WorldWideScience

Sample records for model including deposition

  1. Subretinal Pigment Epithelial Deposition of Drusen Components Including Hydroxyapatite in a Primary Cell Culture Model

    Science.gov (United States)

    Pilgrim, Matthew G.; Lengyel, Imre; Lanzirotti, Antonio; Newville, Matt; Fearn, Sarah; Emri, Eszter; Knowles, Jonathan C.; Messinger, Jeffrey D.; Read, Russell W.; Guidry, Clyde; Curcio, Christine A.

    2017-01-01

    Purpose Extracellular deposits containing hydroxyapatite, lipids, proteins, and trace metals that form between the basal lamina of the RPE and the inner collagenous layer of Bruch's membrane are hallmarks of early AMD. We examined whether cultured RPE cells could produce extracellular deposits containing all of these molecular components. Methods Retinal pigment epithelium cells isolated from freshly enucleated porcine eyes were cultured on Transwell membranes for up to 6 months. Deposit composition and structure were characterized using light, fluorescence, and electron microscopy; synchrotron x-ray diffraction and x-ray fluorescence; secondary ion mass spectroscopy; and immunohistochemistry. Results Apparently functional primary RPE cells, when cultured on 10-μm-thick inserts with 0.4-μm-diameter pores, can produce sub-RPE deposits that contain hydroxyapatite, lipids, proteins, and trace elements, without outer segment supplementation, by 12 weeks. Conclusions The data suggest that sub-RPE deposit formation is initiated, and probably regulated, by the RPE, as well as the loss of permeability of the Bruch's membrane and choriocapillaris complex associated with age and early AMD. This cell culture model of early AMD lesions provides a novel system for testing new therapeutic interventions against sub-RPE deposit formation, an event occurring well in advance of the onset of vision loss. PMID:28146236

  2. Deposit model for volcanogenic uranium deposits

    Science.gov (United States)

    Breit, George N.; Hall, Susan M.

    2011-01-01

    Volcanism is a major contributor to the formation of important uranium deposits both close to centers of eruption and more distal as a result of deposition of ash with leachable uranium. Hydrothermal fluids that are driven by magmatic heat proximal to some volcanic centers directly form some deposits. These fluids leach uranium from U-bearing silicic volcanic rocks and concentrate it at sites of deposition within veins, stockworks, breccias, volcaniclastic rocks, and lacustrine caldera sediments. The volcanogenic uranium deposit model presented here summarizes attributes of those deposits and follows the focus of the International Atomic Energy Agency caldera-hosted uranium deposit model. Although inferred by some to have a volcanic component to their origin, iron oxide-copper-gold deposits with economically recoverable uranium contents are not considered in this model.

  3. Modeled Wet Nitrate Deposition

    Data.gov (United States)

    U.S. Environmental Protection Agency — Modeled data on nitrate wet deposition was obtained from Dr. Jeff Grimm at Penn State Univ. Nitrate wet depostion causes acidification and eutrophication of surface...

  4. Preliminary Model of Porphyry Copper Deposits

    Science.gov (United States)

    Berger, Byron R.; Ayuso, Robert A.; Wynn, Jeffrey C.; Seal, Robert R., II

    2008-01-01

    The U.S. Geological Survey (USGS) Mineral Resources Program develops mineral-deposit models for application in USGS mineral-resource assessments and other mineral resource-related activities within the USGS as well as for nongovernmental applications. Periodic updates of models are published in order to incorporate new concepts and findings on the occurrence, nature, and origin of specific mineral deposit types. This update is a preliminary model of porphyry copper deposits that begins an update process of porphyry copper models published in USGS Bulletin 1693 in 1986. This update includes a greater variety of deposit attributes than were included in the 1986 model as well as more information about each attribute. It also includes an expanded discussion of geophysical and remote sensing attributes and tools useful in resource evaluations, a summary of current theoretical concepts of porphyry copper deposit genesis, and a summary of the environmental attributes of unmined and mined deposits.

  5. Including Magnetostriction in Micromagnetic Models

    Science.gov (United States)

    Conbhuí, Pádraig Ó.; Williams, Wyn; Fabian, Karl; Nagy, Lesleis

    2016-04-01

    The magnetic anomalies that identify crustal spreading are predominantly recorded by basalts formed at the mid-ocean ridges, whose magnetic signals are dominated by iron-titanium-oxides (Fe3-xTixO4), so called "titanomagnetites", of which the Fe2.4Ti0.6O4 (TM60) phase is the most common. With sufficient quantities of titanium present, these minerals exhibit strong magnetostriction. To date, models of these grains in the pseudo-single domain (PSD) range have failed to accurately account for this effect. In particular, a popular analytic treatment provided by Kittel (1949) for describing the magnetostrictive energy as an effective increase of the anisotropy constant can produce unphysical strains for non-uniform magnetizations. I will present a rigorous approach based on work by Brown (1966) and by Kroner (1958) for including magnetostriction in micromagnetic codes which is suitable for modelling hysteresis loops and finding remanent states in the PSD regime. Preliminary results suggest the more rigorously defined micromagnetic models exhibit higher coercivities and extended single domain ranges when compared to more simplistic approaches.

  6. PLUVIUS: a generalized one-dimensional model of reactive pollutant behavior, including dry deposition, precipitation formation, and wet removal. Second edition

    Energy Technology Data Exchange (ETDEWEB)

    Easter, R.C.; Hales, J.M.

    1984-11-01

    This report is a second-edition user's manual for the PLUVIUS reactive-storm model. The PLUVIUS code simulates the formation of storm systems of a variety of types, and characterizes the behavior of air pollutants as they flow through, react within, and are scavenged by the storms. The computer code supplied with this report is known as PLUVIUS MOD 5.0, and is a substantial improvement over the MOD 3.1 version given in the original user's manual. Example applications of MOD 5.0 are given in the report to facilitate rapid application of the code for a variety of specific uses. 22 references, 7 figures, 48 tables.

  7. Stratiform chromite deposit model: Chapter E in Mineral deposit models for resource assessment

    Science.gov (United States)

    Schulte, Ruth F.; Taylor, Ryan D.; Piatak, Nadine M.; Seal, Robert R., II

    2012-01-01

    A new descriptive stratiform chromite deposit model was prepared which will provide a framework for understanding the characteristics of stratiform chromite deposits worldwide. Previous stratiform chromite deposit models developed by the U.S. Geological Survey (USGS) have been referred to as Bushveld chromium, because the Bushveld Complex in South Africa is the only stratified, mafic-ultramafic intrusion presently mined for chromite and is the most intensely researched. As part of the on-going effort by the USGS Mineral Resources Program to update existing deposit models for the upcoming national mineral resource assessment, this revised stratiform chromite deposit model includes new data on the geological, mineralogical, geophysical, and geochemical attributes of stratiform chromite deposits worldwide. This model will be a valuable tool in future chromite resource and environmental assessments and supplement previously published models used for mineral resource evaluation.

  8. A Radon Progeny Deposition Model

    CERN Document Server

    Guiseppe, V E; Hime, A; Rielage, K; Westerdale, S

    2011-01-01

    The next generation low-background detectors operating underground aim for unprecedented low levels of radioactive backgrounds. Although the radioactive decays of airborne radon (particularly Rn-222) and its subsequent progeny present in an experiment are potential backgrounds, also problematic is the deposition of radon progeny on detector materials. Exposure to radon at any stage of assembly of an experiment can result in surface contamination by progeny supported by the long half life (22 y) of Pb-210 on sensitive locations of a detector. An understanding of the potential surface contamination from deposition will enable requirements of radon-reduced air and clean room environments for the assembly of low background experiments. It is known that there are a number of environmental factors that govern the deposition of progeny onto surfaces. However, existing models have not explored the impact of some environmental factors important for low background experiments. A test stand has been constructed to depos...

  9. DEVELOPMENT OF WATER CIRCULATION MODEL INCLUDING IRRIGATION

    Science.gov (United States)

    Kotsuki, Shunji; Tanaka, Kenji; Kojiri, Toshiharu; Hamaguchi, Toshio

    It is well known that since agricultural water withdrawal has much affect on water circulation system, accurate analysis of river discharge or water balance are difficult with less regard for it. In this study, water circulation model composed of land surface model and distributed runoff model is proposed at 10km 10km resolution. In this model, irrigation water, which is estimated with land surface model, is introduced to river discharge analysis. The model is applied to the Chao Phraya River in Thailand, and reproduced seasonal water balance. Additionally, the discharge on dry season simulated with the model is improved as a result of including irrigation. Since the model, which is basically developed from global data sets, simulated seasonal change of river discharge, it can be suggested that our model has university to other river basins.

  10. Arc-related porphyry molybdenum deposit model: Chapter D in Mineral deposit models for resource assessment

    Science.gov (United States)

    Taylor, Ryan D.; Hammarstrom, Jane M.; Piatak, Nadine M.; Seal, Robert R., II

    2012-01-01

    This report provides a descriptive model for arc-related porphyry molybdenum deposits. Presented within are geological, geochemical, and mineralogical characteristics that differentiate this deposit type from porphyry copper and alkali-feldspar rhyolite-granite porphyry molybdenum deposits. The U.S. Geological Survey's effort to update existing mineral deposit models spurred this research, which is intended to supplement previously published models for this deposit type that help guide mineral-resource and mineral-environmental assessments.

  11. Effects of Hot Streak and Phantom Cooling on Heat Transfer in a Cooled Turbine Stage Including Particulate Deposition

    Energy Technology Data Exchange (ETDEWEB)

    Bons, Jeffrey [The Ohio State Univ., Columbus, OH (United States); Ameri, Ali [The Ohio State Univ., Columbus, OH (United States)

    2016-01-08

    The objective of this research effort was to develop a validated computational modeling capability for the characterization of the effects of hot streaks and particulate deposition on the heat load of modern gas turbines. This was accomplished with a multi-faceted approach including analytical, experimental, and computational components. A 1-year no cost extension request was approved for this effort, so the total duration was 4 years. The research effort succeeded in its ultimate objective by leveraging extensive experimental deposition studies complemented by computational modeling. Experiments were conducted with hot streaks, vane cooling, and combinations of hot streaks with vane cooling. These studies contributed to a significant body of corporate knowledge of deposition, in combination with particle rebound and deposition studies funded by other agencies, to provide suitable conditions for the development of a new model. The model includes the following physical phenomena: elastic deformation, plastic deformation, adhesion, and shear removal. It also incorporates material property sensitivity to temperature and tangential-normal velocity rebound cross-dependencies observed in experiments. The model is well-suited for incorporation in CFD simulations of complex gas turbine flows due to its algebraic (explicit) formulation. This report contains model predictions compared to coefficient of restitution data available in the open literature as well as deposition results from two different high temperature turbine deposition facilities. While the model comparisons with experiments are in many cases promising, several key aspects of particle deposition remain elusive. The simple phenomenological nature of the model allows for parametric dependencies to be evaluated in a straightforward manner. This effort also included the first-ever full turbine stage deposition model published in the open literature. The simulations included hot streaks and simulated vane cooling

  12. Radiative transfer modeling of surface chemical deposits

    Science.gov (United States)

    Reichardt, Thomas A.; Kulp, Thomas J.

    2016-05-01

    Remote detection of a surface-bound chemical relies on the recognition of a pattern, or "signature," that is distinct from the background. Such signatures are a function of a chemical's fundamental optical properties, but also depend upon its specific morphology. Importantly, the same chemical can exhibit vastly different signatures depending on the size of particles composing the deposit. We present a parameterized model to account for such morphological effects on surface-deposited chemical signatures. This model leverages computational tools developed within the planetary and atmospheric science communities, beginning with T-matrix and ray-tracing approaches for evaluating the scattering and extinction properties of individual particles based on their size and shape, and the complex refractive index of the material itself. These individual-particle properties then serve as input to the Ambartsumian invariant imbedding solution for the reflectance of a particulate surface composed of these particles. The inputs to the model include parameters associated with a functionalized form of the particle size distribution (PSD) as well as parameters associated with the particle packing density and surface roughness. The model is numerically inverted via Sandia's Dakota package, optimizing agreement between modeled and measured reflectance spectra, which we demonstrate on data acquired on five size-selected silica powders over the 4-16 μm wavelength range. Agreements between modeled and measured reflectance spectra are assessed, while the optimized PSDs resulting from the spectral fitting are then compared to PSD data acquired from independent particle size measurements.

  13. A structure zone diagram including plasma based deposition and ion etching

    Energy Technology Data Exchange (ETDEWEB)

    Anders, Andre

    2009-10-14

    An extended structure zone diagram is proposed that includes energetic deposition, characterized by a large flux of ions typical for deposition by filtered cathodic arcs and high power impulse magnetron sputtering. The axes are comprised of a generalized homologous temperature, the normalized kinetic energy flux, and the net film thickness, which can be negative due to ion etching. It is stressed that the number of primary physical parameters affecting growth by far exceeds the number of available axes in such a diagram and therefore it can only provide an approximate and simplified illustration of the growth condition?structure relationships.

  14. Review of Gaussian diffusion-deposition models

    Energy Technology Data Exchange (ETDEWEB)

    Horst, T.W.

    1979-01-01

    The assumptions and predictions of several Gaussian diffusion-deposition models are compared. A simple correction to the Chamberlain source depletion model is shown to predict ground-level airborne concentrations and dry deposition fluxes in close agreement with the exact solution of Horst.

  15. Models of bovine babesiosis including juvenile cattle.

    Science.gov (United States)

    Saad-Roy, C M; Shuai, Zhisheng; van den Driessche, P

    2015-03-01

    Bovine Babesiosis in cattle is caused by the transmission of protozoa of Babesia spp. by ticks as vectors. Juvenile cattle (Babesiosis, rarely show symptoms, and acquire immunity upon recovery. Susceptibility to the disease varies between breeds of cattle. Models of the dynamics of Bovine Babesiosis transmitted by the cattle tick that include these factors are formulated as systems of ordinary differential equations. Basic reproduction numbers are calculated, and it is proved that if these numbers are below the threshold value of one, then Bovine Babesiosis dies out. However, above the threshold number of one, the disease may approach an endemic state. In this case, control measures are suggested by determining target reproduction numbers. The percentage of a particular population (for example, the adult bovine population) needed to be controlled to eradicate the disease is evaluated numerically using Columbia data from the literature.

  16. Inline CBET Model Including SRS Backscatter

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, David S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-06-26

    Cross-beam energy transfer (CBET) has been used as a tool on the National Ignition Facility (NIF) since the first energetics experiments in 2009 to control the energy deposition in ignition hohlraums and tune the implosion symmetry. As large amounts of power are transferred between laser beams at the entrance holes of NIF hohlraums, the presence of many overlapping beat waves can lead to stochastic ion heating in the regions where laser beams overlap [P. Michel et al., Phys. Rev. Lett. 109, 195004 (2012)]. Using the CBET gains derived in this paper, we show how to implement these equations in a ray-based laser source for a rad-hydro code.

  17. Cooling Strategies for Vane Leading Edges in a Syngas Environment Including Effects of Deposition and Turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Ames, Forrest [Univ. of North Dakota, Grand Forks, ND (United States); Bons, Jeffrey [Univ. of North Dakota, Grand Forks, ND (United States)

    2014-09-30

    The Department of Energy has goals to move land based gas turbine systems to alternate fuels including coal derived synthetic gas and hydrogen. Coal is the most abundant energy resource in the US and in the world and it is economically advantageous to develop power systems which can use coal. Integrated gasification combined cycles are (IGCC) expected to allow the clean use of coal derived fuels while improving the ability to capture and sequester carbon dioxide. These cycles will need to maintain or increase turbine entry temperatures to develop competitive efficiencies. The use of coal derived syngas introduces a range of potential contaminants into the hot section of the gas turbine including sulfur, iron, calcium, and various alkali metals. Depending on the effectiveness of the gas clean up processes, there exists significant likelihood that the remaining materials will become molten in the combustion process and potentially deposit on downstream turbine surfaces. Past evidence suggests that deposition will be a strong function of increasing temperature. Currently, even with the best gas cleanup processes a small level of particulate matter in the syngas is expected. Consequently, particulate deposition is expected to be an important consideration in the design of turbine components. The leading edge region of first stage vanes most often have higher deposition rates than other areas due to strong fluid acceleration and streamline curvature in the vicinity of the surface. This region remains one of the most difficult areas in a turbine nozzle to cool due to high inlet temperatures and only a small pressure ratio for cooling. The leading edge of a vane often has relatively high heat transfer coefficients and is often cooled using showerhead film cooling arrays. The throat of the first stage nozzle is another area where deposition potentially has a strongly adverse effect on turbine performance as this region meters the turbine inlet flow. Based on roughness

  18. A Simplified Diffusion-Deposition Model

    DEFF Research Database (Denmark)

    Jensen, Niels Otto

    1980-01-01

    The use of a simple top hat plume model facilitates an analytical treatment of the deposition problem. A necessary constraint, however, is that the diffusion velocity (e.g., in terms of the plume growth-rate) is large compared to the deposition velocity. With these limitations, explicit formulae...

  19. Advanced deposition model for thermal activated chemical vapor deposition

    Science.gov (United States)

    Cai, Dang

    Thermal Activated Chemical Vapor Deposition (TACVD) is defined as the formation of a stable solid product on a heated substrate surface from chemical reactions and/or dissociation of gaseous reactants in an activated environment. It has become an essential process for producing solid film, bulk material, coating, fibers, powders and monolithic components. Global market of CVD products has reached multi billions dollars for each year. In the recent years CVD process has been extensively used to manufacture semiconductors and other electronic components such as polysilicon, AlN and GaN. Extensive research effort has been directed to improve deposition quality and throughput. To obtain fast and high quality deposition, operational conditions such as temperature, pressure, fluid velocity and species concentration and geometry conditions such as source-substrate distance need to be well controlled in a CVD system. This thesis will focus on design of CVD processes through understanding the transport and reaction phenomena in the growth reactor. Since the in situ monitor is almost impossible for CVD reactor, many industrial resources have been expended to determine the optimum design by semi-empirical methods and trial-and-error procedures. This approach has allowed the achievement of improvements in the deposition sequence, but begins to show its limitations, as this method cannot always fulfill the more and more stringent specifications of the industry. To resolve this problem, numerical simulation is widely used in studying the growth techniques. The difficulty of numerical simulation of TACVD crystal growth process lies in the simulation of gas phase and surface reactions, especially the latter one, due to the fact that very limited kinetic information is available in the open literature. In this thesis, an advanced deposition model was developed to study the multi-component fluid flow, homogeneous gas phase reactions inside the reactor chamber, heterogeneous surface

  20. An Integrated Biochemistry Laboratory, Including Molecular Modeling

    Science.gov (United States)

    Hall, Adele J. Wolfson Mona L.; Branham, Thomas R.

    1996-11-01

    ) experience with methods of protein purification; (iii) incorporation of appropriate controls into experiments; (iv) use of basic statistics in data analysis; (v) writing papers and grant proposals in accepted scientific style; (vi) peer review; (vii) oral presentation of results and proposals; and (viii) introduction to molecular modeling. Figure 1 illustrates the modular nature of the lab curriculum. Elements from each of the exercises can be separated and treated as stand-alone exercises, or combined into short or long projects. We have been able to offer the opportunity to use sophisticated molecular modeling in the final module through funding from an NSF-ILI grant. However, many of the benefits of the research proposal can be achieved with other computer programs, or even by literature survey alone. Figure 1.Design of project-based biochemistry laboratory. Modules (projects, or portions of projects) are indicated as boxes. Each of these can be treated independently, or used as part of a larger project. Solid lines indicate some suggested paths from one module to the next. The skills and knowledge required for protein purification and design are developed in three units: (i) an introduction to critical assays needed to monitor degree of purification, including an evaluation of assay parameters; (ii) partial purification by ion-exchange techniques; and (iii) preparation of a grant proposal on protein design by mutagenesis. Brief descriptions of each of these units follow, with experimental details of each project at the end of this paper. Assays for Lysozyme Activity and Protein Concentration (4 weeks) The assays mastered during the first unit are a necessary tool for determining the purity of the enzyme during the second unit on purification by ion exchange. These assays allow an introduction to the concept of specific activity (units of enzyme activity per milligram of total protein) as a measure of purity. In this first sequence, students learn a turbidimetric assay

  1. A preliminary deposit model for lithium brines

    Science.gov (United States)

    Bradley, Dwight; Munk, LeeAnn; Jochens, Hillary; Hynek, Scott; Labay, Keith A.

    2013-01-01

    This report is part of an effort by the U.S. Geological Survey to update existing mineral deposit models and to develop new ones. The global transition away from hydrocarbons toward energy alternatives increases demand for many scarce metals. Among these is lithium, a key component of lithium-ion batteries for electric and hybrid vehicles. Lithium brine deposits account for about three-fourths of the world’s lithium production. Updating an earlier deposit model, we emphasize geologic information that might directly or indirectly help in exploration for lithium brine deposits, or for assessing regions for mineral resource potential. Special attention is given to the best-known deposit in the world—Clayton Valley, Nevada, and to the giant Salar de Atacama, Chile.

  2. Seepage Model for PA Including Dift Collapse

    Energy Technology Data Exchange (ETDEWEB)

    G. Li; C. Tsang

    2000-12-20

    The purpose of this Analysis/Model Report (AMR) is to document the predictions and analysis performed using the Seepage Model for Performance Assessment (PA) and the Disturbed Drift Seepage Submodel for both the Topopah Spring middle nonlithophysal and lower lithophysal lithostratigraphic units at Yucca Mountain. These results will be used by PA to develop the probability distribution of water seepage into waste-emplacement drifts at Yucca Mountain, Nevada, as part of the evaluation of the long term performance of the potential repository. This AMR is in accordance with the ''Technical Work Plan for Unsaturated Zone (UZ) Flow and Transport Process Model Report'' (CRWMS M&O 2000 [153447]). This purpose is accomplished by performing numerical simulations with stochastic representations of hydrological properties, using the Seepage Model for PA, and evaluating the effects of an alternative drift geometry representing a partially collapsed drift using the Disturbed Drift Seepage Submodel. Seepage of water into waste-emplacement drifts is considered one of the principal factors having the greatest impact of long-term safety of the repository system (CRWMS M&O 2000 [153225], Table 4-1). This AMR supports the analysis and simulation that are used by PA to develop the probability distribution of water seepage into drift, and is therefore a model of primary (Level 1) importance (AP-3.15Q, ''Managing Technical Product Inputs''). The intended purpose of the Seepage Model for PA is to support: (1) PA; (2) Abstraction of Drift-Scale Seepage; and (3) Unsaturated Zone (UZ) Flow and Transport Process Model Report (PMR). Seepage into drifts is evaluated by applying numerical models with stochastic representations of hydrological properties and performing flow simulations with multiple realizations of the permeability field around the drift. The Seepage Model for PA uses the distribution of permeabilities derived from air injection testing in

  3. Porphyry copper deposit model: Chapter B in Mineral deposit models for resource assessment

    Science.gov (United States)

    Ayuso, Robert A.; Barton, Mark D.; Blakely, Richard J.; Bodnar, Robert J.; Dilles, John H.; Gray, Floyd; Graybeal, Fred T.; Mars, John L.; McPhee, Darcy K.; Seal, Robert R., II; Taylor, Ryan D.; Vikre, Peter G.; John, David A.

    2010-01-01

    This report contains a revised descriptive model of porphyry copper deposits (PCDs), the world's largest source (about 60 percent) and resource (about 65 percent) of copper and a major source of molybdenum, gold and silver. Despite relatively low grades (average 0.44 percent copper in 2008), PCDs have significant economic and societal impacts due to their large size (commonly hundreds of millions to billions of metric tons), long mine lives (decades), and high production rates (billions of kilograms of copper per year). The revised model describes the geotectonic setting of PCDs, and provides extensive regional- to deposit-scale descriptions and illustrations of geological, geochemical, geophysical, and geoenvironmental characteristics. Current genetic theories are reviewed and evaluated, knowledge gaps are identified, and a variety of exploration and assessment guides are presented. A summary is included for users seeking overviews of specific topics.

  4. Enhanced battery model including temperature effects

    NARCIS (Netherlands)

    Rosca, B.; Wilkins, S.

    2013-01-01

    Within electric and hybrid vehicles, batteries are used to provide/buffer the energy required for driving. However, battery performance varies throughout the temperature range specific to automotive applications, and as such, models that describe this behaviour are required. This paper presents a dy

  5. Enhanced battery model including temperature effects

    NARCIS (Netherlands)

    Rosca, B.; Wilkins, S.

    2013-01-01

    Within electric and hybrid vehicles, batteries are used to provide/buffer the energy required for driving. However, battery performance varies throughout the temperature range specific to automotive applications, and as such, models that describe this behaviour are required. This paper presents a dy

  6. Enhanced battery model including temperature effects

    NARCIS (Netherlands)

    Rosca, B.; Wilkins, S.

    2013-01-01

    Within electric and hybrid vehicles, batteries are used to provide/buffer the energy required for driving. However, battery performance varies throughout the temperature range specific to automotive applications, and as such, models that describe this behaviour are required. This paper presents a

  7. Asteroid fragmentation approaches for modeling atmospheric energy deposition

    Science.gov (United States)

    Register, Paul J.; Mathias, Donovan L.; Wheeler, Lorien F.

    2017-03-01

    During asteroid entry, energy is deposited in the atmosphere through thermal ablation and momentum-loss due to aerodynamic drag. Analytic models of asteroid entry and breakup physics are used to compute the energy deposition, which can then be compared against measured light curves and used to estimate ground damage due to airburst events. This work assesses and compares energy deposition results from four existing approaches to asteroid breakup modeling, and presents a new model that combines key elements of those approaches. The existing approaches considered include a liquid drop or "pancake" model where the object is treated as a single deforming body, and a set of discrete fragment models where the object breaks progressively into individual fragments. The new model incorporates both independent fragments and aggregate debris clouds to represent a broader range of fragmentation behaviors and reproduce more detailed light curve features. All five models are used to estimate the energy deposition rate versus altitude for the Chelyabinsk meteor impact, and results are compared with an observationally derived energy deposition curve. Comparisons show that four of the five approaches are able to match the overall observed energy deposition profile, but the features of the combined model are needed to better replicate both the primary and secondary peaks of the Chelyabinsk curve.

  8. Developing Depositional Models for Mercury Contaminated Floodplain Deposits Using Geomorphic Mapping and GIS in South River, Virginia

    Science.gov (United States)

    Barbieri, A.; Pizzuto, J.; O'Neal, M. A.; Rhoades, E.

    2007-12-01

    Mercury was introduced into the South River from the 1930s to the 1950s from an industrial plant in Waynesboro, Virginia. Mercury contamination in fish tissue continues to exceed acceptable levels. The contaminated sediments in the river's floodplains are probably the present source of mercury to the South River ecosystem. Locating and determining the extent and depositional history of these deposits are important for understanding the mercury cycle in the river as well as for remediation plans. The South River is a sinuous, single thread alluvial river with frequent bedrock exposures along its bed and banks. Overbank deposits are discontinuous and thin. Rates of lateral migration by the South River are extremely low, averaging 0.02 m/yr, and the river has been influenced by mill dams along a 19 km study reach. This 19 km section of the 37 km river reach was selected for the study because of its high concentration of Hg. Six different categories of floodplain deposits dating from 1937-2005 have been identified throughout the river using studies of historical aerial photographs in a GIS framework, field mapping, dendro- and radionuclide dating, grain size and Hg analysis. Not surprisingly, traditional depositional models of meandering rivers do not apply. Floodplain depositional units include mill dam deposits, point bar/bench deposits, concave bank bench deposits, islands, cattle deposits, and tributary confluences deposits. The most important deposits for sequestering historic mercury are those that also store the most silt and clay. These include mill dam deposits, point bar/bench deposits, concave bank deposits, and tributary confluence deposits. Many of these deposits represent reservoirs of mercury-contaminated sediments that could supply significant amounts of mercury into the river presently and in the future.

  9. Modelling transport and deposition of caesium and iodine from the Chernobyl accident using the DREAM model

    Directory of Open Access Journals (Sweden)

    J. Brandt

    2002-01-01

    Full Text Available A tracer model, DREAM (the Danish Rimpuff and Eulerian Accidental release Model, has been developed for modelling transport, dispersion and deposition (wet and dry of radioactive material from accidental releases, as the Chernobyl accident. The model is a combination of a Lagrangian model, that includes the near source dispersion, and an Eulerian model describing the long-range transport. The performance of the transport model has previously been tested within the European Tracer Experiment, ETEX, which included transport and dispersion of an inert, non-depositing tracer from a controlled release. The focus of this paper is the model performance with respect to the total deposition of  137Cs, 134Cs and 131I from the Chernobyl accident, using different relatively simple and comprehensive parameterizations for dry- and wet deposition. The performance, compared to measurements, of using different combinations of two different wet deposition parameterizations and three different parameterizations of dry deposition has been evaluated, using different statistical tests. The best model performance, compared to measurements, is obtained when parameterizing the total deposition combined of a simple method for dry deposition and a subgrid-scale averaging scheme for wet deposition based on relative humidities. The same major conclusion is obtained for all the three different radioactive isotopes and using two different deposition measurement databases. Large differences are seen in the results obtained by using the two different parameterizations of wet deposition based on precipitation rates and relative humidities, respectively. The parameterization based on subgrid-scale averaging is, in all cases, performing better than the parameterization based on precipitation rates. This indicates that the in-cloud scavenging process is more important than the below cloud scavenging process for the submicron particles and that the precipitation rates are

  10. Interspecies modeling of inhaled particle deposition patterns

    Energy Technology Data Exchange (ETDEWEB)

    Martonen, T.B.; Zhang, Z.; Yang, Y.

    1992-01-01

    To evaluate the potential toxic effects of ambient contaminants or therapeutic effects of airborne drugs, inhalation exposure experiments can be performed with surrogate laboratory animals. Herein, an interspecies particle deposition theory is presented for physiologically based pharmacokinetic modeling. It is derived to improve animal testing protocols. The computer code describes the behavior and fate of particles in the lungs of human subjects and a selected surrogate, the laboratory rat. In the simulations CO2 is integrated with exposure chamber atmospheres, and its concentrations regulated to produce rat breathing profiles corresponding to selected levels of human physical activity. The dosimetric model is used to calculate total, compartmental (i.e., tracheobronchial and pulmonary), and localized distribution patterns of inhaled particles in rats and humans for comparable ventilatory conditions. It is demonstrated that the model can be used to predetermine the exposure conditions necessary to produce deposition patterns in rats that are equivalent to those in humans at prescribed physical activities.

  11. Modelling transport and deposition of caesium and iodine from the Chernobyl accident using the DREAM model

    Directory of Open Access Journals (Sweden)

    J. Brandt

    2002-06-01

    Full Text Available A tracer model, DREAM (the Danish Rimpuff and Eulerian Accidental release Model, has been developed for modelling transport, dispersion and deposition (wet and dry of radioactive material from accidental releases, as the Chernobyl accident. The model is a combination of a Lagrangian model, that includes the near source dispersion, and an Eulerian model describing the long-range transport. The performance of the transport model has previously been tested within the European Tracer Experiment, ETEX, which included transport and dispersion of an inert, non-depositing tracer from a controlled release. The focus of this paper is the model performance with respect to the deposition of 137Cs, 134Cs and 131I from the Chernobyl accident, using different relatively simple and comprehensive parameterizations. The performance, compared to measurements, of different combinations of parameterizations of wet and dry deposition schemes has been evaluated, using different statistical tests.

  12. A model of the Quaternary geological deposits of Bucharest City

    Science.gov (United States)

    Serpescu, Irina; Radu, Emil; Radu Gogu, Constantin; Amine Boukhemacha, Mohamed; Gaitanaru, Dragos; Bica, Ioan

    2013-04-01

    indicating a high energy deposition environment. The geological model indicates more accentuate vertical lithological heterogeneity than a horizontal one as well as a decrease of the Colentina Formation thickness. (3) Intermediary deposits represented by silty-clay with fine sand intercalation indicating a mixed regime with limited lakes and dry lands. (4) Mostistea Formation made of sediments with a variety of grain size, from fine sand to coarse sand with small intercalations of gravels and scrap of woods. It was found that areas where the Intermediary deposits are less developed making the Colentina Formation in direct connection to Mostistea Formation. (5) Marly Complex composed by a succession of marls and clays with lenticular sandy intercalations indicating a fluvial-lacustrine environment. (6) Fratesti Strata made of sand and gravel which includes A, B and C Fratesti levels.

  13. A deposit model for Mississippi Valley-Type lead-zinc ores: Chapter A in Mineral deposit models for resource assessment

    Science.gov (United States)

    Leach, David L.; Taylor, Ryan D.; Fey, David L.; Diehl, Sharon F.; Saltus, Richard W.

    2010-01-01

    This report is a descriptive model of Mississippi Valley-Type (MVT) lead-zinc deposits that presents their geological, mineralogical and geochemical attributes and is part of an effort by the U.S. Geological Survey Mineral Resources Program to update existing models and develop new models that will be used for an upcoming national mineral resource assessment. This deposit modeling effort by the USGS is intended to supplement previously published models for use in mineral-resource and mineral-environmental assessments. Included in this report are geological, geophysical and geochemical assessment guides to assist in mineral resource estimation. The deposit attributes, including grade and tonnage of the deposits described in this report are based on a new mineral deposits data set of all known MVT deposits in the world.

  14. Numerical modeling of consolidation processes in hydraulically deposited soils

    Science.gov (United States)

    Brink, Nicholas Robert

    Hydraulically deposited soils are encountered in many common engineering applications including mine tailing and geotextile tube fills, though the consolidation process for such soils is highly nonlinear and requires the use of advanced numerical techniques to provide accurate predictions. Several commercially available finite element codes poses the ability to model soil consolidation, and it was the goal of this research to assess the ability of two of these codes, ABAQUS and PLAXIS, to model the large-strain, two-dimensional consolidation processes which occur in hydraulically deposited soils. A series of one- and two-dimensionally drained rectangular models were first created to assess the limitations of ABAQUS and PLAXIS when modeling consolidation of highly compressible soils. Then, geotextile tube and TSF models were created to represent actual scenarios which might be encountered in engineering practice. Several limitations were discovered, including the existence of a minimum preconsolidation stress below which numerical solutions become unstable.

  15. Global atmospheric model for mercury including oxidation by bromine atoms

    Directory of Open Access Journals (Sweden)

    C. D. Holmes

    2010-12-01

    Full Text Available Global models of atmospheric mercury generally assume that gas-phase OH and ozone are the main oxidants converting Hg0 to HgII and thus driving mercury deposition to ecosystems. However, thermodynamic considerations argue against the importance of these reactions. We demonstrate here the viability of atomic bromine (Br as an alternative Hg0 oxidant. We conduct a global 3-D simulation with the GEOS-Chem model assuming gas-phase Br to be the sole Hg0 oxidant (Hg + Br model and compare to the previous version of the model with OH and ozone as the sole oxidants (Hg + OH/O3 model. We specify global 3-D Br concentration fields based on our best understanding of tropospheric and stratospheric Br chemistry. In both the Hg + Br and Hg + OH/O3 models, we add an aqueous photochemical reduction of HgII in cloud to impose a tropospheric lifetime for mercury of 6.5 months against deposition, as needed to reconcile observed total gaseous mercury (TGM concentrations with current estimates of anthropogenic emissions. This added reduction would not be necessary in the Hg + Br model if we adjusted the Br oxidation kinetics downward within their range of uncertainty. We find that the Hg + Br and Hg + OH/O3 models are equally capable of reproducing the spatial distribution of TGM and its seasonal cycle at northern mid-latitudes. The Hg + Br model shows a steeper decline of TGM concentrations from the tropics to southern mid-latitudes. Only the Hg + Br model can reproduce the springtime depletion and summer rebound of TGM observed at polar sites; the snowpack component of GEOS-Chem suggests that 40% of HgII deposited to snow in the Arctic is transferred to the ocean and land reservoirs, amounting to a net deposition flux to the Arctic of 60 Mg a−1. Summertime events of depleted Hg0 at Antarctic sites due to subsidence are much better simulated by

  16. Global atmospheric model for mercury including oxidation by bromine atoms

    Directory of Open Access Journals (Sweden)

    C. D. Holmes

    2010-08-01

    Full Text Available Global models of atmospheric mercury generally assume that OH and ozone are the main oxidants converting Hg0 to HgII and thus driving mercury deposition to ecosystems. However, thermodynamic considerations argue against the importance of these reactions. We demonstrate here the viability of atomic bromine (Br as an alternative Hg0 oxidant. We conduct a global 3-D simulation with the GEOS-Chem model assuming Br to be the sole Hg0 oxidant (Hg + Br model and compare to the previous version of the model with OH and ozone as the sole oxidants (Hg + OH/O3 model. We specify global 3-D Br concentration fields based on our best understanding of tropospheric and stratospheric Br chemistry. In both the Hg + Br and Hg + OH/O3 models, we add an aqueous photochemical reduction of HgII in cloud to impose a tropospheric lifetime for mercury of 6.5 months against deposition, as needed to reconcile observed total gaseous mercury (TGM concentrations with current estimates of anthropogenic emissions. This added reduction would not be necessary in the Hg + Br model if we adjusted the Br oxidation kinetics downward within their range of uncertainty. We find that the Hg + Br and Hg + OH/O3 models are equally capable of reproducing the spatial distribution of TGM and its seasonal cycle at northern mid-latitudes. The Hg + Br model shows a steeper decline of TGM concentrations from the tropics to southern mid-latitudes. Only the Hg + Br model can reproduce the springtime depletion and summer rebound of TGM observed at polar sites; the snowpack component of GEOS-Chem suggests that 40% of HgII deposited to snow in the Arctic is transferred to the ocean and land reservoirs, amounting to a net deposition flux of 60 Mg a−1. Summertime events of depleted Hg0 at Antarctic sites due to subsidence are much better simulated by the Hg + Br model. Model

  17. Model for erosion-deposition patterns

    CERN Document Server

    Maionchi, D O; Filho, R N Costa; Andrade, J S; Herrmann, H J

    2007-01-01

    We investigate through computational simulations with a pore network model the formation of patterns caused by erosion-deposition mechanisms. In this model, the geometry of the pore space changes dynamically as a consequence of the coupling between the fluid flow and the movement of particles due to local drag forces. Our results for this irreversible process show that the model is capable to reproduce typical natural patterns caused by well known erosion processes. Moreover, we observe that, within a certain range of porosity values, the grains form clusters that are tilted with respect to the horizontal with a characteristic angle. We compare our results to recent experiments for granular material in flowing water and show that they present a satisfactory agreement.

  18. Multiwalled Carbon Nanotube Deposition on Model Environmental Surfaces

    Science.gov (United States)

    Deposition of multiwalled carbon nanotubes (MWNTs) on model environmental surfaces was investigated using a quartz crystal microbalance with dissipation monitoring (QCM-D). Deposition behaviors of MWNTs on positively and negatively charged surfaces were in good agreement with Der...

  19. Multiwalled Carbon Nanotube Deposition on Model Environmental Surfaces

    Science.gov (United States)

    Deposition of multiwalled carbon nanotubes (MWNTs) on model environmental surfaces was investigated using a quartz crystal microbalance with dissipation monitoring (QCM-D). Deposition behaviors of MWNTs on positively and negatively charged surfaces were in good agreement with Der...

  20. Competitive growth model involving random deposition and random deposition with surface relaxation

    Energy Technology Data Exchange (ETDEWEB)

    Horowitz, Claudio M.; Monetti, Roberto A.; Albano, Ezequiel V.

    2001-06-01

    A deposition model that considers a mixture of random deposition with surface relaxation and a pure random deposition is proposed and studied. As the system evolves, random deposition with surface relaxation (pure random deposition) take place with probability p and (1{minus}p), respectively. The discrete (microscopic) approach to the model is studied by means of extensive numerical simulations, while continuous equations are used in order to investigate the mesoscopic properties of the model. A dynamic scaling ansatz for the interface width W(L,t,p) as a function of the lattice side L, the time t and p is formulated and tested. Three exponents, which can be linked to the standard growth exponent of random deposition with surface relaxation by means of a scaling relation, are identified. In the continuous limit, the model can be well described by means of a phenomenological stochastic growth equation with a p-dependent effective surface tension.

  1. Dynamic hysteresis modeling including skin effect using diffusion equation model

    Science.gov (United States)

    Hamada, Souad; Louai, Fatima Zohra; Nait-Said, Nasreddine; Benabou, Abdelkader

    2016-07-01

    An improved dynamic hysteresis model is proposed for the prediction of hysteresis loop of electrical steel up to mean frequencies, taking into account the skin effect. In previous works, the analytical solution of the diffusion equation for low frequency (DELF) was coupled with the inverse static Jiles-Atherton (JA) model in order to represent the hysteresis behavior for a lamination. In the present paper, this approach is improved to ensure the reproducibility of measured hysteresis loops at mean frequency. The results of simulation are compared with the experimental ones. The selected results for frequencies 50 Hz, 100 Hz, 200 Hz and 400 Hz are presented and discussed.

  2. Dynamic hysteresis modeling including skin effect using diffusion equation model

    Energy Technology Data Exchange (ETDEWEB)

    Hamada, Souad, E-mail: souadhamada@yahoo.fr [LSP-IE: Research Laboratory, Electrical Engineering Department, University of Batna, 05000 Batna (Algeria); Louai, Fatima Zohra, E-mail: fz_louai@yahoo.com [LSP-IE: Research Laboratory, Electrical Engineering Department, University of Batna, 05000 Batna (Algeria); Nait-Said, Nasreddine, E-mail: n_naitsaid@yahoo.com [LSP-IE: Research Laboratory, Electrical Engineering Department, University of Batna, 05000 Batna (Algeria); Benabou, Abdelkader, E-mail: Abdelkader.Benabou@univ-lille1.fr [L2EP, Université de Lille1, 59655 Villeneuve d’Ascq (France)

    2016-07-15

    An improved dynamic hysteresis model is proposed for the prediction of hysteresis loop of electrical steel up to mean frequencies, taking into account the skin effect. In previous works, the analytical solution of the diffusion equation for low frequency (DELF) was coupled with the inverse static Jiles-Atherton (JA) model in order to represent the hysteresis behavior for a lamination. In the present paper, this approach is improved to ensure the reproducibility of measured hysteresis loops at mean frequency. The results of simulation are compared with the experimental ones. The selected results for frequencies 50 Hz, 100 Hz, 200 Hz and 400 Hz are presented and discussed.

  3. Nickel-cobalt laterites: a deposit model: Chapter H in Mineral deposit models for resource assessment

    Science.gov (United States)

    Marsh, Erin; Anderson, Eric J.; Gray, Floyd

    2013-01-01

    Nickel-cobalt (Ni-Co) laterite deposits are supergene enrichments of Ni±Co that form from intense chemical and mechanical weathering of ultramafic parent rocks. These regolith deposits typically form within 26 degrees of the equator, although there are a few exceptions. They form in active continental margins and stable cratonic settings. It takes as little as one million years for a laterite profile to develop. Three subtypes of Ni-Co laterite deposits are classified according to the dominant Ni-bearing mineralogy, which include hydrous magnesium (Mg)-silicate, smectite, and oxide. These minerals form in weathering horizons that begin with the unweathered protolith at the base, saprolite next, a smectite transition zone only in profiles where drainage is very poor, followed by limonite, and then capped with ferricrete at the top. The saprolite contains Ni-rich hydrous Mg-silicates, the Ni-rich clays occur in the transition horizon, and Ni-rich goethite occurs in the limonite. Although these subtypes of deposits are the more widely used terms for classification of Ni-Co laterite deposits, most deposits have economic concentrations of Ni in more than one horizon. Because of their complex mineralogy and heterogeneous concentrations, mining of these metallurgically complex deposits can be challenging. Deposits range in size from 2.5 to about 400 million tonnes, with Ni and Co grades of 0.66–2.4 percent (median 1.3) and 0.01–0.15 percent (median 0.08), respectively. Modern techniques of ore delineation and mineralogical identification are being developed to aid in streamlining the Ni-Co laterite mining process, and low-temperature and low-pressure ore processing techniques are being tested that will treat the entire weathered profile. There is evidence that the production of Ni and Co from laterites is more energy intensive than that of sulfide ores, reflecting the environmental impact of producing a Ni-Co laterite deposit. Tailings may include high levels of

  4. Including spatial data in nutrient balance modelling on dairy farms

    Science.gov (United States)

    van Leeuwen, Maricke; van Middelaar, Corina; Stoof, Cathelijne; Oenema, Jouke; Stoorvogel, Jetse; de Boer, Imke

    2017-04-01

    The Annual Nutrient Cycle Assessment (ANCA) calculates the nitrogen (N) and phosphorus (P) balance at a dairy farm, while taking into account the subsequent nutrient cycles of the herd, manure, soil and crop components. Since January 2016, Dutch dairy farmers are required to use ANCA in order to increase understanding of nutrient flows and to minimize nutrient losses to the environment. A nutrient balance calculates the difference between nutrient inputs and outputs. Nutrients enter the farm via purchased feed, fertilizers, deposition and fixation by legumes (nitrogen), and leave the farm via milk, livestock, manure, and roughages. A positive balance indicates to which extent N and/or P are lost to the environment via gaseous emissions (N), leaching, run-off and accumulation in soil. A negative balance indicates that N and/or P are depleted from soil. ANCA was designed to calculate average nutrient flows on farm level (for the herd, manure, soil and crop components). ANCA was not designed to perform calculations of nutrient flows at the field level, as it uses averaged nutrient inputs and outputs across all fields, and it does not include field specific soil characteristics. Land management decisions, however, such as the level of N and P application, are typically taken at the field level given the specific crop and soil characteristics. Therefore the information that ANCA provides is likely not sufficient to support farmers' decisions on land management to minimize nutrient losses to the environment. This is particularly a problem when land management and soils vary between fields. For an accurate estimate of nutrient flows in a given farming system that can be used to optimize land management, the spatial scale of nutrient inputs and outputs (and thus the effect of land management and soil variation) could be essential. Our aim was to determine the effect of the spatial scale of nutrient inputs and outputs on modelled nutrient flows and nutrient use efficiencies

  5. Unsteady panel method for complex configurations including wake modeling

    CSIR Research Space (South Africa)

    Van Zyl, Lourens H

    2008-01-01

    Full Text Available implementations of the DLM are however not very versatile in terms of geometries that can be modeled. The ZONA6 code offers a versatile surface panel body model including a separated wake model, but uses a pressure panel method for lifting surfaces. This paper...

  6. Modeling Electric Double-Layers Including Chemical Reaction Effects

    DEFF Research Database (Denmark)

    Paz-Garcia, Juan Manuel; Johannesson, Björn; Ottosen, Lisbeth M.

    2014-01-01

    A physicochemical and numerical model for the transient formation of an electric double-layer between an electrolyte and a chemically-active flat surface is presented, based on a finite elements integration of the nonlinear Nernst-Planck-Poisson model including chemical reactions. The model works...

  7. Understanding error generation in fused deposition modeling

    Science.gov (United States)

    Bochmann, Lennart; Bayley, Cindy; Helu, Moneer; Transchel, Robert; Wegener, Konrad; Dornfeld, David

    2015-03-01

    Additive manufacturing offers completely new possibilities for the manufacturing of parts. The advantages of flexibility and convenience of additive manufacturing have had a significant impact on many industries, and optimizing part quality is crucial for expanding its utilization. This research aims to determine the sources of imprecision in fused deposition modeling (FDM). Process errors in terms of surface quality, accuracy and precision are identified and quantified, and an error-budget approach is used to characterize errors of the machine tool. It was determined that accuracy and precision in the y direction (0.08-0.30 mm) are generally greater than in the x direction (0.12-0.62 mm) and the z direction (0.21-0.57 mm). Furthermore, accuracy and precision tend to decrease at increasing axis positions. The results of this work can be used to identify possible process improvements in the design and control of FDM technology.

  8. COMIDA: a radionuclide food chain model for acute fallout deposition.

    Science.gov (United States)

    Abbott, M L; Rood, A S

    1994-01-01

    A dynamic food chain model and computer code, named "COMIDA," has been developed to estimate radionuclide concentrations in agricultural food products following an acute fallout event. COMIDA estimates yearly harvest concentrations for five human crop types (Bq kg-1 crop per Bq m-2 deposited) and integrated concentrations for four animal products (Bq d kg-1 animal product per Bq m-2) for a unit deposition that occurs on any user-specified day of the year. COMIDA is structurally very similar to the PATHWAY model and includes the same seasonal transport processes and discrete events for soil and vegetation compartments. Animal product assimilation is modeled using simpler equilibrium models. Differential transport and ingrowth of up to three radioactive progeny are also evaluated. Benchmark results between COMIDA and PATHWAY for monthly fallout events show very similar seasonal agreement for integrated concentrations in milk and beef. Benchmark results between COMIDA and four international steady-state models show good agreement for deposition events that occur during the middle of the growing season. COMIDA will be implemented in the new Department of Energy version of the MELCOR Accident Consequence Code System for evaluation of accidental releases from nuclear power plants.

  9. A predictive model for dimensional errors in fused deposition modeling

    DEFF Research Database (Denmark)

    Stolfi, A.

    2015-01-01

    This work concerns the effect of deposition angle (a) and layer thickness (L) on the dimensional performance of FDM parts using a predictive model based on the geometrical description of the FDM filament profile. An experimental validation over the whole a range from 0° to 177° at 3° steps and two...

  10. Circuit Modeling of a MEMS Varactor Including Dielectric Charging Dynamics

    Science.gov (United States)

    Giounanlis, P.; Andrade-Miceli, D.; Gorreta, S.; Pons-Nin, J.; Dominguez-Pumar, M.; Blokhina, E.

    2016-10-01

    Electrical models for MEMS varactors including the effect of dielectric charging dynamics are not available in commercial circuit simulators. In this paper a circuit model using lumped ideal elements available in the Cadence libraries and a basic Verilog-A model, has been implemented. The model has been used to simulate the dielectric charging in function of time and its effects over the MEMS capacitance value.

  11. Mississippi Valley-Type Lead-Zinc Deposit Model

    Science.gov (United States)

    Leach, David L.; Taylor, Ryan D.

    2009-01-01

    Mississippi Valley-type (MVT) lead-zinc (Pb+Zn) deposits are found throughout the world, and these deposits are characteristically distributed over hundreds of square kilometers that define individual ore districts. The median size of individual MVT deposits is 7.0 million tonnes with grades of about 7.9 percent Pb+Zn metal. However, MVT deposits usually occur in extensive districts consisting of several to as many as 400 deposits. Nearly one-quarter of the world's sedimentary and volcanic rock-hosted Pb+Zn resources are found in these deposits, with by-product commodities including silver (Ag), copper (Cu), and indium (In) for some deposits. Environmentally, MVT deposits are less of a concern than other types of mineral deposits since the carbonate-host rocks mitigate many environmental concerns.

  12. Development of a Guinea Pig Lung Deposition Model

    Science.gov (United States)

    2016-01-01

    Development of a Guinea Pig Lung Deposition Model Distribution Statement A. Approved for public release; distribution is unlimited. January...4 Figure 2. Particle deposition in the lung of the guinea pig via endotracheal breathing...Particle deposition in the lungs of guinea pigs via nasal breathing. ......................................... 12 v PREFACE The research work

  13. Including investment risk in large-scale power market models

    DEFF Research Database (Denmark)

    Lemming, Jørgen Kjærgaard; Meibom, P.

    2003-01-01

    can be included in large-scale partial equilibrium models of the power market. The analyses are divided into a part about risk measures appropriate for power market investors and a more technical part about the combination of a risk-adjustment model and a partial-equilibrium model. To illustrate......Long-term energy market models can be used to examine investments in production technologies, however, with market liberalisation it is crucial that such models include investment risks and investor behaviour. This paper analyses how the effect of investment risk on production technology selection...... the analyses quantitatively, a framework based on an iterative interaction between the equilibrium model and a separate risk-adjustment module was constructed. To illustrate the features of the proposed modelling approach we examined how uncertainty in demand and variable costs affects the optimal choice...

  14. A comparative study of aerosol deposition in different lung models.

    Science.gov (United States)

    Yu, C P; Diu, C K

    1982-01-01

    Theoretical calculations are made on total and regional deposition of inhaled particles in the human respiratory system based upon various current lung models. It is found that although total deposition does not vary appreciably from model to model, considerably large differences are present in regional deposition. Deposition profiles along the airways from different models also show very different patterns. These differences can be explained in terms of airway dimensions and the number of structures in different models. Extension to explain intersubject variability is also made.

  15. Thermoelectric material including conformal oxide layers and method of making the same using atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jung Young; Ahn, Dongjoon; Salvador, James R.; Meisner, Gregory P.

    2016-06-07

    A thermoelectric material includes a substrate particle and a plurality of conformal oxide layers formed on the substrate particle. The plurality of conformal oxide layers has a total oxide layer thickness ranging from about 2 nm to about 20 nm. The thermoelectric material excludes oxide nanoparticles. A method of making the thermoelectric material is also disclosed herein.

  16. Progressive IRP Models for Power Resources Including EPP

    Directory of Open Access Journals (Sweden)

    Yiping Zhu

    2017-01-01

    Full Text Available In the view of optimizing regional power supply and demand, the paper makes effective planning scheduling of supply and demand side resources including energy efficiency power plant (EPP, to achieve the target of benefit, cost, and environmental constraints. In order to highlight the characteristics of different supply and demand resources in economic, environmental, and carbon constraints, three planning models with progressive constraints are constructed. Results of three models by the same example show that the best solutions to different models are different. The planning model including EPP has obvious advantages considering pollutant and carbon emission constraints, which confirms the advantages of low cost and emissions of EPP. The construction of progressive IRP models for power resources considering EPP has a certain reference value for guiding the planning and layout of EPP within other power resources and achieving cost and environmental objectives.

  17. Modeling heart rate variability including the effect of sleep stages

    Science.gov (United States)

    Soliński, Mateusz; Gierałtowski, Jan; Żebrowski, Jan

    2016-02-01

    We propose a model for heart rate variability (HRV) of a healthy individual during sleep with the assumption that the heart rate variability is predominantly a random process. Autonomic nervous system activity has different properties during different sleep stages, and this affects many physiological systems including the cardiovascular system. Different properties of HRV can be observed during each particular sleep stage. We believe that taking into account the sleep architecture is crucial for modeling the human nighttime HRV. The stochastic model of HRV introduced by Kantelhardt et al. was used as the initial starting point. We studied the statistical properties of sleep in healthy adults, analyzing 30 polysomnographic recordings, which provided realistic information about sleep architecture. Next, we generated synthetic hypnograms and included them in the modeling of nighttime RR interval series. The results of standard HRV linear analysis and of nonlinear analysis (Shannon entropy, Poincaré plots, and multiscale multifractal analysis) show that—in comparison with real data—the HRV signals obtained from our model have very similar properties, in particular including the multifractal characteristics at different time scales. The model described in this paper is discussed in the context of normal sleep. However, its construction is such that it should allow to model heart rate variability in sleep disorders. This possibility is briefly discussed.

  18. Occurrence model for volcanogenic beryllium deposits: Chapter F in Mineral deposit models for resource assessment

    Science.gov (United States)

    Foley, Nora K.; Hofstra, Albert H.; Lindsey, David A.; Seal, Robert R., II; Jaskula, Brian W.; Piatak, Nadine M.

    2012-01-01

    involvement of magmatic water in an otherwise meteoric water-dominated hydrothermal system, indicate that magmatic volatiles contributed to mineralization. At the type locality, hydrothermal alteration of dolomite clasts formed layered nodules of calcite, opal, fluorite, and bertrandite, the latter occurring finely intergrown with fluorite. Alteration assemblages and elemental enrichments in the tuff and surrounding volcanic rocks include regional diagenetic clays and potassium feldspar and distinctive hydrothermal halos of anomalous fluorine, lithium, molybdenum, niobium, tin, and tantalum, and intense potassium feldspathization with sericite and lithium-smectite in the immediate vicinity of Be ore. Formation of volcanogenic Be deposits is due to the coincidence of multiple factors that include an appropriate Be-bearing source rock, a subjacent pluton that supplied volatiles and heat to drive convection of meteoric groundwater, a depositional site characterized by the intersection of normal faults with permeable tuff below a less permeable cap rock, a fluorine-rich ore fluid that facilitated Be transport (for example, BeF42- complex), and the existence of a chemical trap that caused fluorite and bertrandite to precipitate at the former site of carbonate lithic clasts in the tuff.

  19. Modelling deposition of dioxin in Denmark; Modellering af dioxindeposition i Danmark

    Energy Technology Data Exchange (ETDEWEB)

    Mantzius Hansen, K.; Christensen, Jesper H.

    2008-06-15

    We have estimated the deposition of dioxin in Denmark for the years 1970, 1975, 1980, 1985, 1990, 1995, 2000 and 2004 as well as the contribution to air concentrations and depositions from Danish sources relative to the contribution from other European sources. The estimate is based on model simulations with the high-resolution atmospheric chemistry transport model DEHM, where dioxin is modelled as one compound in form of particles. Two different expert emission estimates from EMEP's Meteorological Synthesizing Centre East were used as model input. There are large differences in estimated emissions for some countries from 1990 and onwards, which has a large influence on the simulated depositions. However, it has not been possible to determine which estimate is the most realistic. The concentrations of dioxin in air as well as the depositions increase slightly up to 1980, from where they decrease until 2004. The simulated air concentrations in 2004 are 3,2 fg I-TEQ/m3 and 0,8 fg I-TEQ/m3 for the two emission estimates. The deposited amount of dioxin to Danish land surfaces are 36 g I-TEQ and 9 g I-TEQ for the two emission estimates for 2004. The relative contribution from Danish sources to the deposition of dioxin to Danish land surfaces are 14% and 15% for the two emission estimates for 2004. Despite of large differences in emissions and simulated air concentrations and depositions between the two applied emission estimates, the relative contribution of the Danish sources to the deposition in Denmark does not differ much between the two emission estimates. The contribution of Danish sources to the deposition to Danish land surfaces is estimated to be between 10% and 20%, although there is a large regional variation, from less than 5% to more than 40%. It should be kept in mind that there are sources that are not included in this estimate, such as sources outside Europe and re-emission from previously deposited dioxin, which potentially can give a large

  20. A hydrodynamic model for granular material flows including segregation effects

    Science.gov (United States)

    Gilberg, Dominik; Klar, Axel; Steiner, Konrad

    2017-06-01

    The simulation of granular flows including segregation effects in large industrial processes using particle methods is accurate, but very time-consuming. To overcome the long computation times a macroscopic model is a natural choice. Therefore, we couple a mixture theory based segregation model to a hydrodynamic model of Navier-Stokes-type, describing the flow behavior of the granular material. The granular flow model is a hybrid model derived from kinetic theory and a soil mechanical approach to cover the regime of fast dilute flow, as well as slow dense flow, where the density of the granular material is close to the maximum packing density. Originally, the segregation model has been formulated by Thornton and Gray for idealized avalanches. It is modified and adapted to be in the preferred form for the coupling. In the final coupled model the segregation process depends on the local state of the granular system. On the other hand, the granular system changes as differently mixed regions of the granular material differ i.e. in the packing density. For the modeling process the focus lies on dry granular material flows of two particle types differing only in size but can be easily extended to arbitrary granular mixtures of different particle size and density. To solve the coupled system a finite volume approach is used. To test the model the rotational mixing of small and large particles in a tumbler is simulated.

  1. Synaptic channel model including effects of spike width variation

    OpenAIRE

    2015-01-01

    Synaptic Channel Model Including Effects of Spike Width Variation Hamideh Ramezani Next-generation and Wireless Communications Laboratory (NWCL) Department of Electrical and Electronics Engineering Koc University, Istanbul, Turkey Ozgur B. Akan Next-generation and Wireless Communications Laboratory (NWCL) Department of Electrical and Electronics Engineering Koc University, Istanbul, Turkey ABSTRACT An accu...

  2. A sonic boom propagation model including mean flow atmospheric effects

    Science.gov (United States)

    Salamone, Joe; Sparrow, Victor W.

    2012-09-01

    This paper presents a time domain formulation of nonlinear lossy propagation in onedimension that also includes the effects of non-collinear mean flow in the acoustic medium. The model equation utilized is an augmented Burgers equation that includes the effects of nonlinearity, geometric spreading, atmospheric stratification, and also absorption and dispersion due to thermoviscous and molecular relaxation effects. All elements of the propagation are implemented in the time domain and the effects of non-collinear mean flow are accounted for in each term of the model equation. Previous authors have presented methods limited to showing the effects of wind on ray tracing and/or using an effective speed of sound in their model equation. The present work includes the effects of mean flow for all terms included in the augmented Burgers equation with all of the calculations performed in the time-domain. The capability to include the effects of mean flow in the acoustic medium allows one to make predictions more representative of real-world atmospheric conditions. Examples are presented for nonlinear propagation of N-waves and shaped sonic booms. [Work supported by Gulfstream Aerospace Corporation.

  3. Mesoscale Particle-Based Model of Electrophoretic Deposition

    Energy Technology Data Exchange (ETDEWEB)

    Giera, Brian; Zepeda-Ruiz, Luis A.; Pascall, Andrew J.; Weisgraber, Todd H.

    2017-01-17

    We present and evaluate a semiempirical particle-based model of electrophoretic deposition using extensive mesoscale simulations. We analyze particle configurations in order to observe how colloids accumulate at the electrode and arrange into deposits. In agreement with existing continuum models, the thickness of the deposit increases linearly in time during deposition. Resulting colloidal deposits exhibit a transition between highly ordered and bulk disordered regions that can give rise to an appreciable density gradient under certain simulated conditions. The overall volume fraction increases and falls within a narrow range as the driving force due to the electric field increases and repulsive intercolloidal interactions decrease. We postulate ordering and stacking within the initial layer(s) dramatically impacts the microstructure of the deposits. We find a combination of parameters, i.e., electric field and suspension properties, whose interplay enhances colloidal ordering beyond the commonly known approach of only reducing the driving force.

  4. Modelling the surface deposition of meteoric smoke particles

    Science.gov (United States)

    Brooke, James S. A.; Feng, Wuhu; Mann, Graham W.; Dhomse, Sandip S.; Bardeen, Charles G.; Plane, John M. C.

    2016-04-01

    The flux of meteoric smoke particles (MSPs) in Greenland and Antarctica has been measured using Ir and Pt observations in ice cores, by Gabrielli et al. [1,2]. They obtained MSP deposition fluxes of 1.5 ± 0.45 × 10-4 g m-2 yr-1 (209 ± 63 t d-1) in Greenland and 3.9 ± 1.4 × 10-5 g m-2 yr-1 (55 ± 19 t d-1) in Antarctica, where the values in parentheses are total atmospheric inputs, assuming a uniform global deposition rate. These results show reasonable agreement with those of Lanci et al. [3], who used ice core magnetisation measurements, resulting in MSP fluxes of 1.7 ± 0.23 × 10-4 g m-2 yr-1 (236 ± 50 t d-1) (Greenland) and 2.0 ± 0.52 × 10-5 g m-2 yr-1 (29 ± 5.0 t d-1) (Antarctica). Atmospheric modelling studies have been performed to assess the transport and deposition of MSPs, using WACCM (Whole Atmosphere Community Climate Model), and the CARMA (Community Aerosol and Radiation Model) aerosol microphysics package. An MSP input function totalling 44 t d-1 was added between about 80 and 105 km. Several model runs have been performed in which the aerosol scavenging by precipitation was varied. Wet deposition is expected (and calculated here) to be the main deposition process; however, rain and snow aerosol scavenging coefficients have uncertainties spanning up to two and three orders of magnitude, respectively [4]. The model experiments that we have carried out include simple adjustments of the scavenging coefficients, full inclusion of a parametrisation reported by Wang et al. [4], and a scheme based on aerosol removal where relative humidity > 100 %. The MSP fluxes obtained vary between 1.4 × 10-5 and 2.6 × 10-5 g m-2 yr-1 for Greenland, and 5.1 × 10-6 and 1.7 × 10-5 g m-2 yr-1 for Antarctica. These values are about an order of magnitude lower than the Greenland observations, but show reasonable agreement for Antarctica. The UM (Unified Model), UKCA (United Kingdom Chemistry and Aerosols Model), and GLOMAP (GLObal Model of Aerosol Processes) have

  5. A Review of Variable Slicing in Fused Deposition Modeling

    Science.gov (United States)

    Nadiyapara, Hitesh Hirjibhai; Pande, Sarang

    2016-06-01

    The paper presents a literature survey in the field of fused deposition of plastic wires especially in the field of slicing and deposition using extrusion of thermoplastic wires. Various researchers working in the field of computation of deposition path have used their algorithms for variable slicing. In the study, a flowchart has also been proposed for the slicing and deposition process. The algorithm already been developed by previous researcher will be used to be implemented on the fused deposition modelling machine. To demonstrate the capabilities of the fused deposition modeling machine a case study has been taken. It uses a manipulated G-code to be fed to the fused deposition modeling machine. Two types of slicing strategies, namely uniform slicing and variable slicing have been evaluated. In the uniform slicing, the slice thickness has been used for deposition is varying from 0.1 to 0.4 mm. In the variable slicing, thickness has been varied from 0.1 in the polar region to 0.4 in the equatorial region Time required and the number of slices required to deposit a hemisphere of 20 mm diameter have been compared with that using the variable slicing.

  6. A model of Barchan dunes including lateral shear stress.

    Science.gov (United States)

    Schwämmle, V; Herrmann, H J

    2005-01-01

    Barchan dunes are found where sand availability is low and wind direction quite constant. The two dimensional shear stress of the wind field and the sand movement by saltation and avalanches over a barchan dune are simulated. The model with one dimensional shear stress is extended including surface diffusion and lateral shear stress. The resulting final shape is compared to the results of the model with a one dimensional shear stress and confirmed by comparison to measurements. We found agreement and improvements with respect to the model with one dimensional shear stress. Additionally, a characteristic edge at the center of the windward side is discovered which is also observed for big barchans. Diffusion effects reduce this effect for small dunes.

  7. Modeling of dust deposition in central Asia

    Science.gov (United States)

    The deposition of dust particles has a significant influence on the global bio-geochemical cycle. Currently, the lack of spatiotemporal data creates great uncertainty in estimating the global dust budget. To improve our understanding of the fate, transport and cycling of airborne dust, there is a ne...

  8. Evaluation and study of advanced optical contamination, deposition, measurement, and removal techniques. [including computer programs and ultraviolet reflection analysis

    Science.gov (United States)

    Linford, R. M. F.; Allen, T. H.; Dillow, C. F.

    1975-01-01

    A program is described to design, fabricate and install an experimental work chamber assembly (WCA) to provide a wide range of experimental capability. The WCA incorporates several techniques for studying the kinetics of contaminant films and their effect on optical surfaces. It incorporates the capability for depositing both optical and contaminant films on temperature-controlled samples, and for in-situ measurements of the vacuum ultraviolet reflectance. Ellipsometer optics are mounted on the chamber for film thickness determinations, and other features include access ports for radiation sources and instrumentation. Several supporting studies were conducted to define specific chamber requirements, to determine the sensitivity of the measurement techniques to be incorporated in the chamber, and to establish procedures for handling samples prior to their installation in the chamber. A bibliography and literature survey of contamination-related articles is included.

  9. Modelling of mineral matter transformation and deposition in furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Magda, Adrian

    2012-07-01

    analyses and visualisation. The basis of Lagrangian approach to two-phase flows is the simulation of particles trajectory by tracking the representative parcels of particles. The particles are initialised from a finite number of starting locations and each individual particle taken into consideration is tracked throughout the computational domain. The model is presented in details in Chapter 6. The novelty of this approach consists in dealing with the chemical aspects of mineral species in the particles. Each particle is considered a small chemical reactor, with the included mineral matter grains interacting with the surrounding gases. The chemical aspects of mineral transformation are modelled either by chemical equilibrium or kinetic models respectively, as presented in Chapter 4. The last chapter is dedicated to CFD code validation against practical findings (Chapter 7). For the validation two cases were considered. A relatively small test scale combustion chamber was fired with Hambach coal and ash deposition rate and analyses are compared with the CFD findings. The second case refers to a real size coal fired power plant. The CFD deposit predictions were compared with furnace wall thermal imaging instances. Good agreement exists between the experimental and modelled data in both cases. Finally a detailed parametric study is conducted to determine the effect of slagging and fouling deposit properties (thickness, porosity) on the boiler operation (heat flux to the walls and pollutants formation) and vice versa.

  10. Goldilocks Models of Higher-Dimensional Inflation (including modulus stabilization)

    CERN Document Server

    Burgess, C P; Hayman, Peter; Patil, Subodh P

    2016-01-01

    We explore the mechanics of inflation in simplified extra-dimensional models involving an inflaton interacting with the Einstein-Maxwell system in two extra dimensions. The models are Goldilocks-like in that they are just complicated enough to include a mechanism to stabilize the extra-dimensional size, yet simple enough to solve the full 6D field equations using basic tools. The solutions are not limited to the effective 4D regime with H m_KK, but when they do standard 4D fluctuation calculations need not apply. When in a 4D regime the solutions predict eta ~ 0 hence n_s ~ 0.96 and r ~ 0.096 and so are ruled out if tensor modes remain unseen. Analysis of general parameters is difficult without a full 6D fluctuation calculation.

  11. Development of Mouse Lung Deposition Models

    Science.gov (United States)

    2015-07-01

    et al. [9], the empirically-derived equation of Guyton [11] was used in equation (8) to find α = 3.96 and β = 0.117 with 98.0R 2 = . There is no...Deposition of Inhaled Particles in Small Laboratory Animals and Humans,” Aerosol Sci Tech, vol. 19, no. 1, pp. 51–56, 1993. [11] A. C. Guyton

  12. Including Flocculation in a Numerical Sediment Transport Model for a Partially-Mixed Estuary

    Science.gov (United States)

    Tarpley, D.; Harris, C. K.; Friedrichs, C. T.

    2016-12-01

    Particle settling velocity impacts the transport of suspended sediment to the first order but fine-grained material like muds tend to form loosely bound aggregates (flocs) whose settling velocity can vary widely. Properties of flocculated sediment such as settling velocity and particle density are difficult to predict because they change in response to several factors including salinity, suspended sediment concentration, turbulent mixing, and organic content. Knowledge of the mechanisms governing flocculation of cohesive sediment is rapidly expanding; especially in response to recent technical advances. As the understanding of particle dynamics progresses, numerical models describing flocculation and break-up are being developed with varying degrees of complexity. While complex models capture the dynamics of the system, their computational costs may prohibit their incorporation into larger model domains. It is important to determine if the computational costs of intricate floc models are justifiable compared to simpler formulations. For this study, we implement an idealized two-dimensional model designed to represent a longitudinal section of a partially mixed estuary that neglects across-channel variation but exhibits salinity driven estuarine circulation. The idealized domain is designed to mimic the primary features of the York River, VA. Suspended load, erosion and deposition are calculated within the sediment transport routines of the COAWST modeling system. We compare different methods for prescribing settling velocity of fine-grained material. The simplest, standard model neglects flocculation dynamics while the complex treatment is a size-class-based flocculation model (FLOCMOD). Differences in tidal and daily averages of suspended load, bulk settling velocity and bed deposition are compared between the standard and FLOCMOD runs, to examine the relative impact of flocculation on sediment transport patterns. We expect FLOCMOD to have greater variability and

  13. Kinetic models of gene expression including non-coding RNAs

    Science.gov (United States)

    Zhdanov, Vladimir P.

    2011-03-01

    In cells, genes are transcribed into mRNAs, and the latter are translated into proteins. Due to the feedbacks between these processes, the kinetics of gene expression may be complex even in the simplest genetic networks. The corresponding models have already been reviewed in the literature. A new avenue in this field is related to the recognition that the conventional scenario of gene expression is fully applicable only to prokaryotes whose genomes consist of tightly packed protein-coding sequences. In eukaryotic cells, in contrast, such sequences are relatively rare, and the rest of the genome includes numerous transcript units representing non-coding RNAs (ncRNAs). During the past decade, it has become clear that such RNAs play a crucial role in gene expression and accordingly influence a multitude of cellular processes both in the normal state and during diseases. The numerous biological functions of ncRNAs are based primarily on their abilities to silence genes via pairing with a target mRNA and subsequently preventing its translation or facilitating degradation of the mRNA-ncRNA complex. Many other abilities of ncRNAs have been discovered as well. Our review is focused on the available kinetic models describing the mRNA, ncRNA and protein interplay. In particular, we systematically present the simplest models without kinetic feedbacks, models containing feedbacks and predicting bistability and oscillations in simple genetic networks, and models describing the effect of ncRNAs on complex genetic networks. Mathematically, the presentation is based primarily on temporal mean-field kinetic equations. The stochastic and spatio-temporal effects are also briefly discussed.

  14. Towards a CFD-based mechanistic deposit formation model for straw-fired boilers

    DEFF Research Database (Denmark)

    Kær, Søren Knudsen; Rosendahl, Lasse Aistrup; Baxter, L.L.

    2006-01-01

    in the reminder of the paper. The growth of deposits on furnace walls and super heater tubes is treated including the impact on heat transfer rates determined by the CFD code. Based on the commercial CFD code FLUENTe, the overall model is fully implemented through the User Defined Functions. The model...... is configured entirely through a graphical user interface integrated in the standard FLUENTe interface. The model considers fine and coarse mode ash deposition and sticking mechanisms for the complete deposit growth, as well as an influence on the local boundary conditions for heat transfer due to thermal...

  15. Progress Towards an LES Wall Model Including Unresolved Roughness

    Science.gov (United States)

    Craft, Kyle; Redman, Andrew; Aikens, Kurt

    2015-11-01

    Wall models used in large eddy simulations (LES) are often based on theories for hydraulically smooth walls. While this is reasonable for many applications, there are also many where the impact of surface roughness is important. A previously developed wall model has been used primarily for jet engine aeroacoustics. However, jet simulations have not accurately captured thick initial shear layers found in some experimental data. This may partly be due to nozzle wall roughness used in the experiments to promote turbulent boundary layers. As a result, the wall model is extended to include the effects of unresolved wall roughness through appropriate alterations to the log-law. The methodology is tested for incompressible flat plate boundary layers with different surface roughness. Correct trends are noted for the impact of surface roughness on the velocity profile. However, velocity deficit profiles and the Reynolds stresses do not collapse as well as expected. Possible reasons for the discrepancies as well as future work will be presented. This work used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation grant number ACI-1053575. Computational resources on TACC Stampede were provided under XSEDE allocation ENG150001.

  16. Polymer Matrix Composites using Fused Deposition Modeling Technology Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Fused deposition modeling (FDM) is an additive manufacturing technology that allows fabrication of complex three-dimensional geometries layer-by-layer. The goal of...

  17. Modeling debris-covered glaciers: response to steady debris deposition

    Science.gov (United States)

    Anderson, Leif S.; Anderson, Robert S.

    2016-05-01

    Debris-covered glaciers are common in rapidly eroding alpine landscapes. When thicker than a few centimeters, surface debris suppresses melt rates. If continuous debris cover is present, ablation rates can be significantly reduced leading to increases in glacier length. In order to quantify feedbacks in the debris-glacier-climate system, we developed a 2-D long-valley numerical glacier model that includes englacial and supraglacial debris advection. We ran 120 simulations on a linear bed profile in which a hypothetical steady state debris-free glacier responds to a step increase of surface debris deposition. Simulated glaciers advance to steady states in which ice accumulation equals ice ablation, and debris input equals debris loss from the glacier terminus. Our model and parameter selections can produce 2-fold increases in glacier length. Debris flux onto the glacier and the relationship between debris thickness and melt rate strongly control glacier length. Debris deposited near the equilibrium-line altitude, where ice discharge is high, results in the greatest glacier extension when other debris-related variables are held constant. Debris deposited near the equilibrium-line altitude re-emerges high in the ablation zone and therefore impacts melt rate over a greater fraction of the glacier surface. Continuous debris cover reduces ice discharge gradients, ice thickness gradients, and velocity gradients relative to initial debris-free glaciers. Debris-forced glacier extension decreases the ratio of accumulation zone to total glacier area (AAR). Our simulations reproduce the "general trends" between debris cover, AARs, and glacier surface velocity patterns from modern debris-covered glaciers. We provide a quantitative, theoretical foundation to interpret the effect of debris cover on the moraine record, and to assess the effects of climate change on debris-covered glaciers.

  18. Numerical Modeling of Electroacoustic Logging Including Joule Heating

    Science.gov (United States)

    Plyushchenkov, Boris D.; Nikitin, Anatoly A.; Turchaninov, Victor I.

    It is well known that electromagnetic field excites acoustic wave in a porous elastic medium saturated with fluid electrolyte due to electrokinetic conversion effect. Pride's equations describing this process are written in isothermal approximation. Update of these equations, which allows to take influence of Joule heating on acoustic waves propagation into account, is proposed here. This update includes terms describing the initiation of additional acoustic waves excited by thermoelastic stresses and the heat conduction equation with right side defined by Joule heating. Results of numerical modeling of several problems of propagation of acoustic waves excited by an electric field source with and without consideration of Joule heating effect in their statements are presented. From these results, it follows that influence of Joule heating should be taken into account at the numerical simulation of electroacoustic logging and at the interpretation of its log data.

  19. Simulating ozone dry deposition at a boreal forest with a multi-layer canopy deposition model

    Science.gov (United States)

    Zhou, Putian; Ganzeveld, Laurens; Rannik, Üllar; Zhou, Luxi; Gierens, Rosa; Taipale, Ditte; Mammarella, Ivan; Boy, Michael

    2017-01-01

    A multi-layer ozone (O3) dry deposition model has been implemented into SOSAA (a model to Simulate the concentrations of Organic vapours, Sulphuric Acid and Aerosols) to improve the representation of O3 concentration and flux within and above the forest canopy in the planetary boundary layer. We aim to predict the O3 uptake by a boreal forest canopy under varying environmental conditions and analyse the influence of different factors on total O3 uptake by the canopy as well as the vertical distribution of deposition sinks inside the canopy. The newly implemented dry deposition model was validated by an extensive comparison of simulated and observed O3 turbulent fluxes and concentration profiles within and above the boreal forest canopy at SMEAR II (Station to Measure Ecosystem-Atmosphere Relations II) in Hyytiälä, Finland, in August 2010. In this model, the fraction of wet surface on vegetation leaves was parametrised according to the ambient relative humidity (RH). Model results showed that when RH was larger than 70 % the O3 uptake onto wet skin contributed ˜ 51 % to the total deposition during nighttime and ˜ 19 % during daytime. The overall contribution of soil uptake was estimated about 36 %. The contribution of sub-canopy deposition below 4.2 m was modelled to be ˜ 38 % of the total O3 deposition during daytime, which was similar to the contribution reported in previous studies. The chemical contribution to O3 removal was evaluated directly in the model simulations. According to the simulated averaged diurnal cycle the net chemical production of O3 compensated up to ˜ 4 % of dry deposition loss from about 06:00 to 15:00 LT. During nighttime, the net chemical loss of O3 further enhanced removal by dry deposition by a maximum ˜ 9 %. Thus the results indicated an overall relatively small contribution of airborne chemical processes to O3 removal at this site.

  20. Goldilocks models of higher-dimensional inflation (including modulus stabilization)

    Science.gov (United States)

    Burgess, C. P.; Enns, Jared J. H.; Hayman, Peter; Patil, Subodh P.

    2016-08-01

    We explore the mechanics of inflation within simplified extra-dimensional models involving an inflaton interacting with the Einstein-Maxwell system in two extra dimensions. The models are Goldilocks-like inasmuch as they are just complicated enough to include a mechanism to stabilize the extra-dimensional size (or modulus), yet simple enough to solve explicitly the full extra-dimensional field equations using only simple tools. The solutions are not restricted to the effective 4D regime with H ll mKK (the latter referring to the characteristic mass splitting of the Kaluza-Klein excitations) because the full extra-dimensional Einstein equations are solved. This allows an exploration of inflationary physics in a controlled calculational regime away from the usual four-dimensional lamp-post. The inclusion of modulus stabilization is important because experience with string models teaches that this is usually what makes models fail: stabilization energies easily dominate the shallow potentials required by slow roll and so open up directions to evolve that are steeper than those of the putative inflationary direction. We explore (numerically and analytically) three representative kinds of inflationary scenarios within this simple setup. In one the radion is trapped in an inflaton-dependent local minimum whose non-zero energy drives inflation. Inflation ends as this energy relaxes to zero when the inflaton finds its own minimum. The other two involve power-law scaling solutions during inflation. One of these is a dynamical attractor whose features are relatively insensitive to initial conditions but whose slow-roll parameters cannot be arbitrarily small; the other is not an attractor but can roll much more slowly, until eventually transitioning to the attractor. The scaling solutions can satisfy H > mKK, but when they do standard 4D fluctuation calculations need not apply. When in a 4D regime the solutions predict η simeq 0 and so r simeq 0.11 when ns simeq 0.96 and so

  1. A Model for TSUnami FLow INversion from Deposits (TSUFLIND)

    CERN Document Server

    Tang, Hui

    2015-01-01

    Modern tsunami deposits are employed to estimate the overland flow characteristics of tsunamis. With the help of the overland-flow characteristics, the characteristics of the causative tsunami wave can be estimated. The understanding of tsunami deposits has tremendously improved over the last decades. There are three prominent inversion models: Moore advection model, Soulsby's model and TsuSedMod model. TSUFLIND incorporates all three models and adds new modules to better simulate tsunami deposit formation and calculate flow condition. TSUFLIND takes grain-size distribution, thickness, water depth and topography information as inputs. TSUFLIND computes sediment concentration, grain-size distribution of sediment source and initial flow condition to match the sediment thickness and grain size distribution from field observation. Furthermore, TSUFLIND estimates the flow speed, Froude number and representative wave amplitude. The model is tested by using field data collected at Ranganathapuram, India after the 20...

  2. Modeling and sensitivity analysis of transport and deposition of radionuclides from the Fukushima Daiichi accident

    Directory of Open Access Journals (Sweden)

    X. Hu

    2014-01-01

    Full Text Available The atmospheric transport and ground deposition of radioactive isotopes 131I and 137Cs during and after the Fukushima Daiichi Nuclear Power Plant (FDNPP accident (March 2011 are investigated using the Weather Research and Forecasting/Chemistry (WRF/Chem model. The aim is to assess the skill of WRF in simulating these processes and the sensitivity of the model's performance to various parameterizations of unresolved physics. The WRF/Chem model is first upgraded by implementing a radioactive decay term into the advection-diffusion solver and adding three parameterizations for dry deposition and two parameterizations for wet deposition. Different microphysics and horizontal turbulent diffusion schemes are then tested for their ability to reproduce observed meteorological conditions. Subsequently, the influence on the simulated transport and deposition of the characteristics of the emission source, including the emission rate, the gas partitioning of 131I and the size distribution of 137Cs, is examined. The results show that the model can predict the wind fields and rainfall realistically. The ground deposition of the radionuclides can also potentially be captured well but it is very sensitive to the emission characterization. It is found that the total deposition is most influenced by the emission rate for both 131I and 137Cs; while it is less sensitive to the dry deposition parameterizations. Moreover, for 131I, the deposition is also sensitive to the microphysics schemes, the horizontal diffusion schemes, gas partitioning and wet deposition parameterizations; while for 137Cs, the deposition is very sensitive to the microphysics schemes and wet deposition parameterizations, and it is also sensitive to the horizontal diffusion schemes and the size distribution.

  3. Ab initio determination of kinetics for atomic layer deposition modeling

    Science.gov (United States)

    Remmers, Elizabeth M.

    A first principles model is developed to describe the kinetics of atomic layer deposition (ALD) systems. This model requires no fitting parameters, as it is based on the reaction pathways, structures, and energetics obtained from quantum-chemical studies. Using transition state theory and partition functions from statistical mechanics, equilibrium constants and reaction rates can be calculated. Several tools were created in Python to aid in the calculation of these quantities, and this procedure was applied to two systems- zinc oxide deposition from diethyl zinc (DEZ) and water, and alumina deposition from trimethyl aluminum (TMA) and water. A Gauss-Jordan factorization is used to decompose the system dynamics, and the resulting systems of equations are solved numerically to obtain the temporal concentration profiles of these two deposition systems.

  4. Podiform chromite deposits--database and grade and tonnage models

    Science.gov (United States)

    Mosier, Dan L.; Singer, Donald A.; Moring, Barry C.; Galloway, John P.

    2012-01-01

    Chromite ((Mg, Fe++)(Cr, Al, Fe+++)2O4) is the only source for the metallic element chromium, which is used in the metallurgical, chemical, and refractory industries. Podiform chromite deposits are small magmatic chromite bodies formed in the ultramafic section of an ophiolite complex in the oceanic crust. These deposits have been found in midoceanic ridge, off-ridge, and suprasubduction tectonic settings. Most podiform chromite deposits are found in dunite or peridotite near the contact of the cumulate and tectonite zones in ophiolites. We have identified 1,124 individual podiform chromite deposits, based on a 100-meter spatial rule, and have compiled them in a database. Of these, 619 deposits have been used to create three new grade and tonnage models for podiform chromite deposits. The major podiform chromite model has a median tonnage of 11,000 metric tons and a mean grade of 45 percent Cr2O3. The minor podiform chromite model has a median tonnage of 100 metric tons and a mean grade of 43 percent Cr2O3. The banded podiform chromite model has a median tonnage of 650 metric tons and a mean grade of 42 percent Cr2O3. Observed frequency distributions are also given for grades of rhodium, iridium, ruthenium, palladium, and platinum. In resource assessment applications, both major and minor podiform chromite models may be used for any ophiolite complex regardless of its tectonic setting or ophiolite zone. Expected sizes of undiscovered podiform chromite deposits, with respect to degree of deformation or ore-forming process, may determine which model is appropriate. The banded podiform chromite model may be applicable for ophiolites in both suprasubduction and midoceanic ridge settings.

  5. Fractional Differencing Modeling and Forecasting of Eurocurrency Deposit Rates

    OpenAIRE

    John Barkoulas; Baum, Christopher F

    1996-01-01

    We investigate the low frequency properties of three- and six- month rates for Eurocurrency deposits denominated in eight major currencies with specific emphasis on fractional dynamics. Using the fractional integration testing procedure suggested by Geweke and Porter-Hudak (1983), we find that several of the Eurocurrency deposit rates are fractionally integrated processes with long memory. These findings have important implications for econometric modeling, forecasting, and cointegration test...

  6. National implementation of the UNECE convention on long-range transboundary air pollution (effects). Pt. 1. Deposition loads: methods, modelling and mapping results, trends

    Energy Technology Data Exchange (ETDEWEB)

    Gauger, Thomas [Federal Agricultural Research Centre, Braunschweig (DE). Inst. of Agroecology (FAL-AOE); Stuttgart Univ. (Germany). Inst. of Navigation; Haenel, Hans-Dieter; Roesemann, Claus [Federal Agricultural Research Centre, Braunschweig (DE). Inst. of Agroecology (FAL-AOE)] (and others)

    2008-09-15

    The report on the implementation of the UNECE convention on long-range transboundary air pollution Pt.1, deposition loads (methods, modeling and mapping results, trends) includes the following chapters: Introduction, deposition on air pollutants used for the input for critical loads in exceeding calculations, methods applied for mapping total deposition loads, mapping wet deposition, wet deposition mapping results, mapping dry deposition, dry deposition mapping results, cloud and fog mapping results, total deposition mapping results, modeling the air concentration of acidifying components and heavy metals, agricultural emissions of acidifying and eutrophying species.

  7. Numerical Modelling of Suspended Transport and Deposition of Highway Deposited Sediments

    DEFF Research Database (Denmark)

    Bentzen, Thomas Ruby; Larsen, Torben; Bach, Christine;

    Good data for calibration and validation of numerical models are of high importance. In the natural environment data can be hard to archive and the stochastic nature have governing influence on the data archived. Hence for modelling of suspended transport and deposition of particles, originating...... from the highway surfaces, in highway detention ponds, four experiments are carried out. To simplify the complexity of a real pond and for easy control and measurement the sediment transports where carried out in two rectangular channels....

  8. Dry deposition modelling of air pollutants over urban areas

    Science.gov (United States)

    Cherin, N.; Roustan, Y.; Seigneur, C.; Musson Genon, L.

    2012-04-01

    More than one-half of the world's inhabitants lives in urban areas. Consequently, the evolution of pollutants inside these urban areas are problems of great concern in air quality studies. Though the dry deposition fluxes of air pollutants, which are known to be significant in the neighborhood of sources of pollution, like urban areas, have not been modeled precisely until recently within urban areas. By reviewing the physics of the processes leading to the dry deposition of air pollutants, it is clear that atmosphere turbulence is crucial for dry deposition. Urban areas, and particularly buildings, are known to significantly impact flow fields and then by extension the dry deposition fluxes. Numerous urban schemes have been developed in the past decades to approximate the effect of the local scale urban elements on drag, heat flux and radiative budget. The most recent urban canopy models are based on quite simple geometries, but sufficiently close to represent the aerodynamic and thermal characteristics of cities. These canopy models are generally intended to parameterize aerodynamic and thermal fields, but not dry deposition. For dry deposition, the current classical "roughness" approach, uses only two representative parameters, z0 and d, namely the roughness length and the zero-plane displacement height to represent urban areas. In this work, an innovative dry deposition model based on the urban canyon concept, is proposed. It considers a single road, bordered by two facing buildings, which are treated separately. It accounts for sub-grid effects of cities, especially a better parameterization of the turbulence scheme, through the use of local mixing length and a more detailled description of the urban area and key parameters within the urban canopy. Three different flow regimes are distinguished in the urban canyon according to the height-to-width ratio: isolated roughness flow, wake interference flow and skimming flow regime. The magnitude of differences in

  9. Growth Model for Pulsed-Laser Deposited Perovskite Oxide Films

    Institute of Scientific and Technical Information of China (English)

    WANG Xu; FEI Yi-Yan; ZHU Xiang-Dong; Lu Hui-Bin; YANG Guo-Zhen

    2008-01-01

    We present a multi-level growth model that yields some of the key features of perovskite oxide film growth as observed in the reflection high energy electron diffraction(RHEED)and ellipsometry studies.The model describes the effect of deposition,temperature,intra-layer transport,interlayer transport and Ostwald ripening on the morphology of a growth surface in terms of the distribution of terraces and step edges during and after deposition.The numerical results of the model coincide well with the experimental observation.

  10. A Discrete Velocity Traffic Kinetic Model Including Desired Speed

    Directory of Open Access Journals (Sweden)

    Shoufeng Lu

    2013-05-01

    Full Text Available We introduce the desired speed variable into the table of games and formulate a new table of games and the corresponding discrete traffic kinetic model. We use the hybrid programming technique of VB and MATLAB to develop the program. Lastly, we compared the proposed model result and the detector data. The results show that the proposed model can describe the traffic flow evolution.

  11. Semi-holographic model including the radiation component

    CERN Document Server

    del Campo, Sergio; Magaña, Juan; Villanueva, J R

    2014-01-01

    In this letter we study the semi holographic model which corresponds to the radiative version of the model proposed by Zhang et al. (Phys. Lett. B 694 (2010), 177) and revisited by C\\'ardenas et al. (Mon. Not. Roy. Astron. Soc. 438 (2014), 3603). This inclusion makes the model more realistic, so allows us to test it with current observational data and then answer if the inconsistency reported by C\\'ardenas et al. is relaxed.

  12. A Fault Evolution Model Including the Rupture Dynamic Simulation

    Science.gov (United States)

    Wu, Y.; Chen, X.

    2011-12-01

    We perform a preliminary numerical simulation of seismicity and stress evolution along a strike-slip fault in a 3D elastic half space. Following work of Ben-Zion (1996), the fault geometry is devised as a vertical plane which is about 70 km long and 17 km wide, comparable to the size of San Andreas Fault around Parkfield. The loading mechanism is described by "backslip" method. The fault failure is governed by a static/kinetic friction law, and induced stress transfer is calculated with Okada's static solution. In order to track the rupture propagation in detail, we allow induced stress to propagate through the medium at the shear wave velocity by introducing a distance-dependent time delay to responses to stress changes. Current simulation indicates small to moderate earthquakes following the Gutenberg-Richter law and quasi-periodical characteristic large earthquakes, which are consistent with previous work by others. Next we will consider introducing a more realistic friction law, namely, the laboratory-derived rate- and state- dependent law, which can simulate more realistic and complicated sliding behavior such as the stable and unstable slip, the aseismic sliding and the slip nucleation process. In addition, the long duration of aftershocks is expected to be reproduced due to this time-dependent friction law, which is not available in current seismicity simulation. The other difference from previous work is that we are trying to include the dynamic ruptures in this study. Most previous study on seismicity simulation is based on the static solution when dealing with failure induced stress changes. However, studies of numerical simulation of rupture dynamics have revealed lots of important details which are missing in the quasi-static/quasi- dynamic simulation. For example, dynamic simulations indicate that the slip on the ground surface becomes larger if the dynamic rupture process reaches the free surface. The concentration of stress on the propagating crack

  13. The respiratory tract deposition model proposed by the ICRP Task Group

    Energy Technology Data Exchange (ETDEWEB)

    James, A.C.; Briant, J.K. (Pacific Northwest Lab., Richland, WA (USA)); Stahlhofen, W.; Rudolf, G. (Gesellschaft fuer Strahlen- und Umweltforschung mbH Muenchen, Frankfurt am Main (Germany, F.R.). Abt. fuer Biophysikalische Strahlenforschung); Egan, M.J.; Nixon, W. (AEA Safety and Reliability, Culcheth (UK)); Gehr, P. (Bern Univ. (Switzerland). Anatomisches Inst.)

    1990-11-01

    The Task Group has developed a new model of the deposition of inhaled aerosols in each anatomical region of the respiratory tract. The model is used to evaluate the fraction of airborne activity that is deposited in respiratory regions having distinct retention characteristics and clearance pathways: the anterior nares, the extrathoracic airways of the naso- and oropharynx and larynx, the bronchi, the bronchioles, and the alveolated airways of the lung. Drawn from experimental data on total and regional deposition in human subjects, the model is based on extrapolation of these data by means of a detailed theoretical model of aerosol transport and deposition within the lung. The Task Group model applies to all practical conditions, and for aerosol particles and vapors from atomic size up to very coarse aerosols with an activity median aerodynamic diameter of 100 {mu}m. The model is designed to predict regional deposition in different subjects, including adults of either sex, children of various ages, and infants, and also to account for anatomical differences among Caucasian and non-Caucasian subjects. The Task Group model represents aerosol inhalability and regional deposition in different subjects by algebraic expressions of aerosol size, breathing rates, standard lung volumes, and scaling factors for airway dimensions. 35 refs., 13 figs., 2 tabs.

  14. Computational modeling of aerosol deposition in respiratory tract: a review.

    Science.gov (United States)

    Rostami, Ali A

    2009-02-01

    This review article is intended to serve as an overview of the current status of the computational tools and approaches available for predicting respiratory-tract dosimetry of inhaled particulate matter. There are two groups of computational models available, depending on the intended use. The whole-lung models are designed to provide deposition prediction for the whole lung, from the oronasal cavities to the pulmonary region. The whole-lung models are generally semi-empirical and hence provide more reliable results but within the range of parameters used for empirical correlations. The local deposition or computational fluid dynamics (CFD)-based models, on the other hand, utilize comprehensive theoretical and computational approaches but are often limited to upper respiratory tracts. They are based on theoretical principles and are applicable to a wider range of parameters, but less accurate. One of the difficulties with modeling of aerosol deposition in human lung is related to the complexity of the airways geometry and the limited morphometric data available. Another difficulty corresponds to simulation of the realistic physiological conditions of lung environment. Furthermore, complex physical and chemical phenomena associated with dense and multicomponent aerosols complicate the modeling tasks. All of these issues are addressed in this review. The progress made in each area in the last three decades and the challenges ahead are discussed along with some suggestions for future direction. The following subjects are covered in this review: introduction, aerosol deposition mechanisms, elements of a computational model, respiratory-tract geometry models, whole-lung models, CFD based models, cigarette smoke deposition models, and conclusion.

  15. Evacuation modeling including traveler information and compliance behavior

    NARCIS (Netherlands)

    Pel, A.J.; Hoogendoorn, S.P.; Bliemer, M.C.J.

    2010-01-01

    Traffic simulation models are often used to support decisions when planning an evacuation. Scenario analyses based on these models then typically focus on traffic dynamics and the effect of traffic control measures in order to locate possible bottlenecks and predict evacuation times. A clear approac

  16. Deposit 3D modeling and application

    Institute of Scientific and Technical Information of China (English)

    LUO Zhou-quan; LIU Xiao-ming; SU Jia-hong; WU Ya-bin; LIU Wang-ping

    2007-01-01

    By the aid of the international mining software SURPAC, a geologic database for a multi-metal mine was established, 3D models of the surface, geologic fault, ore body, cavity and the underground openings were built, and the volume of the cavity of the mine based on the cavity 3D model was calculated. In order to compute the reserves, a grade block model was built and each metal element grade was estimated using Ordinary Kriging. Then, the reserve of each metal element and every sublevel of the mine was worked out. Finally, the calculated result of each metal reserve to its actual prospecting reserve was compared, and the results show that they are all almost equal to each other. The absolute errors of Sn, Pb, and Zn reserves are only 1.45%, 1.59% and 1.62%,respectively. Obviously, the built models are reliable and the calculated results of reserves are correct. They can be used to assist the geologic and mining engineers of the mine to do research work of reserves estimation, mining design, plan making and so on.

  17. Pilot Wave model that includes creation and annihilation of particles

    CERN Document Server

    Sverdlov, Roman

    2010-01-01

    The purpose of this paper is to come up with a Pilot Wave model of quantum field theory that incorporates particle creation and annihilation without sacrificing determinism. This has been previously attempted in an article by the same author titled "Incorporating particle creation and annihilation in Pilot Wave model", in a much less satisfactory way. In this paper I would like to "clean up" some of the things. In particular, I would like to get rid of a very unnatural concept of "visibility" of particles, which makes the model much simpler. On the other hand, I would like to add a mechanism for decoherence, which was absent in the previous version.

  18. An Intracellular Calcium Oscillations Model Including Mitochondrial Calcium Cycling

    Institute of Scientific and Technical Information of China (English)

    SHI Xiao-Min; LIU Zeng-Rong

    2005-01-01

    @@ Calcium is a ubiquitous second messenger. Mitochondria contributes significantly to intracellular Ca2+ dynamics.The experiment of Kaftan et al. [J. Biol. Chem. 275(2000) 25465] demonstrated that inhibiting mitochondrial Ca2+ uptake can reduce the frequency of cytosolic Ca2+ concentration oscillations of gonadotropes. By considering the mitochondrial Ca2+ cycling we develop a three-variable model of intracellular Ca2+ oscillations based on the models of Atri et al. [Biophys. J. 65 (1993) 1727] and Falcke et al. [Biophys. J. 77 (1999) 37]. The model reproduces the fact that mitochondrial Ca2+ cycling increases the frequency of cytosolic Ca2+ oscillations, which accords with Kaftan's results. Moreover the model predicts that when the mitochondria overload with Ca2+, the cytosolic Ca2+ oscillations vanish, which may trigger apoptosis.

  19. A nuclear fragmentation energy deposition model

    Science.gov (United States)

    Ngo, D. M.; Wilson, J. W.; Fogarty, T. N.; Buck, W. W.; Townsend, L. W. (Principal Investigator)

    1991-01-01

    A formalism for target fragment transport is presented with application to energy loss spectra in thin silicon devices. A nuclear data base is recommended that agrees well with the measurements of McNulty et al. using surface barrier detectors. High-energy events observed by McNulty et al., which are not predicted by intranuclear cascade models, are well represented by the present work.

  20. Energy deposition model for I-125 photon radiation in water

    Energy Technology Data Exchange (ETDEWEB)

    Fuss, M.C.; Garcia, G. [Instituto de Fisica Fundamental, Consejo Superior de Investigaciones Cientificas (CSIC), Madrid (Spain); Munoz, A.; Oller, J.C. [Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT), Madrid (Spain); Blanco, F. [Departamento de Fisica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid (Spain); Limao-Vieira, P. [Laboratorio de Colisoes Atomicas e Moleculares, Departamento de Fisica, CEFITEC, FCT-Universidade Nova de Lisboa, Caparica (Portugal); Williart, A.; Garcia, G. [Departamento de Fisica de los Materiales, Universidad Nacional de Educacion a Distancia, Madrid (Spain); Huerga, C.; Tellez, M. [Hospital Universitario La Paz, Madrid (Spain)

    2010-10-15

    In this study, an electron-tracking Monte Carlo algorithm developed by us is combined with established photon transport models in order to simulate all primary and secondary particle interactions in water for incident photon radiation. As input parameters for secondary electron interactions, electron scattering cross sections by water molecules and experimental energy loss spectra are used. With this simulation, the resulting energy deposition can be modelled at the molecular level, yielding detailed information about localization and type of single collision events. The experimental emission spectrum of I-125 seeds, as used for radiotherapy of different tumours, was used for studying the energy deposition in water when irradiating with this radionuclide. (authors)

  1. Improved Formulations for Air-Surface Exchanges Related to National Security Needs: Dry Deposition Models

    Energy Technology Data Exchange (ETDEWEB)

    Droppo, James G.

    2006-07-01

    The Department of Homeland Security and others rely on results from atmospheric dispersion models for threat evaluation, event management, and post-event analyses. The ability to simulate dry deposition rates is a crucial part of our emergency preparedness capabilities. Deposited materials pose potential hazards from radioactive shine, inhalation, and ingestion pathways. A reliable characterization of these potential exposures is critical for management and mitigation of these hazards. A review of the current status of dry deposition formulations used in these atmospheric dispersion models was conducted. The formulations for dry deposition of particulate materials from am event such as a radiological attack involving a Radiological Detonation Device (RDD) is considered. The results of this effort are applicable to current emergency preparedness capabilities such as are deployed in the Interagency Modeling and Atmospheric Assessment Center (IMAAC), other similar national/regional emergency response systems, and standalone emergency response models. The review concludes that dry deposition formulations need to consider the full range of particle sizes including: 1) the accumulation mode range (0.1 to 1 micron diameter) and its minimum in deposition velocity, 2) smaller particles (less than .01 micron diameter) deposited mainly by molecular diffusion, 3) 10 to 50 micron diameter particles deposited mainly by impaction and gravitational settling, and 4) larger particles (greater than 100 micron diameter) deposited mainly by gravitational settling. The effects of the local turbulence intensity, particle characteristics, and surface element properties must also be addressed in the formulations. Specific areas for improvements in the dry deposition formulations are 1) capability of simulating near-field dry deposition patterns, 2) capability of addressing the full range of potential particle properties, 3) incorporation of particle surface retention/rebound processes, and

  2. Thermal Modeling of Direct Digital Melt-Deposition Processes

    Science.gov (United States)

    Cooper, K. P.; Lambrakos, S. G.

    2011-02-01

    Additive manufacturing involves creating three-dimensional (3D) objects by depositing materials layer-by-layer. The freeform nature of the method permits the production of components with complex geometry. Deposition processes provide one more capability, which is the addition of multiple materials in a discrete manner to create "heterogeneous" objects with locally controlled composition and microstructure. The result is direct digital manufacturing (DDM) by which dissimilar materials are added voxel-by-voxel (a voxel is volumetric pixel) following a predetermined tool-path. A typical example is functionally gradient material such as a gear with a tough core and a wear-resistant surface. The inherent complexity of DDM processes is such that process modeling based on direct physics-based theory is difficult, especially due to a lack of temperature-dependent thermophysical properties and particularly when dealing with melt-deposition processes. In order to overcome this difficulty, an inverse problem approach is proposed for the development of thermal models that can represent multi-material, direct digital melt deposition. This approach is based on the construction of a numerical-algorithmic framework for modeling anisotropic diffusivity such as that which would occur during energy deposition within a heterogeneous workpiece. This framework consists of path-weighted integral formulations of heat diffusion according to spatial variations in material composition and requires consideration of parameter sensitivity issues.

  3. Deposition parameterizations for the Industrial Source Complex (ISC3) model

    Energy Technology Data Exchange (ETDEWEB)

    Wesely, Marvin L. [Argonne National Lab. (ANL), Argonne, IL (United States); Doskey, Paul V. [Argonne National Lab. (ANL), Argonne, IL (United States); Shannon, J. D. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2002-06-01

    Improved algorithms have been developed to simulate the dry and wet deposition of hazardous air pollutants (HAPs) with the Industrial Source Complex version 3 (ISC3) model system. The dry deposition velocities (concentrations divided by downward flux at a specified height) of the gaseous HAPs are modeled with algorithms adapted from existing dry deposition modules. The dry deposition velocities are described in a conventional resistance scheme, for which micrometeorological formulas are applied to describe the aerodynamic resistances above the surface. Pathways to uptake at the ground and in vegetative canopies are depicted with several resistances that are affected by variations in air temperature, humidity, solar irradiance, and soil moisture. The role of soil moisture variations in affecting the uptake of gases through vegetative plant leaf stomata is assessed with the relative available soil moisture, which is estimated with a rudimentary budget of soil moisture content. Some of the procedures and equations are simplified to be commensurate with the type and extent of information on atmospheric and surface conditions available to the ISC3 model system user. For example, standardized land use types and seasonal categories provide sets of resistances to uptake by various components of the surface. To describe the dry deposition of the large number of gaseous organic HAPS, a new technique based on laboratory study results and theoretical considerations has been developed providing a means of evaluating the role of lipid solubility in uptake by the waxy outer cuticle of vegetative plant leaves.

  4. Cement-aggregate compatibility and structure property relationships including modelling

    Energy Technology Data Exchange (ETDEWEB)

    Jennings, H.M.; Xi, Y.

    1993-07-15

    The role of aggregate, and its interface with cement paste, is discussed with a view toward establishing models that relate structure to properties. Both short (nm) and long (mm) range structure must be considered. The short range structure of the interface depends not only on the physical distribution of the various phases, but also on moisture content and reactivity of aggregate. Changes that occur on drying, i.e. shrinkage, may alter the structure which, in turn, feeds back to alter further drying and shrinkage. The interaction is dynamic, even without further hydration of cement paste, and the dynamic characteristic must be considered in order to fully understand and model its contribution to properties. Microstructure and properties are two subjects which have been pursued somewhat separately. This review discusses both disciplines with a view toward finding common research goals in the future. Finally, comment is made on possible chemical reactions which may occur between aggregate and cement paste.

  5. Including lateral interactions into microkinetic models of catalytic reactions

    DEFF Research Database (Denmark)

    Hellman, Anders; Honkala, Johanna Karoliina

    2007-01-01

    In many catalytic reactions lateral interactions between adsorbates are believed to have a strong influence on the reaction rates. We apply a microkinetic model to explore the effect of lateral interactions and how to efficiently take them into account in a simple catalytic reaction. Three differ...... different approximations are investigated: site, mean-field, and quasichemical approximations. The obtained results are compared to accurate Monte Carlo numbers. In the end, we apply the approximations to a real catalytic reaction, namely, ammonia synthesis....

  6. 3D Geological Model of Nihe ore deposit Constrained by Gravity and Magnetic Modeling

    Science.gov (United States)

    Qi, Guang; Yan, Jiayong; Lv, Qingtan; Zhao, Jinhua

    2016-04-01

    We present a case study on using integrated geologic model in mineral exploration at depth. Nihe ore deposit in Anhui Province, is deep hidden ore deposit which was discovered in recent years, this finding is the major driving force of deep mineral exploration work in Luzong. Building 3D elaborate geological model has the important significance for prospecting to deep or surround in this area, and can help us better understand the metallogenic law and ore-controlling regularity. A 3D geological model, extending a depth from +200m to -1500m in Nihe ore deposit, has been compiled from surface geological map, cross-section, borehole logs and amounts of geological inference. And then the 3D geological models have been given physical property parameter for calculating the potential field. Modelling the potential response is proposed as means of evaluating the viability of the 3D geological models, and the evidence of making small changes to the uncertain parts of the original 3D geological models. It is expected that the final models not only reproduce supplied prior geological knowledge, but also explain the observed geophysical data. The workflow used to develop the 3D geologic model in this study includes the three major steps, as follows: (1) Determine the basic information of Model: Defining the 3D limits of the model area, the basic geological and structural unit, and the tectonic contact relations and the sedimentary sequences between these units. (2) 3D model construction: Firstly, a series of 2D geological cross sections over the model area are built by using all kinds of prior information, including surface geology, borehole data, seismic sections, and local geologists' knowledge and intuition. Lastly, we put these sections into a 3D environment according to their profile locations to build a 3D model by using geostatistics method. (3) 3D gravity and magnetic modeling: we calculate the potential field responses of the 3D model, and compare the predicted and

  7. Sediment-hosted gold deposits of the world: database and grade and tonnage models

    Science.gov (United States)

    Berger, Vladimir I.; Mosier, Dan L.; Bliss, James D.; Moring, Barry C.

    2014-01-01

    All sediment-hosted gold deposits (as a single population) share one characteristic—they all have disseminated micron-sized invisible gold in sedimentary rocks. Sediment-hosted gold deposits are recognized in the Great Basin province of the western United States and in China along with a few recognized deposits in Indonesia, Iran, and Malaysia. Three new grade and tonnage models for sediment-hosted gold deposits are presented in this paper: (1) a general sediment-hosted gold type model, (2) a Carlin subtype model, and (3) a Chinese subtype model. These models are based on grade and tonnage data from a database compilation of 118 sediment-hosted gold deposits including a total of 123 global deposits. The new general grade and tonnage model for sediment-hosted gold deposits (n=118) has a median tonnage of 5.7 million metric tonnes (Mt) and a gold grade of 2.9 grams per tonne (g/t). This new grade and tonnage model is remarkable in that the estimated parameters of the resulting grade and tonnage distributions are comparable to the previous model of Mosier and others (1992). A notable change is in the reporting of silver in more than 10 percent of deposits; moreover, the previous model had not considered deposits in China. From this general grade and tonnage model, two significantly different subtypes of sediment-hosted gold deposits are differentiated: Carlin and Chinese. The Carlin subtype includes 88 deposits in the western United States, Indonesia, Iran, and Malaysia, with median tonnage and grade of 7.1 Mt and 2.0 g/t Au, respectively. The silver grade is 0.78 g/t Ag for the 10th percentile of deposits. The Chinese subtype represents 30 deposits in China, with a median tonnage of 3.9 Mt and medium grade of 4.6 g/t Au. Important differences are recognized in the mineralogy and alteration of the two sediment-hosted gold subtypes such as: increased sulfide minerals in the Chinese subtype and decalcification alteration dominant in the Carlin type. We therefore

  8. Comparison of Joint Modeling Approaches Including Eulerian Sliding Interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Lomov, I; Antoun, T; Vorobiev, O

    2009-12-16

    Accurate representation of discontinuities such as joints and faults is a key ingredient for high fidelity modeling of shock propagation in geologic media. The following study was done to improve treatment of discontinuities (joints) in the Eulerian hydrocode GEODYN (Lomov and Liu 2005). Lagrangian methods with conforming meshes and explicit inclusion of joints in the geologic model are well suited for such an analysis. Unfortunately, current meshing tools are unable to automatically generate adequate hexahedral meshes for large numbers of irregular polyhedra. Another concern is that joint stiffness in such explicit computations requires significantly reduced time steps, with negative implications for both the efficiency and quality of the numerical solution. An alternative approach is to use non-conforming meshes and embed joint information into regular computational elements. However, once slip displacement on the joints become comparable to the zone size, Lagrangian (even non-conforming) meshes could suffer from tangling and decreased time step problems. The use of non-conforming meshes in an Eulerian solver may alleviate these difficulties and provide a viable numerical approach for modeling the effects of faults on the dynamic response of geologic materials. We studied shock propagation in jointed/faulted media using a Lagrangian and two Eulerian approaches. To investigate the accuracy of this joint treatment the GEODYN calculations have been compared with results from the Lagrangian code GEODYN-L which uses an explicit treatment of joints via common plane contact. We explore two approaches to joint treatment in the code, one for joints with finite thickness and the other for tight joints. In all cases the sliding interfaces are tracked explicitly without homogenization or blending the joint and block response into an average response. In general, rock joints will introduce an increase in normal compliance in addition to a reduction in shear strength. In the

  9. Neighboring extremal optimal control design including model mismatch errors

    Energy Technology Data Exchange (ETDEWEB)

    Kim, T.J. [Sandia National Labs., Albuquerque, NM (United States); Hull, D.G. [Texas Univ., Austin, TX (United States). Dept. of Aerospace Engineering and Engineering Mechanics

    1994-11-01

    The mismatch control technique that is used to simplify model equations of motion in order to determine analytic optimal control laws is extended using neighboring extremal theory. The first variation optimal control equations are linearized about the extremal path to account for perturbations in the initial state and the final constraint manifold. A numerical example demonstrates that the tuning procedure inherent in the mismatch control method increases the performance of the controls to the level of a numerically-determined piecewise-linear controller.

  10. Double pendulum model for tennis stroke including a collision process

    CERN Document Server

    Youn, Sun-Hyun

    2015-01-01

    By means of adding a collision process between the ball and racket in double pendulum model, we analyzed the tennis stroke. It is possible that the speed of the rebound ball does not simply depend on the angular velocity of the racket, and higher angular velocity sometimes gives lower ball speed. We numerically showed that the proper time lagged racket rotation increases the speed of the rebound ball by 20%. We also showed that the elbow should move in order to add the angular velocity of the racket.

  11. Simulation of nitrogen deposition in the North China Plain by the FRAME model

    Directory of Open Access Journals (Sweden)

    Y. Zhang

    2011-08-01

    Full Text Available Simulation of atmospheric nitrogen (N deposition in the North China Plain (NCP at high resolution, 5 × 5 km2, was conducted for the first time by the Fine Resolution Atmospheric Multi-pollutant Exchange (FRAME model. The total N deposition budget was 1481 Gg in this region, with 77 % from reduced N and 23 % from oxidized N, and the annual deposition rate (47 kg ha−1 was much higher than previously reported values for other parts of the world such as the UK (13 kg ha−1, Poland (7.3 kg ha−1 and EU27 (8.6 kg ha−1. The exported N budget (1981 Gg was much higher than the imported N budget (584 Gg, suggesting that the NCP is an important net emission source of N pollutants. Seven provinces in the region contributed N deposition budgets that were proportional to their area ratios. The calculated spatial distributions of N deposition displayed high rates of reduced N deposition in the south and of oxidized N deposition in the eastern part. The N deposition exceeded an upper limit of 30 kg N ha−1 for natural ecosystems over more than 90 % of the region, resulting in terrestrial ecosystem deterioration, impaired air quality and coastal eutrophication not only in the NCP itself but also in surrounding areas including the Bohai Sea and the Yellow Sea.

  12. Mathematical Modelling of Silica Scaling Deposition in Geothermal Wells

    Science.gov (United States)

    Nizami, M.; Sutopo

    2016-09-01

    Silica scaling is widely encountered in geothermal wells in which produce two-phase geothermal fluid. Silica scaling could be formed due to chemical reacting by mixing a geothermal fluid with other geothermal fluid in different compositions, or also can be caused by changes in fluid properties due to changes pressure and temperature. One of method to overcome silica scaling which is occurred around geothermal well is by workover operation. Modelling of silica deposition in porous medium has been modeled in previously. However, the growth of silica scaling deposition in geothermal wells has never been modeled. Modelling of silica deposition through geothermal is important aspects to determine depth of silica scaling growth and best placing for workover device to clean silica scaling. This study is attempted to develop mathematical models for predicting silica scaling through geothermal wells. The mathematical model is developed by integrating the solubility-temperature correlation and two-phase pressure drop coupled wellbore fluid temperature correlation in a production well. The coupled model of two-phase pressure drop and wellbore fluid temperature correlation which is used in this paper is Hasan-Kabir correlation. This modelling is divided into two categories: single and two phase fluid model. Modelling of silica deposition is constrained in temperature distribution effect through geothermal wells by solubility correlation for silica. The results of this study are visualizing the growth of silica scaling thickness through geothermal wells in each segment of depth. Sensitivity analysis is applied in several parameters, such as: bottom-hole pressure, temperature, and silica concentrations. Temperature is most impact factor for silica scaling through geothermal wellbore and depth of flash point. In flash point, silica scaling thickness has reached maximum because reducing of mole in liquid portion.

  13. Modelling airborne concentration and deposition rate of maize pollen

    Science.gov (United States)

    Jarosz, Nathalie; Loubet, Benjamin; Huber, Laurent

    2004-10-01

    The introduction of genetically modified (GM) crops has reinforced the need to quantify gene flow from crop to crop. This requires predictive tools which take into account meteorological conditions, canopy structure as well as pollen aerodynamic characteristics. A Lagrangian Stochastic (LS) model, called SMOP-2D (Stochastic Mechanistic model for Pollen dispersion and deposition in 2 Dimensions), is presented. It simulates wind dispersion of pollen by calculating individual pollen trajectories from their emission to their deposition. SMOP-2D was validated using two field experiments where airborne concentration and deposition rate of pollen were measured within and downwind from different sized maize (Zea mays) plots together with micrometeorological measurements. SMOP-2D correctly simulated the shapes of the concentration profiles but generally underestimated the deposition rates in the first 10 m downwind from the source. Potential explanations of this discrepancy are discussed. Incorrect parameterisation of turbulence in the transition from the crop to the surroundings is probably the most likely reason. This demonstrates that LS models for particle transfer need to be coupled with air-flow models under complex terrain conditions.

  14. New developments in fused deposition modeling of ceramics

    DEFF Research Database (Denmark)

    Bellini, Anna; Shor, L.; Guceri, S.I.

    2005-01-01

    Purpose - To shift from rapid prototyping (RP) to agile fabrication by broadening the material selection, e.g. using ceramics, hence improving the properties (e.g. mechanical properties) of fused deposition modeling (FDM) products. Design/methodology/approach - This paper presents the development...

  15. Development of a dust deposition forecast model for a mine tailings impoundment

    Science.gov (United States)

    Stovern, Michael

    Wind erosion, transport and deposition of particulate matter can have significant impacts on the environment. It is observed that about 40% of the global land area and 30% of the earth's population lives in semiarid environments which are especially susceptible to wind erosion and airborne transport of contaminants. With the increased desertification caused by land use changes, anthropogenic activities and projected climate change impacts windblown dust will likely become more significant. An important anthropogenic source of windblown dust in this region is associated with mining operations including tailings impoundments. Tailings are especially susceptible to erosion due to their fine grain composition, lack of vegetative coverage and high height compared to the surrounding topography. This study is focused on emissions, dispersion and deposition of windblown dust from the Iron King mine tailings in Dewey-Humboldt, Arizona, a Superfund site. The tailings impoundment is heavily contaminated with lead and arsenic and is located directly adjacent to the town of Dewey-Humboldt. The study includes in situ field measurements, computational fluid dynamic modeling and the development of a windblown dust deposition forecasting model that predicts deposition patterns of dust originating from the tailings impoundment. Two instrumented eddy flux towers were setup on the tailings impoundment to monitor the aeolian and meteorological conditions. The in situ observations were used in conjunction with a computational fluid dynamic (CFD) model to simulate the transport of windblown dust from the mine tailings to the surrounding region. The CFD model simulations include gaseous plume dispersion to simulate the transport of the fine aerosols, while individual particle transport was used to track the trajectories of larger particles and to monitor their deposition locations. The CFD simulations were used to estimate deposition of tailings dust and identify topographic mechanisms

  16. Modeling the global atmospheric transport and deposition of mercury to the Great Lakes

    Directory of Open Access Journals (Sweden)

    Mark D. Cohen

    2016-07-01

    Full Text Available Abstract Mercury contamination in the Great Lakes continues to have important public health and wildlife ecotoxicology impacts, and atmospheric deposition is a significant ongoing loading pathway. The objective of this study was to estimate the amount and source-attribution for atmospheric mercury deposition to each lake, information needed to prioritize amelioration efforts. A new global, Eulerian version of the HYSPLIT-Hg model was used to simulate the 2005 global atmospheric transport and deposition of mercury to the Great Lakes. In addition to the base case, 10 alternative model configurations were used to examine sensitivity to uncertainties in atmospheric mercury chemistry and surface exchange. A novel atmospheric lifetime analysis was used to characterize fate and transport processes within the model. Model-estimated wet deposition and atmospheric concentrations of gaseous elemental mercury (Hg(0 were generally within ∼10% of measurements in the Great Lakes region. The model overestimated non-Hg(0 concentrations by a factor of 2–3, similar to other modeling studies. Potential reasons for this disagreement include model inaccuracies, differences in atmospheric Hg fractions being compared, and the measurements being biased low. Lake Erie, downwind of significant local/regional emissions sources, was estimated by the model to be the most impacted by direct anthropogenic emissions (58% of the base case total deposition, while Lake Superior, with the fewest upwind local/regional sources, was the least impacted (27%. The U.S. was the largest national contributor, followed by China, contributing 25% and 6%, respectively, on average, for the Great Lakes. The contribution of U.S. direct anthropogenic emissions to total mercury deposition varied between 46% for the base case (with a range of 24–51% over all model configurations for Lake Erie and 11% (range 6–13% for Lake Superior. These results illustrate the importance of atmospheric

  17. Modelling of Dual-Junction Solar Cells including Tunnel Junction

    Directory of Open Access Journals (Sweden)

    Abdelaziz Amine

    2013-01-01

    Full Text Available Monolithically stacked multijunction solar cells based on III–V semiconductors materials are the state-of-art of approach for high efficiency photovoltaic energy conversion, in particular for space applications. The individual subcells of the multi-junction structure are interconnected via tunnel diodes which must be optically transparent and connect the component cells with a minimum electrical resistance. The quality of these diodes determines the output performance of the solar cell. The purpose of this work is to contribute to the investigation of the tunnel electrical resistance of such a multi-junction cell through the analysis of the current-voltage (J-V characteristics under illumination. Our approach is based on an equivalent circuit model of a diode for each subcell. We examine the effect of tunnel resistance on the performance of a multi-junction cell using minimization of the least squares technique.

  18. Human sperm chromatin stabilization: a proposed model including zinc bridges.

    Science.gov (United States)

    Björndahl, Lars; Kvist, Ulrik

    2010-01-01

    The primary focus of this review is to challenge the current concepts on sperm chromatin stability. The observations (i) that zinc depletion at ejaculation allows a rapid and total sperm chromatin decondensation without the addition of exogenous disulfide cleaving agents and (ii) that the human sperm chromatin contains one zinc for every protamine for every turn of the DNA helix suggest an alternative model for sperm chromatin structure may be plausible. An alternative model is therefore proposed, that the human spermatozoon could at ejaculation have a rapidly reversible zinc dependent chromatin stability: Zn(2+) stabilizes the structure and prevents the formation of excess disulfide bridges by a single mechanism, the formation of zinc bridges with protamine thiols of cysteine and potentially imidazole groups of histidine. Extraction of zinc enables two biologically totally different outcomes: immediate decondensation if chromatin fibers are concomitantly induced to repel (e.g. by phosphorylation in the ooplasm); otherwise freed thiols become committed into disulfide bridges creating a superstabilized chromatin. Spermatozoa in the zinc rich prostatic fluid (normally the first expelled ejaculate fraction) represent the physiological situation. Extraction of chromatin zinc can be accomplished by the seminal vesicular fluid. Collection of the ejaculate in one single container causes abnormal contact between spermatozoa and seminal vesicular fluid affecting the sperm chromatin stability. There are men in infertile couples with low content of sperm chromatin zinc due to loss of zinc during ejaculation and liquefaction. Tests for sperm DNA integrity may give false negative results due to decreased access for the assay to the DNA in superstabilized chromatin.

  19. Global model including multistep ionizations in helium plasmas

    Science.gov (United States)

    Oh, Seung-Ju; Lee, Hyo-Chang; Chung, Chin-Wook

    2016-12-01

    Particle and power balance equations including stepwise ionizations are derived and solved in helium plasmas. In the balance equations, two metastable states (21S1 in singlet and 23S1 triplet) are considered and the followings are obtained. The plasma density linearly increases and the electron temperature is relatively in a constant value against the absorbed power. It is also found that the contribution to multi-step ionization with respect to the single-step ionization is in the range of 8%-23%, as the gas pressure increases from 10 mTorr to 100 mTorr. Compared to the results in the argon plasma, there is little variation in the collisional energy loss per electron-ion pair created (ɛc) with absorbed power and gas pressure due to the small collision cross section and higher inelastic collision threshold energy.

  20. Underpotential deposition of metals - Progress and prospects in modelling

    Indian Academy of Sciences (India)

    V Sudha; M V Sangaranarayanan

    2005-05-01

    Underpotential deposition (UPD) of metals is analysed from the perspective of phenomenological and statistical thermodynamic considerations; the parameters influencing the UPD shift have been quantitatively indicated using a general formalism. The manner in which the macroscopic properties pertaining to the depositing ions and solvent dipoles and the nature of the metallic substrate influence the UPD process are highlighted; earlier correlations of the UPD shift with the work function differences are rationalised. Anion-induced phase transitions which manifest as sharp peaks in experimental cyclic voltammograms are discussed using statistical thermodynamic models.

  1. Modelization of a water tank including a PCM module

    Energy Technology Data Exchange (ETDEWEB)

    Ibanez, Manuel [Dept. de Medi Ambient i Ciencies del Sol, Universitat de Lleida, Rovira Roure 191, 25198 Lleida (Spain); Cabeza, Luisa F.; Sole, Cristian; Roca, Joan; Nogues, Miquel [Dept. d' Informatica i Eng. Industrial, Universitat de Lleida, Jaume II 69, 25001 Lleida (Spain)

    2006-08-15

    The reduction of CO{sub 2} emissions is a key component for today's governments. Therefore, implementation of more and more systems with renewable energies is necessary. Solar systems for single family houses or residential buildings need a big water tank that many times is not easy to locate. This paper studies the modelization of a new technology where PCM modules are implemented in domestic hot water tanks to reduce their size without reducing the energy stored. A new TRNSYS component, based in the already existing TYPE 60, was developed, called TYPE 60PCM. After tuning the new component with experimental results, two more experiences were developed to validate the simulation of a water tank with two cylindrical PCM modules using type 60PCM, the cooldown and reheating experiments. Concordance between experimental and simulated data was very good. Since the new TRNSYS component was developed to simulate full solar systems, comparison of experimental results from a pilot plant solar system with simulations were performed, and they confirmed that the type 60PCM is a powerful tool to evaluate the performance of PCM modules in water tanks. (author)

  2. Investigation of effects of varying model inputs on mercury deposition estimates in the Southwest US

    Directory of Open Access Journals (Sweden)

    T. Myers

    2012-04-01

    Full Text Available The Community Multiscale Air Quality (CMAQ model version 4.7.1 was used to simulate mercury wet and dry deposition for a domain covering the contiguous United States (US. The simulations used MM5-derived meteorological input fields and the US Environmental Protection Agency (EPA Clear Air Mercury Rule (CAMR emissions inventory. Using sensitivity simulations with different boundary conditions and tracer simulations, this investigation focuses on the contributions of boundary concentrations to deposited mercury in the Southwest (SW US. Concentrations of oxidized mercury species along the boundaries of the domain, in particular the upper layers of the domain, can make significant contributions to the simulated wet and dry deposition of mercury in the SW US. In order to better understand the contributions of boundary conditions to deposition, inert tracer simulations were conducted to quantify the relative amount of an atmospheric constituent transported across the boundaries of the domain at various altitudes and to quantify the amount that reaches and potentially deposits to the land surface in the SW US. Simulations using alternate sets of boundary concentrations, including estimates from global models (Goddard Earth Observing System-Chem (GEOS-Chem and the Global/Regional Atmospheric Heavy Metals (GRAHM model, and alternate meteorological input fields (for different years are analyzed in this paper. CMAQ dry deposition in the SW US is sensitive to differences in the atmospheric dynamics and atmospheric mercury chemistry parameterizations between the global models used for boundary conditions.

  3. Investigation of effects of varying model inputs on mercury deposition estimates in the Southwest US

    Directory of Open Access Journals (Sweden)

    T. Myers

    2013-01-01

    Full Text Available The Community Multiscale Air Quality (CMAQ model version 4.7.1 was used to simulate mercury wet and dry deposition for a domain covering the continental United States (US. The simulations used MM5-derived meteorological input fields and the US Environmental Protection Agency (EPA Clear Air Mercury Rule (CAMR emissions inventory. Using sensitivity simulations with different boundary conditions and tracer simulations, this investigation focuses on the contributions of boundary concentrations to deposited mercury in the Southwest (SW US. Concentrations of oxidized mercury species along the boundaries of the domain, in particular the upper layers of the domain, can make significant contributions to the simulated wet and dry deposition of mercury in the SW US. In order to better understand the contributions of boundary conditions to deposition, inert tracer simulations were conducted to quantify the relative amount of an atmospheric constituent transported across the boundaries of the domain at various altitudes and to quantify the amount that reaches and potentially deposits to the land surface in the SW US. Simulations using alternate sets of boundary concentrations, including estimates from global models (Goddard Earth Observing System-Chem (GEOS-Chem and the Global/Regional Atmospheric Heavy Metals (GRAHM model, and alternate meteorological input fields (for different years are analyzed in this paper. CMAQ dry deposition in the SW US is sensitive to differences in the atmospheric dynamics and atmospheric mercury chemistry parameterizations between the global models used for boundary conditions.

  4. Geology and Mineralogy of Uranium Deposits from Mount Isa, Australia: Implications for Albitite Uranium Deposit Models

    Directory of Open Access Journals (Sweden)

    Nick Wilson

    2013-06-01

    Full Text Available New geological, bulk chemical and mineralogical (QEMSCAN and FEG-EPMA data are presented for albitite-type uranium deposits of the Mount Isa region of Queensland, Australia. Early albitisation of interbedded metabasalt and metasiltstone predated intense deformation along D2 high strain (mylonite zones. The early sodic alteration paragenetic stage includes albite, riebeckite, aegirine, apatite, zircon and magnetite. This paragenetic stage was overprinted by potassic microveins, containing K-feldspar, biotite, coffinite, brannerite, rare uraninite, ilmenite and rutile. An unusual U-Zr phase has also been identified which exhibits continuous solid solution with a uranium silicate possibly coffinite or nenadkevite. Calcite, epidote and sulphide veinlets represent the latest stage of mineralisation. This transition from ductile deformation and sodic alteration to vein-controlled uranium is mirrored in other examples of the deposit type. The association of uranium with F-rich minerals and a suite of high field strength elements; phosphorous and zirconium is interpreted to be indicative of a magmatic rather than metamorphic or basinal fluid source. No large intrusions of appropriate age outcrop near the deposits; but we suggest a relationship with B- and Be-rich pegmatites and quartz-tourmaline veins.

  5. Modeling Planetary Atmospheric Energy Deposition By Energetic Ions

    Science.gov (United States)

    Parkinson, Christopher; Bougher, Stephen; Gronoff, Guillaume; Barthelemy, Mathieu

    2016-07-01

    The structure, dynamics, chemistry, and evolution of planetary upper atmospheres are in large part determined by the available sources of energy. In addition to the solar EUV flux, the solar wind and solar energetic particle (SEP) events are also important sources. Both of these particle populations can significantly affect an atmosphere, causing atmospheric loss and driving chemical reactions. Attention has been paid to these sources from the standpoint of the radiation environment for humans and electronics, but little work has been done to evaluate their impact on planetary atmospheres. At unmagnetized planets or those with crustal field anomalies, in particular, the solar wind and SEPs of all energies have direct access to the atmosphere and so provide a more substantial energy source than at planets having protective global magnetic fields. Additionally, solar wind and energetic particle fluxes should be more significant for planets orbiting more active stars, such as is the case in the early history of the solar system for paleo-Venus and Mars. Therefore quantification of the atmospheric energy input from the solar wind and SEP events is an important component of our understanding of the processes that control their state and evolution. We have applied a full Lorentz motion particle transport model to study the effects of particle precipitation in the upper atmospheres of Mars and Venus. Such modeling has been previously done for Earth and Mars using a guiding center precipitation model. Currently, this code is only valid for particles with small gyroradii in strong uniform magnetic fields. There is a clear necessity for a Lorentz formulation, hence, a systematic study of the ionization, excitation, and energy deposition has been conducted, including a comparison of the influence relative to other energy sources (namely EUV photons). The result is a robust examination of the influence of energetic ion transport on the Venus and Mars upper atmosphere which

  6. Atmospheric Nitrogen Deposition to the Oceans: Observation- and Model-Based Estimates

    Science.gov (United States)

    Baker, Alex

    2016-04-01

    The reactive nitrogen (Nr) burden of the atmosphere has been increased by a factor of 3-4 by anthropogenic activity since the Industrial Revolution. This has led to large increases in the deposition of nitrate and ammonium to the surface waters of the open ocean, particularly downwind of major human population centres, such as those in North America, Europe and Southeast Asia. In oligotrophic waters, this deposition has the potential to significantly impact marine productivity and the global carbon cycle. Global-scale understanding of N deposition to the oceans is reliant on our ability to produce effective models of reactive nitrogen emission, atmospheric chemistry, transport and deposition (including deposition to the land surface). Over land, N deposition models can be assessed using comparisons to regional monitoring networks of precipitation chemistry (notably those located in North America, Europe and Southeast Asia). No similar datasets exist which would allow observation - model comparisons of wet deposition for the open oceans, because long-term wet deposition records are available for only a handful of remote island sites and rain collection over the open ocean itself is logistically very difficult. In this work we attempt instead to use ~2800 observations of aerosol nitrate and ammonium concentrations, acquired from sampling aboard ships in the period 1995 - 2012, to assess the performance of modelled N deposition fields over the remote ocean. This database is non-uniformly distributed in time and space. We selected three ocean regions (the eastern tropical North Atlantic, the northern Indian Ocean and northwest Pacific) where we considered the density and distribution of observational data is sufficient to provide effective comparison to the model ensemble. Our presentation will focus on the eastern tropical North Atlantic region, which has the best data coverage of the three. We will compare dry deposition fluxes calculated from the observed nitrate

  7. Experimental Study of Aerosol Deposition in a Realistic Lung Model

    Directory of Open Access Journals (Sweden)

    František LÍZAL

    2010-12-01

    Full Text Available The inhalation route for administration of medicaments is becoming more and more popular in recent years. The reason is non-invasiveness of the method and instantaneous absorption of drugs to the blood circulation. It is necessary to deliver exact amount of drug to the specific segment because of occurrence of diverse diseases in different segments of lungs. The aim of our work is to contribute to better understanding of transport and deposition of aerosolized drugs in lungs and hence to more effective treatment of respiratory diseases due to the targeted drug delivery. We provided measurements of aerosol deposition in segmented realistic model of lungs without a mouth cavity. Monodisperse particles marked with fluorescein were supplied to the model. The model was then disassembled to segments and each segment was rinsed with isopropanol, whereby fluorescent samples were created. Each sample was analysed by fluorometer and an amount of aerosol deposited in the segment was calculated. Experiences obtained by this study were used for creation of a new model with the mouth cavity. This model will be used for future studies with porous and fiber aerosols.

  8. Deposit model for heavy-mineral sands in coastal environments: Chapter L in Mineral deposit models for resource assessment

    Science.gov (United States)

    Van Gosen, Bradley S.; Fey, David L.; Shah, Anjana K.; Verplanck, Philip L.; Hoefen, Todd M.

    2014-01-01

    This report provides a descriptive model of heavy-mineral sands, which are sedimentary deposits of dense minerals that accumulate with sand, silt, and clay in coastal environments, locally forming economic concentrations of the heavy minerals. This deposit type is the main source of titanium feedstock for the titanium dioxide (TiO2) pigments industry, through recovery of the minerals ilmenite (Fe2+TiO3), rutile (TiO2), and leucoxene (an alteration product of ilmenite). Heavy-mineral sands are also the principal source of zircon (ZrSiO4) and its zirconium oxide; zircon is often recovered as a coproduct. Other heavy minerals produced as coproducts from some deposits are sillimanite/kyanite, staurolite, monazite, and garnet. Monazite [(Ce,La,Nd,Th)PO4] is a source of rare earth elements as well as thorium, which is used in thorium-based nuclear power under development in India and elsewhere.

  9. Modeling dry deposition of reactive nitrogen in China with RAMS-CMAQ

    Science.gov (United States)

    Han, Xiao; Zhang, Meigen; Skorokhod, Andrei; Kou, Xingxia

    2017-10-01

    China has the world highest production of reactive nitrogen (Nr), and the Nr consumption increased sharply during the last decade. However, the potential environmental influence of dry nitrogen (N) deposition in China remains uncertain due to that the long-term measurement or remote sensing of various N species are difficult. This requires a better understanding of dry N deposition over China in its various forms and including magnitude and distribution features. Thus, the air quality modeling system RAMS-CMAQ was applied to simulate dry deposition of Nr over China from 2010 to 2014. The model results were then analyzed to investigate the long-term spatial and temporal distributions of major inorganic nitrogen (N) components (10 species) and selected organic N components (5 species). Comparisons between modeled and observed deposition rates and surface mass concentrations showed generally good agreement. Model results indicated a total dry N deposition budget of 9.31 Tg N yr-1 in China, including 4.29 Tg N yr-1 as NOy and 4.43 Tg N yr-1 as NH3. NOy was the main component of dry N deposition in the Beijing-Tianjin-Hebei area (0.31 Tg N yr-1), the Yangtze River Delta (0.29 Tg N yr-1), and the Pearl River Delta (0.09 Tg N yr-1), where the major megacity clusters of China are located. NH3 was the main component of dry N deposition in Shandong province (0.24 Tg N yr-1), Northeast China (0.46 Tg N yr-1), the Sichuan Basin (0.48 Tg N yr-1), and central China (0.95 Tg N yr-1), where the major agricultural regions are located. The highest values of the deposition flux for NH3 occurred in Shandong province (19.40 kg N ha-1 yr-1) and Beijing-Tianjin-Hebei (17.20 kg N ha-1 yr-1). The seasonal variation of total dry N deposition was obvious in the east part of China, and was higher in July and lower in January. The spatio-temporal variations and major sources of dry N deposition were strongly heterogeneous, implying that the comprehensive pollution control strategies should be

  10. A depositional model for organic-rich Duvernay Formation mudstones

    Science.gov (United States)

    Knapp, Levi J.; McMillan, Julia M.; Harris, Nicholas B.

    2017-01-01

    The Upper Devonian Duvernay Formation of western Canada is an organic-rich shale formation now targeted as a hydrocarbon reservoir. We present a detailed sedimentological analysis of the Duvernay Formation in order to better understand organic-rich mudstone depositional processes and conditions and to characterize the vertical and lateral heterogeneity of mudstone lithofacies that affect petrophysical and geomechanical rock properties. Organic-rich mudstone facies of the Duvernay Formation were deposited in a dynamic depositional environment by a variety of sediment transport mechanisms, including suspension settling, turbidity currents, and bottom water currents in variably oxygenated bottom waters. Suspension settling dominated in distal relatively deep areas of the basin, but evidence for weak turbidity currents and bottom water currents was observed in the form of graded beds and thin grain-supported siltstone laminae. Organic enrichment primarily occurred in distal areas as a result of bottom water anoxia and low depositional rates of inorganic sediment. In deep water locations near platform margins, alternating silty-sandy contourite beds and organic-rich mudstone beds are present, the former interpreted to have been deposited and reworked by bottom water currents flowing parallel to slope. In shallower, more oxygenated settings, mudstone lithologies vary from calcareous to argillaceous. These sediments were deposited from suspension settling, turbidity currents, and bottom water currents, although primary sedimentary structures are often obscured by extensive bioturbation. Locally, organic enrichment in dysoxic rather than anoxic bottom waters was driven by a slightly increased sedimentation rate and possibly also by aggregation of sedimentary particles in the water column due to interaction between organic matter and clay minerals. Large variations observed in sediment composition, from siliceous to calcareous to argillaceous, reflect multiple biogenic

  11. Fused Deposition Modeling 3D Printing for (Bio)analytical Device Fabrication : Procedures, Materials, and Applications

    NARCIS (Netherlands)

    Salentijn, Gert Ij; Oomen, Pieter E; Grajewski, Maciej; Verpoorte, Elisabeth

    2017-01-01

    In this work, the use of fused deposition modeling (FDM) in a (bio)analytical/lab-on-a-chip research laboratory is described. First, the specifications of this 3D printing method that are important for the fabrication of (micro)devices were characterized for a benchtop FDM 3D printer. These include

  12. A deposit model for magmatic iron-titanium-oxide deposits related to Proterozoic massif anorthosite plutonic suites: Chapter K in Mineral Deposit Models for Resource Assessment

    Science.gov (United States)

    Woodruff, Laurel G.; Nicholson, Suzanne W.; Fey, David L.

    2013-01-01

    This descriptive model for magmatic iron-titanium-oxide (Fe-Ti-oxide) deposits hosted by Proterozoic age massif-type anorthosite and related rock types presents their geological, mineralogical, geochemical, and geoenvironmental attributes. Although these Proterozoic rocks are found worldwide, the majority of known deposits are found within exposed rocks of the Grenville Province, stretching from southwestern United States through eastern Canada; its extension into Norway is termed the Rogaland Anorthosite Province. This type of Fe-Ti-oxide deposit dominated by ilmenite rarely contains more than 300 million tons of ore, with between 10- to 45-percent titanium dioxide (TiO2), 32- to 45-percent iron oxide (FeO), and less than 0.2-percent vanadium (V).

  13. Sensitivity study of the wet deposition schemes in the modelling of the Fukushima accident.

    Science.gov (United States)

    Quérel, Arnaud; Quélo, Denis; Roustan, Yelva; Mathieu, Anne; Kajino, Mizuo; Sekiyama, Thomas; Adachi, Kouji; Didier, Damien; Igarashi, Yasuhito

    2016-04-01

    The Fukushima-Daiichi release of radioactivity is a relevant event to study the atmospheric dispersion modelling of radionuclides. Actually, the atmospheric deposition onto the ground may be studied through the map of measured Cs-137 established consecutively to the accident. The limits of detection were low enough to make the measurements possible as far as 250km from the nuclear power plant. This large scale deposition has been modelled with the Eulerian model ldX. However, several weeks of emissions in multiple weather conditions make it a real challenge. Besides, these measurements are accumulated deposition of Cs-137 over the whole period and do not inform of deposition mechanisms involved: in-cloud, below-cloud, dry deposition. A comprehensive sensitivity analysis is performed in order to understand wet deposition mechanisms. It has been shown in a previous study (Quérel et al, 2016) that the choice of the wet deposition scheme has a strong impact on the assessment of the deposition patterns. Nevertheless, a "best" scheme could not be highlighted as it depends on the selected criteria: the ranking differs according to the statistical indicators considered (correlation, figure of merit in space and factor 2). A possibility to explain the difficulty to discriminate between several schemes was the uncertainties in the modelling, resulting from the meteorological data for instance. Since the move of the plume is not properly modelled, the deposition processes are applied with an inaccurate activity in the air. In the framework of the SAKURA project, an MRI-IRSN collaboration, new meteorological fields at higher resolution (Sekiyama et al., 2013) were provided and allows to reconsider the previous study. An updated study including these new meteorology data is presented. In addition, a focus on several releases causing deposition in located areas during known period was done. This helps to better understand the mechanisms of deposition involved following the

  14. Evaluation of atmospheric nitrogen deposition model performance in the context of U.S. critical load assessments

    Science.gov (United States)

    Williams, Jason J.; Chung, Serena H.; Johansen, Anne M.; Lamb, Brian K.; Vaughan, Joseph K.; Beutel, Marc

    2017-02-01

    Air quality models are widely used to estimate pollutant deposition rates and thereby calculate critical loads and critical load exceedances (model deposition > critical load). However, model operational performance is not always quantified specifically to inform these applications. We developed a performance assessment approach designed to inform critical load and exceedance calculations, and applied it to the Pacific Northwest region of the U.S. We quantified wet inorganic N deposition performance of several widely-used air quality models, including five different Community Multiscale Air Quality Model (CMAQ) simulations, the Tdep model, and 'PRISM x NTN' model. Modeled wet inorganic N deposition estimates were compared to wet inorganic N deposition measurements at 16 National Trends Network (NTN) monitoring sites, and to annual bulk inorganic N deposition measurements at Mount Rainier National Park. Model bias (model - observed) and error (|model - observed|) were expressed as a percentage of regional critical load values for diatoms and lichens. This novel approach demonstrated that wet inorganic N deposition bias in the Pacific Northwest approached or exceeded 100% of regional diatom and lichen critical load values at several individual monitoring sites, and approached or exceeded 50% of critical loads when averaged regionally. Even models that adjusted deposition estimates based on deposition measurements to reduce bias or that spatially-interpolated measurement data, had bias that approached or exceeded critical loads at some locations. While wet inorganic N deposition model bias is only one source of uncertainty that can affect critical load and exceedance calculations, results demonstrate expressing bias as a percentage of critical loads at a spatial scale consistent with calculations may be a useful exercise for those performing calculations. It may help decide if model performance is adequate for a particular calculation, help assess confidence in

  15. Behaviour of major, minor and trace elements (including REEs during kaolinization processes at Zonouz deposit, northeast of Marand, East Azarbaidjan province

    Directory of Open Access Journals (Sweden)

    Vahideh Alipour

    2011-11-01

    Full Text Available The Zonouz kaolin deposit is located ~15 km northeast of Marand, East-Azarbaidjan province. Based on physical features in field investigations, such as color, five distinct kaolin types including (1 white, (2 lemon, (3 gray, (4 brown, and (5 yellow are distinguished in the deposit. Field evidence and petrographic studies indicate that the deposit is genetically close to trachy-andesite rocks. According to mineralogical data, the deposit contains quartz, kaolinite, montmorillonite, calcite, pyrophyllite, chlorite, muscovite-illite, dolomite, hematite, and anatase minerals. Geochemical data indicate that function of alteration processes on trachy-andesite rocks during development of Zonouz ore deposit was accompanied by leaching of elements such as Al, Na, K, Rb, Ba, V, Hf, Cu, Zr, Tm, Yb, and Lu, enrichment of elements such as U, Nb, and Ta, and leaching-fixation of elements such as Si, Fe, Ca, Mg, Ti, Mn, P, Cs, Sr, Th, Co, Cr, Ni, Y, Ga, LREE, Tb, Dy, Ho, and Er. Incorporation of obtained results from mineralogical and geochemical studies show that physico-chemical conditions of alteration environment, the relative stability of primary minerals, surface adsorption, preferential sorption by metallic oxides, existing of organic matters, scavenging and concentration processes, and fixation in neomorphic mineralogical phases played important role in distribution of elements in the deposit. Geochemical studies show that development of the deposit is relative to two types of processes, (1 hypogene and (2 supergene. The distribution pattern of REEs indicates that differentiation degree of LREEs from HREEs in supergene kaolins is more than hypogene kaolins. Geochemical studies indicate that minerals such as Mn-oxides, zircon, anatase, hematite, cerianite, and secondary phosphates (monazite, rhabdophane, churchite, and zenotime are the potential hosts for rare earth elements in this deposit.

  16. Magmatic sulfide-rich nickel-copper deposits related to picrite and (or) tholeiitic basalt dike-sill complexes-A preliminary deposit model

    Science.gov (United States)

    Schulz, Klaus J.; Chandler, Val W.; Nicholson, Suzanne W.; Piatak, Nadine M.; Seal, Robert R., II; Woodruff, Laurel G.; Zientek, Michael L.

    2010-01-01

    Magmatic sulfide deposits containing nickel (Ni) and copper (Cu), with or without (?) platinum-group elements (PGEs), account for approximately 60 percent of the world's Ni production and are active exploration targets in the United States and elsewhere. On the basis of their principal metal production, magmatic sulfide deposits in mafic rocks can be divided into two major types: those that are sulfide-rich, typically with 10 to 90 percent sulfide minerals, and have economic value primarily because of their Ni and Cu contents; and those that are sulfide-poor, typically with 0.5 to 5 percent sulfide minerals, and are exploited principally for PGE. Because the purpose of this deposit model is to facilitate the assessment for undiscovered, potentially economic magmatic Ni-Cu?PGE sulfide deposits in the United States, it addresses only those deposits of economic significance that are likely to occur in the United States on the basis of known geology. Thus, this model focuses on deposits hosted by small- to medium-sized mafic and (or) ultramafic dikes and sills that are related to picrite and tholeiitic basalt magmatic systems generally emplaced in continental settings as a component of large igneous provinces (LIPs). World-class examples (those containing greater than 1 million tons Ni) of this deposit type include deposits at Noril'sk-Talnakh (Russia), Jinchuan (China), Pechenga (Russia), Voisey's Bay (Canada), and Kabanga (Tanzania). In the United States, this deposit type is represented by the Eagle deposit in northern Michigan, currently under development by Kennecott Minerals.

  17. Association between Cerebral Amyloid Deposition and Clinical Factors Including Cognitive Function in Geriatric Depression: Pilot Study Using Amyloid Positron Emission Tomography

    Science.gov (United States)

    Kim, Hye-Geum; Kong, Eun-Jung; Cheon, Eun-Jin; Kim, Hae-Won; Koo, Bon-Hoon

    2016-01-01

    The purpose of this study was to explore the relationship between cerebral amyloid deposition and overall clinical factors including cognitive functions in geriatric depression by using 18F-florbetaben positron emission tomography. Thirteen subjects aged over 60 years who had a history of major depressive disorder and also had subjective memory complaint were included. Of all subjects, 3 subjects judged as amyloid positive, and the others judged as amyloid negative. Their memory, visuospatial functions and attention abilities were negatively correlated with amyloid deposition in specific brain regions, but their language and recognition abilities were not correlated with any region. The amyloid deposition of the whole brain region was significantly negatively correlated with immediate memory. PMID:27776391

  18. Accuracy of cuticular resistance parameterizations in ammonia dry deposition models

    Science.gov (United States)

    Schrader, Frederik; Brümmer, Christian; Richter, Undine; Fléchard, Chris; Wichink Kruit, Roy; Erisman, Jan Willem

    2016-04-01

    Accurate representation of total reactive nitrogen (Nr) exchange between ecosystems and the atmosphere is a crucial part of modern air quality models. However, bi-directional exchange of ammonia (NH3), the dominant Nr species in agricultural landscapes, still poses a major source of uncertainty in these models, where especially the treatment of non-stomatal pathways (e.g. exchange with wet leaf surfaces or the ground layer) can be challenging. While complex dynamic leaf surface chemistry models have been shown to successfully reproduce measured ammonia fluxes on the field scale, computational restraints and the lack of necessary input data have so far limited their application in larger scale simulations. A variety of different approaches to modelling dry deposition to leaf surfaces with simplified steady-state parameterizations have therefore arisen in the recent literature. We present a performance assessment of selected cuticular resistance parameterizations by comparing them with ammonia deposition measurements by means of eddy covariance (EC) and the aerodynamic gradient method (AGM) at a number of semi-natural and grassland sites in Europe. First results indicate that using a state-of-the-art uni-directional approach tends to overestimate and using a bi-directional cuticular compensation point approach tends to underestimate cuticular resistance in some cases, consequently leading to systematic errors in the resulting flux estimates. Using the uni-directional model, situations where low ratios of total atmospheric acids to NH3 concentration occur lead to fairly high minimum cuticular resistances, limiting predicted downward fluxes in conditions usually favouring deposition. On the other hand, the bi-directional model used here features a seasonal cycle of external leaf surface emission potentials that can lead to comparably low effective resistance estimates under warm and wet conditions, when in practice an expected increase in the compensation point due to

  19. Regional deposition of thoron progeny in models of the human tracheobronchial tree

    Energy Technology Data Exchange (ETDEWEB)

    Smith, S.M.; Cheng, Yung-Sung; Yeh, Hsu-Chi

    1995-12-01

    Models of the human tracheobronchial tree have been used to determine total and regional aerosol deposition of inhaled particles. Particle sizes measured in these studies have all been > 40 nm in diameter. The deposition of aerosols < 40 nm in diameter has not been measured. Particles in the ultrafine aerosol size range include some combustion aerosols and indoor radon progeny. Also, the influence of reduced lung size and airflow rates on particle deposition in young children has not been determined. With their smaller lung size and smaller minute volumes, children may be at increased risk from ultrafine pollutants. In order to accurately determine dose of inhaled aerosols, the effects of particle size, minute volume, and age at exposure must be quantified. The purpose of this study was to determine the deposition efficiency of ultrafine aerosols smaller than 40 nm in diameter in models of the human tracheobronchia tree. This study demonstrates that the deposition efficiency of aerosols in the model of the child`s tracheobronchial tree may be slightly higher than in the adult models.

  20. Comparison of methods for evaluation of aerosol deposition in the model of human lungs

    Directory of Open Access Journals (Sweden)

    Belka Miloslav

    2014-03-01

    Full Text Available It seems to be very convenient to receive a medicine by inhalation instead of injection. Unfortunately transport of particles and targeted delivery of a drug in human respiratory airways is very complicated task. Therefore we carried out experiments and tested different methods for evaluation of particle deposition in a model of human lungs. The model included respiratory airways from oral cavity to 7th generation of branching. Particles were dispersed by TSI Small-scale Powder Disperser 3433 and delivered to the model. The model was disassembled into segments after the deposition of the particles and local deposition was measured. Two methods were used to analyse the samples, fluorescence spectroscopy and optical microscopy. The first method was based on measuring the intensity of luminescence, which represented the particle deposition. The second method used the optical microscope with phase-contrast objective. A dispersion of isopropanol and particles was filtrated using a vacuum filtration unit, a filter was placed on glass slide and made transparent. The particles on the filter were counted manually and the deposition was calculated afterwards. The results of the methods were compared and both methods proved to be useful.

  1. High-resolution modelling of air pollution and deposition over the Netherlands with plume, grid and hybrid modelling

    Science.gov (United States)

    van der Swaluw, Eric; de Vries, Wilco; Sauter, Ferd; Aben, Jan; Velders, Guus; van Pul, Addo

    2017-04-01

    We present high-resolution model results of air pollution and deposition over the Netherlands with three models, the Eulerian grid model LOTOS-EUROS, the Gaussian plume model OPS and the hybrid model LEO. The latter combines results from LOTOS-EUROS and OPS using source apportionment techniques. The hybrid modelling combines the efficiency of calculating at high-resolution around sources with the plume model, and the accuracy of taking into account long-range transport and chemistry with a Eulerian grid model. We compare calculations from all three models with measurements for the period 2009-2011 for ammonia, NOx, secondary inorganic aerosols, particulate matter (PM10) and wet deposition of acidifying and eutrophying components (ammonium, nitrate and sulfate). It is found that concentrations of ammonia, NOx and the wet deposition components are best represented by the Gaussian plume model OPS. Secondary inorganic aerosols are best modelled with the LOTOS-EUROS model, and PM10 is best described with the LEO model. Subsequently for the year 2011, PM10 concentration and reduced nitrogen dry deposition maps are presented with respectively the OPS and LEO model. Using the LEO calculations for the production of the PM10 map, yields an overall better result than using the OPS calculations for this application. This is mainly due to the fact that the spatial distribution of the secondary inorganic aerosols is better described in the LEO model than in OPS, and because more (natural induced) PM10 sources are included in LEO, i.e. the contribution to PM10 of sea-salt and wind-blown dust as calculated by the LOTOS-EUROS model. Finally, dry deposition maps of reduced nitrogen over the Netherlands are compared as calculated by respectively the OPS and LEO model. The differences between both models are overall small (±100 mol/ha) with respect to the peak values observed in the maps (>2000 mol/ha). This is due to the fact that the contribution of dry deposition of reduced

  2. Quantification of collagen and proteoglycan deposition in a murine model of airway remodelling

    Directory of Open Access Journals (Sweden)

    Laurent Geoffrey J

    2005-04-01

    Full Text Available Abstract Background Sub-epithelial extracellular matrix deposition is a feature of asthmatic airway remodelling associated with severity of disease, decline in lung function and airway hyperresponsiveness. The composition of, and mechanisms leading to, this increase in subepithelial matrix, and its importance in the pathogenesis of asthma are unclear. This is partly due to limitations of the current models and techniques to assess airway remodelling. Methods In this study we used a modified murine model of ovalbumin sensitisation and challenge to reproduce features of airway remodelling, including a sustained increase in sub-epithelial matrix deposition. In addition, we have established techniques to accurately and specifically measure changes in sub-epithelial matrix deposition, using histochemical and immunohistochemical staining in conjunction with digital image analysis, and applied these to the measurement of collagen and proteoglycans. Results 24 hours after final ovalbumin challenge, changes similar to those associated with acute asthma were observed, including inflammatory cell infiltration, epithelial cell shedding and goblet cell hyperplasia. Effects were restricted to the bronchial and peribronchial regions with parenchymal lung of ovalbumin sensitised and challenged mice appearing histologically normal. By 12 days, the acute inflammatory changes had largely resolved and increased sub-epithelial staining for collagen and proteoglycans was observed. Quantitative digital image analysis confirmed the increased deposition of sub-epithelial collagen (33%, p Conclusion This animal model reproduces many of the features of airway remodelling found in asthma and allows accurate and reproducible measurement of sub-epithelial extra-cellular matrix deposition. As far as we are aware, this is the first demonstration of increased sub-epithelial proteoglycan deposition in an animal model of airway remodelling. This model will be useful for

  3. Geological modelling of mineral deposits for prediction in mining

    Science.gov (United States)

    Sides, E. J.

    Accurate prediction of the shape, location, size and properties of the solid rock materials to be extracted during mining is essential for reliable technical and financial planning. This is achieved through geological modelling of the three-dimensional (3D) shape and properties of the materials present in mineral deposits, and the presentation of results in a form which is accessible to mine planning engineers. In recent years the application of interactive graphics software, offering 3D database handling, modelling and visualisation, has greatly enhanced the options available for predicting the subsurface limits and characteristics of mineral deposits. A review of conventional 3D geological interpretation methods, and the model struc- tures and modelling methods used in reserve estimation and mine planning software packages, illustrates the importance of such approaches in the modern mining industry. Despite the widespread introduction and acceptance of computer hardware and software in mining applications, in recent years, there has been little fundamental change in the way in which geology is used in orebody modelling for predictive purposes. Selected areas of current research, aimed at tackling issues such as the use of orientation data, quantification of morphological differences, incorporation of geological age relationships, multi-resolution models and the application of virtual reality hardware and software, are discussed.

  4. A model for underpotential deposition in the presence of anions

    Science.gov (United States)

    Giménez, M. C.; Ramirez-Pastor, A. J.; Leiva, E. P. M.

    2010-05-01

    A simple model to study the effect of on top coadsorption of anions in underpotential deposition is formulated. It considers a lattice-gas model with pair potential interactions between nearest neighbors. As test system, the electrodeposition of silver on gold is studied by means of grand canonical Monte Carlo simulations. The influence of anions on the adsorption isotherms is analyzed. It is found that as the interaction between silver atoms and anions increases, the monolayer adsorbs at more negative chemical potentials. For large interactions between silver atoms and anions, a expanded structure occurs for the silver monolayer.

  5. Catalytic conversion of lignin pyrolysis model compound- guaiacol and its kinetic model including coke formation

    Science.gov (United States)

    Zhang, Huiyan; Wang, Yun; Shao, Shanshan; Xiao, Rui

    2016-11-01

    Lignin is the most difficult to be converted and most easy coking component in biomass catalytic pyrolysis to high-value liquid fuels and chemicals. Catalytic conversion of guaiacol as a lignin model compound was conducted in a fixed-bed reactor over ZSM-5 to investigate its conversion and coking behaviors. The effects of temperature, weight hourly space velocity (WHSV) and partial pressure on product distribution were studied. The results show the maximum aromatic carbon yield of 28.55% was obtained at temperature of 650 °C, WHSV of 8 h‑1 and partial pressure of 2.38 kPa, while the coke carbon yield was 19.55%. The reaction pathway was speculated to be removing methoxy group to form phenols with further aromatization to form aromatics. The amount of coke increased with increasing reaction time. The surface area and acidity of catalysts declined as coke formed on the acid sites and blocked the pore channels, which led to the decrease of aromatic yields. Finally, a kinetic model of guaiacol catalytic conversion considering coke deposition was built based on the above reaction pathway to properly predict product distribution. The experimental and model predicting data agreed well. The correlation coefficient of all equations were all higher than 0.90.

  6. Integrated assessment of acid deposition impacts using reduced-form modeling. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, R.; Small, M.J.

    1996-05-01

    Emissions of sulfates and other acidic pollutants from anthropogenic sources result in the deposition of these acidic pollutants on the earth`s surface, downwind of the source. These pollutants reach surface waters, including streams and lakes, and acidify them, resulting in a change in the chemical composition of the surface water. Sometimes the water chemistry is sufficiently altered so that the lake can no longer support aquatic life. This document traces the efforts by many researchers to understand and quantify the effect of acid deposition on the water chemistry of populations of lakes, in particular the improvements to the MAGIC (Model of Acidification of Groundwater in Catchments) modeling effort, and describes its reduced-form representation in a decision and uncertainty analysis tool. Previous reduced-form approximations to the MAGIC model are discussed in detail, and their drawbacks are highlighted. An improved reduced-form model for acid neutralizing capacity is presented, which incorporates long-term depletion of the watershed acid neutralization fraction. In addition, improved fish biota models are incorporated in the integrated assessment model, which includes reduced-form models for other physical and chemical processes of acid deposition, as well as the resulting socio-economic and health related effects. The new reduced-form lake chemistry and fish biota models are applied to the Adirondacks region of New York.

  7. Particle deposition in a child respiratory tract model: in vivo regional deposition of fine and ultrafine aerosols in baboons.

    Science.gov (United States)

    Albuquerque-Silva, Iolanda; Vecellio, Laurent; Durand, Marc; Avet, John; Le Pennec, Déborah; de Monte, Michèle; Montharu, Jérôme; Diot, Patrice; Cottier, Michèle; Dubois, Francis; Pourchez, Jérémie

    2014-01-01

    To relate exposure to adverse health effects, it is necessary to know where particles in the submicron range deposit in the respiratory tract. The possibly higher vulnerability of children requires specific inhalation studies. However, radio-aerosol deposition experiments involving children are rare because of ethical restrictions related to radiation exposure. Thus, an in vivo study was conducted using three baboons as a child respiratory tract model to assess regional deposition patterns (thoracic region vs. extrathoracic region) of radioactive polydisperse aerosols ([d16-d84], equal to [0.15 µm-0.5 µm], [0.25 µm-1 µm], or [1 µm-9 µm]). Results clearly demonstrated that aerosol deposition within the thoracic region and the extrathoraic region varied substantially according to particle size. High deposition in the extrathoracic region was observed for the [1 µm-9 µm] aerosol (72% ± 17%). The [0.15 µm-0.5 µm] aerosol was associated almost exclusively with thoracic region deposition (84% ± 4%). Airborne particles in the range of [0.25 µm-1 µm] showed an intermediate deposition pattern, with 49% ± 8% in the extrathoracic region and 51% ± 8% in the thoracic region. Finally, comparison of baboon and human inhalation experiments for the [1 µm-9 µm] aerosol showed similar regional deposition, leading to the conclusion that regional deposition is species-independent for this airborne particle sizes.

  8. Particle deposition in a child respiratory tract model: in vivo regional deposition of fine and ultrafine aerosols in baboons.

    Directory of Open Access Journals (Sweden)

    Iolanda Albuquerque-Silva

    Full Text Available To relate exposure to adverse health effects, it is necessary to know where particles in the submicron range deposit in the respiratory tract. The possibly higher vulnerability of children requires specific inhalation studies. However, radio-aerosol deposition experiments involving children are rare because of ethical restrictions related to radiation exposure. Thus, an in vivo study was conducted using three baboons as a child respiratory tract model to assess regional deposition patterns (thoracic region vs. extrathoracic region of radioactive polydisperse aerosols ([d16-d84], equal to [0.15 µm-0.5 µm], [0.25 µm-1 µm], or [1 µm-9 µm]. Results clearly demonstrated that aerosol deposition within the thoracic region and the extrathoraic region varied substantially according to particle size. High deposition in the extrathoracic region was observed for the [1 µm-9 µm] aerosol (72% ± 17%. The [0.15 µm-0.5 µm] aerosol was associated almost exclusively with thoracic region deposition (84% ± 4%. Airborne particles in the range of [0.25 µm-1 µm] showed an intermediate deposition pattern, with 49% ± 8% in the extrathoracic region and 51% ± 8% in the thoracic region. Finally, comparison of baboon and human inhalation experiments for the [1 µm-9 µm] aerosol showed similar regional deposition, leading to the conclusion that regional deposition is species-independent for this airborne particle sizes.

  9. 3D modelling of transport, deposition and resuspension of highway deposited sediments in wet detention ponds.

    Science.gov (United States)

    Bentzen, T R

    2010-01-01

    The paper presents results from an experimental and numerical study of flows and transport of primarily particle bound pollutants in highway wet detention ponds. The study presented here is part of a general investigation on road runoff and pollution in respect to wet detention ponds. The objective is to evaluate the quality of long term simulation based on historical rains series of the pollutant discharges from roads and highways. A three-dimensional hydrodynamic and mud transport model is used for the investigation. The transport model has been calibrated and validated on e.g. experiments in a 30 m long concrete channel with width of 0.8 m and a water depth of approximately 0.8 m and in circular flume experiments in order to reproduce near-bed specific processes such as resuspension and consolidation. With a fairly good agreement with measurements, modelling of hydrodynamics, transport of dissolved pollutants and particles in wet detention ponds is possible with application of a three dimensional RANS model and the advection/dispersion equation taken physical phenomena like wind, waves, deposition, erosion and consolidation of the bottom sediment into account.

  10. Challenges of including nitrogen effects on decomposition in earth system models

    Science.gov (United States)

    Hobbie, S. E.

    2011-12-01

    Despite the importance of litter decomposition for ecosystem fertility and carbon balance, key uncertainties remain about how this fundamental process is affected by nitrogen (N) availability. Nevertheless, resolving such uncertainties is critical for mechanistic inclusion of such processes in earth system models, towards predicting the ecosystem consequences of increased anthropogenic reactive N. Towards that end, we have conducted a series of experiments examining nitrogen effects on litter decomposition. We found that both substrate N and externally supplied N (regardless of form) accelerated the initial decomposition rate. Faster initial decomposition rates were linked to the higher activity of carbohydrate-degrading enzymes associated with externally supplied N and the greater relative abundances of Gram negative and Gram positive bacteria associated with green leaves and externally supplied organic N (assessed using phospholipid fatty acid analysis, PLFA). By contrast, later in decomposition, externally supplied N slowed decomposition, increasing the fraction of slowly decomposing litter and reducing lignin-degrading enzyme activity and relative abundances of Gram negative and Gram positive bacteria. Our results suggest that elevated atmospheric N deposition may have contrasting effects on the dynamics of different soil carbon pools, decreasing mean residence times of active fractions comprising very fresh litter, while increasing those of more slowly decomposing fractions including more processed litter. Incorporating these contrasting effects of N on decomposition processes into models is complicated by lingering uncertainties about how these effects generalize across ecosystems and substrates.

  11. The Dielectric Breakdown Model applied to explain various morphologies of deposited metallic structures in thin gap metal electro-deposition

    Directory of Open Access Journals (Sweden)

    Aditya Chowdhury

    2015-06-01

    Full Text Available The phenomenon of metal electro-deposition in thin-gap geometry leads to very interesting and diverse two dimensional morphologies. This varies from dense ramified growth to thin dendritic projections. In this paper, we have proposed a stochastic model that incorporates such diversity. We carried out thin-gap electro-deposition of Copper and Zinc with varying electrolytic concentrations. A well known model, that until this work was used to explain dielectric breakdown patterns, was employed to explain the variation in deposition morphology with concentration. The sole parameter in the model was varied and the numerically obtained patterns was seen to correlate well with those obtained from electro-deposition. A linear relationship between the parameter and molar concentration was established. The established relationship was then analysed and interpreted.

  12. Simulation of nitrogen deposition in the North China Plain by the FRAME model

    Directory of Open Access Journals (Sweden)

    Y. Zhang

    2011-11-01

    Full Text Available Simulation of atmospheric nitrogen (N deposition in the North China Plain (NCP at high resolution, 5 × 5 km2, was conducted for the first time by the Fine Resolution Atmospheric Multi-pollutant Exchange (FRAME model. The total N deposition budget was 1481 Gg in this region, with 77 % from reduced N and 23 % from oxidized N, and the annual deposition rate (47 kg N ha−1 was much higher than previously reported values for other parts of the world such as the UK (13 kg N ha−1, Poland (7.3 kg N ha−1 and EU27 (8.6 kg N ha−1. The exported N component (1981 Gg was much higher than the imported N component (584 Gg, suggesting that the NCP is an important net emission source of N pollutants. Contributions of N deposition budgets from the seven provinces in this region were proportional to their area ratios. The calculated spatial distributions of N deposition displayed high rates of reduced N deposition in the south and of oxidized N deposition in the eastern part. The N deposition exceeded an upper limit of 30 kg N ha−1 for natural ecosystems over more than 90 % of the region, resulting in terrestrial ecosystem deterioration, impaired air quality and coastal eutrophication not only in the NCP itself but also in surrounding areas including the Bohai Sea and the Yellow Sea.

  13. BALANCED SCORECARDS EVALUATION MODEL THAT INCLUDES ELEMENTS OF ENVIRONMENTAL MANAGEMENT SYSTEM USING AHP MODEL

    Directory of Open Access Journals (Sweden)

    Jelena Jovanović

    2010-03-01

    Full Text Available The research is oriented on improvement of environmental management system (EMS using BSC (Balanced Scorecard model that presents strategic model of measurem ents and improvement of organisational performance. The research will present approach of objectives and environmental management me trics involvement (proposed by literature review in conventional BSC in "Ad Barska plovi dba" organisation. Further we will test creation of ECO-BSC model based on business activities of non-profit organisations in order to improve envir onmental management system in parallel with other systems of management. Using this approach we may obtain 4 models of BSC that includ es elements of environmen tal management system for AD "Barska plovidba". Taking into acc ount that implementation and evaluation need long period of time in AD "Barska plovidba", the final choice will be based on 14598 (Information technology - Software product evaluation and ISO 9126 (Software engineering - Product quality using AHP method. Those standards are usually used for evaluation of quality software product and computer programs that serve in organisation as support and factors for development. So, AHP model will be bas ed on evolution criteria based on suggestion of ISO 9126 standards and types of evaluation from two evaluation teams. Members of team & will be experts in BSC and environmental management system that are not em ployed in AD "Barska Plovidba" organisation. The members of team 2 will be managers of AD "Barska Plovidba" organisation (including manage rs from environmental department. Merging results based on previously cr eated two AHP models, one can obtain the most appropriate BSC that includes elements of environmental management system. The chosen model will present at the same time suggestion for approach choice including ecological metrics in conventional BSC model for firm that has at least one ECO strategic orientation.

  14. Modeling Nitrogen Deposition for the Santa Clara County Habitat Conservation Plan

    Science.gov (United States)

    Weiss, S. B.; Meyers, T.; Held, T.; Zippen, D.

    2009-12-01

    Nutrient-poor serpentine soils in Santa Clara County, CA, support numerous rare, threatened, and endangered species such as the Bay checkerspot butterfly. Serpentine grasslands are particularly vulnerable to atmospheric nitrogen deposition, which provides a competitive advantage to invasive annual grasses which overrun the flower-filled grasslands and degrade habitat for the protected species. The effects of N-deposition on these grasslands was first scientifically documented in 1999, and led to a series of mitigation projects for powerplants and road improvements that include habitat acquisition, monitoring, and grazing management. In 2005, a Habitat Conservation Plan/Natural Communities Conservation Plan (HCP/NCCP) was initiated to consolidate project-by-project mitigation into a regional plan covering impacts, especially indirect impacts on N-deposition, from development within the 209,500 ha study area (62% of Santa Clara County) and the cities therein. This HCP/NCCP is the first to address N-deposition effects on biodiversity. To understand the origins of the nitrogen being deposited in Santa Clara grasslands, IFC Jones & Stokes used multiple air quality modeling approaches including Gaussian line-source modeling of major highways and regional Community Multiscale Air Quality (CMAQ) modeling. Line-source modeling allowed for the estimation of N-deposition resulting from increased traffic. Gaussian modeling results indicate that the major highways closest to serpentine habitats result in the greatest environmental impact. The CMAQ modeling used the Particle and Precursor Tagging Methodology (PPTM) source apportionment technique to partition sources. In the base period (Dec 2000- Jan 2001), the CMAQ PPTM simulation estimates that 30% of the total nitrogen deposition is associated with mobile sources operating within the study area; an additional 16% emanates from stationary sources in the study area. Therefore, 46% of nitrogen deposition on the habitat areas

  15. RANS modeling for particle transport and deposition in turbulent duct flows: Near wall model uncertainties

    Energy Technology Data Exchange (ETDEWEB)

    Jayaraju, S.T., E-mail: jayaraju@nrg.eu [Nuclear Research and Consultancy Group (NRG), 1755ZG Petten (Netherlands); Sathiah, P.; Roelofs, F. [Nuclear Research and Consultancy Group (NRG), 1755ZG Petten (Netherlands); Dehbi, A. [Paul Scherrer Institute (PSI), 5232 Villigen PSI (Switzerland)

    2015-08-15

    Highlights: • Near-wall modeling uncertainties in the RANS particle transport and deposition are addressed in a turbulent duct flow. • Discrete Random Walk (DRW) model and Continuous Random Walk (CRW) model performances are tested. • Several near-wall anisotropic model accuracy is assessed. • Numerous sensitivity studies are performed to recommend a robust, well-validated near-wall model for accurate particle deposition predictions. - Abstract: Dust accumulation in the primary system of a (V)HTR is identified as one of the foremost concerns during a potential accident. Several numerical efforts have focused on the use of RANS methodology to better understand the complex phenomena of fluid–particle interaction at various flow conditions. In the present work, several uncertainties relating to the near-wall modeling of particle transport and deposition are addressed for the RANS approach. The validation analyses are performed in a fully developed turbulent duct flow setup. A standard k − ε turbulence model with enhanced wall treatment is used for modeling the turbulence. For the Lagrangian phase, the performance of a continuous random walk (CRW) model and a discrete random walk (DRW) model for the particle transport and deposition are assessed. For wall bounded flows, it is generally seen that accounting for near wall anisotropy is important to accurately predict particle deposition. The various near-wall correlations available in the literature are either derived from the DNS data or from the experimental data. A thorough investigation into various near-wall correlations and their applicability for accurate particle deposition predictions are assessed. The main outcome of the present work is a well validated turbulence model with optimal near-wall modeling which provides realistic particle deposition predictions.

  16. Atmospheric mercury simulation using the CMAQ model: formulation description and analysis of wet deposition results

    Science.gov (United States)

    Bullock, O. Russell; Brehme, Katherine A.

    The community multiscale air quality (CMAQ) modeling system has been adapted to simulate the emission, transport, transformation and deposition of atmospheric mercury (Hg) in three distinct forms: elemental Hg gas, reactive gaseous Hg, and particulate Hg. Emissions of Hg are currently defined from information published in the Environmental Protection Agency's Mercury Study Report to Congress. The atmospheric transport of these three forms of Hg is simulated in the same manner as for all other substances simulated by the CMAQ model to date. Transformations of Hg are simulated with four new chemical reactions within the standard CMAQ gaseous chemistry framework and a highly modified cloud chemistry mechanism which includes a compound-specific speciation for oxidized forms of Hg, seven new aqueous-phase Hg reactions, six aqueous Hg chemical equilibria, and a two-way mechanism for the sorption of dissolved oxidized Hg to elemental carbon particles. The CMAQ Hg model simulates the partitioning of reactive gaseous Hg between air and cloud water based on the Henry's constant for mercuric chloride. Henry's equilibrium is assumed for elemental Hg also. Particulate Hg is assumed to be incorporated into the aqueous medium during cloud nucleation. Wet and dry deposition is simulated for each of the three forms of Hg. Wet deposition rate is calculated based on precipitation information from the CMAQ meteorological processor and the physicochemical Hg speciation in the cloud chemistry mechanism. Dry deposition rate is calculated based on dry deposition velocity and air concentration information for each of the three forms of Hg. The horizontal modeling domain covers the central and eastern United States and adjacent southern Canada. An analysis of simulated Hg wet deposition versus weekly observations is performed. The results are described for two evaluation periods: 4 April-2 May 1995, and 20 June-18 July 1995.

  17. Carbonatite and alkaline intrusion-related rare earth element deposits–A deposit model

    Science.gov (United States)

    Verplanck, Philip L.; Van Gosen, Bradley S.

    2011-01-01

    The rare earth elements are not as rare in nature as their name implies, but economic deposits with these elements are not common and few deposits have been large producers. In the past 25 years, demand for rare earth elements has increased dramatically because of their wide and diverse use in high-technology applications. Yet, presently the global production and supply of rare earth elements come from only a few sources. China produces more than 95 percent of the world's supply of rare earth elements. Because of China's decision to restrict exports of these elements, the price of rare earth elements has increased and industrial countries are concerned about supply shortages. As a result, understanding the distribution and origin of rare earth elements deposits, and identifying and quantifying our nation's rare earth elements resources have become priorities. Carbonatite and alkaline intrusive complexes, as well as their weathering products, are the primary sources of rare earth elements. The general mineral deposit model summarized here is part of an effort by the U.S. Geological Survey's Mineral Resources Program to update existing models and develop new descriptive mineral deposit models to supplement previously published models for use in mineral-resource and mineral-environmental assessments. Carbonatite and alkaline intrusion-related REE deposits are discussed together because of their spatial association, common enrichment in incompatible elements, and similarities in genesis. A wide variety of commodities have been exploited from carbonatites and alkaline igneous rocks, such as rare earth elements, niobium, phosphate, titanium, vermiculite, barite, fluorite, copper, calcite, and zirconium. Other enrichments include manganese, strontium, tantalum, thorium, vanadium, and uranium.

  18. Modeling of Crystal Orientations in Laser Powder Deposition of Single Crystal Material

    Science.gov (United States)

    Qi, Huan; Liu, Zhaoyang

    This paper presents a numerical model which simulates the dynamic molten pool formation and the crystal orientations of solidified SX alloy in a multi-layer laser powder deposition process. Based on the mathematical model of coaxial laser direct deposition, the effect of parameters (laser power, scanning speed, powder feed rate) on the tendency to form [001] direction expitaxial grains during solidification was evaluated. In the transient three- dimensional model, physical phenomena including heat transfer, melting, grain formation during solidification, mass addition, and fluid flow in the melt pool, were modeled in a self-consistent manner. The temperature fields, fluid flow velocity, clad geometry (width, height and melt pool depth) and grain formation in melting pool of single layer are predicted.

  19. Dry deposition model for a microscale aerosol dispersion solver based on the moment method

    CERN Document Server

    Šíp, Viktor

    2016-01-01

    A dry deposition model suitable for use in the moment method has been developed. Contributions from five main processes driving the deposition - Brownian diffusion, interception, impaction, turbulent impaction, and sedimentation - are included in the model. The deposition model was employed in the moment method solver implemented in the OpenFOAM framework. Applicability of the developed expression and the moment method solver was tested on two example problems of particle dispersion in the presence of a vegetation on small scales: a flow through a tree patch in 2D and a flow through a hedgerow in 3D. Comparison with the sectional method showed that the moment method using the developed deposition model is able to reproduce the shape of the particle size distribution well. The relative difference in terms of the third moment of the distribution was below 10\\% in both tested cases, and decreased away from the vegetation. Main source of this difference is a known overprediction of the impaction efficiency. When ...

  20. Multiphysics modeling of porous CRUD deposits in nuclear reactors

    Science.gov (United States)

    Short, M. P.; Hussey, D.; Kendrick, B. K.; Besmann, T. M.; Stanek, C. R.; Yip, S.

    2013-11-01

    The formation of porous CRUD deposits on nuclear reactor fuel rods, a longstanding problem in the operation of pressurized water reactors (PWRs), is a significant challenge to science-based multiscale modeling and simulation. While existing, published studies have focused on individual or loosely coupled processes, such as heat transfer, fluid flow, and compound dissolution/precipitation, none have addressed their coupled effects sufficiently to enable a comprehensive, scientific understanding of CRUD. Here we present the formulation and results of a model, MAMBA-BDM, which begins to incorporate mechanistic details in describing CRUD in PWRs. CRUD is treated as a chemical deposition process in an environment of variable concentration, an arbitrary level of heating, and a complex fractal-based flow geometry. We present results on spatial distributions of temperature, pressure, velocity, and concentration that give insight into the interplay between these physical properties and geometrical parameters. We show the role of heat convection which has not been discussed previously. Furthermore, we suggest that the assumption of liquid saturation in the CRUD deserves scrutiny, as a result of our attempt to determine an effective CRUD thermal conductivity.

  1. Simulation model of erosion and deposition on a barchan dune

    Science.gov (United States)

    Howard, A. D.; Morton, J. B.; Gal-El-hak, M.; Pierce, D. B.

    1977-01-01

    Erosion and deposition over a barchan dune near the Salton Sea, California, are modeled by bookkeeping the quantity of sand in saltation following streamlines of transport. Field observations of near surface wind velocity and direction plus supplemental measurements of the velocity distribution over a scale model of the dune are combined as input to Bagnold type sand transport formulas corrected for slope effects. A unidirectional wind is assumed. The resulting patterns of erosion and deposition compare closely with those observed in the field and those predicted by the assumption of equilibrium (downwind translation of the dune without change in size or geometry). Discrepancies between the simulated results and the observed or predicted erosional patterns appear to be largely due to natural fluctuations in the wind direction. The shape of barchan dunes is a function of grain size, velocity, degree of saturation of the oncoming flow, and the variability in the direction of the oncoming wind. The size of the barchans may be controlled by natural atmospheric scales, by the age of the dunes, or by the upwind roughness. The upwind roughness can be controlled by fixed elements or by sand in the saltation. In the latter case, dune scale is determined by grain size and wind velocity.

  2. Watermarking for Fused Deposition Modeling by Seam Placement

    Directory of Open Access Journals (Sweden)

    Baumann Felix W.

    2017-01-01

    Full Text Available With the increased usage and application of 3D-printing or Additive Manufacturing (AM the question arises of how content providers or creators can ensure their intellectual property on such model data. Similar to other digital media such object information that is represented in a number of file formats is easy to copy and reproduce lossless. This research contributes by a proposition of a watermarking schema for Fused Deposition Modeling (FDM type 3D-printers. This system embeds information into the 3D-printed object without alterations to the structure or geometry by altering the entry points of each layer in a specific manner. With such a watermarking schema employed objects can be embedded with additional information such as a serial number or other traceable information.

  3. Volcanogenic massive sulfide deposits of the world: Database and grade and tonnage models

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Information on VMS deposits from around the world. It also presents new grade and tonnage models for three subtypes of VMS deposits and a text file allowing...

  4. A corrected formulation of the Multilayer Model (MLM) for inferring gaseous dry deposition to vegetated surfaces

    Science.gov (United States)

    Saylor, Rick D.; Wolfe, Glenn M.; Meyers, Tilden P.; Hicks, Bruce B.

    2014-08-01

    The Multilayer Model (MLM) has been used for many years to infer dry deposition fluxes from measured trace species concentrations and standard meteorological measurements for national networks in the U.S., including the U.S. Environmental Protection Agency's Clean Air Status and Trends Network (CASTNet). MLM utilizes a resistance analogy to calculate deposition velocities appropriate for whole vegetative canopies, while employing a multilayer integration to account for vertically varying meteorology, canopy morphology and radiative transfer within the canopy. However, the MLM formulation, as it was originally presented and as it has been subsequently employed, contains a non-physical representation related to the leaf-level quasi-laminar boundary layer resistance that affects the calculation of the total canopy resistance. In this note, the non-physical representation of the canopy resistance as originally formulated in MLM is discussed and a revised, physically consistent, formulation is suggested as a replacement. The revised canopy resistance formulation reduces estimates of HNO3 deposition velocities by as much as 38% during mid-day as compared to values generated by the original formulation. Inferred deposition velocities for SO2 and O3 are not significantly altered by the change in formulation (<3%). Inferred deposition loadings of oxidized and total nitrogen from CASTNet data may be reduced by 10-20% and 5-10%, respectively, for the Eastern U. S. when employing the revised formulation of MLM as compared to the original formulation.

  5. A Corrected Formulation of the Multilayer Model (MLM) for Inferring Gaseous Dry Deposition to Vegetated Surfaces

    Science.gov (United States)

    Saylor, Rick D.; Wolfe, Glenn M.; Meyers, Tilden P.; Hicks, Bruce B.

    2014-01-01

    The Multilayer Model (MLM) has been used for many years to infer dry deposition fluxes from measured trace species concentrations and standard meteorological measurements for national networks in the U.S., including the U.S. Environmental Protection Agency's Clean Air Status and Trends Network (CASTNet). MLM utilizes a resistance analogy to calculate deposition velocities appropriate for whole vegetative canopies, while employing a multilayer integration to account for vertically varying meteorology, canopy morphology and radiative transfer within the canopy. However, the MLM formulation, as it was originally presented and as it has been subsequently employed, contains a non-physical representation related to the leaf-level quasi-laminar boundary layer resistance that affects the calculation of the total canopy resistance. In this note, the non-physical representation of the canopy resistance as originally formulated in MLM is discussed and a revised, physically consistent, formulation is suggested as a replacement. The revised canopy resistance formulation reduces estimates of HNO3 deposition velocities by as much as 38% during mid-day as compared to values generated by the original formulation. Inferred deposition velocities for SO2 and O3 are not significantly altered by the change in formulation (less than 3%). Inferred deposition loadings of oxidized and total nitrogen from CASTNet data may be reduced by 10-20% and 5-10%, respectively, for the Eastern U. S. when employing the revised formulation of MLM as compared to the original formulation.

  6. Atomistic modeling of the low-temperature atom-beam deposition of magnesium fluoride.

    Science.gov (United States)

    Neelamraju, Sridhar; Schön, Johann Christian; Jansen, Martin

    2015-02-02

    We model the deposition and growth of MgF(2) on a sapphire substrate as it occurs in a low-temperature atom-beam-deposition experiment. In the experiment, an (X-ray) amorphous film of MgF(2) is obtained at low temperatures of 170-180 K, and upon heating, this transforms to the expected rutile phase via the CaCl(2)-type structure. We confirm this from our simulations and propose a mechanism for this transformation. The growth process is analyzed as a function of the synthesis parameters, which include the substrate temperature, deposition rate of clusters, and types of clusters deposited. Upon annealing an initially amorphous deposit, we observe the formation of two competing nanocrystalline modifications during this process, which exhibit the CaCl(2) and CdI(2) structure types, respectively. We argue that this joint growth of the two nanocrystalline polymorphs stabilizes the kinetically unstable CaCl(2)-type structure on the macroscopic level long enough to be observed in the experiment.

  7. Smart Voyage Planning Model Sensitivity Analysis Using Ocean and Atmospheric Models Including Ensemble Methods

    Science.gov (United States)

    2012-09-01

    ATMOSPHERIC MODELS INCLUDING ENSEMBLE METHODS Scott E. Miller Lieutenant Commander, United States Navy B.S., University of South Carolina, 2000 B.S...Typical gas turbine fuel consumption curve and relationship to sea state .......51  Figure 16.  DDG 58 speed reduction curves for bow seas...Day Time Group ECDIS-N Electronic Chart Display and Information System – Navy ECMWF European Center for Medium Range Weather Forecasts EFAS

  8. Multiscale modeling, simulations, and experiments of coating growth on nanofibers. Part II. Deposition

    Science.gov (United States)

    Buldum, A.; Clemons, C. B.; Dill, L. H.; Kreider, K. L.; Young, G. W.; Zheng, X.; Evans, E. A.; Zhang, G.; Hariharan, S. I.

    2005-08-01

    This work is Part II of an integrated experimental/modeling investigation of a procedure to coat nanofibers and core-clad nanostructures with thin-film materials using plasma-enhanced physical vapor deposition. In the experimental effort, electrospun polymer nanofibers are coated with aluminum materials under different operating conditions to observe changes in the coating morphology. This procedure begins with the sputtering of the coating material from a target. Part I [J. Appl. Phys. 98, 044303 (2005)] focused on the sputtering aspect and transport of the sputtered material through the reactor. That reactor level model determines the concentration field of the coating material. This field serves as input into the present species transport and deposition model for the region surrounding an individual nanofiber. The interrelationships among processing factors for the transport and deposition are investigated here from a detailed modeling approach that includes the salient physical and chemical phenomena. Solution strategies that couple continuum and atomistic models are used. At the continuum scale, transport dynamics near the nanofiber are described. At the atomic level, molecular dynamics (MD) simulations are used to study the deposition and sputtering mechanisms at the coating surface. Ion kinetic energies and fluxes are passed from the continuum sheath model to the MD simulations. These simulations calculate sputtering and sticking probabilities that in turn are used to calculate parameters for the continuum transport model. The continuum transport model leads to the definition of an evolution equation for the coating-free surface. This equation is solved using boundary perturbation and level set methods to determine the coating morphology as a function of operating conditions.

  9. Nucleation and electrolytic deposition of lead on model carbon electrodes

    Science.gov (United States)

    Cericola, D.; Spahr, M.

    2016-08-01

    There is a general consensus in the lead acid battery industry for the use of carbon additives as a functional component in the negative paste to boost the battery performance with regards to charge acceptance and cycle life especially for upcoming automotive and energy storage applications. Several mechanisms are discussed in the scientific literature and the affinity of the carbon surfaces to lead species seems to play a key role. With a set of experiments on model carbon electrodes we gave evidence to the fact that some carbon materials promote spontaneous nucleation of lead crystals. We propose a mechanism such that the carbon, as soon as in a lead containing environment, immobilizes some lead on its surface. Such immobilized lead acts as nucleation seed for the deposition of lead when a current is passed through the material. It is therefore possible to differentiate and select the carbon materials based on their ability to form nucleation seeds.

  10. Modeling of time dependent subsidence for coal and ore deposits

    Institute of Scientific and Technical Information of China (English)

    Ryszard Hejmanowski

    2015-01-01

    Coal and ore underground mining generates subsidence and deformation of the land surface. Those defor-mations may cause damage to buildings and infrastructures. The environmental impact of subsidence will not be accepted in the future by the society in many countries. Especially there, where the mining regions are densely urbanized, the acceptance of the ground deformations decreases every year. The only solution is to limit the subsidence or its impact on the infrastructure. The first is not rentable for the mining industry, the second depends on the precise subsidence prediction and good preventing management involved in the mining areas. The precision of the subsidence prediction depends strictly on the mathematical model of the deformation phenomenon and on the uncertainty of the input data. The subsidence prediction in the geological conditions of the raw materials used to be made on the basis of numerical modeling or the stochastic models. A modified solution of the stochastic model by Knothe will be presented in the paper. The author focuses on the precise description of the deposit shape and on the time dependent displacements of the rock mass. A two parameters’ time function has been introduced in the algorithm.

  11. Dust deposition in Antarctica in glacial and interglacial climate conditions: a modelling study

    Directory of Open Access Journals (Sweden)

    N. Sudarchikova

    2014-09-01

    Full Text Available The mineral dust cycle responds to climate variations and plays an important role in the climate system by affecting the radiative balance of the atmosphere and modifying biogeochemistry. Polar ice cores provide a unique information about deposition of aeolian dust particles transported over long distance. These cores are a paleoclimate proxy archive of climate variability thousands of years ago. The current study is a first attempt to simulate past interglacial dust cycles with a global aerosol-climate model ECHAM5-HAM. The results are used to explain the dust deposition changes in Antarctica in terms of quantitative contribution of different processes, such as emission, atmospheric transport and precipitation, which will help to interpret paleodata from Antarctic ice cores. The investigated periods include four interglacial time-slices such as the pre-industrial control (CTRL, mid-Holocene (6000 yr BP, last glacial inception (115 000 yr BP and Eemian (126 000 yr BP. One glacial time interval, which is Last Glacial Maximum (LGM (21 000 yr BP was simulated as well as to be a reference test for the model. Results suggest an increase of mineral dust deposition globally, and in Antarctica, in the past interglacial periods relative to the pre-industrial CTRL simulation. Approximately two thirds of the increase in the mid-Holocene and Eemian is attributed to enhanced Southern Hemisphere dust emissions. Slightly strengthened transport efficiency causes the remaining one third of the increase in dust deposition. The moderate change of dust deposition in Antarctica in the last glacial inception period is caused by the slightly stronger poleward atmospheric transport efficiency compared to the pre-industrial. Maximum dust deposition in Antarctica was simulated for the glacial period. LGM dust deposition in Antarctica is substantially increased due to 2.6 times higher Southern Hemisphere dust emissions, two times stronger atmospheric transport towards

  12. Improved Subseasonal Prediction with Advanced Coupled Models including the 30km FIM-HYCOM Coupled Model

    Science.gov (United States)

    Benjamin, Stan; Sun, Shan; Grell, Georg; Green, Benjamin; Bleck, Rainer; Li, Haiqin

    2017-04-01

    Extreme events for subseasonal duration have been linked to multi-week processes related to onset, duration, and cessation of blocking events or, more generally, quasi-stationary waves. Results will be shown from different sets of 32-day prediction experiments (3200 runs each) over a 16-year period for earth system processes key for subseasonal prediction for different resolution, numerics, and physics using the FIM-HYCOM coupled model. The coupled atmosphere (FIM) and ocean (HYCOM) modeling system is a relatively new coupled atmosphere-ocean model developed for subseasonal to seasonal prediction (Green et al. 2017 Mon.Wea.Rev. accepted, Bleck et al 2015 Mon. Wea. Rev.). Both component models operate on a common icosahedral horizontal grid and use an adaptive hybrid vertical coordinate (sigma-isentropic in FIM and sigma-isopycnic in HYCOM). FIM-HYCOM has been used to conduct 16 years of subseasonal retrospective forecasts following the NOAA Subseasonal (SubX) NMME protocol (32-day forward integrations), run with 4 ensemble members per week. Results from this multi-year FIM-HYCOM hindcast include successful forecasts out to 14-20 days for stratospheric warming events (from archived 10 hPa fields), improved MJO predictability (Green et al. 2017) using the Grell-Freitas (2014, ACP) scale-aware cumulus scheme instead of the Simplified Arakawa-Schubert scheme, and little sensitivity to resolution for blocking frequency. Forecast skill of metrics from FIM-HYCOM including 500 hPa heights and MJO index is at least comparable to that of the operational Climate Forecast System (CFSv2) used by the National Centers for Environmental Prediction. Subseasonal skill is improved with a limited multi-model (FIM-HYCOM and CFSv2), consistent with previous seasonal multi-model ensemble results. Ongoing work will also be reported on for adding inline aerosol/chemistry treatment to the coupled FIM-HYCOM model and for advanced approaches to subgrid-scale clouds to address regional biases

  13. Proceedings for a Workshop on Deposit Modeling, Mineral Resource Assessment, and Their Role in Sustainable Development

    Science.gov (United States)

    Briskey, Joseph A.; Schulz, Klaus J.

    2007-01-01

    environmental issues? Presentations included overviews of assessment methods applied in previous national and other small-scale assessments of large regions and of the resulting assessment products and their uses. Twenty-seven people from Canada, China, Finland, Germany, Japan, Peru, Slovenia, South Africa, United States, and Venezuela participated in the 2-day post-Congress workshop. The attendees represented academia, government, environmental organizations, and the mining industry. The workshop agenda, extended abstracts, and participant biographies were published previously in the following report: Briskey, J.A., and Schulz, K.J, eds., 2002, Agenda, extended abstracts, and bibliographies for a Workshop on Deposit Modeling, Mineral Resource Assessment, and Their Role in Sustainable Development - 31st International Geological Congress [Rio de Janeiro, Brazil, August 18-19, 2000]: U.S. Geological Survey Open-File Report 02-423, 85 p. on one CD-ROM. (Available online at pubs.usgs.gov/of/2002/of02-423/.)

  14. An investigation of the hydrodynamic relationships in the gas formations of the upper and lower Pannon of the Aldye deposit. [Includes calculations of gas coming from different strata

    Energy Technology Data Exchange (ETDEWEB)

    Zoltan, B.; Istvan, P.; Laszlo, V.; Tibor, M.

    1985-01-01

    The problems in developing gas formations of complex structure which are bedded one under the other and are associated with a hydrodynamic link are analyzed. A great number of ratings of the material balance was conducted in order to refine the reserves of the deposits and to explain the hydrodynamic relationships of individual formations and their groups. A complex rating program is developed for a computer (EVM) which may be used to model the process of development of gas collectors of a complex system in a stratum and the operation of wells and oil field pipelines with consideration of assigned boundary (threshold) conditions.

  15. Detailed diesel exhaust characteristics including particle surface area and lung deposited dose for better understanding of health effects in human chamber exposure studies

    Science.gov (United States)

    Wierzbicka, Aneta; Nilsson, Patrik T.; Rissler, Jenny; Sallsten, Gerd; Xu, Yiyi; Pagels, Joakim H.; Albin, Maria; Österberg, Kai; Strandberg, Bo; Eriksson, Axel; Bohgard, Mats; Bergemalm-Rynell, Kerstin; Gudmundsson, Anders

    2014-04-01

    Several diesel exhaust (DE) characteristics, comprising both particle and gas phase, recognized as important when linking with health effects, are not reported in human chamber exposure studies. In order to understand effects of DE on humans there is a need for better characterization of DE when performing exposure studies. The aim of this study was to determine and quantify detailed DE characteristics during human chamber exposure. Additionally to compare to reported DE properties in conducted human exposures. A wide battery of particle and gas phase measurement techniques have been used to provide detailed DE characteristics including the DE particles (DEP) surface area, fraction and dose deposited in the lungs, chemical composition of both particle and gas phase such as NO, NO2, CO, CO2, volatile organic compounds (including aldehydes, benzene, toluene) and polycyclic aromatic hydrocarbons (PAHs). Eyes, nose and throat irritation effects were determined. Exposure conditions with PM1 (<1 μm) mass concentration 280 μg m-3, number concentration 4 × 105 cm-3 and elemental to total carbon fraction of 82% were generated from a diesel vehicle at idling. When estimating the lung deposited dose it was found that using the size dependent effective density (in contrast to assuming unity density) reduced the estimated respiratory dose by 132% by mass. Accounting for agglomerated structure of DEP prevented underestimation of lung deposited dose by surface area by 37% in comparison to assuming spherical particles. Comparison of DE characteristics reported in conducted chamber exposures showed that DE properties vary to a great extent under the same DEP mass concentration and engine load. This highlights the need for detailed and standardized approach for measuring and reporting of DE properties. Eyes irritation effects, most probably caused by aldehydes in the gas phase, as well as nose irritation were observed at exposure levels below current occupational exposure limit

  16. Vegetation succession as affected by decreasing nitrogen deposition, soil characteristics and site management: A modelling approach

    NARCIS (Netherlands)

    Wamelink, G.W.W.; Dobben, van H.F.; Berendse, F.

    2009-01-01

    After many years of increasing nitrogen deposition, the deposition rates are now decreasing. A major question is whether this will result in the expected positive effects on plant species diversity. Long-term experiments that investigate the effects of decreasing deposition are not available. Model

  17. Base cation deposition in Europe - Part I. Model description, results and uncertainties

    NARCIS (Netherlands)

    Draaijers, G.P.J.; Leeuwen, E.P. van; Jong, P.G.H. de; Erisman, J.W.

    1997-01-01

    Deposition of base cations (Na+, Mg2+, Ca2+, K+) in Europe was mapped for 1989 with a spatial resolution of 10 x 20 km using the so-called inferential modeling technique. Deposition fields resembled the geographic variability of sources, land-use and climate. Dry deposition constituted on average 45

  18. Metallogenic Features and Metalogenic Model of Laterite Gold Deposits in Southern China

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The modern laterite gold deposits in southern China, which belong to reworked laterite deposits, can be further divided into three subclasses and seven types. Their geological features, ore-forming conditions and regularities are discussed. A geologic-geochemical metallogenic model for laterite gold deposits has been established.

  19. A framework for modeling the liquidity and interest rate risk of demand deposits

    OpenAIRE

    2016-01-01

    The objective of this report is to carry out a pre-study and develop a framework for how the liquidity and interest rate risk of a bank's demand deposits can be modeled. This is done by first calibrating a Vasicek short rate model and then deriving models for the bank's deposit volume and deposit rate using multiple regression. The volume model and the deposit rate model are used to determine the liquidity and interest rate risk, which is done separately. The liquidity risk is determined by a...

  20. Magmatic Conduit Metallogenic System - A New Model for the Origin of Ore-deposits

    Science.gov (United States)

    Su, S.; Tang, Z.; Wu, G.; Deng, J.; Xiao, Q.; Luo, Z.; Cui, Y.

    2013-12-01

    Origin and emplacement processes of ore-deposits connected with intrusions remains poorly understood. Here we propose a new model 'Magmatic Conduit Metallogenic System' to explain the origin of ore-deposits. Magmatic flow (or Melt-fluid flow) bearing metals will finally settle in the conduits at later stage of magma evolved in magma metallogenic system. Magmatic flow (or Melt-fluid flow) bearing metals include many types, such as sulfide melts and iron melts bearing fluids. Conduits will form along the zones of structural weakness, such as fault zone and interface of two different types of rocks. These conduits are usually very complicated in the magmatic system, exemplified by two typical ore-deposits, detailed as follows. The Jinchuan sulfide deposit, located in Gansu Province, China, is the third largest magmatic Cu-Ni Platinum Group Elements (PGE) in the world. There are mainly four orebodies (orebody 58, 24, 1, and 2) from west to east, with Ni/Cu value at 1.24, 1.56, 1.83 and 2.06 respectively; the content of Pt+Pd ranges from 0.4 to 10.3 ppm, with the highest value occurs in the west. This suggests that the direction of the melt flow bearing sulfide is from west to east and the front of the conduit system is in the east part of the deposit. Sulfide segregation in the magmatic chamber or in the conduits might have caused ore content to change in different part of the conduit systems. Another typical example is the Xishimen iron deposit, which is located in the South of Hebei Province, China. It has been considered as a skarn-type iron deposit conventionally. However, many geological evidence suggests that Xishimen iron deposit is a magmatic iron deposit instead. Such evidence includes: 1. The boundaries between iron orebodies and country rocks are obvious, no transitional relationship; 2. Iron ore body injected into the country rocks (including genesis, diorite, and marble); 3. There are some vesicular in the iron ores; 4. Magnetite as an interstitial mineral

  1. On The Stability Of Model Flows For Chemical Vapour Deposition

    Science.gov (United States)

    Miller, Robert

    2016-11-01

    The flow in a chemical vapour deposition (CVD) reactor is assessed. The reactor is modelled as a flow over an infinite-radius rotating disk, where the mean flow and convective instability of the disk boundary layer are measured. Temperature-dependent viscosity and enforced axial flow are used to model the steep temperature gradients present in CVD reactors and the pumping of the gas towards the disk, respectively. Increasing the temperature-dependence parameter of the fluid viscosity (ɛ) results in an overall narrowing of the fluid boundary layer. Increasing the axial flow strength parameter (Ts) accelerates the fluid both radially and axially, while also narrowing the thermal boundary layer. It is seen that when both effects are imposed, the effects of axial flow generally dominate those of the viscosity temperature dependence. A local stability analysis is performed and the linearized stability equations are solved using a Galerkin projection in terms of Chebyshev polynomials. The neutral stability curves are then plotted for a range of ɛ and Ts values. Preliminary results suggest that increasing Ts has a stabilising effect on both type I and type II stationary instabilities, while small increases in ɛ results in a significant reduction to the critical Reynolds number.

  2. Accelerating thermal deposition modeling at terahertz frequencies using GPUs

    Science.gov (United States)

    Doroski, Michael; Knight, Michael; Payne, Jason; Grundt, Jessica E.; Ibey, Bennett L.; Thomas, Robert; Roach, William P.; Wilmink, Gerald J.

    2011-03-01

    Finite-difference time-domain (FDTD) methods are widely used to model the propagation of electromagnetic radiation in biological tissues. High-performance central processing units (CPUs) can execute FDTD simulations for complex problems using 3-D geometries and heterogeneous tissue material properties. However, when FDTD simulations are employed at terahertz (THz) frequencies excessively long processing times are required to account for finer resolution voxels and larger computational modeling domains. In this study, we developed and tested the performance of 2-D and 3-D FDTD thermal propagation code executed on a graphics processing unit (GPU) device, which was coded using an extension of the C language referred to as CUDA. In order to examine the speedup provided by GPUs, we compared the performance (speed, accuracy) for simulations executed on a GPU (Tesla C2050), a high-performance CPU (Intel Xeon 5504), and supercomputer. Simulations were conducted to model the propagation and thermal deposition of THz radiation in biological materials for several in vitro and in vivo THz exposure scenarios. For both the 2-D and 3-D in vitro simulations, we found that the GPU performed 100 times faster than runs executed on a CPU, and maintained comparable accuracy to that provided by the supercomputer. For the in vivo tissue damage studies, we found that the GPU executed simulations 87x times faster than the CPU. Interestingly, for all exposure duration tested, the CPU, GPU, and supercomputer provided comparable predictions for tissue damage thresholds (ED50). Overall, these results suggest that GPUs can provide performance comparable to a supercomputer and at speeds significantly faster than those possible with a CPU. Therefore, GPUs are an affordable tool for conducting accurate and fast simulations for computationally intensive modeling problems.

  3. 3D geological modeling for mineral resource assessment of the Tongshan Cu deposit, Heilongjiang Province, China

    Directory of Open Access Journals (Sweden)

    Gongwen Wang

    2012-07-01

    Full Text Available Three-dimensional geological modeling (3DGM assists geologists to quantitatively study in three-dimensional (3D space structures that define temporal and spatial relationships between geological objects. The 3D property model can also be used to infer or deduce causes of geological objects. 3DGM technology provides technical support for extraction of diverse geoscience information, 3D modeling, and quantitative calculation of mineral resources. Based on metallogenic concepts and an ore deposit model, 3DGM technology is applied to analyze geological characteristics of the Tongshan Cu deposit in order to define a metallogenic model and develop a virtual borehole technology; a BP neural network and a 3D interpolation technique were combined to integrate multiple geoscience information in a 3D environment. The results indicate: (1 on basis of the concept of magmatic-hydrothermal Cu polymetallic mineralization and a porphyry Cu deposit model, a spatial relational database of multiple geoscience information for mineralization in the study area (geology, geophysics, geochemistry, borehole, and cross-section data was established, and 3D metallogenic geological objects including mineralization stratum, granodiorite, alteration rock, and magnetic anomaly were constructed; (2 on basis of the 3D ore deposit model, 23,800 effective surveys from 94 boreholes and 21 sections were applied to establish 3D orebody models with a kriging interpolation method; (3 combined 23,800 surveys involving 21 sections, using VC++ and OpenGL platform, virtual borehole and virtual section with BP network, and an improved inverse distance interpolation (IDW method were used to predict and delineate mineralization potential targets (Cu-grade of cell not less than 0.1%; (4 comparison of 3D ore bodies, metallogenic geological objects of mineralization, and potential targets of mineralization models in the study area, delineated the 3D spatial and temporal relationship and causal

  4. Modelling the power deposition into a spherical tokamak fusion power plant

    Science.gov (United States)

    Windsor, C. G.; Morgan, J. G.; Buxton, P. F.; Costley, A. E.; Smith, G. D. W.; Sykes, A.

    2017-03-01

    Numerical studies have been made to improve the performance of the central column of a superconducting spherical tokamak fusion pilot plant. The assumed neutron shield includes concentric layers of tungsten carbide and water. The relative thickness of the water layers was varied and a minimum power deposition was found at about 17% of water. It was found advantageous to have an approximately 1.7 times thicker water layer next to the core and a similarly thinner layer next to the plasma. The use of tungsten boride instead of tungsten carbide was shown to make an improvement especially if placed close to the central superconducting core, the inner layer alone reducing the power deposition by 29%. Engineering features such as a central steel tie-bar, an insulating thermal vacuum gap, a wall gap next to the plasma and knowledge of the vertical energy distribution are essential to a successful design and their effects on the power deposition are shown in an appendix. The results have been fitted to model distributions and incorporated into the Tokamak Energy System Code, which can then give predictions of the power deposition as a function of other parameters such as the plasma major radius and the maximum magnetic field permitted on the superconductors.

  5. PARTICLE TRANSPORTATION AND DEPOSITION IN HOT GAS FILTER VESSELS - A COMPUTATIONAL AND EXPERIMENTAL MODELING APPROACH

    Energy Technology Data Exchange (ETDEWEB)

    Goodarz Ahmadi

    2002-07-01

    In this project, a computational modeling approach for analyzing flow and ash transport and deposition in filter vessels was developed. An Eulerian-Lagrangian formulation for studying hot-gas filtration process was established. The approach uses an Eulerian analysis of gas flows in the filter vessel, and makes use of the Lagrangian trajectory analysis for the particle transport and deposition. Particular attention was given to the Siemens-Westinghouse filter vessel at Power System Development Facility in Wilsonville in Alabama. Details of hot-gas flow in this tangential flow filter vessel are evaluated. The simulation results show that the rapidly rotation flow in the spacing between the shroud and the vessel refractory acts as cyclone that leads to the removal of a large fraction of the larger particles from the gas stream. Several alternate designs for the filter vessel are considered. These include a vessel with a short shroud, a filter vessel with no shroud and a vessel with a deflector plate. The hot-gas flow and particle transport and deposition in various vessels are evaluated. The deposition patterns in various vessels are compared. It is shown that certain filter vessel designs allow for the large particles to remain suspended in the gas stream and to deposit on the filters. The presence of the larger particles in the filter cake leads to lower mechanical strength thus allowing for the back-pulse process to more easily remove the filter cake. A laboratory-scale filter vessel for testing the cold flow condition was designed and fabricated. A laser-based flow visualization technique is used and the gas flow condition in the laboratory-scale vessel was experimental studied. A computer model for the experimental vessel was also developed and the gas flow and particle transport patterns are evaluated.

  6. Numerical modeling of Po-218 deposition in a physiologically realistic lung bifurcation model

    Science.gov (United States)

    Mously-Soroujy, Khalid Ahmad

    Experimental data for lung bifurcations reveals complex geometries and distinct asymmetrical characteristic, which affects the localized distribution of particles deposited in the lung. This study is based on recently published numerical results for a symmetric physiological realistic bifurcation geometry Heistracher and Hofmann (1995) which has been extended here to the case of a asymmetric geometry. The asymmetric PRB model was used to study the flow field and the deposition of ultrafine particles for inspiratory and expiratory conditions. In the present study, we investigated the effect of different flow rates, representing human activity and deposition of different ultrafine particles representing radon daughter (Po-218), in the PRB model. Numerical results were compared with the limited available experimental and numerical data. The fluid dynamic computer program FIDAP was used for this purpose.

  7. Modelling wet deposition in simulations of volcanic ash dispersion from hypothetical eruptions of Merapi, Indonesia

    Science.gov (United States)

    Dare, Richard A.; Potts, Rodney J.; Wain, Alan G.

    2016-10-01

    The statistical impact of including the process of wet deposition in dispersion model predictions of the movement of volcanic ash is assessed. Based on hypothetical eruptions of Merapi, Indonesia, sets of dispersion model simulations were generated, each containing four simulations per day over a period of three years, to provide results based on a wide range of atmospheric conditions. While on average dry sedimentation removes approximately 10% of the volcanic ash from the atmosphere during the first 24 h, wet deposition removes an additional 30% during seasons with highest rainfall (December and January) but only an additional 1% during August and September. The majority of the wet removal is due to in-cloud rather than below-cloud collection of volcanic ash particles. The largest uncertainties in the amount of volcanic ash removed by the process of wet deposition result from the choice of user-defined parameters used to compute the scavenging coefficient, and from the definition of the cloud top height. Errors in the precipitation field provided by the numerical weather prediction model utilised here have relatively less impact.

  8. A mathematical model and simulation results of plasma enhanced chemical vapor deposition of silicon nitride films

    Science.gov (United States)

    Konakov, S. A.; Krzhizhanovskaya, V. V.

    2015-01-01

    We developed a mathematical model of Plasma Enhanced Chemical Vapor Deposition (PECVD) of silicon nitride thin films from SiH4-NH3-N2-Ar mixture, an important application in modern materials science. Our multiphysics model describes gas dynamics, chemical physics, plasma physics and electrodynamics. The PECVD technology is inherently multiscale, from macroscale processes in the chemical reactor to atomic-scale surface chemistry. Our macroscale model is based on Navier-Stokes equations for a transient laminar flow of a compressible chemically reacting gas mixture, together with the mass transfer and energy balance equations, Poisson equation for electric potential, electrons and ions balance equations. The chemical kinetics model includes 24 species and 58 reactions: 37 in the gas phase and 21 on the surface. A deposition model consists of three stages: adsorption to the surface, diffusion along the surface and embedding of products into the substrate. A new model has been validated on experimental results obtained with the "Plasmalab System 100" reactor. We present the mathematical model and simulation results investigating the influence of flow rate and source gas proportion on silicon nitride film growth rate and chemical composition.

  9. Mineral-deposit model for lithium-cesium-tantalum pegmatites

    Science.gov (United States)

    Bradley, Dwight C.; McCauley, Andrew D.; Stillings, Lisa M.

    2017-06-20

    Lithium-cesium-tantalum (LCT) pegmatites comprise a compositionally defined subset of granitic pegmatites. The major minerals are quartz, potassium feldspar, albite, and muscovite; typical accessory minerals include biotite, garnet, tourmaline, and apatite. The principal lithium ore minerals are spodumene, petalite, and lepidolite; cesium mostly comes from pollucite; and tantalum mostly comes from columbite-tantalite. Tin ore as cassiterite and beryllium ore as beryl also occur in LCT pegmatites, as do a number of gemstones and high-value museum specimens of rare minerals. Individual crystals in LCT pegmatites can be enormous: the largest spodumene was 14 meters long, the largest beryl was 18 meters long, and the largest potassium feldspar was 49 meters long.Lithium-cesium-tantalum pegmatites account for about one-fourth of the world’s lithium production, most of the tantalum production, and all of the cesium production. Giant deposits include Tanco in Canada, Greenbushes in Australia, and Bikita in Zimbabwe. The largest lithium pegmatite in the United States, at King’s Mountain, North Carolina, is no longer being mined although large reserves of lithium remain. Depending on size and attitude of the pegmatite, a variety of mining techniques are used, including artisanal surface mining, open-pit surface mining, small underground workings, and large underground operations using room-and-pillar design. In favorable circumstances, what would otherwise be gangue minerals (quartz, potassium feldspar, albite, and muscovite) can be mined along with lithium and (or) tantalum as coproducts.Most LCT pegmatites are hosted in metamorphosed supracrustal rocks in the upper greenschist to lower amphibolite facies. Lithium-cesium-tantalum pegmatite intrusions generally are emplaced late during orogeny, with emplacement being controlled by pre-existing structures. Typically, they crop out near evolved, peraluminous granites and leucogranites from which they are inferred to be

  10. A genome wide association study for backfat thickness in Italian Large White pigs highlights new regions affecting fat deposition including neuronal genes

    Directory of Open Access Journals (Sweden)

    Fontanesi Luca

    2012-11-01

    Full Text Available Abstract Background Carcass fatness is an important trait in most pig breeding programs. Following market requests, breeding plans for fresh pork consumption are usually designed to reduce carcass fat content and increase lean meat deposition. However, the Italian pig industry is mainly devoted to the production of Protected Designation of Origin dry cured hams: pigs are slaughtered at around 160 kg of live weight and the breeding goal aims at maintaining fat coverage, measured as backfat thickness to avoid excessive desiccation of the hams. This objective has shaped the genetic pool of Italian heavy pig breeds for a few decades. In this study we applied a selective genotyping approach within a population of ~ 12,000 performance tested Italian Large White pigs. Within this population, we selectively genotyped 304 pigs with extreme and divergent backfat thickness estimated breeding value by the Illumina PorcineSNP60 BeadChip and performed a genome wide association study to identify loci associated to this trait. Results We identified 4 single nucleotide polymorphisms with P≤5.0E-07 and additional 119 ones with 5.0E-07 Conclusions Further investigations are needed to evaluate the effects of the identified single nucleotide polymorphisms associated with backfat thickness on other traits as a pre-requisite for practical applications in breeding programs. Reported results could improve our understanding of the biology of fat metabolism and deposition that could also be relevant for other mammalian species including humans, confirming the role of neuronal genes on obesity.

  11. A New Occurrence Model for National Assessment of Undiscovered Volcanogenic Massive Sulfide Deposits

    Science.gov (United States)

    Shanks, W.C. Pat; Dusel-Bacon, Cynthia; Koski, Randolph; Morgan, Lisa A.; Mosier, Dan; Piatak, Nadine M.; Ridley, Ian; Seal, Robert R., II; Schulz, Klaus J.; Slack, John F.; Thurston, Roland

    2009-01-01

    Volcanogenic massive sulfide (VMS) deposits are very significant current and historical resources of Cu-Pb-Zn-Au-Ag, are active exploration targets in several areas of the United States and potentially have significant environmental effects. This new USGS VMS deposit model provides a comprehensive review of deposit occurrence and ore genesis, and fully integrates recent advances in the understanding of active seafloor VMS-forming environments, and integrates consideration of geoenvironmental consequences of mining VMS deposits. Because VMS deposits exhibit a broad range of geological and geochemical characteristics, a suitable classification system is required to incorporate these variations into the mineral deposit model. We classify VMS deposits based on compositional variations in volcanic and sedimentary host rocks. The advantage of the classification method is that it provides a closer linkage between tectonic setting and lithostratigraphic assemblages, and an increased predictive capability during field-based studies.

  12. Interdiffusion of Polycarbonate in Fused Deposition Modeling Welds

    Science.gov (United States)

    Seppala, Jonathan; Forster, Aaron; Satija, Sushil; Jones, Ronald; Migler, Kalman

    2015-03-01

    Fused deposition modeling (FDM), a now common and inexpensive additive manufacturing method, produces 3D objects by extruding molten polymer layer-by-layer. Compared to traditional polymer processing methods (injection, vacuum, and blow molding), FDM parts have inferior mechanical properties, surface finish, and dimensional stability. From a polymer processing point of view the polymer-polymer weld between each layer limits the mechanical strength of the final part. Unlike traditional processing methods, where the polymer is uniformly melted and entangled, FDM welds are typically weaker due to the short time available for polymer interdiffusion and entanglement. To emulate the FDM process thin film bilayers of polycarbonate/d-polycarbonate were annealed using scaled times and temperatures accessible in FDM. Shift factors from Time-Temperature Superposition, measured by small amplitude oscillatory shear, were used to calculate reasonable annealing times (min) at temperatures below the actual extrusion temperature. The extent of interdiffusion was then measured using neutron reflectivity. Analogous specimens were prepared to characterize the mechanical properties. FDM build parameters were then related to interdiffusion between welded layers and mechanical properties. Understating the relationship between build parameters, interdiffusion, and mechanical strength will allow FDM users to print stronger parts in an intelligent manner rather than using trial-and-error and build parameter lock-in.

  13. Mechanical analysis of lightweight constructions manufactured with fused deposition modeling

    Science.gov (United States)

    Bagsik, A.; Josupeit, S.; Schoeppner, V.; Klemp, E.

    2014-05-01

    Additive production techniques have the advantage of manufacturing parts without needing a forming tool. One of the most used additive manufacturing processes is "Fused Deposition Modeling" (FDM) which allows the production of prototypes and end-use parts. Due to the manufacture layer by layer, also complex part geometries can be created in one working step. Furthermore, lightweight parts with specific inner core structures can be manufactured in order to achieve good weightrelated strength properties. In this paper the mechanical behavior of lightweight parts manufactured with the 3D production system Fortus 400mc from Stratasys and the material Polyetherimide (PEI) with the trade name Ultem*9085 is analyzed. The test specimens were built up with different inner structures and building directions. Therefore, test specimens with known lightweight core geometries (e.g. corrugated and honeycomb cores) were designed. A four-point bending test was conducted to analyze the strength properties as well as the weight-related strength properties. Additionally the influence of the structure width, the structure wall thickness and the top layer thickness was analyzed using a honeycomb structure.

  14. Plasticized protein for 3D printing by fused deposition modeling

    Science.gov (United States)

    Chaunier, Laurent; Leroy, Eric; Della Valle, Guy; Lourdin, Denis

    2016-10-01

    The developments of Additive Manufacturing (AM) by Fused Deposition Modeling (FDM) now target new 3D printable materials, leading to novel properties like those given by biopolymers such as proteins: degradability, biocompatibility and edibility. Plasticized materials from zein, a storage protein issued from corn, present interesting thermomechanical and rheological properties, possibly matching with AM-FDM specifications. Thus commercial zein plasticized with 20% glycerol has a glass transition temperature (Tg) at about 42°C, after storage at intermediate relative humidity (RH=59%). Its principal mechanical relaxation at Tα ≈ 50°C leads to a drop of the elastic modulus from about 1.1 GPa, at ambient temperature, to 0.6 MPa at Tα+100°C. These values are in the same range as values obtained in the case of standard polymers for AM-FDM processing, as PLA and ABS, although relaxation mechanisms are likely different in these materials. Such results lead to the setting up of zein-based compositions printable by AM-FDM and allow processing bioresorbable printed parts, with designed 3D geometry and structure.

  15. The anthropogenic influence on Iron deposition over the oceans: a 3-D global modeling

    Science.gov (United States)

    Myriokefalitakis, Stelios; Mihalopoulos, Nikos; Baker, Alex; Kanakidou, Maria

    2014-05-01

    Iron (Fe) deposition over oceans is directly linked to the marine biological productivity and consequently to atmospheric CO2 concentrations. Experimental and modeling results support that both inorganic (sulphate, ammonium and nitrate) and organic (e.g. oxalate) ligands can increase the Fe mobilization. Mineral dust deposition is considered as the most important supply of bioavailable Fe in the oceans. Although, due to the low soil soluble iron fractions, atmospheric processes which are also related to anthropogenic emissions, can convert iron to more soluble forms in the atmosphere. Recent studies also support that anthropogenic emissions of Fe from combustion sources also significantly contribute to the dissolved Fe atmospheric pool. The evaluation of the impact of humans on atmospheric soluble or bioavailable Fe deposition remains challenging, since Fe mobilization due to changes in anthropogenic emissions is largely uncertain. In the present study, the global atmospheric Fe cycle is parameterized in the 3-D chemical transport global model TM4-ECPL and the model is used to calculate the Fe deposition over the oceans. The model considers explicitly organic, sulfur and nitrogen gas-phase chemistry, aqueous-phase organic chemistry, including oxalate and all major aerosol constituents. TM4-ECPL simulates the organic and inorganic ligand-promoted mineral Fe dissolution and also aqueous-phase photochemical reactions between different forms of Fe (III/II). Primary emissions of Fe associated with dust and soluble Fe from combustion processes as well as atmospheric processing of the emitted Fe is taken into account in the model Sensitivity simulations are performed to study the impact of anthropogenic emissions on Fe deposition. For this preindustrial, present and future emission scenarios are used in the model in order to examine the response of chemical composition of iron-containing aerosols to environmental changes. The release of soluble iron associated with

  16. A dynamical system of deposit and loan volumes based on the Lotka-Volterra model

    Science.gov (United States)

    Sumarti, N.; Nurfitriyana, R.; Nurwenda, W.

    2014-02-01

    In this research, we proposed a dynamical system of deposit and loan volumes of a bank using a predator-prey paradigm, where the predator is loan volumes, and the prey is deposit volumes. The existence of loan depends on the existence of deposit because the bank will allocate the loan volume from a portion of the deposit volume. The dynamical systems have been constructed are a simple model, a model with Michaelis-Menten Response and a model with the Reserve Requirement. Equilibria of the systems are analysed whether they are stable or unstable based on their linearised system.

  17. Inclusion of Floc Growth in a Simple River Mouth Plume Model and Its Effect on Deposition Rate and Deposit Pattern

    Science.gov (United States)

    Strom, K.

    2014-12-01

    Rivers are the primary conduits for delivery of sediments and organic matter to the sea. This is visually evident when sediment-laden rivers enter coastal waters, producing sediment plumes. The sediment and organic material from such plumes may deposit and be preserved in estuarine and deltaic zones, or may be carried and mixed by ocean currents to deposit elsewhere on the shelf. Both of these outcomes are governed in large part by depositional mechanics that are dependent, at least in part, on the settling velocity of the sediment. This is especially true in modeling, where the settling velocity has been noted to be the primary controlling parameter for accurate prediction of depositional patters from river plumes. Settling velocity is largely controlled by grain size, shape, and density, which for mud can be quite dynamic due to the process of flocculation. Flocculation yields mud aggregates of variable size and density that may be dependent on the turbulent energy and salt levels under which they were formed. Since turbulent energy and salinity both change in river mouth jet/plumes, the dynamic flocculation process may exert significant control on the eventual distribution of sediment in these zones. In this study, two different approaches to floc modeling are integrated into a steady-state river mouth plume integral model. The two floc models are (1) a version of the Winterwerp (1998) model, and (2) a condition-dependent equilibrium floc size model similar to what is typically used in large-scale 2 and 3D hydraulic and sediment transport simulations. Inclusion of these two models into the buoyant river-mouth plume equations allows for the settling velocity of the mud to be functionally tied to the turbulent shear rate and suspended sediment concentration. The concentration and deposition rates are then compared through the plume both without and with the inclusion of the two different floc treatments. The role that entrainment of ambient fluid plays in the

  18. A model for simulating the deposition of water-lain sediments in dryland environments

    Directory of Open Access Journals (Sweden)

    M. A. Bunch

    2004-01-01

    preservation. Future developments will include representation of aeolian deposition, mass wasting and hyper-concentrated (debris flows. Keywords: avulsion, channel, deposition, drylands, erosion, gravel armouring, modelling, sheet-flood, transport capacity

  19. A Model for Sequential First Order Phage Transitions Occurring in the Underpotential Deposition of Metals,

    Science.gov (United States)

    1991-04-29

    22217-5000 1 1 1 11. TITLE (incde Securiy Clasicaton) A MODEL FOR SEQUENTIAL FIRST ORDER PHAGE TRANSITIONS OCCURRING IN THE UNDERPOTENTIAL DEPOSITION ...block number) FIELD GROUP SUB-GROUP 3 RACT (Continue on reverse if necessary and identify by block number) A model for the underpotential deposition of...this application we study the underpotential deposition of Cu on a Au(III) surface in the presence of sulfate ions. The voltammogram of the

  20. Numerical analysis of synthetic granulate deposition in a physical model study

    Institute of Scientific and Technical Information of China (English)

    Gabriele HARB; Stefan HAUN; Josef SCHNEIDER; Nils Reidar B. OLSEN

    2014-01-01

    The current study focuses on the application of a three-dimensional numerical model for the prediction of morphological bed changes. The sediment deposition in a reservoir during a 10-year-flood was investigated and the results of the simulation were validated with data derived from a physical model study. Because of the small grain sizes in the prototype, synthetic granulate was used in the physical model. The numerical computation domain was a reproduction of the physical model, including the grain sizes and the density of the particles, in order to ensure comparability. The CFD code SSIIM, which solves the RANS-equations in three-dimensions, was used for the simulations. The sediment transport in SSIIM is divided into suspended sediment transport, computed by solving the convection-diffusion equation, and bed-load transport, calculated by an empirical formula. The results of the numerical simulation correspond well to the results of the physical model study. The simulated location and the pattern of the sediment deposition in the reservoir are an accurate representation of the observed distribution in the physical model.

  1. Modeling the influence of incident angle and deposition rate on a nanostructure grown by oblique angle deposition

    Science.gov (United States)

    Li, Kun-Dar; Dong, Yu-Wei

    2017-02-01

    In this study, numerical approaches were applied to theoretically investigate the influence of process parameters, such as the incident angle and the deposition rate, on the nanostructural formation of thin films by oblique angle deposition (OAD). A continuum model was first developed, and the atomic diffusion, shadowing effect and steering effect were incorporated in the formation mechanisms of the surface morphology and nanostructure of the deposited films. A characteristic morphology of columnar nanorods corresponding to an OAD was well reproduced through this kinetic model. With the increase of the incident angle, the shadowing effect played a significant role in the columnar structures and the ratio of the surface area to volume was raised, implying a high level of voids in the nanostructures. When the deposition rate decreased, the porosity was notably suppressed due to the atomic diffusion in the growth process. These simulation results coincide well with many experimental observations. With the manipulation of the numerical simulations, the underlying mechanisms of the morphological formation during OAD were revealed, which also provided plentiful information to stimulate the process designs for manufacturing advanced materials.

  2. MEASUREMENT AND MODELING OF THE DRY DEPOSITION OF PEROXIDES

    Science.gov (United States)

    Measurements of the dry deposition velocity (Vd) of hydrogen peroxide (H2O2) and total organic peroxides (ROOH) were made during four experiments at three forested sites. Details and uncertainties associated with the measurement of peroxide...

  3. Improving Landslide Susceptibility Modeling Using an Empirical Threshold Scheme for Excluding Landslide Deposition

    Science.gov (United States)

    Tsai, F.; Lai, J. S.; Chiang, S. H.

    2015-12-01

    Landslides are frequently triggered by typhoons and earthquakes in Taiwan, causing serious economic losses and human casualties. Remotely sensed images and geo-spatial data consisting of land-cover and environmental information have been widely used for producing landslide inventories and causative factors for slope stability analysis. Landslide susceptibility, on the other hand, can represent the spatial likelihood of landslide occurrence and is an important basis for landslide risk assessment. As multi-temporal satellite images become popular and affordable, they are commonly used to generate landslide inventories for subsequent analysis. However, it is usually difficult to distinguish different landslide sub-regions (scarp, debris flow, deposition etc.) directly from remote sensing imagery. Consequently, the extracted landslide extents using image-based visual interpretation and automatic detections may contain many depositions that may reduce the fidelity of the landslide susceptibility model. This study developed an empirical thresholding scheme based on terrain characteristics for eliminating depositions from detected landslide areas to improve landslide susceptibility modeling. In this study, Bayesian network classifier is utilized to build a landslide susceptibility model and to predict sequent rainfall-induced shallow landslides in the Shimen reservoir watershed located in northern Taiwan. Eleven causative factors are considered, including terrain slope, aspect, curvature, elevation, geology, land-use, NDVI, soil, distance to fault, river and road. Landslide areas detected using satellite images acquired before and after eight typhoons between 2004 to 2008 are collected as the main inventory for training and verification. In the analysis, previous landslide events are used as training data to predict the samples of the next event. The results are then compared with recorded landslide areas in the inventory to evaluate the accuracy. Experimental results

  4. Induction of complement proteins in a mouse model for cerebral microvascular Aβ deposition

    Directory of Open Access Journals (Sweden)

    DeFilippis Kelly

    2007-09-01

    Full Text Available Abstract The deposition of amyloid β-protein (Aβ in cerebral vasculature, known as cerebral amyloid angiopathy (CAA, is a common pathological feature of Alzheimer's disease and related disorders. In familial forms of CAA single mutations in the Aβ peptide have been linked to the increase of vascular Aβ deposits accompanied by a strong localized activation of glial cells and elevated expression of neuroinflammatory mediators including complement proteins. We have developed human amyloid-β precursor protein transgenic mice harboring two CAA Aβ mutations (Dutch E693Q and Iowa D694N that mimic the prevalent cerebral microvascular Aβ deposition observed in those patients, and the Swedish mutations (K670N/M671L to increase Aβ production. In these Tg-SwDI mice, we have reported predominant fibrillar Aβ along microvessels in the thalamic region and diffuse plaques in cortical region. Concurrently, activated microglia and reactive astrocytes have been detected primarily in association with fibrillar cerebral microvascular Aβ in this model. Here we show that three native complement components in classical and alternative complement pathways, C1q, C3, and C4, are elevated in Tg-SwDI mice in regions rich in fibrillar microvascular Aβ. Immunohistochemical staining of all three proteins was increased in thalamus, hippocampus, and subiculum, but not frontal cortex. Western blot analysis showed significant increases of all three proteins in the thalamic region (with hippocampus as well as the cortical region, except C3 that was below detection level in cortex. Also, in the thalamic region (with hippocampus, C1q and C3 mRNAs were significantly up-regulated. These complement proteins appeared to be expressed largely by activated microglial cells associated with the fibrillar microvascular Aβ deposits. Our findings demonstrate that Tg-SwDI mice exhibit elevated complement protein expression in response to fibrillar vascular Aβ deposition that is

  5. Induction of complement proteins in a mouse model for cerebral microvascular A beta deposition.

    Science.gov (United States)

    Fan, Rong; DeFilippis, Kelly; Van Nostrand, William E

    2007-09-18

    The deposition of amyloid beta-protein (A beta) in cerebral vasculature, known as cerebral amyloid angiopathy (CAA), is a common pathological feature of Alzheimer's disease and related disorders. In familial forms of CAA single mutations in the A beta peptide have been linked to the increase of vascular A beta deposits accompanied by a strong localized activation of glial cells and elevated expression of neuroinflammatory mediators including complement proteins. We have developed human amyloid-beta precursor protein transgenic mice harboring two CAA A beta mutations (Dutch E693Q and Iowa D694N) that mimic the prevalent cerebral microvascular A beta deposition observed in those patients, and the Swedish mutations (K670N/M671L) to increase A beta production. In these Tg-SwDI mice, we have reported predominant fibrillar A beta along microvessels in the thalamic region and diffuse plaques in cortical region. Concurrently, activated microglia and reactive astrocytes have been detected primarily in association with fibrillar cerebral microvascular A beta in this model. Here we show that three native complement components in classical and alternative complement pathways, C1q, C3, and C4, are elevated in Tg-SwDI mice in regions rich in fibrillar microvascular A beta. Immunohistochemical staining of all three proteins was increased in thalamus, hippocampus, and subiculum, but not frontal cortex. Western blot analysis showed significant increases of all three proteins in the thalamic region (with hippocampus) as well as the cortical region, except C3 that was below detection level in cortex. Also, in the thalamic region (with hippocampus), C1q and C3 mRNAs were significantly up-regulated. These complement proteins appeared to be expressed largely by activated microglial cells associated with the fibrillar microvascular A beta deposits. Our findings demonstrate that Tg-SwDI mice exhibit elevated complement protein expression in response to fibrillar vascular A beta deposition

  6. Modeling and mapping of atmospheric mercury deposition in adirondack park, new york.

    Directory of Open Access Journals (Sweden)

    Xue Yu

    Full Text Available The Adirondacks of New York State, USA is a region that is sensitive to atmospheric mercury (Hg deposition. In this study, we estimated atmospheric Hg deposition to the Adirondacks using a new scheme that combined numerical modeling and limited experimental data. The majority of the land cover in the Adirondacks is forested with 47% of the total area deciduous, 20% coniferous and 10% mixed. We used litterfall plus throughfall deposition as the total atmospheric Hg deposition to coniferous and deciduous forests during the leaf-on period, and wet Hg deposition plus modeled atmospheric dry Hg deposition as the total Hg deposition to the deciduous forest during the leaf-off period and for the non-forested areas year-around. To estimate atmospheric dry Hg deposition we used the Big Leaf model. The average atmospheric Hg deposition to the Adirondacks was estimated as 17.4 [Formula: see text]g m[Formula: see text] yr[Formula: see text] with a range of -3.7-46.0 [Formula: see text]g m[Formula: see text] yr[Formula: see text]. Atmospheric Hg dry deposition (370 kg yr[Formula: see text] was found to be more important than wet deposition (210 kg yr[Formula: see text] to the entire Adirondacks (2.4 million ha. The spatial pattern showed a large variation in atmospheric Hg deposition with scattered areas in the eastern Adirondacks having total Hg deposition greater than 30 μg m(-2 yr(-1, while the southwestern and the northern areas received Hg deposition ranging from 25-30 μg m(-2 yr(-1.

  7. A High Fidelity Multiphysics Framework for Modeling CRUD Deposition on PWR Fuel Rods

    Science.gov (United States)

    Walter, Daniel John

    Corrosion products on the fuel cladding surfaces within pressurized water reactor fuel assemblies have had a significant impact on reactor operation. These types of deposits are referred to as CRUD and can lead to power shifts, as a consequence of the accumulation of solid boron phases on the fuel rod surfaces. Corrosion deposits can also lead to fuel failure resulting from localized corrosion, where the increased thermal resistance of the deposit leads to higher cladding temperatures. The prediction of these occurrences requires a comprehensive model of local thermal hydraulic and chemical processes occurring in close proximity to the cladding surface, as well as their driving factors. Such factors include the rod power distribution, coolant corrosion product concentration, as well as the feedbacks between heat transfer, fluid dynamics, chemistry, and neutronics. To correctly capture the coupled physics and corresponding feedbacks, a high fidelity framework is developed that predicts three-dimensional CRUD deposition on a rod-by-rod basis. Multiphysics boundary conditions resulting from the coupling of heat transfer, fluid dynamics, coolant chemistry, CRUD deposition, neutron transport, and nuclide transmutation inform the CRUD deposition solver. Through systematic parametric sensitivity studies of the CRUD property inputs, coupled boundary conditions, and multiphysics feedback mechanisms, the most important variables of multiphysics CRUD modeling are identified. Moreover, the modeling framework is challenged with a blind comparison of plant data to predictions by a simulation of a sub-assembly within the Seabrook nuclear plant that experienced CRUD induced fuel failures. The physics within the computational framework are loosely coupled via an operator-splitting technique. A control theory approach is adopted to determine the temporal discretization at which to execute a data transfer from one physics to another. The coupled stepsize selection is viewed as a

  8. Interlayer utilization (including metal borides) for subsequent deposition of NSD films via microwave plasma CVD on 316 and 440C stainless steels

    Science.gov (United States)

    Ballinger, Jared

    Diamond thin films have promising applications in numerous fields due to the extreme properties of diamonds in conjunction with the surface enhancement of thin films. Biomedical applications are numerous including temporary implants and various dental and surgical instruments. The unique combination of properties offered by nanostructured diamond films that make it such an attractive surface coating include extreme hardness, low obtainable surface roughness, excellent thermal conductivity, and chemical inertness. Regrettably, numerous problems exist when attempting to coat stainless steel with diamond generating a readily delaminated film: outward diffusion of iron to the surface, inward diffusion of carbon limiting necessary surface carbon precursor, and the mismatch between the coefficients of thermal expansion yielding substantial residual stress. While some exotic methods have been attempted to overcome these hindrances, the most common approach is the use of an intermediate layer between the stainless steel substrate and the diamond thin film. In this research, both 316 stainless steel disks and 440C stainless steel ball bearings were tested with interlayers including discrete coatings and graded, diffusion-based surface enhancements. Titanium nitride and thermochemical diffusion boride interlayers were both examined for their effectiveness at allowing for the growth of continuous and adherent diamond films. Titanium nitride interlayers were deposited by cathodic arc vacuum deposition on 440C bearings. Lower temperature diamond processing resulted in improved surface coverage after cooling, but ultimately, both continuity and adhesion of the nanostructured diamond films were unacceptable. The ability to grow quality diamond films on TiN interlayers is in agreement with previous work on iron and low alloy steel substrates, and the similarly seen inadequate adhesion strength is partially a consequence of the lacking establishment of an interfacial carbide phase

  9. Grade and Tonnage Model of Contact Metasomatic Copper Deposit in China

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Grade-tonnage model is one of the research frontiers of systematical exploration theory. Based on the “Reserve Database of Mineral Resources in China (1997)”, this paper establishes the geological model, grade model, tonnage model, grade-tonnage model and tonnage-sequence model of contact metasomatic copper deposits in China. The mathematical properties of these models are described in detail.

  10. Predicting paleohydraulics from storm surge and tsunami deposits: Using experiments to improve inverse model accuracy

    Science.gov (United States)

    Johnson, Joel P. L.; Delbecq, Katie; Kim, Wonsuck

    2017-04-01

    How accurately can flow depths and velocities of storm surges and tsunamis be predicted from sedimentary deposits? Inverse models have been proposed to quantify hydrodynamics from suspended sediment deposits, but assumptions about how deposit grain size distributions (GSDs) are influenced by flow characteristics remain largely untested. Using laboratory experiments, we evaluate an existing advection-settling model in which suspended sediment transport is assumed to reflect horizontal advection (constraining flow velocity) and vertical settling from the water surface (constraining depth). While the original model assumed that depth and velocity would be best predicted by the deposit D95 (the diameter for which 95% of the cumulative GSD is finer), we find that the median deposit size (D50) tends to better predict mean flow hydraulics. Two key factors influencing how flow characteristics control deposit GSDs are (a) dispersion caused by turbulence and (b) the transport distance required for suspension and settling to effectively sort grains. Deposits proximal to sediment sources primarily reflect the source GSD, while deposits farther from the source preferentially represent transport-dependent sorting. In our experimental data, transport distances longer than 1-2 advection length scales are required for the deposit GSD to reasonably predict flow depths and velocities. These results suggest ways that event deposits can be used to more accurately assess coastal risks from tsunamis and storm waves.

  11. ATEFlap aerodynamic model, a dynamic stall model including the effects of trailing edge flap deflection

    Energy Technology Data Exchange (ETDEWEB)

    Bergami, L.; Gaunaa, M.

    2012-02-15

    The report presents the ATEFlap aerodynamic model, which computes the unsteady lift, drag and moment on a 2D airfoil section equipped with Adaptive Trailing Edge Flap. The model captures the unsteady response related to the effects of the vorticity shed into the wake, and the dynamics of flow separation a thin-airfoil potential flow model is merged with a dynamic stall model of the Beddoes-Leishmann type. The inputs required by the model are steady data for lift, drag, and moment coefficients as function of angle of attack and flap deflection. Further steady data used by the Beddoes- Leishmann dynamic stall model are computed in an external preprocessor application, which gives the user the possibility to verify, and eventually correct, the steady data passed to the aerodynamic model. The ATEFlap aerodynamic model is integrated in the aeroelastic simulation tool HAWC2, thus al- lowing to simulate the response of a wind turbine with trailing edge flaps on the rotor. The algorithms used by the preprocessor, and by aerodynamic model are presented, and modifications to previous implementations of the aerodynamic model are briefly discussed. The performance and the validity of the model are verified by comparing the dynamic response computed by the ATEFlap with solutions from CFD simulations. (Author)

  12. Importance of global aerosol modeling including secondary organic aerosol formed from monoterpene

    OpenAIRE

    Goto, Daisuke; Takemura, Toshihiko; Nakajima, Teruyuki

    2008-01-01

    A global three-dimensional aerosol transport-radiation model, coupled to an atmospheric general circulation model (AGCM), has been extended to improve the model process for organic aerosols, particularly secondary organic aerosols (SOA), and to estimate SOA contributions to direct and indirect radiative effects. Because the SOA formation process is complicated and unknown, the results in different model simulations include large differences. In this work, we simulate SOA production assuming v...

  13. MODEL ANALYSIS AND PARAMETER EXTRACTION FOR MOS CAPACITOR INCLUDING QUANTUM MECHANICAL EFFECTS

    Institute of Scientific and Technical Information of China (English)

    Hai-yan Jiang; Ping-wen Zhang

    2006-01-01

    The high frequency CV curves of MOS capacitor have been studied. It is shown that semiclassical model is a good approximation to quantum model and approaches to classical model when the oxide layer is thick. This conclusion provides us an efficient (semiclassical) model including quantum mechanical effects to do parameter extraction for ultrathi noxide device. Here the effective extracting strategy is designed and numerical experiments demonstrate the validity of the strategy.

  14. Sedimentary exhalative (sedex) zinc-lead-silver deposit model

    Science.gov (United States)

    Emsbo, Poul; Seal, Robert R.; Breit, George N.; Diehl, Sharon F.; Shah, Anjana K.

    2016-10-28

    This report draws on previous syntheses and basic research studies of sedimentary exhalative (sedex) deposits to arrive at the defining criteria, both descriptive and genetic, for sedex-type deposits. Studies of the tectonic, sedimentary, and fluid evolution of modern and ancient sedimentary basins have also been used to select defining criteria. The focus here is on the geologic characteristics of sedex deposit-hosting basins that contain greater than 10 million metric tons of zinc and lead. The enormous size of sedex deposits strongly suggests that basin-scale geologic processes are involved in their formation. It follows that mass balance constraints of basinal processes can provide a conceptual underpinning for the evaluation of potential ore-forming mechanisms and the identification of geologic indicators for ore potential in specific sedimentary basins. Empirical data and a genetic understanding of the physicochemical, geologic, and mass balance conditions required for each of these elements are used to establish a hierarchy of quantifiable geologic criteria that can be used in U.S. Geological Survey national assessments.  In addition, this report also provides a comprehensive evaluation of environmental considerations associated with the mining of sedex deposits.

  15. Advanced optical modelling of dynamically deposited silicon nitride layers

    Science.gov (United States)

    Borojevic, N.; Hameiri, Z.; Winderbaum, S.

    2016-07-01

    Dynamic deposition of silicon nitrides using in-line plasma enhanced chemical vapor deposition systems results in non-uniform structure of the dielectric layer. Appropriate analysis of such layers requires the optical characterization to be performed as a function of the layer's depth. This work presents a method to characterize dynamically deposited silicon nitride layers. The method is based on the fitting of experimental spectroscopic ellipsometry data via grading of Tauc-Lorentz optical parameters through the depth of the layer. When compared with the standard Tauc-Lorentz fitting procedure, used in previous studies, the improved method is demonstrating better quality fits to the experimental data and revealing more accurate optical properties of the dielectric layers. The most significant advantage of the method is the ability to extract the depth profile of the optical properties along the direction of the layer normal. This is enabling a better understanding of layers deposited using dynamic plasma enhanced chemical vapor deposition systems frequently used in the photovoltaic industry.

  16. METHODS FOR MODELING PARTICLE DEPOSITION AS A FUNCTION OF AGE. (R827352C004)

    Science.gov (United States)

    The purpose of this paper is to review the application of mathematical models of inhaled particle deposition to people of various ages. The basic considerations of aerosol physics, biological characteristics and model structure are presented along with limitations inherent in ...

  17. A finite element model of the face including an orthotropic skin model under in vivo tension.

    Science.gov (United States)

    Flynn, Cormac; Stavness, Ian; Lloyd, John; Fels, Sidney

    2015-01-01

    Computer models of the human face have the potential to be used as powerful tools in surgery simulation and animation development applications. While existing models accurately represent various anatomical features of the face, the representation of the skin and soft tissues is very simplified. A computer model of the face is proposed in which the skin is represented by an orthotropic hyperelastic constitutive model. The in vivo tension inherent in skin is also represented in the model. The model was tested by simulating several facial expressions by activating appropriate orofacial and jaw muscles. Previous experiments calculated the change in orientation of the long axis of elliptical wounds on patients' faces for wide opening of the mouth and an open-mouth smile (both 30(o)). These results were compared with the average change of maximum principal stress direction in the skin calculated in the face model for wide opening of the mouth (18(o)) and an open-mouth smile (25(o)). The displacements of landmarks on the face for four facial expressions were compared with experimental measurements in the literature. The corner of the mouth in the model experienced the largest displacement for each facial expression (∼11-14 mm). The simulated landmark displacements were within a standard deviation of the measured displacements. Increasing the skin stiffness and skin tension generally resulted in a reduction in landmark displacements upon facial expression.

  18. Modelling the ecosystem effects of nitrogen deposition: Model of Ecosystem Retention and Loss of Inorganic Nitrogen (MERLIN

    Directory of Open Access Journals (Sweden)

    B. J. Cosby

    1997-01-01

    Full Text Available A catchment-scale mass-balance model of linked carbon and nitrogen cycling in ecosystems has been developed for simulating leaching losses of inorganic nitrogen. The model (MERLIN considers linked biotic and abiotic processes affecting the cycling and storage of nitrogen. The model is aggregated in space and time and contains compartments intended to be observable and/or interpretable at the plot or catchment scale. The structure of the model includes the inorganic soil, a plant compartment and two soil organic compartments. Fluxes in and out of the ecosystem and between compartments are regulated by atmospheric deposition, hydrological discharge, plant uptake, litter production, wood production, microbial immobilization, mineralization, nitrification, and denitrification. Nitrogen fluxes are controlled by carbon productivity, the C:N ratios of organic compartments and inorganic nitrogen in soil solution. Inputs required are: 1 temporal sequences of carbon fluxes and pools- 2 time series of hydrological discharge through the soils, 3 historical and current external sources of inorganic nitrogen; 4 current amounts of nitrogen in the plant and soil organic compartments; 5 constants specifying the nitrogen uptake and immobilization characteristics of the plant and soil organic compartments; and 6 soil characteristics such as depth, porosity, bulk density, and anion/cation exchange constants. Outputs include: 1 concentrations and fluxes of NO3 and NH4 in soil solution and runoff; 2 total nitrogen contents of the organic and inorganic compartments; 3 C:N ratios of the aggregated plant and soil organic compartments; and 4 rates of nitrogen uptake and immobilization and nitrogen mineralization. The behaviour of the model is assessed for a combination of land-use change and nitrogen deposition scenarios in a series of speculative simulations. The results of the simulations are in broad agreement with observed and hypothesized behaviour of nitrogen

  19. Modelling loans and deposits during electoral years i n Romania

    Directory of Open Access Journals (Sweden)

    Nicolae - Marius JULA

    2015-06-01

    Full Text Available This paper analyzes the effect of electoral years on loans and deposits for population in Romania. Using monthly data regarding the total loans and deposits, we identify the significance of the electoral timing on population´s behavior regarding financial decisions. We estimate that there are small changes in population´s affinity for increase in the indebtedness or for savings. We use dummy variables for electoral periods, and when these are econometrically significant there is an evidence of the influence of the electoral timings in population´s financial decisions.

  20. Modeling of etch profile evolution including wafer charging effects using self consistent ion fluxes

    Energy Technology Data Exchange (ETDEWEB)

    Hoekstra, R.J.; Kushner, M.J. [Univ. of Illinois, Urbana, IL (United States). Dept. of Electrical and Computer Engineering

    1996-12-31

    As high density plasma reactors become more predominate in industry, the need has intensified for computer aided design tools which address both equipment issues such as ion flux uniformity onto the water and process issues such etch feature profile evolution. A hierarchy of models has been developed to address these issues with the goal of producing a comprehensive plasma processing design capability. The Hybrid Plasma Equipment Model (HPEM) produces ion and neutral densities, and electric fields in the reactor. The Plasma Chemistry Monte Carlo Model (PCMC) determines the angular and energy distributions of ion and neutral fluxes to the wafer using species source functions, time dependent bulk electric fields, and sheath potentials from the HPEM. These fluxes are then used by the Monte Carlo Feature Profile Model (MCFP) to determine the time evolution of etch feature profiles. Using this hierarchy, the effects of physical modifications of the reactor, such as changing wafer clamps or electrode structures, on etch profiles can be evaluated. The effects of wafer charging on feature evolution are examined by calculating the fields produced by the charge deposited by ions and electrons within the features. The effect of radial variations and nonuniformity in angular and energy distribution of the reactive fluxes on feature profiles and feature charging will be discussed for p-Si etching in inductively-coupled plasma (ICP) sustained in chlorine gas mixtures. The effects of over- and under-wafer topography on etch profiles will also be discussed.

  1. The adsorptive-kinetic model of in-situ phosphorus doped film polysilicon deposition process

    Directory of Open Access Journals (Sweden)

    Nalivaiko O. Yu.

    2009-11-01

    Full Text Available The investigation of deposition kinetics of in-situ phosphorus doped polysilicon films has been performed. The adsorptive-kinetic model of in-situ phosphorus doped polysilicon deposition has been developed. The values of heterogeneous reaction constants and constants, which describe the desorption process for monosilane and phosphine, have been defined. The optimal process conditions, which provide the acceptable deposition rate, thickness uniformity, high doping level and conformal step coverage, have been founded.

  2. Hot DA white dwarf model atmosphere calculations: Including improved Ni PI cross sections

    CERN Document Server

    Preval, S P; Badnell, N R; Hubeny, I; Holberg, J B

    2016-01-01

    To calculate realistic models of objects with Ni in their atmospheres, accurate atomic data for the relevant ionization stages needs to be included in model atmosphere calculations. In the context of white dwarf stars, we investigate the effect of changing the Ni {\\sc iv}-{\\sc vi} bound-bound and bound-free atomic data has on model atmosphere calculations. Models including PICS calculated with {\\sc autostructure} show significant flux attenuation of up to $\\sim 80$\\% shortward of 180\\AA\\, in the EUV region compared to a model using hydrogenic PICS. Comparatively, models including a larger set of Ni transitions left the EUV, UV, and optical continua unaffected. We use models calculated with permutations of this atomic data to test for potential changes to measured metal abundances of the hot DA white dwarf G191-B2B. Models including {\\sc autostructure} PICS were found to change the abundances of N and O by as much as $\\sim 22$\\% compared to models using hydrogenic PICS, but heavier species were relatively unaf...

  3. Mathematical Model of Thyristor Inverter Including a Series-parallel Resonant Circuit

    Directory of Open Access Journals (Sweden)

    Miroslaw Luft

    2008-01-01

    Full Text Available The article presents a mathematical model of thyristor inverter including a series-parallel resonant circuit with theaid of state variable method. Maple procedures are used to compute current and voltage waveforms in the inverter.

  4. A deposit model for magmatic iron-titanium-oxide deposits related to Proterozoic massif anorthosite plutonic suites

    Science.gov (United States)

    Woodruff, Laurel G.; Nicholson, Suzanne W.; Fey, David L.

    2013-01-01

    This descriptive model for magmatic iron-titanium-oxide (Fe-Ti-oxide) deposits hosted by Proterozoic age massif-type anorthosite and related rock types presents their geological, mineralogical, geochemical, and geoenvironmental attributes. Although these Proterozoic rocks are found worldwide, the majority of known deposits are found within exposed rocks of the Grenville Province, stretching from southwestern United States through eastern Canada; its extension into Norway is termed the Rogaland Anorthosite Province. This type of Fe-Ti-oxide deposit dominated by ilmenite rarely contains more than 300 million tons of ore, with between 10- to 45-percent titanium dioxide (TiO2), 32- to 45-percent iron oxide (FeO), and less than 0.2-percent vanadium (V). The origin of these typically discordant ore deposits remains as enigmatic as the magmatic evolution of their host rocks. The deposits clearly have a magmatic origin, hosted by an age-constrained unique suite of rocks that likely are the consequence of a particular combination of tectonic circumstances, rather than any a priori temporal control. Principal ore minerals are ilmenite and hemo-ilmenite (ilmenite with extensive hematite exsolution lamellae); occurrences of titanomagnetite, magnetite, and apatite that are related to this deposit type are currently of less economic importance. Ore-mineral paragenesis is somewhat obscured by complicated solid solution and oxidation behavior within the Fe-Ti-oxide system. Anorthosite suites hosting these deposits require an extensive history of voluminous plagioclase crystallization to develop plagioclase-melt diapirs with entrained Fe-Ti-rich melt rising from the base of the lithosphere to mid- and upper-crustal levels. Timing and style of oxide mineralization are related to magmatic and dynamic evolution of these diapiric systems and to development and movement of oxide cumulates and related melts. Active mines have developed large open pits with extensive waste-rock piles, but

  5. Carbonatites of the World, Explored Deposits of Nb and REE - Database and Grade and Tonnage Models

    Science.gov (United States)

    Berger, Vladimir I.; Singer, Donald A.; Orris, Greta J.

    2009-01-01

    This report is based on published tonnage and grade data on 58 Nb- and rare-earth-element (REE)-bearing carbonatite deposits that are mostly well explored and are partially mined or contain resources of these elements. The deposits represent only a part of the known 527 carbonatites around the world, but they are characterized by reliable quantitative data on ore tonnages and grades of niobium and REE. Grade and tonnage models are an important component of mineral resource assessments. Carbonatites present one of the main natural sources of niobium and rare-earth elements, the economic importance of which grows consistently. A purpose of this report is to update earlier publications. New information about known deposits, as well as data on new deposits published during the last decade, are incorporated in the present paper. The compiled database (appendix 1; linked to right) contains 60 explored Nb- and REE-bearing carbonatite deposits - resources of 55 of these deposits are taken from publications. In the present updated grade-tonnage model we have added 24 deposits comparing with the previous model of Singer (1998). Resources of most deposits are residuum ores in the upper part of carbonatite bodies. Mineral-deposit models are important in exploration planning and quantitative resource assessments for two reasons: (1) grades and tonnages among deposit types vary significantly, and (2) deposits of different types are present in distinct geologic settings that can be identified from geologic maps. Mineral-deposit models combine the diverse geoscience information on geology, mineral occurrences, geophysics, and geochemistry used in resource assessments and mineral exploration. Globally based deposit models allow recognition of important features and demonstrate how common different features are. Well-designed deposit models allow geologists to deduce possible mineral-deposit types in a given geologic environment, and the grade and tonnage models allow economists to

  6. Prediction Model Based on the Grey Theory for Tackling Wax Deposition in Oil Pipelines

    Institute of Scientific and Technical Information of China (English)

    Ming Wu; Shujuan Qiu; Jianfeng Liu; Ling Zhao

    2005-01-01

    Problems involving wax deposition threaten seriously crude pipelines both economically and operationally. Wax deposition in oil pipelines is a complicated problem having a number of uncertainties and indeterminations. The Grey System Theory is a suitable theory for coping with systems in which some information is clear and some is not, so it is an adequate model for studying the process of wax deposition.In order to predict accurately wax deposition along a pipeline, the Grey Model was applied to fit the data of wax deposition rate and the thickness of the deposited wax layer on the pipe-wall, and to give accurate forecast on wax deposition in oil pipelines. The results showed that the average residential error of the Grey Prediction Model is smaller than 2%. They further showed that this model exhibited high prediction accuracy. Our investigation proved that the Grey Model is a viable means for forecasting wax deposition.These findings offer valuable references for the oil industry and for firms dealing with wax cleaning in oil pipelines.

  7. An improved parameterisation of ozone dry deposition to the ocean and its impact in a global climate-chemistry model

    Science.gov (United States)

    Luhar, Ashok K.; Galbally, Ian E.; Woodhouse, Matthew T.; Thatcher, Marcus

    2017-03-01

    Schemes used to parameterise ozone dry deposition velocity at the oceanic surface mainly differ in terms of how the dominant term of surface resistance is parameterised. We examine three such schemes and test them in a global climate-chemistry model that incorporates meteorological nudging and monthly-varying reactive-gas emissions. The default scheme invokes the commonly used assumption that the water surface resistance is constant. The other two schemes, named the one-layer and two-layer reactivity schemes, include the simultaneous influence on the water surface resistance of ozone solubility in water, waterside molecular diffusion and turbulent transfer, and a first-order chemical reaction of ozone with dissolved iodide. Unlike the one-layer scheme, the two-layer scheme can indirectly control the degree of interaction between chemical reaction and turbulent transfer through the specification of a surface reactive layer thickness. A comparison is made of the modelled deposition velocity dependencies on sea surface temperature (SST) and wind speed with recently reported cruise-based observations. The default scheme overestimates the observed deposition velocities by a factor of 2-4 when the chemical reaction is slow (e.g. under colder SSTs in the Southern Ocean). The default scheme has almost no temperature, wind speed, or latitudinal variations in contrast with the observations. The one-layer scheme provides noticeably better variations, but it overestimates deposition velocity by a factor of 2-3 due to an enhancement of the interaction between chemical reaction and turbulent transfer. The two-layer scheme with a surface reactive layer thickness specification of 2.5 µm, which is approximately equal to the reaction-diffusive length scale of the ozone-iodide reaction, is able to simulate the field measurements most closely with respect to absolute values as well as SST and wind-speed dependence. The annual global oceanic deposition of ozone determined using this

  8. PRACTICAL AND PREDICTIVE MODELLING OF ORE DEPOSITS IN HYDROTHERMAL SYSTEMS

    Institute of Scientific and Technical Information of China (English)

    ZHAO Chong-bin; B.E.Hobbs; H.B.Muhlhaus; A.Ord

    2001-01-01

    @@ Over the past five years,we have been making efforts to develop a practical and predictive tool to explore for giant ore deposits in hydrothermal systems.Towards this goal,a significant progress has been made towards a better understanding of the basic physical and chemical processes behind ore body formation and mineralization in hydrothermal systems.

  9. PRACTICAL AND PREDICTIVE MODELLING OF ORE DEPOSITS IN HYDROTHERMAL SYSTEMS

    Institute of Scientific and Technical Information of China (English)

    ZHAO; Chong-bin; B.E.Hobbs; H.B.Muhlhaus; A.Ord

    2001-01-01

    Over the past five years,we have been making efforts to develop a practical and predictive tool to explore for giant ore deposits in hydrothermal systems.Towards this goal,a significant progress has been made towards a better understanding of the basic physical and chemical processes behind ore body formation and mineralization in hydrothermal systems.……

  10. A Verilog-A large signal model for InP DHBT including thermal effects

    Science.gov (United States)

    Yuxia, Shi; Zhi, Jin; Zhijian, Pan; Yongbo, Su; Yuxiong, Cao; Yan, Wang

    2013-06-01

    A large signal model for InP/InGaAs double heterojunction bipolar transistors including thermal effects has been reported, which demonstrated good agreements of simulations with measurements. On the basis of the previous model in which the double heterojunction effect, current blocking effect and high current effect in current expression are considered, the effect of bandgap narrowing with temperature has been considered in transport current while a formula for model parameters as a function of temperature has been developed. This model is implemented by Verilog-A and embedded in ADS. The proposed model is verified with DC and large signal measurements.

  11. Observation- and model-based estimates of particulate dry nitrogen deposition to the oceans

    Science.gov (United States)

    Baker, Alex R.; Kanakidou, Maria; Altieri, Katye E.; Daskalakis, Nikos; Okin, Gregory S.; Myriokefalitakis, Stelios; Dentener, Frank; Uematsu, Mitsuo; Sarin, Manmohan M.; Duce, Robert A.; Galloway, James N.; Keene, William C.; Singh, Arvind; Zamora, Lauren; Lamarque, Jean-Francois; Hsu, Shih-Chieh; Rohekar, Shital S.; Prospero, Joseph M.

    2017-07-01

    Anthropogenic nitrogen (N) emissions to the atmosphere have increased significantly the deposition of nitrate (NO3-) and ammonium (NH4+) to the surface waters of the open ocean, with potential impacts on marine productivity and the global carbon cycle. Global-scale understanding of the impacts of N deposition to the oceans is reliant on our ability to produce and validate models of nitrogen emission, atmospheric chemistry, transport and deposition. In this work, ˜ 2900 observations of aerosol NO3- and NH4+ concentrations, acquired from sampling aboard ships in the period 1995-2012, are used to assess the performance of modelled N concentration and deposition fields over the remote ocean. Three ocean regions (the eastern tropical North Atlantic, the northern Indian Ocean and northwest Pacific) were selected, in which the density and distribution of observational data were considered sufficient to provide effective comparison to model products. All of these study regions are affected by transport and deposition of mineral dust, which alters the deposition of N, due to uptake of nitrogen oxides (NOx) on mineral surfaces. Assessment of the impacts of atmospheric N deposition on the ocean requires atmospheric chemical transport models to report deposition fluxes; however, these fluxes cannot be measured over the ocean. Modelling studies such as the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP), which only report deposition flux, are therefore very difficult to validate for dry deposition. Here, the available observational data were averaged over a 5° × 5° grid and compared to ACCMIP dry deposition fluxes (ModDep) of oxidised N (NOy) and reduced N (NHx) and to the following parameters from the Tracer Model 4 of the Environmental Chemical Processes Laboratory (TM4): ModDep for NOy, NHx and particulate NO3- and NH4+, and surface-level particulate NO3- and NH4+ concentrations. As a model ensemble, ACCMIP can be expected to be more robust than

  12. Modelling Mediterranean agro-ecosystems by including agricultural trees in the LPJmL model

    Science.gov (United States)

    Fader, M.; von Bloh, W.; Shi, S.; Bondeau, A.; Cramer, W.

    2015-11-01

    In the Mediterranean region, climate and land use change are expected to impact on natural and agricultural ecosystems by warming, reduced rainfall, direct degradation of ecosystems and biodiversity loss. Human population growth and socioeconomic changes, notably on the eastern and southern shores, will require increases in food production and put additional pressure on agro-ecosystems and water resources. Coping with these challenges requires informed decisions that, in turn, require assessments by means of a comprehensive agro-ecosystem and hydrological model. This study presents the inclusion of 10 Mediterranean agricultural plants, mainly perennial crops, in an agro-ecosystem model (Lund-Potsdam-Jena managed Land - LPJmL): nut trees, date palms, citrus trees, orchards, olive trees, grapes, cotton, potatoes, vegetables and fodder grasses. The model was successfully tested in three model outputs: agricultural yields, irrigation requirements and soil carbon density. With the development presented in this study, LPJmL is now able to simulate in good detail and mechanistically the functioning of Mediterranean agriculture with a comprehensive representation of ecophysiological processes for all vegetation types (natural and agricultural) and in a consistent framework that produces estimates of carbon, agricultural and hydrological variables for the entire Mediterranean basin. This development paves the way for further model extensions aiming at the representation of alternative agro-ecosystems (e.g. agroforestry), and opens the door for a large number of applications in the Mediterranean region, for example assessments of the consequences of land use transitions, the influence of management practices and climate change impacts.

  13. Modelling Mediterranean agro-ecosystems by including agricultural trees in the LPJmL model

    Directory of Open Access Journals (Sweden)

    M. Fader

    2015-06-01

    Full Text Available Climate and land use change in the Mediterranean region is expected to affect natural and agricultural ecosystems by decreases in precipitation, increases in temperature as well as biodiversity loss and anthropogenic degradation of natural resources. Demographic growth in the Eastern and Southern shores will require increases in food production and put additional pressure on agro-ecosystems and water resources. Coping with these challenges requires informed decisions that, in turn, require assessments by means of a comprehensive agro-ecosystem and hydrological model. This study presents the inclusion of 10 Mediterranean agricultural plants, mainly perennial crops, in an agro-ecosystem model (LPJmL: nut trees, date palms, citrus trees, orchards, olive trees, grapes, cotton, potatoes, vegetables and fodder grasses. The model was successfully tested in three model outputs: agricultural yields, irrigation requirements and soil carbon density. With the development presented in this study, LPJmL is now able to simulate in good detail and mechanistically the functioning of Mediterranean agriculture with a comprehensive representation of ecophysiological processes for all vegetation types (natural and agricultural and in a consistent framework that produces estimates of carbon, agricultural and hydrological variables for the entire Mediterranean basin. This development pave the way for further model extensions aiming at the representation of alternative agro-ecosystems (e.g. agroforestry, and opens the door for a large number of applications in the Mediterranean region, for example assessments on the consequences of land use transitions, the influence of management practices and climate change impacts.

  14. Numerical Acoustic Models Including Viscous and Thermal losses: Review of Existing and New Methods

    DEFF Research Database (Denmark)

    Andersen, Peter Risby; Cutanda Henriquez, Vicente; Aage, Niels

    2017-01-01

    This work presents an updated overview of numerical methods including acoustic viscous and thermal losses. Numerical modelling of viscothermal losses has gradually become more important due to the general trend of making acoustic devices smaller. Not including viscothermal acoustic losses in such...

  15. A MIXED BOOLEAN AND DEPOSIT MODEL FOR THE MODELING OF METAL PIGMENTS IN PAINT LAYERS

    Directory of Open Access Journals (Sweden)

    Enguerrand Couka

    2015-06-01

    Full Text Available Pigments made of metal particles of around 10 µm or 20 µm produce sparkling effects in paints, due to the specular reflection that occurs at this scale. Overall, the optical aspect of paints depend on the density and distribution in space of the particles. In this work, we model the dispersion of metal particles of size up to 50 µm, visible to the eyes, in a paint layer. Making use of optical and scanning electron microscopy (SEM images, we estimate the dispersion of particles in terms of correlation functions. Particles tend to aggregate into clusters, as shown by the presence of oscillations in the correlation functions. Furthermore, the volume fraction of particles is non-uniform in space. It is highest in the middle of the layer and lowest near the surfaces of the layer. To model this microstructure, we explore two models. The first one is a deposit model where particles fall onto a surface. It is unable to reproduce the observed measurements. We then introduce a "stack" model where clusters are first modeled by a 2D Poisson point process, and a bi-directional deposit model is used to implant particles in each cluster. Good agreement is found with respect to SEM images in terms of correlation functions and density of particles along the layer height.

  16. Distributed Modeling of soil erosion and deposition affected by buffer strips

    DEFF Research Database (Denmark)

    Khademalrasoul, Ataalah; Heckrath, Goswin Johann; Iversen, Bo Vangsø

    and dimension of buffer zones in the landscape can be optimized by means of spatially distributed erosion and deposition modeling. During the period from 1998 to 2000 field campaigns were done on a range of agricultural land in Denmark. On 21 slope units and adjacent buffer zones, rill erosion and deposition...

  17. Global cloud and precipitation chemistry and wet deposition: tropospheric model simulations with ECHAM5/MESSy1

    Directory of Open Access Journals (Sweden)

    J. Lelieveld

    2007-05-01

    Full Text Available The representation of cloud and precipitation chemistry and subsequent wet deposition of trace constituents in global atmospheric chemistry models is associated with large uncertainties. To improve the simulated trace gas distributions we apply the new submodel SCAV, which includes detailed cloud and precipitation chemistry and present results of the atmospheric chemistry general circulation model ECHAM5/MESSy1. A good agreement with observed wet deposition fluxes for species causing acid rain is obtained. The new scheme enables prognostic calculations of the pH of clouds and precipitation, and these results are also in accordance with observations. We address the influence of detailed cloud and precipitation chemistry on trace constituents based on sensitivity simulations. The results confirm previous results from regional scale and box models, and we extend the analysis to the role of aqueous phase chemistry on the global scale. Some species are directly affected through multiphase removal processes, and many also indirectly through changes in oxidant concentrations, which in turn have an impact on the species lifetime. While the overall effect on tropospheric ozone is relatively small (3 can reach ≈20%, and several important compounds (e.g., H2O2, HCHO are substantially depleted by clouds and precipitation.

  18. Global cloud and precipitation chemistry and wet deposition: tropospheric model simulations with ECHAM5/MESSy1

    Directory of Open Access Journals (Sweden)

    H. Tost

    2007-01-01

    Full Text Available The representation of cloud and precipitation chemistry and subsequent wet deposition of trace constituents in global atmospheric chemistry models is associated with large uncertainties. To improve the simulated trace gas distributions we apply the new submodel SCAV, which includes detailed cloud and precipitation chemistry and present results of the atmospheric chemistry general circulation model ECHAM5/MESSy1. A good agreement with observed wet deposition fluxes for species causing acid rain is obtained. The new scheme enables prognostic calculations of the pH of clouds and precipitation, and these results are also in accordance with observations. We address the influence of detailed cloud and precipitation chemistry on trace constituents based on sensitivity simulations. The results confirm previous results from regional scale and box models, and we extend the analysis to the role of aqueous phase chemistry on the global scale. Some species are directly affected through multiphase removal processes, and many also indirectly through changes in oxidant concentrations, which in turn have an impact on the species lifetime. While the overall effect on tropospheric ozone is relatively small (<10%, regional effects on O3 can reach ~20%, and several important compounds (e.g., H2O2, HCHO are substantially depleted by clouds and precipitation.

  19. Including operational data in QMRA model: development and impact of model inputs.

    Science.gov (United States)

    Jaidi, Kenza; Barbeau, Benoit; Carrière, Annie; Desjardins, Raymond; Prévost, Michèle

    2009-03-01

    A Monte Carlo model, based on the Quantitative Microbial Risk Analysis approach (QMRA), has been developed to assess the relative risks of infection associated with the presence of Cryptosporidium and Giardia in drinking water. The impact of various approaches for modelling the initial parameters of the model on the final risk assessments is evaluated. The Monte Carlo simulations that we performed showed that the occurrence of parasites in raw water was best described by a mixed distribution: log-Normal for concentrations > detection limit (DL), and a uniform distribution for concentrations risks significantly. The mean annual risks for conventional treatment are: 1.97E-03 (removal credit adjusted by log parasite = log spores), 1.58E-05 (log parasite = 1.7 x log spores) or 9.33E-03 (regulatory credits based on the turbidity measurement in filtered water). Using full scale validated SCADA data, the simplified calculation of CT performed at the plant was shown to largely underestimate the risk relative to a more detailed CT calculation, which takes into consideration the downtime and system failure events identified at the plant (1.46E-03 vs. 3.93E-02 for the mean risk).

  20. A Mathematical Model for Non-monotonic Deposition Profiles in Deep Bed Filtration Systems

    DEFF Research Database (Denmark)

    Yuan, Hao; Shapiro, Alexander

    2011-01-01

    A mathematical model for suspension/colloid flow in porous media and non-monotonic deposition is proposed. It accounts for the migration of particles associated with the pore walls via the second energy minimum (surface associated phase). The surface associated phase migration is characterized...... by advection and diffusion/dispersion. The proposed model is able to produce a nonmonotonic deposition profile. A set of methods for estimating the modeling parameters is provided in the case of minimal particle release. The estimation can be easily performed with available experimental information...... condition for producing non-monotonic deposition profiles. The described physics by the additional equation may be different in different experimental settings....

  1. In situ thermal imaging and three-dimensional finite element modeling of tungsten carbide-cobalt during laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Xiong Yuhong [Department of Chemical Engineering and Materials Science, University of California, Davis, CA 95616 (United States); Hofmeister, William H. [Center for Laser Applications, University of Tennessee Space Institute, Tullahoma, TN 37388 (United States); Cheng Zhao [Earth Mechanics Inc., Oakland, CA 94621 (United States); Smugeresky, John E. [Sandia National Laboratories, Livermore, CA 94551 (United States); Lavernia, Enrique J. [Department of Chemical Engineering and Materials Science, University of California, Davis, CA 95616 (United States); Schoenung, Julie M., E-mail: jmschoenung@ucdavis.edu [Department of Chemical Engineering and Materials Science, University of California, Davis, CA 95616 (United States)

    2009-10-15

    Laser deposition is being used for the fabrication of net shapes from a broad range of materials, including tungsten carbide-cobalt (WC-Co) cermets (composites composed of a metallic phase and a hard refractory phase). During deposition, an unusual thermal condition is created for cermets, resulting in rather complex microstructures. To provide a fundamental insight into the evolution of such microstructures, we studied the thermal behavior of WC-Co cermets during laser deposition involving complementary results from in situ high-speed thermal imaging and three-dimensional finite element modeling. The former allowed for the characterization of temperature gradients and cooling rates in the vicinity of the molten pool, whereas the latter allowed for simulation of the entire sample. By combining the two methods, a more robust analysis of the thermal behavior was achieved. The model and the imaging results correlate well with each other and with the alternating sublayers observed in the microstructure.

  2. Nonlinear Modeling of a High Precision Servo Injection Molding Machine Including Novel Molding Approach

    Institute of Scientific and Technical Information of China (English)

    何雪松; 王旭永; 冯正进; 章志新; 杨钦廉

    2003-01-01

    A nonlinear mathematical model of the injection molding process for electrohydraulic servo injection molding machine (IMM) is developed.It was found necessary to consider the characteristics of asymmetric cylinder for electrohydraulic servo IMM.The model is based on the dynamics of the machine including servo valve,asymmetric cylinder and screw,and the non-Newtonian flow behavior of polymer melt in injection molding is also considered.The performance of the model was evaluated based on novel approach of molding - injection and compress molding,and the results of simulation and experimental data demonstrate the effectiveness of the model.

  3. a Better Description of Liquid Jet Breakup Using a Spatial Model Including Viscous Effects.

    Science.gov (United States)

    Hammerschlag, William Brian

    Theoretical models describing the operation and disintegration of a liquid jet are often based on an approximate solution of an inviscid jet in the temporal frame of reference. These models provide only a fair first order prediction of growth rate and breakoff length, and are based solely on a surface tension induced instability. A spatial model yielding jet growth rate and including both jet and surrounding atmosphere viscosity and density is now developed. This model is seen to reproduce all the features and limitations of the Weber viscous jet theory. When tested against experiments of water, water and glycerol mixes and binary eutectic tin/lead solder, only fair agreement is observed.

  4. Modeling the global emission, transport and deposition of trace elements associated with mineral dust

    Directory of Open Access Journals (Sweden)

    Y. Zhang

    2014-12-01

    Full Text Available Trace element deposition from desert dust has important impacts on ocean primary productivity. In this study, emission inventories for 8 elements, which are primarily of soil origin, Mg, P, Ca, Mn, Fe, K, Al, and Si were determined based on a global mineral dataset and a soils dataset. Datasets of elemental fractions were used to drive the desert dust model in the Community Earth System Model (CESM in order to simulate the elemental concentrations of atmospheric dust. Spatial variability of mineral dust elemental fractions was evident on a global scale, particularly for Ca. Simulations of global variations in the Ca / Al ratio, which typically ranged from around 0.1 to 5.0 in soil sources, were consistent with observations, suggesting this ratio to be a good signature for dust source regions. The simulated variable fractions of chemical elements are sufficiently different that estimates of deposition should include elemental variations, especially for Ca, Al and Fe. The model results have been evaluated with observational elemental aerosol concentration data from desert regions and dust events in non-dust regions, providing insights into uncertainties in the modeling approach. The ratios between modeled and observed elemental fractions ranged from 0.7 to 1.6 except for 3.4 and 3.5 for Mg and Mn, respectivly. Using the soil data base improved the correspondence of the spatial hetereogeneity in the modeling of several elements (Ca, Al and Fe compared to observations. Total and soluble dust associated element fluxes into different ocean basins and ice sheets regions have been estimated, based on the model results. Annual inputs of soluble Mg, P, Ca, Mn, Fe and K associated with dust using mineral dataset were 0.28 Tg, 16.89 Gg, 1.32 Tg, 22.84 Gg, 0.068 Tg, and 0.15 Tg to global oceans and ice sheets.

  5. Entrainment and deposition modeling of liquid films with applications for BWR fuel rod dryout

    Science.gov (United States)

    Ratnayake, Ruwan Kumara

    spacer grid locations. Portions of a prototypic 8 x 8 spacer grid and metal tubes simulating fuel rods were used for these experiments. Although the test section was unheated, the flow conditions were chosen to closely depict the normal operating conditions of a BWR core subchannel. Results confirmed that entrainment at spacer grid locations is significant. Subsequent COBRA-TF simulations mimicking enhanced entrainment and deposition at spacer grid locations showed marked effects on dryout prediction. This indicates that incorporation of a proper spacer grid model to COBRA-TF could in fact improve the overall code performance. A method of problem analysis by decoupling the overall spacer grid hydrodynamic phenomenon into several smaller individual mechanisms is used in this work. This document includes the initial conceptualization of entrainment and deposition mechanisms, their mathematical formulation and results obtained after integrating them to COBRA-TF.

  6. Joint analysis of deposition fluxes and atmospheric concentrations of inorganic nitrogen and sulphur compounds predicted by six chemistry transport models in the frame of the EURODELTAIII project

    Science.gov (United States)

    Vivanco, M. G.; Bessagnet, B.; Cuvelier, C.; Theobald, M. R.; Tsyro, S.; Pirovano, G.; Aulinger, A.; Bieser, J.; Calori, G.; Ciarelli, G.; Manders, A.; Mircea, M.; Aksoyoglu, S.; Briganti, G.; Cappelletti, A.; Colette, A.; Couvidat, F.; D'Isidoro, M.; Kranenburg, R.; Meleux, F.; Menut, L.; Pay, M. T.; Rouïl, L.; Silibello, C.; Thunis, P.; Ung, A.

    2017-02-01

    In the framework of the UNECE Task Force on Measurement and Modelling (TFMM) under the Convention on Long-range Transboundary Air Pollution (LRTAP), the EURODELTAIII project is evaluating how well air quality models are able to reproduce observed pollutant air concentrations and deposition fluxes in Europe. In this paper the sulphur and nitrogen deposition estimates of six state-of-the-art regional models (CAMx, CHIMERE, EMEP MSC-W, LOTOS-EUROS, MINNI and CMAQ) are evaluated and compared for four intensive EMEP measurement periods (25 Feb-26 Mar 2009; 17 Sep-15 Oct 2008; 8 Jan-4 Feb 2007 and 1-30 Jun 2006). For sulphur, this study shows the importance of including sea salt sulphate emissions for obtaining better model results; CMAQ, the only model considering these emissions in its formulation, was the only model able to reproduce the high measured values of wet deposition of sulphur at coastal sites. MINNI and LOTOS-EUROS underestimate sulphate wet deposition for all periods and have low wet deposition efficiency for sulphur. For reduced nitrogen, all the models underestimate both wet deposition and total air concentrations (ammonia plus ammonium) in the summer campaign, highlighting a potential lack of emissions (or incoming fluxes) in this period. In the rest of campaigns there is a general underestimation of wet deposition by all models (MINNI and CMAQ with the highest negative bias), with the exception of EMEP, which underestimates the least and even overestimates deposition in two campaigns. This model has higher scavenging deposition efficiency for the aerosol component, which seems to partly explain the different behaviour of the models. For oxidized nitrogen, CMAQ, CAMx and MINNI predict the lowest wet deposition and the highest total air concentrations (nitric acid plus nitrates). Comparison with observations indicates a general underestimation of wet oxidized nitrogen deposition by these models, as well as an overestimation of total air concentration for

  7. Interception of wet deposited atmospheric pollutants by herbaceous vegetation: Data review and modelling

    Energy Technology Data Exchange (ETDEWEB)

    Gonze, M.-A., E-mail: marc-andre.gonze@irsn.fr; Sy, M.M.

    2016-09-15

    Better understanding and predicting interception of wet deposited pollutants by vegetation remains a key issue in risk assessment studies of atmospheric pollution. We develop different alternative models, following either empirical or semi-mechanistic descriptions, on the basis of an exhaustive dataset consisting of 440 observations obtained in controlled experiments, from 1970 to 2014, for a wide variety of herbaceous plants, radioactive substances and rainfall conditions. The predictive performances of the models and the uncertainty/variability of the parameters are evaluated under Hierarchical Bayesian modelling framework. It is demonstrated that the variability of the interception fraction is satisfactorily explained and quite accurately modelled by a process-based alternative in which absorption of ionic substances onto the foliage surfaces is determined by their electrical valence. Under this assumption, the 95% credible interval of the predicted interception fraction encompasses 81% of the observations, including situations where either plant biomass or rainfall intensity are unknown. This novel approach is a serious candidate to challenge existing empirical relationships in radiological or chemical risk assessment tools. - Highlights: • Literature data on the interception of atmospheric pollutants by herbs were reviewed • Predictive models were developed and evaluated in the Bayesian modelling framework • Sensitivity of interception to environmental conditions was satisfactorily explained • 81% of the observations were satisfactorily predicted by a semi-mechanistic model • This model challenges empirical relationships currently used in risk assessment tools.

  8. A new two-phase erosion-deposition model for mass flows

    Science.gov (United States)

    Pudasaini, Shiva P.; Fischer, Jan-Thomas

    2016-04-01

    Erosion, entrainment and deposition are complex and dominant, but yet poorly understood, mechanical processes in geophysical mass flows. Here, we propose a novel, two-phase, erosion-deposition model capable of adequately describing these complex phenomena commonly observed in landslides, avalanches, debris flows and bedload transports. The model enhances an existing general two-phase mass flow model (Pudasaini, 2012) by introducing a two-phase variably saturated erodible basal morphology. The adaptive basal morphology allows for the evolution of erosion-deposition-depths, incorporating the inherent physical process and rheological changes of the flowing mixture. With rigorous derivation, we show that appropriate incorporation of the mass and momentum productions and losses in conservative model formulation is essential for the physically correct and mathematically consistent description of erosion-entrainment-deposition processes. Simulation indicates a sharp erosion-front and steady-state-rear erosion depth. The model appropriately captures the emergence and propagation of complex frontal surge dynamics associated with the frontal ambient-drag which is a new hypothesis associated with erosion. The novel enhanced real two-phase model also allows for simulating fluid-run-off during the deposition process. The model resembles laboratory experiments for particle-fluid mixture flows and reveals some major aspects of the mechanics associated with erosion, entrainment and deposition. Reference: Shiva P. Pudasaini (2012): A general two-phase debris flow model. J. Geophys. Res., 117, F03010, doi: 10.1029/2011JF002186.

  9. CFD modeling of particle dispersion and deposition coupled with particle dynamical models in a ventilated room

    Science.gov (United States)

    Xu, Guangping; Wang, Jiasong

    2017-10-01

    Two dynamical models, the traditional method of moments coupled model (MCM) and Taylor-series expansion method of moments coupled model (TECM) for particle dispersion distribution and gravitation deposition are developed in three-dimensional ventilated environments. The turbulent airflow field is modeled with the renormalization group (RNG) k-ε turbulence model. The particle number concentration distribution in a ventilated room is obtained by solving the population balance equation coupled with the airflow field. The coupled dynamical models are validated using experimental data. A good agreement between the numerical and experimental results can be achieved. Both models have a similar characteristic for the spatial distribution of particle concentration. Relative to the MCM model, the TECM model presents a more close result to the experimental data. The vortex structure existed in the air flow makes a relative large concentration difference at the center region and results in a spatial non-uniformity of concentration field. With larger inlet velocity, the mixing level of particles in the room is more uniform. In general, the new dynamical models coupled with computational fluid dynamics (CFD) in the current study provide a reasonable and accurate method for the temporal and spatial evolution of particles effected by the deposition and dispersion behaviors. In addition, two ventilation modes with different inlet velocities are proceeded to study the effect on the particle evolution. The results show that with the ceiling ventilation mode (CVM), the particles can be better mixed and the concentration level is also higher. On the contrast, with the side ceiling ventilation mode (SVM), the particle concentration has an obvious stratified distribution with a relative lower level and it makes a much better environment condition to the human exposure.

  10. Modeling Cape- and Ridge-Associated Marine Sand Deposits; A Focus on the U.S. Atlantic Continental Shelf

    Science.gov (United States)

    Bliss, James D.; Williams, S. Jeffress; Bolm, Karen S.

    2009-01-01

    Cape- and ridge-associated marine sand deposits, which accumulate on storm-dominated continental shelves that are undergoing Holocene marine transgression, are particularly notable in a segment of the U.S. Atlantic Continental Shelf that extends southward from the east tip of Long Island, N.Y., and eastward from Cape May at the south end of the New Jersey shoreline. These sand deposits commonly contain sand suitable for shore protection in the form of beach nourishment. Increasing demand for marine sand raises questions about both short- and long-term potential supply and the sustainability of beach nourishment with the prospects of accelerating sea-level rise and increasing storm activity. To address these important issues, quantitative assessments of the volume of marine sand resources are needed. Currently, the U.S. Geological Survey is undertaking these assessments through its national Marine Aggregates and Resources Program (URL http://woodshole.er.usgs.gov/project-pages/aggregates/). In this chapter, we present a hypothetical example of a quantitative assessment of cape-and ridge-associated marine sand deposits in the study area, using proven tools of mineral-resource assessment. Applying these tools requires new models that summarize essential data on the quantity and quality of these deposits. Two representative types of model are descriptive models, which consist of a narrative that allows for a consistent recognition of cape-and ridge-associated marine sand deposits, and quantitative models, which consist of empirical statistical distributions that describe significant deposit characteristics, such as volume and grain-size distribution. Variables of the marine sand deposits considered for quantitative modeling in this study include area, thickness, mean grain size, grain sorting, volume, proportion of sand-dominated facies, and spatial density, of which spatial density is particularly helpful in estimating the number of undiscovered deposits within an

  11. Modeling and optimization of atomic layer deposition processes on vertically aligned carbon nanotubes.

    Science.gov (United States)

    Yazdani, Nuri; Chawla, Vipin; Edwards, Eve; Wood, Vanessa; Park, Hyung Gyu; Utke, Ivo

    2014-01-01

    Many energy conversion and storage devices exploit structured ceramics with large interfacial surface areas. Vertically aligned carbon nanotube (VACNT) arrays have emerged as possible scaffolds to support large surface area ceramic layers. However, obtaining conformal and uniform coatings of ceramics on structures with high aspect ratio morphologies is non-trivial, even with atomic layer deposition (ALD). Here we implement a diffusion model to investigate the effect of the ALD parameters on coating kinetics and use it to develop a guideline for achieving conformal and uniform thickness coatings throughout the depth of ultra-high aspect ratio structures. We validate the model predictions with experimental data from ALD coatings of VACNT arrays. However, the approach can be applied to predict film conformality as a function of depth for any porous topology, including nanopores and nanowire arrays.

  12. Modeling and optimization of atomic layer deposition processes on vertically aligned carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Nuri Yazdani

    2014-03-01

    Full Text Available Many energy conversion and storage devices exploit structured ceramics with large interfacial surface areas. Vertically aligned carbon nanotube (VACNT arrays have emerged as possible scaffolds to support large surface area ceramic layers. However, obtaining conformal and uniform coatings of ceramics on structures with high aspect ratio morphologies is non-trivial, even with atomic layer deposition (ALD. Here we implement a diffusion model to investigate the effect of the ALD parameters on coating kinetics and use it to develop a guideline for achieving conformal and uniform thickness coatings throughout the depth of ultra-high aspect ratio structures. We validate the model predictions with experimental data from ALD coatings of VACNT arrays. However, the approach can be applied to predict film conformality as a function of depth for any porous topology, including nanopores and nanowire arrays.

  13. Including hydrological self-regulating processes in peatland models: Effects on peatmoss drought projections.

    Science.gov (United States)

    Nijp, Jelmer J; Metselaar, Klaas; Limpens, Juul; Teutschbein, Claudia; Peichl, Matthias; Nilsson, Mats B; Berendse, Frank; van der Zee, Sjoerd E A T M

    2017-02-15

    The water content of the topsoil is one of the key factors controlling biogeochemical processes, greenhouse gas emissions and biosphere - atmosphere interactions in many ecosystems, particularly in northern peatlands. In these wetland ecosystems, the water content of the photosynthetic active peatmoss layer is crucial for ecosystem functioning and carbon sequestration, and is sensitive to future shifts in rainfall and drought characteristics. Current peatland models differ in the degree in which hydrological feedbacks are included, but how this affects peatmoss drought projections is unknown. The aim of this paper was to systematically test whether the level of hydrological detail in models could bias projections of water content and drought stress for peatmoss in northern peatlands using downscaled projections for rainfall and potential evapotranspiration in the current (1991-2020) and future climate (2061-2090). We considered four model variants that either include or exclude moss (rain)water storage and peat volume change, as these are two central processes in the hydrological self-regulation of peatmoss carpets. Model performance was validated using field data of a peatland in northern Sweden. Including moss water storage as well as peat volume change resulted in a significant improvement of model performance, despite the extra parameters added. The best performance was achieved if both processes were included. Including moss water storage and peat volume change consistently reduced projected peatmoss drought frequency with >50%, relative to the model excluding both processes. Projected peatmoss drought frequency in the growing season was 17% smaller under future climate than current climate, but was unaffected by including the hydrological self-regulating processes. Our results suggest that ignoring these two fine-scale processes important in hydrological self-regulation of northern peatlands will have large consequences for projected climate change impact on

  14. Modeling an elastic beam with piezoelectric patches by including magnetic effects

    CERN Document Server

    Ozer, A O

    2014-01-01

    Models for piezoelectric beams using Euler-Bernoulli small displacement theory predict the dynamics of slender beams at the low frequency accurately but are insufficient for beams vibrating at high frequencies or beams with low length-to-width aspect ratios. A more thorough model that includes the effects of rotational inertia and shear strain, Mindlin-Timoshenko small displacement theory, is needed to predict the dynamics more accurately for these cases. Moreover, existing models ignore the magnetic effects since the magnetic effects are relatively small. However, it was shown recently \\cite{O-M1} that these effects can substantially change the controllability and stabilizability properties of even a single piezoelectric beam. In this paper, we use a variational approach to derive models that include magnetic effects for an elastic beam with two piezoelectric patches actuated by different voltage sources. Both Euler-Bernoulli and Mindlin-Timoshenko small displacement theories are considered. Due to the magne...

  15. Stability analysis of the extended ADI-FDTD technique including lumped models

    Institute of Scientific and Technical Information of China (English)

    CHEN ZhiHui; CHU QingXin

    2008-01-01

    The numerical stability of the extended alternating-direction-implicit-finite-difference-time-domain (ADI-FDTD) method including lumped models is analyzed.Three common lumped models are investigated:resistor,capacitor,and inductor,and three different formulations for each model are analyzed:the explicit,semi-implicit and implicit schemes.Analysis results show that the extended ADI-FDTD algorithm is not unconditionally stable in the explicit scheme case,and the stability criterion depends on the value of lumped models,but in the semi-implicit and implicit cases,the algorithm is stable.Finally,two simple microstrip circuits including lumped elements are simulated to demonstrate validity of the theoretical results.

  16. The Dynamic Modeling of Multiple Pairs of Spur Gears in Mesh, Including Friction and Geometrical Errors

    Directory of Open Access Journals (Sweden)

    Shengxiang Jia

    2003-01-01

    Full Text Available This article presents a dynamic model of three shafts and two pair of gears in mesh, with 26 degrees of freedom, including the effects of variable tooth stiffness, pitch and profile errors, friction, and a localized tooth crack on one of the gears. The article also details howgeometrical errors in teeth can be included in a model. The model incorporates the effects of variations in torsional mesh stiffness in gear teeth by using a common formula to describe stiffness that occurs as the gears mesh together. The comparison between the presence and absence of geometrical errors in teeth was made by using Matlab and Simulink models, which were developed from the equations of motion. The effects of pitch and profile errors on the resultant input pinion angular velocity coherent-signal of the input pinion's average are discussed by investigating some of the common diagnostic functions and changes to the frequency spectra results.

  17. SAMI2-PE: A model of the ionosphere including multistream interhemispheric photoelectron transport

    Science.gov (United States)

    Varney, R. H.; Swartz, W. E.; Hysell, D. L.; Huba, J. D.

    2012-06-01

    In order to improve model comparisons with recently improved incoherent scatter radar measurements at the Jicamarca Radio Observatory we have added photoelectron transport and energy redistribution to the two dimensional SAMI2 ionospheric model. The photoelectron model uses multiple pitch angle bins, includes effects associated with curved magnetic field lines, and uses an energy degradation procedure which conserves energy on coarse, non-uniformly spaced energy grids. The photoelectron model generates secondary electron production rates and thermal electron heating rates which are then passed to the fluid equations in SAMI2. We then compare electron and ion temperatures and electron densities of this modified SAMI2 model with measurements of these parameters over a range of altitudes from 90 km to 1650 km (L = 1.26) over a 24 hour period. The new electron heating model is a significant improvement over the semi-empirical model used in SAMI2. The electron temperatures above the F-peak from the modified model qualitatively reproduce the shape of the measurements as functions of time and altitude and quantitatively agree with the measurements to within ˜30% or better during the entire day, including during the rapid temperature increase at dawn.

  18. A model for simulating the deposition of water-lain sediments in dryland environments

    Science.gov (United States)

    Bunch, M. A.; Mackay, R.; Tellam, J. H.; Turner, P.

    A numerical process-imitating model, the Discrete Storm Event Sedimentation Simulator (DSESS), has been developed to represent the climatic and hydraulic conditions of drylands in modelling their geomorphological development and sedimentary facies distributions. The ultimate aim is to provide insights into the lateral variability of permeability in the Triassic Sandstone aquifers of the UK for the study of solute movement. DSESS employs discrete storm-flood automata, released across a cellular landscape, to model sediment transport: erosion, migration and deposition. Sediment classes with different grain sizes can be modelled. Empirical process-based equations are used to quantify the movement of the automata, their erosion potential, sediment-carrying capacity and interaction with the underlying sediments. The approach emphasises the sequence of dryland storm events and associated floods rather than their timing. Flood events are assumed to be discrete in time. Preliminary tests carried out with DSESS using simple systems and idealised initial conditions produce lithological and land surface features characteristic of dryland settings and indicate the potential of the model for large-scale, long-time modelling of sedimentary facies development. Markedly different results are observed across the range of tests carried out in response to the non-linear interactions between the different elements of the landscape and the floodwaters simulated with DSESS. Simulations show that sediment accumulations develop concave upward radial profiles, plano-convex cross-profiles and possess a general lateral grading of sediment with distance from source. The internal grain size architecture shows evidence of both persistent and rapidly changing flow conditions, with both lateral and longitudinal stepping of coarse bodies produced by ‘scour and fill’ events and random avulsions. Armoured layers form so that near-surface sediments have increased likelihood of preservation

  19. General spherical anisotropic Jeans models of stellar kinematics: including proper motions and radial velocities

    CERN Document Server

    Cappellari, Michele

    2015-01-01

    Cappellari (2008) presented a flexible and efficient method to model the stellar kinematics of anisotropic axisymmetric and spherical stellar systems. The spherical formalism could be used to model the line-of-sight velocity second moments allowing for essentially arbitrary radial variation in the anisotropy and general luminous and total density profiles. Here we generalize the spherical formalism by providing the expressions for all three components of the projected second moments, including the two proper motion components. A reference implementation is now included in the public JAM package available at http://purl.org/cappellari/software

  20. Modeling Within-Host Dynamics of Influenza Virus Infection Including Immune Responses

    OpenAIRE

    Pawelek, Kasia A.; Huynh, Giao T; Michelle Quinlivan; Ann Cullinane; Libin Rong; Perelson, Alan S.

    2012-01-01

    Influenza virus infection remains a public health problem worldwide. The mechanisms underlying viral control during an uncomplicated influenza virus infection are not fully understood. Here, we developed a mathematical model including both innate and adaptive immune responses to study the within-host dynamics of equine influenza virus infection in horses. By comparing modeling predictions with both interferon and viral kinetic data, we examined the relative roles of target cell availability, ...

  1. A lumped element transformer model including core losses and winding impedances

    OpenAIRE

    Ribbenfjärd, David

    2007-01-01

    In order to design a power transformer it is important to understand its internal electromagnetic behaviour. That can be obtained by measurements on physical transformers, analytical expressions and computer simulations. One benefit with simulations is that the transformer can be studied before it is built physically and that the consequences of changing dimensions and parameters easily can be tested. In this thesis a time-domain transformer model is presented. The model includes core losses ...

  2. Target echo strength modelling at FOI, including results from the BeTSSi II workshop

    CERN Document Server

    Östberg, Martin

    2016-01-01

    An overview of the target echo strength (TS) modelling capacity at the Swedish Defense Research Agency (FOI) is presented. The modelling methods described range from approximate ones, such as raytracing and Kirchhoff approximation codes, to high accuracy full field codes including boundary integral equation methods and finite elements methods. Illustrations of the applicability of the codes are given for a few simple cases tackled during the BeTTSi II (Benchmark Target Echo Strength Simulation) workshop held in Kiel 2014.

  3. Including leakage in network models: an application to calibrate leak valves in EPANET

    OpenAIRE

    Cobacho Jordán, Ricardo; Arregui de la Cruz, Francisco; Soriano Olivares, Javier; Cabrera Rochera, Enrique

    2015-01-01

    EPANET is one of the most widely used software packages for water network hydraulic modelling, and is especially interesting for educational and research purposes because it is in the public domain. However, EPANET simulations are demand-driven, and the program does not include a specific functionality to model water leakage, which is pressure-driven. Consequently, users are required to deal with this drawback by themselves. As a general solution for this problem, this paper presents a method...

  4. Projecting Ammonia Dry Deposition Using Passive Samplers and a Bi-Directional Exchange Model

    Science.gov (United States)

    Robarge, W. P.; Walker, J. T.; Austin, R. E.

    2011-12-01

    cold months. Calculated NH3 concentrations from the passive samplers were used to develop a nonlinear regression model for predicting gridded NH3 concentrations as a function of distance and wind direction from the facility. Soil and foliar extracts were used to determine critical compensation points. Model implementation was on a 100 m by 100 m grid. Seasonal concentration fields and diurnal flux profiles were used to produce representative daily fluxes at each grid point. Daily fluxes were scaled to seasonal fluxes, which were then summed to an annual flux estimate. Dry deposition along the axis of highest concentrations were 10.1 kg N/ha/yr at the refuge boundary, decreasing non-linearly to 5.4 kg N/ha/yr at 1.5 km, and 1.4 kg N/ha/yr 8 - 10 km downwind of the facility. Approximately 10% of the refuge model domain receives ≥ 3.0 kg N/ha/yr as dry NH3 deposition. Limitations of the approach include cumulative results (potential multiple sources of NH3) inherent in use of passive samplers in estimating integrated NH3 concentrations, and modeling results are only valid for the vegetation type included in the model (e.g. in this study a "pocosin" land use type, not adjacent agricultural land).

  5. Key Characteristics of Combined Accident including TLOFW accident for PSA Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bo Gyung; Kang, Hyun Gook [KAIST, Daejeon (Korea, Republic of); Yoon, Ho Joon [Khalifa University of Science, Technology and Research, Abu Dhabi (United Arab Emirates)

    2015-05-15

    The conventional PSA techniques cannot adequately evaluate all events. The conventional PSA models usually focus on single internal events such as DBAs, the external hazards such as fire, seismic. However, the Fukushima accident of Japan in 2011 reveals that very rare event is necessary to be considered in the PSA model to prevent the radioactive release to environment caused by poor treatment based on lack of the information, and to improve the emergency operation procedure. Especially, the results from PSA can be used to decision making for regulators. Moreover, designers can consider the weakness of plant safety based on the quantified results and understand accident sequence based on human actions and system availability. This study is for PSA modeling of combined accidents including total loss of feedwater (TLOFW) accident. The TLOFW accident is a representative accident involving the failure of cooling through secondary side. If the amount of heat transfer is not enough due to the failure of secondary side, the heat will be accumulated to the primary side by continuous core decay heat. Transients with loss of feedwater include total loss of feedwater accident, loss of condenser vacuum accident, and closure of all MSIVs. When residual heat removal by the secondary side is terminated, the safety injection into the RCS with direct primary depressurization would provide alternative heat removal. This operation is called feed and bleed (F and B) operation. Combined accidents including TLOFW accident are very rare event and partially considered in conventional PSA model. Since the necessity of F and B operation is related to plant conditions, the PSA modeling for combined accidents including TLOFW accident is necessary to identify the design and operational vulnerabilities.The PSA is significant to assess the risk of NPPs, and to identify the design and operational vulnerabilities. Even though the combined accident is very rare event, the consequence of combined

  6. Comparison of simulated forest soil response to acid deposition reduction with two models of differing complexity

    Directory of Open Access Journals (Sweden)

    J. P. Mol-Dijkstra

    1998-01-01

    Full Text Available Great effort has been dedicated to developing soil acidification models for use on different scales. This paper focuses on the changes in model performance of a site scale soil acidification model (NUCSAM and a national to European scale soil acidification model (SMART 2. This was done to gain insight into the effects of model simplification. Because these models aim to predict the response to reduction in acid deposition, these models must be tested under such circumstances. A straightforward calibration and validation of the regional model, however, is hampered by lack of observations over a sufficient time period. Consequently, NUCSAM was calibrated and validated to a manipulation experiment involving reduced acid deposition in the Speuld forest, the Netherlands. SMART 2 was then used with calibrated input data from NUCSAM. The acid deposition was excluded by a roof beneath the canopy. The roofed area consists of a plot receiving pristine deposition levels of nitrogen (N and sulphur (S and a control plot receiving ambient deposition. NUCSAM was calibrated on the ambient plot, followed by a validation of both models on the pristine plot. Both models predicted soil solution concentrations within the 95% confidence interval of the observed responses for both the ambient plot and the pristine plot at 90 cm depth. Despite the large seasonal and vertical (spatial variation in soil solution chemistry, the trends in annual flux- weighted soil solution chemistry, as predicted by SMART 2 and NUCSAM, corresponded well.The annual leaching fluxes below the root zone were also similar although differences exist for the topsoil. For the topsoil, NUCSAM simulated the nutrients and acid related constituents better than SMART 2. Both models overestimated the ammonium (NH4 concentration at 10 cm depth. SMART 2 underestimated calcium and magnesium (BC2+ concentration at 10 depth, whereas NUCSAM overestimated BC2+ concentration at 90 cm depth. NUCSAM predicted

  7. Sand deposit-detecting method and its application in model test of sand flow

    Institute of Scientific and Technical Information of China (English)

    黎伟; 房营光; 莫海鸿; 谷任国; 陈俊生

    2013-01-01

    Against the background of the sand-flow foundation treatment engineering of Guangzhou Zhoutouzui variable cross-section immersed tunnel, a kind of sand deposit-detecting method was devised on the basis of full-scale model test of sand-flow method. The real-time data of sand-deposit height and radius were obtained by the self-developed sand-deposit detectors. The test results show that the detecting method is simple and has high precision. In the use of sand-flow method, the sand-carrying capability of fluid is limited, and sand particles are all transported to the sand-deposit periphery through crater, gap and chutes after the sand deposit formed. The diffusion range of the particles outside the sand-deposit does not exceed 2.0 m. Severe sorting of sand particles is not observed because of the unique oblique-layered depositing process. The temporal and spatial distributions of gap and chutes directly affect the sand-deposit expansion, and the expansion trend of the average sand-deposit radius accords with quadratic time-history curve.

  8. Analysis of a generalized model for influenza including differential susceptibility due to immunosuppression

    Science.gov (United States)

    Hincapié, Doracelly; Ospina, Juan

    2014-06-01

    Recently, a mathematical model of pandemic influenza was proposed including typical control strategies such as antivirals, vaccination and school closure; and considering explicitly the effects of immunity acquired from the early outbreaks on the ulterior outbreaks of the disease. In such model the algebraic expression for the basic reproduction number (without control strategies) and the effective reproduction number (with control strategies) were derived and numerically estimated. A drawback of this model of pandemic influenza is that it ignores the effects of the differential susceptibility due to immunosuppression and the effects of the complexity of the actual contact networks between individuals. We have developed a generalized model which includes such effects of heterogeneity. Specifically we consider the influence of the air network connectivity in the spread of pandemic influenza and the influence of the immunosuppresion when the population is divided in two immune classes. We use an algebraic expression, namely the Tutte polynomial, to characterize the complexity of the contact network. Until now, The influence of the air network connectivity in the spread of pandemic influenza has been studied numerically, but not algebraic expressions have been used to summarize the level of network complexity. The generalized model proposed here includes the typical control strategies previously mentioned (antivirals, vaccination and school closure) combined with restrictions on travel. For the generalized model the corresponding reproduction numbers will be algebraically computed and the effect of the contact network will be established in terms of the Tutte polynomial of the network.

  9. Osseointegration of porous titanium implants with and without electrochemically deposited DCPD coating in an ovine model

    National Research Council Canada - National Science Library

    Chen, Dong; Bertollo, Nicky; Lau, Abe; Taki, Naoya; Nishino, Tomofumi; Mishima, Hajime; Kawamura, Haruo; Walsh, William R

    2011-01-01

    .... In this study the effects of an electrochemically-deposited dicalcium phosphate dihydrate (DCPD) coating of a porous substrate on implant osseointegration was assessed using a standard uncemented implant fixation model in sheep...

  10. Geodetic mass balance of surge-type Black Rapids Glacier, Alaska, 1980-2001-2010, including role of rockslide deposition and earthquake displacement

    Science.gov (United States)

    Kienholz, C.; Hock, R.; Truffer, M.; Arendt, A. A.; Arko, S.

    2016-12-01

    We determine the geodetic mass balance of surge-type Black Rapids Glacier, Alaska, for the time periods 1980-2001 and 2001-2010 by combining modern interferometric synthetic aperture radar (InSAR)-derived digital elevation models (DEMs), DEMs derived from archival aerial imagery, laser altimetry data, and in situ surface elevation measurements. Our analysis accounts for both the large rockslides and terrain displacements caused by the 2002 M7.9 earthquake on the Denali fault, which runs through Black Rapids Glacier. To estimate uncertainties, we apply Monte Carlo simulations. For the earthquake-triggered rockslides we find a volume of 56.62 ± 2.86 × 106 m3, equivalent to an average debris thickness of 4.44 ± 0.24 m across the 11.7 km2 deposit area on the glacier. Terrain displacement due to the earthquake corresponds to an apparent glacier volume change of -53.1 × 106 m3, which would cause an apparent specific mass balance of -0.19 meter water equivalent (mwe) if not taken into account. The geodetic mass balance of Black Rapids Glacier is -0.48 ± 0.07 mwe a-1 for the entire 30 year period, but more negative for the period 2001-2010 (-0.64 ± 0.11 mwe a-1) than the period 1980-2001 (-0.42 ± 0.11 mwe a-1), in agreement with trends indicated by in situ mass balance measurements. Elevation data indicate no net thickening of the surge reservoir between 1980 and 2010, in contrast to what is expected during the quiescent phase. A surge of Black Rapids Glacier in the near future is thus considered unlikely.

  11. Modelling Strategy of Loan and Deposit Activity of a Commercial Bank

    Directory of Open Access Journals (Sweden)

    Ilchenko Kseniia O.

    2014-01-01

    Full Text Available The article considers development of strategy of loan-deposit strategy of a bank, which could be presented by relevant rates. Bank activity is described with goodwill and liquidity indicators that characterise tangible and intangible resources of an institution. Goodwill indicator is calculated on the basis of the previous period data. Liquidity is a relation of assets to liabilities at a certain moment of time. On the basis of these indicators the article develops a mathematical model, which includes an assumption about dependence of the rate of growth of deposits on liquidity and goodwill functions. There is a task of two criteria optimisation, the solution of which is a set of rates. The article considers cases when a bank does not change rates during a set period of time and when a bank changes them frequently under condition that rates are independent from each other. If we make an assumption that each change of rates is accompanied with costs, which are not reflected in the model, changing rates is inexpedient. The article offers to use partially constant average values of rates. The article considers the use of the ideal point for selection of one value out of the set of Pareto efficient solutions. Using presentation of the task of one criterion optimisation with respect to the liquidity ratio, the article shows that the use of the goodwill indicator influences the rate of growth of deposits. This task is a special case of the previous one, which means that this solution is within the set of the presented Pareto efficient point. But in the event of non-strict correspondence with the extreme value of the liquidity ratio, the solution worsens. The necessity of use of both criteria is important and improves the south for solution.

  12. A depositional model for the Taylor coal bed, Martin and Johnson counties, eastern Kentucky

    Science.gov (United States)

    Andrews, W.M.; Hower, J.C.; Ferm, J.C.; Evans, S.D.; Sirek, N.S.; Warrell, M.; Eble, C.F.

    1996-01-01

    This study investigated the Taylor coal bed in Johnson and Martin counties, eastern Kentucky, using field and petrographic techniques to develop a depositional model of the coal bed. Petrography and chemistry of the coal bed were examined. Multiple benches of the Taylor coal bed were correlated over a 10 km distance. Three sites were studied in detail. The coal at the western and eastern sites were relatively thin and split by thick clastic partings. The coal at the central site was the thickest and unsplit. Two major clastic partings are included in the coal bed. Each represents a separate and distinct fluvial splay. The Taylor is interpreted to have developed on a coastal plain with periodic flooding from nearby, structurally-controlled fluvial systems. Doming is unlikely due to the petrographic and chemical trends, which are inconsistent with modern Indonesian models. The depositional history and structural and stratigraphic setting suggest contemporaneous structural influence on thickness and quality of the Taylor coal bed in this area.

  13. The No-Core Gamow Shell Model: Including the continuum in the NCSM

    CERN Document Server

    Barrett, B R; Michel, N; Płoszajczak, M

    2015-01-01

    We are witnessing an era of intense experimental efforts that will provide information about the properties of nuclei far from the line of stability, regarding resonant and scattering states as well as (weakly) bound states. This talk describes our formalism for including these necessary ingredients into the No-Core Shell Model by using the Gamow Shell Model approach. Applications of this new approach, known as the No-Core Gamow Shell Model, both to benchmark cases as well as to unstable nuclei will be given.

  14. Iron deposition is independent of cellular inflammation in a cerebral model of multiple sclerosis

    OpenAIRE

    Lee Phil; Choi In-Young; Wang Wen-Tung; Rohr Aaron M; Williams Rachel; Berman Nancy EJ; Lynch Sharon G; LeVine Steven M

    2011-01-01

    Abstract Background Perivenular inflammation is a common early pathological feature in multiple sclerosis (MS). A recent hypothesis stated that CNS inflammation is induced by perivenular iron deposits that occur in response to altered blood flow in MS subjects. In order to evaluate this hypothesis, an animal model was developed, called cerebral experimental autoimmune encephalomyelitis (cEAE), which presents with CNS perivascular iron deposits. This model was used to investigate the relations...

  15. The Watts-Strogatz network model developed by including degree distribution: theory and computer simulation

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Y W [Surface Physics Laboratory and Department of Physics, Fudan University, Shanghai 200433 (China); Zhang, L F [Surface Physics Laboratory and Department of Physics, Fudan University, Shanghai 200433 (China); Huang, J P [Surface Physics Laboratory and Department of Physics, Fudan University, Shanghai 200433 (China)

    2007-07-20

    By using theoretical analysis and computer simulations, we develop the Watts-Strogatz network model by including degree distribution, in an attempt to improve the comparison between characteristic path lengths and clustering coefficients predicted by the original Watts-Strogatz network model and those of the real networks with the small-world property. Good agreement between the predictions of the theoretical analysis and those of the computer simulations has been shown. It is found that the developed Watts-Strogatz network model can fit the real small-world networks more satisfactorily. Some other interesting results are also reported by adjusting the parameters in a model degree-distribution function. The developed Watts-Strogatz network model is expected to help in the future analysis of various social problems as well as financial markets with the small-world property.

  16. Dynamics Analysis of an HIV Infection Model including Infected Cells in an Eclipse Stage

    Directory of Open Access Journals (Sweden)

    Shengyu Zhou

    2013-01-01

    Full Text Available In this paper, an HIV infection model including an eclipse stage of infected cells is considered. Some quicker cells in this stage become productively infected cells, a portion of these cells are reverted to the uninfected class, and others will be latent down in the body. We consider CTL-response delay in this model and analyze the effect of time delay on stability of equilibrium. It is shown that the uninfected equilibrium and CTL-absent infection equilibrium are globally asymptotically stable for both ODE and DDE model. And we get the global stability of the CTL-present equilibrium for ODE model. For DDE model, we have proved that the CTL-present equilibrium is locally asymptotically stable in a range of delays and also have studied the existence of Hopf bifurcations at the CTL-present equilibrium. Numerical simulations are carried out to support our main results.

  17. Modeling of the dynamics of wind to power conversion including high wind speed behavior

    DEFF Research Database (Denmark)

    Litong-Palima, Marisciel; Bjerge, Martin Huus; Cutululis, Nicolaos Antonio

    2016-01-01

    of power system studies, but the idea of the proposed wind turbine model is to include the main dynamic effects in order to have a better representation of the fluctuations in the output power and of the fast power ramping especially because of high wind speed shutdowns of the wind turbine. The high wind......This paper proposes and validates an efficient, generic and computationally simple dynamic model for the conversion of the wind speed at hub height into the electrical power by a wind turbine. This proposed wind turbine model was developed as a first step to simulate wind power time series...... for power system studies. This paper focuses on describing and validating the single wind turbine model, and is therefore neither describing wind speed modeling nor aggregation of contributions from a whole wind farm or a power system area. The state-of-the-art is to use static power curves for the purpose...

  18. A statistical model including age to predict passenger postures in the rear seats of automobiles.

    Science.gov (United States)

    Park, Jangwoon; Ebert, Sheila M; Reed, Matthew P; Hallman, Jason J

    2016-06-01

    Few statistical models of rear seat passenger posture have been published, and none has taken into account the effects of occupant age. This study developed new statistical models for predicting passenger postures in the rear seats of automobiles. Postures of 89 adults with a wide range of age and body size were measured in a laboratory mock-up in seven seat configurations. Posture-prediction models for female and male passengers were separately developed by stepwise regression using age, body dimensions, seat configurations and two-way interactions as potential predictors. Passenger posture was significantly associated with age and the effects of other two-way interaction variables depended on age. A set of posture-prediction models are presented for women and men, and the prediction results are compared with previously published models. This study is the first study of passenger posture to include a large cohort of older passengers and the first to report a significant effect of age for adults. The presented models can be used to position computational and physical human models for vehicle design and assessment. Practitioner Summary: The significant effects of age, body dimensions and seat configuration on rear seat passenger posture were identified. The models can be used to accurately position computational human models or crash test dummies for older passengers in known rear seat configurations.

  19. Predictive models for deposition of inhaled diesel exhaust particles in humans and laboratory species

    Energy Technology Data Exchange (ETDEWEB)

    Yu, C.P.; Xu, G.B. (State Univ. of New York at Buffalo, Amherst (USA))

    1987-01-01

    Mathematical and computer models of the respiratory tracts of human beings and of laboratory animals (rats, hamsters, guinea pigs) were used to estimate the deposition patterns of inhaled diesel exhaust particles from automobile emissions. Our goal was to be able to predict the relation between exposure to diesel exhaust particles and the deposition of these particles in the lungs of humans of various ages. Diesel exhaust particles are aggregates with a mass median aerodynamic diameter of approximately 0.2 micron. Their actual size depends on the conditions under which they are generated. Using an appropriate particle model, we derived mathematical expressions that describe the effects of diffusion, sedimentation, impaction, and interception on the deposition of these particles. Because of their small size, we found that most diesel exhaust particles deposited through diffusion, and that the role of the other mechanisms was minor. Anatomical models of the human lung from birth to adulthood, as well as models of the lungs of laboratory species were formulated mathematically using available morphometric data. We used these lung models, together with the corresponding ventilation conditions of each species, to calculate deposition of diesel exhaust particles in the lungs. Under normal breathing conditions, we calculated that 7 to 13 percent (depending on particle size) of inhaled diesel exhaust particles deposit in the alveolar region of the adult human lung. Although the breathing mode (nose or mouth breathing) did not appear to affect alveolar deposition, increasing the minute ventilation increased alveolar deposition significantly. The calculated deposition patterns for diesel exhaust particles in younger humans (under age 25) were similar.

  20. A fragment-cloud model for asteroid breakup and atmospheric energy deposition

    Science.gov (United States)

    Wheeler, Lorien F.; Register, Paul J.; Mathias, Donovan L.

    2017-10-01

    As asteroids break up during atmospheric entry, they deposit energy that can be seen in flares of light and, if substantial enough, can produce damaging blast waves. Analytic models of asteroid breakup and energy deposition processes are needed in order to assess potential airburst hazards, and to enable inferences about asteroid properties or breakup physics to be made from comparisons with observed meteors. This paper presents a fragment-cloud model (FCM) that is able to represent a broad range of breakup behaviors and the resulting variations in energy deposition in ways that make it a useful tool for both applications. Sensitivity studies are performed to investigate how variations the model's fragmentation parameters affect the energy deposition results for asteroids 20-500 m in diameter. The model is also used to match observational data from the Chelyabinsk meteor and infer potential asteroid properties and representative modeling parameter ranges. Results illustrate how the model's fragmentation parameters can introduce different energy deposition features, and how much they affect the overall energy deposition rates, magnitudes, and altitudes that would drive ground damage for risk assessment applications.

  1. A simple semi-empirical approach to model thickness of ash-deposits for different eruption scenarios

    Science.gov (United States)

    González-Mellado, A. O.; de La Cruz-Reyna, S.

    2010-11-01

    The impact of ash-fall on people, buildings, crops, water resources, and infrastructure depends on several factors such as the thickness of the deposits, grain size distribution and others. Preparedness against tephra falls over large regions around an active volcano requires an understanding of all processes controlling those factors, and a working model capable of predicting at least some of them. However, the complexity of tephra dispersion and sedimentation makes the search of an integral solution an almost unapproachable problem in the absence of highly efficient computing facilities due to the large number of equations and unknown parameters that control the process. An alternative attempt is made here to address the problem of modeling the thickness of ash deposits as a primary impact factor that can be easily communicated to the public and decision-makers. We develop a semi-empirical inversion model to estimate the thickness of non-compacted deposits produced by an explosive eruption around a volcano in the distance range 4-150 km from the eruptive source. The model was elaborated from the analysis of the geometric distribution of deposit thickness of 14 world-wide well-documented eruptions. The model was initially developed to depict deposits of potential eruptions of Popocatépetl and Colima volcanoes in México, but it can be applied to any volcano. It has been designed to provide planners and Civil Protection authorities of an accurate perception of the ash-fall deposit thickness that may be expected for different eruption scenarios. The model needs to be fed with a few easy-to-obtain parameters, namely, height of the eruptive column, duration of the explosive phase, and wind speed and direction, and its simplicity allows it to run in any platform, including a personal computers and even a notebook. The results may be represented as tables, two dimensional thickness-distance plots, or isopach maps using any available graphic interface. The model has

  2. A simple semi-empirical approach to model thickness of ash-deposits for different eruption scenarios

    Directory of Open Access Journals (Sweden)

    A. O. González-Mellado

    2010-11-01

    Full Text Available The impact of ash-fall on people, buildings, crops, water resources, and infrastructure depends on several factors such as the thickness of the deposits, grain size distribution and others. Preparedness against tephra falls over large regions around an active volcano requires an understanding of all processes controlling those factors, and a working model capable of predicting at least some of them. However, the complexity of tephra dispersion and sedimentation makes the search of an integral solution an almost unapproachable problem in the absence of highly efficient computing facilities due to the large number of equations and unknown parameters that control the process. An alternative attempt is made here to address the problem of modeling the thickness of ash deposits as a primary impact factor that can be easily communicated to the public and decision-makers. We develop a semi-empirical inversion model to estimate the thickness of non-compacted deposits produced by an explosive eruption around a volcano in the distance range 4–150 km from the eruptive source.

    The model was elaborated from the analysis of the geometric distribution of deposit thickness of 14 world-wide well-documented eruptions. The model was initially developed to depict deposits of potential eruptions of Popocatépetl and Colima volcanoes in México, but it can be applied to any volcano. It has been designed to provide planners and Civil Protection authorities of an accurate perception of the ash-fall deposit thickness that may be expected for different eruption scenarios. The model needs to be fed with a few easy-to-obtain parameters, namely, height of the eruptive column, duration of the explosive phase, and wind speed and direction, and its simplicity allows it to run in any platform, including a personal computers and even a notebook. The results may be represented as tables, two dimensional thickness-distance plots, or isopach maps using any available

  3. Innovative Liner Concepts: Experiments and Impedance Modeling of Liners Including the Effect of Bias Flow

    Science.gov (United States)

    Kelly, Jeff; Betts, Juan Fernando; Fuller, Chris

    2000-01-01

    The study of normal impedance of perforated plate acoustic liners including the effect of bias flow was studied. Two impedance models were developed by modeling the internal flows of perforate orifices as infinite tubes with the inclusion of end corrections to handle finite length effects. These models assumed incompressible and compressible flows, respectively, between the far field and the perforate orifice. The incompressible model was used to predict impedance results for perforated plates with percent open areas ranging from 5% to 15%. The predicted resistance results showed better agreement with experiments for the higher percent open area samples. The agreement also tended to deteriorate as bias flow was increased. For perforated plates with percent open areas ranging from 1% to 5%, the compressible model was used to predict impedance results. The model predictions were closer to the experimental resistance results for the 2% to 3% open area samples. The predictions tended to deteriorate as bias flow was increased. The reactance results were well predicted by the models for the higher percent open area, but deteriorated as the percent open area was lowered (5%) and bias flow was increased. A fit was done on the incompressible model to the experimental database. The fit was performed using an optimization routine that found the optimal set of multiplication coefficients to the non-dimensional groups that minimized the least squares slope error between predictions and experiments. The result of the fit indicated that terms not associated with bias flow required a greater degree of correction than the terms associated with the bias flow. This model improved agreement with experiments by nearly 15% for the low percent open area (5%) samples when compared to the unfitted model. The fitted model and the unfitted model performed equally well for the higher percent open area (10% and 15%).

  4. Fusion rules for the logarithmic $N=1$ superconformal minimal models II: including the Ramond sector

    CERN Document Server

    Canagasabey, Michael

    2015-01-01

    The Virasoro logarithmic minimal models were intensively studied by several groups over the last ten years with much attention paid to the fusion rules and the structures of the indecomposable representations that fusion generates. The analogous study of the fusion rules of the $N=1$ superconformal logarithmic minimal models was initiated in arXiv:1504.03155 as a continuum counterpart to the lattice explorations of arXiv:1312.6763. These works restricted fusion considerations to Neveu-Schwarz representations. Here, this is extended to include the Ramond sector. Technical advances that make this possible include a fermionic Verlinde formula applicable to logarithmic conformal field theories and a twisted version of the fusion algorithm of Nahm and Gaberdiel-Kausch. The results include the first construction and detailed analysis of logarithmic structures in the Ramond sector.

  5. MEMLS3&a: Microwave Emission Model of Layered Snowpacks adapted to include backscattering

    Directory of Open Access Journals (Sweden)

    M. Proksch

    2015-08-01

    Full Text Available The Microwave Emission Model of Layered Snowpacks (MEMLS was originally developed for microwave emissions of snowpacks in the frequency range 5–100 GHz. It is based on six-flux theory to describe radiative transfer in snow including absorption, multiple volume scattering, radiation trapping due to internal reflection and a combination of coherent and incoherent superposition of reflections between horizontal layer interfaces. Here we introduce MEMLS3&a, an extension of MEMLS, which includes a backscatter model for active microwave remote sensing of snow. The reflectivity is decomposed into diffuse and specular components. Slight undulations of the snow surface are taken into account. The treatment of like- and cross-polarization is accomplished by an empirical splitting parameter q. MEMLS3&a (as well as MEMLS is set up in a way that snow input parameters can be derived by objective measurement methods which avoid fitting procedures of the scattering efficiency of snow, required by several other models. For the validation of the model we have used a combination of active and passive measurements from the NoSREx (Nordic Snow Radar Experiment campaign in Sodankylä, Finland. We find a reasonable agreement between the measurements and simulations, subject to uncertainties in hitherto unmeasured input parameters of the backscatter model. The model is written in Matlab and the code is publicly available for download through the following website: http://www.iapmw.unibe.ch/research/projects/snowtools/memls.html.

  6. MEMLS3&a: Microwave Emission Model of Layered Snowpacks adapted to include backscattering

    Directory of Open Access Journals (Sweden)

    M. Proksch

    2015-03-01

    Full Text Available The Microwave Emission Model of Layered Snowpacks (MEMLS was originally developed for microwave emissions of snowpacks in the frequency range 5–100 GHz. It is based on six-flux theory to describe radiative transfer in snow including absorption, multiple volume scattering, radiation trapping due to internal reflection and a combination of coherent and incoherent superposition of reflections between horizontal layer interfaces. Here we introduce MEMLS3&a, an extension of MEMLS, which includes a backscatter model for active microwave remote sensing of snow. The reflectivity is decomposed into diffuse and specular components. Slight undulations of the snow surface are taken into account. The treatment of like and cross polarization is accomplished by an empirical splitting parameter q. MEMLS3&a (as well as MEMLS is set up in a way that snow input parameters can be derived by objective measurement methods which avoids fitting procedures of the scattering efficiency of snow, required by several other models. For the validation of the model we have used a combination of active and passive measurements from the NoSREx campaign in Sodankylä, Finland. We find a reasonable agreement between the measurements and simulations, subject to uncertainties in hitherto unmeasured input parameters of the backscatter model. The model is written in MATLAB and the code is publicly available for download through the following website: http://www.iapmw.unibe.ch/research/projects/snowtools/memls.html.

  7. MEMLS3&a: Microwave Emission Model of Layered Snowpacks adapted to include backscattering

    Science.gov (United States)

    Proksch, M.; Mätzler, C.; Wiesmann, A.; Lemmetyinen, J.; Schwank, M.; Löwe, H.; Schneebeli, M.

    2015-08-01

    The Microwave Emission Model of Layered Snowpacks (MEMLS) was originally developed for microwave emissions of snowpacks in the frequency range 5-100 GHz. It is based on six-flux theory to describe radiative transfer in snow including absorption, multiple volume scattering, radiation trapping due to internal reflection and a combination of coherent and incoherent superposition of reflections between horizontal layer interfaces. Here we introduce MEMLS3&a, an extension of MEMLS, which includes a backscatter model for active microwave remote sensing of snow. The reflectivity is decomposed into diffuse and specular components. Slight undulations of the snow surface are taken into account. The treatment of like- and cross-polarization is accomplished by an empirical splitting parameter q. MEMLS3&a (as well as MEMLS) is set up in a way that snow input parameters can be derived by objective measurement methods which avoid fitting procedures of the scattering efficiency of snow, required by several other models. For the validation of the model we have used a combination of active and passive measurements from the NoSREx (Nordic Snow Radar Experiment) campaign in Sodankylä, Finland. We find a reasonable agreement between the measurements and simulations, subject to uncertainties in hitherto unmeasured input parameters of the backscatter model. The model is written in Matlab and the code is publicly available for download through the following website: http://www.iapmw.unibe.ch/research/projects/snowtools/memls.html.

  8. Diagnosing Lee Wave Rotor Onset Using a Linear Model Including a Boundary Layer

    Directory of Open Access Journals (Sweden)

    Miguel A. C. Teixeira

    2017-01-01

    Full Text Available A linear model is used to diagnose the onset of rotors in flow over 2D hills, for atmospheres that are neutrally stratified near the surface and stably stratified aloft, with a sharp temperature inversion in between, where trapped lee waves may propagate. This is achieved by coupling an inviscid two-layer mountain-wave model and a bulk boundary-layer model. The full model shows some ability to diagnose flow stagnation associated with rotors as a function of key input parameters, such as the Froude number and the height of the inversion, in numerical simulations and laboratory experiments carried out by previous authors. While calculations including only the effects of mean flow attenuation and velocity perturbation amplification within the surface layer represent flow stagnation fairly well in the more non-hydrostatic cases, only the full model, taking into account the feedback of the surface layer on the inviscid flow, satisfactorily predicts flow stagnation in the most hydrostatic case, although the corresponding condition is unable to discriminate between rotors and hydraulic jumps. Versions of the model not including this feedback severely underestimate the amplitude of trapped lee waves in that case, where the Fourier transform of the hill has zeros, showing that those waves are not forced directly by the orography.

  9. Steady-state analysis of activated sludge processes with a settler model including sludge compression.

    Science.gov (United States)

    Diehl, S; Zambrano, J; Carlsson, B

    2016-01-01

    A reduced model of a completely stirred-tank bioreactor coupled to a settling tank with recycle is analyzed in its steady states. In the reactor, the concentrations of one dominant particulate biomass and one soluble substrate component are modelled. While the biomass decay rate is assumed to be constant, growth kinetics can depend on both substrate and biomass concentrations, and optionally model substrate inhibition. Compressive and hindered settling phenomena are included using the Bürger-Diehl settler model, which consists of a partial differential equation. Steady-state solutions of this partial differential equation are obtained from an ordinary differential equation, making steady-state analysis of the entire plant difficult. A key result showing that the ordinary differential equation can be replaced with an approximate algebraic equation simplifies model analysis. This algebraic equation takes the location of the sludge-blanket during normal operation into account, allowing for the limiting flux capacity caused by compressive settling to easily be included in the steady-state mass balance equations for the entire plant system. This novel approach grants the possibility of more realistic solutions than other previously published reduced models, comprised of yet simpler settler assumptions. The steady-state concentrations, solids residence time, and the wastage flow ratio are functions of the recycle ratio. Solutions are shown for various growth kinetics; with different values of biomass decay rate, influent volumetric flow, and substrate concentration.

  10. Development of a Zealand white rabbit deposition model to study inhalation anthrax

    Energy Technology Data Exchange (ETDEWEB)

    Asgharian, Bahman; Price, Owen; Kabilan, Senthil; Jacob, Richard E.; Einstein, Daniel R.; Kuprat, Andrew P.; Corley, Richard A.

    2016-01-28

    Despite using rabbits in several inhalation exposure experiments to study diseases such as anthrax, there is a lack of understanding regarding deposition characteristics and fate of inhaled particles (bio-aerosols and viruses) in the respiratory tracts of rabbits. Such information allows dosimetric extrapolation to humans to inform human outcomes. The lung geometry of the New Zealand white rabbit (referred to simply as rabbits throughout the article) was constructed using recently acquired scanned images of the conducting airways of rabbits and available information on its acinar region. In addition, functional relationships were developed for the lung and breathing parameters of rabbits as a function of body weight. The lung geometry and breathing parameters were used to extend the existing deposition model for humans and several other species to rabbits. Evaluation of the deposition model for rabbits was made by comparing predictions with available measurements in the literature. Deposition predictions in the lungs of rabbits indicated smaller deposition fractions compared to those found in humans across various particle diameter ranges. The application of the deposition model for rabbits was demonstrated by extrapolating deposition predictions in rabbits to find equivalent human exposure concentrations assuming the same dose-response relationship between the two species. Human equivalent exposure concentration levels were found to be much smaller than those for rabbits.

  11. Development of a Zealand white rabbit deposition model to study inhalation anthrax.

    Science.gov (United States)

    Asgharian, Bahman; Price, Owen; Kabilan, Senthil; Jacob, Richard E; Einstein, Daniel R; Kuprat, Andrew P; Corley, Richard A

    2016-01-01

    Despite using rabbits in several inhalation exposure experiments to study diseases such as anthrax, there is a lack of understanding regarding deposition characteristics and fate of inhaled particles (bio-aerosols and viruses) in the respiratory tracts of rabbits. Such information allows dosimetric extrapolation to humans to inform human outcomes. The lung geometry of the New Zealand white rabbit (referred to simply as rabbits throughout the article) was constructed using recently acquired scanned images of the conducting airways of rabbits and available information on its acinar region. In addition, functional relationships were developed for the lung and breathing parameters of rabbits as a function of body weight. The lung geometry and breathing parameters were used to extend the existing deposition model for humans and several other species to rabbits. Evaluation of the deposition model for rabbits was made by comparing predictions with available measurements in the literature. Deposition predictions in the lungs of rabbits indicated smaller deposition fractions compared to those found in humans across various particle diameter ranges. The application of the deposition model for rabbits was demonstrated by extrapolating deposition predictions in rabbits to find equivalent human exposure concentrations assuming the same dose-response relationship between the two species. Human equivalent exposure concentration levels were found to be much smaller than those for rabbits.

  12. Development of a Parafin Wax deposition Unit for Fused Deposition Modelling (FDM)

    DEFF Research Database (Denmark)

    D'Angelo, Greta; Hansen, Hans Nørgaard; Pedersen, David Bue

    2014-01-01

    During the last decade Additive Manufacturing (AM) witnessed a big development in terms of technologies, processes and possibilities. However of materials and their use still represents a big challenge. In fact availability of materials is rather limited if compared to conventional manufacturing...... parts to subsequently use in a Lost Wax Casting process, multi-material Additive Manufacturing and the use of wax as support material during the production of complicated parts. Moreover it is believed that including waxes among the materials usable in FDM would promote new ways of using and exploring...... are tested iteratively by alternating different methods in order to find the best configuration. The use of an open source platform, namely a Reprap Prusa Mendel allows to perform quick changes to the system without significant modifications to the major frame of the machine. During the design of the new...

  13. Modelling of deposited black carbon with the Lagrangian particle dispersion model FLEXPART in backward mode

    Science.gov (United States)

    Eckhardt, Sabine; Cassiani, Massimo; Sollum, Espen; Evangeliou, Nikolaos; Stohl, Andreas

    2017-04-01

    Lagrangian particle dispersion models are popular tools to simulate the dispersion of trace gases, aerosols or radionuclides in the atmosphere. If they consider only linear processes, they are self-adjoint, i.e., they can be run forward and backward in time without changes to the source code. Backward simulations are very efficient if the number of receptors is smaller than the number of sources, and they are well suited to establish source-receptor (s-r) relationships for measurements of various trace substances in air. However, not only the air concentrations are of interest, but also the s-r relationships for deposition are important for interpreting measurement data. E.g., deposition of dust is measured regularly in ice cores, partly also as a proxy to understand changes in aridity in dust source regions. Contamination of snow by black carbon (BC) aerosols has recently become a hot topic because of the potential impact of BC on the snow albedo. To interpret such deposition measurements and study the sources of the deposited substance, it would be convenient to have a model that is capable of efficient s-r relationship calculations for such types of measurements. We present here the implementation of such an algorithm into the Lagrangian particle dispersion model FLEXPART, and test the new scheme by comparisons with results from forward simulations as well as comparisons with measurements. As an application, we analyse source regions for elemental carbon (EC) measured in snow over the years 2014-2016 in the Russian Arctic. Simulations using an annual constant black carbon inventory based on ECLIPSE V5 and GFED (Global Fire Emission Database), have been performed. The meteorological data used in the simulation are 3 hourly operational data from the European Centre of Medium Range Weather Forecast (ECMWF) on a 1 degree grid resolution and 138 vertical levels. The model is able to capture very well the measured concentrations. Gas flaring and residential

  14. Latest cosmological constraints on Cardassian expansion models including the updated gamma-ray bursts

    Institute of Scientific and Technical Information of China (English)

    Nan Liang; Pu-Xun Wua; Zong-Hong Zhu

    2011-01-01

    We constrain the Cardassian expansion models from the latest observations,including the updated Gamma-ray bursts (GRBs),which are calibrated using a cosmology independent method from the Union2 compilation of type Ia supernovae (SNe Ia).By combining the GRB data with the joint observations from the Union2SNe Ia set,along with the results from the Cosmic Microwave Background radiation observation from the seven-year Wilkinson Microwave Anisotropy Probe and the baryonic acoustic oscillation observation galaxy sample from the spectroscopic Sloan Digital Sky Survey Data Release,we find significant constraints on the model parameters of the original Cardassian model ΩM0=n 282+0.015-0.014,n=0.03+0.05-0.05;and n = -0.16+0.25-3.26,β=-0.76+0.34-0.58 of the modified polytropic Cardassian model,which are consistent with the ACDM model in a l-σ confidence region.From the reconstruction of the deceleration parameter q(z) in Cardassian models,we obtain the transition redshift ZT = 0.73 ± 0.04 for the original Cardassian model and ZT = 0.68 ± 0.04 for the modified polytropic Cardassian model.

  15. Safe distance car-following model including backward-looking and its stability analysis

    Science.gov (United States)

    Yang, Da; Jin, Peter Jing; Pu, Yun; Ran, Bin

    2013-03-01

    The focus of this paper is the car-following behavior including backward-looking, simply called the bi-directional looking car-following behavior. This study is motivated by the potential changes of the physical properties of traffic flow caused by the fast developing intelligent transportation system (ITS), especially the new connected vehicle technology. Existing studies on this topic focused on general motors (GM) models and optimal velocity (OV) models. The safe distance car-following model, Gipps' model, which is more widely used in practice have not drawn too much attention in the bi-directional looking context. This paper explores the property of the bi-directional looking extension of Gipps' safe distance model. The stability condition of the proposed model is derived using the linear stability theory and is verified using numerical simulations. The impacts of the driver and vehicle characteristics appeared in the proposed model on the traffic flow stability are also investigated. It is found that taking into account the backward-looking effect in car-following has three types of effect on traffic flow: stabilizing, destabilizing and producing non-physical phenomenon. This conclusion is more sophisticated than the study results based on the OV bi-directional looking car-following models. Moreover, the drivers who have the smaller reaction time or the larger additional delay and think the other vehicles have larger maximum decelerations can stabilize traffic flow.

  16. A Lumped Thermal Model Including Thermal Coupling and Thermal Boundary Conditions for High Power IGBT Modules

    DEFF Research Database (Denmark)

    Bahman, Amir Sajjad; Ma, Ke; Blaabjerg, Frede

    2017-01-01

    Detailed thermal dynamics of high power IGBT modules are important information for the reliability analysis and thermal design of power electronic systems. However, the existing thermal models have their limits to correctly predict these complicated thermal behavior in the IGBTs: The typically used...... thermal distribution under long-term studies. Meanwhile the boundary conditions for the thermal analysis are modeled and included, which can be adapted to different real field applications of power electronic converters. Finally, the accuracy of the proposed thermal model is verified by FEM simulations...... thermal model based on one-dimensional RC lumps have limits to provide temperature distributions inside the device, moreover some variable factors in the real-field applications like the cooling and heating conditions of the converter cannot be adapted. On the other hand, the more advanced three...

  17. A Lumped Thermal Model Including Thermal Coupling and Thermal Boundary Conditions for High Power IGBT Modules

    DEFF Research Database (Denmark)

    Bahman, Amir Sajjad; Ma, Ke; Blaabjerg, Frede

    2017-01-01

    Detailed thermal dynamics of high power IGBT modules are important information for the reliability analysis and thermal design of power electronic systems. However, the existing thermal models have their limits to correctly predict these complicated thermal behavior in the IGBTs: The typically used...... thermal distribution under long-term studies. Meanwhile the boundary conditions for the thermal analysis are modeled and included, which can be adapted to different real-field applications of power electronic converters. Finally, the accuracy of the proposed thermal model is verified by FEM simulations...... thermal model based on one-dimensional RC lumps have limits to provide temperature distributions inside the device, moreover some variable factors in the real-field applications like the cooling and heating conditions of the converter cannot be adapted. On the other hand, the more advanced three...

  18. Computational fluid dynamics modeling of Bacillus anthracis spore deposition in rabbit and human respiratory airways

    Energy Technology Data Exchange (ETDEWEB)

    Kabilan, S.; Suffield, S. R.; Recknagle, K. P.; Jacob, R. E.; Einstein, D. R.; Kuprat, A. P.; Carson, J. P.; Colby, S. M.; Saunders, J. H.; Hines, S. A.; Teeguarden, J. G.; Straub, T. M.; Moe, M.; Taft, S. C.; Corley, R. A.

    2016-09-01

    Three-dimensional computational fluid dynamics and Lagrangian particle deposition models were developed to compare the deposition of aerosolized Bacillus anthracis spores in the respiratory airways of a human with that of the rabbit, a species commonly used in the study of anthrax disease. The respiratory airway geometries for each species were derived respectively from computed tomography (CT) and µCT images. Both models encompassed airways that extended from the external nose to the lung with a total of 272 outlets in the human model and 2878 outlets in the rabbit model. All simulations of spore deposition were conducted under transient, inhalation–exhalation breathing conditions using average species-specific minute volumes. Two different exposure scenarios were modeled in the rabbit based upon experimental inhalation studies. For comparison, human simulations were conducted at the highest exposure concentration used during the rabbit experimental exposures. Results demonstrated that regional spore deposition patterns were sensitive to airway geometry and ventilation profiles. Due to the complex airway geometries in the rabbit nose, higher spore deposition efficiency was predicted in the nasal sinus compared to the human at the same air concentration of anthrax spores. In contrast, higher spore deposition was predicted in the lower conducting airways of the human compared to the rabbit lung due to differences in airway branching pattern. This information can be used to refine published and ongoing biokinetic models of inhalation anthrax spore exposures, which currently estimate deposited spore concentrations based solely upon exposure concentrations and inhaled doses that do not factor in species-specific anatomy and physiology for deposition.

  19. Modelling unfrozen water content in a silty clay permafrost deposit

    DEFF Research Database (Denmark)

    Agergaard, Frederik Ancker; Ingeman-Nielsen, Thomas

    2011-01-01

    The mechanical properties of both unfrozen soils and permafrost soils are influenced by the amount of unfrozen water in the pore space. When dealing with foundation engineering in permafrost areas it is essential to estimate the unfrozen water content (wu). This paper deals with the establishing...... of a calibration equation for determining the unfrozen water content of a Greenlandic silty clay permafrost deposit. Calibration experiments have been conducted for water contents in the interval 0 – 10 % at both 5 °C and 22 °C. Calibration equations are verified against permittivity data from a permafrost core...... of material properties similar to the test soil. The calibration for 5°C is seen to make a good fit to the permafrost core data. Further experiments should be performed in order to extend the range of water contents tested and hence the range of validity of the calibration equation....

  20. Iron deposition is independent of cellular inflammation in a cerebral model of multiple sclerosis

    Directory of Open Access Journals (Sweden)

    Lee Phil

    2011-06-01

    Full Text Available Abstract Background Perivenular inflammation is a common early pathological feature in multiple sclerosis (MS. A recent hypothesis stated that CNS inflammation is induced by perivenular iron deposits that occur in response to altered blood flow in MS subjects. In order to evaluate this hypothesis, an animal model was developed, called cerebral experimental autoimmune encephalomyelitis (cEAE, which presents with CNS perivascular iron deposits. This model was used to investigate the relationship of iron deposition to inflammation. Methods In order to generate cEAE, mice were given an encephalitogen injection followed by a stereotactic intracerebral injection of TNF-α and IFN-γ. Control animals received encephalitogen followed by an intracerebral injection of saline, or no encephalitogen plus an intracerebral injection of saline or cytokines. Laser Doppler was used to measure cerebral blood flow. MRI and iron histochemistry were used to localize iron deposits. Additional histological procedures were used to localize inflammatory cell infiltrates, microgliosis and astrogliosis. Results Doppler analysis revealed that cEAE mice had a reduction in cerebral blood flow compared to controls. MRI revealed T2 hypointense areas in cEAE animals that spatially correlated with iron deposition around vessels and at some sites of inflammation as detected by iron histochemistry. Vessels with associated iron deposits were distributed across both hemispheres. Mice with cEAE had more iron-labeled vessels compared to controls, but these vessels were not commonly associated with inflammatory cell infiltrates. Some iron-laden vessels had associated microgliosis that was above the background microglial response, and iron deposits were observed within reactive microglia. Vessels with associated astrogliosis were more commonly observed without colocalization of iron deposits. Conclusion The findings indicate that iron deposition around vessels can occur independently of

  1. Hydromechanical modelling with application in sealing for underground waste deposition

    Energy Technology Data Exchange (ETDEWEB)

    Hasal, Martin, E-mail: martin.hasal@vsb.cz; Michalec, Zdeněk; Blaheta, Radim [Institute of Geonics AS CR, Studentska 1768, 70800 Ostrava-Poruba (Czech Republic)

    2015-03-10

    Hydro-mechanical models appear in simulation of many environmental problems related to construction of engineering barriers for contaminant spreading. The presented work aims in modelling bentonite-sand barriers, which can be used for nuclear waste isolation and similar problems. Particularly, we use hydro-mechanical model coupling unsaturated flow and (nonlinear) elasticity, implement such model in COMSOL software and show application in simulation of an infiltration test (2D axisymmetric model) and the SEALEX Water test WT1 experiment (3D model). Finally, we discuss the needs and possibilities of parallel high performance computing.

  2. Predictions of U.K. regulated power station contributions to regional air pollution and deposition: a model comparison exercise.

    Science.gov (United States)

    Chemel, Charles; Sokhi, Ranjeet S; Dore, Anthony J; Sutton, Paul; Vincent, Keith J; Griffiths, Stephen J; Hayman, Garry D; Wright, Raymond D; Baggaley, Matthew; Hallsworth, Stephen; Prain, H Douglas; Fisher, Bernard E A

    2011-11-01

    Contributions of the emissions from a U.K. regulated fossil-fuel power station to regional air pollution and deposition are estimated using four air quality modeling systems for the year 2003. The modeling systems vary in complexity and emphasis in the way they treat atmospheric and chemical processes, and include the Community Multiscale Air Quality (CMAQ) modeling system in its versions 4.6 and 4.7, a nested modeling system that combines long- and short-range impacts (referred to as TRACK-ADMS [Trajectory Model with Atmospheric Chemical Kinetics-Atmospheric Dispersion Modelling System]), and the Fine Resolution Atmospheric Multi-pollutant Exchange (FRAME) model. An evaluation of the baseline calculations against U.K. monitoring network data is performed. The CMAQ modeling system version 4.6 data set is selected as the reference data set for the model footprint comparison. The annual mean air concentration and total deposition footprints are summarized for each modeling system. The footprints of the power station emissions can account for a significant fraction of the local impacts for some species (e.g., more than 50% for SO2 air concentration and non-sea-salt sulfur deposition close to the source) for 2003. The spatial correlation and the coefficient of variation of the root mean square error (CVRMSE) are calculated between each model footprint and that calculated by the CMAQ modeling system version 4.6. The correlation coefficient quantifies model agreement in terms of spatial patterns, and the CVRMSE measures the magnitude of the difference between model footprints. Possible reasons for the differences between model results are discussed. Finally, implications and recommendations for the regulatory assessment of the impact of major industrial sources using regional air quality modeling systems are discussed in the light of results from this case study.

  3. Transmission line model for strained quantum well lasers including carrier transport and carrier heating effects.

    Science.gov (United States)

    Xia, Mingjun; Ghafouri-Shiraz, H

    2016-03-01

    This paper reports a new model for strained quantum well lasers, which are based on the quantum well transmission line modeling method where effects of both carrier transport and carrier heating have been included. We have applied this new model and studied the effect of carrier transport on the output waveform of a strained quantum well laser both in time and frequency domains. It has been found that the carrier transport increases the turn-on, turn-off delay times and damping of the quantum well laser transient response. Also, analysis in the frequency domain indicates that the carrier transport causes the output spectrum of the quantum well laser in steady state to exhibit a redshift which has a narrower bandwidth and lower magnitude. The simulation results of turning-on transients obtained by the proposed model are compared with those obtained by the rate equation laser model. The new model has also been used to study the effects of pump current spikes on the laser output waveforms properties, and it was found that the presence of current spikes causes (i) wavelength blueshift, (ii) larger bandwidth, and (iii) reduces the magnitude and decreases the side-lobe suppression ratio of the laser output spectrum. Analysis in both frequency and time domains confirms that the new proposed model can accurately predict the temporal and spectral behaviors of strained quantum well lasers.

  4. A numerical model including PID control of a multizone crystal growth furnace

    Science.gov (United States)

    Panzarella, Charles H.; Kassemi, Mohammad

    This paper presents a 2D axisymmetric combined conduction and radiation model of a multizone crystal growth furnace. The model is based on a programmable multizone furnace (PMZF) designed and built at NASA Lewis Research Center for growing high quality semiconductor crystals. A novel feature of this model is a control algorithm which automatically adjusts the power in any number of independently controlled heaters to establish the desired crystal temperatures in the furnace model. The control algorithm eliminates the need for numerous trial and error runs previously required to obtain the same results. The finite element code, FIDAP, used to develop the furnace model, was modified to directly incorporate the control algorithm. This algorithm, which presently uses PID control, and the associated heat transfer model are briefly discussed. Together, they have been used to predict the heater power distributions for a variety of furnace configurations and desired temperature profiles. Examples are included to demonstrate the effectiveness of the PID controlled model in establishing isothermal, Bridgman, and other complicated temperature profies in the sample. Finally, an example is given to show how the algorithm can be used to change the desired profile with time according to a prescribed temperature-time evolution.

  5. A continuum model of solvation energies including electrostatic, dispersion, and cavity contributions.

    Science.gov (United States)

    Duignan, Timothy T; Parsons, Drew F; Ninham, Barry W

    2013-08-15

    Physically accurate continuum solvent models that can calculate solvation energies are crucial to explain and predict the behavior of solute particles in water. Here, we present such a model applied to small spherical ions and neutral atoms. It improves upon a basic Born electrostatic model by including a standard cavity energy and adding a dispersion component, consistent with the Born electrostatic energy and using the same cavity size parameter. We show that the well-known, puzzling differences between the solvation energies of ions of the same size is attributable to the neglected dispersion contribution. This depends on dynamic polarizability as well as size. Generally, a large cancellation exists between the cavity and dispersion contributions. This explains the surprising success of the Born model. The model accurately reproduces the solvation energies of the alkali halide ions, as well as the silver(I) and copper(I) ions with an error of 12 kJ mol(-1) (±3%). The solvation energy of the noble gases is also reproduced with an error of 2.6 kJ mol(-1) (±30%). No arbitrary fitting parameters are needed to achieve this. This model significantly improves our understanding of ionic solvation and forms a solid basis for the investigation of other ion-specific effects using a continuum solvent model.

  6. Model for resistance evolution in shape memory alloys including R-phase

    Science.gov (United States)

    Brammajyosula, Ravindra; Buravalla, Vidyashankar; Khandelwal, Ashish

    2011-03-01

    The electrical resistance behavior of a shape memory alloy (SMA) wire can be used for sensing the state of an SMA device. Hence, this study investigates the resistance evolution in SMAs. A lumped parameter model with cosine kinetics to capture the resistance variation during the phase transformation is developed. Several SMA materials show the presence of trigonal or rhombohedral (R) phase as an intermediate phase, apart from the commonly recognized austenite and martensite phases. Most of the SMA models ignore the R-phase effect in their prediction of thermomechanical response. This may be acceptable since the changes in thermomechanical response associated with the R-phase are relatively less. However, the resistivity related effects are pronounced in the presence of the R-phase and its appearance introduces non-monotonicity in the resistivity evolution. This leads to additional complexities in the use of resistance signal for sensing and control. Hence, a lumped model is developed here for resistance evolution including the R-phase effects. A phase-diagram-based model is proposed for predicting electro-thermomechanical response. Both steady state hysteretic response and transient response are modeled. The model predictions are compared with the available test data. Numerical studies have shown that the model is able to capture all the essential features of the resistance evolution in SMAs in the presence of the R-phase.

  7. A New Circuit Model for Spin-Torque Oscillator Including Perpendicular Torque of Magnetic Tunnel Junction

    Directory of Open Access Journals (Sweden)

    Hyein Lim

    2013-01-01

    Full Text Available Spin-torque oscillator (STO is a promising new technology for the future RF oscillators, which is based on the spin-transfer torque (STT effect in magnetic multilayered nanostructure. It is expected to provide a larger tunability, smaller size, lower power consumption, and higher level of integration than the semiconductor-based oscillators. In our previous work, a circuit-level model of the giant magnetoresistance (GMR STO was proposed. In this paper, we present a physics-based circuit-level model of the magnetic tunnel junction (MTJ-based STO. MTJ-STO model includes the effect of perpendicular torque that has been ignored in the GMR-STO model. The variations of three major characteristics, generation frequency, mean oscillation power, and generation linewidth of an MTJ-STO with respect to the amount of perpendicular torque, are investigated, and the results are applied to our model. The operation of the model was verified by HSPICE simulation, and the results show an excellent agreement with the experimental data. The results also prove that a full circuit-level simulation with MJT-STO devices can be made with our proposed model.

  8. Does including physiology improve species distribution model predictions of responses to recent climate change?

    Science.gov (United States)

    Buckley, Lauren B; Waaser, Stephanie A; MacLean, Heidi J; Fox, Richard

    2011-12-01

    Thermal constraints on development are often invoked to predict insect distributions. These constraints tend to be characterized in species distribution models (SDMs) by calculating development time based on a constant lower development temperature (LDT). Here, we assessed whether species-specific estimates of LDT based on laboratory experiments can improve the ability of SDMs to predict the distribution shifts of six U.K. butterflies in response to recent climate warming. We find that species-specific and constant (5 degrees C) LDT degree-day models perform similarly at predicting distributions during the period of 1970-1982. However, when the models for the 1970-1982 period are projected to predict distributions in 1995-1999 and 2000-2004, species-specific LDT degree-day models modestly outperform constant LDT degree-day models. Our results suggest that, while including species-specific physiology in correlative models may enhance predictions of species' distribution responses to climate change, more detailed models may be needed to adequately account for interspecific physiological differences.

  9. Modeling of single char combustion, including CO oxidation in its boundary layer

    Energy Technology Data Exchange (ETDEWEB)

    Lee, C.H.; Longwell, J.P.; Sarofim, A.F.

    1994-10-25

    The combustion of a char particle can be divided into a transient phase where its temperature increases as it is heated by oxidation, and heat transfer from the surrounding gas to an approximately constant temperature stage where gas phase reaction is important and which consumes most of the carbon and an extinction stage caused by carbon burnout. In this work, separate models were developed for the transient heating where gas phase reactions were unimportant and for the steady temperature stage where gas phase reactions were treated in detail. The transient char combustion model incorporates intrinsic char surface production of CO and CO{sub 2}, internal pore diffusion and external mass and heat transfer. The model provides useful information for particle ignition, burning temperature profile, combustion time, and carbon consumption rate. A gas phase reaction model incorporating the full set of 28 elementary C/H/O reactions was developed. This model calculated the gas phase CO oxidation reaction in the boundary layer at particle temperatures of 1250 K and 2500 K by using the carbon consumption rate and the burning temperature at the pseudo-steady state calculated from the temperature profile model but the transient heating was not included. This gas phase model can predict the gas species, and the temperature distributions in the boundary layer, the CO{sub 2}/CO ratio, and the location of CO oxidation. A mechanistic heat and mass transfer model was added to the temperature profile model to predict combustion behavior in a fluidized bed. These models were applied to data from the fluidized combustion of Newlands coal char particles. 52 refs., 60 figs.

  10. Including source uncertainty and prior information in the analysis of stable isotope mixing models.

    Science.gov (United States)

    Ward, Eric J; Semmens, Brice X; Schindler, Daniel E

    2010-06-15

    Stable isotope mixing models offer a statistical framework for estimating the contribution of multiple sources (such as prey) to a mixture distribution. Recent advances in these models have estimated the source proportions using Bayesian methods, but have not explicitly accounted for uncertainty in the mean and variance of sources. We demonstrate that treating these quantities as unknown parameters can reduce bias in the estimated source contributions, although model complexity is increased (thereby increasing the variance of estimates). The advantages of this fully Bayesian approach are particularly apparent when the source geometry is poor or sample sizes are small. A second benefit to treating source quantities as parameters is that prior source information can be included. We present findings from 9 lake food-webs, where the consumer of interest (fish) has a diet composed of 5 sources: aquatic insects, snails, zooplankton, amphipods, and terrestrial insects. We compared the traditional Bayesian stable isotope mixing model with fixed source parameters to our fully Bayesian model-with and without an informative prior. The informative prior has much less impact than the choice of model-the traditional mixing model with fixed source parameters estimates the diet to be dominated by aquatic insects, while the fully Bayesian model estimates the diet to be more balanced but with greater importance of zooplankton. The findings from this example demonstrate that there can be stark differences in inference between the two model approaches, particularly when the source geometry of the mixing model is poor. These analyses also emphasize the importance of investing substantial effort toward characterizing the variation in the isotopic characteristics of source pools to appropriately quantify uncertainties in their contributions to consumers in food webs.

  11. Kinetic modeling of rhamnolipid production by Pseudomonas aeruginosa PAO1 including cell density-dependent regulation.

    Science.gov (United States)

    Henkel, Marius; Schmidberger, Anke; Vogelbacher, Markus; Kühnert, Christian; Beuker, Janina; Bernard, Thomas; Schwartz, Thomas; Syldatk, Christoph; Hausmann, Rudolf

    2014-08-01

    The production of rhamnolipid biosurfactants by Pseudomonas aeruginosa is under complex control of a quorum sensing-dependent regulatory network. Due to a lack of understanding of the kinetics applicable to the process and relevant interrelations of variables, current processes for rhamnolipid production are based on heuristic approaches. To systematically establish a knowledge-based process for rhamnolipid production, a deeper understanding of the time-course and coupling of process variables is required. By combining reaction kinetics, stoichiometry, and experimental data, a process model for rhamnolipid production with P. aeruginosa PAO1 on sunflower oil was developed as a system of coupled ordinary differential equations (ODEs). In addition, cell density-based quorum sensing dynamics were included in the model. The model comprises a total of 36 parameters, 14 of which are yield coefficients and 7 of which are substrate affinity and inhibition constants. Of all 36 parameters, 30 were derived from dedicated experimental results, literature, and databases and 6 of them were used as fitting parameters. The model is able to describe data on biomass growth, substrates, and products obtained from a reference batch process and other validation scenarios. The model presented describes the time-course and interrelation of biomass, relevant substrates, and products on a process level while including a kinetic representation of cell density-dependent regulatory mechanisms.

  12. Codigestion of solid wastes: a review of its uses and perspectives including modeling.

    Science.gov (United States)

    Mata-Alvarez, Joan; Dosta, Joan; Macé, Sandra; Astals, Sergi

    2011-06-01

    The last two years have witnessed a dramatic increase in the number of papers published on the subject of codigestion, highlighting the relevance of this topic within anaerobic digestion research. Consequently, it seems appropriate to undertake a review of codigestion practices starting from the late 1970s, when the first papers related to this concept were published, and continuing to the present day, demonstrating the exponential growth in the interest shown in this approach in recent years. Following a general analysis of the situation, state-of-the-art codigestion is described, focusing on the two most important areas as regards publication: codigestion involving sewage sludge and the organic fraction of municipal solid waste (including a review of the secondary advantages for wastewater treatment plant related to biological nutrient removal), and codigestion in the agricultural sector, that is, including agricultural - farm wastes, and energy crops. Within these areas, a large number of oversized digesters appear which can be used to codigest other substrates, resulting in economic and environmental advantages. Although the situation may be changing, there is still a need for good examples on an industrial scale, particularly with regard to wastewater treatment plants, in order to extend this beneficial practice. In the last section, a detailed analysis of papers addressing the important aspect of modelisation is included. This analysis includes the first codigestion models to be developed as well as recent applications of the standardised anaerobic digestion model ADM1 to codigestion. (This review includes studies ranging from laboratory to industrial scale.).

  13. Enhanced UWB Radio Channel Model for Short-Range Communication Scenarios Including User Dynamics

    DEFF Research Database (Denmark)

    Kovacs, Istvan Zsolt; Nguyen, Tuan Hung; Eggers, Patrick Claus F.

    2005-01-01

    In this paper we propose a SISO UWB radio channel model for short-range radio link scenarios between a fixed device and a dynamic user hand-held device. The channel model is derived based on novel experimental UWB radio propagation investigations carried out in typical indoor PAN scenarios...... including realistic device and user terminal antenna configurations. The radio channel measurements have been performed in the lower UWB frequency band of 3GHz to 5GHz with a 2x4 MIMO antenna configuration. Several environments, user scenarios and two types of user terminals have been used. The developed...

  14. Fuzzy Control of Yaw and Roll Angles of a Simulated Helicopter Model Includes Articulated Manipulators

    Directory of Open Access Journals (Sweden)

    Hossein Sadegh Lafmejani

    2015-09-01

    Full Text Available Fuzzy logic controller (FLC is a heuristic method by If-Then Rules which resembles human intelligence and it is a good method for designing Non-linear control systems. In this paper, an arbitrary helicopter model includes articulated manipulators has been simulated with Matlab SimMechanics toolbox. Due to the difficulties of modeling this complex system, a fuzzy controller with simple fuzzy rules has been designed for its yaw and roll angles in order to stabilize the helicopter while it is in the presence of disturbances or its manipulators are moving for a task. Results reveal that a simple FLC can appropriately control this system.

  15. Including Finite Surface Span Effects in Empirical Jet-Surface Interaction Noise Models

    Science.gov (United States)

    Brown, Clifford A.

    2016-01-01

    The effect of finite span on the jet-surface interaction noise source and the jet mixing noise shielding and reflection effects is considered using recently acquired experimental data. First, the experimental setup and resulting data are presented with particular attention to the role of surface span on far-field noise. These effects are then included in existing empirical models that have previously assumed that all surfaces are semi-infinite. This extended abstract briefly describes the experimental setup and data leaving the empirical modeling aspects for the final paper.

  16. Analytical model for investigation of interior noise characteristics in aircraft with multiple propellers including synchrophasing

    Science.gov (United States)

    Fuller, C. R.

    1986-01-01

    A simplified analytical model of transmission of noise into the interior of propeller-driven aircraft has been developed. The analysis includes directivity and relative phase effects of the propeller noise sources, and leads to a closed form solution for the coupled motion between the interior and exterior fields via the shell (fuselage) vibrational response. Various situations commonly encountered in considering sound transmission into aircraft fuselages are investigated analytically and the results obtained are compared to measurements in real aircraft. In general the model has proved successful in identifying basic mechanisms behind noise transmission phenomena.

  17. Modelled transport and deposition of sulphur over Southern Africa

    CSIR Research Space (South Africa)

    Zunckel, M

    2000-01-01

    Full Text Available , developed at the Swedish Meteorological and Hydrological Institute (SMHI), and compared with an inferential model driven by measured input quantities. Modelled SO, concentrations on the central highveld mostly range between 10 and 50 ppb, exceeding 50 ppb...

  18. The giant Jiaodong gold province: The key to a unified model for orogenic gold deposits?

    Directory of Open Access Journals (Sweden)

    David I. Groves

    2016-05-01

    Full Text Available Although the term orogenic gold deposit has been widely accepted for all gold-only lode-gold deposits, with the exception of Carlin-type deposits and rare intrusion-related gold systems, there has been continuing debate on their genesis. Early syngenetic models and hydrothermal models dominated by meteoric fluids are now clearly unacceptable. Magmatic-hydrothermal models fail to explain the genesis of orogenic gold deposits because of the lack of consistent spatially – associated granitic intrusions and inconsistent temporal relationships. The most plausible, and widely accepted, models involve metamorphic fluids, but the source of these fluids is hotly debated. Sources within deeper segments of the supracrustal successions hosting the deposits, the underlying continental crust, and subducted oceanic lithosphere and its overlying sediment wedge all have their proponents. The orogenic gold deposits of the giant Jiaodong gold province of China, in the delaminated North China Craton, contain ca. 120 Ma gold deposits in Precambrian crust that was metamorphosed over 2000 million years prior to gold mineralization. The only realistic source of fluid and gold is a subducted oceanic slab with its overlying sulfide-rich sedimentary package, or the associated mantle wedge. This could be viewed as an exception to a general metamorphic model where orogenic gold has been derived during greenschist- to amphibolite-facies metamorphism of supracrustal rocks: basaltic rocks in the Precambrian and sedimentary rocks in the Phanerozoic. Alternatively, if a holistic view is taken, Jiaodong can be considered the key orogenic gold province for a unified model in which gold is derived from late-orogenic metamorphic devolatilization of stalled subduction slabs and oceanic sediments throughout Earth history. The latter model satisfies all geological, geochronological, isotopic and geochemical constraints but the precise mechanisms of auriferous fluid release, like many

  19. The giant Jiaodong gold province:The key to a unified model for orogenic gold deposits?

    Institute of Scientific and Technical Information of China (English)

    David I. Groves; M. Santosh

    2016-01-01

    Although the term orogenic gold deposit has been widely accepted for all gold-only lode-gold deposits, with the exception of Carlin-type deposits and rare intrusion-related gold systems, there has been continuing debate on their genesis. Early syngenetic models and hydrothermal models dominated by meteoric fluids are now clearly unacceptable. Magmatic-hydrothermal models fail to explain the genesis of orogenic gold deposits because of the lack of consistent spatially e associated granitic intrusions and inconsistent temporal relationships. The most plausible, and widely accepted, models involve meta-morphic fluids, but the source of these fluids is hotly debated. Sources within deeper segments of the supracrustal successions hosting the deposits, the underlying continental crust, and subducted oceanic lithosphere and its overlying sediment wedge all have their proponents. The orogenic gold deposits of the giant Jiaodong gold province of China, in the delaminated North China Craton, contain ca. 120 Ma gold deposits in Precambrian crust that was metamorphosed over 2000 million years prior to gold mineralization. The only realistic source of fluid and gold is a subducted oceanic slab with its overlying sulfide-rich sedimentary package, or the associated mantle wedge. This could be viewed as an exception to a general metamorphic model where orogenic gold has been derived during greenschist- to amphibolite-facies metamorphism of supracrustal rocks: basaltic rocks in the Precambrian and sedi-mentary rocks in the Phanerozoic. Alternatively, if a holistic view is taken, Jiaodong can be considered the key orogenic gold province for a unified model in which gold is derived from late-orogenic metamorphic devolatilization of stalled subduction slabs and oceanic sediments throughout Earth history. The latter model satisfies all geological, geochronological, isotopic and geochemical constraints but the precise mechanisms of auriferous fluid release, like many other subduction

  20. Modelling and optimization of film thickness variation for plasma enhanced chemical vapour deposition processes

    Science.gov (United States)

    Waddell, Ewan; Gibson, Des; Lin, Li; Fu, Xiuhua

    2011-09-01

    This paper describes a method for modelling film thickness variation across the deposition area within plasma enhanced chemical vapour deposition (PECVD) processes. The model enables identification and optimization of film thickness uniformity sensitivities to electrode configuration, temperature, deposition system design and gas flow distribution. PECVD deposition utilizes a co-planar 300mm diameter electrodes with separate RF power matching to each electrode. The system has capability to adjust electrode separation and electrode temperature as parameters to optimize uniformity. Vacuum is achieved using dry pumping with real time control of butterfly valve position for active pressure control. Comparison between theory and experiment is provided for PECVD of diamond-like-carbon (DLC) deposition onto flat and curved substrate geometries. The process utilizes butane reactive feedstock with an argon carrier gas. Radiofrequency plasma is used. Deposited film thickness sensitivities to electrode geometry, plasma power density, pressure and gas flow distribution are demonstrated. Use of modelling to optimise film thickness uniformity is demonstrated. Results show DLC uniformity of 0.30% over a 200 mm flat zone diameter within overall electrode diameter of 300mm. Thickness uniformity of 0.75% is demonstrated over a 200mm diameter for a non-conformal substrate geometry. Use of the modelling method for PECVD using metal-organic chemical vapour deposition (MOCVD) feedstock is demonstrated, specifically for deposition of silica films using metal-organic tetraethoxy-silane. Excellent agreement between experimental and theory is demonstrated for conformal and non-conformal geometries. The model is used to explore scalability of PECVD processes and trade-off against film thickness uniformity. Application to MEMS, optical coatings and thin film photovoltaics is discussed.

  1. Analog-experiment analysis of ash-deposition monitoring model of boiler economizers in power plants

    Institute of Scientific and Technical Information of China (English)

    CHENG Wei-liang; XIA Guo-dong; XU Shou-chen

    2005-01-01

    Ash deposition is a form of particulate fouling, and appears usually in boiler economizers. The ash deposition increases capital expenditure, energy input and maintenance costs. An analog experiment for monitoring ash deposition was performed from the analogous objective of a 410 t/h boiler economizer to verify the rationality and reliability of the ash-deposition-monitoring model presented in order to increase the security and economy in economizer running. The analog experiment platform is a tube-shell exchanger that conforms well to the conditions of a self-modeling area. The analog flue gas in the shell side is the heated air mixed with ash,and in the tube side the fluid is water heated by the flue gas. The fluid state in the water side and the flue gas side follows the second self-modeling area. A 4-factor-3 level orthogonal table was used to schedule 9 operation conditions of orthogonal experiment, with the 4 factors being heat power, flue gas velocity, ashes grain diameter and adding ashes quantity while the three levels are different values due to different position classes in every factor. The ash deposition thermal resistances is calculated by the model with the measure parameters of temperature and pressure drop. It shows that the values of the ash deposition thermal resistances gradually increase up to a stable state. And the experimental results are reliable by F testing method at α = 0. 001. Therefore, the model can be applied in online monitoring of ash deposition in a boiler economizers in power plants and provides scientific decision on ash deposition prediction and sootblowing.

  2. An air/sea flux model including the effects of capillary waves

    Science.gov (United States)

    Bourassa, Mark A.

    1993-01-01

    An improved model of the air/sea interface is developed. The improvements consist in including the effect of capillary (surface tension) waves on the tropical surface fluxes and the consideration of the sea state, both of which increase the magnitude of tropical surface fluxes. Changes in surface stress are most significant in the low wind-speed regions, which include the areas where westerly bursts occur. It is shown that the changes, from the regular wind conditions to those of a westerly burst or El-Nino, can double when the effects of capillary waves are considered. This implies a much stronger coupling between the ocean and the atmosphere than is predicted by other boundary layer models.

  3. A complete model of CH+ rotational excitation including radiative and chemical pumping processes

    CERN Document Server

    Godard, Benjamin

    2012-01-01

    Aims. Excitation of far-infrared and submillimetric molecular lines may originate from nonreactive collisions, chemical formation, or far infrared, near-infrared, and optical fluorescences. As a template, we investigate the impact of each of these processes on the excitation of the methylidyne cation CH+ and on the intensities of its rotational transitions recently detected in emission in dense photodissociation regions (PDRs) and in planetary nebulae. Methods. We have developed a nonlocal thermodynamic equilibrium (non-LTE) excitation model that includes the entire energy structure of CH+, i.e. taking into account the pumping of its vibrational and bound and unbound electronic states by near-infrared and optical photons. The model includes the theoretical cross-sections of nonreactive collisions with H, H2, He, and e-, and a Boltzmann distribution is used to describe the probability of populating the excited levels of CH+ during its chemical formation by hydrogenation of C+. To confirm our results we also pe...

  4. Stochastic modelling of deep magmatic controls on porphyry copper deposit endowment

    Science.gov (United States)

    Chiaradia, Massimo; Caricchi, Luca

    2017-03-01

    Porphyry deposits, our main source of copper and of significant amounts of Mo, Re and Au, form at convergent margins in association with intermediate-felsic magmas. Although it is accepted that copper is transported and precipitated by fluids released by these magmas, the magmatic processes leading to the formation of economic deposits remain elusive. Here we perform Monte Carlo petrological and geochemical modelling to quantitatively link crustal magmatic processes and the geochemical signatures of magmas (i.e., Sr/Y) to the formation of porphyry Cu deposits of different sizes. Our analysis shows that economic deposits (particularly the largest ones) may only form in association with magma accumulated in the lower-middle crust (P > ~0.5 GPa) during ≥2–3 Ma, and subsequently transferred to and degassed in the upper crust over periods of up to ~2.0 Ma. Magma accumulation and evolution at shallower depths (<~0.4 GPa) dramatically reduces the potential of magmatic systems to produce economic deposits. Our modelling also predicts the association of the largest porphyry deposits with a specific Sr/Y interval (~100 ± 50) of the associated magmatic rocks, which is virtually identical to the range measured in giant porphyry copper deposits.

  5. Particles deposition induced by the magnetic field in the coronary bypass graft model

    Energy Technology Data Exchange (ETDEWEB)

    Bernad, Sandor I., E-mail: sandor.bernad@upt.ro [Centre of Advanced Research in Engineering Sciences, Romanian Academy, Timisoara Branch, 300223 Timisoara (Romania); Totorean, Alin F. [Department of Mechanical Machines, Equipment and Transportation, Politehnica University of Timisoara, RO-300222 Timisoara (Romania); Vekas, Ladislau, E-mail: vekas.ladislau@gmail.com [Centre of Advanced Research in Engineering Sciences, Romanian Academy, Timisoara Branch, 300223 Timisoara (Romania)

    2016-03-01

    Bypass graft failures is a complex process starting with intimal hyperplasia development which involve many hemodynamic and biological factors. This work presents experimental results regarding the possibility to use magnetic drug delivery to prevent the development of the intimal hyperplasia using a simplified but intuitive model. The primary goal is to understand the magnetic particle deposition in the anastomosis region of the bypass graft taking into account the complex flow field created in this area which involves recirculation region, flow mixing and presence of particles with high residence time. The three-dimensional geometry model was used to simulate the motion and accumulation of the particles under the magnetic field influence in anastomotic region of the coronary bypass graft. The flow patterns are evaluated both numerically and experimentally and show a good correlation in term of flow parameters like vortex length and flow stagnation point positions. Particle depositions are strongly dependent on the magnet position and consequently of the magnetic field intensity and field gradient. Increased magnetic field controlled by the magnet position induces increased particle depositions in the bypass graft anastomosis. The result shows that particle depositions depend on the bypass graft angle, and the deposition shape and particle accumulation respectively, depend by the flow pattern in the anastomosis region. - Highlights: • Particularity of the particle targeting in the bypass graft anastomosis. • Hemodynamic characteristics influence about the particle deposition. • Particle accumulation induces changes of the flow field in the graft anastomosis. • Bypass graft geometries influence the particle deposition.

  6. Modeling and simulation of NiO dissolution and Ni deposition in molten carbonate fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Suk Woo; Choi, Hyung-Joon; Lim, Tae Hoon [Korea Institute of Science & Technology, Seoul (Korea, Republic of)] [and others

    1996-12-31

    Dissolution of NiO cathode into the electrolyte matrix is an important phenomena limiting the lifetime of molten carbonate fuel cell (MCFC). The dissolved nickel diffuses into the matrix and is reduced by dissolved hydrogen leading to the formation of metallic nickel films in the pores of the matrix. The growth of Ni films in the electrolyte matrix during the continuous cell operation results eventually in shorting between cathode and anode. Various mathematical and empirical models have been developed to describe the NiO dissolution and Ni deposition processes, and these models have some success in estimating the lifetime of MCFC by correlating the amount of Ni deposited in the matrix with shorting time. Since the exact mechanism of Ni deposition was not well understood, deposition reaction was assumed to be very fast in most of the models and the Ni deposition region was limited around a point in the matrix. In fact, formation of Ni films takes place in a rather broad region in the matrix, the location and thickness of the film depending on operating conditions as well as matrix properties. In this study, we assumed simple reaction kinetics for Ni deposition and developed a mathematical model to get the distribution of nickel in the matrix.

  7. An occurrence model for the national assessment of volcanogenic beryllium deposits

    Science.gov (United States)

    Foley, Nora K.; Seal, Robert R., II; Piatak, Nadine M.; Hetland, Brianna

    2010-01-01

    The general occurrence model summarized here is intended to provide a descriptive basis for the identification and assessment of undiscovered beryllium deposits of a type and style similar to those found at Spor Mountain, Juab County, Utah. The assessment model is restricted in its application in order to provide a coherent basis for assessing the probability of the occurrence of similar economic deposits using the current U.S. Geological Survey methodology. The model is intended to be used to identify tracts of land where volcanogenic epithermal replacement-type beryllium deposits hosted by metaluminous to peraluminous rhyolite are most likely to occur. Only a limited number of deposits or districts of this type are known, and only the ores of the Spor Mountain district have been studied in detail. The model highlights those distinctive aspects and features of volcanogenic epithermal beryllium deposits that pertain to the development of assessment criteria and puts forward a baseline analysis of the geoenvironmental consequences of mining deposits of this type.

  8. Multistate Statistical Modeling: A Tool to Build a Lung Cancer Microsimulation Model That Includes Parameter Uncertainty and Patient Heterogeneity.

    Science.gov (United States)

    Bongers, Mathilda L; de Ruysscher, Dirk; Oberije, Cary; Lambin, Philippe; Uyl-de Groot, Carin A; Coupé, V M H

    2016-01-01

    With the shift toward individualized treatment, cost-effectiveness models need to incorporate patient and tumor characteristics that may be relevant to treatment planning. In this study, we used multistate statistical modeling to inform a microsimulation model for cost-effectiveness analysis of individualized radiotherapy in lung cancer. The model tracks clinical events over time and takes patient and tumor features into account. Four clinical states were included in the model: alive without progression, local recurrence, metastasis, and death. Individual patients were simulated by repeatedly sampling a patient profile, consisting of patient and tumor characteristics. The transitioning of patients between the health states is governed by personalized time-dependent hazard rates, which were obtained from multistate statistical modeling (MSSM). The model simulations for both the individualized and conventional radiotherapy strategies demonstrated internal and external validity. Therefore, MSSM is a useful technique for obtaining the correlated individualized transition rates that are required for the quantification of a microsimulation model. Moreover, we have used the hazard ratios, their 95% confidence intervals, and their covariance to quantify the parameter uncertainty of the model in a correlated way. The obtained model will be used to evaluate the cost-effectiveness of individualized radiotherapy treatment planning, including the uncertainty of input parameters. We discuss the model-building process and the strengths and weaknesses of using MSSM in a microsimulation model for individualized radiotherapy in lung cancer.

  9. IFP technologies for flow assurance. Modeling, thermal insulation, deposit prevention, additives, testing facilities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    Flow assurance has become one of the central topics covering the choice of a given field architecture and the specification of its production process. The relevant analysis includes the evaluation of risks and uncertainties associated with operational procedures, and contributes to a better estimate of the economics of a specific hydrocarbon production. This brochure presents an overview of innovative technologies, either available through IFP licensees or still under development by IFP and its industrial partners. The purpose of these technologies, related to Flow Assurance, is to secure the production operations, minimizing the down times, and reducing the production costs, particularly in the field of thermal insulation, deposit prevention and remediation. All these technologies benefit from the input of highly skilled teams from the Applied Mechanics, Applied Chemistry and Physical Chemistry Divisions of IFP, and rely on the design and use of sophisticated experimental laboratory and pilot equipment as well as advanced simulations and predictive modeling.

  10. Scenario and parameter studies on global deposition of radioactivity using the computer model GLODEP2

    Energy Technology Data Exchange (ETDEWEB)

    Shapiro, C.S.

    1984-08-01

    The GLODEP2 computer code was utilized to determine biological impact to humans on a global scale using up-to-date estimates of biological risk. These risk factors use varied biological damage models for assessing effects. All the doses reported are the unsheltered, unweathered, smooth terrain, external gamma dose. We assume the unperturbed atmosphere in determining injection and deposition. Effects due to ''nuclear winter'' may invalidate this assumption. The calculations also include scenarios that attempt to assess the impact of the changing nature of the nuclear stockpile. In particular, the shift from larger to smaller yield nuclear devices significantly changes the injection pattern into the atmosphere, and hence significantly affects the radiation doses that ensue. We have also looked at injections into the equatorial atmosphere. In total, we report here the results for 8 scenarios. 10 refs., 6 figs., 11 tabs.

  11. Model for safety reports including descriptive examples; Mall foer saekerhetsrapporter med beskrivande exempel

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-01

    Several safety reports will be produced in the process of planning and constructing the system for disposal of high-level radioactive waste in Sweden. The present report gives a model, with detailed examples, of how these reports should be organized and what steps they should include. In the near future safety reports will deal with the encapsulation plant and the repository. Later reports will treat operation of the handling systems and the repository.

  12. Extending the formal model of a spatial data infrastructure to include volunteered geographical information

    CSIR Research Space (South Africa)

    Cooper, Antony K

    2011-07-01

    Full Text Available an aggregator of VGI, such as Ushahidi, and the provider of the infrastructure for collecting VGI, such as OpenStreetMap. 3) Broker: A stakeholder who brings End Users and Providers together and assists in the negotiation of contracts between them... model of a spatial data infrastructure to include volunteered geographical information Antony K Cooper*, Petr Rapant?, Jan Hjelmager?, Dominique Laurent?, Adam Iwaniak#, Serena Coetzee$, Harold Moellering? and Ulrich D?ren? *Logistics...

  13. Ore-forming and Exploration Models of the Baguamiao Gold Deposit, Shaanxi Province

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The Baguamiao superlarge gold deposit in Shaanxi Province is one of the typical cases in China that are hosted by sedimentary rocks. Explorers and researchers have discussed the gold mineralization enrichment conditions by studying sulphur, oxygen, carbon, silicon stable isotopes and mineralizing fluid features of the Baguamiao gold deposit and proposed a hydrothermal sedimentation-magmatic reconstructing gold mineralization model featuring multi-sources of ore-forming materials and multistage mineralizations. In addition, prospecting for "Baguamiao-type"gold deposits was started in the Fengtai Basin and a great number of important prospecting targets such as Tonglinggou, Simaoling, Guoansi and Dachaigou were discovered.

  14. QCD Equation of State From a Chiral Hadronic Model Including Quark Degrees of Freedom

    CERN Document Server

    Rau, Philip; Schramm, Stefan; Stöcker, Horst

    2013-01-01

    This work presents an effective model for strongly interacting matter and the QCD equation of state (EoS). The model includes both hadron and quark degrees of freedom and takes into account the transition of chiral symmetry restoration as well as the deconfinement phase transition. At low temperatures $T$ and baryonic densities $\\rho_B$ a hadron resonance gas is described using a SU(3)-flavor sigma-omega model and a quark phase is introduced in analogy to PNJL models for higher $T$ and $\\rho_B$. In this way, the correct asymptotic degrees of freedom are used in a wide range of $T$ and $\\rho_B$. Here, results of this model concerning the chiral and deconfinement phase transitions and thermodynamic model properties are presented. Large hadron resonance multiplicities in the transition region emphasize the importance of heavy-mass resonance states in this region and their impact on the chiral transition behavior. The resulting phase diagram of QCD matter at small chemical potentials is in line with latest lattic...

  15. A full model for simulation of electrochemical cells including complex behavior

    Science.gov (United States)

    Esperilla, J. J.; Félez, J.; Romero, G.; Carretero, A.

    This communication presents a model of electrochemical cells developed in order to simulate their electrical, chemical and thermal behavior showing the differences when thermal effects are or not considered in the charge-discharge process. The work presented here has been applied to the particular case of the Pb,PbSO 4|H 2SO 4 (aq)|PbO 2,Pb cell, which forms the basis of the lead-acid batteries so widely used in the automotive industry and as traction batteries in electric or hybrid vehicles. Each half-cell is considered independently in the model. For each half-cell, in addition to the main electrode reaction, a secondary reaction is considered: the hydrogen evolution reaction in the negative electrode and the oxygen evolution reaction in the positive. The equilibrium potential is calculated with the Nernst equation, in which the activity coefficients are fitted to an exponential function using experimental data. On the other hand, the two main mechanisms that produce the overpotential are considered, that is the activation or charge transfer and the diffusion mechanisms. First, an isothermal model has been studied in order to show the behavior of the main phenomena. A more complex model has also been studied including thermal behavior. This model is very useful in the case of traction batteries in electric and hybrid vehicles where high current intensities appear. Some simulation results are also presented in order to show the accuracy of the proposed models.

  16. A High-Rate, Single-Crystal Model including Phase Transformations, Plastic Slip, and Twinning

    Energy Technology Data Exchange (ETDEWEB)

    Addessio, Francis L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Bronkhorst, Curt Allan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Bolme, Cynthia Anne [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Explosive Science and Shock Physics Division; Brown, Donald William [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science and Technology Division; Cerreta, Ellen Kathleen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science and Technology Division; Lebensohn, Ricardo A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science and Technology Division; Lookman, Turab [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Luscher, Darby Jon [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Mayeur, Jason Rhea [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Theoretical Division; Morrow, Benjamin M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science and Technology Division; Rigg, Paulo A. [Washington State Univ., Pullman, WA (United States). Dept. of Physics. Inst. for Shock Physics

    2016-08-09

    An anisotropic, rate-­dependent, single-­crystal approach for modeling materials under the conditions of high strain rates and pressures is provided. The model includes the effects of large deformations, nonlinear elasticity, phase transformations, and plastic slip and twinning. It is envisioned that the model may be used to examine these coupled effects on the local deformation of materials that are subjected to ballistic impact or explosive loading. The model is formulated using a multiplicative decomposition of the deformation gradient. A plate impact experiment on a multi-­crystal sample of titanium was conducted. The particle velocities at the back surface of three crystal orientations relative to the direction of impact were measured. Molecular dynamics simulations were conducted to investigate the details of the high-­rate deformation and pursue issues related to the phase transformation for titanium. Simulations using the single crystal model were conducted and compared to the high-­rate experimental data for the impact loaded single crystals. The model was found to capture the features of the experiments.

  17. A 3D model of the oculomotor plant including the pulley system

    Energy Technology Data Exchange (ETDEWEB)

    Viegener, A; Armentano, R L [Fundacion Universitaria Dr. Rene G. Favaloro, SolIs 453 (1078) Buenos Aires (Argentina)

    2007-11-15

    Early models of the oculomotor plant only considered the eye globes and the muscles that move them. Recently, connective tissue structures have been found enveloping the extraocular muscles (EOMs) and firmly anchored to the orbital wall. These structures act as pulleys; they determine the functional origin of the EOMs and, in consequence, their effective pulling direction. A three dimensional model of the oculomotor plant, including pulleys, has been developed and simulations in Simulink were performed during saccadic eye movements. Listing's law was implemented based on the supposition that there exists an eye orientation related signal. The inclusion of the pulleys in the model makes this assumption plausible and simplifies the problem of the plant noncommutativity.

  18. A flexible and qualitatively stable model for cell cycle dynamics including DNA damage effects.

    Science.gov (United States)

    Jeffries, Clark D; Johnson, Charles R; Zhou, Tong; Simpson, Dennis A; Kaufmann, William K

    2012-01-01

    This paper includes a conceptual framework for cell cycle modeling into which the experimenter can map observed data and evaluate mechanisms of cell cycle control. The basic model exhibits qualitative stability, meaning that regardless of magnitudes of system parameters its instances are guaranteed to be stable in the sense that all feasible trajectories converge to a certain trajectory. Qualitative stability can also be described by the signs of real parts of eigenvalues of the system matrix. On the biological side, the resulting model can be tuned to approximate experimental data pertaining to human fibroblast cell lines treated with ionizing radiation, with or without disabled DNA damage checkpoints. Together these properties validate a fundamental, first order systems view of cell dynamics. Classification Codes: 15A68.

  19. RELAP5-3D Code Includes Athena Features and Models

    Energy Technology Data Exchange (ETDEWEB)

    Richard A. Riemke; Cliff B. Davis; Richard R. Schultz

    2006-07-01

    Version 2.3 of the RELAP5-3D computer program includes all features and models previously available only in the ATHENA version of the code. These include the addition of new working fluids (i.e., ammonia, blood, carbon dioxide, glycerol, helium, hydrogen, lead-bismuth, lithium, lithium-lead, nitrogen, potassium, sodium, and sodium-potassium) and a magnetohydrodynamic model that expands the capability of the code to model many more thermal-hydraulic systems. In addition to the new working fluids along with the standard working fluid water, one or more noncondensable gases (e.g., air, argon, carbon dioxide, carbon monoxide, helium, hydrogen, krypton, nitrogen, oxygen, sf6, xenon) can be specified as part of the vapor/gas phase of the working fluid. These noncondensable gases were in previous versions of RELAP5- 3D. Recently four molten salts have been added as working fluids to RELAP5-3D Version 2.4, which has had limited release. These molten salts will be in RELAP5-3D Version 2.5, which will have a general release like RELAP5-3D Version 2.3. Applications that use these new features and models are discussed in this paper.

  20. Atmospheric deposition impacts on nutrients and biological budgets of the Mediterranean Sea, results from the high resolution coupled model NEMOMED12/PISCES

    Science.gov (United States)

    Richon, Camille; Dutay, Jean-Claude; Dulac, François; Desboeufs, Karine; Nabat, Pierre; Guieu, Cécile; Aumont, Olivier; Palmieri, Julien

    2016-04-01

    Atmospheric deposition is at present not included in regional oceanic biogeochemical models of the Mediterranean Sea, whereas, along with river inputs, it represents a significant source of nutrients at the basin scale, especially through intense desert dust events. Moreover, observations (e.g. DUNE campaign, Guieu et al. 2010) show that these events significantly modify the biogeochemistry of the oligotrophic Mediterranean Sea. We use a high resolution (1/12°) version of the 3D coupled model NEMOMED12/PISCES to investigate the effects of high resolution atmospheric dust deposition forcings on the biogeochemistry of the Mediterranean basin. The biogeochemical model PISCES represents the evolution of 24 prognostic tracers including five nutrients (nitrate, ammonium, phosphate, silicate and iron) and two phytoplankton and zooplanktons groups (Palmiéri, 2014). From decadal simulations (1982-2012) we evaluate the influence of natural dust and anthropogenic nitrogen deposition on the budget of nutrients in the basin and its impact on the biogeochemistry (primary production, plankton distributions...). Our results show that natural dust deposition accounts for 15% of global PO4 budget and that it influences primarily the southern part of the basin. Anthropogenic nitrogen accounts for 50% of bioavailable N supply for the northern part. Deposition events significantly affect biological production; primary productivity enhancement can be as high as 30% in the areas of high deposition, especially during the stratified period. Further developments of the model will include 0D and 1D modeling of bacteria in the frame of the PEACETIME project.

  1. Including policy and management in socio-hydrology models: initial conceptualizations

    Science.gov (United States)

    Hermans, Leon; Korbee, Dorien

    2017-04-01

    Socio-hydrology studies the interactions in coupled human-water systems. So far, the use of dynamic models that capture the direct feedback between societal and hydrological systems has been dominant. What has not yet been included with any particular emphasis, is the policy or management layer, which is a central element in for instance integrated water resources management (IWRM) or adaptive delta management (ADM). Studying the direct interactions between human-water systems generates knowledges that eventually helps influence these interactions in ways that may ensure better outcomes - for society and for the health and sustainability of water systems. This influence sometimes occurs through spontaneous emergence, uncoordinated by societal agents - private sector, citizens, consumers, water users. However, the term 'management' in IWRM and ADM also implies an additional coordinated attempt through various public actors. This contribution is a call to include the policy and management dimension more prominently into the research focus of the socio-hydrology field, and offers first conceptual variables that should be considered in attempts to include this policy or management layer in socio-hydrology models. This is done by drawing on existing frameworks to study policy processes throughout both planning and implementation phases. These include frameworks such as the advocacy coalition framework, collective learning and policy arrangements, which all emphasis longer-term dynamics and feedbacks between actor coalitions in strategic planning and implementation processes. A case about longter-term dynamics in the management of the Haringvliet in the Netherlands is used to illustrate the paper.

  2. EXACT SOLUTIONS FOR NONLINEAR TRANSIENT FLOW MODEL INCLUDING A QUADRATIC GRADIENT TERM

    Institute of Scientific and Technical Information of China (English)

    曹绪龙; 同登科; 王瑞和

    2004-01-01

    The models of the nonlinear radial flow for the infinite and finite reservoirs including a quadratic gradient term were presented. The exact solution was given in real space for flow equation including quadratic gradiet term for both constant-rate and constant pressure production cases in an infinite system by using generalized Weber transform. Analytical solutions for flow equation including quadratic gradient term were also obtained by using the Hankel transform for a finite circular reservoir case. Both closed and constant pressure outer boundary conditions are considered. Moreover, both constant rate and constant pressure inner boundary conditions are considered. The difference between the nonlinear pressure solution and linear pressure solution is analyzed. The difference may be reached about 8% in the long time. The effect of the quadratic gradient term in the large time well test is considered.

  3. Development and evaluation of an ozone deposition scheme for coupling to a terrestrial biosphere model

    Science.gov (United States)

    Franz, Martina; Simpson, David; Arneth, Almut; Zaehle, Sönke

    2017-01-01

    Ozone (O3) is a toxic air pollutant that can damage plant leaves and substantially affect the plant's gross primary production (GPP) and health. Realistic estimates of the effects of tropospheric anthropogenic O3 on GPP are thus potentially important to assess the strength of the terrestrial biosphere as a carbon sink. To better understand the impact of ozone damage on the terrestrial carbon cycle, we developed a module to estimate O3 uptake and damage of plants for a state-of-the-art global terrestrial biosphere model called OCN. Our approach accounts for ozone damage by calculating (a) O3 transport from 45 m height to leaf level, (b) O3 flux into the leaf, and (c) ozone damage of photosynthesis as a function of the accumulated O3 uptake over the lifetime of a leaf. A comparison of modelled canopy conductance, GPP, and latent heat to FLUXNET data across European forest and grassland sites shows a general good performance of OCN including ozone damage. This comparison provides a good baseline on top of which ozone damage can be evaluated. In comparison to literature values, we demonstrate that the new model version produces realistic O3 surface resistances, O3 deposition velocities, and stomatal to total O3 flux ratios. A sensitivity study reveals that key metrics of the air-to-leaf O3 transport and O3 deposition, in particular the stomatal O3 uptake, are reasonably robust against uncertainty in the underlying parameterisation of the deposition scheme. Nevertheless, correctly estimating canopy conductance plays a pivotal role in the estimate of cumulative O3 uptake. We further find that accounting for stomatal and non-stomatal uptake processes substantially affects simulated plant O3 uptake and accumulation, because aerodynamic resistance and non-stomatal O3 destruction reduce the predicted leaf-level O3 concentrations. Ozone impacts on GPP and transpiration in a Europe-wide simulation indicate that tropospheric O3 impacts the regional carbon and water cycling less

  4. New simple deposition model based on reassessment of global fallout data 1954 - 1976

    Energy Technology Data Exchange (ETDEWEB)

    Palsson, S.E. [Icelandic Radiation Safety Authority, Reykjavik (Iceland); Bergan, T.D. [Directorate for Civil Protection and Emergency Planning, Toensberg (Norway); Howard, B.J. [Centre for Ecology and Hydrology, Lancaster Environment Centre, Lancaster (United Kingdom); Ikaeheimonen, T.K. [STUK - Radiation and Nuclear Safety Authority, Helsinki (Finland); Isaksson, M. [Univ. of Gothenburg. Dept. of Radiation Physics, Institute of Clinical Sciences, Sahlgren Academy, Gothenburg (Sweden); Nielsen, Sven P. [Technical Univ. of Denmark. DTU Nutech, Roskilde (Denmark); Paatero, J. [Finnish Meteorological Institute. Observation Services, Helsinki (Finland)

    2012-12-15

    Atmospheric testing of nuclear weapons began in 1945 and largely ceased in 1963. This testing is the major cause of distribution of man-made radionuclides over the globe and constitutes a background that needs to be considered when effects of other sources are estimated. The main radionuclides of long term (after the first months) concern are generally assumed to be {sup 137}Cs and {sup 90}Sr. It has been known for a long time that the deposition density of {sup 137}Cs and {sup 90}Sr is approximately proportional to the amount of precipitation. But the use of this proportional relationship raised some questions such as (a) over how large area can it be assumed that the concentration in precipitation is the same at any given time; (b) how does this agree with the observed latitude dependency of deposition density and (c) are the any other parameters that could be of use in a simple model describing global fallout? These issues were amongst those taken up in the NKS-B EcoDoses activity. The preliminary results for {sup 137}Cs and {sup 90}Sr showed for each that the measured concentration had been similar at many European and N-American sites at any given time and that the change with time had been similar. These finding were followed up in a more thorough study in this (DepEstimates) activity. Global data (including the US EML and UK AERE data sets) from 1954 - 1976 for {sup 90}Sr and {sup 137}Cs were analysed testing how well different potential explanatory variables could describe the deposition density. The best fit was obtained by not assuming the traditional proportional relationship, but instead a non-linear power function. The predictions obtained using this new model may not be significantly different from those obtained using the traditional model, when using a limited data set such as from one country as a test in this report showed. But for larger data sets and understanding of underlying processes the new model should be an improvement. (Author)

  5. Modelling the effects of atmospheric sulphur and nitrogen deposition on selected lakes and streams of the Central Alps (Italy

    Directory of Open Access Journals (Sweden)

    M. Rogora

    2003-01-01

    Full Text Available The dynamic model MAGIC was calibrated and applied to selected sites in north-western Italy (3 rivers, 10 alpine lakes to predict the future response of surface water to different scenarios of atmospheric deposition of S and N compounds. Results at the study sites suggest that several factors other than atmospheric deposition may influence the long-term changes in surface water chemistry. At present the lumped approach of dynamic models such as MAGIC cannot represent all the processes occurring at the catchment scale. Climate warming in particular and its effects on surface water chemistry proved to be important in the study area. Furthermore the river catchments considered here showed clear signs of N saturation. This condition and the increasing concentrations of NO3 in river water were simulated using N dynamics recently included in MAGIC. The modelling performed in this study represents the first application of MAGIC to Italian sites. The results show that inclusion of other factors specific to the Mediterranean area, such as dust deposition and climate change, may improve the fit to observed data and the reliability of the model forecast. Despite these limitations, the model captured well the main trends in chemical data in both rivers and lakes. The outputs clearly demonstrate the benefits of achieving the emission reductions in both S and N compounds as agreed under the Gothenburg Protocol rather than making no further emission reductions. It was also clear that, besides the substantial reduction of SO4 deposition from the peak levels of the 1980s, N deposition must also be reduced in the near future to protect freshwaters from further acidification. Keywords: MAGIC, northern Italy, acidification, recovery, nitrogen saturation

  6. Modeling of stable and metastable structures of Co, Cr, or Fe deposited on Ag(100) substrates

    Energy Technology Data Exchange (ETDEWEB)

    Canzian, A. [Grupo de Caracterizacion y Modelacion de Materiales, UTN, FRGP, H. Yrigoyen 288, (B1617FRP) Gral. Pacheco (Argentina); Bozzolo, G., E-mail: guille_bozzolo@yahoo.co [Loyola University of Maryland, 4501 N. Charles St, Baltimore, MD 21210 (United States); Mosca, H.O. [Gerencia de Investigacion y Aplicaciones, Comision Nacional de Energia Atomica, Av. Gral. Paz 1499 (B1650KNA), San Martin (Argentina)

    2011-01-31

    Atomistic modeling of the deposition of Co, Cr, or Fe on a Ag(100) substrate is performed using the Bozzolo-Ferrante-Smith method for alloys, in order to describe the similarities and differences between the three cases. An atom-by-atom description of the deposition process explains the growth patterns from an early stage, establishing a criterion for the determination of the ensuing growth modes.

  7. A simple stochastic quadrant model for the transport and deposition of particles in turbulent boundary layers

    Energy Technology Data Exchange (ETDEWEB)

    Jin, C.; Potts, I.; Reeks, M. W., E-mail: mike.reeks@ncl.ac.uk [School of Mechanical and Systems Engineering, Newcastle University, Stephenson Building, Claremont Road, Newcastle upon Tyne NE1 7RU (United Kingdom)

    2015-05-15

    We present a simple stochastic quadrant model for calculating the transport and deposition of heavy particles in a fully developed turbulent boundary layer based on the statistics of wall-normal fluid velocity fluctuations obtained from a fully developed channel flow. Individual particles are tracked through the boundary layer via their interactions with a succession of random eddies found in each of the quadrants of the fluid Reynolds shear stress domain in a homogeneous Markov chain process. In this way, we are able to account directly for the influence of ejection and sweeping events as others have done but without resorting to the use of adjustable parameters. Deposition rate predictions for a wide range of heavy particles predicted by the model compare well with benchmark experimental measurements. In addition, deposition rates are compared with those obtained from continuous random walk models and Langevin equation based ejection and sweep models which noticeably give significantly lower deposition rates. Various statistics related to the particle near wall behavior are also presented. Finally, we consider the model limitations in using the model to calculate deposition in more complex flows where the near wall turbulence may be significantly different.

  8. Induction of complement proteins in a mouse model for cerebral microvascular Aβ deposition

    OpenAIRE

    DeFilippis Kelly; Fan Rong; Van Nostrand William E

    2007-01-01

    Abstract The deposition of amyloid β-protein (Aβ) in cerebral vasculature, known as cerebral amyloid angiopathy (CAA), is a common pathological feature of Alzheimer's disease and related disorders. In familial forms of CAA single mutations in the Aβ peptide have been linked to the increase of vascular Aβ deposits accompanied by a strong localized activation of glial cells and elevated expression of neuroinflammatory mediators including complement proteins. We have developed human amyloid-β pr...

  9. SPheno 3.1: extensions including flavour, CP-phases and models beyond the MSSM

    Science.gov (United States)

    Porod, W.; Staub, F.

    2012-11-01

    We describe recent extensions of the program SPhenoincluding flavour aspects, CP-phases, R-parity violation and low energy observables. In case of flavour mixing all masses of supersymmetric particles are calculated including the complete flavour structure and all possible CP-phases at the 1-loop level. We give details on implemented seesaw models, low energy observables and the corresponding extension of the SUSY Les Houches Accord. Moreover, we comment on the possibilities to include MSSM extensions in SPheno. Catalogue identifier: ADRV_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADRV_v2_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 154062 No. of bytes in distributed program, including test data, etc.: 1336037 Distribution format: tar.gz Programming language: Fortran95. Computer: PC running under Linux, should run in every Unix environment. Operating system: Linux, Unix. Classification: 11.6. Catalogue identifier of previous version: ADRV_v1_0 Journal reference of previous version: Comput. Phys. Comm. 153(2003)275 Does the new version supersede the previous version?: Yes Nature of problem: The first issue is the determination of the masses and couplings of supersymmetric particles in various supersymmetric models, the R-parity conserved MSSM with generation mixing and including CP-violating phases, various seesaw extensions of the MSSM and the MSSM with bilinear R-parity breaking. Low energy data on Standard Model fermion masses, gauge couplings and electroweak gauge boson masses serve as constraints. Radiative corrections from supersymmetric particles to these inputs must be calculated. Theoretical constraints on the soft SUSY breaking parameters from a high scale theory are imposed and the parameters at the electroweak scale are obtained from the

  10. Boring of full scale deposition holes at the Aespoe Hard Rock Laboratory. Operational experiences including boring performance and a work time analysis

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Christer [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden); Johansson, Aasa [SWECO, Stockholm (Sweden)

    2002-12-01

    Thirteen experimental deposition holes similar to those in the present KBS-3 design have been bored at the Aespoe Hard Rock Laboratory, Oskarshamn, Sweden. The objective with the boring program was to test and demonstrate the current technique for boring of large vertical holes in granitic rock. Conclusions and results from this project is used in the planning process for the deposition holes that will be bored in the real repository for spent nuclear fuel. The boreholes are also important for three major projects. The Prototype Repository, the Canister Retrieval Test and the Demonstration project will all need full-scale deposition holes for their commissioning. The holes are bored in full scale and have a radius of 1.75 m and a depth of 8.5 m. To bore the holes an existing TBM design was modified to produce a novel type Shaft Boring Machine (SBM) suitable for boring 1.75 m diameter holes from a relatively small tunnel. The cutter head was equipped with two types of roller cutters: two row carbide button cutters and disc cutters. Removal of the cuttings was made with a vacuum suction system. The boring was monitored and boring parameters recorded by a computerised system for the evaluation of the boring performance. During boring of four of the holes temperature, stress and strain measurements were performed. Acoustic emission measurements were also performed during boring of these four holes. The results of these activities will not be discussed in this report since they are reported separately. Criteria regarding nominal borehole diameter, deviation of start and end centre point, surface roughness and performance of the machine were set up according to the KBS-3 design and were fulfilled with a fair margin. The average total time for boring one deposition hole during this project was 105 hours.

  11. Computational Fluid Dynamics Modeling of Bacillus anthracis Spore Deposition in Rabbit and Human Respiratory Airways

    Energy Technology Data Exchange (ETDEWEB)

    Kabilan, Senthil; Suffield, Sarah R.; Recknagle, Kurtis P.; Jacob, Rick E.; Einstein, Daniel R.; Kuprat, Andrew P.; Carson, James P.; Colby, Sean M.; Saunders, James H.; Hines, Stephanie; Teeguarden, Justin G.; Straub, Tim M.; Moe, M.; Taft, Sarah; Corley, Richard A.

    2016-09-30

    Three-dimensional computational fluid dynamics and Lagrangian particle deposition models were developed to compare the deposition of aerosolized Bacillus anthracis spores in the respiratory airways of a human with that of the rabbit, a species commonly used in the study of anthrax disease. The respiratory airway geometries for each species were derived from computed tomography (CT) or µCT images. Both models encompassed airways that extended from the external nose to the lung with a total of 272 outlets in the human model and 2878 outlets in the rabbit model. All simulations of spore deposition were conducted under transient, inhalation-exhalation breathing conditions using average species-specific minute volumes. The highest exposure concentration was modeled in the rabbit based upon prior acute inhalation studies. For comparison, human simulation was also conducted at the same concentration. Results demonstrated that regional spore deposition patterns were sensitive to airway geometry and ventilation profiles. Due to the complex airway geometries in the rabbit nose, higher spore deposition efficiency was predicted in the upper conducting airways compared to the human at the same air concentration of anthrax spores. As a result, higher particle deposition was predicted in the conducting airways and deep lung of the human compared to the rabbit lung due to differences in airway branching pattern. This information can be used to refine published and ongoing biokinetic models of inhalation anthrax spore exposures, which currently estimate deposited spore concentrations based solely upon exposure concentrations and inhaled doses that do not factor in species-specific anatomy and physiology.

  12. DISPLAY-2: a two-dimensional shallow layer model for dense gas dispersion including complex features.

    Science.gov (United States)

    Venetsanos, A G; Bartzis, J G; Würtz, J; Papailiou, D D

    2003-04-25

    A two-dimensional shallow layer model has been developed to predict dense gas dispersion, under realistic conditions, including complex features such as two-phase releases, obstacles and inclined ground. The model attempts to predict the time and space evolution of the cloud formed after a release of a two-phase pollutant into the atmosphere. The air-pollutant mixture is assumed ideal. The cloud evolution is described mathematically through the Cartesian, two-dimensional, shallow layer conservation equations for mixture mass, mixture momentum in two horizontal directions, total pollutant mass fraction (vapor and liquid) and mixture internal energy. Liquid mass fraction is obtained assuming phase equilibrium. Account is taken in the conservation equations for liquid slip and eventual liquid rainout through the ground. Entrainment of ambient air is modeled via an entrainment velocity model, which takes into account the effects of ground friction, ground heat transfer and relative motion between cloud and surrounding atmosphere. The model additionally accounts for thin obstacles effects in three ways. First a stepwise description of the obstacle is generated, following the grid cell faces, taking into account the corresponding area blockage. Then obstacle drag on the passing cloud is modeled by adding flow resistance terms in the momentum equations. Finally the effect of extra vorticity generation and entrainment enhancement behind obstacles is modeled by adding locally into the entrainment formula without obstacles, a characteristic velocity scale defined from the obstacle pressure drop and the local cloud height.The present model predictions have been compared against theoretical results for constant volume and constant flux gravity currents. It was found that deviations of the predicted cloud footprint area change with time from the theoretical were acceptably small, if one models the frictional forces between cloud and ambient air, neglecting the Richardson

  13. Sensitivity of an atmospheric photochemistry model to chlorine perturbations including consideration of uncertainty propagation

    Science.gov (United States)

    Stolarski, R. S.; Douglass, A. R.

    1986-01-01

    Models of stratospheric photochemistry are generally tested by comparing their predictions for the composition of the present atmosphere with measurements of species concentrations. These models are then used to make predictions of the atmospheric sensitivity to perturbations. Here the problem of the sensitivity of such a model to chlorine perturbations ranging from the present influx of chlorine-containing compounds to several times that influx is addressed. The effects of uncertainties in input parameters, including reaction rate coefficients, cross sections, solar fluxes, and boundary conditions, are evaluated using a Monte Carlo method in which the values of the input parameters are randomly selected. The results are probability distributions for present atmosheric concentrations and for calculated perturbations due to chlorine from fluorocarbons. For more than 300 Monte Carlo runs the calculated ozone perturbation for continued emission of fluorocarbons at today's rates had a mean value of -6.2 percent, with a 1-sigma width of 5.5 percent. Using the same runs but only allowing the cases in which the calculated present atmosphere values of NO, NO2, and ClO at 25 km altitude fell within the range of measurements yielded a mean ozone depletion of -3 percent, with a 1-sigma deviation of 2.2 percent. The model showed a nonlinear behavior as a function of added fluorocarbons. The mean of the Monte Carlo runs was less nonlinear than the model run using mean value of the input parameters.

  14. Health Promotion Behavior of Chinese International Students in Korea Including Acculturation Factors: A Structural Equation Model.

    Science.gov (United States)

    Kim, Sun Jung; Yoo, Il Young

    2016-03-01

    The purpose of this study was to explain the health promotion behavior of Chinese international students in Korea using a structural equation model including acculturation factors. A survey using self-administered questionnaires was employed. Data were collected from 272 Chinese students who have resided in Korea for longer than 6 months. The data were analyzed using structural equation modeling. The p value of final model is .31. The fitness parameters of the final model such as goodness of fit index, adjusted goodness of fit index, normed fit index, non-normed fit index, and comparative fit index were more than .95. Root mean square of residual and root mean square error of approximation also met the criteria. Self-esteem, perceived health status, acculturative stress and acculturation level had direct effects on health promotion behavior of the participants and the model explained 30.0% of variance. The Chinese students in Korea with higher self-esteem, perceived health status, acculturation level, and lower acculturative stress reported higher health promotion behavior. The findings can be applied to develop health promotion strategies for this population. Copyright © 2016. Published by Elsevier B.V.

  15. S5-4: Formal Modeling of Affordance in Human-Included Systems

    Directory of Open Access Journals (Sweden)

    Namhun Kim

    2012-10-01

    Full Text Available In spite of it being necessary for humans to consider modeling, analysis, and control of human-included systems, it has been considered a challenging problem because of the critical role of humans in complex systems and of humans' capability of executing unanticipated actions–both beneficial and detrimental ones. Thus, to provide systematic approaches to modeling human actions as a part of system behaviors, a formal modeling framework for human-involved systems in which humans play a controlling role based on their perceptual information is presented. The theory of affordance provides definitions of human actions and their associated properties; Finite State Automata (FSA based modeling is capable of mapping nondeterministic humans into computable components in the system representation. In this talk, we investigate the role of perception in human actions in the system operation and examine the representation of perceptual elements in affordance-based modeling formalism. The proposed framework is expected to capture the natural ways in which humans participate in the system as part of its operation. A human-machine cooperative manufacturing system control example and a human agent simulation example will be introduced for the illustrative purposes at the end of the presentation.

  16. Acid deposition: decision framework. Volume 1. Description of conceptual framework and decision-tree models. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Balson, W.E.; Boyd, D.W.; North, D.W.

    1982-08-01

    Acid precipitation and dry deposition of acid materials have emerged as an important environmental issue affecting the electric utility industry. This report presents a framework for the analysis of decisions on acid deposition. The decision framework is intended as a means of summarizing scientific information and uncertainties on the relation between emissions from electric utilities and other sources, acid deposition, and impacts on ecological systems. The methodology for implementing the framework is that of decision analysis, which provides a quantitative means of analyzing decisions under uncertainty. The decisions of interest include reductions in sulfur oxide and other emissions thought to be precursors of acid deposition, mitigation of acid deposition impacts through means such as liming of waterways and soils, and choice of strategies for research. The report first gives an overview of the decision framework and explains the decision analysis methods with a simplified caricature example. The state of scientific information and the modeling assumptions for the framework are then discussed for the three main modules of the framework: emissions and control technologies; long-range transport and chemical conversion in the atmosphere; and ecological impacts. The report then presents two versions of a decision tree model that implements the decision framework. The basic decision tree addresses decisions on emissions control and mitigation in the immediate future and a decade hence, and it includes uncertainties in the long-range transport and ecological impacts. The research emphasis decision tree addresses the effect of research funding on obtaining new information as the basis for future decisions. Illustrative data and calculations using the decision tree models are presented.

  17. Use of regression-based models to map sensitivity of aquatic resources to atmospheric deposition in Yosemite National Park, USA

    Science.gov (United States)

    Clow, David W.; Nanus, Leora; Huggett, Brian

    2010-01-01

    An abundance of exposed bedrock, sparse soil and vegetation, and fast hydrologic flushing rates make aquatic ecosystems in Yosemite National Park susceptible to nutrient enrichment and episodic acidification due to atmospheric deposition of nitrogen (N) and sulfur (S). In this study, multiple linear regression (MLR) models were created to estimate fall-season nitrate and acid neutralizing capacity (ANC) in surface water in Yosemite wilderness. Input data included estimated winter N deposition, fall-season surface-water chemistry measurements at 52 sites, and basin characteristics derived from geographic information system layers of topography, geology, and vegetation. The MLR models accounted for 84% and 70% of the variance in surface-water nitrate and ANC, respectively. Explanatory variables (and the sign of their coefficients) for nitrate included elevation (positive) and the abundance of neoglacial and talus deposits (positive), unvegetated terrain (positive), alluvium (negative), and riparian (negative) areas in the basins. Explanatory variables for ANC included basin area (positive) and the abundance of metamorphic rocks (positive), unvegetated terrain (negative), water (negative), and winter N deposition (negative) in the basins. The MLR equations were applied to 1407 stream reaches delineated in the National Hydrography Data Set for Yosemite, and maps of predicted surface-water nitrate and ANC concentrations were created. Predicted surface-water nitrate concentrations were highest in small, high-elevation cirques, and concentrations declined downstream. Predicted ANC concentrations showed the opposite pattern, except in high-elevation areas underlain by metamorphic rocks along the Sierran Crest, which had relatively high predicted ANC (>200 μeq L-1). Maps were created to show where basin characteristics predispose aquatic resources to nutrient enrichment and acidification effects from N and S deposition. The maps can be used to help guide development of

  18. An extended gene protein/products Boolean network model including post-transcriptional regulation.

    Science.gov (United States)

    Benso, Alfredo; Di Carlo, Stefano; Politano, Gianfranco; Savino, Alessandro; Vasciaveo, Alessandro

    2014-05-07

    Networks Biology allows the study of complex interactions between biological systems using formal, well structured, and computationally friendly models. Several different network models can be created, depending on the type of interactions that need to be investigated. Gene Regulatory Networks (GRN) are an effective model commonly used to study the complex regulatory mechanisms of a cell. Unfortunately, given their intrinsic complexity and non discrete nature, the computational study of realistic-sized complex GRNs requires some abstractions. Boolean Networks (BNs), for example, are a reliable model that can be used to represent networks where the possible state of a node is a boolean value (0 or 1). Despite this strong simplification, BNs have been used to study both structural and dynamic properties of real as well as randomly generated GRNs. In this paper we show how it is possible to include the post-transcriptional regulation mechanism (a key process mediated by small non-coding RNA molecules like the miRNAs) into the BN model of a GRN. The enhanced BN model is implemented in a software toolkit (EBNT) that allows to analyze boolean GRNs from both a structural and a dynamic point of view. The open-source toolkit is compatible with available visualization tools like Cytoscape and allows to run detailed analysis of the network topology as well as of its attractors, trajectories, and state-space. In the paper, a small GRN built around the mTOR gene is used to demonstrate the main capabilities of the toolkit. The extended model proposed in this paper opens new opportunities in the study of gene regulation. Several of the successful researches done with the support of BN to understand high-level characteristics of regulatory networks, can now be improved to better understand the role of post-transcriptional regulation for example as a network-wide noise-reduction or stabilization mechanisms.

  19. An extended gene protein/products boolean network model including post-transcriptional regulation

    Science.gov (United States)

    2014-01-01

    Background Networks Biology allows the study of complex interactions between biological systems using formal, well structured, and computationally friendly models. Several different network models can be created, depending on the type of interactions that need to be investigated. Gene Regulatory Networks (GRN) are an effective model commonly used to study the complex regulatory mechanisms of a cell. Unfortunately, given their intrinsic complexity and non discrete nature, the computational study of realistic-sized complex GRNs requires some abstractions. Boolean Networks (BNs), for example, are a reliable model that can be used to represent networks where the possible state of a node is a boolean value (0 or 1). Despite this strong simplification, BNs have been used to study both structural and dynamic properties of real as well as randomly generated GRNs. Results In this paper we show how it is possible to include the post-transcriptional regulation mechanism (a key process mediated by small non-coding RNA molecules like the miRNAs) into the BN model of a GRN. The enhanced BN model is implemented in a software toolkit (EBNT) that allows to analyze boolean GRNs from both a structural and a dynamic point of view. The open-source toolkit is compatible with available visualization tools like Cytoscape and allows to run detailed analysis of the network topology as well as of its attractors, trajectories, and state-space. In the paper, a small GRN built around the mTOR gene is used to demonstrate the main capabilities of the toolkit. Conclusions The extended model proposed in this paper opens new opportunities in the study of gene regulation. Several of the successful researches done with the support of BN to understand high-level characteristics of regulatory networks, can now be improved to better understand the role of post-transcriptional regulation for example as a network-wide noise-reduction or stabilization mechanisms. PMID:25080304

  20. Modeling of droplet dynamic and thermal behaviour during spray deposition

    Indian Academy of Sciences (India)

    N S Mahesh; Johnson Mendonca; M K Muralidhara; B K Muralidhara; C Ramachandra

    2003-04-01

    Mathematical modeling of supersonic gas atomization for spray forming has been investigated. Influence of the droplet dynamic and thermal behaviour on the resultant microstructure has been studied. Analytical models have been constructed taking into account the higher Reynolds number owing to supersonic gas flow. The impact velocity profiles of the droplets lend credence to the evolution of equiaxed grain morphology through dendrite fragmentation. The thermal history profile along with the fraction solid plot could yield optimized standoff distance to obtain a mushy droplet. A comparison of secondary dendrite arm spacing obtained from the mathematical model showed good agreement with experimental observations.

  1. Influences of parameter uncertainties within the ICRP 66 respiratory tract model: particle deposition.

    Science.gov (United States)

    Bolch, W E; Farfán, E B; Huh, C; Huston, T E; Bolch, W E

    2001-10-01

    Risk assessment associated with the inhalation of radioactive aerosols requires as an initial step the determination of particle deposition within the various anatomic regions of the respiratory tract. The model outlined in ICRP Publication 66 represents to date one of the most complete overall descriptions of not only particle deposition, but of particle clearance and local radiation dosimetry of lung tissues. In this study, a systematic review of the deposition component within the ICRP 66 respiratory tract model was conducted in which probability density functions were assigned to all input parameters. These distributions were subsequently incorporated within a computer code LUDUC (LUng Dose Uncertainty Code) in which Latin hypercube sampling techniques are used to generate multiple (e.g., 1,000) sets of input vectors (i.e., trials) for all of the model parameters needed to assess particle deposition within the extrathoracic (anterior and posterior), bronchial, bronchiolar, and alveolar-interstitial regions of the ICRP 66 respiratory tract model. Particle deposition values for the various trial simulations were shown to be well described by lognormal probability distributions. Geometric mean deposition fractions from LUDUC were found to be within approximately +/- 10% of the single-value estimates from the LUDEP computer code for each anatomic region and for particle diameters ranging from 0.001 to 50 microm. In all regions of the respiratory tract, LUDUC simulations for an adult male at light exertion show that uncertainties in particle deposition fractions are distributed only over a range of about a factor of approximately 2-4 for particle sizes between 0.005 to 0.2 microm. Below 0.005 microm, uncertainties increase only for deposition within the alveolar region. At particle sizes exceeding 1 microm, uncertainties in the deposition fraction within the extrathoracic regions are relatively small, but approach a factor of 20 for deposition in the bronchial

  2. Modeling of asphaltene particle deposition from turbulent oil flow in tubing: Model validation and a parametric study

    Directory of Open Access Journals (Sweden)

    Peyman Kor

    2016-12-01

    Full Text Available The deposition of asphaltenes on the inner wall of oil wells and pipelines causes flow blockage and significant production loss in these conduits. The major underlying mechanism(s for the deposition of asphaltene particles from the oil stream are still under investigation as an active research topic in the literature. In this work, a new deposition model considering both diffusional and inertial transport of asphaltene toward the tubing surface was developed. Model predictions were compared and verified with two sound experimental data available in the literature to evaluate the model's performance. A parametric study was done using the validated model in order to investigate the effect of the asphaltene particle size, flow velocity and oil viscosity on the magnitude of asphaltene deposition rate. Results of the study revealed that increasing the oil velocity causes more drag force on wall's inner surface; consequently, particles tend to transport away from the surface and the rate of asphaltene deposition is decreased. In addition, the developed model predicts that at low fluid velocity (∼0.7 m/s, the less viscous oil is more prone to asphaltene deposition problem.

  3. Modelling atmospheric dry deposition in urban areas using an urban canopy approach

    Directory of Open Access Journals (Sweden)

    N. Cherin

    2014-12-01

    Full Text Available Atmospheric dry deposition is typically modelled using an average roughness length, which depends on land use. This classical roughness-length approach cannot account for the spatial variability of dry deposition in complex settings such as urban areas. Urban canopy models have been developed to parametrise momentum and heat transfer. We extend this approach here to mass transfer and a new dry deposition model based on the urban canyon concept is presented. It uses a local mixing length parametrisation of turbulence within the canopy, and a description of the urban canopy via key parameters to provide spatially-distributed dry deposition fluxes. Three different flow regimes are distinguished in the urban canyon depending on the height-to-width ratio of built areas: isolated roughness flow, wake interference flow and skimming flow. Differences between the classical roughness-length model and the model developed here are investigated. Sensitivity to key parameters are discussed. This approach provides spatially-distributed dry deposition fluxes that depend on surfaces (streets, walls, roofs and flow regimes (recirculation and ventilation within the urban area.

  4. Modelling atmospheric dry deposition in urban areas using an urban canopy approach

    Directory of Open Access Journals (Sweden)

    N. Cherin

    2015-03-01

    Full Text Available Atmospheric dry deposition is typically modelled using an average roughness length, which depends on land use. This classical roughness-length approach cannot account for the spatial variability of dry deposition in complex settings such as urban areas. Urban canopy models have been developed to parametrise momentum and heat transfer. We extend this approach here to mass transfer, and a new dry deposition model based on the urban canyon concept is presented. It uses a local mixing-length parametrisation of turbulence within the canopy, and a description of the urban canopy via key parameters to provide spatially distributed dry deposition fluxes. Three different flow regimes are distinguished in the urban canyon depending on the height-to-width ratio of built areas: isolated roughness flow, wake interference flow and skimming flow. Differences between the classical roughness-length model and the model developed here are investigated. Sensitivity to key parameters are discussed. This approach provides spatially distributed dry deposition fluxes that depend on surfaces (streets, walls, roofs and flow regimes (recirculation and ventilation within the urban area.

  5. Drilling the Messinian Salinity Crisis as a Model Analogue for Dolomite Deposition at the End of Massive Salt Deposition Events

    Science.gov (United States)

    McKenzie, Judith A.; Aloisi, Giovanni; Anjos, Sylvia; Latgé, Ricardo; Matsuda, Nilo; Bontognali, Tomaso; Vasconcelos, Crisogono

    2015-04-01

    Sedimentologic and stratigraphic studies of the Lower Cretaceous sequence, deposited in the economically important Campos Basin, southeast Brazil, document the occurrence of ~20-m-thick dolomite intervals overlying the "massive salt" megasequences of the Lagoa Feia Formation. This stratigaphic succession marks the Aptian/Albian transition from extreme evaporitic conditions of the Lagoa Feia Formation to shallow marine conditions of the Macaé Formation, related to the early opening of the South Atlantic. The facies change from evaporites to dolomite is interpreted as a product of dolomitization resulting from the refuxing of hypersaline fluids from shallow embayments with intense evaporation (Latgé, 2001). Although the reflux model provides a mechanism to produce fluids with geochemical composition favorable for dolomite precipitation, it cannot account for all of the factors required to promote dolomite precipitation. In this study, we propose a different model to explain the post-evaporite deposition of massive dolomite based on the study of sequences deposited at the end Messinian Salinity Crisis, which were recovered from the deep basins of the Mediterranean Sea during DSDP/ODP drilling campaigns. At most of these deep-water sites, the cored interval contained unusual dolomite deposits overlying the uppermost evaporite sections. For example, the upper Messinian sedimentary sequence at DSDP Site 374 comprises non-fossiliferous dolomitic mudstone overlying dolomitic mudstone/gypsum cycles, which in turn overlie anhydrite and halite (Hsü, Montadert et al., 1978). We postulate that the end Messinian dolomite is a product of microbial activity under extreme hypersaline conditions. In the last 20 years, research into the factors controlling dolomite precipitation under Earth surface conditions has led to the development of new models involving the metabolism of microorganisms and associated biofilms to overcome the kinetic inhibitions associated with primary

  6. General hypothesis and shell model for the synthesis of semiconductor nanotubes, including carbon nanotubes

    Science.gov (United States)

    Mohammad, S. Noor

    2010-09-01

    Semiconductor nanotubes, including carbon nanotubes, have vast potential for new technology development. The fundamental physics and growth kinetics of these nanotubes are still obscured. Various models developed to elucidate the growth suffer from limited applicability. An in-depth investigation of the fundamentals of nanotube growth has, therefore, been carried out. For this investigation, various features of nanotube growth, and the role of the foreign element catalytic agent (FECA) in this growth, have been considered. Observed growth anomalies have been analyzed. Based on this analysis, a new shell model and a general hypothesis have been proposed for the growth. The essential element of the shell model is the seed generated from segregation during growth. The seed structure has been defined, and the formation of droplet from this seed has been described. A modified definition of the droplet exhibiting adhesive properties has also been presented. Various characteristics of the droplet, required for alignment and organization of atoms into tubular forms, have been discussed. Employing the shell model, plausible scenarios for the formation of carbon nanotubes, and the variation in the characteristics of these carbon nanotubes have been articulated. The experimental evidences, for example, for the formation of shell around a core, dipole characteristics of the seed, and the existence of nanopores in the seed, have been presented. They appear to justify the validity of the proposed model. The diversities of nanotube characteristics, fundamentals underlying the creation of bamboo-shaped carbon nanotubes, and the impurity generation on the surface of carbon nanotubes have been elucidated. The catalytic action of FECA on growth has been quantified. The applicability of the proposed model to the nanotube growth by a variety of mechanisms has been elaborated. These mechanisms include the vapor-liquid-solid mechanism, the oxide-assisted growth mechanism, the self

  7. Analysis of electronic models for solar cells including energy resolved defect densities

    Energy Technology Data Exchange (ETDEWEB)

    Glitzky, Annegret

    2010-07-01

    We introduce an electronic model for solar cells including energy resolved defect densities. The resulting drift-diffusion model corresponds to a generalized van Roosbroeck system with additional source terms coupled with ODEs containing space and energy as parameters for all defect densities. The system has to be considered in heterostructures and with mixed boundary conditions from device simulation. We give a weak formulation of the problem. If the boundary data and the sources are compatible with thermodynamic equilibrium the free energy along solutions decays monotonously. In other cases it may be increasing, but we estimate its growth. We establish boundedness and uniqueness results and prove the existence of a weak solution. This is done by considering a regularized problem, showing its solvability and the boundedness of its solutions independent of the regularization level. (orig.)

  8. Nonlinear Acoustics FDTD method including Frequency Power Law Attenuation for Soft Tissue Modeling

    CERN Document Server

    Jiménez, Noé; Sánchez-Morcillo, Víctor; Camarena, Francisco; Hou, Yi; Konofagou, Elisa E

    2014-01-01

    This paper describes a model for nonlinear acoustic wave propagation through absorbing and weakly dispersive media, and its numerical solution by means of finite differences in time domain method (FDTD). The attenuation is based on multiple relaxation processes, and provides frequency dependent absorption and dispersion without using computational expensive convolutional operators. In this way, by using an optimization algorithm the coefficients for the relaxation processes can be obtained in order to fit a frequency power law that agrees the experimentally measured attenuation data for heterogeneous media over the typical frequency range for ultrasound medical applications. Our results show that two relaxation processes are enough to fit attenuation data for most soft tissues in this frequency range including the fundamental and the first ten harmonics. Furthermore, this model can fit experimental attenuation data that do not follow exactly a frequency power law over the frequency range of interest. The main...

  9. Particle-based modeling of heterogeneous chemical kinetics including mass transfer

    Science.gov (United States)

    Sengar, A.; Kuipers, J. A. M.; van Santen, Rutger A.; Padding, J. T.

    2017-08-01

    Connecting the macroscopic world of continuous fields to the microscopic world of discrete molecular events is important for understanding several phenomena occurring at physical boundaries of systems. An important example is heterogeneous catalysis, where reactions take place at active surfaces, but the effective reaction rates are determined by transport limitations in the bulk fluid and reaction limitations on the catalyst surface. In this work we study the macro-micro connection in a model heterogeneous catalytic reactor by means of stochastic rotation dynamics. The model is able to resolve the convective and diffusive interplay between participating species, while including adsorption, desorption, and reaction processes on the catalytic surface. Here we apply the simulation methodology to a simple straight microchannel with a catalytic strip. Dimensionless Damkohler numbers are used to comment on the spatial concentration profiles of reactants and products near the catalyst strip and in the bulk. We end the discussion with an outlook on more complicated geometries and increasingly complex reactions.

  10. Models of epidemics: when contact repetition and clustering should be included

    Directory of Open Access Journals (Sweden)

    Scholz Roland W

    2009-06-01

    Full Text Available Abstract Background The spread of infectious disease is determined by biological factors, e.g. the duration of the infectious period, and social factors, e.g. the arrangement of potentially contagious contacts. Repetitiveness and clustering of contacts are known to be relevant factors influencing the transmission of droplet or contact transmitted diseases. However, we do not yet completely know under what conditions repetitiveness and clustering should be included for realistically modelling disease spread. Methods We compare two different types of individual-based models: One assumes random mixing without repetition of contacts, whereas the other assumes that the same contacts repeat day-by-day. The latter exists in two variants, with and without clustering. We systematically test and compare how the total size of an outbreak differs between these model types depending on the key parameters transmission probability, number of contacts per day, duration of the infectious period, different levels of clustering and varying proportions of repetitive contacts. Results The simulation runs under different parameter constellations provide the following results: The difference between both model types is highest for low numbers of contacts per day and low transmission probabilities. The number of contacts and the transmission probability have a higher influence on this difference than the duration of the infectious period. Even when only minor parts of the daily contacts are repetitive and clustered can there be relevant differences compared to a purely random mixing model. Conclusion We show that random mixing models provide acceptable estimates of the total outbreak size if the number of contacts per day is high or if the per-contact transmission probability is high, as seen in typical childhood diseases such as measles. In the case of very short infectious periods, for instance, as in Norovirus, models assuming repeating contacts will also behave

  11. Standardized Competencies for Parenteral Nutrition Order Review and Parenteral Nutrition Preparation, Including Compounding: The ASPEN Model.

    Science.gov (United States)

    Boullata, Joseph I; Holcombe, Beverly; Sacks, Gordon; Gervasio, Jane; Adams, Stephen C; Christensen, Michael; Durfee, Sharon; Ayers, Phil; Marshall, Neil; Guenter, Peggi

    2016-08-01

    Parenteral nutrition (PN) is a high-alert medication with a complex drug use process. Key steps in the process include the review of each PN prescription followed by the preparation of the formulation. The preparation step includes compounding the PN or activating a standardized commercially available PN product. The verification and review, as well as preparation of this complex therapy, require competency that may be determined by using a standardized process for pharmacists and for pharmacy technicians involved with PN. An American Society for Parenteral and Enteral Nutrition (ASPEN) standardized model for PN order review and PN preparation competencies is proposed based on a competency framework, the ASPEN-published interdisciplinary core competencies, safe practice recommendations, and clinical guidelines, and is intended for institutions and agencies to use with their staff.

  12. A generalized model for optimal transport of images including dissipation and density modulation

    KAUST Repository

    Maas, Jan

    2015-11-01

    © EDP Sciences, SMAI 2015. In this paper the optimal transport and the metamorphosis perspectives are combined. For a pair of given input images geodesic paths in the space of images are defined as minimizers of a resulting path energy. To this end, the underlying Riemannian metric measures the rate of transport cost and the rate of viscous dissipation. Furthermore, the model is capable to deal with strongly varying image contrast and explicitly allows for sources and sinks in the transport equations which are incorporated in the metric related to the metamorphosis approach by Trouvé and Younes. In the non-viscous case with source term existence of geodesic paths is proven in the space of measures. The proposed model is explored on the range from merely optimal transport to strongly dissipative dynamics. For this model a robust and effective variational time discretization of geodesic paths is proposed. This requires to minimize a discrete path energy consisting of a sum of consecutive image matching functionals. These functionals are defined on corresponding pairs of intensity functions and on associated pairwise matching deformations. Existence of time discrete geodesics is demonstrated. Furthermore, a finite element implementation is proposed and applied to instructive test cases and to real images. In the non-viscous case this is compared to the algorithm proposed by Benamou and Brenier including a discretization of the source term. Finally, the model is generalized to define discrete weighted barycentres with applications to textures and objects.

  13. Fluid-structure interaction including volumetric coupling with homogenised subdomains for modeling respiratory mechanics.

    Science.gov (United States)

    Yoshihara, Lena; Roth, Christian J; Wall, Wolfgang A

    2017-04-01

    In this article, a novel approach is presented for combining standard fluid-structure interaction with additional volumetric constraints to model fluid flow into and from homogenised solid domains. The proposed algorithm is particularly interesting for investigations in the field of respiratory mechanics as it enables the mutual coupling of airflow in the conducting part and local tissue deformation in the respiratory part of the lung by means of a volume constraint. In combination with a classical monolithic fluid-structure interaction approach, a comprehensive model of the human lung can be established that will be useful to gain new insights into respiratory mechanics in health and disease. To illustrate the validity and versatility of the novel approach, three numerical examples including a patient-specific lung model are presented. The proposed algorithm proves its capability of computing clinically relevant airflow distribution and tissue strain data at a level of detail that is not yet achievable, neither with current imaging techniques nor with existing computational models. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  14. Empirical Validation of a Thermal Model of a Complex Roof Including Phase Change Materials

    Directory of Open Access Journals (Sweden)

    Stéphane Guichard

    2015-12-01

    Full Text Available This paper deals with the empirical validation of a building thermal model of a complex roof including a phase change material (PCM. A mathematical model dedicated to PCMs based on the heat apparent capacity method was implemented in a multi-zone building simulation code, the aim being to increase the understanding of the thermal behavior of the whole building with PCM technologies. In order to empirically validate the model, the methodology is based both on numerical and experimental studies. A parametric sensitivity analysis was performed and a set of parameters of the thermal model has been identified for optimization. The use of the generic optimization program called GenOpt® coupled to the building simulation code enabled to determine the set of adequate parameters. We first present the empirical validation methodology and main results of previous work. We then give an overview of GenOpt® and its coupling with the building simulation code. Finally, once the optimization results are obtained, comparisons of the thermal predictions with measurements are found to be acceptable and are presented.

  15. Habitability of super-Earth planets around other suns: models including Red Giant Branch evolution.

    Science.gov (United States)

    von Bloh, W; Cuntz, M; Schröder, K-P; Bounama, C; Franck, S

    2009-01-01

    The unexpected diversity of exoplanets includes a growing number of super-Earth planets, i.e., exoplanets with masses of up to several Earth masses and a similar chemical and mineralogical composition as Earth. We present a thermal evolution model for a 10 Earth-mass planet orbiting a star like the Sun. Our model is based on the integrated system approach, which describes the photosynthetic biomass production and takes into account a variety of climatological, biogeochemical, and geodynamical processes. This allows us to identify a so-called photosynthesis-sustaining habitable zone (pHZ), as determined by the limits of biological productivity on the planetary surface. Our model considers solar evolution during the main-sequence stage and along the Red Giant Branch as described by the most recent solar model. We obtain a large set of solutions consistent with the principal possibility of life. The highest likelihood of habitability is found for "water worlds." Only mass-rich water worlds are able to realize pHZ-type habitability beyond the stellar main sequence on the Red Giant Branch.

  16. A mathematical model and simulation results of plasma enhanced chemical vapor deposition of silicon nitride films

    NARCIS (Netherlands)

    Konakov, S.A.; Krzhizhanovskaya, V.V.

    2015-01-01

    We developed a mathematical model of Plasma Enhanced Chemical Vapor Deposition (PECVD) of silicon nitride thin films from SiH4-NH3-N2-Ar mixture, an important application in modern materials science. Our multiphysics model describes gas dynamics, chemical physics, plasma physics and electrodynamics.

  17. A Physically Based Theoretical Model of Spore Deposition for Predicting Spread of Plant Diseases.

    Science.gov (United States)

    Isard, Scott A; Chamecki, Marcelo

    2016-03-01

    A physically based theory for predicting spore deposition downwind from an area source of inoculum is presented. The modeling framework is based on theories of turbulence dispersion in the atmospheric boundary layer and applies only to spores that escape from plant canopies. A "disease resistance" coefficient is introduced to convert the theoretical spore deposition model into a simple tool for predicting disease spread at the field scale. Results from the model agree well with published measurements of Uromyces phaseoli spore deposition and measurements of wheat leaf rust disease severity. The theoretical model has the advantage over empirical models in that it can be used to assess the influence of source distribution and geometry, spore characteristics, and meteorological conditions on spore deposition and disease spread. The modeling framework is refined to predict the detailed two-dimensional spatial pattern of disease spread from an infection focus. Accounting for the time variations of wind speed and direction in the refined modeling procedure improves predictions, especially near the inoculum source, and enables application of the theoretical modeling framework to field experiment design.

  18. An electroplating topography model based on layout-dependent variation of copper deposition rate

    Institute of Scientific and Technical Information of China (English)

    Wang Qiang; Chen Lan; Li Zhigang; Ruan Wenbiao

    2011-01-01

    A layout-pattern-dependent electroplating model is developed based on the physical mechanism of the electroplating process.Our proposed electroplating model has an advantage over former ones due to a consideration of the variation of copper deposition rate with different layout parameters during the process.The simulation results compared with silicon data demonstrate the improvement in accuracy.

  19. A transient energy function for power systems including the induction motor model

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A construction method for power system transient energy function is studied in the paper, which is simple and universal, and can unify the forms of some current energy functions. A transient energy function including the induction motor model is derived using the method. The unintegrable term is dealt with to get an approximate energy function. Simulations in a 3-bus system and in the WSCC 4-generator system verify the validity of the proposed energy function. The function can be applied to direct transient stability analysis of multi-machine large power systems and provides a tool for analysis of the interaction between the generator angle stability and the load voltage stability.

  20. A laboratory model of the aortic root flow including the coronary arteries

    Science.gov (United States)

    Querzoli, Giorgio; Fortini, Stefania; Espa, Stefania; Melchionna, Simone

    2016-08-01

    Cardiovascular flows have been extensively investigated by means of in vitro models to assess the prosthetic valve performances and to provide insight into the fluid dynamics of the heart and proximal aorta. In particular, the models for the study of the flow past the aortic valve have been continuously improved by including, among other things, the compliance of the vessel and more realistic geometries. The flow within the sinuses of Valsalva is known to play a fundamental role in the dynamics of the aortic valve since they host a recirculation region that interacts with the leaflets. The coronary arteries originate from the ostia located within two of the three sinuses, and their presence may significantly affect the fluid dynamics of the aortic root. In spite of their importance, to the extent of the authors' knowledge, coronary arteries were not included so far when modeling in vitro the transvalvular aortic flow. We present a pulse duplicator consisting of a passively pulsing ventricle, a compliant proximal aorta, and coronary arteries connected to the sinuses of Valsalva. The coronary flow is modulated by a self-regulating device mimicking the physiological mechanism, which is based on the contraction and relaxation of the heart muscle during the cardiac cycle. Results show that the model reproduces satisfyingly the coronary flow. The analysis of the time evolution of the velocity and vorticity fields within the aortic root reveals the main characteristics of the backflow generated through the aorta in order to feed the coronaries during the diastole. Experiments without coronary flow have been run for comparison. Interestingly, the lifetime of the vortex forming in the sinus of Valsalva during the systole is reduced by the presence of the coronaries. As a matter of fact, at the end of the systole, that vortex is washed out because of the suction generated by the coronary flow. Correspondingly, the valve closure is delayed and faster compared to the case with

  1. Rapid solidification in thermal spary deposition: Microstructure and modelling

    Indian Academy of Sciences (India)

    Guo-Xiang Wang; V Prasad; S Sampath

    2001-02-01

    Mechanical, thermal, and adhesive properties of thermal spray coatings are primarily determined by the phase and microstructure of single splats, which ultimately depend on rapid solidification of each splat and on the interactions between the splats and between the splat and the substrate. Significant efforts are being made to develop a better understanding of the physical mechanisms underlying these phenomena. This paper reviews a series of work in the area of mathematical modelling of phase and microstructure formation during the rapid solidification of single splats and coatings. The model development has been complimented by special experiments. Conditions under which plariar interface solidification occurs, columnar cellular or dendriric growth takes place, or banded structure forms, have been identified. A microstructure map can therefore be built using the model presented here. The process parameters that promote crystalline nucleation and grain structure formation can be isolated and the effect of interfacial heat transfer, splat substrate temperature difference, and substrate melting and resolidification can be examined using the model. The model predictions agree qualitatively well with the experimental data for alumina, yttria, partially-stabilized zirconia, and molybdenum.

  2. Solution processed deposition of electron transport layers on perovskite crystal surface-A modeling based study

    Science.gov (United States)

    Mortuza, S. M.; Taufique, M. F. N.; Banerjee, Soumik

    2017-02-01

    The power conversion efficiency (PCE) of planar perovskite solar cells (PSCs) has reached up to ∼20%. However, structural and chemicals defects that lead to hysteresis in the perovskite based thin film pose challenges. Recent work has shown that thin films of [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) deposited on the photo absorption layer, using solution processing techniques, minimize surface pin holes and defects thereby increasing the PCE. We developed and employed a multiscale model based on molecular dynamics (MD) and kinetic Monte Carlo (kMC) to establish a relationship between deposition rate and surface coverage on perovskite surface. The MD simulations of PCBMs dispersed in chlorobenzene, sandwiched between (110) perovskite substrates, indicate that PCBMs are deposited through anchoring of the oxygen atom of carbonyl group to the exposed lead (Pb) atom of (110) perovskite surface. Based on rates of distinct deposition events calculated from MD, kMC simulations were run to determine surface coverage at much larger time and length scales than accessible by MD alone. Based on the model, a generic relationship is established between deposition rate of PCBMs and surface coverage on perovskite crystal. The study also provides detailed insights into the morphology of the deposited film.

  3. Tsunami characteristics and formation potential of sandy tsunami deposit in Sanriku Coast: implications from numerical modeling

    Science.gov (United States)

    Sugawara, D.; Haraguchi, T.; Takahashi, T.

    2013-12-01

    Geological investigation of paleotsunami deposit is crucial for knowing the history and magnitude of tsunami events in the past. Among various kinds of grain sizes, sandy tsunami deposit has been best investigated by previous studies, because of its potential for identification in the sedimentary column. Many sandy tsunami deposits have been found from coastal plains, which have sandy beach and low-lying wetlands. However, sandy tsunami deposits in narrow valleys at rocky ria coast have rarely been found. It may be presumed that formation potential of sandy tsunami layer in the rocky coasts is generally lower than coastal plains, because of the absence of sandy beach, tsunami run-up on steeper slope and stronger return flow. In this presentation, characteristics of the 2011 Tohoku-oki earthquake tsunami in Sanriku Coast, a continuous rocky ria coast located in the northeast Japan, is investigated based on numerical modeling. In addition, the formation potential of sandy tsunami deposit is also investigated based on numerical modeling of sediment transport. Preliminary result of tsunami hydrodynamics showed that the waveform and amplification of the tsunami are clearly affected by the local bathymetry, which is associated with submerged topography formed during the last glacial stage. Although the tsunami height in the offshore of each bay is around 8.0 m, the tsunami height at the bay head was increased in different way. The amplification factor at the bay head was typically 2.0 among most of V-shaped narrow embayments; meanwhile the amplification factor is much lower than 1.0 at some cases. The preliminary result of the modeling of sediment transport predicted huge amount of sediments may be suspended into the water column, given that sandy deposit is available there. Massive erosion and deposition of sea bottom sediments may commonly take place in the bays. However, formation of onshore tsunami deposit differs from each other. Whether the suspended sediments

  4. Erosion and deposition in depth-averaged models of dense, dry, inclined, granular flows

    Science.gov (United States)

    Jenkins, James T.; Berzi, Diego

    2016-11-01

    We derive expressions for the rates of erosion and deposition at the interface between a dense, dry, inclined granular flow and an erodible bed. In obtaining these, we assume that the interface between the flowing grains and the bed moves with the speed of a pressure wave in the flow, for deposition, or with the speed of a disturbance through the contacting particles in the bed, for erosion. We employ the expressions for the rates of erosion and deposition to show that after an abrupt change in the angle of inclination of the bed the characteristic time for the motion of the interface is much shorter than the characteristic time of the flow. This eliminates the need for introducing models of erosion and deposition rate in the mass balance; and the instantaneous value of the particle flux is the same function of the instantaneous value of the flow depth as in a steady, uniform flow.

  5. Including sugar cane in the agro-ecosystem model ORCHIDEE-STICS

    Science.gov (United States)

    Valade, A.; Vuichard, N.; Ciais, P.; Viovy, N.

    2010-12-01

    With 4 million ha currently grown for ethanol in Brazil only, approximately half the global bioethanol production in 2005 (Smeets 2008), and a devoted land area expected to expand globally in the years to come, sugar cane is at the heart of the biofuel debate. Indeed, ethanol made from biomass is currently the most widespread option for alternative transportation fuels. It was originally promoted as a carbon neutral energy resource that could bring energy independence to countries and local opportunities to farmers, until attention was drawn to its environmental and socio-economical drawbacks. It is still not clear to which extent it is a solution or a contributor to climate change mitigation. Dynamic Global Vegetation models can help address these issues and quantify the potential impacts of biofuels on ecosystems at scales ranging from on-site to global. The global agro-ecosystem model ORCHIDEE describes water, carbon and energy exchanges at the soil-atmosphere interface for a limited number of natural and agricultural vegetation types. In order to integrate agricultural management to the simulations and to capture more accurately the specificity of crops' phenology, ORCHIDEE has been coupled with the agronomical model STICS. The resulting crop-oriented vegetation model ORCHIDEE-STICS has been used so far to simulate temperate crops such as wheat, corn and soybean. As a generic ecosystem model, each grid cell can include several vegetation types with their own phenology and management practices, making it suitable to spatial simulations. Here, ORCHIDEE-STICS is altered to include sugar cane as a new agricultural Plant functional Type, implemented and parametrized using the STICS approach. An on-site calibration and validation is then performed based on biomass and flux chamber measurements in several sites in Australia and variables such as LAI, dry weight, heat fluxes and respiration are used to evaluate the ability of the model to simulate the specific

  6. Erosion, Transportation, and Deposition on Outer Solar System Satellites: Landform Evolution Modeling Studies

    Science.gov (United States)

    Moore, Jeffrey Morgan; Howard, Alan D.; Schenk, Paul M.

    2013-01-01

    Mass movement and landform degradation reduces topographic relief by moving surface materials to a lower gravitational potential. In addition to the obvious role of gravity, abrasive mechanical erosion plays a role, often in combination with the lowering of cohesion, which allows disaggregation of the relief-forming material. The identification of specific landform types associated with mass movement and landform degradation provides information about local sediment particle size and abundance and transportation processes. Generally, mass movements can be classified in terms of the particle sizes of the transported material and the speed the material moved during transport. Most degradation on outer planet satellites appears consistent with sliding or slumping, impact erosion, and regolith evolution. Some satellites, such as Callisto and perhaps Hyperion and Iapetus, have an appearance that implies that some additional process is at work, most likely sublimation-driven landform modification and mass wasting. A variant on this process is thermally driven frost segregation as seen on all three icy Galilean satellites and perhaps elsewhere. Titan is unique among outer planet satellites in that Aeolian and fluvial processes also operate to erode, transport, and deposit material. We will evaluate the sequence and extent of various landform-modifying erosional and volatile redistribution processes that have shaped these icy satellites using a 3-D model that simulates the following surface and subsurface processes: 1) sublimation and re-condensation of volatiles; 2) development of refractory lag deposits; 3) disaggregation and downward sloughing of surficial material; 4) radiative heating/cooling of the surface (including reflection, emission, and shadowing by other surface elements); 5) thermal diffusion; and 6) vapor diffusion. The model will provide explicit simulations of landform development and thusly predicts the topographic and volatile evolution of the surface

  7. A range of complex probabilistic models for RNA secondary structure prediction that includes the nearest-neighbor model and more.

    Science.gov (United States)

    Rivas, Elena; Lang, Raymond; Eddy, Sean R

    2012-02-01

    The standard approach for single-sequence RNA secondary structure prediction uses a nearest-neighbor thermodynamic model with several thousand experimentally determined energy parameters. An attractive alternative is to use statistical approaches with parameters estimated from growing databases of structural RNAs. Good results have been reported for discriminative statistical methods using complex nearest-neighbor models, including CONTRAfold, Simfold, and ContextFold. Little work has been reported on generative probabilistic models (stochastic context-free grammars [SCFGs]) of comparable complexity, although probabilistic models are generally easier to train and to use. To explore a range of probabilistic models of increasing complexity, and to directly compare probabilistic, thermodynamic, and discriminative approaches, we created TORNADO, a computational tool that can parse a wide spectrum of RNA grammar architectures (including the standard nearest-neighbor model and more) using a generalized super-grammar that can be parameterized with probabilities, energies, or arbitrary scores. By using TORNADO, we find that probabilistic nearest-neighbor models perform comparably to (but not significantly better than) discriminative methods. We find that complex statistical models are prone to overfitting RNA structure and that evaluations should use structurally nonhomologous training and test data sets. Overfitting has affected at least one published method (ContextFold). The most important barrier to improving statistical approaches for RNA secondary structure prediction is the lack of diversity of well-curated single-sequence RNA secondary structures in current RNA databases.

  8. Particle Deposition in Oral-tracheal Airway Models with Very Low Inhalation Profiles

    Institute of Scientific and Technical Information of China (English)

    Zheng Li

    2012-01-01

    Considerable progress has been made on modeling particle deposition in the oral-tracheal airway under some normal breathing conditions,i.e.,resting,light activity and moderate exercise.None of these standard breathing patterns correspond to very low inhalation profiles.It is known that particle deposition in the oral-tracheal airway is greatly influenced by flow and particle inlet conditions.In this work,very low inhalation flow rates are considered.Particle deposition is numerically investigated in different oral-tracheal airway models,i.e.,circular,elliptic and realistic oral-tracheal airway models.Both micro- and nano-particles that are normally present in cigarette smoke are considered.Results show that inhalation profiles greatly influence the particle deposition.Due to relatively low flow rate,for ultra-fine particles,the oral deposition is enhanced due to longer residence time in oral cavity and stronger Brownian motion.However,for larger particles,less particles deposit in the oral-tracheal airway due to the weaker impaction.The transition happens when particle size changes from 0.01 μm to 0.1 μm.The influence of the limited entrance area is shown and discussed.Under the low inhalation profiles,the highest deposition fraction could be in either circular or realistic models depending on the particle property and the geometric characteristic of oral cavity.The knowledge obtained in this study may be beneficial for the design of bionic inhaler and understanding of health effect from smoke particle on human being.

  9. Manual for Dynamic Modelling of Soil Response to Atmospheric Deposition

    NARCIS (Netherlands)

    Posch MB; Hettelingh J-P; Slootweg J; LED; UNECE Working Group on Effects; ICP M&M Coordination Center for Effects

    2003-01-01

    The objective of this manual is to inform the network of National Focal Centers (NFCs) about the requirements of methodologies for the dynamic modelling of geochemical processes in soils in particular. This information is necessary to support European air quality policies with knowledge on time dela

  10. a New Model for Describing Evolution and Control of Disaster System Including Instantaneous and Continuous Actions

    Science.gov (United States)

    Chen, Chang-Kun; Li, Zhi; Sun, Yun-Feng

    A new model for describing the disaster system including instantaneous and continuous action synchronously has been developed. The model is composed of three primary parts, that is, the impact from its causative disaster events, stochastic noise of disaster node and self-healing function, and every part is modeled concretely in terms of their characteristics in practice. Some key parameters, namely link appearance probability, retardation coefficient, ultimate repair capacity of government, dynamical modes considering different disaster evolving chains, and the positions of link with the specific performance in disaster network system are involved. Combined with a case study, the proposed model is applied to a certain disaster evolution system, and the influence law of different parameters on disaster evolution process, in disaster networks with instantaneous-action and/or continuous-action, is presented and compared. The results indicate that the destructive impact in the networks by link in continuous action is far greater an order of magnitude than that in instantaneous action. If a link in continuous action emerges in the disaster network system, properties of the causative event for the link, link appearance probability and its position in the network all have a notable influence to the severity of the disaster network. In addition, some peculiar phenomena are also commendably observed in the disaster evolution process based on the model, such as the multipeaks emerging in the destroyed rate number curve for some crisis nodes caused by their various inducing paths together with the relevant retardation coefficients, the existence of the critical value for ultimate repair capacity to recover the disaster node, and so on.

  11. A model predicting fluindione dose requirement in elderly inpatients including genotypes, body weight, and amiodarone.

    Science.gov (United States)

    Moreau, Caroline; Pautas, Eric; Duverlie, Charlotte; Berndt, Celia; Andro, Marion; Mahé, Isabelle; Emmerich, Joseph; Lacut, Karine; Le Gal, Grégoire; Peyron, Isabelle; Gouin-Thibault, Isabelle; Golmard, Jean-Louis; Loriot, Marie-Anne; Siguret, Virginie

    2014-04-01

    Indandione VKAs have been widely used for decades, especially in Eastern Europe and France. Contrary to coumarin VKAs, the relative contribution of individual factors to the indandione-VKA response is poorly known. In the present multicentre study, we sought to develop and validate a model including genetic and non-genetic factors to predict the daily fluindione dose requirement in elderly patients in whom VKA dosing is challenging. We prospectively recorded clinical and therapeutic data in 230 Caucasian inpatients mean aged 85 ± 6 years, who had reached international normalized ratio stabilisation (range 2.0-3.0) on fluindione. In the derivation cohort (n=156), we analysed 13 polymorphisms in seven genes potentially involved in the pharmacological effect or vitamin-K cycle (VKORC1, CYP4F2, EPHX1) and fluindione metabolism/transport (CYP2C9, CYP2C19, CYP3A5, ABCB1). We built a regression model incorporating non-genetic and genetic data and evaluated the model performances in a separate cohort (n=74).Body-weight, amiodarone intake, VKORC1, CYP4F2, ABCB1 genotypes were retained in the final model, accounting for 31.5% of dose variability. None influence of CYP2C9 was observed. Our final model showed good performances: in 83.3% of the validation cohort patients, the dose was accurately predicted within 5 mg, i.e.the usual step used for adjusting fluindione dosage. In conclusion, in addition to body-weight and amiodarone-intake, pharmacogenetic factors (VKORC1, CYP4F2, ABCB1) related to the pharmacodynamic effect and transport of fluindione significantly influenced the dose requirement in elderly patients while CYP2C9 did not. Studies are required to know whether fluindione could be an alternative VKA in carriers of polymorphic CYP2C9 alleles, hypersensitive to coumarins.

  12. Numerical modelling of the erosion and deposition of sand inside a filter layer

    DEFF Research Database (Denmark)

    Jacobsen, Niels Gjøl; van Gent, Marcel R. A.; Fredsøe, Jørgen

    2017-01-01

    prediction method to assure that the amount of erosion remains within acceptable limits. This work presents a numerical model that is capable of describing the erosion and deposition patterns inside of an open filter of rock on top of sand. The hydraulic loading is that of incident irregular waves...... additional data sets on the erosion and deposition patterns inside of an open filter. A few cases are defined to study the effect of the sinking of the filter into the erosion hole. The numerical model is also applied to several application cases. The response of the core material (sand) to changes......This paper treats the numerical modelling of the behaviour of a sand core covered by rocks and exposed to waves. The associated displacement of the rock is also studied. A design that allows for erosion and deposition of the sand core beneath a rock layer in a coastal structure requires an accurate...

  13. ISOLATION OF HEPATIC OVAL CELLS FROM DIFFERENT MODEL RATS INCLUDING DIABETIC RATS

    Institute of Scientific and Technical Information of China (English)

    LU Ying-li; YE Ting-ting; XIA Fang-zhen; WANG Ning-jian; YANG Hua; CHEN Yi

    2009-01-01

    Objective To acquire oval cells (progenitor stem cells) from adult rat liver of different models including diabetic rats. Methods Thirty Sprague-Dawley (SD) rats were divided into 5 groups randomly: control, 2-acetylaminofluorene (2-AAF), 2-AAF+partial hepatectomy (PH), 2-AAF+carbon tetrachloride (CCl4), and diabetic groups. As two-step collagenase perfusion protocol of Seglen, oval cells were isolated by Percoll density gradient centrifugation. Thy1.1 positive cells were sorted by flow cytometry, and then cultured in Dulbeccos minimum Eagles medium (DMEM). Immunofluorescence staining was applied to labelling Thy1.1. Results Different rates of Thy1.1 positive oval cells were found in different rat model groups: 0.5% in 2-AAF, 0.3% in 2-hAAF+PH, 0.2% in 2-AAF+CCl4 , 0.1% in diabetic, and 0.0% in control. Isolated cells adhered to plate with fusiform or polygon as epithelial cells. Conclusion Progenitor stem cells exist in injured liver tissue including those from diabetic rats.

  14. Modeling and simulation of the deposition/relaxation processes of polycrystalline diatomic structures of metallic nitride films

    Science.gov (United States)

    García, M. F.; Restrepo-Parra, E.; Riaño-Rojas, J. C.

    2015-05-01

    This work develops a model that mimics the growth of diatomic, polycrystalline thin films by artificially splitting the growth into deposition and relaxation processes including two stages: (1) a grain-based stochastic method (grains orientation randomly chosen) is considered and by means of the Kinetic Monte Carlo method employing a non-standard version, known as Constant Time Stepping, the deposition is simulated. The adsorption of adatoms is accepted or rejected depending on the neighborhood conditions; furthermore, the desorption process is not included in the simulation and (2) the Monte Carlo method combined with the metropolis algorithm is used to simulate the diffusion. The model was developed by accounting for parameters that determine the morphology of the film, such as the growth temperature, the interacting atomic species, the binding energy and the material crystal structure. The modeled samples exhibited an FCC structure with grain formation with orientations in the family planes of , and . The grain size and film roughness were analyzed. By construction, the grain size decreased, and the roughness increased, as the growth temperature increased. Although, during the growth process of real materials, the deposition and relaxation occurs simultaneously, this method may perhaps be valid to build realistic polycrystalline samples.

  15. Dynamic modelling and analysis of multi-machine power systems including wind farms

    Science.gov (United States)

    Tabesh, Ahmadreza

    2005-11-01

    This thesis introduces a small-signal dynamic model, based on a frequency response approach, for the analysis of a multi-machine power system with special focus on an induction machine based wind farm. The proposed approach is an alternative method to the conventional eigenvalue analysis method which is widely employed for small-signal dynamic analyses of power systems. The proposed modelling approach is successfully applied and evaluated for a power system that (i) includes multiple synchronous generators, and (ii) a wind farm based on either fixed-speed, variable-speed, or doubly-fed induction machine based wind energy conversion units. The salient features of the proposed method, as compared with the conventional eigenvalue analysis method, are: (i) computational efficiency since the proposed method utilizes the open-loop transfer-function matrix of the system, (ii) performance indices that are obtainable based on frequency response data and quantitatively describe the dynamic behavior of the system, and (iii) capability to formulate various wind energy conversion unit, within a wind farm, in a modular form. The developed small-signal dynamic model is applied to a set of multi-machine study systems and the results are validated based on comparison (i) with digital time-domain simulation results obtained from PSCAD/EMTDC software tool, and (ii) where applicable with eigenvalue analysis results.

  16. A Hydrological Concept including Lateral Water Flow Compatible with the Biogeochemical Model ForSAFE

    Directory of Open Access Journals (Sweden)

    Giuliana Zanchi

    2016-03-01

    Full Text Available The study presents a hydrology concept developed to include lateral water flow in the biogeochemical model ForSAFE. The hydrology concept was evaluated against data collected at Svartberget in the Vindeln Research Forest in Northern Sweden. The results show that the new concept allows simulation of a saturated and an unsaturated zone in the soil as well as water flow that reaches the stream comparable to measurements. The most relevant differences compared to streamflow measurements are that the model simulates a higher base flow in winter and lower flow peaks after snowmelt. These differences are mainly caused by the assumptions made to regulate the percolation at the bottom of the simulated soil columns. The capability for simulating lateral flows and a saturated zone in ForSAFE can greatly improve the simulation of chemical exchange in the soil and export of elements from the soil to watercourses. Such a model can help improve the understanding of how environmental changes in the forest landscape will influence chemical loads to surface waters.

  17. Modeling within-host dynamics of influenza virus infection including immune responses.

    Directory of Open Access Journals (Sweden)

    Kasia A Pawelek

    Full Text Available Influenza virus infection remains a public health problem worldwide. The mechanisms underlying viral control during an uncomplicated influenza virus infection are not fully understood. Here, we developed a mathematical model including both innate and adaptive immune responses to study the within-host dynamics of equine influenza virus infection in horses. By comparing modeling predictions with both interferon and viral kinetic data, we examined the relative roles of target cell availability, and innate and adaptive immune responses in controlling the virus. Our results show that the rapid and substantial viral decline (about 2 to 4 logs within 1 day after the peak can be explained by the killing of infected cells mediated by interferon activated cells, such as natural killer cells, during the innate immune response. After the viral load declines to a lower level, the loss of interferon-induced antiviral effect and an increased availability of target cells due to loss of the antiviral state can explain the observed short phase of viral plateau in which the viral level remains unchanged or even experiences a minor second peak in some animals. An adaptive immune response is needed in our model to explain the eventual viral clearance. This study provides a quantitative understanding of the biological factors that can explain the viral and interferon kinetics during a typical influenza virus infection.

  18. A phase-field model for incoherent martensitic transformations including plastic accommodation processes in the austenite

    Science.gov (United States)

    Kundin, J.; Raabe, D.; Emmerich, H.

    2011-10-01

    If alloys undergo an incoherent martensitic transformation, then plastic accommodation and relaxation accompany the transformation. To capture these mechanisms we develop an improved 3D microelastic-plastic phase-field model. It is based on the classical concepts of phase-field modeling of microelastic problems (Chen, L.Q., Wang Y., Khachaturyan, A.G., 1992. Philos. Mag. Lett. 65, 15-23). In addition to these it takes into account the incoherent formation of accommodation dislocations in the austenitic matrix, as well as their inheritance into the martensitic plates based on the crystallography of the martensitic transformation. We apply this new phase-field approach to the butterfly-type martensitic transformation in a Fe-30 wt%Ni alloy in direct comparison to recent experimental data (Sato, H., Zaefferer, S., 2009. Acta Mater. 57, 1931-1937). It is shown that the therein proposed mechanisms of plastic accommodation during the transformation can indeed explain the experimentally observed morphology of the martensitic plates as well as the orientation between martensitic plates and the austenitic matrix. The developed phase-field model constitutes a general simulations approach for different kinds of phase transformation phenomena that inherently include dislocation based accommodation processes. The approach does not only predict the final equilibrium topology, misfit, size, crystallography, and aspect ratio of martensite-austenite ensembles resulting from a transformation, but it also resolves the associated dislocation dynamics and the distribution, and the size of the crystals itself.

  19. The Limit Deposit Velocity model, a new approach

    Directory of Open Access Journals (Sweden)

    Miedema Sape A.

    2015-12-01

    Full Text Available In slurry transport of settling slurries in Newtonian fluids, it is often stated that one should apply a line speed above a critical velocity, because blow this critical velocity there is the danger of plugging the line. There are many definitions and names for this critical velocity. It is referred to as the velocity where a bed starts sliding or the velocity above which there is no stationary bed or sliding bed. Others use the velocity where the hydraulic gradient is at a minimum, because of the minimum energy consumption. Most models from literature are one term one equation models, based on the idea that the critical velocity can be explained that way.

  20. Ash3d: A finite-volume, conservative numerical model for ash transport and tephra deposition

    Science.gov (United States)

    Schwaiger, Hans F.; Denlinger, Roger P.; Mastin, Larry G.

    2012-01-01

    We develop a transient, 3-D Eulerian model (Ash3d) to predict airborne volcanic ash concentration and tephra deposition during volcanic eruptions. This model simulates downwind advection, turbulent diffusion, and settling of ash injected into the atmosphere by a volcanic eruption column. Ash advection is calculated using time-varying pre-existing wind data and a robust, high-order, finite-volume method. Our routine is mass-conservative and uses the coordinate system of the wind data, either a Cartesian system local to the volcano or a global spherical system for the Earth. Volcanic ash is specified with an arbitrary number of grain sizes, which affects the fall velocity, distribution and duration of transport. Above the source volcano, the vertical mass distribution with elevation is calculated using a Suzuki distribution for a given plume height, eruptive volume, and eruption duration. Multiple eruptions separated in time may be included in a single simulation. We test the model using analytical solutions for transport. Comparisons of the predicted and observed ash distributions for the 18 August 1992 eruption of Mt. Spurr in Alaska demonstrate to the efficacy and efficiency of the routine.

  1. Chemical models for martian weathering profiles: Insights into formation of layered phyllosilicate and sulfate deposits

    Science.gov (United States)

    Zolotov, Mikhail Yu.; Mironenko, Mikhail V.

    2016-09-01

    Numerical chemical models for water-basalt interaction have been used to constrain the formation of stratified mineralogical sequences of Noachian clay-bearing rocks exposed in the Mawrth Vallis region and in other places on cratered martian highlands. The numerical approaches are based on calculations of water-rock type chemical equilibria and models which include rates of mineral dissolution. Results show that the observed clay-bearing sequences could have formed through downward percolation and neutralization of acidic H2SO4-HCl solutions. A formation of weathering profiles by slightly acidic fluids equilibrated with current atmospheric CO2 requires large volumes of water and is inconsistent with observations. Weathering by solutions equilibrated with putative dense CO2 atmospheres leads to consumption of CO2 to abundant carbonates which are not observed in clay stratigraphies. Weathering by H2SO4-HCl solutions leads to formation of amorphous silica, Al-rich clays, ferric oxides/oxyhydroxides, and minor titanium oxide and alunite at the top of weathering profiles. Mg-Fe phyllosilicates, Ca sulfates, zeolites, and minor carbonates precipitate from neutral and alkaline solutions at depth. Acidic weathering causes leaching of Na, Mg, and Ca from upper layers and accumulation of Mg-Na-Ca sulfate-chloride solutions at depth. Neutral MgSO4 type solutions dominate in middle parts of weathering profiles and could occur in deeper layers owing to incomplete alteration of Ca minerals and a limited trapping of Ca to sulfates. Although salts are not abundant in the Noachian geological formations, the results suggest the formation of Noachian salty solutions and their accumulation at depth. A partial freezing and migration of alteration solutions could have separated sulfate-rich compositions from low-temperature chloride brines and contributed to the observed diversity of salt deposits. A Hesperian remobilization and release of subsurface MgSO4 type solutions into newly

  2. Computer Modeling of Flow, Thermal Condition and Ash Deposition in a Hot-Gas Filtration Device

    Energy Technology Data Exchange (ETDEWEB)

    Ahmadi, G.; Mazaheri, A.; Liu, C.; Gamwo, I.K.

    2002-09-19

    The objective of the present study is to develop a computational model for simulating the gas flow, thermal condition and ash transport and deposition pattern in the hot-gas filtration systems. The computational model is to provide a virtual tool for design and operation modifications. Particular attention is given to the Particle Control Device (PCD) at the Power Systems Development Facility (PSDF) in Wilsonville, Alabama. For evaluation of gas velocity and temperature field in the vessel, the FLUENT commercial CFD computer code is used. Ash particle transport and deposition pattern was analyzed with the Lagrangian particle tracking approach.

  3. Distribution and Orientation of Carbon Fibers in Polylactic Acid Parts Produced by Fused Deposition Modeling

    DEFF Research Database (Denmark)

    Hofstätter, Thomas; W. Gutmann, Ingomar; Koch, Thomas

    2016-01-01

    The aim of this paper is the understanding of the fiber orientation by investigations in respect to the inner configuration of a polylactic acid matrix reinforced with short carbon fibers after a fused deposition modeling extrusion process. The final parts were analyzed by X-ray, tomography, and ......, and magnetic resonance imaging allowing a resolved orientation of the fibers and distribution within the part. The research contributes to the understanding of the fiber orientation and fiber reinforcement of fused deposition modeling parts in additive manufacturing....

  4. Sensitivity of the modelled deposition of Caesium-137 from the Fukushima Dai-ichi nuclear power plant to the wet deposition parameterisation in NAME.

    Science.gov (United States)

    Leadbetter, Susan J; Hort, Matthew C; Jones, Andrew R; Webster, Helen N; Draxler, Roland R

    2015-01-01

    This paper describes an investigation into the impact of different meteorological data sets and different wet scavenging coefficients on the model predictions of radionuclide deposits following the accident at the Fukushima Dai-ichi nuclear power plant in March 2011. Three separate operational meteorological data sets, the UK Met Office global meteorology, the ECMWF global meteorology and the Japan Meteorological Agency (JMA) mesoscale meteorology as well as radar rainfall analyses from JMA were all used as inputs to the UK Met Office's dispersion model NAME (the Numerical Atmospheric-dispersion Modelling Environment). The model predictions of Caesium-137 deposits based on these meteorological models all showed good agreement with observations of deposits made in eastern Japan with correlation coefficients ranging from 0.44 to 0.80. Unexpectedly the NAME run using radar rainfall data had a lower correlation coefficient (R = 0.66), when compared to observations, than the run using the JMA mesoscale model rainfall (R = 0.76) or the run using ECMWF met data (R = 0.80). Additionally the impact of modifying the wet scavenging coefficients used in the parameterisation of wet deposition was investigated. The results showed that modifying the scavenging parameters had a similar impact to modifying the driving meteorology on the rank calculated from comparing the modelled and observed deposition. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  5. A surplus production model including environmental effects: Application to the Senegalese white shrimp stocks

    Science.gov (United States)

    Thiaw, Modou; Gascuel, Didier; Jouffre, Didier; Thiaw, Omar Thiom

    2009-12-01

    In Senegal, two stocks of white shrimp ( Penaeusnotialis) are intensively exploited, one in the north and another in the south. We used surplus production models including environmental effects to analyse their changes in abundance over the past 10 years and to estimate their Maximum Sustainable Yield (MSY) and the related fishing effort ( EMSY). First, yearly abundance indices were estimated from commercial statistics using GLM techniques. Then, two environmental indices were alternatively tested in the model: the coastal upwelling intensity from wind speeds provided by the SeaWifs database and the primary production derived from satellite infrared images of chlorophyll a. Models were fitted, with or without the environmental effect, to the 1996-2005 time series. They express stock abundance and catches as functions of the fishing effort and the environmental index (when considered). For the northern stock, fishing effort and abundance fluctuate over the period without any clear trends. The model based on the upwelling index explains 64.9% of the year-to-year variability. It shows that the stock was slightly overexploited in 2002-2003 and is now close to full exploitation. Stock abundance strongly depends on environmental conditions; consequently, the MSY estimate varies from 300 to 900 tons according to the upwelling intensity. For the southern stock, fishing effort has strongly increased over the past 10 years, while abundance has been reduced 4-fold. The environment has a significant effect on abundance but only explains a small part of the year-to-year variability. The best fit is obtained using the primary production index ( R2 = 0.75), and the stock is now significantly overfished regardless of environmental conditions. MSY varies from 1200 to 1800 tons according to environmental conditions. Finally, in northern Senegal, the upwelling is highly variable from year to year and constitutes the major factor determining productivity. In the south, hydrodynamic

  6. Hybrid discrete-continuum modeling for transport, biofilm development and solid restructuring including electrostatic effects

    Science.gov (United States)

    Prechtel, Alexander; Ray, Nadja; Rupp, Andreas

    2017-04-01

    We want to present an approach for the mathematical, mechanistic modeling and numerical treatment of processes leading to the formation, stability, and turnover of soil micro-aggregates. This aims at deterministic aggregation models including detailed mechanistic pore-scale descriptions to account for the interplay of geochemistry and microbiology, and the link to soil functions as, e.g., the porosity. We therefore consider processes at the pore scale and the mesoscale (laboratory scale). At the pore scale transport by diffusion, advection, and drift emerging from electric forces can be taken into account, in addition to homogeneous and heterogeneous reactions of species. In the context of soil micro-aggregates the growth of biofilms or other glueing substances as EPS (extracellular polymeric substances) is important and affects the structure of the pore space in space and time. This model is upscaled mathematically in the framework of (periodic) homogenization to transfer it to the mesoscale resulting in effective coefficients/parameters there. This micro-macro model thus couples macroscopic equations that describe the transport and fluid flow at the scale of the porous medium (mesoscale) with averaged time- and space-dependent coefficient functions. These functions may be explicitly computed by means of auxiliary cell problems (microscale). Finally, the pore space in which the cell problems are defined is time and space dependent and its geometry inherits information from the transport equation's solutions. The microscale problems rely on versatile combinations of cellular automata and discontiuous Galerkin methods while on the mesoscale mixed finite elements are used. The numerical simulations allow to study the interplay between these processes.

  7. Atmospheric nitrogen deposition to China: A model analysis on nitrogen budget and critical load exceedance

    Science.gov (United States)

    Zhao, Yuanhong; Zhang, Lin; Chen, Youfan; Liu, Xuejun; Xu, Wen; Pan, Yuepeng; Duan, Lei

    2017-03-01

    We present a national-scale model analysis on the sources and processes of inorganic nitrogen deposition over China using the GEOS-Chem model at 1/2° × 1/3° horizontal resolution. Model results for 2008-2012 are evaluated with an ensemble of surface measurements of wet deposition flux and gaseous ammonia (NH3) concentration, and satellite measurements of tropospheric NO2 columns. Annual total inorganic nitrogen deposition fluxes are simulated to be generally less than 10 kg N ha-1 a-1 in western China (less than 2 kg N ha-1 a-1 over Tibet), 15-50 kg N ha-1 a-1 in eastern China, and 16.4 kg N ha-1 a-1 averaged over China. Annual total deposition to China is 16.4 Tg N, with 10.2 Tg N (62%) from reduced nitrogen (NHx) and 6.2 Tg N from oxidized nitrogen (NOy). Domestic anthropogenic sources contribute 86% of the total deposition; foreign anthropogenic sources 7% and natural sources 7%. Annually 23% of domestically emitted NH3 and 36% for NOx are exported outside the terrestrial land of China. We find that atmospheric nitrogen deposition is about half of the nitrogen input from fertilizer application (29.6 Tg N a-1), and is much higher than that from natural biological fixation (7.3 Tg N a-1) over China. A comparison of nitrogen deposition with critical load estimates for eutrophication indicates that about 15% of the land over China experiences critical load exceedances, demonstrating the necessity of nitrogen emission controls to avoid potential negative ecological effects.

  8. Environmental assessment of biofuel chains based on ecosystem modelling, including land-use change effects

    Science.gov (United States)

    Gabrielle, B.; Gagnaire, N.; Massad, R.; Prieur, V.; Python, Y.

    2012-04-01

    The potential greenhouse gas (GHG) savings resulting from the displacement of fossil energy sources by bioenergy mostly hinges on the uncertainty on the magnitude of nitrous oxide (N2O) emissions from arable soils occuring during feedstock production. These emissions are broadly related to fertilizer nitrogen input rates, but largely controlled by soil and climate factors which makes their estimation highly uncertain. Here, we set out to improve estimates of N2O emissions from bioenergy feedstocks by using ecosystem models and measurements and modeling of atmospheric N2O in the greater Paris (France) area. Ground fluxes were measured in two locations to assess the effect of soil type and management, crop type (including lignocellulosics such as triticale, switchgrass and miscanthus), and climate on N2O emission rates and dynamics. High-resolution maps of N2O emissions were generated over the Ile-de-France region (around Paris) with two ecosystem models using geographical databases on soils, weather data, land-use and crop management. The models were tested against ground flux measurements and the emission maps were fed into the atmospheric chemistry-transport model CHIMERE. The maps were tested by comparing the CHIMERE simulations with time series of N2O concentrations measured at various heights above the ground in two locations in 2007. The emissions of N2O, as integrated over the region, were used in a life-cycle assessment of representative biofuel pathways: bioethanol from wheat and sugar-beet (1st generation), and miscanthus (2nd generation chain); bio-diesel from oilseed rape. Effects related to direct and indirect land-use changes (in particular on soil carbon stocks) were also included in the assessment based on various land-use scenarios and literature references. The potential deployment of miscanthus was simulated by assuming it would be grown on the current sugar-beet growing area in Ile-de-France, or by converting land currently under permanent fallow

  9. Aerosol dry deposition on vegetative canopies. Part II: A new modelling approach and applications

    Science.gov (United States)

    Petroff, Alexandre; Mailliat, Alain; Amielh, Muriel; Anselmet, Fabien

    2008-05-01

    This paper presents a new approach for the modelling of aerosol dry deposition on vegetation. It follows a companion article, in which a review of the current knowledge highlights the need for a better description of the aerosol behaviour within the canopy [Petroff, A., Mailliat, A., Amielh, M., Anselmet, F., 2008. Aerosol dry deposition on vegetative canopies. Part I: Review of present knowledge. Atmospheric Environment, in press, doi:10.1016/j.atmosenv.2007.09.043]. Concepts from multi-phase flow studies are used for describing the canopy medium and deriving a time and space-averaged aerosol balance equation and the associated deposition terms. The closure of the deposition terms follows an up-scaling procedure based on the statistical distribution of the collecting elements. This aerosol transport model is then applied in a stationary and mono-dimensional configuration and takes into account the properties of the vegetation, the aerosol and the turbulent flow. Deposition mechanisms are Brownian diffusion, interception, inertial and turbulent impactions, and gravitational settling. For each of them, a parameterisation of the particle collection is derived and the quality of their predictions is assessed by comparison with wind-tunnel deposition measurements on coniferous twigs [Belot, Y., Gauthier, D., 1975. Transport of micronic particles from atmosphere to foliar surfaces. In: De Vries, D.A., Afgan, N.H. (Eds.), Heat and Mass Transfer in the Biosphere. Scripta Book, Washington, DC, pp. 583-591; Belot, Y., 1977. Etude de la captation des polluants atmosphériques par les végétaux. CEA, R-4786, Fontenay-aux-Roses; Belot, Y., Camus, H., Gauthier, D., Caput, C., 1994. Uptake of small particles by canopies. The Science of the Total Environment 157, 1-6]. Under a real canopy configuration, the predictions of the aerosol transport model compare reasonably well with detailed on-site deposition measurements of Aitken mode particles [Buzorius, G., Rannik, Ü., M

  10. Observation- and model-based estimates of particulate dry nitrogen deposition to the oceans

    Directory of Open Access Journals (Sweden)

    A. R. Baker

    2017-07-01

    Full Text Available Anthropogenic nitrogen (N emissions to the atmosphere have increased significantly the deposition of nitrate (NO3− and ammonium (NH4+ to the surface waters of the open ocean, with potential impacts on marine productivity and the global carbon cycle. Global-scale understanding of the impacts of N deposition to the oceans is reliant on our ability to produce and validate models of nitrogen emission, atmospheric chemistry, transport and deposition. In this work,  ∼  2900 observations of aerosol NO3− and NH4+ concentrations, acquired from sampling aboard ships in the period 1995–2012, are used to assess the performance of modelled N concentration and deposition fields over the remote ocean. Three ocean regions (the eastern tropical North Atlantic, the northern Indian Ocean and northwest Pacific were selected, in which the density and distribution of observational data were considered sufficient to provide effective comparison to model products. All of these study regions are affected by transport and deposition of mineral dust, which alters the deposition of N, due to uptake of nitrogen oxides (NOx on mineral surfaces. Assessment of the impacts of atmospheric N deposition on the ocean requires atmospheric chemical transport models to report deposition fluxes; however, these fluxes cannot be measured over the ocean. Modelling studies such as the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP, which only report deposition flux, are therefore very difficult to validate for dry deposition. Here, the available observational data were averaged over a 5° × 5° grid and compared to ACCMIP dry deposition fluxes (ModDep of oxidised N (NOy and reduced N (NHx and to the following parameters from the Tracer Model 4 of the Environmental Chemical Processes Laboratory (TM4: ModDep for NOy, NHx and particulate NO3− and NH4+, and surface-level particulate NO3− and NH4+ concentrations. As a model ensemble, ACCMIP can be

  11. Toward a Facies Model for AMS Fabrics in Deposits from Pyroclastic Currents

    Science.gov (United States)

    Ort, M. H.; Newkirk, T.; Vilas, J. F.; Vazquez, J. A.

    2011-12-01

    Studies of the anisotropy of magnetic susceptibility (AMS) in deposits from pyroclastic density currents have been made for 30 years. Early studies sought to find vent locations, but later studies have also used AMS to interpret flow and depositional processes. These studies show that AMS fabrics reflect shear directions at the base of the depositional regime and thoughtful interpretations of the directions, coupled with good observations of the deposits, can lead to a better understanding of depositional and flow processes in the currents. Here, we compare the AMS fabrics and deposit characteristics of deposits of dense and dilute pyroclastic density currents in order to develop an AMS facies model for such deposits. Deposits from individual phreatomagmatic density currents produced in the NE Hopi Buttes volcanic field, NE Arizona, can be traced from the maar edge laterally for 1.5 km or more. This allows the depositional facies to be described and sampled for AMS. The most proximal facies, consisting of tuff breccias, is characterized by a disorganized AMS fabric, marked by some grouping of the AMS axes but a very weak foliation. By about 350 m from the maar rim and extending out over a kilometer, a well lineated and foliated fabric develops in the stratified to sand-wave-bearing lapilli-tuffs, reflecting the shear within the well-developed current. At distances over a km from the vent, where the deposits are plane-parallel tuffs, a girdled fabric develops, with overlapping K1 and K2 axes. This likely reflects weak shearing within the slowing flow. At Caviahue caldera, Neuquen, Argentina, lateral sampling of ignimbrites from within the caldera and on a SE transect to ~25 km from the caldera rim, reveals systematic changes in the AMS fabric, with less obvious changes in the sedimentary characteristics. Intracaldera ignimbrites are rheomorphic and very densely welded, and their AMS fabrics are very strongly foliated but with a weak lineation. Moving out from the

  12. Osteopontin expression and localization of Ca++ deposits in early stages of osteoarthritis in a rat model.

    Science.gov (United States)

    Martínez-Calleja, América; Velasquillo, Cristina; Vega-López, Marco; Arellano-Jiménez, M Josefina; Tsutsumi-Fujiyoshi, Victor K; Mondragón-Flores, Ricardo; Kouri-Flores, Juan B

    2014-07-01

    Calcium deposits have been related to articular cartilage (AC) degeneration and have been observed in late stages of osteoarthritis (OA). However, the role of those deposits, whether they induce the OA pathogenesis or they appear as a consequence of such process, is still unknown. In this work, we present the kinetics of expression and tissue localisation of osteopontin (OPN), a mineralisation biomarker, and calcium deposits in samples from (normal, sham) and osteoarthritic cartilage (in a rat model). Immunohistochemical and Western blot assays for OPN, as well as Alizarin red staining for calcium deposits were performed; superficial, middle, and deep zones of AC were analysed. An increased expression of OPN and calcium deposits was found in the osteoarthritic cartilage compared with that of control groups, particularly in the superficial zone of AC in early stages of OA. In addition, the expression and localisation of OPN and calcium deposits during the OA pathogenesis suggest that the pathological AC mineralisation starts in the superficial zone during OA pathogenesis.

  13. CFD Modeling of Sodium-Oxide Deposition in Sodium-Cooled Fast Reactor Compact Heat Exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Tatli, Emre; Ferroni, Paolo; Mazzoccoli, Jason

    2015-09-02

    The possible use of compact heat exchangers (HXs) in sodium-cooled fast reactors (SFR) employing a Brayton cycle is promising due to their high power density and resulting small volume in comparison with conventional shell-and-tube HXs. However, the small diameter of their channels makes them more susceptible to plugging due to Na2O deposition during accident conditions. Although cold traps are designed to reduce oxygen impurity levels in the sodium coolant, their failure, in conjunction with accidental air ingress into the sodium boundary, could result in coolant oxygen levels that are above the saturation limit in the cooler parts of the HX channels. This can result in Na2O crystallization and the formation of solid deposits on cooled channel surfaces, limiting or even blocking coolant flow. The development of analysis tools capable of modeling the formation of these deposits in the presence of sodium flow will allow designers of SFRs to properly size the HX channels so that, in the scenario mentioned above, the reactor operator has sufficient time to detect and react to the affected HX. Until now, analytical methodologies to predict the formation of these deposits have been developed, but never implemented in a high-fidelity computational tool suited to modern reactor design techniques. This paper summarizes the challenges and the current status in the development of a Computational Fluid Dynamics (CFD) methodology to predict deposit formation, with particular emphasis on sensitivity studies on some parameters affecting deposition.

  14. Acid deposition critical loads modeling for the simulation of sulfur exceedance and reduction in Guangdong, China

    Institute of Scientific and Technical Information of China (English)

    QIU Rongliang; WANG Shizhong; QIU Hao; WANG Xuemei; LIAO Jin; ZHANG Zhentian

    2009-01-01

    In this study, the current acid deposition critical loads in Guangdong, China were calculated using the PROFILE model with a 3×3 km resolution.Calculations were carried out for critical loads of potential acidity, actual acidity, sulfur and nitrogen, with values in extents of 0-3.5, 0-14.0, 0-26.0 and 0-3.5 kmol/(hm2·year), respectively.These values were comparable to previously reported results and reflected the influences of vegetation and soil characteristics on the soil acid buffering capacity.Simulations of SO2 emission and sulfur deposition in this study showed that sulfur deposition core areas mirrored SO2 emission centers.The prediction of sulfur deposition after 20% and 40% reduction of SO2 emission suggested that the reduction of area sources contributed greatly to the decrease of sulfur deposition.Thus, abatement of area source emissions could be the primary way to mitigate sulfur deposition in Guangdong so as to meet both the provincial and national regulations of air pollution control.

  15. Acid deposition critical loads modeling for the simulation of sulfur exceedance and reduction in Guangdong, China.

    Science.gov (United States)

    Qiu, Rongliang; Wang, Shizhong; Qiu, Hao; Wang, Xuemei; Liao, Jin; Zhang, Zhentian

    2009-01-01

    The current acid deposition critical loads in Guangdong, China were calculated using the PROFILE model with a 3 km x 3 km resolution. Calculations were carried out for critical loads of potential acidity, actual acidity, sulfur and nitrogen, with values in extents of 0-3.5, 0-14.0, 0-26.0 and 0-3.5 kmol/(hm2 x year), respectively. These values were comparable to previously reported results and reflected the influences of vegetation and soil characteristics on the soil acid buffering capacity. Simulations of SO2 emission and sulfur deposition in this study showed that sulfur deposition core areas mirrored SO2 emission centers. The prediction of sulfur deposition after 20% and 40% reduction of SO2 emission suggested that the reduction of area sources contributed greatly to the decrease of sulfur deposition. Thus, abatement of area source emissions could be the primary way to mitigate sulfur deposition in Guangdong to meet both the provincial and national regulations of air pollution control.

  16. Validation of gyrokinetic modelling of light impurity transport including rotation in ASDEX Upgrade

    CERN Document Server

    Casson, F J; Angioni, C; Camenen, Y; Dux, R; Fable, E; Fischer, R; Geiger, B; Manas, P; Menchero, L; Tardini, G

    2013-01-01

    Upgraded spectroscopic hardware and an improved impurity concentration calculation allow accurate determination of boron density in the ASDEX Upgrade tokamak. A database of boron measurements is compared to quasilinear and nonlinear gyrokinetic simulations including Coriolis and centrifugal rotational effects over a range of H-mode plasma regimes. The peaking of the measured boron profiles shows a strong anti-correlation with the plasma rotation gradient, via a relationship explained and reproduced by the theory. It is demonstrated that the rotodiffusive impurity flux driven by the rotation gradient is required for the modelling to reproduce the hollow boron profiles at higher rotation gradients. The nonlinear simulations validate the quasilinear approach, and, with the addition of perpendicular flow shear, demonstrate that each symmetry breaking mechanism that causes momentum transport also couples to rotodiffusion. At lower rotation gradients, the parallel compressive convection is required to match the mos...

  17. Models that include supercoiling of topological domains reproduce several known features of interphase chromosomes.

    Science.gov (United States)

    Benedetti, Fabrizio; Dorier, Julien; Burnier, Yannis; Stasiak, Andrzej

    2014-03-01

    Understanding the structure of interphase chromosomes is essential to elucidate regulatory mechanisms of gene expression. During recent years, high-throughput DNA sequencing expanded the power of chromosome conformation capture (3C) methods that provide information about reciprocal spatial proximity of chromosomal loci. Since 2012, it is known that entire chromatin in interphase chromosomes is organized into regions with strongly increased frequency of internal contacts. These regions, with the average size of ∼1 Mb, were named topological domains. More recent studies demonstrated presence of unconstrained supercoiling in interphase chromosomes. Using Brownian dynamics simulations, we show here that by including supercoiling into models of topological domains one can reproduce and thus provide possible explanations of several experimentally observed characteristics of interphase chromosomes, such as their complex contact maps.

  18. Modeling and analysis of overmodulation in erbium-doped fiber amplifiers including amplified spontaneous emission

    Science.gov (United States)

    Sharma, Reena; Raghuwanshi, Sanjeev Kumar

    2017-02-01

    Line surveillance and management information in erbium-doped fiber amplifiers (EDFAs) can be broadcast by modulating the amplitude of the low-frequency lightwave information signal, the process termed as overmodulation in the literature. This paper presents systematic solutions for the overmodulated pump and information signal transfer functions for EDFA. It includes amplified spontaneous emission (ASE) that has an impact on outcomes in the high-gain system. To the extent of our belief, the methodical model simulated with the current approach leads to a distinct perspective of an outcome in the respective field. The test bed described here is realistic. It specifically represents the overmodulation behavior in an EDFA under the influence of ASE.

  19. Model catalysis by size-selected cluster deposition

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Scott [Univ. of Utah, Salt Lake City, UT (United States)

    2015-11-20

    This report summarizes the accomplishments during the last four years of the subject grant. Results are presented for experiments in which size-selected model catalysts were studied under surface science and aqueous electrochemical conditions. Strong effects of cluster size were found, and by correlating the size effects with size-dependent physical properties of the samples measured by surface science methods, it was possible to deduce mechanistic insights, such as the factors that control the rate-limiting step in the reactions. Results are presented for CO oxidation, CO binding energetics and geometries, and electronic effects under surface science conditions, and for the electrochemical oxygen reduction reaction, ethanol oxidation reaction, and for oxidation of carbon by water.

  20. Backtrack modeling to locate the origin of tar balls depositing along the west coast of India.

    Science.gov (United States)

    Suneel, V; Ciappa, A; Vethamony, P

    2016-11-01

    Tar ball (TB) deposition along the West Coast of India (WCI) is a common phenomenon during the southwest monsoon season, particularly along the coast of Goa and Gujarat, and it is a major concern to the stake holders. Our earlier studies showed that the source oil for the TBs deposited on the Goa coast in August 2010 is the tanker wash, and the source for subsequent TBs deposited on the Gujarat coast during July 2012 and June 2013 and Goa coast in May 2013 is from Bombay High (BH) oil fields. In the present study, the TBs that were deposited during May 2013 and May 2014 on the Goa coast were backtracked through a trajectory model, primarily to simulate their pathways and identify the reason for the occurrence of TBs only in May, and eventually to identify the origin and the source. The backtracking results re-confirmed that the TBs deposited in 2010 were originated from the tanker routes and that of both 2013 and 2014 TBs from the BH oil fields. The climatology of wind and surface circulation showed that the TBs deposited on the Goa coast during May/June only are from the oil fields and those during August from the tanker route. The results of backtracking simulations showed that the residence time of the oil residues/TBs is approximately 22days for August 2010 TBs, ≈30days for May 2013 TBs and 65days for May 2014 TBs. The residence time (in water) of TBs that deposit (on the coast) in the month of May could be as much as 7months, and could be around one month if deposit in August, primarily because of winds and hydrodynamic conditions of the Arabian Sea.

  1. Sediment Deposition Pattern and Flow Conditions in the Three Gorges Reservoir: A Physical Model Study

    Institute of Scientific and Technical Information of China (English)

    王兴奎; 邵学军; 李丹勋

    2003-01-01

    Sedimentation in the Three Gorges Reservoir will greatly affect future project functions, such as power generation and navigation, after 50 years of operation. This paper presents results of a physical model study, which indicate that the capacity of both the discharge tunnel and the power plant outlet could be impaired by sediment deposition in front of the dam after 50 years, affecting both the hydropower head and navigation. A flow training scheme based on the third-stage cofferdam for the dam construction is proposed to regulate the flow pattern and control deposition in the near-dam region of the reservoir. This flow training scenario can effectively reduce deposition in the physical model.

  2. Dynamic Modeling for the Design and Cyclic Operation of an Atomic Layer Deposition (ALD Reactor

    Directory of Open Access Journals (Sweden)

    Curtisha D. Travis

    2013-08-01

    Full Text Available A laboratory-scale atomic layer deposition (ALD reactor system model is derived for alumina deposition using trimethylaluminum and water as precursors. Model components describing the precursor thermophysical properties, reactor-scale gas-phase dynamics and surface reaction kinetics derived from absolute reaction rate theory are integrated to simulate the complete reactor system. Limit-cycle solutions defining continuous cyclic ALD reactor operation are computed with a fixed point algorithm based on collocation discretization in time, resulting in an unambiguous definition of film growth-per-cycle (gpc. A key finding of this study is that unintended chemical vapor deposition conditions can mask regions of operation that would otherwise correspond to ideal saturating ALD operation. The use of the simulator for assisting in process design decisions is presented.

  3. Exergoeconomic performance optimization for a steady-flow endoreversible refrigeration model including six typical cycles

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Lingen; Kan, Xuxian; Sun, Fengrui; Wu, Feng [College of Naval Architecture and Power, Naval University of Engineering, Wuhan 430033 (China)

    2013-07-01

    The operation of a universal steady flow endoreversible refrigeration cycle model consisting of a constant thermal-capacity heating branch, two constant thermal-capacity cooling branches and two adiabatic branches is viewed as a production process with exergy as its output. The finite time exergoeconomic performance optimization of the refrigeration cycle is investigated by taking profit rate optimization criterion as the objective. The relations between the profit rate and the temperature ratio of working fluid, between the COP (coefficient of performance) and the temperature ratio of working fluid, as well as the optimal relation between profit rate and the COP of the cycle are derived. The focus of this paper is to search the compromised optimization between economics (profit rate) and the utilization factor (COP) for endoreversible refrigeration cycles, by searching the optimum COP at maximum profit, which is termed as the finite-time exergoeconomic performance bound. Moreover, performance analysis and optimization of the model are carried out in order to investigate the effect of cycle process on the performance of the cycles using numerical example. The results obtained herein include the performance characteristics of endoreversible Carnot, Diesel, Otto, Atkinson, Dual and Brayton refrigeration cycles.

  4. Exergoeconomic performance optimization for a steady-flow endoreversible refrigeration model including six typical cycles

    Directory of Open Access Journals (Sweden)

    Lingen Chen, Xuxian Kan, Fengrui Sun, Feng Wu

    2013-01-01

    Full Text Available The operation of a universal steady flow endoreversible refrigeration cycle model consisting of a constant thermal-capacity heating branch, two constant thermal-capacity cooling branches and two adiabatic branches is viewed as a production process with exergy as its output. The finite time exergoeconomic performance optimization of the refrigeration cycle is investigated by taking profit rate optimization criterion as the objective. The relations between the profit rate and the temperature ratio of working fluid, between the COP (coefficient of performance and the temperature ratio of working fluid, as well as the optimal relation between profit rate and the COP of the cycle are derived. The focus of this paper is to search the compromised optimization between economics (profit rate and the utilization factor (COP for endoreversible refrigeration cycles, by searching the optimum COP at maximum profit, which is termed as the finite-time exergoeconomic performance bound. Moreover, performance analysis and optimization of the model are carried out in order to investigate the effect of cycle process on the performance of the cycles using numerical example. The results obtained herein include the performance characteristics of endoreversible Carnot, Diesel, Otto, Atkinson, Dual and Brayton refrigeration cycles.

  5. A Model for One-Dimensional Coherent Synchrotron Radiation including Short-Range Effects

    CERN Document Server

    Ryne, Robert D; Qiang, Ji; Yampolsky, Nikolai

    2012-01-01

    A new model is presented for simulating coherent synchrotron radiation (CSR) in one dimension. The method is based on convolving an integrated Green function (IGF) with the longitudinal charge density. Since it is based on an IGF, the accuracy of this approach is determined by how well one resolves the charge density and not by resolving the single particle wake function. Since short-range wakefield effects are included analytically, the approach can be much more efficient than ordinary (non-IGF) approaches in situations where the wake function and charge density have disparate spatial scales. Two cases are presented: one derived from the full wake including short-range effects, and one derived from the asymptotic wake. In the latter case the algorithm contains the same physics as others based on the asymptotic approximation, but requires only the line charge density and not its derivative. Examples are presented that illustrate the limitations of the asymptotic-wake approximation, and that illustrate how mic...

  6. A modelling study of regional deposition of inspired aerosols with reference to dosimetric assessments

    Energy Technology Data Exchange (ETDEWEB)

    Egan, M.J.; Nixon, W. (UKAEA Safety and Reliability Directorate, Culcheth (UK))

    1988-01-01

    An improved lung deposition model, agreeing well with a wide range of total and regional deposition data, was used to investigate some assumptions embodied in current ICRP recommendations. Following a comparison between predictions of the new model and the original ICRP Task Group deposition model, the possible influence upon dosimetric calculations caused by various different effects were investigated. Some significant differences between regional deposition predictions of the new model and the current ICRP recommendations embodied in Publication 30 were found, up to a factor of approx 4 in some cases. The impact of improved modelling, aerosol polydispersity, the possibility of mouth as compared to nose breathing and exercise level (especially if there is transition from nose to mouth breathing at high work rates) were observed to be the most important. The impact of different breathing patterns was found to be less significant while the effect of different particle densities could be relatively successfully accounted for via a suitable transition from geometric to aerodynamic diameter. (author).

  7. INTERIOR MODELS OF SATURN: INCLUDING THE UNCERTAINTIES IN SHAPE AND ROTATION

    Energy Technology Data Exchange (ETDEWEB)

    Helled, Ravit [Department of Geophysics, Atmospheric and Planetary Sciences, Tel-Aviv University, Tel-Aviv (Israel); Guillot, Tristan [Universite de Nice-Sophia Antipolis, Observatoire de la Cote d' Azur, CNRS UMR 7293, BP 4229, F-06304 Nice (France)

    2013-04-20

    The accurate determination of Saturn's gravitational coefficients by Cassini could provide tighter constraints on Saturn's internal structure. Also, occultation measurements provide important information on the planetary shape which is often not considered in structure models. In this paper we explore how wind velocities and internal rotation affect the planetary shape and the constraints on Saturn's interior. We show that within the geodetic approach the derived physical shape is insensitive to the assumed deep rotation. Saturn's re-derived equatorial and polar radii at 100 mbar are found to be 54,445 {+-} 10 km and 60,365 {+-} 10 km, respectively. To determine Saturn's interior, we use one-dimensional three-layer hydrostatic structure models and present two approaches to include the constraints on the shape. These approaches, however, result in only small differences in Saturn's derived composition. The uncertainty in Saturn's rotation period is more significant: with Voyager's 10{sup h}39{sup m} period, the derived mass of heavy elements in the envelope is 0-7 M{sub Circled-Plus }. With a rotation period of 10{sup h}32{sup m}, this value becomes <4 M{sub Circled-Plus }, below the minimum mass inferred from spectroscopic measurements. Saturn's core mass is found to depend strongly on the pressure at which helium phase separation occurs, and is estimated to be 5-20 M{sub Circled-Plus }. Lower core masses are possible if the separation occurs deeper than 4 Mbar. We suggest that the analysis of Cassini's radio occultation measurements is crucial to test shape models and could lead to constraints on Saturn's rotation profile and departures from hydrostatic equilibrium.

  8. High performance computation of landscape genomic models including local indicators of spatial association.

    Science.gov (United States)

    Stucki, S; Orozco-terWengel, P; Forester, B R; Duruz, S; Colli, L; Masembe, C; Negrini, R; Landguth, E; Jones, M R; Bruford, M W; Taberlet, P; Joost, S

    2016-11-01

    With the increasing availability of both molecular and topo-climatic data, the main challenges facing landscape genomics - that is the combination of landscape ecology with population genomics - include processing large numbers of models and distinguishing between selection and demographic processes (e.g. population structure). Several methods address the latter, either by estimating a null model of population history or by simultaneously inferring environmental and demographic effects. Here we present samβada, an approach designed to study signatures of local adaptation, with special emphasis on high performance computing of large-scale genetic and environmental data sets. samβada identifies candidate loci using genotype-environment associations while also incorporating multivariate analyses to assess the effect of many environmental predictor variables. This enables the inclusion of explanatory variables representing population structure into the models to lower the occurrences of spurious genotype-environment associations. In addition, samβada calculates local indicators of spatial association for candidate loci to provide information on whether similar genotypes tend to cluster in space, which constitutes a useful indication of the possible kinship between individuals. To test the usefulness of this approach, we carried out a simulation study and analysed a data set from Ugandan cattle to detect signatures of local adaptation with samβada, bayenv, lfmm and an FST outlier method (FDIST approach in arlequin) and compare their results. samβada - an open source software for Windows, Linux and Mac OS X available at http://lasig.epfl.ch/sambada - outperforms other approaches and better suits whole-genome sequence data processing.

  9. Including oxygen enhancement ratio in ion beam treatment planning: model implementation and experimental verification

    Science.gov (United States)

    Scifoni, E.; Tinganelli, W.; Weyrather, W. K.; Durante, M.; Maier, A.; Krämer, M.

    2013-06-01

    We present a method for adapting a biologically optimized treatment planning for particle beams to a spatially inhomogeneous tumor sensitivity due to hypoxia, and detected e.g., by PET functional imaging. The TRiP98 code, established treatment planning system for particles, has been extended for including explicitly the oxygen enhancement ratio (OER) in the biological effect calculation, providing the first set up of a dedicated ion beam treatment planning approach directed to hypoxic tumors, TRiP-OER, here reported together with experimental tests. A simple semi-empirical model for calculating the OER as a function of oxygen concentration and dose averaged linear energy transfer, generating input tables for the program is introduced. The code is then extended in order to import such tables coming from the present or alternative models, accordingly and to perform forward and inverse planning, i.e., predicting the survival response of differently oxygenated areas as well as optimizing the required dose for restoring a uniform survival effect in the whole irradiated target. The multiple field optimization results show how the program selects the best beam components for treating the hypoxic regions. The calculations performed for different ions, provide indications for the possible clinical advantages of a multi-ion treatment. Finally the predictivity of the code is tested through dedicated cell culture experiments on extended targets irradiation using specially designed hypoxic chambers, providing a qualitative agreement, despite some limits in full survival calculations arising from the RBE assessment. The comparison of the predictions resulting by using different model tables are also reported.

  10. Development and validation of a size-resolved particle dry deposition scheme for application in aerosol transport models

    Directory of Open Access Journals (Sweden)

    A. Petroff

    2010-12-01

    Full Text Available A size-resolved particle dry deposition scheme is developed for inclusion in large-scale air quality and climate models where the size distribution and fate of atmospheric aerosols is of concern. The "resistance" structure is similar to what is proposed by Zhang et al. (2001, while a new "surface" deposition velocity (or surface resistance is derived by simplification of a one-dimensional aerosol transport model (Petroff et al., 2008b, 2009. Compared to Zhang et al.'s model, the present model accounts for the leaf size, shape and area index as well as the height of the vegetation canopy. Consequently, it is more sensitive to the change of land covers, particularly in the accumulation mode (0.1–1 micron. A drift velocity is included to account for the phoretic effects related to temperature and humidity gradients close to liquid and solid water surfaces. An extended comparison of this model with experimental evidence is performed over typical land covers such as bare ground, grass, coniferous forest, liquid and solid water surfaces and highlights its adequate prediction. The predictions of the present model differ from Zhang et al.'s model in the fine mode, where the latter tends to over-estimate in a significant way the particle deposition, as measured by various investigators or predicted by the present model. The present development is thought to be useful to modellers of the atmospheric aerosol who need an adequate parameterization of aerosol dry removal to the earth surface, described here by 26 land covers. An open source code is available in Fortran90.

  11. Risk Management Model in Surface Exploitation of Mineral Deposits

    Science.gov (United States)

    Stojanović, Cvjetko

    2016-06-01

    Risk management is an integrative part of all types of project management. One of the main tasks of pre-investment studies and other project documentation is the tendency to protect investment projects as much as possible against investment risks. Therefore, the provision and regulation of risk information ensure the identification of the probability of the emergence of adverse events, their forms, causes and consequences, and provides a timely measures of protection against risks. This means that risk management involves a set of management methods and techniques used to reduce the possibility of realizing the adverse events and consequences and thus increase the possibilities of achieving the planned results with minimal losses. Investment in mining projects are of capital importance because they are very complex projects, therefore being very risky, because of the influence of internal and external factors and limitations arising from the socio-economic environment. Due to the lack of a risk management system, numerous organizations worldwide have suffered significant financial losses. Therefore, it is necessary for any organization to establish a risk management system as a structural element of system management system as a whole. This paper presents an approach to a Risk management model in the project of opening a surface coal mine, developed based on studies of extensive scientific literature and personal experiences of the author, and which, with certain modifications, may find use for any investment project, both in the mining industry as well as in investment projects in other areas.

  12. Fibroblast migration and collagen deposition during dermal wound healing: mathematical modelling and clinical implications.

    Science.gov (United States)

    McDougall, Steven; Dallon, John; Sherratt, Jonathan; Maini, Philip

    2006-06-15

    The extent to which collagen alignment occurs during dermal wound healing determines the severity of scar tissue formation. We have modelled this using a multiscale approach, in which extracellular materials, for example collagen and fibrin, are modelled as continua, while fibroblasts are considered as discrete units. Within this model framework, we have explored the effects that different parameters have on the alignment process, and we have used the model to investigate how manipulation of transforming growth factor-beta levels can reduce scar tissue formation. We briefly review this body of work, then extend the modelling framework to investigate the role played by leucocyte signalling in wound repair. To this end, fibroblast migration and collagen deposition within both the wound region and healthy peripheral tissue are considered. Trajectories of individual fibroblasts are determined as they migrate towards the wound region under the combined influence of collagen/fibrin alignment and gradients in a paracrine chemoattractant produced by leucocytes. The effects of a number of different physiological and cellular parameters upon the collagen alignment and repair integrity are assessed. These parameters include fibroblast concentration, cellular speed, fibroblast sensitivity to chemoattractant concentration and chemoattractant diffusion coefficient. Our results show that chemoattractant gradients lead to increased collagen alignment at the interface between the wound and the healthy tissue. Results show that there is a trade-off between wound integrity and the degree of scarring. The former is found to be optimized under conditions of a large chemoattractant diffusion coefficient, while the latter can be minimized when repair takes place in the presence of a competitive inhibitor to chemoattractants.

  13. Mechanistic Model for Ash Deposit Formation in Biomass Suspension Firing. Part 1: Model Verification by Use of Entrained Flow Reactor Experiments

    DEFF Research Database (Denmark)

    Hansen, Stine Broholm; Jensen, Peter Arendt; Jappe Frandsen, Flemming

    2017-01-01

    Two models for deposit formation in suspension firing of biomass have been developed. Both models describe deposit buildup by diffusion and subsequent condensation of vapors, thermophoresis of aerosols, convective diffusion of small particles, impaction of large particles, and reaction. The models...... used to describe the deposit formation rates and deposit chemistry observed in a series of entrained flow reactor (EFR) experiments using straw and wood as fuels. It was found that model #1 was not able to describe the observed influence of temperature on the deposit buildup rates, predicting a much...

  14. Particles deposition induced by the magnetic field in the coronary bypass graft model

    Science.gov (United States)

    Bernad, Sandor I.; Totorean, Alin F.; Vekas, Ladislau

    2016-03-01

    Bypass graft failures is a complex process starting with intimal hyperplasia development which involve many hemodynamic and biological factors. This work presents experimental results regarding the possibility to use magnetic drug delivery to prevent the development of the intimal hyperplasia using a simplified but intuitive model. The primary goal is to understand the magnetic particle deposition in the anastomosis region of the bypass graft taking into account the complex flow field created in this area which involves recirculation region, flow mixing and presence of particles with high residence time. The three-dimensional geometry model was used to simulate the motion and accumulation of the particles under the magnetic field influence in anastomotic region of the coronary bypass graft. The flow patterns are evaluated both numerically and experimentally and show a good correlation in term of flow parameters like vortex length and flow stagnation point positions. Particle depositions are strongly dependent on the magnet position and consequently of the magnetic field intensity and field gradient. Increased magnetic field controlled by the magnet position induces increased particle depositions in the bypass graft anastomosis. The result shows that particle depositions depend on the bypass graft angle, and the deposition shape and particle accumulation respectively, depend by the flow pattern in the anastomosis region.

  15. The rudist buildup depositional model, reservoir architecture and development strategy of the cretaceous Sarvak formation of Southwest Iran

    Directory of Open Access Journals (Sweden)

    Yang Du

    2015-03-01

    Full Text Available This paper studies the lithofacies, sedimentary facies, depositional models and reservoir architecture of the rudist-bearing Sar-3 zone of Cretaceous Sarvak in the Southwest of Iran by utilizing coring, thin section, XRD data of five coring wells and 3D seismic data. Research results include the following: According to lithofacies features and their association, the rudist-mound and tidal flat are the main microfacies in the Sar-3 depositional time. By investigating the regional tectonic setting and seismic interpretation, a depositional model was built for the Sar-3 zone, which highlights four key points: 1 The distribution of the rudist-buildup is controlled by the paleo-high. 2 The build-up outside of the wide colonize stage but reached the wave-base level in a short time by regression and formation uplift, and was destroyed by the high energy current, then forming the moundy allochthonous deposition after being dispersed and redeposited. 3 The tidal flat develops widely in the upper Sar-3, and the deposition thickness depends on the paleo-structure. The tidal channel develops in the valley and fringe of the Paleo-structure. 4 The exposure within the leaching effect by the meteoric water of the top of Sar-3 is the main controlling factor of the reservoir vertical architecture. The Sar-3 zone featured as the dualistic architecture consists of two regions: the lower is the rudist reef limestone reservoir and the upper is the tidal condense limestone interlayer. The thickness of each is controlled by the paleo-structure. The Paleo-high zone is the preferential development zone. Based on reservoir characteristics of the different zones, a targeted development strategy has been proposed. Keeping the trajectory in the middle of the oil-layer in the paleo-high, and in the paleo-low, make the trajectory crossing the oil-zone and then keep it in the lower.

  16. The OML-SprayDrift model for predicting pesticide drift and deposition from ground boom sprayers

    DEFF Research Database (Denmark)

    Løfstrøm, Per; Bruus, Marianne; Andersen, Helle Vibeke

    2013-01-01

    at increasing distances. The vertical concentration profile downwind has a maximum just above the ground in our observations and calculations. The model accounts for the meteorological conditions, droplet ejection velocity and size spectrum. Model validation led to an R2 value of 0.78, and 91% of the calculated......In order to predict the exposure of hedgerows and other neighboring biotopes to pesticides from field-spray applications, an existing Gaussian atmospheric dispersion and deposition model was developed to model the changes in droplet size due to evaporation affecting the deposition velocity....... The Gaussian tilting plume principle was applied inside the stayed track. The model was developed on one set of field experiments using a flat-fan nozzle and validated against another set of field experiments using an air-induction nozzle. The vertical spray-drift profile was measured using hair curlers...

  17. Multi-model mean nitrogen and sulfur deposition from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP): evaluation historical and projected changes

    OpenAIRE

    J.-F. Lamarque; Dentener, F.; Mcconnell, J.; C.-U. Ro; M. Shaw; Vet, R.; D. Bergmann; Cameron-Smith, P.; Doherty, R.; Faluvegi, G.; Ghan, S. J.; B. Josse; Lee, Y. H.; I. A. MacKenzie; Plummer, D.

    2013-01-01

    We present multi-model global datasets of nitrogen and sulfate deposition covering time periods from 1850 to 2100, calculated within the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). The computed deposition fluxes are compared to surface wet deposition and ice-core measurements. We use a new dataset of wet deposition for 2000–2002 based on critical assessment of the quality of existing regional network data. We show that for present-day (year 2000 ACCMIP time-slice...

  18. Multi-model mean nitrogen and sulfur deposition from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP): evaluation of historical and projected future changes

    OpenAIRE

    Lamarque, J.-F.; Dentener, F.; Mcconnell, J.; Ro, C.-U.; M. Shaw; Vet, R.; D. Bergmann; Cameron-Smith, P.; Dalsoren, S.; Doherty, R.; Faluvegi, G.; Ghan, S. J.; B. Josse; Lee, Y. H.; I. A. MacKenzie

    2013-01-01

    We present multi-model global datasets of nitrogen and sulfate deposition covering time periods from 1850 to 2100, calculated within the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). The computed deposition fluxes are compared to surface wet deposition and ice core measurements. We use a new dataset of wet deposition for 2000–2002 based on critical assessment of the quality of existing regional network data. We show that for present day (year 2000...

  19. Inkjet-based deposition of polymer thin films enabled by a lubrication model incorporating nano-scale parasitics

    Science.gov (United States)

    Singhal, Shrawan; Meissl, Mario J.; Bonnecaze, Roger T.; Sreenivasan, S. V.

    2013-09-01

    Thin film lubrication theory has been widely used to model multi-scale fluid phenomena. Variations of the same have also found application in fluid-based manufacturing process steps for micro- and nano-scale devices over large areas where a natural disparity in length scales exists. Here, a novel inkjet material deposition approach has been enabled by an enhanced thin film lubrication theory that accounts for nano-scale substrate parasitics. This approach includes fluid interactions with a thin flexible superstrate towards a new process called Jet and Coat of Thin-films (JCT). Numerical solutions of the model have been verified, and also validated against controlled experiments of polymer film deposition with good agreement. Understanding gleaned from the experimentally validated model has then been used to facilitate JCT process synthesis resulting in substantial reduction in the influence of parasitics and a concomitant improvement in the film thickness uniformity. Polymer films ranging from 20 to 500 nm mean thickness have been demonstrated with standard deviation of less than 2% of the mean film thickness. The JCT process offers advantages over spin coating which is not compatible with roll-to-roll processing and large area processing for displays. It also improves over techniques such as knife edge coating, slot die coating, as they are limited in the range of thicknesses of films that can be deposited without compromising uniformity.

  20. Evaluation of DUSTRAN Software System for Modeling Chloride Deposition on Steel Canisters

    Energy Technology Data Exchange (ETDEWEB)

    Tran, Tracy T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Jensen, Philip J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Fritz, Brad G. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rutz, Frederick C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Devanathan, Ram [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-07-29

    The degradation of steel by stress corrosion cracking (SCC) when exposed to atmospheric conditions for decades is a significant challenge in the fossil fuel and nuclear industries. SCC can occur when corrosive contaminants such as chlorides are deposited on a susceptible material in a tensile stress state. The Nuclear Regulatory Commission has identified chloride-induced SCC as a potential cause for concern in stainless steel used nuclear fuel (UNF) canisters in dry storage. The modeling of contaminant deposition is the first step in predictive multiscale modeling of SCC that is essential to develop mitigation strategies, prioritize inspection, and ensure the integrity and performance of canisters, pipelines, and structural materials. A multiscale simulation approach can be developed to determine the likelihood that a canister would undergo SCC in a certain period of time. This study investigates the potential of DUSTRAN, a dust dispersion modeling system developed by Pacific Northwest National Laboratory, to model the deposition of chloride contaminants from sea salt aerosols on a steel canister. Results from DUSTRAN simulations run with historical meteorological data were compared against measured chloride data at a coastal site in Maine. DUSTRAN’s CALPUFF model tended to simulate concentrations higher than those measured; however, the closest estimations were within the same order of magnitude as the measured values. The decrease in discrepancies between measured and simulated values as the level of abstraction in wind speed decreased suggest that the model is very sensitive to wind speed. However, the influence of other parameters such as the distinction between open-ocean and surf-zone sources needs to be explored further. Deposition values predicted by the DUSTRAN system were not in agreement with concentration values and suggest that the deposition calculations may not fully represent physical processes. Overall, results indicate that with parameter

  1. Modeling of Ammonia Dry Deposition to a Pocosin Landscape Downwind of a Large Poultry Facility

    Science.gov (United States)

    A semi-empirical bi-directional flux modeling approach is used to estimate NH3 air concentrations and dry deposition fluxes to a portion of the Pocosin Lakes National Wildlife Refuge (PLNWR) downwind of a large poultry facility. Meteorological patterns at PLNWR are such that som...

  2. Comparisons of measured and modelled ozone deposition to forests in northern Europe

    DEFF Research Database (Denmark)

    Touvinen, J. P.; Simpson, D.; Mikkelsen, Teis Nørgaard

    2001-01-01

    The performance of a new dry deposition module, developedfor the European-scale mapping and modelling of ozone flux to vegetation, was tested against micrometeorological ozone and water vapour flux measurements. The measurement data are for twoconiferous (Scots pine in Finland, Norway spruce in D...

  3. Modeling of Ammonia Dry Deposition to a Pocosin Landscape Downwind of a Large Poultry Facility

    Science.gov (United States)

    A semi-empirical bi-directional flux modeling approach is used to estimate NH3 air concentrations and dry deposition fluxes to a portion of the Pocosin Lakes National Wildlife Refuge (PLNWR) downwind of a large poultry facility. Meteorological patterns at PLNWR are such that som...

  4. Distribution and Orientation of Carbon Fibers in Polylactic Acid Parts Produced by Fused Deposition Modeling

    DEFF Research Database (Denmark)

    Hofstätter, Thomas; W. Gutmann, Ingomar; Koch, Thomas

    2016-01-01

    The aim of this paper is the understanding of the fiber orientation by investigations in respect to the inner configuration of a polylactic acid matrix reinforced with short carbon fibers after a fused deposition modeling extrusion process. The final parts were analyzed by X-ray, tomography, and ...

  5. Modelling the impact of climate change and atmospheric N deposition on French forests biodiversity.

    Science.gov (United States)

    Rizzetto, Simon; Belyazid, Salim; Gégout, Jean-Claude; Nicolas, Manuel; Alard, Didier; Corcket, Emmanuel; Gaudio, Noémie; Sverdrup, Harald; Probst, Anne

    2016-06-01

    A dynamic coupled biogeochemical-ecological model was used to simulate the effects of nitrogen deposition and climate change on plant communities at three forest sites in France. The three sites had different forest covers (sessile oak, Norway spruce and silver fir), three nitrogen loads ranging from relatively low to high, different climatic regions and different soil types. Both the availability of vegetation time series and the environmental niches of the understory species allowed to evaluate the model for predicting the composition of the three plant communities. The calibration of the environmental niches was successful, with a model performance consistently reasonably high throughout the three sites. The model simulations of two climatic and two deposition scenarios showed that climate change may entirely compromise the eventual recovery from eutrophication of the simulated plant communities in response to the reductions in nitrogen deposition. The interplay between climate and deposition was strongly governed by site characteristics and histories in the long term, while forest management remained the main driver of change in the short term.

  6. Modeling Mechanism and Growth Reactions for New Nanofabrication Processes by Atomic Layer Deposition.

    Science.gov (United States)

    Elliott, Simon D; Dey, Gangotri; Maimaiti, Yasheng; Ablat, Hayrensa; Filatova, Ekaterina A; Fomengia, Glen N

    2016-07-01

    Recent progress in the simulation of the chemistry of atomic layer deposition (ALD) is presented for technologically important materials such as alumina, silica, and copper metal. Self-limiting chemisorption of precursors onto substrates is studied using density functional theory so as to determine reaction pathways and aid process development. The main challenges for the future of ALD modeling are outlined.

  7. The interconnection of wet and dry deposition and the alteration of deposition budgets due to incorporation of new process understanding in regional models

    Science.gov (United States)

    Dennis, R. L.; Bash, J. O.; Foley, K. M.; Gilliam, R.; Pinder, R. W.

    2013-12-01

    Deposition is affected by the chemical and physical processes represented in the regional models as well as source strength. The overall production and loss budget (wet and dry deposition) is dynamically connected and adjusts internally to changes in process representation. In addition, the scrubbing of pollutants from the atmosphere by precipitation is one of several processes that remove pollutants, creating a coupling with the atmospheric aqueous and gas phase chemistry that can influence wet deposition rates in a nonlinear manner. We explore through model sensitivities with the regional Community Multiscale Air Quality (CMAQ) model the influence on wet and dry deposition, and the overall continental nitrogen budget, of changes in three process representations in the model: (1) incorporation of lightning generated NO, (2) improved representation of convective precipitation, and (3) replacement of the typical unidirectional dry deposition of NH3 with a state of the science representation of NH3 bi-directional air-surface exchange. Results of the sensitivity studies will be presented. (1) Incorporation of lightning generated NO significantly reduces a negative bias in summer wet nitrate deposition, but is sensitive to the choice of convective parameterization. (2) Use of a less active trigger of convective precipitation in the WRF meteorological model to reduce summertime precipitation over prediction bias reduces the generation of NO from lightning. It also reduces the wet deposition of nitrate and increases the dry deposition of oxidized nitrogen, as well as changing (reducing) the surface level exposure to ozone. Improvements in the convective precipitation processes also result in more non-precipitating clouds leading to an increase in SO4 production through the aqueous pathway resulting in improvements in summertime SO4 ambient aerosol estimates.(3) Incorporation of state of the science ammonia bi-directional air surface exchange affects both the dry

  8. Modeling of the deposition of Ni and Pd on Mo(1 1 0)

    Energy Technology Data Exchange (ETDEWEB)

    Canzian, Adrian [Grupo de Caracterizacion y Modelacion de Materiales, UTN, FRGP, H. Yrigoyen 288, (B1617FRP) Gral. Pacheco (Argentina); Mosca, Hugo [Grupo de Caracterizacion y Modelacion de Materiales, UTN, FRGP, H. Yrigoyen 288, (B1617FRP) Gral. Pacheco (Argentina); Comision Nacional de Energia Atomica, U.A. Fisica, Av. Gral Paz 1499, (B1650KNA) San Martin (Argentina); Bozzolo, Guillermo [NASA Glenn Research Center, Cleveland, OH 44135 (United States); Ohio Aerospace Institute, 22800 Cedar Point Road, Cleveland, OH 44142 (United States)], E-mail: Guillermo.H.Bozzolo@grc.nasa.gov

    2007-10-31

    Recent experimental work on the deposition of fcc metals on a bcc substrate motivates this atomistic modeling analysis of Ni and Pd deposition on Mo(1 1 0). A detailed atom-by-atom analysis of the early stages of growth, focusing on the formation of surface alloys and 3D islands is presented, identifying the interactions leading to each type of behavior. Further analysis describes the growth pattern as a function of coverage. Temperature effects are studied via Monte Carlo simulations using the Bozzolo-Ferrante-Smith (BFS) method for alloys for the energetics.

  9. Mathematical and numerical model of directional solidification including initial and terminal transients of the process

    Directory of Open Access Journals (Sweden)

    W. Kapturkiewicz

    2008-12-01

    Full Text Available The, developed in this study, simple model and numerical solution of diffusion growth of the solid phase under the conditions of directional solidification allow for the effect of constituent diffusion in both liquid and solid phase and assume the process run in which (like in reality the preset parameter is the velocity of sample (pulling velocity at a preset temperature gradient. The solid/liquid interface velocity is not the process parameter (like it is in numerous other solutions proposed so far but a function of this process. The effect of convection outside the diffusion layer has been included in mass balance under the assumption that in the zone of convection the mixing is complete. The above assumptions enabled solving the kinetics of growth of the solid phase (along with the diffusion field in solid and liquid phase under the conditions of diffusion well reflecting the process run starting with the initial transient state, going through the steady state period in central part of the casting, and ending in a terminal transient state. In the numerical solution obtained by the finite difference method with variable grid dimensions, the error of the mass control balance over the whole process range was 1 - 2 %.

  10. Model reduction and temperature uniformity control for rapid thermal chemical vapor deposition reactors

    Science.gov (United States)

    Theodoropoulou, Artemis-Georgia

    The consideration of Rapid Thermal Processing (RTP) in semiconductor manufacturing has recently been increasing. As a result, control of RTP systems has become of great importance since it is expected to help in addressing uniformity problems that, so far, have been obstructing the acceptance of the method. The spatial distribution appearing in RTP models necessitates the use of model reduction in order to obtain models of a size suitable for use in control algorithms. This dissertation addresses model reduction as well as control issues for RTP systems. A model of a three-zone Rapid Thermal Chemical Vapor Deposition (RTCVD) system is developed to study the effects of spatial wafer temperature patterns on polysilicon deposition uniformity. A sequence of simulated runs is performed, varying the lamp power profiles so that different wafer temperature modes are excited. The dominant spatial wafer thermal modes are extracted via Proper Orthogonal Decomposition and subsequently used as a set of trial functions to represent both the wafer temperature and deposition thickness. A collocation formulation of Galerkin's method is used to discretize the original modeling equations, giving a low-order model which loses little of the original, high-order model's fidelity. We make use of the excellent predictive capabilities of the reduced model to optimize power inputs to the lamp banks to achieve a desired polysilicon deposition thickness at the end of a run with minimal deposition spatial nonuniformity. Since the results illustrate that the optimization procedure benefits from the use of the reduced-order model, we further utilize the reduced order model for real time Model Based Control. The feedback controller is designed using the Internal Model Control (IMC) structure especially modified to handle systems described by ordinary differential and algebraic equations. The IMC controller is obtained using optimal control theory on singular arcs extended for multi input systems

  11. Numerical modeling study of the momentum deposition of small amplitude gravity waves in the thermosphere

    Directory of Open Access Journals (Sweden)

    X. Liu

    2013-01-01

    Full Text Available We study the momentum deposition in the thermosphere from the dissipation of small amplitude gravity waves (GWs within a wave packet using a fully nonlinear two-dimensional compressible numerical model. The model solves the nonlinear propagation and dissipation of a GW packet from the stratosphere into the thermosphere with realistic molecular viscosity and thermal diffusivity for various Prandtl numbers. The numerical simulations are performed for GW packets with initial vertical wavelengths (λz ranging from 5 to 50 km. We show that λz decreases in time as a GW packet dissipates in the thermosphere, in agreement with the ray trace results of Vadas and Fritts (2005 (VF05. We also find good agreement for the peak height of the momentum flux (zdiss between our simulations and VF05 for GWs with initial λz ≤ 2π H in an isothermal, windless background, where H is the density scale height. We also confirm that zdiss increases with increasing Prandtl number. We include eddy diffusion in the model, and find that the momentum deposition occurs at lower altitudes and has two separate peaks for GW packets with small initial λz. We also simulate GW packets in a non-isothermal atmosphere. The net λz profile is a competition between its decrease from viscosity and its increase from the increasing background temperature. We find that the wave packet disperses more in the non-isothermal atmosphere, and causes changes to the momentum flux and λz spectra at both early and late times for GW packets with initial λz ≥ 10 km. These effects are caused by the increase in T in the thermosphere, and the decrease in T near the mesopause.

  12. TSP, PM depositions, and trace elements in the vicinity of a cement plant and their source apportionments using chemical mass balance model in Izmir, Turkey.

    Science.gov (United States)

    Yatkin, Sinan; Bayram, Abdurrahman

    2010-08-01

    Total suspended particles mass concentrations (TSP) and bulk depositions of particulate matter (PM depositions) were measured around a cement plant located in the multi-impacted area to assess the affect of the plant on the ambient air in the vicinity in Izmir, Turkey. TSP samples were collected five times a month whereas PM depositions were sampled monthly at four sites between August 2003 and January 2004. The concentrations of Al, Ca, Cd, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, V, and Zn in TSP and PM depositions (except Cu) were reported. Chemical mass balance (CMB) receptor model with local source profiles was run in order to calculate the source contributions of the PM sources to the concentrations of TSP, PM depositions, and trace elements. Traffic was found to be the major contributor to TSP whereas PM depositions dominantly result from area sources including several stone quarries, concrete plants, lime kilns, and asphalt plants in the region. CMB model results indicate that the cement plant is a significant contributor to TSP, PM depositions, and trace elements, particularly Cd.

  13. Experimental Study and Mathematical Modeling of Asphaltene Deposition Mechanism in Core Samples

    Directory of Open Access Journals (Sweden)

    Jafari Behbahani T.

    2015-11-01

    Full Text Available In this work, experimental studies were conducted to determine the effect of asphaltene deposition on the permeability reduction and porosity reduction of carbonate, sandstone and dolomite rock samples using an Iranian bottom hole live oil sample which is close to reservoir conditions, whereas in the majority of previous work, a mixture of recombined oil (a mixture of dead oil and associated gas was injected into a core sample which is far from reservoir conditions. The effect of the oil injection rate on asphaltene deposition and permeability reduction was studied. The experimental results showed that an increase in the oil injection flow rate can result in an increase in asphaltene deposition and permeability reduction. Also, it can be observed that at lower injection flow rates, a monotonic decrease in permeability of the rock samples can be attained upon increasing the injection flow rate, while at higher injection rates, after a decrease in rock permeability, an increasing trend is observed before a steady-state condition can be reached. The experimental results also showed that the rock type can affect the amount of asphaltene deposition, and the asphaltene deposition has different mechanisms in sandstone and carbonate core samples. It can be seen that the adsorption and plugging mechanisms have a more important role in asphaltene deposition in carbonate core samples than sandstone core samples. From the results, it can be observed that the pore volumes of the injected crude oil are higher for sandstone cores compared with the carbonate cores. Also, it can be inferred that three depositional types may take place during the crude oil injection, i.e., continuous deposition for low-permeability cores, slow, steady plugging for high-permeability cores and steady deposition for medium-permeability cores. It can be seen from the experimental results that damage to the core samples was found to increase when the production pressures were

  14. Reviews and new metallogenic models of mineral deposits in South China: An introduction

    Science.gov (United States)

    Hu, Rui-Zhong; Chen, Wei Terry; Xu, De-Ru; Zhou, Mei-Fu

    2017-04-01

    In South China, the Yangtze and Cathaysia blocks were welded together along the Jiangnan Fold Belt during Neoproterozoic time (∼830 Ma). Large-scale mineralization in these two blocks occurred from Proterozoic to Cenozoic, making the region one of the most important polymetallic metallogenic provinces in the world. Of particular importance are world-class deposits of iron-oxide copper gold (IOCG), sediment-hosted Mn-P-Al-(Ni, Mo, PGE), syenite-carbonatite-related REE, felsic intrusion-related Sn-W-Mo-Cu-Fe-Pb-Zn, mafic intrusion-related V-Ti-Fe and Cu-Ni-PGE and low-temperature hydrothermal Pb, Zn, Au, and Sb (Fig. 1). In addition, the Ta-Nb, Hg, As, Tl and U deposits in South China are among the world largest of these kinds. Because of these deposits, South China has been a focus of researches for many years. Publications before 2005 were mostly restricted in Chinese. In the past decade, some case studies on some world-class deposits in South China are available in international journals. These recent studies have advanced our understanding of their mode of formation. However, some important issues regarding the timing, tectonic setting and mechanisms of metal concentration still remain poorly understood. This special issue brings together some of the latest information on these topics, including major review papers on specific types of mineralization and several papers dealing with some specific deposits in the region. We anticipate that this issue will generate more interests in the studies of mineral deposits in South China. In this introduction, we outline the tectonic framework and associated deposits.

  15. A COMPARISON OF THE TENSILE STRENGTH OF PLASTIC PARTS PRODUCED BY A FUSED DEPOSITION MODELING DEVICE

    Directory of Open Access Journals (Sweden)

    Juraj Beniak

    2015-12-01

    Full Text Available Rapid Prototyping systems are nowadays increasingly used in many areas of industry, not only for producing design models but also for producing parts for final use. We need to know the properties of these parts. When we talk about the Fused Deposition Modeling (FDM technique and FDM devices, there are many possible settings for devices and models which could influence the properties of a final part. In addition, devices based on the same principle may use different operational software for calculating the tool path, and this may have a major impact. The aim of this paper is to show the tensile strength value for parts produced from different materials on the Fused Deposition Modeling device when the horizontal orientation of the specimens is changed.

  16. Experimental investigation of particle deposition mechanisms in the lung acinus using microfluidic models.

    Science.gov (United States)

    Fishler, Rami; Mulligan, Molly; Dubowski, Yael; Sznitman, Josue; Sznitman Lab-department of Biomedical Engineering Team; Dubowski Lab-faculty of Civil; Environmental Engineering Team

    2014-11-01

    In order to experimentally investigate particle deposition mechanisms in the deep alveolated regions of the lungs, we have developed a novel microfluidic device mimicking breathing acinar flow conditions directly at the physiological scale. The model features an anatomically-inspired acinar geometry with five dichotomously branching airway generations lined with periodically expanding and contracting alveoli. Deposition patterns of airborne polystyrene microspheres (spanning 0.1 μm to 2 μm in diameter) inside the airway tree network compare well with CFD simulations and reveal the roles of gravity and Brownian motion on particle deposition sites. Furthermore, measured trajectories of incense particles (0.1-1 μm) inside the breathing device show a critical role for Brownian diffusion in determining the fate of inhaled sub-micron particles by enabling particles to cross from the acinar ducts into alveolar cavities, especially during the short time lag between inhalation and exhalation phases.

  17. STUDY OF DYNAMIC MECHANICAL PROPERTIES OF FUSED DEPOSITION MODELLING PROCESSED ULTEM MATERIAL

    OpenAIRE

    Adhiyamaan Arivazhagan; Ammar Saleem; S. H. Masood; Mostafa Nikzad; K. A. JAGADEESH

    2014-01-01

    Fused Deposition Modelling (FDM), a renowned Rapid Prototyping (RP) process, has been successfully implemented in several industries to fabricate concept models and prototypes for rapid manufacturing. This study furnishes terse notes about the material damping properties of FDM made ULTEM samples considering the effect of FDM process parameters. Dynamic Mechanical Analysis (DMA) is carried out using DMA 2980 equipment to study the dynamic response of the FDM material subjected to single canti...

  18. Reactive flow models of the Anarraaq Zn-Pb-Ag deposit, Red Dog district, Alaska

    Science.gov (United States)

    Schardt, C.; Garven, G.; Kelley, K.D.; Leach, D.L.

    2008-01-01

    The Red Dog ore deposit district in the Brooks Range of northern Alaska is host to several high-grade, shale-hosted Zn + Pb deposits. Due to the complex history and deformation of these ore deposits, the geological and hydrological conditions at the time of formation are poorly understood. Using geological observations and fluid inclusion data as constraints, numerical heat and fluid flow simulations of the Anarraaq ore deposit environment and coupled reactive flow simulations of a section of the ore body were conducted to gain more insight into the conditions of ore body formation. Results suggest that the ore body and associated base metal zonation may have formed by the mixing of oxidized, saline, metal-bearing hydrothermal fluids (source. Forward modeling results also predict the distribution of pyrite and quartz in agreement with field observations and indicate a reaction front moving from the initial mixing interface into the radiolarite rocks. Heuristic mass calculations suggest that ore grades and base metal accumulation comparable to those found in the field (18% Zn, 5% Pb) are predicted to be reached after about 0.3 My for initial conditions (30 ppm Zn, 3 ppm Pb; 20% deposition efficiency). ?? Springer-Verlag 2008.

  19. Reactive flow models of the Anarraaq Zn-Pb-Ag deposit, Red Dog district, Alaska

    Science.gov (United States)

    Schardt, Christian; Garven, Grant; Kelley, Karen D.; Leach, David L.

    2008-09-01

    The Red Dog ore deposit district in the Brooks Range of northern Alaska is host to several high-grade, shale-hosted Zn + Pb deposits. Due to the complex history and deformation of these ore deposits, the geological and hydrological conditions at the time of formation are poorly understood. Using geological observations and fluid inclusion data as constraints, numerical heat and fluid flow simulations of the Anarraaq ore deposit environment and coupled reactive flow simulations of a section of the ore body were conducted to gain more insight into the conditions of ore body formation. Results suggest that the ore body and associated base metal zonation may have formed by the mixing of oxidized, saline, metal-bearing hydrothermal fluids (<200°C) with reducing, HS-rich pore fluids within radiolarite-rich host rocks. Sphalerite and galena concentrations and base metal sulfide distribution are primarily controlled by the nature of the pore fluids, i.e., the extent and duration of the HS- source. Forward modeling results also predict the distribution of pyrite and quartz in agreement with field observations and indicate a reaction front moving from the initial mixing interface into the radiolarite rocks. Heuristic mass calculations suggest that ore grades and base metal accumulation comparable to those found in the field (18% Zn, 5% Pb) are predicted to be reached after about 0.3 My for initial conditions (30 ppm Zn, 3 ppm Pb; 20% deposition efficiency).

  20. Modelling anaerobic digestion in an industrial biogas digester: Application of lactate-including ADM1 model (Part II).

    Science.gov (United States)

    Satpathy, Preseela; Biernacki, Piotr; Cypionka, Heribert; Steinigeweg, Sven

    2016-12-05

    A modified Anaerobic Digestion Model No. 1 (ADM1xp) including lactate was applied to a full-scale biogas plant. This model considers monosaccharides to degrade through lactic acid, which further degrades majorly into acetate followed by propionate and butyrate. Experimental data were derived from the previous works in the same laboratory, and the proposed parameters were validated against batch experiments. After successful validation, the biogas plant bearing a fermenter size of 7 dam(3) and operated with food waste and cattle manure was simulated. The biogas production and methane content were reliably simulated, and a good fit could be obtained against the experimental data with an average difference of less than 1%. When compared to the original ADM1 model, the performance of the lactate-incorporated model was found to be improved. Inclusion of lactate as a parameter in the ADM1xp model is recommended for an increased sensitivity and enhanced prediction principally for systems dealing with high carbohydrate and lactate loads.

  1. Aerosol deposition in the respiratory tract of the rat. Experimental results and mathematical modelling.

    Science.gov (United States)

    Halík, J; Lenger, V; Kliment, V; Voboril, P

    1980-01-01

    The deposition fraction in the respiratory tract of rats were determined experimentally using aerosol 85Srl2 in saline. The dimensions of the particles [MMD 1.63 /+- /+- 0.47 micron, Sg = 1.29] were measured by two independent methods. Rats weighing 200 g were exposed for a period of 60 min [t] in the inhalation apparatus PIANO 3 with a generator according to Lauterbach. From the volume activity [A] of 3 - 11 Bq/litre air a depot of 35-129 kBq was formed in the animals. Spirometric values measured with a modified Jäger ergospirometer were: V = 178.8 /+- 42.9 ml, VT = = 1.18 /+- 0.24 ml. f = 163.1 /+- 28.1 cycles/min. The total amount inhaled [Q] was calculated [Q = V.A.t], the deposited amount [D] was measured by a whole body counter. THe mean deposition fraction was 0.570 /+- 0.052 and was not related either to exposure time or to aerosol activity. In view of the broad validity of the conclusions for aerosols of round-shaped particles, the mean deposition fraction was determined with the help of a mathematical model according to Landahl. The theoretical values amounted to 0.609 [from 0.522 to 0.686]. The good agreement between the mean deposition fractions estimated by two independent methods indicates that on the basis of the probability theory and dimensional analysis, the mathematical model can also be used in humans for simulation deposition as one of the basis foundations for a quantitative evaluation of inhalation risk from any kind of aerosol.

  2. Numerical modelling of seawater intrusion in Shenzhen (China) using a 3D densitydependent model including tidal effects

    Indian Academy of Sciences (India)

    Wei Lu; Qingchun Yang; Jordi D Martín; Ricardo Juncosa

    2013-04-01

    During the 1990s, groundwater overexploitation has resulted in seawater intrusion in the coastal aquifer of the Shenzhen city, China. Although water supply facilities have been improved and alleviated seawater intrusion in recent years, groundwater overexploitation is still of great concern in some local areas. In this work we present a three-dimensional density-dependent numerical model developed with the FEFLOW code, which is aimed at simulating the extent of seawater intrusion while including tidal effects and different groundwater pumping scenarios. Model calibration, using waterheads and reported chloride concentration, has been performed based on the data from 14 boreholes, which were monitored from May 2008 to December 2009. A fairly good fitness between the observed and computed values was obtained by a manual trial-and-error method. Model prediction has been carried out forward 3 years with the calibrated model taking into account high, medium and low tide levels and different groundwater exploitation schemes. The model results show that tide-induced seawater intrusion significantly affects the groundwater levels and concentrations near the estuarine of the Dasha river, which implies that an important hydraulic connection exists between this river and groundwater, even considering that some anti-seepage measures were taken in the river bed. Two pumping scenarios were considered in the calibrated model in order to predict the future changes in the water levels and chloride concentration. The numerical results reveal a decreased tendency of seawater intrusion if groundwater exploitation does not reach an upper bound of about 1.32 × 104 m3/d. The model results provide also insights for controlling seawater intrusion in such coastal aquifer systems.

  3. A Model-Based Analysis of Nitrogen Deposition: Effects on Forest Carbon Sequestration

    Science.gov (United States)

    Dezi, S.; Medlyn, B. E.; Tonon, G.; Magnani, F.

    2009-04-01

    Over the last 150 years nitrogen deposition has increased, especially in the northern hemisphere, mainly due to the use of fossil fuels, deforestation and agricultural practices. Although the impact of this increase on the terrestrial carbon cycle is still uncertain, it is likely that this large perturbation of the global nitrogen cycle will have important effects on carbon cycling, particularly via impacts on forest carbon storage. In the present work we investigated qualitatively the overall response of forest carbon sequestration to nitrogen deposition, and the relative importance of different mechanisms that bring about this response. For this purpose we used the G'DAY forest carbon-nitrogen cycling model (Comins and McMurtrie 1993), introducing some new assumptions which focus on the effect of nitrogen deposition. Specifically the new assumptions are: (i) foliar litterfall and specific leaf area (SLA) are functions of leaf nitrogen concentration; (ii) belowground C allocation is a function of net primary production (NPP); (iii) forest canopies can directly take up nitrogen; (iv) management of forests occurs; (v) leaching occurs only for nitrate nitrogen. We investigated the effect of each assumption on net ecosystem production (NEP), with a step increase in nitrogen deposition from a steady state of 0.4 gN m-2 yr-1 to 2 gN m-2 yr-1, and then running the old and new model versions for different nitrogen deposition levels. Our analysis showed that nitrogen deposition can have a large effect on forest carbon storage at ecosystem level. In particular the effect of the assumptions (ii), (iii) and (iv) seem to be of greater importance, giving rise to a markedly higher level of forest carbon sequestration than in their absence. On the contrary assumptions (i) and (v) seem not to have any particular effect on the NEP simulated. Finally, running the models for different levels of nitrogen deposition showed that estimating forest carbon exchange without taking into

  4. Erosion Modeling of the Pyroclastic Flow Deposits From the 1991 Eruption of Mt. Pinatubo, Philippines

    Science.gov (United States)

    Daag, A. S.; Daag, A. S.

    2001-12-01

    The June 15-16 1991 eruption of Mt. Pinatubo had emplaced approximately 6km3 of sand-size pumiceous pyroclastic flow deposits that affected 8 major watersheds surrounding the volcano. These deposits attained thickness of about 200m on deep channels and remained unconsolidated, when it rains they are the main source of lahars for several years. This study focuses on the eastern watersheds namely, Sacobia-Pasig-Abacan, because it posed the greatest risk due to lahar flow hazards being the highly developed and the most populated. In order to study and monitor the erosions of the pyroclastic flow deposits, several methods were used. Yearly direct quantification of erosions were made using multi-temporal Digital Elevation Models (DEMs), aerial photos and satellite imageries. GIS and image processing software were used to compute erosion volumes and in determining geomorphic changes. To understand the different parameters affecting the erosiveness of in-situ deposits, a portable rainfall simulator was used. Regression modeling was utilized to determine the effect of the different parameters in the erosion such as, slope, rainfall intensity, grain size and shear strength of the deposits. Yearly rainfall events that yielded lahars were all analyzed to get the yearly deviations and relationships of the rainfall-lahar triggering thresholds. A physically based distributed simulation model was developed using PCRaster program that simulates the catchments' response on a certain rainfall and predicts the lahar hydrographs. This model utilizes DEM and other catchment's physical parameters. The flow predicts the volumetric ratio of