TLM modeling and system identification of optimized antenna structures
Directory of Open Access Journals (Sweden)
N. Fichtner
2008-05-01
Full Text Available The transmission line matrix (TLM method in conjunction with the genetic algorithm (GA is presented for the bandwidth optimization of a low profile patch antenna. The optimization routine is supplemented by a system identification (SI procedure. By the SI the model parameters of the structure are estimated which is used for a reduction of the total TLM simulation time. The SI utilizes a new stability criterion of the physical poles for the parameter extraction.
Groundwater Pollution Source Identification using Linked ANN-Optimization Model
Ayaz, Md; Srivastava, Rajesh; Jain, Ashu
2014-05-01
Groundwater is the principal source of drinking water in several parts of the world. Contamination of groundwater has become a serious health and environmental problem today. Human activities including industrial and agricultural activities are generally responsible for this contamination. Identification of groundwater pollution source is a major step in groundwater pollution remediation. Complete knowledge of pollution source in terms of its source characteristics is essential to adopt an effective remediation strategy. Groundwater pollution source is said to be identified completely when the source characteristics - location, strength and release period - are known. Identification of unknown groundwater pollution source is an ill-posed inverse problem. It becomes more difficult for real field conditions, when the lag time between the first reading at observation well and the time at which the source becomes active is not known. We developed a linked ANN-Optimization model for complete identification of an unknown groundwater pollution source. The model comprises two parts- an optimization model and an ANN model. Decision variables of linked ANN-Optimization model contain source location and release period of pollution source. An objective function is formulated using the spatial and temporal data of observed and simulated concentrations, and then minimized to identify the pollution source parameters. In the formulation of the objective function, we require the lag time which is not known. An ANN model with one hidden layer is trained using Levenberg-Marquardt algorithm to find the lag time. Different combinations of source locations and release periods are used as inputs and lag time is obtained as the output. Performance of the proposed model is evaluated for two and three dimensional case with error-free and erroneous data. Erroneous data was generated by adding uniformly distributed random error (error level 0-10%) to the analytically computed concentration
Source term identification in atmospheric modelling via sparse optimization
Adam, Lukas; Branda, Martin; Hamburger, Thomas
2015-04-01
Inverse modelling plays an important role in identifying the amount of harmful substances released into atmosphere during major incidents such as power plant accidents or volcano eruptions. Another possible application of inverse modelling lies in the monitoring the CO2 emission limits where only observations at certain places are available and the task is to estimate the total releases at given locations. This gives rise to minimizing the discrepancy between the observations and the model predictions. There are two standard ways of solving such problems. In the first one, this discrepancy is regularized by adding additional terms. Such terms may include Tikhonov regularization, distance from a priori information or a smoothing term. The resulting, usually quadratic, problem is then solved via standard optimization solvers. The second approach assumes that the error term has a (normal) distribution and makes use of Bayesian modelling to identify the source term. Instead of following the above-mentioned approaches, we utilize techniques from the field of compressive sensing. Such techniques look for a sparsest solution (solution with the smallest number of nonzeros) of a linear system, where a maximal allowed error term may be added to this system. Even though this field is a developed one with many possible solution techniques, most of them do not consider even the simplest constraints which are naturally present in atmospheric modelling. One of such examples is the nonnegativity of release amounts. We believe that the concept of a sparse solution is natural in both problems of identification of the source location and of the time process of the source release. In the first case, it is usually assumed that there are only few release points and the task is to find them. In the second case, the time window is usually much longer than the duration of the actual release. In both cases, the optimal solution should contain a large amount of zeros, giving rise to the
Directory of Open Access Journals (Sweden)
Tae-Hyoung Kim
2017-01-01
Full Text Available This paper studies the metaheuristic optimizer-based direct identification of a multiple-mode system consisting of a finite set of linear regression representations of subsystems. To this end, the concept of a multiple-mode linear regression model is first introduced, and its identification issues are established. A method for reducing the identification problem for multiple-mode models to an optimization problem is also described in detail. Then, to overcome the difficulties that arise because the formulated optimization problem is inherently ill-conditioned and nonconvex, the cyclic-network-topology-based constrained particle swarm optimizer (CNT-CPSO is introduced, and a concrete procedure for the CNT-CPSO-based identification methodology is developed. This scheme requires no prior knowledge of the mode transitions between subsystems and, unlike some conventional methods, can handle a large amount of data without difficulty during the identification process. This is one of the distinguishing features of the proposed method. The paper also considers an extension of the CNT-CPSO-based identification scheme that makes it possible to simultaneously obtain both the optimal parameters of the multiple submodels and a certain decision parameter involved in the mode transition criteria. Finally, an experimental setup using a DC motor system is established to demonstrate the practical usability of the proposed metaheuristic optimizer-based identification scheme for developing a multiple-mode linear regression model.
Optimal experiment design for identification of grey-box models
DEFF Research Database (Denmark)
Sadegh, Payman; Melgaard, Henrik; Madsen, Henrik
1994-01-01
Optimal experiment design is investigated for stochastic dynamic systems where the prior partial information about the system is given as a probability distribution function in the system parameters. The concept of information is related to entropy reduction in the system through Lindley's measur...... estimation results in a considerable reduction of the experimental length. Besides, it is established that the physical knowledge of the system enables us to design experiments, with the goal of maximizing information about the physical parameters of interest.......Optimal experiment design is investigated for stochastic dynamic systems where the prior partial information about the system is given as a probability distribution function in the system parameters. The concept of information is related to entropy reduction in the system through Lindley's measure...... of average information, and the relationship between the choice of information related criteria and some estimators (MAP and MLE) is established. A continuous time physical model of the heat dynamics of a building is considered and the results show that performing an optimal experiment corresponding to a MAP...
Chaotic System Identification Based on a Fuzzy Wiener Model with Particle Swarm Optimization
International Nuclear Information System (INIS)
Yong, Li; Ying-Gan, Tang
2010-01-01
A fuzzy Wiener model is proposed to identify chaotic systems. The proposed fuzzy Wiener model consists of two parts, one is a linear dynamic subsystem and the other is a static nonlinear part, which is represented by the Takagi–Sugeno fuzzy model. Identification of chaotic systems is converted to find optimal parameters of the fuzzy Wiener model by minimizing the state error between the original chaotic system and the fuzzy Wiener model. Particle swarm optimization algorithm, a global optimizer, is used to search the optimal parameter of the fuzzy Wiener model. The proposed method can identify the parameters of the linear part and nonlinear part simultaneously. Numerical simulations for Henón and Lozi chaotic system identification show the effectiveness of the proposed method
Optimization of Experimental Model Parameter Identification for Energy Storage Systems
Directory of Open Access Journals (Sweden)
Rosario Morello
2013-09-01
Full Text Available The smart grid approach is envisioned to take advantage of all available modern technologies in transforming the current power system to provide benefits to all stakeholders in the fields of efficient energy utilisation and of wide integration of renewable sources. Energy storage systems could help to solve some issues that stem from renewable energy usage in terms of stabilizing the intermittent energy production, power quality and power peak mitigation. With the integration of energy storage systems into the smart grids, their accurate modeling becomes a necessity, in order to gain robust real-time control on the network, in terms of stability and energy supply forecasting. In this framework, this paper proposes a procedure to identify the values of the battery model parameters in order to best fit experimental data and integrate it, along with models of energy sources and electrical loads, in a complete framework which represents a real time smart grid management system. The proposed method is based on a hybrid optimisation technique, which makes combined use of a stochastic and a deterministic algorithm, with low computational burden and can therefore be repeated over time in order to account for parameter variations due to the battery’s age and usage.
Parameter identification of a BWR nuclear power plant model for use in optimal control
International Nuclear Information System (INIS)
Volf, K.
1976-02-01
The problem being considered is the modeling of a nuclear power plant for the development of an optimal control system of the plant. Current system identification concepts, combining input/output information with a-priori structural information are employed. Two of the known parameter identification methods i.e., a least squares method and a maximum likelihood technique, are studied as ways of parameter identification from measurement data. A low order state variable stochastic model of a BWR nuclear power plant is presented as an application of this approach. The model consists of a deterministic and a noise part. The deterministic part is formed by simplified modeling of the major plant dynamic phenomena. The moise part models the effects of input random disturbances to the deterministic part and additive measurement noise. Most of the model parameters are assumed to be initially unknown. They are identified using measurement data records. A detailed high order digital computer simulation is used to simulate plant dynamic behaviour since it is not conceivable for experimentation of this kind to be performed on the real nuclear power plant. The identification task consists in adapting the performance of the simple model to the data acquired from this plant simulation ensuring the applicability of the techniques to measurement data acquired directly from the plant. (orig.) [de
Optimization of inverse model identification for multi-axial test rig control
Directory of Open Access Journals (Sweden)
Müller Tino
2016-01-01
Full Text Available Laboratory testing of multi-axial fatigue situations improves repeatability and allows a time condensing of tests which can be carried out until component failure, compared to field testing. To achieve realistic and convincing durability results, precise load data reconstruction is necessary. Cross-talk and a high number of degrees of freedom negatively affect the control accuracy. Therefore a multiple input/multiple output (MIMO model of the system, capturing all inherent cross-couplings is identified. In a first step the model order is estimated based on the physical fundamentals of a one channel hydraulic-servo system. Subsequently, the structure of the MIMO model is optimized using correlation of the outputs, to increase control stability and reduce complexity of the parameter optimization. The identification process is successfully applied to the iterative control of a multi-axial suspension rig. The results show accurate control, with increased stability compared to control without structure optimization.
Optimization of an individual re-identification modeling process using biometric features
Energy Technology Data Exchange (ETDEWEB)
Heredia-Langner, Alejandro; Amidan, Brett G.; Matzner, Shari; Jarman, Kristin H.
2014-09-24
We present results from the optimization of a re-identification process using two sets of biometric data obtained from the Civilian American and European Surface Anthropometry Resource Project (CAESAR) database. The datasets contain real measurements of features for 2378 individuals in a standing (43 features) and seated (16 features) position. A genetic algorithm (GA) was used to search a large combinatorial space where different features are available between the probe (seated) and gallery (standing) datasets. Results show that optimized model predictions obtained using less than half of the 43 gallery features and data from roughly 16% of the individuals available produce better re-identification rates than two other approaches that use all the information available.
Directory of Open Access Journals (Sweden)
Zhiqiang GENG
2014-01-01
Full Text Available Output noise is strongly related to input in closed-loop control system, which makes model identification of closed-loop difficult, even unidentified in practice. The forward channel model is chosen to isolate disturbance from the output noise to input, and identified by optimization the dynamic characteristics of the process based on closed-loop operation data. The characteristics parameters of the process, such as dead time and time constant, are calculated and estimated based on the PI/PID controller parameters and closed-loop process input/output data. And those characteristics parameters are adopted to define the search space of the optimization identification algorithm. PSO-SQP optimization algorithm is applied to integrate the global search ability of PSO with the local search ability of SQP to identify the model parameters of forward channel. The validity of proposed method has been verified by the simulation. The practicability is checked with the PI/PID controller parameter turning based on identified forward channel model.
Optimization-Based Inverse Identification of the Parameters of a Concrete Cap Material Model
Král, Petr; Hokeš, Filip; Hušek, Martin; Kala, Jiří; Hradil, Petr
2017-10-01
Issues concerning the advanced numerical analysis of concrete building structures in sophisticated computing systems currently require the involvement of nonlinear mechanics tools. The efforts to design safer, more durable and mainly more economically efficient concrete structures are supported via the use of advanced nonlinear concrete material models and the geometrically nonlinear approach. The application of nonlinear mechanics tools undoubtedly presents another step towards the approximation of the real behaviour of concrete building structures within the framework of computer numerical simulations. However, the success rate of this application depends on having a perfect understanding of the behaviour of the concrete material models used and having a perfect understanding of the used material model parameters meaning. The effective application of nonlinear concrete material models within computer simulations often becomes very problematic because these material models very often contain parameters (material constants) whose values are difficult to obtain. However, getting of the correct values of material parameters is very important to ensure proper function of a concrete material model used. Today, one possibility, which permits successful solution of the mentioned problem, is the use of optimization algorithms for the purpose of the optimization-based inverse material parameter identification. Parameter identification goes hand in hand with experimental investigation while it trying to find parameter values of the used material model so that the resulting data obtained from the computer simulation will best approximate the experimental data. This paper is focused on the optimization-based inverse identification of the parameters of a concrete cap material model which is known under the name the Continuous Surface Cap Model. Within this paper, material parameters of the model are identified on the basis of interaction between nonlinear computer simulations
International Nuclear Information System (INIS)
Harish, V.S.K.V.; Kumar, Arun
2016-01-01
Highlights: • A BES model based on 1st principles is developed and solved numerically. • Parameters of lumped capacitance model are fitted using the proposed optimization routine. • Validations are showed for different types of building construction elements. • Step response excitations for outdoor air temperature and relative humidity are analyzed. - Abstract: Different control techniques together with intelligent building technology (Building Automation Systems) are used to improve energy efficiency of buildings. In almost all control projects, it is crucial to have building energy models with high computational efficiency in order to design and tune the controllers and simulate their performance. In this paper, a set of partial differential equations are formulated accounting for energy flow within the building space. These equations are then solved as conventional finite difference equations using Crank–Nicholson scheme. Such a model of a higher order is regarded as a benchmark model. An optimization algorithm has been developed, depicted through a flowchart, which minimizes the sum squared error between the step responses of the numerical and the optimal model. Optimal model of the construction element is nothing but a RC-network model with the values of Rs and Cs estimated using the non-linear time invariant constrained optimization routine. The model is validated with comparing the step responses with other two RC-network models whose parameter values are selected based on a certain criteria. Validations are showed for different types of building construction elements viz., low, medium and heavy thermal capacity elements. Simulation results show that the optimal model closely follow the step responses of the numerical model as compared to the responses of other two models.
Identification of mutated driver pathways in cancer using a multi-objective optimization model.
Zheng, Chun-Hou; Yang, Wu; Chong, Yan-Wen; Xia, Jun-Feng
2016-05-01
New-generation high-throughput technologies, including next-generation sequencing technology, have been extensively applied to solve biological problems. As a result, large cancer genomics projects such as the Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium are producing large amount of rich and diverse data in multiple cancer types. The identification of mutated driver genes and driver pathways from these data is a significant challenge. Genome aberrations in cancer cells can be divided into two types: random 'passenger mutation' and functional 'driver mutation'. In this paper, we introduced a Multi-objective Optimization model based on a Genetic Algorithm (MOGA) to solve the maximum weight submatrix problem, which can be employed to identify driver genes and driver pathways promoting cancer proliferation. The maximum weight submatrix problem defined to find mutated driver pathways is based on two specific properties, i.e., high coverage and high exclusivity. The multi-objective optimization model can adjust the trade-off between high coverage and high exclusivity. We proposed an integrative model by combining gene expression data and mutation data to improve the performance of the MOGA algorithm in a biological context. Copyright © 2016 Elsevier Ltd. All rights reserved.
Parameters identification of photovoltaic models using an improved JAYA optimization algorithm
International Nuclear Information System (INIS)
Yu, Kunjie; Liang, J.J.; Qu, B.Y.; Chen, Xu; Wang, Heshan
2017-01-01
Highlights: • IJAYA algorithm is proposed to identify the PV model parameters efficiently. • A self-adaptive weight is introduced to purposefully adjust the search process. • Experience-based learning strategy is developed to enhance the population diversity. • Chaotic learning method is proposed to refine the quality of the best solution. • IJAYA features the superior performance in identifying parameters of PV models. - Abstract: Parameters identification of photovoltaic (PV) models based on measured current-voltage characteristic curves is significant for the simulation, evaluation, and control of PV systems. To accurately and reliably identify the parameters of different PV models, an improved JAYA (IJAYA) optimization algorithm is proposed in the paper. In IJAYA, a self-adaptive weight is introduced to adjust the tendency of approaching the best solution and avoiding the worst solution at different search stages, which enables the algorithm to approach the promising area at the early stage and implement the local search at the later stage. Furthermore, an experience-based learning strategy is developed and employed randomly to maintain the population diversity and enhance the exploration ability. A chaotic elite learning method is proposed to refine the quality of the best solution in each generation. The proposed IJAYA is used to solve the parameters identification problems of different PV models, i.e., single diode, double diode, and PV module. Comprehensive experiment results and analyses indicate that IJAYA can obtain a highly competitive performance compared with other state-of-the-state algorithms, especially in terms of accuracy and reliability.
International Nuclear Information System (INIS)
Yu, Kunjie; Chen, Xu; Wang, Xin; Wang, Zhenlei
2017-01-01
Highlights: • SATLBO is proposed to identify the PV model parameters efficiently. • In SATLBO, the learners self-adaptively select different learning phases. • An elite learning is developed in teacher phase to perform local searching. • A diversity learning is proposed in learner phase to maintain population diversity. • SATLBO achieves the first in ranking on overall performance among nine algorithms. - Abstract: Parameters identification of photovoltaic (PV) model based on measured current-voltage characteristic curves plays an important role in the simulation and evaluation of PV systems. To accurately and reliably identify the PV model parameters, a self-adaptive teaching-learning-based optimization (SATLBO) is proposed in this paper. In SATLBO, the learners can self-adaptively select different learning phases based on their knowledge level. The better learners are more likely to choose the learner phase for improving the population diversity, while the worse learners tend to choose the teacher phase to enhance the convergence rate. Thus, learners at different levels focus on different searching abilities to efficiently enhance the performance of algorithm. In addition, to improve the searching ability of different learning phases, an elite learning strategy and a diversity learning method are introduced into the teacher phase and learner phase, respectively. The performance of SATLBO is firstly evaluated on 34 benchmark functions, and experimental results show that SATLBO achieves the first in ranking on the overall performance among nine algorithms. Then, SATLBO is employed to identify parameters of different PV models, i.e., single diode, double diode, and PV module. Experimental results indicate that SATLBO exhibits high accuracy and reliability compared with other parameter extraction methods.
Naikwad, S. N.; Dudul, S. V.
2009-01-01
A focused time lagged recurrent neural network (FTLR NN) with gamma memory filter is designed to learn the subtle complex dynamics of a typical CSTR process. Continuous stirred tank reactor exhibits complex nonlinear operations where reaction is exothermic. It is noticed from literature review that process control of CSTR using neuro-fuzzy systems was attempted by many, but optimal neural network model for identification of CSTR process is not yet available. As CSTR process includes tempora...
Optimal closed-loop identification test design for internal model control
Zhu, Y.; Bosch, van den P.P.J.
2000-01-01
In this work, optimal closed-loop test design for control is studied. Simple design formulas are derived based on the asymptotic theory of Ljung. The control scheme used is internal model control (IMC) and the design constraint is the power of the process output or that of the reference signal. The
Identification of physical models
DEFF Research Database (Denmark)
Melgaard, Henrik
1994-01-01
of the model with the available prior knowledge. The methods for identification of physical models have been applied in two different case studies. One case is the identification of thermal dynamics of building components. The work is related to a CEC research project called PASSYS (Passive Solar Components......The problem of identification of physical models is considered within the frame of stochastic differential equations. Methods for estimation of parameters of these continuous time models based on descrete time measurements are discussed. The important algorithms of a computer program for ML or MAP...... design of experiments, which is for instance the design of an input signal that are optimal according to a criterion based on the information provided by the experiment. Also model validation is discussed. An important verification of a physical model is to compare the physical characteristics...
Prediction of energy demands using neural network with model identification by global optimization
Energy Technology Data Exchange (ETDEWEB)
Yokoyama, Ryohei; Wakui, Tetsuya; Satake, Ryoichi [Department of Mechanical Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531 (Japan)
2009-02-15
To operate energy supply plants properly from the viewpoints of stable energy supply, and energy and cost savings, it is important to predict energy demands accurately as basic conditions. Several methods of predicting energy demands have been proposed, and one of them is to use neural networks. Although local optimization methods such as gradient ones have conventionally been adopted in the back propagation procedure to identify the values of model parameters, they have the significant drawback that they can derive only local optimal solutions. In this paper, a global optimization method called ''Modal Trimming Method'' proposed for non-linear programming problems is adopted to identify the values of model parameters. In addition, the trend and periodic change are first removed from time series data on energy demand, and the converted data is used as the main input to a neural network. Furthermore, predicted values of air temperature and relative humidity are considered as additional inputs to the neural network, and their effect on the prediction of energy demand is investigated. This approach is applied to the prediction of the cooling demand in a building used for a bench mark test of a variety of prediction methods, and its validity and effectiveness are clarified. (author)
Directory of Open Access Journals (Sweden)
S. N. Naikwad
2009-01-01
Full Text Available A focused time lagged recurrent neural network (FTLR NN with gamma memory filter is designed to learn the subtle complex dynamics of a typical CSTR process. Continuous stirred tank reactor exhibits complex nonlinear operations where reaction is exothermic. It is noticed from literature review that process control of CSTR using neuro-fuzzy systems was attempted by many, but optimal neural network model for identification of CSTR process is not yet available. As CSTR process includes temporal relationship in the input-output mappings, time lagged recurrent neural network is particularly used for identification purpose. The standard back propagation algorithm with momentum term has been proposed in this model. The various parameters like number of processing elements, number of hidden layers, training and testing percentage, learning rule and transfer function in hidden and output layer are investigated on the basis of performance measures like MSE, NMSE, and correlation coefficient on testing data set. Finally effects of different norms are tested along with variation in gamma memory filter. It is demonstrated that dynamic NN model has a remarkable system identification capability for the problems considered in this paper. Thus FTLR NN with gamma memory filter can be used to learn underlying highly nonlinear dynamics of the system, which is a major contribution of this paper.
Lee, Kyoungyeul; Lee, Minho; Kim, Dongsup
2017-12-28
The identification of target molecules is important for understanding the mechanism of "target deconvolution" in phenotypic screening and "polypharmacology" of drugs. Because conventional methods of identifying targets require time and cost, in-silico target identification has been considered an alternative solution. One of the well-known in-silico methods of identifying targets involves structure activity relationships (SARs). SARs have advantages such as low computational cost and high feasibility; however, the data dependency in the SAR approach causes imbalance of active data and ambiguity of inactive data throughout targets. We developed a ligand-based virtual screening model comprising 1121 target SAR models built using a random forest algorithm. The performance of each target model was tested by employing the ROC curve and the mean score using an internal five-fold cross validation. Moreover, recall rates for top-k targets were calculated to assess the performance of target ranking. A benchmark model using an optimized sampling method and parameters was examined via external validation set. The result shows recall rates of 67.6% and 73.9% for top-11 (1% of the total targets) and top-33, respectively. We provide a website for users to search the top-k targets for query ligands available publicly at http://rfqsar.kaist.ac.kr . The target models that we built can be used for both predicting the activity of ligands toward each target and ranking candidate targets for a query ligand using a unified scoring scheme. The scores are additionally fitted to the probability so that users can estimate how likely a ligand-target interaction is active. The user interface of our web site is user friendly and intuitive, offering useful information and cross references.
DEFF Research Database (Denmark)
Ursem, Rasmus Kjær
population and many generations, which essentially turns the problem into a series of related static problems. To our surprise, the control problem could easily be solved when optimized like this. To further examine this, we compared the EA with a particle swarm and a local search approach, which we...... simulate an evolutionary process where the goal is to evolve solutions by means of crossover, mutation, and selection based on their quality (fitness) with respect to the optimization problem at hand. Evolutionary algorithms (EAs) are highly relevant for industrial applications, because they are capable...... of handling problems with non-linear constraints, multiple objectives, and dynamic components – properties that frequently appear in real-world problems. This thesis presents research in three fundamental areas of EC; fitness function design, methods for parameter control, and techniques for multimodal...
Directory of Open Access Journals (Sweden)
Li Wang
2017-02-01
Full Text Available The ability to obtain appropriate parameters for an advanced pressurized water reactor (PWR unit model is of great significance for power system analysis. The attributes of that ability include the following: nonlinear relationships, long transition time, intercoupled parameters and difficult obtainment from practical test, posed complexity and difficult parameter identification. In this paper, a model and a parameter identification method for the PWR primary loop system were investigated. A parameter identification process was proposed, using a particle swarm optimization (PSO algorithm that is based on random perturbation (RP-PSO. The identification process included model variable initialization based on the differential equations of each sub-module and program setting method, parameter obtainment through sub-module identification in the Matlab/Simulink Software (Math Works Inc., Natick, MA, USA as well as adaptation analysis for an integrated model. A lot of parameter identification work was carried out, the results of which verified the effectiveness of the method. It was found that the change of some parameters, like the fuel temperature and coolant temperature feedback coefficients, changed the model gain, of which the trajectory sensitivities were not zero. Thus, obtaining their appropriate values had significant effects on the simulation results. The trajectory sensitivities of some parameters in the core neutron dynamic module were interrelated, causing the parameters to be difficult to identify. The model parameter sensitivity could be different, which would be influenced by the model input conditions, reflecting the parameter identifiability difficulty degree for various input conditions.
Identification and optimization problems in plasma physics
International Nuclear Information System (INIS)
Gilbert, J.C.
1986-06-01
Parameter identification of the current in a tokamak plasma is studied. Plasma equilibrium in a vacuum container with a diaphragm is analyzed. A variable metric method with reduced optimization with nonlinear equality constraints; and a quasi-Newton reduced optimization method with constraints giving priority to restoration are presented [fr
Optimization modeling with spreadsheets
Baker, Kenneth R
2015-01-01
An accessible introduction to optimization analysis using spreadsheets Updated and revised, Optimization Modeling with Spreadsheets, Third Edition emphasizes model building skills in optimization analysis. By emphasizing both spreadsheet modeling and optimization tools in the freely available Microsoft® Office Excel® Solver, the book illustrates how to find solutions to real-world optimization problems without needing additional specialized software. The Third Edition includes many practical applications of optimization models as well as a systematic framework that il
Cost Optimal System Identification Experiment Design
DEFF Research Database (Denmark)
Kirkegaard, Poul Henning
A structural system identification experiment design method is formulated in the light of decision theory, structural reliability theory and optimization theory. The experiment design is based on a preposterior analysis, well-known from the classical decision theory. I.e. the decisions concerning...... reflecting the cost of the experiment and the value of obtained additional information. An example concerning design of an experiment for parametric identification of a single degree of freedom structural system shows the applicability of the experiment design method....... the experiment design are not based on obtained experimental data. Instead the decisions are based on the expected experimental data assumed to be obtained from the measurements, estimated based on prior information and engineering judgement. The design method provides a system identification experiment design...
Optimized Experiment Design for Marine Systems Identification
DEFF Research Database (Denmark)
Blanke, M.; Knudsen, Morten
1999-01-01
Simulation of maneuvring and design of motion controls for marine systems require non-linear mathematical models, which often have more than one-hundred parameters. Model identification is hence an extremely difficult task. This paper discusses experiment design for marine systems identification...... and proposes a sensitivity approach to solve the practical experiment design problem. The applicability of the sensitivity approach is demonstrated on a large non-linear model of surge, sway, roll and yaw of a ship. The use of the method is illustrated for a container-ship where both model and full-scale tests...
Identification of nonlinear anelastic models
International Nuclear Information System (INIS)
Draganescu, G E; Bereteu, L; Ercuta, A
2008-01-01
A useful nonlinear identification technique applied to the anelastic and rheologic models is presented in this paper. First introduced by Feldman, the method is based on the Hilbert transform, and is currently used for identification of the nonlinear vibrations
Directory of Open Access Journals (Sweden)
Yongkai An
2015-07-01
Full Text Available This paper introduces a surrogate model to identify an optimal exploitation scheme, while the western Jilin province was selected as the study area. A numerical simulation model of groundwater flow was established first, and four exploitation wells were set in the Tongyu county and Qian Gorlos county respectively so as to supply water to Daan county. Second, the Latin Hypercube Sampling (LHS method was used to collect data in the feasible region for input variables. A surrogate model of the numerical simulation model of groundwater flow was developed using the regression kriging method. An optimization model was established to search an optimal groundwater exploitation scheme using the minimum average drawdown of groundwater table and the minimum cost of groundwater exploitation as multi-objective functions. Finally, the surrogate model was invoked by the optimization model in the process of solving the optimization problem. Results show that the relative error and root mean square error of the groundwater table drawdown between the simulation model and the surrogate model for 10 validation samples are both lower than 5%, which is a high approximation accuracy. The contrast between the surrogate-based simulation optimization model and the conventional simulation optimization model for solving the same optimization problem, shows the former only needs 5.5 hours, and the latter needs 25 days. The above results indicate that the surrogate model developed in this study could not only considerably reduce the computational burden of the simulation optimization process, but also maintain high computational accuracy. This can thus provide an effective method for identifying an optimal groundwater exploitation scheme quickly and accurately.
Optimization Modeling with Spreadsheets
Baker, Kenneth R
2011-01-01
This introductory book on optimization (mathematical programming) includes coverage on linear programming, nonlinear programming, integer programming and heuristic programming; as well as an emphasis on model building using Excel and Solver. The emphasis on model building (rather than algorithms) is one of the features that makes this book distinctive. Most books devote more space to algorithmic details than to formulation principles. These days, however, it is not necessary to know a great deal about algorithms in order to apply optimization tools, especially when relying on the sp
Subthreshold SPICE Model Optimization
Lum, Gregory; Au, Henry; Neff, Joseph; Bozeman, Eric; Kamin, Nick; Shimabukuro, Randy
2011-04-01
The first step in integrated circuit design is the simulation of said design in software to verify proper functionally and design requirements. Properties of the process are provided by fabrication foundries in the form of SPICE models. These SPICE models contain the electrical data and physical properties of the basic circuit elements. A limitation of these models is that the data collected by the foundry only accurately model the saturation region. This is fine for most users, but when operating devices in the subthreshold region they are inadequate for accurate simulation results. This is why optimizing the current SPICE models to characterize the subthreshold region is so important. In order to accurately simulate this region of operation, MOSFETs of varying widths and lengths are fabricated and the electrical test data is collected. From the data collected the parameters of the model files are optimized through parameter extraction rather than curve fitting. With the completed optimized models the circuit designer is able to simulate circuit designs for the sub threshold region accurately.
System identification using Nuclear Norm & Tabu Search optimization
Ahmed, Asif A.; Schoen, Marco P.; Bosworth, Ken W.
2018-01-01
In recent years, subspace System Identification (SI) algorithms have seen increased research, stemming from advanced minimization methods being applied to the Nuclear Norm (NN) approach in system identification. These minimization algorithms are based on hard computing methodologies. To the authors’ knowledge, as of now, there has been no work reported that utilizes soft computing algorithms to address the minimization problem within the nuclear norm SI framework. A linear, time-invariant, discrete time system is used in this work as the basic model for characterizing a dynamical system to be identified. The main objective is to extract a mathematical model from collected experimental input-output data. Hankel matrices are constructed from experimental data, and the extended observability matrix is employed to define an estimated output of the system. This estimated output and the actual - measured - output are utilized to construct a minimization problem. An embedded rank measure assures minimum state realization outcomes. Current NN-SI algorithms employ hard computing algorithms for minimization. In this work, we propose a simple Tabu Search (TS) algorithm for minimization. TS algorithm based SI is compared with the iterative Alternating Direction Method of Multipliers (ADMM) line search optimization based NN-SI. For comparison, several different benchmark system identification problems are solved by both approaches. Results show improved performance of the proposed SI-TS algorithm compared to the NN-SI ADMM algorithm.
Integrated identification, modeling and control with applications
Shi, Guojun
This thesis deals with the integration of system design, identification, modeling and control. In particular, six interdisciplinary engineering problems are addressed and investigated. Theoretical results are established and applied to structural vibration reduction and engine control problems. First, the data-based LQG control problem is formulated and solved. It is shown that a state space model is not necessary to solve this problem; rather a finite sequence from the impulse response is the only model data required to synthesize an optimal controller. The new theory avoids unnecessary reliance on a model, required in the conventional design procedure. The infinite horizon model predictive control problem is addressed for multivariable systems. The basic properties of the receding horizon implementation strategy is investigated and the complete framework for solving the problem is established. The new theory allows the accommodation of hard input constraints and time delays. The developed control algorithms guarantee the closed loop stability. A closed loop identification and infinite horizon model predictive control design procedure is established for engine speed regulation. The developed algorithms are tested on the Cummins Engine Simulator and desired results are obtained. A finite signal-to-noise ratio model is considered for noise signals. An information quality index is introduced which measures the essential information precision required for stabilization. The problems of minimum variance control and covariance control are formulated and investigated. Convergent algorithms are developed for solving the problems of interest. The problem of the integrated passive and active control design is addressed in order to improve the overall system performance. A design algorithm is developed, which simultaneously finds: (i) the optimal values of the stiffness and damping ratios for the structure, and (ii) an optimal output variance constrained stabilizing
Optimal design of tests for heat exchanger fouling identification
International Nuclear Information System (INIS)
Palmer, Kyle A.; Hale, William T.; Such, Kyle D.; Shea, Brian R.; Bollas, George M.
2016-01-01
Highlights: • Built-in test design that optimizes the information extractable from the said test. • Method minimizes the covariance of a fault with system uncertainty. • Method applied for the identification and quantification of heat exchanger fouling. • Heat exchanger fouling is identifiable despite the uncertainty in inputs and states. - Graphical Abstract: - Abstract: Particulate fouling in plate fin heat exchangers of aircraft environmental control systems is a recurring issue in environments rich in foreign object debris. Heat exchanger fouling detection, in terms of quantification of its severity, is critical for aircraft maintenance scheduling and safe operation. In this work, we focus on methods for offline fouling detection during aircraft ground handling, where the allowable variability range of admissible inputs is wider. We explore methods of optimal experimental design to estimate heat exchanger inputs and input trajectories that maximize the identifiability of fouling. In particular, we present a methodology in which D-optimality is used as a criterion for statistically significant inference of heat exchanger fouling in uncertain environments. The optimal tests are designed on the basis of a heat exchanger model of the inherent mass, energy and momentum balances, validated against literature data. The model is then used to infer sensitivities of the heat exchanger outputs with respect to fouling metrics and maximize them by manipulating input trajectories; thus enhancing the accuracy in quantifying the fouling extent. The proposed methodology is evaluated with statistical indices of the confidence in estimating thermal fouling resistance at uncertain operating conditions, explored in a series of case studies.
Optimal Sensor Networks Scheduling in Identification of Distributed Parameter Systems
Patan, Maciej
2012-01-01
Sensor networks have recently come into prominence because they hold the potential to revolutionize a wide spectrum of both civilian and military applications. An ingenious characteristic of sensor networks is the distributed nature of data acquisition. Therefore they seem to be ideally prepared for the task of monitoring processes with spatio-temporal dynamics which constitute one of most general and important classes of systems in modelling of the real-world phenomena. It is clear that careful deployment and activation of sensor nodes are critical for collecting the most valuable information from the observed environment. Optimal Sensor Network Scheduling in Identification of Distributed Parameter Systems discusses the characteristic features of the sensor scheduling problem, analyzes classical and recent approaches, and proposes a wide range of original solutions, especially dedicated for networks with mobile and scanning nodes. Both researchers and practitioners will find the case studies, the proposed al...
Modeling, simulation and optimization of bipedal walking
Berns, Karsten
2013-01-01
The model-based investigation of motions of anthropomorphic systems is an important interdisciplinary research topic involving specialists from many fields such as Robotics, Biomechanics, Physiology, Orthopedics, Psychology, Neurosciences, Sports, Computer Graphics and Applied Mathematics. This book presents a study of basic locomotion forms such as walking and running is of particular interest due to the high demand on dynamic coordination, actuator efficiency and balance control. Mathematical models and numerical simulation and optimization techniques are explained, in combination with experimental data, which can help to better understand the basic underlying mechanisms of these motions and to improve them. Example topics treated in this book are Modeling techniques for anthropomorphic bipedal walking systems Optimized walking motions for different objective functions Identification of objective functions from measurements Simulation and optimization approaches for humanoid robots Biologically inspired con...
Risk modelling in portfolio optimization
Lam, W. H.; Jaaman, Saiful Hafizah Hj.; Isa, Zaidi
2013-09-01
Risk management is very important in portfolio optimization. The mean-variance model has been used in portfolio optimization to minimize the investment risk. The objective of the mean-variance model is to minimize the portfolio risk and achieve the target rate of return. Variance is used as risk measure in the mean-variance model. The purpose of this study is to compare the portfolio composition as well as performance between the optimal portfolio of mean-variance model and equally weighted portfolio. Equally weighted portfolio means the proportions that are invested in each asset are equal. The results show that the portfolio composition of the mean-variance optimal portfolio and equally weighted portfolio are different. Besides that, the mean-variance optimal portfolio gives better performance because it gives higher performance ratio than the equally weighted portfolio.
Model Risk in Portfolio Optimization
Directory of Open Access Journals (Sweden)
David Stefanovits
2014-08-01
Full Text Available We consider a one-period portfolio optimization problem under model uncertainty. For this purpose, we introduce a measure of model risk. We derive analytical results for this measure of model risk in the mean-variance problem assuming we have observations drawn from a normal variance mixture model. This model allows for heavy tails, tail dependence and leptokurtosis of marginals. The results show that mean-variance optimization is seriously compromised by model uncertainty, in particular, for non-Gaussian data and small sample sizes. To mitigate these shortcomings, we propose a method to adjust the sample covariance matrix in order to reduce model risk.
Identification of parameters of discrete-continuous models
International Nuclear Information System (INIS)
Cekus, Dawid; Warys, Pawel
2015-01-01
In the paper, the parameters of a discrete-continuous model have been identified on the basis of experimental investigations and formulation of optimization problem. The discrete-continuous model represents a cantilever stepped Timoshenko beam. The mathematical model has been formulated and solved according to the Lagrange multiplier formalism. Optimization has been based on the genetic algorithm. The presented proceeding’s stages make the identification of any parameters of discrete-continuous systems possible
Identification of parameters of discrete-continuous models
Energy Technology Data Exchange (ETDEWEB)
Cekus, Dawid, E-mail: cekus@imipkm.pcz.pl; Warys, Pawel, E-mail: warys@imipkm.pcz.pl [Institute of Mechanics and Machine Design Foundations, Czestochowa University of Technology, Dabrowskiego 73, 42-201 Czestochowa (Poland)
2015-03-10
In the paper, the parameters of a discrete-continuous model have been identified on the basis of experimental investigations and formulation of optimization problem. The discrete-continuous model represents a cantilever stepped Timoshenko beam. The mathematical model has been formulated and solved according to the Lagrange multiplier formalism. Optimization has been based on the genetic algorithm. The presented proceeding’s stages make the identification of any parameters of discrete-continuous systems possible.
Optimization-based topology identification of complex networks
International Nuclear Information System (INIS)
Tang Sheng-Xue; Chen Li; He Yi-Gang
2011-01-01
In many cases, the topological structures of a complex network are unknown or uncertain, and it is of significance to identify the exact topological structure. An optimization-based method of identifying the topological structure of a complex network is proposed in this paper. Identification of the exact network topological structure is converted into a minimal optimization problem by using the estimated network. Then, an improved quantum-behaved particle swarm optimization algorithm is used to solve the optimization problem. Compared with the previous adaptive synchronization-based method, the proposed method is simple and effective and is particularly valid to identify the topological structure of synchronization complex networks. In some cases where the states of a complex network are only partially observable, the exact topological structure of a network can also be identified by using the proposed method. Finally, numerical simulations are provided to show the effectiveness of the proposed method. (general)
Nguyen, Duc-Loc; Wimberley, Catriona; Truillet, Charles; Jego, Benoit; Caillé, Fabien; Pottier, Géraldine; Boisgard, Raphaël; Buvat, Irène; Bouilleret, Viviane
2018-06-01
Mesiotemporal lobe epilepsy is the most common type of drug-resistant partial epilepsy, with a specific history that often begins with status epilepticus due to various neurological insults followed by a silent period. During this period, before the first seizure occurs, a specific lesion develops, described as unilateral hippocampal sclerosis (HS). It is still challenging to determine which drugs, administered at which time point, will be most effective during the formation of this epileptic process. Neuroinflammation plays an important role in pathophysiological mechanisms in epilepsy, and therefore brain inflammation biomarkers such as translocator protein 18 kDa (TSPO) can be potent epilepsy biomarkers. TSPO is associated with reactive astrocytes and microglia. A unilateral intrahippocampal kainate injection mouse model can reproduce the defining features of human temporal lobe epilepsy with unilateral HS and the pattern of chronic pharmacoresistant temporal seizures. We hypothesized that longitudinal imaging using TSPO positron emission tomography (PET) with 18 F-DPA-714 could identify optimal treatment windows in a mouse model during the formation of HS. The model was induced into the right dorsal hippocampus of male C57/Bl6 mice. Micro-PET/computed tomographic scanning was performed before model induction and along the development of the HS at 7 days, 14 days, 1 month, and 6 months. In vitro autoradiography and immunohistofluorescence were performed on additional mice at each time point. TSPO PET uptake reached peak at 7 days and mostly related to microglial activation, whereas after 14 days, reactive astrocytes were shown to be the main cells expressing TSPO, reflected by a continuing increased PET uptake. TSPO-targeted PET is a highly potent longitudinal biomarker of epilepsy and could be of interest to determine the therapeutic windows in epilepsy and to monitor response to treatment. Wiley Periodicals, Inc. © 2018 International League Against Epilepsy.
On Optimal Input Design and Model Selection for Communication Channels
Energy Technology Data Exchange (ETDEWEB)
Li, Yanyan [ORNL; Djouadi, Seddik M [ORNL; Olama, Mohammed M [ORNL
2013-01-01
In this paper, the optimal model (structure) selection and input design which minimize the worst case identification error for communication systems are provided. The problem is formulated using metric complexity theory in a Hilbert space setting. It is pointed out that model selection and input design can be handled independently. Kolmogorov n-width is used to characterize the representation error introduced by model selection, while Gel fand and Time n-widths are used to represent the inherent error introduced by input design. After the model is selected, an optimal input which minimizes the worst case identification error is shown to exist. In particular, it is proven that the optimal model for reducing the representation error is a Finite Impulse Response (FIR) model, and the optimal input is an impulse at the start of the observation interval. FIR models are widely popular in communication systems, such as, in Orthogonal Frequency Division Multiplexing (OFDM) systems.
Simplified ejector model for control and optimization
International Nuclear Information System (INIS)
Zhu Yinhai; Cai Wenjian; Wen Changyun; Li Yanzhong
2008-01-01
In this paper, a simple yet effective ejector model for a real time control and optimization of an ejector system is proposed. Firstly, a fundamental model for calculation of ejector entrainment ratio at critical working conditions is derived by one-dimensional analysis and the shock circle model. Then, based on thermodynamic principles and the lumped parameter method, the fundamental ejector model is simplified to result in a hybrid ejector model. The model is very simple, which only requires two or three parameters and measurement of two variables to determine the ejector performance. Furthermore, the procedures for on line identification of the model parameters using linear and non-linear least squares methods are also presented. Compared with existing ejector models, the solution of the proposed model is much easier without coupled equations and iterative computations. Finally, the effectiveness of the proposed model is validated by published experimental data. Results show that the model is accurate and robust and gives a better match to the real performances of ejectors over the entire operating range than the existing models. This model is expected to have wide applications in real time control and optimization of ejector systems
On the Optimal Location of Sensors for Parametric Identification of Linear Structural Systems
DEFF Research Database (Denmark)
Kirkegaard, Poul Henning; Brincker, Rune
A survey of the field of optimal location of sensors for parametric identification of linear structural systems is presented. The survey shows that few papers are devoted to the case of optimal location sensors in which the measurements are modelled by a random field with non-trivial covariance...... function. Most often it is assumed that the results of the measurements are statistically independent variables. In an example the importance of considering the measurements as statistically dependent random variables is shown. The example is concerned with optimal location of sensors for parametric...... identification of modal parameters for a vibrating beam under random loading. The covariance of the modal parameters expected to be obtained is investigated to variations of number and location of sensors. Further, the influence of the noise on the optimal location of the sensors is investigated....
Giller, C A
2011-12-01
The use of conformity indices to optimize Gamma Knife planning is common, but does not address important tradeoffs between dose to tumor and normal tissue. Pareto analysis has been used for this purpose in other applications, but not for Gamma Knife (GK) planning. The goal of this work is to use computer models to show that Pareto analysis may be feasible for GK planning to identify dosimetric tradeoffs. We define a GK plan A to be Pareto dominant to B if the prescription isodose volume of A covers more tumor but not more normal tissue than B, or if A covers less normal tissue but not less tumor than B. A plan is Pareto optimal if it is not dominated by any other plan. Two different Pareto optimal plans represent different tradeoffs between dose to tumor and normal tissue, because neither plan dominates the other. 'GK simulator' software calculated dose distributions for GK plans, and was called repetitively by a genetic algorithm to calculate Pareto dominant plans. Three irregular tumor shapes were tested in 17 trials using various combinations of shots. The mean number of Pareto dominant plans/trial was 59 ± 17 (sd). Different planning strategies were identified by large differences in shot positions, and 70 of the 153 coordinate plots (46%) showed differences of 5mm or more. The Pareto dominant plans dominated other nearby plans. Pareto dominant plans represent different dosimetric tradeoffs and can be systematically calculated using genetic algorithms. Automatic identification of non-intuitive planning strategies may be feasible with these methods.
Pyomo optimization modeling in Python
Hart, William E; Watson, Jean-Paul; Woodruff, David L; Hackebeil, Gabriel A; Nicholson, Bethany L; Siirola, John D
2017-01-01
This book provides a complete and comprehensive guide to Pyomo (Python Optimization Modeling Objects) for beginning and advanced modelers, including students at the undergraduate and graduate levels, academic researchers, and practitioners. Using many examples to illustrate the different techniques useful for formulating models, this text beautifully elucidates the breadth of modeling capabilities that are supported by Pyomo and its handling of complex real-world applications. This second edition provides an expanded presentation of Pyomo’s modeling capabilities, providing a broader description of the software that will enable the user to develop and optimize models. Introductory chapters have been revised to extend tutorials; chapters that discuss advanced features now include the new functionalities added to Pyomo since the first edition including generalized disjunctive programming, mathematical programming with equilibrium constraints, and bilevel programming. Pyomo is an open source software package fo...
Topology optimization of continuum structure with dynamic constraints using mode identification
International Nuclear Information System (INIS)
Li, Jianhongyu; Chen, Shenyan; Huang, Hai
2015-01-01
For the problems such as mode exchange and localized modes in topology optimization of continuum structure with dynamic constraints, it is difficult to apply the traditional optimization model which considers fixed order mode frequencies as constraints in optimization calculation. A new optimization model is established, in which the dynamical constraints are changed as frequencies of structural principal vibrations. The order of the principal vibrations is recognized through modal identification in the optimization process, and the constraints are updated to make the optimization calculation execute smoothly. Localized mode elimination techniques are introduced to reduce the localized modes induced by the low density elements, which could improve the optimization efficiency. A new optimization process is designed, which achieves the purpose of overcoming mode exchange problem and localized mode problem at the cost of increasing several structural analyses. Optimization system is developed by using Nastran to perform structural analysis and sensitivity analysis and two-level multipoint approximation algorithm as optimizer. Numerical results verified that the presented method is effective and reasonable.
Identifying optimal models to represent biochemical systems.
Directory of Open Access Journals (Sweden)
Mochamad Apri
Full Text Available Biochemical systems involving a high number of components with intricate interactions often lead to complex models containing a large number of parameters. Although a large model could describe in detail the mechanisms that underlie the system, its very large size may hinder us in understanding the key elements of the system. Also in terms of parameter identification, large models are often problematic. Therefore, a reduced model may be preferred to represent the system. Yet, in order to efficaciously replace the large model, the reduced model should have the same ability as the large model to produce reliable predictions for a broad set of testable experimental conditions. We present a novel method to extract an "optimal" reduced model from a large model to represent biochemical systems by combining a reduction method and a model discrimination method. The former assures that the reduced model contains only those components that are important to produce the dynamics observed in given experiments, whereas the latter ensures that the reduced model gives a good prediction for any feasible experimental conditions that are relevant to answer questions at hand. These two techniques are applied iteratively. The method reveals the biological core of a model mathematically, indicating the processes that are likely to be responsible for certain behavior. We demonstrate the algorithm on two realistic model examples. We show that in both cases the core is substantially smaller than the full model.
Venturi scrubber modelling and optimization
Energy Technology Data Exchange (ETDEWEB)
Viswanathan, S [National Univ., La Jolla, CA (United States). School of Engineering and Technology; Ananthanarayanan, N.V. [National Univ. of Singapore (Singapore). Dept. of Chemical and Environmental Engineering; Azzopardi, B.J. [Nottingham Univ., Nottingham (United Kingdom). Dept. of Chemical Engineering
2005-04-01
This study presented a method to maintain the efficiency of venturi scrubbers in removing fine particulates during gas clean operations while minimizing pressure drop. Venturi scrubbers meet stringent emission standards. In order to choose the optimal method for predicting pressure drop, 4 established models were compared for their accuracy of prediction and simplicity in application. The enhanced algorithm optimizes Pease-Anthony type venturi scrubber performance by predicting the minimum pressure drop required to achieve the desired collection efficiency. This was accomplished by optimizing the key operating and design parameters such as liquid-to-gas ratio, throat gas velocity, number of nozzles, nozzle diameter and throat aspect ratio. Two of the 4 established models were expanded by providing an empirical algorithm to better predict pressure drop in the venturi throat. Model results were validated with experimental data. The optimization algorithm considers the non-uniformity in liquid distribution. It can be applied to cylindrical and rectangular Pease-Anthony type scrubbers. It offers an effective, systematic and accurate method to optimize the performance of new and existing scrubbers. 54 refs., 5 figs.
On the Optimal Location of Sensors for Parametric Identification of Linear Systems
DEFF Research Database (Denmark)
Kirkegaard, Poul Henning; Brincker, Rune
1994-01-01
. It is assumed most often that the results of the measurements are statistically independent random variables. In an example the importance of considering the measurements as statistically dependent random variables is shown. The covariance of the model parameters expected to be obtained is investigated......An outline of the field of optimal location of sensors for parametric identification of linear structural systems is presented. There are few papers devoted to the case of optimal location of sensors in which the measurements are modeled by a random field with non-trivial covariance function...
Iterative Selection of Unknown Weights in Direct Weight Optimization Identification
Directory of Open Access Journals (Sweden)
Xiao Xuan
2014-01-01
Full Text Available To the direct weight optimization identification of the nonlinear system, we add some linear terms about input sequences in the former linear affine function so as to approximate the nonlinear property. To choose the two classes of unknown weights in the more linear terms, this paper derives the detailed process on how to choose these unknown weights from theoretical analysis and engineering practice, respectively, and makes sure of their key roles between the unknown weights. From the theoretical analysis, the added unknown weights’ auxiliary role can be known in the whole process of approximating the nonlinear system. From the practical analysis, we learn how to transform one complex optimization problem to its corresponding common quadratic program problem. Then, the common quadratic program problem can be solved by the basic interior point method. Finally, the efficiency and possibility of the proposed strategies can be confirmed by the simulation results.
Optimal Strategy and Business Models
DEFF Research Database (Denmark)
Johnson, Peter; Foss, Nicolai Juul
2016-01-01
This study picks up on earlier suggestions that control theory may further the study of strategy. Strategy can be formally interpreted as an idealized path optimizing heterogeneous resource deployment to produce maximum financial gain. Using standard matrix methods to describe the firm Hamiltonia...... variable of firm path, suggesting in turn that the firm's business model is the codification of the application of investment resources used to control the strategic path of value realization....
Overhead longwave infrared hyperspectral material identification using radiometric models
Energy Technology Data Exchange (ETDEWEB)
Zelinski, M. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2018-01-09
Material detection algorithms used in hyperspectral data processing are computationally efficient but can produce relatively high numbers of false positives. Material identification performed as a secondary processing step on detected pixels can help separate true and false positives. This paper presents a material identification processing chain for longwave infrared hyperspectral data of solid materials collected from airborne platforms. The algorithms utilize unwhitened radiance data and an iterative algorithm that determines the temperature, humidity, and ozone of the atmospheric profile. Pixel unmixing is done using constrained linear regression and Bayesian Information Criteria for model selection. The resulting product includes an optimal atmospheric profile and full radiance material model that includes material temperature, abundance values, and several fit statistics. A logistic regression method utilizing all model parameters to improve identification is also presented. This paper details the processing chain and provides justification for the algorithms used. Several examples are provided using modeled data at different noise levels.
Review: Optimization methods for groundwater modeling and management
Yeh, William W.-G.
2015-09-01
Optimization methods have been used in groundwater modeling as well as for the planning and management of groundwater systems. This paper reviews and evaluates the various optimization methods that have been used for solving the inverse problem of parameter identification (estimation), experimental design, and groundwater planning and management. Various model selection criteria are discussed, as well as criteria used for model discrimination. The inverse problem of parameter identification concerns the optimal determination of model parameters using water-level observations. In general, the optimal experimental design seeks to find sampling strategies for the purpose of estimating the unknown model parameters. A typical objective of optimal conjunctive-use planning of surface water and groundwater is to minimize the operational costs of meeting water demand. The optimization methods include mathematical programming techniques such as linear programming, quadratic programming, dynamic programming, stochastic programming, nonlinear programming, and the global search algorithms such as genetic algorithms, simulated annealing, and tabu search. Emphasis is placed on groundwater flow problems as opposed to contaminant transport problems. A typical two-dimensional groundwater flow problem is used to explain the basic formulations and algorithms that have been used to solve the formulated optimization problems.
Identification of Optimal Policies in Markov Decision Processes
Czech Academy of Sciences Publication Activity Database
Sladký, Karel
46 2010, č. 3 (2010), s. 558-570 ISSN 0023-5954. [International Conference on Mathematical Methods in Economy and Industry. České Budějovice, 15.06.2009-18.06.2009] R&D Projects: GA ČR(CZ) GA402/08/0107; GA ČR GA402/07/1113 Institutional research plan: CEZ:AV0Z10750506 Keywords : finite state Markov decision processes * discounted and average costs * elimination of suboptimal policies Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 0.461, year: 2010 http://library.utia.cas.cz/separaty/2010/E/sladky-identification of optimal policies in markov decision processes.pdf
MODELLING, SIMULATING AND OPTIMIZING BOILERS
DEFF Research Database (Denmark)
Sørensen, Kim; Condra, Thomas Joseph; Houbak, Niels
2004-01-01
In the present work a framework for optimizing the design of boilers for dynamic operation has been developed. A cost function to be minimized during the optimization has been formulated and for the present design variables related to the Boiler Volume and the Boiler load Gradient (i.e. ring rate...... on the boiler) have been dened. Furthermore a number of constraints related to: minimum and maximum boiler load gradient, minimum boiler size, Shrinking and Swelling and Steam Space Load have been dened. For dening the constraints related to the required boiler volume a dynamic model for simulating the boiler...... performance has been developed. Outputs from the simulations are shrinking and swelling of water level in the drum during for example a start-up of the boiler, these gures combined with the requirements with respect to allowable water level uctuations in the drum denes the requirements with respect to drum...
LPV system identification using series expansion models
Toth, R.; Heuberger, P.S.C.; Hof, Van den P.M.J.; Santos, dos P.L.; Perdicoúlis, T.P.A.; Novara, C.; Ramos, J.A.; Rivera, D.E.
2011-01-01
This review volume reports the state-of-the-art in Linear Parameter Varying (LPV) system identification. Written by world renowned researchers, the book contains twelve chapters, focusing on the most recent LPV identification methods for both discrete-time and continuous-time models, using different
Modeling and identification for robot motion control
Kostic, D.; Jager, de A.G.; Steinbuch, M.; Kurfess, T.R.
2004-01-01
This chapter deals with the problems of robot modelling and identification for high-performance model-based motion control. A derivation of robot kinematic and dynamic models was explained. Modelling of friction effects was also discussed. Use of a writing task to establish correctness of the models
MODELLING, SIMULATING AND OPTIMIZING BOILERS
DEFF Research Database (Denmark)
Sørensen, K.; Condra, T.; Houbak, Niels
2003-01-01
, and the total stress level (i.e. stresses introduced due to internal pressure plus stresses introduced due to temperature gradients) must always be kept below the allowable stress level. In this way, the increased water-/steam space that should allow for better dynamic performance, in the end causes limited...... freedom with respect to dynamic operation of the plant. By means of an objective function including as well the price of the plant as a quantification of the value of dynamic operation of the plant an optimization is carried out. The dynamic model of the boiler plant is applied to define parts...
Identification of metabolic system parameters using global optimization methods
Directory of Open Access Journals (Sweden)
Gatzke Edward P
2006-01-01
Full Text Available Abstract Background The problem of estimating the parameters of dynamic models of complex biological systems from time series data is becoming increasingly important. Methods and results Particular consideration is given to metabolic systems that are formulated as Generalized Mass Action (GMA models. The estimation problem is posed as a global optimization task, for which novel techniques can be applied to determine the best set of parameter values given the measured responses of the biological system. The challenge is that this task is nonconvex. Nonetheless, deterministic optimization techniques can be used to find a global solution that best reconciles the model parameters and measurements. Specifically, the paper employs branch-and-bound principles to identify the best set of model parameters from observed time course data and illustrates this method with an existing model of the fermentation pathway in Saccharomyces cerevisiae. This is a relatively simple yet representative system with five dependent states and a total of 19 unknown parameters of which the values are to be determined. Conclusion The efficacy of the branch-and-reduce algorithm is illustrated by the S. cerevisiae example. The method described in this paper is likely to be widely applicable in the dynamic modeling of metabolic networks.
Pal, Partha S; Kar, R; Mandal, D; Ghoshal, S P
2015-11-01
This paper presents an efficient approach to identify different stable and practically useful Hammerstein models as well as unstable nonlinear process along with its stable closed loop counterpart with the help of an evolutionary algorithm as Colliding Bodies Optimization (CBO) optimization algorithm. The performance measures of the CBO based optimization approach such as precision, accuracy are justified with the minimum output mean square value (MSE) which signifies that the amount of bias and variance in the output domain are also the least. It is also observed that the optimization of output MSE in the presence of outliers has resulted in a very close estimation of the output parameters consistently, which also justifies the effective general applicability of the CBO algorithm towards the system identification problem and also establishes the practical usefulness of the applied approach. Optimum values of the MSEs, computational times and statistical information of the MSEs are all found to be the superior as compared with those of the other existing similar types of stochastic algorithms based approaches reported in different recent literature, which establish the robustness and efficiency of the applied CBO based identification scheme. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
CEAI: CCM based Email Authorship Identification Model
DEFF Research Database (Denmark)
Nizamani, Sarwat; Memon, Nasrullah
2013-01-01
In this paper we present a model for email authorship identification (EAI) by employing a Cluster-based Classification (CCM) technique. Traditionally, stylometric features have been successfully employed in various authorship analysis tasks; we extend the traditional feature-set to include some...... more interesting and effective features for email authorship identification (e.g. the last punctuation mark used in an email, the tendency of an author to use capitalization at the start of an email, or the punctuation after a greeting or farewell). We also included Info Gain feature selection based...... reveal that the proposed CCM-based email authorship identification model, along with the proposed feature set, outperforms the state-of-the-art support vector machine (SVM)-based models, as well as the models proposed by Iqbal et al. [1, 2]. The proposed model attains an accuracy rate of 94% for 10...
Clean coal technology optimization model
International Nuclear Information System (INIS)
Laseke, B.A.; Hance, S.B.
1992-01-01
Title IV of the Clean Air Act Amendments (CAAA) of 1990 contains provisions for the mitigation of acid rain precipitation through reductions in the annual emission of the acid rain precursors of sulfur dioxide (SO 2 ) and nitrogen oxide (NO x ). These provisions will affect primarily existing coal-fired power-generating plants by requiring nominal reductions of 5 millon and 10 million tons of SO 2 by the years 1995 and 2000, respectively, and 2 million tons of NO x by the year 2000 relative to the 1980 and 1985-87 reference period. The 1990 CAAA Title IV provisions are extremely complex in that they establish phased regulatory milestones, unit-level emission allowances and caps, a mechanism for inter-utility trading of emission allowances, and a system of emission allowance credits based on selection of control option and timing of its implementation. The net result of Title IV of the 1990 CAAA is that approximately 147 gigawatts (GW) of generating capacity is eligible to retrofit SO 2 controls by the year 2000. A number of options are available to bring affected boilers into compliance with Title IV. Market sharewill be influenced by technology performance and costs. These characteristics can be modeled through a bottom-up technology cost and performance optimization exercise to show their impact on the technology's potential market share. Such a model exists in the form of an integrated data base-model software system. This microcomputer (PC)-based software system consists of a unit (boiler)-level data base (ACIDBASE), a cost and performance engineering model (IAPCS), and a market forecast model (ICEMAN)
Using Pareto points for model identification in predictive toxicology
2013-01-01
Predictive toxicology is concerned with the development of models that are able to predict the toxicity of chemicals. A reliable prediction of toxic effects of chemicals in living systems is highly desirable in cosmetics, drug design or food protection to speed up the process of chemical compound discovery while reducing the need for lab tests. There is an extensive literature associated with the best practice of model generation and data integration but management and automated identification of relevant models from available collections of models is still an open problem. Currently, the decision on which model should be used for a new chemical compound is left to users. This paper intends to initiate the discussion on automated model identification. We present an algorithm, based on Pareto optimality, which mines model collections and identifies a model that offers a reliable prediction for a new chemical compound. The performance of this new approach is verified for two endpoints: IGC50 and LogP. The results show a great potential for automated model identification methods in predictive toxicology. PMID:23517649
Surrogate Modeling for Geometry Optimization
DEFF Research Database (Denmark)
Rojas Larrazabal, Marielba de la Caridad; Abraham, Yonas; Holzwarth, Natalie
2009-01-01
A new approach for optimizing the nuclear geometry of an atomic system is described. Instead of the original expensive objective function (energy functional), a small number of simpler surrogates is used.......A new approach for optimizing the nuclear geometry of an atomic system is described. Instead of the original expensive objective function (energy functional), a small number of simpler surrogates is used....
Level-set techniques for facies identification in reservoir modeling
Iglesias, Marco A.; McLaughlin, Dennis
2011-03-01
In this paper we investigate the application of level-set techniques for facies identification in reservoir models. The identification of facies is a geometrical inverse ill-posed problem that we formulate in terms of shape optimization. The goal is to find a region (a geologic facies) that minimizes the misfit between predicted and measured data from an oil-water reservoir. In order to address the shape optimization problem, we present a novel application of the level-set iterative framework developed by Burger in (2002 Interfaces Free Bound. 5 301-29 2004 Inverse Problems 20 259-82) for inverse obstacle problems. The optimization is constrained by (the reservoir model) a nonlinear large-scale system of PDEs that describes the reservoir dynamics. We reformulate this reservoir model in a weak (integral) form whose shape derivative can be formally computed from standard results of shape calculus. At each iteration of the scheme, the current estimate of the shape derivative is utilized to define a velocity in the level-set equation. The proper selection of this velocity ensures that the new shape decreases the cost functional. We present results of facies identification where the velocity is computed with the gradient-based (GB) approach of Burger (2002) and the Levenberg-Marquardt (LM) technique of Burger (2004). While an adjoint formulation allows the straightforward application of the GB approach, the LM technique requires the computation of the large-scale Karush-Kuhn-Tucker system that arises at each iteration of the scheme. We efficiently solve this system by means of the representer method. We present some synthetic experiments to show and compare the capabilities and limitations of the proposed implementations of level-set techniques for the identification of geologic facies.
Level-set techniques for facies identification in reservoir modeling
International Nuclear Information System (INIS)
Iglesias, Marco A; McLaughlin, Dennis
2011-01-01
In this paper we investigate the application of level-set techniques for facies identification in reservoir models. The identification of facies is a geometrical inverse ill-posed problem that we formulate in terms of shape optimization. The goal is to find a region (a geologic facies) that minimizes the misfit between predicted and measured data from an oil–water reservoir. In order to address the shape optimization problem, we present a novel application of the level-set iterative framework developed by Burger in (2002 Interfaces Free Bound. 5 301–29; 2004 Inverse Problems 20 259–82) for inverse obstacle problems. The optimization is constrained by (the reservoir model) a nonlinear large-scale system of PDEs that describes the reservoir dynamics. We reformulate this reservoir model in a weak (integral) form whose shape derivative can be formally computed from standard results of shape calculus. At each iteration of the scheme, the current estimate of the shape derivative is utilized to define a velocity in the level-set equation. The proper selection of this velocity ensures that the new shape decreases the cost functional. We present results of facies identification where the velocity is computed with the gradient-based (GB) approach of Burger (2002) and the Levenberg–Marquardt (LM) technique of Burger (2004). While an adjoint formulation allows the straightforward application of the GB approach, the LM technique requires the computation of the large-scale Karush–Kuhn–Tucker system that arises at each iteration of the scheme. We efficiently solve this system by means of the representer method. We present some synthetic experiments to show and compare the capabilities and limitations of the proposed implementations of level-set techniques for the identification of geologic facies
Following an Optimal Batch Bioreactor Operations Model
DEFF Research Database (Denmark)
Ibarra-Junquera, V.; Jørgensen, Sten Bay; Virgen-Ortíz, J.J.
2012-01-01
The problem of following an optimal batch operation model for a bioreactor in the presence of uncertainties is studied. The optimal batch bioreactor operation model (OBBOM) refers to the bioreactor trajectory for nominal cultivation to be optimal. A multiple-variable dynamic optimization of fed...... as the master system which includes the optimal cultivation trajectory for the feed flow rate and the substrate concentration. The “real” bioreactor, the one with unknown dynamics and perturbations, is considered as the slave system. Finally, the controller is designed such that the real bioreactor...
Intelligent structural optimization: Concept, Model and Methods
International Nuclear Information System (INIS)
Lu, Dagang; Wang, Guangyuan; Peng, Zhang
2002-01-01
Structural optimization has many characteristics of Soft Design, and so, it is necessary to apply the experience of human experts to solving the uncertain and multidisciplinary optimization problems in large-scale and complex engineering systems. With the development of artificial intelligence (AI) and computational intelligence (CI), the theory of structural optimization is now developing into the direction of intelligent optimization. In this paper, a concept of Intelligent Structural Optimization (ISO) is proposed. And then, a design process model of ISO is put forward in which each design sub-process model are discussed. Finally, the design methods of ISO are presented
Structural system identification: Structural dynamics model validation
Energy Technology Data Exchange (ETDEWEB)
Red-Horse, J.R.
1997-04-01
Structural system identification is concerned with the development of systematic procedures and tools for developing predictive analytical models based on a physical structure`s dynamic response characteristics. It is a multidisciplinary process that involves the ability (1) to define high fidelity physics-based analysis models, (2) to acquire accurate test-derived information for physical specimens using diagnostic experiments, (3) to validate the numerical simulation model by reconciling differences that inevitably exist between the analysis model and the experimental data, and (4) to quantify uncertainties in the final system models and subsequent numerical simulations. The goal of this project was to develop structural system identification techniques and software suitable for both research and production applications in code and model validation.
Modeling and identification in structural dynamics
Jayakumar, Paramsothy
1987-01-01
Analytical modeling of structures subjected to ground motions is an important aspect of fully dynamic earthquake-resistant design. In general, linear models are only sufficient to represent structural responses resulting from earthquake motions of small amplitudes. However, the response of structures during strong ground motions is highly nonlinear and hysteretic. System identification is an effective tool for developing analytical models from experimental data. Testing of full-scale prot...
Li, Muqun; Carrell, David; Aberdeen, John; Hirschman, Lynette; Kirby, Jacqueline; Li, Bo; Vorobeychik, Yevgeniy; Malin, Bradley A
2016-06-01
Electronic medical records (EMRs) are increasingly repurposed for activities beyond clinical care, such as to support translational research and public policy analysis. To mitigate privacy risks, healthcare organizations (HCOs) aim to remove potentially identifying patient information. A substantial quantity of EMR data is in natural language form and there are concerns that automated tools for detecting identifiers are imperfect and leak information that can be exploited by ill-intentioned data recipients. Thus, HCOs have been encouraged to invest as much effort as possible to find and detect potential identifiers, but such a strategy assumes the recipients are sufficiently incentivized and capable of exploiting leaked identifiers. In practice, such an assumption may not hold true and HCOs may overinvest in de-identification technology. The goal of this study is to design a natural language de-identification framework, rooted in game theory, which enables an HCO to optimize their investments given the expected capabilities of an adversarial recipient. We introduce a Stackelberg game to balance risk and utility in natural language de-identification. This game represents a cost-benefit model that enables an HCO with a fixed budget to minimize their investment in the de-identification process. We evaluate this model by assessing the overall payoff to the HCO and the adversary using 2100 clinical notes from Vanderbilt University Medical Center. We simulate several policy alternatives using a range of parameters, including the cost of training a de-identification model and the loss in data utility due to the removal of terms that are not identifiers. In addition, we compare policy options where, when an attacker is fined for misuse, a monetary penalty is paid to the publishing HCO as opposed to a third party (e.g., a federal regulator). Our results show that when an HCO is forced to exhaust a limited budget (set to $2000 in the study), the precision and recall of the
Identification of nuclear power plant transients using the Particle Swarm Optimization algorithm
International Nuclear Information System (INIS)
Canedo Medeiros, Jose Antonio Carlos; Schirru, Roberto
2008-01-01
In order to help nuclear power plant operator reduce his cognitive load and increase his available time to maintain the plant operating in a safe condition, transient identification systems have been devised to help operators identify possible plant transients and take fast and right corrective actions in due time. In the design of classification systems for identification of nuclear power plants transients, several artificial intelligence techniques, involving expert systems, neuro-fuzzy and genetic algorithms have been used. In this work we explore the ability of the Particle Swarm Optimization algorithm (PSO) as a tool for optimizing a distance-based discrimination transient classification method, giving also an innovative solution for searching the best set of prototypes for identification of transients. The Particle Swarm Optimization algorithm was successfully applied to the optimization of a nuclear power plant transient identification problem. Comparing the PSO to similar methods found in literature it has shown better results
Identification of nuclear power plant transients using the Particle Swarm Optimization algorithm
Energy Technology Data Exchange (ETDEWEB)
Canedo Medeiros, Jose Antonio Carlos [Universidade Federal do Rio de Janeiro, PEN/COPPE, UFRJ, Ilha do Fundao s/n, CEP 21945-970 Rio de Janeiro (Brazil)], E-mail: canedo@lmp.ufrj.br; Schirru, Roberto [Universidade Federal do Rio de Janeiro, PEN/COPPE, UFRJ, Ilha do Fundao s/n, CEP 21945-970 Rio de Janeiro (Brazil)], E-mail: schirru@lmp.ufrj.br
2008-04-15
In order to help nuclear power plant operator reduce his cognitive load and increase his available time to maintain the plant operating in a safe condition, transient identification systems have been devised to help operators identify possible plant transients and take fast and right corrective actions in due time. In the design of classification systems for identification of nuclear power plants transients, several artificial intelligence techniques, involving expert systems, neuro-fuzzy and genetic algorithms have been used. In this work we explore the ability of the Particle Swarm Optimization algorithm (PSO) as a tool for optimizing a distance-based discrimination transient classification method, giving also an innovative solution for searching the best set of prototypes for identification of transients. The Particle Swarm Optimization algorithm was successfully applied to the optimization of a nuclear power plant transient identification problem. Comparing the PSO to similar methods found in literature it has shown better results.
Optimization in engineering models and algorithms
Sioshansi, Ramteen
2017-01-01
This textbook covers the fundamentals of optimization, including linear, mixed-integer linear, nonlinear, and dynamic optimization techniques, with a clear engineering focus. It carefully describes classical optimization models and algorithms using an engineering problem-solving perspective, and emphasizes modeling issues using many real-world examples related to a variety of application areas. Providing an appropriate blend of practical applications and optimization theory makes the text useful to both practitioners and students, and gives the reader a good sense of the power of optimization and the potential difficulties in applying optimization to modeling real-world systems. The book is intended for undergraduate and graduate-level teaching in industrial engineering and other engineering specialties. It is also of use to industry practitioners, due to the inclusion of real-world applications, opening the door to advanced courses on both modeling and algorithm development within the industrial engineering ...
Model Identification of Integrated ARMA Processes
Stadnytska, Tetiana; Braun, Simone; Werner, Joachim
2008-01-01
This article evaluates the Smallest Canonical Correlation Method (SCAN) and the Extended Sample Autocorrelation Function (ESACF), automated methods for the Autoregressive Integrated Moving-Average (ARIMA) model selection commonly available in current versions of SAS for Windows, as identification tools for integrated processes. SCAN and ESACF can…
Parameter identification in the logistic STAR model
DEFF Research Database (Denmark)
Ekner, Line Elvstrøm; Nejstgaard, Emil
We propose a new and simple parametrization of the so-called speed of transition parameter of the logistic smooth transition autoregressive (LSTAR) model. The new parametrization highlights that a consequence of the well-known identification problem of the speed of transition parameter is that th...
Optimal Design of Experiments for Parametric Identification of Civil Engineering Structures
DEFF Research Database (Denmark)
Kirkegaard, Poul Henning
Optimal Systems of experiments for parametric identification of civil engineering structures is investigated. Design of experiments for parametric identification of dynamic systems is usually done by minimizing a scalar measure, e.g the determinant, the trace ect., of an estimated parameter...
Optimal Hedging with the Vector Autoregressive Model
L. Gatarek (Lukasz); S.G. Johansen (Soren)
2014-01-01
markdownabstract__Abstract__ We derive the optimal hedging ratios for a portfolio of assets driven by a Cointegrated Vector Autoregressive model with general cointegration rank. Our hedge is optimal in the sense of minimum variance portfolio. We consider a model that allows for the hedges to be
International Nuclear Information System (INIS)
Jung, B. K.; Cho, J. R.; Jeong, W. B.
2015-01-01
The position of vibration sensors influences the modal identification quality of flexible structures for a given number of sensors, and the quality of modal identification is usually estimated in terms of correlation between the natural modes using the modal assurance criterion (MAC). The sensor placement optimization is characterized by the fact that the design variables are not continuous but discrete, implying that the conventional sensitivity-driven optimization methods are not applicable. In this context, this paper presents the application of genetic algorithm to the sensor placement optimization for improving the modal identification quality of flexible structures. A discrete-type optimization problem using genetic algorithm is formulated by defining the sensor positions and the MAC as the design variables and the objective function, respectively. The proposed GA-based evolutionary optimization method is validated through the numerical experiment with a rectangular plate, and its excellence is verified from the comparison with the cases using different modal correlation measures.
Rethinking exchange market models as optimization algorithms
Luquini, Evandro; Omar, Nizam
2018-02-01
The exchange market model has mainly been used to study the inequality problem. Although the human society inequality problem is very important, the exchange market models dynamics until stationary state and its capability of ranking individuals is interesting in itself. This study considers the hypothesis that the exchange market model could be understood as an optimization procedure. We present herein the implications for algorithmic optimization and also the possibility of a new family of exchange market models
Optimizations for the EcoPod field identification tool
Directory of Open Access Journals (Sweden)
Yu YuanYuan
2008-03-01
Full Text Available Abstract Background We sketch our species identification tool for palm sized computers that helps knowledgeable observers with census activities. An algorithm turns an identification matrix into a minimal length series of questions that guide the operator towards identification. Historic observation data from the census geographic area helps minimize question volume. We explore how much historic data is required to boost performance, and whether the use of history negatively impacts identification of rare species. We also explore how characteristics of the matrix interact with the algorithm, and how best to predict the probability of observing a previously unseen species. Results Point counts of birds taken at Stanford University's Jasper Ridge Biological Preserve between 2000 and 2005 were used to examine the algorithm. A computer identified species by correctly answering, and counting the algorithm's questions. We also explored how the character density of the key matrix and the theoretical minimum number of questions for each bird in the matrix influenced the algorithm. Our investigation of the required probability smoothing determined whether Laplace smoothing of observation probabilities was sufficient, or whether the more complex Good-Turing technique is required. Conclusion Historic data improved identification speed, but only impacted the top 25% most frequently observed birds. For rare birds the history based algorithms did not impose a noticeable penalty in the number of questions required for identification. For our dataset neither age of the historic data, nor the number of observation years impacted the algorithm. Density of characters for different taxa in the identification matrix did not impact the algorithms. Intrinsic differences in identifying different birds did affect the algorithm, but the differences affected the baseline method of not using historic data to exactly the same degree. We found that Laplace smoothing
Identification of optimal inspection interval via delay-time concept
Directory of Open Access Journals (Sweden)
Glauco Ricardo Simões Gomes
2016-06-01
Full Text Available This paper presents an application of mathematical modeling aimed at managing maintenance based on the delay-time concept. The study scenario was the manufacturing sector of an industrial unit, which operates 24 hours a day in a continuous flow of production. The main idea was to use the concepts of this approach to determine the optimal time of preventive action by the maintenance department in order to ensure the greatest availability of equipment and facilities at appropriate maintenance costs. After a brief introduction of the subject, the article presents topics that illustrate the importance of mathematical modeling in maintenance management and the delay-time concept. It also describes the characteristics of the company where the study was conducted, as well as the data related to the production process and maintenance actions. Finally, the results obtained after applying the delay-time concept are presented and discussed, as well as the limitations of the article and the proposals for future research.
Directory of Open Access Journals (Sweden)
Elad Segev
Full Text Available Finding optimal markers for microorganisms important in the medical, agricultural, environmental or ecological fields is of great importance. Thousands of complete microbial genomes now available allow us, for the first time, to exhaustively identify marker proteins for groups of microbial organisms. In this work, we model the biological task as the well-known mathematical "hitting set" problem, solving it based on both greedy and randomized approximation algorithms. We identify unique markers for 17 phenotypic and taxonomic microbial groups, including proteins related to the nitrite reductase enzyme as markers for the non-anammox nitrifying bacteria group, and two transcription regulation proteins, nusG and yhiF, as markers for the Archaea and Escherichia/Shigella taxonomic groups, respectively. Additionally, we identify marker proteins for three subtypes of pathogenic E. coli, which previously had no known optimal markers. Practically, depending on the completeness of the database this algorithm can be used for identification of marker genes for any microbial group, these marker genes may be prime candidates for the understanding of the genetic basis of the group's phenotype or to help discover novel functions which are uniquely shared among a group of microbes. We show that our method is both theoretically and practically efficient, while establishing an upper bound on its time complexity and approximation ratio; thus, it promises to remain efficient and permit the identification of marker proteins that are specific to phenotypic or taxonomic groups, even as more and more bacterial genomes are being sequenced.
DEFF Research Database (Denmark)
Ghiglino, Christian; Tvede, Mich
for generations, through fiscal policy, i.e. monetary transfers and taxes. Both situations with and without time discounting are considered. It is shown that if the discount factor is suffciently close to one then the optimal policy stabilizes the economy, i.e. the equilibrium path has the turnpike property...
DEFF Research Database (Denmark)
Ghiglino, Christian; Tvede, Mich
2000-01-01
for generations, through fiscal policy, i.e., monetary transfers and taxes. Situations both with and without time discounting are considered. It is shown that if the discount factor is sufficiently close to one then the optimal policy stabilizes the economy, i.e. the equilibrium path has the turnpike property...
Handbook on modelling for discrete optimization
Pitsoulis, Leonidas; Williams, H
2006-01-01
The primary objective underlying the Handbook on Modelling for Discrete Optimization is to demonstrate and detail the pervasive nature of Discrete Optimization. While its applications cut across an incredibly wide range of activities, many of the applications are only known to specialists. It is the aim of this handbook to correct this. It has long been recognized that "modelling" is a critically important mathematical activity in designing algorithms for solving these discrete optimization problems. Nevertheless solving the resultant models is also often far from straightforward. In recent years it has become possible to solve many large-scale discrete optimization problems. However, some problems remain a challenge, even though advances in mathematical methods, hardware, and software technology have pushed the frontiers forward. This handbook couples the difficult, critical-thinking aspects of mathematical modeling with the hot area of discrete optimization. It will be done in an academic handbook treatment...
Portfolio optimization with mean-variance model
Hoe, Lam Weng; Siew, Lam Weng
2016-06-01
Investors wish to achieve the target rate of return at the minimum level of risk in their investment. Portfolio optimization is an investment strategy that can be used to minimize the portfolio risk and can achieve the target rate of return. The mean-variance model has been proposed in portfolio optimization. The mean-variance model is an optimization model that aims to minimize the portfolio risk which is the portfolio variance. The objective of this study is to construct the optimal portfolio using the mean-variance model. The data of this study consists of weekly returns of 20 component stocks of FTSE Bursa Malaysia Kuala Lumpur Composite Index (FBMKLCI). The results of this study show that the portfolio composition of the stocks is different. Moreover, investors can get the return at minimum level of risk with the constructed optimal mean-variance portfolio.
Optimization Model for Web Based Multimodal Interactive Simulations.
Halic, Tansel; Ahn, Woojin; De, Suvranu
2015-07-15
This paper presents a technique for optimizing the performance of web based multimodal interactive simulations. For such applications where visual quality and the performance of simulations directly influence user experience, overloading of hardware resources may result in unsatisfactory reduction in the quality of the simulation and user satisfaction. However, optimization of simulation performance on individual hardware platforms is not practical. Hence, we present a mixed integer programming model to optimize the performance of graphical rendering and simulation performance while satisfying application specific constraints. Our approach includes three distinct phases: identification, optimization and update . In the identification phase, the computing and rendering capabilities of the client device are evaluated using an exploratory proxy code. This data is utilized in conjunction with user specified design requirements in the optimization phase to ensure best possible computational resource allocation. The optimum solution is used for rendering (e.g. texture size, canvas resolution) and simulation parameters (e.g. simulation domain) in the update phase. Test results are presented on multiple hardware platforms with diverse computing and graphics capabilities to demonstrate the effectiveness of our approach.
Contribution to the modeling and the identification of haptic interfaces
International Nuclear Information System (INIS)
Janot, A.
2007-12-01
This thesis focuses on the modeling and the identification of haptic interfaces using cable drive. An haptic interface is a force feedback device, which enables its user to interact with a virtual world or a remote environment explored by a slave system. It aims at the matching between the forces and displacements given by the user and those applied to virtual world. Usually, haptic interfaces make use of a mechanical actuated structure whose distal link is equipped with a handle. When manipulating this handle to interact with explored world, the user feels the apparent mass, compliance and friction of the interface. This distortion introduced between the operator and the virtual world must be modeled and identified to enhance the design of the interface and develop appropriate control laws. The first approach has been to adapt the modeling and identification methods of rigid and localized flexibilities robots to haptic interfaces. The identification technique makes use of the inverse dynamic model and the linear least squares with the measurements of joint torques and positions. This approach is validated on a single degree of freedom and a three degree of freedom haptic devices. A new identification method needing only torque data is proposed. It is based on a closed loop simulation using the direct dynamic model. The optimal parameters minimize the 2 norms of the error between the actual torque and the simulated torque assuming the same control law and the same tracking trajectory. This non linear least squares problem dramatically is simplified using the inverse model to calculate the simulated torque. This method is validated on the single degree of freedom haptic device and the SCARA robot. (author)
Modeling investor optimism with fuzzy connectives
Lovric, M.; Almeida, R.J.; Kaymak, U.; Spronk, J.; Carvalho, J.P.; Dubois, D.; Kaymak, U.; Sousa, J.M.C.
2009-01-01
Optimism or pessimism of investors is one of the important characteristics that determine the investment behavior in financial markets. In this paper, we propose a model of investor optimism based on a fuzzy connective. The advantage of the proposed approach is that the influence of different levels
Hazard identification based on plant functional modelling
International Nuclear Information System (INIS)
Rasmussen, B.; Whetton, C.
1993-10-01
A major objective of the present work is to provide means for representing a process plant as a socio-technical system, so as to allow hazard identification at a high level. The method includes technical, human and organisational aspects and is intended to be used for plant level hazard identification so as to identify critical areas and the need for further analysis using existing methods. The first part of the method is the preparation of a plant functional model where a set of plant functions link together hardware, software, operations, work organisation and other safety related aspects of the plant. The basic principle of the functional modelling is that any aspect of the plant can be represented by an object (in the sense that this term is used in computer science) based upon an Intent (or goal); associated with each Intent are Methods, by which the Intent is realized, and Constraints, which limit the Intent. The Methods and Constraints can themselves be treated as objects and decomposed into lower-level Intents (hence the procedure is known as functional decomposition) so giving rise to a hierarchical, object-oriented structure. The plant level hazard identification is carried out on the plant functional model using the Concept Hazard Analysis method. In this, the user will be supported by checklists and keywords and the analysis is structured by pre-defined worksheets. The preparation of the plant functional model and the performance of the hazard identification can be carried out manually or with computer support. (au) (4 tabs., 10 ills., 7 refs.)
Modeling and optimization of laser cutting operations
Directory of Open Access Journals (Sweden)
Gadallah Mohamed Hassan
2015-01-01
Full Text Available Laser beam cutting is one important nontraditional machining process. This paper optimizes the parameters of laser beam cutting parameters of stainless steel (316L considering the effect of input parameters such as power, oxygen pressure, frequency and cutting speed. Statistical design of experiments is carried in three different levels and process responses such as average kerf taper (Ta, surface roughness (Ra and heat affected zones are measured accordingly. A response surface model is developed as a function of the process parameters. Responses predicted by the models (as per Taguchi’s L27OA are employed to search for an optimal combination to achieve desired process yield. Response Surface Models (RSMs are developed for mean responses, S/N ratio, and standard deviation of responses. Optimization models are formulated as single objective optimization problem subject to process constraints. Models are formulated based on Analysis of Variance (ANOVA and optimized using Matlab developed environment. Optimum solutions are compared with Taguchi Methodology results. As such, practicing engineers have means to model, analyze and optimize nontraditional machining processes. Validation experiments are carried to verify the developed models with success.
Mathematical modeling and optimization of complex structures
Repin, Sergey; Tuovinen, Tero
2016-01-01
This volume contains selected papers in three closely related areas: mathematical modeling in mechanics, numerical analysis, and optimization methods. The papers are based upon talks presented on the International Conference for Mathematical Modeling and Optimization in Mechanics, held in Jyväskylä, Finland, March 6-7, 2014 dedicated to Prof. N. Banichuk on the occasion of his 70th birthday. The articles are written by well-known scientists working in computational mechanics and in optimization of complicated technical models. Also, the volume contains papers discussing the historical development, the state of the art, new ideas, and open problems arising in modern continuum mechanics and applied optimization problems. Several papers are concerned with mathematical problems in numerical analysis, which are also closely related to important mechanical models. The main topics treated include: * Computer simulation methods in mechanics, physics, and biology; * Variational problems and methods; minimiz...
Parameter Identification of Static Friction Based on An Optimal Exciting Trajectory
Tu, X.; Zhao, P.; Zhou, Y. F.
2017-12-01
In this paper, we focus on how to improve the identification efficiency of friction parameters in a robot joint. First, the static friction model that has only linear dependencies with respect to their parameters is adopted so that the servomotor dynamics can be linearized. In this case, the traditional exciting trajectory based on Fourier series is modified by replacing the constant term with quintic polynomial to ensure the boundary continuity of speed and acceleration. Then, the Fourier-related parameters are optimized by genetic algorithm(GA) in which the condition number of regression matrix is set as the fitness function. At last, compared with the constant-velocity tracking experiment, the friction parameters from the exciting trajectory experiment has the similar result with the advantage of time reduction.
Maintenance Optimization of High Voltage Substation Model
Directory of Open Access Journals (Sweden)
Radim Bris
2008-01-01
Full Text Available The real system from practice is selected for optimization purpose in this paper. We describe the real scheme of a high voltage (HV substation in different work states. Model scheme of the HV substation 22 kV is demonstrated within the paper. The scheme serves as input model scheme for the maintenance optimization. The input reliability and cost parameters of all components are given: the preventive and corrective maintenance costs, the actual maintenance period (being optimized, the failure rate and mean time to repair - MTTR.
Optimizing the identification of citrullinated peptides by mass spectrometry
DEFF Research Database (Denmark)
Bennike, Tue; Lauridsen, Kasper B.; Olesen, Michael Kruse
2013-01-01
Citrullinated proteins have been associated with several diseases and citrullination can most likely function as a target for novel diagnostic agents and unravel disease etiologies. The correct identification of citrullinated proteins is therefore of most importance. Mass spectrometry (MS) driven...... of trypsin, digestion was performed on synthetic peptide sets containing either arginine or citrulline. The peptide sequences originated from disease-associated in vivo citrullinated proteins; some reported as being C-terminal tryptic citrullinated peptides. Furthermore, the proteolytic activity was verified...
A useful framework for optimal replacement models
International Nuclear Information System (INIS)
Aven, Terje; Dekker, Rommert
1997-01-01
In this note we present a general framework for optimization of replacement times. It covers a number of models, including various age and block replacement models, and allows a uniform analysis for all these models. A relation to the marginal cost concept is described
Multiobjective optimization of an extremal evolution model
International Nuclear Information System (INIS)
Elettreby, M.F.
2004-09-01
We propose a two-dimensional model for a co-evolving ecosystem that generalizes the extremal coupled map lattice model. The model takes into account the concept of multiobjective optimization. We find that the system self-organizes into a critical state. The distributions of the distances between subsequent mutations as well as the distribution of avalanches sizes follow power law. (author)
Modeling and optimization of HVAC energy consumption
Energy Technology Data Exchange (ETDEWEB)
Kusiak, Andrew; Li, Mingyang; Tang, Fan [Department of Mechanical and Industrial Engineering, University of Iowa, Iowa City, IA 52242 - 1527 (United States)
2010-10-15
A data-driven approach for minimization of the energy to air condition a typical office-type facility is presented. Eight data-mining algorithms are applied to model the nonlinear relationship among energy consumption, control settings (supply air temperature and supply air static pressure), and a set of uncontrollable parameters. The multiple-linear perceptron (MLP) ensemble outperforms other models tested in this research, and therefore it is selected to model a chiller, a pump, a fan, and a reheat device. These four models are integrated into an energy optimization model with two decision variables, the setpoint of the supply air temperature and the static pressure in the air handling unit. The model is solved with a particle swarm optimization algorithm. The optimization results have demonstrated the total energy consumed by the heating, ventilation, and air-conditioning system is reduced by over 7%. (author)
Optimization Models for Petroleum Field Exploitation
Energy Technology Data Exchange (ETDEWEB)
Jonsbraaten, Tore Wiig
1998-12-31
This thesis presents and discusses various models for optimal development of a petroleum field. The objective of these optimization models is to maximize, under many uncertain parameters, the project`s expected net present value. First, an overview of petroleum field optimization is given from the point of view of operations research. Reservoir equations for a simple reservoir system are derived and discretized and included in optimization models. Linear programming models for optimizing production decisions are discussed and extended to mixed integer programming models where decisions concerning platform, wells and production strategy are optimized. Then, optimal development decisions under uncertain oil prices are discussed. The uncertain oil price is estimated by a finite set of price scenarios with associated probabilities. The problem is one of stochastic mixed integer programming, and the solution approach is to use a scenario and policy aggregation technique developed by Rockafellar and Wets although this technique was developed for continuous variables. Stochastic optimization problems with focus on problems with decision dependent information discoveries are also discussed. A class of ``manageable`` problems is identified and an implicit enumeration algorithm for finding optimal decision policy is proposed. Problems involving uncertain reservoir properties but with a known initial probability distribution over possible reservoir realizations are discussed. Finally, a section on Nash-equilibrium and bargaining in an oil reservoir management game discusses the pool problem arising when two lease owners have access to the same underlying oil reservoir. Because the oil tends to migrate, both lease owners have incentive to drain oil from the competitors part of the reservoir. The discussion is based on a numerical example. 107 refs., 31 figs., 14 tabs.
Enhanced index tracking modelling in portfolio optimization
Lam, W. S.; Hj. Jaaman, Saiful Hafizah; Ismail, Hamizun bin
2013-09-01
Enhanced index tracking is a popular form of passive fund management in stock market. It is a dual-objective optimization problem, a trade-off between maximizing the mean return and minimizing the risk. Enhanced index tracking aims to generate excess return over the return achieved by the index without purchasing all of the stocks that make up the index by establishing an optimal portfolio. The objective of this study is to determine the optimal portfolio composition and performance by using weighted model in enhanced index tracking. Weighted model focuses on the trade-off between the excess return and the risk. The results of this study show that the optimal portfolio for the weighted model is able to outperform the Malaysia market index which is Kuala Lumpur Composite Index because of higher mean return and lower risk without purchasing all the stocks in the market index.
Identification of Optimal Preventive Maintenance Decisions for Composite Components
Laks, P.; Verhagen, W.J.C.; Gherman, B.; Porumbel, I.
2018-01-01
This research proposes a decision support tool which identifies cost-optimal maintenance decisions for a given planning period. Simultaneously, the reliability state of the component is kept at or below a given reliability threshold: a failure limit policy applies. The tool is developed to support
Optimal Design of Experiments for Parametric Identification of Civil Engineering Structures
Kirkegaard, Poul Henning
1991-01-01
Optimal Systems of experiments for parametric identification of civil engineering structures is investigated. Design of experiments for parametric identification of dynamic systems is usually done by minimizing a scalar measure, e.g the determinant, the trace ect., of an estimated parameter covariance matrix, based on prior knowledge. The experimental conditions available for adjustment, considering in this thesis, are input signal, sampling rate, the location of sensors and number of sensors.
Parameter optimization for surface flux transport models
Whitbread, T.; Yeates, A. R.; Muñoz-Jaramillo, A.; Petrie, G. J. D.
2017-11-01
Accurate prediction of solar activity calls for precise calibration of solar cycle models. Consequently we aim to find optimal parameters for models which describe the physical processes on the solar surface, which in turn act as proxies for what occurs in the interior and provide source terms for coronal models. We use a genetic algorithm to optimize surface flux transport models using National Solar Observatory (NSO) magnetogram data for Solar Cycle 23. This is applied to both a 1D model that inserts new magnetic flux in the form of idealized bipolar magnetic regions, and also to a 2D model that assimilates specific shapes of real active regions. The genetic algorithm searches for parameter sets (meridional flow speed and profile, supergranular diffusivity, initial magnetic field, and radial decay time) that produce the best fit between observed and simulated butterfly diagrams, weighted by a latitude-dependent error structure which reflects uncertainty in observations. Due to the easily adaptable nature of the 2D model, the optimization process is repeated for Cycles 21, 22, and 24 in order to analyse cycle-to-cycle variation of the optimal solution. We find that the ranges and optimal solutions for the various regimes are in reasonable agreement with results from the literature, both theoretical and observational. The optimal meridional flow profiles for each regime are almost entirely within observational bounds determined by magnetic feature tracking, with the 2D model being able to accommodate the mean observed profile more successfully. Differences between models appear to be important in deciding values for the diffusive and decay terms. In like fashion, differences in the behaviours of different solar cycles lead to contrasts in parameters defining the meridional flow and initial field strength.
Identification of neutral biochemical network models from time series data
Directory of Open Access Journals (Sweden)
Maia Marco
2009-05-01
Full Text Available Abstract Background The major difficulty in modeling biological systems from multivariate time series is the identification of parameter sets that endow a model with dynamical behaviors sufficiently similar to the experimental data. Directly related to this parameter estimation issue is the task of identifying the structure and regulation of ill-characterized systems. Both tasks are simplified if the mathematical model is canonical, i.e., if it is constructed according to strict guidelines. Results In this report, we propose a method for the identification of admissible parameter sets of canonical S-systems from biological time series. The method is based on a Monte Carlo process that is combined with an improved version of our previous parameter optimization algorithm. The method maps the parameter space into the network space, which characterizes the connectivity among components, by creating an ensemble of decoupled S-system models that imitate the dynamical behavior of the time series with sufficient accuracy. The concept of sloppiness is revisited in the context of these S-system models with an exploration not only of different parameter sets that produce similar dynamical behaviors but also different network topologies that yield dynamical similarity. Conclusion The proposed parameter estimation methodology was applied to actual time series data from the glycolytic pathway of the bacterium Lactococcus lactis and led to ensembles of models with different network topologies. In parallel, the parameter optimization algorithm was applied to the same dynamical data upon imposing a pre-specified network topology derived from prior biological knowledge, and the results from both strategies were compared. The results suggest that the proposed method may serve as a powerful exploration tool for testing hypotheses and the design of new experiments.
Identification of neutral biochemical network models from time series data.
Vilela, Marco; Vinga, Susana; Maia, Marco A Grivet Mattoso; Voit, Eberhard O; Almeida, Jonas S
2009-05-05
The major difficulty in modeling biological systems from multivariate time series is the identification of parameter sets that endow a model with dynamical behaviors sufficiently similar to the experimental data. Directly related to this parameter estimation issue is the task of identifying the structure and regulation of ill-characterized systems. Both tasks are simplified if the mathematical model is canonical, i.e., if it is constructed according to strict guidelines. In this report, we propose a method for the identification of admissible parameter sets of canonical S-systems from biological time series. The method is based on a Monte Carlo process that is combined with an improved version of our previous parameter optimization algorithm. The method maps the parameter space into the network space, which characterizes the connectivity among components, by creating an ensemble of decoupled S-system models that imitate the dynamical behavior of the time series with sufficient accuracy. The concept of sloppiness is revisited in the context of these S-system models with an exploration not only of different parameter sets that produce similar dynamical behaviors but also different network topologies that yield dynamical similarity. The proposed parameter estimation methodology was applied to actual time series data from the glycolytic pathway of the bacterium Lactococcus lactis and led to ensembles of models with different network topologies. In parallel, the parameter optimization algorithm was applied to the same dynamical data upon imposing a pre-specified network topology derived from prior biological knowledge, and the results from both strategies were compared. The results suggest that the proposed method may serve as a powerful exploration tool for testing hypotheses and the design of new experiments.
Mathematical model of highways network optimization
Sakhapov, R. L.; Nikolaeva, R. V.; Gatiyatullin, M. H.; Makhmutov, M. M.
2017-12-01
The article deals with the issue of highways network design. Studies show that the main requirement from road transport for the road network is to ensure the realization of all the transport links served by it, with the least possible cost. The goal of optimizing the network of highways is to increase the efficiency of transport. It is necessary to take into account a large number of factors that make it difficult to quantify and qualify their impact on the road network. In this paper, we propose building an optimal variant for locating the road network on the basis of a mathematical model. The article defines the criteria for optimality and objective functions that reflect the requirements for the road network. The most fully satisfying condition for optimality is the minimization of road and transport costs. We adopted this indicator as a criterion of optimality in the economic-mathematical model of a network of highways. Studies have shown that each offset point in the optimal binding road network is associated with all other corresponding points in the directions providing the least financial costs necessary to move passengers and cargo from this point to the other corresponding points. The article presents general principles for constructing an optimal network of roads.
Statistical models for optimizing mineral exploration
International Nuclear Information System (INIS)
Wignall, T.K.; DeGeoffroy, J.
1987-01-01
The primary purpose of mineral exploration is to discover ore deposits. The emphasis of this volume is on the mathematical and computational aspects of optimizing mineral exploration. The seven chapters that make up the main body of the book are devoted to the description and application of various types of computerized geomathematical models. These chapters include: (1) the optimal selection of ore deposit types and regions of search, as well as prospecting selected areas, (2) designing airborne and ground field programs for the optimal coverage of prospecting areas, and (3) delineating and evaluating exploration targets within prospecting areas by means of statistical modeling. Many of these statistical programs are innovative and are designed to be useful for mineral exploration modeling. Examples of geomathematical models are applied to exploring for six main types of base and precious metal deposits, as well as other mineral resources (such as bauxite and uranium)
Dynamic optimization deterministic and stochastic models
Hinderer, Karl; Stieglitz, Michael
2016-01-01
This book explores discrete-time dynamic optimization and provides a detailed introduction to both deterministic and stochastic models. Covering problems with finite and infinite horizon, as well as Markov renewal programs, Bayesian control models and partially observable processes, the book focuses on the precise modelling of applications in a variety of areas, including operations research, computer science, mathematics, statistics, engineering, economics and finance. Dynamic Optimization is a carefully presented textbook which starts with discrete-time deterministic dynamic optimization problems, providing readers with the tools for sequential decision-making, before proceeding to the more complicated stochastic models. The authors present complete and simple proofs and illustrate the main results with numerous examples and exercises (without solutions). With relevant material covered in four appendices, this book is completely self-contained.
Modeling and optimization of LCD optical performance
Yakovlev, Dmitry A; Kwok, Hoi-Sing
2015-01-01
The aim of this book is to present the theoretical foundations of modeling the optical characteristics of liquid crystal displays, critically reviewing modern modeling methods and examining areas of applicability. The modern matrix formalisms of optics of anisotropic stratified media, most convenient for solving problems of numerical modeling and optimization of LCD, will be considered in detail. The benefits of combined use of the matrix methods will be shown, which generally provides the best compromise between physical adequacy and accuracy with computational efficiency and optimization fac
International Nuclear Information System (INIS)
Sánchez-Peña, Matilde L; Isaza, Clara E; Pérez-Morales, Jaileene; Rodríguez-Padilla, Cristina; Castro, José M; Cabrera-Ríos, Mauricio
2013-01-01
Microarray experiments are capable of determining the relative expression of tens of thousands of genes simultaneously, thus resulting in very large databases. The analysis of these databases and the extraction of biologically relevant knowledge from them are challenging tasks. The identification of potential cancer biomarker genes is one of the most important aims for microarray analysis and, as such, has been widely targeted in the literature. However, identifying a set of these genes consistently across different experiments, researches, microarray platforms, or cancer types is still an elusive endeavor. Besides the inherent difficulty of the large and nonconstant variability in these experiments and the incommensurability between different microarray technologies, there is the issue of the users having to adjust a series of parameters that significantly affect the outcome of the analyses and that do not have a biological or medical meaning. In this study, the identification of potential cancer biomarkers from microarray data is casted as a multiple criteria optimization (MCO) problem. The efficient solutions to this problem, found here through data envelopment analysis (DEA), are associated to genes that are proposed as potential cancer biomarkers. The method does not require any parameter adjustment by the user, and thus fosters repeatability. The approach also allows the analysis of different microarray experiments, microarray platforms, and cancer types simultaneously. The results include the analysis of three publicly available microarray databases related to cervix cancer. This study points to the feasibility of modeling the selection of potential cancer biomarkers from microarray data as an MCO problem and solve it using DEA. Using MCO entails a new optic to the identification of potential cancer biomarkers as it does not require the definition of a threshold value to establish significance for a particular gene and the selection of a normalization
Modelling and Optimizing Mathematics Learning in Children
Käser, Tanja; Busetto, Alberto Giovanni; Solenthaler, Barbara; Baschera, Gian-Marco; Kohn, Juliane; Kucian, Karin; von Aster, Michael; Gross, Markus
2013-01-01
This study introduces a student model and control algorithm, optimizing mathematics learning in children. The adaptive system is integrated into a computer-based training system for enhancing numerical cognition aimed at children with developmental dyscalculia or difficulties in learning mathematics. The student model consists of a dynamic…
Cheng, Long; Hou, Zeng-Guang; Lin, Yingzi; Tan, Min; Zhang, Wenjun Chris; Wu, Fang-Xiang
2011-05-01
A recurrent neural network is proposed for solving the non-smooth convex optimization problem with the convex inequality and linear equality constraints. Since the objective function and inequality constraints may not be smooth, the Clarke's generalized gradients of the objective function and inequality constraints are employed to describe the dynamics of the proposed neural network. It is proved that the equilibrium point set of the proposed neural network is equivalent to the optimal solution of the original optimization problem by using the Lagrangian saddle-point theorem. Under weak conditions, the proposed neural network is proved to be stable, and the state of the neural network is convergent to one of its equilibrium points. Compared with the existing neural network models for non-smooth optimization problems, the proposed neural network can deal with a larger class of constraints and is not based on the penalty method. Finally, the proposed neural network is used to solve the identification problem of genetic regulatory networks, which can be transformed into a non-smooth convex optimization problem. The simulation results show the satisfactory identification accuracy, which demonstrates the effectiveness and efficiency of the proposed approach.
Simplified fuel cell system model identification
Energy Technology Data Exchange (ETDEWEB)
Caux, S.; Fadel, M. [Laboratoire d' Electrotechnique et d' Electronique Industrielle, Toulouse (France); Hankache, W. [Laboratoire d' Electrotechnique et d' Electronique Industrielle, Toulouse (France)]|[Laboratoire de recherche en Electronique, Electrotechnique et Systemes, Belfort (France); Hissel, D. [Laboratoire de recherche en Electronique, Electrotechnique et Systemes, Belfort (France)
2006-07-01
This paper discussed a simplified physical fuel cell model used to study fuel cell and supercap energy applications for vehicles. Anode, cathode, membrane, and electrode elements of the cell were modelled. A quasi-static Amphlett model was used to predict voltage responses of the fuel cell as a function of the current, temperature, and partial pressures of the reactive gases. The potential of each cell was multiplied by the number of cells in order to model a fuel cell stack. The model was used to describe the main phenomena associated with current voltage behaviour. Data were then compared with data from laboratory tests conducted on a 20 cell stack subjected to a current and time profile developed using speed data from a vehicle operating in an urban environment. The validated model was used to develop iterative optimization algorithms for an energy management strategy that linked 3 voltage sources with fuel cell parameters. It was concluded that classic state and dynamic measurements using a simple least square algorithm can be used to identify the most important parameters for optimal fuel cell operation. 9 refs., 1 tab., 6 figs.
International Nuclear Information System (INIS)
Carver, M.B.; Austin, C.F.; Ross, N.E.
1980-02-01
This report discusses the mechanics of automated parameter identification in simulation packages, and reviews available integration and optimization algorithms and their interaction within the recently developed optimization options in the FORSIM and MACKSIM simulation packages. In the MACKSIM mass-action chemical kinetics simulation package, the form and structure of the ordinary differential equations involved is known, so the implementation of an optimizing option is relatively straightforward. FORSIM, however, is designed to integrate ordinary and partial differential equations of abritrary definition. As the form of the equations is not known in advance, the design of the optimizing option is more intricate, but the philosophy could be applied to most simulation packages. In either case, however, the invocation of the optimizing interface is simple and user-oriented. Full details for the use of the optimizing mode for each program are given; specific applications are used as examples. (O.T.)
Modeling and Optimization : Theory and Applications Conference
Terlaky, Tamás
2017-01-01
This volume contains a selection of contributions that were presented at the Modeling and Optimization: Theory and Applications Conference (MOPTA) held at Lehigh University in Bethlehem, Pennsylvania, USA on August 17-19, 2016. The conference brought together a diverse group of researchers and practitioners, working on both theoretical and practical aspects of continuous or discrete optimization. Topics presented included algorithms for solving convex, network, mixed-integer, nonlinear, and global optimization problems, and addressed the application of deterministic and stochastic optimization techniques in energy, finance, logistics, analytics, health, and other important fields. The contributions contained in this volume represent a sample of these topics and applications and illustrate the broad diversity of ideas discussed at the meeting.
Modeling and Optimization : Theory and Applications Conference
Terlaky, Tamás
2015-01-01
This volume contains a selection of contributions that were presented at the Modeling and Optimization: Theory and Applications Conference (MOPTA) held at Lehigh University in Bethlehem, Pennsylvania, USA on August 13-15, 2014. The conference brought together a diverse group of researchers and practitioners, working on both theoretical and practical aspects of continuous or discrete optimization. Topics presented included algorithms for solving convex, network, mixed-integer, nonlinear, and global optimization problems, and addressed the application of deterministic and stochastic optimization techniques in energy, finance, logistics, analytics, healthcare, and other important fields. The contributions contained in this volume represent a sample of these topics and applications and illustrate the broad diversity of ideas discussed at the meeting.
Identification of Civil Engineering Structures using Vector ARMA Models
DEFF Research Database (Denmark)
Andersen, P.
The dissertation treats the matter of systems identification and modelling of load-bearing constructions using Auto-Regressive Moving Average Vector (ARMAV) models.......The dissertation treats the matter of systems identification and modelling of load-bearing constructions using Auto-Regressive Moving Average Vector (ARMAV) models....
A model of optimal voluntary muscular control.
FitzHugh, R
1977-07-19
In the absence of detailed knowledge of how the CNS controls a muscle through its motor fibers, a reasonable hypothesis is that of optimal control. This hypothesis is studied using a simplified mathematical model of a single muscle, based on A.V. Hill's equations, with series elastic element omitted, and with the motor signal represented by a single input variable. Two cost functions were used. The first was total energy expended by the muscle (work plus heat). If the load is a constant force, with no inertia, Hill's optimal velocity of shortening results. If the load includes a mass, analysis by optimal control theory shows that the motor signal to the muscle consists of three phases: (1) maximal stimulation to accelerate the mass to the optimal velocity as quickly as possible, (2) an intermediate level of stimulation to hold the velocity at its optimal value, once reached, and (3) zero stimulation, to permit the mass to slow down, as quickly as possible, to zero velocity at the specified distance shortened. If the latter distance is too small, or the mass too large, the optimal velocity is not reached, and phase (2) is absent. For lengthening, there is no optimal velocity; there are only two phases, zero stimulation followed by maximal stimulation. The second cost function was total time. The optimal control for shortening consists of only phases (1) and (3) above, and is identical to the minimal energy control whenever phase (2) is absent from the latter. Generalization of this model to include viscous loads and a series elastic element are discussed.
PEM fuel cell model suitable for energy optimization purposes
International Nuclear Information System (INIS)
Caux, S.; Hankache, W.; Fadel, M.; Hissel, D.
2010-01-01
Many fuel cell stack models or fuel cell system models exist. A model must be built with a main objective, sometimes for accurate electro-chemical behavior description, sometimes for optimization procedure at a system level. In this paper, based on the fundamental reactions present in a fuel cell stack, an accurate model and identification procedure is presented for future energy management in a Hybrid Electrical Vehicle (HEV). The proposed approach extracts all important state variables in such a system and based on the control of the fuel cell's gas flows and temperature, simplification arises to a simple electrical model. Assumptions verified due to the control of the stack allow simplifying the relationships within keeping accuracy in the description of a global fuel cell stack behavior from current demand to voltage. Modeled voltage and current dynamic behaviors are compared with actual measurements. The obtained accuracy is sufficient and less time-consuming (versus other previously published system-oriented models) leading to a suitable model for optimization iterative off-line algorithms.
PEM fuel cell model suitable for energy optimization purposes
Energy Technology Data Exchange (ETDEWEB)
Caux, S.; Hankache, W.; Fadel, M. [LAPLACE/CODIASE: UMR CNRS 5213, Universite de Toulouse - INPT, UPS, - ENSEEIHT: 2 rue Camichel BP7122, 31071 Toulouse (France); CNRS, LAPLACE, F-31071 Toulouse (France); Hissel, D. [FEMTO-ST ENISYS/FCLAB, UMR CNRS 6174, University of Franche-Comte, Rue Thierry Mieg, 90010 Belfort (France)
2010-02-15
Many fuel cell stack models or fuel cell system models exist. A model must be built with a main objective, sometimes for accurate electro-chemical behavior description, sometimes for optimization procedure at a system level. In this paper, based on the fundamental reactions present in a fuel cell stack, an accurate model and identification procedure is presented for future energy management in a Hybrid Electrical Vehicle (HEV). The proposed approach extracts all important state variables in such a system and based on the control of the fuel cell's gas flows and temperature, simplification arises to a simple electrical model. Assumptions verified due to the control of the stack allow simplifying the relationships within keeping accuracy in the description of a global fuel cell stack behavior from current demand to voltage. Modeled voltage and current dynamic behaviors are compared with actual measurements. The obtained accuracy is sufficient and less time-consuming (versus other previously published system-oriented models) leading to a suitable model for optimization iterative off-line algorithms. (author)
Iterative integral parameter identification of a respiratory mechanics model.
Schranz, Christoph; Docherty, Paul D; Chiew, Yeong Shiong; Möller, Knut; Chase, J Geoffrey
2012-07-18
Patient-specific respiratory mechanics models can support the evaluation of optimal lung protective ventilator settings during ventilation therapy. Clinical application requires that the individual's model parameter values must be identified with information available at the bedside. Multiple linear regression or gradient-based parameter identification methods are highly sensitive to noise and initial parameter estimates. Thus, they are difficult to apply at the bedside to support therapeutic decisions. An iterative integral parameter identification method is applied to a second order respiratory mechanics model. The method is compared to the commonly used regression methods and error-mapping approaches using simulated and clinical data. The clinical potential of the method was evaluated on data from 13 Acute Respiratory Distress Syndrome (ARDS) patients. The iterative integral method converged to error minima 350 times faster than the Simplex Search Method using simulation data sets and 50 times faster using clinical data sets. Established regression methods reported erroneous results due to sensitivity to noise. In contrast, the iterative integral method was effective independent of initial parameter estimations, and converged successfully in each case tested. These investigations reveal that the iterative integral method is beneficial with respect to computing time, operator independence and robustness, and thus applicable at the bedside for this clinical application.
Iterative integral parameter identification of a respiratory mechanics model
Directory of Open Access Journals (Sweden)
Schranz Christoph
2012-07-01
Full Text Available Abstract Background Patient-specific respiratory mechanics models can support the evaluation of optimal lung protective ventilator settings during ventilation therapy. Clinical application requires that the individual’s model parameter values must be identified with information available at the bedside. Multiple linear regression or gradient-based parameter identification methods are highly sensitive to noise and initial parameter estimates. Thus, they are difficult to apply at the bedside to support therapeutic decisions. Methods An iterative integral parameter identification method is applied to a second order respiratory mechanics model. The method is compared to the commonly used regression methods and error-mapping approaches using simulated and clinical data. The clinical potential of the method was evaluated on data from 13 Acute Respiratory Distress Syndrome (ARDS patients. Results The iterative integral method converged to error minima 350 times faster than the Simplex Search Method using simulation data sets and 50 times faster using clinical data sets. Established regression methods reported erroneous results due to sensitivity to noise. In contrast, the iterative integral method was effective independent of initial parameter estimations, and converged successfully in each case tested. Conclusion These investigations reveal that the iterative integral method is beneficial with respect to computing time, operator independence and robustness, and thus applicable at the bedside for this clinical application.
Optimal time points sampling in pathway modelling.
Hu, Shiyan
2004-01-01
Modelling cellular dynamics based on experimental data is at the heart of system biology. Considerable progress has been made to dynamic pathway modelling as well as the related parameter estimation. However, few of them gives consideration for the issue of optimal sampling time selection for parameter estimation. Time course experiments in molecular biology rarely produce large and accurate data sets and the experiments involved are usually time consuming and expensive. Therefore, to approximate parameters for models with only few available sampling data is of significant practical value. For signal transduction, the sampling intervals are usually not evenly distributed and are based on heuristics. In the paper, we investigate an approach to guide the process of selecting time points in an optimal way to minimize the variance of parameter estimates. In the method, we first formulate the problem to a nonlinear constrained optimization problem by maximum likelihood estimation. We then modify and apply a quantum-inspired evolutionary algorithm, which combines the advantages of both quantum computing and evolutionary computing, to solve the optimization problem. The new algorithm does not suffer from the morass of selecting good initial values and being stuck into local optimum as usually accompanied with the conventional numerical optimization techniques. The simulation results indicate the soundness of the new method.
Zhu, Tian; Cao, Shuyi; Su, Pin-Chih; Patel, Ram; Shah, Darshan; Chokshi, Heta B.; Szukala, Richard; Johnson, Michael E.; Hevener, Kirk E.
2013-01-01
A critical analysis of virtual screening results published between 2007 and 2011 was performed. The activity of reported hit compounds from over 400 studies was compared to their hit identification criteria. Hit rates and ligand efficiencies were calculated to assist in these analyses and the results were compared with factors such as the size of the virtual library and the number of compounds tested. A series of promiscuity, drug-like, and ADMET filters were applied to the reported hits to assess the quality of compounds reported and a careful analysis of a subset of the studies which presented hit optimization was performed. This data allowed us to make several practical recommendations with respect to selection of compounds for experimental testing, defining hit identification criteria, and general virtual screening hit criteria to allow for realistic hit optimization. A key recommendation is the use of size-targeted ligand efficiency values as hit identification criteria. PMID:23688234
Zhu, Tian; Cao, Shuyi; Su, Pin-Chih; Patel, Ram; Shah, Darshan; Chokshi, Heta B; Szukala, Richard; Johnson, Michael E; Hevener, Kirk E
2013-09-12
A critical analysis of virtual screening results published between 2007 and 2011 was performed. The activity of reported hit compounds from over 400 studies was compared to their hit identification criteria. Hit rates and ligand efficiencies were calculated to assist in these analyses, and the results were compared with factors such as the size of the virtual library and the number of compounds tested. A series of promiscuity, druglike, and ADMET filters were applied to the reported hits to assess the quality of compounds reported, and a careful analysis of a subset of the studies that presented hit optimization was performed. These data allowed us to make several practical recommendations with respect to selection of compounds for experimental testing, definition of hit identification criteria, and general virtual screening hit criteria to allow for realistic hit optimization. A key recommendation is the use of size-targeted ligand efficiency values as hit identification criteria.
Method of transient identification based on a possibilistic approach, optimized by genetic algorithm
International Nuclear Information System (INIS)
Almeida, Jose Carlos Soares de
2001-02-01
This work develops a method for transient identification based on a possible approach, optimized by Genetic Algorithm to optimize the number of the centroids of the classes that represent the transients. The basic idea of the proposed method is to optimize the partition of the search space, generating subsets in the classes within a partition, defined as subclasses, whose centroids are able to distinguish the classes with the maximum correct classifications. The interpretation of the subclasses as fuzzy sets and the possible approach provided a heuristic to establish influence zones of the centroids, allowing to achieve the 'don't know' answer for unknown transients, that is, outside the training set. (author)
Directory of Open Access Journals (Sweden)
X. L. Travassos
2012-01-01
Full Text Available This paper presents optimization problem formulations to design meander-line antennas for passive UHF radio frequency identification tags based on given specifications of input impedance, frequency range, and geometric constraints. In this application, there is a need for directive transponders to select properly the target tag, which in turn must be ideally isotropic. The design of an effective meander-line antenna for RFID purposes requires balancing geometrical characteristics with the microchip impedance. Therefore, there is an issue of optimization in determining the antenna parameters for best performance. The antenna is analyzed by a method of moments. Some results using a deterministic optimization algorithm are shown.
Fuzzy Stochastic Optimization Theory, Models and Applications
Wang, Shuming
2012-01-01
Covering in detail both theoretical and practical perspectives, this book is a self-contained and systematic depiction of current fuzzy stochastic optimization that deploys the fuzzy random variable as a core mathematical tool to model the integrated fuzzy random uncertainty. It proceeds in an orderly fashion from the requisite theoretical aspects of the fuzzy random variable to fuzzy stochastic optimization models and their real-life case studies. The volume reflects the fact that randomness and fuzziness (or vagueness) are two major sources of uncertainty in the real world, with significant implications in a number of settings. In industrial engineering, management and economics, the chances are high that decision makers will be confronted with information that is simultaneously probabilistically uncertain and fuzzily imprecise, and optimization in the form of a decision must be made in an environment that is doubly uncertain, characterized by a co-occurrence of randomness and fuzziness. This book begins...
Optimal inventory management and order book modeling
Baradel, Nicolas
2018-02-16
We model the behavior of three agent classes acting dynamically in a limit order book of a financial asset. Namely, we consider market makers (MM), high-frequency trading (HFT) firms, and institutional brokers (IB). Given a prior dynamic of the order book, similar to the one considered in the Queue-Reactive models [14, 20, 21], the MM and the HFT define their trading strategy by optimizing the expected utility of terminal wealth, while the IB has a prescheduled task to sell or buy many shares of the considered asset. We derive the variational partial differential equations that characterize the value functions of the MM and HFT and explain how almost optimal control can be deduced from them. We then provide a first illustration of the interactions that can take place between these different market participants by simulating the dynamic of an order book in which each of them plays his own (optimal) strategy.
International Nuclear Information System (INIS)
Severin, V.P.
2007-01-01
The mathematical modeling of automatic control systems of reactor facility WWER-1000 with various regulator types is considered. The linear and nonlinear models of neutron power control systems of nuclear reactor WWER-1000 with various group numbers of delayed neutrons are designed. The results of optimization of direct quality indexes of neutron power control systems of nuclear reactor WWER-1000 are designed. The identification and optimization of level control systems with various regulator types of steam generator are executed
Practical Modeling and Comprehensive System Identification of a BLDC Motor
Directory of Open Access Journals (Sweden)
Changle Xiang
2015-01-01
Full Text Available The aim of this paper is to outline all the steps in a rigorous and simple procedure for system identification of BLDC motor. A practical mathematical model for identification is derived. Frequency domain identification techniques and time domain estimation method are combined to obtain the unknown parameters. The methods in time domain are founded on the least squares approximation method and a disturbance observer. Only the availability of experimental data for rotor speed and armature current are required for identification. The proposed identification method is systematically investigated, and the final identified model is validated by experimental results performed on a typical BLDC motor in UAV.
DEFF Research Database (Denmark)
Suárez, Carlos Gómez; Reigosa, Paula Diaz; Iannuzzo, Francesco
2016-01-01
An original tool for parameter extraction of PSpice models has been released, enabling a simple parameter identification. A physics-based IGBT model is used to demonstrate that the optimization tool is capable of generating a set of parameters which predicts the steady-state and switching behavio...
Applied probability models with optimization applications
Ross, Sheldon M
1992-01-01
Concise advanced-level introduction to stochastic processes that frequently arise in applied probability. Largely self-contained text covers Poisson process, renewal theory, Markov chains, inventory theory, Brownian motion and continuous time optimization models, much more. Problems and references at chapter ends. ""Excellent introduction."" - Journal of the American Statistical Association. Bibliography. 1970 edition.
Model averaging, optimal inference and habit formation
Directory of Open Access Journals (Sweden)
Thomas H B FitzGerald
2014-06-01
Full Text Available Postulating that the brain performs approximate Bayesian inference generates principled and empirically testable models of neuronal function – the subject of much current interest in neuroscience and related disciplines. Current formulations address inference and learning under some assumed and particular model. In reality, organisms are often faced with an additional challenge – that of determining which model or models of their environment are the best for guiding behaviour. Bayesian model averaging – which says that an agent should weight the predictions of different models according to their evidence – provides a principled way to solve this problem. Importantly, because model evidence is determined by both the accuracy and complexity of the model, optimal inference requires that these be traded off against one another. This means an agent’s behaviour should show an equivalent balance. We hypothesise that Bayesian model averaging plays an important role in cognition, given that it is both optimal and realisable within a plausible neuronal architecture. We outline model averaging and how it might be implemented, and then explore a number of implications for brain and behaviour. In particular, we propose that model averaging can explain a number of apparently suboptimal phenomena within the framework of approximate (bounded Bayesian inference, focussing particularly upon the relationship between goal-directed and habitual behaviour.
Procedural Optimization Models for Multiobjective Flexible JSSP
Directory of Open Access Journals (Sweden)
Elena Simona NICOARA
2013-01-01
Full Text Available The most challenging issues related to manufacturing efficiency occur if the jobs to be sched-uled are structurally different, if these jobs allow flexible routings on the equipments and mul-tiple objectives are required. This framework, called Multi-objective Flexible Job Shop Scheduling Problems (MOFJSSP, applicable to many real processes, has been less reported in the literature than the JSSP framework, which has been extensively formalized, modeled and analyzed from many perspectives. The MOFJSSP lie, as many other NP-hard problems, in a tedious place where the vast optimization theory meets the real world context. The paper brings to discussion the most optimization models suited to MOFJSSP and analyzes in detail the genetic algorithms and agent-based models as the most appropriate procedural models.
Computer models for optimizing radiation therapy
International Nuclear Information System (INIS)
Duechting, W.
1998-01-01
The aim of this contribution is to outline how methods of system analysis, control therapy and modelling can be applied to simulate normal and malignant cell growth and to optimize cancer treatment as for instance radiation therapy. Based on biological observations and cell kinetic data, several types of models have been developed describing the growth of tumor spheroids and the cell renewal of normal tissue. The irradiation model is represented by the so-called linear-quadratic model describing the survival fraction as a function of the dose. Based thereon, numerous simulation runs for different treatment schemes can be performed. Thus, it is possible to study the radiation effect on tumor and normal tissue separately. Finally, this method enables a computer-assisted recommendation for an optimal patient-specific treatment schedule prior to clinical therapy. (orig.) [de
On the optimal identification of tag sets in time-constrained RFID configurations.
Vales-Alonso, Javier; Bueno-Delgado, María Victoria; Egea-López, Esteban; Alcaraz, Juan José; Pérez-Mañogil, Juan Manuel
2011-01-01
In Radio Frequency Identification facilities the identification delay of a set of tags is mainly caused by the random access nature of the reading protocol, yielding a random identification time of the set of tags. In this paper, the cumulative distribution function of the identification time is evaluated using a discrete time Markov chain for single-set time-constrained passive RFID systems, namely those ones where a single group of tags is assumed to be in the reading area and only for a bounded time (sojourn time) before leaving. In these scenarios some tags in a set may leave the reader coverage area unidentified. The probability of this event is obtained from the cumulative distribution function of the identification time as a function of the sojourn time. This result provides a suitable criterion to minimize the probability of losing tags. Besides, an identification strategy based on splitting the set of tags in smaller subsets is also considered. Results demonstrate that there are optimal splitting configurations that reduce the overall identification time while keeping the same probability of losing tags.
Model Updating Nonlinear System Identification Toolbox, Phase II
National Aeronautics and Space Administration — ZONA Technology (ZONA) proposes to develop an enhanced model updating nonlinear system identification (MUNSID) methodology that utilizes flight data with...
An optimization model for metabolic pathways.
Planes, F J; Beasley, J E
2009-10-15
Different mathematical methods have emerged in the post-genomic era to determine metabolic pathways. These methods can be divided into stoichiometric methods and path finding methods. In this paper we detail a novel optimization model, based upon integer linear programming, to determine metabolic pathways. Our model links reaction stoichiometry with path finding in a single approach. We test the ability of our model to determine 40 annotated Escherichia coli metabolic pathways. We show that our model is able to determine 36 of these 40 pathways in a computationally effective manner.
Zhang, Shou-ping; Xin, Xiao-kang
2017-07-01
Identification of pollutant sources for river pollution incidents is an important and difficult task in the emergency rescue, and an intelligent optimization method can effectively compensate for the weakness of traditional methods. An intelligent model for pollutant source identification has been established using the basic genetic algorithm (BGA) as an optimization search tool and applying an analytic solution formula of one-dimensional unsteady water quality equation to construct the objective function. Experimental tests show that the identification model is effective and efficient: the model can accurately figure out the pollutant amounts or positions no matter single pollution source or multiple sources. Especially when the population size of BGA is set as 10, the computing results are sound agree with analytic results for a single source amount and position identification, the relative errors are no more than 5 %. For cases of multi-point sources and multi-variable, there are some errors in computing results for the reasons that there exist many possible combinations of the pollution sources. But, with the help of previous experience to narrow the search scope, the relative errors of the identification results are less than 5 %, which proves the established source identification model can be used to direct emergency responses.
On the Uncertainty of Identification of Civil Engineering Structures using ARMA Models
DEFF Research Database (Denmark)
Andersen, P.; Brincker, Rune; Kirkegaard, Poul Henning
In this paper the uncertainties of modal parameters estimated using ARMA models for identification of civil engineering structures are investigated. How to initialize the predictor part of a Gauss-Newton optimization algorithm is put in focus. A backward-forecasting procedure for initialization...
On the Uncertainty of Identification of Civil Engineering Structures Using ARMA Models
DEFF Research Database (Denmark)
Andersen, Palle; Brincker, Rune; Kirkegaard, Poul Henning
1995-01-01
In this paper the uncertainties of modal parameters estimated using ARMA models for identification of civil engineering structures are investigated. How to initialize the predictor part of a Gauss-Newton optimization algorithm is put in focus. A backward-forecasting procedure for initialization...
Optimization and mathematical modeling in computer architecture
Sankaralingam, Karu; Nowatzki, Tony
2013-01-01
In this book we give an overview of modeling techniques used to describe computer systems to mathematical optimization tools. We give a brief introduction to various classes of mathematical optimization frameworks with special focus on mixed integer linear programming which provides a good balance between solver time and expressiveness. We present four detailed case studies -- instruction set customization, data center resource management, spatial architecture scheduling, and resource allocation in tiled architectures -- showing how MILP can be used and quantifying by how much it outperforms t
Optimizing refiner operation with statistical modelling
Energy Technology Data Exchange (ETDEWEB)
Broderick, G [Noranda Research Centre, Pointe Claire, PQ (Canada)
1997-02-01
The impact of refining conditions on the energy efficiency of the process and on the handsheet quality of a chemi-mechanical pulp was studied as part of a series of pilot scale refining trials. Statistical models of refiner performance were constructed from these results and non-linear optimization of process conditions were conducted. Optimization results indicated that increasing the ratio of specific energy applied in the first stage led to a reduction of some 15 per cent in the total energy requirement. The strategy can also be used to obtain significant increases in pulp quality for a given energy input. 20 refs., 6 tabs.
Dambach, Donna M; Misner, Dinah; Brock, Mathew; Fullerton, Aaron; Proctor, William; Maher, Jonathan; Lee, Dong; Ford, Kevin; Diaz, Dolores
2016-04-18
Discovery toxicology focuses on the identification of the most promising drug candidates through the development and implementation of lead optimization strategies and hypothesis-driven investigation of issues that enable rational and informed decision-making. The major goals are to [a] identify and progress the drug candidate with the best overall drug safety profile for a therapeutic area, [b] remove the most toxic drugs from the portfolio prior to entry into humans to reduce clinical attrition due to toxicity, and [c] establish a well-characterized hazard and translational risk profile to enable clinical trial designs. This is accomplished through a framework that balances the multiple considerations to identify a drug candidate with the overall best drug characteristics and provides a cogent understanding of mechanisms of toxicity. The framework components include establishing a target candidate profile for each program that defines the qualities of a successful candidate based on the intended therapeutic area, including the risk tolerance for liabilities; evaluating potential liabilities that may result from engaging the therapeutic target (pharmacology-mediated or on-target) and that are chemical structure-mediated (off-target); and characterizing identified liabilities. Lead optimization and investigation relies upon the integrated use of a variety of technologies and models (in silico, in vitro, and in vivo) that have achieved a sufficient level of qualification or validation to provide confidence in their use. We describe the strategic applications of various nonclinical models (established and new) for a holistic and integrated risk assessment that is used for rational decision-making. While this review focuses on strategies for small molecules, the overall concepts, approaches, and technologies are generally applicable to biotherapeutics.
A study on an optimal movement model
Energy Technology Data Exchange (ETDEWEB)
Feng Jianfeng [COGS, Sussex University, Brighton BN1 9QH, UK (United Kingdom); Zhang, Kewei [SMS, Sussex University, Brighton BN1 9QH (United Kingdom); Luo Yousong [Department of Mathematics and Statistics, RMIT University, GOP Box 2476V, Melbourne, Vic 3001 (Australia)
2003-07-11
We present an analytical and rigorous study on a TOPS (task optimization in the presence of signal-dependent noise) model with a hold-on or an end-point control. Optimal control signals are rigorously obtained, which enables us to investigate various issues about the model including its trajectories, velocities, control signals, variances and the dependence of these quantities on various model parameters. With the hold-on control, we find that the optimal control can be implemented with an almost 'nil' hold-on period. The optimal control signal is a linear combination of two sub-control signals. One of the sub-control signals is positive and the other is negative. With the end-point control, the end-point variance is dramatically reduced, in comparison with the hold-on control. However, the velocity is not symmetric (bell shape). Finally, we point out that the velocity with a hold-on control takes the bell shape only within a limited parameter region.
Mohanasundaram, Ranganathan; Periasamy, Pappampalayam Sanmugam
2015-01-01
The current high profile debate with regard to data storage and its growth have become strategic task in the world of networking. It mainly depends on the sensor nodes called producers, base stations, and also the consumers (users and sensor nodes) to retrieve and use the data. The main concern dealt here is to find an optimal data storage position in wireless sensor networks. The works that have been carried out earlier did not utilize swarm intelligence based optimization approaches to find the optimal data storage positions. To achieve this goal, an efficient swam intelligence approach is used to choose suitable positions for a storage node. Thus, hybrid particle swarm optimization algorithm has been used to find the suitable positions for storage nodes while the total energy cost of data transmission is minimized. Clustering-based distributed data storage is utilized to solve clustering problem using fuzzy-C-means algorithm. This research work also considers the data rates and locations of multiple producers and consumers to find optimal data storage positions. The algorithm is implemented in a network simulator and the experimental results show that the proposed clustering and swarm intelligence based ODS strategy is more effective than the earlier approaches. PMID:25734182
Aerodynamic modelling and optimization of axial fans
Energy Technology Data Exchange (ETDEWEB)
Noertoft Soerensen, Dan
1998-01-01
A numerically efficient mathematical model for the aerodynamics of low speed axial fans of the arbitrary vortex flow type has been developed. The model is based on a blade-element principle, whereby the rotor is divided into a number of annular stream tubes. For each of these stream tubes relations for velocity, pressure and radial position are derived from the conservation laws for mass, tangential momentum and energy. The equations are solved using the Newton-Raphson methods, and solutions converged to machine accuracy are found at small computing costs. The model has been validated against published measurements on various fan configurations, comprising two rotor-only fan stages, a counter-rotating fan unit and a stator-rotor stator stage. Comparisons of local and integrated properties show that the computed results agree well with the measurements. Optimizations have been performed to maximize the mean value of fan efficiency in a design interval of flow rates, thus designing a fan which operates well over a range of different flow conditions. The optimization scheme was used to investigate the dependence of maximum efficiency on 1: the number of blades, 2: the width of the design interval and 3: the hub radius. The degree of freedom in the choice of design variable and constraints, combined with the design interval concept, provides a valuable design-tool for axial fans. To further investigate the use of design optimization, a model for the vortex shedding noise from the trailing edge of the blades has been incorporated into the optimization scheme. The noise emission from the blades was minimized in a flow rate design point. Optimizations were performed to investigate the dependence of the noise on 1: the number of blades, 2: a constraint imposed on efficiency and 3: the hub radius. The investigations showed, that a significant reduction of noise could be achieved, at the expense of a small reduction in fan efficiency. (EG) 66 refs.
MARKOV CHAIN PORTFOLIO LIQUIDITY OPTIMIZATION MODEL
Directory of Open Access Journals (Sweden)
Eder Oliveira Abensur
2014-05-01
Full Text Available The international financial crisis of September 2008 and May 2010 showed the importance of liquidity as an attribute to be considered in portfolio decisions. This study proposes an optimization model based on available public data, using Markov chain and Genetic Algorithms concepts as it considers the classic duality of risk versus return and incorporating liquidity costs. The work intends to propose a multi-criterion non-linear optimization model using liquidity based on a Markov chain. The non-linear model was tested using Genetic Algorithms with twenty five Brazilian stocks from 2007 to 2009. The results suggest that this is an innovative development methodology and useful for developing an efficient and realistic financial portfolio, as it considers many attributes such as risk, return and liquidity.
Efficient Iris Localization via Optimization Model
Directory of Open Access Journals (Sweden)
Qi Wang
2017-01-01
Full Text Available Iris localization is one of the most important processes in iris recognition. Because of different kinds of noises in iris image, the localization result may be wrong. Besides this, localization process is time-consuming. To solve these problems, this paper develops an efficient iris localization algorithm via optimization model. Firstly, the localization problem is modeled by an optimization model. Then SIFT feature is selected to represent the characteristic information of iris outer boundary and eyelid for localization. And SDM (Supervised Descent Method algorithm is employed to solve the final points of outer boundary and eyelids. Finally, IRLS (Iterative Reweighted Least-Square is used to obtain the parameters of outer boundary and upper and lower eyelids. Experimental result indicates that the proposed algorithm is efficient and effective.
Global Optimization Ensemble Model for Classification Methods
Anwar, Hina; Qamar, Usman; Muzaffar Qureshi, Abdul Wahab
2014-01-01
Supervised learning is the process of data mining for deducing rules from training datasets. A broad array of supervised learning algorithms exists, every one of them with its own advantages and drawbacks. There are some basic issues that affect the accuracy of classifier while solving a supervised learning problem, like bias-variance tradeoff, dimensionality of input space, and noise in the input data space. All these problems affect the accuracy of classifier and are the reason that there is no global optimal method for classification. There is not any generalized improvement method that can increase the accuracy of any classifier while addressing all the problems stated above. This paper proposes a global optimization ensemble model for classification methods (GMC) that can improve the overall accuracy for supervised learning problems. The experimental results on various public datasets showed that the proposed model improved the accuracy of the classification models from 1% to 30% depending upon the algorithm complexity. PMID:24883382
Global Optimization Ensemble Model for Classification Methods
Directory of Open Access Journals (Sweden)
Hina Anwar
2014-01-01
Full Text Available Supervised learning is the process of data mining for deducing rules from training datasets. A broad array of supervised learning algorithms exists, every one of them with its own advantages and drawbacks. There are some basic issues that affect the accuracy of classifier while solving a supervised learning problem, like bias-variance tradeoff, dimensionality of input space, and noise in the input data space. All these problems affect the accuracy of classifier and are the reason that there is no global optimal method for classification. There is not any generalized improvement method that can increase the accuracy of any classifier while addressing all the problems stated above. This paper proposes a global optimization ensemble model for classification methods (GMC that can improve the overall accuracy for supervised learning problems. The experimental results on various public datasets showed that the proposed model improved the accuracy of the classification models from 1% to 30% depending upon the algorithm complexity.
Modeling and optimization of potable water network
Energy Technology Data Exchange (ETDEWEB)
Djebedjian, B.; Rayan, M.A. [Mansoura Univ., El-Mansoura (Egypt); Herrick, A. [Suez Canal Authority, Ismailia (Egypt)
2000-07-01
Software was developed in order to optimize the design of water distribution systems and pipe networks. While satisfying all the constraints imposed such as pipe diameter and nodal pressure, it was based on a mathematical model treating looped networks. The optimum network configuration and cost are determined considering parameters like pipe diameter, flow rate, corresponding pressure and hydraulic losses. It must be understood that minimum cost is relative to the different objective functions selected. The determination of the proper objective function often depends on the operating policies of a particular company. The solution for the optimization technique was obtained by using a non-linear technique. To solve the optimal design of network, the model was derived using the sequential unconstrained minimization technique (SUMT) of Fiacco and McCormick, which decreased the number of iterations required. The pipe diameters initially assumed were successively adjusted to correspond to the existing commercial pipe diameters. The technique was then applied to a two-loop network without pumps or valves. Fed by gravity, it comprised eight pipes, 1000 m long each. The first evaluation of the method proved satisfactory. As with other methods, it failed to find the global optimum. In the future, research efforts will be directed to the optimization of networks with pumps and reservoirs. 24 refs., 3 tabs., 1 fig.
Developments in model-based optimization and control distributed control and industrial applications
Grancharova, Alexandra; Pereira, Fernando
2015-01-01
This book deals with optimization methods as tools for decision making and control in the presence of model uncertainty. It is oriented to the use of these tools in engineering, specifically in automatic control design with all its components: analysis of dynamical systems, identification problems, and feedback control design. Developments in Model-Based Optimization and Control takes advantage of optimization-based formulations for such classical feedback design objectives as stability, performance and feasibility, afforded by the established body of results and methodologies constituting optimal control theory. It makes particular use of the popular formulation known as predictive control or receding-horizon optimization. The individual contributions in this volume are wide-ranging in subject matter but coordinated within a five-part structure covering material on: · complexity and structure in model predictive control (MPC); · collaborative MPC; · distributed MPC; · optimization-based analysis and desi...
Computer modeling for optimal placement of gloveboxes
Energy Technology Data Exchange (ETDEWEB)
Hench, K.W.; Olivas, J.D. [Los Alamos National Lab., NM (United States); Finch, P.R. [New Mexico State Univ., Las Cruces, NM (United States)
1997-08-01
Reduction of the nuclear weapons stockpile and the general downsizing of the nuclear weapons complex has presented challenges for Los Alamos. One is to design an optimized fabrication facility to manufacture nuclear weapon primary components (pits) in an environment of intense regulation and shrinking budgets. Historically, the location of gloveboxes in a processing area has been determined without benefit of industrial engineering studies to ascertain the optimal arrangement. The opportunity exists for substantial cost savings and increased process efficiency through careful study and optimization of the proposed layout by constructing a computer model of the fabrication process. This paper presents an integrative two- stage approach to modeling the casting operation for pit fabrication. The first stage uses a mathematical technique for the formulation of the facility layout problem; the solution procedure uses an evolutionary heuristic technique. The best solutions to the layout problem are used as input to the second stage - a computer simulation model that assesses the impact of competing layouts on operational performance. The focus of the simulation model is to determine the layout that minimizes personnel radiation exposures and nuclear material movement, and maximizes the utilization of capacity for finished units.
Computer modeling for optimal placement of gloveboxes
International Nuclear Information System (INIS)
Hench, K.W.; Olivas, J.D.; Finch, P.R.
1997-08-01
Reduction of the nuclear weapons stockpile and the general downsizing of the nuclear weapons complex has presented challenges for Los Alamos. One is to design an optimized fabrication facility to manufacture nuclear weapon primary components (pits) in an environment of intense regulation and shrinking budgets. Historically, the location of gloveboxes in a processing area has been determined without benefit of industrial engineering studies to ascertain the optimal arrangement. The opportunity exists for substantial cost savings and increased process efficiency through careful study and optimization of the proposed layout by constructing a computer model of the fabrication process. This paper presents an integrative two- stage approach to modeling the casting operation for pit fabrication. The first stage uses a mathematical technique for the formulation of the facility layout problem; the solution procedure uses an evolutionary heuristic technique. The best solutions to the layout problem are used as input to the second stage - a computer simulation model that assesses the impact of competing layouts on operational performance. The focus of the simulation model is to determine the layout that minimizes personnel radiation exposures and nuclear material movement, and maximizes the utilization of capacity for finished units
Search-based model identification of smart-structure damage
Glass, B. J.; Macalou, A.
1991-01-01
This paper describes the use of a combined model and parameter identification approach, based on modal analysis and artificial intelligence (AI) techniques, for identifying damage or flaws in a rotating truss structure incorporating embedded piezoceramic sensors. This smart structure example is representative of a class of structures commonly found in aerospace systems and next generation space structures. Artificial intelligence techniques of classification, heuristic search, and an object-oriented knowledge base are used in an AI-based model identification approach. A finite model space is classified into a search tree, over which a variant of best-first search is used to identify the model whose stored response most closely matches that of the input. Newly-encountered models can be incorporated into the model space. This adaptativeness demonstrates the potential for learning control. Following this output-error model identification, numerical parameter identification is used to further refine the identified model. Given the rotating truss example in this paper, noisy data corresponding to various damage configurations are input to both this approach and a conventional parameter identification method. The combination of the AI-based model identification with parameter identification is shown to lead to smaller parameter corrections than required by the use of parameter identification alone.
Computational modeling, optimization and manufacturing simulation of advanced engineering materials
2016-01-01
This volume presents recent research work focused in the development of adequate theoretical and numerical formulations to describe the behavior of advanced engineering materials. Particular emphasis is devoted to applications in the fields of biological tissues, phase changing and porous materials, polymers and to micro/nano scale modeling. Sensitivity analysis, gradient and non-gradient based optimization procedures are involved in many of the chapters, aiming at the solution of constitutive inverse problems and parameter identification. All these relevant topics are exposed by experienced international and inter institutional research teams resulting in a high level compilation. The book is a valuable research reference for scientists, senior undergraduate and graduate students, as well as for engineers acting in the area of computational material modeling.
Behavioral optimization models for multicriteria portfolio selection
Directory of Open Access Journals (Sweden)
Mehlawat Mukesh Kumar
2013-01-01
Full Text Available In this paper, behavioral construct of suitability is used to develop a multicriteria decision making framework for portfolio selection. To achieve this purpose, we rely on multiple methodologies. Analytical hierarchy process technique is used to model the suitability considerations with a view to obtaining the suitability performance score in respect of each asset. A fuzzy multiple criteria decision making method is used to obtain the financial quality score of each asset based upon investor's rating on the financial criteria. Two optimization models are developed for optimal asset allocation considering simultaneously financial and suitability criteria. An empirical study is conducted on randomly selected assets from National Stock Exchange, Mumbai, India to demonstrate the effectiveness of the proposed methodology.
Optimal Design of Measurement Programs for the Parameter Identification of Dynamic Systems
DEFF Research Database (Denmark)
Kirkegaard, Poul Henning; Sørensen, John Dalsgaard; Brincker, Rune
The design of measurement programs devoted to parameter identification of structural dynamic systems is considered. The design problem is formulated as an optimization problem to minimize the total expected cost that is the cost of failure and the cost of the measurement program. All...... the calculations are based on a priori knowledge and engineering judgement. One of the contribution of the approach is that the optimal number of sensors can be estimated. This is shown in a numerical example where the proposed approach is demonstrated. The example is concerned with design of a measurement program...
Optimal Design of Measurement Programs for the Parameter Identification of Dynamic Systems
DEFF Research Database (Denmark)
Kirkegaard, Poul Henning; Sørensen, John Dalsgaard; Brincker, Rune
The design of a measured program devoted to parameter identification of structural dynamic systems is considered, the design problem is formulated as an optimization problem due to minimize the total expected cost of the measurement program. All the calculations are based on a priori knowledge...... and engineering judgement. One of the contribution of the approach is that the optimal nmber of sensors can be estimated. This is sown in an numerical example where the proposed approach is demonstrated. The example is concerned with design of a measurement program for estimating the modal damping parameters...
Optimal Design of Measurement Programs for the Parameter Identification of Dynamic Systems
DEFF Research Database (Denmark)
Kirkegaard, Poul Henning; Sørensen, John Dalsgaard; Brincker, Rune
1993-01-01
The design of a measurement program devoted to parameter identification of structural dynamic systems is considered. The design problem is formulated as an optimization problem to minimize the total expected cost that is the cost of failure and the cost of the measurement program. All...... the calculations are based on a priori knowledge and engineering judgement. One of the contribution of the approach is that the optimal number of sensory can be estimated. This is shown in an numerical example where the proposed approach is demonstrated. The example is concerned with design of a measurement...
Optimal Design of Measurement Programs for the Parameter Identification of Dynamic Systems
DEFF Research Database (Denmark)
Kirkegaard, Poul Henning; Sørensen, John Dalsgaard; Brincker, Rune
1991-01-01
The design of a measurement program devoted to parameter identification of structural dynamic systems is considered. The design problem is formulated as an optimization problem to minimize the total expected cost, i.e. the cost of failure and the cost of the measurement program. All...... the calculations are based on a priori knowledge and engineering judgement. One of the contributions of the approach is that the optimal number of sensors can be estimated. This is shown in a numerical example where the proposed approach is demonstrated. The example is concerned with design of a measurement...
Optimal transportation networks models and theory
Bernot, Marc; Morel, Jean-Michel
2009-01-01
The transportation problem can be formalized as the problem of finding the optimal way to transport a given measure into another with the same mass. In contrast to the Monge-Kantorovitch problem, recent approaches model the branched structure of such supply networks as minima of an energy functional whose essential feature is to favour wide roads. Such a branched structure is observable in ground transportation networks, in draining and irrigation systems, in electrical power supply systems and in natural counterparts such as blood vessels or the branches of trees. These lectures provide mathematical proof of several existence, structure and regularity properties empirically observed in transportation networks. The link with previous discrete physical models of irrigation and erosion models in geomorphology and with discrete telecommunication and transportation models is discussed. It will be mathematically proven that the majority fit in the simple model sketched in this volume.
Hou, Zeyu; Lu, Wenxi
2018-05-01
Knowledge of groundwater contamination sources is critical for effectively protecting groundwater resources, estimating risks, mitigating disaster, and designing remediation strategies. Many methods for groundwater contamination source identification (GCSI) have been developed in recent years, including the simulation-optimization technique. This study proposes utilizing a support vector regression (SVR) model and a kernel extreme learning machine (KELM) model to enrich the content of the surrogate model. The surrogate model was itself key in replacing the simulation model, reducing the huge computational burden of iterations in the simulation-optimization technique to solve GCSI problems, especially in GCSI problems of aquifers contaminated by dense nonaqueous phase liquids (DNAPLs). A comparative study between the Kriging, SVR, and KELM models is reported. Additionally, there is analysis of the influence of parameter optimization and the structure of the training sample dataset on the approximation accuracy of the surrogate model. It was found that the KELM model was the most accurate surrogate model, and its performance was significantly improved after parameter optimization. The approximation accuracy of the surrogate model to the simulation model did not always improve with increasing numbers of training samples. Using the appropriate number of training samples was critical for improving the performance of the surrogate model and avoiding unnecessary computational workload. It was concluded that the KELM model developed in this work could reasonably predict system responses in given operation conditions. Replacing the simulation model with a KELM model considerably reduced the computational burden of the simulation-optimization process and also maintained high computation accuracy.
Vibratory gyroscopes : identification of mathematical model from test data
CSIR Research Space (South Africa)
Shatalov, MY
2007-05-01
Full Text Available Simple mathematical model of vibratory gyroscopes imperfections is formulated, which includes anisotropic damping and variation of mass-stiffness parameters and their harmonics. The method of identification of parameters of the mathematical model...
DEFF Research Database (Denmark)
Guedes, J.M.; Rodrigues, H.C.; Bendsøe, Martin P.
2003-01-01
This paper describes a computational model, based on inverse homogenization and topology design, for approximating energy bounds for two-phase composites under multiple load cases. The approach allows for the identification of possible single-scale cellular materials that give rise to the optimal...
Image-Optimized Coronal Magnetic Field Models
Jones, Shaela I.; Uritsky, Vadim; Davila, Joseph M.
2017-01-01
We have reported previously on a new method we are developing for using image-based information to improve global coronal magnetic field models. In that work we presented early tests of the method which proved its capability to improve global models based on flawed synoptic magnetograms, given excellent constraints on the field in the model volume. In this follow-up paper we present the results of similar tests given field constraints of a nature that could realistically be obtained from quality white-light coronagraph images of the lower corona. We pay particular attention to difficulties associated with the line-of-sight projection of features outside of the assumed coronagraph image plane, and the effect on the outcome of the optimization of errors in localization of constraints. We find that substantial improvement in the model field can be achieved with this type of constraints, even when magnetic features in the images are located outside of the image plane.
Image-optimized Coronal Magnetic Field Models
Energy Technology Data Exchange (ETDEWEB)
Jones, Shaela I.; Uritsky, Vadim; Davila, Joseph M., E-mail: shaela.i.jones-mecholsky@nasa.gov, E-mail: shaela.i.jonesmecholsky@nasa.gov [NASA Goddard Space Flight Center, Code 670, Greenbelt, MD 20771 (United States)
2017-08-01
We have reported previously on a new method we are developing for using image-based information to improve global coronal magnetic field models. In that work, we presented early tests of the method, which proved its capability to improve global models based on flawed synoptic magnetograms, given excellent constraints on the field in the model volume. In this follow-up paper, we present the results of similar tests given field constraints of a nature that could realistically be obtained from quality white-light coronagraph images of the lower corona. We pay particular attention to difficulties associated with the line-of-sight projection of features outside of the assumed coronagraph image plane and the effect on the outcome of the optimization of errors in the localization of constraints. We find that substantial improvement in the model field can be achieved with these types of constraints, even when magnetic features in the images are located outside of the image plane.
A physiologically based nonhomogeneous Poisson counter model of visual identification
DEFF Research Database (Denmark)
Christensen, Jeppe H; Markussen, Bo; Bundesen, Claus
2018-01-01
A physiologically based nonhomogeneous Poisson counter model of visual identification is presented. The model was developed in the framework of a Theory of Visual Attention (Bundesen, 1990; Kyllingsbæk, Markussen, & Bundesen, 2012) and meant for modeling visual identification of objects that are ......A physiologically based nonhomogeneous Poisson counter model of visual identification is presented. The model was developed in the framework of a Theory of Visual Attention (Bundesen, 1990; Kyllingsbæk, Markussen, & Bundesen, 2012) and meant for modeling visual identification of objects...... that mimicked the dynamics of receptive field selectivity as found in neurophysiological studies. Furthermore, the initial sensory response yielded theoretical hazard rate functions that closely resembled empirically estimated ones. Finally, supplied with a Naka-Rushton type contrast gain control, the model...
Directory of Open Access Journals (Sweden)
Yuan Cheng
2017-06-01
Full Text Available Due to its high sensitivity and reproducibility, quantitative real-time PCR (qPCR is practiced as a useful research tool for targeted gene expression analysis. For qPCR operations, the normalization with suitable reference genes (RGs is a crucial step that eventually determines the reliability of the obtained results. Although pepper is considered an ideal model plant for the study of non-climacteric fruit development, at present no specific RG have been developed or validated for the qPCR analyses of pepper fruit. Therefore, this study aimed to identify stably expressed genes for their potential use as RGs in pepper fruit studies. Initially, a total of 35 putative RGs were selected by mining the pepper transcriptome data sets derived from the PGP (Pepper Genome Platform and PGD (Pepper Genome Database. Their expression stabilities were further measured in a set of pepper (Capsicum annuum L. var. 007e fruit samples, which represented four different fruit developmental stages (IM: Immature; MG: Mature green; B: Break; MR: Mature red using the qPCR analysis. Then, based on the qPCR results, three different statistical algorithms, namely geNorm, Normfinder, and boxplot, were chosen to evaluate the expression stabilities of these putative RGs. It should be noted that nine genes were proven to be qualified as RGs during pepper fruit development, namely CaREV05 (CA00g79660; CaREV08 (CA06g02180; CaREV09 (CA06g05650; CaREV16 (Capana12g002666; CaREV21 (Capana10g001439; CaREV23 (Capana05g000680; CaREV26 (Capana01g002973; CaREV27 (Capana11g000123; CaREV31 (Capana04g002411; and CaREV33 (Capana08g001826. Further analysis based on geNorm suggested that the application of the two most stably expressed genes (CaREV05 and CaREV08 would provide optimal transcript normalization in the qPCR experiments. Therefore, a new and comprehensive strategy for the identification of optimal RGs was developed. This strategy allowed for the effective normalization of the q
Combined optimization model for sustainable energization strategy
Abtew, Mohammed Seid
Access to energy is a foundation to establish a positive impact on multiple aspects of human development. Both developed and developing countries have a common concern of achieving a sustainable energy supply to fuel economic growth and improve the quality of life with minimal environmental impacts. The Least Developing Countries (LDCs), however, have different economic, social, and energy systems. Prevalence of power outage, lack of access to electricity, structural dissimilarity between rural and urban regions, and traditional fuel dominance for cooking and the resultant health and environmental hazards are some of the distinguishing characteristics of these nations. Most energy planning models have been designed for developed countries' socio-economic demographics and have missed the opportunity to address special features of the poor countries. An improved mixed-integer programming energy-source optimization model is developed to address limitations associated with using current energy optimization models for LDCs, tackle development of the sustainable energization strategies, and ensure diversification and risk management provisions in the selected energy mix. The Model predicted a shift from traditional fuels reliant and weather vulnerable energy source mix to a least cost and reliable modern clean energy sources portfolio, a climb on the energy ladder, and scored multifaceted economic, social, and environmental benefits. At the same time, it represented a transition strategy that evolves to increasingly cleaner energy technologies with growth as opposed to an expensive solution that leapfrogs immediately to the cleanest possible, overreaching technologies.
Optimization of hybrid model on hajj travel
Cahyandari, R.; Ariany, R. L.; Sukono
2018-03-01
Hajj travel insurance is an insurance product offered by the insurance company in preparing funds to perform the pilgrimage. This insurance product helps would-be pilgrims to set aside a fund of saving hajj with regularly, but also provides funds of profit sharing (mudharabah) and insurance protection. Scheme of insurance product fund management is largely using the hybrid model, which is the fund from would-be pilgrims will be divided into three account management, that is personal account, tabarru’, and ujrah. Scheme of hybrid model on hajj travel insurance was already discussed at the earlier paper with titled “The Hybrid Model Algorithm on Sharia Insurance”, taking the example case of Mitra Mabrur Plus product from Bumiputera company. On these advanced paper, will be made the previous optimization model design, with partition of benefit the tabarru’ account. Benefits such as compensation for 40 critical illness which initially only for participants of insurance only, on optimization is intended for participants of the insurance and his heir, also to benefit the hospital bills. Meanwhile, the benefits of death benefit is given if the participant is fixed die.
Utama, D. N.; Ani, N.; Iqbal, M. M.
2018-03-01
Optimization is a process for finding parameter (parameters) that is (are) able to deliver an optimal value for an objective function. Seeking an optimal generic model for optimizing is a computer science study that has been being practically conducted by numerous researchers. Generic model is a model that can be technically operated to solve any varieties of optimization problem. By using an object-oriented method, the generic model for optimizing was constructed. Moreover, two types of optimization method, simulated-annealing and hill-climbing, were functioned in constructing the model and compared to find the most optimal one then. The result said that both methods gave the same result for a value of objective function and the hill-climbing based model consumed the shortest running time.
Adaptive stimulus optimization and model-based experiments for sensory systems neuroscience
Directory of Open Access Journals (Sweden)
Christopher eDiMattina
2013-06-01
Full Text Available In this paper we review several lines of recent work aimed at developing practical methods for adaptive on-line stimulus generation for sensory neurophysiology. We consider various experimental paradigms where on-line stimulus optimization is utilized, including the classical textit{optimal stimulus} paradigm where the goal of experiments is to identify a stimulus which maximizes neural responses, the textit{iso-response} paradigm which finds sets of stimuli giving rise to constant responses, and the textit{system identification} paradigm where the experimental goal is to estimate and possibly compare sensory processing models. We discuss various theoretical and practical aspects of adaptive firing rate optimization, including optimization with stimulus space constraints, firing rate adaptation, and possible network constraints on the optimal stimulus. We consider the problem of system identification, and show how accurate estimation of nonlinear models can be highly dependent on the stimulus set used to probe the network. We suggest that optimizing stimuli for accurate model estimation may make it possible to successfully identify nonlinear models which are otherwise intractable, and summarize several recent studies of this type. Finally, we present a two-stage stimulus design procedure which combines the dual goals of model estimation and model comparison and may be especially useful for system identification experiments where the appropriate model is unknown beforehand. We propose that fast, on-line stimulus optimization enabled by increasing computer power can make it practical to move sensory neuroscience away from a descriptive paradigm and towards a new paradigm of real-time model estimation and comparison.
Numerical modeling and optimization of machining duplex stainless steels
Directory of Open Access Journals (Sweden)
Rastee D. Koyee
2015-01-01
Full Text Available The shortcomings of the machining analytical and empirical models in combination with the industry demands have to be fulfilled. A three-dimensional finite element modeling (FEM introduces an attractive alternative to bridge the gap between pure empirical and fundamental scientific quantities, and fulfill the industry needs. However, the challenging aspects which hinder the successful adoption of FEM in the machining sector of manufacturing industry have to be solved first. One of the greatest challenges is the identification of the correct set of machining simulation input parameters. This study presents a new methodology to inversely calculate the input parameters when simulating the machining of standard duplex EN 1.4462 and super duplex EN 1.4410 stainless steels. JMatPro software is first used to model elastic–viscoplastic and physical work material behavior. In order to effectively obtain an optimum set of inversely identified friction coefficients, thermal contact conductance, Cockcroft–Latham critical damage value, percentage reduction in flow stress, and Taylor–Quinney coefficient, Taguchi-VIKOR coupled with Firefly Algorithm Neural Network System is applied. The optimization procedure effectively minimizes the overall differences between the experimentally measured performances such as cutting forces, tool nose temperature and chip thickness, and the numerically obtained ones at any specified cutting condition. The optimum set of input parameter is verified and used for the next step of 3D-FEM application. In the next stage of the study, design of experiments, numerical simulations, and fuzzy rule modeling approaches are employed to optimize types of chip breaker, insert shapes, process conditions, cutting parameters, and tool orientation angles based on many important performances. Through this study, not only a new methodology in defining the optimal set of controllable parameters for turning simulations is introduced, but also
System Identification Based Proxy Model of a Reservoir under Water Injection
Directory of Open Access Journals (Sweden)
Berihun M. Negash
2017-01-01
Full Text Available Simulation of numerical reservoir models with thousands and millions of grid blocks may consume a significant amount of time and effort, even when high performance processors are used. In cases where the simulation runs are required for sensitivity analysis, dynamic control, and optimization, the act needs to be repeated several times by continuously changing parameters. This makes it even more time-consuming. Currently, proxy models that are based on response surface are being used to lessen the time required for running simulations during sensitivity analysis and optimization. Proxy models are lighter mathematical models that run faster and perform in place of heavier models that require large computations. Nevertheless, to acquire data for modeling and validation and develop the proxy model itself, hundreds of simulation runs are required. In this paper, a system identification based proxy model that requires only a single simulation run and a properly designed excitation signal was proposed and evaluated using a benchmark case study. The results show that, with proper design of excitation signal and proper selection of model structure, system identification based proxy models are found to be practical and efficient alternatives for mimicking the performance of numerical reservoir models. The resulting proxy models have potential applications for dynamic well control and optimization.
Business model optimization of Prego Gourmet
Salema, José Frederico Bettencourt
2013-01-01
A Work Project, presented as part of the requirements for the Award of a Masters Degree in Management from the NOVA – School of Business and Economics Prego Gourmet is a fast food restaurant which sells refined versions of a traditional Portuguese dish inside shopping centers in the area of Lisbon. The company is at the beginning of its expansion strategy. This work project is a prospective analysis on what the company should do to in order to optimize its business model and grow in Portug...
Identification of GMS friction model without friction force measurement
International Nuclear Information System (INIS)
Grami, Said; Aissaoui, Hicham
2011-01-01
This paper deals with an online identification of the Generalized Maxwell Slip (GMS) friction model for both presliding and sliding regime at the same time. This identification is based on robust adaptive observer without friction force measurement. To apply the observer, a new approach of calculating the filtered friction force from the measurable signals is introduced. Moreover, two approximations are proposed to get the friction model linear over the unknown parameters and an approach of suitable filtering is introduced to guarantee the continuity of the model. Simulation results are presented to prove the efficiency of the approach of identification.
Directory of Open Access Journals (Sweden)
Hernán Darío Vargas Cardona
2015-07-01
Full Text Available Identification of brain signals from microelectrode recordings (MER is a key procedure during deep brain stimulation (DBS applied in Parkinson’s disease patients. The main purpose of this research work is to identify with high accuracy a brain structure called subthalamic nucleus (STN, since it is the target structure where the DBS achieves the best therapeutic results. To do this, we present an approach for optimal representation of MER signals through method of frames. We obtain coefficients that minimize the Euclidean norm of order two. From optimal coefficients, we extract some features from signals combining the wavelet packet and cosine dictionaries. For a comparison frame with the state of the art, we also process the signals using the discrete wavelet transform (DWT with several mother functions. We validate the proposed methodology in a real data base. We employ simple supervised machine learning algorithms, as the K-Nearest Neighbors classifier (K-NN, a linear Bayesian classifier (LDC and a quadratic Bayesian classifier (QDC. Classification results obtained with the proposed method improves significantly the performance of the DWT. We achieve a positive identification of the STN superior to 97,6%. Identification outcomes achieved by the MOF are highly accurate, as we can potentially get a false positive rate of less than 2% during the DBS.
Directory of Open Access Journals (Sweden)
Gwanghee Heo
2016-01-01
Full Text Available This paper aims to develop an SI (structural identification technique using the KEOT and the DMUM to decide on optimal location of sensors and to update FE model, respectively, which ultimately contributes to a composition of more effective SHM. Owing to the characteristic structural flexing behavior of cable bridges (e.g., cable-stayed bridges and suspension bridges, which makes them vulnerable to any vibration, systematic and continuous structural health monitoring (SHM is pivotal for them. Since it is necessary to select optimal measurement locations with the fewest possible measurements and also to accurately assess the structural state of a bridge for the development of an effective SHM, an SI technique is as much important to accurately determine the modal parameters of the current structure based on the data optimally obtained. In this study, the kinetic energy optimization technique (KEOT was utilized to determine the optimal measurement locations, while the direct matrix updating method (DMUM was utilized for FE model updating. As a result of experiment, the required number of measurement locations derived from KEOT based on the target mode was reduced by approximately 80% compared to the initial number of measurement locations. Moreover, compared to the eigenvalue of the modal experiment, an improved FE model with a margin of error of less than 1% was derived from DMUM. Thus, the SI technique for cable-stayed bridges proposed in this study, which utilizes both KEOT and DMUM, is proven effective in minimizing the number of sensors while accurately determining the structural dynamic characteristics.
Optimal evolution models for quantum tomography
International Nuclear Information System (INIS)
Czerwiński, Artur
2016-01-01
The research presented in this article concerns the stroboscopic approach to quantum tomography, which is an area of science where quantum physics and linear algebra overlap. In this article we introduce the algebraic structure of the parametric-dependent quantum channels for 2-level and 3-level systems such that the generator of evolution corresponding with the Kraus operators has no degenerate eigenvalues. In such cases the index of cyclicity of the generator is equal to 1, which physically means that there exists one observable the measurement of which performed a sufficient number of times at distinct instants provides enough data to reconstruct the initial density matrix and, consequently, the trajectory of the state. The necessary conditions for the parameters and relations between them are introduced. The results presented in this paper seem to have considerable potential applications in experiments due to the fact that one can perform quantum tomography by conducting only one kind of measurement. Therefore, the analyzed evolution models can be considered optimal in the context of quantum tomography. Finally, we introduce some remarks concerning optimal evolution models in the case of n-dimensional Hilbert space. (paper)
Modeling of Biometric Identification System Using the Colored Petri Nets
Petrosyan, G. R.; Ter-Vardanyan, L. A.; Gaboutchian, A. V.
2015-05-01
In this paper we present a model of biometric identification system transformed into Petri Nets. Petri Nets, as a graphical and mathematical tool, provide a uniform environment for modelling, formal analysis, and design of discrete event systems. The main objective of this paper is to introduce the fundamental concepts of Petri Nets to the researchers and practitioners, both from identification systems, who are involved in the work in the areas of modelling and analysis of biometric identification types of systems, as well as those who may potentially be involved in these areas. In addition, the paper introduces high-level Petri Nets, as Colored Petri Nets (CPN). In this paper the model of Colored Petri Net describes the identification process much simpler.
Model Updating Nonlinear System Identification Toolbox, Phase I
National Aeronautics and Space Administration — ZONA Technology proposes to develop an enhanced model updating nonlinear system identification (MUNSID) methodology by adopting the flight data with state-of-the-art...
Systematic identification of crystallization kinetics within a generic modelling framework
DEFF Research Database (Denmark)
Abdul Samad, Noor Asma Fazli Bin; Meisler, Kresten Troelstrup; Gernaey, Krist
2012-01-01
A systematic development of constitutive models within a generic modelling framework has been developed for use in design, analysis and simulation of crystallization operations. The framework contains a tool for model identification connected with a generic crystallizer modelling tool-box, a tool...
Process optimization of friction stir welding based on thermal models
DEFF Research Database (Denmark)
Larsen, Anders Astrup
2010-01-01
This thesis investigates how to apply optimization methods to numerical models of a friction stir welding process. The work is intended as a proof-of-concept using different methods that are applicable to models of high complexity, possibly with high computational cost, and without the possibility...... information of the high-fidelity model. The optimization schemes are applied to stationary thermal models of differing complexity of the friction stir welding process. The optimization problems considered are based on optimizing the temperature field in the workpiece by finding optimal translational speed....... Also an optimization problem based on a microstructure model is solved, allowing the hardness distribution in the plate to be optimized. The use of purely thermal models represents a simplification of the real process; nonetheless, it shows the applicability of the optimization methods considered...
Modeling, Analysis, and Optimization Issues for Large Space Structures
Pinson, L. D. (Compiler); Amos, A. K. (Compiler); Venkayya, V. B. (Compiler)
1983-01-01
Topics concerning the modeling, analysis, and optimization of large space structures are discussed including structure-control interaction, structural and structural dynamics modeling, thermal analysis, testing, and design.
Modeling and Analysis of Surgery Patient Identification Using RFID
Byungho Jeong; Chen-Yang Cheng; Vittal Prabhu
2009-01-01
This article proposes a workflow and reliability model for surgery patient identification using RFID (Radio Frequency Identification). Certain types of mistakes may be prevented by automatically identifying the patient before surgery. The proposed workflow is designed to ensure that both the correct site and patient are engaged in the surgical process. The reliability model can be used to assess improvements in patientsâ€™ safety during this process. A proof-of-concept system is developed to ...
Analysis of Offshore Knuckle Boom Crane - Part One: Modeling and Parameter Identification
Directory of Open Access Journals (Sweden)
Morten K. Bak
2013-10-01
Full Text Available This paper presents an extensive model of a knuckle boom crane used for pipe handling on offshore drilling rigs. The mechanical system is modeled as a multi-body system and includes the structural flexibility and damping. The motion control system model includes the main components of the crane's electro-hydraulic actuation system. For this a novel black-box model for counterbalance valves is presented, which uses two different pressure ratios to compute the flow through the valve. Experimental data and parameter identification, based on both numerical optimization and manual tuning, are used to verify the crane model. The demonstrated modeling and parameter identification techniques target the system engineer and takes into account the limited access to component data normally encountered by engineers working with design of hydraulic systems.
International Nuclear Information System (INIS)
Gong, Wenyin; Cai, Zhihua
2013-01-01
Parameter identification of PEM (proton exchange membrane) fuel cell model is a very active area of research. Generally, it can be treated as a numerical optimization problem with complex nonlinear and multi-variable features. DE (differential evolution), which has been successfully used in various fields, is a simple yet efficient evolutionary algorithm for global numerical optimization. In this paper, with the objective of accelerating the process of parameter identification of PEM fuel cell models and reducing the necessary computational efforts, we firstly present a generic and simple ranking-based mutation operator for the DE algorithm. Then, the ranking-based mutation operator is incorporated into five highly-competitive DE variants to solve the PEM fuel cell model parameter identification problems. The main contributions of this work are the proposed ranking-based DE variants and their application to the parameter identification problems of PEM fuel cell models. Experiments have been conducted by using both the simulated voltage–current data and the data obtained from the literature to validate the performance of our approach. The results indicate that the ranking-based DE methods provide better results with respect to the solution quality, the convergence rate, and the success rate compared with their corresponding original DE methods. In addition, the voltage–current characteristics obtained by our approach are in good agreement with the original voltage–current curves in all cases. - Highlights: • A simple and generic ranking-based mutation operator is presented in this paper. • Several DE (differential evolution) variants are used to solve the parameter identification of PEMFC (proton exchange membrane fuel cells) model. • Results show that our method accelerates the process of parameter identification. • The V–I characteristics are in very good agreement with experimental data
DEFF Research Database (Denmark)
Chen, Tianshi; Andersen, Martin Skovgaard; Ljung, Lennart
2014-01-01
Model estimation and structure detection with short data records are two issues that receive increasing interests in System Identification. In this paper, a multiple kernel-based regularization method is proposed to handle those issues. Multiple kernels are conic combinations of fixed kernels...
Modeling and optimization of planar microcoils
International Nuclear Information System (INIS)
Beyzavi, Ali; Nguyen, Nam-Trung
2008-01-01
Magnetic actuation has emerged as a useful tool for manipulating particles, droplets and biological samples in microfluidics. A planar coil is one of the suitable candidates for magnetic actuation and has the potential to be integrated in digital microfluidic devices. A simple model of microcoils is needed to optimize their use in actuation applications. This paper first develops an analytical model for calculating the magnetic field of a planar microcoil. The model was validated by experimental data from microcoils fabricated on printed circuit boards (PCB). The model was used for calculating the field strength and the force acting on a magnetic object. Finally, the effect of different coil parameters such as the magnitude of the electric current, the gap between the wires and the number of wire segments is discussed. Both analytical and experimental results show that a smaller gap size between wire segments, more wire segments and a higher electric current can increase both the magnitude and the gradient of the magnetic field, and consequently cause a higher actuating force. The planar coil analyzed in the paper is suitable for applications in magnetic droplet-based microfluidics
Multiobjective Optimization Model for Wind Power Allocation
Directory of Open Access Journals (Sweden)
Juan Alemany
2017-01-01
Full Text Available There is an increasing need for the injection to the grid of renewable energy; therefore, to evaluate the optimal location of new renewable generation is an important task. The primary purpose of this work is to develop a multiobjective optimization model that permits finding multiple trade-off solutions for the location of new wind power resources. It is based on the augmented ε-constrained methodology. Two competitive objectives are considered: maximization of preexisting energy injection and maximization of new wind energy injection, both embedded, in the maximization of load supply. The results show that the location of new renewable generation units affects considerably the transmission network flows, the load supply, and the preexisting energy injection. Moreover, there are diverse opportunities to benefit the preexisting generation, contrarily to the expected effect where renewable generation displaces conventional power. The proposed methodology produces a diverse range of equivalent solutions, expanding and enriching the horizon of options and giving flexibility to the decision-making process.
Code Differentiation for Hydrodynamic Model Optimization
Energy Technology Data Exchange (ETDEWEB)
Henninger, R.J.; Maudlin, P.J.
1999-06-27
Use of a hydrodynamics code for experimental data fitting purposes (an optimization problem) requires information about how a computed result changes when the model parameters change. These so-called sensitivities provide the gradient that determines the search direction for modifying the parameters to find an optimal result. Here, the authors apply code-based automatic differentiation (AD) techniques applied in the forward and adjoint modes to two problems with 12 parameters to obtain these gradients and compare the computational efficiency and accuracy of the various methods. They fit the pressure trace from a one-dimensional flyer-plate experiment and examine the accuracy for a two-dimensional jet-formation problem. For the flyer-plate experiment, the adjoint mode requires similar or less computer time than the forward methods. Additional parameters will not change the adjoint mode run time appreciably, which is a distinct advantage for this method. Obtaining ''accurate'' sensitivities for the j et problem parameters remains problematic.
Directory of Open Access Journals (Sweden)
Khanagha Ali
2010-01-01
Full Text Available Blind identification of MIMO FIR systems has widely received attentions in various fields of wireless data communications. Here, we use Particle Swarm Optimization (PSO as the update mechanism of the well-known inverse filtering approach and we show its good performance compared to original method. Specially, the proposed method is shown to be more robust against lower SNR scenarios or in cases with smaller lengths of available data records. Also, a modified version of PSO is presented which further improves the robustness and preciseness of PSO algorithm. However the most important promise of the modified version is its drastically faster convergence compared to standard implementation of PSO.
International Nuclear Information System (INIS)
Ma Huanfei; Lin Wei
2009-01-01
The existing adaptive synchronization technique based on the stability theory and invariance principle of dynamical systems, though theoretically proved to be valid for parameters identification in specific models, is always showing slow convergence rate and even failed in practice when the number of parameters becomes large. Here, for parameters update, a novel nonlinear adaptive rule is proposed to accelerate the rate. Its feasibility is validated by analytical arguments as well as by specific parameters identification in the Lotka-Volterra model with multiple species. Two adjustable factors in this rule influence the identification accuracy, which means that a proper choice of these factors leads to an optimal performance of this rule. In addition, a feasible method for avoiding the occurrence of the approximate linear dependence among terms with parameters on the synchronized manifold is also proposed.
Modeling emotional content of music using system identification.
Korhonen, Mark D; Clausi, David A; Jernigan, M Ed
2006-06-01
Research was conducted to develop a methodology to model the emotional content of music as a function of time and musical features. Emotion is quantified using the dimensions valence and arousal, and system-identification techniques are used to create the models. Results demonstrate that system identification provides a means to generalize the emotional content for a genre of music. The average R2 statistic of a valid linear model structure is 21.9% for valence and 78.4% for arousal. The proposed method of constructing models of emotional content generalizes previous time-series models and removes ambiguity from classifiers of emotion.
Directory of Open Access Journals (Sweden)
Xiao-meng Song
2013-01-01
Full Text Available Parameter identification, model calibration, and uncertainty quantification are important steps in the model-building process, and are necessary for obtaining credible results and valuable information. Sensitivity analysis of hydrological model is a key step in model uncertainty quantification, which can identify the dominant parameters, reduce the model calibration uncertainty, and enhance the model optimization efficiency. There are, however, some shortcomings in classical approaches, including the long duration of time and high computation cost required to quantitatively assess the sensitivity of a multiple-parameter hydrological model. For this reason, a two-step statistical evaluation framework using global techniques is presented. It is based on (1 a screening method (Morris for qualitative ranking of parameters, and (2 a variance-based method integrated with a meta-model for quantitative sensitivity analysis, i.e., the Sobol method integrated with the response surface model (RSMSobol. First, the Morris screening method was used to qualitatively identify the parameters' sensitivity, and then ten parameters were selected to quantify the sensitivity indices. Subsequently, the RSMSobol method was used to quantify the sensitivity, i.e., the first-order and total sensitivity indices based on the response surface model (RSM were calculated. The RSMSobol method can not only quantify the sensitivity, but also reduce the computational cost, with good accuracy compared to the classical approaches. This approach will be effective and reliable in the global sensitivity analysis of a complex large-scale distributed hydrological model.
Kanban simulation model for production process optimization
Directory of Open Access Journals (Sweden)
Golchev Riste
2015-01-01
Full Text Available A long time has passed since the KANBAN system has been established as an efficient method for coping with the excessive inventory. Still, the possibilities for its improvement through its integration with other different approaches should be investigated further. The basic research challenge of this paper is to present benefits of KANBAN implementation supported with Discrete Event Simulation (DES. In that direction, at the beginning, the basics of KANBAN system are presented with emphasis on the information and material flow, together with a methodology for implementation of KANBAN system. Certain analysis on combining the simulation with this methodology is presented. The paper is concluded with a practical example which shows that through understanding the philosophy of the implementation methodology of KANBAN system and the simulation methodology, a simulation model can be created which can serve as a basis for a variety of experiments that can be conducted within a short period of time, resulting with production process optimization.
Directory of Open Access Journals (Sweden)
Wei Gao
2016-01-01
Full Text Available According to the regularization method in the inverse problem of load identification, a new method for determining the optimal regularization parameter is proposed. Firstly, quotient function (QF is defined by utilizing the regularization parameter as a variable based on the least squares solution of the minimization problem. Secondly, the quotient function method (QFM is proposed to select the optimal regularization parameter based on the quadratic programming theory. For employing the QFM, the characteristics of the values of QF with respect to the different regularization parameters are taken into consideration. Finally, numerical and experimental examples are utilized to validate the performance of the QFM. Furthermore, the Generalized Cross-Validation (GCV method and the L-curve method are taken as the comparison methods. The results indicate that the proposed QFM is adaptive to different measuring points, noise levels, and types of dynamic load.
Modeling and Optimizing Antennas for Rotational Spectroscopy Applications
Directory of Open Access Journals (Sweden)
Z. Raida
2006-12-01
Full Text Available In the paper, dielectric and metallic lenses are modeled and optimized in order to enhance the gain of a horn antenna in the frequency range from 60 GHz to 100 GHz. Properties of designed lenses are compared and discussed. The structures are modeled in CST Microwave Studio and optimized by Particle Swarm Optimization (PSO in order to get required antenna parameters.
Stochastic Models in the Identification Process
Czech Academy of Sciences Publication Activity Database
Slovák, Dalibor; Zvárová, Jana
2011-01-01
Roč. 7, č. 1 (2011), s. 44-50 ISSN 1801-5603 R&D Projects: GA MŠk(CZ) 1M06014 Institutional research plan: CEZ:AV0Z10300504 Keywords : identification process * weight-of evidence formula * coancestry coefficient * beta-binomial sampling formula * DNA mixtures Subject RIV: IN - Informatics, Computer Science http://www.ejbi.eu/images/2011-1/Slovak_en.pdf
International Nuclear Information System (INIS)
Nicolau, Andressa; Schirru, Roberto; Medeiros, Jose A.C.C.
2009-01-01
This work presents the results of a performance evaluation study of the quantum based algorithms, QEA (Quantum Inspired Evolutionary Algorithm) and QSE (Quantum Swarm Evolutionary), when applied to the transient identification optimization problem of a nuclear power station operating at 100% of full power. For the sake of evaluation of the algorithms 3 benchmark functions were used. When compared to other similar optimization methods QEA showed that it can be an efficient optimization tool, not only for combinatorial problems but also for numerical problems, particularly for complex problems as the identification of transients in a nuclear power station. (author)
Modeling and optimization of wet sizing process
International Nuclear Information System (INIS)
Thai Ba Cau; Vu Thanh Quang and Nguyen Ba Tien
2004-01-01
Mathematical simulation on basis of Stock law has been done for wet sizing process on cylinder equipment of laboratory and semi-industrial scale. The model consists of mathematical equations describing relations between variables, such as: - Resident time distribution function of emulsion particles in the separating zone of the equipment depending on flow-rate, height, diameter and structure of the equipment. - Size-distribution function in the fine and coarse parts depending on resident time distribution function of emulsion particles, characteristics of the material being processed, such as specific density, shapes, and characteristics of the environment of classification, such as specific density, viscosity. - Experimental model was developed on data collected from an experimental cylindrical equipment with diameter x height of sedimentation chamber equal to 50 x 40 cm for an emulsion of zirconium silicate in water. - Using this experimental model allows to determine optimal flow-rate in order to obtain product with desired grain size in term of average size or size distribution function. (author)
Ground Vehicle System Integration (GVSI) and Design Optimization Model
National Research Council Canada - National Science Library
Horton, William
1996-01-01
This report documents the Ground Vehicle System Integration (GVSI) and Design Optimization Model GVSI is a top-level analysis tool designed to support engineering tradeoff studies and vehicle design optimization efforts...
CEAI: CCM-based email authorship identification model
Directory of Open Access Journals (Sweden)
Sarwat Nizamani
2013-11-01
Full Text Available In this paper we present a model for email authorship identification (EAI by employing a Cluster-based Classification (CCM technique. Traditionally, stylometric features have been successfully employed in various authorship analysis tasks; we extend the traditional feature set to include some more interesting and effective features for email authorship identification (e.g., the last punctuation mark used in an email, the tendency of an author to use capitalization at the start of an email, or the punctuation after a greeting or farewell. We also included Info Gain feature selection based content features. It is observed that the use of such features in the authorship identification process has a positive impact on the accuracy of the authorship identification task. We performed experiments to justify our arguments and compared the results with other base line models. Experimental results reveal that the proposed CCM-based email authorship identification model, along with the proposed feature set, outperforms the state-of-the-art support vector machine (SVM-based models, as well as the models proposed by Iqbal et al. (2010, 2013 [1,2]. The proposed model attains an accuracy rate of 94% for 10 authors, 89% for 25 authors, and 81% for 50 authors, respectively on Enron dataset, while 89.5% accuracy has been achieved on authors’ constructed real email dataset. The results on Enron dataset have been achieved on quite a large number of authors as compared to the models proposed by Iqbal et al. [1,2].
Directory of Open Access Journals (Sweden)
Erhua Wang
2013-01-01
Full Text Available In order to ensure the stability of machining processes, the tool point frequency response functions (FRFs should be obtained initially. By the receptance coupling substructure analysis (RCSA, the tool point FRFs can be generated quickly for any combination of holder and tool without the need of repeated measurements. A major difficulty in the sub-structuring analysis is to determine the connection parameters at the tool-holder interface. This study proposed an identification method to recognize the connection parameters at the tool-holder interface by using RCSA and particle swarm optimization (PSO. In this paper, the XHK machining center is divided into two components, which are the tool and the spindle assembly firstly. After that, the end point FRFs of the tool are achieved by mode superposition method. The end receptances of the spindle assembly with complicated structure are obtained by impacting test method. Through translational and rotational springs and dampers, the tool point FRF of the machining center is obtained by coupling the two components. Finally, PSO is adopted to identify the connection parameters at the tool-holder interface by minimizing the difference between the predicted and the measured tool point FRFs. Comparison results between the predicted and measured tool point FRFs show a good agreement and demonstrate that the identification method is valid in the identification of connection parameters at the tool-holder interface.
An optimization model for improving highway safety
Directory of Open Access Journals (Sweden)
Promothes Saha
2016-12-01
Full Text Available This paper developed a traffic safety management system (TSMS for improving safety on county paved roads in Wyoming. TSMS is a strategic and systematic process to improve safety of roadway network. When funding is limited, it is important to identify the best combination of safety improvement projects to provide the most benefits to society in terms of crash reduction. The factors included in the proposed optimization model are annual safety budget, roadway inventory, roadway functional classification, historical crashes, safety improvement countermeasures, cost and crash reduction factors (CRFs associated with safety improvement countermeasures, and average daily traffics (ADTs. This paper demonstrated how the proposed model can identify the best combination of safety improvement projects to maximize the safety benefits in terms of reducing overall crash frequency. Although the proposed methodology was implemented on the county paved road network of Wyoming, it could be easily modified for potential implementation on the Wyoming state highway system. Other states can also benefit by implementing a similar program within their jurisdictions.
Identification of a nuclear plant dynamics via ARMAX model
International Nuclear Information System (INIS)
Yamamoto, Shigeki; Otsuji, Tomoo; Muramatsu, Eiichi
2000-01-01
Dynamics of the reactor of nuclear ship 'Mutsu' is described by a linear time-invariant discrete-time model which is referred to as ARMAX (Auto-Regressive Moving Average eXogenious inputs) model. Applying system identification methods, parameters of the ARMAX model are determined from input-output data of the reactor. Accuracy of the model is examined in time and frequency domain. We show that the model can be a good approximation of the plant dynamics. (author)
Application of Metamodels to Identification of Metallic Materials Models
Pietrzyk, Maciej; Kusiak, Jan; Szeliga, Danuta; Rauch, Łukasz; Sztangret, Łukasz; Górecki, Grzegorz
2016-01-01
Improvement of the efficiency of the inverse analysis (IA) for various material tests was the objective of the paper. Flow stress models and microstructure evolution models of various complexity of mathematical formulation were considered. Different types of experiments were performed and the results were used for the identification of models. Sensitivity analysis was performed for all the models and the importance of parameters in these models was evaluated. Metamodels based on artificial ne...
International Nuclear Information System (INIS)
Iftikhar, T.; Niaz, M.; Haider, M.Z.; Sidra, A.
2014-01-01
Different lipid rich products were used to obtain oil degrading fungal isolates. The isolates were codified for referral to our culture bank and compared for their lipolytic potential. Amongst the isolates, MBL-1412 isolated from the cooked sliced cicer arietinum (Channa Daal) was found to be a potent hyper-producer and was optimized for lipase production under solid state fermentation. Initial systematic treatment based upon micrometric data and consultation with the standard monographs and fungus ended up with its identification as Aspergillus sp. The identification confirmed that the fungus belongs to genus Aspergillus, by DNA barcoding marker like 18S RNA gene sequence.Later, the sequence was registered with accession no. KM924434 in the public nucleotide library (genbank) of NCBI. Fungal culture was maintained on 2% potato dextrose agar (PDA) during the study. Diverse substrates of agricultural byproducts under varied incubation temperature, time interval, inoculum level and different pH of diluent were used as parameters of optimization for hyper-production of lipases. Different carbon and nitrogen sources as additives of culture medium were applied for enhancement of lipase production. Almond meal (10g) with inoculum level at 1.5 mL after 48 h of time course at 50 degree C and 6 pH were selected to be the best eco-cultural conditions for optimal lipases production by Aspergillus sp. MBL-1412. Supplementary additives of nitrogen and carbon sources to the basal substrate improved lipases production appreciably. Ammonium chloride (1%) as inorganic nitrogen source, nutrient broth (0.8%) as organic nitrogen source and starch (0.8%) as carbon source were found as best media additives for enhanced extracellular lipases yield. (author)
Parameter identification in multinomial processing tree models
Schmittmann, V.D.; Dolan, C.V.; Raijmakers, M.E.J.; Batchelder, W.H.
2010-01-01
Multinomial processing tree models form a popular class of statistical models for categorical data that have applications in various areas of psychological research. As in all statistical models, establishing which parameters are identified is necessary for model inference and selection on the basis
Metamodel-based inverse method for parameter identification: elastic-plastic damage model
Huang, Changwu; El Hami, Abdelkhalak; Radi, Bouchaïb
2017-04-01
This article proposed a metamodel-based inverse method for material parameter identification and applies it to elastic-plastic damage model parameter identification. An elastic-plastic damage model is presented and implemented in numerical simulation. The metamodel-based inverse method is proposed in order to overcome the disadvantage in computational cost of the inverse method. In the metamodel-based inverse method, a Kriging metamodel is constructed based on the experimental design in order to model the relationship between material parameters and the objective function values in the inverse problem, and then the optimization procedure is executed by the use of a metamodel. The applications of the presented material model and proposed parameter identification method in the standard A 2017-T4 tensile test prove that the presented elastic-plastic damage model is adequate to describe the material's mechanical behaviour and that the proposed metamodel-based inverse method not only enhances the efficiency of parameter identification but also gives reliable results.
Vortex Tube Modeling Using the System Identification Method
Energy Technology Data Exchange (ETDEWEB)
Han, Jaeyoung; Jeong, Jiwoong; Yu, Sangseok [Chungnam Nat’l Univ., Daejeon (Korea, Republic of); Im, Seokyeon [Tongmyong Univ., Busan (Korea, Republic of)
2017-05-15
In this study, vortex tube system model is developed to predict the temperature of the hot and the cold sides. The vortex tube model is developed based on the system identification method, and the model utilized in this work to design the vortex tube is ARX type (Auto-Regressive with eXtra inputs). The derived polynomial model is validated against experimental data to verify the overall model accuracy. It is also shown that the derived model passes the stability test. It is confirmed that the derived model closely mimics the physical behavior of the vortex tube from both the static and dynamic numerical experiments by changing the angles of the low-temperature side throttle valve, clearly showing temperature separation. These results imply that the system identification based modeling can be a promising approach for the prediction of complex physical systems, including the vortex tube.
Modeling and identification of centrifugal compressor dynamics with approximate realizations
Helvoirt, van J.; Jager, de A.G.; Steinbuch, M.; Smeulers, J.P.M.
2005-01-01
This paper deals with the parameter identification of a model for the dynamic behavior of a large industrial centrifugal compression system. Experimental results are presented to evaluate a new approach for determining the parameters of the modified version of the well-known Greitzer model. This
Optimization Models and Methods Developed at the Energy Systems Institute
N.I. Voropai; V.I. Zorkaltsev
2013-01-01
The paper presents shortly some optimization models of energy system operation and expansion that have been created at the Energy Systems Institute of the Siberian Branch of the Russian Academy of Sciences. Consideration is given to the optimization models of energy development in Russia, a software package intended for analysis of power system reliability, and model of flow distribution in hydraulic systems. A general idea of the optimization methods developed at the Energy Systems Institute...
Optimality models in the age of experimental evolution and genomics
Bull, J. J.; Wang, I.-N.
2010-01-01
Optimality models have been used to predict evolution of many properties of organisms. They typically neglect genetic details, whether by necessity or design. This omission is a common source of criticism, and although this limitation of optimality is widely acknowledged, it has mostly been defended rather than evaluated for its impact. Experimental adaptation of model organisms provides a new arena for testing optimality models and for simultaneously integrating genetics. First, an experimen...
Models and Methods for Free Material Optimization
DEFF Research Database (Denmark)
Weldeyesus, Alemseged Gebrehiwot
Free Material Optimization (FMO) is a powerful approach for structural optimization in which the design parametrization allows the entire elastic stiffness tensor to vary freely at each point of the design domain. The only requirement imposed on the stiffness tensor lies on its mild necessary...
Takagi-Sugeno fuzzy model identification for turbofan aero-engines with guaranteed stability
Directory of Open Access Journals (Sweden)
Ruichao LI
2018-06-01
Full Text Available This paper is concerned with identifying a Takagi-Sugeno (TS fuzzy model for turbofan aero-engines working under the maximum power status (non-afterburning. To establish the fuzzy system, theoretical contributions are made as follows. First, by fixing antecedent parameters, the estimation of consequent parameters in state-space representations is formulated as minimizing a quadratic cost function. Second, to avoid obtaining unstable identified models, a new theorem is proposed to transform the prior-knowledge of stability into constraints. Then based on the aforementioned work, the identification problem is synthesized as a constrained quadratic optimization. By solving the constrained optimization, a TS fuzzy system is identified with guaranteed stability. Finally, the proposed method is applied to the turbofan aero-engine using simulation data generated from an aerothermodynamics component-level model. Results show the identified fuzzy model achieves a high fitting accuracy while stabilities of the overall fuzzy system and all its local models are also guaranteed. Keywords: Constrained optimization, Fuzzy system, Stability, System identification, Turbofan engine
Directory of Open Access Journals (Sweden)
Guang-zhou Chen
2015-01-01
Full Text Available Parameter identification plays a crucial role for simulating and using model. This paper firstly carried out the sensitivity analysis of the 2-chlorophenol oxidation model in supercritical water using the Monte Carlo method. Then, to address the nonlinearity of the model, two improved differential search (DS algorithms were proposed to carry out the parameter identification of the model. One strategy is to adopt the Latin hypercube sampling method to replace the uniform distribution of initial population; the other is to combine DS with simplex method. The results of sensitivity analysis reveal the sensitivity and the degree of difficulty identified for every model parameter. Furthermore, the posteriori probability distribution of parameters and the collaborative relationship between any two parameters can be obtained. To verify the effectiveness of the improved algorithms, the optimization performance of improved DS in kinetic parameter estimation is studied and compared with that of the basic DS algorithm, differential evolution, artificial bee colony optimization, and quantum-behaved particle swarm optimization. And the experimental results demonstrate that the DS with the Latin hypercube sampling method does not present better performance, while the hybrid methods have the advantages of strong global search ability and local search ability and are more effective than the other algorithms.
Visual prosthesis wireless energy transfer system optimal modeling.
Li, Xueping; Yang, Yuan; Gao, Yong
2014-01-16
Wireless energy transfer system is an effective way to solve the visual prosthesis energy supply problems, theoretical modeling of the system is the prerequisite to do optimal energy transfer system design. On the basis of the ideal model of the wireless energy transfer system, according to visual prosthesis application condition, the system modeling is optimized. During the optimal modeling, taking planar spiral coils as the coupling devices between energy transmitter and receiver, the effect of the parasitic capacitance of the transfer coil is considered, and especially the concept of biological capacitance is proposed to consider the influence of biological tissue on the energy transfer efficiency, resulting in the optimal modeling's more accuracy for the actual application. The simulation data of the optimal model in this paper is compared with that of the previous ideal model, the results show that under high frequency condition, the parasitic capacitance of inductance and biological capacitance considered in the optimal model could have great impact on the wireless energy transfer system. The further comparison with the experimental data verifies the validity and accuracy of the optimal model proposed in this paper. The optimal model proposed in this paper has a higher theoretical guiding significance for the wireless energy transfer system's further research, and provide a more precise model reference for solving the power supply problem in visual prosthesis clinical application.
Optimal velocity difference model for a car-following theory
International Nuclear Information System (INIS)
Peng, G.H.; Cai, X.H.; Liu, C.Q.; Cao, B.F.; Tuo, M.X.
2011-01-01
In this Letter, we present a new optimal velocity difference model for a car-following theory based on the full velocity difference model. The linear stability condition of the new model is obtained by using the linear stability theory. The unrealistically high deceleration does not appear in OVDM. Numerical simulation of traffic dynamics shows that the new model can avoid the disadvantage of negative velocity occurred at small sensitivity coefficient λ in full velocity difference model by adjusting the coefficient of the optimal velocity difference, which shows that collision can disappear in the improved model. -- Highlights: → A new optimal velocity difference car-following model is proposed. → The effects of the optimal velocity difference on the stability of traffic flow have been explored. → The starting and braking process were carried out through simulation. → The effects of the optimal velocity difference can avoid the disadvantage of negative velocity.
Directory of Open Access Journals (Sweden)
Zhaohua Gong
2012-01-01
Full Text Available Mathematical modeling and parameter estimation are critical steps in the optimization of biotechnological processes. In the 1,3-propanediol (1,3-PD production by glycerol fermentation process under anaerobic conditions, 3-hydroxypropionaldehyde (3-HPA accumulation would arouse an irreversible cessation of the fermentation process. Considering 3-HPA inhibitions to cells growth and to activities of enzymes, we propose a novel mathematical model to describe glycerol continuous cultures. Some properties of the above model are discussed. On the basis of the concentrations of extracellular substances, a parameter identification model is established to determine the kinetic parameters in the presented system. Through the penalty function technique combined with an extension of the state space method, an improved genetic algorithm is then constructed to solve the parameter identification model. An illustrative numerical example shows the appropriateness of the proposed model and the validity of optimization algorithm. Since it is difficult to measure the concentrations of intracellular substances, a quantitative robustness analysis method is given to infer whether the model is plausible for the intracellular substances. Numerical results show that the proposed model is of good robustness.
Identification and modelling of Lithium ion battery
International Nuclear Information System (INIS)
Tsang, K.M.; Sun, L.; Chan, W.L.
2010-01-01
A universal battery model for the charging process has been identified for Lithium ion battery working at constant temperature. Mathematical models are fitted to different collected charging profiles using the least squares algorithm. With the removal of the component which is related to the DC resistance of the battery, a universal model can be fitted to predict profiles of different charging rates after time scaling. Experimental results are included to demonstrate the goodness of fit of the model at different charging rates and for batteries of different capacities. Comparison with standard electrical-circuit model is also presented. With the proposed model, it is possible to derive more effective way to monitor the status of Lithium ion batteries, and to develop a universal quick charger for different capacities of batteries to result with a more effective usage of Lithium ion batteries.
Identification and communication of uncertainties of phenomenological models in PSA
International Nuclear Information System (INIS)
Pulkkinen, U.; Simola, K.
2001-11-01
This report aims at presenting a view upon uncertainty analysis of phenomenological models with an emphasis on the identification and documentation of various types of uncertainties and assumptions in the modelling of the phenomena. In an uncertainty analysis, it is essential to include and document all unclear issues, in order to obtain a maximal coverage of unresolved issues. This holds independently on their nature or type of the issues. The classification of uncertainties is needed in the decomposition of the problem and it helps in the identification of means for uncertainty reduction. Further, an enhanced documentation serves to evaluate the applicability of the results to various risk-informed applications. (au)
Identification of cascade water tanks using a PWARX model
Mattsson, Per; Zachariah, Dave; Stoica, Petre
2018-06-01
In this paper we consider the identification of a discrete-time nonlinear dynamical model for a cascade water tank process. The proposed method starts with a nominal linear dynamical model of the system, and proceeds to model its prediction errors using a model that is piecewise affine in the data. As data is observed, the nominal model is refined into a piecewise ARX model which can capture a wide range of nonlinearities, such as the saturation in the cascade tanks. The proposed method uses a likelihood-based methodology which adaptively penalizes model complexity and directly leads to a computationally efficient implementation.
Transfer Function Identification Using Orthogonal Fourier Transform Modeling Functions
Morelli, Eugene A.
2013-01-01
A method for transfer function identification, including both model structure determination and parameter estimation, was developed and demonstrated. The approach uses orthogonal modeling functions generated from frequency domain data obtained by Fourier transformation of time series data. The method was applied to simulation data to identify continuous-time transfer function models and unsteady aerodynamic models. Model fit error, estimated model parameters, and the associated uncertainties were used to show the effectiveness of the method for identifying accurate transfer function models from noisy data.
A physiologically based nonhomogeneous Poisson counter model of visual identification.
Christensen, Jeppe H; Markussen, Bo; Bundesen, Claus; Kyllingsbæk, Søren
2018-04-30
A physiologically based nonhomogeneous Poisson counter model of visual identification is presented. The model was developed in the framework of a Theory of Visual Attention (Bundesen, 1990; Kyllingsbæk, Markussen, & Bundesen, 2012) and meant for modeling visual identification of objects that are mutually confusable and hard to see. The model assumes that the visual system's initial sensory response consists in tentative visual categorizations, which are accumulated by leaky integration of both transient and sustained components comparable with those found in spike density patterns of early sensory neurons. The sensory response (tentative categorizations) feeds independent Poisson counters, each of which accumulates tentative object categorizations of a particular type to guide overt identification performance. We tested the model's ability to predict the effect of stimulus duration on observed distributions of responses in a nonspeeded (pure accuracy) identification task with eight response alternatives. The time courses of correct and erroneous categorizations were well accounted for when the event-rates of competing Poisson counters were allowed to vary independently over time in a way that mimicked the dynamics of receptive field selectivity as found in neurophysiological studies. Furthermore, the initial sensory response yielded theoretical hazard rate functions that closely resembled empirically estimated ones. Finally, supplied with a Naka-Rushton type contrast gain control, the model provided an explanation for Bloch's law. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Experimental Damage Identification of a Model Reticulated Shell
Directory of Open Access Journals (Sweden)
Jing Xu
2017-04-01
Full Text Available The damage identification of a reticulated shell is a challenging task, facing various difficulties, such as the large number of degrees of freedom (DOFs, the phenomenon of modal localization and transition, and low modeling accuracy. Based on structural vibration responses, the damage identification of a reticulated shell was studied. At first, the auto-regressive (AR time series model was established based on the acceleration responses of the reticulated shell. According to the changes in the coefficients of the AR model between the damaged conditions and the undamaged condition, the damage of the reticulated shell can be detected. In addition, the damage sensitive factors were determined based on the coefficients of the AR model. With the damage sensitive factors as the inputs and the damage positions as the outputs, back-propagation neural networks (BPNNs were then established and were trained using the Levenberg–Marquardt algorithm (L–M algorithm. The locations of the damages can be predicted by the back-propagation neural networks. At last, according to the experimental scheme of single-point excitation and multi-point responses, the impact experiments on a K6 shell model with a scale of 1/10 were conducted. The experimental results verified the efficiency of the proposed damage identification method based on the AR time series model and back-propagation neural networks. The proposed damage identification method can ensure the safety of the practical engineering to some extent.
Biochemical systems identification by a random drift particle swarm optimization approach
2014-01-01
Background Finding an efficient method to solve the parameter estimation problem (inverse problem) for nonlinear biochemical dynamical systems could help promote the functional understanding at the system level for signalling pathways. The problem is stated as a data-driven nonlinear regression problem, which is converted into a nonlinear programming problem with many nonlinear differential and algebraic constraints. Due to the typical ill conditioning and multimodality nature of the problem, it is in general difficult for gradient-based local optimization methods to obtain satisfactory solutions. To surmount this limitation, many stochastic optimization methods have been employed to find the global solution of the problem. Results This paper presents an effective search strategy for a particle swarm optimization (PSO) algorithm that enhances the ability of the algorithm for estimating the parameters of complex dynamic biochemical pathways. The proposed algorithm is a new variant of random drift particle swarm optimization (RDPSO), which is used to solve the above mentioned inverse problem and compared with other well known stochastic optimization methods. Two case studies on estimating the parameters of two nonlinear biochemical dynamic models have been taken as benchmarks, under both the noise-free and noisy simulation data scenarios. Conclusions The experimental results show that the novel variant of RDPSO algorithm is able to successfully solve the problem and obtain solutions of better quality than other global optimization methods used for finding the solution to the inverse problems in this study. PMID:25078435
Deletion analysis of susy-sl promoter for the identification of optimal promoter sequence
International Nuclear Information System (INIS)
Bacha, S.; Khatoon, A.; Asif, M.; Bshir, A.
2015-01-01
The promoter region of sucrose synthase (susy-Sl) was identified and isolated from tomato. The 5? deletion analysis was carried out for the identification of minimum optimal promoter. Transgenic lines of Arabidopsis thaliana were developed by floral dip method incorporating various promoter deletion cassettes controlling GUS reporter gene. GUS assay of transgenic tissues indicated that full length susy-Sl promoter and its deletion mutants were constitutively expressed in vegetative and floral tissues of A. thaliana. The expression was observed in roots, shoots and flowers of A. thaliana. Analysis of 5? deletion series of susy-Sl promoter showed that a minimum of 679 bp fragment of the promoter was sufficient to drive expression of GUS reporter gene in the major tissues of transgenic A. thaliana. (author)
Global Nonlinear Model Identification with Multivariate Splines
De Visser, C.C.
2011-01-01
At present, model based control systems play an essential role in many aspects of modern society. Application areas of model based control systems range from food processing to medical imaging, and from process control in oil refineries to the flight control systems of modern aircraft. Central to a
The Talent Search Model of Gifted Identification
Assouline, Susan G.; Lupkowski-Shoplik, Ann
2012-01-01
The Talent Search model, founded at Johns Hopkins University by Dr. Julian C. Stanley, is fundamentally an above-level testing program. This simplistic description belies the enduring impact that the Talent Search model has had on the lives of hundreds of thousands of gifted students as well as their parents and teachers. In this article, we…
Optimal consumption problem in the Vasicek model
Directory of Open Access Journals (Sweden)
Jakub Trybuła
2015-01-01
Full Text Available We consider the problem of an optimal consumption strategy on the infinite time horizon based on the hyperbolic absolute risk aversion utility when the interest rate is an Ornstein-Uhlenbeck process. Using the method of subsolution and supersolution we obtain the existence of solutions of the dynamic programming equation. We illustrate the paper with a numerical example of the optimal consumption strategy and the value function.
Application of Metamodels to Identification of Metallic Materials Models
Directory of Open Access Journals (Sweden)
Maciej Pietrzyk
2016-01-01
Full Text Available Improvement of the efficiency of the inverse analysis (IA for various material tests was the objective of the paper. Flow stress models and microstructure evolution models of various complexity of mathematical formulation were considered. Different types of experiments were performed and the results were used for the identification of models. Sensitivity analysis was performed for all the models and the importance of parameters in these models was evaluated. Metamodels based on artificial neural network were proposed to simulate experiments in the inverse solution. Performed analysis has shown that significant decrease of the computing times could be achieved when metamodels substitute finite element model in the inverse analysis, which is the case in the identification of flow stress models. Application of metamodels gave good results for flow stress models based on closed form equations accounting for an influence of temperature, strain, and strain rate (4 coefficients and additionally for softening due to recrystallization (5 coefficients and for softening and saturation (7 coefficients. Good accuracy and high efficiency of the IA were confirmed. On the contrary, identification of microstructure evolution models, including phase transformation models, did not give noticeable reduction of the computing time.
Optimization model for the design of distributed wastewater treatment networks
Directory of Open Access Journals (Sweden)
Ibrić Nidret
2012-01-01
Full Text Available In this paper we address the synthesis problem of distributed wastewater networks using mathematical programming approach based on the superstructure optimization. We present a generalized superstructure and optimization model for the design of the distributed wastewater treatment networks. The superstructure includes splitters, treatment units, mixers, with all feasible interconnections including water recirculation. Based on the superstructure the optimization model is presented. The optimization model is given as a nonlinear programming (NLP problem where the objective function can be defined to minimize the total amount of wastewater treated in treatment operations or to minimize the total treatment costs. The NLP model is extended to a mixed integer nonlinear programming (MINLP problem where binary variables are used for the selection of the wastewater treatment technologies. The bounds for all flowrates and concentrations in the wastewater network are specified as general equations. The proposed models are solved using the global optimization solvers (BARON and LINDOGlobal. The application of the proposed models is illustrated on the two wastewater network problems of different complexity. First one is formulated as the NLP and the second one as the MINLP. For the second one the parametric and structural optimization is performed at the same time where optimal flowrates, concentrations as well as optimal technologies for the wastewater treatment are selected. Using the proposed model both problems are solved to global optimality.
A model for optimizing the production of pharmaceutical products
Directory of Open Access Journals (Sweden)
Nevena Gospodinova
2017-05-01
Full Text Available The problem associated with the optimal production planning is especially relevant in modern industrial enterprises. The most commonly used optimality criteria in this context are: maximizing the total profit; minimizing the cost per unit of production; maximizing the capacity utilization; minimizing the total production costs. This article aims to explore the possibility for optimizing the production of pharmaceutical products through the construction of a mathematical model that can be viewed in two ways – as a single-product model and a multi-product model. As an optimality criterion it is set the minimization of the cost per unit of production for a given planning period. The author proposes an analytical method for solving the nonlinear optimization problem. An optimal production plan of Tylosin tartrate is found using the single-product model.
Identification of Influential Points in a Linear Regression Model
Directory of Open Access Journals (Sweden)
Jan Grosz
2011-03-01
Full Text Available The article deals with the detection and identification of influential points in the linear regression model. Three methods of detection of outliers and leverage points are described. These procedures can also be used for one-sample (independentdatasets. This paper briefly describes theoretical aspects of several robust methods as well. Robust statistics is a powerful tool to increase the reliability and accuracy of statistical modelling and data analysis. A simulation model of the simple linear regression is presented.
Hierarchical models and iterative optimization of hybrid systems
Energy Technology Data Exchange (ETDEWEB)
Rasina, Irina V. [Ailamazyan Program Systems Institute, Russian Academy of Sciences, Peter One str. 4a, Pereslavl-Zalessky, 152021 (Russian Federation); Baturina, Olga V. [Trapeznikov Control Sciences Institute, Russian Academy of Sciences, Profsoyuznaya str. 65, 117997, Moscow (Russian Federation); Nasatueva, Soelma N. [Buryat State University, Smolina str.24a, Ulan-Ude, 670000 (Russian Federation)
2016-06-08
A class of hybrid control systems on the base of two-level discrete-continuous model is considered. The concept of this model was proposed and developed in preceding works as a concretization of the general multi-step system with related optimality conditions. A new iterative optimization procedure for such systems is developed on the base of localization of the global optimality conditions via contraction the control set.
System identification application using Hammerstein model
Indian Academy of Sciences (India)
Saban Ozer
results of the Hammerstein model focused on this study. *For correspondence. 597 ..... Example 1: In this sample study, considering the block structure given in ..... Graduate School of Natural and Applied Science, Turkey. [20] Cui M, Liu H, Li Z ...
Constrained optimization via simulation models for new product innovation
Pujowidianto, Nugroho A.
2017-11-01
We consider the problem of constrained optimization where the decision makers aim to optimize the primary performance measure while constraining the secondary performance measures. This paper provides a brief overview of stochastically constrained optimization via discrete event simulation. Most review papers tend to be methodology-based. This review attempts to be problem-based as decision makers may have already decided on the problem formulation. We consider constrained optimization models as there are usually constraints on secondary performance measures as trade-off in new product development. It starts by laying out different possible methods and the reasons using constrained optimization via simulation models. It is then followed by the review of different simulation optimization approach to address constrained optimization depending on the number of decision variables, the type of constraints, and the risk preferences of the decision makers in handling uncertainties.
Empty tracks optimization based on Z-Map model
Liu, Le; Yan, Guangrong; Wang, Zaijun; Zang, Genao
2017-12-01
For parts with many features, there are more empty tracks during machining. If these tracks are not optimized, the machining efficiency will be seriously affected. In this paper, the characteristics of the empty tracks are studied in detail. Combining with the existing optimization algorithm, a new tracks optimization method based on Z-Map model is proposed. In this method, the tool tracks are divided into the unit processing section, and then the Z-Map model simulation technique is used to analyze the order constraint between the unit segments. The empty stroke optimization problem is transformed into the TSP with sequential constraints, and then through the genetic algorithm solves the established TSP problem. This kind of optimization method can not only optimize the simple structural parts, but also optimize the complex structural parts, so as to effectively plan the empty tracks and greatly improve the processing efficiency.
Optimal hedging with the cointegrated vector autoregressive model
DEFF Research Database (Denmark)
Gatarek, Lukasz; Johansen, Søren
We derive the optimal hedging ratios for a portfolio of assets driven by a Coin- tegrated Vector Autoregressive model (CVAR) with general cointegration rank. Our hedge is optimal in the sense of minimum variance portfolio. We consider a model that allows for the hedges to be cointegrated with the...
Stochastic Robust Mathematical Programming Model for Power System Optimization
Energy Technology Data Exchange (ETDEWEB)
Liu, Cong; Changhyeok, Lee; Haoyong, Chen; Mehrotra, Sanjay
2016-01-01
This paper presents a stochastic robust framework for two-stage power system optimization problems with uncertainty. The model optimizes the probabilistic expectation of different worst-case scenarios with ifferent uncertainty sets. A case study of unit commitment shows the effectiveness of the proposed model and algorithms.
Torres, Veronica C.; Wilson, Todd; Staneviciute, Austeja; Byrne, Richard W.; Tichauer, Kenneth M.
2018-03-01
Skull base tumors are particularly difficult to visualize and access for surgeons because of the crowded environment and close proximity of vital structures, such as cranial nerves. As a result, accidental nerve damage is a significant concern and the likelihood of tumor recurrence is increased because of more conservative resections that attempt to avoid injuring these structures. In this study, a paired-agent imaging method with direct administration of fluorophores is applied to enhance cranial nerve identification. Here, a control imaging agent (ICG) accounts for non-specific uptake of the nerve-targeting agent (Oxazine 4), and ratiometric data analysis is employed to approximate binding potential (BP, a surrogate of targeted biomolecule concentration). For clinical relevance, animal experiments and simulations were conducted to identify parameters for an optimized stain and rinse protocol using the developed paired-agent method. Numerical methods were used to model the diffusive and kinetic behavior of the imaging agents in tissue, and simulation results revealed that there are various combinations of stain time and rinse number that provide improved contrast of cranial nerves, as suggested by optimal measures of BP and contrast-to-noise ratio.
Modeling and optimization of an electric power distribution network ...
African Journals Online (AJOL)
Modeling and optimization of an electric power distribution network planning system using ... of the network was modelled with non-linear mathematical expressions. ... given feasible locations, re-conductoring of existing feeders in the network, ...
Integrated modeling of ozonation for optimization of drinking water treatment
van der Helm, A.W.C.
2007-01-01
Drinking water treatment plants automation becomes more sophisticated, more on-line monitoring systems become available and integration of modeling environments with control systems becomes easier. This gives possibilities for model-based optimization. In operation of drinking water treatment
Identification of Loss-of-Coolant Accidents in LWRs by Inverse Models
International Nuclear Information System (INIS)
Cholewa, Wojciech; Frid, Wiktor; Bednarski, Marcin
2004-01-01
This paper describes a novel diagnostic method based on inverse models that could be applied to identification of transients and accidents in nuclear power plants. In particular, it is shown that such models could be successfully applied to identification of loss-of-coolant accidents (LOCAs). This is demonstrated for LOCA scenarios for a boiling water reactor. Two classes of inverse models are discussed: local models valid only in a selected neighborhood of an unknown element in the data set, representing a state of a considered object, and global models, in the form of partially unilateral models, valid over the whole learning data set. An interesting and useful property of local inverse models is that they can be considered as example-based models, i.e., models that are spanned on particular sets of pattern data. It is concluded that the optimal diagnostic method should combine the advantages of both models, i.e., the high quality of results obtained from a local inverse model and the information about the confidence interval for the expected output provided by a partially unilateral model
International Nuclear Information System (INIS)
Park, Nam-Gyu; Kim, Kyoung-Joo; Kim, Kyoung-Hong; Suh, Jung-Min
2013-01-01
Highlights: ► An identification method of the optimal stiffness matrix for a fuel assembly structure is discussed. ► The least squares optimization method is introduced, and a closed form solution of the problem is derived. ► The method can be expanded to the system with the limited number of modes. ► Identification error due to the perturbed mode shape matrix is analyzed. ► Verification examples show that the proposed procedure leads to a reliable solution. -- Abstract: A reactor core structural model which is used to evaluate the structural integrity of the core contains nuclear fuel assembly models. Since the reactor core consists of many nuclear fuel assemblies, the use of a refined fuel assembly model leads to a considerable amount of computing time for performing nonlinear analyses such as the prediction of seismic induced vibration behaviors. The computational time could be reduced by replacing the detailed fuel assembly model with a simplified model that has fewer degrees of freedom, but the dynamic characteristics of the detailed model must be maintained in the simplified model. Such a model based on an optimal design method is proposed in this paper. That is, when a mass matrix and a mode shape matrix are given, the optimal stiffness matrix of a discrete fuel assembly model can be estimated by applying the least squares minimization method. The verification of the method is completed by comparing test results and simulation results. This paper shows that the simplified model's dynamic behaviors are quite similar to experimental results and that the suggested method is suitable for identifying reliable mathematical model for fuel assemblies
Shape optimization in biomimetics by homogenization modelling
International Nuclear Information System (INIS)
Hoppe, Ronald H.W.; Petrova, Svetozara I.
2003-08-01
Optimal shape design of microstructured materials has recently attracted a great deal of attention in material science. The shape and the topology of the microstructure have a significant impact on the macroscopic properties. The present work is devoted to the shape optimization of new biomorphic microcellular ceramics produced from natural wood by biotemplating. We are interested in finding the best material-and-shape combination in order to achieve the optimal prespecified performance of the composite material. The computation of the effective material properties is carried out using the homogenization method. Adaptive mesh-refinement technique based on the computation of recovered stresses is applied in the microstructure to find the homogenized elasticity coefficients. Numerical results show the reliability of the implemented a posteriori error estimator. (author)
Wang, Geng; Zhou, Kexin; Zhang, Yeming
2018-04-01
The widely used Bouc-Wen hysteresis model can be utilized to accurately simulate the voltage-displacement curves of piezoelectric actuators. In order to identify the unknown parameters of the Bouc-Wen model, an improved artificial bee colony (IABC) algorithm is proposed in this paper. A guiding strategy for searching the current optimal position of the food source is proposed in the method, which can help balance the local search ability and global exploitation capability. And the formula for the scout bees to search for the food source is modified to increase the convergence speed. Some experiments were conducted to verify the effectiveness of the IABC algorithm. The results show that the identified hysteresis model agreed well with the actual actuator response. Moreover, the identification results were compared with the standard particle swarm optimization (PSO) method, and it can be seen that the search performance in convergence rate of the IABC algorithm is better than that of the standard PSO method.
Identification of linear error-models with projected dynamical systems
Czech Academy of Sciences Publication Activity Database
Krejčí, Pavel; Kuhnen, K.
2004-01-01
Roč. 10, č. 1 (2004), s. 59-91 ISSN 1387-3954 Keywords : identification * error models * projected dynamical systems Subject RIV: BA - General Mathematics Impact factor: 0.292, year: 2004 http://www.informaworld.com/smpp/content~db=all~content=a713682517
Robust model identification applied to type 1diabetes
DEFF Research Database (Denmark)
Finan, Daniel Aaron; Jørgensen, John Bagterp; Poulsen, Niels Kjølstad
2010-01-01
In many realistic applications, process noise is known to be neither white nor normally distributed. When identifying models in these cases, it may be more effective to minimize a different penalty function than the standard sum of squared errors (as in a least-squares identification method). Thi...
Systematic approach for the identification of process reference models
CSIR Research Space (South Africa)
Van Der Merwe, A
2009-02-01
Full Text Available and make it economically viable. In the identification of core elements within the process reference model, the focus is often on the end-product and not on the procedure used to identify the elements. As often proved in development of projects, there is a...
A review on modeling, identification and servo control of robotic ...
African Journals Online (AJOL)
user
This article reviews modeling, identification, and low level control of the robotic excavator. ... The oil viscosity, oil flow through the spool valves, and variable loading, ..... squares, to identify all the unknown individual parameters for a unmanned ..... Robust low level control of robotic excavation, PhD Thesis, The University of ...
Parameter identification in ODE models with oscillatory dynamics: a Fourier regularization approach
Chiara D'Autilia, Maria; Sgura, Ivonne; Bozzini, Benedetto
2017-12-01
In this paper we consider a parameter identification problem (PIP) for data oscillating in time, that can be described in terms of the dynamics of some ordinary differential equation (ODE) model, resulting in an optimization problem constrained by the ODEs. In problems with this type of data structure, simple application of the direct method of control theory (discretize-then-optimize) yields a least-squares cost function exhibiting multiple ‘low’ minima. Since in this situation any optimization algorithm is liable to fail in the approximation of a good solution, here we propose a Fourier regularization approach that is able to identify an iso-frequency manifold {{ S}} of codimension-one in the parameter space \
A tutorial on fundamental model structures for railway timetable optimization
DEFF Research Database (Denmark)
Harrod, Steven
2012-01-01
This guide explains the role of railway timetables relative to all other railway scheduling activities, and then presents four fundamental timetable formulations suitable for optimization. Timetabling models may be classified according to whether they explicitly model the track structure, and whe......This guide explains the role of railway timetables relative to all other railway scheduling activities, and then presents four fundamental timetable formulations suitable for optimization. Timetabling models may be classified according to whether they explicitly model the track structure...
Advances in Modelling, System Identification and Parameter ...
Indian Academy of Sciences (India)
Authors show, using numerical simulation for two system functions, the improvement in percentage normalized ... of nonlinear systems. The approach is to use multiple linearizing models fitted along the operating trajectories. ... over emphasized in the light of present day high level of research activity in the field of aerospace ...
Holz, Jasmin A; Boerwinkel, David F; Meijer, Sybren L; Visser, Mike; van Leeuwen, Ton G; Aalders, Maurice C G; Bergman, Jacques J G H M
2013-12-01
Fluorescence spectroscopy has the potential to detect early cellular changes in Barrett's oesophagus before these become visible. As the technique is based on varying concentrations of intrinsic fluorophores, each with its own optimal excitation wavelength, it is important to assess the optimal excitation wavelength(s) for identification of premalignant lesions in patients with Barrett's oesophagus. The endoscopic spectroscopy system used contained five (ultra)violet light sources (λexc=369-416 nm) to generate autofluorescence during routine endoscopic surveillance. Autofluorescence spectroscopy was followed by a biopsy for histological assessment and spectra correlation. Three intensity ratios (r1, r2, r3) were calculated by dividing the area, A, under the spectral curve of selected emission wavelength ranges for each spectrum generated by each excitation wavelength λexc as follows (Equation is included in full-text article.). Double intensity ratios were calculated using two excitation wavelengths. Fifty-eight tissue areas from 22 patients were used for autofluorescence spectra analysis. Excitation with 395, 405 or 410 nm showed a significant (P≤0.0006) differentiation between intestinal metaplasia and grouped high-grade dysplasia/early carcinoma for intensity ratios r2 and r3. A sensitivity of 80.0% and specificity of 89.5% with an area under the ROC curve of 0.85 was achieved using 395 nm excitation and intensity ratio r3. Double excitation showed no additional value over single excitation. The combination of 395 nm excitation and intensity ratio r3 showed optimal conditions to discriminate nondysplastic from early neoplasia in Barrett's oesophagus.
Modeling groundwater vulnerability to pollution using Optimized DRASTIC model
International Nuclear Information System (INIS)
Mogaji, Kehinde Anthony; Lim, Hwee San; Abdullar, Khiruddin
2014-01-01
The prediction accuracy of the conventional DRASTIC model (CDM) algorithm for groundwater vulnerability assessment is severely limited by the inherent subjectivity and uncertainty in the integration of data obtained from various sources. This study attempts to overcome these problems by exploring the potential of the analytic hierarchy process (AHP) technique as a decision support model to optimize the CDM algorithm. The AHP technique was utilized to compute the normalized weights for the seven parameters of the CDM to generate an optimized DRASTIC model (ODM) algorithm. The DRASTIC parameters integrated with the ODM algorithm predicted which among the study areas is more likely to become contaminated as a result of activities at or near the land surface potential. Five vulnerability zones, namely: no vulnerable(NV), very low vulnerable (VLV), low vulnerable (LV), moderate vulnerable (MV) and high vulnerable (HV) were identified based on the vulnerability index values estimated with the ODM algorithm. Results show that more than 50% of the area belongs to both moderate and high vulnerable zones on the account of the spatial analysis of the produced ODM-based groundwater vulnerability prediction map (GVPM).The prediction accuracy of the ODM-based – GVPM with the groundwater pH and manganese (Mn) concentrations established correlation factors (CRs) result of 90 % and 86 % compared to the CRs result of 62 % and 50 % obtained for the validation accuracy of the CDM – based GVPM. The comparative results, indicated that the ODM-based produced GVPM is more reliable than the CDM – based produced GVPM in the study area. The study established the efficacy of AHP as a spatial decision support technique in enhancing environmental decision making with particular reference to future groundwater vulnerability assessment
LENUS (Irish Health Repository)
Moore, Jason
2009-02-27
The early identification of kidney allografts at risk of later dysfunction has implications for clinical practice. Donor quality scoring systems (preoperative) and measures of early allograft function (first week postoperative) have previously shown practical utility. This study aimed to determine the optimal parameter(s) (preoperative and postoperative) with greatest predictive power for the development of subsequent allograft dysfunction.
Optimizing Classroom Acoustics Using Computer Model Studies.
Reich, Rebecca; Bradley, John
1998-01-01
Investigates conditions relating to the maximum useful-to-detrimental sound ratios present in classrooms and determining the optimum conditions for speech intelligibility. Reveals that speech intelligibility is more strongly influenced by ambient noise levels and that the optimal location for sound absorbing material is on a classroom's upper…
Optimization and emergence in marine ecosystem models
DEFF Research Database (Denmark)
Mariani, Patrizio; Visser, Andre
2010-01-01
Ingestion rates and mortality rates of zooplankton are dynamic parameters reflecting a behavioural trade-off between encounters with food and predators. An evolutionarily consistent behaviour is that which optimizes the trade-off in terms of the fitness conferred to an individual. We argue that i...
CREATION OF OPTIMIZATION MODEL OF STEAM BOILER RECUPERATIVE AIR HEATER
Directory of Open Access Journals (Sweden)
N. B. Carnickiy
2006-01-01
Full Text Available The paper proposes to use a mathematical modeling as one of the ways intended to improve quality of recuperative air heater design (RAH without significant additional costs, connected with the change of design materials or fuel type. The described conceptual mathematical AHP optimization model of RAH consists of optimized and constant parameters, technical limitations and optimality criteria.The paper considers a methodology for search of design and regime parameters of an air heater which is based on the methods of multi-criteria optimization. Conclusions for expediency of the given approach usage are made in the paper.
Optimization Research of Generation Investment Based on Linear Programming Model
Wu, Juan; Ge, Xueqian
Linear programming is an important branch of operational research and it is a mathematical method to assist the people to carry out scientific management. GAMS is an advanced simulation and optimization modeling language and it will combine a large number of complex mathematical programming, such as linear programming LP, nonlinear programming NLP, MIP and other mixed-integer programming with the system simulation. In this paper, based on the linear programming model, the optimized investment decision-making of generation is simulated and analyzed. At last, the optimal installed capacity of power plants and the final total cost are got, which provides the rational decision-making basis for optimized investments.
Piehowski, Paul D; Petyuk, Vladislav A; Sandoval, John D; Burnum, Kristin E; Kiebel, Gary R; Monroe, Matthew E; Anderson, Gordon A; Camp, David G; Smith, Richard D
2013-03-01
For bottom-up proteomics, there are wide variety of database-searching algorithms in use for matching peptide sequences to tandem MS spectra. Likewise, there are numerous strategies being employed to produce a confident list of peptide identifications from the different search algorithm outputs. Here we introduce a grid-search approach for determining optimal database filtering criteria in shotgun proteomics data analyses that is easily adaptable to any search. Systematic Trial and Error Parameter Selection--referred to as STEPS--utilizes user-defined parameter ranges to test a wide array of parameter combinations to arrive at an optimal "parameter set" for data filtering, thus maximizing confident identifications. The benefits of this approach in terms of numbers of true-positive identifications are demonstrated using datasets derived from immunoaffinity-depleted blood serum and a bacterial cell lysate, two common proteomics sample types. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Correlations in state space can cause sub-optimal adaptation of optimal feedback control models
Aprasoff, Jonathan; Donchin, Opher
2011-01-01
Control of our movements is apparently facilitated by an adaptive internal model in the cerebellum. It was long thought that this internal model implemented an adaptive inverse model and generated motor commands, but recently many reject that idea in favor of a forward model hypothesis. In theory, the forward model predicts upcoming state during reaching movements so the motor cortex can generate appropriate motor commands. Recent computational models of this process rely on the optimal feedb...
Energy Technology Data Exchange (ETDEWEB)
Lyshevski, S.E. [Purdue University at Indianapolis (United States). Dept. of Electrical and Computer Engineering
2002-11-01
Microelectromechanical systems (MEMS), which integrate motion microstructures, radiating energy microdevices, controlling and signal processing integrated circuits (ICs), are widely used. Rotational and translational electromagnetic based micromachines are used in MEMS as actuators and sensors. Brushless high performance micromachines are the preferable choice in different MEMS applications, and therefore, synchronous and induction micromachines are the best candidates. Affordability, good performance characteristics (efficiency, controllability, robustness, reliability, power and torque densities etc.) and expanded operating envelopes result in a strong interest in the application of induction micromachines. In addition, induction micromachines can be easily fabricated using surface micromachining and high aspect ratio fabrication technologies. Thus, it is anticipated that induction micromachines, controlled using different control algorithms implemented using ICs, will be widely used in MEMS. Controllers can be implemented using specifically designed ICs to attain superior performance, maximize efficiency and controllability, minimize losses and electromagnetic interference, reduce noise and vibration, etc. In order to design controllers, the induction micromachine must be modeled, and its mathematical model parameters must be identified. Using microelectromechanics, nonlinear mathematical models are derived. This paper illustrates the application of nonlinear identification methods as applied to identify the unknown parameters of three phase induction micromachines. Two identification methods are studied. In particular, nonlinear error mapping technique and least squares identification are researched. Analytical and numerical results, as well as practical capabilities and effectiveness, are illustrated, identifying the unknown parameters of a three phase brushless induction micromotor. Experimental results fully support the identification methods. (author)
Multipurpose optimization models for high level waste vitrification
International Nuclear Information System (INIS)
Hoza, M.
1994-08-01
Optimal Waste Loading (OWL) models have been developed as multipurpose tools for high-level waste studies for the Tank Waste Remediation Program at Hanford. Using nonlinear programming techniques, these models maximize the waste loading of the vitrified waste and optimize the glass formers composition such that the glass produced has the appropriate properties within the melter, and the resultant vitrified waste form meets the requirements for disposal. The OWL model can be used for a single waste stream or for blended streams. The models can determine optimal continuous blends or optimal discrete blends of a number of different wastes. The OWL models have been used to identify the most restrictive constraints, to evaluate prospective waste pretreatment methods, to formulate and evaluate blending strategies, and to determine the impacts of variability in the wastes. The OWL models will be used to aid in the design of frits and the maximize the waste in the glass for High-Level Waste (HLW) vitrification
Portfolio optimization for index tracking modelling in Malaysia stock market
Siew, Lam Weng; Jaaman, Saiful Hafizah; Ismail, Hamizun
2016-06-01
Index tracking is an investment strategy in portfolio management which aims to construct an optimal portfolio to generate similar mean return with the stock market index mean return without purchasing all of the stocks that make up the index. The objective of this paper is to construct an optimal portfolio using the optimization model which adopts regression approach in tracking the benchmark stock market index return. In this study, the data consists of weekly price of stocks in Malaysia market index which is FTSE Bursa Malaysia Kuala Lumpur Composite Index from January 2010 until December 2013. The results of this study show that the optimal portfolio is able to track FBMKLCI Index at minimum tracking error of 1.0027% with 0.0290% excess mean return over the mean return of FBMKLCI Index. The significance of this study is to construct the optimal portfolio using optimization model which adopts regression approach in tracking the stock market index without purchasing all index components.
Modelling, simulating and optimizing boiler heating surfaces and evaporator circuits
DEFF Research Database (Denmark)
Sørensen, K.; Condra, T.; Houbak, Niels
2003-01-01
A model for optimizing the dynamic performance of boiler have been developed. Design variables related to the size of the boiler and its dynamic performance have been defined. The object function to be optimized takes the weight of the boiler and its dynamic capability into account. As constraints...... for the optimization a dynamic model for the boiler is applied. Furthermore a function for the value of the dynamic performance is included in the model. The dynamic models for simulating boiler performance consists of a model for the flue gas side, a model for the evaporator circuit and a model for the drum....... The dynamic model has been developed for the purpose of determining boiler material temperatures and heat transfer from the flue gas side to the water-/steam side in order to simulate the circulation in the evaporator circuit and hereby the water level fluctuations in the drum. The dynamic model has been...
An optimal control model of crop thinning in viticulture
Schamel Guenter H.; Schubert Stefan F.
2016-01-01
We develop an economic model of cluster thinning in viticulture to control for grape quantity harvested and grape quality, applying a simple optimal control model with the aim to raise grape quality and related economic profits. The model maximizes vineyard owner profits and allows to discuss two relevant scenarios using a phase diagram analysis: (1) when the initial grape quantity is sufficiently small, thinning grapes will not be optimal and (2) when the initial grape quantity is high enoug...
Parameters Optimization and Application to Glutamate Fermentation Model Using SVM
Zhang, Xiangsheng; Pan, Feng
2015-01-01
Aimed at the parameters optimization in support vector machine (SVM) for glutamate fermentation modelling, a new method is developed. It optimizes the SVM parameters via an improved particle swarm optimization (IPSO) algorithm which has better global searching ability. The algorithm includes detecting and handling the local convergence and exhibits strong ability to avoid being trapped in local minima. The material step of the method was shown. Simulation experiments demonstrate the effective...
Parameters Optimization and Application to Glutamate Fermentation Model Using SVM
Directory of Open Access Journals (Sweden)
Xiangsheng Zhang
2015-01-01
Full Text Available Aimed at the parameters optimization in support vector machine (SVM for glutamate fermentation modelling, a new method is developed. It optimizes the SVM parameters via an improved particle swarm optimization (IPSO algorithm which has better global searching ability. The algorithm includes detecting and handling the local convergence and exhibits strong ability to avoid being trapped in local minima. The material step of the method was shown. Simulation experiments demonstrate the effectiveness of the proposed algorithm.
A Systematic Identification Method for Thermodynamic Property Modelling
DEFF Research Database (Denmark)
Ana Perederic, Olivia; Cunico, Larissa; Sarup, Bent
2017-01-01
In this work, a systematic identification method for thermodynamic property modelling is proposed. The aim of the method is to improve the quality of phase equilibria prediction by group contribution based property prediction models. The method is applied to lipid systems where the Original UNIFAC...... model is used. Using the proposed method for estimating the interaction parameters using only VLE data, a better phase equilibria prediction for both VLE and SLE was obtained. The results were validated and compared with the original model performance...
Reduced Complexity Volterra Models for Nonlinear System Identification
Directory of Open Access Journals (Sweden)
Hacıoğlu Rıfat
2001-01-01
Full Text Available A broad class of nonlinear systems and filters can be modeled by the Volterra series representation. However, its practical use in nonlinear system identification is sometimes limited due to the large number of parameters associated with the Volterra filter′s structure. The parametric complexity also complicates design procedures based upon such a model. This limitation for system identification is addressed in this paper using a Fixed Pole Expansion Technique (FPET within the Volterra model structure. The FPET approach employs orthonormal basis functions derived from fixed (real or complex pole locations to expand the Volterra kernels and reduce the number of estimated parameters. That the performance of FPET can considerably reduce the number of estimated parameters is demonstrated by a digital satellite channel example in which we use the proposed method to identify the channel dynamics. Furthermore, a gradient-descent procedure that adaptively selects the pole locations in the FPET structure is developed in the paper.
Are subject-specific musculoskeletal models robust to the uncertainties in parameter identification?
Directory of Open Access Journals (Sweden)
Giordano Valente
Full Text Available Subject-specific musculoskeletal modeling can be applied to study musculoskeletal disorders, allowing inclusion of personalized anatomy and properties. Independent of the tools used for model creation, there are unavoidable uncertainties associated with parameter identification, whose effect on model predictions is still not fully understood. The aim of the present study was to analyze the sensitivity of subject-specific model predictions (i.e., joint angles, joint moments, muscle and joint contact forces during walking to the uncertainties in the identification of body landmark positions, maximum muscle tension and musculotendon geometry. To this aim, we created an MRI-based musculoskeletal model of the lower limbs, defined as a 7-segment, 10-degree-of-freedom articulated linkage, actuated by 84 musculotendon units. We then performed a Monte-Carlo probabilistic analysis perturbing model parameters according to their uncertainty, and solving a typical inverse dynamics and static optimization problem using 500 models that included the different sets of perturbed variable values. Model creation and gait simulations were performed by using freely available software that we developed to standardize the process of model creation, integrate with OpenSim and create probabilistic simulations of movement. The uncertainties in input variables had a moderate effect on model predictions, as muscle and joint contact forces showed maximum standard deviation of 0.3 times body-weight and maximum range of 2.1 times body-weight. In addition, the output variables significantly correlated with few input variables (up to 7 out of 312 across the gait cycle, including the geometry definition of larger muscles and the maximum muscle tension in limited gait portions. Although we found subject-specific models not markedly sensitive to parameter identification, researchers should be aware of the model precision in relation to the intended application. In fact, force
An optimization strategy for a biokinetic model of inhaled radionuclides
International Nuclear Information System (INIS)
Shyr, L.J.; Griffith, W.C.; Boecker, B.B.
1991-01-01
Models for material disposition and dosimetry involve predictions of the biokinetics of the material among compartments representing organs and tissues in the body. Because of a lack of human data for most toxicants, many of the basic data are derived by modeling the results obtained from studies using laboratory animals. Such a biomathematical model is usually developed by adjusting the model parameters to make the model predictions match the measured retention and excretion data visually. The fitting process can be very time-consuming for a complicated model, and visual model selections may be subjective and easily biased by the scale or the data used. Due to the development of computerized optimization methods, manual fitting could benefit from an automated process. However, for a complicated model, an automated process without an optimization strategy will not be efficient, and may not produce fruitful results. In this paper, procedures for, and implementation of, an optimization strategy for a complicated mathematical model is demonstrated by optimizing a biokinetic model for 144Ce in fused aluminosilicate particles inhaled by beagle dogs. The optimized results using SimuSolv were compared to manual fitting results obtained previously using the model simulation software GASP. Also, statistical criteria provided by SimuSolv, such as likelihood function values, were used to help or verify visual model selections
Qualitative and Quantitative Integrated Modeling for Stochastic Simulation and Optimization
Directory of Open Access Journals (Sweden)
Xuefeng Yan
2013-01-01
Full Text Available The simulation and optimization of an actual physics system are usually constructed based on the stochastic models, which have both qualitative and quantitative characteristics inherently. Most modeling specifications and frameworks find it difficult to describe the qualitative model directly. In order to deal with the expert knowledge, uncertain reasoning, and other qualitative information, a qualitative and quantitative combined modeling specification was proposed based on a hierarchical model structure framework. The new modeling approach is based on a hierarchical model structure which includes the meta-meta model, the meta-model and the high-level model. A description logic system is defined for formal definition and verification of the new modeling specification. A stochastic defense simulation was developed to illustrate how to model the system and optimize the result. The result shows that the proposed method can describe the complex system more comprehensively, and the survival probability of the target is higher by introducing qualitative models into quantitative simulation.
Optimal treatment interruptions control of TB transmission model
Nainggolan, Jonner; Suparwati, Titik; Kawuwung, Westy B.
2018-03-01
A tuberculosis model which incorporates treatment interruptions of infectives is established. Optimal control of individuals infected with active TB is given in the model. It is obtained that the control reproduction numbers is smaller than the reproduction number, this means treatment controls could optimize the decrease in the spread of active TB. For this model, controls on treatment of infection individuals to reduce the actively infected individual populations, by application the Pontryagins Maximum Principle for optimal control. The result further emphasized the importance of controlling disease relapse in reducing the number of actively infected and treatment interruptions individuals with tuberculosis.
Directory of Open Access Journals (Sweden)
Huiguo Chen
2017-01-01
Full Text Available Based on the Kanai-Tajimi power spectrum filtering method proposed by Du Xiuli et al., a genetic algorithm and a quadratic optimization identification technique are employed to improve the bimodal time-varying modified Kanai-Tajimi power spectral model and the parameter identification method proposed by Vlachos et al. Additionally, a method for modeling time-varying power spectrum parameters for ground motion is proposed. The 8244 Orion and Chi-Chi earthquake accelerograms are selected as examples for time-varying power spectral model parameter identification and ground motion simulations to verify the feasibility and effectiveness of the improved bimodal time-varying modified Kanai-Tajimi power spectral model. The results of this study provide important references for designing ground motion inputs for seismic analyses of major engineering structures.
Pavement maintenance optimization model using Markov Decision Processes
Mandiartha, P.; Duffield, C. F.; Razelan, I. S. b. M.; Ismail, A. b. H.
2017-09-01
This paper presents an optimization model for selection of pavement maintenance intervention using a theory of Markov Decision Processes (MDP). There are some particular characteristics of the MDP developed in this paper which distinguish it from other similar studies or optimization models intended for pavement maintenance policy development. These unique characteristics include a direct inclusion of constraints into the formulation of MDP, the use of an average cost method of MDP, and the policy development process based on the dual linear programming solution. The limited information or discussions that are available on these matters in terms of stochastic based optimization model in road network management motivates this study. This paper uses a data set acquired from road authorities of state of Victoria, Australia, to test the model and recommends steps in the computation of MDP based stochastic optimization model, leading to the development of optimum pavement maintenance policy.
Optlang: An algebraic modeling language for mathematical optimization
DEFF Research Database (Denmark)
Jensen, Kristian; Cardoso, Joao; Sonnenschein, Nikolaus
2016-01-01
Optlang is a Python package implementing a modeling language for solving mathematical optimization problems, i.e., maximizing or minimizing an objective function over a set of variables subject to a number of constraints. It provides a common native Python interface to a series of optimization...
Correlations in state space can cause sub-optimal adaptation of optimal feedback control models.
Aprasoff, Jonathan; Donchin, Opher
2012-04-01
Control of our movements is apparently facilitated by an adaptive internal model in the cerebellum. It was long thought that this internal model implemented an adaptive inverse model and generated motor commands, but recently many reject that idea in favor of a forward model hypothesis. In theory, the forward model predicts upcoming state during reaching movements so the motor cortex can generate appropriate motor commands. Recent computational models of this process rely on the optimal feedback control (OFC) framework of control theory. OFC is a powerful tool for describing motor control, it does not describe adaptation. Some assume that adaptation of the forward model alone could explain motor adaptation, but this is widely understood to be overly simplistic. However, an adaptive optimal controller is difficult to implement. A reasonable alternative is to allow forward model adaptation to 're-tune' the controller. Our simulations show that, as expected, forward model adaptation alone does not produce optimal trajectories during reaching movements perturbed by force fields. However, they also show that re-optimizing the controller from the forward model can be sub-optimal. This is because, in a system with state correlations or redundancies, accurate prediction requires different information than optimal control. We find that adding noise to the movements that matches noise found in human data is enough to overcome this problem. However, since the state space for control of real movements is far more complex than in our simple simulations, the effects of correlations on re-adaptation of the controller from the forward model cannot be overlooked.
Markowitz portfolio optimization model employing fuzzy measure
Ramli, Suhailywati; Jaaman, Saiful Hafizah
2017-04-01
Markowitz in 1952 introduced the mean-variance methodology for the portfolio selection problems. His pioneering research has shaped the portfolio risk-return model and become one of the most important research fields in modern finance. This paper extends the classical Markowitz's mean-variance portfolio selection model applying the fuzzy measure to determine the risk and return. In this paper, we apply the original mean-variance model as a benchmark, fuzzy mean-variance model with fuzzy return and the model with return are modeled by specific types of fuzzy number for comparison. The model with fuzzy approach gives better performance as compared to the mean-variance approach. The numerical examples are included to illustrate these models by employing Malaysian share market data.
Directory of Open Access Journals (Sweden)
Fei Wang
2017-07-01
Full Text Available The optimized dispatch of different distributed generations (DGs in stand-alone microgrid (MG is of great significance to the operation’s reliability and economy, especially for energy crisis and environmental pollution. Based on controllable load (CL and combined cooling-heating-power (CCHP model of micro-gas turbine (MT, a multi-objective optimization model with relevant constraints to optimize the generation cost, load cut compensation and environmental benefit is proposed in this paper. The MG studied in this paper consists of photovoltaic (PV, wind turbine (WT, fuel cell (FC, diesel engine (DE, MT and energy storage (ES. Four typical scenarios were designed according to different day types (work day or weekend and weather conditions (sunny or rainy in view of the uncertainty of renewable energy in variable situations and load fluctuation. A modified dispatch strategy for CCHP is presented to further improve the operation economy without reducing the consumers’ comfort feeling. Chaotic optimization and elite retention strategy are introduced into basic particle swarm optimization (PSO to propose modified chaos particle swarm optimization (MCPSO whose search capability and convergence speed are improved greatly. Simulation results validate the correctness of the proposed model and the effectiveness of MCPSO algorithm in the optimized operation application of stand-alone MG.
A new hybrid model optimized by an intelligent optimization algorithm for wind speed forecasting
International Nuclear Information System (INIS)
Su, Zhongyue; Wang, Jianzhou; Lu, Haiyan; Zhao, Ge
2014-01-01
Highlights: • A new hybrid model is developed for wind speed forecasting. • The model is based on the Kalman filter and the ARIMA. • An intelligent optimization method is employed in the hybrid model. • The new hybrid model has good performance in western China. - Abstract: Forecasting the wind speed is indispensable in wind-related engineering studies and is important in the management of wind farms. As a technique essential for the future of clean energy systems, reducing the forecasting errors related to wind speed has always been an important research subject. In this paper, an optimized hybrid method based on the Autoregressive Integrated Moving Average (ARIMA) and Kalman filter is proposed to forecast the daily mean wind speed in western China. This approach employs Particle Swarm Optimization (PSO) as an intelligent optimization algorithm to optimize the parameters of the ARIMA model, which develops a hybrid model that is best adapted to the data set, increasing the fitting accuracy and avoiding over-fitting. The proposed method is subsequently examined on the wind farms of western China, where the proposed hybrid model is shown to perform effectively and steadily
Directory of Open Access Journals (Sweden)
Kottner R.
2013-12-01
Full Text Available Adhesively bonded joints can be numerically simulated using the cohesive crack model. The critical strain energy release rate and the critical opening displacement are the parameters which must be known when cohesive elements in MSC.Marc software are used. In this work, the parameters of two industrial adhesives Hunstman Araldite 2021 and Gurit Spabond 345 for bonding of epoxy composites are identified. Double Cantilever Beam (DCB and End Notched Flexure (ENF test data were used for the identification. The critical opening displacements were identified using an optimization algorithm where the tests and their numerical simulations were compared.
Proceedings of the IASTED conference on modelling, simulation, and identification : MSI 2009
Energy Technology Data Exchange (ETDEWEB)
Ma, H.; Narayanan, S. (eds.)
2009-03-11
This conference provided a forum for experts and researchers from a variety of different fields to present and demonstrate new modelling approaches and simulation tools. Recent research related to artificial intelligence, neural networks, and optimization were discussed in relation to various practical applications. Modelling studies related to power systems and electrical engineering were presented along with methods for improving system designs. Various control system strategies were also discussed. The conference included 26 sessions entitled: (1) modelling, (2) simulation, (3) artificial intelligence, (4) system analysis, (5) optimization and classification, (6) special session on hydraulic and hydrologic modelling, (7) power system control and protection, (8) power system planning and operation, (9) stability and reliability, (10) energy and environment, (11) renewable energy, (12) power quality, (13) transmission, distribution and micro-grid, (14) power economics, (15) computer vision and pattern recognition, (16) modelling, identification and control, (17) robot design and architecture, (18) motion planning and control, (19) robot sensing and measurement, (20) communication systems and applications, (21) networks, (22) decision analysis and project management, (23) modelling, simulation, optimization, and forecasting, (24) risk management, analysis and assessment, (25) supply chain management and operation research, and (26) financial, marketing, organization, knowledge management and applications. The conference featured 214 papers, of which 76 have been catalogued separately for inclusion in this database. refs., tabs., figs.
Optimal identification of semi-rigid domains in macromolecules from molecular dynamics simulation.
Directory of Open Access Journals (Sweden)
Stefan Bernhard
Full Text Available Biological function relies on the fact that biomolecules can switch between different conformations and aggregation states. Such transitions involve a rearrangement of parts of the biomolecules involved that act as dynamic domains. The reliable identification of such domains is thus a key problem in biophysics. In this work we present a method to identify semi-rigid domains based on dynamical data that can be obtained from molecular dynamics simulations or experiments. To this end the average inter-atomic distance-deviations are computed. The resulting matrix is then clustered by a constrained quadratic optimization problem. The reliability and performance of the method are demonstrated for two artificial peptides. Furthermore we correlate the mechanical properties with biological malfunction in three variants of amyloidogenic transthyretin protein, where the method reveals that a pathological mutation destabilizes the natural dimer structure of the protein. Finally the method is used to identify functional domains of the GroEL-GroES chaperone, thus illustrating the efficiency of the method for large biomolecular machines.
Multiple Surrogate Modeling for Wire-Wrapped Fuel Assembly Optimization
International Nuclear Information System (INIS)
Raza, Wasim; Kim, Kwang-Yong
2007-01-01
In this work, shape optimization of seven pin wire wrapped fuel assembly has been carried out in conjunction with RANS analysis in order to evaluate the performances of surrogate models. Previously, Ahmad and Kim performed the flow and heat transfer analysis based on the three-dimensional RANS analysis. But numerical optimization has not been applied to the design of wire-wrapped fuel assembly, yet. Surrogate models are being widely used in multidisciplinary optimization. Queipo et al. reviewed various surrogates based models used in aerospace applications. Goel et al. developed weighted average surrogate model based on response surface approximation (RSA), radial basis neural network (RBNN) and Krigging (KRG) models. In addition to the three basic models, RSA, RBNN and KRG, the multiple surrogate model, PBA also has been employed. Two geometric design variables and a multi-objective function with a weighting factor have been considered for this problem
Parameter identification in a nonlinear nuclear reactor model using quasilinearization
International Nuclear Information System (INIS)
Barreto, J.M.; Martins Neto, A.F.; Tanomaru, N.
1980-09-01
Parameter identification in a nonlinear, lumped parameter, nuclear reactor model is carried out using discrete output power measurements during the transient caused by an external reactivity change. In order to minimize the difference between the model and the reactor power responses, the parameter promt neutron generation time and a parameter in fuel temperature reactivity coefficient equation are adjusted using quasilinearization. The influences of the external reactivity disturbance, the number and frequency of measurements and the measurement noise level on the method accuracy and rate of convergence are analysed through simulation. Procedures for the design of the identification experiments are suggested. The method proved to be very effective for low level noise measurements. (Author) [pt
System Identification, Environmental Modelling, and Control System Design
Garnier, Hugues
2012-01-01
System Identification, Environmetric Modelling, and Control Systems Design is dedicated to Professor Peter Young on the occasion of his seventieth birthday. Professor Young has been a pioneer in systems and control, and over the past 45 years he has influenced many developments in this field. This volume is comprised of a collection of contributions by leading experts in system identification, time-series analysis, environmetric modelling and control system design – modern research in topics that reflect important areas of interest in Professor Young’s research career. Recent theoretical developments in and relevant applications of these areas are explored treating the various subjects broadly and in depth. The authoritative and up-to-date research presented here will be of interest to academic researcher in control and disciplines related to environmental research, particularly those to with water systems. The tutorial style in which many of the contributions are composed also makes the book suitable as ...
Validation of the measurement model concept for error structure identification
International Nuclear Information System (INIS)
Shukla, Pavan K.; Orazem, Mark E.; Crisalle, Oscar D.
2004-01-01
The development of different forms of measurement models for impedance has allowed examination of key assumptions on which the use of such models to assess error structure are based. The stochastic error structures obtained using the transfer-function and Voigt measurement models were identical, even when non-stationary phenomena caused some of the data to be inconsistent with the Kramers-Kronig relations. The suitability of the measurement model for assessment of consistency with the Kramers-Kronig relations, however, was found to be more sensitive to the confidence interval for the parameter estimates than to the number of parameters in the model. A tighter confidence interval was obtained for Voigt measurement model, which made the Voigt measurement model a more sensitive tool for identification of inconsistencies with the Kramers-Kronig relations
Reflector modelization for neutronic diffusion and parameters identification
International Nuclear Information System (INIS)
Argaud, J.P.
1993-04-01
Physical parameters of neutronic diffusion equations can be adjusted to decrease calculations-measurements errors. The reflector being always difficult to modelize, we choose to elaborate a new reflector model and to use the parameters of this model as adjustment coefficients in the identification procedure. Using theoretical results, and also the physical behaviour of neutronic flux solutions, the reflector model consists then in its replacement by boundary conditions for the diffusion equations on the core only. This theoretical result of non-local operator relations leads then to some discrete approximations by taking into account the multiscaled behaviour, on the core-reflector interface, of neutronic diffusion solutions. The resulting model of this approach is then compared with previous reflector modelizations, and first results indicate that this new model gives the same representation of reflector for the core than previous. (author). 12 refs
Particle swarm optimization of a neural network model in a ...
Indian Academy of Sciences (India)
. Since tool life is critically affected by the tool wear, accurate prediction of this wear ... In their work, they established an improvement in the quality ... objective optimization of hard turning using neural network modelling and swarm intelligence ...
Analysis and optimization of a camber morphing wing model
Directory of Open Access Journals (Sweden)
Bing Li
2016-09-01
Full Text Available This article proposes a camber morphing wing model that can continuously change its camber. A mathematical model is proposed and a kinematic simulation is performed to verify the wing’s ability to change camber. An aerodynamic model is used to test its aerodynamic characteristics. Some important aerodynamic analyses are performed. A comparative analysis is conducted to explore the relationships between aerodynamic parameters, the rotation angle of the trailing edge, and the angle of attack. An improved artificial fish swarm optimization algorithm is proposed, referred to as the weighted adaptive artificial fish-swarm with embedded Hooke–Jeeves search method. Some comparison tests are used to test the performance of the improved optimization algorithm. Finally, the proposed optimization algorithm is used to optimize the proposed camber morphing wing model.
Optimization and evaluation of probabilistic-logic sequence models
DEFF Research Database (Denmark)
Christiansen, Henning; Lassen, Ole Torp
to, in principle, Turing complete languages. In general, such models are computationally far to complex for direct use, so optimization by pruning and approximation are needed. % The first steps are made towards a methodology for optimizing such models by approximations using auxiliary models......Analysis of biological sequence data demands more and more sophisticated and fine-grained models, but these in turn introduce hard computational problems. A class of probabilistic-logic models is considered, which increases the expressibility from HMM's and SCFG's regular and context-free languages...
Adaptive surrogate model based multiobjective optimization for coastal aquifer management
Song, Jian; Yang, Yun; Wu, Jianfeng; Wu, Jichun; Sun, Xiaomin; Lin, Jin
2018-06-01
In this study, a novel surrogate model assisted multiobjective memetic algorithm (SMOMA) is developed for optimal pumping strategies of large-scale coastal groundwater problems. The proposed SMOMA integrates an efficient data-driven surrogate model with an improved non-dominated sorted genetic algorithm-II (NSGAII) that employs a local search operator to accelerate its convergence in optimization. The surrogate model based on Kernel Extreme Learning Machine (KELM) is developed and evaluated as an approximate simulator to generate the patterns of regional groundwater flow and salinity levels in coastal aquifers for reducing huge computational burden. The KELM model is adaptively trained during evolutionary search to satisfy desired fidelity level of surrogate so that it inhibits error accumulation of forecasting and results in correctly converging to true Pareto-optimal front. The proposed methodology is then applied to a large-scale coastal aquifer management in Baldwin County, Alabama. Objectives of minimizing the saltwater mass increase and maximizing the total pumping rate in the coastal aquifers are considered. The optimal solutions achieved by the proposed adaptive surrogate model are compared against those solutions obtained from one-shot surrogate model and original simulation model. The adaptive surrogate model does not only improve the prediction accuracy of Pareto-optimal solutions compared with those by the one-shot surrogate model, but also maintains the equivalent quality of Pareto-optimal solutions compared with those by NSGAII coupled with original simulation model, while retaining the advantage of surrogate models in reducing computational burden up to 94% of time-saving. This study shows that the proposed methodology is a computationally efficient and promising tool for multiobjective optimizations of coastal aquifer managements.
LaBudde, Robert A; Harnly, James M
2012-01-01
A qualitative botanical identification method (BIM) is an analytical procedure that returns a binary result (1 = Identified, 0 = Not Identified). A BIM may be used by a buyer, manufacturer, or regulator to determine whether a botanical material being tested is the same as the target (desired) material, or whether it contains excessive nontarget (undesirable) material. The report describes the development and validation of studies for a BIM based on the proportion of replicates identified, or probability of identification (POI), as the basic observed statistic. The statistical procedures proposed for data analysis follow closely those of the probability of detection, and harmonize the statistical concepts and parameters between quantitative and qualitative method validation. Use of POI statistics also harmonizes statistical concepts for botanical, microbiological, toxin, and other analyte identification methods that produce binary results. The POI statistical model provides a tool for graphical representation of response curves for qualitative methods, reporting of descriptive statistics, and application of performance requirements. Single collaborator and multicollaborative study examples are given.
Identification of Chemical Reactor Plant’s Mathematical Model
Pyakullya, Boris Ivanovich; Kladiev, Sergey Nikolaevich
2015-01-01
This work presents a solution of the identification problem of chemical reactor plant’s mathematical model. The main goal is to obtain a mathematical description of a chemical reactor plant from experimental data, which based on plant’s time response measurements. This data consists sequence of measurements for water jacket temperature and information about control input signal, which is used to govern plant’s behavior.
Identification of Chemical Reactor Plant’s Mathematical Model
Directory of Open Access Journals (Sweden)
Pyakillya Boris
2015-01-01
Full Text Available This work presents a solution of the identification problem of chemical reactor plant’s mathematical model. The main goal is to obtain a mathematical description of a chemical reactor plant from experimental data, which based on plant’s time response measurements. This data consists sequence of measurements for water jacket temperature and information about control input signal, which is used to govern plant’s behavior.
Reduced order modeling in topology optimization of vibroacoustic problems
DEFF Research Database (Denmark)
Creixell Mediante, Ester; Jensen, Jakob Søndergaard; Brunskog, Jonas
2017-01-01
complex 3D parts. The optimization process can therefore become highly time consuming due to the need to solve a large system of equations at each iteration. Projection-based parametric Model Order Reduction (pMOR) methods have successfully been applied for reducing the computational cost of material......There is an interest in introducing topology optimization techniques in the design process of structural-acoustic systems. In topology optimization, the design space must be finely meshed in order to obtain an accurate design, which results in large numbers of degrees of freedom when designing...... or size optimization in large vibroacoustic models; however, new challenges are encountered when dealing with topology optimization. Since a design parameter per element is considered, the total number of design variables becomes very large; this poses a challenge to most existing pMOR techniques, which...
Parameter Optimization of MIMO Fuzzy Optimal Model Predictive Control By APSO
Directory of Open Access Journals (Sweden)
Adel Taieb
2017-01-01
Full Text Available This paper introduces a new development for designing a Multi-Input Multi-Output (MIMO Fuzzy Optimal Model Predictive Control (FOMPC using the Adaptive Particle Swarm Optimization (APSO algorithm. The aim of this proposed control, called FOMPC-APSO, is to develop an efficient algorithm that is able to have good performance by guaranteeing a minimal control. This is done by determining the optimal weights of the objective function. Our method is considered an optimization problem based on the APSO algorithm. The MIMO system to be controlled is modeled by a Takagi-Sugeno (TS fuzzy system whose parameters are identified using weighted recursive least squares method. The utility of the proposed controller is demonstrated by applying it to two nonlinear processes, Continuous Stirred Tank Reactor (CSTR and Tank system, where the proposed approach provides better performances compared with other methods.
Deterministic operations research models and methods in linear optimization
Rader, David J
2013-01-01
Uniquely blends mathematical theory and algorithm design for understanding and modeling real-world problems Optimization modeling and algorithms are key components to problem-solving across various fields of research, from operations research and mathematics to computer science and engineering. Addressing the importance of the algorithm design process. Deterministic Operations Research focuses on the design of solution methods for both continuous and discrete linear optimization problems. The result is a clear-cut resource for understanding three cornerstones of deterministic operations resear
RF building block modeling: optimization and synthesis
Cheng, W.
2012-01-01
For circuit designers it is desirable to have relatively simple RF circuit models that do give decent estimation accuracy and provide sufficient understanding of circuits. Chapter 2 in this thesis shows a general weak nonlinearity model that meets these demands. Using a method that is related to
An Indirect Simulation-Optimization Model for Determining Optimal TMDL Allocation under Uncertainty
Directory of Open Access Journals (Sweden)
Feng Zhou
2015-11-01
Full Text Available An indirect simulation-optimization model framework with enhanced computational efficiency and risk-based decision-making capability was developed to determine optimal total maximum daily load (TMDL allocation under uncertainty. To convert the traditional direct simulation-optimization model into our indirect equivalent model framework, we proposed a two-step strategy: (1 application of interval regression equations derived by a Bayesian recursive regression tree (BRRT v2 algorithm, which approximates the original hydrodynamic and water-quality simulation models and accurately quantifies the inherent nonlinear relationship between nutrient load reductions and the credible interval of algal biomass with a given confidence interval; and (2 incorporation of the calibrated interval regression equations into an uncertain optimization framework, which is further converted to our indirect equivalent framework by the enhanced-interval linear programming (EILP method and provides approximate-optimal solutions at various risk levels. The proposed strategy was applied to the Swift Creek Reservoir’s nutrient TMDL allocation (Chesterfield County, VA to identify the minimum nutrient load allocations required from eight sub-watersheds to ensure compliance with user-specified chlorophyll criteria. Our results indicated that the BRRT-EILP model could identify critical sub-watersheds faster than the traditional one and requires lower reduction of nutrient loadings compared to traditional stochastic simulation and trial-and-error (TAE approaches. This suggests that our proposed framework performs better in optimal TMDL development compared to the traditional simulation-optimization models and provides extreme and non-extreme tradeoff analysis under uncertainty for risk-based decision making.
Low Complexity Models to improve Incomplete Sensitivities for Shape Optimization
Stanciu, Mugurel; Mohammadi, Bijan; Moreau, Stéphane
2003-01-01
The present global platform for simulation and design of multi-model configurations treat shape optimization problems in aerodynamics. Flow solvers are coupled with optimization algorithms based on CAD-free and CAD-connected frameworks. Newton methods together with incomplete expressions of gradients are used. Such incomplete sensitivities are improved using reduced models based on physical assumptions. The validity and the application of this approach in real-life problems are presented. The numerical examples concern shape optimization for an airfoil, a business jet and a car engine cooling axial fan.
Metodology of identification parameters of models control objects of automatic trailing system
Directory of Open Access Journals (Sweden)
I.V. Zimchuk
2017-04-01
Full Text Available The determining factor for the successful solution of the problem of synthesis of optimal control systems of different processes are adequacy of mathematical model of control object. In practice, the options can differ from the objects taken priori, causing a need to clarification of them. In this context, the article presents the results of the development and application of methods parameters identification of mathematical models of control object of automatic trailing system. The stated problem in the article is solved provided that control object is fully controlled and observed, and a differential equation of control object is known a priori. The coefficients of this equation to be determined. Identifying quality criterion is to minimize the integral value of squared error of identification. The method is based on a description of the dynamics of the object in space state. Equation of identification synthesized using the vector-matrix representation of model. This equation describes the interconnection of coefficients of matrix state and control with inputs and outputs of object. The initial data for calculation are the results of experimental investigation of the reaction of phase coordinates of control object at a typical input signal. The process of calculating the model parameters is reduced to solving the system of equations of the first order each. Application the above approach is illustrated in the example identification of coefficients transfer function of control object first order. Results of digital simulation are presented, they are confirming the justice of set out mathematical calculations. The approach enables to do the identification of models of one-dimensional and multidimensional objects and does not require a large amount of calculation for its implementation. The order of identified model is limited capabilities of measurement phase coordinates of corresponding control object. The practical significance of the work is
Vector-model-supported approach in prostate plan optimization
International Nuclear Information System (INIS)
Liu, Eva Sau Fan; Wu, Vincent Wing Cheung; Harris, Benjamin; Lehman, Margot; Pryor, David; Chan, Lawrence Wing Chi
2017-01-01
Lengthy time consumed in traditional manual plan optimization can limit the use of step-and-shoot intensity-modulated radiotherapy/volumetric-modulated radiotherapy (S&S IMRT/VMAT). A vector model base, retrieving similar radiotherapy cases, was developed with respect to the structural and physiologic features extracted from the Digital Imaging and Communications in Medicine (DICOM) files. Planning parameters were retrieved from the selected similar reference case and applied to the test case to bypass the gradual adjustment of planning parameters. Therefore, the planning time spent on the traditional trial-and-error manual optimization approach in the beginning of optimization could be reduced. Each S&S IMRT/VMAT prostate reference database comprised 100 previously treated cases. Prostate cases were replanned with both traditional optimization and vector-model-supported optimization based on the oncologists' clinical dose prescriptions. A total of 360 plans, which consisted of 30 cases of S&S IMRT, 30 cases of 1-arc VMAT, and 30 cases of 2-arc VMAT plans including first optimization and final optimization with/without vector-model-supported optimization, were compared using the 2-sided t-test and paired Wilcoxon signed rank test, with a significance level of 0.05 and a false discovery rate of less than 0.05. For S&S IMRT, 1-arc VMAT, and 2-arc VMAT prostate plans, there was a significant reduction in the planning time and iteration with vector-model-supported optimization by almost 50%. When the first optimization plans were compared, 2-arc VMAT prostate plans had better plan quality than 1-arc VMAT plans. The volume receiving 35 Gy in the femoral head for 2-arc VMAT plans was reduced with the vector-model-supported optimization compared with the traditional manual optimization approach. Otherwise, the quality of plans from both approaches was comparable. Vector-model-supported optimization was shown to offer much shortened planning time and iteration
Vector-model-supported approach in prostate plan optimization
Energy Technology Data Exchange (ETDEWEB)
Liu, Eva Sau Fan [Department of Radiation Oncology, Princess Alexandra Hospital, Brisbane (Australia); Department of Health Technology and Informatics, The Hong Kong Polytechnic University (Hong Kong); Wu, Vincent Wing Cheung [Department of Health Technology and Informatics, The Hong Kong Polytechnic University (Hong Kong); Harris, Benjamin [Department of Radiation Oncology, Princess Alexandra Hospital, Brisbane (Australia); Lehman, Margot; Pryor, David [Department of Radiation Oncology, Princess Alexandra Hospital, Brisbane (Australia); School of Medicine, University of Queensland (Australia); Chan, Lawrence Wing Chi, E-mail: wing.chi.chan@polyu.edu.hk [Department of Health Technology and Informatics, The Hong Kong Polytechnic University (Hong Kong)
2017-07-01
Lengthy time consumed in traditional manual plan optimization can limit the use of step-and-shoot intensity-modulated radiotherapy/volumetric-modulated radiotherapy (S&S IMRT/VMAT). A vector model base, retrieving similar radiotherapy cases, was developed with respect to the structural and physiologic features extracted from the Digital Imaging and Communications in Medicine (DICOM) files. Planning parameters were retrieved from the selected similar reference case and applied to the test case to bypass the gradual adjustment of planning parameters. Therefore, the planning time spent on the traditional trial-and-error manual optimization approach in the beginning of optimization could be reduced. Each S&S IMRT/VMAT prostate reference database comprised 100 previously treated cases. Prostate cases were replanned with both traditional optimization and vector-model-supported optimization based on the oncologists' clinical dose prescriptions. A total of 360 plans, which consisted of 30 cases of S&S IMRT, 30 cases of 1-arc VMAT, and 30 cases of 2-arc VMAT plans including first optimization and final optimization with/without vector-model-supported optimization, were compared using the 2-sided t-test and paired Wilcoxon signed rank test, with a significance level of 0.05 and a false discovery rate of less than 0.05. For S&S IMRT, 1-arc VMAT, and 2-arc VMAT prostate plans, there was a significant reduction in the planning time and iteration with vector-model-supported optimization by almost 50%. When the first optimization plans were compared, 2-arc VMAT prostate plans had better plan quality than 1-arc VMAT plans. The volume receiving 35 Gy in the femoral head for 2-arc VMAT plans was reduced with the vector-model-supported optimization compared with the traditional manual optimization approach. Otherwise, the quality of plans from both approaches was comparable. Vector-model-supported optimization was shown to offer much shortened planning time and iteration
Ben Taheur, Fadia; Fdhila, Kais; Elabed, Hamouda; Bouguerra, Amel; Kouidhi, Bochra; Bakhrouf, Amina; Chaieb, Kamel
2016-04-01
Three bacterial strains (TE1, TD3 and FB2) were isolated from date palm (degla), pistachio and barley. The presence of nitrate reductase (narG) and nitrite reductase (nirS and nirK) genes in the selected strains was detected by PCR technique. Molecular identification based on 16S rDNA sequencing method was applied to identify positive strains. In addition, the D-optimal mixture experimental design was used to optimize the optimal formulation of probiotic bacteria for denitrification process. Strains harboring denitrification genes were identified as: TE1, Agrococcus sp LN828197; TD3, Cronobacter sakazakii LN828198 and FB2, Pedicoccus pentosaceus LN828199. PCR results revealed that all strains carried the nirS gene. However only C. sakazakii LN828198 and Agrococcus sp LN828197 harbored the nirK and the narG genes respectively. Moreover, the studied bacteria were able to form biofilm on abiotic surfaces with different degree. Process optimization showed that the most significant reduction of nitrate was 100% with 14.98% of COD consumption and 5.57 mg/l nitrite accumulation. Meanwhile, the response values were optimized and showed that the most optimal combination was 78.79% of C. sakazakii LN828198 (curve value), 21.21% of P. pentosaceus LN828199 (curve value) and absence (0%) of Agrococcus sp LN828197 (curve value). Copyright © 2016 Elsevier Ltd. All rights reserved.
International Nuclear Information System (INIS)
Cai, Y.P.; Huang, G.H.; Yang, Z.F.; Tan, Q.
2009-01-01
Management of energy resources is crucial for many regions throughout the world. Many economic, environmental and political factors are having significant effects on energy management practices, leading to a variety of uncertainties in relevant decision making. The objective of this research is to identify optimal strategies in the planning of energy management systems under multiple uncertainties through the development of a fuzzy-random interval programming (FRIP) model. The method is based on an integration of the existing interval linear programming (ILP), superiority-inferiority-based fuzzy-stochastic programming (SI-FSP) and mixed integer linear programming (MILP). Such a FRIP model allows multiple uncertainties presented as interval values, possibilistic and probabilistic distributions, as well as their combinations within a general optimization framework. It can also be used for facilitating capacity-expansion planning of energy-production facilities within a multi-period and multi-option context. Complexities in energy management systems can be systematically reflected, thus applicability of the modeling process can be highly enhanced. The developed method has then been applied to a case of long-term energy management planning for a region with three cities. Useful solutions for the planning of energy management systems were generated. Interval solutions associated with different risk levels of constraint violation were obtained. They could be used for generating decision alternatives and thus help decision makers identify desired policies under various economic and system-reliability constraints. The solutions can also provide desired energy resource/service allocation and capacity-expansion plans with a minimized system cost, a maximized system reliability and a maximized energy security. Tradeoffs between system costs and constraint-violation risks could be successfully tackled, i.e., higher costs will increase system stability, while a desire for lower
Parameter identification and optimization of slide guide joint of CNC machine tools
Zhou, S.; Sun, B. B.
2017-11-01
The joint surface has an important influence on the performance of CNC machine tools. In order to identify the dynamic parameters of slide guide joint, the parametric finite element model of the joint is established and optimum design method is used based on the finite element simulation and modal test. Then the mode that has the most influence on the dynamics of slip joint is found through harmonic response analysis. Take the frequency of this mode as objective, the sensitivity analysis of the stiffness of each joint surface is carried out using Latin Hypercube Sampling and Monte Carlo Simulation. The result shows that the vertical stiffness of slip joint surface constituted by the bed and the slide plate has the most obvious influence on the structure. Therefore, this stiffness is taken as the optimization variable and the optimal value is obtained through studying the relationship between structural dynamic performance and stiffness. Take the stiffness values before and after optimization into the FEM of machine tool, and it is found that the dynamic performance of the machine tool is improved.
Optimal inventory management and order book modeling
Baradel, Nicolas; Bouchard, Bruno; Evangelista, David; Mounjid, Othmane
2018-01-01
We model the behavior of three agent classes acting dynamically in a limit order book of a financial asset. Namely, we consider market makers (MM), high-frequency trading (HFT) firms, and institutional brokers (IB). Given a prior dynamic
Optimal parametric modelling of measured short waves
Digital Repository Service at National Institute of Oceanography (India)
Mandal, S.
the importance of selecting a suitable sampling interval for better estimates of parametric modelling and also for better statistical representation. Implementation of the above algorithms in a structural monitoring system has the potential advantage of storing...
Optimization models in a transition economy
Sergienko, Ivan V; Koshlai, Ludmilla
2014-01-01
This book opens new avenues in understanding mathematical models within the context of a transition economy. The exposition lays out the methods for combining different mathematical structures and tools to effectively build the next model that will accurately reflect real world economic processes. Mathematical modeling of weather phenomena allows us to forecast certain essential weather parameters without any possibility of changing them. By contrast, modeling of transition economies gives us the freedom to not only predict changes in important indexes of all types of economies, but also to influence them more effectively in the desired direction. Simply put: any economy, including a transitional one, can be controlled. This book is useful to anyone who wants to increase profits within their business, or improve the quality of their family life and the economic area they live in. It is beneficial for undergraduate and graduate students specializing in the fields of Economic Informatics, Economic Cybernetic...
Optimization of experimental human leukemia models (review
Directory of Open Access Journals (Sweden)
D. D. Pankov
2012-01-01
Full Text Available Actual problem of assessing immunotherapy prospects including antigenpecific cell therapy using animal models was covered in this review.Describe the various groups of currently existing animal models and methods of their creating – from different immunodeficient mice to severalvariants of tumor cells engraftment in them. The review addresses the possibility of tumor stem cells studying using mouse models for the leukemia treatment with adoptive cell therapy including WT1. Also issues of human leukemia cells migration and proliferation in a mice withdifferent immunodeficiency degree are discussed. To assess the potential immunotherapy efficacy comparison of immunodeficient mouse model with clinical situation in oncology patients after chemotherapy is proposed.
Optimality models in the age of experimental evolution and genomics.
Bull, J J; Wang, I-N
2010-09-01
Optimality models have been used to predict evolution of many properties of organisms. They typically neglect genetic details, whether by necessity or design. This omission is a common source of criticism, and although this limitation of optimality is widely acknowledged, it has mostly been defended rather than evaluated for its impact. Experimental adaptation of model organisms provides a new arena for testing optimality models and for simultaneously integrating genetics. First, an experimental context with a well-researched organism allows dissection of the evolutionary process to identify causes of model failure--whether the model is wrong about genetics or selection. Second, optimality models provide a meaningful context for the process and mechanics of evolution, and thus may be used to elicit realistic genetic bases of adaptation--an especially useful augmentation to well-researched genetic systems. A few studies of microbes have begun to pioneer this new direction. Incompatibility between the assumed and actual genetics has been demonstrated to be the cause of model failure in some cases. More interestingly, evolution at the phenotypic level has sometimes matched prediction even though the adaptive mutations defy mechanisms established by decades of classic genetic studies. Integration of experimental evolutionary tests with genetics heralds a new wave for optimality models and their extensions that does not merely emphasize the forces driving evolution.
Ochoa, Silvia; Yoo, Ahrim; Repke, Jens-Uwe; Wozny, Günter; Yang, Dae Ryook
2007-01-01
Despite many environmental advantages of using alcohol as a fuel, there are still serious questions about its economical feasibility when compared with oil-based fuels. The bioethanol industry needs to be more competitive, and therefore, all stages of its production process must be simple, inexpensive, efficient, and "easy" to control. In recent years, there have been significant improvements in process design, such as in the purification technologies for ethanol dehydration (molecular sieves, pressure swing adsorption, pervaporation, etc.) and in genetic modifications of microbial strains. However, a lot of research effort is still required in optimization and control, where the first step is the development of suitable models of the process, which can be used as a simulated plant, as a soft sensor or as part of the control algorithm. Thus, toward developing good, reliable, and simple but highly predictive models that can be used in the future for optimization and process control applications, in this paper an unstructured and a cybernetic model are proposed and compared for the simultaneous saccharification-fermentation process (SSF) for the production of ethanol from starch by a recombinant Saccharomyces cerevisiae strain. The cybernetic model proposed is a new one that considers the degradation of starch not only into glucose but also into dextrins (reducing sugars) and takes into account the intracellular reactions occurring inside the cells, giving a more detailed description of the process. Furthermore, an identification procedure based on the Metropolis Monte Carlo optimization method coupled with a sensitivity analysis is proposed for the identification of the model's parameters, employing experimental data reported in the literature.
Optimization models for flight test scheduling
Holian, Derreck
As threats around the world increase with nations developing new generations of warfare technology, the Unites States is keen on maintaining its position on top of the defense technology curve. This in return indicates that the U.S. military/government must research, develop, procure, and sustain new systems in the defense sector to safeguard this position. Currently, the Lockheed Martin F-35 Joint Strike Fighter (JSF) Lightning II is being developed, tested, and deployed to the U.S. military at Low Rate Initial Production (LRIP). The simultaneous act of testing and deployment is due to the contracted procurement process intended to provide a rapid Initial Operating Capability (IOC) release of the 5th Generation fighter. For this reason, many factors go into the determination of what is to be tested, in what order, and at which time due to the military requirements. A certain system or envelope of the aircraft must be assessed prior to releasing that capability into service. The objective of this praxis is to aide in the determination of what testing can be achieved on an aircraft at a point in time. Furthermore, it will define the optimum allocation of test points to aircraft and determine a prioritization of restrictions to be mitigated so that the test program can be best supported. The system described in this praxis has been deployed across the F-35 test program and testing sites. It has discovered hundreds of available test points for an aircraft to fly when it was thought none existed thus preventing an aircraft from being grounded. Additionally, it has saved hundreds of labor hours and greatly reduced the occurrence of test point reflight. Due to the proprietary nature of the JSF program, details regarding the actual test points, test plans, and all other program specific information have not been presented. Generic, representative data is used for example and proof-of-concept purposes. Apart from the data correlation algorithms, the optimization associated
Optimal Pricing and Advertising Policies for New Product Oligopoly Models
Gerald L. Thompson; Jinn-Tsair Teng
1984-01-01
In this paper our previous work on monopoly and oligopoly new product models is extended by the addition of pricing as well as advertising control variables. These models contain Bass's demand growth model, and the Vidale-Wolfe and Ozga advertising models, as well as the production learning curve model and an exponential demand function. The problem of characterizing an optimal pricing and advertising policy over time is an important question in the field of marketing as well as in the areas ...
Desiccant wheel thermal performance modeling for indoor humidity optimal control
International Nuclear Information System (INIS)
Wang, Nan; Zhang, Jiangfeng; Xia, Xiaohua
2013-01-01
Highlights: • An optimal humidity control model is formulated to control the indoor humidity. • MPC strategy is used to implement the optimal operation solution. • Practical applications of the MPC strategy is illustrated by the case study. - Abstract: Thermal comfort is an important concern in the energy efficiency improvement of commercial buildings. Thermal comfort research focuses mostly on temperature control, but humidity control is an important aspect to maintain indoor comfort too. In this paper, an optimal humidity control model (OHCM) is presented. Model predictive control (MPC) strategy is applied to implement the optimal operation of the desiccant wheel during working hours of a commercial building. The OHCM is revised to apply the MPC strategy. A case is studied to illustrate the practical applications of the MPC strategy
AN OPTIMAL MAINTENANCE MANAGEMENT MODEL FOR AIRPORT CONCRETE PAVEMENT
Shimomura, Taizo; Fujimori, Yuji; Kaito, Kiyoyuki; Obama, Kengo; Kobayashi, Kiyoshi
In this paper, an optimal management model is formulated for the performance-based rehabilitation/maintenance contract for airport concrete pavement, whereby two types of life cycle cost risks, i.e., ground consolidation risk and concrete depreciation risk, are explicitly considered. The non-homogenous Markov chain model is formulated to represent the deterioration processes of concrete pavement which are conditional upon the ground consolidation processes. The optimal non-homogenous Markov decision model with multiple types of risk is presented to design the optimal rehabilitation/maintenance plans. And the methodology to revise the optimal rehabilitation/maintenance plans based upon the monitoring data by the Bayesian up-to-dating rules. The validity of the methodology presented in this paper is examined based upon the case studies carried out for the H airport.
Multi-objective optimization of GENIE Earth system models.
Price, Andrew R; Myerscough, Richard J; Voutchkov, Ivan I; Marsh, Robert; Cox, Simon J
2009-07-13
The tuning of parameters in climate models is essential to provide reliable long-term forecasts of Earth system behaviour. We apply a multi-objective optimization algorithm to the problem of parameter estimation in climate models. This optimization process involves the iterative evaluation of response surface models (RSMs), followed by the execution of multiple Earth system simulations. These computations require an infrastructure that provides high-performance computing for building and searching the RSMs and high-throughput computing for the concurrent evaluation of a large number of models. Grid computing technology is therefore essential to make this algorithm practical for members of the GENIE project.
Anode baking process optimization through computer modelling
Energy Technology Data Exchange (ETDEWEB)
Wilburn, D.; Lancaster, D.; Crowell, B. [Noranda Aluminum, New Madrid, MO (United States); Ouellet, R.; Jiao, Q. [Noranda Technology Centre, Pointe Claire, PQ (Canada)
1998-12-31
Carbon anodes used in aluminum electrolysis are produced in vertical or horizontal type anode baking furnaces. The carbon blocks are formed from petroleum coke aggregate mixed with a coal tar pitch binder. Before the carbon block can be used in a reduction cell it must be heated to pyrolysis. The baking process represents a large portion of the aluminum production cost, and also has a significant effect on anode quality. To ensure that the baking of the anode is complete, it must be heated to about 1100 degrees C. To improve the understanding of the anode baking process and to improve its efficiency, a menu-driven heat, mass and fluid flow simulation tool, called NABSIM (Noranda Anode Baking SIMulation), was developed and calibrated in 1993 and 1994. It has been used since then to evaluate and screen firing practices, and to determine which firing procedure will produce the optimum heat-up rate, final temperature, and soak time, without allowing unburned tar to escape. NABSIM is used as a furnace simulation tool on a daily basis by Noranda plant process engineers and much effort is expended in improving its utility by creating new versions, and the addition of new modules. In the immediate future, efforts will be directed towards optimizing the anode baking process to improve temperature uniformity from pit to pit. 3 refs., 4 figs.
Fuzzy multiobjective models for optimal operation of a hydropower system
Teegavarapu, Ramesh S. V.; Ferreira, André R.; Simonovic, Slobodan P.
2013-06-01
Optimal operation models for a hydropower system using new fuzzy multiobjective mathematical programming models are developed and evaluated in this study. The models use (i) mixed integer nonlinear programming (MINLP) with binary variables and (ii) integrate a new turbine unit commitment formulation along with water quality constraints used for evaluation of reservoir downstream impairment. Reardon method used in solution of genetic algorithm optimization problems forms the basis for development of a new fuzzy multiobjective hydropower system optimization model with creation of Reardon type fuzzy membership functions. The models are applied to a real-life hydropower reservoir system in Brazil. Genetic Algorithms (GAs) are used to (i) solve the optimization formulations to avoid computational intractability and combinatorial problems associated with binary variables in unit commitment, (ii) efficiently address Reardon method formulations, and (iii) deal with local optimal solutions obtained from the use of traditional gradient-based solvers. Decision maker's preferences are incorporated within fuzzy mathematical programming formulations to obtain compromise operating rules for a multiobjective reservoir operation problem dominated by conflicting goals of energy production, water quality and conservation releases. Results provide insight into compromise operation rules obtained using the new Reardon fuzzy multiobjective optimization framework and confirm its applicability to a variety of multiobjective water resources problems.
Airfoil Shape Optimization based on Surrogate Model
Mukesh, R.; Lingadurai, K.; Selvakumar, U.
2018-02-01
Engineering design problems always require enormous amount of real-time experiments and computational simulations in order to assess and ensure the design objectives of the problems subject to various constraints. In most of the cases, the computational resources and time required per simulation are large. In certain cases like sensitivity analysis, design optimisation etc where thousands and millions of simulations have to be carried out, it leads to have a life time of difficulty for designers. Nowadays approximation models, otherwise called as surrogate models (SM), are more widely employed in order to reduce the requirement of computational resources and time in analysing various engineering systems. Various approaches such as Kriging, neural networks, polynomials, Gaussian processes etc are used to construct the approximation models. The primary intention of this work is to employ the k-fold cross validation approach to study and evaluate the influence of various theoretical variogram models on the accuracy of the surrogate model construction. Ordinary Kriging and design of experiments (DOE) approaches are used to construct the SMs by approximating panel and viscous solution algorithms which are primarily used to solve the flow around airfoils and aircraft wings. The method of coupling the SMs with a suitable optimisation scheme to carryout an aerodynamic design optimisation process for airfoil shapes is also discussed.
Algorithm of Dynamic Model Structural Identification of the Multivariable Plant
Directory of Open Access Journals (Sweden)
Л.М. Блохін
2004-02-01
Full Text Available The new algorithm of dynamic model structural identification of the multivariable stabilized plant with observable and unobservable disturbances in the regular operating modes is offered in this paper. With the help of the offered algorithm it is possible to define the “perturbed” models of dynamics not only of the plant, but also the dynamics characteristics of observable and unobservable casual disturbances taking into account the absence of correlation between themselves and control inputs with the unobservable perturbations.
Diagnosis and Model Based Identification of a Coupling Misalignment
Directory of Open Access Journals (Sweden)
P. Pennacchi
2005-01-01
Full Text Available This paper is focused on the application of two different diagnostic techniques aimed to identify the most important faults in rotating machinery as well as on the simulation and prediction of the frequency response of rotating machines. The application of the two diagnostics techniques, the orbit shape analysis and the model based identification in the frequency domain, is described by means of an experimental case study that concerns a gas turbine-generator unit of a small power plant whose rotor-train was affected by an angular misalignment in a flexible coupling, caused by a wrong machine assembling. The fault type is identified by means of the orbit shape analysis, then the equivalent bending moments, which enable the shaft experimental vibrations to be simulated, have been identified using a model based identification method. These excitations have been used to predict the machine vibrations in a large rotating speed range inside which no monitoring data were available. To the best of the authors' knowledge, this is the first case of identification of coupling misalignment and prediction of the consequent machine behaviour in an actual size rotating machinery. The successful results obtained emphasise the usefulness of integrating common condition monitoring techniques with diagnostic strategies.
Aerodynamic Modelling and Optimization of Axial Fans
DEFF Research Database (Denmark)
Sørensen, Dan Nørtoft
A numerically efficient mathematical model for the aerodynamics oflow speed axial fans of the arbitrary vortex flow type has been developed.The model is based on a blade-element principle, whereby therotor is divided into a number of annular streamtubes.For each of these streamtubes relations......-Raphson method, andsolutions converged to machine accuracy are found at small computing costs.The model has been validated against published measurementson various fan configurations,comprising two rotor-only fan stages, a counter-rotatingfan unit and a stator-rotor-stator stage.Comparisons of local...... and integrated propertiesshow that the computed results agree well with the measurements.Integrating a rotor-only version of the aerodynamic modelwith an algorithm for numerical designoptimization, enables the finding of an optimum fan rotor.The angular velocity of the rotor, the hub radius and the spanwise...
Robust and fast nonlinear optimization of diffusion MRI microstructure models.
Harms, R L; Fritz, F J; Tobisch, A; Goebel, R; Roebroeck, A
2017-07-15
Advances in biophysical multi-compartment modeling for diffusion MRI (dMRI) have gained popularity because of greater specificity than DTI in relating the dMRI signal to underlying cellular microstructure. A large range of these diffusion microstructure models have been developed and each of the popular models comes with its own, often different, optimization algorithm, noise model and initialization strategy to estimate its parameter maps. Since data fit, accuracy and precision is hard to verify, this creates additional challenges to comparability and generalization of results from diffusion microstructure models. In addition, non-linear optimization is computationally expensive leading to very long run times, which can be prohibitive in large group or population studies. In this technical note we investigate the performance of several optimization algorithms and initialization strategies over a few of the most popular diffusion microstructure models, including NODDI and CHARMED. We evaluate whether a single well performing optimization approach exists that could be applied to many models and would equate both run time and fit aspects. All models, algorithms and strategies were implemented on the Graphics Processing Unit (GPU) to remove run time constraints, with which we achieve whole brain dataset fits in seconds to minutes. We then evaluated fit, accuracy, precision and run time for different models of differing complexity against three common optimization algorithms and three parameter initialization strategies. Variability of the achieved quality of fit in actual data was evaluated on ten subjects of each of two population studies with a different acquisition protocol. We find that optimization algorithms and multi-step optimization approaches have a considerable influence on performance and stability over subjects and over acquisition protocols. The gradient-free Powell conjugate-direction algorithm was found to outperform other common algorithms in terms of
A model for optimal constrained adaptive testing
van der Linden, Willem J.; Reese, Lynda M.
2001-01-01
A model for constrained computerized adaptive testing is proposed in which the information on the test at the ability estimate is maximized subject to a large variety of possible constraints on the contents of the test. At each item-selection step, a full test is first assembled to have maximum
A model for optimal constrained adaptive testing
van der Linden, Willem J.; Reese, Lynda M.
1997-01-01
A model for constrained computerized adaptive testing is proposed in which the information in the test at the ability estimate is maximized subject to a large variety of possible constraints on the contents of the test. At each item-selection step, a full test is first assembled to have maximum
Optimal Experimental Design for Model Discrimination
Myung, Jay I.; Pitt, Mark A.
2009-01-01
Models of a psychological process can be difficult to discriminate experimentally because it is not easy to determine the values of the critical design variables (e.g., presentation schedule, stimulus structure) that will be most informative in differentiating them. Recent developments in sampling-based search methods in statistics make it…
Optimal designs for linear mixture models
Mendieta, E.J.; Linssen, H.N.; Doornbos, R.
1975-01-01
In a recent paper Snee and Marquardt [8] considered designs for linear mixture models, where the components are subject to individual lower and/or upper bounds. When the number of components is large their algorithm XVERT yields designs far too extensive for practical purposes. The purpose of this
Optimal designs for linear mixture models
Mendieta, E.J.; Linssen, H.N.; Doornbos, R.
1975-01-01
In a recent paper Snee and Marquardt (1974) considered designs for linear mixture models, where the components are subject to individual lower and/or upper bounds. When the number of components is large their algorithm XVERT yields designs far too extensive for practical purposes. The purpose of
A neural network model of lateralization during letter identification.
Shevtsova, N; Reggia, J A
1999-03-01
The causes of cerebral lateralization of cognitive and other functions are currently not well understood. To investigate one aspect of function lateralization, a bihemispheric neural network model for a simple visual identification task was developed that has two parallel interacting paths of information processing. The model is based on commonly accepted concepts concerning neural connectivity, activity dynamics, and synaptic plasticity. A combination of both unsupervised (Hebbian) and supervised (Widrow-Hoff) learning rules is used to train the model to identify a small set of letters presented as input stimuli in the left visual hemifield, in the central position, and in the right visual hemifield. Each visual hemifield projects onto the contralateral hemisphere, and the two hemispheres interact via a simulated corpus callosum. The contribution of each individual hemisphere to the process of input stimuli identification was studied for a variety of underlying asymmetries. The results indicate that multiple asymmetries may cause lateralization. Lateralization occurred toward the side having larger size, higher excitability, or higher learning rate parameters. It appeared more intensively with strong inhibitory callosal connections, supporting the hypothesis that the corpus callosum plays a functionally inhibitory role. The model demonstrates clearly the dependence of lateralization on different hemisphere parameters and suggests that computational models can be useful in better understanding the mechanisms underlying emergence of lateralization.
Ma, Denglong; Tan, Wei; Zhang, Zaoxiao; Hu, Jun
2017-03-05
In order to identify the parameters of hazardous gas emission source in atmosphere with less previous information and reliable probability estimation, a hybrid algorithm coupling Tikhonov regularization with particle swarm optimization (PSO) was proposed. When the source location is known, the source strength can be estimated successfully by common Tikhonov regularization method, but it is invalid when the information about both source strength and location is absent. Therefore, a hybrid method combining linear Tikhonov regularization and PSO algorithm was designed. With this method, the nonlinear inverse dispersion model was transformed to a linear form under some assumptions, and the source parameters including source strength and location were identified simultaneously by linear Tikhonov-PSO regularization method. The regularization parameters were selected by L-curve method. The estimation results with different regularization matrixes showed that the confidence interval with high-order regularization matrix is narrower than that with zero-order regularization matrix. But the estimation results of different source parameters are close to each other with different regularization matrixes. A nonlinear Tikhonov-PSO hybrid regularization was also designed with primary nonlinear dispersion model to estimate the source parameters. The comparison results of simulation and experiment case showed that the linear Tikhonov-PSO method with transformed linear inverse model has higher computation efficiency than nonlinear Tikhonov-PSO method. The confidence intervals from linear Tikhonov-PSO are more reasonable than that from nonlinear method. The estimation results from linear Tikhonov-PSO method are similar to that from single PSO algorithm, and a reasonable confidence interval with some probability levels can be additionally given by Tikhonov-PSO method. Therefore, the presented linear Tikhonov-PSO regularization method is a good potential method for hazardous emission
Pangestuti, Ratih; Ryu, Bomi; Himaya, Swa; Kim, Se-Kwon
2013-08-01
Hippocampus trimaculatus is one of the most heavily traded seahorse species for traditional medicine purposes in many countries. In the present study, we showed neuroprotective effects of peptide derived from H. trimaculatus against amyloid-β42 (Aβ42) toxicity which are central to the pathogenesis of Alzheimer's diseases (AD). Firstly, H. trimaculatus was separately hydrolyzed by four different enzymes and tested for their protective effect on Aβ42-induced neurotoxicity in differentiated PC12 cells. Pronase E hydrolysate exerted highest protection with cell viability value of 88.33 ± 3.33 %. Furthermore, we used response surface methodology to optimize pronase E hydrolysis conditions and found that temperature at 36.69 °C with the hydrolysis time 20.01 h, enzyme to substrate (E/S) ratio of 2.02 % and pH 7.34 were the most optimum conditions. Following several purification steps, H. trimaculatus-derived neuroprotective peptides (HTP-1) sequence was identified as Gly-Thr-Glu-Asp-Glu-Leu-Asp-Lys (906.4 Da). HTP-1 protected PC12 cells from Aβ42-induced neuronal death with the cell viability value of 85.52 ± 2.22 % and up-regulated pro-survival gene (Bcl-2) expressions. These results suggest that HTP-1 has the potential to be used in treatment of neurodegenerative diseases, particularly AD. Identification, characterization, and synthesis of bioactive components derived from H. trimaculatus have the potential to replace or at least complement the use of seahorse as traditional medicine, which further may become an approach to minimize seahorse exploitation in traditional medicine.
Optimizing Biorefinery Design and Operations via Linear Programming Models
Energy Technology Data Exchange (ETDEWEB)
Talmadge, Michael; Batan, Liaw; Lamers, Patrick; Hartley, Damon; Biddy, Mary; Tao, Ling; Tan, Eric
2017-03-28
The ability to assess and optimize economics of biomass resource utilization for the production of fuels, chemicals and power is essential for the ultimate success of a bioenergy industry. The team of authors, consisting of members from the National Renewable Energy Laboratory (NREL) and the Idaho National Laboratory (INL), has developed simple biorefinery linear programming (LP) models to enable the optimization of theoretical or existing biorefineries. The goal of this analysis is to demonstrate how such models can benefit the developing biorefining industry. It focuses on a theoretical multi-pathway, thermochemical biorefinery configuration and demonstrates how the biorefinery can use LP models for operations planning and optimization in comparable ways to the petroleum refining industry. Using LP modeling tools developed under U.S. Department of Energy's Bioenergy Technologies Office (DOE-BETO) funded efforts, the authors investigate optimization challenges for the theoretical biorefineries such as (1) optimal feedstock slate based on available biomass and prices, (2) breakeven price analysis for available feedstocks, (3) impact analysis for changes in feedstock costs and product prices, (4) optimal biorefinery operations during unit shutdowns / turnarounds, and (5) incentives for increased processing capacity. These biorefinery examples are comparable to crude oil purchasing and operational optimization studies that petroleum refiners perform routinely using LPs and other optimization models. It is important to note that the analyses presented in this article are strictly theoretical and they are not based on current energy market prices. The pricing structure assigned for this demonstrative analysis is consistent with $4 per gallon gasoline, which clearly assumes an economic environment that would favor the construction and operation of biorefineries. The analysis approach and examples provide valuable insights into the usefulness of analysis tools for
Multi-Scale Parameter Identification of Lithium-Ion Battery Electric Models Using a PSO-LM Algorithm
Directory of Open Access Journals (Sweden)
Wen-Jing Shen
2017-03-01
Full Text Available This paper proposes a multi-scale parameter identification algorithm for the lithium-ion battery (LIB electric model by using a combination of particle swarm optimization (PSO and Levenberg-Marquardt (LM algorithms. Two-dimensional Poisson equations with unknown parameters are used to describe the potential and current density distribution (PDD of the positive and negative electrodes in the LIB electric model. The model parameters are difficult to determine in the simulation due to the nonlinear complexity of the model. In the proposed identification algorithm, PSO is used for the coarse-scale parameter identification and the LM algorithm is applied for the fine-scale parameter identification. The experiment results show that the multi-scale identification not only improves the convergence rate and effectively escapes from the stagnation of PSO, but also overcomes the local minimum entrapment drawback of the LM algorithm. The terminal voltage curves from the PDD model with the identified parameter values are in good agreement with those from the experiments at different discharge/charge rates.
Modeling, Optimization & Control of Hydraulic Networks
DEFF Research Database (Denmark)
Tahavori, Maryamsadat
2014-01-01
. The nonlinear network model is derived based on the circuit theory. A suitable projection is used to reduce the state vector and to express the model in standard state-space form. Then, the controllability of nonlinear nonaffine hydraulic networks is studied. The Lie algebra-based controllability matrix is used......Water supply systems consist of a number of pumping stations, which deliver water to the customers via pipeline networks and elevated reservoirs. A huge amount of drinking water is lost before it reaches to end-users due to the leakage in pipe networks. A cost effective solution to reduce leakage...... in water network is pressure management. By reducing the pressure in the water network, the leakage can be reduced significantly. Also it reduces the amount of energy consumption in water networks. The primary purpose of this work is to develop control algorithms for pressure control in water supply...
Optimal maintenance policies in incomplete repair models
International Nuclear Information System (INIS)
Kahle, Waltraud
2007-01-01
We consider an incomplete repair model, that is, the impact of repair is not minimal as in the homogeneous Poisson process and not 'as good as new' as in renewal processes but lies between these boundary cases. The repairs are assumed to impact the failure intensity following a virtual age process of the general form proposed by Kijima. In previous works field data from an industrial setting were used to fit several models. In most cases the estimated rate of occurrence of failures was that of an underlying exponential distribution of the time between failures. In this paper, it is shown that there exist maintenance schedules under which the failure behavior of the failure-repair process becomes a homogeneous Poisson process
Applicability Of Resources Optimization Model For Mitigating
African Journals Online (AJOL)
Dr A.B.Ahmed
previous work. The entire model can be summarized as algorithm below. F u ll L en g th. Research. Article. 1 .... performance metric used is the total sum of utilities of all the peers in the system at .... Hua, J. S., Huang, D. C. Yen, S. M. and Chena, C. W. (2012) “A dynamic ... Workshop on Quality of Service: 174-192. Yahaya ...
Fuzzy optimization model for land use change
L. Jahanshahloo; E. Haghi
2014-01-01
There are some important questions in Land use change literature, for instance How much land to allocate to each of a number of land use type in order to maximization of (household or individual) rent -paying ability, minimization of environmental impacts or maximization of population income. In this paper, we want to investigate them and propose mathematical models to find an answer for these questions. Since Most of the parameters in this process are linguistics and fuzzy logic is a powerfu...
Quantifying Distributional Model Risk via Optimal Transport
Blanchet, Jose; Murthy, Karthyek R. A.
2016-01-01
This paper deals with the problem of quantifying the impact of model misspecification when computing general expected values of interest. The methodology that we propose is applicable in great generality, in particular, we provide examples involving path dependent expectations of stochastic processes. Our approach consists in computing bounds for the expectation of interest regardless of the probability measure used, as long as the measure lies within a prescribed tolerance measured in terms ...
Optimering af model for spredning af luftforurening
DEFF Research Database (Denmark)
Pedersen, Jens Christian
2008-01-01
De nuværende luftforureningsmodeller har problemer med at bevare massen af diverse kemiske stoffer og med at der ind i mellem optræder negative værdier. Derfor arbejder specialestuderende Ayoe Buus Hansen på om at forbedre den model DMU bruger til at beskrive transport og spredning af luftforuren...... luftforurening på alle skalaer på den nordlige halvkugle ved at sammenligne tre alternative beregningsmodeller. ...
Surrogate-Based Optimization of Biogeochemical Transport Models
Prieß, Malte; Slawig, Thomas
2010-09-01
First approaches towards a surrogate-based optimization method for a one-dimensional marine biogeochemical model of NPZD type are presented. The model, developed by Oschlies and Garcon [1], simulates the distribution of nitrogen, phytoplankton, zooplankton and detritus in a water column and is driven by ocean circulation data. A key issue is to minimize the misfit between the model output and given observational data. Our aim is to reduce the overall optimization cost avoiding expensive function and derivative evaluations by using a surrogate model replacing the high-fidelity model in focus. This in particular becomes important for more complex three-dimensional models. We analyse a coarsening in the discretization of the model equations as one way to create such a surrogate. Here the numerical stability crucially depends upon the discrete stepsize in time and space and the biochemical terms. We show that for given model parameters the level of grid coarsening can be choosen accordingly yielding a stable and satisfactory surrogate. As one example of a surrogate-based optimization method we present results of the Aggressive Space Mapping technique (developed by John W. Bandler [2, 3]) applied to the optimization of this one-dimensional biogeochemical transport model.
Learning optimal quantum models is NP-hard
Stark, Cyril J.
2018-02-01
Physical modeling translates measured data into a physical model. Physical modeling is a major objective in physics and is generally regarded as a creative process. How good are computers at solving this task? Here, we show that in the absence of physical heuristics, the inference of optimal quantum models cannot be computed efficiently (unless P=NP ). This result illuminates rigorous limits to the extent to which computers can be used to further our understanding of nature.
Optimization of Operations Resources via Discrete Event Simulation Modeling
Joshi, B.; Morris, D.; White, N.; Unal, R.
1996-01-01
The resource levels required for operation and support of reusable launch vehicles are typically defined through discrete event simulation modeling. Minimizing these resources constitutes an optimization problem involving discrete variables and simulation. Conventional approaches to solve such optimization problems involving integer valued decision variables are the pattern search and statistical methods. However, in a simulation environment that is characterized by search spaces of unknown topology and stochastic measures, these optimization approaches often prove inadequate. In this paper, we have explored the applicability of genetic algorithms to the simulation domain. Genetic algorithms provide a robust search strategy that does not require continuity and differentiability of the problem domain. The genetic algorithm successfully minimized the operation and support activities for a space vehicle, through a discrete event simulation model. The practical issues associated with simulation optimization, such as stochastic variables and constraints, were also taken into consideration.
Space engineering modeling and optimization with case studies
Pintér, János
2016-01-01
This book presents a selection of advanced case studies that cover a substantial range of issues and real-world challenges and applications in space engineering. Vital mathematical modeling, optimization methodologies and numerical solution aspects of each application case study are presented in detail, with discussions of a range of advanced model development and solution techniques and tools. Space engineering challenges are discussed in the following contexts: •Advanced Space Vehicle Design •Computation of Optimal Low Thrust Transfers •Indirect Optimization of Spacecraft Trajectories •Resource-Constrained Scheduling, •Packing Problems in Space •Design of Complex Interplanetary Trajectories •Satellite Constellation Image Acquisition •Re-entry Test Vehicle Configuration Selection •Collision Risk Assessment on Perturbed Orbits •Optimal Robust Design of Hybrid Rocket Engines •Nonlinear Regression Analysis in Space Engineering< •Regression-Based Sensitivity Analysis and Robust Design ...
Optimal foraging in marine ecosystem models: selectivity, profitability and switching
DEFF Research Database (Denmark)
Visser, Andre W.; Fiksen, Ø.
2013-01-01
ecological mechanics and evolutionary logic as a solution to diet selection in ecosystem models. When a predator can consume a range of prey items it has to choose which foraging mode to use, which prey to ignore and which ones to pursue, and animals are known to be particularly skilled in adapting...... to the preference functions commonly used in models today. Indeed, depending on prey class resolution, optimal foraging can yield feeding rates that are considerably different from the ‘switching functions’ often applied in marine ecosystem models. Dietary inclusion is dictated by two optimality choices: 1...... by letting predators maximize energy intake or more properly, some measure of fitness where predation risk and cost are also included. An optimal foraging or fitness maximizing approach will give marine ecosystem models a sound principle to determine trophic interactions...
An optimal control model of crop thinning in viticulture
Directory of Open Access Journals (Sweden)
Schamel Guenter H.
2016-01-01
Full Text Available We develop an economic model of cluster thinning in viticulture to control for grape quantity harvested and grape quality, applying a simple optimal control model with the aim to raise grape quality and related economic profits. The model maximizes vineyard owner profits and allows to discuss two relevant scenarios using a phase diagram analysis: (1 when the initial grape quantity is sufficiently small, thinning grapes will not be optimal and (2 when the initial grape quantity is high enough, it is optimal to thin grapes from the beginning of the relevant planning horizon and to reduce the quantity over time until the stock of grapes arrives at its optimum. Depending on the model's parameters, the “stopping time” for thinning grapes is reached sooner or later. After the stopping time, grape quantity evolves solely according to natural decay. The results relate to observed dynamics in viticulture and for other horticultural crops.
Neutron density optimal control of A-1 reactor analoque model
International Nuclear Information System (INIS)
Grof, V.
1975-01-01
Two applications are described of the optimal control of a reactor analog model. Both cases consider the control of neutron density. Control loops containing the on-line controlled process, the reactor of the first Czechoslovak nuclear power plant A-1, are simulated on an analog computer. Two versions of the optimal control algorithm are derived using modern control theory (Pontryagin's maximum principle, the calculus of variations, and Kalman's estimation theory), the minimum time performance index, and the quadratic performance index. The results of the optimal control analysis are compared with the A-1 reactor conventional control. (author)
Time dependent optimal switching controls in online selling models
Energy Technology Data Exchange (ETDEWEB)
Bradonjic, Milan [Los Alamos National Laboratory; Cohen, Albert [MICHIGAN STATE UNIV
2010-01-01
We present a method to incorporate dishonesty in online selling via a stochastic optimal control problem. In our framework, the seller wishes to maximize her average wealth level W at a fixed time T of her choosing. The corresponding Hamilton-Jacobi-Bellmann (HJB) equation is analyzed for a basic case. For more general models, the admissible control set is restricted to a jump process that switches between extreme values. We propose a new approach, where the optimal control problem is reduced to a multivariable optimization problem.
Optimal control of information epidemics modeled as Maki Thompson rumors
Kandhway, Kundan; Kuri, Joy
2014-12-01
We model the spread of information in a homogeneously mixed population using the Maki Thompson rumor model. We formulate an optimal control problem, from the perspective of single campaigner, to maximize the spread of information when the campaign budget is fixed. Control signals, such as advertising in the mass media, attempt to convert ignorants and stiflers into spreaders. We show the existence of a solution to the optimal control problem when the campaigning incurs non-linear costs under the isoperimetric budget constraint. The solution employs Pontryagin's Minimum Principle and a modified version of forward backward sweep technique for numerical computation to accommodate the isoperimetric budget constraint. The techniques developed in this paper are general and can be applied to similar optimal control problems in other areas. We have allowed the spreading rate of the information epidemic to vary over the campaign duration to model practical situations when the interest level of the population in the subject of the campaign changes with time. The shape of the optimal control signal is studied for different model parameters and spreading rate profiles. We have also studied the variation of the optimal campaigning costs with respect to various model parameters. Results indicate that, for some model parameters, significant improvements can be achieved by the optimal strategy compared to the static control strategy. The static strategy respects the same budget constraint as the optimal strategy and has a constant value throughout the campaign horizon. This work finds application in election and social awareness campaigns, product advertising, movie promotion and crowdfunding campaigns.
A Survey of Modelling and Identification of Quadrotor Robot
Directory of Open Access Journals (Sweden)
Xiaodong Zhang
2014-01-01
Full Text Available A quadrotor is a rotorcraft capable of hover, forward flight, and VTOL and is emerging as a fundamental research and application platform at present with flexibility, adaptability, and ease of construction. Since a quadrotor is basically considered an unstable system with the characteristics of dynamics such as being intensively nonlinear, multivariable, strongly coupled, and underactuated, a precise and practical model is critical to control the vehicle which seems to be simple to operate. As a rotorcraft, the dynamics of a quadrotor is mainly dominated by the complicated aerodynamic effects of the rotors. This paper gives a tutorial of the platform configuration, methodology of modeling, comprehensive nonlinear model, the aerodynamic effects, and model identification for a quadrotor.
Optimal Resource Management in a Stochastic Schaefer Model
Richard Hartman
2008-01-01
This paper incorporates uncertainty into the growth function of the Schaefer model for the optimal management of a biological resource. There is a critical value for the biological stock, and it is optimal to do no harvesting if the biological stock is below that critical value and to exert whatever harvesting effort is necessary to prevent the stock from rising above that critical value. The introduction of uncertainty increases the critical value of the stock.
Sparse optimization for inverse problems in atmospheric modelling
Czech Academy of Sciences Publication Activity Database
Adam, Lukáš; Branda, Martin
2016-01-01
Roč. 79, č. 3 (2016), s. 256-266 ISSN 1364-8152 R&D Projects: GA MŠk(CZ) 7F14287 Institutional support: RVO:67985556 Keywords : Inverse modelling * Sparse optimization * Integer optimization * Least squares * European tracer experiment * Free Matlab codes Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 4.404, year: 2016 http://library.utia.cas.cz/separaty/2016/MTR/adam-0457037.pdf
Study and optimization of the partial discharges in capacitor model ...
African Journals Online (AJOL)
Page 1 ... experiments methodology for the study of such processes, in view of their modeling and optimization. The obtained result is a mathematical model capable to identify the parameters and the interactions between .... 5mn; the next landing is situated in 200 V over the voltage of partial discharges appearance and.
Runtime Optimizations for Tree-Based Machine Learning Models
N. Asadi; J.J.P. Lin (Jimmy); A.P. de Vries (Arjen)
2014-01-01
htmlabstractTree-based models have proven to be an effective solution for web ranking as well as other machine learning problems in diverse domains. This paper focuses on optimizing the runtime performance of applying such models to make predictions, specifically using gradient-boosted regression
An Extended Optimal Velocity Model with Consideration of Honk Effect
International Nuclear Information System (INIS)
Tang Tieqiao; Li Chuanyao; Huang Haijun; Shang Huayan
2010-01-01
Based on the OV (optimal velocity) model, we in this paper present an extended OV model with the consideration of the honk effect. The analytical and numerical results illustrate that the honk effect can improve the velocity and flow of uniform flow but that the increments are relevant to the density. (interdisciplinary physics and related areas of science and technology)
Optimal dimensioning model of water distribution systems | Gomes ...
African Journals Online (AJOL)
This study is aimed at developing a pipe-sizing model for a water distribution system. The optimal solution minimises the system's total cost, which comprises the hydraulic network capital cost, plus the capitalised cost of pumping energy. The developed model, called Lenhsnet, may also be used for economical design when ...
Optimizing incomplete sample designs for item response model parameters
van der Linden, Willem J.
Several models for optimizing incomplete sample designs with respect to information on the item parameters are presented. The following cases are considered: (1) known ability parameters; (2) unknown ability parameters; (3) item sets with multiple ability scales; and (4) response models with
Modeling the optimal management of spent nuclear fuel
International Nuclear Information System (INIS)
Nachlas, J.A.; Kurstedt, H.A. Jr.; Swindle, D.W. Jr.; Korcz, K.O.
1977-01-01
Recent governmental policy decisions dictate that strategies for managing spent nuclear fuel be developed. Two models are constructed to investigate the optimum residence time and the optimal inventory withdrawal policy for fuel material that presently must be stored. The mutual utility of the models is demonstrated through reference case application
Variability aware compact model characterization for statistical circuit design optimization
Qiao, Ying; Qian, Kun; Spanos, Costas J.
2012-03-01
Variability modeling at the compact transistor model level can enable statistically optimized designs in view of limitations imposed by the fabrication technology. In this work we propose an efficient variabilityaware compact model characterization methodology based on the linear propagation of variance. Hierarchical spatial variability patterns of selected compact model parameters are directly calculated from transistor array test structures. This methodology has been implemented and tested using transistor I-V measurements and the EKV-EPFL compact model. Calculation results compare well to full-wafer direct model parameter extractions. Further studies are done on the proper selection of both compact model parameters and electrical measurement metrics used in the method.
Fuzzy Simulation-Optimization Model for Waste Load Allocation
Directory of Open Access Journals (Sweden)
Motahhare Saadatpour
2006-01-01
Full Text Available This paper present simulation-optimization models for waste load allocation from multiple point sources which include uncertainty due to vagueness of the parameters and goals. This model employs fuzzy sets with appropriate membership functions to deal with uncertainties due to vagueness. The fuzzy waste load allocation model (FWLAM incorporate QUAL2E as a water quality simulation model and Genetic Algorithm (GA as an optimization tool to find the optimal combination of the fraction removal level to the dischargers and pollution control agency (PCA. Penalty functions are employed to control the violations in the system. The results demonstrate that the goal of PCA to achieve the best water quality and the goal of the dischargers to use the full assimilative capacity of the river have not been satisfied completely and a compromise solution between these goals is provided. This fuzzy optimization model with genetic algorithm has been used for a hypothetical problem. Results demonstrate a very suitable convergence of proposed optimization algorithm to the global optima.
Energy Technology Data Exchange (ETDEWEB)
Schulze-Riegert, R.; Krosche, M.; Stekolschikov, K. [Scandpower Petroleum Technology GmbH, Hamburg (Germany); Fahimuddin, A. [Technische Univ. Braunschweig (Germany)
2007-09-13
History Matching in Reservoir Simulation, well location and production optimization etc. is generally a multi-objective optimization problem. The problem statement of history matching for a realistic field case includes many field and well measurements in time and type, e.g. pressure measurements, fluid rates, events such as water and gas break-throughs, etc. Uncertainty parameters modified as part of the history matching process have varying impact on the improvement of the match criteria. Competing match criteria often reduce the likelihood of finding an acceptable history match. It is an engineering challenge in manual history matching processes to identify competing objectives and to implement the changes required in the simulation model. In production optimization or scenario optimization the focus on one key optimization criterion such as NPV limits the identification of alternatives and potential opportunities, since multiple objectives are summarized in a predefined global objective formulation. Previous works primarily focus on a specific optimization method. Few works actually concentrate on the objective formulation and multi-objective optimization schemes have not yet been applied to reservoir simulations. This paper presents a multi-objective optimization approach applicable to reservoir simulation. It addresses the problem of multi-objective criteria in a history matching study and presents analysis techniques identifying competing match criteria. A Pareto-Optimizer is discussed and the implementation of that multi-objective optimization scheme is applied to a case study. Results are compared to a single-objective optimization method. (orig.)
Zener Diode Compact Model Parameter Extraction Using Xyce-Dakota Optimization.
Energy Technology Data Exchange (ETDEWEB)
Buchheit, Thomas E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wilcox, Ian Zachary [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sandoval, Andrew J [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Reza, Shahed [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2017-12-01
This report presents a detailed process for compact model parameter extraction for DC circuit Zener diodes. Following the traditional approach of Zener diode parameter extraction, circuit model representation is defined and then used to capture the different operational regions of a real diode's electrical behavior. The circuit model contains 9 parameters represented by resistors and characteristic diodes as circuit model elements. The process of initial parameter extraction, the identification of parameter values for the circuit model elements, is presented in a way that isolates the dependencies between certain electrical parameters and highlights both the empirical nature of the extraction and portions of the real diode physical behavior which of the parameters are intended to represent. Optimization of the parameters, a necessary part of a robost parameter extraction process, is demonstrated using a 'Xyce-Dakota' workflow, discussed in more detail in the report. Among other realizations during this systematic approach of electrical model parameter extraction, non-physical solutions are possible and can be difficult to avoid because of the interdependencies between the different parameters. The process steps described are fairly general and can be leveraged for other types of semiconductor device model extractions. Also included in the report are recommendations for experiment setups for generating optimum dataset for model extraction and the Parameter Identification and Ranking Table (PIRT) for Zener diodes.
A method for model identification and parameter estimation
International Nuclear Information System (INIS)
Bambach, M; Heinkenschloss, M; Herty, M
2013-01-01
We propose and analyze a new method for the identification of a parameter-dependent model that best describes a given system. This problem arises, for example, in the mathematical modeling of material behavior where several competing constitutive equations are available to describe a given material. In this case, the models are differential equations that arise from the different constitutive equations, and the unknown parameters are coefficients in the constitutive equations. One has to determine the best-suited constitutive equations for a given material and application from experiments. We assume that the true model is one of the N possible parameter-dependent models. To identify the correct model and the corresponding parameters, we can perform experiments, where for each experiment we prescribe an input to the system and observe a part of the system state. Our approach consists of two stages. In the first stage, for each pair of models we determine the experiment, i.e. system input and observation, that best differentiates between the two models, and measure the distance between the two models. Then we conduct N(N − 1) or, depending on the approach taken, N(N − 1)/2 experiments and use the result of the experiments as well as the previously computed model distances to determine the true model. We provide sufficient conditions on the model distances and measurement errors which guarantee that our approach identifies the correct model. Given the model, we identify the corresponding model parameters in the second stage. The problem in the second stage is a standard parameter estimation problem and we use a method suitable for the given application. We illustrate our approach on three examples, including one where the models are elliptic partial differential equations with different parameterized right-hand sides and an example where we identify the constitutive equation in a problem from computational viscoplasticity. (paper)
Decision Support Model for Optimal Management of Coastal Gate
Ditthakit, Pakorn; Chittaladakorn, Suwatana
2010-05-01
The coastal areas are intensely settled by human beings owing to their fertility of natural resources. However, at present those areas are facing with water scarcity problems: inadequate water and poor water quality as a result of saltwater intrusion and inappropriate land-use management. To solve these problems, several measures have been exploited. The coastal gate construction is a structural measure widely performed in several countries. This manner requires the plan for suitably operating coastal gates. Coastal gate operation is a complicated task and usually concerns with the management of multiple purposes, which are generally conflicted one another. This paper delineates the methodology and used theories for developing decision support modeling for coastal gate operation scheduling. The developed model was based on coupling simulation and optimization model. The weighting optimization technique based on Differential Evolution (DE) was selected herein for solving multiple objective problems. The hydrodynamic and water quality models were repeatedly invoked during searching the optimal gate operations. In addition, two forecasting models:- Auto Regressive model (AR model) and Harmonic Analysis model (HA model) were applied for forecasting water levels and tide levels, respectively. To demonstrate the applicability of the developed model, it was applied to plan the operations for hypothetical system of Pak Phanang coastal gate system, located in Nakhon Si Thammarat province, southern part of Thailand. It was found that the proposed model could satisfyingly assist decision-makers for operating coastal gates under various environmental, ecological and hydraulic conditions.
Study on Identification of Material Model Parameters from Compact Tension Test on Concrete Specimens
Hokes, Filip; Kral, Petr; Husek, Martin; Kala, Jiri
2017-10-01
Identification of a concrete material model parameters using optimization is based on a calculation of a difference between experimentally measured and numerically obtained data. Measure of the difference can be formulated via root mean squared error that is often used for determination of accuracy of a mathematical model in the field of meteorology or demography. The quality of the identified parameters is, however, determined not only by right choice of an objective function but also by the source experimental data. One of the possible way is to use load-displacement curves from three-point bending tests that were performed on concrete specimens. This option shows the significance of modulus of elasticity, tensile strength and specific fracture energy. Another possible option is to use experimental data from compact tension test. It is clear that the response in the second type of test is also dependent on the above mentioned material parameters. The question is whether the parameters identified within three-point bending test and within compact tension test will reach the same values. The presented article brings the numerical study of inverse identification of material model parameters from experimental data measured during compact tension tests. The article also presents utilization of the modified sensitivity analysis that calculates the sensitivity of the material model parameters for different parts of loading curve. The main goal of the article is to describe the process of inverse identification of parameters for plasticity-based material model of concrete and prepare data for future comparison with identified values of the material model parameters from different type of fracture tests.
A Pareto-optimal moving average multigene genetic programming model for daily streamflow prediction
Danandeh Mehr, Ali; Kahya, Ercan
2017-06-01
Genetic programming (GP) is able to systematically explore alternative model structures of different accuracy and complexity from observed input and output data. The effectiveness of GP in hydrological system identification has been recognized in recent studies. However, selecting a parsimonious (accurate and simple) model from such alternatives still remains a question. This paper proposes a Pareto-optimal moving average multigene genetic programming (MA-MGGP) approach to develop a parsimonious model for single-station streamflow prediction. The three main components of the approach that take us from observed data to a validated model are: (1) data pre-processing, (2) system identification and (3) system simplification. The data pre-processing ingredient uses a simple moving average filter to diminish the lagged prediction effect of stand-alone data-driven models. The multigene ingredient of the model tends to identify the underlying nonlinear system with expressions simpler than classical monolithic GP and, eventually simplification component exploits Pareto front plot to select a parsimonious model through an interactive complexity-efficiency trade-off. The approach was tested using the daily streamflow records from a station on Senoz Stream, Turkey. Comparing to the efficiency results of stand-alone GP, MGGP, and conventional multi linear regression prediction models as benchmarks, the proposed Pareto-optimal MA-MGGP model put forward a parsimonious solution, which has a noteworthy importance of being applied in practice. In addition, the approach allows the user to enter human insight into the problem to examine evolved models and pick the best performing programs out for further analysis.
Best management practices (BMPs) are perceived as being effective in reducing nutrient loads transported from non-point sources (NPS) to receiving water bodies. The objective of this study was to develop a modeling-optimization framework that can be used by watershed management p...
Optimal input shaping for Fisher identifiability of control-oriented lithium-ion battery models
Rothenberger, Michael J.
-output measurements, and is the approach used in this dissertation. Research in the literature studies optimal current input shaping for high-order electrochemical battery models and focuses on offline laboratory cycling. While this body of research highlights improvements in identifiability through optimal input shaping, each optimal input is a function of nominal parameters, which creates a tautology. The parameter values must be known a priori to determine the optimal input for maximizing estimation speed and accuracy. The system identification literature presents multiple studies containing methods that avoid the challenges of this tautology, but these methods are absent from the battery parameter estimation domain. The gaps in the above literature are addressed in this dissertation through the following five novel and unique contributions. First, this dissertation optimizes the parameter identifiability of a thermal battery model, which Sergio Mendoza experimentally validates through a close collaboration with this dissertation's author. Second, this dissertation extends input-shaping optimization to a linear and nonlinear equivalent-circuit battery model and illustrates the substantial improvements in Fisher identifiability for a periodic optimal signal when compared against automotive benchmark cycles. Third, this dissertation presents an experimental validation study of the simulation work in the previous contribution. The estimation study shows that the automotive benchmark cycles either converge slower than the optimized cycle, or not at all for certain parameters. Fourth, this dissertation examines how automotive battery packs with additional power electronic components that dynamically route current to individual cells/modules can be used for parameter identifiability optimization. While the user and vehicle supervisory controller dictate the current demand for these packs, the optimized internal allocation of current still improves identifiability. Finally, this
Energy Technology Data Exchange (ETDEWEB)
Janot, A
2007-12-15
This thesis focuses on the modeling and the identification of haptic interfaces using cable drive. An haptic interface is a force feedback device, which enables its user to interact with a virtual world or a remote environment explored by a slave system. It aims at the matching between the forces and displacements given by the user and those applied to virtual world. Usually, haptic interfaces make use of a mechanical actuated structure whose distal link is equipped with a handle. When manipulating this handle to interact with explored world, the user feels the apparent mass, compliance and friction of the interface. This distortion introduced between the operator and the virtual world must be modeled and identified to enhance the design of the interface and develop appropriate control laws. The first approach has been to adapt the modeling and identification methods of rigid and localized flexibilities robots to haptic interfaces. The identification technique makes use of the inverse dynamic model and the linear least squares with the measurements of joint torques and positions. This approach is validated on a single degree of freedom and a three degree of freedom haptic devices. A new identification method needing only torque data is proposed. It is based on a closed loop simulation using the direct dynamic model. The optimal parameters minimize the 2 norms of the error between the actual torque and the simulated torque assuming the same control law and the same tracking trajectory. This non linear least squares problem dramatically is simplified using the inverse model to calculate the simulated torque. This method is validated on the single degree of freedom haptic device and the SCARA robot. (author)
Energy Technology Data Exchange (ETDEWEB)
Janot, A
2007-12-15
This thesis focuses on the modeling and the identification of haptic interfaces using cable drive. An haptic interface is a force feedback device, which enables its user to interact with a virtual world or a remote environment explored by a slave system. It aims at the matching between the forces and displacements given by the user and those applied to virtual world. Usually, haptic interfaces make use of a mechanical actuated structure whose distal link is equipped with a handle. When manipulating this handle to interact with explored world, the user feels the apparent mass, compliance and friction of the interface. This distortion introduced between the operator and the virtual world must be modeled and identified to enhance the design of the interface and develop appropriate control laws. The first approach has been to adapt the modeling and identification methods of rigid and localized flexibilities robots to haptic interfaces. The identification technique makes use of the inverse dynamic model and the linear least squares with the measurements of joint torques and positions. This approach is validated on a single degree of freedom and a three degree of freedom haptic devices. A new identification method needing only torque data is proposed. It is based on a closed loop simulation using the direct dynamic model. The optimal parameters minimize the 2 norms of the error between the actual torque and the simulated torque assuming the same control law and the same tracking trajectory. This non linear least squares problem dramatically is simplified using the inverse model to calculate the simulated torque. This method is validated on the single degree of freedom haptic device and the SCARA robot. (author)
Identification of walking human model using agent-based modelling
Shahabpoor, Erfan; Pavic, Aleksandar; Racic, Vitomir
2018-03-01
The interaction of walking people with large vibrating structures, such as footbridges and floors, in the vertical direction is an important yet challenging phenomenon to describe mathematically. Several different models have been proposed in the literature to simulate interaction of stationary people with vibrating structures. However, the research on moving (walking) human models, explicitly identified for vibration serviceability assessment of civil structures, is still sparse. In this study, the results of a comprehensive set of FRF-based modal tests were used, in which, over a hundred test subjects walked in different group sizes and walking patterns on a test structure. An agent-based model was used to simulate discrete traffic-structure interactions. The occupied structure modal parameters found in tests were used to identify the parameters of the walking individual's single-degree-of-freedom (SDOF) mass-spring-damper model using 'reverse engineering' methodology. The analysis of the results suggested that the normal distribution with the average of μ = 2.85Hz and standard deviation of σ = 0.34Hz can describe human SDOF model natural frequency. Similarly, the normal distribution with μ = 0.295 and σ = 0.047 can describe the human model damping ratio. Compared to the previous studies, the agent-based modelling methodology proposed in this paper offers significant flexibility in simulating multi-pedestrian walking traffics, external forces and simulating different mechanisms of human-structure and human-environment interaction at the same time.
Line impedance estimation using model based identification technique
DEFF Research Database (Denmark)
Ciobotaru, Mihai; Agelidis, Vassilios; Teodorescu, Remus
2011-01-01
The estimation of the line impedance can be used by the control of numerous grid-connected systems, such as active filters, islanding detection techniques, non-linear current controllers, detection of the on/off grid operation mode. Therefore, estimating the line impedance can add extra functions...... into the operation of the grid-connected power converters. This paper describes a quasi passive method for estimating the line impedance of the distribution electricity network. The method uses the model based identification technique to obtain the resistive and inductive parts of the line impedance. The quasi...
Parameter Identification for Nonlinear Circuit Models of Power BAW Resonator
Directory of Open Access Journals (Sweden)
CONSTANTINESCU, F.
2011-02-01
Full Text Available The large signal operation of the bulk acoustic wave (BAW resonators is characterized by the amplitude-frequency effect and the intermodulation effect. The measurement of these effects, together with that of the small signal frequency characteristic, are used in this paper for the parameter identification of the nonlinear circuit models developed previously by authors. As the resonator has been connected to the measurement bench by wire bonding, the parasitic elements of this connection have been taken into account, being estimated solving some electrical and magnetic field problems.
Text-Independent Speaker Identification Using the Histogram Transform Model
DEFF Research Database (Denmark)
Ma, Zhanyu; Yu, Hong; Tan, Zheng-Hua
2016-01-01
In this paper, we propose a novel probabilistic method for the task of text-independent speaker identification (SI). In order to capture the dynamic information during SI, we design a super-MFCCs features by cascading three neighboring Mel-frequency Cepstral coefficients (MFCCs) frames together....... These super-MFCC vectors are utilized for probabilistic model training such that the speaker’s characteristics can be sufficiently captured. The probability density function (PDF) of the aforementioned super-MFCCs features is estimated by the recently proposed histogram transform (HT) method. To recedes...
Model identification methodology for fluid-based inerters
Liu, Xiaofu; Jiang, Jason Zheng; Titurus, Branislav; Harrison, Andrew
2018-06-01
Inerter is the mechanical dual of the capacitor via the force-current analogy. It has the property that the force across the terminals is proportional to their relative acceleration. Compared with flywheel-based inerters, fluid-based forms have advantages of improved durability, inherent damping and simplicity of design. In order to improve the understanding of the physical behaviour of this fluid-based device, especially caused by the hydraulic resistance and inertial effects in the external tube, this work proposes a comprehensive model identification methodology. Firstly, a modelling procedure is established, which allows the topological arrangement of the mechanical networks to be obtained by mapping the damping, inertance and stiffness effects directly to their respective hydraulic counterparts. Secondly, an experimental sequence is followed, which separates the identification of friction, stiffness and various damping effects. Furthermore, an experimental set-up is introduced, where two pressure gauges are used to accurately measure the pressure drop across the external tube. The theoretical models with improved confidence are obtained using the proposed methodology for a helical-tube fluid inerter prototype. The sources of remaining discrepancies are further analysed.
Inverse mathematical modelling and identification in metal powder compaction process
International Nuclear Information System (INIS)
Gakwaya, A.; Hrairi, M.; Guillot, M.
2000-01-01
An online assessment of the quality of advanced integrated computer aided manufacturing systems require the knowledge of accurate and reliable non-linear constitutive material behavior. This paper is concerned with material parameter identification based on experimental data for which non uniform distribution of stresses and deformation within the volume of the specimen is considered. Both geometric and material non linearities as well interfacial frictional contact are taken into account during the simulation. Within the framework of finite deformation theory, a multisurface multiplicative plasticity model for metal powder compaction process is presented. The model is seen to involve several parameters which are not always activated by a single state variable even though it may be technologically important in assessing the final product quality and manufacturing performance. The resulting expressions are presented in spatial setting and gradient based descent method utilizing the modified Levenberg-Marquardt scheme is used for the minimization of least square functional so as to obtain the best agreement between relevant experimental data and simulated data in a specified energy norm. The identification of a subset of material parameters of the cap model for stainless steel powder compaction is performed. The obtained parameters are validated through a simulation of an industrial part manufacturing case. A very good agreement between simulated final density and measured density is obtained thus demonstrating the practical usefulness of the proposed approach. (author)
Modeling and energy efficiency optimization of belt conveyors
International Nuclear Information System (INIS)
Zhang, Shirong; Xia, Xiaohua
2011-01-01
Highlights: → We take optimization approach to improve operation efficiency of belt conveyors. → An analytical energy model, originating from ISO 5048, is proposed. → Then an off-line and an on-line parameter estimation schemes are investigated. → In a case study, six optimization problems are formulated with solutions in simulation. - Abstract: The improvement of the energy efficiency of belt conveyor systems can be achieved at equipment and operation levels. Specifically, variable speed control, an equipment level intervention, is recommended to improve operation efficiency of belt conveyors. However, the current implementations mostly focus on lower level control loops without operational considerations at the system level. This paper intends to take a model based optimization approach to improve the efficiency of belt conveyors at the operational level. An analytical energy model, originating from ISO 5048, is firstly proposed, which lumps all the parameters into four coefficients. Subsequently, both an off-line and an on-line parameter estimation schemes are applied to identify the new energy model, respectively. Simulation results are presented for the estimates of the four coefficients. Finally, optimization is done to achieve the best operation efficiency of belt conveyors under various constraints. Six optimization problems of a typical belt conveyor system are formulated, respectively, with solutions in simulation for a case study.
A stochastic discrete optimization model for designing container terminal facilities
Zukhruf, Febri; Frazila, Russ Bona; Burhani, Jzolanda Tsavalista
2017-11-01
As uncertainty essentially affect the total transportation cost, it remains important in the container terminal that incorporates several modes and transshipments process. This paper then presents a stochastic discrete optimization model for designing the container terminal, which involves the decision of facilities improvement action. The container terminal operation model is constructed by accounting the variation of demand and facilities performance. In addition, for illustrating the conflicting issue that practically raises in the terminal operation, the model also takes into account the possible increment delay of facilities due to the increasing number of equipment, especially the container truck. Those variations expectantly reflect the uncertainty issue in the container terminal operation. A Monte Carlo simulation is invoked to propagate the variations by following the observed distribution. The problem is constructed within the framework of the combinatorial optimization problem for investigating the optimal decision of facilities improvement. A new variant of glow-worm swarm optimization (GSO) is thus proposed for solving the optimization, which is rarely explored in the transportation field. The model applicability is tested by considering the actual characteristics of the container terminal.
Hierarchical Swarm Model: A New Approach to Optimization
Directory of Open Access Journals (Sweden)
Hanning Chen
2010-01-01
Full Text Available This paper presents a novel optimization model called hierarchical swarm optimization (HSO, which simulates the natural hierarchical complex system from where more complex intelligence can emerge for complex problems solving. This proposed model is intended to suggest ways that the performance of HSO-based algorithms on complex optimization problems can be significantly improved. This performance improvement is obtained by constructing the HSO hierarchies, which means that an agent in a higher level swarm can be composed of swarms of other agents from lower level and different swarms of different levels evolve on different spatiotemporal scale. A novel optimization algorithm (named PS2O, based on the HSO model, is instantiated and tested to illustrate the ideas of HSO model clearly. Experiments were conducted on a set of 17 benchmark optimization problems including both continuous and discrete cases. The results demonstrate remarkable performance of the PS2O algorithm on all chosen benchmark functions when compared to several successful swarm intelligence and evolutionary algorithms.
Identification of Biokinetic Models Using the Concept of Extents.
Mašić, Alma; Srinivasan, Sriniketh; Billeter, Julien; Bonvin, Dominique; Villez, Kris
2017-07-05
The development of a wide array of process technologies to enable the shift from conventional biological wastewater treatment processes to resource recovery systems is matched by an increasing demand for predictive capabilities. Mathematical models are excellent tools to meet this demand. However, obtaining reliable and fit-for-purpose models remains a cumbersome task due to the inherent complexity of biological wastewater treatment processes. In this work, we present a first study in the context of environmental biotechnology that adopts and explores the use of extents as a way to simplify and streamline the dynamic process modeling task. In addition, the extent-based modeling strategy is enhanced by optimal accounting for nonlinear algebraic equilibria and nonlinear measurement equations. Finally, a thorough discussion of our results explains the benefits of extent-based modeling and its potential to turn environmental process modeling into a highly automated task.
Identification of grid model parameters using synchrophasor measurements
Energy Technology Data Exchange (ETDEWEB)
Boicea, Valentin; Albu, Mihaela [Politehnica University of Bucharest (Romania)
2012-07-01
Presently a critical element of the energy networks is represented by the active distribution grids, where generation intermittency and controllable loads contribute to a stochastic varability of the quantities characterizing the grid operation. The capability of controlling the electrical energy transfer is also limited by the incomplete knowledge of the detailed electrical model of each of the grid components. Asset management in distribution grids has to consider dynamic loads, while high loading of network sections might already have degraded some of the assets. Moreover, in case of functional microgrids, all elements need to be modelled accurately and an appropriate measurement layer enabling online control needs to be deployed. In this paper a method for online identification of the actual parameter values in grid electrical models is proposed. Laboratory results validating the proposed method are presented. (orig.)
Optimization of turning process through the analytic flank wear modelling
Del Prete, A.; Franchi, R.; De Lorenzis, D.
2018-05-01
In the present work, the approach used for the optimization of the process capabilities for Oil&Gas components machining will be described. These components are machined by turning of stainless steel castings workpieces. For this purpose, a proper Design Of Experiments (DOE) plan has been designed and executed: as output of the experimentation, data about tool wear have been collected. The DOE has been designed starting from the cutting speed and feed values recommended by the tools manufacturer; the depth of cut parameter has been maintained as a constant. Wear data has been obtained by means the observation of the tool flank wear under an optical microscope: the data acquisition has been carried out at regular intervals of working times. Through a statistical data and regression analysis, analytical models of the flank wear and the tool life have been obtained. The optimization approach used is a multi-objective optimization, which minimizes the production time and the number of cutting tools used, under the constraint on a defined flank wear level. The technique used to solve the optimization problem is a Multi Objective Particle Swarm Optimization (MOPS). The optimization results, validated by the execution of a further experimental campaign, highlighted the reliability of the work and confirmed the usability of the optimized process parameters and the potential benefit for the company.
Optimal Patent Life in a Variety-Expansion Growth Model
Lin, Hwan C.
2013-01-01
This paper presents more channels through which the optimal patent life is determined in a R&D-based endogenous growth model that permits growth of new varieties of consumer goods over time. Its modeling features include an endogenous hazard rate facing incumbent monopolists, the prevalence of research congestion, and the aggregate welfare importance of product differentiation. As a result, a patent’s effective life is endogenized and less than its legal life. The model is calibrated to a glo...
An aircraft noise pollution model for trajectory optimization
Barkana, A.; Cook, G.
1976-01-01
A mathematical model describing the generation of aircraft noise is developed with the ultimate purpose of reducing noise (noise-optimizing landing trajectories) in terminal areas. While the model is for a specific aircraft (Boeing 737), the methodology would be applicable to a wide variety of aircraft. The model is used to obtain a footprint on the ground inside of which the noise level is at or above 70 dB.
Optimization algorithms intended for self-tuning feedwater heater model
International Nuclear Information System (INIS)
Czop, P; Barszcz, T; Bednarz, J
2013-01-01
This work presents a self-tuning feedwater heater model. This work continues the work on first-principle gray-box methodology applied to diagnostics and condition assessment of power plant components. The objective of this work is to review and benchmark the optimization algorithms regarding the time required to achieve the best model fit to operational power plant data. The paper recommends the most effective algorithm to be used in the model adjustment process.
Group Elevator Peak Scheduling Based on Robust Optimization Model
Directory of Open Access Journals (Sweden)
ZHANG, J.
2013-08-01
Full Text Available Scheduling of Elevator Group Control System (EGCS is a typical combinatorial optimization problem. Uncertain group scheduling under peak traffic flows has become a research focus and difficulty recently. RO (Robust Optimization method is a novel and effective way to deal with uncertain scheduling problem. In this paper, a peak scheduling method based on RO model for multi-elevator system is proposed. The method is immune to the uncertainty of peak traffic flows, optimal scheduling is realized without getting exact numbers of each calling floor's waiting passengers. Specifically, energy-saving oriented multi-objective scheduling price is proposed, RO uncertain peak scheduling model is built to minimize the price. Because RO uncertain model could not be solved directly, RO uncertain model is transformed to RO certain model by elevator scheduling robust counterparts. Because solution space of elevator scheduling is enormous, to solve RO certain model in short time, ant colony solving algorithm for elevator scheduling is proposed. Based on the algorithm, optimal scheduling solutions are found quickly, and group elevators are scheduled according to the solutions. Simulation results show the method could improve scheduling performances effectively in peak pattern. Group elevators' efficient operation is realized by the RO scheduling method.
Development of optimized dosimetric models for HDR brachytherapy
International Nuclear Information System (INIS)
Thayalan, K.; Jagadeesan, M.
2003-01-01
High dose rate brachytherapy (HDRB) systems are in clinical use for more than four decades particularly in cervical cancer. Optimization is the method to produce dose distribution which assures that doses are not compromised at the treatment sites whilst reducing the risk of overdosing critical organs. Hence HDRB optimization begins with the desired dose distribution and requires the calculations of the relative weighting factors for each dwell position with out changing the source activity. The optimization for Ca. uterine cervix treatment is simply duplication of the dose distribution used for Low dose rate (LDR) applications. In the present work, two optimized dosimetric models were proposed and studied thoroughly, to suit the local clinical conditions. These models are named as HDR-C and HDR-D, where C and D represent configuration and distance respectively. These models duplicate exactly the LDR pear shaped dose distribution, which is a golden standard. The validity of these models is tested in different clinical situations and in actual patients (n=92). These models: HDR-C and HDR-D reduce bladder dose by 11.11% and 10% and rectal dose by 8% and 7% respectively. The treatment time is also reduced by 12-14%. In a busy hospital setup, these models find a place to cater large number of patients, while addressing individual patients geometry. (author)
Nonlinear State Space Modeling and System Identification for Electrohydraulic Control
Directory of Open Access Journals (Sweden)
Jun Yan
2013-01-01
Full Text Available The paper deals with nonlinear modeling and identification of an electrohydraulic control system for improving its tracking performance. We build the nonlinear state space model for analyzing the highly nonlinear system and then develop a Hammerstein-Wiener (H-W model which consists of a static input nonlinear block with two-segment polynomial nonlinearities, a linear time-invariant dynamic block, and a static output nonlinear block with single polynomial nonlinearity to describe it. We simplify the H-W model into a linear-in-parameters structure by using the key term separation principle and then use a modified recursive least square method with iterative estimation of internal variables to identify all the unknown parameters simultaneously. It is found that the proposed H-W model approximates the actual system better than the independent Hammerstein, Wiener, and ARX models. The prediction error of the H-W model is about 13%, 54%, and 58% less than the Hammerstein, Wiener, and ARX models, respectively.
Identification of multivariate models for noise analysis of nuclear plant
International Nuclear Information System (INIS)
Zwingelstein, G.C.; Upadhyaya, B.R.
1979-01-01
During the normal operation of a pressurized water reactor, neutron noise analysis with multivariate autoregressive procedures in a valuable diagnostic tool to extract dynamic characteristics for incipient failure detection. The first part of the paper will describe in details the equations for estimating the multivariate autoregressive model matrices and the structure of various matrices. The matrices are estimated by solving a set of matrix operations, called Yule-Walker equations. The selection of optimal model order will also be discussed. Once the optimal parameter set is obtained, simple and fast calculations are used to determine the auto power spectral density, cross spectra, coherence function, phase. In addition the spectra may be decomposed into components being contributed from different noise sources. An application using neutron flux data collected on a nuclear plant will illustrate the efficiency of the method
Discounted cost model for condition-based maintenance optimization
International Nuclear Information System (INIS)
Weide, J.A.M. van der; Pandey, M.D.; Noortwijk, J.M. van
2010-01-01
This paper presents methods to evaluate the reliability and optimize the maintenance of engineering systems that are damaged by shocks or transients arriving randomly in time and overall degradation is modeled as a cumulative stochastic point process. The paper presents a conceptually clear and comprehensive derivation of formulas for computing the discounted cost associated with a maintenance policy combining both condition-based and age-based criteria for preventive maintenance. The proposed discounted cost model provides a more realistic basis for optimizing the maintenance policies than those based on the asymptotic, non-discounted cost rate criterion.
Optimization of morphing flaps based on fluid structure interaction modeling
DEFF Research Database (Denmark)
Barlas, Athanasios; Akay, Busra
2018-01-01
This article describes the design optimization of morphing trailing edge flaps for wind turbines with ‘smart blades’. A high fidelity Fluid Structure Interaction (FSI) simulation framework is utilized, comprised of 2D Finite Element Analysis (FEA) and Computational Fluid Dynamics (CFD) models....... A coupled aero-structural simulation of a 10% chordwise length morphing trailing edge flap for a 4 MW wind turbine rotor is carried out and response surfaces are produced with respect to the flap internal geometry design parameters for the design conditions. Surrogate model based optimization is applied...
Innovative supply chain optimization models with multiple uncertainty factors
DEFF Research Database (Denmark)
Choi, Tsan Ming; Govindan, Kannan; Li, Xiang
2017-01-01
Uncertainty is an inherent factor that affects all dimensions of supply chain activities. In today’s business environment, initiatives to deal with one specific type of uncertainty might not be effective since other types of uncertainty factors and disruptions may be present. These factors relate...... to supply chain competition and coordination. Thus, to achieve a more efficient and effective supply chain requires the deployment of innovative optimization models and novel methods. This preface provides a concise review of critical research issues regarding innovative supply chain optimization models...
Directory of Open Access Journals (Sweden)
Hediyeh Karimi
2013-01-01
Full Text Available It has been predicted that the nanomaterials of graphene will be among the candidate materials for postsilicon electronics due to their astonishing properties such as high carrier mobility, thermal conductivity, and biocompatibility. Graphene is a semimetal zero gap nanomaterial with demonstrated ability to be employed as an excellent candidate for DNA sensing. Graphene-based DNA sensors have been used to detect the DNA adsorption to examine a DNA concentration in an analyte solution. In particular, there is an essential need for developing the cost-effective DNA sensors holding the fact that it is suitable for the diagnosis of genetic or pathogenic diseases. In this paper, particle swarm optimization technique is employed to optimize the analytical model of a graphene-based DNA sensor which is used for electrical detection of DNA molecules. The results are reported for 5 different concentrations, covering a range from 0.01 nM to 500 nM. The comparison of the optimized model with the experimental data shows an accuracy of more than 95% which verifies that the optimized model is reliable for being used in any application of the graphene-based DNA sensor.
Mixed models, linear dependency, and identification in age-period-cohort models.
O'Brien, Robert M
2017-07-20
This paper examines the identification problem in age-period-cohort models that use either linear or categorically coded ages, periods, and cohorts or combinations of these parameterizations. These models are not identified using the traditional fixed effect regression model approach because of a linear dependency between the ages, periods, and cohorts. However, these models can be identified if the researcher introduces a single just identifying constraint on the model coefficients. The problem with such constraints is that the results can differ substantially depending on the constraint chosen. Somewhat surprisingly, age-period-cohort models that specify one or more of ages and/or periods and/or cohorts as random effects are identified. This is the case without introducing an additional constraint. I label this identification as statistical model identification and show how statistical model identification comes about in mixed models and why which effects are treated as fixed and which are treated as random can substantially change the estimates of the age, period, and cohort effects. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
Global sensitivity analysis in the identification of cohesive models using full-field kinematic data
Alfano, Marco; Lubineau, Gilles; Paulino, Glá ucio Hermogenes
2015-01-01
Failure of adhesive bonded structures often occurs concurrent with the formation of a non-negligible fracture process zone in front of a macroscopic crack. For this reason, the analysis of damage and fracture is effectively carried out using the cohesive zone model (CZM). The crucial aspect of the CZM approach is the precise determination of the traction-separation relation. Yet it is usually determined empirically, by using calibration procedures combining experimental data, such as load-displacement or crack length data, with finite element simulation of fracture. Thanks to the recent progress in image processing, and the availability of low-cost CCD cameras, it is nowadays relatively easy to access surface displacements across the fracture process zone using for instance Digital Image Correlation (DIC). The rich information provided by correlation techniques prompted the development of versatile inverse parameter identification procedures combining finite element (FE) simulations and full field kinematic data. The focus of the present paper is to assess the effectiveness of these methods in the identification of cohesive zone models. In particular, the analysis is developed in the framework of the variance based global sensitivity analysis. The sensitivity of kinematic data to the sought cohesive properties is explored through the computation of the so-called Sobol sensitivity indexes. The results show that the global sensitivity analysis can help to ascertain the most influential cohesive parameters which need to be incorporated in the identification process. In addition, it is shown that suitable displacement sampling in time and space can lead to optimized measurements for identification purposes.
Global sensitivity analysis in the identification of cohesive models using full-field kinematic data
Alfano, Marco
2015-03-01
Failure of adhesive bonded structures often occurs concurrent with the formation of a non-negligible fracture process zone in front of a macroscopic crack. For this reason, the analysis of damage and fracture is effectively carried out using the cohesive zone model (CZM). The crucial aspect of the CZM approach is the precise determination of the traction-separation relation. Yet it is usually determined empirically, by using calibration procedures combining experimental data, such as load-displacement or crack length data, with finite element simulation of fracture. Thanks to the recent progress in image processing, and the availability of low-cost CCD cameras, it is nowadays relatively easy to access surface displacements across the fracture process zone using for instance Digital Image Correlation (DIC). The rich information provided by correlation techniques prompted the development of versatile inverse parameter identification procedures combining finite element (FE) simulations and full field kinematic data. The focus of the present paper is to assess the effectiveness of these methods in the identification of cohesive zone models. In particular, the analysis is developed in the framework of the variance based global sensitivity analysis. The sensitivity of kinematic data to the sought cohesive properties is explored through the computation of the so-called Sobol sensitivity indexes. The results show that the global sensitivity analysis can help to ascertain the most influential cohesive parameters which need to be incorporated in the identification process. In addition, it is shown that suitable displacement sampling in time and space can lead to optimized measurements for identification purposes.
GRAVITATIONAL LENS MODELING WITH GENETIC ALGORITHMS AND PARTICLE SWARM OPTIMIZERS
International Nuclear Information System (INIS)
Rogers, Adam; Fiege, Jason D.
2011-01-01
Strong gravitational lensing of an extended object is described by a mapping from source to image coordinates that is nonlinear and cannot generally be inverted analytically. Determining the structure of the source intensity distribution also requires a description of the blurring effect due to a point-spread function. This initial study uses an iterative gravitational lens modeling scheme based on the semilinear method to determine the linear parameters (source intensity profile) of a strongly lensed system. Our 'matrix-free' approach avoids construction of the lens and blurring operators while retaining the least-squares formulation of the problem. The parameters of an analytical lens model are found through nonlinear optimization by an advanced genetic algorithm (GA) and particle swarm optimizer (PSO). These global optimization routines are designed to explore the parameter space thoroughly, mapping model degeneracies in detail. We develop a novel method that determines the L-curve for each solution automatically, which represents the trade-off between the image χ 2 and regularization effects, and allows an estimate of the optimally regularized solution for each lens parameter set. In the final step of the optimization procedure, the lens model with the lowest χ 2 is used while the global optimizer solves for the source intensity distribution directly. This allows us to accurately determine the number of degrees of freedom in the problem to facilitate comparison between lens models and enforce positivity on the source profile. In practice, we find that the GA conducts a more thorough search of the parameter space than the PSO.
Hyperopt: a Python library for model selection and hyperparameter optimization
Bergstra, James; Komer, Brent; Eliasmith, Chris; Yamins, Dan; Cox, David D.
2015-01-01
Sequential model-based optimization (also known as Bayesian optimization) is one of the most efficient methods (per function evaluation) of function minimization. This efficiency makes it appropriate for optimizing the hyperparameters of machine learning algorithms that are slow to train. The Hyperopt library provides algorithms and parallelization infrastructure for performing hyperparameter optimization (model selection) in Python. This paper presents an introductory tutorial on the usage of the Hyperopt library, including the description of search spaces, minimization (in serial and parallel), and the analysis of the results collected in the course of minimization. This paper also gives an overview of Hyperopt-Sklearn, a software project that provides automatic algorithm configuration of the Scikit-learn machine learning library. Following Auto-Weka, we take the view that the choice of classifier and even the choice of preprocessing module can be taken together to represent a single large hyperparameter optimization problem. We use Hyperopt to define a search space that encompasses many standard components (e.g. SVM, RF, KNN, PCA, TFIDF) and common patterns of composing them together. We demonstrate, using search algorithms in Hyperopt and standard benchmarking data sets (MNIST, 20-newsgroups, convex shapes), that searching this space is practical and effective. In particular, we improve on best-known scores for the model space for both MNIST and convex shapes. The paper closes with some discussion of ongoing and future work.
Control Valve Stiction Identification, Modelling, Quantification and Control - A Review
Directory of Open Access Journals (Sweden)
Srinivasan Arumugam
2011-09-01
Full Text Available Most of the processes found in process industries exhibit undesirable nonlinearity due to backlash, saturation, hysteresis, stiction (friction, dead-zone and stuck-fault existing in control valves. The control valve is the actuator for most process control loops and, as the only moving part in the loop, its function is to implement the control action. If the control valve malfunctions, the performance of the control loop is likely to deteriorate, no matter how good the controller is. Commonly encountered control valve problems include nonlinear responses to the demand signal caused by effects such as stiction, dead-band or saturation. Because of these problems, the control loop may be oscillatory, which in turn may cause oscillations in many process variables causing a range of operational problems including increased valve wear. Understanding nonlinear behaviour of control valves in order to maintain the quality of the end products in the industry, this review article surveys the identification, modelling, estimation and design of dynamic models of stiction nonlinearity and providing appropriate controller to obtain optimum responses of the process. The primary objective of this work is to present state-of-art-review of common nonlinear problems associated with mechanical and chemical processes for encouraging researchers, practicing engineers working in this field, so that readers can invent their goals for future research work on nonlinear systems identification and control.
Pescara benchmark: overview of modelling, testing and identification
International Nuclear Information System (INIS)
Bellino, A; Garibaldi, L; Marchesiello, S; Brancaleoni, F; Gabriele, S; Spina, D; Bregant, L; Carminelli, A; Catania, G; Sorrentino, S; Di Evangelista, A; Valente, C; Zuccarino, L
2011-01-01
The 'Pescara benchmark' is part of the national research project 'BriViDi' (BRIdge VIbrations and DIagnosis) supported by the Italian Ministero dell'Universita e Ricerca. The project is aimed at developing an integrated methodology for the structural health evaluation of railway r/c, p/c bridges. The methodology should provide for applicability in operating conditions, easy data acquisition through common industrial instrumentation, robustness and reliability against structural and environmental uncertainties. The Pescara benchmark consisted in lab tests to get a consistent and large experimental data base and subsequent data processing. Special tests were devised to simulate the train transit effects in actual field conditions. Prestressed concrete beams of current industrial production both sound and damaged at various severity corrosion levels were tested. The results were collected either in a deterministic setting and in a form suitable to deal with experimental uncertainties. Damage identification was split in two approaches: with or without a reference model. In the first case f.e. models were used in conjunction with non conventional updating techniques. In the second case, specialized output-only identification techniques capable to deal with time-variant and possibly non linear systems were developed. The lab tests allowed validating the above approaches and the performances of classical modal based damage indicators.
He, L; Huang, G H; Lu, H W
2010-04-15
Solving groundwater remediation optimization problems based on proxy simulators can usually yield optimal solutions differing from the "true" ones of the problem. This study presents a new stochastic optimization model under modeling uncertainty and parameter certainty (SOMUM) and the associated solution method for simultaneously addressing modeling uncertainty associated with simulator residuals and optimizing groundwater remediation processes. This is a new attempt different from the previous modeling efforts. The previous ones focused on addressing uncertainty in physical parameters (i.e. soil porosity) while this one aims to deal with uncertainty in mathematical simulator (arising from model residuals). Compared to the existing modeling approaches (i.e. only parameter uncertainty is considered), the model has the advantages of providing mean-variance analysis for contaminant concentrations, mitigating the effects of modeling uncertainties on optimal remediation strategies, offering confidence level of optimal remediation strategies to system designers, and reducing computational cost in optimization processes. 2009 Elsevier B.V. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
He, L., E-mail: li.he@ryerson.ca [Department of Civil Engineering, Faculty of Engineering, Architecture and Science, Ryerson University, 350 Victoria Street, Toronto, Ontario, M5B 2K3 (Canada); Huang, G.H. [Environmental Systems Engineering Program, Faculty of Engineering, University of Regina, Regina, Saskatchewan, S4S 0A2 (Canada); College of Urban Environmental Sciences, Peking University, Beijing 100871 (China); Lu, H.W. [Environmental Systems Engineering Program, Faculty of Engineering, University of Regina, Regina, Saskatchewan, S4S 0A2 (Canada)
2010-04-15
Solving groundwater remediation optimization problems based on proxy simulators can usually yield optimal solutions differing from the 'true' ones of the problem. This study presents a new stochastic optimization model under modeling uncertainty and parameter certainty (SOMUM) and the associated solution method for simultaneously addressing modeling uncertainty associated with simulator residuals and optimizing groundwater remediation processes. This is a new attempt different from the previous modeling efforts. The previous ones focused on addressing uncertainty in physical parameters (i.e. soil porosity) while this one aims to deal with uncertainty in mathematical simulator (arising from model residuals). Compared to the existing modeling approaches (i.e. only parameter uncertainty is considered), the model has the advantages of providing mean-variance analysis for contaminant concentrations, mitigating the effects of modeling uncertainties on optimal remediation strategies, offering confidence level of optimal remediation strategies to system designers, and reducing computational cost in optimization processes.
A model for optimization of process integration investments under uncertainty
International Nuclear Information System (INIS)
Svensson, Elin; Stroemberg, Ann-Brith; Patriksson, Michael
2011-01-01
The long-term economic outcome of energy-related industrial investment projects is difficult to evaluate because of uncertain energy market conditions. In this article, a general, multistage, stochastic programming model for the optimization of investments in process integration and industrial energy technologies is proposed. The problem is formulated as a mixed-binary linear programming model where uncertainties are modelled using a scenario-based approach. The objective is to maximize the expected net present value of the investments which enables heat savings and decreased energy imports or increased energy exports at an industrial plant. The proposed modelling approach enables a long-term planning of industrial, energy-related investments through the simultaneous optimization of immediate and later decisions. The stochastic programming approach is also suitable for modelling what is possibly complex process integration constraints. The general model formulation presented here is a suitable basis for more specialized case studies dealing with optimization of investments in energy efficiency. -- Highlights: → Stochastic programming approach to long-term planning of process integration investments. → Extensive mathematical model formulation. → Multi-stage investment decisions and scenario-based modelling of uncertain energy prices. → Results illustrate how investments made now affect later investment and operation opportunities. → Approach for evaluation of robustness with respect to variations in probability distribution.
Model-based dynamic control and optimization of gas networks
Energy Technology Data Exchange (ETDEWEB)
Hofsten, Kai
2001-07-01
This work contributes to the research on control, optimization and simulation of gas transmission systems to support the dispatch personnel at gas control centres for the decision makings in the daily operation of the natural gas transportation systems. Different control and optimization strategies have been studied. The focus is on the operation of long distance natural gas transportation systems. Stationary optimization in conjunction with linear model predictive control using state space models is proposed for supply security, the control of quality parameters and minimization of transportation costs for networks offering transportation services. The result from the stationary optimization together with a reformulation of a simplified fluid flow model formulates a linear dynamic optimization model. This model is used in a finite time control and state constrained linear model predictive controller. The deviation from the control and the state reference determined from the stationary optimization is penalized quadratically. Because of the time varying status of infrastructure, the control space is also generally time varying. When the average load is expected to change considerably, a new stationary optimization is performed, giving a new state and control reference together with a new dynamic model that is used for both optimization and state estimation. Another proposed control strategy is a control and output constrained nonlinear model predictive controller for the operation of gas transmission systems. Here, the objective is also the security of the supply, quality control and minimization of transportation costs. An output vector is defined, which together with a control vector are both penalized quadratically from their respective references in the objective function. The nonlinear model predictive controller can be combined with a stationary optimization. At each sampling instant, a non convex nonlinear programming problem is solved giving a local minimum
Optimal Model-Based Control in HVAC Systems
DEFF Research Database (Denmark)
Komareji, Mohammad; Stoustrup, Jakob; Rasmussen, Henrik
2008-01-01
is developed. Then the optimal control structure is designed and implemented. The HVAC system is splitted into two subsystems. By selecting the right set-points and appropriate cost functions for each subsystem controller the optimal control strategy is respected to gaurantee the minimum thermal and electrical......This paper presents optimal model-based control of a heating, ventilating, and air-conditioning (HVAC) system. This HVAC system is made of two heat exchangers: an air-to-air heat exchanger (a rotary wheel heat recovery) and a water-to- air heat exchanger. First dynamic model of the HVAC system...... energy consumption. Finally, the controller is applied to control the mentioned HVAC system and the results show that the expected goals are fulfilled....
Optimization model for rotor blades of horizontal axis wind turbines
Institute of Scientific and Technical Information of China (English)
LIU Xiong; CHEN Yan; YE Zhiquan
2007-01-01
This paper presents an optimization model for rotor blades of horizontal axis wind turbines. The model refers to the wind speed distribution function on the specific wind site, with an objective to satisfy the maximum annual energy output. To speed up the search process and guarantee a global optimal result, the extended compact genetic algorithm (ECGA) is used to carry out the search process.Compared with the simple genetic algorithm, ECGA runs much faster and can get more accurate results with a much smaller population size and fewer function evaluations. Using the developed optimization program, blades of a 1.3 MW stall-regulated wind turbine are designed. Compared with the existing blades, the designed blades have obviously better aerodynamic performance.
Modeling of biological intelligence for SCM system optimization.
Chen, Shengyong; Zheng, Yujun; Cattani, Carlo; Wang, Wanliang
2012-01-01
This article summarizes some methods from biological intelligence for modeling and optimization of supply chain management (SCM) systems, including genetic algorithms, evolutionary programming, differential evolution, swarm intelligence, artificial immune, and other biological intelligence related methods. An SCM system is adaptive, dynamic, open self-organizing, which is maintained by flows of information, materials, goods, funds, and energy. Traditional methods for modeling and optimizing complex SCM systems require huge amounts of computing resources, and biological intelligence-based solutions can often provide valuable alternatives for efficiently solving problems. The paper summarizes the recent related methods for the design and optimization of SCM systems, which covers the most widely used genetic algorithms and other evolutionary algorithms.
Optimization of Excitation in FDTD Method and Corresponding Source Modeling
Directory of Open Access Journals (Sweden)
B. Dimitrijevic
2015-04-01
Full Text Available Source and excitation modeling in FDTD formulation has a significant impact on the method performance and the required simulation time. Since the abrupt source introduction yields intensive numerical variations in whole computational domain, a generally accepted solution is to slowly introduce the source, using appropriate shaping functions in time. The main goal of the optimization presented in this paper is to find balance between two opposite demands: minimal required computation time and acceptable degradation of simulation performance. Reducing the time necessary for source activation and deactivation is an important issue, especially in design of microwave structures, when the simulation is intensively repeated in the process of device parameter optimization. Here proposed optimized source models are realized and tested within an own developed FDTD simulation environment.
Modeling of Biological Intelligence for SCM System Optimization
Directory of Open Access Journals (Sweden)
Shengyong Chen
2012-01-01
Full Text Available This article summarizes some methods from biological intelligence for modeling and optimization of supply chain management (SCM systems, including genetic algorithms, evolutionary programming, differential evolution, swarm intelligence, artificial immune, and other biological intelligence related methods. An SCM system is adaptive, dynamic, open self-organizing, which is maintained by flows of information, materials, goods, funds, and energy. Traditional methods for modeling and optimizing complex SCM systems require huge amounts of computing resources, and biological intelligence-based solutions can often provide valuable alternatives for efficiently solving problems. The paper summarizes the recent related methods for the design and optimization of SCM systems, which covers the most widely used genetic algorithms and other evolutionary algorithms.
Modeling of Biological Intelligence for SCM System Optimization
Chen, Shengyong; Zheng, Yujun; Cattani, Carlo; Wang, Wanliang
2012-01-01
This article summarizes some methods from biological intelligence for modeling and optimization of supply chain management (SCM) systems, including genetic algorithms, evolutionary programming, differential evolution, swarm intelligence, artificial immune, and other biological intelligence related methods. An SCM system is adaptive, dynamic, open self-organizing, which is maintained by flows of information, materials, goods, funds, and energy. Traditional methods for modeling and optimizing complex SCM systems require huge amounts of computing resources, and biological intelligence-based solutions can often provide valuable alternatives for efficiently solving problems. The paper summarizes the recent related methods for the design and optimization of SCM systems, which covers the most widely used genetic algorithms and other evolutionary algorithms. PMID:22162724
Efficient Parameterization for Grey-box Model Identification of Complex Physical Systems
DEFF Research Database (Denmark)
Blanke, Mogens; Knudsen, Morten Haack
2006-01-01
Grey box model identification preserves known physical structures in a model but with limits to the possible excitation, all parameters are rarely identifiable, and different parametrizations give significantly different model quality. Convenient methods to show which parameterizations are the be...... that need be constrained to achieve satisfactory convergence. Identification of nonlinear models for a ship illustrate the concept....
International Nuclear Information System (INIS)
Cox, G.; Beresford, N.A.; Alvarez-Farizo, B.; Oughton, D.; Kis, Z.; Eged, K.; Thorring, H.; Hunt, J.; Wright, S.; Barnett, C.L.; Gil, J.M.; Howard, B.J.; Crout, N.M.J.
2005-01-01
A spatially implemented model designed to assist the identification of optimal countermeasure strategies for radioactively contaminated regions is described. Collective and individual ingestion doses for people within the affected area are estimated together with collective exported ingestion dose. A range of countermeasures are incorporated within the model, and environmental restrictions have been included as appropriate. The model evaluates the effectiveness of a given combination of countermeasures through a cost function which balances the benefit obtained through the reduction in dose with the cost of implementation. The optimal countermeasure strategy is the combination of individual countermeasures (and when and where they are implemented) which gives the lowest value of the cost function. The model outputs should not be considered as definitive solutions, rather as interactive inputs to the decision making process. As a demonstration the model has been applied to a hypothetical scenario in Cumbria (UK). This scenario considered a published nuclear power plant accident scenario with a total deposition of 1.7 x 10 14 , 1.2 x 10 13 , 2.8 x 10 10 and 5.3 x 10 9 Bq for Cs-137, Sr-90, Pu-239/240 and Am-241, respectively. The model predicts that if no remediation measures were implemented the resulting collective dose would be approximately 36 000 person-Sv (predominantly from 137 Cs) over a 10-year period post-deposition. The optimal countermeasure strategy is predicted to avert approximately 33 000 person-Sv at a cost of approximately pound 160 million. The optimal strategy comprises a mixture of ploughing, AFCF (ammonium-ferric hexacyano-ferrate) administration, potassium fertiliser application, clean feeding of livestock and food restrictions. The model recommends specific areas within the contaminated area and time periods where these measures should be implemented
Modelling and Identification for Control of Gas Bearings
DEFF Research Database (Denmark)
Theisen, Lukas Roy Svane; Niemann, Hans Henrik; Santos, Ilmar
2015-01-01
Gas bearings are popular for their high speed capabilities, low friction and clean operation, but suffer from poor damping, which poses challenges for safe operation in presence of disturbances. Enhanced damping can be achieved through active lubrication techniques using feedback control laws....... Such control design requires models with low complexity, able to describe the dominant dynamics from actuator input to sensor output over the relevant range of operation. The mathematical models based on first principles are not easy to obtain, and in many cases, they cannot be directly used for control design...... to industrial rotating machinery with gas bearings and to allow for subsequent control design. The paper shows how piezoelectric actuators in a gas bearing are efficiently used to perturb the gas film for identification over relevant ranges of rotational speed and gas injection pressure. Parameter...
A treatment model for craving identification and management.
Stalcup, S Alex; Christian, Darrell; Stalcup, Janice; Brown, Michelle; Galloway, Gantt P
2006-06-01
This article presents an addiction treatment model based on craving identification and management (CIM). Craving is broadly defined as the desire to use alcohol or other drugs; it increases the likelihood of use of these substances. In the CIM Model treatment interventions are referenced to craving, i.e., helping clients to identify their craving level and equipping them with strategies to avoid use. Four causes of craving are identified: (1) environmental cues (triggers): exposure to people, places, and things associated with prior drug-using experiences may cause immediate and overwhelming craving; (2) stress: addicted persons experience stress as craving; (3) mental illness; and (4) drug withdrawal: symptoms of both mental illness and withdrawal lead to craving if clients associate use with relief of these symptoms. The CIM Model incorporates four service delivery elements: Relapse Prevention Workshop, individual counseling, medical/psychiatric services, and screening for ongoing drug use. At its core, the CIM Model asks clients to be aware of craving, analyze its causes, and, based on those causes, implement specific strategies to prevent and manage craving. The CIM Model combines several treatment components, including control of exposure to environmental cues, establishment of a daily schedule, the use of behaviors that dissipate craving (tools), and treatment (with medications when appropriate) of mental health and withdrawal symptoms. The CIM Model is a client-derived approach to achieving and maintaining sobriety based on a process of analyzing craving and managing it with an individualized program of recovery activities.
Pareto-Optimal Model Selection via SPRINT-Race.
Zhang, Tiantian; Georgiopoulos, Michael; Anagnostopoulos, Georgios C
2018-02-01
In machine learning, the notion of multi-objective model selection (MOMS) refers to the problem of identifying the set of Pareto-optimal models that optimize by compromising more than one predefined objectives simultaneously. This paper introduces SPRINT-Race, the first multi-objective racing algorithm in a fixed-confidence setting, which is based on the sequential probability ratio with indifference zone test. SPRINT-Race addresses the problem of MOMS with multiple stochastic optimization objectives in the proper Pareto-optimality sense. In SPRINT-Race, a pairwise dominance or non-dominance relationship is statistically inferred via a non-parametric, ternary-decision, dual-sequential probability ratio test. The overall probability of falsely eliminating any Pareto-optimal models or mistakenly returning any clearly dominated models is strictly controlled by a sequential Holm's step-down family-wise error rate control method. As a fixed-confidence model selection algorithm, the objective of SPRINT-Race is to minimize the computational effort required to achieve a prescribed confidence level about the quality of the returned models. The performance of SPRINT-Race is first examined via an artificially constructed MOMS problem with known ground truth. Subsequently, SPRINT-Race is applied on two real-world applications: 1) hybrid recommender system design and 2) multi-criteria stock selection. The experimental results verify that SPRINT-Race is an effective and efficient tool for such MOMS problems. code of SPRINT-Race is available at https://github.com/watera427/SPRINT-Race.
Applying the Team Identification-Social Psychological Health Model to Older Sport Fans
Wann, Daniel L.; Rogers, Kelly; Dooley, Keith; Foley, Mary
2011-01-01
According to the Team Identification-Social Psychological Health Model (Wann, 2006b), team identification and social psychological health should be positively correlated because identification leads to important social connections which, in turn, facilitate well-being. Although past research substantiates the hypothesized positive relationship…
Comparisons of criteria in the assessment model parameter optimizations
International Nuclear Information System (INIS)
Liu Xinhe; Zhang Yongxing
1993-01-01
Three criteria (chi square, relative chi square and correlation coefficient) used in model parameter optimization (MPO) process that aims at significant reduction of prediction uncertainties were discussed and compared to each other with the aid of a well-controlled tracer experiment
The Optimal Portfolio Selection Model under g-Expectation
Directory of Open Access Journals (Sweden)
Li Li
2014-01-01
complicated and sophisticated, the optimal solution turns out to be surprisingly simple, the payoff of a portfolio of two binary claims. Also I give the economic meaning of my model and the comparison with that one in the work of Jin and Zhou, 2008.
Real-Time Optimization for Economic Model Predictive Control
DEFF Research Database (Denmark)
Sokoler, Leo Emil; Edlund, Kristian; Frison, Gianluca
2012-01-01
In this paper, we develop an efficient homogeneous and self-dual interior-point method for the linear programs arising in economic model predictive control. To exploit structure in the optimization problems, the algorithm employs a highly specialized Riccati iteration procedure. Simulations show...
Optimal Tax Reduction by Depreciation : A Stochastic Model
Berg, M.; De Waegenaere, A.M.B.; Wielhouwer, J.L.
1996-01-01
This paper focuses on the choice of a depreciation method, when trying to minimize the expected value of the present value of future tax payments.In a quite general model that allows for stochastic future cash- ows and a tax structure with tax brackets, we determine the optimal choice between the
Multiscale modeling and topology optimization of poroelastic actuators
DEFF Research Database (Denmark)
Andreasen, Casper Schousboe; Sigmund, Ole
2012-01-01
This paper presents a method for design of optimized poroelastic materials which under internal pressurization turn into actuators for application in, for example, linear motors. The actuators are modeled in a two-scale fluid–structure interaction approach. The fluid saturated material microstruc...
Research on potential user identification model for electric energy substitution
Xia, Huaijian; Chen, Meiling; Lin, Haiying; Yang, Shuo; Miao, Bo; Zhu, Xinzhi
2018-01-01
The implementation of energy substitution plays an important role in promoting the development of energy conservation and emission reduction in china. Energy service management platform of alternative energy users based on the data in the enterprise production value, product output, coal and other energy consumption as a potential evaluation index, using principal component analysis model to simplify the formation of characteristic index, comprehensive index contains the original variables, and using fuzzy clustering model for the same industry user’s flexible classification. The comprehensive index number and user clustering classification based on constructed particle optimization neural network classification model based on the user, user can replace electric potential prediction. The results of an example show that the model can effectively predict the potential of users’ energy potential.
A Multiobjective Optimization Model in Automotive Supply Chain Networks
Directory of Open Access Journals (Sweden)
Abdolhossein Sadrnia
2013-01-01
Full Text Available In the new decade, green investment decisions are attracting more interest in design supply chains due to the hidden economic benefits and environmental legislative barriers. In this paper, a supply chain network design problem with both economic and environmental concerns is presented. Therefore, a multiobjective optimization model that captures the trade-off between the total logistics cost and CO2 emissions is proposed. With regard to the complexity of logistic networks, a new multiobjective swarm intelligence algorithm known as a multiobjective Gravitational search algorithm (MOGSA has been implemented for solving the proposed mathematical model. To evaluate the effectiveness of the model, a comprehensive set of numerical experiments is explained. The results obtained show that the proposed model can be applied as an effective tool in strategic planning for optimizing cost and CO2 emissions in an environmentally friendly automotive supply chain.
On the role of modeling parameters in IMRT plan optimization
International Nuclear Information System (INIS)
Krause, Michael; Scherrer, Alexander; Thieke, Christian
2008-01-01
The formulation of optimization problems in intensity-modulated radiotherapy (IMRT) planning comprises the choice of various values such as function-specific parameters or constraint bounds. In current inverse planning programs that yield a single treatment plan for each optimization, it is often unclear how strongly these modeling parameters affect the resulting plan. This work investigates the mathematical concepts of elasticity and sensitivity to deal with this problem. An artificial planning case with a horse-shoe formed target with different opening angles surrounding a circular risk structure is studied. As evaluation functions the generalized equivalent uniform dose (EUD) and the average underdosage below and average overdosage beyond certain dose thresholds are used. A single IMRT plan is calculated for an exemplary parameter configuration. The elasticity and sensitivity of each parameter are then calculated without re-optimization, and the results are numerically verified. The results show the following. (1) elasticity can quantify the influence of a modeling parameter on the optimization result in terms of how strongly the objective function value varies under modifications of the parameter value. It also can describe how strongly the geometry of the involved planning structures affects the optimization result. (2) Based on the current parameter settings and corresponding treatment plan, sensitivity analysis can predict the optimization result for modified parameter values without re-optimization, and it can estimate the value intervals in which such predictions are valid. In conclusion, elasticity and sensitivity can provide helpful tools in inverse IMRT planning to identify the most critical parameters of an individual planning problem and to modify their values in an appropriate way
Optimal inference with suboptimal models: Addiction and active Bayesian inference
Schwartenbeck, Philipp; FitzGerald, Thomas H.B.; Mathys, Christoph; Dolan, Ray; Wurst, Friedrich; Kronbichler, Martin; Friston, Karl
2015-01-01
When casting behaviour as active (Bayesian) inference, optimal inference is defined with respect to an agent’s beliefs – based on its generative model of the world. This contrasts with normative accounts of choice behaviour, in which optimal actions are considered in relation to the true structure of the environment – as opposed to the agent’s beliefs about worldly states (or the task). This distinction shifts an understanding of suboptimal or pathological behaviour away from aberrant inference as such, to understanding the prior beliefs of a subject that cause them to behave less ‘optimally’ than our prior beliefs suggest they should behave. Put simply, suboptimal or pathological behaviour does not speak against understanding behaviour in terms of (Bayes optimal) inference, but rather calls for a more refined understanding of the subject’s generative model upon which their (optimal) Bayesian inference is based. Here, we discuss this fundamental distinction and its implications for understanding optimality, bounded rationality and pathological (choice) behaviour. We illustrate our argument using addictive choice behaviour in a recently described ‘limited offer’ task. Our simulations of pathological choices and addictive behaviour also generate some clear hypotheses, which we hope to pursue in ongoing empirical work. PMID:25561321
Galerkin v. discrete-optimal projection in nonlinear model reduction
Energy Technology Data Exchange (ETDEWEB)
Carlberg, Kevin Thomas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Barone, Matthew Franklin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Antil, Harbir [George Mason Univ., Fairfax, VA (United States)
2015-04-01
Discrete-optimal model-reduction techniques such as the Gauss{Newton with Approximated Tensors (GNAT) method have shown promise, as they have generated stable, accurate solutions for large-scale turbulent, compressible ow problems where standard Galerkin techniques have failed. However, there has been limited comparative analysis of the two approaches. This is due in part to difficulties arising from the fact that Galerkin techniques perform projection at the time-continuous level, while discrete-optimal techniques do so at the time-discrete level. This work provides a detailed theoretical and experimental comparison of the two techniques for two common classes of time integrators: linear multistep schemes and Runge{Kutta schemes. We present a number of new ndings, including conditions under which the discrete-optimal ROM has a time-continuous representation, conditions under which the two techniques are equivalent, and time-discrete error bounds for the two approaches. Perhaps most surprisingly, we demonstrate both theoretically and experimentally that decreasing the time step does not necessarily decrease the error for the discrete-optimal ROM; instead, the time step should be `matched' to the spectral content of the reduced basis. In numerical experiments carried out on a turbulent compressible- ow problem with over one million unknowns, we show that increasing the time step to an intermediate value decreases both the error and the simulation time of the discrete-optimal reduced-order model by an order of magnitude.
[Multi-mathematical modelings for compatibility optimization of Jiangzhi granules].
Yang, Ming; Zhang, Li; Ge, Yingli; Lu, Yanliu; Ji, Guang
2011-12-01
To investigate into the method of "multi activity index evaluation and combination optimized of mult-component" for Chinese herbal formulas. According to the scheme of uniform experimental design, efficacy experiment, multi index evaluation, least absolute shrinkage, selection operator (LASSO) modeling, evolutionary optimization algorithm, validation experiment, we optimized the combination of Jiangzhi granules based on the activity indexes of blood serum ALT, ALT, AST, TG, TC, HDL, LDL and TG level of liver tissues, ratio of liver tissue to body. Analytic hierarchy process (AHP) combining with criteria importance through intercriteria correlation (CRITIC) for multi activity index evaluation was more reasonable and objective, it reflected the information of activity index's order and objective sample data. LASSO algorithm modeling could accurately reflect the relationship between different combination of Jiangzhi granule and the activity comprehensive indexes. The optimized combination of Jiangzhi granule showed better values of the activity comprehensive indexed than the original formula after the validation experiment. AHP combining with CRITIC can be used for multi activity index evaluation and LASSO algorithm, it is suitable for combination optimized of Chinese herbal formulas.
Identification and optimization of classifier genes from multi-class earthworm microarray dataset.
Directory of Open Access Journals (Sweden)
Ying Li
Full Text Available Monitoring, assessment and prediction of environmental risks that chemicals pose demand rapid and accurate diagnostic assays. A variety of toxicological effects have been associated with explosive compounds TNT and RDX. One important goal of microarray experiments is to discover novel biomarkers for toxicity evaluation. We have developed an earthworm microarray containing 15,208 unique oligo probes and have used it to profile gene expression in 248 earthworms exposed to TNT, RDX or neither. We assembled a new machine learning pipeline consisting of several well-established feature filtering/selection and classification techniques to analyze the 248-array dataset in order to construct classifier models that can separate earthworm samples into three groups: control, TNT-treated, and RDX-treated. First, a total of 869 genes differentially expressed in response to TNT or RDX exposure were identified using a univariate statistical algorithm of class comparison. Then, decision tree-based algorithms were applied to select a subset of 354 classifier genes, which were ranked by their overall weight of significance. A multiclass support vector machine (MC-SVM method and an unsupervised K-mean clustering method were applied to independently refine the classifier, producing a smaller subset of 39 and 30 classifier genes, separately, with 11 common genes being potential biomarkers. The combined 58 genes were considered the refined subset and used to build MC-SVM and clustering models with classification accuracy of 83.5% and 56.9%, respectively. This study demonstrates that the machine learning approach can be used to identify and optimize a small subset of classifier/biomarker genes from high dimensional datasets and generate classification models of acceptable precision for multiple classes.
Optimal Designs for the Generalized Partial Credit Model
Bürkner, Paul-Christian; Schwabe, Rainer; Holling, Heinz
2018-01-01
Analyzing ordinal data becomes increasingly important in psychology, especially in the context of item response theory. The generalized partial credit model (GPCM) is probably the most widely used ordinal model and finds application in many large scale educational assessment studies such as PISA. In the present paper, optimal test designs are investigated for estimating persons' abilities with the GPCM for calibrated tests when item parameters are known from previous studies. We will derive t...
Model-predictive control and real-time optimization of a cat cracker unit
Directory of Open Access Journals (Sweden)
Stig Strand
1997-04-01
Full Text Available A project for control and optimization of the Residual Catalytic Cracking Process at the Mongstad refinery is near completion. Four model-predictive control applications have been successfully implemented, using the IDCOM control software from Setpoint Inc. The most attractive feature of the controller is the well-defined control prioritizing hierarchy, and the linear impulse-response models have proved to give satisfactory performance on this process. Excitation and identification of the dynamic models proved to be a difficult task, and careful design and monitoring of the tests was mandatory in order to produce good results. Multi-variable Pseudo Random Binary Test Sequences were used for the excitation. Technical performance and operator acceptance of the new control functions have been good, but it is realized that a continuing effort is needed to fine-tune and maintain such functions.
Hybrid Modeling and Optimization of Yogurt Starter Culture Continuous Fermentation
Directory of Open Access Journals (Sweden)
Silviya Popova
2009-10-01
Full Text Available The present paper presents a hybrid model of yogurt starter mixed culture fermentation. The main nonlinearities within a classical structure of continuous process model are replaced by neural networks. The new hybrid model accounts for the dependence of the two microorganisms' kinetics from the on-line measured characteristics of the culture medium - pH. Then the model was used further for calculation of the optimal time profile of pH. The obtained results are with agreement with the experimental once.
Modeling, estimation and optimal filtration in signal processing
Najim, Mohamed
2010-01-01
The purpose of this book is to provide graduate students and practitioners with traditional methods and more recent results for model-based approaches in signal processing.Firstly, discrete-time linear models such as AR, MA and ARMA models, their properties and their limitations are introduced. In addition, sinusoidal models are addressed.Secondly, estimation approaches based on least squares methods and instrumental variable techniques are presented.Finally, the book deals with optimal filters, i.e. Wiener and Kalman filtering, and adaptive filters such as the RLS, the LMS and the
MEASURE: An integrated data-analysis and model identification facility
Singh, Jaidip; Iyer, Ravi K.
1990-01-01
The first phase of the development of MEASURE, an integrated data analysis and model identification facility is described. The facility takes system activity data as input and produces as output representative behavioral models of the system in near real time. In addition a wide range of statistical characteristics of the measured system are also available. The usage of the system is illustrated on data collected via software instrumentation of a network of SUN workstations at the University of Illinois. Initially, statistical clustering is used to identify high density regions of resource-usage in a given environment. The identified regions form the states for building a state-transition model to evaluate system and program performance in real time. The model is then solved to obtain useful parameters such as the response-time distribution and the mean waiting time in each state. A graphical interface which displays the identified models and their characteristics (with real time updates) was also developed. The results provide an understanding of the resource-usage in the system under various workload conditions. This work is targeted for a testbed of UNIX workstations with the initial phase ported to SUN workstations on the NASA, Ames Research Center Advanced Automation Testbed.
Cost optimization model and its heuristic genetic algorithms
International Nuclear Information System (INIS)
Liu Wei; Wang Yongqing; Guo Jilin
1999-01-01
Interest and escalation are large quantity in proportion to the cost of nuclear power plant construction. In order to optimize the cost, the mathematics model of cost optimization for nuclear power plant construction was proposed, which takes the maximum net present value as the optimization goal. The model is based on the activity networks of the project and is an NP problem. A heuristic genetic algorithms (HGAs) for the model was introduced. In the algorithms, a solution is represented with a string of numbers each of which denotes the priority of each activity for assigned resources. The HGAs with this encoding method can overcome the difficulty which is harder to get feasible solutions when using the traditional GAs to solve the model. The critical path of the activity networks is figured out with the concept of predecessor matrix. An example was computed with the HGAP programmed in C language. The results indicate that the model is suitable for the objectiveness, the algorithms is effective to solve the model
Identification of reverse logistics decision types from mathematical models
Directory of Open Access Journals (Sweden)
Pascual Cortés Pellicer
2018-04-01
Full Text Available Purpose: The increase in social awareness, politics and environmental regulation, the scarcity of raw materials and the desired “green” image, are some of the reasons that lead companies to decide for implement processes of Reverse Logistics (RL. At the time when incorporate new RL processes as key business processes, new and important decisions need to be made. Identification and knowledge of these decisions, including the information available and the implications for the company or supply chain, will be fundamental for decision-makers to achieve the best results. In the present work, the main types of RL decisions are identified. Design/methodology/approach: This paper is based on the analysis of mathematical models designed as tools to aid decision making in the field of RL. Once the types of interest work to be analyzed are defined, those studies that really deal about the object of study are searched and analyzed. The decision variables that are taken at work are identified and grouped according to the type of decision and, finally, are showed the main types of decisions used in mathematical models developed in the field of RL. Findings: The principal conclusion of the research is that the most commonly addressed decisions with mathematical models in the field of RL are those related to the network’s configuration, followed by tactical/operative decisions such as the selections of product’s treatments to realize and the policy of returns or prices, among other decisions. Originality/value: The identification of the main decisions types of the reverse logistics will allow the managers of these processes to know and understand them better, while offer an integrated vision of them, favoring the achievement of better results.
Estimation of collapse moment for the wall-thinned pipe bends using fuzzy model identification
International Nuclear Information System (INIS)
Na, Man Gyun; Kim, Jin Weon; Hwang, In Joon
2006-01-01
In this work, the collapse moment due to wall-thinned defects is estimated through fuzzy model identification. A subtractive clustering method is used as the basis of a fast and robust algorithm for identifying the fuzzy model. The fuzzy model is optimized by a genetic algorithm combined with a least squares method. The developed fuzzy model has been applied to the numerical data obtained from the finite element analysis. Principal component analysis is used to preprocess the input signals into the fuzzy model to reduce the sensitivity to the input change and the fuzzy model are trained by using the data set prepared for training (training data) and verified by using another data set different (independent) from the training data. Also, three fuzzy models are trained, respectively, for three data sets divided into the three classes of extrados, intrados, and crown defects, which is because they have different characteristics. The relative root mean square (RMS) errors of the estimated collapse moment are 0.5397% for the training data and 0.8673% for the test data. It is known from this result that the fuzzy models are sufficiently accurate to be used in the integrity evaluation of wall-thinned pipe bends and elbows
Replica Analysis for Portfolio Optimization with Single-Factor Model
Shinzato, Takashi
2017-06-01
In this paper, we use replica analysis to investigate the influence of correlation among the return rates of assets on the solution of the portfolio optimization problem. We consider the behavior of an optimal solution for the case where the return rate is described with a single-factor model and compare the findings obtained from our proposed methods with correlated return rates with those obtained with independent return rates. We then analytically assess the increase in the investment risk when correlation is included. Furthermore, we also compare our approach with analytical procedures for minimizing the investment risk from operations research.
Models and Algorithms for Container Vessel Stowage Optimization
DEFF Research Database (Denmark)
Delgado-Ortegon, Alberto
.g., selection of vessels to buy that satisfy specific demands), through to operational decisions (e.g., selection of containers that optimize revenue, and stowing those containers into a vessel). This thesis addresses the question of whether it is possible to formulate stowage optimization models...... container of those to be loaded in a port should be placed in a vessel, i.e., to generate stowage plans. This thesis explores two different approaches to solve this problem, both follow a 2-phase decomposition that assigns containers to vessel sections in the first phase, i.e., master planning...
Modelling of Rabies Transmission Dynamics Using Optimal Control Analysis
Directory of Open Access Journals (Sweden)
Joshua Kiddy K. Asamoah
2017-01-01
Full Text Available We examine an optimal way of eradicating rabies transmission from dogs into the human population, using preexposure prophylaxis (vaccination and postexposure prophylaxis (treatment due to public education. We obtain the disease-free equilibrium, the endemic equilibrium, the stability, and the sensitivity analysis of the optimal control model. Using the Latin hypercube sampling (LHS, the forward-backward sweep scheme and the fourth-order Range-Kutta numerical method predict that the global alliance for rabies control’s aim of working to eliminate deaths from canine rabies by 2030 is attainable through mass vaccination of susceptible dogs and continuous use of pre- and postexposure prophylaxis in humans.
Characterization, Modeling, and Optimization of Light-Emitting Diode Systems
DEFF Research Database (Denmark)
Thorseth, Anders
are simulated SPDs similar to traditional light sources, and with high light quality. As part of this work the techniques have been applied in practical illumination applications. The presented examples are historical artifacts and illumination of plants to increase photosynthesis....... comparing the chromaticity of the measured SPD with tted models, the deviation is found to be larger than the lower limit of human color perception. A method has been developed to optimize multicolored cluster LED systems with respect to light quality, using multi objective optimization. The results...
An Optimization Waste Load Allocation Model in River Systems
Amirpoor Daylami, A.; jarihani, A. A.; Aminisola, K.
2012-04-01
In many river systems, increasing of the waste discharge leads to increasing pollution of these water bodies. While the capacity of the river flow for pollution acceptance is limited and the ability of river to clean itself is restricted, the dischargers have to release their waste into the river after a primary pollution treatment process. Waste Load Allocation as a well-known water quality control strategy is used to determine the optimal pollutant removal at a number of point sources along the river. This paper aim at developing a new approach for treatment and management of wastewater inputs into the river systems, such that water quality standards in these receiving waters are met. In this study, inspired by the fact that cooperation among some single point source waste dischargers can lead to a more waste acceptance capacity and/or more optimum quality control in a river, an efficient approach was implemented to determine both primary waste water treatment levels and/or the best releasing points of the waste into the river. In this methodology, a genetic algorithm is used as an optimization tool to calculate optimal fraction removal levels of each one of single or shared discharger. Besides, a sub-model embedded to optimization model was used to simulate water quality of the river in each one of discharging scenarios based on the modified Streeter and Phelps quality equations. The practical application of the model is illustrated with a case study of the Gharesoo river system in west of Iran.
Optimal model-free prediction from multivariate time series
Runge, Jakob; Donner, Reik V.; Kurths, Jürgen
2015-05-01
Forecasting a time series from multivariate predictors constitutes a challenging problem, especially using model-free approaches. Most techniques, such as nearest-neighbor prediction, quickly suffer from the curse of dimensionality and overfitting for more than a few predictors which has limited their application mostly to the univariate case. Therefore, selection strategies are needed that harness the available information as efficiently as possible. Since often the right combination of predictors matters, ideally all subsets of possible predictors should be tested for their predictive power, but the exponentially growing number of combinations makes such an approach computationally prohibitive. Here a prediction scheme that overcomes this strong limitation is introduced utilizing a causal preselection step which drastically reduces the number of possible predictors to the most predictive set of causal drivers making a globally optimal search scheme tractable. The information-theoretic optimality is derived and practical selection criteria are discussed. As demonstrated for multivariate nonlinear stochastic delay processes, the optimal scheme can even be less computationally expensive than commonly used suboptimal schemes like forward selection. The method suggests a general framework to apply the optimal model-free approach to select variables and subsequently fit a model to further improve a prediction or learn statistical dependencies. The performance of this framework is illustrated on a climatological index of El Niño Southern Oscillation.
Bouc–Wen hysteresis model identification using Modified Firefly Algorithm
International Nuclear Information System (INIS)
Zaman, Mohammad Asif; Sikder, Urmita
2015-01-01
The parameters of Bouc–Wen hysteresis model are identified using a Modified Firefly Algorithm. The proposed algorithm uses dynamic process control parameters to improve its performance. The algorithm is used to find the model parameter values that results in the least amount of error between a set of given data points and points obtained from the Bouc–Wen model. The performance of the algorithm is compared with the performance of conventional Firefly Algorithm, Genetic Algorithm and Differential Evolution algorithm in terms of convergence rate and accuracy. Compared to the other three optimization algorithms, the proposed algorithm is found to have good convergence rate with high degree of accuracy in identifying Bouc–Wen model parameters. Finally, the proposed method is used to find the Bouc–Wen model parameters from experimental data. The obtained model is found to be in good agreement with measured data. - Highlights: • We describe a new method to find the Bouc–Wen hysteresis model parameters. • We propose a Modified Firefly Algorithm. • We compare our method with existing methods to find that the proposed method performs better. • We use our model to fit experimental results. Good agreement is found
Bouc–Wen hysteresis model identification using Modified Firefly Algorithm
Energy Technology Data Exchange (ETDEWEB)
Zaman, Mohammad Asif, E-mail: zaman@stanford.edu [Department of Electrical Engineering, Stanford University (United States); Sikder, Urmita [Department of Electrical Engineering and Computer Sciences, University of California, Berkeley (United States)
2015-12-01
The parameters of Bouc–Wen hysteresis model are identified using a Modified Firefly Algorithm. The proposed algorithm uses dynamic process control parameters to improve its performance. The algorithm is used to find the model parameter values that results in the least amount of error between a set of given data points and points obtained from the Bouc–Wen model. The performance of the algorithm is compared with the performance of conventional Firefly Algorithm, Genetic Algorithm and Differential Evolution algorithm in terms of convergence rate and accuracy. Compared to the other three optimization algorithms, the proposed algorithm is found to have good convergence rate with high degree of accuracy in identifying Bouc–Wen model parameters. Finally, the proposed method is used to find the Bouc–Wen model parameters from experimental data. The obtained model is found to be in good agreement with measured data. - Highlights: • We describe a new method to find the Bouc–Wen hysteresis model parameters. • We propose a Modified Firefly Algorithm. • We compare our method with existing methods to find that the proposed method performs better. • We use our model to fit experimental results. Good agreement is found.
The case for repeatable analysis with energy economy optimization models
International Nuclear Information System (INIS)
DeCarolis, Joseph F.; Hunter, Kevin; Sreepathi, Sarat
2012-01-01
Energy economy optimization (EEO) models employ formal search techniques to explore the future decision space over several decades in order to deliver policy-relevant insights. EEO models are a critical tool for decision-makers who must make near-term decisions with long-term effects in the face of large future uncertainties. While the number of model-based analyses proliferates, insufficient attention is paid to transparency in model development and application. Given the complex, data-intensive nature of EEO models and the general lack of access to source code and data, many of the assumptions underlying model-based analysis are hidden from external observers. This paper discusses the simplifications and subjective judgments involved in the model building process, which cannot be fully articulated in journal papers, reports, or model documentation. In addition, we argue that for all practical purposes, EEO model-based insights cannot be validated through comparison to real world outcomes. As a result, modelers are left without credible metrics to assess a model's ability to deliver reliable insight. We assert that EEO models should be discoverable through interrogation of publicly available source code and data. In addition, third parties should be able to run a specific model instance in order to independently verify published results. Yet a review of twelve EEO models suggests that in most cases, replication of model results is currently impossible. We provide several recommendations to help develop and sustain a software framework for repeatable model analysis.
Holz, Jasmin A.; Boerwinkel, David F.; Meijer, Sybren L.; Visser, Mike; van Leeuwen, Ton G.; Aalders, Maurice C. G.; Bergman, Jacques J. G. H. M.
2013-01-01
Fluorescence spectroscopy has the potential to detect early cellular changes in Barrett's oesophagus before these become visible. As the technique is based on varying concentrations of intrinsic fluorophores, each with its own optimal excitation wavelength, it is important to assess the optimal
Kolosionis, Konstantinos; Papadopoulou, Maria P.
2017-04-01
Monitoring networks provide essential information for water resources management especially in areas with significant groundwater exploitation due to extensive agricultural activities. In this work, a simulation-optimization framework is developed based on heuristic optimization methodologies and geostatistical modeling approaches to obtain an optimal design for a groundwater quality monitoring network. Groundwater quantity and quality data obtained from 43 existing observation locations at 3 different hydrological periods in Mires basin in Crete, Greece will be used in the proposed framework in terms of Regression Kriging to develop the spatial distribution of nitrates concentration in the aquifer of interest. Based on the existing groundwater quality mapping, the proposed optimization tool will determine a cost-effective observation wells network that contributes significant information to water managers and authorities. The elimination of observation wells that add little or no beneficial information to groundwater level and quality mapping of the area can be obtain using estimations uncertainty and statistical error metrics without effecting the assessment of the groundwater quality. Given the high maintenance cost of groundwater monitoring networks, the proposed tool could used by water regulators in the decision-making process to obtain a efficient network design that is essential.
Diyana Rosli, Anis; Adenan, Nur Sabrina; Hashim, Hadzli; Ezan Abdullah, Noor; Sulaiman, Suhaimi; Baharudin, Rohaiza
2018-03-01
This paper shows findings of the application of Particle Swarm Optimization (PSO) algorithm in optimizing an Artificial Neural Network that could categorize between ripeness and unripeness stage of citrus suhuensis. The algorithm would adjust the network connections weights and adapt its values during training for best results at the output. Initially, citrus suhuensis fruit’s skin is measured using optically non-destructive method via spectrometer. The spectrometer would transmit VIS (visible spectrum) photonic light radiation to the surface (skin of citrus) of the sample. The reflected light from the sample’s surface would be received and measured by the same spectrometer in terms of reflectance percentage based on VIS range. These measured data are used to train and test the best optimized ANN model. The accuracy is based on receiver operating characteristic (ROC) performance. The result outcomes from this investigation have shown that the achieved accuracy for the optimized is 70.5% with a sensitivity and specificity of 60.1% and 80.0% respectively.
International Nuclear Information System (INIS)
Silva, Marcio H.; Schirru, Roberto; Medeiros, Jose A.C.C.
2009-01-01
Using concepts and principles of the quantum computation, as the quantum bit and superposition of states, coupled with the biological metaphor of a colony of ants, used in the Ant Colony Optimization algorithm (ACO), Wang et al developed the Quantum Ant Colony Optimization (QACO). In this paper we present a modification of the algorithm proposed by Wang et al. While the original QACO was used just for simple benchmarks functions with, at the most, two dimensions, QACO A lfa was developed for application where the original QACO, due to its tendency to converge prematurely, does not obtain good results, as in complex multidimensional functions. Furthermore, to evaluate its behavior, both algorithms are applied to the real problem of identification of accidents in PWR nuclear power plants. (author)
International Nuclear Information System (INIS)
Chen Zhou; Qiu-Nan Tong; Zhang Cong-Cong; Hu Zhan
2015-01-01
Identification of acetone and its two isomers, and the control of their ionization and dissociation processes are performed using a dual-mass-spectrometer scheme. The scheme employs two sets of time of flight mass spectrometers to simultaneously acquire the mass spectra of two different molecules under the irradiation of identically shaped femtosecond laser pulses. The optimal laser pulses are found using closed-loop learning method based on a genetic algorithm. Compared with the mass spectra of the two isomers that are obtained with the transform limited pulse, those obtained under the irradiation of the optimal laser pulse show large differences and the various reaction pathways of the two molecules are selectively controlled. The experimental results demonstrate that the scheme is quite effective and useful in studies of two molecules having common mass peaks, which makes a traditional single mass spectrometer unfeasible. (paper)
Advanced Nuclear Fuel Cycle Transitions: Optimization, Modeling Choices, and Disruptions
Carlsen, Robert W.
Many nuclear fuel cycle simulators have evolved over time to help understan the nuclear industry/ecosystem at a macroscopic level. Cyclus is one of th first fuel cycle simulators to accommodate larger-scale analysis with it liberal open-source licensing and first-class Linux support. Cyclus also ha features that uniquely enable investigating the effects of modeling choices o fuel cycle simulators and scenarios. This work is divided into thre experiments focusing on optimization, effects of modeling choices, and fue cycle uncertainty. Effective optimization techniques are developed for automatically determinin desirable facility deployment schedules with Cyclus. A novel method fo mapping optimization variables to deployment schedules is developed. Thi allows relationships between reactor types and scenario constraints to b represented implicitly in the variable definitions enabling the usage o optimizers lacking constraint support. It also prevents wasting computationa resources evaluating infeasible deployment schedules. Deployed power capacit over time and deployment of non-reactor facilities are also included a optimization variables There are many fuel cycle simulators built with different combinations o modeling choices. Comparing results between them is often difficult. Cyclus flexibility allows comparing effects of many such modeling choices. Reacto refueling cycle synchronization and inter-facility competition among othe effects are compared in four cases each using combinations of fleet of individually modeled reactors with 1-month or 3-month time steps. There are noticeable differences in results for the different cases. The larges differences occur during periods of constrained reactor fuel availability This and similar work can help improve the quality of fuel cycle analysi generally There is significant uncertainty associated deploying new nuclear technologie such as time-frames for technology availability and the cost of buildin advanced reactors
Nuclear-fuel-cycle optimization: methods and modelling techniques
International Nuclear Information System (INIS)
Silvennoinen, P.
1982-01-01
This book present methods applicable to analyzing fuel-cycle logistics and optimization as well as in evaluating the economics of different reactor strategies. After an introduction to the phases of a fuel cycle, uranium cost trends are assessed in a global perspective. Subsequent chapters deal with the fuel-cycle problems faced by a power utility. The fuel-cycle models cover the entire cycle from the supply of uranium to the disposition of spent fuel. The chapter headings are: Nuclear Fuel Cycle, Uranium Supply and Demand, Basic Model of the LWR (light water reactor) Fuel Cycle, Resolution of Uncertainties, Assessment of Proliferation Risks, Multigoal Optimization, Generalized Fuel-Cycle Models, Reactor Strategy Calculations, and Interface with Energy Strategies. 47 references, 34 figures, 25 tables
A Convex Optimization Model and Algorithm for Retinex
Directory of Open Access Journals (Sweden)
Qing-Nan Zhao
2017-01-01
Full Text Available Retinex is a theory on simulating and explaining how human visual system perceives colors under different illumination conditions. The main contribution of this paper is to put forward a new convex optimization model for Retinex. Different from existing methods, the main idea is to rewrite a multiplicative form such that the illumination variable and the reflection variable are decoupled in spatial domain. The resulting objective function involves three terms including the Tikhonov regularization of the illumination component, the total variation regularization of the reciprocal of the reflection component, and the data-fitting term among the input image, the illumination component, and the reciprocal of the reflection component. We develop an alternating direction method of multipliers (ADMM to solve the convex optimization model. Numerical experiments demonstrate the advantages of the proposed model which can decompose an image into the illumination and the reflection components.
A model for HIV/AIDS pandemic with optimal control
Sule, Amiru; Abdullah, Farah Aini
2015-05-01
Human immunodeficiency virus and acquired immune deficiency syndrome (HIV/AIDS) is pandemic. It has affected nearly 60 million people since the detection of the disease in 1981 to date. In this paper basic deterministic HIV/AIDS model with mass action incidence function are developed. Stability analysis is carried out. And the disease free equilibrium of the basic model was found to be locally asymptotically stable whenever the threshold parameter (RO) value is less than one, and unstable otherwise. The model is extended by introducing two optimal control strategies namely, CD4 counts and treatment for the infective using optimal control theory. Numerical simulation was carried out in order to illustrate the analytic results.
An Optimal Electric Dipole Antenna Model and Its Field Propagation
Directory of Open Access Journals (Sweden)
Yidong Xu
2016-01-01
Full Text Available An optimal electric dipole antennas model is presented and analyzed, based on the hemispherical grounding equivalent model and the superposition principle. The paper also presents a full-wave electromagnetic simulation for the electromagnetic field propagation in layered conducting medium, which is excited by the horizontal electric dipole antennas. Optimum frequency for field transmission in different depth is carried out and verified by the experimental results in comparison with previously reported simulation over a digital wireless Through-The-Earth communication system. The experimental results demonstrate that the dipole antenna grounding impedance and the output power can be efficiently reduced by using the optimal electric dipole antenna model and operating at the optimum frequency in a vertical transmission depth up to 300 m beneath the surface of the earth.
PEMILIHAN SAHAM YANG OPTIMAL MENGGUNAKAN CAPITAL ASSET PRICING MODEL (CAPM
Directory of Open Access Journals (Sweden)
Dioda Ardi Wibisono
2017-08-01
Full Text Available Optimal portfolio is the basis for investors to invest in stock. Capital Asset Pricing Model (CAPM is a method to determine the value of the risk and return of a company stock. This research uses a secondary data from the closing price of the monthly stock price (monthly closing price, Stock Price Index (SPI, and the monthly SBI rate. The samples of this research are 41 stocks in LQ45 February-July 2015 on the Indonesian Stock Exchange (ISE. The study period is during 5 year from October 2010 - October 2015. The result of analysis shows that the optimal portfolio consists of 18 companies. The average return of the optimal portfolio is higher than the average risk-free return (SBI rate and the average market return. This proves that investing in stocks is more profitable than a risk-free investment. � Keywords: Stock, CAPM, return, risk�
Mathematical model of the metal mould surface temperature optimization
Energy Technology Data Exchange (ETDEWEB)
Mlynek, Jaroslav, E-mail: jaroslav.mlynek@tul.cz; Knobloch, Roman, E-mail: roman.knobloch@tul.cz [Department of Mathematics, FP Technical University of Liberec, Studentska 2, 461 17 Liberec, The Czech Republic (Czech Republic); Srb, Radek, E-mail: radek.srb@tul.cz [Institute of Mechatronics and Computer Engineering Technical University of Liberec, Studentska 2, 461 17 Liberec, The Czech Republic (Czech Republic)
2015-11-30
The article is focused on the problem of generating a uniform temperature field on the inner surface of shell metal moulds. Such moulds are used e.g. in the automotive industry for artificial leather production. To produce artificial leather with uniform surface structure and colour shade the temperature on the inner surface of the mould has to be as homogeneous as possible. The heating of the mould is realized by infrared heaters located above the outer mould surface. The conceived mathematical model allows us to optimize the locations of infrared heaters over the mould, so that approximately uniform heat radiation intensity is generated. A version of differential evolution algorithm programmed in Matlab development environment was created by the authors for the optimization process. For temperate calculations software system ANSYS was used. A practical example of optimization of heaters locations and calculation of the temperature of the mould is included at the end of the article.
Mathematical model of the metal mould surface temperature optimization
International Nuclear Information System (INIS)
Mlynek, Jaroslav; Knobloch, Roman; Srb, Radek
2015-01-01
The article is focused on the problem of generating a uniform temperature field on the inner surface of shell metal moulds. Such moulds are used e.g. in the automotive industry for artificial leather production. To produce artificial leather with uniform surface structure and colour shade the temperature on the inner surface of the mould has to be as homogeneous as possible. The heating of the mould is realized by infrared heaters located above the outer mould surface. The conceived mathematical model allows us to optimize the locations of infrared heaters over the mould, so that approximately uniform heat radiation intensity is generated. A version of differential evolution algorithm programmed in Matlab development environment was created by the authors for the optimization process. For temperate calculations software system ANSYS was used. A practical example of optimization of heaters locations and calculation of the temperature of the mould is included at the end of the article
Optimization of recurrent neural networks for time series modeling
DEFF Research Database (Denmark)
Pedersen, Morten With
1997-01-01
The present thesis is about optimization of recurrent neural networks applied to time series modeling. In particular is considered fully recurrent networks working from only a single external input, one layer of nonlinear hidden units and a li near output unit applied to prediction of discrete time...... series. The overall objective s are to improve training by application of second-order methods and to improve generalization ability by architecture optimization accomplished by pruning. The major topics covered in the thesis are: 1. The problem of training recurrent networks is analyzed from a numerical...... of solution obtained as well as computation time required. 3. A theoretical definition of the generalization error for recurrent networks is provided. This definition justifies a commonly adopted approach for estimating generalization ability. 4. The viability of pruning recurrent networks by the Optimal...
Modeling, simulation and optimization for science and technology
Kuznetsov, Yuri; Neittaanmäki, Pekka; Pironneau, Olivier
2014-01-01
This volume contains thirteen articles on advances in applied mathematics and computing methods for engineering problems. Six papers are on optimization methods and algorithms with emphasis on problems with multiple criteria; four articles are on numerical methods for applied problems modeled with nonlinear PDEs; two contributions are on abstract estimates for error analysis; finally one paper deals with rare events in the context of uncertainty quantification. Applications include aerospace, glaciology and nonlinear elasticity. Herein is a selection of contributions from speakers at two conferences on applied mathematics held in June 2012 at the University of Jyväskylä, Finland. The first conference, “Optimization and PDEs with Industrial Applications” celebrated the seventieth birthday of Professor Jacques Périaux of the University of Jyväskylä and Polytechnic University of Catalonia (Barcelona Tech), and the second conference, “Optimization and PDEs with Applications” celebrated the seventy-fi...
Combustion optimization and HCCI modeling for ultra low emission
Energy Technology Data Exchange (ETDEWEB)
Koten, Hasan; Yilmaz, Mustafa; Zafer Gul, M. [Marmara University Mechanical Engineering Department (Turkey)], E-mail: hasan.koten@marmara.edu.tr
2011-07-01
With the coming shortage of fossil fuels and the rising concerns over the environment it is important to develop new technologies both to reduce energy consumption and pollution at the same time. In the transportation sector, new combustion processes are under development to provide clean diesel combustion with no particulate or NOx emissions. However, these processes have issues such as limited power output, high levels of unburned hydrocarbons, and carbon monoxide emissions. The aim of this paper is to present a methodology for optimizing combustion performance. The methodology consists of the use of a multi-objective genetic algorithm optimization tool; homogeneous charge compression ignition engine cases were studied with the ECFM-3Z combustion model. Results showed that injected fuel mass led to a decrease in power output, a finding which is in keeping with previous research. This paper presented on optimization tool which can be useful in improving the combustion process.
Ant Colony Optimization for Markowitz Mean-Variance Portfolio Model
Deng, Guang-Feng; Lin, Woo-Tsong
This work presents Ant Colony Optimization (ACO), which was initially developed to be a meta-heuristic for combinatorial optimization, for solving the cardinality constraints Markowitz mean-variance portfolio model (nonlinear mixed quadratic programming problem). To our knowledge, an efficient algorithmic solution for this problem has not been proposed until now. Using heuristic algorithms in this case is imperative. Numerical solutions are obtained for five analyses of weekly price data for the following indices for the period March, 1992 to September, 1997: Hang Seng 31 in Hong Kong, DAX 100 in Germany, FTSE 100 in UK, S&P 100 in USA and Nikkei 225 in Japan. The test results indicate that the ACO is much more robust and effective than Particle swarm optimization (PSO), especially for low-risk investment portfolios.
Using the domain identification model to study major and career decision-making processes
Tendhar, Chosang; Singh, Kusum; Jones, Brett D.
2018-03-01
The purpose of this study was to examine the extent to which (1) a domain identification model could be used to predict students' engineering major and career intentions and (2) the MUSIC Model of Motivation components could be used to predict domain identification. The data for this study were collected from first-year engineering students. We used a structural equation model to test the hypothesised relationship between variables in the partial domain identification model. The findings suggested that engineering identification significantly predicted engineering major intentions and career intentions and had the highest effect on those two variables compared to other motivational constructs. Furthermore, results suggested that success, interest, and caring are plausible contributors to students' engineering identification. Overall, there is strong evidence that the domain identification model can be used as a lens to study career decision-making processes in engineering, and potentially, in other fields as well.
Optimal control in a model of malaria with differential susceptibility
Hincapié, Doracelly; Ospina, Juan
2014-06-01
A malaria model with differential susceptibility is analyzed using the optimal control technique. In the model the human population is classified as susceptible, infected and recovered. Susceptibility is assumed dependent on genetic, physiological, or social characteristics that vary between individuals. The model is described by a system of differential equations that relate the human and vector populations, so that the infection is transmitted to humans by vectors, and the infection is transmitted to vectors by humans. The model considered is analyzed using the optimal control method when the control consists in using of insecticide-treated nets and educational campaigns; and the optimality criterion is to minimize the number of infected humans, while keeping the cost as low as is possible. One first goal is to determine the effects of differential susceptibility in the proposed control mechanism; and the second goal is to determine the algebraic form of the basic reproductive number of the model. All computations are performed using computer algebra, specifically Maple. It is claimed that the analytical results obtained are important for the design and implementation of control measures for malaria. It is suggested some future investigations such as the application of the method to other vector-borne diseases such as dengue or yellow fever; and also it is suggested the possible application of free software of computer algebra like Maxima.
Directory of Open Access Journals (Sweden)
Sean Ekins
Full Text Available High-throughput screening (HTS in whole cells is widely pursued to find compounds active against Mycobacterium tuberculosis (Mtb for further development towards new tuberculosis (TB drugs. Hit rates from these screens, usually conducted at 10 to 25 µM concentrations, typically range from less than 1% to the low single digits. New approaches to increase the efficiency of hit identification are urgently needed to learn from past screening data. The pharmaceutical industry has for many years taken advantage of computational approaches to optimize compound libraries for in vitro testing, a practice not fully embraced by academic laboratories in the search for new TB drugs. Adapting these proven approaches, we have recently built and validated Bayesian machine learning models for predicting compounds with activity against Mtb based on publicly available large-scale HTS data from the Tuberculosis Antimicrobial Acquisition Coordinating Facility. We now demonstrate the largest prospective validation to date in which we computationally screened 82,403 molecules with these Bayesian models, assayed a total of 550 molecules in vitro, and identified 124 actives against Mtb. Individual hit rates for the different datasets varied from 15-28%. We have identified several FDA approved and late stage clinical candidate kinase inhibitors with activity against Mtb which may represent starting points for further optimization. The computational models developed herein and the commercially available molecules derived from them are now available to any group pursuing Mtb drug discovery.
Tension-compression asymmetry modelling: strategies for anisotropy parameters identification.
Directory of Open Access Journals (Sweden)
Barros Pedro
2016-01-01
Full Text Available This work presents details concerning the strategies and algorithms adopted in the fully implicit FE solver DD3IMP to model the orthotropic behavior of metallic sheets and the procedure for anisotropy parameters identification. The work is focused on the yield criterion developed by Cazacu, Plunkett and Barlat, 2006 [1], which accounts for both tension–compression asymmetry and orthotropic plastic behavior. The anisotropy parameters for a 2090-T3 aluminum alloy are identified accounting, or not, for the tension-compression asymmetry. The numerical simulation of a cup drawing is performed for this material, highlighting the importance of considering tension-compression asymmetry in the prediction of the earing profile, for materials with cubic structure, even if this phenomenon is relatively small.
The Inverse Problem of Identification of Hydrogen Permeability Model
Directory of Open Access Journals (Sweden)
Yury V. Zaika
2018-01-01
Full Text Available One of the technological challenges for hydrogen materials science is the currently active search for structural materials with important applications (including the ITER project and gas-separation plants. One had to estimate the parameters of diffusion and sorption to numerically model the different scenarios and experimental conditions of the material usage (including extreme ones. The article presents boundary value problems of hydrogen permeability and thermal desorption with dynamical boundary conditions. A numerical method is developed for TDS spectrum simulation, where only integration of a nonlinear system of low order ordinary differential equations is required. The main final output of the article is a noise-resistant algorithm for solving the inverse problem of parametric identification for the aggregated experiment where desorption and diffusion are dynamically interrelated (without the artificial division of studies into the diffusion limited regime (DLR and the surface limited regime (SLR.
Identification of the reduced order models of a BWR reactor
International Nuclear Information System (INIS)
Hernandez S, A.
2004-01-01
The present work has as objective to analyze the relative stability of a BWR type reactor. It is analyzed that so adaptive it turns out to identify the parameters of a model of reduced order so that this it reproduces a condition of given uncertainty. This will take of a real fact happened in the La Salle plant under certain operation conditions of power and flow of coolant. The parametric identification is carried out by means of an algorithm of recursive least square and an Output Error model (Output Error), measuring the output power of the reactor when the instability is present, and considering that it is produced by a change in the reactivity of the system in the same way that a sign of type step. Also it is carried out an analytic comparison of the relative stability, analyzing two types of answers: the original answer of the uncertainty of the reactor vs. the obtained response identifying the parameters of the model of reduced order, reaching the conclusion that it is very viable to adapt a model of reduced order to study the stability of a reactor, under the only condition to consider that the dynamics of the reactivity is of step type. (Author)
Deciphering the crowd: modeling and identification of pedestrian group motion.
Yücel, Zeynep; Zanlungo, Francesco; Ikeda, Tetsushi; Miyashita, Takahiro; Hagita, Norihiro
2013-01-14
Associating attributes to pedestrians in a crowd is relevant for various areas like surveillance, customer profiling and service providing. The attributes of interest greatly depend on the application domain and might involve such social relations as friends or family as well as the hierarchy of the group including the leader or subordinates. Nevertheless, the complex social setting inherently complicates this task. We attack this problem by exploiting the small group structures in the crowd. The relations among individuals and their peers within a social group are reliable indicators of social attributes. To that end, this paper identifies social groups based on explicit motion models integrated through a hypothesis testing scheme. We develop two models relating positional and directional relations. A pair of pedestrians is identified as belonging to the same group or not by utilizing the two models in parallel, which defines a compound hypothesis testing scheme. By testing the proposed approach on three datasets with different environmental properties and group characteristics, it is demonstrated that we achieve an identification accuracy of 87% to 99%. The contribution of this study lies in its definition of positional and directional relation models, its description of compound evaluations, and the resolution of ambiguities with our proposed uncertainty measure based on the local and global indicators of group relation.
Deciphering the Crowd: Modeling and Identification of Pedestrian Group Motion
Directory of Open Access Journals (Sweden)
Norihiro Hagita
2013-01-01
Full Text Available Associating attributes to pedestrians in a crowd is relevant for various areas like surveillance, customer profiling and service providing. The attributes of interest greatly depend on the application domain and might involve such social relations as friends or family as well as the hierarchy of the group including the leader or subordinates. Nevertheless, the complex social setting inherently complicates this task. We attack this problem by exploiting the small group structures in the crowd. The relations among individuals and their peers within a social group are reliable indicators of social attributes. To that end, this paper identifies social groups based on explicit motion models integrated through a hypothesis testing scheme. We develop two models relating positional and directional relations. A pair of pedestrians is identified as belonging to the same group or not by utilizing the two models in parallel, which defines a compound hypothesis testing scheme. By testing the proposed approach on three datasets with different environmental properties and group characteristics, it is demonstrated that we achieve an identification accuracy of 87% to 99%. The contribution of this study lies in its definition of positional and directional relation models, its description of compound evaluations, and the resolution of ambiguities with our proposed uncertainty measure based on the local and global indicators of group relation.
Bassen, David M; Vilkhovoy, Michael; Minot, Mason; Butcher, Jonathan T; Varner, Jeffrey D
2017-01-25
Ensemble modeling is a promising approach for obtaining robust predictions and coarse grained population behavior in deterministic mathematical models. Ensemble approaches address model uncertainty by using parameter or model families instead of single best-fit parameters or fixed model structures. Parameter ensembles can be selected based upon simulation error, along with other criteria such as diversity or steady-state performance. Simulations using parameter ensembles can estimate confidence intervals on model variables, and robustly constrain model predictions, despite having many poorly constrained parameters. In this software note, we present a multiobjective based technique to estimate parameter or models ensembles, the Pareto Optimal Ensemble Technique in the Julia programming language (JuPOETs). JuPOETs integrates simulated annealing with Pareto optimality to estimate ensembles on or near the optimal tradeoff surface between competing training objectives. We demonstrate JuPOETs on a suite of multiobjective problems, including test functions with parameter bounds and system constraints as well as for the identification of a proof-of-concept biochemical model with four conflicting training objectives. JuPOETs identified optimal or near optimal solutions approximately six-fold faster than a corresponding implementation in Octave for the suite of test functions. For the proof-of-concept biochemical model, JuPOETs produced an ensemble of parameters that gave both the mean of the training data for conflicting data sets, while simultaneously estimating parameter sets that performed well on each of the individual objective functions. JuPOETs is a promising approach for the estimation of parameter and model ensembles using multiobjective optimization. JuPOETs can be adapted to solve many problem types, including mixed binary and continuous variable types, bilevel optimization problems and constrained problems without altering the base algorithm. JuPOETs is open
Mathematical model of statistical identification of information support of road transport
Directory of Open Access Journals (Sweden)
V. G. Kozlov
2016-01-01
Full Text Available In this paper based on the statistical identification method using the theory of self-organizing systems, built multifactor model the relationship of road transport and training system. Background information for the model represented by a number of parameters of average annual road transport operations and information provision, including training complex system parameters (inputs, road management and output parameters. Ask two criteria: stability criterion model and test correlation. The program determines their minimum, and is the only model of optimal complexity. The predetermined number of parameters established mathematical relationship of each output parameter with the others. To improve the accuracy and regularity of the forecast of the interpolation nodes allocated in the test data sequence. Other data form the training sequence. Decision model based on the principle of selection. Running it with the gradual complication of the mathematical description and exhaustive search of all possible variants of the models on the specified criteria. Advantages of the proposed model: adequately reflects the actual process, allows you to enter any additional input parameters and determine their impact on the individual output parameters of the road transport, allows in turn change the values of key parameters in a certain ratio and to determine the appropriate changes the output parameters of the road transport, allows to predict the output parameters road transport operations.
Two-component network model in voice identification technologies
Directory of Open Access Journals (Sweden)
Edita K. Kuular
2018-03-01
Full Text Available Among the most important parameters of biometric systems with voice modalities that determine their effectiveness, along with reliability and noise immunity, a speed of identification and verification of a person has been accentuated. This parameter is especially sensitive while processing large-scale voice databases in real time regime. Many research studies in this area are aimed at developing new and improving existing algorithms for presentation and processing voice records to ensure high performance of voice biometric systems. Here, it seems promising to apply a modern approach, which is based on complex network platform for solving complex massive problems with a large number of elements and taking into account their interrelationships. Thus, there are known some works which while solving problems of analysis and recognition of faces from photographs, transform images into complex networks for their subsequent processing by standard techniques. One of the first applications of complex networks to sound series (musical and speech analysis are description of frequency characteristics by constructing network models - converting the series into networks. On the network ontology platform a previously proposed technique of audio information representation aimed on its automatic analysis and speaker recognition has been developed. This implies converting information into the form of associative semantic (cognitive network structure with amplitude and frequency components both. Two speaker exemplars have been recorded and transformed into pertinent networks with consequent comparison of their topological metrics. The set of topological metrics for each of network models (amplitude and frequency one is a vector, and together those combine a matrix, as a digital "network" voiceprint. The proposed network approach, with its sensitivity to personal conditions-physiological, psychological, emotional, might be useful not only for person identification
System identification and the modeling of sailing yachts
Legursky, Katrina
This research represents an exploration of sailing yacht dynamics with full-scale sailing motion data, physics-based models, and system identification techniques. The goal is to provide a method of obtaining and validating suitable physics-based dynamics models for use in control system design on autonomous sailing platforms, which have the capacity to serve as mobile, long range, high endurance autonomous ocean sensing platforms. The primary contributions of this study to the state-of-the-art are the formulation of a five degree-of-freedom (DOF) linear multi-input multi-output (MIMO) state space model of sailing yacht dynamics, the process for identification of this model from full-scale data, a description of the maneuvers performed during on-water tests, and an analysis method to validate estimated models. The techniques and results described herein can be directly applied to and tested on existing autonomous sailing platforms. A full-scale experiment on a 23ft monohull sailing yacht is developed to collect motion data for physics-based model identification. Measurements include 3 axes of accelerations, velocities, angular rates, and attitude angles in addition to apparent wind speed and direction. The sailing yacht herein is treated as a dynamic system with two control inputs, the rudder angle, deltaR, and the mainsail angle, delta B, which are also measured. Over 20 hours of full scale sailing motion data is collected, representing three sail configurations corresponding to a range of wind speeds: the Full Main and Genoa (abbrev. Genoa) for lower wind speeds, the Full Main and Jib (abbrev. Jib) for mid-range wind speeds, and the Reefed Main and Jib (abbrev. Reef) for the highest wind speeds. The data also covers true wind angles from upwind through a beam reach. A physics-based non-linear model to describe sailing yacht motion is outlined, including descriptions of methods to model the aerodynamics and hydrodynamics of a sailing yacht in surge, sway, roll, and
International Nuclear Information System (INIS)
Truong, Bui Ngoc Minh; Nam, Doan Ngoc Chi; Ahn, Kyoung Kwan
2013-01-01
Dielectric electro-active polymer (DEAP) materials are attractive since they are low cost, lightweight and have a large deformation capability. They have no operating noise, very low electric power consumption and higher performance and efficiency than competing technologies. However, DEAP materials generally have strong hysteresis as well as uncertain and nonlinear characteristics. These disadvantages can limit the efficiency in the use of DEAP materials. To address these limitations, this research will present the combination of the Preisach model and the dynamic nonlinear autoregressive exogenous (NARX) fuzzy model-based adaptive particle swarm optimization (APSO) identification algorithm for modeling and identification of the nonlinear behavior of one typical type of DEAP actuator. Firstly, open loop input signals are applied to obtain nonlinear features and to investigate the responses of the DEAP actuator system. Then, a Preisach model can be combined with a dynamic NARX fuzzy structure to estimate the tip displacement of a DEAP actuator. To optimize all unknown parameters of the designed combination, an identification scheme based on a least squares method and an APSO algorithm is carried out. Finally, experimental validation research is carefully completed, and the effectiveness of the proposed model is evaluated by employing various input signals. (paper)
In Search of Optimal Cognitive Diagnostic Model(s) for ESL Grammar Test Data
Yi, Yeon-Sook
2017-01-01
This study compares five cognitive diagnostic models in search of optimal one(s) for English as a Second Language grammar test data. Using a unified modeling framework that can represent specific models with proper constraints, the article first fit the full model (the log-linear cognitive diagnostic model, LCDM) and investigated which model…
Identification of Constitutive Parameters Using Inverse Strategy Coupled to an ANN Model
International Nuclear Information System (INIS)
Aguir, H.; Chamekh, A.; BelHadjSalah, H.; Hambli, R.
2007-01-01
This paper deals with the identification of material parameters using an inverse strategy. In the classical methods, the inverse technique is generally coupled with a finite element code which leads to a long computing time. In this work an inverse strategy coupled with an ANN procedure is proposed. This method has the advantage of being faster than the classical one. To validate this approach an experimental plane tensile and bulge tests are used in order to identify material behavior. The ANN model is trained from finite element simulations of the two tests. In order to reduce the gap between the experimental responses and the numerical ones, the proposed method is coupled with an optimization procedure to identify material parameters for the AISI304. The identified material parameters are the hardening curve and the anisotropic coefficients
An internet graph model based on trade-off optimization
Alvarez-Hamelin, J. I.; Schabanel, N.
2004-03-01
This paper presents a new model for the Internet graph (AS graph) based on the concept of heuristic trade-off optimization, introduced by Fabrikant, Koutsoupias and Papadimitriou in[CITE] to grow a random tree with a heavily tailed degree distribution. We propose here a generalization of this approach to generate a general graph, as a candidate for modeling the Internet. We present the results of our simulations and an analysis of the standard parameters measured in our model, compared with measurements from the physical Internet graph.
Dos Santos, P Lopes; Deshpande, Sunil; Rivera, Daniel E; Azevedo-Perdicoúlis, T-P; Ramos, J A; Younger, Jarred
2013-12-31
There is good evidence that naltrexone, an opioid antagonist, has a strong neuroprotective role and may be a potential drug for the treatment of fibromyalgia. In previous work, some of the authors used experimental clinical data to identify input-output linear time invariant models that were used to extract useful information about the effect of this drug on fibromyalgia symptoms. Additional factors such as anxiety, stress, mood, and headache, were considered as additive disturbances. However, it seems reasonable to think that these factors do not affect the drug actuation, but only the way in which a participant perceives how the drug actuates on herself. Under this hypothesis the linear time invariant models can be replaced by State-Space Affine Linear Parameter Varying models where the disturbances are seen as a scheduling signal signal only acting at the parameters of the output equation. In this paper a new algorithm for identifying such a model is proposed. This algorithm minimizes a quadratic criterion of the output error. Since the output error is a linear function of some parameters, the Affine Linear Parameter Varying system identification is formulated as a separable nonlinear least squares problem. Likewise other identification algorithms using gradient optimization methods several parameter derivatives are dynamical systems that must be simulated. In order to increase time efficiency a canonical parametrization that minimizes the number of systems to be simulated is chosen. The effectiveness of the algorithm is assessed in a case study where an Affine Parameter Varying Model is identified from the experimental data used in the previous study and compared with the time-invariant model.
van der Molen, Thys; van Boven, Job F. M.; Maguire, Terence; Goyal, Pankaj; Altman, Pablo
The aim of this paper was to propose key steps for community pharmacist integration into a patient care pathway for chronic obstructive pulmonary disease (COPD) management. A literature search was conducted to identify publications focusing on the role of the community pharmacist in identification
Fast optimization of statistical potentials for structurally constrained phylogenetic models
Directory of Open Access Journals (Sweden)
Rodrigue Nicolas
2009-09-01
Full Text Available Abstract Background Statistical approaches for protein design are relevant in the field of molecular evolutionary studies. In recent years, new, so-called structurally constrained (SC models of protein-coding sequence evolution have been proposed, which use statistical potentials to assess sequence-structure compatibility. In a previous work, we defined a statistical framework for optimizing knowledge-based potentials especially suited to SC models. Our method used the maximum likelihood principle and provided what we call the joint potentials. However, the method required numerical estimations by the use of computationally heavy Markov Chain Monte Carlo sampling algorithms. Results Here, we develop an alternative optimization procedure, based on a leave-one-out argument coupled to fast gradient descent algorithms. We assess that the leave-one-out potential yields very similar results to the joint approach developed previously, both in terms of the resulting potential parameters, and by Bayes factor evaluation in a phylogenetic context. On the other hand, the leave-one-out approach results in a considerable computational benefit (up to a 1,000 fold decrease in computational time for the optimization procedure. Conclusion Due to its computational speed, the optimization method we propose offers an attractive alternative for the design and empirical evaluation of alternative forms of potentials, using large data sets and high-dimensional parameterizations.
A new adaptive hybrid electromagnetic damper: modelling, optimization, and experiment
International Nuclear Information System (INIS)
Asadi, Ehsan; Ribeiro, Roberto; Behrad Khamesee, Mir; Khajepour, Amir
2015-01-01
This paper presents the development of a new electromagnetic hybrid damper which provides regenerative adaptive damping force for various applications. Recently, the introduction of electromagnetic technologies to the damping systems has provided researchers with new opportunities for the realization of adaptive semi-active damping systems with the added benefit of energy recovery. In this research, a hybrid electromagnetic damper is proposed. The hybrid damper is configured to operate with viscous and electromagnetic subsystems. The viscous medium provides a bias and fail-safe damping force while the electromagnetic component adds adaptability and the capacity for regeneration to the hybrid design. The electromagnetic component is modeled and analyzed using analytical (lumped equivalent magnetic circuit) and electromagnetic finite element method (FEM) (COMSOL ® software package) approaches. By implementing both modeling approaches, an optimization for the geometric aspects of the electromagnetic subsystem is obtained. Based on the proposed electromagnetic hybrid damping concept and the preliminary optimization solution, a prototype is designed and fabricated. A good agreement is observed between the experimental and FEM results for the magnetic field distribution and electromagnetic damping forces. These results validate the accuracy of the modeling approach and the preliminary optimization solution. An analytical model is also presented for viscous damping force, and is compared with experimental results The results show that the damper is able to produce damping coefficients of 1300 and 0–238 N s m −1 through the viscous and electromagnetic components, respectively. (paper)
RISK LOAN PORTFOLIO OPTIMIZATION MODEL BASED ON CVAR RISK MEASURE
Directory of Open Access Journals (Sweden)
Ming-Chang LEE
2015-07-01
Full Text Available In order to achieve commercial banks liquidity, safety and profitability objective requirements, loan portfolio risk analysis based optimization decisions are rational allocation of assets. The risk analysis and asset allocation are the key technology of banking and risk management. The aim of this paper, build a loan portfolio optimization model based on risk analysis. Loan portfolio rate of return by using Value-at-Risk (VaR and Conditional Value-at-Risk (CVaR constraint optimization decision model reflects the bank's risk tolerance, and the potential loss of direct control of the bank. In this paper, it analyze a general risk management model applied to portfolio problems with VaR and CVaR risk measures by using Using the Lagrangian Algorithm. This paper solves the highly difficult problem by matrix operation method. Therefore, the combination of this paper is easy understanding the portfolio problems with VaR and CVaR risk model is a hyperbola in mean-standard deviation space. It is easy calculation in proposed method.
Feng, Yongjiu; Tong, Xiaohua
2017-09-22
Defining transition rules is an important issue in cellular automaton (CA)-based land use modeling because these models incorporate highly correlated driving factors. Multicollinearity among correlated driving factors may produce negative effects that must be eliminated from the modeling. Using exploratory regression under pre-defined criteria, we identified all possible combinations of factors from the candidate factors affecting land use change. Three combinations that incorporate five driving factors meeting pre-defined criteria were assessed. With the selected combinations of factors, three logistic regression-based CA models were built to simulate dynamic land use change in Shanghai, China, from 2000 to 2015. For comparative purposes, a CA model with all candidate factors was also applied to simulate the land use change. Simulations using three CA models with multicollinearity eliminated performed better (with accuracy improvements about 3.6%) than the model incorporating all candidate factors. Our results showed that not all candidate factors are necessary for accurate CA modeling and the simulations were not sensitive to changes in statistically non-significant driving factors. We conclude that exploratory regression is an effective method to search for the optimal combinations of driving factors, leading to better land use change models that are devoid of multicollinearity. We suggest identification of dominant factors and elimination of multicollinearity before building land change models, making it possible to simulate more realistic outcomes.
Kirchoff, Bruce K; Delaney, Peter F; Horton, Meg; Dellinger-Johnston, Rebecca
2014-01-01
Learning to identify organisms is extraordinarily difficult, yet trained field biologists can quickly and easily identify organisms at a glance. They do this without recourse to the use of traditional characters or identification devices. Achieving this type of recognition accuracy is a goal of many courses in plant systematics. Teaching plant identification is difficult because of variability in the plants' appearance, the difficulty of bringing them into the classroom, and the difficulty of taking students into the field. To solve these problems, we developed and tested a cognitive psychology-based computer program to teach plant identification. The program incorporates presentation of plant images in a homework-based, active-learning format that was developed to stimulate expert-level visual recognition. A controlled experimental test using a within-subject design was performed against traditional study methods in the context of a college course in plant systematics. Use of the program resulted in an 8-25% statistically significant improvement in final exam scores, depending on the type of identification question used (living plants, photographs, written descriptions). The software demonstrates how the use of routines to train perceptual expertise, interleaved examples, spaced repetition, and retrieval practice can be used to train identification of complex and highly variable objects. © 2014 B. K. Kirchoff et al. CBE—Life Sciences Education © 2014 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
Energy Technology Data Exchange (ETDEWEB)
Freeman, J.; Junk, T.; Kirby, M.; Oksuzian, Y.; Phillips, T. J.; Snider, F. D.; Trovato, M.; Vizan, J.; Yao, W. M.
2013-01-01
We present the development and validation of the Higgs Optimized b Identification Tagger (HOBIT), a multivariate b-jet identification algorithm optimized for Higgs boson searches at the CDF experiment at the Fermilab Tevatron. At collider experiments, b taggers allow one to distinguish particle jets containing B hadrons from other jets; these algorithms have been used for many years with great success at CDF. HOBIT has been designed specifically for use in searches for light Higgs bosons decaying via H ! b\\bar{b}. This fact combined with the extent to which HOBIT synthesizes and extends the best ideas of previous taggers makes HOBIT unique among CDF b-tagging algorithms. Employing feed-forward neural network architectures, HOBIT provides an output value ranging from approximately -1 ("light-jet like") to 1 ("b-jet like"); this continuous output value has been tuned to provide maximum sensitivity in light Higgs boson search analyses. When tuned to the equivalent light jet rejection rate, HOBIT tags 54% of b jets in simulated 120 GeV/c2 Higgs boson events compared to 39% for SecVtx, the most commonly used b tagger at CDF. We present features of the tagger as well as its characterization in the form of b-jet finding efficiencies and false (light-jet) tag rates.
An optimization model for transportation of hazardous materials
International Nuclear Information System (INIS)
Seyed-Hosseini, M.; Kheirkhah, A. S.
2005-01-01
In this paper, the optimal routing problem for transportation of hazardous materials is studied. Routing for the purpose of reducing the risk of transportation of hazardous materials has been studied and formulated by many researcher and several routing models have been presented up to now. These models can be classified into the categories: the models for routing a single movement and the models for routing multiple movements. In this paper, according to the current rules and regulations of road transportations of hazardous materials in Iran, a routing problem is designed. In this problem, the routs for several independent movements are simultaneously determined. To examine the model, the problem the transportations of two different dangerous materials in the road network of Mazandaran province in the north of Iran is formulated and solved by applying Integer programming model
Research on the decision-making model of land-use spatial optimization
He, Jianhua; Yu, Yan; Liu, Yanfang; Liang, Fei; Cai, Yuqiu
2009-10-01
Using the optimization result of landscape pattern and land use structure optimization as constraints of CA simulation results, a decision-making model of land use spatial optimization is established coupled the landscape pattern model with cellular automata to realize the land use quantitative and spatial optimization simultaneously. And Huangpi district is taken as a case study to verify the rationality of the model.