret

    2010-07-01

    We introduce an electronic model for solar cells including energy resolved defect densities. The resulting drift-diffusion model corresponds to a generalized van Roosbroeck system with additional source terms coupled with ODEs containing space and energy as parameters for all defect densities. The system has to be considered in heterostructures and with mixed boundary conditions from device simulation. We give a weak formulation of the problem. If the boundary data and the sources are compatible with thermodynamic equilibrium the free energy along solutions decays monotonously. In other cases it may be increasing, but we estimate its growth. We establish boundedness and uniqueness results and prove the existence of a weak solution. This is done by considering a regularized problem, showing its solvability and the boundedness of its solutions independent of the regularization level. (orig.)

  4. Effect of including decay chains on predictions of equilibrium-type terrestrial food chain models

    International Nuclear Information System (INIS)

    Kirchner, G.

    1990-01-01

    Equilibrium-type food chain models are commonly used for assessing the radiological impact to man from environmental releases of radionuclides. Usually these do not take into account build-up of radioactive decay products during environmental transport. This may be a potential source of underprediction. For estimating consequences of this simplification, the equations of an internationally recognised terrestrial food chain model have been extended to include decay chains of variable length. Example calculations show that for releases from light water reactors as expected both during routine operation and in the case of severe accidents, the build-up of decay products during environmental transport is generally of minor importance. However, a considerable number of radionuclides of potential radiological significance have been identified which show marked contributions of decay products to calculated contamination of human food and resulting radiation dose rates. (author)

  5. The Frontlines of Medicine Project: a proposal for the standardized communication of emergency department data for public health uses including syndromic surveillance for biological and chemical terrorism.

    Science.gov (United States)

    Barthell, Edward N; Cordell, William H; Moorhead, John C; Handler, Jonathan; Feied, Craig; Smith, Mark S; Cochrane, Dennis G; Felton, Christopher W; Collins, Michael A

    2002-04-01

    The Frontlines of Medicine Project is a collaborative effort of emergency medicine (including emergency medical services and clinical toxicology), public health, emergency government, law enforcement, and informatics. This collaboration proposes to develop a nonproprietary, "open systems" approach for reporting emergency department patient data. The common element is a standard approach to sending messages from individual EDs to regional oversight entities that could then analyze the data received. ED encounter data could be used for various public health initiatives, including syndromic surveillance for chemical and biological terrorism. The interlinking of these regional systems could also permit public health surveillance at a national level based on ED patient encounter data. Advancements in the Internet and Web-based technologies could allow the deployment of these standardized tools in a rapid time frame.

  6. Non-generic couplings in supersymmetric standard models

    Directory of Open Access Journals (Sweden)

    Evgeny I. Buchbinder

    2015-09-01

    Full Text Available We study two phases of a heterotic standard model, obtained from a Calabi–Yau compactification of the E8×E8 heterotic string, in the context of the associated four-dimensional effective theories. In the first phase we have a standard model gauge group, an MSSM spectrum, four additional U(1 symmetries and singlet fields. In the second phase, obtained from the first by continuing along the singlet directions, three of the additional U(1 symmetries are spontaneously broken and the remaining one is a B–L symmetry. In this second phase, dimension five operators inducing proton decay are consistent with all symmetries and as such, they are expected to be present. We show that, contrary to this expectation, these operators are forbidden due to the additional U(1 symmetries present in the first phase of the model. We emphasise that such “unexpected” absences of operators, due to symmetry enhancement at specific loci in the moduli space, can be phenomenologically relevant and, in the present case, protect the model from fast proton decay.

  7. BiGG Models: A platform for integrating, standardizing and sharing genome-scale models

    DEFF Research Database (Denmark)

    King, Zachary A.; Lu, Justin; Dräger, Andreas

    2016-01-01

    Genome-scale metabolic models are mathematically-structured knowledge bases that can be used to predict metabolic pathway usage and growth phenotypes. Furthermore, they can generate and test hypotheses when integrated with experimental data. To maximize the value of these models, centralized....... Reaction and metabolite identifiers have been standardized across models to conform to community standards and enable rapid comparison across models. Furthermore, BiGG Models provides a comprehensive application programming interface for accessing BiGG Models with modeling and analysis tools. As a resource...... for highly curated, standardized and accessible models of metabolism, BiGG Models will facilitate diverse systems biology studies and support knowledge-based analysis of diverse experimental data....

  8. Including sugar cane in the agro-ecosystem model ORCHIDEE-STICS

    Science.gov (United States)

    Valade, A.; Vuichard, N.; Ciais, P.; Viovy, N.

    2010-12-01

    With 4 million ha currently grown for ethanol in Brazil only, approximately half the global bioethanol production in 2005 (Smeets 2008), and a devoted land area expected to expand globally in the years to come, sugar cane is at the heart of the biofuel debate. Indeed, ethanol made from biomass is currently the most widespread option for alternative transportation fuels. It was originally promoted as a carbon neutral energy resource that could bring energy independence to countries and local opportunities to farmers, until attention was drawn to its environmental and socio-economical drawbacks. It is still not clear to which extent it is a solution or a contributor to climate change mitigation. Dynamic Global Vegetation models can help address these issues and quantify the potential impacts of biofuels on ecosystems at scales ranging from on-site to global. The global agro-ecosystem model ORCHIDEE describes water, carbon and energy exchanges at the soil-atmosphere interface for a limited number of natural and agricultural vegetation types. In order to integrate agricultural management to the simulations and to capture more accurately the specificity of crops' phenology, ORCHIDEE has been coupled with the agronomical model STICS. The resulting crop-oriented vegetation model ORCHIDEE-STICS has been used so far to simulate temperate crops such as wheat, corn and soybean. As a generic ecosystem model, each grid cell can include several vegetation types with their own phenology and management practices, making it suitable to spatial simulations. Here, ORCHIDEE-STICS is altered to include sugar cane as a new agricultural Plant functional Type, implemented and parametrized using the STICS approach. An on-site calibration and validation is then performed based on biomass and flux chamber measurements in several sites in Australia and variables such as LAI, dry weight, heat fluxes and respiration are used to evaluate the ability of the model to simulate the specific

  9. Flavour alignment in physics beyond the standard model

    Energy Technology Data Exchange (ETDEWEB)

    Braeuninger, Carolin Barbara

    2012-11-21

    There are numerous reasons to think that the Standard Model of physics is not the ultimate theory of nature on very small scales. However, attempts to construct theories that go beyond the Standard Model generically lead to high rates of flavour changing neutral processes that are in conflict with experiment: Quarks are the fundamental constituents of protons and neutrons. Together with electrons they form the visible matter of the universe1. They come in three generations or ''flavours''. In interactions, quarks of different generations can mix, i.e. a quark of one flavour can transform into a quark of another flavour. In the Standard Model, at first order in perturbation theory, such processes occur only via the exchange of a charged particle. Flavour changing neutral processes can only arise in processes involving loops of charged particles. This is due to the fact that all couplings of two quarks to a neutral particle are diagonal in the basis of the mass eigenstates of the quarks. There is thus no mixing of quarks of different flavour at first order. Since the loop processes are suppressed by a loop factor, the Standard Model predicts very low rates for neutral processes that change the flavour of quarks. So far, this is in agreement with experiment. In extensions of the Standard Model, new couplings to the quarks are usually introduced. In general there is no reason why the new coupling matrices should be diagonal in the mass basis of the quarks. These models therefore predict high rates for processes that mix quarks of different flavour. Extensions of the Standard Model must therefore have a non-trivial flavour structure. A possibility to avoid flavour violation is to assume that the new couplings are aligned with the mass matrices of the quarks, i.e. diagonal in the same basis. This alignment could be due to a flavour symmetry. In this thesis, two extensions of the Standard Model with alignment are studied. The first is a simple

  10. Selected topics in phenomenology of the standard model

    International Nuclear Information System (INIS)

    Roberts, R.G.

    1992-01-01

    We begin with the structure of the proton which is revealed through deep inelastic scattering of nucleons by electron/muon or neutrino scattering off nucleons. The quark parton model is described which leads on to the interaction of quarks and gluons - quantum chromodynamics (QCD). From this parton distributions can be extracted and then fed into the quark parton description of hadron-hadron collisions. In this way we analyse large p T jet production, prompt photon production and dilepton, W and Z production (Drell-Yan mechanism), ending with a study of heavy quark production. W and Z physics is then discussed. The various definitions at the tree level of sin 2 θ w are listed and then the radiative corrections to these are briefly considered. The data from European Large Electron-Positron storage rings (LEP) then allow limits to be set on the mass of the top quark and the Higgs via these corrections. Standard model predictions for the various Z widths are compared with the latest LEP data. Electroweak effects in e + e - scattering are discussed together with the extraction of the various vector and axial-vector couplings involved. We return to QCD when the production of jets in e + e - is studied. Both the LEP and lower energy data are able to give quantitative estimates of the strong coupling α s and the consistency of the various estimates and those from other QCD processes are discussed. The value of α s (M z ) actually plays an important role in setting the scale of the possible supersymmetry (SUSY) physics beyond the standard model. Finally the subject of quark mixing is addressed. How the the values of the various CKM matrix elements are derived is discussed together with a very brief look at the charge-parity (CP) violation and how the standard model is standing up to the latest measurements of ε'/ε. (Author)

  11. Beyond-the-Standard-Model Higgs physics using the ATLAS experiment

    CERN Document Server

    Vanadia, M

    2016-01-01

    The ATLAS and CMS experiments at the Large Hadron Collider discovered a new particle, with a mass of 125GeV and properties compatible with that predicted for the Higgs boson by the Standard Model. Understanding if this particle is part of a larger and more complex Higgs sector is one of the major challenges for particle physics experiments. In this report, an overview on latest results obtained on LHC Run-1 data by the ATLAS experiment on Beyond-the-Standard- Model Higgs searches is presented. Searches for new physics in the Higgs sector are presented and interpreted in well-motivated theoretical frameworks, including the two-Higgs-doublet Models and the Minimal and Next-to-Minimal Supersymmetric Standard Model.

  12. Toward Standardizing a Lexicon of Infectious Disease Modeling Terms.

    Science.gov (United States)

    Milwid, Rachael; Steriu, Andreea; Arino, Julien; Heffernan, Jane; Hyder, Ayaz; Schanzer, Dena; Gardner, Emma; Haworth-Brockman, Margaret; Isfeld-Kiely, Harpa; Langley, Joanne M; Moghadas, Seyed M

    2016-01-01

    Disease modeling is increasingly being used to evaluate the effect of health intervention strategies, particularly for infectious diseases. However, the utility and application of such models are hampered by the inconsistent use of infectious disease modeling terms between and within disciplines. We sought to standardize the lexicon of infectious disease modeling terms and develop a glossary of terms commonly used in describing models' assumptions, parameters, variables, and outcomes. We combined a comprehensive literature review of relevant terms with an online forum discussion in a virtual community of practice, mod4PH (Modeling for Public Health). Using a convergent discussion process and consensus amongst the members of mod4PH, a glossary of terms was developed as an online resource. We anticipate that the glossary will improve inter- and intradisciplinary communication and will result in a greater uptake and understanding of disease modeling outcomes in heath policy decision-making. We highlight the role of the mod4PH community of practice and the methodologies used in this endeavor to link theory, policy, and practice in the public health domain.

  13. Web-accessible molecular modeling with Rosetta: The Rosetta Online Server that Includes Everyone (ROSIE).

    Science.gov (United States)

    Moretti, Rocco; Lyskov, Sergey; Das, Rhiju; Meiler, Jens; Gray, Jeffrey J

    2018-01-01

    The Rosetta molecular modeling software package provides a large number of experimentally validated tools for modeling and designing proteins, nucleic acids, and other biopolymers, with new protocols being added continually. While freely available to academic users, external usage is limited by the need for expertise in the Unix command line environment. To make Rosetta protocols available to a wider audience, we previously created a web server called Rosetta Online Server that Includes Everyone (ROSIE), which provides a common environment for hosting web-accessible Rosetta protocols. Here we describe a simplification of the ROSIE protocol specification format, one that permits easier implementation of Rosetta protocols. Whereas the previous format required creating multiple separate files in different locations, the new format allows specification of the protocol in a single file. This new, simplified protocol specification has more than doubled the number of Rosetta protocols available under ROSIE. These new applications include pK a determination, lipid accessibility calculation, ribonucleic acid redesign, protein-protein docking, protein-small molecule docking, symmetric docking, antibody docking, cyclic toxin docking, critical binding peptide determination, and mapping small molecule binding sites. ROSIE is freely available to academic users at http://rosie.rosettacommons.org. © 2017 The Protein Society.

  14. A curved multi-component aerosol hygroscopicity model framework: 2 Including organics

    Science.gov (United States)

    Topping, D. O.; McFiggans, G. B.; Coe, H.

    2004-12-01

    This paper describes the inclusion of organic particulate material within the Aerosol Diameter Dependent Equilibrium Model (ADDEM) framework described in the companion paper applied to inorganic aerosol components. The performance of ADDEM is analysed in terms of its capability to reproduce the behaviour of various organic and mixed inorganic/organic systems using recently published bulk data. Within the modelling architecture already described two separate thermodynamic models are coupled in an additive approach and combined with a method for solving the Köhler equation in order to develop a tool for predicting the water content associated with an aerosol of known inorganic/organic composition and dry size. For development of the organic module, the widely used group contribution method UNIFAC is employed to explicitly deal with the non-ideality in solution. The UNIFAC predictions for components of atmospheric importance were improved considerably by using revised interaction parameters derived from electro-dynamic balance studies. Using such parameters, the model was found to adequately describe mixed systems including 5-6 dicarboxylic acids, down to low relative humidity conditions. The additive approach for modelling mixed inorganic/organic systems worked well for a variety of mixtures. As expected, deviations between predicted and measured data increase with increasing concentration. Available surface tension models, used in evaluating the Kelvin term, were found to reproduce measured data with varying success. Deviations from experimental data increased with increased organic compound complexity. For components only slightly soluble in water, significant deviations from measured surface tension depression behaviour were predicted with both model formalisms tested. A Sensitivity analysis showed that such variation is likely to lead to predicted growth factors within the measurement uncertainty for growth factor taken in the sub-saturated regime. Greater

  15. A Hydrological Concept including Lateral Water Flow Compatible with the Biogeochemical Model ForSAFE

    Directory of Open Access Journals (Sweden)

    Giuliana Zanchi

    2016-03-01

    Full Text Available The study presents a hydrology concept developed to include lateral water flow in the biogeochemical model ForSAFE. The hydrology concept was evaluated against data collected at Svartberget in the Vindeln Research Forest in Northern Sweden. The results show that the new concept allows simulation of a saturated and an unsaturated zone in the soil as well as water flow that reaches the stream comparable to measurements. The most relevant differences compared to streamflow measurements are that the model simulates a higher base flow in winter and lower flow peaks after snowmelt. These differences are mainly caused by the assumptions made to regulate the percolation at the bottom of the simulated soil columns. The capability for simulating lateral flows and a saturated zone in ForSAFE can greatly improve the simulation of chemical exchange in the soil and export of elements from the soil to watercourses. Such a model can help improve the understanding of how environmental changes in the forest landscape will influence chemical loads to surface waters.

  16. Integrated Sachs-Wolfe effect in a quintessence cosmological model: Including anisotropic stress of dark energy

    International Nuclear Information System (INIS)

    Wang, Y. T.; Xu, L. X.; Gui, Y. X.

    2010-01-01

    In this paper, we investigate the integrated Sachs-Wolfe effect in the quintessence cold dark matter model with constant equation of state and constant speed of sound in dark energy rest frame, including dark energy perturbation and its anisotropic stress. Comparing with the ΛCDM model, we find that the integrated Sachs-Wolfe (ISW)-power spectrums are affected by different background evolutions and dark energy perturbation. As we change the speed of sound from 1 to 0 in the quintessence cold dark matter model with given state parameters, it is found that the inclusion of dark energy anisotropic stress makes the variation of magnitude of the ISW source uncertain due to the anticorrelation between the speed of sound and the ratio of dark energy density perturbation contrast to dark matter density perturbation contrast in the ISW-source term. Thus, the magnitude of the ISW-source term is governed by the competition between the alterant multiple of (1+3/2xc-circumflex s 2 ) and that of δ de /δ m with the variation of c-circumflex s 2 .

  17. Expanded rock blast modeling capabilities of DMC{_}BLAST, including buffer blasting

    Energy Technology Data Exchange (ETDEWEB)

    Preece, D.S. [Sandia National Labs., Albuquerque, NM (United States); Tidman, J.P.; Chung, S.H. [ICI Explosives (Canada)

    1996-12-31

    A discrete element computer program named DMC{_}BLAST (Distinct Motion Code) has been under development since 1987 for modeling rock blasting. This program employs explicit time integration and uses spherical or cylindrical elements that are represented as circles in 2-D. DMC{_}BLAST calculations compare favorably with data from actual bench blasts. The blast modeling capabilities of DMC{_}BLAST have been expanded to include independently dipping geologic layers, top surface, bottom surface and pit floor. The pit can also now be defined using coordinates based on the toe of the bench. A method for modeling decked explosives has been developed which allows accurate treatment of the inert materials (stemming) in the explosive column and approximate treatment of different explosives in the same blasthole. A DMC{_}BLAST user can specify decking through a specific geologic layer with either inert material or a different explosive. Another new feature of DMC{_}BLAST is specification of an uplift angle which is the angle between the normal to the blasthole and a vector defining the direction of explosive loading on particles adjacent to the blasthole. A buffer (choke) blast capability has been added for situations where previously blasted material is adjacent to the free face of the bench preventing any significant lateral motion during the blast.

  18. Technical support document: Energy efficiency standards for consumer products: Refrigerators, refrigerator-freezers, and freezers including draft environmental assessment, regulatory impact analysis

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    The Energy Policy and Conservation Act (P.L. 94-163), as amended by the National Appliance Energy Conservation Act of 1987 (P.L. 100-12) and by the National Appliance Energy Conservation Amendments of 1988 (P.L. 100-357), and by the Energy Policy Act of 1992 (P.L. 102-486), provides energy conservation standards for 12 of the 13 types of consumer products` covered by the Act, and authorizes the Secretary of Energy to prescribe amended or new energy standards for each type (or class) of covered product. The assessment of the proposed standards for refrigerators, refrigerator-freezers, and freezers presented in this document is designed to evaluate their economic impacts according to the criteria in the Act. It includes an engineering analysis of the cost and performance of design options to improve the efficiency of the products; forecasts of the number and average efficiency of products sold, the amount of energy the products will consume, and their prices and operating expenses; a determination of change in investment, revenues, and costs to manufacturers of the products; a calculation of the costs and benefits to consumers, electric utilities, and the nation as a whole; and an assessment of the environmental impacts of the proposed standards.

  19. The Beyond the standard model working group: Summary report

    Energy Technology Data Exchange (ETDEWEB)

    G. Azuelos et al.

    2004-03-18

    In this working group we have investigated a number of aspects of searches for new physics beyond the Standard Model (SM) at the running or planned TeV-scale colliders. For the most part, we have considered hadron colliders, as they will define particle physics at the energy frontier for the next ten years at least. The variety of models for Beyond the Standard Model (BSM) physics has grown immensely. It is clear that only future experiments can provide the needed direction to clarify the correct theory. Thus, our focus has been on exploring the extent to which hadron colliders can discover and study BSM physics in various models. We have placed special emphasis on scenarios in which the new signal might be difficult to find or of a very unexpected nature. For example, in the context of supersymmetry (SUSY), we have considered: how to make fully precise predictions for the Higgs bosons as well as the superparticles of the Minimal Supersymmetric Standard Model (MSSM) (parts III and IV); MSSM scenarios in which most or all SUSY particles have rather large masses (parts V and VI); the ability to sort out the many parameters of the MSSM using a variety of signals and study channels (part VII); whether the no-lose theorem for MSSM Higgs discovery can be extended to the next-to-minimal Supersymmetric Standard Model (NMSSM) in which an additional singlet superfield is added to the minimal collection of superfields, potentially providing a natural explanation of the electroweak value of the parameter {micro} (part VIII); sorting out the effects of CP violation using Higgs plus squark associate production (part IX); the impact of lepton flavor violation of various kinds (part X); experimental possibilities for the gravitino and its sgoldstino partner (part XI); what the implications for SUSY would be if the NuTeV signal for di-muon events were interpreted as a sign of R-parity violation (part XII). Our other main focus was on the phenomenological implications of extra

  20. Modelling and control of a microgrid including photovoltaic and wind generation

    Science.gov (United States)

    Hussain, Mohammed Touseef

    Extensive increase of distributed generation (DG) penetration and the existence of multiple DG units at distribution level have introduced the notion of micro-grid. This thesis develops a detailed non-linear and small-signal dynamic model of a microgrid that includes PV, wind and conventional small scale generation along with their power electronics interfaces and the filters. The models developed evaluate the amount of generation mix from various DGs for satisfactory steady state operation of the microgrid. In order to understand the interaction of the DGs on microgrid system initially two simpler configurations were considered. The first one consists of microalternator, PV and their electronics, and the second system consists of microalternator and wind system each connected to the power system grid. Nonlinear and linear state space model of each microgrid are developed. Small signal analysis showed that the large participation of PV/wind can drive the microgrid to the brink of unstable region without adequate control. Non-linear simulations are carried out to verify the results obtained through small-signal analysis. The role of the extent of generation mix of a composite microgrid consisting of wind, PV and conventional generation was investigated next. The findings of the smaller systems were verified through nonlinear and small signal modeling. A central supervisory capacitor energy storage controller interfaced through a STATCOM was proposed to monitor and enhance the microgrid operation. The potential of various control inputs to provide additional damping to the system has been evaluated through decomposition techniques. The signals identified to have damping contents were employed to design the supervisory control system. The controller gains were tuned through an optimal pole placement technique. Simulation studies demonstrate that the STATCOM voltage phase angle and PV inverter phase angle were the best inputs for enhanced stability boundaries.

  1. Detecting physics beyond the Standard Model with the REDTOP experiment

    Science.gov (United States)

    González, D.; León, D.; Fabela, B.; Pedraza, M. I.

    2017-10-01

    REDTOP is an experiment at its proposal stage. It belongs to the High Intensity class of experiments. REDTOP will use a 1.8 GeV continuous proton beam impinging on a fixed target. It is expected to produce about 1013 η mesons per year. The main goal of REDTOP is to look for physics beyond the Standard Model by detecting rare η decays. The detector is designed with innovative technologies based on the detection of prompt Cherenkov light, such that interesting events can be observed and the background events are efficiently rejected. The experimental design, the physics program and the running plan of the experiment is presented.

  2. CP asymmetry in Bd→φKS: Standard model pollution

    International Nuclear Information System (INIS)

    Grossman, Y.; Isidori, G.; Worah, M.P.

    1998-01-01

    The difference in the time dependent CP asymmetries between the modes B→ψK S and B→φK S is a clean signal for physics beyond the standard model. This interpretation could fail if there is a large enhancement of the matrix element of the b→u bar us operator between the B d initial state and the φK S final state. We argue against this possibility and propose some experimental tests that could shed light on the situation. copyright 1998 The American Physical Society

  3. What is special about the group of the standard model?

    International Nuclear Information System (INIS)

    Nielsen, H.B.; Brene, N.

    1989-03-01

    The standard model is based on the algebra of U 1 xSU 2 xSU 3 . The systematics of charges of the fundamental fermions seems to suggest the importance of a particular group having this algebra, viz. S(U 2 xU 3 ). This group is distinguished from all other connected compact non semisimple groups with dimensionality up to 12 by a characteristic property: it is very 'skew'. By this we mean that the group has relatively few 'generalised outer automorphisms'. One may speculate about physical reasons for this fact. (orig.)

  4. Baryon number dissipation at finite temperature in the standard model

    International Nuclear Information System (INIS)

    Mottola, E.; Raby, S.; Starkman, G.

    1990-01-01

    We analyze the phenomenon of baryon number violation at finite temperature in the standard model, and derive the relaxation rate for the baryon density in the high temperature electroweak plasma. The relaxation rate, γ is given in terms of real time correlation functions of the operator E·B, and is directly proportional to the sphaleron transition rate, Γ: γ preceq n f Γ/T 3 . Hence it is not instanton suppressed, as claimed by Cohen, Dugan and Manohar (CDM). We show explicitly how this result is consistent with the methods of CDM, once it is recognized that a new anomalous commutator is required in their approach. 19 refs., 2 figs

  5. Dark Matter and Color Octets Beyond the Standard Model

    Energy Technology Data Exchange (ETDEWEB)

    Krnjaic, Gordan Zdenko [Johns Hopkins Univ., Baltimore, MD (United States)

    2012-07-01

    Although the Standard Model (SM) of particles and interactions has survived forty years of experimental tests, it does not provide a complete description of nature. From cosmological and astrophysical observations, it is now clear that the majority of matter in the universe is not baryonic and interacts very weakly (if at all) via non-gravitational forces. The SM does not provide a dark matter candidate, so new particles must be introduced. Furthermore, recent Tevatron results suggest that SM predictions for benchmark collider observables are in tension with experimental observations. In this thesis, we will propose extensions to the SM that address each of these issues.

  6. B_{s,d} -> l+ l- in the Standard Model

    CERN Document Server

    Bobeth, Christoph; Hermann, Thomas; Misiak, Mikolaj; Stamou, Emmanuel; Steinhauser, Matthias

    2014-01-01

    We combine our new results for the O(alpha_em) and O(alpha_s^2) corrections to B_{s,d} -> l^+ l^-, and present updated branching ratio predictions for these decays in the standard model. Inclusion of the new corrections removes major theoretical uncertainties of perturbative origin that have just begun to dominate over the parametric ones. For the recently observed muonic decay of the B_s meson, our calculation gives BR(B_s -> mu^+ mu^-) = (3.65 +_ 0.23) * 10^(-9).

  7. Future high precision experiments and new physics beyond Standard Model

    International Nuclear Information System (INIS)

    Luo, Mingxing.

    1993-01-01

    High precision (< 1%) electroweak experiments that have been done or are likely to be done in this decade are examined on the basis of Standard Model (SM) predictions of fourteen weak neutral current observables and fifteen W and Z properties to the one-loop level, the implications of the corresponding experimental measurements to various types of possible new physics that enter at the tree or loop level were investigated. Certain experiments appear to have special promise as probes of the new physics considered here

  8. The strong interactions beyond the standard model of particle physics

    Energy Technology Data Exchange (ETDEWEB)

    Bergner, Georg [Muenster Univ. (Germany). Inst. for Theoretical Physics

    2016-11-01

    SuperMUC is one of the most convenient high performance machines for our project since it offers a high performance and flexibility regarding different applications. This is of particular importance for investigations of new theories, where on the one hand the parameters and systematic uncertainties have to be estimated in smaller simulations and on the other hand a large computational performance is needed for the estimations of the scale at zero temperature. Our project is just the first investigation of the new physics beyond the standard model of particle physics and we hope to proceed with our studies towards more involved Technicolour candidates, supersymmetric QCD, and extended supersymmetry.

  9. High Mass Standard Model Higgs searches at the Tevatron

    Directory of Open Access Journals (Sweden)

    Petridis Konstantinos A.

    2012-06-01

    Full Text Available We present the results of searches for the Standard Model Higgs boson decaying predominantly to W+W− pairs, at a center-of-mass energy of √s = 1.96 TeV, using up to 8.2 fb−1 of data collected with the CDF and D0 detectors at the Fermilab Tevatron collider. The analysis techniques and the various channels considered are discussed. These searches result in exclusions across the Higgs mass range of 156.5< mH <173.7 GeV for CDF and 161< mH <170 GeV for D0.

  10. Coset Space Dimensional Reduction approach to the Standard Model

    International Nuclear Information System (INIS)

    Farakos, K.; Kapetanakis, D.; Koutsoumbas, G.; Zoupanos, G.

    1988-01-01

    We present a unified theory in ten dimensions based on the gauge group E 8 , which is dimensionally reduced to the Standard Mode SU 3c xSU 2 -LxU 1 , which breaks further spontaneously to SU 3L xU 1em . The model gives similar predictions for sin 2 θ w and proton decay as the minimal SU 5 G.U.T., while a natural choice of the coset space radii predicts light Higgs masses a la Coleman-Weinberg

  11. Physics beyond the standard model in the non-perturbative unification scheme

    International Nuclear Information System (INIS)

    Kapetanakis, D.; Zoupanos, G.

    1990-01-01

    The non-perturbative unification scenario predicts reasonably well the low energy gauge couplings of the standard model. Agreement with the measured low energy couplings is obtained by assuming certain kind of physics beyond the standard model. A number of possibilities for physics beyond the standard model is examined. The best candidates so far are the standard model with eight fermionic families and a similar number of Higgs doublets, and the supersymmetric standard model with five families. (author)

  12. Big bang nucleosynthesis: The standard model and alternatives

    Science.gov (United States)

    Schramm, David N.

    1991-01-01

    Big bang nucleosynthesis provides (with the microwave background radiation) one of the two quantitative experimental tests of the big bang cosmological model. This paper reviews the standard homogeneous-isotropic calculation and shows how it fits the light element abundances ranging from He-4 at 24% by mass through H-2 and He-3 at parts in 10(exp 5) down to Li-7 at parts in 10(exp 10). Furthermore, the recent large electron positron (LEP) (and the stanford linear collider (SLC)) results on the number of neutrinos are discussed as a positive laboratory test of the standard scenario. Discussion is presented on the improved observational data as well as the improved neutron lifetime data. Alternate scenarios of decaying matter or of quark-hadron induced inhomogeneities are discussed. It is shown that when these scenarios are made to fit the observed abundances accurately, the resulting conlusions on the baryonic density relative to the critical density, omega(sub b) remain approximately the same as in the standard homogeneous case, thus, adding to the robustness of the conclusion that omega(sub b) approximately equals 0.06. This latter point is the driving force behind the need for non-baryonic dark matter (assuming omega(sub total) = 1) and the need for dark baryonic matter, since omega(sub visible) is less than omega(sub b).

  13. Big bang nucleosynthesis: The standard model and alternatives

    International Nuclear Information System (INIS)

    Schramm, D.N.

    1991-01-01

    Big bang nucleosynthesis provides (with the microwave background radiation) one of the two quantitative experimental tests of the big bang cosmological model. This paper reviews the standard homogeneous-isotropic calculation and shows how it fits the light element abundances ranging from 4 He at 24% by mass through 2 H and 3 He at parts in 10 5 down to 7 Li at parts in 10 10 . Furthermore, the recent LEP (and SLC) results on the number of neutrinos are discussed as a positive laboratory test of the standard scenario. Discussion is presented on the improved observational data as well as the improved neutron lifetime data. Alternate scenarios of decaying matter or of quark-hadron induced inhomogeneities are discussed. It is shown that when these scenarios are made to fit the observed abundances accurately, the resulting conclusions on the baryonic density relative to the critical density, Ω b , remain approximately the same as in the standard homogeneous case, thus, adding to the robustness of the conclusion that Ω b ≅0.06. This latter point is the driving force behind the need for non-baryonic dark matter (assuming Ω total =1) and the need for dark baryonic matter, since Ω visible b . (orig.)

  14. Standard Model CP-violation and baryon asymmetry

    CERN Document Server

    Gavela, M.B.; Orloff, J.; Pene, O.

    1994-01-01

    Simply based on CP arguments, we argue against a Standard Model explanation of the baryon asymmetry of the universe in the presence of a first order phase transition. A CP-asymmetry is found in the reflection coefficients of quarks hitting the phase boundary created during the electroweak transition. The problem is analyzed both in an academic zero temperature case and in the realistic finite temperature one. The building blocks are similar in both cases: Kobayashi-Maskawa CP-violation, CP-even phases in the reflection coefficients of quarks, and physical transitions due to fermion self-energies. In both cases an effect is present at order $\\alpha_W^2$ in rate. A standard GIM behaviour is found as intuitively expected. In the finite temperature case, a crucial role is played by the damping rate of quasi-particles in a hot plasma, which is a relevant scale together with $M_W$ and the temperature. The effect is many orders of magnitude below what observation requires, and indicates that non standard physics is ...

  15. Technical support document: Energy conservation standards for consumer products: Dishwashers, clothes washers, and clothes dryers including: Environmental impacts; regulatory impact analysis

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-01

    The Energy Policy and Conservation Act as amended (P.L. 94-163), establishes energy conservation standards for 12 of the 13 types of consumer products specifically covered by the Act. The legislation requires the Department of Energy (DOE) to consider new or amended standards for these and other types of products at specified times. This Technical Support Document presents the methodology, data and results from the analysis of the energy and economic impacts of standards on dishwashers, clothes washers, and clothes dryers. The economic impact analysis is performed in five major areas: An Engineering Analysis, which establishes technical feasibility and product attributes including costs of design options to improve appliance efficiency. A Consumer Analysis at two levels: national aggregate impacts, and impacts on individuals. The national aggregate impacts include forecasts of appliance sales, efficiencies, energy use, and consumer expenditures. The individual impacts are analyzed by Life-Cycle Cost (LCC), Payback Periods, and Cost of Conserved Energy (CCE), which evaluate the savings in operating expenses relative to increases in purchase price; A Manufacturer Analysis, which provides an estimate of manufacturers' response to the proposed standards. Their response is quantified by changes in several measures of financial performance for a firm. An Industry Impact Analysis shows financial and competitive impacts on the appliance industry. A Utility Analysis that measures the impacts of the altered energy-consumption patterns on electric utilities. A Environmental Effects analysis, which estimates changes in emissions of carbon dioxide, sulfur oxides, and nitrogen oxides, due to reduced energy consumption in the home and at the power plant. A Regulatory Impact Analysis collects the results of all the analyses into the net benefits and costs from a national perspective. 47 figs., 171 tabs. (JF)

  16. Exergoeconomic performance optimization for a steady-flow endoreversible refrigeration model including six typical cycles

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Lingen; Kan, Xuxian; Sun, Fengrui; Wu, Feng [College of Naval Architecture and Power, Naval University of Engineering, Wuhan 430033 (China)

    2013-07-01

    The operation of a universal steady flow endoreversible refrigeration cycle model consisting of a constant thermal-capacity heating branch, two constant thermal-capacity cooling branches and two adiabatic branches is viewed as a production process with exergy as its output. The finite time exergoeconomic performance optimization of the refrigeration cycle is investigated by taking profit rate optimization criterion as the objective. The relations between the profit rate and the temperature ratio of working fluid, between the COP (coefficient of performance) and the temperature ratio of working fluid, as well as the optimal relation between profit rate and the COP of the cycle are derived. The focus of this paper is to search the compromised optimization between economics (profit rate) and the utilization factor (COP) for endoreversible refrigeration cycles, by searching the optimum COP at maximum profit, which is termed as the finite-time exergoeconomic performance bound. Moreover, performance analysis and optimization of the model are carried out in order to investigate the effect of cycle process on the performance of the cycles using numerical example. The results obtained herein include the performance characteristics of endoreversible Carnot, Diesel, Otto, Atkinson, Dual and Brayton refrigeration cycles.

  17. How to use the Standard Model effective field theory

    Energy Technology Data Exchange (ETDEWEB)

    Henning, Brian; Lu, Xiaochuan [Department of Physics, University of California, Berkeley,Berkeley, California 94720 (United States); Theoretical Physics Group, Lawrence Berkeley National Laboratory,Berkeley, California 94720 (United States); Murayama, Hitoshi [Department of Physics, University of California, Berkeley,Berkeley, California 94720 (United States); Theoretical Physics Group, Lawrence Berkeley National Laboratory,Berkeley, California 94720 (United States); Kavli Institute for the Physics and Mathematics of the Universe (WPI),Todai Institutes for Advanced Study, University of Tokyo,Kashiwa 277-8583 (Japan)

    2016-01-05

    We present a practical three-step procedure of using the Standard Model effective field theory (SM EFT) to connect ultraviolet (UV) models of new physics with weak scale precision observables. With this procedure, one can interpret precision measurements as constraints on a given UV model. We give a detailed explanation for calculating the effective action up to one-loop order in a manifestly gauge covariant fashion. This covariant derivative expansion method dramatically simplifies the process of matching a UV model with the SM EFT, and also makes available a universal formalism that is easy to use for a variety of UV models. A few general aspects of RG running effects and choosing operator bases are discussed. Finally, we provide mapping results between the bosonic sector of the SM EFT and a complete set of precision electroweak and Higgs observables to which present and near future experiments are sensitive. Many results and tools which should prove useful to those wishing to use the SM EFT are detailed in several appendices.

  18. How to use the Standard Model effective field theory

    Science.gov (United States)

    Henning, Brian; Lu, Xiaochuan; Murayama, Hitoshi

    2016-01-01

    We present a practical three-step procedure of using the Standard Model effective field theory (SM EFT) to connect ultraviolet (UV) models of new physics with weak scale precision observables. With this procedure, one can interpret precision measurements as constraints on a given UV model. We give a detailed explanation for calculating the effective action up to one-loop order in a manifestly gauge covariant fashion. This covariant derivative expansion method dramatically simplifies the process of matching a UV model with the SM EFT, and also makes available a universal formalism that is easy to use for a variety of UV models. A few general aspects of RG running effects and choosing operator bases are discussed. Finally, we provide mapping results between the bosonic sector of the SM EFT and a complete set of precision electroweak and Higgs observables to which present and near future experiments are sensitive. Many results and tools which should prove useful to those wishing to use the SM EFT are detailed in several appendices.

  19. Electroweak baryogenesis in extensions of the standard model

    Energy Technology Data Exchange (ETDEWEB)

    Fromme, L.

    2006-07-07

    We investigate the generation of the baryon asymmetry in two extensions of the Standard Model; these are the {phi}{sup 6} and the two-Higgs-doublet model. Analyzing the thermal potential in the presence of CP violation, we find a strong first order phase transition for a wide range of parameters in both models. We compute the relevant bubble wall properties which then enter the transport equations. In non-supersymmetric models electroweak baryogenesis is dominated by top transport, which we treat in the WKB approximation. We calculate the CP-violating source terms starting from the Dirac equation. We show how to resolve discrepancies between this treatment and the computation in the Schwinger-Keldysh formalism. Furthermore, we keep inelastic scatterings of quarks and W bosons at a finite rate, which considerably affects the amount of the generated baryon asymmetry depending on the bubble wall velocity. In addition, we improve the transport equations by novel source terms which are generated by CP-conserving perturbations in the plasma. It turns out that their effect is relatively small. Both models under consideration predict a baryon to entropy ratio close to the observed value for a large part of the parameter space without being in conflict with constraints on electric dipole moments. (orig.)

  20. Intestinal bacterial overgrowth includes potential pathogens in the carbohydrate overload models of equine acute laminitis.

    Science.gov (United States)

    Onishi, Janet C; Park, Joong-Wook; Prado, Julio; Eades, Susan C; Mirza, Mustajab H; Fugaro, Michael N; Häggblom, Max M; Reinemeyer, Craig R

    2012-10-12

    Carbohydrate overload models of equine acute laminitis are used to study the development of lameness. It is hypothesized that a diet-induced shift in cecal bacterial communities contributes to the development of the pro-inflammatory state that progresses to laminar failure. It is proposed that vasoactive amines, protease activators and endotoxin, all bacterial derived bioactive metabolites, play a role in disease development. Questions regarding the oral bioavailability of many of the bacterial derived bioactive metabolites remain. This study evaluates the possibility that a carbohydrate-induced overgrowth of potentially pathogenic cecal bacteria occurs and that bacterial translocation contributes toward the development of the pro-inflammatory state. Two groups of mixed-breed horses were used, those with laminitis induced by cornstarch (n=6) or oligofructan (n=6) and non-laminitic controls (n=8). Cecal fluid and tissue homogenates of extra-intestinal sites including the laminae were used to enumerate Gram-negative and -positive bacteria. Horses that developed Obel grade2 lameness, revealed a significant overgrowth of potentially pathogenic Gram-positive and Gram-negative intestinal bacteria within the cecal fluid. Although colonization of extra-intestinal sites with potentially pathogenic bacteria was not detected, results of this study indicate that cecal/colonic lymphadenopathy and eosinophilia develop in horses progressing to lameness. It is hypothesized that the pro-inflammatory state in carbohydrate overload models of equine acute laminitis is driven by an immune response to the rapid overgrowth of Gram-positive and Gram-negative cecal bacterial communities in the gut. Further equine research is indicated to study the immunological response, involving the lymphatic system that develops in the model. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Decay of the standard model Higgs field after inflation

    CERN Document Server

    Figueroa, Daniel G; Torrenti, Francisco

    2015-01-01

    We study the nonperturbative dynamics of the Standard Model (SM) after inflation, in the regime where the SM is decoupled from (or weakly coupled to) the inflationary sector. We use classical lattice simulations in an expanding box in (3+1) dimensions, modeling the SM gauge interactions with both global and Abelian-Higgs analogue scenarios. We consider different post-inflationary expansion rates. During inflation, the Higgs forms a condensate, which starts oscillating soon after inflation ends. Via nonperturbative effects, the oscillations lead to a fast decay of the Higgs into the SM species, transferring most of the energy into $Z$ and $W^{\\pm}$ bosons. All species are initially excited far away from equilibrium, but their interactions lead them into a stationary stage, with exact equipartition among the different energy components. From there on the system eventually reaches equilibrium. We have characterized in detail, in the different expansion histories considered, the evolution of the Higgs and of its ...

  2. CP Violating B Decays in the Standard Model and Supersymmetry

    International Nuclear Information System (INIS)

    Ciuchini, M.; Franco, E.; Martinelli, G.; Masiero, A.; Silvestrini, L.

    1997-01-01

    We study the uncertainties of the standard model (SM) predictions for CP violating B decays and investigate where and how supersymmetric (SUSY) contributions may be disentangled. The first task is accomplished by letting the relevant matrix elements of the effective Hamiltonian vary within certain ranges. The SUSY analysis makes use of a formalism which allows one to obtain model-independent results. We show that in some cases it is possible (a) to measure the CP B endash BB mixing phase and (b) to discriminate the SM and SUSY contributions to the CP decay phases. The gold-plated decays in this respect are the B→φK S and B→K S π 0 channels. copyright 1997 The American Physical Society

  3. Electro symmetry breaking and beyond the standard model

    International Nuclear Information System (INIS)

    Barklow, T.; Dawson, S.; Haber, H.E.

    1995-05-01

    The development of the Standard Model of particle physics is a remarkable success story. Its many facets have been tested at present day accelerators; no significant unambiguous deviations have yet been found. In some cases, the model has been verified at an accuracy of better than one part in a thousand. This state of affairs presents our field with a challenge. Where do we go from here? What is our vision for future developments in particle physics? Are particle physicists' recent successes a signal of the field's impending demise, or do real long-term prospects exist for further progress? We assert that the long-term health and intellectual vitality of particle physics depends crucially on the development of a new generation of particle colliders that push the energy frontier by an order of magnitude beyond present capabilities. In this report, we address the scientific issues underlying this assertion

  4. Electro symmetry breaking and beyond the standard model

    Energy Technology Data Exchange (ETDEWEB)

    Barklow, T. [Stanford Linear Accelerator Center, Menlo Park, CA (United States); Dawson, S. [Brookhaven National Lab., Upton, NY (United States); Haber, H.E. [California Univ., Santa Cruz, CA (United States). Inst. for Particle Physics; Siegrist, J. [Lawrence Berkeley Lab., CA (United States)

    1995-05-01

    The development of the Standard Model of particle physics is a remarkable success story. Its many facets have been tested at present day accelerators; no significant unambiguous deviations have yet been found. In some cases, the model has been verified at an accuracy of better than one part in a thousand. This state of affairs presents our field with a challenge. Where do we go from here? What is our vision for future developments in particle physics? Are particle physicists` recent successes a signal of the field`s impending demise, or do real long-term prospects exist for further progress? We assert that the long-term health and intellectual vitality of particle physics depends crucially on the development of a new generation of particle colliders that push the energy frontier by an order of magnitude beyond present capabilities. In this report, we address the scientific issues underlying this assertion.

  5. Neutron electric dipole moment in the minimal supersymmetric standard model

    International Nuclear Information System (INIS)

    Inui, T.; Mimura, Y.; Sakai, N.; Sasaki, T.

    1995-01-01

    The neutron electric dipole moment (EDM) due to the single quark EDM and to the transition EDM is calculated in the minimal supersymmetric standard model. Assuming that the Cabibbo-Kobayashi-Maskawa matrix at the grand unification scale is the only source of CP violation, complex phases are induced in the parameters of soft supersymmetry breaking at low energies. The chargino one-loop diagram is found to give the dominant contribution of the order of 10 -27 similar 10 -29 e.cm for the quark EDM, assuming the light chargino mass and the universal scalar mass to be 50 GeV and 100 GeV, respectively. Therefore the neutron EDM in this class of model is difficult to measure experimentally. The gluino one-loop diagram also contributes due to the flavor changing gluino coupling. The transition EDM is found to give dominant contributions for certain parameter regions. (orig.)

  6. CFD simulations and reduced order modeling of a refrigerator compartment including radiation effects

    International Nuclear Information System (INIS)

    Bayer, Ozgur; Oskay, Ruknettin; Paksoy, Akin; Aradag, Selin

    2013-01-01

    Highlights: ► Free convection in a refrigerator is simulated including radiation effects. ► Heat rates are affected drastically when radiation effects are considered. ► 95% of the flow energy can be represented by using one spatial POD mode. - Abstract: Considering the engineering problem of natural convection in domestic refrigerator applications, this study aims to simulate the fluid flow and temperature distribution in a single commercial refrigerator compartment by using the experimentally determined temperature values as the specified constant wall temperature boundary conditions. The free convection in refrigerator applications is evaluated as a three-dimensional (3D), turbulent, transient and coupled non-linear flow problem. Radiation heat transfer mode is also included in the analysis. According to the results, taking radiation effects into consideration does not change the temperature distribution inside the refrigerator significantly; however the heat rates are affected drastically. The flow inside the compartment is further analyzed with a reduced order modeling method called Proper Orthogonal Decomposition (POD) and the energy contents of several spatial and temporal modes that exist in the flow are examined. The results show that approximately 95% of all the flow energy can be represented by only using one spatial mode

  7. Potential growing model for the standard carnation cv. Delphi

    Directory of Open Access Journals (Sweden)

    Miguel Ángel López M.

    2014-08-01

    Full Text Available The cut flower business requires exact synchronicity between product offer and demand in consumer countries. Having tools that help to improve this synchronicity through predictions or crop growth monitoring could provide an important advantage to program standards and corrective agronomic practices. At the Centro de Biotecnología Agropecuaria, SENA (SENA's Biotechnology, Agricultural and Livestock Center, located in Mosquera, Cundinamarca, a trial with standard carnation cv. Delphi grown under greenhouse conditions was carried out. The objective of this study was to build a simple model of dry matter (DM production and partition of on-carnation flower stems. The model was based on the photosynthetically active radiation (PAR MJ m-2 d-1 and temperature as exogenous variables and assumed no water or nutrient limitations or damage caused by pests, disease or weeds. In this model, the daily DM increase depended on the PAR, the light fraction intercepted by the foliage (F LINT and the light use efficiency (LUE g MJ-1. The LUE in the vegetative and reproductive stages reached values of 1.31 and 0.74 g MJ-1, respectively. The estimated extinction coefficient (k value corresponded to 0.53 and the maximum F LINT was between 0.79 and 0.82. Partitioning between the plant vegetative and reproductive stages was modeled based on the hypothesis that the partition is regulated by the source sink relationship. The estimated partition coefficient for the vegetative stage of the leaves was 0.63 and 0.37 for the stems. During the reproductive stage, the partitioning coefficients of leaves, stems and flower buds were 0.05, 0.74, and 0.21, respectively.

  8. Collider physics within the standard model a primer

    CERN Document Server

    Altarelli, Guido

    2017-01-01

    With this graduate-level primer, the principles of the standard model of particle physics receive a particular skillful, personal and enduring exposition by one of the great contributors to the field. In 2013 the late Prof. Altarelli wrote: The discovery of the Higgs boson and the non-observation of new particles or exotic phenomena have made a big step towards completing the experimental confirmation of the standard model of fundamental particle interactions. It is thus a good moment for me to collect, update and improve my graduate lecture notes on quantum chromodynamics and the theory of electroweak interactions, with main focus on collider physics. I hope that these lectures can provide an introduction to the subject for the interested reader, assumed to be already familiar with quantum field theory and some basic facts in elementary particle physics as taught in undergraduate courses. “These lecture notes are a beautiful example of Guido’s unique pedagogical abilities and scientific vision”. From...

  9. From the CERN web: Standard Model, SESAME and more

    CERN Multimedia

    2015-01-01

    This section highlights articles, blog posts and press releases published in the CERN web environment over the past weeks. This way, you won’t miss a thing...   Left: ATLAS non-leptonic MWZ data. Right: ATLAS σ × B exclusion for W’ → WZ. Is the Standard Model about to crater? 28 October – CERN Courier The Standard Model is coming under more and more pressure from experiments. New results from the analysis of LHC’s Run 1 data show effects that, if confirmed, would be the signature of new interactions at the TeV scale. Continue to read…      Students and teachers participate in lectures about CERN science at the first ever SESAME teacher and students school. New CERN programme to develop network between SESAME schools 22 October - by Harriet Jarlett In September CERN welcomed 28 visitors from the Middle East for the first ever student and teacher school f...

  10. Standard Model in multiscale theories and observational constraints

    Science.gov (United States)

    Calcagni, Gianluca; Nardelli, Giuseppe; Rodríguez-Fernández, David

    2016-08-01

    We construct and analyze the Standard Model of electroweak and strong interactions in multiscale spacetimes with (i) weighted derivatives and (ii) q -derivatives. Both theories can be formulated in two different frames, called fractional and integer picture. By definition, the fractional picture is where physical predictions should be made. (i) In the theory with weighted derivatives, it is shown that gauge invariance and the requirement of having constant masses in all reference frames make the Standard Model in the integer picture indistinguishable from the ordinary one. Experiments involving only weak and strong forces are insensitive to a change of spacetime dimensionality also in the fractional picture, and only the electromagnetic and gravitational sectors can break the degeneracy. For the simplest multiscale measures with only one characteristic time, length and energy scale t*, ℓ* and E*, we compute the Lamb shift in the hydrogen atom and constrain the multiscale correction to the ordinary result, getting the absolute upper bound t*28 TeV . Stronger bounds are obtained from the measurement of the fine-structure constant. (ii) In the theory with q -derivatives, considering the muon decay rate and the Lamb shift in light atoms, we obtain the independent absolute upper bounds t*35 MeV . For α0=1 /2 , the Lamb shift alone yields t*450 GeV .

  11. Geo3DML: A standard-based exchange format for 3D geological models

    Science.gov (United States)

    Wang, Zhangang; Qu, Honggang; Wu, Zixing; Wang, Xianghong

    2018-01-01

    A geological model (geomodel) in three-dimensional (3D) space is a digital representation of the Earth's subsurface, recognized by geologists and stored in resultant geological data (geodata). The increasing demand for data management and interoperable applications of geomodelscan be addressed by developing standard-based exchange formats for the representation of not only a single geological object, but also holistic geomodels. However, current standards such as GeoSciML cannot incorporate all the geomodel-related information. This paper presents Geo3DML for the exchange of 3D geomodels based on the existing Open Geospatial Consortium (OGC) standards. Geo3DML is based on a unified and formal representation of structural models, attribute models and hierarchical structures of interpreted resultant geodata in different dimensional views, including drills, cross-sections/geomaps and 3D models, which is compatible with the conceptual model of GeoSciML. Geo3DML aims to encode all geomodel-related information integrally in one framework, including the semantic and geometric information of geoobjects and their relationships, as well as visual information. At present, Geo3DML and some supporting tools have been released as a data-exchange standard by the China Geological Survey (CGS).

  12. LEP Higgs boson searches beyond the standard model and ...

    Indian Academy of Sciences (India)

    These include the searches for charged Higgs bosons, models with two Higgs field doublets, searches for 'fermiophobic' Higgs decay, invisible Higgs boson decays, decay-mode independent searches, and limits on Yukawa and anomalous Higgs couplings. I review the searches done by the four LEP experiments and ...

  13. Experimental validation of Swy-2 clay standard's PHREEQC model

    Science.gov (United States)

    Szabó, Zsuzsanna; Hegyfalvi, Csaba; Freiler, Ágnes; Udvardi, Beatrix; Kónya, Péter; Székely, Edit; Falus, György

    2017-04-01

    One of the challenges of the present century is to limit the greenhouse gas emissions for the mitigation of climate change which is possible for example by a transitional technology, CCS (Carbon Capture and Storage) and, among others, by the increase of nuclear proportion in the energy mix. Clay minerals are considered to be responsible for the low permeability and sealing capacity of caprocks sealing off stored CO2 and they are also the main constituents of bentonite in high level radioactive waste disposal facilities. The understanding of clay behaviour in these deep geological environments is possible through laboratory batch experiments of well-known standards and coupled geochemical models. Such experimentally validated models are scarce even though they allow deriving more precise long-term predictions of mineral reactions and rock and bentonite degradation underground and, therefore, ensuring the safety of the above technologies and increase their public acceptance. This ongoing work aims to create a kinetic geochemical model of Na-montmorillonite standard Swy-2 in the widely used PHREEQC code, supported by solution and mineral composition results from batch experiments. Several four days experiments have been carried out in 1:35 rock:water ratio at atmospheric conditions, and with inert and CO2 supercritical phase at 100 bar and 80 ⁰C relevant for the potential Hungarian CO2 reservoir complex. Solution samples have been taken during and after experiments and their compositions were measured by ICP-OES. The treated solid phase has been analysed by XRD and ATR-FTIR and compared to in-parallel measured references (dried Swy-2). Kinetic geochemical modelling of the experimental conditions has been performed by PHREEQC version 3 using equations and kinetic rate parameters from the USGS report of Palandri and Kharaka (2004). The visualization of experimental and numerous modelling results has been automatized by R. Experiments and models show very fast

  14. Evolution of the continental upper mantle : numerical modelling of thermo-chemical convection including partial melting

    NARCIS (Netherlands)

    de Smet, J.H.

    1999-01-01

    This thesis elaborates on the evolution of the continental upper mantle based on numerical modelling results. The descriptive and explanatory basis is formed by a numerical thermo-chemical convection model. The model evolution starts in the early Archaean about 4 billion years ago. The model follows

  15. Evolution of the continental upper mantle : numerical modelling of thermo-chemical convection including partial melting

    NARCIS (Netherlands)

    Smet, J.H. de

    1999-01-01

    This thesis elaborates on the evolution of the continental upper mantle based on numerical modelling results. The descriptive and explanatory basis is formed by a numerical thermo-chemical convection model. The model evolution starts in the early Archaean about 4 billion years ago. The model

  16. A Thermal Evolution Model of the Earth Including the Biosphere, Continental Growth and Mantle Hydration

    Science.gov (United States)

    Höning, D.; Spohn, T.

    2014-12-01

    By harvesting solar energy and converting it to chemical energy, photosynthetic life plays an important role in the energy budget of Earth [2]. This leads to alterations of chemical reservoirs eventually affecting the Earth's interior [4]. It further has been speculated [3] that the formation of continents may be a consequence of the evolution life. A steady state model [1] suggests that the Earth without its biosphere would evolve to a steady state with a smaller continent coverage and a dryer mantle than is observed today. We present a model including (i) parameterized thermal evolution, (ii) continental growth and destruction, and (iii) mantle water regassing and outgassing. The biosphere enhances the production rate of sediments which eventually are subducted. These sediments are assumed to (i) carry water to depth bound in stable mineral phases and (ii) have the potential to suppress shallow dewatering of the underlying sediments and crust due to their low permeability. We run a Monte Carlo simulation for various initial conditions and treat all those parameter combinations as success which result in the fraction of continental crust coverage observed for present day Earth. Finally, we simulate the evolution of an abiotic Earth using the same set of parameters but a reduced rate of continental weathering and erosion. Our results suggest that the origin and evolution of life could have stabilized the large continental surface area of the Earth and its wet mantle, leading to the relatively low mantle viscosity we observe at present. Without photosynthetic life on our planet, the Earth would be geodynamical less active due to a dryer mantle, and would have a smaller fraction of continental coverage than observed today. References[1] Höning, D., Hansen-Goos, H., Airo, A., Spohn, T., 2014. Biotic vs. abiotic Earth: A model for mantle hydration and continental coverage. Planetary and Space Science 98, 5-13. [2] Kleidon, A., 2010. Life, hierarchy, and the

  17. A Lifecycle Approach to Brokered Data Management for Hydrologic Modeling Data Using Open Standards.

    Science.gov (United States)

    Blodgett, D. L.; Booth, N.; Kunicki, T.; Walker, J.

    2012-12-01

    The U.S. Geological Survey Center for Integrated Data Analytics has formalized an information management-architecture to facilitate hydrologic modeling and subsequent decision support throughout a project's lifecycle. The architecture is based on open standards and open source software to decrease the adoption barrier and to build on existing, community supported software. The components of this system have been developed and evaluated to support data management activities of the interagency Great Lakes Restoration Initiative, Department of Interior's Climate Science Centers and WaterSmart National Water Census. Much of the research and development of this system has been in cooperation with international interoperability experiments conducted within the Open Geospatial Consortium. Community-developed standards and software, implemented to meet the unique requirements of specific disciplines, are used as a system of interoperable, discipline specific, data types and interfaces. This approach has allowed adoption of existing software that satisfies the majority of system requirements. Four major features of the system include: 1) assistance in model parameter and forcing creation from large enterprise data sources; 2) conversion of model results and calibrated parameters to standard formats, making them available via standard web services; 3) tracking a model's processes, inputs, and outputs as a cohesive metadata record, allowing provenance tracking via reference to web services; and 4) generalized decision support tools which rely on a suite of standard data types and interfaces, rather than particular manually curated model-derived datasets. Recent progress made in data and web service standards related to sensor and/or model derived station time series, dynamic web processing, and metadata management are central to this system's function and will be presented briefly along with a functional overview of the applications that make up the system. As the separate

  18. Flaxion: a minimal extension to solve puzzles in the standard model

    Energy Technology Data Exchange (ETDEWEB)

    Ema, Yohei [Department of Physics,The University of Tokyo, Tokyo 133-0033 (Japan); Hamaguchi, Koichi; Moroi, Takeo; Nakayama, Kazunori [Department of Physics,The University of Tokyo, Tokyo 133-0033 (Japan); Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU),University of Tokyo, Kashiwa 277-8583 (Japan)

    2017-01-23

    We propose a minimal extension of the standard model which includes only one additional complex scalar field, flavon, with flavor-dependent global U(1) symmetry. It not only explains the hierarchical flavor structure in the quark and lepton sector (including neutrino sector), but also solves the strong CP problem by identifying the CP-odd component of the flavon as the QCD axion, which we call flaxion. Furthermore, the flaxion model solves the cosmological puzzles in the standard model, i.e., origin of dark matter, baryon asymmetry of the universe, and inflation. We show that the radial component of the flavon can play the role of inflaton without isocurvature nor domain wall problems. The dark matter abundance can be explained by the flaxion coherent oscillation, while the baryon asymmetry of the universe is generated through leptogenesis.

  19. Numerical modelling of seawater intrusion in Shenzhen (China) using a 3D density-dependent model including tidal effects

    Science.gov (United States)

    Lu, Wei; Yang, Qingchun; Martín, Jordi D.; Juncosa, Ricardo

    2013-04-01

    During the 1990s, groundwater overexploitation has resulted in seawater intrusion in the coastal aquifer of the Shenzhen city, China. Although water supply facilities have been improved and alleviated seawater intrusion in recent years, groundwater overexploitation is still of great concern in some local areas. In this work we present a three-dimensional density-dependent numerical model developed with the FEFLOW code, which is aimed at simulating the extent of seawater intrusion while including tidal effects and different groundwater pumping scenarios. Model calibration, using waterheads and reported chloride concentration, has been performed based on the data from 14 boreholes, which were monitored from May 2008 to December 2009. A fairly good fitness between the observed and computed values was obtained by a manual trial-and-error method. Model prediction has been carried out forward 3 years with the calibrated model taking into account high, medium and low tide levels and different groundwater exploitation schemes. The model results show that tide-induced seawater intrusion significantly affects the groundwater levels and concentrations near the estuarine of the Dasha river, which implies that an important hydraulic connection exists between this river and groundwater, even considering that some anti-seepage measures were taken in the river bed. Two pumping scenarios were considered in the calibrated model in order to predict the future changes in the water levels and chloride concentration. The numerical results reveal a decreased tendency of seawater intrusion if groundwater exploitation does not reach an upper bound of about 1.32 × 104 m3/d. The model results provide also insights for controlling seawater intrusion in such coastal aquifer systems.

  20. Discerning dark energy models with high redshift standard candles

    Science.gov (United States)

    Andersen, P.; Hjorth, J.

    2017-12-01

    Following the success of type Ia supernovae in constraining cosmologies at lower redshift (z ≲ 2), effort has been spent determining if a similarly useful standardizable candle can be found at higher redshift. In this work, we determine the largest possible magnitude discrepancy between a constant dark energy ΛCDM cosmology and a cosmology in which the equation of state w(z) of dark energy is a function of redshift for high redshift standard candles (z ≳ 2). We discuss a number of popular parametrizations of w(z) with two free parameters, wzCDM cosmologies, including the Chevallier-Polarski-Linder and generalization thereof, nCPL, as well as the Jassal-Bagla-Padmanabhan parametrization. For each of these parametrizations, we calculate and find the extrema of Δμ, the difference between the distance modulus of a wzCDM cosmology and a fiducial ΛCDM cosmology as a function of redshift, given 68 per cent likelihood constraints on the parameters P = (Ωm, 0, w0, wa). The parameters are constrained using cosmic microwave background, baryon acoustic oscillations and type Ia supernovae data using CosmoMC. We find that none of the tested cosmologies can deviate more than 0.05 mag from the fiducial ΛCDM cosmology at high redshift, implying that high redshift standard candles will not aid in discerning between the wzCDM cosmology and the fiducial ΛCDM cosmology. Conversely, this implies that if high redshift standard candles are found to be in disagreement with ΛCDM at high redshift, then this is a problem not only for ΛCDM but for the entire family of wzCDM cosmologies.

  1. Higgs production via weak boson fusion in the standard model and the MSSM

    International Nuclear Information System (INIS)

    Figy, Terrance; Palmer, Sophy

    2010-12-01

    Weak boson fusion is expected to be an important Higgs production channel at the LHC. Complete one-loop results for weak boson fusion in the Standard Model have been obtained by calculating the full virtual electroweak corrections and photon radiation and implementing these results into the public Monte Carlo program VBFNLO (which includes the NLO QCD corrections). Furthermore the dominant supersymmetric one-loop corrections to neutral Higgs production, in the general case where the MSSM includes complex phases, have been calculated. These results have been combined with all one-loop corrections of Standard Model type and with the propagator-type corrections from the Higgs sector of the MSSM up to the two-loop level. Within the Standard Model the electroweak corrections are found to be as important as the QCD corrections after the application of appropriate cuts. The corrections yield a shift in the cross section of order 5% for a Higgs of mass 100-200 GeV, confirming the result obtained previously in the literature. For the production of a light Higgs boson in the MSSM the Standard Model result is recovered in the decoupling limit, while the loop contributions from superpartners to the production of neutral MSSM Higgs bosons can give rise to corrections in excess of 10% away from the decoupling region. (orig.)

  2. Rediscovering standard model physics with the ATLAS detector

    CERN Document Server

    Flowerdew, M J

    2009-01-01

    With its 14 TeV proton-proton center of mass energy, the LHC is a factory of standard model (SM) particles produced at previously inaccessible energy scales. The ATLAS experiment needs to perform a thorough analysis of these particles before exploring more exotic possibilities that the LHC may open doors to. W and Z bosons will initially be used as calibration samples to improve the understanding of the detector. Top quarks will also be copiously produced and will for the first time be calibration particles, whilst also yielding an important background to beyond the SM searches. Top quarks may also be produced with high transverse momenta, requiring novel methods to perform efficient top quark identification in the ATLAS detector. I will give an overview of the current status of the heavy gauge boson and top quark physics at ATLAS, in terms of both detector and expected precision measurements performance.

  3. Dark Matter in the Standard Model? arXiv

    CERN Document Server

    Gross, Christian; Strumia, Alessandro; Urbano, Alfredo; Xue, Wei

    We critically reexamine two possible Dark Matter candidate within the Standard Model. First, we consider the $uuddss$ exa-quark. Its QCD binding energy could be large enough to make it (quasi) stable. We show that the cosmological Dark Matter abundance is reproduced thermally if its mass is 1.2 GeV. However, we also find that such mass is excluded by the stability of Oxygen nuclei. Second, we consider the possibility that the instability in the Higgs potential leads to the formation of primordial black holes while avoiding vacuum decay during inflation. We show that the non-minimal Higgs coupling to gravity must be as small as allowed by quantum corrections, $|\\xi_H| < 0.01$. Even so, one must assume that the Universe survived in $e^{120}$ independent regions to fluctuations that lead to vacuum decay with probability 1/2 each.

  4. A Constrained Standard Model: Effects of Fayet-Iliopoulos Terms

    International Nuclear Information System (INIS)

    Barbieri, Riccardo; Hall, Lawrence J.; Nomura, Yasunori

    2001-01-01

    In (1)the one Higgs doublet standard model was obtained by an orbifold projection of a 5D supersymmetric theory in an essentially unique way, resulting in a prediction for the Higgs mass m H = 127 +- 8 GeV and for the compactification scale 1/R = 370 +- 70 GeV. The dominant one loop contribution to the Higgs potential was found to be finite, while the above uncertainties arose from quadratically divergent brane Z factors and from other higher loop contributions. In (3), a quadratically divergent Fayet-Iliopoulos term was found at one loop in this theory. We show that the resulting uncertainties in the predictions for the Higgs boson mass and the compactification scale are small, about 25percent of the uncertainties quoted above, and hence do not affect the original predictions. However, a tree level brane Fayet-Iliopoulos term could, if large enough, modify these predictions, especially for 1/R.

  5. On the metastability of the Standard Model vacuum

    International Nuclear Information System (INIS)

    Isidori, Gino; Ridolfi, Giovanni; Strumia, Alessandro

    2001-01-01

    If the Higgs mass m H is as low as suggested by present experimental information, the Standard Model ground state might not be absolutely stable. We present a detailed analysis of the lower bounds on m H imposed by the requirement that the electroweak vacuum be sufficiently long-lived. We perform a complete one-loop calculation of the tunnelling probability at zero temperature, and we improve it by means of two-loop renormalization-group equations. We find that, for m H =115 GeV, the Higgs potential develops an instability below the Planck scale for m t >(166±2) GeV, but the electroweak vacuum is sufficiently long-lived for m t <(175±2) GeV

  6. On the metastability of the Standard Model vacuum

    CERN Document Server

    Isidori, Gino; Strumia, A; Isidori, Gino; Ridolfi, Giovanni; Strumia, Alessandro

    2001-01-01

    If the Higgs mass $m_H$ is as low as suggested by present experimental information, the Standard Model ground state might not be absolutely stable. We present a detailed analysis of the lower bounds on $m_H$ imposed by the requirement that the electroweak vacuum be sufficiently long-lived. We perform a complete one-loop calculation of the tunnelling probability at zero temperature, and we improve it by means of two-loop renormalization-group equations. We find that, for $m_H=115$ GeV, the Higgs potential develops an instability below the Planck scale for $m_t>(166\\pm 2) \\GeV$, but the electroweak vacuum is sufficiently long-lived for $m_t > (175\\pm 2) \\GeV$.

  7. Error modelling of quantum Hall array resistance standards

    Science.gov (United States)

    Marzano, Martina; Oe, Takehiko; Ortolano, Massimo; Callegaro, Luca; Kaneko, Nobu-Hisa

    2018-04-01

    Quantum Hall array resistance standards (QHARSs) are integrated circuits composed of interconnected quantum Hall effect elements that allow the realization of virtually arbitrary resistance values. In recent years, techniques were presented to efficiently design QHARS networks. An open problem is that of the evaluation of the accuracy of a QHARS, which is affected by contact and wire resistances. In this work, we present a general and systematic procedure for the error modelling of QHARSs, which is based on modern circuit analysis techniques and Monte Carlo evaluation of the uncertainty. As a practical example, this method of analysis is applied to the characterization of a 1 MΩ QHARS developed by the National Metrology Institute of Japan. Software tools are provided to apply the procedure to other arrays.

  8. The hierarchy problem of the electroweak standard model revisited

    Energy Technology Data Exchange (ETDEWEB)

    Jegerlehner, Fred [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)

    2013-05-15

    A careful renormalization group analysis of the electroweak Standard Model reveals that there is no hierarchy problem in the SM. In the broken phase a light Higgs turns out to be natural as it is self-protected and self-tuned by the Higgs mechanism. It means that the scalar Higgs needs not be protected by any extra symmetry, specifically super symmetry, in order not to be much heavier than the other SM particles which are protected by gauge- or chiral-symmetry. Thus the existence of quadratic cutoff effects in the SM cannot motivate the need for a super symmetric extensions of the SM, but in contrast plays an important role in triggering the electroweak phase transition and in shaping the Higgs potential in the early universe to drive inflation as supported by observation.

  9. Experimental limits from ATLAS on Standard Model Higgs production.

    CERN Multimedia

    ATLAS, collaboration

    2012-01-01

    Experimental limits from ATLAS on Standard Model Higgs production in the mass range 110-600 GeV. The solid curve reflects the observed experimental limits for the production of a Higgs of each possible mass value (horizontal axis). The region for which the solid curve dips below the horizontal line at the value of 1 is excluded with a 95% confidence level (CL). The dashed curve shows the expected limit in the absence of the Higgs boson, based on simulations. The green and yellow bands correspond (respectively) to 68%, and 95% confidence level regions from the expected limits. Higgs masses in the narrow range 123-130 GeV are the only masses not excluded at 95% CL

  10. CP violation outside the standard model phenomenology for pedestrians

    International Nuclear Information System (INIS)

    Lipkin, H.J.

    1993-01-01

    So far the only experimental evidence for CP violation is the 1964 discovery of K L →2π where the two mass eigenstates produced by neutral meson mixing both decay into the same CP eigenstate. This result is described by two parameters ε and ε'. Today ε ∼ its 1964 value, ε' data are still inconclusive and there is no new evidence for CP violation. One might expect to observe similar phenomena in other systems and also direct CP violation as charge asymmetries between decays of charge conjugate hadrons H ± → f ± . Why is it so hard to find CP violation? How can B Physics help? Does CP lead beyond the standard model? The author presents a pedestrian symmetry approach which exhibits the difficulties and future possibilities of these two types of CP-violation experiments, neutral meson mixing and direct charge asymmetry: what may work, what doesn't work and why

  11. Beyond the Standard Model new physics at the electroweak scale

    CERN Document Server

    Masiero, Antonio

    1997-01-01

    A critical reappraisal of the Standard Model (SM) will force us to new physics beyond it. I will argue that we have good reasons to believe that the latter is likely to lie close to the electroweak scale. After discussing the possibility that such new physics may be linked to a dynamical breaking of SU(2)xU(1) (technicolour), I will come to the core of the course: low energy supersymmetry. I will focus on the main phenomenological features, while emphasizing the relevant differences for various options of supersymmetrization of the SM. In particular the economical (but very particular) minimal SUSY SM (MSSM)will be discussed in detail. Some touchy issues for SUSY like the flavour problem or matter stability will be adressed. I will conclude with the prospects for SUSY searches in high-energy accelerators, B-factories and non-accelerator physics.

  12. Ruling out a strongly interacting standard Higgs model

    International Nuclear Information System (INIS)

    Riesselmann, K.; Willenbrock, S.

    1997-01-01

    Previous work has suggested that perturbation theory is unreliable for Higgs- and Goldstone-boson scattering, at energies above the Higgs-boson mass, for relatively small values of the Higgs quartic coupling λ(μ). By performing a summation of nonlogarithmic terms, we show that perturbation theory is in fact reliable up to relatively large coupling. This eliminates the possibility of a strongly interacting standard Higgs model at energies above the Higgs-boson mass, complementing earlier studies which excluded strong interactions at energies near the Higgs-boson mass. The summation can be formulated in terms of an appropriate scale in the running coupling, μ=√(s)/e∼√(s)/2.7, so it can be incorporated easily in renormalization-group-improved tree-level amplitudes as well as higher-order calculations. copyright 1996 The American Physical Society

  13. DsixTools: the standard model effective field theory toolkit

    Energy Technology Data Exchange (ETDEWEB)

    Celis, Alejandro [Ludwig-Maximilians-Universitaet Muenchen, Fakultaet fuer Physik, Arnold Sommerfeld Center for Theoretical Physics, Munich (Germany); Fuentes-Martin, Javier; Vicente, Avelino [Universitat de Valencia-CSIC, Instituto de Fisica Corpuscular, Valencia (Spain); Virto, Javier [University of Bern, Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics, Bern (Switzerland)

    2017-06-15

    We present DsixTools, a Mathematica package for the handling of the dimension-six standard model effective field theory. Among other features, DsixTools allows the user to perform the full one-loop renormalization group evolution of the Wilson coefficients in the Warsaw basis. This is achieved thanks to the SMEFTrunner module, which implements the full one-loop anomalous dimension matrix previously derived in the literature. In addition, DsixTools also contains modules devoted to the matching to the ΔB = ΔS = 1, 2 and ΔB = ΔC = 1 operators of the Weak Effective Theory at the electroweak scale, and their QCD and QED Renormalization group evolution below the electroweak scale. (orig.)

  14. Image contrast enhancement based on a local standard deviation model

    International Nuclear Information System (INIS)

    Chang, Dah-Chung; Wu, Wen-Rong

    1996-01-01

    The adaptive contrast enhancement (ACE) algorithm is a widely used image enhancement method, which needs a contrast gain to adjust high frequency components of an image. In the literature, the gain is usually inversely proportional to the local standard deviation (LSD) or is a constant. But these cause two problems in practical applications, i.e., noise overenhancement and ringing artifact. In this paper a new gain is developed based on Hunt's Gaussian image model to prevent the two defects. The new gain is a nonlinear function of LSD and has the desired characteristic emphasizing the LSD regions in which details are concentrated. We have applied the new ACE algorithm to chest x-ray images and the simulations show the effectiveness of the proposed algorithm

  15. The hadronic standard model for strong and electroweak interactions

    Energy Technology Data Exchange (ETDEWEB)

    Raczka, R. [Soltan Inst. for Nuclear Studies, Otwock-Swierk (Poland)

    1993-12-31

    We propose a new model for strong and electro-weak interactions. First, we review various QCD predictions for hadron-hadron and lepton-hadron processes. We indicate that the present formulation of strong interactions in the frame work of Quantum Chromodynamics encounters serious conceptual and numerical difficulties in a reliable description of hadron-hadron and lepton-hadron interactions. Next we propose to replace the strong sector of Standard Model based on unobserved quarks and gluons by the strong sector based on the set of the observed baryons and mesons determined by the spontaneously broken SU(6) gauge field theory model. We analyse various properties of this model such as asymptotic freedom, Reggeization of gauge bosons and fundamental fermions, baryon-baryon and meson-baryon high energy scattering, generation of {Lambda}-polarization in inclusive processes and others. Finally we extend this model by electro-weak sector. We demonstrate a remarkable lepton and hadron anomaly cancellation and we analyse a series of important lepton-hadron and hadron-hadron processes such as e{sup +} + e{sup -} {yields} hadrons, e{sup +} + e{sup -} {yields} W{sup +} + W{sup -}, e{sup +} + e{sup -} {yields} p + anti-p, e + p {yields} e + p and p + anti-p {yields} p + anti-p processes. We obtained a series of interesting new predictions in this model especially for processes with polarized particles. We estimated the value of the strong coupling constant {alpha}(M{sub z}) and we predicted the top baryon mass M{sub {Lambda}{sub t}} {approx_equal} 240 GeV. Since in our model the proton, neutron, {Lambda}-particles, vector mesons like {rho}, {omega}, {phi}, J/{psi} ect. and leptons are elementary most of experimentally analysed lepton-hadron and hadron-hadron processes in LEP1, LEP2, LEAR, HERA, HERMES, LHC and SSC experiments may be relatively easily analysed in our model. (author). 252 refs, 65 figs, 1 tab.

  16. Selected topics in phenomenology of the standard model

    International Nuclear Information System (INIS)

    Roberts, R.G.

    1991-01-01

    These lectures cover some aspects of phenomenology of topics in high energy physics which advertise the success of the standard model in dealing with a wide variety of experimental data. First we begin with a look at deep inelastic scattering. This tells us about the structure of the nucleon, which is understood in terms of the SU(3) gauge theory of QCD, which then allows the information on quark and gluon distributions to be carried over to other 'hard' processes such as hadronic production of jets. Recent data on electroweak processes can estimate the value of Sin 2 θw to a precision where the inclusion of radiative corrections allow bounds to be made on the mass of the top quark. Electroweak effects arise in e + e - collisions, but we first present a review of the recent history of this topic within the context of QCD. We bring the subject up to date with a look at the physics at (or near) the Z pole where the measurement of asymmetries can give more information. We look at the conventional description of quark mixing by the CKM matrix and see how the mixing parameters are systematically being extracted from a variety of reactions and decays. In turn, the values can be used to set bounds on the top quark mass. The matter of CP violation in weak interactions is addressed within the context of the standard model, recent data on ε'/ε being the source of current excitement. Finally, we at the theoretical description and experimental efforts to search for the top quark. (author)

  17. Transfer of near-infrared calibration model for determining fiber content in flax: effects of transfer samples and standardization procedure.

    Science.gov (United States)

    Sohn, Miryeong; Barton, Franklin E; Himmelsbach, David S

    2007-04-01

    The transfer of a calibration model for determining fiber content in flax stem was accomplished between two near-infrared spectrometers, which are the same brand but which require a standardization. In this paper, three factors, including transfer sample set, spectral type, and standardization method, were investigated to obtain the best standardization result. Twelve standardization files were produced from two sets of the transfer sample (sealed reference standards and a subset of the prediction set), two types of the transfer sample spectra (raw and preprocessed spectra), and three standardization methods (direct standardization (DS), piecewise direct standardization (PDS), and double window piecewise direct standardization (DWPDS)). The efficacy of the model transfer was evaluated based on the root mean square error of prediction, calculated using the independent prediction samples. Results indicated that the standardization using the sealed reference standards was unacceptable, but the standardization using the prediction subset was adequate. The use of the preprocessed spectra of the transfer samples led to the calibration transfers that were successful, especially for the PDS and the DWPDS correction. Finally, standardization using the prediction subset and their preprocessed spectra with DWPDS correction proved to be the best method for transferring the model.

  18. Including Overweight or Obese Students in Physical Education: A Social Ecological Constraint Model

    Science.gov (United States)

    Li, Weidong; Rukavina, Paul

    2012-01-01

    In this review, we propose a social ecological constraint model to study inclusion of overweight or obese students in physical education by integrating key concepts and assumptions from ecological constraint theory in motor development and social ecological models in health promotion and behavior. The social ecological constraint model proposes…

  19. ETM documentation update – including modelling conventions and manual for software tools

    DEFF Research Database (Denmark)

    Grohnheit, Poul Erik

    , it summarises the work done during 2013, and it also contains presentations for promotion of fusion as a future element in the electricity generation mix and presentations for the modelling community concerning model development and model documentation – in particular for TIAM collaboration workshops....

  20. Semileptonic B decays in the Standard Model and beyond

    Energy Technology Data Exchange (ETDEWEB)

    Wick, Michael

    2010-09-15

    In this thesis we study several aspects of decays based on the quark level transitions b{yields}s{nu}anti {nu} and b{yields}s{mu}{sup +}{mu}{sup -} as well as transition form factors for radiative and rare semileptonic B meson decays. The quark level transition b{yields}s{nu}anti {nu} offers a transparent study of Z penguin and other electroweak penguin effects in New Physics (NP) scenarios in the absence of dipole operator contributions and Higgs penguin contributions. We present an analysis of B{yields}K*{nu}anti {nu} with improved form factors and of the decays B{yields}K{nu}anti {nu} and B{yields}X{sub s}{nu}anti {nu} in the Standard Model (SM) and in a number of NP scenarios like the general Minimal Supersymmetric Standard Model (MSSM), general scenarios with modified Z/Z{sup '} penguins and in a singlet scalar extension of the SM. The results for the SM and NP scenarios can be transparently visualized in a ({epsilon};{eta}) plane. The rare decay B{yields}K*({yields}K{pi}){mu}{sup +}{mu}{sup -} is regarded as one of the crucial channels for B physics as it gives rise to a multitude of observables. We investigate systematically the often correlated effects in these observables in the context of the SM and various NP models, in particular the Littlest Higgs model with T-parity and various MSSM scenarios and identify those observables with small to moderate dependence on hadronic quantities and large impact of NP. Furthermore, we study transition form factors for radiative and rare semi-leptonic B-meson decays into light pseudoscalar or vector mesons, combining theoretical and phenomenological constraints from Lattice QCD, light-cone sum rules, and dispersive bounds. We pay particular attention to form factor parameterizations which are based on the so-called series expansion, and study the related systematic uncertainties on a quantitative level. In this analysis as well as in the analysis of the b{yields}s transitions, we use consistently a convenient form

  1. Revisiting the Global Electroweak Fit of the Standard Model and Beyond with Gfitter

    CERN Document Server

    Flächer, Henning; Haller, J; Höcker, A; Mönig, K; Stelzer, J

    2009-01-01

    The global fit of the Standard Model to electroweak precision data, routinely performed by the LEP electroweak working group and others, demonstrated impressively the predictive power of electroweak unification and quantum loop corrections. We have revisited this fit in view of (i) the development of the new generic fitting package, Gfitter, allowing flexible and efficient model testing in high-energy physics, (ii) the insertion of constraints from direct Higgs searches at LEP and the Tevatron, and (iii) a more thorough statistical interpretation of the results. Gfitter is a modular fitting toolkit, which features predictive theoretical models as independent plugins, and a statistical analysis of the fit results using toy Monte Carlo techniques. The state-of-the-art electroweak Standard Model is fully implemented, as well as generic extensions to it. Theoretical uncertainties are explicitly included in the fit through scale parameters varying within given error ranges. This paper introduces the Gfitter projec...

  2. Searches for Physics beyond the Standard Model in Monojet and Monophoton events with the ATLAS Detector

    CERN Document Server

    Pöttgen, R; The ATLAS collaboration

    2012-01-01

    There are various models for physics beyond the standard model that predict event signatures with large missing transverse energy due to invisible new particles. Such events can be identi fied in the detector if they are accompanied by an energetic photon or a jet with high transverse energy. The main contributions to the standard model background are production of Z and W bosons together with a jet, where the Z decays into 2 neutrinos or where the decay lepton from the W is not identified. This talk presents results from searches for new physics with both signatures with the ATLAS detector at the LHC. The focus will be on the analyses using the full 2011 data set at a center of mass energy of sqrt(s) = 7TeV but also include updates with data recorded in 2012 at sqrt(s)=8TeV. The results are translated into exclusion limits on parameters of different theoretical models.

  3. Serverification of Molecular Modeling Applications: The Rosetta Online Server That Includes Everyone (ROSIE)

    Science.gov (United States)

    Conchúir, Shane Ó.; Der, Bryan S.; Drew, Kevin; Kuroda, Daisuke; Xu, Jianqing; Weitzner, Brian D.; Renfrew, P. Douglas; Sripakdeevong, Parin; Borgo, Benjamin; Havranek, James J.; Kuhlman, Brian; Kortemme, Tanja; Bonneau, Richard; Gray, Jeffrey J.; Das, Rhiju

    2013-01-01

    The Rosetta molecular modeling software package provides experimentally tested and rapidly evolving tools for the 3D structure prediction and high-resolution design of proteins, nucleic acids, and a growing number of non-natural polymers. Despite its free availability to academic users and improving documentation, use of Rosetta has largely remained confined to developers and their immediate collaborators due to the code’s difficulty of use, the requirement for large computational resources, and the unavailability of servers for most of the Rosetta applications. Here, we present a unified web framework for Rosetta applications called ROSIE (Rosetta Online Server that Includes Everyone). ROSIE provides (a) a common user interface for Rosetta protocols, (b) a stable application programming interface for developers to add additional protocols, (c) a flexible back-end to allow leveraging of computer cluster resources shared by RosettaCommons member institutions, and (d) centralized administration by the RosettaCommons to ensure continuous maintenance. This paper describes the ROSIE server infrastructure, a step-by-step ‘serverification’ protocol for use by Rosetta developers, and the deployment of the first nine ROSIE applications by six separate developer teams: Docking, RNA de novo, ERRASER, Antibody, Sequence Tolerance, Supercharge, Beta peptide design, NCBB design, and VIP redesign. As illustrated by the number and diversity of these applications, ROSIE offers a general and speedy paradigm for serverification of Rosetta applications that incurs negligible cost to developers and lowers barriers to Rosetta use for the broader biological community. ROSIE is available at http://rosie.rosettacommons.org. PMID:23717507

  4. A risk score including microdeletions improves relapse prediction for standard and medium risk precursor B-cell acute lymphoblastic leukaemia in children.

    Science.gov (United States)

    Sutton, Rosemary; Venn, Nicola C; Law, Tamara; Boer, Judith M; Trahair, Toby N; Ng, Anthea; Den Boer, Monique L; Dissanayake, Anuruddhika; Giles, Jodie E; Dalzell, Pauline; Mayoh, Chelsea; Barbaric, Draga; Revesz, Tamas; Alvaro, Frank; Pieters, Rob; Haber, Michelle; Norris, Murray D; Schrappe, Martin; Dalla Pozza, Luciano; Marshall, Glenn M

    2018-02-01

    To prevent relapse, high risk paediatric acute lymphoblastic leukaemia (ALL) is treated very intensively. However, most patients who eventually relapse have standard or medium risk ALL with low minimal residual disease (MRD) levels. We analysed recurrent microdeletions and other clinical prognostic factors in a cohort of 475 uniformly treated non-high risk precursor B-cell ALL patients with the aim of better predicting relapse and refining risk stratification. Lower relapse-free survival at 7 years (RFS) was associated with IKZF1 intragenic deletions (P 5 × 10 -5 (P < 0·0001) and High National Cancer Institute (NCI) risk (P < 0·0001). We created a predictive model based on a risk score (RS) for deletions, MRD and NCI risk, extending from an RS of 0 (RS0) for patients with no unfavourable factors to RS2 +  for patients with 2 or 3 high risk factors. RS0, RS1, and RS2 +  groups had RFS of 93%, 78% and 49%, respectively, and overall survival (OS) of 99%, 91% and 71%. The RS provided greater discrimination than MRD-based risk stratification into standard (89% RFS, 96% OS) and medium risk groups (79% RFS, 91% OS). We conclude that this RS may enable better early therapeutic stratification and thus improve cure rates for childhood ALL. © 2017 John Wiley & Sons Ltd.

  5. 2002 Defense Modeling and Simulation Office (DMSO) Laboratory for Human Behavior Model Interchange Standards

    Science.gov (United States)

    2003-07-01

    among Human Behavior Modeling (HEM) -related models in the Department of Defense (DoD), Industry, Academia, and other Government simulations by...establishing a Laboratory for the Study of Human Behavior Representation Interchange Standard. With experience, expertise, and technologies of the

  6. 13th Workshop on What Comes Beyond the Standard Models

    CERN Document Server

    Nielsen, Holger Bech; Lukman, Dragan; What Comes Beyond the Standard Models

    2010-01-01

    1. Noncommutativity and Topology within Lattice Field Theories 2. The Construction of Quantum Field Operators 3. The Bargmann-Wigner Formalism for Spin 2 Fields 4. New Light on Dark Matter from the LHC 5. Extra Dimensional Metric Reversal Symmetry and its Prospect... 6. Masses and Mixing Matrices of Families within SU(3) Flavor Symmetry ... 7. Dark Atoms of the Universe: OHe Nuclear Physics, 8. Can the Matter-Antimatter Asymmetry be Easier to Understand Within the "Spin-charge-family-theory", .. 9. Mass Matrices of Twice Four Families of Quarks and Leptons, ...in the "Spin-charge-family-theory" 10. Bohmian Quantum Mechanics or What Comes Before the Standard Model 11. Backward Causation in Complex Action Model ... 12. Is the Prediction of the "Spin-charge-family-theory" in Disagreement with the XENON100..? 13. Masses and Mixing Matrices of Families of Quarks and Leptons Within the "Spin-charge-family-theory" 14. Can the Stable Fifth Family of the "Spin-charge-family-theory" ...Form the Fifth Antibaryon Cluster...

  7. Standard model baryogenesis through four-fermion operators in braneworlds

    International Nuclear Information System (INIS)

    Chung, Daniel J.H.; Dent, Thomas

    2002-01-01

    We study a new baryogenesis scenario in a class of braneworld models with low fundamental scale, which typically have difficulty with baryogenesis. The scenario is characterized by its minimal nature: the field content is that of the standard model and all interactions consistent with the gauge symmetry are admitted. Baryon number is violated via a dimension-6 proton decay operator, suppressed today by the mechanism of quark-lepton separation in extra dimensions; we assume that this operator was unsuppressed in the early Universe due to a time-dependent quark-lepton separation. The source of CP violation is the CKM matrix, in combination with the dimension-6 operators. We find that almost independently of cosmology, sufficient baryogenesis is nearly impossible in such a scenario if the fundamental scale is above 100 TeV, as required by an unsuppressed neutron-antineutron oscillation operator. The only exception producing sufficient baryon asymmetry is a scenario involving out-of-equilibrium c quarks interacting with equilibrium b quarks

  8. Background and derivation of ANS-5.4 standard fission product release model. Technical report

    International Nuclear Information System (INIS)

    1982-01-01

    ANS Working Group 5.4 was established in 1974 to examine fission product releases from UO2 fuel. The scope of ANS-5.4 was narrowly defined to include the following: (1) Review available experimental data on release of volatile fission products from UO2 and mixed-oxide fuel; (2) Survey existing analytical models currently being applied to lightwater reactors; and (3) Develop a standard analytical model for volatile fission product release to the fuel rod void space. Place emphasis on obtaining a model for radioactive fission product releases to be used in assessing radiological consequences of postulated accidents

  9. Transverse Crack Modeling and Validation in Rotor Systems, Including Thermal Effects

    Directory of Open Access Journals (Sweden)

    N. Bachschmid

    2003-01-01

    Full Text Available This article describes a model that allows the simulation of the static behavior of a transverse crack in a horizontal rotor under the action of weight and other possible static loads and the dynamic behavior of cracked rotating shaft. The crack breathes—that is, the mechanism of the crack's opening and closing is ruled by the stress on the cracked section exerted by the external loads. In a rotor, the stresses are time-dependent and have a period equal to the period of rotation; thus, the crack periodically breathes. An original, simplified model allows cracks of various shapes to be modeled and thermal stresses to be taken into account, as they may influence the opening and closing mechanism. The proposed method was validated by using two criteria. First the crack's breathing mechanism, simulated by the model, was compared with the results obtained by a nonlinear, threedimensional finite element model calculation, and a good agreement in the results was observed. Then the proposed model allowed the development of the equivalent cracked beam. The results of this model were compared with those obtained by the three-dimensional finite element model. Also in this case, there was a good agreement in the results.

  10. A model for firm-specific strategic wisdom : including illustrations and 49 guiding questions

    NARCIS (Netherlands)

    van Straten, Roeland Peter

    2017-01-01

    This PhD thesis provides an answer to the question ‘How may one think strategically’. It does so by presenting a new prescriptive ‘Model for Firm-Specific Strategic Wisdom’. This Model aims to guide any individual strategist in his or her thinking from a state of firm-specific ‘ignorance’ to a state

  11. Complete Loss and Thermal Model of Power Semiconductors Including Device Rating Information

    DEFF Research Database (Denmark)

    Ma, Ke; Bahman, Amir Sajjad; Beczkowski, Szymon

    2015-01-01

    models, only the electrical loadings are focused and treated as design variables, while the device rating is normally pre-defined by experience with limited design flexibility. Consequently, a more complete loss and thermal model is proposed in this paper, which takes into account not only the electrical...

  12. Numerical models of single- and double-negative metamaterials including viscous and thermal losses

    DEFF Research Database (Denmark)

    Cutanda Henriquez, Vicente; Sánchez-Dehesa, José

    2017-01-01

    detailed understanding on how viscous and thermal losses affect the setups at different frequencies. The modeling of a simpler single-negative metamaterial also broadens this overview. Both setups have been modeled with quadratic BEM meshes. Each sample, scaled at two different sizes, has been represented...

  13. Gasification of biomass in a fixed bed downdraft gasifier--a realistic model including tar.

    Science.gov (United States)

    Barman, Niladri Sekhar; Ghosh, Sudip; De, Sudipta

    2012-03-01

    This study presents a model for fixed bed downdraft biomass gasifiers considering tar also as one of the gasification products. A representative tar composition along with its mole fractions, as available in the literature was used as an input parameter within the model. The study used an equilibrium approach for the applicable gasification reactions and also considered possible deviations from equilibrium to further upgrade the equilibrium model to validate a range of reported experimental results. Heat balance was applied to predict the gasification temperature and the predicted values were compared with reported results in literature. A comparative study was made with some reference models available in the literature and also with experimental results reported in the literature. Finally a predicted variation of performance of the gasifier by this validated model for different air-fuel ratio and moisture content was also discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. A viscoplastic model including anisotropic damage for the time dependent behaviour of rock

    Science.gov (United States)

    Pellet, F.; Hajdu, A.; Deleruyelle, F.; Besnus, F.

    2005-08-01

    This paper presents a new constitutive model for the time dependent mechanical behaviour of rock which takes into account both viscoplastic behaviour and evolution of damage with respect to time. This model is built by associating a viscoplastic constitutive law to the damage theory. The main characteristics of this model are the account of a viscoplastic volumetric strain (i.e. contractancy and dilatancy) as well as the anisotropy of damage. The latter is described by a second rank tensor. Using this model, it is possible to predict delayed rupture by determining time to failure, in creep tests for example. The identification of the model parameters is based on experiments such as creep tests, relaxation tests and quasi-static tests. The physical meaning of these parameters is discussed and comparisons with lab tests are presented. The ability of the model to reproduce the delayed failure observed in tertiary creep is demonstrated as well as the sensitivity of the mechanical response to the rate of loading. The model could be used to simulate the evolution of the excavated damage zone around underground openings.

  15. Potential transformation of trace species including aircraft exhaust in a cloud environment. The `Chedrom model`

    Energy Technology Data Exchange (ETDEWEB)

    Ozolin, Y.E.; Karol, I.L. [Main Geophysical Observatory, St. Petersburg (Russian Federation); Ramaroson, R. [Office National d`Etudes et de Recherches Aerospatiales (ONERA), 92 - Chatillon (France)

    1997-12-31

    Box model for coupled gaseous and aqueous phases is used for sensitivity study of potential transformation of trace gases in a cloud environment. The rate of this transformation decreases with decreasing of pH in droplets, with decreasing of photodissociation rates inside the cloud and with increasing of the droplet size. Model calculations show the potential formation of H{sub 2}O{sub 2} in aqueous phase and transformation of gaseous HNO{sub 3} into NO{sub x} in a cloud. This model is applied for exploration of aircraft exhausts evolution in plume inside a cloud. (author) 10 refs.

  16. A Two-Dimensional Modeling Procedure to Estimate the Loss Equivalent Resistance Including the Saturation Effect

    Directory of Open Access Journals (Sweden)

    Rosa Ana Salas

    2013-11-01

    Full Text Available We propose a modeling procedure specifically designed for a ferrite inductor excited by a waveform in time domain. We estimate the loss resistance in the core (parameter of the electrical model of the inductor by means of a Finite Element Method in 2D which leads to significant computational advantages over the 3D model. The methodology is validated for an RM (rectangular modulus ferrite core working in the linear and the saturation regions. Excellent agreement is found between the experimental data and the computational results.

  17. An introduction to relativistic processes and the standard model of electroweak interactions

    CERN Document Server

    Becchi, Carlo Maria

    2006-01-01

    These notes are designed as a guide-line for a course in Elementary Particle Physics for undergraduate students. The purpose is providing a rigorous and self-contained presentation of the theoretical framework and of the phenomenological aspects of the physics of interactions among fundamental constituents of matter. The first part of the volume is devoted to the description of scattering processes in the context of relativistic quantum field theory. The use of the semi-classical approximation allows us to illustrate the relevant computation techniques in a reasonably small amount of space. Our approach to relativistic processes is original in many respects. The second part contains a detailed description of the construction of the standard model of electroweak interactions, with special attention to the mechanism of particle mass generation. The extension of the standard model to include neutrino masses is also described. We have included a number of detailed computations of cross sections and decay rates of...

  18. Probing physics beyond the standard model in diatomic molecules

    International Nuclear Information System (INIS)

    Denis, M.

    2017-01-01

    Nowadays, the incompleteness of the Standard Model of particles (SM) is largely acknowledged. One of its most obvious shortcomings is the lack of explanation for the huge surplus of matter over antimatter in the universe, the so-called baryon asymmetry of the universe. New CP (charge conjugation and spatial parity) violations absent in the SM are assumed to be responsible for this asymmetry. Such a violation could be observed, in ordinary matter through a set of interactions violating both parity and time-reversal symmetries (P, T -odd) among which the preponderant ones are the electron Electric Dipole Moment (eEDM), the electron-nucleon scalar-pseudoscalar (enSPS) and the nuclear magnetic quadrupole moment (nMQM) interactions. Hence, an experimental evidence of a non-zero P, T -odd interaction constant would be a probe of this New Physics beyond the Standard Model. The calculation of the corresponding molecular parameters is performed by making use of an elaborate four-component relativistic configuration interaction approach in polar diatomic molecules containing an actinide, that are particularly adequate systems for eEDM experiments, such as ThO that allowed for assigning the most constraining upper bound on the eEDM and ThF + that will be used in a forthcoming experiment. Those results will be of crucial importance in the interpretation of the measurements since the fundamental constants can only be evaluated if one combines both experimental energy shift measurements and theoretical molecular parameters. This manuscript proceeds as follows, after an introduction to the general background of the search of CP-violations and its consequences for the understanding of the Universe (Chapter 1), a presentation of the underlying theory of the evidence of such violation in ordinary matter, namely the P, T -odd sources of the Electric Dipole Moment of a many-electron system, as well as the relevant molecular parameters is given in Chapter 2. A similar introduction to

  19. A Two-Account Life Insurance Model for Scenario-Based Valuation Including Event Risk

    DEFF Research Database (Denmark)

    Jensen, Ninna Reitzel; Schomacker, Kristian Juul

    2015-01-01

    Using a two-account model with event risk, we model life insurance contracts taking into account both guaranteed and non-guaranteed payments in participating life insurance as well as in unit-linked insurance. Here, event risk is used as a generic term for life insurance events, such as death......, disability, etc. In our treatment of participating life insurance, we have special focus on the bonus schemes “consolidation” and “additional benefits”, and one goal is to formalize how these work and interact. Another goal is to describe similarities and differences between participating life insurance...... and unit-linked insurance. By use of a two-account model, we are able to illustrate general concepts without making the model too abstract. To allow for complicated financial markets without dramatically increasing the mathematical complexity, we focus on economic scenarios. We illustrate the use of our...

  20. A Lumped Thermal Model Including Thermal Coupling and Thermal Boundary Conditions for High Power IGBT Modules

    DEFF Research Database (Denmark)

    Bahman, Amir Sajjad; Ma, Ke; Blaabjerg, Frede

    2018-01-01

    Detailed thermal dynamics of high power IGBT modules are important information for the reliability analysis and thermal design of power electronic systems. However, the existing thermal models have their limits to correctly predict these complicated thermal behavior in the IGBTs: The typically used...... thermal model based on one-dimensional RC lumps have limits to provide temperature distributions inside the device, moreover some variable factors in the real-field applications like the cooling and heating conditions of the converter cannot be adapted. On the other hand, the more advanced three......-dimensional thermal models based on Finite Element Method (FEM) need massive computations, which make the long-term thermal dynamics difficult to calculate. In this paper, a new lumped three-dimensional thermal model is proposed, which can be easily characterized from FEM simulations and can acquire the critical...

  1. Advanced Modeling of Ramp Operations including Departure Status at Secondary Airports, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This project addresses three modeling elements relevant to NASA's IADS research and ATD-2 project, two related to ramp operations at primary airports and one related...

  2. Extending the Scope of the Acculturation/Pidginization Model to Include Cognition.

    Science.gov (United States)

    Schumann, John H.

    1990-01-01

    Examines five cognitive models for second-language acquisition (SLA) and assesses how each might account for the Pidginized interlanguage found in the early stages of second-language acquisition. (23 references) (JL)

  3. An integrated computable general equilibrium model including multiple types and uses of water

    OpenAIRE

    Luckmann, Jonas Jens

    2015-01-01

    Water is a scarce resource in many regions of the world and competition for water is an increasing problem. To countervail this trend policies are needed regulating supply and demand for water. As water is used in many economic activities, water related management decisions usually have complex implications. Economic simulation models have been proven useful to ex-ante assess the consequences of policy changes. Specifically, Computable General Equilibrium (CGE) models are very suitable to ana...

  4. Transverse Crack Modeling and Validation in Rotor Systems Including Thermal Effects

    Directory of Open Access Journals (Sweden)

    N. Bachschmid

    2004-01-01

    Full Text Available In this article, a model is described that allows one to simulate the static behavior of a transversal crack in a horizontal rotor, under the action of the weight and other possible static loads and the dynamical behavior of the rotating cracked shaft. The crack “breaths,” i.e., the mechanism of opening and closing of the crack, is ruled by the stress acting on the cracked section due to the external loads; in a rotor the stress is time-depending with a period equal to the period of rotation, thus the crack “periodically breaths.” An original simplified model is described that allows cracks of different shape to be modeled and thermal stresses to be taken into account, since they may influence the opening and closing mechanism. The proposed method has been validated using two criteria. Firstly, the crack “breathing” mechanism, simulated with the model, has been compared with the results obtained by a nonlinear 3-D FEM calculation and a good agreement in the results has been observed. Secondly, the proposed model allows the development of the equivalent cracked beam. The results of this model are compared with those obtained by the above-mentioned 3-D FEM. There is a good agreement in the results, of this case as well.

  5. Including sugar cane in the agro-ecosystem model ORCHIDEE-STICS: calibration and validation

    Science.gov (United States)

    Valade, A.; Vuichard, N.; Ciais, P.; Viovy, N.

    2011-12-01

    Sugarcane is currently the most efficient bioenergy crop with regards to the energy produced per hectare. With approximately half the global bioethanol production in 2005, and a devoted land area expected to expand globally in the years to come, sugar cane is at the heart of the biofuel debate. Dynamic global vegetation models coupled with agronomical models are powerful and novel tools to tackle many of the environmental issues related to biofuels if they are carefully calibrated and validated against field observations. Here we adapt the agro-terrestrial model ORCHIDEE-STICS for sugar cane simulations. Observation data of LAI are used to evaluate the sensitivity of the model to parameters of nitrogen absorption and phenology, which are calibrated in a systematic way for six sites in Australia and La Reunion. We find that the optimal set of parameters is highly dependent on the sites' characteristics and that the model can reproduce satisfactorily the evolution of LAI. This careful calibration of ORCHIDEE-STICS for sugar cane biomass production for different locations and technical itineraries provides a strong basis for further analysis of the impacts of bioenergy-related land use change on carbon cycle budgets. As a next step, a sensitivity analysis is carried out to estimate the uncertainty of the model in biomass and carbon flux simulation due to its parameterization.

  6. Simplification and Validation of a Spectral-Tensor Model for Turbulence Including Atmospheric Stability

    Science.gov (United States)

    Chougule, Abhijit; Mann, Jakob; Kelly, Mark; Larsen, Gunner C.

    2018-02-01

    A spectral-tensor model of non-neutral, atmospheric-boundary-layer turbulence is evaluated using Eulerian statistics from single-point measurements of the wind speed and temperature at heights up to 100 m, assuming constant vertical gradients of mean wind speed and temperature. The model has been previously described in terms of the dissipation rate ɛ , the length scale of energy-containing eddies L , a turbulence anisotropy parameter Γ, the Richardson number Ri, and the normalized rate of destruction of temperature variance η _θ ≡ ɛ _θ /ɛ . Here, the latter two parameters are collapsed into a single atmospheric stability parameter z / L using Monin-Obukhov similarity theory, where z is the height above the Earth's surface, and L is the Obukhov length corresponding to Ri,η _θ. Model outputs of the one-dimensional velocity spectra, as well as cospectra of the streamwise and/or vertical velocity components, and/or temperature, and cross-spectra for the spatial separation of all three velocity components and temperature, are compared with measurements. As a function of the four model parameters, spectra and cospectra are reproduced quite well, but horizontal temperature fluxes are slightly underestimated in stable conditions. In moderately unstable stratification, our model reproduces spectra only up to a scale ˜ 1 km. The model also overestimates coherences for vertical separations, but is less severe in unstable than in stable cases.

  7. A Novel Mean-Value Model of the Cardiovascular System Including a Left Ventricular Assist Device.

    Science.gov (United States)

    Ochsner, Gregor; Amacher, Raffael; Schmid Daners, Marianne

    2017-06-01

    Time-varying elastance models (TVEMs) are often used for simulation studies of the cardiovascular system with a left ventricular assist device (LVAD). Because these models are computationally expensive, they cannot be used for long-term simulation studies. In addition, their equilibria are periodic solutions, which prevent the extraction of a linear time-invariant model that could be used e.g. for the design of a physiological controller. In the current paper, we present a new type of model to overcome these problems: the mean-value model (MVM). The MVM captures the behavior of the cardiovascular system by representative mean values that do not change within the cardiac cycle. For this purpose, each time-varying element is manually converted to its mean-value counterpart. We compare the derived MVM to a similar TVEM in two simulation experiments. In both cases, the MVM is able to fully capture the inter-cycle dynamics of the TVEM. We hope that the new MVM will become a useful tool for researchers working on physiological control algorithms. This paper provides a plant model that enables for the first time the use of tools from classical control theory in the field of physiological LVAD control.

  8. Forward Physics at the LHC within and beyond the Standard Model

    CERN Document Server

    d'Enterria, David

    2008-01-01

    We review the detection capabilities in the forward direction of the various LHC experiments together with the associated physics programme. A selection of measurements accessible with near-beam instrumentation in various sectors (and extensions) of the Standard Model is outlined, including QCD (diffractive and elastic scattering, low-x parton dynamics, hadronic Monte Carlos for cosmic-rays), electroweak processes in gamma-gamma interactions, and Higgs physics (vector-boson-fusion and central exclusive production).

  9. Trilepton production at the CERN LHC: Standard model sources and beyond

    International Nuclear Information System (INIS)

    Sullivan, Zack; Berger, Edmond L.

    2008-01-01

    Events with three or more isolated leptons in the final state are known to be signatures of new physics phenomena at high energy collider physics facilities. Standard model sources of isolated trilepton final states include gauge boson pair production such as WZ and Wγ*, and tt production. We demonstrate that leptons from heavy flavor decays, such as b→lX and c→lX, provide sources of trileptons that can be orders of magnitude larger after cuts than other standard model backgrounds to new physics processes. We explain the physical reason heavy flavor backgrounds survive isolation cuts. We propose new cuts to control the backgrounds in the specific case of chargino plus neutralino pair production in supersymmetric models. After these cuts are imposed, we show that it should be possible to find at least a 4σ excess for supersymmetry parameter space point LM9 with 30 fb -1 of integrated luminosity.

  10. Including crystal structure attributes in machine learning models of formation energies via Voronoi tessellations

    Science.gov (United States)

    Ward, Logan; Liu, Ruoqian; Krishna, Amar; Hegde, Vinay I.; Agrawal, Ankit; Choudhary, Alok; Wolverton, Chris

    2017-07-01

    While high-throughput density functional theory (DFT) has become a prevalent tool for materials discovery, it is limited by the relatively large computational cost. In this paper, we explore using DFT data from high-throughput calculations to create faster, surrogate models with machine learning (ML) that can be used to guide new searches. Our method works by using decision tree models to map DFT-calculated formation enthalpies to a set of attributes consisting of two distinct types: (i) composition-dependent attributes of elemental properties (as have been used in previous ML models of DFT formation energies), combined with (ii) attributes derived from the Voronoi tessellation of the compound's crystal structure. The ML models created using this method have half the cross-validation error and similar training and evaluation speeds to models created with the Coulomb matrix and partial radial distribution function methods. For a dataset of 435 000 formation energies taken from the Open Quantum Materials Database (OQMD), our model achieves a mean absolute error of 80 meV/atom in cross validation, which is lower than the approximate error between DFT-computed and experimentally measured formation enthalpies and below 15% of the mean absolute deviation of the training set. We also demonstrate that our method can accurately estimate the formation energy of materials outside of the training set and be used to identify materials with especially large formation enthalpies. We propose that our models can be used to accelerate the discovery of new materials by identifying the most promising materials to study with DFT at little additional computational cost.

  11. Les Houches Summer School on Theoretical Physics: Session 84: Particle Physics Beyond the Standard Model

    CERN Document Server

    Lavignac, Stephan; Dalibard, Jean

    2006-01-01

    The Standard Model of elementary particles and interactions is one of the tested theories in physics. This book presents a collection of lectures given in August 2005 at the Les Houches Summer School on Particle Physics beyond the Standard Model. It provides a pedagogical introduction to the aspects of particle physics beyond the Standard Model

  12. Including fluid shear viscosity in a structural acoustic finite element model using a scalar fluid representation

    Science.gov (United States)

    Cheng, Lei; Li, Yizeng; Grosh, Karl

    2013-01-01

    An approximate boundary condition is developed in this paper to model fluid shear viscosity at boundaries of coupled fluid-structure system. The effect of shear viscosity is approximated by a correction term to the inviscid boundary condition, written in terms of second order in-plane derivatives of pressure. Both thin and thick viscous boundary layer approximations are formulated; the latter subsumes the former. These approximations are used to develop a variational formation, upon which a viscous finite element method (FEM) model is based, requiring only minor modifications to the boundary integral contributions of an existing inviscid FEM model. Since this FEM formulation has only one degree of freedom for pressure, it holds a great computational advantage over the conventional viscous FEM formulation which requires discretization of the full set of linearized Navier-Stokes equations. The results from thick viscous boundary layer approximation are found to be in good agreement with the prediction from a Navier-Stokes model. When applicable, thin viscous boundary layer approximation also gives accurate results with computational simplicity compared to the thick boundary layer formulation. Direct comparison of simulation results using the boundary layer approximations and a full, linearized Navier-Stokes model are made and used to evaluate the accuracy of the approximate technique. Guidelines are given for the parameter ranges over which the accurate application of the thick and thin boundary approximations can be used for a fluid-structure interaction problem. PMID:23729844

  13. Kinetic modelling of anaerobic hydrolysis of solid wastes, including disintegration processes

    Energy Technology Data Exchange (ETDEWEB)

    García-Gen, Santiago [Department of Chemical Engineering, Institute of Technology, University of Santiago de Compostela, 15782 Santiago de Compostela (Spain); Sousbie, Philippe; Rangaraj, Ganesh [INRA, UR50, Laboratoire de Biotechnologie de l’Environnement, Avenue des Etangs, Narbonne F-11100 (France); Lema, Juan M. [Department of Chemical Engineering, Institute of Technology, University of Santiago de Compostela, 15782 Santiago de Compostela (Spain); Rodríguez, Jorge, E-mail: jrodriguez@masdar.ac.ae [Department of Chemical Engineering, Institute of Technology, University of Santiago de Compostela, 15782 Santiago de Compostela (Spain); Institute Centre for Water and Environment (iWater), Masdar Institute of Science and Technology, PO Box 54224 Abu Dhabi (United Arab Emirates); Steyer, Jean-Philippe; Torrijos, Michel [INRA, UR50, Laboratoire de Biotechnologie de l’Environnement, Avenue des Etangs, Narbonne F-11100 (France)

    2015-01-15

    Highlights: • Fractionation of solid wastes into readily and slowly biodegradable fractions. • Kinetic coefficients estimation from mono-digestion batch assays. • Validation of kinetic coefficients with a co-digestion continuous experiment. • Simulation of batch and continuous experiments with an ADM1-based model. - Abstract: A methodology to estimate disintegration and hydrolysis kinetic parameters of solid wastes and validate an ADM1-based anaerobic co-digestion model is presented. Kinetic parameters of the model were calibrated from batch reactor experiments treating individually fruit and vegetable wastes (among other residues) following a new protocol for batch tests. In addition, decoupled disintegration kinetics for readily and slowly biodegradable fractions of solid wastes was considered. Calibrated parameters from batch assays of individual substrates were used to validate the model for a semi-continuous co-digestion operation treating simultaneously 5 fruit and vegetable wastes. The semi-continuous experiment was carried out in a lab-scale CSTR reactor for 15 weeks at organic loading rate ranging between 2.0 and 4.7 g VS/L d. The model (built in Matlab/Simulink) fit to a large extent the experimental results in both batch and semi-continuous mode and served as a powerful tool to simulate the digestion or co-digestion of solid wastes.

  14. Results of including geometric nonlinearities in an aeroelastic model of an F/A-18

    Science.gov (United States)

    Buttrill, Carey S.

    1989-01-01

    An integrated, nonlinear simulation model suitable for aeroelastic modeling of fixed-wing aircraft has been developed. While the author realizes that the subject of modeling rotating, elastic structures is not closed, it is believed that the equations of motion developed and applied herein are correct to second order and are suitable for use with typical aircraft structures. The equations are not suitable for large elastic deformation. In addition, the modeling framework generalizes both the methods and terminology of non-linear rigid-body airplane simulation and traditional linear aeroelastic modeling. Concerning the importance of angular/elastic inertial coupling in the dynamic analysis of fixed-wing aircraft, the following may be said. The rigorous inclusion of said coupling is not without peril and must be approached with care. In keeping with the same engineering judgment that guided the development of the traditional aeroelastic equations, the effect of non-linear inertial effects for most airplane applications is expected to be small. A parameter does not tell the whole story, however, and modes flagged by the parameter as significant also need to be checked to see if the coupling is not a one-way path, i.e., the inertially affected modes can influence other modes.

  15. HIV Model Parameter Estimates from Interruption Trial Data including Drug Efficacy and Reservoir Dynamics

    Science.gov (United States)

    Luo, Rutao; Piovoso, Michael J.; Martinez-Picado, Javier; Zurakowski, Ryan

    2012-01-01

    Mathematical models based on ordinary differential equations (ODE) have had significant impact on understanding HIV disease dynamics and optimizing patient treatment. A model that characterizes the essential disease dynamics can be used for prediction only if the model parameters are identifiable from clinical data. Most previous parameter identification studies for HIV have used sparsely sampled data from the decay phase following the introduction of therapy. In this paper, model parameters are identified from frequently sampled viral-load data taken from ten patients enrolled in the previously published AutoVac HAART interruption study, providing between 69 and 114 viral load measurements from 3–5 phases of viral decay and rebound for each patient. This dataset is considerably larger than those used in previously published parameter estimation studies. Furthermore, the measurements come from two separate experimental conditions, which allows for the direct estimation of drug efficacy and reservoir contribution rates, two parameters that cannot be identified from decay-phase data alone. A Markov-Chain Monte-Carlo method is used to estimate the model parameter values, with initial estimates obtained using nonlinear least-squares methods. The posterior distributions of the parameter estimates are reported and compared for all patients. PMID:22815727

  16. Modelling of bypass transition including the pseudolaminar part of the boundary layer

    Energy Technology Data Exchange (ETDEWEB)

    Prihoda, J.; Hlava, T. [Ceska Akademie Ved, Prague (Czech Republic). Inst. of Thermomechanics; Kozel, K. [Ceske Vysoke Uceni Technicke, Prague (Czech Republic). Faculty of Mechanical Engineering

    1999-12-01

    The boundary-layer transition in turbomachinery is accelerated by a number of parameters, especially by the free-stream turbulence. This so-called bypass transition is usually modelled by means of one-equation or two-equation turbulence models based on turbulent viscosity. Using of transport equations for turbulent energy and for dissipation rate in these models is questionable before the onset of the last stage of the transition, i.e. before the formation of turbulent spots. Used approximations of production and turbulent diffusion are the weak points of turbulence models with turbulent viscosity in the pseudolaminar boundary layer, as the Boussinesq assumption on turbulent viscosity is not fulfilled in this part of the boundary layer. In order to obtain a more reliable prediction of the transitional boundary layer, Mayle and Schulz (1997) proposed for the solution of pseudolaminar boundary layer a special `laminar-kinetic-energy` equation based on the analysis of laminar boundary layer in flows with velocity fluctuations. The effect of production and turbulent diffusion on the development of turbulent energy in the pseudolaminar boundary layer was tested using a two-layer turbulence model. (orig.)

  17. Modelling of bypass transition including the pseudolaminar part of the boundary layer

    Energy Technology Data Exchange (ETDEWEB)

    Prihoda, J.; Hlava, T. (Ceska Akademie Ved, Prague (Czech Republic). Inst. of Thermomechanics); Kozel, K. (Ceske Vysoke Uceni Technicke, Prague (Czech Republic). Faculty of Mechanical Engineering)

    1999-01-01

    The boundary-layer transition in turbomachinery is accelerated by a number of parameters, especially by the free-stream turbulence. This so-called bypass transition is usually modelled by means of one-equation or two-equation turbulence models based on turbulent viscosity. Using of transport equations for turbulent energy and for dissipation rate in these models is questionable before the onset of the last stage of the transition, i.e. before the formation of turbulent spots. Used approximations of production and turbulent diffusion are the weak points of turbulence models with turbulent viscosity in the pseudolaminar boundary layer, as the Boussinesq assumption on turbulent viscosity is not fulfilled in this part of the boundary layer. In order to obtain a more reliable prediction of the transitional boundary layer, Mayle and Schulz (1997) proposed for the solution of pseudolaminar boundary layer a special 'laminar-kinetic-energy' equation based on the analysis of laminar boundary layer in flows with velocity fluctuations. The effect of production and turbulent diffusion on the development of turbulent energy in the pseudolaminar boundary layer was tested using a two-layer turbulence model. (orig.)

  18. Flavor democracy in standard models at high energies

    Energy Technology Data Exchange (ETDEWEB)

    Cvetic, G. (Dortmund Univ. (Germany). Inst. fuer Physik); Kim, C.S. (Yonsei Univ., Seoul (Korea, Republic of). Dept. of Physics)

    1993-10-18

    It is possible that the standard model (SM) is replaced around some transition energy [Lambda] by a new, possibly Higgsless, 'flavor gauge theory' such that the Yukawa (running) parameters of SM at E[approx][Lambda] show up an (approximate) flavor democracy (FD). We investigate the latter possibility by studying the renormalization group equations for the Yukawa couplings of SM with one and two Higgs doublets, by evolving them from given physical values at low energies (E[approx equal]1 GeV) to [Lambda] ([approx][Lambda][sub pole]) and comparing the resulting fermion masses and CKM matrix elements at E[approx equal][Lambda] for various m[sub t][sup phy] and ratios y[sub u]/y[sub d] of vacuum expectation values. We find that the minimal SM and the closely related SM with two Higgs doublets (type I) show increasing deviation from FD when energy is increased, but that SM with two Higgs doublets (type II) clearly tends to FD with increasing energy - in both the quark and the leptonic sector (q-q and l-l FD). Furthermore, we find within the type-II model that, for [Lambda][sub pole]<<[Lambda][sub Planck], m[sub t][sup phy] can be less than 200 GeV in most cases of chosen y[sub u]/y[sub d]. Under the assumption that also the corresponding Yukawa couplings in the quark and the leptonic sector at E[approx equal][Lambda] are equal (l-q FD), we derive estimates of bounds on masses of top quark and tau-neutrino, which are compatible with experimental bounds. (orig.)

  19. SARAH goes left and right looking beyond the Standard Model and meets SUSY

    Energy Technology Data Exchange (ETDEWEB)

    Opferkuch, Toby Oliver

    2017-07-07

    Progress in the search for physics beyond the Standard Model (BSM) proceeds through two main avenues. The first requires the development of models that address the host of theoretical and experimental deficiencies of the Standard Model (SM). The second avenue requires scrutinising these models against all available data as well as checks for theoretical consistency. Unfortunately there exists a large number of strongly motivated models as well as an absence of any signs illuminating the correct path nature has chosen. With the lack of a clear direction, automated tools provide an effective means to test as many models as possible. In this thesis we demonstrate how the SARAH framework can be used in this context as well as its adaptability for confronting unexpected hints of new physics, such as the diphoton excess, that have arisen at the Large Hadron Collider (LHC) over the previous years. We then turn to more theoretical constraints namely, studying the stability of the electroweak vacuum in minimal supersymmetric models. Here we studied the impact of previously neglected directions when including non-standard vacuum expectation values. In the second half of this thesis we consider low-scale left-right symmetric models both with and without supersymmetry. In the non-supersymmetric case we consider constraints arising from charged lepton flavour violation. We have significantly improved existing parametrisations allowing for the new Yukawa couplings to be determined as a function of the underlying model parameters. The last scenario we consider is a model based on SO(10) unification at the high-scale. We build a complete model with TeV-scale breaking of the left-right phase studying in detail the phenomenology.

  20. LHCb is trying to crack the Standard Model

    CERN Multimedia

    2011-01-01

    LHCb will reveal new results tomorrow that will shed more light on the possible CP-violation measurement reported recently by the Tevatron experiments, different from Standard Model predictions. Quantum Diaries blogger for CERN, Pauline Gagnon, explains how.   LHCb, one of the Large Hadron Collider (LHC) experiments, was designed specifically to study charge-parity or CP violation. In simple words, its goal is to explain why more matter than antimatter was produced when the Universe slowly cooled down after the Big Bang, leading to a world predominantly composed of matter. This is quite puzzling since in laboratory experiments we do not measure a preference for the creation of matter over antimatter. Hence the CP-conservation law in physics that states that Nature should not have a preference for matter over antimatter. So why did the Universe evolve this way? One of the best ways to study this phenomenon is with b quarks. Since they are heavy, they can decay (i.e break down into smaller parts) ...