WorldWideScience

Sample records for model hmm selection

  1. HMM-based Trust Model

    DEFF Research Database (Denmark)

    ElSalamouny, Ehab; Nielsen, Mogens; Sassone, Vladimiro

    2010-01-01

    Probabilistic trust has been adopted as an approach to taking security sensitive decisions in modern global computing environments. Existing probabilistic trust frameworks either assume fixed behaviour for the principals or incorporate the notion of ‘decay' as an ad hoc approach to cope...... with their dynamic behaviour. Using Hidden Markov Models (HMMs) for both modelling and approximating the behaviours of principals, we introduce the HMM-based trust model as a new approach to evaluating trust in systems exhibiting dynamic behaviour. This model avoids the fixed behaviour assumption which is considered...... the major limitation of existing Beta trust model. We show the consistency of the HMM-based trust model and contrast it against the well known Beta trust model with the decay principle in terms of the estimation precision....

  2. Study on solitary word based on HMM model and Baum-Welch algorithm

    Directory of Open Access Journals (Sweden)

    Junxia CHEN

    Full Text Available This paper introduces the principle of Hidden Markov Model, which is used to describe the Markov process with unknown parameters, is a probability model to describe the statistical properties of the random process. On this basis, designed a solitary word detection experiment based on HMM model, by optimizing the experimental model, Using Baum-Welch algorithm for training the problem of solving the HMM model, HMM model to estimate the parameters of the λ value is found, in this view of mathematics equivalent to other linear prediction coefficient. This experiment in reducing unnecessary HMM training at the same time, reduced the algorithm complexity. In order to test the effectiveness of the Baum-Welch algorithm, The simulation of experimental data, the results show that the algorithm is effective.

  3. HMM Adaptation for child speech synthesis

    CSIR Research Space (South Africa)

    Govender, Avashna

    2015-09-01

    Full Text Available Hidden Markov Model (HMM)-based synthesis in combination with speaker adaptation has proven to be an approach that is well-suited for child speech synthesis. This paper describes the development and evaluation of different HMM-based child speech...

  4. An HMM-Like Dynamic Time Warping Scheme for Automatic Speech Recognition

    Directory of Open Access Journals (Sweden)

    Ing-Jr Ding

    2014-01-01

    Full Text Available In the past, the kernel of automatic speech recognition (ASR is dynamic time warping (DTW, which is feature-based template matching and belongs to the category technique of dynamic programming (DP. Although DTW is an early developed ASR technique, DTW has been popular in lots of applications. DTW is playing an important role for the known Kinect-based gesture recognition application now. This paper proposed an intelligent speech recognition system using an improved DTW approach for multimedia and home automation services. The improved DTW presented in this work, called HMM-like DTW, is essentially a hidden Markov model- (HMM- like method where the concept of the typical HMM statistical model is brought into the design of DTW. The developed HMM-like DTW method, transforming feature-based DTW recognition into model-based DTW recognition, will be able to behave as the HMM recognition technique and therefore proposed HMM-like DTW with the HMM-like recognition model will have the capability to further perform model adaptation (also known as speaker adaptation. A series of experimental results in home automation-based multimedia access service environments demonstrated the superiority and effectiveness of the developed smart speech recognition system by HMM-like DTW.

  5. Accelerated Profile HMM Searches.

    Directory of Open Access Journals (Sweden)

    Sean R Eddy

    2011-10-01

    Full Text Available Profile hidden Markov models (profile HMMs and probabilistic inference methods have made important contributions to the theory of sequence database homology search. However, practical use of profile HMM methods has been hindered by the computational expense of existing software implementations. Here I describe an acceleration heuristic for profile HMMs, the "multiple segment Viterbi" (MSV algorithm. The MSV algorithm computes an optimal sum of multiple ungapped local alignment segments using a striped vector-parallel approach previously described for fast Smith/Waterman alignment. MSV scores follow the same statistical distribution as gapped optimal local alignment scores, allowing rapid evaluation of significance of an MSV score and thus facilitating its use as a heuristic filter. I also describe a 20-fold acceleration of the standard profile HMM Forward/Backward algorithms using a method I call "sparse rescaling". These methods are assembled in a pipeline in which high-scoring MSV hits are passed on for reanalysis with the full HMM Forward/Backward algorithm. This accelerated pipeline is implemented in the freely available HMMER3 software package. Performance benchmarks show that the use of the heuristic MSV filter sacrifices negligible sensitivity compared to unaccelerated profile HMM searches. HMMER3 is substantially more sensitive and 100- to 1000-fold faster than HMMER2. HMMER3 is now about as fast as BLAST for protein searches.

  6. Speech-To-Text Conversion STT System Using Hidden Markov Model HMM

    Directory of Open Access Journals (Sweden)

    Su Myat Mon

    2015-06-01

    Full Text Available Abstract Speech is an easiest way to communicate with each other. Speech processing is widely used in many applications like security devices household appliances cellular phones ATM machines and computers. The human computer interface has been developed to communicate or interact conveniently for one who is suffering from some kind of disabilities. Speech-to-Text Conversion STT systems have a lot of benefits for the deaf or dumb people and find their applications in our daily lives. In the same way the aim of the system is to convert the input speech signals into the text output for the deaf or dumb students in the educational fields. This paper presents an approach to extract features by using Mel Frequency Cepstral Coefficients MFCC from the speech signals of isolated spoken words. And Hidden Markov Model HMM method is applied to train and test the audio files to get the recognized spoken word. The speech database is created by using MATLAB.Then the original speech signals are preprocessed and these speech samples are extracted to the feature vectors which are used as the observation sequences of the Hidden Markov Model HMM recognizer. The feature vectors are analyzed in the HMM depending on the number of states.

  7. HMM Logos for visualization of protein families

    Directory of Open Access Journals (Sweden)

    Schultz Jörg

    2004-01-01

    Full Text Available Abstract Background Profile Hidden Markov Models (pHMMs are a widely used tool for protein family research. Up to now, however, there exists no method to visualize all of their central aspects graphically in an intuitively understandable way. Results We present a visualization method that incorporates both emission and transition probabilities of the pHMM, thus extending sequence logos introduced by Schneider and Stephens. For each emitting state of the pHMM, we display a stack of letters. The stack height is determined by the deviation of the position's letter emission frequencies from the background frequencies. The stack width visualizes both the probability of reaching the state (the hitting probability and the expected number of letters the state emits during a pass through the model (the state's expected contribution. A web interface offering online creation of HMM Logos and the corresponding source code can be found at the Logos web server of the Max Planck Institute for Molecular Genetics http://logos.molgen.mpg.de. Conclusions We demonstrate that HMM Logos can be a useful tool for the biologist: We use them to highlight differences between two homologous subfamilies of GTPases, Rab and Ras, and we show that they are able to indicate structural elements of Ras.

  8. Objective measures to improve the selection of training speakers in HMM-based child speech synthesis

    CSIR Research Space (South Africa)

    Govender, Avashna

    2016-12-01

    Full Text Available Building synthetic child voices is considered a difficult task due to the challenges associated with data collection. As a result, speaker adaptation in conjunction with Hidden Markov Model (HMM)-based synthesis has become prevalent in this domain...

  9. Hidden Neural Networks: A Framework for HMM/NN Hybrids

    DEFF Research Database (Denmark)

    Riis, Søren Kamaric; Krogh, Anders Stærmose

    1997-01-01

    This paper presents a general framework for hybrids of hidden Markov models (HMM) and neural networks (NN). In the new framework called hidden neural networks (HNN) the usual HMM probability parameters are replaced by neural network outputs. To ensure a probabilistic interpretation the HNN is nor...... HMMs on TIMIT continuous speech recognition benchmarks. On the task of recognizing five broad phoneme classes an accuracy of 84% is obtained compared to 76% for a standard HMM. Additionally, we report a preliminary result of 69% accuracy on the TIMIT 39 phoneme task...

  10. Cluster-Based Adaptation Using Density Forest for HMM Phone Recognition

    DEFF Research Database (Denmark)

    Abou-Zleikha, Mohamed; Tan, Zheng-Hua; Christensen, Mads Græsbøll

    2014-01-01

    The dissimilarity between the training and test data in speech recognition systems is known to have a considerable effect on the recognition accuracy. To solve this problem, we use density forest to cluster the data and use maximum a posteriori (MAP) method to build a cluster-based adapted Gaussian...... mixture models (GMMs) in HMM speech recognition. Specifically, a set of bagged versions of the training data for each state in the HMM is generated, and each of these versions is used to generate one GMM and one tree in the density forest. Thereafter, an acoustic model forest is built by replacing...... the data of each leaf (cluster) in each tree with the corresponding GMM adapted by the leaf data using the MAP method. The results show that the proposed approach achieves 3:8% (absolute) lower phone error rate compared with the standard HMM/GMM and 0:8% (absolute) lower PER compared with bagged HMM/GMM....

  11. Effect of HMM Glutenin Subunits on Wheat Quality Attributes

    Directory of Open Access Journals (Sweden)

    Daniela Horvat

    2009-01-01

    Full Text Available Glutenin is a group of polymeric gluten proteins. Glutenin molecules consist of glutenin subunits linked together with disulphide bonds and having higher (HMM-GS and lower (LMM-GS molecular mass. The main objective of this study is the evaluation of the influence of HMM-GS on flour processing properties. Seven bread wheat genotypes with contrasting quality attributes and different HMM-GS composition were analyzed during three years. The composition and quantity of HMM-GS were determined by SDS-PAGE and RP-HPLC, respectively. The quality diversity among genotypes was estimated by the analysis of wheat grain, and flour and bread quality parameters. The presence of HMM glutenin subunits 1 and 2* at Glu-A1 and the subunits 5+10 at Glu-D1 loci, as well as a higher proportion of total HMM-GS, had a positive effect on wheat quality. Cluster analysis of the three groups of data (genotype and HMM-GS, flour and bread quality, and dough rheology yielded the same hierarchical structure for the first top three levels, and similarity of the corresponding dendrograms was proved by the principal eigenvalues of the corresponding Euclidian distance matrices. The obtained similarity in classification based on essentially different types of measurements reflects strong natural association between genetic data, product quality and physical properties. Principal component analysis (PCA was applied to effectively reduce large data set into lower dimensions of latent variables amenable for the analysis. PCA analysis of the total set of data (15 variables revealed a very strong interrelationship between the variables. The first three PCA components accounted for 96 % of the total variance, which was significant to the level of 0.05 and was considered as the level of experimental error. These data imply that the quality of wheat cultivars can be contributed to HMM-GS data and should be taken into account in breeding programs assisted by computer models with the aim to

  12. Electricity Price Forecast Using Combined Models with Adaptive Weights Selected and Errors Calibrated by Hidden Markov Model

    Directory of Open Access Journals (Sweden)

    Da Liu

    2013-01-01

    Full Text Available A combined forecast with weights adaptively selected and errors calibrated by Hidden Markov model (HMM is proposed to model the day-ahead electricity price. Firstly several single models were built to forecast the electricity price separately. Then the validation errors from every individual model were transformed into two discrete sequences: an emission sequence and a state sequence to build the HMM, obtaining a transmission matrix and an emission matrix, representing the forecasting ability state of the individual models. The combining weights of the individual models were decided by the state transmission matrixes in HMM and the best predict sample ratio of each individual among all the models in the validation set. The individual forecasts were averaged to get the combining forecast with the weights obtained above. The residuals of combining forecast were calibrated by the possible error calculated by the emission matrix of HMM. A case study of day-ahead electricity market of Pennsylvania-New Jersey-Maryland (PJM, USA, suggests that the proposed method outperforms individual techniques of price forecasting, such as support vector machine (SVM, generalized regression neural networks (GRNN, day-ahead modeling, and self-organized map (SOM similar days modeling.

  13. Important factors in HMM-based phonetic segmentation

    CSIR Research Space (South Africa)

    Van Niekerk, DR

    2007-11-01

    Full Text Available , window and step sizes. Taking into account that the segmentation system trains and applies the HMM models on a single speaker only, our first con- cern was the applicability of the window and step sizes that are commonly used for speech recognition...

  14. A Novel Approach to Detect Network Attacks Using G-HMM-Based Temporal Relations between Internet Protocol Packets

    Directory of Open Access Journals (Sweden)

    Han Kyusuk

    2011-01-01

    Full Text Available This paper introduces novel attack detection approaches on mobile and wireless device security and network which consider temporal relations between internet packets. In this paper we first present a field selection technique using a Genetic Algorithm and generate a Packet-based Mining Association Rule from an original Mining Association Rule for Support Vector Machine in mobile and wireless network environment. Through the preprocessing with PMAR, SVM inputs can account for time variation between packets in mobile and wireless network. Third, we present Gaussian observation Hidden Markov Model to exploit the hidden relationships between packets based on probabilistic estimation. In our G-HMM approach, we also apply G-HMM feature reduction for better initialization. We demonstrate the usefulness of our SVM and G-HMM approaches with GA on MIT Lincoln Lab datasets and a live dataset that we captured on a real mobile and wireless network. Moreover, experimental results are verified by -fold cross-validation test.

  15. Appropriate baseline values for HMM-based speech recognition

    CSIR Research Space (South Africa)

    Barnard, E

    2004-11-01

    Full Text Available A number of issues realted to the development of speech-recognition systems with Hidden Markov Models (HMM) are discussed. A set of systematic experiments using the HTK toolkit and the TMIT database are used to elucidate matters such as the number...

  16. An HMM posterior decoder for sequence feature prediction that includes homology information

    DEFF Research Database (Denmark)

    Käll, Lukas; Krogh, Anders Stærmose; Sonnhammer, Erik L. L.

    2005-01-01

    Motivation: When predicting sequence features like transmembrane topology, signal peptides, coil-coil structures, protein secondary structure or genes, extra support can be gained from homologs. Results: We present here a general hidden Markov model (HMM) decoding algorithm that combines probabil......Motivation: When predicting sequence features like transmembrane topology, signal peptides, coil-coil structures, protein secondary structure or genes, extra support can be gained from homologs. Results: We present here a general hidden Markov model (HMM) decoding algorithm that combines......://phobius.cgb.ki.se/poly.html . An implementation of the algorithm is available on request from the authors....

  17. An improved segmentation-based HMM learning method for Condition-based Maintenance

    International Nuclear Information System (INIS)

    Liu, T; Lemeire, J; Cartella, F; Meganck, S

    2012-01-01

    In the domain of condition-based maintenance (CBM), persistence of machine states is a valid assumption. Based on this assumption, we present an improved Hidden Markov Model (HMM) learning algorithm for the assessment of equipment states. By a good estimation of initial parameters, more accurate learning can be achieved than by regular HMM learning methods which start with randomly chosen initial parameters. It is also better in avoiding getting trapped in local maxima. The data is segmented with a change-point analysis method which uses a combination of cumulative sum charts (CUSUM) and bootstrapping techniques. The method determines a confidence level that a state change happens. After the data is segmented, in order to label and combine the segments corresponding to the same states, a clustering technique is used based on a low-pass filter or root mean square (RMS) values of the features. The segments with their labelled hidden state are taken as 'evidence' to estimate the parameters of an HMM. Then, the estimated parameters are served as initial parameters for the traditional Baum-Welch (BW) learning algorithms, which are used to improve the parameters and train the model. Experiments on simulated and real data demonstrate that both performance and convergence speed is improved.

  18. Hidden Markov Model for Stock Selection

    Directory of Open Access Journals (Sweden)

    Nguyet Nguyen

    2015-10-01

    Full Text Available The hidden Markov model (HMM is typically used to predict the hidden regimes of observation data. Therefore, this model finds applications in many different areas, such as speech recognition systems, computational molecular biology and financial market predictions. In this paper, we use HMM for stock selection. We first use HMM to make monthly regime predictions for the four macroeconomic variables: inflation (consumer price index (CPI, industrial production index (INDPRO, stock market index (S&P 500 and market volatility (VIX. At the end of each month, we calibrate HMM’s parameters for each of these economic variables and predict its regimes for the next month. We then look back into historical data to find the time periods for which the four variables had similar regimes with the forecasted regimes. Within those similar periods, we analyze all of the S&P 500 stocks to identify which stock characteristics have been well rewarded during the time periods and assign scores and corresponding weights for each of the stock characteristics. A composite score of each stock is calculated based on the scores and weights of its features. Based on this algorithm, we choose the 50 top ranking stocks to buy. We compare the performances of the portfolio with the benchmark index, S&P 500. With an initial investment of $100 in December 1999, over 15 years, in December 2014, our portfolio had an average gain per annum of 14.9% versus 2.3% for the S&P 500.

  19. Comparison of HMM experts with MLP experts in the Full Combination Multi-Band Approach to Robust ASR

    OpenAIRE

    Hagen, Astrid; Morris, Andrew

    2000-01-01

    In this paper we apply the Full Combination (FC) multi-band approach, which has originally been introduced in the framework of posterior-based HMM/ANN (Hidden Markov Model/Artificial Neural Network) hybrid systems, to systems in which the ANN (or Multilayer Perceptron (MLP)) is itself replaced by a Multi Gaussian HMM (MGM). Both systems represent the most widely used statistical models for robust ASR (automatic speech recognition). It is shown how the FC formula for the likelihood--based MGMs...

  20. Fault diagnosis of nuclear-powered equipment based on HMM and SVM

    International Nuclear Information System (INIS)

    Yue Xia; Zhang Chunliang; Zhu Houyao; Quan Yanming

    2012-01-01

    For the complexity and the small fault samples of nuclear-powered equipment, a hybrid HMM/SVM method was introduced in fault diagnosis. The hybrid method has two steps: first, HMM is utilized for primary diagnosis, in which the range of possible failure is reduced and the state trends can be observed; then faults can be recognized taking the advantage of the generalization ability of SVM. Experiments on the main pump failure simulator show that the HMM/SVM system has a high recognition rate and can be used in the fault diagnosis of nuclear-powered equipment. (authors)

  1. HMM-ModE – Improved classification using profile hidden Markov models by optimising the discrimination threshold and modifying emission probabilities with negative training sequences

    Directory of Open Access Journals (Sweden)

    Nandi Soumyadeep

    2007-03-01

    Full Text Available Abstract Background Profile Hidden Markov Models (HMM are statistical representations of protein families derived from patterns of sequence conservation in multiple alignments and have been used in identifying remote homologues with considerable success. These conservation patterns arise from fold specific signals, shared across multiple families, and function specific signals unique to the families. The availability of sequences pre-classified according to their function permits the use of negative training sequences to improve the specificity of the HMM, both by optimizing the threshold cutoff and by modifying emission probabilities to minimize the influence of fold-specific signals. A protocol to generate family specific HMMs is described that first constructs a profile HMM from an alignment of the family's sequences and then uses this model to identify sequences belonging to other classes that score above the default threshold (false positives. Ten-fold cross validation is used to optimise the discrimination threshold score for the model. The advent of fast multiple alignment methods enables the use of the profile alignments to align the true and false positive sequences, and the resulting alignments are used to modify the emission probabilities in the original model. Results The protocol, called HMM-ModE, was validated on a set of sequences belonging to six sub-families of the AGC family of kinases. These sequences have an average sequence similarity of 63% among the group though each sub-group has a different substrate specificity. The optimisation of discrimination threshold, by using negative sequences scored against the model improves specificity in test cases from an average of 21% to 98%. Further discrimination by the HMM after modifying model probabilities using negative training sequences is provided in a few cases, the average specificity rising to 99%. Similar improvements were obtained with a sample of G-Protein coupled receptors

  2. HMM based automated wheelchair navigation using EOG traces in EEG

    Science.gov (United States)

    Aziz, Fayeem; Arof, Hamzah; Mokhtar, Norrima; Mubin, Marizan

    2014-10-01

    This paper presents a wheelchair navigation system based on a hidden Markov model (HMM), which we developed to assist those with restricted mobility. The semi-autonomous system is equipped with obstacle/collision avoidance sensors and it takes the electrooculography (EOG) signal traces from the user as commands to maneuver the wheelchair. The EOG traces originate from eyeball and eyelid movements and they are embedded in EEG signals collected from the scalp of the user at three different locations. Features extracted from the EOG traces are used to determine whether the eyes are open or closed, and whether the eyes are gazing to the right, center, or left. These features are utilized as inputs to a few support vector machine (SVM) classifiers, whose outputs are regarded as observations to an HMM. The HMM determines the state of the system and generates commands for navigating the wheelchair accordingly. The use of simple features and the implementation of a sliding window that captures important signatures in the EOG traces result in a fast execution time and high classification rates. The wheelchair is equipped with a proximity sensor and it can move forward and backward in three directions. The asynchronous system achieved an average classification rate of 98% when tested with online data while its average execution time was less than 1 s. It was also tested in a navigation experiment where all of the participants managed to complete the tasks successfully without collisions.

  3. Using features of local densities, statistics and HMM toolkit (HTK for offline Arabic handwriting text recognition

    Directory of Open Access Journals (Sweden)

    El Moubtahij Hicham

    2017-12-01

    Full Text Available This paper presents an analytical approach of an offline handwritten Arabic text recognition system. It is based on the Hidden Markov Models (HMM Toolkit (HTK without explicit segmentation. The first phase is preprocessing, where the data is introduced in the system after quality enhancements. Then, a set of characteristics (features of local densities and features statistics are extracted by using the technique of sliding windows. Subsequently, the resulting feature vectors are injected to the Hidden Markov Model Toolkit (HTK. The simple database “Arabic-Numbers” and IFN/ENIT are used to evaluate the performance of this system. Keywords: Hidden Markov Models (HMM Toolkit (HTK, Sliding windows

  4. Spotting handwritten words and REGEX using a two stage BLSTM-HMM architecture

    Science.gov (United States)

    Bideault, Gautier; Mioulet, Luc; Chatelain, Clément; Paquet, Thierry

    2015-01-01

    In this article, we propose a hybrid model for spotting words and regular expressions (REGEX) in handwritten documents. The model is made of the state-of-the-art BLSTM (Bidirectional Long Short Time Memory) neural network for recognizing and segmenting characters, coupled with a HMM to build line models able to spot the desired sequences. Experiments on the Rimes database show very promising results.

  5. Neuroevolution Mechanism for Hidden Markov Model

    Directory of Open Access Journals (Sweden)

    Nabil M. Hewahi

    2011-12-01

    Full Text Available Hidden Markov Model (HMM is a statistical model based on probabilities. HMM is becoming one of the major models involved in many applications such as natural language
    processing, handwritten recognition, image processing, prediction systems and many more. In this research we are concerned with finding out the best HMM for a certain application domain. We propose a neuroevolution process that is based first on converting the HMM to a neural network, then generating many neural networks at random where each represents a HMM. We proceed by
    applying genetic operators to obtain new set of neural networks where each represents HMMs, and updating the population. Finally select the best neural network based on a fitness function.

  6. Bearing Performance Degradation Assessment Using Linear Discriminant Analysis and Coupled HMM

    International Nuclear Information System (INIS)

    Liu, T; Chen, J; Zhou, X N; Xiao, W B

    2012-01-01

    Bearing is one of the most important units in rotary machinery, its performance may vary significantly under different working stages. Thus it is critical to choose the most effective features for bearing performance degradation prediction. Linear Discriminant Analysis (LDA) is a useful method in finding few feature's dimensions that best discriminate a set of features extracted from original vibration signals. Another challenge in bearing performance degradation is how to build a model to recognize the different conditions with the data coming from different monitoring channels. In this paper, coupled hidden Markov models (CHMM) is presented to model interacting processes which can overcome the defections of the HMM. Because the input data in CHMM are collected by several sensors, and the interacting information can be fused by coupled modalities, it is more effective than HMM which used only one state chain. The model can be used in estimating the bearing performance degradation states according to several observation data. When becoming degradation pattern recognition, the new observation features should be input into the pre-trained CHMM and calculate the performance index (PI) of the outputs, the changing of PI could be used to describe the different degradation level of the bearings. The results show that PI will decline with the increase of the bearing degradation. Assessment results of the whole life time experimental bearing signals validate the feasibility and effectiveness of this method.

  7. Online adaptive learning of Left-Right Continuous HMM for bearings condition assessment

    International Nuclear Information System (INIS)

    Cartella, F; Liu, T; Meganck, S; Lemeire, J; Sahli, H

    2012-01-01

    Standard Hidden Markov Models (HMMs) approaches used for condition assessment of bearings assume that all the possible system states are fixed and known a priori and that training data from all of the associated states are available. Moreover, the training procedure is performed offline, and only once at the beginning, with the available training set. These assumptions significantly impede component diagnosis applications when all of the possible states of the system are not known in advance or environmental factors or operative conditions change during the tool's usage. The method introduced in this paper overcomes the above limitations and proposes an approach to detect unknown degradation modalities using a Left-Right Continuous HMM with a variable state space. The proposed HMM is combined with Change Point Detection algorithms to (i) estimate, from historical observations, the initial number of the model's states, as well as to perform an initial guess of the parameters, and (ii) to adaptively recognize new states and, consequently, adjust the model parameters during monitoring. The approach has been tested using real monitoring data taken from the NASA benchmark repository. A comparative study with state of the art techniques shows improvements in terms of reduction of the training procedure iterations, and early detection of unknown states.

  8. A Bayesian Approach for Structural Learning with Hidden Markov Models

    Directory of Open Access Journals (Sweden)

    Cen Li

    2002-01-01

    Full Text Available Hidden Markov Models(HMM have proved to be a successful modeling paradigm for dynamic and spatial processes in many domains, such as speech recognition, genomics, and general sequence alignment. Typically, in these applications, the model structures are predefined by domain experts. Therefore, the HMM learning problem focuses on the learning of the parameter values of the model to fit the given data sequences. However, when one considers other domains, such as, economics and physiology, model structure capturing the system dynamic behavior is not available. In order to successfully apply the HMM methodology in these domains, it is important that a mechanism is available for automatically deriving the model structure from the data. This paper presents a HMM learning procedure that simultaneously learns the model structure and the maximum likelihood parameter values of a HMM from data. The HMM model structures are derived based on the Bayesian model selection methodology. In addition, we introduce a new initialization procedure for HMM parameter value estimation based on the K-means clustering method. Experimental results with artificially generated data show the effectiveness of the approach.

  9. Explorations in the History of Machines and Mechanisms : Proceedings of HMM2012

    CERN Document Server

    Ceccarelli, Marco

    2012-01-01

    This book contains the proceedings of HMM2012, the 4th International Symposium on Historical Developments in the field of Mechanism and Machine Science (MMS). These proceedings cover recent research concerning all aspects of the development of MMS from antiquity until the present and its historiography: machines, mechanisms, kinematics, dynamics, concepts and theories, design methods, collections of methods, collections of models, institutions and biographies.

  10. An HMM-based comparative genomic framework for detecting introgression in eukaryotes.

    Directory of Open Access Journals (Sweden)

    Kevin J Liu

    2014-06-01

    Full Text Available One outcome of interspecific hybridization and subsequent effects of evolutionary forces is introgression, which is the integration of genetic material from one species into the genome of an individual in another species. The evolution of several groups of eukaryotic species has involved hybridization, and cases of adaptation through introgression have been already established. In this work, we report on PhyloNet-HMM-a new comparative genomic framework for detecting introgression in genomes. PhyloNet-HMM combines phylogenetic networks with hidden Markov models (HMMs to simultaneously capture the (potentially reticulate evolutionary history of the genomes and dependencies within genomes. A novel aspect of our work is that it also accounts for incomplete lineage sorting and dependence across loci. Application of our model to variation data from chromosome 7 in the mouse (Mus musculus domesticus genome detected a recently reported adaptive introgression event involving the rodent poison resistance gene Vkorc1, in addition to other newly detected introgressed genomic regions. Based on our analysis, it is estimated that about 9% of all sites within chromosome 7 are of introgressive origin (these cover about 13 Mbp of chromosome 7, and over 300 genes. Further, our model detected no introgression in a negative control data set. We also found that our model accurately detected introgression and other evolutionary processes from synthetic data sets simulated under the coalescent model with recombination, isolation, and migration. Our work provides a powerful framework for systematic analysis of introgression while simultaneously accounting for dependence across sites, point mutations, recombination, and ancestral polymorphism.

  11. HMMBinder: DNA-Binding Protein Prediction Using HMM Profile Based Features.

    Science.gov (United States)

    Zaman, Rianon; Chowdhury, Shahana Yasmin; Rashid, Mahmood A; Sharma, Alok; Dehzangi, Abdollah; Shatabda, Swakkhar

    2017-01-01

    DNA-binding proteins often play important role in various processes within the cell. Over the last decade, a wide range of classification algorithms and feature extraction techniques have been used to solve this problem. In this paper, we propose a novel DNA-binding protein prediction method called HMMBinder. HMMBinder uses monogram and bigram features extracted from the HMM profiles of the protein sequences. To the best of our knowledge, this is the first application of HMM profile based features for the DNA-binding protein prediction problem. We applied Support Vector Machines (SVM) as a classification technique in HMMBinder. Our method was tested on standard benchmark datasets. We experimentally show that our method outperforms the state-of-the-art methods found in the literature.

  12. HMMBinder: DNA-Binding Protein Prediction Using HMM Profile Based Features

    Directory of Open Access Journals (Sweden)

    Rianon Zaman

    2017-01-01

    Full Text Available DNA-binding proteins often play important role in various processes within the cell. Over the last decade, a wide range of classification algorithms and feature extraction techniques have been used to solve this problem. In this paper, we propose a novel DNA-binding protein prediction method called HMMBinder. HMMBinder uses monogram and bigram features extracted from the HMM profiles of the protein sequences. To the best of our knowledge, this is the first application of HMM profile based features for the DNA-binding protein prediction problem. We applied Support Vector Machines (SVM as a classification technique in HMMBinder. Our method was tested on standard benchmark datasets. We experimentally show that our method outperforms the state-of-the-art methods found in the literature.

  13. Improving a HMM-based off-line handwriting recognition system using MME-PSO optimization

    Science.gov (United States)

    Hamdani, Mahdi; El Abed, Haikal; Hamdani, Tarek M.; Märgner, Volker; Alimi, Adel M.

    2011-01-01

    One of the trivial steps in the development of a classifier is the design of its architecture. This paper presents a new algorithm, Multi Models Evolvement (MME) using Particle Swarm Optimization (PSO). This algorithm is a modified version of the basic PSO, which is used to the unsupervised design of Hidden Markov Model (HMM) based architectures. For instance, the proposed algorithm is applied to an Arabic handwriting recognizer based on discrete probability HMMs. After the optimization of their architectures, HMMs are trained with the Baum- Welch algorithm. The validation of the system is based on the IfN/ENIT database. The performance of the developed approach is compared to the participating systems at the 2005 competition organized on Arabic handwriting recognition on the International Conference on Document Analysis and Recognition (ICDAR). The final system is a combination between an optimized HMM with 6 other HMMs obtained by a simple variation of the number of states. An absolute improvement of 6% of word recognition rate with about 81% is presented. This improvement is achieved comparing to the basic system (ARAB-IfN). The proposed recognizer outperforms also most of the known state-of-the-art systems.

  14. Comparison of HMM and DTW methods in automatic recognition of pathological phoneme pronunciation

    OpenAIRE

    Wielgat, Robert; Zielinski, Tomasz P.; Swietojanski, Pawel; Zoladz, Piotr; Król, Daniel; Wozniak, Tomasz; Grabias, Stanislaw

    2007-01-01

    In the paper recently proposed Human Factor Cepstral Coefficients (HFCC) are used to automatic recognition of pathological phoneme pronunciation in speech of impaired children and efficiency of this approach is compared to application of the standard Mel-Frequency Cepstral Coefficients (MFCC) as a feature vector. Both dynamic time warping (DTW), working on whole words or embedded phoneme patterns, and hidden Markov models (HMM) are used as classifiers in the presented research. Obtained resul...

  15. Research study on harmonized molecular materials (HMM); Bunshi kyocho zairyo ni kansuru chosa kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    As functional material to satisfy various needs for environmental harmonization and efficient conversion for information-oriented and aging societies, HMM were surveyed. Living bodies effectively carry out transmission/processing of information, and transport/conversion of substances, and these functions are based on harmonization between organic molecules, and between those and metal or inorganic ones. HMM is a key substance to artificially realize these bio-related functions. Its R & D aims at (1) Making a breakthrough in production process based on innovation of material separation/conversion technology, (2) Contribution to an information-oriented society by high-efficiency devices, and (3) Growth of a functional bio-material industry. HMM is classified into three categories: (1) Assembly materials such as organic ultra-thin films (LB film, self-organizing film), and organic/inorganic hybrid materials for optoelectronics, sensors and devices, (2) Mesophase materials such as functional separation membrane and photo-conductive material, and (3) Microporous materials such as synthetic catalyst using guest/host materials. 571 refs., 88 figs., 21 tabs.

  16. Efficient view based 3-D object retrieval using Hidden Markov Model

    Science.gov (United States)

    Jain, Yogendra Kumar; Singh, Roshan Kumar

    2013-12-01

    Recent research effort has been dedicated to view based 3-D object retrieval, because of highly discriminative property of 3-D object and has multi view representation. The state-of-art method is highly depending on their own camera array setting for capturing views of 3-D object and use complex Zernike descriptor, HAC for representative view selection which limit their practical application and make it inefficient for retrieval. Therefore, an efficient and effective algorithm is required for 3-D Object Retrieval. In order to move toward a general framework for efficient 3-D object retrieval which is independent of camera array setting and avoidance of representative view selection, we propose an Efficient View Based 3-D Object Retrieval (EVBOR) method using Hidden Markov Model (HMM). In this framework, each object is represented by independent set of view, which means views are captured from any direction without any camera array restriction. In this, views are clustered (including query view) to generate the view cluster, which is then used to build the query model with HMM. In our proposed method, HMM is used in twofold: in the training (i.e. HMM estimate) and in the retrieval (i.e. HMM decode). The query model is trained by using these view clusters. The EVBOR query model is worked on the basis of query model combining with HMM. The proposed approach remove statically camera array setting for view capturing and can be apply for any 3-D object database to retrieve 3-D object efficiently and effectively. Experimental results demonstrate that the proposed scheme has shown better performance than existing methods. [Figure not available: see fulltext.

  17. A method for identifying gas-liquid two-phase flow patterns on the basis of wavelet packet multi-scale information entropy and HMM

    International Nuclear Information System (INIS)

    Zhou Yunlong; Zhang Xueqing; Gao Yunpeng; Cheng Yue

    2009-01-01

    For studying flow regimes of gas/liquid two-phase in a vertical upward pipe, the conductance fluctuation information of four typical flow regimes was collected by a measuring the system with self-made multiple conductivity probes. Owing to the non-stationarity of conductance fluctuation signals of gas-liquid two-phase flow, a kind of' flow regime identification method based on wavelet packet Multi-scale Information Entropy and Hidden Markov Model (HMM) was put forward. First of all, the collected conductance fluctuation signals were decomposed into eight different frequency bands signals. Secondly, the wavelet packet multi-scale information entropy of different frequency bands signals were regarded as the input characteristic vectors of all states HMM which had been trained. In the end the regime identification of' the gas-liquid two-phase flow could be performed. The study showed that the method that HMM was applied to identify the flow regime was superior to the one that BP neural network was used, and the results proved that the method was efficient and feasible. (authors)

  18. Human activity recognition based on feature selection in smart home using back-propagation algorithm.

    Science.gov (United States)

    Fang, Hongqing; He, Lei; Si, Hao; Liu, Peng; Xie, Xiaolei

    2014-09-01

    In this paper, Back-propagation(BP) algorithm has been used to train the feed forward neural network for human activity recognition in smart home environments, and inter-class distance method for feature selection of observed motion sensor events is discussed and tested. And then, the human activity recognition performances of neural network using BP algorithm have been evaluated and compared with other probabilistic algorithms: Naïve Bayes(NB) classifier and Hidden Markov Model(HMM). The results show that different feature datasets yield different activity recognition accuracy. The selection of unsuitable feature datasets increases the computational complexity and degrades the activity recognition accuracy. Furthermore, neural network using BP algorithm has relatively better human activity recognition performances than NB classifier and HMM. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  19. HMMEditor: a visual editing tool for profile hidden Markov model

    Directory of Open Access Journals (Sweden)

    Cheng Jianlin

    2008-03-01

    Full Text Available Abstract Background Profile Hidden Markov Model (HMM is a powerful statistical model to represent a family of DNA, RNA, and protein sequences. Profile HMM has been widely used in bioinformatics research such as sequence alignment, gene structure prediction, motif identification, protein structure prediction, and biological database search. However, few comprehensive, visual editing tools for profile HMM are publicly available. Results We develop a visual editor for profile Hidden Markov Models (HMMEditor. HMMEditor can visualize the profile HMM architecture, transition probabilities, and emission probabilities. Moreover, it provides functions to edit and save HMM and parameters. Furthermore, HMMEditor allows users to align a sequence against the profile HMM and to visualize the corresponding Viterbi path. Conclusion HMMEditor provides a set of unique functions to visualize and edit a profile HMM. It is a useful tool for biological sequence analysis and modeling. Both HMMEditor software and web service are freely available.

  20. Development of TTS Engine for Indian Accent using Modified HMM Algorithm

    Directory of Open Access Journals (Sweden)

    Sasanko Sekhar Gantayat

    2018-03-01

    Full Text Available A text-to-speech (TTS system converts normal language text into speech. An intelligent text-to-speech program allows people with visual impairments or reading disabilities, to listen to written works on a home computer. Many computer operating systems and day to day software applications like Adobe Reader have included text-to-speech systems. This paper is presented to show that how HMM can be used as a tool to convert text to speech.

  1. An Efficient Algorithm for Modelling Duration in Hidden Markov Models, with a Dramatic Application

    DEFF Research Database (Denmark)

    Hauberg, Søren; Sloth, Jakob

    2008-01-01

    For many years, the hidden Markov model (HMM) has been one of the most popular tools for analysing sequential data. One frequently used special case is the left-right model, in which the order of the hidden states is known. If knowledge of the duration of a state is available it is not possible...... to represent it explicitly with an HMM. Methods for modelling duration with HMM's do exist (Rabiner in Proc. IEEE 77(2):257---286, [1989]), but they come at the price of increased computational complexity. Here we present an efficient and robust algorithm for modelling duration in HMM's, and this algorithm...

  2. HMM_Model-Checker pour la vérification probabiliste HMM_Model ...

    African Journals Online (AJOL)

    ASSIA

    probabiliste –Télescope Hubble. Abstract. Probabilistic verification for embedded systems continues to attract more and more followers in the research community. Given a probabilistic model, a formula of temporal logic, describing a property of a system and an exploration algorithm to check whether the property is satisfied ...

  3. Hierarchical material models for fragmentation modeling in NIF-ALE-AMR

    International Nuclear Information System (INIS)

    Fisher, A C; Masters, N D; Koniges, A E; Anderson, R W; Gunney, B T N; Wang, P; Becker, R; Dixit, P; Benson, D J

    2008-01-01

    Fragmentation is a fundamental process that naturally spans micro to macroscopic scales. Recent advances in algorithms, computer simulations, and hardware enable us to connect the continuum to microstructural regimes in a real simulation through a heterogeneous multiscale mathematical model. We apply this model to the problem of predicting how targets in the NIF chamber dismantle, so that optics and diagnostics can be protected from damage. The mechanics of the initial material fracture depend on the microscopic grain structure. In order to effectively simulate the fragmentation, this process must be modeled at the subgrain level with computationally expensive crystal plasticity models. However, there are not enough computational resources to model the entire NIF target at this microscopic scale. In order to accomplish these calculations, a hierarchical material model (HMM) is being developed. The HMM will allow fine-scale modeling of the initial fragmentation using computationally expensive crystal plasticity, while the elements at the mesoscale can use polycrystal models, and the macroscopic elements use analytical flow stress models. The HMM framework is built upon an adaptive mesh refinement (AMR) capability. We present progress in implementing the HMM in the NIF-ALE-AMR code. Additionally, we present test simulations relevant to NIF targets

  4. Hierarchical material models for fragmentation modeling in NIF-ALE-AMR

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, A C; Masters, N D; Koniges, A E; Anderson, R W; Gunney, B T N; Wang, P; Becker, R [Lawrence Livermore National Laboratory, PO Box 808, Livermore, CA 94551 (United States); Dixit, P; Benson, D J [University of California San Diego, 9500 Gilman Dr., La Jolla. CA 92093 (United States)], E-mail: fisher47@llnl.gov

    2008-05-15

    Fragmentation is a fundamental process that naturally spans micro to macroscopic scales. Recent advances in algorithms, computer simulations, and hardware enable us to connect the continuum to microstructural regimes in a real simulation through a heterogeneous multiscale mathematical model. We apply this model to the problem of predicting how targets in the NIF chamber dismantle, so that optics and diagnostics can be protected from damage. The mechanics of the initial material fracture depend on the microscopic grain structure. In order to effectively simulate the fragmentation, this process must be modeled at the subgrain level with computationally expensive crystal plasticity models. However, there are not enough computational resources to model the entire NIF target at this microscopic scale. In order to accomplish these calculations, a hierarchical material model (HMM) is being developed. The HMM will allow fine-scale modeling of the initial fragmentation using computationally expensive crystal plasticity, while the elements at the mesoscale can use polycrystal models, and the macroscopic elements use analytical flow stress models. The HMM framework is built upon an adaptive mesh refinement (AMR) capability. We present progress in implementing the HMM in the NIF-ALE-AMR code. Additionally, we present test simulations relevant to NIF targets.

  5. Improved hidden Markov model for nosocomial infections.

    Science.gov (United States)

    Khader, Karim; Leecaster, Molly; Greene, Tom; Samore, Matthew; Thomas, Alun

    2014-12-01

    We propose a novel hidden Markov model (HMM) for parameter estimation in hospital transmission models, and show that commonly made simplifying assumptions can lead to severe model misspecification and poor parameter estimates. A standard HMM that embodies two commonly made simplifying assumptions, namely a fixed patient count and binomially distributed detections is compared with a new alternative HMM that does not require these simplifying assumptions. Using simulated data, we demonstrate how each of the simplifying assumptions used by the standard model leads to model misspecification, whereas the alternative model results in accurate parameter estimates. © The Authors 2013. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.

  6. Monthly streamflow forecasting based on hidden Markov model and Gaussian Mixture Regression

    Science.gov (United States)

    Liu, Yongqi; Ye, Lei; Qin, Hui; Hong, Xiaofeng; Ye, Jiajun; Yin, Xingli

    2018-06-01

    Reliable streamflow forecasts can be highly valuable for water resources planning and management. In this study, we combined a hidden Markov model (HMM) and Gaussian Mixture Regression (GMR) for probabilistic monthly streamflow forecasting. The HMM is initialized using a kernelized K-medoids clustering method, and the Baum-Welch algorithm is then executed to learn the model parameters. GMR derives a conditional probability distribution for the predictand given covariate information, including the antecedent flow at a local station and two surrounding stations. The performance of HMM-GMR was verified based on the mean square error and continuous ranked probability score skill scores. The reliability of the forecasts was assessed by examining the uniformity of the probability integral transform values. The results show that HMM-GMR obtained reasonably high skill scores and the uncertainty spread was appropriate. Different HMM states were assumed to be different climate conditions, which would lead to different types of observed values. We demonstrated that the HMM-GMR approach can handle multimodal and heteroscedastic data.

  7. Accelerating Information Retrieval from Profile Hidden Markov Model Databases.

    Science.gov (United States)

    Tamimi, Ahmad; Ashhab, Yaqoub; Tamimi, Hashem

    2016-01-01

    Profile Hidden Markov Model (Profile-HMM) is an efficient statistical approach to represent protein families. Currently, several databases maintain valuable protein sequence information as profile-HMMs. There is an increasing interest to improve the efficiency of searching Profile-HMM databases to detect sequence-profile or profile-profile homology. However, most efforts to enhance searching efficiency have been focusing on improving the alignment algorithms. Although the performance of these algorithms is fairly acceptable, the growing size of these databases, as well as the increasing demand for using batch query searching approach, are strong motivations that call for further enhancement of information retrieval from profile-HMM databases. This work presents a heuristic method to accelerate the current profile-HMM homology searching approaches. The method works by cluster-based remodeling of the database to reduce the search space, rather than focusing on the alignment algorithms. Using different clustering techniques, 4284 TIGRFAMs profiles were clustered based on their similarities. A representative for each cluster was assigned. To enhance sensitivity, we proposed an extended step that allows overlapping among clusters. A validation benchmark of 6000 randomly selected protein sequences was used to query the clustered profiles. To evaluate the efficiency of our approach, speed and recall values were measured and compared with the sequential search approach. Using hierarchical, k-means, and connected component clustering techniques followed by the extended overlapping step, we obtained an average reduction in time of 41%, and an average recall of 96%. Our results demonstrate that representation of profile-HMMs using a clustering-based approach can significantly accelerate data retrieval from profile-HMM databases.

  8. Learning effective connectivity from fMRI using autoregressive hidden Markov model with missing data.

    Science.gov (United States)

    Dang, Shilpa; Chaudhury, Santanu; Lall, Brejesh; Roy, Prasun Kumar

    2017-02-15

    Effective connectivity (EC) analysis of neuronal groups using fMRI delivers insights about functional-integration. However, fMRI signal has low-temporal resolution due to down-sampling and indirectly measures underlying neuronal activity. The aim is to address above issues for more reliable EC estimates. This paper proposes use of autoregressive hidden Markov model with missing data (AR-HMM-md) in dynamically multi-linked (DML) framework for learning EC using multiple fMRI time series. In our recent work (Dang et al., 2016), we have shown how AR-HMM-md for modelling single fMRI time series outperforms the existing methods. AR-HMM-md models unobserved neuronal activity and lost data over time as variables and estimates their values by joint optimization given fMRI observation sequence. The effectiveness in learning EC is shown using simulated experiments. Also the effects of sampling and noise are studied on EC. Moreover, classification-experiments are performed for Attention-Deficit/Hyperactivity Disorder subjects and age-matched controls for performance evaluation of real data. Using Bayesian model selection, we see that the proposed model converged to higher log-likelihood and demonstrated that group-classification can be performed with higher cross-validation accuracy of above 94% using distinctive network EC which characterizes patients vs. The full data EC obtained from DML-AR-HMM-md is more consistent with previous literature than the classical multivariate Granger causality method. The proposed architecture leads to reliable estimates of EC than the existing latent models. This framework overcomes the disadvantage of low-temporal resolution and improves cross-validation accuracy significantly due to presence of missing data variables and autoregressive process. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Hidden Markov models in automatic speech recognition

    Science.gov (United States)

    Wrzoskowicz, Adam

    1993-11-01

    This article describes a method for constructing an automatic speech recognition system based on hidden Markov models (HMMs). The author discusses the basic concepts of HMM theory and the application of these models to the analysis and recognition of speech signals. The author provides algorithms which make it possible to train the ASR system and recognize signals on the basis of distinct stochastic models of selected speech sound classes. The author describes the specific components of the system and the procedures used to model and recognize speech. The author discusses problems associated with the choice of optimal signal detection and parameterization characteristics and their effect on the performance of the system. The author presents different options for the choice of speech signal segments and their consequences for the ASR process. The author gives special attention to the use of lexical, syntactic, and semantic information for the purpose of improving the quality and efficiency of the system. The author also describes an ASR system developed by the Speech Acoustics Laboratory of the IBPT PAS. The author discusses the results of experiments on the effect of noise on the performance of the ASR system and describes methods of constructing HMM's designed to operate in a noisy environment. The author also describes a language for human-robot communications which was defined as a complex multilevel network from an HMM model of speech sounds geared towards Polish inflections. The author also added mandatory lexical and syntactic rules to the system for its communications vocabulary.

  10. Accelerating Information Retrieval from Profile Hidden Markov Model Databases.

    Directory of Open Access Journals (Sweden)

    Ahmad Tamimi

    Full Text Available Profile Hidden Markov Model (Profile-HMM is an efficient statistical approach to represent protein families. Currently, several databases maintain valuable protein sequence information as profile-HMMs. There is an increasing interest to improve the efficiency of searching Profile-HMM databases to detect sequence-profile or profile-profile homology. However, most efforts to enhance searching efficiency have been focusing on improving the alignment algorithms. Although the performance of these algorithms is fairly acceptable, the growing size of these databases, as well as the increasing demand for using batch query searching approach, are strong motivations that call for further enhancement of information retrieval from profile-HMM databases. This work presents a heuristic method to accelerate the current profile-HMM homology searching approaches. The method works by cluster-based remodeling of the database to reduce the search space, rather than focusing on the alignment algorithms. Using different clustering techniques, 4284 TIGRFAMs profiles were clustered based on their similarities. A representative for each cluster was assigned. To enhance sensitivity, we proposed an extended step that allows overlapping among clusters. A validation benchmark of 6000 randomly selected protein sequences was used to query the clustered profiles. To evaluate the efficiency of our approach, speed and recall values were measured and compared with the sequential search approach. Using hierarchical, k-means, and connected component clustering techniques followed by the extended overlapping step, we obtained an average reduction in time of 41%, and an average recall of 96%. Our results demonstrate that representation of profile-HMMs using a clustering-based approach can significantly accelerate data retrieval from profile-HMM databases.

  11. Using hidden Markov models to align multiple sequences.

    Science.gov (United States)

    Mount, David W

    2009-07-01

    A hidden Markov model (HMM) is a probabilistic model of a multiple sequence alignment (msa) of proteins. In the model, each column of symbols in the alignment is represented by a frequency distribution of the symbols (called a "state"), and insertions and deletions are represented by other states. One moves through the model along a particular path from state to state in a Markov chain (i.e., random choice of next move), trying to match a given sequence. The next matching symbol is chosen from each state, recording its probability (frequency) and also the probability of going to that state from a previous one (the transition probability). State and transition probabilities are multiplied to obtain a probability of the given sequence. The hidden nature of the HMM is due to the lack of information about the value of a specific state, which is instead represented by a probability distribution over all possible values. This article discusses the advantages and disadvantages of HMMs in msa and presents algorithms for calculating an HMM and the conditions for producing the best HMM.

  12. Enhancing Speech Recognition Using Improved Particle Swarm Optimization Based Hidden Markov Model

    Directory of Open Access Journals (Sweden)

    Lokesh Selvaraj

    2014-01-01

    Full Text Available Enhancing speech recognition is the primary intention of this work. In this paper a novel speech recognition method based on vector quantization and improved particle swarm optimization (IPSO is suggested. The suggested methodology contains four stages, namely, (i denoising, (ii feature mining (iii, vector quantization, and (iv IPSO based hidden Markov model (HMM technique (IP-HMM. At first, the speech signals are denoised using median filter. Next, characteristics such as peak, pitch spectrum, Mel frequency Cepstral coefficients (MFCC, mean, standard deviation, and minimum and maximum of the signal are extorted from the denoised signal. Following that, to accomplish the training process, the extracted characteristics are given to genetic algorithm based codebook generation in vector quantization. The initial populations are created by selecting random code vectors from the training set for the codebooks for the genetic algorithm process and IP-HMM helps in doing the recognition. At this point the creativeness will be done in terms of one of the genetic operation crossovers. The proposed speech recognition technique offers 97.14% accuracy.

  13. Name segmentation using hidden Markov models and its application in record linkage

    Directory of Open Access Journals (Sweden)

    Rita de Cassia Braga Gonçalves

    2014-10-01

    Full Text Available This study aimed to evaluate the use of hidden Markov models (HMM for the segmentation of person names and its influence on record linkage. A HMM was applied to the segmentation of patient’s and mother’s names in the databases of the Mortality Information System (SIM, Information Subsystem for High Complexity Procedures (APAC, and Hospital Information System (AIH. A sample of 200 patients from each database was segmented via HMM, and the results were compared to those from segmentation by the authors. The APAC-SIM and APAC-AIH databases were linked using three different segmentation strategies, one of which used HMM. Conformity of segmentation via HMM varied from 90.5% to 92.5%. The different segmentation strategies yielded similar results in the record linkage process. This study suggests that segmentation of Brazilian names via HMM is no more effective than traditional segmentation approaches in the linkage process.

  14. Coding with partially hidden Markov models

    DEFF Research Database (Denmark)

    Forchhammer, Søren; Rissanen, J.

    1995-01-01

    Partially hidden Markov models (PHMM) are introduced. They are a variation of the hidden Markov models (HMM) combining the power of explicit conditioning on past observations and the power of using hidden states. (P)HMM may be combined with arithmetic coding for lossless data compression. A general...... 2-part coding scheme for given model order but unknown parameters based on PHMM is presented. A forward-backward reestimation of parameters with a redefined backward variable is given for these models and used for estimating the unknown parameters. Proof of convergence of this reestimation is given....... The PHMM structure and the conditions of the convergence proof allows for application of the PHMM to image coding. Relations between the PHMM and hidden Markov models (HMM) are treated. Results of coding bi-level images with the PHMM coding scheme is given. The results indicate that the PHMM can adapt...

  15. Enhanced Map-Matching Algorithm with a Hidden Markov Model for Mobile Phone Positioning

    Directory of Open Access Journals (Sweden)

    An Luo

    2017-10-01

    Full Text Available Numerous map-matching techniques have been developed to improve positioning, using Global Positioning System (GPS data and other sensors. However, most existing map-matching algorithms process GPS data with high sampling rates, to achieve a higher correct rate and strong universality. This paper introduces a novel map-matching algorithm based on a hidden Markov model (HMM for GPS positioning and mobile phone positioning with a low sampling rate. The HMM is a statistical model well known for providing solutions to temporal recognition applications such as text and speech recognition. In this work, the hidden Markov chain model was built to establish a map-matching process, using the geometric data, the topologies matrix of road links in road network and refined quad-tree data structure. HMM-based map-matching exploits the Viterbi algorithm to find the optimized road link sequence. The sequence consists of hidden states in the HMM model. The HMM-based map-matching algorithm is validated on a vehicle trajectory using GPS and mobile phone data. The results show a significant improvement in mobile phone positioning and high and low sampling of GPS data.

  16. Genetic Algorithms Principles Towards Hidden Markov Model

    Directory of Open Access Journals (Sweden)

    Nabil M. Hewahi

    2011-10-01

    Full Text Available In this paper we propose a general approach based on Genetic Algorithms (GAs to evolve Hidden Markov Models (HMM. The problem appears when experts assign probability values for HMM, they use only some limited inputs. The assigned probability values might not be accurate to serve in other cases related to the same domain. We introduce an approach based on GAs to find
    out the suitable probability values for the HMM to be mostly correct in more cases than what have been used to assign the probability values.

  17. Two-Stage Hidden Markov Model in Gesture Recognition for Human Robot Interaction

    Directory of Open Access Journals (Sweden)

    Nhan Nguyen-Duc-Thanh

    2012-07-01

    Full Text Available Hidden Markov Model (HMM is very rich in mathematical structure and hence can form the theoretical basis for use in a wide range of applications including gesture representation. Most research in this field, however, uses only HMM for recognizing simple gestures, while HMM can definitely be applied for whole gesture meaning recognition. This is very effectively applicable in Human-Robot Interaction (HRI. In this paper, we introduce an approach for HRI in which not only the human can naturally control the robot by hand gesture, but also the robot can recognize what kind of task it is executing. The main idea behind this method is the 2-stages Hidden Markov Model. The 1st HMM is to recognize the prime command-like gestures. Based on the sequence of prime gestures that are recognized from the 1st stage and which represent the whole action, the 2nd HMM plays a role in task recognition. Another contribution of this paper is that we use the output Mixed Gaussian distribution in HMM to improve the recognition rate. In the experiment, we also complete a comparison of the different number of hidden states and mixture components to obtain the optimal one, and compare to other methods to evaluate this performance.

  18. An Analysis and Implementation of the Hidden Markov Model to Technology Stock Prediction

    Directory of Open Access Journals (Sweden)

    Nguyet Nguyen

    2017-11-01

    Full Text Available Future stock prices depend on many internal and external factors that are not easy to evaluate. In this paper, we use the Hidden Markov Model, (HMM, to predict a daily stock price of three active trading stocks: Apple, Google, and Facebook, based on their historical data. We first use the Akaike information criterion (AIC and Bayesian information criterion (BIC to choose the numbers of states from HMM. We then use the models to predict close prices of these three stocks using both single observation data and multiple observation data. Finally, we use the predictions as signals for trading these stocks. The criteria tests’ results showed that HMM with two states worked the best among two, three and four states for the three stocks. Our results also demonstrate that the HMM outperformed the naïve method in forecasting stock prices. The results also showed that active traders using HMM got a higher return than using the naïve forecast for Facebook and Google stocks. The stock price prediction method has a significant impact on stock trading and derivative hedging.

  19. Implementation of a Tour Guide Robot System Using RFID Technology and Viterbi Algorithm-Based HMM for Speech Recognition

    Directory of Open Access Journals (Sweden)

    Neng-Sheng Pai

    2014-01-01

    Full Text Available This paper applied speech recognition and RFID technologies to develop an omni-directional mobile robot into a robot with voice control and guide introduction functions. For speech recognition, the speech signals were captured by short-time processing. The speaker first recorded the isolated words for the robot to create speech database of specific speakers. After the speech pre-processing of this speech database, the feature parameters of cepstrum and delta-cepstrum were obtained using linear predictive coefficient (LPC. Then, the Hidden Markov Model (HMM was used for model training of the speech database, and the Viterbi algorithm was used to find an optimal state sequence as the reference sample for speech recognition. The trained reference model was put into the industrial computer on the robot platform, and the user entered the isolated words to be tested. After processing by the same reference model and comparing with previous reference model, the path of the maximum total probability in various models found using the Viterbi algorithm in the recognition was the recognition result. Finally, the speech recognition and RFID systems were achieved in an actual environment to prove its feasibility and stability, and implemented into the omni-directional mobile robot.

  20. A Framework for Bioacoustic Vocalization Analysis Using Hidden Markov Models

    Directory of Open Access Journals (Sweden)

    Ebenezer Out-Nyarko

    2009-11-01

    Full Text Available Using Hidden Markov Models (HMMs as a recognition framework for automatic classification of animal vocalizations has a number of benefits, including the ability to handle duration variability through nonlinear time alignment, the ability to incorporate complex language or recognition constraints, and easy extendibility to continuous recognition and detection domains. In this work, we apply HMMs to several different species and bioacoustic tasks using generalized spectral features that can be easily adjusted across species and HMM network topologies suited to each task. This experimental work includes a simple call type classification task using one HMM per vocalization for repertoire analysis of Asian elephants, a language-constrained song recognition task using syllable models as base units for ortolan bunting vocalizations, and a stress stimulus differentiation task in poultry vocalizations using a non-sequential model via a one-state HMM with Gaussian mixtures. Results show strong performance across all tasks and illustrate the flexibility of the HMM framework for a variety of species, vocalization types, and analysis tasks.

  1. HMM-based lexicon-driven and lexicon-free word recognition for online handwritten Indic scripts.

    Science.gov (United States)

    Bharath, A; Madhvanath, Sriganesh

    2012-04-01

    Research for recognizing online handwritten words in Indic scripts is at its early stages when compared to Latin and Oriental scripts. In this paper, we address this problem specifically for two major Indic scripts--Devanagari and Tamil. In contrast to previous approaches, the techniques we propose are largely data driven and script independent. We propose two different techniques for word recognition based on Hidden Markov Models (HMM): lexicon driven and lexicon free. The lexicon-driven technique models each word in the lexicon as a sequence of symbol HMMs according to a standard symbol writing order derived from the phonetic representation. The lexicon-free technique uses a novel Bag-of-Symbols representation of the handwritten word that is independent of symbol order and allows rapid pruning of the lexicon. On handwritten Devanagari word samples featuring both standard and nonstandard symbol writing orders, a combination of lexicon-driven and lexicon-free recognizers significantly outperforms either of them used in isolation. In contrast, most Tamil word samples feature the standard symbol order, and the lexicon-driven recognizer outperforms the lexicon free one as well as their combination. The best recognition accuracies obtained for 20,000 word lexicons are 87.13 percent for Devanagari when the two recognizers are combined, and 91.8 percent for Tamil using the lexicon-driven technique.

  2. A Self-Adaptive Hidden Markov Model for Emotion Classification in Chinese Microblogs

    Directory of Open Access Journals (Sweden)

    Li Liu

    2015-01-01

    we propose a modified version of hidden Markov model (HMM classifier, called self-adaptive HMM, whose parameters are optimized by Particle Swarm Optimization algorithms. Since manually labeling large-scale dataset is difficult, we also employ the entropy to decide whether a new unlabeled tweet shall be contained in the training dataset after being assigned an emotion using our HMM-based approach. In the experiment, we collected about 200,000 Chinese tweets from Sina Weibo. The results show that the F-score of our approach gets 76% on happiness and fear and 65% on anger, surprise, and sadness. In addition, the self-adaptive HMM classifier outperforms Naive Bayes and Support Vector Machine on recognition of happiness, anger, and sadness.

  3. Compact Acoustic Models for Embedded Speech Recognition

    Directory of Open Access Journals (Sweden)

    Lévy Christophe

    2009-01-01

    Full Text Available Speech recognition applications are known to require a significant amount of resources. However, embedded speech recognition only authorizes few KB of memory, few MIPS, and small amount of training data. In order to fit the resource constraints of embedded applications, an approach based on a semicontinuous HMM system using state-independent acoustic modelling is proposed. A transformation is computed and applied to the global model in order to obtain each HMM state-dependent probability density functions, authorizing to store only the transformation parameters. This approach is evaluated on two tasks: digit and voice-command recognition. A fast adaptation technique of acoustic models is also proposed. In order to significantly reduce computational costs, the adaptation is performed only on the global model (using related speaker recognition adaptation techniques with no need for state-dependent data. The whole approach results in a relative gain of more than 20% compared to a basic HMM-based system fitting the constraints.

  4. Multi-category micro-milling tool wear monitoring with continuous hidden Markov models

    Science.gov (United States)

    Zhu, Kunpeng; Wong, Yoke San; Hong, Geok Soon

    2009-02-01

    In-process monitoring of tool conditions is important in micro-machining due to the high precision requirement and high tool wear rate. Tool condition monitoring in micro-machining poses new challenges compared to conventional machining. In this paper, a multi-category classification approach is proposed for tool flank wear state identification in micro-milling. Continuous Hidden Markov models (HMMs) are adapted for modeling of the tool wear process in micro-milling, and estimation of the tool wear state given the cutting force features. For a noise-robust approach, the HMM outputs are connected via a medium filter to minimize the tool state before entry into the next state due to high noise level. A detailed study on the selection of HMM structures for tool condition monitoring (TCM) is presented. Case studies on the tool state estimation in the micro-milling of pure copper and steel demonstrate the effectiveness and potential of these methods.

  5. SVM-dependent pairwise HMM: an application to protein pairwise alignments.

    Science.gov (United States)

    Orlando, Gabriele; Raimondi, Daniele; Khan, Taushif; Lenaerts, Tom; Vranken, Wim F

    2017-12-15

    Methods able to provide reliable protein alignments are crucial for many bioinformatics applications. In the last years many different algorithms have been developed and various kinds of information, from sequence conservation to secondary structure, have been used to improve the alignment performances. This is especially relevant for proteins with highly divergent sequences. However, recent works suggest that different features may have different importance in diverse protein classes and it would be an advantage to have more customizable approaches, capable to deal with different alignment definitions. Here we present Rigapollo, a highly flexible pairwise alignment method based on a pairwise HMM-SVM that can use any type of information to build alignments. Rigapollo lets the user decide the optimal features to align their protein class of interest. It outperforms current state of the art methods on two well-known benchmark datasets when aligning highly divergent sequences. A Python implementation of the algorithm is available at http://ibsquare.be/rigapollo. wim.vranken@vub.be. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  6. A state-based probabilistic model for tumor respiratory motion prediction

    International Nuclear Information System (INIS)

    Kalet, Alan; Sandison, George; Schmitz, Ruth; Wu Huanmei

    2010-01-01

    This work proposes a new probabilistic mathematical model for predicting tumor motion and position based on a finite state representation using the natural breathing states of exhale, inhale and end of exhale. Tumor motion was broken down into linear breathing states and sequences of states. Breathing state sequences and the observables representing those sequences were analyzed using a hidden Markov model (HMM) to predict the future sequences and new observables. Velocities and other parameters were clustered using a k-means clustering algorithm to associate each state with a set of observables such that a prediction of state also enables a prediction of tumor velocity. A time average model with predictions based on average past state lengths was also computed. State sequences which are known a priori to fit the data were fed into the HMM algorithm to set a theoretical limit of the predictive power of the model. The effectiveness of the presented probabilistic model has been evaluated for gated radiation therapy based on previously tracked tumor motion in four lung cancer patients. Positional prediction accuracy is compared with actual position in terms of the overall RMS errors. Various system delays, ranging from 33 to 1000 ms, were tested. Previous studies have shown duty cycles for latencies of 33 and 200 ms at around 90% and 80%, respectively, for linear, no prediction, Kalman filter and ANN methods as averaged over multiple patients. At 1000 ms, the previously reported duty cycles range from approximately 62% (ANN) down to 34% (no prediction). Average duty cycle for the HMM method was found to be 100% and 91 ± 3% for 33 and 200 ms latency and around 40% for 1000 ms latency in three out of four breathing motion traces. RMS errors were found to be lower than linear and no prediction methods at latencies of 1000 ms. The results show that for system latencies longer than 400 ms, the time average HMM prediction outperforms linear, no prediction, and the more

  7. A hidden Markov model approach for determining expression from genomic tiling micro arrays

    Directory of Open Access Journals (Sweden)

    Krogh Anders

    2006-05-01

    Full Text Available Abstract Background Genomic tiling micro arrays have great potential for identifying previously undiscovered coding as well as non-coding transcription. To-date, however, analyses of these data have been performed in an ad hoc fashion. Results We present a probabilistic procedure, ExpressHMM, that adaptively models tiling data prior to predicting expression on genomic sequence. A hidden Markov model (HMM is used to model the distributions of tiling array probe scores in expressed and non-expressed regions. The HMM is trained on sets of probes mapped to regions of annotated expression and non-expression. Subsequently, prediction of transcribed fragments is made on tiled genomic sequence. The prediction is accompanied by an expression probability curve for visual inspection of the supporting evidence. We test ExpressHMM on data from the Cheng et al. (2005 tiling array experiments on ten Human chromosomes 1. Results can be downloaded and viewed from our web site 2. Conclusion The value of adaptive modelling of fluorescence scores prior to categorisation into expressed and non-expressed probes is demonstrated. Our results indicate that our adaptive approach is superior to the previous analysis in terms of nucleotide sensitivity and transfrag specificity.

  8. A first approach to Arrhythmogenic Cardiomyopathy detection through ECG and Hidden Markov Models

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez-Serrano, S.; Sanz Sanchez, J.; Martínez Hinarejos, C.D.; Igual Muñoz, B.; Millet Roig, J.; Zorio Grima, Z.; Castells, F.

    2016-07-01

    Arrhythmogenic Cardiomyopathy (ACM) is a heritable cardiac disease causing sudden cardiac death in young people. Its clinical diagnosis includes major and minor criteria based on alterations of the electrocardiogram (ECG). The aim of this study is to evaluate Hidden Markov Models (HMM) in order to assess its possible potential of classification among subjects affected by ACM and those relatives who do not suffer the disease through 12-lead ECG recordings. Database consists of 12-lead ECG recordings from 32 patients diagnosed with ACM, and 37 relatives of those affected, but without gene mutation. Using the HTK toolkit and a hold-out strategy in order to train and evaluate a set of HMM models, we performed a grid search through the number of states and Gaussians across these HMM models. Results show that two different HMM models achieved the best balance between sensibility and specificity. The first one needed 35 states and 2 Gaussians and its performance was 0.7 and 0.8 in sensibility and specificity respectively. The second one achieved a sensibility and specificity values of 0.8 and 0.7 respectively with 50 states and 4 Gaussians. The results of this study show that HMM models can achieve an acceptable level of sensibility and specificity in the classification among ECG registers between those affected by ACM and the control group. All the above suggest that this approach could help to detect the disease in a non-invasive way, especially within the context of family screening, improving sensitivity in detection by ECG. (Author)

  9. Evolving the structure of hidden Markov Models

    DEFF Research Database (Denmark)

    won, K. J.; Prugel-Bennett, A.; Krogh, A.

    2006-01-01

    A genetic algorithm (GA) is proposed for finding the structure of hidden Markov Models (HMMs) used for biological sequence analysis. The GA is designed to preserve biologically meaningful building blocks. The search through the space of HMM structures is combined with optimization of the emission...... and transition probabilities using the classic Baum-Welch algorithm. The system is tested on the problem of finding the promoter and coding region of C. jejuni. The resulting HMM has a superior discrimination ability to a handcrafted model that has been published in the literature....

  10. Detecting Structural Breaks using Hidden Markov Models

    DEFF Research Database (Denmark)

    Ntantamis, Christos

    Testing for structural breaks and identifying their location is essential for econometric modeling. In this paper, a Hidden Markov Model (HMM) approach is used in order to perform these tasks. Breaks are defined as the data points where the underlying Markov Chain switches from one state to another....... The estimation of the HMM is conducted using a variant of the Iterative Conditional Expectation-Generalized Mixture (ICE-GEMI) algorithm proposed by Delignon et al. (1997), that permits analysis of the conditional distributions of economic data and allows for different functional forms across regimes...

  11. A Method for Driving Route Predictions Based on Hidden Markov Model

    Directory of Open Access Journals (Sweden)

    Ning Ye

    2015-01-01

    Full Text Available We present a driving route prediction method that is based on Hidden Markov Model (HMM. This method can accurately predict a vehicle’s entire route as early in a trip’s lifetime as possible without inputting origins and destinations beforehand. Firstly, we propose the route recommendation system architecture, where route predictions play important role in the system. Secondly, we define a road network model, normalize each of driving routes in the rectangular coordinate system, and build the HMM to make preparation for route predictions using a method of training set extension based on K-means++ and the add-one (Laplace smoothing technique. Thirdly, we present the route prediction algorithm. Finally, the experimental results of the effectiveness of the route predictions that is based on HMM are shown.

  12. zipHMMlib: a highly optimised HMM library exploiting repetitions in the input to speed up the forward algorithm.

    Science.gov (United States)

    Sand, Andreas; Kristiansen, Martin; Pedersen, Christian N S; Mailund, Thomas

    2013-11-22

    Hidden Markov models are widely used for genome analysis as they combine ease of modelling with efficient analysis algorithms. Calculating the likelihood of a model using the forward algorithm has worst case time complexity linear in the length of the sequence and quadratic in the number of states in the model. For genome analysis, however, the length runs to millions or billions of observations, and when maximising the likelihood hundreds of evaluations are often needed. A time efficient forward algorithm is therefore a key ingredient in an efficient hidden Markov model library. We have built a software library for efficiently computing the likelihood of a hidden Markov model. The library exploits commonly occurring substrings in the input to reuse computations in the forward algorithm. In a pre-processing step our library identifies common substrings and builds a structure over the computations in the forward algorithm which can be reused. This analysis can be saved between uses of the library and is independent of concrete hidden Markov models so one preprocessing can be used to run a number of different models.Using this library, we achieve up to 78 times shorter wall-clock time for realistic whole-genome analyses with a real and reasonably complex hidden Markov model. In one particular case the analysis was performed in less than 8 minutes compared to 9.6 hours for the previously fastest library. We have implemented the preprocessing procedure and forward algorithm as a C++ library, zipHMM, with Python bindings for use in scripts. The library is available at http://birc.au.dk/software/ziphmm/.

  13. Inference with constrained hidden Markov models in PRISM

    DEFF Research Database (Denmark)

    Christiansen, Henning; Have, Christian Theil; Lassen, Ole Torp

    2010-01-01

    A Hidden Markov Model (HMM) is a common statistical model which is widely used for analysis of biological sequence data and other sequential phenomena. In the present paper we show how HMMs can be extended with side-constraints and present constraint solving techniques for efficient inference. De......_different are integrated. We experimentally validate our approach on the biologically motivated problem of global pairwise alignment.......A Hidden Markov Model (HMM) is a common statistical model which is widely used for analysis of biological sequence data and other sequential phenomena. In the present paper we show how HMMs can be extended with side-constraints and present constraint solving techniques for efficient inference...

  14. A Constraint Model for Constrained Hidden Markov Models

    DEFF Research Database (Denmark)

    Christiansen, Henning; Have, Christian Theil; Lassen, Ole Torp

    2009-01-01

    A Hidden Markov Model (HMM) is a common statistical model which is widely used for analysis of biological sequence data and other sequential phenomena. In the present paper we extend HMMs with constraints and show how the familiar Viterbi algorithm can be generalized, based on constraint solving ...

  15. A Two-Channel Training Algorithm for Hidden Markov Model and Its Application to Lip Reading

    Directory of Open Access Journals (Sweden)

    Foo Say Wei

    2005-01-01

    Full Text Available Hidden Markov model (HMM has been a popular mathematical approach for sequence classification such as speech recognition since 1980s. In this paper, a novel two-channel training strategy is proposed for discriminative training of HMM. For the proposed training strategy, a novel separable-distance function that measures the difference between a pair of training samples is adopted as the criterion function. The symbol emission matrix of an HMM is split into two channels: a static channel to maintain the validity of the HMM and a dynamic channel that is modified to maximize the separable distance. The parameters of the two-channel HMM are estimated by iterative application of expectation-maximization (EM operations. As an example of the application of the novel approach, a hierarchical speaker-dependent visual speech recognition system is trained using the two-channel HMMs. Results of experiments on identifying a group of confusable visemes indicate that the proposed approach is able to increase the recognition accuracy by an average of 20% compared with the conventional HMMs that are trained with the Baum-Welch estimation.

  16. Forecasting oil price trends using wavelets and hidden Markov models

    International Nuclear Information System (INIS)

    Souza e Silva, Edmundo G. de; Souza e Silva, Edmundo A. de; Legey, Luiz F.L.

    2010-01-01

    The crude oil price is influenced by a great number of factors, most of which interact in very complex ways. For this reason, forecasting it through a fundamentalist approach is a difficult task. An alternative is to use time series methodologies, with which the price's past behavior is conveniently analyzed, and used to predict future movements. In this paper, we investigate the usefulness of a nonlinear time series model, known as hidden Markov model (HMM), to predict future crude oil price movements. Using an HMM, we develop a forecasting methodology that consists of, basically, three steps. First, we employ wavelet analysis to remove high frequency price movements, which can be assumed as noise. Then, the HMM is used to forecast the probability distribution of the price return accumulated over the next F days. Finally, from this distribution, we infer future price trends. Our results indicate that the proposed methodology might be a useful decision support tool for agents participating in the crude oil market. (author)

  17. Score-based prediction of genomic islands in prokaryotic genomes using hidden Markov models

    Directory of Open Access Journals (Sweden)

    Surovcik Katharina

    2006-03-01

    Full Text Available Abstract Background Horizontal gene transfer (HGT is considered a strong evolutionary force shaping the content of microbial genomes in a substantial manner. It is the difference in speed enabling the rapid adaptation to changing environmental demands that distinguishes HGT from gene genesis, duplications or mutations. For a precise characterization, algorithms are needed that identify transfer events with high reliability. Frequently, the transferred pieces of DNA have a considerable length, comprise several genes and are called genomic islands (GIs or more specifically pathogenicity or symbiotic islands. Results We have implemented the program SIGI-HMM that predicts GIs and the putative donor of each individual alien gene. It is based on the analysis of codon usage (CU of each individual gene of a genome under study. CU of each gene is compared against a carefully selected set of CU tables representing microbial donors or highly expressed genes. Multiple tests are used to identify putatively alien genes, to predict putative donors and to mask putatively highly expressed genes. Thus, we determine the states and emission probabilities of an inhomogeneous hidden Markov model working on gene level. For the transition probabilities, we draw upon classical test theory with the intention of integrating a sensitivity controller in a consistent manner. SIGI-HMM was written in JAVA and is publicly available. It accepts as input any file created according to the EMBL-format. It generates output in the common GFF format readable for genome browsers. Benchmark tests showed that the output of SIGI-HMM is in agreement with known findings. Its predictions were both consistent with annotated GIs and with predictions generated by different methods. Conclusion SIGI-HMM is a sensitive tool for the identification of GIs in microbial genomes. It allows to interactively analyze genomes in detail and to generate or to test hypotheses about the origin of acquired

  18. Post processing of optically recognized text via second order hidden Markov model

    Science.gov (United States)

    Poudel, Srijana

    In this thesis, we describe a postprocessing system on Optical Character Recognition(OCR) generated text. Second Order Hidden Markov Model (HMM) approach is used to detect and correct the OCR related errors. The reason for choosing the 2nd order HMM is to keep track of the bigrams so that the model can represent the system more accurately. Based on experiments with training data of 159,733 characters and testing of 5,688 characters, the model was able to correct 43.38 % of the errors with a precision of 75.34 %. However, the precision value indicates that the model introduced some new errors, decreasing the correction percentage to 26.4%.

  19. Strong convective storm nowcasting using a hybrid approach of convolutional neural network and hidden Markov model

    Science.gov (United States)

    Zhang, Wei; Jiang, Ling; Han, Lei

    2018-04-01

    Convective storm nowcasting refers to the prediction of the convective weather initiation, development, and decay in a very short term (typically 0 2 h) .Despite marked progress over the past years, severe convective storm nowcasting still remains a challenge. With the boom of machine learning, it has been well applied in various fields, especially convolutional neural network (CNN). In this paper, we build a servere convective weather nowcasting system based on CNN and hidden Markov model (HMM) using reanalysis meteorological data. The goal of convective storm nowcasting is to predict if there is a convective storm in 30min. In this paper, we compress the VDRAS reanalysis data to low-dimensional data by CNN as the observation vector of HMM, then obtain the development trend of strong convective weather in the form of time series. It shows that, our method can extract robust features without any artificial selection of features, and can capture the development trend of strong convective storm.

  20. HPeak: an HMM-based algorithm for defining read-enriched regions in ChIP-Seq data

    Directory of Open Access Journals (Sweden)

    Maher Christopher A

    2010-07-01

    Full Text Available Abstract Background Protein-DNA interaction constitutes a basic mechanism for the genetic regulation of target gene expression. Deciphering this mechanism has been a daunting task due to the difficulty in characterizing protein-bound DNA on a large scale. A powerful technique has recently emerged that couples chromatin immunoprecipitation (ChIP with next-generation sequencing, (ChIP-Seq. This technique provides a direct survey of the cistrom of transcription factors and other chromatin-associated proteins. In order to realize the full potential of this technique, increasingly sophisticated statistical algorithms have been developed to analyze the massive amount of data generated by this method. Results Here we introduce HPeak, a Hidden Markov model (HMM-based Peak-finding algorithm for analyzing ChIP-Seq data to identify protein-interacting genomic regions. In contrast to the majority of available ChIP-Seq analysis software packages, HPeak is a model-based approach allowing for rigorous statistical inference. This approach enables HPeak to accurately infer genomic regions enriched with sequence reads by assuming realistic probability distributions, in conjunction with a novel weighting scheme on the sequencing read coverage. Conclusions Using biologically relevant data collections, we found that HPeak showed a higher prevalence of the expected transcription factor binding motifs in ChIP-enriched sequences relative to the control sequences when compared to other currently available ChIP-Seq analysis approaches. Additionally, in comparison to the ChIP-chip assay, ChIP-Seq provides higher resolution along with improved sensitivity and specificity of binding site detection. Additional file and the HPeak program are freely available at http://www.sph.umich.edu/csg/qin/HPeak.

  1. QRS complex detection based on continuous density hidden Markov models using univariate observations

    Science.gov (United States)

    Sotelo, S.; Arenas, W.; Altuve, M.

    2018-04-01

    In the electrocardiogram (ECG), the detection of QRS complexes is a fundamental step in the ECG signal processing chain since it allows the determination of other characteristics waves of the ECG and provides information about heart rate variability. In this work, an automatic QRS complex detector based on continuous density hidden Markov models (HMM) is proposed. HMM were trained using univariate observation sequences taken either from QRS complexes or their derivatives. The detection approach is based on the log-likelihood comparison of the observation sequence with a fixed threshold. A sliding window was used to obtain the observation sequence to be evaluated by the model. The threshold was optimized by receiver operating characteristic curves. Sensitivity (Sen), specificity (Spc) and F1 score were used to evaluate the detection performance. The approach was validated using ECG recordings from the MIT-BIH Arrhythmia database. A 6-fold cross-validation shows that the best detection performance was achieved with 2 states HMM trained with QRS complexes sequences (Sen = 0.668, Spc = 0.360 and F1 = 0.309). We concluded that these univariate sequences provide enough information to characterize the QRS complex dynamics from HMM. Future works are directed to the use of multivariate observations to increase the detection performance.

  2. Classification of Multiple Seizure-Like States in Three Different Rodent Models of Epileptogenesis.

    Science.gov (United States)

    Guirgis, Mirna; Serletis, Demitre; Zhang, Jane; Florez, Carlos; Dian, Joshua A; Carlen, Peter L; Bardakjian, Berj L

    2014-01-01

    Epilepsy is a dynamical disease and its effects are evident in over fifty million people worldwide. This study focused on objective classification of the multiple states involved in the brain's epileptiform activity. Four datasets from three different rodent hippocampal preparations were explored, wherein seizure-like-events (SLE) were induced by the perfusion of a low - Mg(2+) /high-K(+) solution or 4-Aminopyridine. Local field potentials were recorded from CA3 pyramidal neurons and interneurons and modeled as Markov processes. Specifically, hidden Markov models (HMM) were used to determine the nature of the states present. Properties of the Hilbert transform were used to construct the feature spaces for HMM training. By sequentially applying the HMM training algorithm, multiple states were identified both in episodes of SLE and nonSLE activity. Specifically, preSLE and postSLE states were differentiated and multiple inner SLE states were identified. This was accomplished using features extracted from the lower frequencies (1-4 Hz, 4-8 Hz) alongside those of both the low- (40-100 Hz) and high-gamma (100-200 Hz) of the recorded electrical activity. The learning paradigm of this HMM-based system eliminates the inherent bias associated with other learning algorithms that depend on predetermined state segmentation and renders it an appropriate candidate for SLE classification.

  3. Hidden Markov modeling of frequency-following responses to Mandarin lexical tones.

    Science.gov (United States)

    Llanos, Fernando; Xie, Zilong; Chandrasekaran, Bharath

    2017-11-01

    The frequency-following response (FFR) is a scalp-recorded electrophysiological potential reflecting phase-locked activity from neural ensembles in the auditory system. The FFR is often used to assess the robustness of subcortical pitch processing. Due to low signal-to-noise ratio at the single-trial level, FFRs are typically averaged across thousands of stimulus repetitions. Prior work using this approach has shown that subcortical encoding of linguistically-relevant pitch patterns is modulated by long-term language experience. We examine the extent to which a machine learning approach using hidden Markov modeling (HMM) can be utilized to decode Mandarin tone-categories from scalp-record electrophysiolgical activity. We then assess the extent to which the HMM can capture biologically-relevant effects (language experience-driven plasticity). To this end, we recorded FFRs to four Mandarin tones from 14 adult native speakers of Chinese and 14 of native English. We trained a HMM to decode tone categories from the FFRs with varying size of averages. Tone categories were decoded with above-chance accuracies using HMM. The HMM derived metric (decoding accuracy) revealed a robust effect of language experience, such that FFRs from native Chinese speakers yielded greater accuracies than native English speakers. Critically, the language experience-driven plasticity was captured with average sizes significantly smaller than those used in the extant literature. Our results demonstrate the feasibility of HMM in assessing the robustness of neural pitch. Machine-learning approaches can complement extant analytical methods that capture auditory function and could reduce the number of trials needed to capture biological phenomena. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Hidden Markov models for labeled sequences

    DEFF Research Database (Denmark)

    Krogh, Anders Stærmose

    1994-01-01

    A hidden Markov model for labeled observations, called a class HMM, is introduced and a maximum likelihood method is developed for estimating the parameters of the model. Instead of training it to model the statistics of the training sequences it is trained to optimize recognition. It resembles MMI...

  5. Dual Sticky Hierarchical Dirichlet Process Hidden Markov Model and Its Application to Natural Language Description of Motions.

    Science.gov (United States)

    Hu, Weiming; Tian, Guodong; Kang, Yongxin; Yuan, Chunfeng; Maybank, Stephen

    2017-09-25

    In this paper, a new nonparametric Bayesian model called the dual sticky hierarchical Dirichlet process hidden Markov model (HDP-HMM) is proposed for mining activities from a collection of time series data such as trajectories. All the time series data are clustered. Each cluster of time series data, corresponding to a motion pattern, is modeled by an HMM. Our model postulates a set of HMMs that share a common set of states (topics in an analogy with topic models for document processing), but have unique transition distributions. For the application to motion trajectory modeling, topics correspond to motion activities. The learnt topics are clustered into atomic activities which are assigned predicates. We propose a Bayesian inference method to decompose a given trajectory into a sequence of atomic activities. On combining the learnt sources and sinks, semantic motion regions, and the learnt sequence of atomic activities, the action represented by the trajectory can be described in natural language in as automatic a way as possible. The effectiveness of our dual sticky HDP-HMM is validated on several trajectory datasets. The effectiveness of the natural language descriptions for motions is demonstrated on the vehicle trajectories extracted from a traffic scene.

  6. Partially Hidden Markov Models

    DEFF Research Database (Denmark)

    Forchhammer, Søren Otto; Rissanen, Jorma

    1996-01-01

    Partially Hidden Markov Models (PHMM) are introduced. They differ from the ordinary HMM's in that both the transition probabilities of the hidden states and the output probabilities are conditioned on past observations. As an illustration they are applied to black and white image compression where...

  7. A Novel Entropy-Based Decoding Algorithm for a Generalized High-Order Discrete Hidden Markov Model

    Directory of Open Access Journals (Sweden)

    Jason Chin-Tiong Chan

    2018-01-01

    Full Text Available The optimal state sequence of a generalized High-Order Hidden Markov Model (HHMM is tracked from a given observational sequence using the classical Viterbi algorithm. This classical algorithm is based on maximum likelihood criterion. We introduce an entropy-based Viterbi algorithm for tracking the optimal state sequence of a HHMM. The entropy of a state sequence is a useful quantity, providing a measure of the uncertainty of a HHMM. There will be no uncertainty if there is only one possible optimal state sequence for HHMM. This entropy-based decoding algorithm can be formulated in an extended or a reduction approach. We extend the entropy-based algorithm for computing the optimal state sequence that was developed from a first-order to a generalized HHMM with a single observational sequence. This extended algorithm performs the computation exponentially with respect to the order of HMM. The computational complexity of this extended algorithm is due to the growth of the model parameters. We introduce an efficient entropy-based decoding algorithm that used reduction approach, namely, entropy-based order-transformation forward algorithm (EOTFA to compute the optimal state sequence of any generalized HHMM. This EOTFA algorithm involves a transformation of a generalized high-order HMM into an equivalent first-order HMM and an entropy-based decoding algorithm is developed based on the equivalent first-order HMM. This algorithm performs the computation based on the observational sequence and it requires OTN~2 calculations, where N~ is the number of states in an equivalent first-order model and T is the length of observational sequence.

  8. Video event classification and image segmentation based on noncausal multidimensional hidden Markov models.

    Science.gov (United States)

    Ma, Xiang; Schonfeld, Dan; Khokhar, Ashfaq A

    2009-06-01

    In this paper, we propose a novel solution to an arbitrary noncausal, multidimensional hidden Markov model (HMM) for image and video classification. First, we show that the noncausal model can be solved by splitting it into multiple causal HMMs and simultaneously solving each causal HMM using a fully synchronous distributed computing framework, therefore referred to as distributed HMMs. Next we present an approximate solution to the multiple causal HMMs that is based on an alternating updating scheme and assumes a realistic sequential computing framework. The parameters of the distributed causal HMMs are estimated by extending the classical 1-D training and classification algorithms to multiple dimensions. The proposed extension to arbitrary causal, multidimensional HMMs allows state transitions that are dependent on all causal neighbors. We, thus, extend three fundamental algorithms to multidimensional causal systems, i.e., 1) expectation-maximization (EM), 2) general forward-backward (GFB), and 3) Viterbi algorithms. In the simulations, we choose to limit ourselves to a noncausal 2-D model whose noncausality is along a single dimension, in order to significantly reduce the computational complexity. Simulation results demonstrate the superior performance, higher accuracy rate, and applicability of the proposed noncausal HMM framework to image and video classification.

  9. An Introduction to Infinite HMMs for Single-Molecule Data Analysis.

    Science.gov (United States)

    Sgouralis, Ioannis; Pressé, Steve

    2017-05-23

    The hidden Markov model (HMM) has been a workhorse of single-molecule data analysis and is now commonly used as a stand-alone tool in time series analysis or in conjunction with other analysis methods such as tracking. Here, we provide a conceptual introduction to an important generalization of the HMM, which is poised to have a deep impact across the field of biophysics: the infinite HMM (iHMM). As a modeling tool, iHMMs can analyze sequential data without a priori setting a specific number of states as required for the traditional (finite) HMM. Although the current literature on the iHMM is primarily intended for audiences in statistics, the idea is powerful and the iHMM's breadth in applicability outside machine learning and data science warrants a careful exposition. Here, we explain the key ideas underlying the iHMM, with a special emphasis on implementation, and provide a description of a code we are making freely available. In a companion article, we provide an important extension of the iHMM to accommodate complications such as drift. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  10. Detecting Seismic Events Using a Supervised Hidden Markov Model

    Science.gov (United States)

    Burks, L.; Forrest, R.; Ray, J.; Young, C.

    2017-12-01

    We explore the use of supervised hidden Markov models (HMMs) to detect seismic events in streaming seismogram data. Current methods for seismic event detection include simple triggering algorithms, such as STA/LTA and the Z-statistic, which can lead to large numbers of false positives that must be investigated by an analyst. The hypothesis of this study is that more advanced detection methods, such as HMMs, may decreases false positives while maintaining accuracy similar to current methods. We train a binary HMM classifier using 2 weeks of 3-component waveform data from the International Monitoring System (IMS) that was carefully reviewed by an expert analyst to pick all seismic events. Using an ensemble of simple and discrete features, such as the triggering of STA/LTA, the HMM predicts the time at which transition occurs from noise to signal. Compared to the STA/LTA detection algorithm, the HMM detects more true events, but the false positive rate remains unacceptably high. Future work to potentially decrease the false positive rate may include using continuous features, a Gaussian HMM, and multi-class HMMs to distinguish between types of seismic waves (e.g., P-waves and S-waves). Acknowledgement: Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525.SAND No: SAND2017-8154 A

  11. Cough event classification by pretrained deep neural network.

    Science.gov (United States)

    Liu, Jia-Ming; You, Mingyu; Wang, Zheng; Li, Guo-Zheng; Xu, Xianghuai; Qiu, Zhongmin

    2015-01-01

    Cough is an essential symptom in respiratory diseases. In the measurement of cough severity, an accurate and objective cough monitor is expected by respiratory disease society. This paper aims to introduce a better performed algorithm, pretrained deep neural network (DNN), to the cough classification problem, which is a key step in the cough monitor. The deep neural network models are built from two steps, pretrain and fine-tuning, followed by a Hidden Markov Model (HMM) decoder to capture tamporal information of the audio signals. By unsupervised pretraining a deep belief network, a good initialization for a deep neural network is learned. Then the fine-tuning step is a back propogation tuning the neural network so that it can predict the observation probability associated with each HMM states, where the HMM states are originally achieved by force-alignment with a Gaussian Mixture Model Hidden Markov Model (GMM-HMM) on the training samples. Three cough HMMs and one noncough HMM are employed to model coughs and noncoughs respectively. The final decision is made based on viterbi decoding algorihtm that generates the most likely HMM sequence for each sample. A sample is labeled as cough if a cough HMM is found in the sequence. The experiments were conducted on a dataset that was collected from 22 patients with respiratory diseases. Patient dependent (PD) and patient independent (PI) experimental settings were used to evaluate the models. Five criteria, sensitivity, specificity, F1, macro average and micro average are shown to depict different aspects of the models. From overall evaluation criteria, the DNN based methods are superior to traditional GMM-HMM based method on F1 and micro average with maximal 14% and 11% error reduction in PD and 7% and 10% in PI, meanwhile keep similar performances on macro average. They also surpass GMM-HMM model on specificity with maximal 14% error reduction on both PD and PI. In this paper, we tried pretrained deep neural network in

  12. Non-intrusive gesture recognition system combining with face detection based on Hidden Markov Model

    Science.gov (United States)

    Jin, Jing; Wang, Yuanqing; Xu, Liujing; Cao, Liqun; Han, Lei; Zhou, Biye; Li, Minggao

    2014-11-01

    A non-intrusive gesture recognition human-machine interaction system is proposed in this paper. In order to solve the hand positioning problem which is a difficulty in current algorithms, face detection is used for the pre-processing to narrow the search area and find user's hand quickly and accurately. Hidden Markov Model (HMM) is used for gesture recognition. A certain number of basic gesture units are trained as HMM models. At the same time, an improved 8-direction feature vector is proposed and used to quantify characteristics in order to improve the detection accuracy. The proposed system can be applied in interaction equipments without special training for users, such as household interactive television

  13. Hidden Markov Model for quantitative prediction of snowfall

    Indian Academy of Sciences (India)

    A Hidden Markov Model (HMM) has been developed for prediction of quantitative snowfall in Pir-Panjal and Great Himalayan mountain ranges of Indian Himalaya. The model predicts snowfall for two days in advance using daily recorded nine meteorological variables of past 20 winters from 1992–2012. There are six ...

  14. A hidden Ising model for ChIP-chip data analysis

    KAUST Repository

    Mo, Q.

    2010-01-28

    Motivation: Chromatin immunoprecipitation (ChIP) coupled with tiling microarray (chip) experiments have been used in a wide range of biological studies such as identification of transcription factor binding sites and investigation of DNA methylation and histone modification. Hidden Markov models are widely used to model the spatial dependency of ChIP-chip data. However, parameter estimation for these models is typically either heuristic or suboptimal, leading to inconsistencies in their applications. To overcome this limitation and to develop an efficient software, we propose a hidden ferromagnetic Ising model for ChIP-chip data analysis. Results: We have developed a simple, but powerful Bayesian hierarchical model for ChIP-chip data via a hidden Ising model. Metropolis within Gibbs sampling algorithm is used to simulate from the posterior distribution of the model parameters. The proposed model naturally incorporates the spatial dependency of the data, and can be used to analyze data with various genomic resolutions and sample sizes. We illustrate the method using three publicly available datasets and various simulated datasets, and compare it with three closely related methods, namely TileMap HMM, tileHMM and BAC. We find that our method performs as well as TileMap HMM and BAC for the high-resolution data from Affymetrix platform, but significantly outperforms the other three methods for the low-resolution data from Agilent platform. Compared with the BAC method which also involves MCMC simulations, our method is computationally much more efficient. Availability: A software called iChip is freely available at http://www.bioconductor.org/. Contact: moq@mskcc.org. © The Author 2010. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org.

  15. Optimisation of Hidden Markov Model using Baum–Welch algorithm ...

    Indian Academy of Sciences (India)

    The present work is a part of development of Hidden Markov Model. (HMM) based ... the Himalaya. In this work, HMMs have been developed for forecasting of maximum and minimum ..... data collection teams of Snow and Avalanche Study.

  16. Modeling Strategic Use of Human Computer Interfaces with Novel Hidden Markov Models

    Directory of Open Access Journals (Sweden)

    Laura Jane Mariano

    2015-07-01

    Full Text Available Immersive software tools are virtual environments designed to give their users an augmented view of real-world data and ways of manipulating that data. As virtual environments, every action users make while interacting with these tools can be carefully logged, as can the state of the software and the information it presents to the user, giving these actions context. This data provides a high-resolution lens through which dynamic cognitive and behavioral processes can be viewed. In this report, we describe new methods for the analysis and interpretation of such data, utilizing a novel implementation of the Beta Process Hidden Markov Model (BP-HMM for analysis of software activity logs. We further report the results of a preliminary study designed to establish the validity of our modeling approach. A group of 20 participants were asked to play a simple computer game, instrumented to log every interaction with the interface. Participants had no previous experience with the game’s functionality or rules, so the activity logs collected during their naïve interactions capture patterns of exploratory behavior and skill acquisition as they attempted to learn the rules of the game. Pre- and post-task questionnaires probed for self-reported styles of problem solving, as well as task engagement, difficulty, and workload. We jointly modeled the activity log sequences collected from all participants using the BP-HMM approach, identifying a global library of activity patterns representative of the collective behavior of all the participants. Analyses show systematic relationships between both pre- and post-task questionnaires, self-reported approaches to analytic problem solving, and metrics extracted from the BP-HMM decomposition. Overall, we find that this novel approach to decomposing unstructured behavioral data within software environments provides a sensible means for understanding how users learn to integrate software functionality for strategic

  17. Automated EEG sleep staging in the term-age baby using a generative modelling approach

    Science.gov (United States)

    Pillay, Kirubin; Dereymaeker, Anneleen; Jansen, Katrien; Naulaers, Gunnar; Van Huffel, Sabine; De Vos, Maarten

    2018-06-01

    Objective. We develop a method for automated four-state sleep classification of preterm and term-born babies at term-age of 38-40 weeks postmenstrual age (the age since the last menstrual cycle of the mother) using multichannel electroencephalogram (EEG) recordings. At this critical age, EEG differentiates from broader quiet sleep (QS) and active sleep (AS) stages to four, more complex states, and the quality and timing of this differentiation is indicative of the level of brain development. However, existing methods for automated sleep classification remain focussed only on QS and AS sleep classification. Approach. EEG features were calculated from 16 EEG recordings, in 30 s epochs, and personalized feature scaling used to correct for some of the inter-recording variability, by standardizing each recording’s feature data using its mean and standard deviation. Hidden Markov models (HMMs) and Gaussian mixture models (GMMs) were trained, with the HMM incorporating knowledge of the sleep state transition probabilities. Performance of the GMM and HMM (with and without scaling) were compared, and Cohen’s kappa agreement calculated between the estimates and clinicians’ visual labels. Main results. For four-state classification, the HMM proved superior to the GMM. With the inclusion of personalized feature scaling, mean kappa (±standard deviation) was 0.62 (±0.16) compared to the GMM value of 0.55 (±0.15). Without feature scaling, kappas for the HMM and GMM dropped to 0.56 (±0.18) and 0.51 (±0.15), respectively. Significance. This is the first study to present a successful method for the automated staging of four states in term-age sleep using multichannel EEG. Results suggested a benefit in incorporating transition information using an HMM, and correcting for inter-recording variability through personalized feature scaling. Determining the timing and quality of these states are indicative of developmental delays in both preterm and term-born babies that may

  18. A stochastic HMM-based forecasting model for fuzzy time series.

    Science.gov (United States)

    Li, Sheng-Tun; Cheng, Yi-Chung

    2010-10-01

    Recently, fuzzy time series have attracted more academic attention than traditional time series due to their capability of dealing with the uncertainty and vagueness inherent in the data collected. The formulation of fuzzy relations is one of the key issues affecting forecasting results. Most of the present works adopt IF-THEN rules for relationship representation, which leads to higher computational overhead and rule redundancy. Sullivan and Woodall proposed a Markov-based formulation and a forecasting model to reduce computational overhead; however, its applicability is limited to handling one-factor problems. In this paper, we propose a novel forecasting model based on the hidden Markov model by enhancing Sullivan and Woodall's work to allow handling of two-factor forecasting problems. Moreover, in order to make the nature of conjecture and randomness of forecasting more realistic, the Monte Carlo method is adopted to estimate the outcome. To test the effectiveness of the resulting stochastic model, we conduct two experiments and compare the results with those from other models. The first experiment consists of forecasting the daily average temperature and cloud density in Taipei, Taiwan, and the second experiment is based on the Taiwan Weighted Stock Index by forecasting the exchange rate of the New Taiwan dollar against the U.S. dollar. In addition to improving forecasting accuracy, the proposed model adheres to the central limit theorem, and thus, the result statistically approximates to the real mean of the target value being forecast.

  19. Clinical Prediction Performance of Glaucoma Progression Using a 2-Dimensional Continuous-Time Hidden Markov Model with Structural and Functional Measurements.

    Science.gov (United States)

    Song, Youngseok; Ishikawa, Hiroshi; Wu, Mengfei; Liu, Yu-Ying; Lucy, Katie A; Lavinsky, Fabio; Liu, Mengling; Wollstein, Gadi; Schuman, Joel S

    2018-03-20

    Previously, we introduced a state-based 2-dimensional continuous-time hidden Markov model (2D CT HMM) to model the pattern of detected glaucoma changes using structural and functional information simultaneously. The purpose of this study was to evaluate the detected glaucoma change prediction performance of the model in a real clinical setting using a retrospective longitudinal dataset. Longitudinal, retrospective study. One hundred thirty-four eyes from 134 participants diagnosed with glaucoma or as glaucoma suspects (average follow-up, 4.4±1.2 years; average number of visits, 7.1±1.8). A 2D CT HMM model was trained using OCT (Cirrus HD-OCT; Zeiss, Dublin, CA) average circumpapillary retinal nerve fiber layer (cRNFL) thickness and visual field index (VFI) or mean deviation (MD; Humphrey Field Analyzer; Zeiss). The model was trained using a subset of the data (107 of 134 eyes [80%]) including all visits except for the last visit, which was used to test the prediction performance (training set). Additionally, the remaining 27 eyes were used for secondary performance testing as an independent group (validation set). The 2D CT HMM predicts 1 of 4 possible detected state changes based on 1 input state. Prediction accuracy was assessed as the percentage of correct prediction against the patient's actual recorded state. In addition, deviations of the predicted long-term detected change paths from the actual detected change paths were measured. Baseline mean ± standard deviation age was 61.9±11.4 years, VFI was 90.7±17.4, MD was -3.50±6.04 dB, and cRNFL thickness was 74.9±12.2 μm. The accuracy of detected glaucoma change prediction using the training set was comparable with the validation set (57.0% and 68.0%, respectively). Prediction deviation from the actual detected change path showed stability throughout patient follow-up. The 2D CT HMM demonstrated promising prediction performance in detecting glaucoma change performance in a simulated clinical setting

  20. Context Analysis of Customer Requests using a Hybrid Adaptive Neuro Fuzzy Inference System and Hidden Markov Models in the Natural Language Call Routing Problem

    Science.gov (United States)

    Rustamov, Samir; Mustafayev, Elshan; Clements, Mark A.

    2018-04-01

    The context analysis of customer requests in a natural language call routing problem is investigated in the paper. One of the most significant problems in natural language call routing is a comprehension of client request. With the aim of finding a solution to this issue, the Hybrid HMM and ANFIS models become a subject to an examination. Combining different types of models (ANFIS and HMM) can prevent misunderstanding by the system for identification of user intention in dialogue system. Based on these models, the hybrid system may be employed in various language and call routing domains due to nonusage of lexical or syntactic analysis in classification process.

  1. Context Analysis of Customer Requests using a Hybrid Adaptive Neuro Fuzzy Inference System and Hidden Markov Models in the Natural Language Call Routing Problem

    Directory of Open Access Journals (Sweden)

    Rustamov Samir

    2018-04-01

    Full Text Available The context analysis of customer requests in a natural language call routing problem is investigated in the paper. One of the most significant problems in natural language call routing is a comprehension of client request. With the aim of finding a solution to this issue, the Hybrid HMM and ANFIS models become a subject to an examination. Combining different types of models (ANFIS and HMM can prevent misunderstanding by the system for identification of user intention in dialogue system. Based on these models, the hybrid system may be employed in various language and call routing domains due to nonusage of lexical or syntactic analysis in classification process.

  2. Regime switching model for financial data: Empirical risk analysis

    Science.gov (United States)

    Salhi, Khaled; Deaconu, Madalina; Lejay, Antoine; Champagnat, Nicolas; Navet, Nicolas

    2016-11-01

    This paper constructs a regime switching model for the univariate Value-at-Risk estimation. Extreme value theory (EVT) and hidden Markov models (HMM) are combined to estimate a hybrid model that takes volatility clustering into account. In the first stage, HMM is used to classify data in crisis and steady periods, while in the second stage, EVT is applied to the previously classified data to rub out the delay between regime switching and their detection. This new model is applied to prices of numerous stocks exchanged on NYSE Euronext Paris over the period 2001-2011. We focus on daily returns for which calibration has to be done on a small dataset. The relative performance of the regime switching model is benchmarked against other well-known modeling techniques, such as stable, power laws and GARCH models. The empirical results show that the regime switching model increases predictive performance of financial forecasting according to the number of violations and tail-loss tests. This suggests that the regime switching model is a robust forecasting variant of power laws model while remaining practical to implement the VaR measurement.

  3. Learning with Admixture: Modeling, Optimization, and Applications in Population Genetics

    DEFF Research Database (Denmark)

    Cheng, Jade Yu

    2016-01-01

    the foundation for both CoalHMM and Ohana. Optimization modeling has been the main theme throughout my PhD, and it will continue to shape my work for the years to come. The algorithms and software I developed to study historical admixture and population evolution fall into a larger family of machine learning...... geneticists strive to establish working solutions to extract information from massive volumes of biological data. The steep increase in the quantity and quality of genomic data during the past decades provides a unique opportunity but also calls for new and improved algorithms and software to cope...... including population splits, effective population sizes, gene flow, etc. Since joining the CoalHMM development team in 2014, I have mainly contributed in two directions: 1) improving optimizations through heuristic-based evolutionary algorithms and 2) modeling of historical admixture events. Ohana, meaning...

  4. Mining adverse drug reactions from online healthcare forums using hidden Markov model.

    Science.gov (United States)

    Sampathkumar, Hariprasad; Chen, Xue-wen; Luo, Bo

    2014-10-23

    Adverse Drug Reactions are one of the leading causes of injury or death among patients undergoing medical treatments. Not all Adverse Drug Reactions are identified before a drug is made available in the market. Current post-marketing drug surveillance methods, which are based purely on voluntary spontaneous reports, are unable to provide the early indications necessary to prevent the occurrence of such injuries or fatalities. The objective of this research is to extract reports of adverse drug side-effects from messages in online healthcare forums and use them as early indicators to assist in post-marketing drug surveillance. We treat the task of extracting adverse side-effects of drugs from healthcare forum messages as a sequence labeling problem and present a Hidden Markov Model(HMM) based Text Mining system that can be used to classify a message as containing drug side-effect information and then extract the adverse side-effect mentions from it. A manually annotated dataset from http://www.medications.com is used in the training and validation of the HMM based Text Mining system. A 10-fold cross-validation on the manually annotated dataset yielded on average an F-Score of 0.76 from the HMM Classifier, in comparison to 0.575 from the Baseline classifier. Without the Plain Text Filter component as a part of the Text Processing module, the F-Score of the HMM Classifier was reduced to 0.378 on average, while absence of the HTML Filter component was found to have no impact. Reducing the Drug names dictionary size by half, on average reduced the F-Score of the HMM Classifier to 0.359, while a similar reduction to the side-effects dictionary yielded an F-Score of 0.651 on average. Adverse side-effects mined from http://www.medications.com and http://www.steadyhealth.com were found to match the Adverse Drug Reactions on the Drug Package Labels of several drugs. In addition, some novel adverse side-effects, which can be potential Adverse Drug Reactions, were also

  5. Activity recognition using semi-Markov models on real world smart home datasets

    NARCIS (Netherlands)

    van Kasteren, T.L.M.; Englebienne, G.; Kröse, B.J.A.

    2010-01-01

    Accurately recognizing human activities from sensor data recorded in a smart home setting is a challenging task. Typically, probabilistic models such as the hidden Markov model (HMM) or conditional random fields (CRF) are used to map the observed sensor data onto the hidden activity states. A

  6. Understanding eye movements in face recognition using hidden Markov models.

    Science.gov (United States)

    Chuk, Tim; Chan, Antoni B; Hsiao, Janet H

    2014-09-16

    We use a hidden Markov model (HMM) based approach to analyze eye movement data in face recognition. HMMs are statistical models that are specialized in handling time-series data. We conducted a face recognition task with Asian participants, and model each participant's eye movement pattern with an HMM, which summarized the participant's scan paths in face recognition with both regions of interest and the transition probabilities among them. By clustering these HMMs, we showed that participants' eye movements could be categorized into holistic or analytic patterns, demonstrating significant individual differences even within the same culture. Participants with the analytic pattern had longer response times, but did not differ significantly in recognition accuracy from those with the holistic pattern. We also found that correct and wrong recognitions were associated with distinctive eye movement patterns; the difference between the two patterns lies in the transitions rather than locations of the fixations alone. © 2014 ARVO.

  7. Segment-based acoustic models for continuous speech recognition

    Science.gov (United States)

    Ostendorf, Mari; Rohlicek, J. R.

    1993-07-01

    This research aims to develop new and more accurate stochastic models for speaker-independent continuous speech recognition, by extending previous work in segment-based modeling and by introducing a new hierarchical approach to representing intra-utterance statistical dependencies. These techniques, which are more costly than traditional approaches because of the large search space associated with higher order models, are made feasible through rescoring a set of HMM-generated N-best sentence hypotheses. We expect these different modeling techniques to result in improved recognition performance over that achieved by current systems, which handle only frame-based observations and assume that these observations are independent given an underlying state sequence. In the fourth quarter of the project, we have completed the following: (1) ported our recognition system to the Wall Street Journal task, a standard task in the ARPA community; (2) developed an initial dependency-tree model of intra-utterance observation correlation; and (3) implemented baseline language model estimation software. Our initial results on the Wall Street Journal task are quite good and represent significantly improved performance over most HMM systems reporting on the Nov. 1992 5k vocabulary test set.

  8. Graphical models for inferring single molecule dynamics

    Directory of Open Access Journals (Sweden)

    Gonzalez Ruben L

    2010-10-01

    Full Text Available Abstract Background The recent explosion of experimental techniques in single molecule biophysics has generated a variety of novel time series data requiring equally novel computational tools for analysis and inference. This article describes in general terms how graphical modeling may be used to learn from biophysical time series data using the variational Bayesian expectation maximization algorithm (VBEM. The discussion is illustrated by the example of single-molecule fluorescence resonance energy transfer (smFRET versus time data, where the smFRET time series is modeled as a hidden Markov model (HMM with Gaussian observables. A detailed description of smFRET is provided as well. Results The VBEM algorithm returns the model’s evidence and an approximating posterior parameter distribution given the data. The former provides a metric for model selection via maximum evidence (ME, and the latter a description of the model’s parameters learned from the data. ME/VBEM provide several advantages over the more commonly used approach of maximum likelihood (ML optimized by the expectation maximization (EM algorithm, the most important being a natural form of model selection and a well-posed (non-divergent optimization problem. Conclusions The results demonstrate the utility of graphical modeling for inference of dynamic processes in single molecule biophysics.

  9. Damage evaluation by a guided wave-hidden Markov model based method

    Science.gov (United States)

    Mei, Hanfei; Yuan, Shenfang; Qiu, Lei; Zhang, Jinjin

    2016-02-01

    Guided wave based structural health monitoring has shown great potential in aerospace applications. However, one of the key challenges of practical engineering applications is the accurate interpretation of the guided wave signals under time-varying environmental and operational conditions. This paper presents a guided wave-hidden Markov model based method to improve the damage evaluation reliability of real aircraft structures under time-varying conditions. In the proposed approach, an HMM based unweighted moving average trend estimation method, which can capture the trend of damage propagation from the posterior probability obtained by HMM modeling is used to achieve a probabilistic evaluation of the structural damage. To validate the developed method, experiments are performed on a hole-edge crack specimen under fatigue loading condition and a real aircraft wing spar under changing structural boundary conditions. Experimental results show the advantage of the proposed method.

  10. Hidden Markov model analysis of maternal behavior patterns in inbred and reciprocal hybrid mice.

    Directory of Open Access Journals (Sweden)

    Valeria Carola

    Full Text Available Individual variation in maternal care in mammals shows a significant heritable component, with the maternal behavior of daughters resembling that of their mothers. In laboratory mice, genetically distinct inbred strains show stable differences in maternal care during the first postnatal week. Moreover, cross fostering and reciprocal breeding studies demonstrate that differences in maternal care between inbred strains persist in the absence of genetic differences, demonstrating a non-genetic or epigenetic contribution to maternal behavior. In this study we applied a mathematical tool, called hidden Markov model (HMM, to analyze the behavior of female mice in the presence of their young. The frequency of several maternal behaviors in mice has been previously described, including nursing/grooming pups and tending to the nest. However, the ordering, clustering, and transitions between these behaviors have not been systematically described and thus a global description of maternal behavior is lacking. Here we used HMM to describe maternal behavior patterns in two genetically distinct mouse strains, C57BL/6 and BALB/c, and their genetically identical reciprocal hybrid female offspring. HMM analysis is a powerful tool to identify patterns of events that cluster in time and to determine transitions between these clusters, or hidden states. For the HMM analysis we defined seven states: arched-backed nursing, blanket nursing, licking/grooming pups, grooming, activity, eating, and sleeping. By quantifying the frequency, duration, composition, and transition probabilities of these states we were able to describe the pattern of maternal behavior in mouse and identify aspects of these patterns that are under genetic and nongenetic inheritance. Differences in these patterns observed in the experimental groups (inbred and hybrid females were detected only after the application of HMM analysis whereas classical statistical methods and analyses were not able to

  11. Quantile Forecasting for Credit Risk Management Using Possibly Mis-specified Hidden Markov Models

    NARCIS (Netherlands)

    Banachewicz, K.P.; Lucas, A.

    2008-01-01

    Recent models for credit risk management make use of hidden Markov models (HMMs). HMMs are used to forecast quantiles of corporate default rates. Little research has been done on the quality of such forecasts if the underlying HMM is potentially misspecified. In this paper, we focus on

  12. Development of a Fault Monitoring Technique for Wind Turbines Using a Hidden Markov Model.

    Science.gov (United States)

    Shin, Sung-Hwan; Kim, SangRyul; Seo, Yun-Ho

    2018-06-02

    Regular inspection for the maintenance of the wind turbines is difficult because of their remote locations. For this reason, condition monitoring systems (CMSs) are typically installed to monitor their health condition. The purpose of this study is to propose a fault detection algorithm for the mechanical parts of the wind turbine. To this end, long-term vibration data were collected over two years by a CMS installed on a 3 MW wind turbine. The vibration distribution at a specific rotating speed of main shaft is approximated by the Weibull distribution and its cumulative distribution function is utilized for determining the threshold levels that indicate impending failure of mechanical parts. A Hidden Markov model (HMM) is employed to propose the statistical fault detection algorithm in the time domain and the method whereby the input sequence for HMM is extracted is also introduced by considering the threshold levels and the correlation between the signals. Finally, it was demonstrated that the proposed HMM algorithm achieved a greater than 95% detection success rate by using the long-term signals.

  13. Passive acoustic leak detection for sodium cooled fast reactors using hidden Markov models

    Energy Technology Data Exchange (ETDEWEB)

    Riber Marklund, A. [CEA, Cadarache, DEN/DTN/STCP/LIET, Batiment 202, 13108 St Paul-lez-Durance, (France); Kishore, S. [Fast Reactor Technology Group of IGCAR, (India); Prakash, V. [Vibrations Diagnostics Division, Fast Reactor Technology Group of IGCAR, (India); Rajan, K.K. [Fast Reactor Technology Group and Engineering Services Group of IGCAR, (India)

    2015-07-01

    Acoustic leak detection for steam generators of sodium fast reactors have been an active research topic since the early 1970's and several methods have been tested over the years. Inspired by its success in the field of automatic speech recognition, we here apply hidden Markov models (HMM) in combination with Gaussian mixture models (GMM) to the problem. To achieve this, we propose a new feature calculation scheme, based on the temporal evolution of the power spectral density (PSD) of the signal. Using acoustic signals recorded during steam/water injection experiments done at the Indira Gandhi Centre for Atomic Research (IGCAR), the proposed method is tested. We perform parametric studies on the HMM+GMM model size and demonstrate that the proposed method a) performs well without a priori knowledge of injection noise, b) can incorporate several noise models and c) has an output distribution that simplifies false alarm rate control. (authors)

  14. Geolocating fish using Hidden Markov Models and Data Storage Tags

    DEFF Research Database (Denmark)

    Thygesen, Uffe Høgsbro; Pedersen, Martin Wæver; Madsen, Henrik

    2009-01-01

    Geolocation of fish based on data from archival tags typically requires a statistical analysis to reduce the effect of measurement errors. In this paper we present a novel technique for this analysis, one based on Hidden Markov Models (HMM's). We assume that the actual path of the fish is generated...... by a biased random walk. The HMM methodology produces, for each time step, the probability that the fish resides in each grid cell. Because there is no Monte Carlo step in our technique, we are able to estimate parameters within the likelihood framework. The method does not require the distribution...... of inference in state-space models of animals. The technique can be applied to geolocation based on light, on tidal patterns, or measurement of other variables that vary with space. We illustrate the method through application to a simulated data set where geolocation relies on depth data exclusively....

  15. Post-model selection inference and model averaging

    Directory of Open Access Journals (Sweden)

    Georges Nguefack-Tsague

    2011-07-01

    Full Text Available Although model selection is routinely used in practice nowadays, little is known about its precise effects on any subsequent inference that is carried out. The same goes for the effects induced by the closely related technique of model averaging. This paper is concerned with the use of the same data first to select a model and then to carry out inference, in particular point estimation and point prediction. The properties of the resulting estimator, called a post-model-selection estimator (PMSE, are hard to derive. Using selection criteria such as hypothesis testing, AIC, BIC, HQ and Cp, we illustrate that, in terms of risk function, no single PMSE dominates the others. The same conclusion holds more generally for any penalised likelihood information criterion. We also compare various model averaging schemes and show that no single one dominates the others in terms of risk function. Since PMSEs can be regarded as a special case of model averaging, with 0-1 random-weights, we propose a connection between the two theories, in the frequentist approach, by taking account of the selection procedure when performing model averaging. We illustrate the point by simulating a simple linear regression model.

  16. A Hybrid of Deep Network and Hidden Markov Model for MCI Identification with Resting-State fMRI.

    Science.gov (United States)

    Suk, Heung-Il; Lee, Seong-Whan; Shen, Dinggang

    2015-10-01

    In this paper, we propose a novel method for modelling functional dynamics in resting-state fMRI (rs-fMRI) for Mild Cognitive Impairment (MCI) identification. Specifically, we devise a hybrid architecture by combining Deep Auto-Encoder (DAE) and Hidden Markov Model (HMM). The roles of DAE and HMM are, respectively, to discover hierarchical non-linear relations among features, by which we transform the original features into a lower dimension space, and to model dynamic characteristics inherent in rs-fMRI, i.e. , internal state changes. By building a generative model with HMMs for each class individually, we estimate the data likelihood of a test subject as MCI or normal healthy control, based on which we identify the clinical label. In our experiments, we achieved the maximal accuracy of 81.08% with the proposed method, outperforming state-of-the-art methods in the literature.

  17. HMM filtering and parameter estimation of an electricity spot price model

    International Nuclear Information System (INIS)

    Erlwein, Christina; Benth, Fred Espen; Mamon, Rogemar

    2010-01-01

    In this paper we develop a model for electricity spot price dynamics. The spot price is assumed to follow an exponential Ornstein-Uhlenbeck (OU) process with an added compound Poisson process. In this way, the model allows for mean-reversion and possible jumps. All parameters are modulated by a hidden Markov chain in discrete time. They are able to switch between different economic regimes representing the interaction of various factors. Through the application of reference probability technique, adaptive filters are derived, which in turn, provide optimal estimates for the state of the Markov chain and related quantities of the observation process. The EM algorithm is applied to find optimal estimates of the model parameters in terms of the recursive filters. We implement this self-calibrating model on a deseasonalised series of daily spot electricity prices from the Nordic exchange Nord Pool. On the basis of one-step ahead forecasts, we found that the model is able to capture the empirical characteristics of Nord Pool spot prices. (author)

  18. A Heckman Selection- t Model

    KAUST Repository

    Marchenko, Yulia V.

    2012-03-01

    Sample selection arises often in practice as a result of the partial observability of the outcome of interest in a study. In the presence of sample selection, the observed data do not represent a random sample from the population, even after controlling for explanatory variables. That is, data are missing not at random. Thus, standard analysis using only complete cases will lead to biased results. Heckman introduced a sample selection model to analyze such data and proposed a full maximum likelihood estimation method under the assumption of normality. The method was criticized in the literature because of its sensitivity to the normality assumption. In practice, data, such as income or expenditure data, often violate the normality assumption because of heavier tails. We first establish a new link between sample selection models and recently studied families of extended skew-elliptical distributions. Then, this allows us to introduce a selection-t (SLt) model, which models the error distribution using a Student\\'s t distribution. We study its properties and investigate the finite-sample performance of the maximum likelihood estimators for this model. We compare the performance of the SLt model to the conventional Heckman selection-normal (SLN) model and apply it to analyze ambulatory expenditures. Unlike the SLNmodel, our analysis using the SLt model provides statistical evidence for the existence of sample selection bias in these data. We also investigate the performance of the test for sample selection bias based on the SLt model and compare it with the performances of several tests used with the SLN model. Our findings indicate that the latter tests can be misleading in the presence of heavy-tailed data. © 2012 American Statistical Association.

  19. Metagenome and Metatranscriptome Analyses Using Protein Family Profiles.

    Directory of Open Access Journals (Sweden)

    Cuncong Zhong

    2016-07-01

    Full Text Available Analyses of metagenome data (MG and metatranscriptome data (MT are often challenged by a paucity of complete reference genome sequences and the uneven/low sequencing depth of the constituent organisms in the microbial community, which respectively limit the power of reference-based alignment and de novo sequence assembly. These limitations make accurate protein family classification and abundance estimation challenging, which in turn hamper downstream analyses such as abundance profiling of metabolic pathways, identification of differentially encoded/expressed genes, and de novo reconstruction of complete gene and protein sequences from the protein family of interest. The profile hidden Markov model (HMM framework enables the construction of very useful probabilistic models for protein families that allow for accurate modeling of position specific matches, insertions, and deletions. We present a novel homology detection algorithm that integrates banded Viterbi algorithm for profile HMM parsing with an iterative simultaneous alignment and assembly computational framework. The algorithm searches a given profile HMM of a protein family against a database of fragmentary MG/MT sequencing data and simultaneously assembles complete or near-complete gene and protein sequences of the protein family. The resulting program, HMM-GRASPx, demonstrates superior performance in aligning and assembling homologs when benchmarked on both simulated marine MG and real human saliva MG datasets. On real supragingival plaque and stool MG datasets that were generated from healthy individuals, HMM-GRASPx accurately estimates the abundances of the antimicrobial resistance (AMR gene families and enables accurate characterization of the resistome profiles of these microbial communities. For real human oral microbiome MT datasets, using the HMM-GRASPx estimated transcript abundances significantly improves detection of differentially expressed (DE genes. Finally, HMM

  20. A new isolation with migration model along complete genomes infers very different divergence processes among closely related great ape species.

    Directory of Open Access Journals (Sweden)

    Thomas Mailund

    Full Text Available We present a hidden Markov model (HMM for inferring gradual isolation between two populations during speciation, modelled as a time interval with restricted gene flow. The HMM describes the history of adjacent nucleotides in two genomic sequences, such that the nucleotides can be separated by recombination, can migrate between populations, or can coalesce at variable time points, all dependent on the parameters of the model, which are the effective population sizes, splitting times, recombination rate, and migration rate. We show by extensive simulations that the HMM can accurately infer all parameters except the recombination rate, which is biased downwards. Inference is robust to variation in the mutation rate and the recombination rate over the sequence and also robust to unknown phase of genomes unless they are very closely related. We provide a test for whether divergence is gradual or instantaneous, and we apply the model to three key divergence processes in great apes: (a the bonobo and common chimpanzee, (b the eastern and western gorilla, and (c the Sumatran and Bornean orang-utan. We find that the bonobo and chimpanzee appear to have undergone a clear split, whereas the divergence processes of the gorilla and orang-utan species occurred over several hundred thousands years with gene flow stopping quite recently. We also apply the model to the Homo/Pan speciation event and find that the most likely scenario involves an extended period of gene flow during speciation.

  1. The Use of Hidden Markov Models for Anomaly Detection in Nuclear Core Condition Monitoring

    Science.gov (United States)

    Stephen, Bruce; West, Graeme M.; Galloway, Stuart; McArthur, Stephen D. J.; McDonald, James R.; Towle, Dave

    2009-04-01

    Unplanned outages can be especially costly for generation companies operating nuclear facilities. Early detection of deviations from expected performance through condition monitoring can allow a more proactive and managed approach to dealing with ageing plant. This paper proposes an anomaly detection framework incorporating the use of the Hidden Markov Model (HMM) to support the analysis of nuclear reactor core condition monitoring data. Fuel Grab Load Trace (FGLT) data gathered within the UK during routine refueling operations has been seen to provide information relating to the condition of the graphite bricks that comprise the core. Although manual analysis of this data is time consuming and requires considerable expertise, this paper demonstrates how techniques such as the HMM can provide analysis support by providing a benchmark model of expected behavior against which future refueling events may be compared. The presence of anomalous behavior in candidate traces is inferred through the underlying statistical foundation of the HMM which gives an observation likelihood averaged along the length of the input sequence. Using this likelihood measure, the engineer can be alerted to anomalous behaviour, indicating data which might require further detailed examination. It is proposed that this data analysis technique is used in conjunction with other intelligent analysis techniques currently employed to analyse FGLT to provide a greater confidence measure in detecting anomalous behaviour from FGLT data.

  2. Popularity Modeling for Mobile Apps: A Sequential Approach.

    Science.gov (United States)

    Zhu, Hengshu; Liu, Chuanren; Ge, Yong; Xiong, Hui; Chen, Enhong

    2015-07-01

    The popularity information in App stores, such as chart rankings, user ratings, and user reviews, provides an unprecedented opportunity to understand user experiences with mobile Apps, learn the process of adoption of mobile Apps, and thus enables better mobile App services. While the importance of popularity information is well recognized in the literature, the use of the popularity information for mobile App services is still fragmented and under-explored. To this end, in this paper, we propose a sequential approach based on hidden Markov model (HMM) for modeling the popularity information of mobile Apps toward mobile App services. Specifically, we first propose a popularity based HMM (PHMM) to model the sequences of the heterogeneous popularity observations of mobile Apps. Then, we introduce a bipartite based method to precluster the popularity observations. This can help to learn the parameters and initial values of the PHMM efficiently. Furthermore, we demonstrate that the PHMM is a general model and can be applicable for various mobile App services, such as trend based App recommendation, rating and review spam detection, and ranking fraud detection. Finally, we validate our approach on two real-world data sets collected from the Apple Appstore. Experimental results clearly validate both the effectiveness and efficiency of the proposed popularity modeling approach.

  3. Optimizing Likelihood Models for Particle Trajectory Segmentation in Multi-State Systems.

    Science.gov (United States)

    Young, Dylan Christopher; Scrimgeour, Jan

    2018-06-19

    Particle tracking offers significant insight into the molecular mechanics that govern the behav- ior of living cells. The analysis of molecular trajectories that transition between different motive states, such as diffusive, driven and tethered modes, is of considerable importance, with even single trajectories containing significant amounts of information about a molecule's environment and its interactions with cellular structures. Hidden Markov models (HMM) have been widely adopted to perform the segmentation of such complex tracks. In this paper, we show that extensive analysis of hidden Markov model outputs using data derived from multi-state Brownian dynamics simulations can be used both for the optimization of the likelihood models used to describe the states of the system and for characterization of the technique's failure mechanisms. This analysis was made pos- sible by the implementation of parallelized adaptive direct search algorithm on a Nvidia graphics processing unit. This approach provides critical information for the visualization of HMM failure and successful design of particle tracking experiments where trajectories contain multiple mobile states. © 2018 IOP Publishing Ltd.

  4. Cognitive Emotional Regulation Model in Human-Robot Interaction

    OpenAIRE

    Liu, Xin; Xie, Lun; Liu, Anqi; Li, Dan

    2015-01-01

    This paper integrated Gross cognitive process into the HMM (hidden Markov model) emotional regulation method and implemented human-robot emotional interaction with facial expressions and behaviors. Here, energy was the psychological driving force of emotional transition in the cognitive emotional model. The input facial expression was translated into external energy by expression-emotion mapping. Robot’s next emotional state was determined by the cognitive energy (the stimulus after cognition...

  5. Capturing the state transitions of seizure-like events using Hidden Markov models.

    Science.gov (United States)

    Guirgis, Mirna; Serletis, Demitre; Carlen, Peter L; Bardakjian, Berj L

    2011-01-01

    The purpose of this study was to investigate the number of states present in the progression of a seizure-like event (SLE). Of particular interest is to determine if there are more than two clearly defined states, as this would suggest that there is a distinct state preceding an SLE. Whole-intact hippocampus from C57/BL mice was used to model epileptiform activity induced by the perfusion of a low Mg(2+)/high K(+) solution while extracellular field potentials were recorded from CA3 pyramidal neurons. Hidden Markov models (HMM) were used to model the state transitions of the recorded SLEs by incorporating various features of the Hilbert transform into the training algorithm; specifically, 2- and 3-state HMMs were explored. Although the 2-state model was able to distinguish between SLE and nonSLE behavior, it provided no improvements compared to visual inspection alone. However, the 3-state model was able to capture two distinct nonSLE states that visual inspection failed to discriminate. Moreover, by developing an HMM based system a priori knowledge of the state transitions was not required making this an ideal platform for seizure prediction algorithms.

  6. Optimization and evaluation of probabilistic-logic sequence models

    DEFF Research Database (Denmark)

    Christiansen, Henning; Lassen, Ole Torp

    to, in principle, Turing complete languages. In general, such models are computationally far to complex for direct use, so optimization by pruning and approximation are needed. % The first steps are made towards a methodology for optimizing such models by approximations using auxiliary models......Analysis of biological sequence data demands more and more sophisticated and fine-grained models, but these in turn introduce hard computational problems. A class of probabilistic-logic models is considered, which increases the expressibility from HMM's and SCFG's regular and context-free languages...

  7. Model selection in periodic autoregressions

    NARCIS (Netherlands)

    Ph.H.B.F. Franses (Philip Hans); R. Paap (Richard)

    1994-01-01

    textabstractThis paper focuses on the issue of period autoagressive time series models (PAR) selection in practice. One aspect of model selection is the choice for the appropriate PAR order. This can be of interest for the valuation of economic models. Further, the appropriate PAR order is important

  8. A Primer for Model Selection: The Decisive Role of Model Complexity

    Science.gov (United States)

    Höge, Marvin; Wöhling, Thomas; Nowak, Wolfgang

    2018-03-01

    Selecting a "best" model among several competing candidate models poses an often encountered problem in water resources modeling (and other disciplines which employ models). For a modeler, the best model fulfills a certain purpose best (e.g., flood prediction), which is typically assessed by comparing model simulations to data (e.g., stream flow). Model selection methods find the "best" trade-off between good fit with data and model complexity. In this context, the interpretations of model complexity implied by different model selection methods are crucial, because they represent different underlying goals of modeling. Over the last decades, numerous model selection criteria have been proposed, but modelers who primarily want to apply a model selection criterion often face a lack of guidance for choosing the right criterion that matches their goal. We propose a classification scheme for model selection criteria that helps to find the right criterion for a specific goal, i.e., which employs the correct complexity interpretation. We identify four model selection classes which seek to achieve high predictive density, low predictive error, high model probability, or shortest compression of data. These goals can be achieved by following either nonconsistent or consistent model selection and by either incorporating a Bayesian parameter prior or not. We allocate commonly used criteria to these four classes, analyze how they represent model complexity and what this means for the model selection task. Finally, we provide guidance on choosing the right type of criteria for specific model selection tasks. (A quick guide through all key points is given at the end of the introduction.)

  9. Efficacy of hidden markov model over support vector machine on multiclass classification of healthy and cancerous cervical tissues

    Science.gov (United States)

    Mukhopadhyay, Sabyasachi; Kurmi, Indrajit; Pratiher, Sawon; Mukherjee, Sukanya; Barman, Ritwik; Ghosh, Nirmalya; Panigrahi, Prasanta K.

    2018-02-01

    In this paper, a comparative study between SVM and HMM has been carried out for multiclass classification of cervical healthy and cancerous tissues. In our study, the HMM methodology is more promising to produce higher accuracy in classification.

  10. Functionalization of mesoporous silica membrane with a Schiff base fluorophore for Cu(II) ion sensing

    Energy Technology Data Exchange (ETDEWEB)

    Chen Xiaotong [Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku 980-8578, Sendai, Miyagi Prefecture (Japan); Department of Chemistry, Tsinghua University, Beijing 100084 (China); Yamaguchi, Akira [College of Science, Ibaraki University, Bunkyo 2-1-1, Mito, Ibaraki 310-8512 (Japan); Frontier Research Center for Applied Atomic Sciences, Ibaraki University, Tokai, Ibaraki 319-1106 (Japan); Namekawa, Manato [Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku 980-8578, Sendai, Miyagi Prefecture (Japan); Kamijo, Toshio [Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku 980-8578, Sendai, Miyagi Prefecture (Japan); Tsuruoka National College of Technology, Aza-Sawada, Tsuruoka 997-8511 (Japan); Teramae, Norio, E-mail: teramae@m.tohoku.ac.jp [Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku 980-8578, Sendai, Miyagi Prefecture (Japan); Tong, Aijun, E-mail: tongaj@mail.tsinghua.edu.cn [Department of Chemistry, Tsinghua University, Beijing 100084 (China)

    2011-06-24

    Graphical abstract: Highlights: > A hybrid mesoporous membrane (SB-HMM) functionalized by Schiff base fluorophores was fabricated. > SB-HMM showed strong fluorescence with aggregation-induced emission enhancement properties. > SB-HMM was applicable for the detection of Cu(II) in an aqueous solution with good reversibility and reproducibility. - Abstract: A Schiff base (SB) immobilized hybrid mesoporous silica membrane (SB-HMM) was prepared by immobilizing a Schiff base onto the pore surface of mesoporous silica (pore size = 3.1 nm) embedded in the pores of a porous anodic alumina membrane. In contrast to the non-fluorescent analogous SB molecule in homogeneous solutions, SB-HMM exhibited intense fluorescence due to emission enhancement caused by aggregation of SB groups on the pore surface. The high quantum efficiency of the surface SB groups allows SB-HMM to function as a fluorescent sensor for Cu(II) ions in an aqueous solution with good sensitivity, selectivity and reproducibility. Under the optimal conditions described, the linear ranges of fluorescence intensity for Cu(II) are 1.2-13.8 (M (R{sup 2} = 0.993) and 19.4-60 (R{sup 2} = 0.992) (M. The limit of detection for Cu(II) is 0.8 {mu}M on basis of the definition by IUPAC (C{sub LOD} = 3.3S{sub b}/m).

  11. Cluster-based adaptive power control protocol using Hidden Markov Model for Wireless Sensor Networks

    Science.gov (United States)

    Vinutha, C. B.; Nalini, N.; Nagaraja, M.

    2017-06-01

    This paper presents strategies for an efficient and dynamic transmission power control technique, in order to reduce packet drop and hence energy consumption of power-hungry sensor nodes operated in highly non-linear channel conditions of Wireless Sensor Networks. Besides, we also focus to prolong network lifetime and scalability by designing cluster-based network structure. Specifically we consider weight-based clustering approach wherein, minimum significant node is chosen as Cluster Head (CH) which is computed stemmed from the factors distance, remaining residual battery power and received signal strength (RSS). Further, transmission power control schemes to fit into dynamic channel conditions are meticulously implemented using Hidden Markov Model (HMM) where probability transition matrix is formulated based on the observed RSS measurements. Typically, CH estimates initial transmission power of its cluster members (CMs) from RSS using HMM and broadcast this value to its CMs for initialising their power value. Further, if CH finds that there are variations in link quality and RSS of the CMs, it again re-computes and optimises the transmission power level of the nodes using HMM to avoid packet loss due noise interference. We have demonstrated our simulation results to prove that our technique efficiently controls the power levels of sensing nodes to save significant quantity of energy for different sized network.

  12. A Novel Approach to ECG Classification Based upon Two-Layered HMMs in Body Sensor Networks

    Science.gov (United States)

    Liang, Wei; Zhang, Yinlong; Tan, Jindong; Li, Yang

    2014-01-01

    This paper presents a novel approach to ECG signal filtering and classification. Unlike the traditional techniques which aim at collecting and processing the ECG signals with the patient being still, lying in bed in hospitals, our proposed algorithm is intentionally designed for monitoring and classifying the patient's ECG signals in the free-living environment. The patients are equipped with wearable ambulatory devices the whole day, which facilitates the real-time heart attack detection. In ECG preprocessing, an integral-coefficient-band-stop (ICBS) filter is applied, which omits time-consuming floating-point computations. In addition, two-layered Hidden Markov Models (HMMs) are applied to achieve ECG feature extraction and classification. The periodic ECG waveforms are segmented into ISO intervals, P subwave, QRS complex and T subwave respectively in the first HMM layer where expert-annotation assisted Baum-Welch algorithm is utilized in HMM modeling. Then the corresponding interval features are selected and applied to categorize the ECG into normal type or abnormal type (PVC, APC) in the second HMM layer. For verifying the effectiveness of our algorithm on abnormal signal detection, we have developed an ECG body sensor network (BSN) platform, whereby real-time ECG signals are collected, transmitted, displayed and the corresponding classification outcomes are deduced and shown on the BSN screen. PMID:24681668

  13. Modeling promoter grammars with evolving hidden Markov models

    DEFF Research Database (Denmark)

    Won, Kyoung-Jae; Sandelin, Albin; Marstrand, Troels Torben

    2008-01-01

    MOTIVATION: Describing and modeling biological features of eukaryotic promoters remains an important and challenging problem within computational biology. The promoters of higher eukaryotes in particular display a wide variation in regulatory features, which are difficult to model. Often several...... factors are involved in the regulation of a set of co-regulated genes. If so, promoters can be modeled with connected regulatory features, where the network of connections is characteristic for a particular mode of regulation. RESULTS: With the goal of automatically deciphering such regulatory structures......, we present a method that iteratively evolves an ensemble of regulatory grammars using a hidden Markov Model (HMM) architecture composed of interconnected blocks representing transcription factor binding sites (TFBSs) and background regions of promoter sequences. The ensemble approach reduces the risk...

  14. Mobile Application Identification based on Hidden Markov Model

    Directory of Open Access Journals (Sweden)

    Yang Xinyan

    2018-01-01

    Full Text Available With the increasing number of mobile applications, there has more challenging network management tasks to resolve. Users also face security issues of the mobile Internet application when enjoying the mobile network resources. Identifying applications that correspond to network traffic can help network operators effectively perform network management. The existing mobile application recognition technology presents new challenges in extensibility and applications with encryption protocols. For the existing mobile application recognition technology, there are two problems, they can not recognize the application which using the encryption protocol and their scalability is poor. In this paper, a mobile application identification method based on Hidden Markov Model(HMM is proposed to extract the defined statistical characteristics from different network flows generated when each application starting. According to the time information of different network flows to get the corresponding time series, and then for each application to be identified separately to establish the corresponding HMM model. Then, we use 10 common applications to test the method proposed in this paper. The test results show that the mobile application recognition method proposed in this paper has a high accuracy and good generalization ability.

  15. Intonation model for TTS in Sepedi

    CSIR Research Space (South Africa)

    Van Niekerk, DR

    2010-09-01

    Full Text Available the size of the tone-marked corpus does not lend itself to a comprehensive statistical analysis of the comparison results, we have identified a number of characteristics consis- tently exhibited in the natural F0 contours not accounted for in the tone... in the tone-marked set was synthesised with excita- tion signals derived from the standard HMM-based models, the tone-based model and the linearly declining contours discussed above. Listeners were asked to rate each sample using integers ranging from 1...

  16. Evaluation of soft segment modeling on a context independent phoneme classification system

    International Nuclear Information System (INIS)

    Razzazi, F.; Sayadiyan, A.

    2007-01-01

    The geometric distribution of states duration is one of the main performance limiting assumptions of hidden Markov modeling of speech signals. Stochastic segment models, generally, and segmental HMM, specifically overcome this deficiency partly at the cost of more complexity in both training and recognition phases. In addition to this assumption, the gradual temporal changes of speech statistics has not been modeled in HMM. In this paper, a new duration modeling approach is presented. The main idea of the model is to consider the effect of adjacent segments on the probability density function estimation and evaluation of each acoustic segment. This idea not only makes the model robust against segmentation errors, but also it models gradual change from one segment to the next one with a minimum set of parameters. The proposed idea is analytically formulated and tested on a TIMIT based context independent phenomena classification system. During the test procedure, the phoneme classification of different phoneme classes was performed by applying various proposed recognition algorithms. The system was optimized and the results have been compared with a continuous density hidden Markov model (CDHMM) with similar computational complexity. The results show 8-10% improvement in phoneme recognition rate in comparison with standard continuous density hidden Markov model. This indicates improved compatibility of the proposed model with the speech nature. (author)

  17. A Novel HMM Distributed Classifier for the Detection of Gait Phases by Means of a Wearable Inertial Sensor Network

    Directory of Open Access Journals (Sweden)

    Juri Taborri

    2014-09-01

    Full Text Available In this work, we decided to apply a hierarchical weighted decision, proposed and used in other research fields, for the recognition of gait phases. The developed and validated novel distributed classifier is based on hierarchical weighted decision from outputs of scalar Hidden Markov Models (HMM applied to angular velocities of foot, shank, and thigh. The angular velocities of ten healthy subjects were acquired via three uni-axial gyroscopes embedded in inertial measurement units (IMUs during one walking task, repeated three times, on a treadmill. After validating the novel distributed classifier and scalar and vectorial classifiers-already proposed in the literature, with a cross-validation, classifiers were compared for sensitivity, specificity, and computational load for all combinations of the three targeted anatomical segments. Moreover, the performance of the novel distributed classifier in the estimation of gait variability in terms of mean time and coefficient of variation was evaluated. The highest values of specificity and sensitivity (>0.98 for the three classifiers examined here were obtained when the angular velocity of the foot was processed. Distributed and vectorial classifiers reached acceptable values (>0.95 when the angular velocity of shank and thigh were analyzed. Distributed and scalar classifiers showed values of computational load about 100 times lower than the one obtained with the vectorial classifier. In addition, distributed classifiers showed an excellent reliability for the evaluation of mean time and a good/excellent reliability for the coefficient of variation. In conclusion, due to the better performance and the small value of computational load, the here proposed novel distributed classifier can be implemented in the real-time application of gait phases recognition, such as to evaluate gait variability in patients or to control active orthoses for the recovery of mobility of lower limb joints.

  18. State-space model with deep learning for functional dynamics estimation in resting-state fMRI.

    Science.gov (United States)

    Suk, Heung-Il; Wee, Chong-Yaw; Lee, Seong-Whan; Shen, Dinggang

    2016-04-01

    Studies on resting-state functional Magnetic Resonance Imaging (rs-fMRI) have shown that different brain regions still actively interact with each other while a subject is at rest, and such functional interaction is not stationary but changes over time. In terms of a large-scale brain network, in this paper, we focus on time-varying patterns of functional networks, i.e., functional dynamics, inherent in rs-fMRI, which is one of the emerging issues along with the network modelling. Specifically, we propose a novel methodological architecture that combines deep learning and state-space modelling, and apply it to rs-fMRI based Mild Cognitive Impairment (MCI) diagnosis. We first devise a Deep Auto-Encoder (DAE) to discover hierarchical non-linear functional relations among regions, by which we transform the regional features into an embedding space, whose bases are complex functional networks. Given the embedded functional features, we then use a Hidden Markov Model (HMM) to estimate dynamic characteristics of functional networks inherent in rs-fMRI via internal states, which are unobservable but can be inferred from observations statistically. By building a generative model with an HMM, we estimate the likelihood of the input features of rs-fMRI as belonging to the corresponding status, i.e., MCI or normal healthy control, based on which we identify the clinical label of a testing subject. In order to validate the effectiveness of the proposed method, we performed experiments on two different datasets and compared with state-of-the-art methods in the literature. We also analyzed the functional networks learned by DAE, estimated the functional connectivities by decoding hidden states in HMM, and investigated the estimated functional connectivities by means of a graph-theoretic approach. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Variable selection and model choice in geoadditive regression models.

    Science.gov (United States)

    Kneib, Thomas; Hothorn, Torsten; Tutz, Gerhard

    2009-06-01

    Model choice and variable selection are issues of major concern in practical regression analyses, arising in many biometric applications such as habitat suitability analyses, where the aim is to identify the influence of potentially many environmental conditions on certain species. We describe regression models for breeding bird communities that facilitate both model choice and variable selection, by a boosting algorithm that works within a class of geoadditive regression models comprising spatial effects, nonparametric effects of continuous covariates, interaction surfaces, and varying coefficients. The major modeling components are penalized splines and their bivariate tensor product extensions. All smooth model terms are represented as the sum of a parametric component and a smooth component with one degree of freedom to obtain a fair comparison between the model terms. A generic representation of the geoadditive model allows us to devise a general boosting algorithm that automatically performs model choice and variable selection.

  20. A Bayesian random effects discrete-choice model for resource selection: Population-level selection inference

    Science.gov (United States)

    Thomas, D.L.; Johnson, D.; Griffith, B.

    2006-01-01

    Modeling the probability of use of land units characterized by discrete and continuous measures, we present a Bayesian random-effects model to assess resource selection. This model provides simultaneous estimation of both individual- and population-level selection. Deviance information criterion (DIC), a Bayesian alternative to AIC that is sample-size specific, is used for model selection. Aerial radiolocation data from 76 adult female caribou (Rangifer tarandus) and calf pairs during 1 year on an Arctic coastal plain calving ground were used to illustrate models and assess population-level selection of landscape attributes, as well as individual heterogeneity of selection. Landscape attributes included elevation, NDVI (a measure of forage greenness), and land cover-type classification. Results from the first of a 2-stage model-selection procedure indicated that there is substantial heterogeneity among cow-calf pairs with respect to selection of the landscape attributes. In the second stage, selection of models with heterogeneity included indicated that at the population-level, NDVI and land cover class were significant attributes for selection of different landscapes by pairs on the calving ground. Population-level selection coefficients indicate that the pairs generally select landscapes with higher levels of NDVI, but the relationship is quadratic. The highest rate of selection occurs at values of NDVI less than the maximum observed. Results for land cover-class selections coefficients indicate that wet sedge, moist sedge, herbaceous tussock tundra, and shrub tussock tundra are selected at approximately the same rate, while alpine and sparsely vegetated landscapes are selected at a lower rate. Furthermore, the variability in selection by individual caribou for moist sedge and sparsely vegetated landscapes is large relative to the variability in selection of other land cover types. The example analysis illustrates that, while sometimes computationally intense, a

  1. Bearing Fault Classification Based on Conditional Random Field

    Directory of Open Access Journals (Sweden)

    Guofeng Wang

    2013-01-01

    Full Text Available Condition monitoring of rolling element bearing is paramount for predicting the lifetime and performing effective maintenance of the mechanical equipment. To overcome the drawbacks of the hidden Markov model (HMM and improve the diagnosis accuracy, conditional random field (CRF model based classifier is proposed. In this model, the feature vectors sequences and the fault categories are linked by an undirected graphical model in which their relationship is represented by a global conditional probability distribution. In comparison with the HMM, the main advantage of the CRF model is that it can depict the temporal dynamic information between the observation sequences and state sequences without assuming the independence of the input feature vectors. Therefore, the interrelationship between the adjacent observation vectors can also be depicted and integrated into the model, which makes the classifier more robust and accurate than the HMM. To evaluate the effectiveness of the proposed method, four kinds of bearing vibration signals which correspond to normal, inner race pit, outer race pit and roller pit respectively are collected from the test rig. And the CRF and HMM models are built respectively to perform fault classification by taking the sub band energy features of wavelet packet decomposition (WPD as the observation sequences. Moreover, K-fold cross validation method is adopted to improve the evaluation accuracy of the classifier. The analysis and comparison under different fold times show that the accuracy rate of classification using the CRF model is higher than the HMM. This method brings some new lights on the accurate classification of the bearing faults.

  2. DNA motif elucidation using belief propagation.

    Science.gov (United States)

    Wong, Ka-Chun; Chan, Tak-Ming; Peng, Chengbin; Li, Yue; Zhang, Zhaolei

    2013-09-01

    Protein-binding microarray (PBM) is a high-throughout platform that can measure the DNA-binding preference of a protein in a comprehensive and unbiased manner. A typical PBM experiment can measure binding signal intensities of a protein to all the possible DNA k-mers (k=8∼10); such comprehensive binding affinity data usually need to be reduced and represented as motif models before they can be further analyzed and applied. Since proteins can often bind to DNA in multiple modes, one of the major challenges is to decompose the comprehensive affinity data into multimodal motif representations. Here, we describe a new algorithm that uses Hidden Markov Models (HMMs) and can derive precise and multimodal motifs using belief propagations. We describe an HMM-based approach using belief propagations (kmerHMM), which accepts and preprocesses PBM probe raw data into median-binding intensities of individual k-mers. The k-mers are ranked and aligned for training an HMM as the underlying motif representation. Multiple motifs are then extracted from the HMM using belief propagations. Comparisons of kmerHMM with other leading methods on several data sets demonstrated its effectiveness and uniqueness. Especially, it achieved the best performance on more than half of the data sets. In addition, the multiple binding modes derived by kmerHMM are biologically meaningful and will be useful in interpreting other genome-wide data such as those generated from ChIP-seq. The executables and source codes are available at the authors' websites: e.g. http://www.cs.toronto.edu/∼wkc/kmerHMM.

  3. DNA motif elucidation using belief propagation

    KAUST Repository

    Wong, Ka-Chun; Chan, Tak-Ming; Peng, Chengbin; Li, Yue; Zhang, Zhaolei

    2013-01-01

    Protein-binding microarray (PBM) is a high-throughout platform that can measure the DNA-binding preference of a protein in a comprehensive and unbiased manner. A typical PBM experiment can measure binding signal intensities of a protein to all the possible DNA k-mers (k = 8 ?10); such comprehensive binding affinity data usually need to be reduced and represented as motif models before they can be further analyzed and applied. Since proteins can often bind to DNA in multiple modes, one of the major challenges is to decompose the comprehensive affinity data into multimodal motif representations. Here, we describe a new algorithm that uses Hidden Markov Models (HMMs) and can derive precise and multimodal motifs using belief propagations. We describe an HMM-based approach using belief propagations (kmerHMM), which accepts and preprocesses PBM probe raw data into median-binding intensities of individual k-mers. The k-mers are ranked and aligned for training an HMM as the underlying motif representation. Multiple motifs are then extracted from the HMM using belief propagations. Comparisons of kmerHMM with other leading methods on several data sets demonstrated its effectiveness and uniqueness. Especially, it achieved the best performance on more than half of the data sets. In addition, the multiple binding modes derived by kmerHMM are biologically meaningful and will be useful in interpreting other genome-wide data such as those generated from ChIP-seq. The executables and source codes are available at the authors' websites: e.g. http://www.cs.toronto.edu/?wkc/kmerHMM. 2013 The Author(s).

  4. DNA motif elucidation using belief propagation

    KAUST Repository

    Wong, Ka-Chun

    2013-06-29

    Protein-binding microarray (PBM) is a high-throughout platform that can measure the DNA-binding preference of a protein in a comprehensive and unbiased manner. A typical PBM experiment can measure binding signal intensities of a protein to all the possible DNA k-mers (k = 8 ?10); such comprehensive binding affinity data usually need to be reduced and represented as motif models before they can be further analyzed and applied. Since proteins can often bind to DNA in multiple modes, one of the major challenges is to decompose the comprehensive affinity data into multimodal motif representations. Here, we describe a new algorithm that uses Hidden Markov Models (HMMs) and can derive precise and multimodal motifs using belief propagations. We describe an HMM-based approach using belief propagations (kmerHMM), which accepts and preprocesses PBM probe raw data into median-binding intensities of individual k-mers. The k-mers are ranked and aligned for training an HMM as the underlying motif representation. Multiple motifs are then extracted from the HMM using belief propagations. Comparisons of kmerHMM with other leading methods on several data sets demonstrated its effectiveness and uniqueness. Especially, it achieved the best performance on more than half of the data sets. In addition, the multiple binding modes derived by kmerHMM are biologically meaningful and will be useful in interpreting other genome-wide data such as those generated from ChIP-seq. The executables and source codes are available at the authors\\' websites: e.g. http://www.cs.toronto.edu/?wkc/kmerHMM. 2013 The Author(s).

  5. Efficient Blind System Identification of Non-Gaussian Auto-Regressive Models with HMM Modeling of the Excitation

    DEFF Research Database (Denmark)

    Li, Chunjian; Andersen, Søren Vang

    2007-01-01

    We propose two blind system identification methods that exploit the underlying dynamics of non-Gaussian signals. The two signal models to be identified are: an Auto-Regressive (AR) model driven by a discrete-state Hidden Markov process, and the same model whose output is perturbed by white Gaussi...... outputs. The signal models are general and suitable to numerous important signals, such as speech signals and base-band communication signals. Applications to speech analysis and blind channel equalization are given to exemplify the efficiency of the new methods....

  6. A Novel Approach to ECG Classification Based upon Two-Layered HMMs in Body Sensor Networks

    Directory of Open Access Journals (Sweden)

    Wei Liang

    2014-03-01

    Full Text Available This paper presents a novel approach to ECG signal filtering and classification. Unlike the traditional techniques which aim at collecting and processing the ECG signals with the patient being still, lying in bed in hospitals, our proposed algorithm is intentionally designed for monitoring and classifying the patient’s ECG signals in the free-living environment. The patients are equipped with wearable ambulatory devices the whole day, which facilitates the real-time heart attack detection. In ECG preprocessing, an integral-coefficient-band-stop (ICBS filter is applied, which omits time-consuming floating-point computations. In addition, two-layered Hidden Markov Models (HMMs are applied to achieve ECG feature extraction and classification. The periodic ECG waveforms are segmented into ISO intervals, P subwave, QRS complex and T subwave respectively in the first HMM layer where expert-annotation assisted Baum-Welch algorithm is utilized in HMM modeling. Then the corresponding interval features are selected and applied to categorize the ECG into normal type or abnormal type (PVC, APC in the second HMM layer. For verifying the effectiveness of our algorithm on abnormal signal detection, we have developed an ECG body sensor network (BSN platform, whereby real-time ECG signals are collected, transmitted, displayed and the corresponding classification outcomes are deduced and shown on the BSN screen.

  7. An evolutionary algorithm for model selection

    Energy Technology Data Exchange (ETDEWEB)

    Bicker, Karl [CERN, Geneva (Switzerland); Chung, Suh-Urk; Friedrich, Jan; Grube, Boris; Haas, Florian; Ketzer, Bernhard; Neubert, Sebastian; Paul, Stephan; Ryabchikov, Dimitry [Technische Univ. Muenchen (Germany)

    2013-07-01

    When performing partial-wave analyses of multi-body final states, the choice of the fit model, i.e. the set of waves to be used in the fit, can significantly alter the results of the partial wave fit. Traditionally, the models were chosen based on physical arguments and by observing the changes in log-likelihood of the fits. To reduce possible bias in the model selection process, an evolutionary algorithm was developed based on a Bayesian goodness-of-fit criterion which takes into account the model complexity. Starting from systematically constructed pools of waves which contain significantly more waves than the typical fit model, the algorithm yields a model with an optimal log-likelihood and with a number of partial waves which is appropriate for the number of events in the data. Partial waves with small contributions to the total intensity are penalized and likely to be dropped during the selection process, as are models were excessive correlations between single waves occur. Due to the automated nature of the model selection, a much larger part of the model space can be explored than would be possible in a manual selection. In addition the method allows to assess the dependence of the fit result on the fit model which is an important contribution to the systematic uncertainty.

  8. De novo identification of replication-timing domains in the human genome by deep learning.

    Science.gov (United States)

    Liu, Feng; Ren, Chao; Li, Hao; Zhou, Pingkun; Bo, Xiaochen; Shu, Wenjie

    2016-03-01

    The de novo identification of the initiation and termination zones-regions that replicate earlier or later than their upstream and downstream neighbours, respectively-remains a key challenge in DNA replication. Building on advances in deep learning, we developed a novel hybrid architecture combining a pre-trained, deep neural network and a hidden Markov model (DNN-HMM) for the de novo identification of replication domains using replication timing profiles. Our results demonstrate that DNN-HMM can significantly outperform strong, discriminatively trained Gaussian mixture model-HMM (GMM-HMM) systems and other six reported methods that can be applied to this challenge. We applied our trained DNN-HMM to identify distinct replication domain types, namely the early replication domain (ERD), the down transition zone (DTZ), the late replication domain (LRD) and the up transition zone (UTZ), using newly replicated DNA sequencing (Repli-Seq) data across 15 human cells. A subsequent integrative analysis revealed that these replication domains harbour unique genomic and epigenetic patterns, transcriptional activity and higher-order chromosomal structure. Our findings support the 'replication-domain' model, which states (1) that ERDs and LRDs, connected by UTZs and DTZs, are spatially compartmentalized structural and functional units of higher-order chromosomal structure, (2) that the adjacent DTZ-UTZ pairs form chromatin loops and (3) that intra-interactions within ERDs and LRDs tend to be short-range and long-range, respectively. Our model reveals an important chromatin organizational principle of the human genome and represents a critical step towards understanding the mechanisms regulating replication timing. Our DNN-HMM method and three additional algorithms can be freely accessed at https://github.com/wenjiegroup/DNN-HMM The replication domain regions identified in this study are available in GEO under the accession ID GSE53984. shuwj@bmi.ac.cn or boxc

  9. Hidden Markov model approach for identifying the modular framework of the protein backbone.

    Science.gov (United States)

    Camproux, A C; Tuffery, P; Chevrolat, J P; Boisvieux, J F; Hazout, S

    1999-12-01

    The hidden Markov model (HMM) was used to identify recurrent short 3D structural building blocks (SBBs) describing protein backbones, independently of any a priori knowledge. Polypeptide chains are decomposed into a series of short segments defined by their inter-alpha-carbon distances. Basically, the model takes into account the sequentiality of the observed segments and assumes that each one corresponds to one of several possible SBBs. Fitting the model to a database of non-redundant proteins allowed us to decode proteins in terms of 12 distinct SBBs with different roles in protein structure. Some SBBs correspond to classical regular secondary structures. Others correspond to a significant subdivision of their bounding regions previously considered to be a single pattern. The major contribution of the HMM is that this model implicitly takes into account the sequential connections between SBBs and thus describes the most probable pathways by which the blocks are connected to form the framework of the protein structures. Validation of the SBBs code was performed by extracting SBB series repeated in recoding proteins and examining their structural similarities. Preliminary results on the sequence specificity of SBBs suggest promising perspectives for the prediction of SBBs or series of SBBs from the protein sequences.

  10. Bayesian Mixed Hidden Markov Models: A Multi-Level Approach to Modeling Categorical Outcomes with Differential Misclassification

    Science.gov (United States)

    Zhang, Yue; Berhane, Kiros

    2014-01-01

    Questionnaire-based health status outcomes are often prone to misclassification. When studying the effect of risk factors on such outcomes, ignoring any potential misclassification may lead to biased effect estimates. Analytical challenges posed by these misclassified outcomes are further complicated when simultaneously exploring factors for both the misclassification and health processes in a multi-level setting. To address these challenges, we propose a fully Bayesian Mixed Hidden Markov Model (BMHMM) for handling differential misclassification in categorical outcomes in a multi-level setting. The BMHMM generalizes the traditional Hidden Markov Model (HMM) by introducing random effects into three sets of HMM parameters for joint estimation of the prevalence, transition and misclassification probabilities. This formulation not only allows joint estimation of all three sets of parameters, but also accounts for cluster level heterogeneity based on a multi-level model structure. Using this novel approach, both the true health status prevalence and the transition probabilities between the health states during follow-up are modeled as functions of covariates. The observed, possibly misclassified, health states are related to the true, but unobserved, health states and covariates. Results from simulation studies are presented to validate the estimation procedure, to show the computational efficiency due to the Bayesian approach and also to illustrate the gains from the proposed method compared to existing methods that ignore outcome misclassification and cluster level heterogeneity. We apply the proposed method to examine the risk factors for both asthma transition and misclassification in the Southern California Children's Health Study (CHS). PMID:24254432

  11. Bayesian Model Selection under Time Constraints

    Science.gov (United States)

    Hoege, M.; Nowak, W.; Illman, W. A.

    2017-12-01

    Bayesian model selection (BMS) provides a consistent framework for rating and comparing models in multi-model inference. In cases where models of vastly different complexity compete with each other, we also face vastly different computational runtimes of such models. For instance, time series of a quantity of interest can be simulated by an autoregressive process model that takes even less than a second for one run, or by a partial differential equations-based model with runtimes up to several hours or even days. The classical BMS is based on a quantity called Bayesian model evidence (BME). It determines the model weights in the selection process and resembles a trade-off between bias of a model and its complexity. However, in practice, the runtime of models is another weight relevant factor for model selection. Hence, we believe that it should be included, leading to an overall trade-off problem between bias, variance and computing effort. We approach this triple trade-off from the viewpoint of our ability to generate realizations of the models under a given computational budget. One way to obtain BME values is through sampling-based integration techniques. We argue with the fact that more expensive models can be sampled much less under time constraints than faster models (in straight proportion to their runtime). The computed evidence in favor of a more expensive model is statistically less significant than the evidence computed in favor of a faster model, since sampling-based strategies are always subject to statistical sampling error. We present a straightforward way to include this misbalance into the model weights that are the basis for model selection. Our approach follows directly from the idea of insufficient significance. It is based on a computationally cheap bootstrapping error estimate of model evidence and is easy to implement. The approach is illustrated in a small synthetic modeling study.

  12. The genealogy of samples in models with selection.

    Science.gov (United States)

    Neuhauser, C; Krone, S M

    1997-02-01

    We introduce the genealogy of a random sample of genes taken from a large haploid population that evolves according to random reproduction with selection and mutation. Without selection, the genealogy is described by Kingman's well-known coalescent process. In the selective case, the genealogy of the sample is embedded in a graph with a coalescing and branching structure. We describe this graph, called the ancestral selection graph, and point out differences and similarities with Kingman's coalescent. We present simulations for a two-allele model with symmetric mutation in which one of the alleles has a selective advantage over the other. We find that when the allele frequencies in the population are already in equilibrium, then the genealogy does not differ much from the neutral case. This is supported by rigorous results. Furthermore, we describe the ancestral selection graph for other selective models with finitely many selection classes, such as the K-allele models, infinitely-many-alleles models. DNA sequence models, and infinitely-many-sites models, and briefly discuss the diploid case.

  13. Model Selection with the Linear Mixed Model for Longitudinal Data

    Science.gov (United States)

    Ryoo, Ji Hoon

    2011-01-01

    Model building or model selection with linear mixed models (LMMs) is complicated by the presence of both fixed effects and random effects. The fixed effects structure and random effects structure are codependent, so selection of one influences the other. Most presentations of LMM in psychology and education are based on a multilevel or…

  14. IT vendor selection model by using structural equation model & analytical hierarchy process

    Science.gov (United States)

    Maitra, Sarit; Dominic, P. D. D.

    2012-11-01

    Selecting and evaluating the right vendors is imperative for an organization's global marketplace competitiveness. Improper selection and evaluation of potential vendors can dwarf an organization's supply chain performance. Numerous studies have demonstrated that firms consider multiple criteria when selecting key vendors. This research intends to develop a new hybrid model for vendor selection process with better decision making. The new proposed model provides a suitable tool for assisting decision makers and managers to make the right decisions and select the most suitable vendor. This paper proposes a Hybrid model based on Structural Equation Model (SEM) and Analytical Hierarchy Process (AHP) for long-term strategic vendor selection problems. The five steps framework of the model has been designed after the thorough literature study. The proposed hybrid model will be applied using a real life case study to assess its effectiveness. In addition, What-if analysis technique will be used for model validation purpose.

  15. Bayesian Modelling of fMRI Time Series

    DEFF Research Database (Denmark)

    Højen-Sørensen, Pedro; Hansen, Lars Kai; Rasmussen, Carl Edward

    2000-01-01

    We present a Hidden Markov Model (HMM) for inferring the hidden psychological state (or neural activity) during single trial fMRI activation experiments with blocked task paradigms. Inference is based on Bayesian methodology, using a combination of analytical and a variety of Markov Chain Monte...... Carlo (MCMC) sampling techniques. The advantage of this method is that detection of short time learning effects between repeated trials is possible since inference is based only on single trial experiments....

  16. Dealing with selection bias in educational transition models

    DEFF Research Database (Denmark)

    Holm, Anders; Jæger, Mads Meier

    2011-01-01

    This paper proposes the bivariate probit selection model (BPSM) as an alternative to the traditional Mare model for analyzing educational transitions. The BPSM accounts for selection on unobserved variables by allowing for unobserved variables which affect the probability of making educational tr...... account for selection on unobserved variables and high-quality data are both required in order to estimate credible educational transition models.......This paper proposes the bivariate probit selection model (BPSM) as an alternative to the traditional Mare model for analyzing educational transitions. The BPSM accounts for selection on unobserved variables by allowing for unobserved variables which affect the probability of making educational...... transitions to be correlated across transitions. We use simulated and real data to illustrate how the BPSM improves on the traditional Mare model in terms of correcting for selection bias and providing credible estimates of the effect of family background on educational success. We conclude that models which...

  17. Estimation of a multivariate mean under model selection uncertainty

    Directory of Open Access Journals (Sweden)

    Georges Nguefack-Tsague

    2014-05-01

    Full Text Available Model selection uncertainty would occur if we selected a model based on one data set and subsequently applied it for statistical inferences, because the "correct" model would not be selected with certainty.  When the selection and inference are based on the same dataset, some additional problems arise due to the correlation of the two stages (selection and inference. In this paper model selection uncertainty is considered and model averaging is proposed. The proposal is related to the theory of James and Stein of estimating more than three parameters from independent normal observations. We suggest that a model averaging scheme taking into account the selection procedure could be more appropriate than model selection alone. Some properties of this model averaging estimator are investigated; in particular we show using Stein's results that it is a minimax estimator and can outperform Stein-type estimators.

  18. Review and selection of unsaturated flow models

    Energy Technology Data Exchange (ETDEWEB)

    Reeves, M.; Baker, N.A.; Duguid, J.O. [INTERA, Inc., Las Vegas, NV (United States)

    1994-04-04

    Since the 1960`s, ground-water flow models have been used for analysis of water resources problems. In the 1970`s, emphasis began to shift to analysis of waste management problems. This shift in emphasis was largely brought about by site selection activities for geologic repositories for disposal of high-level radioactive wastes. Model development during the 1970`s and well into the 1980`s focused primarily on saturated ground-water flow because geologic repositories in salt, basalt, granite, shale, and tuff were envisioned to be below the water table. Selection of the unsaturated zone at Yucca Mountain, Nevada, for potential disposal of waste began to shift model development toward unsaturated flow models. Under the US Department of Energy (DOE), the Civilian Radioactive Waste Management System Management and Operating Contractor (CRWMS M&O) has the responsibility to review, evaluate, and document existing computer models; to conduct performance assessments; and to develop performance assessment models, where necessary. This document describes the CRWMS M&O approach to model review and evaluation (Chapter 2), and the requirements for unsaturated flow models which are the bases for selection from among the current models (Chapter 3). Chapter 4 identifies existing models, and their characteristics. Through a detailed examination of characteristics, Chapter 5 presents the selection of models for testing. Chapter 6 discusses the testing and verification of selected models. Chapters 7 and 8 give conclusions and make recommendations, respectively. Chapter 9 records the major references for each of the models reviewed. Appendix A, a collection of technical reviews for each model, contains a more complete list of references. Finally, Appendix B characterizes the problems used for model testing.

  19. Review and selection of unsaturated flow models

    International Nuclear Information System (INIS)

    Reeves, M.; Baker, N.A.; Duguid, J.O.

    1994-01-01

    Since the 1960's, ground-water flow models have been used for analysis of water resources problems. In the 1970's, emphasis began to shift to analysis of waste management problems. This shift in emphasis was largely brought about by site selection activities for geologic repositories for disposal of high-level radioactive wastes. Model development during the 1970's and well into the 1980's focused primarily on saturated ground-water flow because geologic repositories in salt, basalt, granite, shale, and tuff were envisioned to be below the water table. Selection of the unsaturated zone at Yucca Mountain, Nevada, for potential disposal of waste began to shift model development toward unsaturated flow models. Under the US Department of Energy (DOE), the Civilian Radioactive Waste Management System Management and Operating Contractor (CRWMS M ampersand O) has the responsibility to review, evaluate, and document existing computer models; to conduct performance assessments; and to develop performance assessment models, where necessary. This document describes the CRWMS M ampersand O approach to model review and evaluation (Chapter 2), and the requirements for unsaturated flow models which are the bases for selection from among the current models (Chapter 3). Chapter 4 identifies existing models, and their characteristics. Through a detailed examination of characteristics, Chapter 5 presents the selection of models for testing. Chapter 6 discusses the testing and verification of selected models. Chapters 7 and 8 give conclusions and make recommendations, respectively. Chapter 9 records the major references for each of the models reviewed. Appendix A, a collection of technical reviews for each model, contains a more complete list of references. Finally, Appendix B characterizes the problems used for model testing

  20. Model Selection in Continuous Test Norming With GAMLSS.

    Science.gov (United States)

    Voncken, Lieke; Albers, Casper J; Timmerman, Marieke E

    2017-06-01

    To compute norms from reference group test scores, continuous norming is preferred over traditional norming. A suitable continuous norming approach for continuous data is the use of the Box-Cox Power Exponential model, which is found in the generalized additive models for location, scale, and shape. Applying the Box-Cox Power Exponential model for test norming requires model selection, but it is unknown how well this can be done with an automatic selection procedure. In a simulation study, we compared the performance of two stepwise model selection procedures combined with four model-fit criteria (Akaike information criterion, Bayesian information criterion, generalized Akaike information criterion (3), cross-validation), varying data complexity, sampling design, and sample size in a fully crossed design. The new procedure combined with one of the generalized Akaike information criterion was the most efficient model selection procedure (i.e., required the smallest sample size). The advocated model selection procedure is illustrated with norming data of an intelligence test.

  1. Hidden Markov models for the activity profile of terrorist groups

    OpenAIRE

    Raghavan, Vasanthan; Galstyan, Aram; Tartakovsky, Alexander G.

    2012-01-01

    The main focus of this work is on developing models for the activity profile of a terrorist group, detecting sudden spurts and downfalls in this profile, and, in general, tracking it over a period of time. Toward this goal, a $d$-state hidden Markov model (HMM) that captures the latent states underlying the dynamics of the group and thus its activity profile is developed. The simplest setting of $d=2$ corresponds to the case where the dynamics are coarsely quantized as Active and Inactive, re...

  2. A Framework for Estimating Long Term Driver Behavior

    Directory of Open Access Journals (Sweden)

    Vijay Gadepally

    2017-01-01

    Full Text Available We present a framework for estimation of long term driver behavior for autonomous vehicles and vehicle safety systems. The Hybrid State System and Hidden Markov Model (HSS+HMM system discussed in this article is capable of describing the hybrid characteristics of driver and vehicle coupling. In our model, driving observations follow a continuous trajectory that can be measured to create continuous state estimates. These continuous state estimates can then be used to estimate the most likely driver state using decision-behavior coupling inherent to the HSS+HMM system. The HSS+HMM system is encompassed in a HSS structure and intersystem connectivity is determined by using signal processing and pattern recognition techniques. The proposed method is suitable for a number of autonomous and vehicle safety scenarios such as estimating intent of other vehicles near intersections or avoiding hazardous driving events such as unexpected lane changes. The long term driver behavior estimation system involves an extended HSS+HMM structure that is capable of including external information in the estimation process. Through the grafting and pruning of metastates, the HSS+HMM system can be dynamically updated to best represent driver choices given external information. Three application examples are also provided to elucidate the theoretical system.

  3. Un calcul de Viterbi pour un Modèle de Markov Caché Contraint

    DEFF Research Database (Denmark)

    Petit, Matthieu; Christiansen, Henning

    2009-01-01

    A hidden Markov model (HMM) is a statistical model in which the system being modeled is assumed to be a Markov process with hidden states. This model has been widely used in speech recognition and biological sequence analysis. Viterbi algorithm has been proposed to compute the most probable value....... Several constraint techniques are used to reduce the search of the most probable value of hidden states of a constrained HMM. An implementation based on PRISM, a logic programming language for statistical modeling, is presented....

  4. Quality Quandaries- Time Series Model Selection and Parsimony

    DEFF Research Database (Denmark)

    Bisgaard, Søren; Kulahci, Murat

    2009-01-01

    Some of the issues involved in selecting adequate models for time series data are discussed using an example concerning the number of users of an Internet server. The process of selecting an appropriate model is subjective and requires experience and judgment. The authors believe an important...... consideration in model selection should be parameter parsimony. They favor the use of parsimonious mixed ARMA models, noting that research has shown that a model building strategy that considers only autoregressive representations will lead to non-parsimonious models and to loss of forecasting accuracy....

  5. Application of Bayesian Model Selection for Metal Yield Models using ALEGRA and Dakota.

    Energy Technology Data Exchange (ETDEWEB)

    Portone, Teresa; Niederhaus, John Henry; Sanchez, Jason James; Swiler, Laura Painton

    2018-02-01

    This report introduces the concepts of Bayesian model selection, which provides a systematic means of calibrating and selecting an optimal model to represent a phenomenon. This has many potential applications, including for comparing constitutive models. The ideas described herein are applied to a model selection problem between different yield models for hardened steel under extreme loading conditions.

  6. Methods for model selection in applied science and engineering.

    Energy Technology Data Exchange (ETDEWEB)

    Field, Richard V., Jr.

    2004-10-01

    Mathematical models are developed and used to study the properties of complex systems and/or modify these systems to satisfy some performance requirements in just about every area of applied science and engineering. A particular reason for developing a model, e.g., performance assessment or design, is referred to as the model use. Our objective is the development of a methodology for selecting a model that is sufficiently accurate for an intended use. Information on the system being modeled is, in general, incomplete, so that there may be two or more models consistent with the available information. The collection of these models is called the class of candidate models. Methods are developed for selecting the optimal member from a class of candidate models for the system. The optimal model depends on the available information, the selected class of candidate models, and the model use. Classical methods for model selection, including the method of maximum likelihood and Bayesian methods, as well as a method employing a decision-theoretic approach, are formulated to select the optimal model for numerous applications. There is no requirement that the candidate models be random. Classical methods for model selection ignore model use and require data to be available. Examples are used to show that these methods can be unreliable when data is limited. The decision-theoretic approach to model selection does not have these limitations, and model use is included through an appropriate utility function. This is especially important when modeling high risk systems, where the consequences of using an inappropriate model for the system can be disastrous. The decision-theoretic method for model selection is developed and applied for a series of complex and diverse applications. These include the selection of the: (1) optimal order of the polynomial chaos approximation for non-Gaussian random variables and stationary stochastic processes, (2) optimal pressure load model to be

  7. Real-Time Landmine Detection with Ground-Penetrating Radar Using Discriminative and Adaptive Hidden Markov Models

    Directory of Open Access Journals (Sweden)

    Ho KC

    2005-01-01

    Full Text Available We propose a real-time software system for landmine detection using ground-penetrating radar (GPR. The system includes an efficient and adaptive preprocessing component; a hidden Markov model- (HMM- based detector; a corrective training component; and an incremental update of the background model. The preprocessing is based on frequency-domain processing and performs ground-level alignment and background removal. The HMM detector is an improvement of a previously proposed system (baseline. It includes additional pre- and postprocessing steps to improve the time efficiency and enable real-time application. The corrective training component is used to adjust the initial model parameters to minimize the number of misclassification sequences. This component could be used offline, or online through feedback to adapt an initial model to specific sites and environments. The background update component adjusts the parameters of the background model to adapt it to each lane during testing. The proposed software system is applied to data acquired from three outdoor test sites at different geographic locations, using a state-of-the-art array GPR prototype. The first collection was used as training, and the other two (contain data from more than 1200 m of simulated dirt and gravel roads for testing. Our results indicate that, on average, the corrective training can improve the performance by about 10% for each site. For individual lanes, the performance gain can reach 50%.

  8. A Heckman Selection- t Model

    KAUST Repository

    Marchenko, Yulia V.; Genton, Marc G.

    2012-01-01

    for sample selection bias based on the SLt model and compare it with the performances of several tests used with the SLN model. Our findings indicate that the latter tests can be misleading in the presence of heavy-tailed data. © 2012 American Statistical

  9. Mutation-selection models of codon substitution and their use to estimate selective strengths on codon usage

    DEFF Research Database (Denmark)

    Yang, Ziheng; Nielsen, Rasmus

    2008-01-01

    Current models of codon substitution are formulated at the levels of nucleotide substitution and do not explicitly consider the separate effects of mutation and selection. They are thus incapable of inferring whether mutation or selection is responsible for evolution at silent sites. Here we impl...... codon usage in mammals. Estimates of selection coefficients nevertheless suggest that selection on codon usage is weak and most mutations are nearly neutral. The sensitivity of the analysis on the assumed mutation model is discussed.......Current models of codon substitution are formulated at the levels of nucleotide substitution and do not explicitly consider the separate effects of mutation and selection. They are thus incapable of inferring whether mutation or selection is responsible for evolution at silent sites. Here we...... implement a few population genetics models of codon substitution that explicitly consider mutation bias and natural selection at the DNA level. Selection on codon usage is modeled by introducing codon-fitness parameters, which together with mutation-bias parameters, predict optimal codon frequencies...

  10. A Computational Model of Selection by Consequences

    Science.gov (United States)

    McDowell, J. J.

    2004-01-01

    Darwinian selection by consequences was instantiated in a computational model that consisted of a repertoire of behaviors undergoing selection, reproduction, and mutation over many generations. The model in effect created a digital organism that emitted behavior continuously. The behavior of this digital organism was studied in three series of…

  11. A hierarchical stochastic model for bistable perception.

    Directory of Open Access Journals (Sweden)

    Stefan Albert

    2017-11-01

    Full Text Available Viewing of ambiguous stimuli can lead to bistable perception alternating between the possible percepts. During continuous presentation of ambiguous stimuli, percept changes occur as single events, whereas during intermittent presentation of ambiguous stimuli, percept changes occur at more or less regular intervals either as single events or bursts. Response patterns can be highly variable and have been reported to show systematic differences between patients with schizophrenia and healthy controls. Existing models of bistable perception often use detailed assumptions and large parameter sets which make parameter estimation challenging. Here we propose a parsimonious stochastic model that provides a link between empirical data analysis of the observed response patterns and detailed models of underlying neuronal processes. Firstly, we use a Hidden Markov Model (HMM for the times between percept changes, which assumes one single state in continuous presentation and a stable and an unstable state in intermittent presentation. The HMM captures the observed differences between patients with schizophrenia and healthy controls, but remains descriptive. Therefore, we secondly propose a hierarchical Brownian model (HBM, which produces similar response patterns but also provides a relation to potential underlying mechanisms. The main idea is that neuronal activity is described as an activity difference between two competing neuronal populations reflected in Brownian motions with drift. This differential activity generates switching between the two conflicting percepts and between stable and unstable states with similar mechanisms on different neuronal levels. With only a small number of parameters, the HBM can be fitted closely to a high variety of response patterns and captures group differences between healthy controls and patients with schizophrenia. At the same time, it provides a link to mechanistic models of bistable perception, linking the group

  12. A hierarchical stochastic model for bistable perception.

    Science.gov (United States)

    Albert, Stefan; Schmack, Katharina; Sterzer, Philipp; Schneider, Gaby

    2017-11-01

    Viewing of ambiguous stimuli can lead to bistable perception alternating between the possible percepts. During continuous presentation of ambiguous stimuli, percept changes occur as single events, whereas during intermittent presentation of ambiguous stimuli, percept changes occur at more or less regular intervals either as single events or bursts. Response patterns can be highly variable and have been reported to show systematic differences between patients with schizophrenia and healthy controls. Existing models of bistable perception often use detailed assumptions and large parameter sets which make parameter estimation challenging. Here we propose a parsimonious stochastic model that provides a link between empirical data analysis of the observed response patterns and detailed models of underlying neuronal processes. Firstly, we use a Hidden Markov Model (HMM) for the times between percept changes, which assumes one single state in continuous presentation and a stable and an unstable state in intermittent presentation. The HMM captures the observed differences between patients with schizophrenia and healthy controls, but remains descriptive. Therefore, we secondly propose a hierarchical Brownian model (HBM), which produces similar response patterns but also provides a relation to potential underlying mechanisms. The main idea is that neuronal activity is described as an activity difference between two competing neuronal populations reflected in Brownian motions with drift. This differential activity generates switching between the two conflicting percepts and between stable and unstable states with similar mechanisms on different neuronal levels. With only a small number of parameters, the HBM can be fitted closely to a high variety of response patterns and captures group differences between healthy controls and patients with schizophrenia. At the same time, it provides a link to mechanistic models of bistable perception, linking the group differences to

  13. A computational model of selection by consequences.

    OpenAIRE

    McDowell, J J

    2004-01-01

    Darwinian selection by consequences was instantiated in a computational model that consisted of a repertoire of behaviors undergoing selection, reproduction, and mutation over many generations. The model in effect created a digital organism that emitted behavior continuously. The behavior of this digital organism was studied in three series of computational experiments that arranged reinforcement according to random-interval (RI) schedules. The quantitative features of the model were varied o...

  14. Statistical model selection with “Big Data”

    Directory of Open Access Journals (Sweden)

    Jurgen A. Doornik

    2015-12-01

    Full Text Available Big Data offer potential benefits for statistical modelling, but confront problems including an excess of false positives, mistaking correlations for causes, ignoring sampling biases and selecting by inappropriate methods. We consider the many important requirements when searching for a data-based relationship using Big Data, and the possible role of Autometrics in that context. Paramount considerations include embedding relationships in general initial models, possibly restricting the number of variables to be selected over by non-statistical criteria (the formulation problem, using good quality data on all variables, analyzed with tight significance levels by a powerful selection procedure, retaining available theory insights (the selection problem while testing for relationships being well specified and invariant to shifts in explanatory variables (the evaluation problem, using a viable approach that resolves the computational problem of immense numbers of possible models.

  15. A Dual-Stage Two-Phase Model of Selective Attention

    Science.gov (United States)

    Hubner, Ronald; Steinhauser, Marco; Lehle, Carola

    2010-01-01

    The dual-stage two-phase (DSTP) model is introduced as a formal and general model of selective attention that includes both an early and a late stage of stimulus selection. Whereas at the early stage information is selected by perceptual filters whose selectivity is relatively limited, at the late stage stimuli are selected more efficiently on a…

  16. Comparison of climate envelope models developed using expert-selected variables versus statistical selection

    Science.gov (United States)

    Brandt, Laura A.; Benscoter, Allison; Harvey, Rebecca G.; Speroterra, Carolina; Bucklin, David N.; Romañach, Stephanie; Watling, James I.; Mazzotti, Frank J.

    2017-01-01

    Climate envelope models are widely used to describe potential future distribution of species under different climate change scenarios. It is broadly recognized that there are both strengths and limitations to using climate envelope models and that outcomes are sensitive to initial assumptions, inputs, and modeling methods Selection of predictor variables, a central step in modeling, is one of the areas where different techniques can yield varying results. Selection of climate variables to use as predictors is often done using statistical approaches that develop correlations between occurrences and climate data. These approaches have received criticism in that they rely on the statistical properties of the data rather than directly incorporating biological information about species responses to temperature and precipitation. We evaluated and compared models and prediction maps for 15 threatened or endangered species in Florida based on two variable selection techniques: expert opinion and a statistical method. We compared model performance between these two approaches for contemporary predictions, and the spatial correlation, spatial overlap and area predicted for contemporary and future climate predictions. In general, experts identified more variables as being important than the statistical method and there was low overlap in the variable sets (0.9 for area under the curve (AUC) and >0.7 for true skill statistic (TSS). Spatial overlap, which compares the spatial configuration between maps constructed using the different variable selection techniques, was only moderate overall (about 60%), with a great deal of variability across species. Difference in spatial overlap was even greater under future climate projections, indicating additional divergence of model outputs from different variable selection techniques. Our work is in agreement with other studies which have found that for broad-scale species distribution modeling, using statistical methods of variable

  17. Elementary Teachers' Selection and Use of Visual Models

    Science.gov (United States)

    Lee, Tammy D.; Gail Jones, M.

    2018-02-01

    As science grows in complexity, science teachers face an increasing challenge of helping students interpret models that represent complex science systems. Little is known about how teachers select and use models when planning lessons. This mixed methods study investigated the pedagogical approaches and visual models used by elementary in-service and preservice teachers in the development of a science lesson about a complex system (e.g., water cycle). Sixty-seven elementary in-service and 69 elementary preservice teachers completed a card sort task designed to document the types of visual models (e.g., images) that teachers choose when planning science instruction. Quantitative and qualitative analyses were conducted to analyze the card sort task. Semistructured interviews were conducted with a subsample of teachers to elicit the rationale for image selection. Results from this study showed that both experienced in-service teachers and novice preservice teachers tended to select similar models and use similar rationales for images to be used in lessons. Teachers tended to select models that were aesthetically pleasing and simple in design and illustrated specific elements of the water cycle. The results also showed that teachers were not likely to select images that represented the less obvious dimensions of the water cycle. Furthermore, teachers selected visual models more as a pedagogical tool to illustrate specific elements of the water cycle and less often as a tool to promote student learning related to complex systems.

  18. Genetic search feature selection for affective modeling

    DEFF Research Database (Denmark)

    Martínez, Héctor P.; Yannakakis, Georgios N.

    2010-01-01

    Automatic feature selection is a critical step towards the generation of successful computational models of affect. This paper presents a genetic search-based feature selection method which is developed as a global-search algorithm for improving the accuracy of the affective models built....... The method is tested and compared against sequential forward feature selection and random search in a dataset derived from a game survey experiment which contains bimodal input features (physiological and gameplay) and expressed pairwise preferences of affect. Results suggest that the proposed method...

  19. Modeling HIV-1 drug resistance as episodic directional selection.

    Science.gov (United States)

    Murrell, Ben; de Oliveira, Tulio; Seebregts, Chris; Kosakovsky Pond, Sergei L; Scheffler, Konrad

    2012-01-01

    The evolution of substitutions conferring drug resistance to HIV-1 is both episodic, occurring when patients are on antiretroviral therapy, and strongly directional, with site-specific resistant residues increasing in frequency over time. While methods exist to detect episodic diversifying selection and continuous directional selection, no evolutionary model combining these two properties has been proposed. We present two models of episodic directional selection (MEDS and EDEPS) which allow the a priori specification of lineages expected to have undergone directional selection. The models infer the sites and target residues that were likely subject to directional selection, using either codon or protein sequences. Compared to its null model of episodic diversifying selection, MEDS provides a superior fit to most sites known to be involved in drug resistance, and neither one test for episodic diversifying selection nor another for constant directional selection are able to detect as many true positives as MEDS and EDEPS while maintaining acceptable levels of false positives. This suggests that episodic directional selection is a better description of the process driving the evolution of drug resistance.

  20. Modeling HIV-1 drug resistance as episodic directional selection.

    Directory of Open Access Journals (Sweden)

    Ben Murrell

    Full Text Available The evolution of substitutions conferring drug resistance to HIV-1 is both episodic, occurring when patients are on antiretroviral therapy, and strongly directional, with site-specific resistant residues increasing in frequency over time. While methods exist to detect episodic diversifying selection and continuous directional selection, no evolutionary model combining these two properties has been proposed. We present two models of episodic directional selection (MEDS and EDEPS which allow the a priori specification of lineages expected to have undergone directional selection. The models infer the sites and target residues that were likely subject to directional selection, using either codon or protein sequences. Compared to its null model of episodic diversifying selection, MEDS provides a superior fit to most sites known to be involved in drug resistance, and neither one test for episodic diversifying selection nor another for constant directional selection are able to detect as many true positives as MEDS and EDEPS while maintaining acceptable levels of false positives. This suggests that episodic directional selection is a better description of the process driving the evolution of drug resistance.

  1. MEGGASENSE - The Metagenome/Genome Annotated Sequence Natural Language Search Engine: A Platform for 
the Construction of Sequence Data Warehouses.

    Science.gov (United States)

    Gacesa, Ranko; Zucko, Jurica; Petursdottir, Solveig K; Gudmundsdottir, Elisabet Eik; Fridjonsson, Olafur H; Diminic, Janko; Long, Paul F; Cullum, John; Hranueli, Daslav; Hreggvidsson, Gudmundur O; Starcevic, Antonio

    2017-06-01

    The MEGGASENSE platform constructs relational databases of DNA or protein sequences. The default functional analysis uses 14 106 hidden Markov model (HMM) profiles based on sequences in the KEGG database. The Solr search engine allows sophisticated queries and a BLAST search function is also incorporated. These standard capabilities were used to generate the SCATT database from the predicted proteome of Streptomyces cattleya . The implementation of a specialised metagenome database (AMYLOMICS) for bioprospecting of carbohydrate-modifying enzymes is described. In addition to standard assembly of reads, a novel 'functional' assembly was developed, in which screening of reads with the HMM profiles occurs before the assembly. The AMYLOMICS database incorporates additional HMM profiles for carbohydrate-modifying enzymes and it is illustrated how the combination of HMM and BLAST analyses helps identify interesting genes. A variety of different proteome and metagenome databases have been generated by MEGGASENSE.

  2. Optical character recognition of handwritten Arabic using hidden Markov models

    Science.gov (United States)

    Aulama, Mohannad M.; Natsheh, Asem M.; Abandah, Gheith A.; Olama, Mohammed M.

    2011-04-01

    The problem of optical character recognition (OCR) of handwritten Arabic has not received a satisfactory solution yet. In this paper, an Arabic OCR algorithm is developed based on Hidden Markov Models (HMMs) combined with the Viterbi algorithm, which results in an improved and more robust recognition of characters at the sub-word level. Integrating the HMMs represents another step of the overall OCR trends being currently researched in the literature. The proposed approach exploits the structure of characters in the Arabic language in addition to their extracted features to achieve improved recognition rates. Useful statistical information of the Arabic language is initially extracted and then used to estimate the probabilistic parameters of the mathematical HMM. A new custom implementation of the HMM is developed in this study, where the transition matrix is built based on the collected large corpus, and the emission matrix is built based on the results obtained via the extracted character features. The recognition process is triggered using the Viterbi algorithm which employs the most probable sequence of sub-words. The model was implemented to recognize the sub-word unit of Arabic text raising the recognition rate from being linked to the worst recognition rate for any character to the overall structure of the Arabic language. Numerical results show that there is a potentially large recognition improvement by using the proposed algorithms.

  3. Belief Bisimulation for Hidden Markov Models Logical Characterisation and Decision Algorithm

    DEFF Research Database (Denmark)

    Jansen, David N.; Nielson, Flemming; Zhang, Lijun

    2012-01-01

    This paper establishes connections between logical equivalences and bisimulation relations for hidden Markov models (HMM). Both standard and belief state bisimulations are considered. We also present decision algorithms for the bisimilarities. For standard bisimilarity, an extension of the usual...... partition refinement algorithm is enough. Belief bisimilarity, being a relation on the continuous space of belief states, cannot be described directly. Instead, we show how to generate a linear equation system in time cubic in the number of states....

  4. A Dynamic Model for Limb Selection

    NARCIS (Netherlands)

    Cox, R.F.A; Smitsman, A.W.

    2008-01-01

    Two experiments and a model on limb selection are reported. In Experiment 1 left-handed and right-handed participants (N = 36) repeatedly used one hand for grasping a small cube. After a clear switch in the cube’s location, perseverative limb selection was revealed in both handedness groups. In

  5. A Permutation Approach for Selecting the Penalty Parameter in Penalized Model Selection

    Science.gov (United States)

    Sabourin, Jeremy A; Valdar, William; Nobel, Andrew B

    2015-01-01

    Summary We describe a simple, computationally effcient, permutation-based procedure for selecting the penalty parameter in LASSO penalized regression. The procedure, permutation selection, is intended for applications where variable selection is the primary focus, and can be applied in a variety of structural settings, including that of generalized linear models. We briefly discuss connections between permutation selection and existing theory for the LASSO. In addition, we present a simulation study and an analysis of real biomedical data sets in which permutation selection is compared with selection based on the following: cross-validation (CV), the Bayesian information criterion (BIC), Scaled Sparse Linear Regression, and a selection method based on recently developed testing procedures for the LASSO. PMID:26243050

  6. Pairagon+N-SCAN_EST: a model-based gene annotation pipeline

    DEFF Research Database (Denmark)

    Arumugam, Manimozhiyan; Wei, Chaochun; Brown, Randall H

    2006-01-01

    This paper describes Pairagon+N-SCAN_EST, a gene annotation pipeline that uses only native alignments. For each expressed sequence it chooses the best genomic alignment. Systems like ENSEMBL and ExoGean rely on trans alignments, in which expressed sequences are aligned to the genomic loci...... with de novo gene prediction by using N-SCAN_EST. N-SCAN_EST is based on a generalized HMM probability model augmented with a phylogenetic conservation model and EST alignments. It can predict complete transcripts by extending or merging EST alignments, but it can also predict genes in regions without EST...

  7. Robust inference in sample selection models

    KAUST Repository

    Zhelonkin, Mikhail; Genton, Marc G.; Ronchetti, Elvezio

    2015-01-01

    The problem of non-random sample selectivity often occurs in practice in many fields. The classical estimators introduced by Heckman are the backbone of the standard statistical analysis of these models. However, these estimators are very sensitive to small deviations from the distributional assumptions which are often not satisfied in practice. We develop a general framework to study the robustness properties of estimators and tests in sample selection models. We derive the influence function and the change-of-variance function of Heckman's two-stage estimator, and we demonstrate the non-robustness of this estimator and its estimated variance to small deviations from the model assumed. We propose a procedure for robustifying the estimator, prove its asymptotic normality and give its asymptotic variance. Both cases with and without an exclusion restriction are covered. This allows us to construct a simple robust alternative to the sample selection bias test. We illustrate the use of our new methodology in an analysis of ambulatory expenditures and we compare the performance of the classical and robust methods in a Monte Carlo simulation study.

  8. Robust inference in sample selection models

    KAUST Repository

    Zhelonkin, Mikhail

    2015-11-20

    The problem of non-random sample selectivity often occurs in practice in many fields. The classical estimators introduced by Heckman are the backbone of the standard statistical analysis of these models. However, these estimators are very sensitive to small deviations from the distributional assumptions which are often not satisfied in practice. We develop a general framework to study the robustness properties of estimators and tests in sample selection models. We derive the influence function and the change-of-variance function of Heckman\\'s two-stage estimator, and we demonstrate the non-robustness of this estimator and its estimated variance to small deviations from the model assumed. We propose a procedure for robustifying the estimator, prove its asymptotic normality and give its asymptotic variance. Both cases with and without an exclusion restriction are covered. This allows us to construct a simple robust alternative to the sample selection bias test. We illustrate the use of our new methodology in an analysis of ambulatory expenditures and we compare the performance of the classical and robust methods in a Monte Carlo simulation study.

  9. Model Selection in Data Analysis Competitions

    DEFF Research Database (Denmark)

    Wind, David Kofoed; Winther, Ole

    2014-01-01

    The use of data analysis competitions for selecting the most appropriate model for a problem is a recent innovation in the field of predictive machine learning. Two of the most well-known examples of this trend was the Netflix Competition and recently the competitions hosted on the online platform...... performers from Kaggle and use previous personal experiences from competing in Kaggle competitions. The stated hypotheses about feature engineering, ensembling, overfitting, model complexity and evaluation metrics give indications and guidelines on how to select a proper model for performing well...... Kaggle. In this paper, we will state and try to verify a set of qualitative hypotheses about predictive modelling, both in general and in the scope of data analysis competitions. To verify our hypotheses we will look at previous competitions and their outcomes, use qualitative interviews with top...

  10. Adverse selection model regarding tobacco consumption

    Directory of Open Access Journals (Sweden)

    Dumitru MARIN

    2006-01-01

    Full Text Available The impact of introducing a tax on tobacco consumption can be studied trough an adverse selection model. The objective of the model presented in the following is to characterize the optimal contractual relationship between the governmental authorities and the two type employees: smokers and non-smokers, taking into account that the consumers’ decision to smoke or not represents an element of risk and uncertainty. Two scenarios are run using the General Algebraic Modeling Systems software: one without taxes set on tobacco consumption and another one with taxes set on tobacco consumption, based on an adverse selection model described previously. The results of the two scenarios are compared in the end of the paper: the wage earnings levels and the social welfare in case of a smoking agent and in case of a non-smoking agent.

  11. Two-step variable selection in quantile regression models

    Directory of Open Access Journals (Sweden)

    FAN Yali

    2015-06-01

    Full Text Available We propose a two-step variable selection procedure for high dimensional quantile regressions, in which the dimension of the covariates, pn is much larger than the sample size n. In the first step, we perform ℓ1 penalty, and we demonstrate that the first step penalized estimator with the LASSO penalty can reduce the model from an ultra-high dimensional to a model whose size has the same order as that of the true model, and the selected model can cover the true model. The second step excludes the remained irrelevant covariates by applying the adaptive LASSO penalty to the reduced model obtained from the first step. Under some regularity conditions, we show that our procedure enjoys the model selection consistency. We conduct a simulation study and a real data analysis to evaluate the finite sample performance of the proposed approach.

  12. Automated sample plan selection for OPC modeling

    Science.gov (United States)

    Casati, Nathalie; Gabrani, Maria; Viswanathan, Ramya; Bayraktar, Zikri; Jaiswal, Om; DeMaris, David; Abdo, Amr Y.; Oberschmidt, James; Krause, Andreas

    2014-03-01

    It is desired to reduce the time required to produce metrology data for calibration of Optical Proximity Correction (OPC) models and also maintain or improve the quality of the data collected with regard to how well that data represents the types of patterns that occur in real circuit designs. Previous work based on clustering in geometry and/or image parameter space has shown some benefit over strictly manual or intuitive selection, but leads to arbitrary pattern exclusion or selection which may not be the best representation of the product. Forming the pattern selection as an optimization problem, which co-optimizes a number of objective functions reflecting modelers' insight and expertise, has shown to produce models with equivalent quality to the traditional plan of record (POR) set but in a less time.

  13. Hidden Markov modelling of movement data from fish

    DEFF Research Database (Denmark)

    Pedersen, Martin Wæver

    Movement data from marine animals tagged with electronic tags are becoming increasingly diverse and plentiful. This trend entails a need for statistical methods that are able to filter the observations to extract the ecologically relevant content. This dissertation focuses on the development...... the behaviour of the animal. With the extended model can migratory and resident movement behaviour be related to geographical regions. For population inference multiple individual state-space analyses can be interconnected using mixed effects modelling. This framework provides parameter estimates...... approximated. This furthermore enables accurate probability densities of location to be computed. Finally, the performance of the HMM approach in analysing nonlinear state space models is compared with two alternatives: the AD Model Builder framework and BUGS, which relies on Markov chain Monte Carlo...

  14. High-dimensional model estimation and model selection

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    I will review concepts and algorithms from high-dimensional statistics for linear model estimation and model selection. I will particularly focus on the so-called p>>n setting where the number of variables p is much larger than the number of samples n. I will focus mostly on regularized statistical estimators that produce sparse models. Important examples include the LASSO and its matrix extension, the Graphical LASSO, and more recent non-convex methods such as the TREX. I will show the applicability of these estimators in a diverse range of scientific applications, such as sparse interaction graph recovery and high-dimensional classification and regression problems in genomics.

  15. Spatial Region Estimation for Autonomous CoT Clustering Using Hidden Markov Model

    Directory of Open Access Journals (Sweden)

    Joon‐young Jung

    2018-02-01

    Full Text Available This paper proposes a hierarchical dual filtering (HDF algorithm to estimate the spatial region between a Cloud of Things (CoT gateway and an Internet of Things (IoT device. The accuracy of the spatial region estimation is important for autonomous CoT clustering. We conduct spatial region estimation using a hidden Markov model (HMM with a raw Bluetooth received signal strength indicator (RSSI. However, the accuracy of the region estimation using the validation data is only 53.8%. To increase the accuracy of the spatial region estimation, the HDF algorithm removes the high‐frequency signals hierarchically, and alters the parameters according to whether the IoT device moves. The accuracy of spatial region estimation using a raw RSSI, Kalman filter, and HDF are compared to evaluate the effectiveness of the HDF algorithm. The success rate and root mean square error (RMSE of all regions are 0.538, 0.622, and 0.75, and 0.997, 0.812, and 0.5 when raw RSSI, a Kalman filter, and HDF are used, respectively. The HDF algorithm attains the best results in terms of the success rate and RMSE of spatial region estimation using HMM.

  16. Insights into the evolution of enzyme substrate promiscuity after the discovery of (βα)₈ isomerase evolutionary intermediates from a diverse metagenome.

    Science.gov (United States)

    Noda-García, Lianet; Juárez-Vázquez, Ana L; Ávila-Arcos, María C; Verduzco-Castro, Ernesto A; Montero-Morán, Gabriela; Gaytán, Paul; Carrillo-Tripp, Mauricio; Barona-Gómez, Francisco

    2015-06-10

    Current sequence-based approaches to identify enzyme functional shifts, such as enzyme promiscuity, have proven to be highly dependent on a priori functional knowledge, hampering our ability to reconstruct evolutionary history behind these mechanisms. Hidden Markov Model (HMM) profiles, broadly used to classify enzyme families, can be useful to distinguish between closely related enzyme families with different specificities. The (βα)8-isomerase HisA/PriA enzyme family, involved in L-histidine (HisA, mono-substrate) biosynthesis in most bacteria and plants, but also in L-tryptophan (HisA/TrpF or PriA, dual-substrate) biosynthesis in most Actinobacteria, has been used as model system to explore evolutionary hypotheses and therefore has a considerable amount of evolutionary, functional and structural knowledge available. We searched for functional evolutionary intermediates between the HisA and PriA enzyme families in order to understand the functional divergence between these families. We constructed a HMM profile that correctly classifies sequences of unknown function into the HisA and PriA enzyme sub-families. Using this HMM profile, we mined a large metagenome to identify plausible evolutionary intermediate sequences between HisA and PriA. These sequences were used to perform phylogenetic reconstructions and to identify functionally conserved amino acids. Biochemical characterization of one selected enzyme (CAM1) with a mutation within the functionally essential N-terminus phosphate-binding site, namely, an alanine instead of a glycine in HisA or a serine in PriA, showed that this evolutionary intermediate has dual-substrate specificity. Moreover, site-directed mutagenesis of this alanine residue, either backwards into a glycine or forward into a serine, revealed the robustness of this enzyme. None of these mutations, presumably upon functionally essential amino acids, significantly abolished its enzyme activities. A truncated version of this enzyme (CAM2

  17. Melody Track Selection Using Discriminative Language Model

    Science.gov (United States)

    Wu, Xiao; Li, Ming; Suo, Hongbin; Yan, Yonghong

    In this letter we focus on the task of selecting the melody track from a polyphonic MIDI file. Based on the intuition that music and language are similar in many aspects, we solve the selection problem by introducing an n-gram language model to learn the melody co-occurrence patterns in a statistical manner and determine the melodic degree of a given MIDI track. Furthermore, we propose the idea of using background model and posterior probability criteria to make modeling more discriminative. In the evaluation, the achieved 81.6% correct rate indicates the feasibility of our approach.

  18. Model selection for Gaussian kernel PCA denoising

    DEFF Research Database (Denmark)

    Jørgensen, Kasper Winther; Hansen, Lars Kai

    2012-01-01

    We propose kernel Parallel Analysis (kPA) for automatic kernel scale and model order selection in Gaussian kernel PCA. Parallel Analysis [1] is based on a permutation test for covariance and has previously been applied for model order selection in linear PCA, we here augment the procedure to also...... tune the Gaussian kernel scale of radial basis function based kernel PCA.We evaluate kPA for denoising of simulated data and the US Postal data set of handwritten digits. We find that kPA outperforms other heuristics to choose the model order and kernel scale in terms of signal-to-noise ratio (SNR...

  19. Objective classification of latent behavioral states in bio-logging data using multivariate-normal hidden Markov models.

    Science.gov (United States)

    Phillips, Joe Scutt; Patterson, Toby A; Leroy, Bruno; Pilling, Graham M; Nicol, Simon J

    2015-07-01

    Analysis of complex time-series data from ecological system study requires quantitative tools for objective description and classification. These tools must take into account largely ignored problems of bias in manual classification, autocorrelation, and noise. Here we describe a method using existing estimation techniques for multivariate-normal hidden Markov models (HMMs) to develop such a classification. We use high-resolution behavioral data from bio-loggers attached to free-roaming pelagic tuna as an example. Observed patterns are assumed to be generated by an unseen Markov process that switches between several multivariate-normal distributions. Our approach is assessed in two parts. The first uses simulation experiments, from which the ability of the HMM to estimate known parameter values is examined using artificial time series of data consistent with hypotheses about pelagic predator foraging ecology. The second is the application to time series of continuous vertical movement data from yellowfin and bigeye tuna taken from tuna tagging experiments. These data were compressed into summary metrics capturing the variation of patterns in diving behavior and formed into a multivariate time series used to estimate a HMM. Each observation was associated with covariate information incorporating the effect of day and night on behavioral switching. Known parameter values were well recovered by the HMMs in our simulation experiments, resulting in mean correct classification rates of 90-97%, although some variance-covariance parameters were estimated less accurately. HMMs with two distinct behavioral states were selected for every time series of real tuna data, predicting a shallow warm state, which was similar across all individuals, and a deep colder state, which was more variable. Marked diurnal behavioral switching was predicted, consistent with many previous empirical studies on tuna. HMMs provide easily interpretable models for the objective classification of

  20. Uncovering the cognitive processes underlying mental rotation: an eye-movement study.

    Science.gov (United States)

    Xue, Jiguo; Li, Chunyong; Quan, Cheng; Lu, Yiming; Yue, Jingwei; Zhang, Chenggang

    2017-08-30

    Mental rotation is an important paradigm for spatial ability. Mental-rotation tasks are assumed to involve five or three sequential cognitive-processing states, though this has not been demonstrated experimentally. Here, we investigated how processing states alternate during mental-rotation tasks. Inference was carried out using an advanced statistical modelling and data-driven approach - a discriminative hidden Markov model (dHMM) trained using eye-movement data obtained from an experiment consisting of two different strategies: (I) mentally rotate the right-side figure to be aligned with the left-side figure and (II) mentally rotate the left-side figure to be aligned with the right-side figure. Eye movements were found to contain the necessary information for determining the processing strategy, and the dHMM that best fit our data segmented the mental-rotation process into three hidden states, which we termed encoding and searching, comparison, and searching on one-side pair. Additionally, we applied three classification methods, logistic regression, support vector model and dHMM, of which dHMM predicted the strategies with the highest accuracy (76.8%). Our study did confirm that there are differences in processing states between these two of mental-rotation strategies, and were consistent with the previous suggestion that mental rotation is discrete process that is accomplished in a piecemeal fashion.

  1. Incomplete lineage sorting patterns among human, chimpanzee and orangutan suggest recent orangutan speciation and widespread selection

    DEFF Research Database (Denmark)

    Hobolth, Asger; Dutheil, Julien; Hawks, John

    2011-01-01

    We search the complete orangutan genome for regions where humans are more closely related to orangutans than to chimpanzees due to incomplete lineage sorting (ILS) in the ancestor of human and chimpanzees. The search uses our recently developed coalescent HMM framework. We find ILS present in ~1%...

  2. ASYMMETRIC PRICE TRANSMISSION MODELING: THE IMPORTANCE OF MODEL COMPLEXITY AND THE PERFORMANCE OF THE SELECTION CRITERIA

    Directory of Open Access Journals (Sweden)

    Henry de-Graft Acquah

    2013-01-01

    Full Text Available Information Criteria provides an attractive basis for selecting the best model from a set of competing asymmetric price transmission models or theories. However, little is understood about the sensitivity of the model selection methods to model complexity. This study therefore fits competing asymmetric price transmission models that differ in complexity to simulated data and evaluates the ability of the model selection methods to recover the true model. The results of Monte Carlo experimentation suggest that in general BIC, CAIC and DIC were superior to AIC when the true data generating process was the standard error correction model, whereas AIC was more successful when the true model was the complex error correction model. It is also shown that the model selection methods performed better in large samples for a complex asymmetric data generating process than with a standard asymmetric data generating process. Except for complex models, AIC's performance did not make substantial gains in recovery rates as sample size increased. The research findings demonstrate the influence of model complexity in asymmetric price transmission model comparison and selection.

  3. A SUPPLIER SELECTION MODEL FOR SOFTWARE DEVELOPMENT OUTSOURCING

    Directory of Open Access Journals (Sweden)

    Hancu Lucian-Viorel

    2010-12-01

    Full Text Available This paper presents a multi-criteria decision making model used for supplier selection for software development outsourcing on e-marketplaces. This model can be used in auctions. The supplier selection process becomes complex and difficult on last twenty years since the Internet plays an important role in business management. Companies have to concentrate their efforts on their core activities and the others activities should be realized by outsourcing. They can achieve significant cost reduction by using e-marketplaces in their purchase process and by using decision support systems on supplier selection. In the literature were proposed many approaches for supplier evaluation and selection process. The performance of potential suppliers is evaluated using multi criteria decision making methods rather than considering a single factor cost.

  4. Verification Techniques for Parameter Selection and Bayesian Model Calibration Presented for an HIV Model

    Science.gov (United States)

    Wentworth, Mami Tonoe

    Uncertainty quantification plays an important role when making predictive estimates of model responses. In this context, uncertainty quantification is defined as quantifying and reducing uncertainties, and the objective is to quantify uncertainties in parameter, model and measurements, and propagate the uncertainties through the model, so that one can make a predictive estimate with quantified uncertainties. Two of the aspects of uncertainty quantification that must be performed prior to propagating uncertainties are model calibration and parameter selection. There are several efficient techniques for these processes; however, the accuracy of these methods are often not verified. This is the motivation for our work, and in this dissertation, we present and illustrate verification frameworks for model calibration and parameter selection in the context of biological and physical models. First, HIV models, developed and improved by [2, 3, 8], describe the viral infection dynamics of an HIV disease. These are also used to make predictive estimates of viral loads and T-cell counts and to construct an optimal control for drug therapy. Estimating input parameters is an essential step prior to uncertainty quantification. However, not all the parameters are identifiable, implying that they cannot be uniquely determined by the observations. These unidentifiable parameters can be partially removed by performing parameter selection, a process in which parameters that have minimal impacts on the model response are determined. We provide verification techniques for Bayesian model calibration and parameter selection for an HIV model. As an example of a physical model, we employ a heat model with experimental measurements presented in [10]. A steady-state heat model represents a prototypical behavior for heat conduction and diffusion process involved in a thermal-hydraulic model, which is a part of nuclear reactor models. We employ this simple heat model to illustrate verification

  5. Pareto-Optimal Model Selection via SPRINT-Race.

    Science.gov (United States)

    Zhang, Tiantian; Georgiopoulos, Michael; Anagnostopoulos, Georgios C

    2018-02-01

    In machine learning, the notion of multi-objective model selection (MOMS) refers to the problem of identifying the set of Pareto-optimal models that optimize by compromising more than one predefined objectives simultaneously. This paper introduces SPRINT-Race, the first multi-objective racing algorithm in a fixed-confidence setting, which is based on the sequential probability ratio with indifference zone test. SPRINT-Race addresses the problem of MOMS with multiple stochastic optimization objectives in the proper Pareto-optimality sense. In SPRINT-Race, a pairwise dominance or non-dominance relationship is statistically inferred via a non-parametric, ternary-decision, dual-sequential probability ratio test. The overall probability of falsely eliminating any Pareto-optimal models or mistakenly returning any clearly dominated models is strictly controlled by a sequential Holm's step-down family-wise error rate control method. As a fixed-confidence model selection algorithm, the objective of SPRINT-Race is to minimize the computational effort required to achieve a prescribed confidence level about the quality of the returned models. The performance of SPRINT-Race is first examined via an artificially constructed MOMS problem with known ground truth. Subsequently, SPRINT-Race is applied on two real-world applications: 1) hybrid recommender system design and 2) multi-criteria stock selection. The experimental results verify that SPRINT-Race is an effective and efficient tool for such MOMS problems. code of SPRINT-Race is available at https://github.com/watera427/SPRINT-Race.

  6. On Optimal Input Design and Model Selection for Communication Channels

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yanyan [ORNL; Djouadi, Seddik M [ORNL; Olama, Mohammed M [ORNL

    2013-01-01

    In this paper, the optimal model (structure) selection and input design which minimize the worst case identification error for communication systems are provided. The problem is formulated using metric complexity theory in a Hilbert space setting. It is pointed out that model selection and input design can be handled independently. Kolmogorov n-width is used to characterize the representation error introduced by model selection, while Gel fand and Time n-widths are used to represent the inherent error introduced by input design. After the model is selected, an optimal input which minimizes the worst case identification error is shown to exist. In particular, it is proven that the optimal model for reducing the representation error is a Finite Impulse Response (FIR) model, and the optimal input is an impulse at the start of the observation interval. FIR models are widely popular in communication systems, such as, in Orthogonal Frequency Division Multiplexing (OFDM) systems.

  7. Selection Criteria in Regime Switching Conditional Volatility Models

    Directory of Open Access Journals (Sweden)

    Thomas Chuffart

    2015-05-01

    Full Text Available A large number of nonlinear conditional heteroskedastic models have been proposed in the literature. Model selection is crucial to any statistical data analysis. In this article, we investigate whether the most commonly used selection criteria lead to choice of the right specification in a regime switching framework. We focus on two types of models: the Logistic Smooth Transition GARCH and the Markov-Switching GARCH models. Simulation experiments reveal that information criteria and loss functions can lead to misspecification ; BIC sometimes indicates the wrong regime switching framework. Depending on the Data Generating Process used in the experiments, great care is needed when choosing a criterion.

  8. Working covariance model selection for generalized estimating equations.

    Science.gov (United States)

    Carey, Vincent J; Wang, You-Gan

    2011-11-20

    We investigate methods for data-based selection of working covariance models in the analysis of correlated data with generalized estimating equations. We study two selection criteria: Gaussian pseudolikelihood and a geodesic distance based on discrepancy between model-sensitive and model-robust regression parameter covariance estimators. The Gaussian pseudolikelihood is found in simulation to be reasonably sensitive for several response distributions and noncanonical mean-variance relations for longitudinal data. Application is also made to a clinical dataset. Assessment of adequacy of both correlation and variance models for longitudinal data should be routine in applications, and we describe open-source software supporting this practice. Copyright © 2011 John Wiley & Sons, Ltd.

  9. Hidden Markov models for sequence analysis: extension and analysis of the basic method

    DEFF Research Database (Denmark)

    Hughey, Richard; Krogh, Anders Stærmose

    1996-01-01

    -maximization training procedure is relatively straight-forward. In this paper,we review the mathematical extensions and heuristics that move the method from the theoreticalto the practical. Then, we experimentally analyze the effectiveness of model regularization,dynamic model modification, and optimization strategies......Hidden Markov models (HMMs) are a highly effective means of modeling a family of unalignedsequences or a common motif within a set of unaligned sequences. The trained HMM can then beused for discrimination or multiple alignment. The basic mathematical description of an HMMand its expectation....... Finally it is demonstrated on the SH2domain how a domain can be found from unaligned sequences using a special model type. Theexperimental work was completed with the aid of the Sequence Alignment and Modeling softwaresuite....

  10. Applying Four Different Risk Models in Local Ore Selection

    International Nuclear Information System (INIS)

    Richmond, Andrew

    2002-01-01

    Given the uncertainty in grade at a mine location, a financially risk-averse decision-maker may prefer to incorporate this uncertainty into the ore selection process. A FORTRAN program risksel is presented to calculate local risk-adjusted optimal ore selections using a negative exponential utility function and three dominance models: mean-variance, mean-downside risk, and stochastic dominance. All four methods are demonstrated in a grade control environment. In the case study, optimal selections range with the magnitude of financial risk that a decision-maker is prepared to accept. Except for the stochastic dominance method, the risk models reassign material from higher cost to lower cost processing options as the aversion to financial risk increases. The stochastic dominance model usually was unable to determine the optimal local selection

  11. Detecting consistent patterns of directional adaptation using differential selection codon models.

    Science.gov (United States)

    Parto, Sahar; Lartillot, Nicolas

    2017-06-23

    Phylogenetic codon models are often used to characterize the selective regimes acting on protein-coding sequences. Recent methodological developments have led to models explicitly accounting for the interplay between mutation and selection, by modeling the amino acid fitness landscape along the sequence. However, thus far, most of these models have assumed that the fitness landscape is constant over time. Fluctuations of the fitness landscape may often be random or depend on complex and unknown factors. However, some organisms may be subject to systematic changes in selective pressure, resulting in reproducible molecular adaptations across independent lineages subject to similar conditions. Here, we introduce a codon-based differential selection model, which aims to detect and quantify the fine-grained consistent patterns of adaptation at the protein-coding level, as a function of external conditions experienced by the organism under investigation. The model parameterizes the global mutational pressure, as well as the site- and condition-specific amino acid selective preferences. This phylogenetic model is implemented in a Bayesian MCMC framework. After validation with simulations, we applied our method to a dataset of HIV sequences from patients with known HLA genetic background. Our differential selection model detects and characterizes differentially selected coding positions specifically associated with two different HLA alleles. Our differential selection model is able to identify consistent molecular adaptations as a function of repeated changes in the environment of the organism. These models can be applied to many other problems, ranging from viral adaptation to evolution of life-history strategies in plants or animals.

  12. On the selection of ordinary differential equation models with application to predator-prey dynamical models.

    Science.gov (United States)

    Zhang, Xinyu; Cao, Jiguo; Carroll, Raymond J

    2015-03-01

    We consider model selection and estimation in a context where there are competing ordinary differential equation (ODE) models, and all the models are special cases of a "full" model. We propose a computationally inexpensive approach that employs statistical estimation of the full model, followed by a combination of a least squares approximation (LSA) and the adaptive Lasso. We show the resulting method, here called the LSA method, to be an (asymptotically) oracle model selection method. The finite sample performance of the proposed LSA method is investigated with Monte Carlo simulations, in which we examine the percentage of selecting true ODE models, the efficiency of the parameter estimation compared to simply using the full and true models, and coverage probabilities of the estimated confidence intervals for ODE parameters, all of which have satisfactory performances. Our method is also demonstrated by selecting the best predator-prey ODE to model a lynx and hare population dynamical system among some well-known and biologically interpretable ODE models. © 2014, The International Biometric Society.

  13. Estimation methods for nonlinear state-space models in ecology

    DEFF Research Database (Denmark)

    Pedersen, Martin Wæver; Berg, Casper Willestofte; Thygesen, Uffe Høgsbro

    2011-01-01

    The use of nonlinear state-space models for analyzing ecological systems is increasing. A wide range of estimation methods for such models are available to ecologists, however it is not always clear, which is the appropriate method to choose. To this end, three approaches to estimation in the theta...... logistic model for population dynamics were benchmarked by Wang (2007). Similarly, we examine and compare the estimation performance of three alternative methods using simulated data. The first approach is to partition the state-space into a finite number of states and formulate the problem as a hidden...... Markov model (HMM). The second method uses the mixed effects modeling and fast numerical integration framework of the AD Model Builder (ADMB) open-source software. The third alternative is to use the popular Bayesian framework of BUGS. The study showed that state and parameter estimation performance...

  14. Variable selection in Logistic regression model with genetic algorithm.

    Science.gov (United States)

    Zhang, Zhongheng; Trevino, Victor; Hoseini, Sayed Shahabuddin; Belciug, Smaranda; Boopathi, Arumugam Manivanna; Zhang, Ping; Gorunescu, Florin; Subha, Velappan; Dai, Songshi

    2018-02-01

    Variable or feature selection is one of the most important steps in model specification. Especially in the case of medical-decision making, the direct use of a medical database, without a previous analysis and preprocessing step, is often counterproductive. In this way, the variable selection represents the method of choosing the most relevant attributes from the database in order to build a robust learning models and, thus, to improve the performance of the models used in the decision process. In biomedical research, the purpose of variable selection is to select clinically important and statistically significant variables, while excluding unrelated or noise variables. A variety of methods exist for variable selection, but none of them is without limitations. For example, the stepwise approach, which is highly used, adds the best variable in each cycle generally producing an acceptable set of variables. Nevertheless, it is limited by the fact that it commonly trapped in local optima. The best subset approach can systematically search the entire covariate pattern space, but the solution pool can be extremely large with tens to hundreds of variables, which is the case in nowadays clinical data. Genetic algorithms (GA) are heuristic optimization approaches and can be used for variable selection in multivariable regression models. This tutorial paper aims to provide a step-by-step approach to the use of GA in variable selection. The R code provided in the text can be extended and adapted to other data analysis needs.

  15. Enhanced spin Hall effect of tunneling light in hyperbolic metamaterial waveguide.

    Science.gov (United States)

    Tang, Tingting; Li, Chaoyang; Luo, Li

    2016-08-01

    Giant enhancement of spin Hall effect of tunneling light (SHETL) is theoretically proposed in a frustrated total internal reflection (FTIR) structure with hyperbolic metamaterial (HMM). We calculate the transverse shift of right-circularly polarized light in a SiO2-air-HMM-air-SiO2 waveguide and analyze the physical mechanism of the enhanced SHETL. The HMM anisotropy can greatly increase the transverse shift of polarized light even though HMM loss might reduce it. Compared with transverse shift of transmitted light through a single HMM slab with ZnAlO/ZnO multilayer, the maximum transverse shift of tunneling light through a FTIR structure with identical HMM can be significantly enlarged by more than three times which reaches -38 μm without any amplification method.

  16. On a Robust MaxEnt Process Regression Model with Sample-Selection

    Directory of Open Access Journals (Sweden)

    Hea-Jung Kim

    2018-04-01

    Full Text Available In a regression analysis, a sample-selection bias arises when a dependent variable is partially observed as a result of the sample selection. This study introduces a Maximum Entropy (MaxEnt process regression model that assumes a MaxEnt prior distribution for its nonparametric regression function and finds that the MaxEnt process regression model includes the well-known Gaussian process regression (GPR model as a special case. Then, this special MaxEnt process regression model, i.e., the GPR model, is generalized to obtain a robust sample-selection Gaussian process regression (RSGPR model that deals with non-normal data in the sample selection. Various properties of the RSGPR model are established, including the stochastic representation, distributional hierarchy, and magnitude of the sample-selection bias. These properties are used in the paper to develop a hierarchical Bayesian methodology to estimate the model. This involves a simple and computationally feasible Markov chain Monte Carlo algorithm that avoids analytical or numerical derivatives of the log-likelihood function of the model. The performance of the RSGPR model in terms of the sample-selection bias correction, robustness to non-normality, and prediction, is demonstrated through results in simulations that attest to its good finite-sample performance.

  17. Equilibrium and nonequilibrium attractors for a discrete, selection-migration model

    Science.gov (United States)

    James F. Selgrade; James H. Roberds

    2003-01-01

    This study presents a discrete-time model for the effects of selection and immigration on the demographic and genetic compositions of a population. Under biologically reasonable conditions, it is shown that the model always has an equilibrium. Although equilibria for similar models without migration must have real eigenvalues, for this selection-migration model we...

  18. A Gambler's Model of Natural Selection.

    Science.gov (United States)

    Nolan, Michael J.; Ostrovsky, David S.

    1996-01-01

    Presents an activity that highlights the mechanism and power of natural selection. Allows students to think in terms of modeling a biological process and instills an appreciation for a mathematical approach to biological problems. (JRH)

  19. Evaluation and comparison of alternative fleet-level selective maintenance models

    International Nuclear Information System (INIS)

    Schneider, Kellie; Richard Cassady, C.

    2015-01-01

    Fleet-level selective maintenance refers to the process of identifying the subset of maintenance actions to perform on a fleet of repairable systems when the maintenance resources allocated to the fleet are insufficient for performing all desirable maintenance actions. The original fleet-level selective maintenance model is designed to maximize the probability that all missions in a future set are completed successfully. We extend this model in several ways. First, we consider a cost-based optimization model and show that a special case of this model maximizes the expected value of the number of successful missions in the future set. We also consider the situation in which one or more of the future missions may be canceled. These models and the original fleet-level selective maintenance optimization models are nonlinear. Therefore, we also consider an alternative model in which the objective function can be linearized. We show that the alternative model is a good approximation to the other models. - Highlights: • Investigate nonlinear fleet-level selective maintenance optimization models. • A cost based model is used to maximize the expected number of successful missions. • Another model is allowed to cancel missions if reliability is sufficiently low. • An alternative model has an objective function that can be linearized. • We show that the alternative model is a good approximation to the other models

  20. A Study on Efficient Robust Speech Recognition with Stochastic Dynamic Time Warping

    OpenAIRE

    孫, 喜浩

    2014-01-01

    In recent years, great progress has been made in automatic speech recognition (ASR) system. The hidden Markov model (HMM) and dynamic time warping (DTW) are the two main algorithms which have been widely applied to ASR system. Although, HMM technique achieves higher recognition accuracy in clear speech environment and noisy environment. It needs large-set of words and realizes the algorithm more complexly.Thus, more and more researchers have focused on DTW-based ASR system.Dynamic time warpin...

  1. Stock Selection for Portfolios Using Expected Utility-Entropy Decision Model

    Directory of Open Access Journals (Sweden)

    Jiping Yang

    2017-09-01

    Full Text Available Yang and Qiu proposed and then recently improved an expected utility-entropy (EU-E measure of risk and decision model. When segregation holds, Luce et al. derived an expected utility term, plus a constant multiplies the Shannon entropy as the representation of risky choices, further demonstrating the reasonability of the EU-E decision model. In this paper, we apply the EU-E decision model to selecting the set of stocks to be included in the portfolios. We first select 7 and 10 stocks from the 30 component stocks of Dow Jones Industrial Average index, and then derive and compare the efficient portfolios in the mean-variance framework. The conclusions imply that efficient portfolios composed of 7(10 stocks selected using the EU-E model with intermediate intervals of the tradeoff coefficients are more efficient than that composed of the sets of stocks selected using the expected utility model. Furthermore, the efficient portfolio of 7(10 stocks selected by the EU-E decision model have almost the same efficient frontier as that of the sample of all stocks. This suggests the necessity of incorporating both the expected utility and Shannon entropy together when taking risky decisions, further demonstrating the importance of Shannon entropy as the measure of uncertainty, as well as the applicability of the EU-E model as a decision-making model.

  2. Models of microbiome evolution incorporating host and microbial selection.

    Science.gov (United States)

    Zeng, Qinglong; Wu, Steven; Sukumaran, Jeet; Rodrigo, Allen

    2017-09-25

    Numerous empirical studies suggest that hosts and microbes exert reciprocal selective effects on their ecological partners. Nonetheless, we still lack an explicit framework to model the dynamics of both hosts and microbes under selection. In a previous study, we developed an agent-based forward-time computational framework to simulate the neutral evolution of host-associated microbial communities in a constant-sized, unstructured population of hosts. These neutral models allowed offspring to sample microbes randomly from parents and/or from the environment. Additionally, the environmental pool of available microbes was constituted by fixed and persistent microbial OTUs and by contributions from host individuals in the preceding generation. In this paper, we extend our neutral models to allow selection to operate on both hosts and microbes. We do this by constructing a phenome for each microbial OTU consisting of a sample of traits that influence host and microbial fitnesses independently. Microbial traits can influence the fitness of hosts ("host selection") and the fitness of microbes ("trait-mediated microbial selection"). Additionally, the fitness effects of traits on microbes can be modified by their hosts ("host-mediated microbial selection"). We simulate the effects of these three types of selection, individually or in combination, on microbiome diversities and the fitnesses of hosts and microbes over several thousand generations of hosts. We show that microbiome diversity is strongly influenced by selection acting on microbes. Selection acting on hosts only influences microbiome diversity when there is near-complete direct or indirect parental contribution to the microbiomes of offspring. Unsurprisingly, microbial fitness increases under microbial selection. Interestingly, when host selection operates, host fitness only increases under two conditions: (1) when there is a strong parental contribution to microbial communities or (2) in the absence of a strong

  3. Short-Run Asset Selection using a Logistic Model

    Directory of Open Access Journals (Sweden)

    Walter Gonçalves Junior

    2011-06-01

    Full Text Available Investors constantly look for significant predictors and accurate models to forecast future results, whose occasional efficacy end up being neutralized by market efficiency. Regardless, such predictors are widely used for seeking better (and more unique perceptions. This paper aims to investigate to what extent some of the most notorious indicators have discriminatory power to select stocks, and if it is feasible with such variables to build models that could anticipate those with good performance. In order to do that, logistical regressions were conducted with stocks traded at Bovespa using the selected indicators as explanatory variables. Investigated in this study were the outputs of Bovespa Index, liquidity, the Sharpe Ratio, ROE, MB, size and age evidenced to be significant predictors. Also examined were half-year, logistical models, which were adjusted in order to check the potential acceptable discriminatory power for the asset selection.

  4. Nonlocal optical effects on the Goos–Hänchen shifts at multilayered hyperbolic metamaterials

    International Nuclear Information System (INIS)

    Chen, Chih-Wei; Bian, Tingting; Chiang, Hai-Pang; Leung, P T

    2016-01-01

    The lateral beam shift of light incident on a multilayered hyperbolic metamaterial (HMM) is investigated using a theoretical model which emphasizes the nonlocal optical response of the indefinite material. By applying an effective local response theory formulated recently in the literature, it is found that nonlocal effects only affect p polarized light in this Goos–Hänchen (GH) shift of the incident beam; leading to a blue-shifted peak for positive shifts at high frequencies and red-shifted dip for negative shifts at low frequencies in the GH shift spectrum. An account for the observed phenomenon is given by referring to the ‘Brewster condition’ for the reflected wave from the HMM. This observation thus provides a relatively direct probe for the nonlocal response of the HMM. (paper)

  5. Integrated model for supplier selection and performance evaluation

    Directory of Open Access Journals (Sweden)

    Borges de Araújo, Maria Creuza

    2015-08-01

    Full Text Available This paper puts forward a model for selecting suppliers and evaluating the performance of those already working with a company. A simulation was conducted in a food industry. This sector has high significance in the economy of Brazil. The model enables the phases of selecting and evaluating suppliers to be integrated. This is important so that a company can have partnerships with suppliers who are able to meet their needs. Additionally, a group method is used to enable managers who will be affected by this decision to take part in the selection stage. Finally, the classes resulting from the performance evaluation are shown to support the contractor in choosing the most appropriate relationship with its suppliers.

  6. Model Selection in Historical Research Using Approximate Bayesian Computation

    Science.gov (United States)

    Rubio-Campillo, Xavier

    2016-01-01

    Formal Models and History Computational models are increasingly being used to study historical dynamics. This new trend, which could be named Model-Based History, makes use of recently published datasets and innovative quantitative methods to improve our understanding of past societies based on their written sources. The extensive use of formal models allows historians to re-evaluate hypotheses formulated decades ago and still subject to debate due to the lack of an adequate quantitative framework. The initiative has the potential to transform the discipline if it solves the challenges posed by the study of historical dynamics. These difficulties are based on the complexities of modelling social interaction, and the methodological issues raised by the evaluation of formal models against data with low sample size, high variance and strong fragmentation. Case Study This work examines an alternate approach to this evaluation based on a Bayesian-inspired model selection method. The validity of the classical Lanchester’s laws of combat is examined against a dataset comprising over a thousand battles spanning 300 years. Four variations of the basic equations are discussed, including the three most common formulations (linear, squared, and logarithmic) and a new variant introducing fatigue. Approximate Bayesian Computation is then used to infer both parameter values and model selection via Bayes Factors. Impact Results indicate decisive evidence favouring the new fatigue model. The interpretation of both parameter estimations and model selection provides new insights into the factors guiding the evolution of warfare. At a methodological level, the case study shows how model selection methods can be used to guide historical research through the comparison between existing hypotheses and empirical evidence. PMID:26730953

  7. Measures and limits of models of fixation selection.

    Directory of Open Access Journals (Sweden)

    Niklas Wilming

    Full Text Available Models of fixation selection are a central tool in the quest to understand how the human mind selects relevant information. Using this tool in the evaluation of competing claims often requires comparing different models' relative performance in predicting eye movements. However, studies use a wide variety of performance measures with markedly different properties, which makes a comparison difficult. We make three main contributions to this line of research: First we argue for a set of desirable properties, review commonly used measures, and conclude that no single measure unites all desirable properties. However the area under the ROC curve (a classification measure and the KL-divergence (a distance measure of probability distributions combine many desirable properties and allow a meaningful comparison of critical model performance. We give an analytical proof of the linearity of the ROC measure with respect to averaging over subjects and demonstrate an appropriate correction of entropy-based measures like KL-divergence for small sample sizes in the context of eye-tracking data. Second, we provide a lower bound and an upper bound of these measures, based on image-independent properties of fixation data and between subject consistency respectively. Based on these bounds it is possible to give a reference frame to judge the predictive power of a model of fixation selection. We provide open-source python code to compute the reference frame. Third, we show that the upper, between subject consistency bound holds only for models that predict averages of subject populations. Departing from this we show that incorporating subject-specific viewing behavior can generate predictions which surpass that upper bound. Taken together, these findings lay out the required information that allow a well-founded judgment of the quality of any model of fixation selection and should therefore be reported when a new model is introduced.

  8. Selected Tether Applications Cost Model

    Science.gov (United States)

    Keeley, Michael G.

    1988-01-01

    Diverse cost-estimating techniques and data combined into single program. Selected Tether Applications Cost Model (STACOM 1.0) is interactive accounting software tool providing means for combining several independent cost-estimating programs into fully-integrated mathematical model capable of assessing costs, analyzing benefits, providing file-handling utilities, and putting out information in text and graphical forms to screen, printer, or plotter. Program based on Lotus 1-2-3, version 2.0. Developed to provide clear, concise traceability and visibility into methodology and rationale for estimating costs and benefits of operations of Space Station tether deployer system.

  9. Modeling the effect of selection history on pop-out visual search.

    Directory of Open Access Journals (Sweden)

    Yuan-Chi Tseng

    Full Text Available While attentional effects in visual selection tasks have traditionally been assigned "top-down" or "bottom-up" origins, more recently it has been proposed that there are three major factors affecting visual selection: (1 physical salience, (2 current goals and (3 selection history. Here, we look further into selection history by investigating Priming of Pop-out (POP and the Distractor Preview Effect (DPE, two inter-trial effects that demonstrate the influence of recent history on visual search performance. Using the Ratcliff diffusion model, we model observed saccadic selections from an oddball search experiment that included a mix of both POP and DPE conditions. We find that the Ratcliff diffusion model can effectively model the manner in which selection history affects current attentional control in visual inter-trial effects. The model evidence shows that bias regarding the current trial's most likely target color is the most critical parameter underlying the effect of selection history. Our results are consistent with the view that the 3-item color-oddball task used for POP and DPE experiments is best understood as an attentional decision making task.

  10. Forecasting house prices in the 50 states using Dynamic Model Averaging and Dynamic Model Selection

    DEFF Research Database (Denmark)

    Bork, Lasse; Møller, Stig Vinther

    2015-01-01

    We examine house price forecastability across the 50 states using Dynamic Model Averaging and Dynamic Model Selection, which allow for model change and parameter shifts. By allowing the entire forecasting model to change over time and across locations, the forecasting accuracy improves substantia......We examine house price forecastability across the 50 states using Dynamic Model Averaging and Dynamic Model Selection, which allow for model change and parameter shifts. By allowing the entire forecasting model to change over time and across locations, the forecasting accuracy improves...

  11. Ensembling Variable Selectors by Stability Selection for the Cox Model

    Directory of Open Access Journals (Sweden)

    Qing-Yan Yin

    2017-01-01

    Full Text Available As a pivotal tool to build interpretive models, variable selection plays an increasingly important role in high-dimensional data analysis. In recent years, variable selection ensembles (VSEs have gained much interest due to their many advantages. Stability selection (Meinshausen and Bühlmann, 2010, a VSE technique based on subsampling in combination with a base algorithm like lasso, is an effective method to control false discovery rate (FDR and to improve selection accuracy in linear regression models. By adopting lasso as a base learner, we attempt to extend stability selection to handle variable selection problems in a Cox model. According to our experience, it is crucial to set the regularization region Λ in lasso and the parameter λmin properly so that stability selection can work well. To the best of our knowledge, however, there is no literature addressing this problem in an explicit way. Therefore, we first provide a detailed procedure to specify Λ and λmin. Then, some simulated and real-world data with various censoring rates are used to examine how well stability selection performs. It is also compared with several other variable selection approaches. Experimental results demonstrate that it achieves better or competitive performance in comparison with several other popular techniques.

  12. Skewed factor models using selection mechanisms

    KAUST Repository

    Kim, Hyoung-Moon

    2015-12-21

    Traditional factor models explicitly or implicitly assume that the factors follow a multivariate normal distribution; that is, only moments up to order two are involved. However, it may happen in real data problems that the first two moments cannot explain the factors. Based on this motivation, here we devise three new skewed factor models, the skew-normal, the skew-tt, and the generalized skew-normal factor models depending on a selection mechanism on the factors. The ECME algorithms are adopted to estimate related parameters for statistical inference. Monte Carlo simulations validate our new models and we demonstrate the need for skewed factor models using the classic open/closed book exam scores dataset.

  13. Skewed factor models using selection mechanisms

    KAUST Repository

    Kim, Hyoung-Moon; Maadooliat, Mehdi; Arellano-Valle, Reinaldo B.; Genton, Marc G.

    2015-01-01

    Traditional factor models explicitly or implicitly assume that the factors follow a multivariate normal distribution; that is, only moments up to order two are involved. However, it may happen in real data problems that the first two moments cannot explain the factors. Based on this motivation, here we devise three new skewed factor models, the skew-normal, the skew-tt, and the generalized skew-normal factor models depending on a selection mechanism on the factors. The ECME algorithms are adopted to estimate related parameters for statistical inference. Monte Carlo simulations validate our new models and we demonstrate the need for skewed factor models using the classic open/closed book exam scores dataset.

  14. National HIV prevalence estimates for sub-Saharan Africa: controlling selection bias with Heckman-type selection models

    Science.gov (United States)

    Hogan, Daniel R; Salomon, Joshua A; Canning, David; Hammitt, James K; Zaslavsky, Alan M; Bärnighausen, Till

    2012-01-01

    Objectives Population-based HIV testing surveys have become central to deriving estimates of national HIV prevalence in sub-Saharan Africa. However, limited participation in these surveys can lead to selection bias. We control for selection bias in national HIV prevalence estimates using a novel approach, which unlike conventional imputation can account for selection on unobserved factors. Methods For 12 Demographic and Health Surveys conducted from 2001 to 2009 (N=138 300), we predict HIV status among those missing a valid HIV test with Heckman-type selection models, which allow for correlation between infection status and participation in survey HIV testing. We compare these estimates with conventional ones and introduce a simulation procedure that incorporates regression model parameter uncertainty into confidence intervals. Results Selection model point estimates of national HIV prevalence were greater than unadjusted estimates for 10 of 12 surveys for men and 11 of 12 surveys for women, and were also greater than the majority of estimates obtained from conventional imputation, with significantly higher HIV prevalence estimates for men in Cote d'Ivoire 2005, Mali 2006 and Zambia 2007. Accounting for selective non-participation yielded 95% confidence intervals around HIV prevalence estimates that are wider than those obtained with conventional imputation by an average factor of 4.5. Conclusions Our analysis indicates that national HIV prevalence estimates for many countries in sub-Saharan African are more uncertain than previously thought, and may be underestimated in several cases, underscoring the need for increasing participation in HIV surveys. Heckman-type selection models should be included in the set of tools used for routine estimation of HIV prevalence. PMID:23172342

  15. Selective Cooperation in Early Childhood - How to Choose Models and Partners.

    Directory of Open Access Journals (Sweden)

    Jonas Hermes

    Full Text Available Cooperation is essential for human society, and children engage in cooperation from early on. It is unclear, however, how children select their partners for cooperation. We know that children choose selectively whom to learn from (e.g. preferring reliable over unreliable models on a rational basis. The present study investigated whether children (and adults also choose their cooperative partners selectively and what model characteristics they regard as important for cooperative partners and for informants about novel words. Three- and four-year-old children (N = 64 and adults (N = 14 saw contrasting pairs of models differing either in physical strength or in accuracy (in labeling known objects. Participants then performed different tasks (cooperative problem solving and word learning requiring the choice of a partner or informant. Both children and adults chose their cooperative partners selectively. Moreover they showed the same pattern of selective model choice, regarding a wide range of model characteristics as important for cooperation (preferring both the strong and the accurate model for a strength-requiring cooperation tasks, but only prior knowledge as important for word learning (preferring the knowledgeable but not the strong model for word learning tasks. Young children's selective model choice thus reveals an early rational competence: They infer characteristics from past behavior and flexibly consider what characteristics are relevant for certain tasks.

  16. Variable selection for mixture and promotion time cure rate models.

    Science.gov (United States)

    Masud, Abdullah; Tu, Wanzhu; Yu, Zhangsheng

    2016-11-16

    Failure-time data with cured patients are common in clinical studies. Data from these studies are typically analyzed with cure rate models. Variable selection methods have not been well developed for cure rate models. In this research, we propose two least absolute shrinkage and selection operators based methods, for variable selection in mixture and promotion time cure models with parametric or nonparametric baseline hazards. We conduct an extensive simulation study to assess the operating characteristics of the proposed methods. We illustrate the use of the methods using data from a study of childhood wheezing. © The Author(s) 2016.

  17. Acoustical User Identification Based on MFCC Analysis of Keystrokes

    Directory of Open Access Journals (Sweden)

    Matus Pleva

    2015-01-01

    Full Text Available This paper introduces a novel approach of person identification using acoustical monitoring of typing the required word on the monitored keyboard. This experiment was motivated by the idea of COST IC1106 (Integrating Biometrics and Forensics for the Digital Age partners to acoustically analyse the captured keystroke dynamics database using widely used time-invariant mathematical models tools. The MFCC (Mel-Frequency Cepstral Coefficients and HMM (Hidden Markov Models was introduced in this experiment, which gives promising results of 99.33% accuracy, when testing 25% of realizations (randomly selected from 100 identifying between 50 users/models. The experiment was repeated for different training/testing configurations and cross-validated, so this first approach could be a good starting point for next research including feature selection algorithms, biometric authentication score normalization, different audio & keyboard setup tests, etc.

  18. Model structure selection in convolutive mixtures

    DEFF Research Database (Denmark)

    Dyrholm, Mads; Makeig, S.; Hansen, Lars Kai

    2006-01-01

    The CICAAR algorithm (convolutive independent component analysis with an auto-regressive inverse model) allows separation of white (i.i.d) source signals from convolutive mixtures. We introduce a source color model as a simple extension to the CICAAR which allows for a more parsimonious represent......The CICAAR algorithm (convolutive independent component analysis with an auto-regressive inverse model) allows separation of white (i.i.d) source signals from convolutive mixtures. We introduce a source color model as a simple extension to the CICAAR which allows for a more parsimonious...... representation in many practical mixtures. The new filter-CICAAR allows Bayesian model selection and can help answer questions like: ’Are we actually dealing with a convolutive mixture?’. We try to answer this question for EEG data....

  19. Expert System Model for Educational Personnel Selection

    Directory of Open Access Journals (Sweden)

    Héctor A. Tabares-Ospina

    2013-06-01

    Full Text Available The staff selection is a difficult task due to the subjectivity that the evaluation means. This process can be complemented using a system to support decision. This paper presents the implementation of an expert system to systematize the selection process of professors. The management of software development is divided into 4 parts: requirements, design, implementation and commissioning. The proposed system models a specific knowledge through relationships between variables evidence and objective.

  20. Diversified models for portfolio selection based on uncertain semivariance

    Science.gov (United States)

    Chen, Lin; Peng, Jin; Zhang, Bo; Rosyida, Isnaini

    2017-02-01

    Since the financial markets are complex, sometimes the future security returns are represented mainly based on experts' estimations due to lack of historical data. This paper proposes a semivariance method for diversified portfolio selection, in which the security returns are given subjective to experts' estimations and depicted as uncertain variables. In the paper, three properties of the semivariance of uncertain variables are verified. Based on the concept of semivariance of uncertain variables, two types of mean-semivariance diversified models for uncertain portfolio selection are proposed. Since the models are complex, a hybrid intelligent algorithm which is based on 99-method and genetic algorithm is designed to solve the models. In this hybrid intelligent algorithm, 99-method is applied to compute the expected value and semivariance of uncertain variables, and genetic algorithm is employed to seek the best allocation plan for portfolio selection. At last, several numerical examples are presented to illustrate the modelling idea and the effectiveness of the algorithm.

  1. AdOn HDP-HMM: An Adaptive Online Model for Segmentation and Classification of Sequential Data.

    Science.gov (United States)

    Bargi, Ava; Xu, Richard Yi Da; Piccardi, Massimo

    2017-09-21

    Recent years have witnessed an increasing need for the automated classification of sequential data, such as activities of daily living, social media interactions, financial series, and others. With the continuous flow of new data, it is critical to classify the observations on-the-fly and without being limited by a predetermined number of classes. In addition, a model should be able to update its parameters in response to a possible evolution in the distributions of the classes. This compelling problem, however, does not seem to have been adequately addressed in the literature, since most studies focus on offline classification over predefined class sets. In this paper, we present a principled solution for this problem based on an adaptive online system leveraging Markov switching models and hierarchical Dirichlet process priors. This adaptive online approach is capable of classifying the sequential data over an unlimited number of classes while meeting the memory and delay constraints typical of streaming contexts. In this paper, we introduce an adaptive ''learning rate'' that is responsible for balancing the extent to which the model retains its previous parameters or adapts to new observations. Experimental results on stationary and evolving synthetic data and two video data sets, TUM Assistive Kitchen and collated Weizmann, show a remarkable performance in terms of segmentation and classification, particularly for sequences from evolutionary distributions and/or those containing previously unseen classes.

  2. Behavioral optimization models for multicriteria portfolio selection

    Directory of Open Access Journals (Sweden)

    Mehlawat Mukesh Kumar

    2013-01-01

    Full Text Available In this paper, behavioral construct of suitability is used to develop a multicriteria decision making framework for portfolio selection. To achieve this purpose, we rely on multiple methodologies. Analytical hierarchy process technique is used to model the suitability considerations with a view to obtaining the suitability performance score in respect of each asset. A fuzzy multiple criteria decision making method is used to obtain the financial quality score of each asset based upon investor's rating on the financial criteria. Two optimization models are developed for optimal asset allocation considering simultaneously financial and suitability criteria. An empirical study is conducted on randomly selected assets from National Stock Exchange, Mumbai, India to demonstrate the effectiveness of the proposed methodology.

  3. Fisher-Wright model with deterministic seed bank and selection.

    Science.gov (United States)

    Koopmann, Bendix; Müller, Johannes; Tellier, Aurélien; Živković, Daniel

    2017-04-01

    Seed banks are common characteristics to many plant species, which allow storage of genetic diversity in the soil as dormant seeds for various periods of time. We investigate an above-ground population following a Fisher-Wright model with selection coupled with a deterministic seed bank assuming the length of the seed bank is kept constant and the number of seeds is large. To assess the combined impact of seed banks and selection on genetic diversity, we derive a general diffusion model. The applied techniques outline a path of approximating a stochastic delay differential equation by an appropriately rescaled stochastic differential equation. We compute the equilibrium solution of the site-frequency spectrum and derive the times to fixation of an allele with and without selection. Finally, it is demonstrated that seed banks enhance the effect of selection onto the site-frequency spectrum while slowing down the time until the mutation-selection equilibrium is reached. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Multi-Criteria Decision Making For Determining A Simple Model of Supplier Selection

    Science.gov (United States)

    Harwati

    2017-06-01

    Supplier selection is a decision with many criteria. Supplier selection model usually involves more than five main criteria and more than 10 sub-criteria. In fact many model includes more than 20 criteria. Too many criteria involved in supplier selection models sometimes make it difficult to apply in many companies. This research focuses on designing supplier selection that easy and simple to be applied in the company. Analytical Hierarchy Process (AHP) is used to weighting criteria. The analysis results there are four criteria that are easy and simple can be used to select suppliers: Price (weight 0.4) shipment (weight 0.3), quality (weight 0.2) and services (weight 0.1). A real case simulation shows that simple model provides the same decision with a more complex model.

  5. Dietary flavonoid fisetin increases abundance of high-molecular-mass hyaluronan conferring resistance to prostate oncogenesis.

    Science.gov (United States)

    Lall, Rahul K; Syed, Deeba N; Khan, Mohammad Imran; Adhami, Vaqar M; Gong, Yuansheng; Lucey, John A; Mukhtar, Hasan

    2016-09-01

    We and others have shown previously that fisetin, a plant flavonoid, has therapeutic potential against many cancer types. Here, we examined the probable mechanism of its action in prostate cancer (PCa) using a global metabolomics approach. HPLC-ESI-MS analysis of tumor xenografts from fisetin-treated animals identified several metabolic targets with hyaluronan (HA) as the most affected. Efficacy of fisetin on HA was then evaluated in vitro and also in vivo in the transgenic TRAMP mouse model of PCa. Size exclusion chromatography-multiangle laser light scattering (SEC-MALS) was performed to analyze the molar mass (Mw) distribution of HA. Fisetin treatment downregulated intracellular and secreted HA levels both in vitro and in vivo Fisetin inhibited HA synthesis and degradation enzymes, which led to cessation of HA synthesis and also repressed the degradation of the available high-molecular-mass (HMM)-HA. SEC-MALS analysis of intact HA fragment size revealed that cells and animals have more abundance of HMM-HA and less of low-molecular-mass (LMM)-HA upon fisetin treatment. Elevated HA levels have been shown to be associated with disease progression in certain cancer types. Biological responses triggered by HA mainly depend on the HA polymer length where HMM-HA represses mitogenic signaling and has anti-inflammatory properties whereas LMM-HA promotes proliferation and inflammation. Similarly, Mw analysis of secreted HA fragment size revealed less HMM-HA is secreted that allowed more HMM-HA to be retained within the cells and tissues. Our findings establish that fisetin is an effective, non-toxic, potent HA synthesis inhibitor, which increases abundance of antiangiogenic HMM-HA and could be used for the management of PCa. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. A BAYESIAN NONPARAMETRIC MIXTURE MODEL FOR SELECTING GENES AND GENE SUBNETWORKS.

    Science.gov (United States)

    Zhao, Yize; Kang, Jian; Yu, Tianwei

    2014-06-01

    It is very challenging to select informative features from tens of thousands of measured features in high-throughput data analysis. Recently, several parametric/regression models have been developed utilizing the gene network information to select genes or pathways strongly associated with a clinical/biological outcome. Alternatively, in this paper, we propose a nonparametric Bayesian model for gene selection incorporating network information. In addition to identifying genes that have a strong association with a clinical outcome, our model can select genes with particular expressional behavior, in which case the regression models are not directly applicable. We show that our proposed model is equivalent to an infinity mixture model for which we develop a posterior computation algorithm based on Markov chain Monte Carlo (MCMC) methods. We also propose two fast computing algorithms that approximate the posterior simulation with good accuracy but relatively low computational cost. We illustrate our methods on simulation studies and the analysis of Spellman yeast cell cycle microarray data.

  7. Selection of climate change scenario data for impact modelling

    DEFF Research Database (Denmark)

    Sloth Madsen, M; Fox Maule, C; MacKellar, N

    2012-01-01

    Impact models investigating climate change effects on food safety often need detailed climate data. The aim of this study was to select climate change projection data for selected crop phenology and mycotoxin impact models. Using the ENSEMBLES database of climate model output, this study...... illustrates how the projected climate change signal of important variables as temperature, precipitation and relative humidity depends on the choice of the climate model. Using climate change projections from at least two different climate models is recommended to account for model uncertainty. To make...... the climate projections suitable for impact analysis at the local scale a weather generator approach was adopted. As the weather generator did not treat all the necessary variables, an ad-hoc statistical method was developed to synthesise realistic values of missing variables. The method is presented...

  8. Discovering System Health Anomalies using Data Mining Techniques

    Data.gov (United States)

    National Aeronautics and Space Administration — We discuss a statistical framework that underlies envelope detection schemes as well as dynamical models based on Hidden Markov Models (HMM) that can encompass both...

  9. A model selection support system for numerical simulations of nuclear thermal-hydraulics

    International Nuclear Information System (INIS)

    Gofuku, Akio; Shimizu, Kenji; Sugano, Keiji; Yoshikawa, Hidekazu; Wakabayashi, Jiro

    1990-01-01

    In order to execute efficiently a dynamic simulation of a large-scaled engineering system such as a nuclear power plant, it is necessary to develop intelligent simulation support system for all phases of the simulation. This study is concerned with the intelligent support for the program development phase and is engaged in the adequate model selection support method by applying AI (Artificial Intelligence) techniques to execute a simulation consistent with its purpose and conditions. A proto-type expert system to support the model selection for numerical simulations of nuclear thermal-hydraulics in the case of cold leg small break loss-of-coolant accident of PWR plant is now under development on a personal computer. The steps to support the selection of both fluid model and constitutive equations for the drift flux model have been developed. Several cases of model selection were carried out and reasonable model selection results were obtained. (author)

  10. Modeling selective pressures on phytoplankton in the global ocean.

    Directory of Open Access Journals (Sweden)

    Jason G Bragg

    Full Text Available Our view of marine microbes is transforming, as culture-independent methods facilitate rapid characterization of microbial diversity. It is difficult to assimilate this information into our understanding of marine microbe ecology and evolution, because their distributions, traits, and genomes are shaped by forces that are complex and dynamic. Here we incorporate diverse forces--physical, biogeochemical, ecological, and mutational--into a global ocean model to study selective pressures on a simple trait in a widely distributed lineage of picophytoplankton: the nitrogen use abilities of Synechococcus and Prochlorococcus cyanobacteria. Some Prochlorococcus ecotypes have lost the ability to use nitrate, whereas their close relatives, marine Synechococcus, typically retain it. We impose mutations for the loss of nitrogen use abilities in modeled picophytoplankton, and ask: in which parts of the ocean are mutants most disadvantaged by losing the ability to use nitrate, and in which parts are they least disadvantaged? Our model predicts that this selective disadvantage is smallest for picophytoplankton that live in tropical regions where Prochlorococcus are abundant in the real ocean. Conversely, the selective disadvantage of losing the ability to use nitrate is larger for modeled picophytoplankton that live at higher latitudes, where Synechococcus are abundant. In regions where we expect Prochlorococcus and Synechococcus populations to cycle seasonally in the real ocean, we find that model ecotypes with seasonal population dynamics similar to Prochlorococcus are less disadvantaged by losing the ability to use nitrate than model ecotypes with seasonal population dynamics similar to Synechococcus. The model predictions for the selective advantage associated with nitrate use are broadly consistent with the distribution of this ability among marine picocyanobacteria, and at finer scales, can provide insights into interactions between temporally varying

  11. Modeling selective pressures on phytoplankton in the global ocean.

    Science.gov (United States)

    Bragg, Jason G; Dutkiewicz, Stephanie; Jahn, Oliver; Follows, Michael J; Chisholm, Sallie W

    2010-03-10

    Our view of marine microbes is transforming, as culture-independent methods facilitate rapid characterization of microbial diversity. It is difficult to assimilate this information into our understanding of marine microbe ecology and evolution, because their distributions, traits, and genomes are shaped by forces that are complex and dynamic. Here we incorporate diverse forces--physical, biogeochemical, ecological, and mutational--into a global ocean model to study selective pressures on a simple trait in a widely distributed lineage of picophytoplankton: the nitrogen use abilities of Synechococcus and Prochlorococcus cyanobacteria. Some Prochlorococcus ecotypes have lost the ability to use nitrate, whereas their close relatives, marine Synechococcus, typically retain it. We impose mutations for the loss of nitrogen use abilities in modeled picophytoplankton, and ask: in which parts of the ocean are mutants most disadvantaged by losing the ability to use nitrate, and in which parts are they least disadvantaged? Our model predicts that this selective disadvantage is smallest for picophytoplankton that live in tropical regions where Prochlorococcus are abundant in the real ocean. Conversely, the selective disadvantage of losing the ability to use nitrate is larger for modeled picophytoplankton that live at higher latitudes, where Synechococcus are abundant. In regions where we expect Prochlorococcus and Synechococcus populations to cycle seasonally in the real ocean, we find that model ecotypes with seasonal population dynamics similar to Prochlorococcus are less disadvantaged by losing the ability to use nitrate than model ecotypes with seasonal population dynamics similar to Synechococcus. The model predictions for the selective advantage associated with nitrate use are broadly consistent with the distribution of this ability among marine picocyanobacteria, and at finer scales, can provide insights into interactions between temporally varying ocean processes and

  12. Modeling Directional Selectivity Using Self-Organizing Delay-Aadaptation Maps

    OpenAIRE

    Tversky, Mr. Tal; Miikkulainen, Dr. Risto

    2002-01-01

    Using a delay adaptation learning rule, we model the activity-dependent development of directionally selective cells in the primary visual cortex. Based on input stimuli, a learning rule shifts delays to create synchronous arrival of spikes at cortical cells. As a result, delays become tuned creating a smooth cortical map of direction selectivity. This result demonstrates how delay adaption can serve as a powerful abstraction for modeling temporal learning in the brain.

  13. Uniform design based SVM model selection for face recognition

    Science.gov (United States)

    Li, Weihong; Liu, Lijuan; Gong, Weiguo

    2010-02-01

    Support vector machine (SVM) has been proved to be a powerful tool for face recognition. The generalization capacity of SVM depends on the model with optimal hyperparameters. The computational cost of SVM model selection results in application difficulty in face recognition. In order to overcome the shortcoming, we utilize the advantage of uniform design--space filling designs and uniformly scattering theory to seek for optimal SVM hyperparameters. Then we propose a face recognition scheme based on SVM with optimal model which obtained by replacing the grid and gradient-based method with uniform design. The experimental results on Yale and PIE face databases show that the proposed method significantly improves the efficiency of SVM model selection.

  14. Selecting an optimal mixed products using grey relationship model

    Directory of Open Access Journals (Sweden)

    Farshad Faezy Razi

    2013-06-01

    Full Text Available This paper presents an integrated supplier selection and inventory management using grey relationship model (GRM as well as multi-objective decision making process. The proposed model of this paper first ranks different suppliers based on GRM technique and then determines the optimum level of inventory by considering different objectives. To show the implementation of the proposed model, we use some benchmark data presented by Talluri and Baker [Talluri, S., & Baker, R. C. (2002. A multi-phase mathematical programming approach for effective supply chain design. European Journal of Operational Research, 141(3, 544-558.]. The preliminary results indicate that the proposed model of this paper is capable of handling different criteria for supplier selection.

  15. Selection, calibration, and validation of models of tumor growth.

    Science.gov (United States)

    Lima, E A B F; Oden, J T; Hormuth, D A; Yankeelov, T E; Almeida, R C

    2016-11-01

    This paper presents general approaches for addressing some of the most important issues in predictive computational oncology concerned with developing classes of predictive models of tumor growth. First, the process of developing mathematical models of vascular tumors evolving in the complex, heterogeneous, macroenvironment of living tissue; second, the selection of the most plausible models among these classes, given relevant observational data; third, the statistical calibration and validation of models in these classes, and finally, the prediction of key Quantities of Interest (QOIs) relevant to patient survival and the effect of various therapies. The most challenging aspects of this endeavor is that all of these issues often involve confounding uncertainties: in observational data, in model parameters, in model selection, and in the features targeted in the prediction. Our approach can be referred to as "model agnostic" in that no single model is advocated; rather, a general approach that explores powerful mixture-theory representations of tissue behavior while accounting for a range of relevant biological factors is presented, which leads to many potentially predictive models. Then representative classes are identified which provide a starting point for the implementation of OPAL, the Occam Plausibility Algorithm (OPAL) which enables the modeler to select the most plausible models (for given data) and to determine if the model is a valid tool for predicting tumor growth and morphology ( in vivo ). All of these approaches account for uncertainties in the model, the observational data, the model parameters, and the target QOI. We demonstrate these processes by comparing a list of models for tumor growth, including reaction-diffusion models, phase-fields models, and models with and without mechanical deformation effects, for glioma growth measured in murine experiments. Examples are provided that exhibit quite acceptable predictions of tumor growth in laboratory

  16. ERP Software Selection Model using Analytic Network Process

    OpenAIRE

    Lesmana , Andre Surya; Astanti, Ririn Diar; Ai, The Jin

    2014-01-01

    During the implementation of Enterprise Resource Planning (ERP) in any company, one of the most important issues is the selection of ERP software that can satisfy the needs and objectives of the company. This issue is crucial since it may affect the duration of ERP implementation and the costs incurred for the ERP implementation. This research tries to construct a model of the selection of ERP software that are beneficial to the company in order to carry out the selection of the right ERP sof...

  17. Emotion Expression of Robot with Personality

    Directory of Open Access Journals (Sweden)

    Xue Hu

    2013-01-01

    Full Text Available A robot emotional expression model based on Hidden Markov Model (HMM is built to enable robots which have different personalities to response in a more satisfactory emotional level. Gross emotion regulation theory and Five Factors Model (FFM which are the theoretical basis are firstly described. And then the importance of the personality effect on the emotion expression process is proposed, and how to make the effect quantization is discussed. After that, the algorithm of HMM is used to describe the process of emotional state transition and expression, and the performance transferring probability affected by personality is calculated. At last, the algorithm model is simulated and applied in a robot platform. The results prove that the emotional expression model can acquire humanlike expressions and improve the human-computer interaction.

  18. Force Sensor Based Tool Condition Monitoring Using a Heterogeneous Ensemble Learning Model

    Directory of Open Access Journals (Sweden)

    Guofeng Wang

    2014-11-01

    Full Text Available Tool condition monitoring (TCM plays an important role in improving machining efficiency and guaranteeing workpiece quality. In order to realize reliable recognition of the tool condition, a robust classifier needs to be constructed to depict the relationship between tool wear states and sensory information. However, because of the complexity of the machining process and the uncertainty of the tool wear evolution, it is hard for a single classifier to fit all the collected samples without sacrificing generalization ability. In this paper, heterogeneous ensemble learning is proposed to realize tool condition monitoring in which the support vector machine (SVM, hidden Markov model (HMM and radius basis function (RBF are selected as base classifiers and a stacking ensemble strategy is further used to reflect the relationship between the outputs of these base classifiers and tool wear states. Based on the heterogeneous ensemble learning classifier, an online monitoring system is constructed in which the harmonic features are extracted from force signals and a minimal redundancy and maximal relevance (mRMR algorithm is utilized to select the most prominent features. To verify the effectiveness of the proposed method, a titanium alloy milling experiment was carried out and samples with different tool wear states were collected to build the proposed heterogeneous ensemble learning classifier. Moreover, the homogeneous ensemble learning model and majority voting strategy are also adopted to make a comparison. The analysis and comparison results show that the proposed heterogeneous ensemble learning classifier performs better in both classification accuracy and stability.

  19. Consistency in Estimation and Model Selection of Dynamic Panel Data Models with Fixed Effects

    Directory of Open Access Journals (Sweden)

    Guangjie Li

    2015-07-01

    Full Text Available We examine the relationship between consistent parameter estimation and model selection for autoregressive panel data models with fixed effects. We find that the transformation of fixed effects proposed by Lancaster (2002 does not necessarily lead to consistent estimation of common parameters when some true exogenous regressors are excluded. We propose a data dependent way to specify the prior of the autoregressive coefficient and argue for comparing different model specifications before parameter estimation. Model selection properties of Bayes factors and Bayesian information criterion (BIC are investigated. When model uncertainty is substantial, we recommend the use of Bayesian Model Averaging to obtain point estimators with lower root mean squared errors (RMSE. We also study the implications of different levels of inclusion probabilities by simulations.

  20. Variable Selection for Regression Models of Percentile Flows

    Science.gov (United States)

    Fouad, G.

    2017-12-01

    Percentile flows describe the flow magnitude equaled or exceeded for a given percent of time, and are widely used in water resource management. However, these statistics are normally unavailable since most basins are ungauged. Percentile flows of ungauged basins are often predicted using regression models based on readily observable basin characteristics, such as mean elevation. The number of these independent variables is too large to evaluate all possible models. A subset of models is typically evaluated using automatic procedures, like stepwise regression. This ignores a large variety of methods from the field of feature (variable) selection and physical understanding of percentile flows. A study of 918 basins in the United States was conducted to compare an automatic regression procedure to the following variable selection methods: (1) principal component analysis, (2) correlation analysis, (3) random forests, (4) genetic programming, (5) Bayesian networks, and (6) physical understanding. The automatic regression procedure only performed better than principal component analysis. Poor performance of the regression procedure was due to a commonly used filter for multicollinearity, which rejected the strongest models because they had cross-correlated independent variables. Multicollinearity did not decrease model performance in validation because of a representative set of calibration basins. Variable selection methods based strictly on predictive power (numbers 2-5 from above) performed similarly, likely indicating a limit to the predictive power of the variables. Similar performance was also reached using variables selected based on physical understanding, a finding that substantiates recent calls to emphasize physical understanding in modeling for predictions in ungauged basins. The strongest variables highlighted the importance of geology and land cover, whereas widely used topographic variables were the weakest predictors. Variables suffered from a high

  1. Hydraulic head interpolation using ANFIS—model selection and sensitivity analysis

    Science.gov (United States)

    Kurtulus, Bedri; Flipo, Nicolas

    2012-01-01

    The aim of this study is to investigate the efficiency of ANFIS (adaptive neuro fuzzy inference system) for interpolating hydraulic head in a 40-km 2 agricultural watershed of the Seine basin (France). Inputs of ANFIS are Cartesian coordinates and the elevation of the ground. Hydraulic head was measured at 73 locations during a snapshot campaign on September 2009, which characterizes low-water-flow regime in the aquifer unit. The dataset was then split into three subsets using a square-based selection method: a calibration one (55%), a training one (27%), and a test one (18%). First, a method is proposed to select the best ANFIS model, which corresponds to a sensitivity analysis of ANFIS to the type and number of membership functions (MF). Triangular, Gaussian, general bell, and spline-based MF are used with 2, 3, 4, and 5 MF per input node. Performance criteria on the test subset are used to select the 5 best ANFIS models among 16. Then each is used to interpolate the hydraulic head distribution on a (50×50)-m grid, which is compared to the soil elevation. The cells where the hydraulic head is higher than the soil elevation are counted as "error cells." The ANFIS model that exhibits the less "error cells" is selected as the best ANFIS model. The best model selection reveals that ANFIS models are very sensitive to the type and number of MF. Finally, a sensibility analysis of the best ANFIS model with four triangular MF is performed on the interpolation grid, which shows that ANFIS remains stable to error propagation with a higher sensitivity to soil elevation.

  2. A kingdom-specific protein domain HMM library for improved annotation of fungal genomes

    Directory of Open Access Journals (Sweden)

    Oliver Stephen G

    2007-04-01

    Full Text Available Abstract Background Pfam is a general-purpose database of protein domain alignments and profile Hidden Markov Models (HMMs, which is very popular for the annotation of sequence data produced by genome sequencing projects. Pfam provides models that are often very general in terms of the taxa that they cover and it has previously been suggested that such general models may lack some of the specificity or selectivity that would be provided by kingdom-specific models. Results Here we present a general approach to create domain libraries of HMMs for sub-taxa of a kingdom. Taking fungal species as an example, we construct a domain library of HMMs (called Fungal Pfam or FPfam using sequences from 30 genomes, consisting of 24 species from the ascomycetes group and two basidiomycetes, Ustilago maydis, a fungal pathogen of maize, and the white rot fungus Phanerochaete chrysosporium. In addition, we include the Microsporidion Encephalitozoon cuniculi, an obligate intracellular parasite, and two non-fungal species, the oomycetes Phytophthora sojae and Phytophthora ramorum, both plant pathogens. We evaluate the performance in terms of coverage against the original 30 genomes used in training FPfam and against five more recently sequenced fungal genomes that can be considered as an independent test set. We show that kingdom-specific models such as FPfam can find instances of both novel and well characterized domains, increases overall coverage and detects more domains per sequence with typically higher bitscores than Pfam for the same domain families. An evaluation of the effect of changing E-values on the coverage shows that the performance of FPfam is consistent over the range of E-values applied. Conclusion Kingdom-specific models are shown to provide improved coverage. However, as the models become more specific, some sequences found by Pfam may be missed by the models in FPfam and some of the families represented in the test set are not present in FPfam

  3. A Hybrid Multiple Criteria Decision Making Model for Supplier Selection

    Directory of Open Access Journals (Sweden)

    Chung-Min Wu

    2013-01-01

    Full Text Available The sustainable supplier selection would be the vital part in the management of a sustainable supply chain. In this study, a hybrid multiple criteria decision making (MCDM model is applied to select optimal supplier. The fuzzy Delphi method, which can lead to better criteria selection, is used to modify criteria. Considering the interdependence among the selection criteria, analytic network process (ANP is then used to obtain their weights. To avoid calculation and additional pairwise comparisons of ANP, a technique for order preference by similarity to ideal solution (TOPSIS is used to rank the alternatives. The use of a combination of the fuzzy Delphi method, ANP, and TOPSIS, proposing an MCDM model for supplier selection, and applying these to a real case are the unique features of this study.

  4. Modeling of Clostridium tyrobutyricum for Butyric Acid Selectivity in Continuous Fermentation

    Directory of Open Access Journals (Sweden)

    Jianjun Du

    2014-04-01

    Full Text Available A mathematical model was developed to describe batch and continuous fermentation of glucose to organic acids with Clostridium tyrobutyricum. A modified Monod equation was used to describe cell growth, and a Luedeking-Piret equation was used to describe the production of butyric and acetic acids. Using the batch fermentation equations, models predicting butyric acid selectivity for continuous fermentation were also developed. The model showed that butyric acid production was a strong function of cell mass, while acetic acid production was a function of cell growth rate. Further, it was found that at high acetic acid concentrations, acetic acid was metabolized to butyric acid and that this conversion could be modeled. In batch fermentation, high butyric acid selectivity occurred at high initial cell or glucose concentrations. In continuous fermentation, decreased dilution rate improved selectivity; at a dilution rate of 0.028 h−1, the selectivity reached 95.8%. The model and experimental data showed that at total cell recycle, the butyric acid selectivity could reach 97.3%. This model could be used to optimize butyric acid production using C. tyrobutyricum in a continuous fermentation scheme. This is the first study that mathematically describes batch, steady state, and dynamic behavior of C. tyrobutyricum for butyric acid production.

  5. Cross-validation pitfalls when selecting and assessing regression and classification models.

    Science.gov (United States)

    Krstajic, Damjan; Buturovic, Ljubomir J; Leahy, David E; Thomas, Simon

    2014-03-29

    We address the problem of selecting and assessing classification and regression models using cross-validation. Current state-of-the-art methods can yield models with high variance, rendering them unsuitable for a number of practical applications including QSAR. In this paper we describe and evaluate best practices which improve reliability and increase confidence in selected models. A key operational component of the proposed methods is cloud computing which enables routine use of previously infeasible approaches. We describe in detail an algorithm for repeated grid-search V-fold cross-validation for parameter tuning in classification and regression, and we define a repeated nested cross-validation algorithm for model assessment. As regards variable selection and parameter tuning we define two algorithms (repeated grid-search cross-validation and double cross-validation), and provide arguments for using the repeated grid-search in the general case. We show results of our algorithms on seven QSAR datasets. The variation of the prediction performance, which is the result of choosing different splits of the dataset in V-fold cross-validation, needs to be taken into account when selecting and assessing classification and regression models. We demonstrate the importance of repeating cross-validation when selecting an optimal model, as well as the importance of repeating nested cross-validation when assessing a prediction error.

  6. A New Algorithm for Identifying Cis-Regulatory Modules Based on Hidden Markov Model

    Directory of Open Access Journals (Sweden)

    Haitao Guo

    2017-01-01

    Full Text Available The discovery of cis-regulatory modules (CRMs is the key to understanding mechanisms of transcription regulation. Since CRMs have specific regulatory structures that are the basis for the regulation of gene expression, how to model the regulatory structure of CRMs has a considerable impact on the performance of CRM identification. The paper proposes a CRM discovery algorithm called ComSPS. ComSPS builds a regulatory structure model of CRMs based on HMM by exploring the rules of CRM transcriptional grammar that governs the internal motif site arrangement of CRMs. We test ComSPS on three benchmark datasets and compare it with five existing methods. Experimental results show that ComSPS performs better than them.

  7. A New Algorithm for Identifying Cis-Regulatory Modules Based on Hidden Markov Model

    Science.gov (United States)

    2017-01-01

    The discovery of cis-regulatory modules (CRMs) is the key to understanding mechanisms of transcription regulation. Since CRMs have specific regulatory structures that are the basis for the regulation of gene expression, how to model the regulatory structure of CRMs has a considerable impact on the performance of CRM identification. The paper proposes a CRM discovery algorithm called ComSPS. ComSPS builds a regulatory structure model of CRMs based on HMM by exploring the rules of CRM transcriptional grammar that governs the internal motif site arrangement of CRMs. We test ComSPS on three benchmark datasets and compare it with five existing methods. Experimental results show that ComSPS performs better than them. PMID:28497059

  8. A Heckman selection model for the safety analysis of signalized intersections.

    Directory of Open Access Journals (Sweden)

    Xuecai Xu

    Full Text Available The objective of this paper is to provide a new method for estimating crash rate and severity simultaneously.This study explores a Heckman selection model of the crash rate and severity simultaneously at different levels and a two-step procedure is used to investigate the crash rate and severity levels. The first step uses a probit regression model to determine the sample selection process, and the second step develops a multiple regression model to simultaneously evaluate the crash rate and severity for slight injury/kill or serious injury (KSI, respectively. The model uses 555 observations from 262 signalized intersections in the Hong Kong metropolitan area, integrated with information on the traffic flow, geometric road design, road environment, traffic control and any crashes that occurred during two years.The results of the proposed two-step Heckman selection model illustrate the necessity of different crash rates for different crash severity levels.A comparison with the existing approaches suggests that the Heckman selection model offers an efficient and convenient alternative method for evaluating the safety performance at signalized intersections.

  9. Automating an integrated spatial data-mining model for landfill site selection

    Science.gov (United States)

    Abujayyab, Sohaib K. M.; Ahamad, Mohd Sanusi S.; Yahya, Ahmad Shukri; Ahmad, Siti Zubaidah; Aziz, Hamidi Abdul

    2017-10-01

    An integrated programming environment represents a robust approach to building a valid model for landfill site selection. One of the main challenges in the integrated model is the complicated processing and modelling due to the programming stages and several limitations. An automation process helps avoid the limitations and improve the interoperability between integrated programming environments. This work targets the automation of a spatial data-mining model for landfill site selection by integrating between spatial programming environment (Python-ArcGIS) and non-spatial environment (MATLAB). The model was constructed using neural networks and is divided into nine stages distributed between Matlab and Python-ArcGIS. A case study was taken from the north part of Peninsular Malaysia. 22 criteria were selected to utilise as input data and to build the training and testing datasets. The outcomes show a high-performance accuracy percentage of 98.2% in the testing dataset using 10-fold cross validation. The automated spatial data mining model provides a solid platform for decision makers to performing landfill site selection and planning operations on a regional scale.

  10. Multilevel selection in a resource-based model

    Science.gov (United States)

    Ferreira, Fernando Fagundes; Campos, Paulo R. A.

    2013-07-01

    In the present work we investigate the emergence of cooperation in a multilevel selection model that assumes limiting resources. Following the work by R. J. Requejo and J. Camacho [Phys. Rev. Lett.0031-900710.1103/PhysRevLett.108.038701 108, 038701 (2012)], the interaction among individuals is initially ruled by a prisoner's dilemma (PD) game. The payoff matrix may change, influenced by the resource availability, and hence may also evolve to a non-PD game. Furthermore, one assumes that the population is divided into groups, whose local dynamics is driven by the payoff matrix, whereas an intergroup competition results from the nonuniformity of the growth rate of groups. We study the probability that a single cooperator can invade and establish in a population initially dominated by defectors. Cooperation is strongly favored when group sizes are small. We observe the existence of a critical group size beyond which cooperation becomes counterselected. Although the critical size depends on the parameters of the model, it is seen that a saturation value for the critical group size is achieved. The results conform to the thought that the evolutionary history of life repeatedly involved transitions from smaller selective units to larger selective units.

  11. High-performance speech recognition using consistency modeling

    Science.gov (United States)

    Digalakis, Vassilios; Murveit, Hy; Monaco, Peter; Neumeyer, Leo; Sankar, Ananth

    1994-12-01

    The goal of SRI's consistency modeling project is to improve the raw acoustic modeling component of SRI's DECIPHER speech recognition system and develop consistency modeling technology. Consistency modeling aims to reduce the number of improper independence assumptions used in traditional speech recognition algorithms so that the resulting speech recognition hypotheses are more self-consistent and, therefore, more accurate. At the initial stages of this effort, SRI focused on developing the appropriate base technologies for consistency modeling. We first developed the Progressive Search technology that allowed us to perform large-vocabulary continuous speech recognition (LVCSR) experiments. Since its conception and development at SRI, this technique has been adopted by most laboratories, including other ARPA contracting sites, doing research on LVSR. Another goal of the consistency modeling project is to attack difficult modeling problems, when there is a mismatch between the training and testing phases. Such mismatches may include outlier speakers, different microphones and additive noise. We were able to either develop new, or transfer and evaluate existing, technologies that adapted our baseline genonic HMM recognizer to such difficult conditions.

  12. Effect of Model Selection on Computed Water Balance Components

    NARCIS (Netherlands)

    Jhorar, R.K.; Smit, A.A.M.F.R.; Roest, C.W.J.

    2009-01-01

    Soil water flow modelling approaches as used in four selected on-farm water management models, namely CROPWAT. FAIDS, CERES and SWAP, are compared through numerical experiments. The soil water simulation approaches used in the first three models are reformulated to incorporate ail evapotranspiration

  13. Epitaxial superlattices with titanium nitride as a plasmonic component for optical hyperbolic metamaterials

    DEFF Research Database (Denmark)

    Naik, Gururaj V.; Saha, Bivas; Liu, Jing

    2014-01-01

    , we address these issues by realizing an epitaxial superlattice as an HMM. The superlattice consists of ultrasmooth layers as thin as 5 nm and exhibits sharp interfaces which are essential for high-quality HMM devices. Our study reveals that such a TiN-based superlattice HMM provides a higher PDOS...

  14. Impact of silage additives on aerobic stability and characteristics of high-moisture maize during exposure to air, and on fermented liquid feed

    DEFF Research Database (Denmark)

    Canibe, Nuria; Kristensen, Niels Bastian; Jensen, Bent Borg

    2014-01-01

    during aeration- and impact of additives on the aerobic stability of HMM depended on the characteristics of the samples. No blooming of Enterobacteriaceae was observed in FLF containing c. 20 g HMM 100 g−1. Significance and Impact of the Study The impact of silage additives on aerobic stability of HMM...

  15. The Impact of Varied Discrimination Parameters on Mixed-Format Item Response Theory Model Selection

    Science.gov (United States)

    Whittaker, Tiffany A.; Chang, Wanchen; Dodd, Barbara G.

    2013-01-01

    Whittaker, Chang, and Dodd compared the performance of model selection criteria when selecting among mixed-format IRT models and found that the criteria did not perform adequately when selecting the more parameterized models. It was suggested by M. S. Johnson that the problems when selecting the more parameterized models may be because of the low…

  16. Evidence accumulation as a model for lexical selection.

    Science.gov (United States)

    Anders, R; Riès, S; van Maanen, L; Alario, F X

    2015-11-01

    We propose and demonstrate evidence accumulation as a plausible theoretical and/or empirical model for the lexical selection process of lexical retrieval. A number of current psycholinguistic theories consider lexical selection as a process related to selecting a lexical target from a number of alternatives, which each have varying activations (or signal supports), that are largely resultant of an initial stimulus recognition. We thoroughly present a case for how such a process may be theoretically explained by the evidence accumulation paradigm, and we demonstrate how this paradigm can be directly related or combined with conventional psycholinguistic theory and their simulatory instantiations (generally, neural network models). Then with a demonstrative application on a large new real data set, we establish how the empirical evidence accumulation approach is able to provide parameter results that are informative to leading psycholinguistic theory, and that motivate future theoretical development. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Nonmathematical models for evolution of altruism, and for group selection (peck order-territoriality-ant colony-dual-determinant model-tri-determinant model).

    Science.gov (United States)

    Darlington, P J

    1972-02-01

    Mathematical biologists have failed to produce a satisfactory general model for evolution of altruism, i.e., of behaviors by which "altruists" benefit other individuals but not themselves; kin selection does not seem to be a sufficient explanation of nonreciprocal altruism. Nonmathematical (but mathematically acceptable) models are now proposed for evolution of negative altruism in dual-determinant and of positive altruism in tri-determinant systems. Peck orders, territorial systems, and an ant society are analyzed as examples. In all models, evolution is primarily by individual selection, probably supplemented by group selection. Group selection is differential extinction of populations. It can act only on populations preformed by selection at the individual level, but can either cancel individual selective trends (effecting evolutionary homeostasis) or supplement them; its supplementary effect is probably increasingly important in the evolution of increasingly organized populations.

  18. Traditional and robust vector selection methods for use with similarity based models

    International Nuclear Information System (INIS)

    Hines, J. W.; Garvey, D. R.

    2006-01-01

    Vector selection, or instance selection as it is often called in the data mining literature, performs a critical task in the development of nonparametric, similarity based models. Nonparametric, similarity based modeling (SBM) is a form of 'lazy learning' which constructs a local model 'on the fly' by comparing a query vector to historical, training vectors. For large training sets the creation of local models may become cumbersome, since each training vector must be compared to the query vector. To alleviate this computational burden, varying forms of training vector sampling may be employed with the goal of selecting a subset of the training data such that the samples are representative of the underlying process. This paper describes one such SBM, namely auto-associative kernel regression (AAKR), and presents five traditional vector selection methods and one robust vector selection method that may be used to select prototype vectors from a larger data set in model training. The five traditional vector selection methods considered are min-max, vector ordering, combination min-max and vector ordering, fuzzy c-means clustering, and Adeli-Hung clustering. Each method is described in detail and compared using artificially generated data and data collected from the steam system of an operating nuclear power plant. (authors)

  19. Fixation probability in a two-locus intersexual selection model.

    Science.gov (United States)

    Durand, Guillermo; Lessard, Sabin

    2016-06-01

    We study a two-locus model of intersexual selection in a finite haploid population reproducing according to a discrete-time Moran model with a trait locus expressed in males and a preference locus expressed in females. We show that the probability of ultimate fixation of a single mutant allele for a male ornament introduced at random at the trait locus given any initial frequency state at the preference locus is increased by weak intersexual selection and recombination, weak or strong. Moreover, this probability exceeds the initial frequency of the mutant allele even in the case of a costly male ornament if intersexual selection is not too weak. On the other hand, the probability of ultimate fixation of a single mutant allele for a female preference towards a male ornament introduced at random at the preference locus is increased by weak intersexual selection and weak recombination if the female preference is not costly, and is strong enough in the case of a costly male ornament. The analysis relies on an extension of the ancestral recombination-selection graph for samples of haplotypes to take into account events of intersexual selection, while the symbolic calculation of the fixation probabilities is made possible in a reasonable time by an optimizing algorithm. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Two-dimensional hidden semantic information model for target saliency detection and eyetracking identification

    Science.gov (United States)

    Wan, Weibing; Yuan, Lingfeng; Zhao, Qunfei; Fang, Tao

    2018-01-01

    Saliency detection has been applied to the target acquisition case. This paper proposes a two-dimensional hidden Markov model (2D-HMM) that exploits the hidden semantic information of an image to detect its salient regions. A spatial pyramid histogram of oriented gradient descriptors is used to extract features. After encoding the image by a learned dictionary, the 2D-Viterbi algorithm is applied to infer the saliency map. This model can predict fixation of the targets and further creates robust and effective depictions of the targets' change in posture and viewpoint. To validate the model with a human visual search mechanism, two eyetrack experiments are employed to train our model directly from eye movement data. The results show that our model achieves better performance than visual attention. Moreover, it indicates the plausibility of utilizing visual track data to identify targets.

  1. A concurrent optimization model for supplier selection with fuzzy quality loss

    International Nuclear Information System (INIS)

    Rosyidi, C.; Murtisari, R.; Jauhari, W.

    2017-01-01

    The purpose of this research is to develop a concurrent supplier selection model to minimize the purchasing cost and fuzzy quality loss considering process capability and assembled product specification. Design/methodology/approach: This research integrates fuzzy quality loss in the model to concurrently solve the decision making in detailed design stage and manufacturing stage. Findings: The resulted model can be used to concurrently select the optimal supplier and determine the tolerance of the components. The model balances the purchasing cost and fuzzy quality loss. Originality/value: An assembled product consists of many components which must be purchased from the suppliers. Fuzzy quality loss is integrated in the supplier selection model to allow the vagueness in final assembly by grouping the assembly into several grades according to the resulted assembly tolerance.

  2. A concurrent optimization model for supplier selection with fuzzy quality loss

    Energy Technology Data Exchange (ETDEWEB)

    Rosyidi, C.; Murtisari, R.; Jauhari, W.

    2017-07-01

    The purpose of this research is to develop a concurrent supplier selection model to minimize the purchasing cost and fuzzy quality loss considering process capability and assembled product specification. Design/methodology/approach: This research integrates fuzzy quality loss in the model to concurrently solve the decision making in detailed design stage and manufacturing stage. Findings: The resulted model can be used to concurrently select the optimal supplier and determine the tolerance of the components. The model balances the purchasing cost and fuzzy quality loss. Originality/value: An assembled product consists of many components which must be purchased from the suppliers. Fuzzy quality loss is integrated in the supplier selection model to allow the vagueness in final assembly by grouping the assembly into several grades according to the resulted assembly tolerance.

  3. Near-native protein loop sampling using nonparametric density estimation accommodating sparcity.

    Science.gov (United States)

    Joo, Hyun; Chavan, Archana G; Day, Ryan; Lennox, Kristin P; Sukhanov, Paul; Dahl, David B; Vannucci, Marina; Tsai, Jerry

    2011-10-01

    Unlike the core structural elements of a protein like regular secondary structure, template based modeling (TBM) has difficulty with loop regions due to their variability in sequence and structure as well as the sparse sampling from a limited number of homologous templates. We present a novel, knowledge-based method for loop sampling that leverages homologous torsion angle information to estimate a continuous joint backbone dihedral angle density at each loop position. The φ,ψ distributions are estimated via a Dirichlet process mixture of hidden Markov models (DPM-HMM). Models are quickly generated based on samples from these distributions and were enriched using an end-to-end distance filter. The performance of the DPM-HMM method was evaluated against a diverse test set in a leave-one-out approach. Candidates as low as 0.45 Å RMSD and with a worst case of 3.66 Å were produced. For the canonical loops like the immunoglobulin complementarity-determining regions (mean RMSD 7.0 Å), this sampling method produces a population of loop structures to around 3.66 Å for loops up to 17 residues. In a direct test of sampling to the Loopy algorithm, our method demonstrates the ability to sample nearer native structures for both the canonical CDRH1 and non-canonical CDRH3 loops. Lastly, in the realistic test conditions of the CASP9 experiment, successful application of DPM-HMM for 90 loops from 45 TBM targets shows the general applicability of our sampling method in loop modeling problem. These results demonstrate that our DPM-HMM produces an advantage by consistently sampling near native loop structure. The software used in this analysis is available for download at http://www.stat.tamu.edu/~dahl/software/cortorgles/.

  4. Near-native protein loop sampling using nonparametric density estimation accommodating sparcity.

    Directory of Open Access Journals (Sweden)

    Hyun Joo

    2011-10-01

    Full Text Available Unlike the core structural elements of a protein like regular secondary structure, template based modeling (TBM has difficulty with loop regions due to their variability in sequence and structure as well as the sparse sampling from a limited number of homologous templates. We present a novel, knowledge-based method for loop sampling that leverages homologous torsion angle information to estimate a continuous joint backbone dihedral angle density at each loop position. The φ,ψ distributions are estimated via a Dirichlet process mixture of hidden Markov models (DPM-HMM. Models are quickly generated based on samples from these distributions and were enriched using an end-to-end distance filter. The performance of the DPM-HMM method was evaluated against a diverse test set in a leave-one-out approach. Candidates as low as 0.45 Å RMSD and with a worst case of 3.66 Å were produced. For the canonical loops like the immunoglobulin complementarity-determining regions (mean RMSD 7.0 Å, this sampling method produces a population of loop structures to around 3.66 Å for loops up to 17 residues. In a direct test of sampling to the Loopy algorithm, our method demonstrates the ability to sample nearer native structures for both the canonical CDRH1 and non-canonical CDRH3 loops. Lastly, in the realistic test conditions of the CASP9 experiment, successful application of DPM-HMM for 90 loops from 45 TBM targets shows the general applicability of our sampling method in loop modeling problem. These results demonstrate that our DPM-HMM produces an advantage by consistently sampling near native loop structure. The software used in this analysis is available for download at http://www.stat.tamu.edu/~dahl/software/cortorgles/.

  5. Near-Native Protein Loop Sampling Using Nonparametric Density Estimation Accommodating Sparcity

    Science.gov (United States)

    Day, Ryan; Lennox, Kristin P.; Sukhanov, Paul; Dahl, David B.; Vannucci, Marina; Tsai, Jerry

    2011-01-01

    Unlike the core structural elements of a protein like regular secondary structure, template based modeling (TBM) has difficulty with loop regions due to their variability in sequence and structure as well as the sparse sampling from a limited number of homologous templates. We present a novel, knowledge-based method for loop sampling that leverages homologous torsion angle information to estimate a continuous joint backbone dihedral angle density at each loop position. The φ,ψ distributions are estimated via a Dirichlet process mixture of hidden Markov models (DPM-HMM). Models are quickly generated based on samples from these distributions and were enriched using an end-to-end distance filter. The performance of the DPM-HMM method was evaluated against a diverse test set in a leave-one-out approach. Candidates as low as 0.45 Å RMSD and with a worst case of 3.66 Å were produced. For the canonical loops like the immunoglobulin complementarity-determining regions (mean RMSD 7.0 Å), this sampling method produces a population of loop structures to around 3.66 Å for loops up to 17 residues. In a direct test of sampling to the Loopy algorithm, our method demonstrates the ability to sample nearer native structures for both the canonical CDRH1 and non-canonical CDRH3 loops. Lastly, in the realistic test conditions of the CASP9 experiment, successful application of DPM-HMM for 90 loops from 45 TBM targets shows the general applicability of our sampling method in loop modeling problem. These results demonstrate that our DPM-HMM produces an advantage by consistently sampling near native loop structure. The software used in this analysis is available for download at http://www.stat.tamu.edu/~dahl/software/cortorgles/. PMID:22028638

  6. Metode Linear Predictive Coding (LPC Pada klasifikasi Hidden Markov Model (HMM Untuk Kata Arabic pada penutur Indonesia

    Directory of Open Access Journals (Sweden)

    Ririn Kusumawati

    2016-05-01

    In the classification, using Hidden Markov Model, voice signal is analyzed and searched the maximum possible value that can be recognized. The modeling results obtained parameters are used to compare with the sound of Arabic speakers. From the test results' Classification, Hidden Markov Models with Linear Predictive Coding extraction average accuracy of 78.6% for test data sampling frequency of 8,000 Hz, 80.2% for test data sampling frequency of 22050 Hz, 79% for frequencies sampling test data at 44100 Hz.

  7. Probabilistic wind power forecasting with online model selection and warped gaussian process

    International Nuclear Information System (INIS)

    Kou, Peng; Liang, Deliang; Gao, Feng; Gao, Lin

    2014-01-01

    Highlights: • A new online ensemble model for the probabilistic wind power forecasting. • Quantifying the non-Gaussian uncertainties in wind power. • Online model selection that tracks the time-varying characteristic of wind generation. • Dynamically altering the input features. • Recursive update of base models. - Abstract: Based on the online model selection and the warped Gaussian process (WGP), this paper presents an ensemble model for the probabilistic wind power forecasting. This model provides the non-Gaussian predictive distributions, which quantify the non-Gaussian uncertainties associated with wind power. In order to follow the time-varying characteristics of wind generation, multiple time dependent base forecasting models and an online model selection strategy are established, thus adaptively selecting the most probable base model for each prediction. WGP is employed as the base model, which handles the non-Gaussian uncertainties in wind power series. Furthermore, a regime switch strategy is designed to modify the input feature set dynamically, thereby enhancing the adaptiveness of the model. In an online learning framework, the base models should also be time adaptive. To achieve this, a recursive algorithm is introduced, thus permitting the online updating of WGP base models. The proposed model has been tested on the actual data collected from both single and aggregated wind farms

  8. Augmented Self-Modeling as an Intervention for Selective Mutism

    Science.gov (United States)

    Kehle, Thomas J.; Bray, Melissa A.; Byer-Alcorace, Gabriel F.; Theodore, Lea A.; Kovac, Lisa M.

    2012-01-01

    Selective mutism is a rare disorder that is difficult to treat. It is often associated with oppositional defiant behavior, particularly in the home setting, social phobia, and, at times, autism spectrum disorder characteristics. The augmented self-modeling treatment has been relatively successful in promoting rapid diminishment of selective mutism…

  9. Predictive and Descriptive CoMFA Models: The Effect of Variable Selection.

    Science.gov (United States)

    Sepehri, Bakhtyar; Omidikia, Nematollah; Kompany-Zareh, Mohsen; Ghavami, Raouf

    2018-01-01

    Aims & Scope: In this research, 8 variable selection approaches were used to investigate the effect of variable selection on the predictive power and stability of CoMFA models. Three data sets including 36 EPAC antagonists, 79 CD38 inhibitors and 57 ATAD2 bromodomain inhibitors were modelled by CoMFA. First of all, for all three data sets, CoMFA models with all CoMFA descriptors were created then by applying each variable selection method a new CoMFA model was developed so for each data set, 9 CoMFA models were built. Obtained results show noisy and uninformative variables affect CoMFA results. Based on created models, applying 5 variable selection approaches including FFD, SRD-FFD, IVE-PLS, SRD-UVEPLS and SPA-jackknife increases the predictive power and stability of CoMFA models significantly. Among them, SPA-jackknife removes most of the variables while FFD retains most of them. FFD and IVE-PLS are time consuming process while SRD-FFD and SRD-UVE-PLS run need to few seconds. Also applying FFD, SRD-FFD, IVE-PLS, SRD-UVE-PLS protect CoMFA countor maps information for both fields. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. The Properties of Model Selection when Retaining Theory Variables

    DEFF Research Database (Denmark)

    Hendry, David F.; Johansen, Søren

    Economic theories are often fitted directly to data to avoid possible model selection biases. We show that embedding a theory model that specifies the correct set of m relevant exogenous variables, x{t}, within the larger set of m+k candidate variables, (x{t},w{t}), then selection over the second...... set by their statistical significance can be undertaken without affecting the estimator distribution of the theory parameters. This strategy returns the theory-parameter estimates when the theory is correct, yet protects against the theory being under-specified because some w{t} are relevant....

  11. Efficient nonparametric and asymptotic Bayesian model selection methods for attributed graph clustering

    KAUST Repository

    Xu, Zhiqiang

    2017-02-16

    Attributed graph clustering, also known as community detection on attributed graphs, attracts much interests recently due to the ubiquity of attributed graphs in real life. Many existing algorithms have been proposed for this problem, which are either distance based or model based. However, model selection in attributed graph clustering has not been well addressed, that is, most existing algorithms assume the cluster number to be known a priori. In this paper, we propose two efficient approaches for attributed graph clustering with automatic model selection. The first approach is a popular Bayesian nonparametric method, while the second approach is an asymptotic method based on a recently proposed model selection criterion, factorized information criterion. Experimental results on both synthetic and real datasets demonstrate that our approaches for attributed graph clustering with automatic model selection significantly outperform the state-of-the-art algorithm.

  12. Efficient nonparametric and asymptotic Bayesian model selection methods for attributed graph clustering

    KAUST Repository

    Xu, Zhiqiang; Cheng, James; Xiao, Xiaokui; Fujimaki, Ryohei; Muraoka, Yusuke

    2017-01-01

    Attributed graph clustering, also known as community detection on attributed graphs, attracts much interests recently due to the ubiquity of attributed graphs in real life. Many existing algorithms have been proposed for this problem, which are either distance based or model based. However, model selection in attributed graph clustering has not been well addressed, that is, most existing algorithms assume the cluster number to be known a priori. In this paper, we propose two efficient approaches for attributed graph clustering with automatic model selection. The first approach is a popular Bayesian nonparametric method, while the second approach is an asymptotic method based on a recently proposed model selection criterion, factorized information criterion. Experimental results on both synthetic and real datasets demonstrate that our approaches for attributed graph clustering with automatic model selection significantly outperform the state-of-the-art algorithm.

  13. Adverse Selection Models with Three States of Nature

    Directory of Open Access Journals (Sweden)

    Daniela MARINESCU

    2011-02-01

    Full Text Available In the paper we analyze an adverse selection model with three states of nature, where both the Principal and the Agent are risk neutral. When solving the model, we use the informational rents and the efforts as variables. We derive the optimal contract in the situation of asymmetric information. The paper ends with the characteristics of the optimal contract and the main conclusions of the model.

  14. SU-F-R-10: Selecting the Optimal Solution for Multi-Objective Radiomics Model

    International Nuclear Information System (INIS)

    Zhou, Z; Folkert, M; Wang, J

    2016-01-01

    Purpose: To develop an evidential reasoning approach for selecting the optimal solution from a Pareto solution set obtained by a multi-objective radiomics model for predicting distant failure in lung SBRT. Methods: In the multi-objective radiomics model, both sensitivity and specificity are considered as the objective functions simultaneously. A Pareto solution set with many feasible solutions will be resulted from the multi-objective optimization. In this work, an optimal solution Selection methodology for Multi-Objective radiomics Learning model using the Evidential Reasoning approach (SMOLER) was proposed to select the optimal solution from the Pareto solution set. The proposed SMOLER method used the evidential reasoning approach to calculate the utility of each solution based on pre-set optimal solution selection rules. The solution with the highest utility was chosen as the optimal solution. In SMOLER, an optimal learning model coupled with clonal selection algorithm was used to optimize model parameters. In this study, PET, CT image features and clinical parameters were utilized for predicting distant failure in lung SBRT. Results: Total 126 solution sets were generated by adjusting predictive model parameters. Each Pareto set contains 100 feasible solutions. The solution selected by SMOLER within each Pareto set was compared to the manually selected optimal solution. Five-cross-validation was used to evaluate the optimal solution selection accuracy of SMOLER. The selection accuracies for five folds were 80.00%, 69.23%, 84.00%, 84.00%, 80.00%, respectively. Conclusion: An optimal solution selection methodology for multi-objective radiomics learning model using the evidential reasoning approach (SMOLER) was proposed. Experimental results show that the optimal solution can be found in approximately 80% cases.

  15. SU-F-R-10: Selecting the Optimal Solution for Multi-Objective Radiomics Model

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Z; Folkert, M; Wang, J [UT Southwestern Medical Center, Dallas, TX (United States)

    2016-06-15

    Purpose: To develop an evidential reasoning approach for selecting the optimal solution from a Pareto solution set obtained by a multi-objective radiomics model for predicting distant failure in lung SBRT. Methods: In the multi-objective radiomics model, both sensitivity and specificity are considered as the objective functions simultaneously. A Pareto solution set with many feasible solutions will be resulted from the multi-objective optimization. In this work, an optimal solution Selection methodology for Multi-Objective radiomics Learning model using the Evidential Reasoning approach (SMOLER) was proposed to select the optimal solution from the Pareto solution set. The proposed SMOLER method used the evidential reasoning approach to calculate the utility of each solution based on pre-set optimal solution selection rules. The solution with the highest utility was chosen as the optimal solution. In SMOLER, an optimal learning model coupled with clonal selection algorithm was used to optimize model parameters. In this study, PET, CT image features and clinical parameters were utilized for predicting distant failure in lung SBRT. Results: Total 126 solution sets were generated by adjusting predictive model parameters. Each Pareto set contains 100 feasible solutions. The solution selected by SMOLER within each Pareto set was compared to the manually selected optimal solution. Five-cross-validation was used to evaluate the optimal solution selection accuracy of SMOLER. The selection accuracies for five folds were 80.00%, 69.23%, 84.00%, 84.00%, 80.00%, respectively. Conclusion: An optimal solution selection methodology for multi-objective radiomics learning model using the evidential reasoning approach (SMOLER) was proposed. Experimental results show that the optimal solution can be found in approximately 80% cases.

  16. Economic assessment model architecture for AGC/AVLIS selection

    International Nuclear Information System (INIS)

    Hoglund, R.L.

    1984-01-01

    The economic assessment model architecture described provides the flexibility and completeness in economic analysis that the selection between AGC and AVLIS demands. Process models which are technology-specific will provide the first-order responses of process performance and cost to variations in process parameters. The economics models can be used to test the impacts of alternative deployment scenarios for a technology. Enterprise models provide global figures of merit for evaluating the DOE perspective on the uranium enrichment enterprise, and business analysis models compute the financial parameters from the private investor's viewpoint

  17. The Use of Evolution in a Central Action Selection Model

    Directory of Open Access Journals (Sweden)

    F. Montes-Gonzalez

    2007-01-01

    Full Text Available The use of effective central selection provides flexibility in design by offering modularity and extensibility. In earlier papers we have focused on the development of a simple centralized selection mechanism. Our current goal is to integrate evolutionary methods in the design of non-sequential behaviours and the tuning of specific parameters of the selection model. The foraging behaviour of an animal robot (animat has been modelled in order to integrate the sensory information from the robot to perform selection that is nearly optimized by the use of genetic algorithms. In this paper we present how selection through optimization finally arranges the pattern of presented behaviours for the foraging task. Hence, the execution of specific parts in a behavioural pattern may be ruled out by the tuning of these parameters. Furthermore, the intensive use of colour segmentation from a colour camera for locating a cylinder sets a burden on the calculations carried out by the genetic algorithm.

  18. The selection pressures induced non-smooth infectious disease model and bifurcation analysis

    International Nuclear Information System (INIS)

    Qin, Wenjie; Tang, Sanyi

    2014-01-01

    Highlights: • A non-smooth infectious disease model to describe selection pressure is developed. • The effect of selection pressure on infectious disease transmission is addressed. • The key factors which are related to the threshold value are determined. • The stabilities and bifurcations of model have been revealed in more detail. • Strategies for the prevention of emerging infectious disease are proposed. - Abstract: Mathematical models can assist in the design strategies to control emerging infectious disease. This paper deduces a non-smooth infectious disease model induced by selection pressures. Analysis of this model reveals rich dynamics including local, global stability of equilibria and local sliding bifurcations. Model solutions ultimately stabilize at either one real equilibrium or the pseudo-equilibrium on the switching surface of the present model, depending on the threshold value determined by some related parameters. Our main results show that reducing the threshold value to a appropriate level could contribute to the efficacy on prevention and treatment of emerging infectious disease, which indicates that the selection pressures can be beneficial to prevent the emerging infectious disease under medical resource limitation

  19. Sample selection and taste correlation in discrete choice transport modelling

    DEFF Research Database (Denmark)

    Mabit, Stefan Lindhard

    2008-01-01

    explain counterintuitive results in value of travel time estimation. However, the results also point at the difficulty of finding suitable instruments for the selection mechanism. Taste heterogeneity is another important aspect of discrete choice modelling. Mixed logit models are designed to capture...... the question for a broader class of models. It is shown that the original result may be somewhat generalised. Another question investigated is whether mode choice operates as a self-selection mechanism in the estimation of the value of travel time. The results show that self-selection can at least partly...... of taste correlation in willingness-to-pay estimation are presented. The first contribution addresses how to incorporate taste correlation in the estimation of the value of travel time for public transport. Given a limited dataset the approach taken is to use theory on the value of travel time as guidance...

  20. Uncertain programming models for portfolio selection with uncertain returns

    Science.gov (United States)

    Zhang, Bo; Peng, Jin; Li, Shengguo

    2015-10-01

    In an indeterminacy economic environment, experts' knowledge about the returns of securities consists of much uncertainty instead of randomness. This paper discusses portfolio selection problem in uncertain environment in which security returns cannot be well reflected by historical data, but can be evaluated by the experts. In the paper, returns of securities are assumed to be given by uncertain variables. According to various decision criteria, the portfolio selection problem in uncertain environment is formulated as expected-variance-chance model and chance-expected-variance model by using the uncertainty programming. Within the framework of uncertainty theory, for the convenience of solving the models, some crisp equivalents are discussed under different conditions. In addition, a hybrid intelligent algorithm is designed in the paper to provide a general method for solving the new models in general cases. At last, two numerical examples are provided to show the performance and applications of the models and algorithm.

  1. Modeling and Solving the Liner Shipping Service Selection Problem

    DEFF Research Database (Denmark)

    Karsten, Christian Vad; Balakrishnan, Anant

    We address a tactical planning problem, the Liner Shipping Service Selection Problem (LSSSP), facing container shipping companies. Given estimated demand between various ports, the LSSSP entails selecting the best subset of non-simple cyclic sailing routes from a given pool of candidate routes...... to accurately model transshipment costs and incorporate routing policies such as maximum transit time, maritime cabotage rules, and operational alliances. Our hop-indexed arc flow model is smaller and easier to solve than path flow models. We outline a preprocessing procedure that exploits both the routing...... requirements and the hop limits to reduce problem size, and describe techniques to accelerate the solution procedure. We present computational results for realistic problem instances from the benchmark suite LINER-LIB....

  2. Activity Recognition Using Hybrid Generative/Discriminative Models on Home Environments Using Binary Sensors

    Directory of Open Access Journals (Sweden)

    Araceli Sanchis

    2013-04-01

    Full Text Available Activities of daily living are good indicators of elderly health status, and activity recognition in smart environments is a well-known problem that has been previously addressed by several studies. In this paper, we describe the use of two powerful machine learning schemes, ANN (Artificial Neural Network and SVM (Support Vector Machines, within the framework of HMM (Hidden Markov Model in order to tackle the task of activity recognition in a home setting. The output scores of the discriminative models, after processing, are used as observation probabilities of the hybrid approach. We evaluate our approach by comparing these hybrid models with other classical activity recognition methods using five real datasets. We show how the hybrid models achieve significantly better recognition performance, with significance level p < 0:05, proving that the hybrid approach is better suited for the addressed domain.

  3. Human gait recognition by pyramid of HOG feature on silhouette images

    Science.gov (United States)

    Yang, Guang; Yin, Yafeng; Park, Jeanrok; Man, Hong

    2013-03-01

    As a uncommon biometric modality, human gait recognition has a great advantage of identify people at a distance without high resolution images. It has attracted much attention in recent years, especially in the fields of computer vision and remote sensing. In this paper, we propose a human gait recognition framework that consists of a reliable background subtraction method followed by the pyramid of Histogram of Gradient (pHOG) feature extraction on the silhouette image, and a Hidden Markov Model (HMM) based classifier. Through background subtraction, the silhouette of human gait in each frame is extracted and normalized from the raw video sequence. After removing the shadow and noise in each region of interest (ROI), pHOG feature is computed on the silhouettes images. Then the pHOG features of each gait class will be used to train a corresponding HMM. In the test stage, pHOG feature will be extracted from each test sequence and used to calculate the posterior probability toward each trained HMM model. Experimental results on the CASIA Gait Dataset B1 demonstrate that with our proposed method can achieve very competitive recognition rate.

  4. Stochastic isotropic hyperelastic materials: constitutive calibration and model selection

    Science.gov (United States)

    Mihai, L. Angela; Woolley, Thomas E.; Goriely, Alain

    2018-03-01

    Biological and synthetic materials often exhibit intrinsic variability in their elastic responses under large strains, owing to microstructural inhomogeneity or when elastic data are extracted from viscoelastic mechanical tests. For these materials, although hyperelastic models calibrated to mean data are useful, stochastic representations accounting also for data dispersion carry extra information about the variability of material properties found in practical applications. We combine finite elasticity and information theories to construct homogeneous isotropic hyperelastic models with random field parameters calibrated to discrete mean values and standard deviations of either the stress-strain function or the nonlinear shear modulus, which is a function of the deformation, estimated from experimental tests. These quantities can take on different values, corresponding to possible outcomes of the experiments. As multiple models can be derived that adequately represent the observed phenomena, we apply Occam's razor by providing an explicit criterion for model selection based on Bayesian statistics. We then employ this criterion to select a model among competing models calibrated to experimental data for rubber and brain tissue under single or multiaxial loads.

  5. How Many Separable Sources? Model Selection In Independent Components Analysis

    DEFF Research Database (Denmark)

    Woods, Roger P.; Hansen, Lars Kai; Strother, Stephen

    2015-01-01

    among potential model categories with differing numbers of Gaussian components. Based on simulation studies, the assumptions and approximations underlying the Akaike Information Criterion do not hold in this setting, even with a very large number of observations. Cross-validation is a suitable, though....../Principal Components Analysis (mixed ICA/PCA) model described here accommodates one or more Gaussian components in the independent components analysis model and uses principal components analysis to characterize contributions from this inseparable Gaussian subspace. Information theory can then be used to select from...... might otherwise be questionable. Failure of the Akaike Information Criterion in model selection also has relevance in traditional independent components analysis where all sources are assumed non-Gaussian....

  6. Neural Underpinnings of Decision Strategy Selection: A Review and a Theoretical Model.

    Science.gov (United States)

    Wichary, Szymon; Smolen, Tomasz

    2016-01-01

    In multi-attribute choice, decision makers use decision strategies to arrive at the final choice. What are the neural mechanisms underlying decision strategy selection? The first goal of this paper is to provide a literature review on the neural underpinnings and cognitive models of decision strategy selection and thus set the stage for a neurocognitive model of this process. The second goal is to outline such a unifying, mechanistic model that can explain the impact of noncognitive factors (e.g., affect, stress) on strategy selection. To this end, we review the evidence for the factors influencing strategy selection, the neural basis of strategy use and the cognitive models of this process. We also present the Bottom-Up Model of Strategy Selection (BUMSS). The model assumes that the use of the rational Weighted Additive strategy and the boundedly rational heuristic Take The Best can be explained by one unifying, neurophysiologically plausible mechanism, based on the interaction of the frontoparietal network, orbitofrontal cortex, anterior cingulate cortex and the brainstem nucleus locus coeruleus. According to BUMSS, there are three processes that form the bottom-up mechanism of decision strategy selection and lead to the final choice: (1) cue weight computation, (2) gain modulation, and (3) weighted additive evaluation of alternatives. We discuss how these processes might be implemented in the brain, and how this knowledge allows us to formulate novel predictions linking strategy use and neural signals.

  7. Neural Underpinnings of Decision Strategy Selection: A Review and a Theoretical Model

    Science.gov (United States)

    Wichary, Szymon; Smolen, Tomasz

    2016-01-01

    In multi-attribute choice, decision makers use decision strategies to arrive at the final choice. What are the neural mechanisms underlying decision strategy selection? The first goal of this paper is to provide a literature review on the neural underpinnings and cognitive models of decision strategy selection and thus set the stage for a neurocognitive model of this process. The second goal is to outline such a unifying, mechanistic model that can explain the impact of noncognitive factors (e.g., affect, stress) on strategy selection. To this end, we review the evidence for the factors influencing strategy selection, the neural basis of strategy use and the cognitive models of this process. We also present the Bottom-Up Model of Strategy Selection (BUMSS). The model assumes that the use of the rational Weighted Additive strategy and the boundedly rational heuristic Take The Best can be explained by one unifying, neurophysiologically plausible mechanism, based on the interaction of the frontoparietal network, orbitofrontal cortex, anterior cingulate cortex and the brainstem nucleus locus coeruleus. According to BUMSS, there are three processes that form the bottom-up mechanism of decision strategy selection and lead to the final choice: (1) cue weight computation, (2) gain modulation, and (3) weighted additive evaluation of alternatives. We discuss how these processes might be implemented in the brain, and how this knowledge allows us to formulate novel predictions linking strategy use and neural signals. PMID:27877103

  8. Neural underpinnings of decision strategy selection: a review and a theoretical model

    Directory of Open Access Journals (Sweden)

    Szymon Wichary

    2016-11-01

    Full Text Available In multi-attribute choice, decision makers use various decision strategies to arrive at the final choice. What are the neural mechanisms underlying decision strategy selection? The first goal of this paper is to provide a literature review on the neural underpinnings and cognitive models of decision strategy selection and thus set the stage for a unifying neurocognitive model of this process. The second goal is to outline such a unifying, mechanistic model that can explain the impact of noncognitive factors (e.g. affect, stress on strategy selection. To this end, we review the evidence for the factors influencing strategy selection, the neural basis of strategy use and the cognitive models explaining this process. We also present the neurocognitive Bottom-Up Model of Strategy Selection (BUMSS. The model assumes that the use of the rational, normative Weighted Additive strategy and the boundedly rational heuristic Take The Best can be explained by one unifying, neurophysiologically plausible mechanism, based on the interaction of the frontoparietal network, orbitofrontal cortex, anterior cingulate cortex and the brainstem nucleus locus coeruleus. According to BUMSS, there are three processes that form the bottom-up mechanism of decision strategy selection and lead to the final choice: 1 cue weight computation, 2 gain modulation, and 3 weighted additive evaluation of alternatives. We discuss how these processes might be implemented in the brain, and how this knowledge allows us to formulate novel predictions linking strategy use and neurophysiological indices.

  9. How Many Separable Sources? Model Selection In Independent Components Analysis

    Science.gov (United States)

    Woods, Roger P.; Hansen, Lars Kai; Strother, Stephen

    2015-01-01

    Unlike mixtures consisting solely of non-Gaussian sources, mixtures including two or more Gaussian components cannot be separated using standard independent components analysis methods that are based on higher order statistics and independent observations. The mixed Independent Components Analysis/Principal Components Analysis (mixed ICA/PCA) model described here accommodates one or more Gaussian components in the independent components analysis model and uses principal components analysis to characterize contributions from this inseparable Gaussian subspace. Information theory can then be used to select from among potential model categories with differing numbers of Gaussian components. Based on simulation studies, the assumptions and approximations underlying the Akaike Information Criterion do not hold in this setting, even with a very large number of observations. Cross-validation is a suitable, though computationally intensive alternative for model selection. Application of the algorithm is illustrated using Fisher's iris data set and Howells' craniometric data set. Mixed ICA/PCA is of potential interest in any field of scientific investigation where the authenticity of blindly separated non-Gaussian sources might otherwise be questionable. Failure of the Akaike Information Criterion in model selection also has relevance in traditional independent components analysis where all sources are assumed non-Gaussian. PMID:25811988

  10. Model selection with multiple regression on distance matrices leads to incorrect inferences.

    Directory of Open Access Journals (Sweden)

    Ryan P Franckowiak

    Full Text Available In landscape genetics, model selection procedures based on Information Theoretic and Bayesian principles have been used with multiple regression on distance matrices (MRM to test the relationship between multiple vectors of pairwise genetic, geographic, and environmental distance. Using Monte Carlo simulations, we examined the ability of model selection criteria based on Akaike's information criterion (AIC, its small-sample correction (AICc, and the Bayesian information criterion (BIC to reliably rank candidate models when applied with MRM while varying the sample size. The results showed a serious problem: all three criteria exhibit a systematic bias toward selecting unnecessarily complex models containing spurious random variables and erroneously suggest a high level of support for the incorrectly ranked best model. These problems effectively increased with increasing sample size. The failure of AIC, AICc, and BIC was likely driven by the inflated sample size and different sum-of-squares partitioned by MRM, and the resulting effect on delta values. Based on these findings, we strongly discourage the continued application of AIC, AICc, and BIC for model selection with MRM.

  11. Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes

    DEFF Research Database (Denmark)

    Siepel, Adam; Bejerano, Gill; Pedersen, Jakob Skou

    2005-01-01

    We have conducted a comprehensive search for conserved elements in vertebrate genomes, using genome-wide multiple alignments of five vertebrate species (human, mouse, rat, chicken, and Fugu rubripes). Parallel searches have been performed with multiple alignments of four insect species (three...... species of Drosophila and Anopheles gambiae), two species of Caenorhabditis, and seven species of Saccharomyces. Conserved elements were identified with a computer program called phastCons, which is based on a two-state phylogenetic hidden Markov model (phylo-HMM). PhastCons works by fitting a phylo......-HMM to the data by maximum likelihood, subject to constraints designed to calibrate the model across species groups, and then predicting conserved elements based on this model. The predicted elements cover roughly 3%-8% of the human genome (depending on the details of the calibration procedure) and substantially...

  12. Physical Human Activity Recognition Using Wearable Sensors

    Directory of Open Access Journals (Sweden)

    Ferhat Attal

    2015-12-01

    Full Text Available This paper presents a review of different classification techniques used to recognize human activities from wearable inertial sensor data. Three inertial sensor units were used in this study and were worn by healthy subjects at key points of upper/lower body limbs (chest, right thigh and left ankle. Three main steps describe the activity recognition process: sensors’ placement, data pre-processing and data classification. Four supervised classification techniques namely, k-Nearest Neighbor (k-NN, Support Vector Machines (SVM, Gaussian Mixture Models (GMM, and Random Forest (RF as well as three unsupervised classification techniques namely, k-Means, Gaussian mixture models (GMM and Hidden Markov Model (HMM, are compared in terms of correct classification rate, F-measure, recall, precision, and specificity. Raw data and extracted features are used separately as inputs of each classifier. The feature selection is performed using a wrapper approach based on the RF algorithm. Based on our experiments, the results obtained show that the k-NN classifier provides the best performance compared to other supervised classification algorithms, whereas the HMM classifier is the one that gives the best results among unsupervised classification algorithms. This comparison highlights which approach gives better performance in both supervised and unsupervised contexts. It should be noted that the obtained results are limited to the context of this study, which concerns the classification of the main daily living human activities using three wearable accelerometers placed at the chest, right shank and left ankle of the subject.

  13. Physical Human Activity Recognition Using Wearable Sensors.

    Science.gov (United States)

    Attal, Ferhat; Mohammed, Samer; Dedabrishvili, Mariam; Chamroukhi, Faicel; Oukhellou, Latifa; Amirat, Yacine

    2015-12-11

    This paper presents a review of different classification techniques used to recognize human activities from wearable inertial sensor data. Three inertial sensor units were used in this study and were worn by healthy subjects at key points of upper/lower body limbs (chest, right thigh and left ankle). Three main steps describe the activity recognition process: sensors' placement, data pre-processing and data classification. Four supervised classification techniques namely, k-Nearest Neighbor (k-NN), Support Vector Machines (SVM), Gaussian Mixture Models (GMM), and Random Forest (RF) as well as three unsupervised classification techniques namely, k-Means, Gaussian mixture models (GMM) and Hidden Markov Model (HMM), are compared in terms of correct classification rate, F-measure, recall, precision, and specificity. Raw data and extracted features are used separately as inputs of each classifier. The feature selection is performed using a wrapper approach based on the RF algorithm. Based on our experiments, the results obtained show that the k-NN classifier provides the best performance compared to other supervised classification algorithms, whereas the HMM classifier is the one that gives the best results among unsupervised classification algorithms. This comparison highlights which approach gives better performance in both supervised and unsupervised contexts. It should be noted that the obtained results are limited to the context of this study, which concerns the classification of the main daily living human activities using three wearable accelerometers placed at the chest, right shank and left ankle of the subject.

  14. Island-Model Genomic Selection for Long-Term Genetic Improvement of Autogamous Crops.

    Science.gov (United States)

    Yabe, Shiori; Yamasaki, Masanori; Ebana, Kaworu; Hayashi, Takeshi; Iwata, Hiroyoshi

    2016-01-01

    Acceleration of genetic improvement of autogamous crops such as wheat and rice is necessary to increase cereal production in response to the global food crisis. Population and pedigree methods of breeding, which are based on inbred line selection, are used commonly in the genetic improvement of autogamous crops. These methods, however, produce a few novel combinations of genes in a breeding population. Recurrent selection promotes recombination among genes and produces novel combinations of genes in a breeding population, but it requires inaccurate single-plant evaluation for selection. Genomic selection (GS), which can predict genetic potential of individuals based on their marker genotype, might have high reliability of single-plant evaluation and might be effective in recurrent selection. To evaluate the efficiency of recurrent selection with GS, we conducted simulations using real marker genotype data of rice cultivars. Additionally, we introduced the concept of an "island model" inspired by evolutionary algorithms that might be useful to maintain genetic variation through the breeding process. We conducted GS simulations using real marker genotype data of rice cultivars to evaluate the efficiency of recurrent selection and the island model in an autogamous species. Results demonstrated the importance of producing novel combinations of genes through recurrent selection. An initial population derived from admixture of multiple bi-parental crosses showed larger genetic gains than a population derived from a single bi-parental cross in whole cycles, suggesting the importance of genetic variation in an initial population. The island-model GS better maintained genetic improvement in later generations than the other GS methods, suggesting that the island-model GS can utilize genetic variation in breeding and can retain alleles with small effects in the breeding population. The island-model GS will become a new breeding method that enhances the potential of genomic

  15. Island-Model Genomic Selection for Long-Term Genetic Improvement of Autogamous Crops.

    Directory of Open Access Journals (Sweden)

    Shiori Yabe

    Full Text Available Acceleration of genetic improvement of autogamous crops such as wheat and rice is necessary to increase cereal production in response to the global food crisis. Population and pedigree methods of breeding, which are based on inbred line selection, are used commonly in the genetic improvement of autogamous crops. These methods, however, produce a few novel combinations of genes in a breeding population. Recurrent selection promotes recombination among genes and produces novel combinations of genes in a breeding population, but it requires inaccurate single-plant evaluation for selection. Genomic selection (GS, which can predict genetic potential of individuals based on their marker genotype, might have high reliability of single-plant evaluation and might be effective in recurrent selection. To evaluate the efficiency of recurrent selection with GS, we conducted simulations using real marker genotype data of rice cultivars. Additionally, we introduced the concept of an "island model" inspired by evolutionary algorithms that might be useful to maintain genetic variation through the breeding process. We conducted GS simulations using real marker genotype data of rice cultivars to evaluate the efficiency of recurrent selection and the island model in an autogamous species. Results demonstrated the importance of producing novel combinations of genes through recurrent selection. An initial population derived from admixture of multiple bi-parental crosses showed larger genetic gains than a population derived from a single bi-parental cross in whole cycles, suggesting the importance of genetic variation in an initial population. The island-model GS better maintained genetic improvement in later generations than the other GS methods, suggesting that the island-model GS can utilize genetic variation in breeding and can retain alleles with small effects in the breeding population. The island-model GS will become a new breeding method that enhances the

  16. Rank-based model selection for multiple ions quantum tomography

    International Nuclear Information System (INIS)

    Guţă, Mădălin; Kypraios, Theodore; Dryden, Ian

    2012-01-01

    The statistical analysis of measurement data has become a key component of many quantum engineering experiments. As standard full state tomography becomes unfeasible for large dimensional quantum systems, one needs to exploit prior information and the ‘sparsity’ properties of the experimental state in order to reduce the dimensionality of the estimation problem. In this paper we propose model selection as a general principle for finding the simplest, or most parsimonious explanation of the data, by fitting different models and choosing the estimator with the best trade-off between likelihood fit and model complexity. We apply two well established model selection methods—the Akaike information criterion (AIC) and the Bayesian information criterion (BIC)—two models consisting of states of fixed rank and datasets such as are currently produced in multiple ions experiments. We test the performance of AIC and BIC on randomly chosen low rank states of four ions, and study the dependence of the selected rank with the number of measurement repetitions for one ion states. We then apply the methods to real data from a four ions experiment aimed at creating a Smolin state of rank 4. By applying the two methods together with the Pearson χ 2 test we conclude that the data can be suitably described with a model whose rank is between 7 and 9. Additionally we find that the mean square error of the maximum likelihood estimator for pure states is close to that of the optimal over all possible measurements. (paper)

  17. Automatic generation of gene finders for eukaryotic species

    DEFF Research Database (Denmark)

    Terkelsen, Kasper Munch; Krogh, A.

    2006-01-01

    and quality of reliable gene annotation grows. Results We present a procedure, Agene, that automatically generates a species-specific gene predictor from a set of reliable mRNA sequences and a genome. We apply a Hidden Markov model (HMM) that implements explicit length distribution modelling for all gene......Background The number of sequenced eukaryotic genomes is rapidly increasing. This means that over time it will be hard to keep supplying customised gene finders for each genome. This calls for procedures to automatically generate species-specific gene finders and to re-train them as the quantity...... structure blocks using acyclic discrete phase type distributions. The state structure of the each HMM is generated dynamically from an array of sub-models to include only gene features represented in the training set. Conclusion Acyclic discrete phase type distributions are well suited to model sequence...

  18. Factors influencing creep model equation selection

    International Nuclear Information System (INIS)

    Holdsworth, S.R.; Askins, M.; Baker, A.; Gariboldi, E.; Holmstroem, S.; Klenk, A.; Ringel, M.; Merckling, G.; Sandstrom, R.; Schwienheer, M.; Spigarelli, S.

    2008-01-01

    During the course of the EU-funded Advanced-Creep Thematic Network, ECCC-WG1 reviewed the applicability and effectiveness of a range of model equations to represent the accumulation of creep strain in various engineering alloys. In addition to considering the experience of network members, the ability of several models to describe the deformation characteristics of large single and multi-cast collations of ε(t,T,σ) creep curves have been evaluated in an intensive assessment inter-comparison activity involving three steels, 21/4 CrMo (P22), 9CrMoVNb (Steel-91) and 18Cr13NiMo (Type-316). The choice of the most appropriate creep model equation for a given application depends not only on the high-temperature deformation characteristics of the material under consideration, but also on the characteristics of the dataset, the number of casts for which creep curves are available and on the strain regime for which an analytical representation is required. The paper focuses on the factors which can influence creep model selection and model-fitting approach for multi-source, multi-cast datasets

  19. Development of an Environment for Software Reliability Model Selection

    Science.gov (United States)

    1992-09-01

    now is directed to other related problems such as tools for model selection, multiversion programming, and software fault tolerance modeling... multiversion programming, 7. Hlardware can be repaired by spare modules, which is not. the case for software, 2-6 N. Preventive maintenance is very important

  20. Review and selection of unsaturated flow models

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-09-10

    Under the US Department of Energy (DOE), the Civilian Radioactive Waste Management System Management and Operating Contractor (CRWMS M&O) has the responsibility to review, evaluate, and document existing computer ground-water flow models; to conduct performance assessments; and to develop performance assessment models, where necessary. In the area of scientific modeling, the M&O CRWMS has the following responsibilities: To provide overall management and integration of modeling activities. To provide a framework for focusing modeling and model development. To identify areas that require increased or decreased emphasis. To ensure that the tools necessary to conduct performance assessment are available. These responsibilities are being initiated through a three-step process. It consists of a thorough review of existing models, testing of models which best fit the established requirements, and making recommendations for future development that should be conducted. Future model enhancement will then focus on the models selected during this activity. Furthermore, in order to manage future model development, particularly in those areas requiring substantial enhancement, the three-step process will be updated and reported periodically in the future.

  1. Fermented high moisture maize grain as supplement to alfalfa haylage is superior over unfermented dry maize grain in diet dry matter digestibility

    Directory of Open Access Journals (Sweden)

    Marina Vranić

    2011-09-01

    Full Text Available The objectives of the experiment were to examine whether high moisture maize grain (HMM is superior to low moisture maize grain (LMM as supplement to alfalfa haylage (Medicago sativa L. (AH. The effects of HMM and LMM supplementation to AH were studied on feed intake, water intake and dry matter (DM digestibility in wether sheep. Alfalfa was harvested at the beginning of flowering and ensiled into round bales wrapped with plastic. The average DM and crude protein (CP concentration of AH was 534.7 g kg-1 fresh sample and 141 g kg-1 DM, respectively. The average DM content (g kg-1 fresh sample of HMM and LMM were 795.9 and 915.1 g kg-1 fresh sample, respectively, while the average CP concentration (g kg-1 DM were 116.8 and 106.0, respectively. The study consisted of five feeding treatments incorporating AH only and AH supplemented with 5 or 10 g HMM or LMM d-1 kg-1 wether body weight. The inclusion of HMM (5 or 10 g kg-1 body weight d-1 into AH based ration resulted in higher diet DM digestibility (P<0.05 in comparison with LMM inclusion (5 or 10 g kg-1 body weight d-1. Higher daily fresh matter intake (FMI (P<0.05, dry matter intake (DMI (P<0.05 and water intake (P<0.05 was achieved with LMM inclusion in comparison with HMM inclusion. The conclusion was that HMM is superior over LMM as supplement to AH in terms of DM digestibility, while LMM has advantages over HMM in the intake characteristics measured.

  2. Decision support model for selecting and evaluating suppliers in the construction industry

    Directory of Open Access Journals (Sweden)

    Fernando Schramm

    2012-12-01

    Full Text Available A structured evaluation of the construction industry's suppliers, considering aspects which make their quality and credibility evident, can be a strategic tool to manage this specific supply chain. This study proposes a multi-criteria decision model for suppliers' selection from the construction industry, as well as an efficient evaluation procedure for the selected suppliers. The model is based on SMARTER (Simple Multi-Attribute Rating Technique Exploiting Ranking method and its main contribution is a new approach to structure the process of suppliers' selection, establishing explicit strategic policies on which the company management system relied to make the suppliers selection. This model was applied to a Civil Construction Company in Brazil and the main results demonstrate the efficiency of the proposed model. This study allowed the development of an approach to Construction Industry which was able to provide a better relationship among its managers, suppliers and partners.

  3. A Preference Model for Supplier Selection Based on Hesitant Fuzzy Sets

    Directory of Open Access Journals (Sweden)

    Zhexuan Zhou

    2018-03-01

    Full Text Available The supplier selection problem is a widespread concern in the modern commercial economy. Ranking suppliers involves many factors and poses significant difficulties for decision makers. Supplier selection is a multi-criteria and multi-objective problem, which leads to decision makers forming their own preferences. In addition, there are both quantifiable and non-quantifiable attributes related to their preferences. To solve this problem, this paper presents a preference model based on hesitant fuzzy sets (HFS to select suppliers. The cost and service quality of suppliers are the main considerations in the proposed model. HFS with interactive and multi-criteria decision making are used to evaluate the non-quantifiable attributes of service quality, which include competitive display, qualification ability, suitability and competitiveness of solutions, and relational fitness and dynamics. Finally, a numerical example of supplier selection for a high-end equipment manufacturer is provided to illustrate the applicability of the proposed model. The preferences of a decision maker are then analyzed by altering preference parameters.

  4. Multi-scale habitat selection modeling: A review and outlook

    Science.gov (United States)

    Kevin McGarigal; Ho Yi Wan; Kathy A. Zeller; Brad C. Timm; Samuel A. Cushman

    2016-01-01

    Scale is the lens that focuses ecological relationships. Organisms select habitat at multiple hierarchical levels and at different spatial and/or temporal scales within each level. Failure to properly address scale dependence can result in incorrect inferences in multi-scale habitat selection modeling studies.

  5. Response to selection in finite locus models with nonadditive effects

    NARCIS (Netherlands)

    Esfandyari, Hadi; Henryon, Mark; Berg, Peer; Thomasen, Jørn Rind; Bijma, Piter; Sørensen, Anders Christian

    2017-01-01

    Under the finite-locus model in the absence of mutation, the additive genetic variation is expected to decrease when directional selection is acting on a population, according to quantitative-genetic theory. However, some theoretical studies of selection suggest that the level of additive

  6. Model selection and inference a practical information-theoretic approach

    CERN Document Server

    Burnham, Kenneth P

    1998-01-01

    This book is unique in that it covers the philosophy of model-based data analysis and an omnibus strategy for the analysis of empirical data The book introduces information theoretic approaches and focuses critical attention on a priori modeling and the selection of a good approximating model that best represents the inference supported by the data Kullback-Leibler information represents a fundamental quantity in science and is Hirotugu Akaike's basis for model selection The maximized log-likelihood function can be bias-corrected to provide an estimate of expected, relative Kullback-Leibler information This leads to Akaike's Information Criterion (AIC) and various extensions and these are relatively simple and easy to use in practice, but little taught in statistics classes and far less understood in the applied sciences than should be the case The information theoretic approaches provide a unified and rigorous theory, an extension of likelihood theory, an important application of information theory, and are ...

  7. Making the error-controlling algorithm of observable operator models constructive.

    Science.gov (United States)

    Zhao, Ming-Jie; Jaeger, Herbert; Thon, Michael

    2009-12-01

    Observable operator models (OOMs) are a class of models for stochastic processes that properly subsumes the class that can be modeled by finite-dimensional hidden Markov models (HMMs). One of the main advantages of OOMs over HMMs is that they admit asymptotically correct learning algorithms. A series of learning algorithms has been developed, with increasing computational and statistical efficiency, whose recent culmination was the error-controlling (EC) algorithm developed by the first author. The EC algorithm is an iterative, asymptotically correct algorithm that yields (and minimizes) an assured upper bound on the modeling error. The run time is faster by at least one order of magnitude than EM-based HMM learning algorithms and yields significantly more accurate models than the latter. Here we present a significant improvement of the EC algorithm: the constructive error-controlling (CEC) algorithm. CEC inherits from EC the main idea of minimizing an upper bound on the modeling error but is constructive where EC needs iterations. As a consequence, we obtain further gains in learning speed without loss in modeling accuracy.

  8. Spatial Fleming-Viot models with selection and mutation

    CERN Document Server

    Dawson, Donald A

    2014-01-01

    This book constructs a rigorous framework for analysing selected phenomena in evolutionary theory of populations arising due to the combined effects of migration, selection and mutation in a spatial stochastic population model, namely the evolution towards fitter and fitter types through punctuated equilibria. The discussion is based on a number of new methods, in particular multiple scale analysis, nonlinear Markov processes and their entrance laws, atomic measure-valued evolutions and new forms of duality (for state-dependent mutation and multitype selection) which are used to prove ergodic theorems in this context and are applicable for many other questions and renormalization analysis for a variety of phenomena (stasis, punctuated equilibrium, failure of naive branching approximations, biodiversity) which occur due to the combination of rare mutation, mutation, resampling, migration and selection and make it necessary to mathematically bridge the gap (in the limit) between time and space scales.

  9. Partner Selection Optimization Model of Agricultural Enterprises in Supply Chain

    OpenAIRE

    Feipeng Guo; Qibei Lu

    2013-01-01

    With more and more importance of correctly selecting partners in supply chain of agricultural enterprises, a large number of partner evaluation techniques are widely used in the field of agricultural science research. This study established a partner selection model to optimize the issue of agricultural supply chain partner selection. Firstly, it constructed a comprehensive evaluation index system after analyzing the real characteristics of agricultural supply chain. Secondly, a heuristic met...

  10. ModelMage: a tool for automatic model generation, selection and management.

    Science.gov (United States)

    Flöttmann, Max; Schaber, Jörg; Hoops, Stephan; Klipp, Edda; Mendes, Pedro

    2008-01-01

    Mathematical modeling of biological systems usually involves implementing, simulating, and discriminating several candidate models that represent alternative hypotheses. Generating and managing these candidate models is a tedious and difficult task and can easily lead to errors. ModelMage is a tool that facilitates management of candidate models. It is designed for the easy and rapid development, generation, simulation, and discrimination of candidate models. The main idea of the program is to automatically create a defined set of model alternatives from a single master model. The user provides only one SBML-model and a set of directives from which the candidate models are created by leaving out species, modifiers or reactions. After generating models the software can automatically fit all these models to the data and provides a ranking for model selection, in case data is available. In contrast to other model generation programs, ModelMage aims at generating only a limited set of models that the user can precisely define. ModelMage uses COPASI as a simulation and optimization engine. Thus, all simulation and optimization features of COPASI are readily incorporated. ModelMage can be downloaded from http://sysbio.molgen.mpg.de/modelmage and is distributed as free software.

  11. Efficiently adapting graphical models for selectivity estimation

    DEFF Research Database (Denmark)

    Tzoumas, Kostas; Deshpande, Amol; Jensen, Christian S.

    2013-01-01

    cardinality estimation without making the independence assumption. By carefully using concepts from the field of graphical models, we are able to factor the joint probability distribution over all the attributes in the database into small, usually two-dimensional distributions, without a significant loss...... in estimation accuracy. We show how to efficiently construct such a graphical model from the database using only two-way join queries, and we show how to perform selectivity estimation in a highly efficient manner. We integrate our algorithms into the PostgreSQL DBMS. Experimental results indicate...

  12. Improving model construction of profile HMMs for remote homology detection through structural alignment

    Directory of Open Access Journals (Sweden)

    Zaverucha Gerson

    2007-11-01

    Full Text Available Abstract Background Remote homology detection is a challenging problem in Bioinformatics. Arguably, profile Hidden Markov Models (pHMMs are one of the most successful approaches in addressing this important problem. pHMM packages present a relatively small computational cost, and perform particularly well at recognizing remote homologies. This raises the question of whether structural alignments could impact the performance of pHMMs trained from proteins in the Twilight Zone, as structural alignments are often more accurate than sequence alignments at identifying motifs and functional residues. Next, we assess the impact of using structural alignments in pHMM performance. Results We used the SCOP database to perform our experiments. Structural alignments were obtained using the 3DCOFFEE and MAMMOTH-mult tools; sequence alignments were obtained using CLUSTALW, TCOFFEE, MAFFT and PROBCONS. We performed leave-one-family-out cross-validation over super-families. Performance was evaluated through ROC curves and paired two tailed t-test. Conclusion We observed that pHMMs derived from structural alignments performed significantly better than pHMMs derived from sequence alignment in low-identity regions, mainly below 20%. We believe this is because structural alignment tools are better at focusing on the important patterns that are more often conserved through evolution, resulting in higher quality pHMMs. On the other hand, sensitivity of these tools is still quite low for these low-identity regions. Our results suggest a number of possible directions for improvements in this area.

  13. Improving model construction of profile HMMs for remote homology detection through structural alignment.

    Science.gov (United States)

    Bernardes, Juliana S; Dávila, Alberto M R; Costa, Vítor S; Zaverucha, Gerson

    2007-11-09

    Remote homology detection is a challenging problem in Bioinformatics. Arguably, profile Hidden Markov Models (pHMMs) are one of the most successful approaches in addressing this important problem. pHMM packages present a relatively small computational cost, and perform particularly well at recognizing remote homologies. This raises the question of whether structural alignments could impact the performance of pHMMs trained from proteins in the Twilight Zone, as structural alignments are often more accurate than sequence alignments at identifying motifs and functional residues. Next, we assess the impact of using structural alignments in pHMM performance. We used the SCOP database to perform our experiments. Structural alignments were obtained using the 3DCOFFEE and MAMMOTH-mult tools; sequence alignments were obtained using CLUSTALW, TCOFFEE, MAFFT and PROBCONS. We performed leave-one-family-out cross-validation over super-families. Performance was evaluated through ROC curves and paired two tailed t-test. We observed that pHMMs derived from structural alignments performed significantly better than pHMMs derived from sequence alignment in low-identity regions, mainly below 20%. We believe this is because structural alignment tools are better at focusing on the important patterns that are more often conserved through evolution, resulting in higher quality pHMMs. On the other hand, sensitivity of these tools is still quite low for these low-identity regions. Our results suggest a number of possible directions for improvements in this area.

  14. A model for the sustainable selection of building envelope assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Huedo, Patricia, E-mail: huedo@uji.es [Universitat Jaume I (Spain); Mulet, Elena, E-mail: emulet@uji.es [Universitat Jaume I (Spain); López-Mesa, Belinda, E-mail: belinda@unizar.es [Universidad de Zaragoza (Spain)

    2016-02-15

    The aim of this article is to define an evaluation model for the environmental impacts of building envelopes to support planners in the early phases of materials selection. The model is intended to estimate environmental impacts for different combinations of building envelope assemblies based on scientifically recognised sustainability indicators. These indicators will increase the amount of information that existing catalogues show to support planners in the selection of building assemblies. To define the model, first the environmental indicators were selected based on the specific aims of the intended sustainability assessment. Then, a simplified LCA methodology was developed to estimate the impacts applicable to three types of dwellings considering different envelope assemblies, building orientations and climate zones. This methodology takes into account the manufacturing, installation, maintenance and use phases of the building. Finally, the model was validated and a matrix in Excel was created as implementation of the model. - Highlights: • Method to assess the envelope impacts based on a simplified LCA • To be used at an earlier phase than the existing methods in a simple way. • It assigns a score by means of known sustainability indicators. • It estimates data about the embodied and operating environmental impacts. • It compares the investment costs with the costs of the consumed energy.

  15. A model for the sustainable selection of building envelope assemblies

    International Nuclear Information System (INIS)

    Huedo, Patricia; Mulet, Elena; López-Mesa, Belinda

    2016-01-01

    The aim of this article is to define an evaluation model for the environmental impacts of building envelopes to support planners in the early phases of materials selection. The model is intended to estimate environmental impacts for different combinations of building envelope assemblies based on scientifically recognised sustainability indicators. These indicators will increase the amount of information that existing catalogues show to support planners in the selection of building assemblies. To define the model, first the environmental indicators were selected based on the specific aims of the intended sustainability assessment. Then, a simplified LCA methodology was developed to estimate the impacts applicable to three types of dwellings considering different envelope assemblies, building orientations and climate zones. This methodology takes into account the manufacturing, installation, maintenance and use phases of the building. Finally, the model was validated and a matrix in Excel was created as implementation of the model. - Highlights: • Method to assess the envelope impacts based on a simplified LCA • To be used at an earlier phase than the existing methods in a simple way. • It assigns a score by means of known sustainability indicators. • It estimates data about the embodied and operating environmental impacts. • It compares the investment costs with the costs of the consumed energy.

  16. Expatriates Selection: An Essay of Model Analysis

    Directory of Open Access Journals (Sweden)

    Rui Bártolo-Ribeiro

    2015-03-01

    Full Text Available The business expansion to other geographical areas with different cultures from which organizations were created and developed leads to the expatriation of employees to these destinations. Recruitment and selection procedures of expatriates do not always have the intended success leading to an early return of these professionals with the consequent organizational disorders. In this study, several articles published in the last five years were analyzed in order to identify the most frequently mentioned dimensions in the selection of expatriates in terms of success and failure. The characteristics in the selection process that may increase prediction of adaptation of expatriates to new cultural contexts of the some organization were studied according to the KSAOs model. Few references were found concerning Knowledge, Skills and Abilities dimensions in the analyzed papers. There was a strong predominance on the evaluation of Other Characteristics, and was given more importance to dispositional factors than situational factors for promoting the integration of the expatriates.

  17. Fuzzy decision-making: a new method in model selection via various validity criteria

    International Nuclear Information System (INIS)

    Shakouri Ganjavi, H.; Nikravesh, K.

    2001-01-01

    Modeling is considered as the first step in scientific investigations. Several alternative models may be candida ted to express a phenomenon. Scientists use various criteria to select one model between the competing models. Based on the solution of a Fuzzy Decision-Making problem, this paper proposes a new method in model selection. The method enables the scientist to apply all desired validity criteria, systematically by defining a proper Possibility Distribution Function due to each criterion. Finally, minimization of a utility function composed of the Possibility Distribution Functions will determine the best selection. The method is illustrated through a modeling example for the A verage Daily Time Duration of Electrical Energy Consumption in Iran

  18. Evaluating bacterial gene-finding HMM structures as probabilistic logic programs.

    Science.gov (United States)

    Mørk, Søren; Holmes, Ian

    2012-03-01

    Probabilistic logic programming offers a powerful way to describe and evaluate structured statistical models. To investigate the practicality of probabilistic logic programming for structure learning in bioinformatics, we undertook a simplified bacterial gene-finding benchmark in PRISM, a probabilistic dialect of Prolog. We evaluate Hidden Markov Model structures for bacterial protein-coding gene potential, including a simple null model structure, three structures based on existing bacterial gene finders and two novel model structures. We test standard versions as well as ADPH length modeling and three-state versions of the five model structures. The models are all represented as probabilistic logic programs and evaluated using the PRISM machine learning system in terms of statistical information criteria and gene-finding prediction accuracy, in two bacterial genomes. Neither of our implementations of the two currently most used model structures are best performing in terms of statistical information criteria or prediction performances, suggesting that better-fitting models might be achievable. The source code of all PRISM models, data and additional scripts are freely available for download at: http://github.com/somork/codonhmm. Supplementary data are available at Bioinformatics online.

  19. Zoledronic acid overcomes chemoresistance and immunosuppression of malignant mesothelioma

    Science.gov (United States)

    Kopecka, Joanna; Gazzano, Elena; Sara, Orecchia; Ghigo, Dario; Riganti, Chiara

    2015-01-01

    The human malignant mesothelioma (HMM) is characterized by a chemoresistant and immunosuppressive phenotype. An effective strategy to restore chemosensitivity and immune reactivity against HMM is lacking. We investigated whether the use of zoledronic acid is an effective chemo-immunosensitizing strategy. We compared primary HMM samples with non-transformed mesothelial cells. HMM cells had higher rate of cholesterol and isoprenoid synthesis, constitutive activation of Ras/extracellular signal-regulated kinase1/2 (ERK1/2)/hypoxia inducible factor-1α (HIF-1α) pathway and up-regulation of the drug efflux transporter P-glycoprotein (Pgp). By decreasing the isoprenoid supply, zoledronic acid down-regulated the Ras/ERK1/2/HIF-1α/Pgp axis and chemosensitized the HMM cells to Pgp substrates. The HMM cells also produced higher amounts of kynurenine, decreased the proliferation of T-lymphocytes and expanded the number of T-regulatory (Treg) cells. Kynurenine synthesis was due to the transcription of the indoleamine 1,2 dioxygenase (IDO) enzyme, consequent to the activation of the signal transducer and activator of transcription-3 (STAT3). By reducing the activity of the Ras/ERK1/2/STAT3/IDO axis, zoledronic acid lowered the kyurenine synthesis and the expansion of Treg cells, and increased the proliferation of T-lymphocytes. Thanks to its ability to decrease Ras/ERK1/2 activity, which is responsible for both Pgp-mediated chemoresistance and IDO-mediated immunosuppression, zoledronic acid is an effective chemo-immunosensitizing agent in HMM cells. PMID:25544757

  20. The Effects of Muscle Mass on Homocyst(e)ine Levels in Plasma and Urine.

    Science.gov (United States)

    Malinow, M René; Lister, Craig L; DE Crée, Carl

    The present study was designed to examine the relationship between homocyst(e)ine (H[e]) levels and muscle mass. Two experimental groups each of 24 Caucasian males, one consisting of higher-muscle mass subjects (HMM) and the other of lower-muscle mass subjects (LMM) participated in this study. Muscle mass was estimated from 24-hour urine collections of creatinine (Crt). Muscle mass was 40.3 ± 15.9 kg in HMM and 37.2 ± 11.4 kg in LMM (P= 0.002). Mean plasma H(e) levels in HMM were 10.29 ± 2.9 nmol/mL, and in LMM were 10.02 ± 2.4 nmol/L (Not significant, [NS]). Urinary H(e) levels (UH[e]) were 9.95 ± 4.3 nmol/mL and 9.22 ± 2.9 nmol/mL for HMM and LMM, respectively (NS). Plasma H(e) levels correlated well with UH(e) (HMM: r= 0.58, P= 0.009; LMM: r= 0.66, P= 0.004). Muscle mass and was not correlated to either plasma H(e) or UH(e). However, in HMM trends were identified for body mass to be correlated with UH(e) (r= 0.39, P= 0.10) and UCrt (r= 0.41, P= 0.08). Surprisingly, in HMM plasma and UCrt were only weakly correlated (r= 0.44, P= 0.06). Our results do not support a causal relationship between the amount of muscle mass and H(e) levels in plasma or urine.

  1. Input variable selection for data-driven models of Coriolis flowmeters for two-phase flow measurement

    International Nuclear Information System (INIS)

    Wang, Lijuan; Yan, Yong; Wang, Xue; Wang, Tao

    2017-01-01

    Input variable selection is an essential step in the development of data-driven models for environmental, biological and industrial applications. Through input variable selection to eliminate the irrelevant or redundant variables, a suitable subset of variables is identified as the input of a model. Meanwhile, through input variable selection the complexity of the model structure is simplified and the computational efficiency is improved. This paper describes the procedures of the input variable selection for the data-driven models for the measurement of liquid mass flowrate and gas volume fraction under two-phase flow conditions using Coriolis flowmeters. Three advanced input variable selection methods, including partial mutual information (PMI), genetic algorithm-artificial neural network (GA-ANN) and tree-based iterative input selection (IIS) are applied in this study. Typical data-driven models incorporating support vector machine (SVM) are established individually based on the input candidates resulting from the selection methods. The validity of the selection outcomes is assessed through an output performance comparison of the SVM based data-driven models and sensitivity analysis. The validation and analysis results suggest that the input variables selected from the PMI algorithm provide more effective information for the models to measure liquid mass flowrate while the IIS algorithm provides a fewer but more effective variables for the models to predict gas volume fraction. (paper)

  2. Target Selection Models with Preference Variation Between Offenders

    NARCIS (Netherlands)

    Townsley, Michael; Birks, Daniel; Ruiter, Stijn; Bernasco, Wim; White, Gentry

    2016-01-01

    Objectives: This study explores preference variation in location choice strategies of residential burglars. Applying a model of offender target selection that is grounded in assertions of the routine activity approach, rational choice perspective, crime pattern and social disorganization theories,

  3. Within-host selection of drug resistance in a mouse model reveals dose-dependent selection of atovaquone resistance mutations

    NARCIS (Netherlands)

    Nuralitha, Suci; Murdiyarso, Lydia S.; Siregar, Josephine E.; Syafruddin, Din; Roelands, Jessica; Verhoef, Jan; Hoepelman, Andy I.M.; Marzuki, Sangkot

    2017-01-01

    The evolutionary selection of malaria parasites within an individual host plays a critical role in the emergence of drug resistance. We have compared the selection of atovaquone resistance mutants in mouse models reflecting two different causes of failure of malaria treatment, an inadequate

  4. Interval-valued intuitionistic fuzzy multi-criteria model for design concept selection

    Directory of Open Access Journals (Sweden)

    Daniel Osezua Aikhuele

    2017-09-01

    Full Text Available This paper presents a new approach for design concept selection by using an integrated Fuzzy Analytical Hierarchy Process (FAHP and an Interval-valued intuitionistic fuzzy modified TOP-SIS (IVIF-modified TOPSIS model. The integrated model which uses the improved score func-tion and a weighted normalized Euclidean distance method for the calculation of the separation measures of alternatives from the positive and negative intuitionistic ideal solutions provides a new approach for the computation of intuitionistic fuzzy ideal solutions. The results of the two approaches are integrated using a reflection defuzzification integration formula. To ensure the feasibility and the rationality of the integrated model, the method is successfully applied for eval-uating and selecting some design related problems including a real-life case study for the selec-tion of the best concept design for a new printed-circuit-board (PCB and for a hypothetical ex-ample. The model which provides a novel alternative, has been compared with similar computa-tional methods in the literature.

  5. An Uncertain Wage Contract Model with Adverse Selection and Moral Hazard

    Directory of Open Access Journals (Sweden)

    Xiulan Wang

    2014-01-01

    it can be characterized as an uncertain variable. Moreover, the employee's effort is unobservable to the employer, and the employee can select her effort level to maximize her utility. Thus, an uncertain wage contract model with adverse selection and moral hazard is established to maximize the employer's expected profit. And the model analysis mainly focuses on the equivalent form of the proposed wage contract model and the optimal solution to this form. The optimal solution indicates that both the employee's effort level and the wage increase with the employee's ability. Lastly, a numerical example is given to illustrate the effectiveness of the proposed model.

  6. On market timing and portfolio selectivity: modifying the Henriksson-Merton model

    OpenAIRE

    Goś, Krzysztof

    2011-01-01

    This paper evaluates selected functionalities of the parametrical Henriksson-Merton test, a tool designed for measuring the market timing and portfolio selectivity capabilities. It also provides a solution to two significant disadvantages of the model: relatively indirect interpretation and vulnerability to parameter insignificance. The model has been put to test on a group of Polish mutual funds in a period of 63 months (January 2004 – March 2009), providing unsatisfa...

  7. Annual Expeditionary Warfare Conference (22nd)

    Science.gov (United States)

    2017-10-24

    Shipbuilding has what it takes to build the military ships that keep America and our allies safe. Leonardo DRS is a prime contractor , leading technology...innovator and supplier of integrated products, services and support to military forces, intelligence agencies and defense contractors worldwide. The...deployed with HMM- 264, HMM-365 and HMM-162. He has served as a Basic and Advanced Flight Instructor at Helicopter Training Squadron ( HT ) 18, NAS

  8. Model building strategy for logistic regression: purposeful selection.

    Science.gov (United States)

    Zhang, Zhongheng

    2016-03-01

    Logistic regression is one of the most commonly used models to account for confounders in medical literature. The article introduces how to perform purposeful selection model building strategy with R. I stress on the use of likelihood ratio test to see whether deleting a variable will have significant impact on model fit. A deleted variable should also be checked for whether it is an important adjustment of remaining covariates. Interaction should be checked to disentangle complex relationship between covariates and their synergistic effect on response variable. Model should be checked for the goodness-of-fit (GOF). In other words, how the fitted model reflects the real data. Hosmer-Lemeshow GOF test is the most widely used for logistic regression model.

  9. EVALUATION OF THE URBAN DEVELOPMENT INFLUENCE ON POLLUTION OF SNOW COVER USING GEOINFORMATION AND STATISTICAL ANALYSIS

    Directory of Open Access Journals (Sweden)

    I. D. Korlyakov

    2017-01-01

    Full Text Available The influence of urban development parameters on the pollution of snow with heavy metals and metalloids (HMM has been assessed.The aim of the work is to assess the barrier functions of urban development by means of a joint analysis of data on the content of HMM in the snow cover and the parameters of the artificial relief. The residential area of the Ulan-Ude city was chosen as an object of the study, where 27 snow samples were selected. According to the data of the snow survey in 2014, the total content of HMM in the snow suspension was determined, the priority pollutants of the snow were received and the total indicator of immission at the sampling points was calculated. Data processing in the OpenStreetMap, 2GIS, ArcGis 10.0 and Statistica 7.0 software packages made it possible to determine the main parameters of the buildings near the sampling points. Correlation analysis has shown a significant influence of building parameters on the HMM immission in the snow cover. With an increase in the total and average building area, proximity of buildings to the sampling point, an increase in the immission of most or all HMMs has been observed. The height of houses is a secondary factor which positively affects the immission of Cu and Bi. The maximum correlation links are established in radii of 50, 100 and 150 m. The parameters of development affect the total precipitation of pollutants both in all cardinal directions, and in the south-western, northeast, southeast directions, which can be explained by the wind regime features during the winter season. 

  10. Item selection via Bayesian IRT models.

    Science.gov (United States)

    Arima, Serena

    2015-02-10

    With reference to a questionnaire that aimed to assess the quality of life for dysarthric speakers, we investigate the usefulness of a model-based procedure for reducing the number of items. We propose a mixed cumulative logit model, which is known in the psychometrics literature as the graded response model: responses to different items are modelled as a function of individual latent traits and as a function of item characteristics, such as their difficulty and their discrimination power. We jointly model the discrimination and the difficulty parameters by using a k-component mixture of normal distributions. Mixture components correspond to disjoint groups of items. Items that belong to the same groups can be considered equivalent in terms of both difficulty and discrimination power. According to decision criteria, we select a subset of items such that the reduced questionnaire is able to provide the same information that the complete questionnaire provides. The model is estimated by using a Bayesian approach, and the choice of the number of mixture components is justified according to information criteria. We illustrate the proposed approach on the basis of data that are collected for 104 dysarthric patients by local health authorities in Lecce and in Milan. Copyright © 2014 John Wiley & Sons, Ltd.

  11. Bootstrap-after-bootstrap model averaging for reducing model uncertainty in model selection for air pollution mortality studies.

    Science.gov (United States)

    Roberts, Steven; Martin, Michael A

    2010-01-01

    Concerns have been raised about findings of associations between particulate matter (PM) air pollution and mortality that have been based on a single "best" model arising from a model selection procedure, because such a strategy may ignore model uncertainty inherently involved in searching through a set of candidate models to find the best model. Model averaging has been proposed as a method of allowing for model uncertainty in this context. To propose an extension (double BOOT) to a previously described bootstrap model-averaging procedure (BOOT) for use in time series studies of the association between PM and mortality. We compared double BOOT and BOOT with Bayesian model averaging (BMA) and a standard method of model selection [standard Akaike's information criterion (AIC)]. Actual time series data from the United States are used to conduct a simulation study to compare and contrast the performance of double BOOT, BOOT, BMA, and standard AIC. Double BOOT produced estimates of the effect of PM on mortality that have had smaller root mean squared error than did those produced by BOOT, BMA, and standard AIC. This performance boost resulted from estimates produced by double BOOT having smaller variance than those produced by BOOT and BMA. Double BOOT is a viable alternative to BOOT and BMA for producing estimates of the mortality effect of PM.

  12. Establishment of selected acute pulmonary thromboembolism model in experimental sheep

    International Nuclear Information System (INIS)

    Fan Jihai; Gu Xiulian; Chao Shengwu; Zhang Peng; Fan Ruilin; Wang Li'na; Wang Lulu; Wang Ling; Li Bo; Chen Taotao

    2010-01-01

    Objective: To establish a selected acute pulmonary thromboembolism model in experimental sheep suitable for animal experiment. Methods: By using Seldinger's technique the catheter sheath was placed in both the femoral vein and femoral artery in ten sheep. Under C-arm DSA guidance the catheter was inserted through the catheter sheath into the pulmonary artery. Via the catheter appropriate amount of sheep autologous blood clots was injected into the selected pulmonary arteries. The selected acute pulmonary thromboembolism model was thus established. Pulmonary angiography was performed to check the results. The pulmonary arterial pressure, femoral artery pressure,heart rates and partial pressure of oxygen in arterial blood (PaO 2 ) were determined both before and after the treatment. The above parameters obtained after the procedure were compared with the recorded parameters measured before the procedure, and the sheep model quality was evaluated. Results: The baseline of pulmonary arterial pressure was (27.30 ± 9.58) mmHg,femoral artery pressure was (126.4 ± 13.72) mmHg, heart rate was (103 ± 15) bpm and PaO 2 was (87.7 ± 12.04) mmHg. Sixty minutes after the injection of (30 ± 5) ml thrombotic agglomerates, the pulmonary arterial pressures rose to (52 ± 49) mmHg, femoral artery pressures dropped to (100 ± 21) mmHg. The heart rates went up to (150 ± 26) bpm. The PaO 2 fell to (25.3 ± 11.2) mmHg. After the procedure the above parameters were significantly different from that measured before the procedure in all ten animals (P < 0.01). The pulmonary arteriography clearly demonstrated that the selected pulmonary arteries were successfully embolized. Conclusion: The anatomy of sheep's femoral veins,vena cava system, pulmonary artery and right heart system are suitable for the establishment of the catheter passage, for this reason, selected acute pulmonary thromboembolism model can be easily created in experimental sheep. The technique is feasible and the model

  13. Validation of elk resource selection models with spatially independent data

    Science.gov (United States)

    Priscilla K. Coe; Bruce K. Johnson; Michael J. Wisdom; John G. Cook; Marty Vavra; Ryan M. Nielson

    2011-01-01

    Knowledge of how landscape features affect wildlife resource use is essential for informed management. Resource selection functions often are used to make and validate predictions about landscape use; however, resource selection functions are rarely validated with data from landscapes independent of those from which the models were built. This problem has severely...

  14. Towards a pro-health food-selection model for gatekeepers in ...

    African Journals Online (AJOL)

    The purpose of this study was to develop a pro-health food selection model for gatekeepers of Bulawayo high-density suburbs in Zimbabwe. Gatekeepers in five suburbs constituted the study population from which a sample of 250 subjects was randomly selected. Of the total respondents (N= 182), 167 had their own ...

  15. Behavior analysis for elderly care using a network of low-resolution visual sensors

    Science.gov (United States)

    Eldib, Mohamed; Deboeverie, Francis; Philips, Wilfried; Aghajan, Hamid

    2016-07-01

    Recent advancements in visual sensor technologies have made behavior analysis practical for in-home monitoring systems. The current in-home monitoring systems face several challenges: (1) visual sensor calibration is a difficult task and not practical in real-life because of the need for recalibration when the visual sensors are moved accidentally by a caregiver or the senior citizen, (2) privacy concerns, and (3) the high hardware installation cost. We propose to use a network of cheap low-resolution visual sensors (30×30 pixels) for long-term behavior analysis. The behavior analysis starts by visual feature selection based on foreground/background detection to track the motion level in each visual sensor. Then a hidden Markov model (HMM) is used to estimate the user's locations without calibration. Finally, an activity discovery approach is proposed using spatial and temporal contexts. We performed experiments on 10 months of real-life data. We show that the HMM approach outperforms the k-nearest neighbor classifier against ground truth for 30 days. Our framework is able to discover 13 activities of daily livings (ADL parameters). More specifically, we analyze mobility patterns and some of the key ADL parameters to detect increasing or decreasing health conditions.

  16. Model selection for contingency tables with algebraic statistics

    NARCIS (Netherlands)

    Krampe, A.; Kuhnt, S.; Gibilisco, P.; Riccimagno, E.; Rogantin, M.P.; Wynn, H.P.

    2009-01-01

    Goodness-of-fit tests based on chi-square approximations are commonly used in the analysis of contingency tables. Results from algebraic statistics combined with MCMC methods provide alternatives to the chi-square approximation. However, within a model selection procedure usually a large number of

  17. Automatic transcription of continuous speech into syllable-like units ...

    Indian Academy of Sciences (India)

    style HMM models are generated for each of the clusters during training. During testing .... manual segmentation at syllable-like units followed by isolated style recognition of continu- ous speech ..... obtaining demisyllabic reference patterns.

  18. ANALYTIC WORD RECOGNITION WITHOUT SEGMENTATION BASED ON MARKOV RANDOM FIELDS

    NARCIS (Netherlands)

    Coisy, C.; Belaid, A.

    2004-01-01

    In this paper, a method for analytic handwritten word recognition based on causal Markov random fields is described. The words models are HMMs where each state corresponds to a letter; each letter is modelled by a NSHP­HMM (Markov field). Global models are build dynamically, and used for recognition

  19. A Working Model of Natural Selection Illustrated by Table Tennis

    Science.gov (United States)

    Dinc, Muhittin; Kilic, Selda; Aladag, Caner

    2013-01-01

    Natural selection is one of the most important topics in biology and it helps to clarify the variety and complexity of organisms. However, students in almost every stage of education find it difficult to understand the mechanism of natural selection and they can develop misconceptions about it. This article provides an active model of natural…

  20. A semiparametric graphical modelling approach for large-scale equity selection.

    Science.gov (United States)

    Liu, Han; Mulvey, John; Zhao, Tianqi

    2016-01-01

    We propose a new stock selection strategy that exploits rebalancing returns and improves portfolio performance. To effectively harvest rebalancing gains, we apply ideas from elliptical-copula graphical modelling and stability inference to select stocks that are as independent as possible. The proposed elliptical-copula graphical model has a latent Gaussian representation; its structure can be effectively inferred using the regularized rank-based estimators. The resulting algorithm is computationally efficient and scales to large data-sets. To show the efficacy of the proposed method, we apply it to conduct equity selection based on a 16-year health care stock data-set and a large 34-year stock data-set. Empirical tests show that the proposed method is superior to alternative strategies including a principal component analysis-based approach and the classical Markowitz strategy based on the traditional buy-and-hold assumption.

  1. Diagnosis of OCD Patients Using Drawing Features of Bender Gestalt Shapes

    Directory of Open Access Journals (Sweden)

    Boostani R.

    2017-03-01

    Full Text Available Background: Since psychological tests such as questionnaire or drawing tests are almost qualitative, their results carry a degree of uncertainty and sometimes subjectivity. The deficiency of all drawing tests is that the assessment is carried out after drawing the objects and lots of information such as pen angle, speed, curvature and pressure are missed through the test. In other words, the psychologists cannot assess their patients while running the tests. One of the famous drawing tests to measure the degree of Obsession Compulsion Disorder (OCD is the Bender Gestalt, though its reliability is not promising. Objective: The main objective of this study is to make the Bender Gestalt test quantitative; therefore, an optical pen along with a digital tablet is utilized to preserve the key drawing features of OCD patients during the test. Materials and Methods: Among a large population of patients who referred to a special clinic of OCD, 50 under therapy subjects voluntarily took part in this study. In contrast, 50 subjects with no sign of OCD performed the test as a control group. This test contains 9 shapes and the participants were not constraint to draw the shapes in a certain interval of time; consequently, to classify the stream of feature vectors (samples through drawing Hidden Markov Model (HMM is employed and its flexibility increased by incorporating the fuzzy technique into its learning scheme. Results: Applying fuzzy HMM classifier to the data stream of subjects could classify two groups up to 95.2% accuracy, whereas the results by applying the standard HMM resulted in 94.5%. In addition, multi-layer perceptron (MLP, as a strong static classifier, is applied to the features and resulted in 86.6% accuracy. Conclusion: Applying the pair of T-test to the results implies a significant supremacy of the fuzzy HMM to the standard HMM and MLP classifiers.

  2. Diagnosis of the OCD Patients using Drawing Features of the Bender Gestalt Shapes.

    Science.gov (United States)

    Boostani, R; Asadi, F; Mohammadi, N

    2017-03-01

    Since psychological tests such as questionnaire or drawing tests are almost qualitative, their results carry a degree of uncertainty and sometimes subjectivity. The deficiency of all drawing tests is that the assessment is carried out after drawing the objects and lots of information such as pen angle, speed, curvature and pressure are missed through the test. In other words, the psychologists cannot assess their patients while running the tests. One of the famous drawing tests to measure the degree of Obsession Compulsion Disorder (OCD) is the Bender Gestalt, though its reliability is not promising. The main objective of this study is to make the Bender Gestalt test quantitative; therefore, an optical pen along with a digital tablet is utilized to preserve the key drawing features of OCD patients during the test. Among a large population of patients who referred to a special clinic of OCD, 50 under therapy subjects voluntarily took part in this study. In contrast, 50 subjects with no sign of OCD performed the test as a control group. This test contains 9 shapes and the participants were not constraint to draw the shapes in a certain interval of time; consequently, to classify the stream of feature vectors (samples through drawing) Hidden Markov Model (HMM) is employed and its flexibility increased by incorporating the fuzzy technique into its learning scheme. Applying fuzzy HMM classifier to the data stream of subjects could classify two groups up to 95.2% accuracy, whereas the results by applying the standard HMM resulted in 94.5%. In addition, multi-layer perceptron (MLP), as a strong static classifier, is applied to the features and resulted in 86.6% accuracy. Applying the pair of T-test to the results implies a significant supremacy of the fuzzy HMM to the standard HMM and MLP classifiers.

  3. Model-independent plot of dynamic PET data facilitates data interpretation and model selection.

    Science.gov (United States)

    Munk, Ole Lajord

    2012-02-21

    When testing new PET radiotracers or new applications of existing tracers, the blood-tissue exchange and the metabolism need to be examined. However, conventional plots of measured time-activity curves from dynamic PET do not reveal the inherent kinetic information. A novel model-independent volume-influx plot (vi-plot) was developed and validated. The new vi-plot shows the time course of the instantaneous distribution volume and the instantaneous influx rate. The vi-plot visualises physiological information that facilitates model selection and it reveals when a quasi-steady state is reached, which is a prerequisite for the use of the graphical analyses by Logan and Gjedde-Patlak. Both axes of the vi-plot have direct physiological interpretation, and the plot shows kinetic parameter in close agreement with estimates obtained by non-linear kinetic modelling. The vi-plot is equally useful for analyses of PET data based on a plasma input function or a reference region input function. The vi-plot is a model-independent and informative plot for data exploration that facilitates the selection of an appropriate method for data analysis. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. A reaction-diffusion model to capture disparity selectivity in primary visual cortex.

    Directory of Open Access Journals (Sweden)

    Mohammed Sultan Mohiuddin Siddiqui

    Full Text Available Decades of experimental studies are available on disparity selective cells in visual cortex of macaque and cat. Recently, local disparity map for iso-orientation sites for near-vertical edge preference is reported in area 18 of cat visual cortex. No experiment is yet reported on complete disparity map in V1. Disparity map for layer IV in V1 can provide insight into how disparity selective complex cell receptive field is organized from simple cell subunits. Though substantial amounts of experimental data on disparity selective cells is available, no model on receptive field development of such cells or disparity map development exists in literature. We model disparity selectivity in layer IV of cat V1 using a reaction-diffusion two-eye paradigm. In this model, the wiring between LGN and cortical layer IV is determined by resource an LGN cell has for supporting connections to cortical cells and competition for target space in layer IV. While competing for target space, the same type of LGN cells, irrespective of whether it belongs to left-eye-specific or right-eye-specific LGN layer, cooperate with each other while trying to push off the other type. Our model captures realistic 2D disparity selective simple cell receptive fields, their response properties and disparity map along with orientation and ocular dominance maps. There is lack of correlation between ocular dominance and disparity selectivity at the cell population level. At the map level, disparity selectivity topography is not random but weakly clustered for similar preferred disparities. This is similar to the experimental result reported for macaque. The details of weakly clustered disparity selectivity map in V1 indicate two types of complex cell receptive field organization.

  5. Evaluating bacterial gene-finding HMM structures as probabilistic logic programs

    DEFF Research Database (Denmark)

    Mørk, Søren; Holmes, Ian

    2012-01-01

    , a probabilistic dialect of Prolog. Results: We evaluate Hidden Markov Model structures for bacterial protein-coding gene potential, including a simple null model structure, three structures based on existing bacterial gene finders and two novel model structures. We test standard versions as well as ADPH length...

  6. Statistical approach for selection of regression model during validation of bioanalytical method

    Directory of Open Access Journals (Sweden)

    Natalija Nakov

    2014-06-01

    Full Text Available The selection of an adequate regression model is the basis for obtaining accurate and reproducible results during the bionalytical method validation. Given the wide concentration range, frequently present in bioanalytical assays, heteroscedasticity of the data may be expected. Several weighted linear and quadratic regression models were evaluated during the selection of the adequate curve fit using nonparametric statistical tests: One sample rank test and Wilcoxon signed rank test for two independent groups of samples. The results obtained with One sample rank test could not give statistical justification for the selection of linear vs. quadratic regression models because slight differences between the error (presented through the relative residuals were obtained. Estimation of the significance of the differences in the RR was achieved using Wilcoxon signed rank test, where linear and quadratic regression models were treated as two independent groups. The application of this simple non-parametric statistical test provides statistical confirmation of the choice of an adequate regression model.

  7. Wind scatterometry with improved ambiguity selection and rain modeling

    Science.gov (United States)

    Draper, David Willis

    Although generally accurate, the quality of SeaWinds on QuikSCAT scatterometer ocean vector winds is compromised by certain natural phenomena and retrieval algorithm limitations. This dissertation addresses three main contributors to scatterometer estimate error: poor ambiguity selection, estimate uncertainty at low wind speeds, and rain corruption. A quality assurance (QA) analysis performed on SeaWinds data suggests that about 5% of SeaWinds data contain ambiguity selection errors and that scatterometer estimation error is correlated with low wind speeds and rain events. Ambiguity selection errors are partly due to the "nudging" step (initialization from outside data). A sophisticated new non-nudging ambiguity selection approach produces generally more consistent wind than the nudging method in moderate wind conditions. The non-nudging method selects 93% of the same ambiguities as the nudged data, validating both techniques, and indicating that ambiguity selection can be accomplished without nudging. Variability at low wind speeds is analyzed using tower-mounted scatterometer data. According to theory, below a threshold wind speed, the wind fails to generate the surface roughness necessary for wind measurement. A simple analysis suggests the existence of the threshold in much of the tower-mounted scatterometer data. However, the backscatter does not "go to zero" beneath the threshold in an uncontrolled environment as theory suggests, but rather has a mean drop and higher variability below the threshold. Rain is the largest weather-related contributor to scatterometer error, affecting approximately 4% to 10% of SeaWinds data. A simple model formed via comparison of co-located TRMM PR and SeaWinds measurements characterizes the average effect of rain on SeaWinds backscatter. The model is generally accurate to within 3 dB over the tropics. The rain/wind backscatter model is used to simultaneously retrieve wind and rain from SeaWinds measurements. The simultaneous

  8. A dynamical model of hierarchical selection and coordination in speech planning.

    Directory of Open Access Journals (Sweden)

    Sam Tilsen

    Full Text Available studies of the control of complex sequential movements have dissociated two aspects of movement planning: control over the sequential selection of movement plans, and control over the precise timing of movement execution. This distinction is particularly relevant in the production of speech: utterances contain sequentially ordered words and syllables, but articulatory movements are often executed in a non-sequential, overlapping manner with precisely coordinated relative timing. This study presents a hybrid dynamical model in which competitive activation controls selection of movement plans and coupled oscillatory systems govern coordination. The model departs from previous approaches by ascribing an important role to competitive selection of articulatory plans within a syllable. Numerical simulations show that the model reproduces a variety of speech production phenomena, such as effects of preparation and utterance composition on reaction time, and asymmetries in patterns of articulatory timing associated with onsets and codas. The model furthermore provides a unified understanding of a diverse group of phonetic and phonological phenomena which have not previously been related.

  9. Selection of productivity improvement techniques via mathematical modeling

    Directory of Open Access Journals (Sweden)

    Mahassan M. Khater

    2011-07-01

    Full Text Available This paper presents a new mathematical model to select an optimal combination of productivity improvement techniques. The proposed model of this paper considers four-stage cycle productivity and the productivity is assumed to be a linear function of fifty four improvement techniques. The proposed model of this paper is implemented for a real-world case study of manufacturing plant. The resulted problem is formulated as a mixed integer programming which can be solved for optimality using traditional methods. The preliminary results of the implementation of the proposed model of this paper indicate that the productivity can be improved through a change on equipments and it can be easily applied for both manufacturing and service industries.

  10. Developing Novel Machine Learning Algorithms to Improve Sedentary Assessment for Youth Health Enhancement.

    Science.gov (United States)

    Golla, Gowtham Kumar; Carlson, Jordan A; Huan, Jun; Kerr, Jacqueline; Mitchell, Tarrah; Borner, Kelsey

    2016-10-01

    Sedentary behavior of youth is an important determinant of health. However, better measures are needed to improve understanding of this relationship and the mechanisms at play, as well as to evaluate health promotion interventions. Wearable accelerometers are considered as the standard for assessing physical activity in research, but do not perform well for assessing posture (i.e., sitting vs. standing), a critical component of sedentary behavior. The machine learning algorithms that we propose for assessing sedentary behavior will allow us to re-examine existing accelerometer data to better understand the association between sedentary time and health in various populations. We collected two datasets, a laboratory-controlled dataset and a free-living dataset. We trained machine learning classifiers separately on each dataset and compared performance across datasets. The classifiers predict five postures: sit, stand, sit-stand, stand-sit, and stand\\walk. We compared a manually constructed Hidden Markov model (HMM) with an automated HMM from existing software. The manually constructed HMM gave more F1-Macro score on both datasets.

  11. Prediction of lipoprotein signal peptides in Gram-negative bacteria.

    Science.gov (United States)

    Juncker, Agnieszka S; Willenbrock, Hanni; Von Heijne, Gunnar; Brunak, Søren; Nielsen, Henrik; Krogh, Anders

    2003-08-01

    A method to predict lipoprotein signal peptides in Gram-negative Eubacteria, LipoP, has been developed. The hidden Markov model (HMM) was able to distinguish between lipoproteins (SPaseII-cleaved proteins), SPaseI-cleaved proteins, cytoplasmic proteins, and transmembrane proteins. This predictor was able to predict 96.8% of the lipoproteins correctly with only 0.3% false positives in a set of SPaseI-cleaved, cytoplasmic, and transmembrane proteins. The results obtained were significantly better than those of previously developed methods. Even though Gram-positive lipoprotein signal peptides differ from Gram-negatives, the HMM was able to identify 92.9% of the lipoproteins included in a Gram-positive test set. A genome search was carried out for 12 Gram-negative genomes and one Gram-positive genome. The results for Escherichia coli K12 were compared with new experimental data, and the predictions by the HMM agree well with the experimentally verified lipoproteins. A neural network-based predictor was developed for comparison, and it gave very similar results. LipoP is available as a Web server at www.cbs.dtu.dk/services/LipoP/.

  12. Comparing the staffing models of outsourcing in selected companies

    OpenAIRE

    Chaloupková, Věra

    2010-01-01

    This thesis deals with problems of takeover of employees in outsourcing. The capital purpose is to compare the staffing model of outsourcing in selected companies. To compare in selected companies I chose multi-criteria analysis. This thesis is dividend into six chapters. The first charter is devoted to the theoretical part. In this charter describes the basic concepts as outsourcing, personal aspects, phase of the outsourcing projects, communications and culture. The rest of thesis is devote...

  13. Music genre classification via likelihood fusion from multiple feature models

    Science.gov (United States)

    Shiu, Yu; Kuo, C.-C. J.

    2005-01-01

    Music genre provides an efficient way to index songs in a music database, and can be used as an effective means to retrieval music of a similar type, i.e. content-based music retrieval. A new two-stage scheme for music genre classification is proposed in this work. At the first stage, we examine a couple of different features, construct their corresponding parametric models (e.g. GMM and HMM) and compute their likelihood functions to yield soft classification results. In particular, the timbre, rhythm and temporal variation features are considered. Then, at the second stage, these soft classification results are integrated to result in a hard decision for final music genre classification. Experimental results are given to demonstrate the performance of the proposed scheme.

  14. BLProt: Prediction of bioluminescent proteins based on support vector machine and relieff feature selection

    KAUST Repository

    Kandaswamy, Krishna Kumar

    2011-08-17

    Background: Bioluminescence is a process in which light is emitted by a living organism. Most creatures that emit light are sea creatures, but some insects, plants, fungi etc, also emit light. The biotechnological application of bioluminescence has become routine and is considered essential for many medical and general technological advances. Identification of bioluminescent proteins is more challenging due to their poor similarity in sequence. So far, no specific method has been reported to identify bioluminescent proteins from primary sequence.Results: In this paper, we propose a novel predictive method that uses a Support Vector Machine (SVM) and physicochemical properties to predict bioluminescent proteins. BLProt was trained using a dataset consisting of 300 bioluminescent proteins and 300 non-bioluminescent proteins, and evaluated by an independent set of 141 bioluminescent proteins and 18202 non-bioluminescent proteins. To identify the most prominent features, we carried out feature selection with three different filter approaches, ReliefF, infogain, and mRMR. We selected five different feature subsets by decreasing the number of features, and the performance of each feature subset was evaluated.Conclusion: BLProt achieves 80% accuracy from training (5 fold cross-validations) and 80.06% accuracy from testing. The performance of BLProt was compared with BLAST and HMM. High prediction accuracy and successful prediction of hypothetical proteins suggests that BLProt can be a useful approach to identify bioluminescent proteins from sequence information, irrespective of their sequence similarity. 2011 Kandaswamy et al; licensee BioMed Central Ltd.

  15. BLProt: Prediction of bioluminescent proteins based on support vector machine and relieff feature selection

    KAUST Repository

    Kandaswamy, Krishna Kumar; Pugalenthi, Ganesan; Hazrati, Mehrnaz Khodam; Kalies, Kai-Uwe; Martinetz, Thomas

    2011-01-01

    Background: Bioluminescence is a process in which light is emitted by a living organism. Most creatures that emit light are sea creatures, but some insects, plants, fungi etc, also emit light. The biotechnological application of bioluminescence has become routine and is considered essential for many medical and general technological advances. Identification of bioluminescent proteins is more challenging due to their poor similarity in sequence. So far, no specific method has been reported to identify bioluminescent proteins from primary sequence.Results: In this paper, we propose a novel predictive method that uses a Support Vector Machine (SVM) and physicochemical properties to predict bioluminescent proteins. BLProt was trained using a dataset consisting of 300 bioluminescent proteins and 300 non-bioluminescent proteins, and evaluated by an independent set of 141 bioluminescent proteins and 18202 non-bioluminescent proteins. To identify the most prominent features, we carried out feature selection with three different filter approaches, ReliefF, infogain, and mRMR. We selected five different feature subsets by decreasing the number of features, and the performance of each feature subset was evaluated.Conclusion: BLProt achieves 80% accuracy from training (5 fold cross-validations) and 80.06% accuracy from testing. The performance of BLProt was compared with BLAST and HMM. High prediction accuracy and successful prediction of hypothetical proteins suggests that BLProt can be a useful approach to identify bioluminescent proteins from sequence information, irrespective of their sequence similarity. 2011 Kandaswamy et al; licensee BioMed Central Ltd.

  16. Procedure for the Selection and Validation of a Calibration Model I-Description and Application.

    Science.gov (United States)

    Desharnais, Brigitte; Camirand-Lemyre, Félix; Mireault, Pascal; Skinner, Cameron D

    2017-05-01

    Calibration model selection is required for all quantitative methods in toxicology and more broadly in bioanalysis. This typically involves selecting the equation order (quadratic or linear) and weighting factor correctly modelizing the data. A mis-selection of the calibration model will generate lower quality control (QC) accuracy, with an error up to 154%. Unfortunately, simple tools to perform this selection and tests to validate the resulting model are lacking. We present a stepwise, analyst-independent scheme for selection and validation of calibration models. The success rate of this scheme is on average 40% higher than a traditional "fit and check the QCs accuracy" method of selecting the calibration model. Moreover, the process was completely automated through a script (available in Supplemental Data 3) running in RStudio (free, open-source software). The need for weighting was assessed through an F-test using the variances of the upper limit of quantification and lower limit of quantification replicate measurements. When weighting was required, the choice between 1/x and 1/x2 was determined by calculating which option generated the smallest spread of weighted normalized variances. Finally, model order was selected through a partial F-test. The chosen calibration model was validated through Cramer-von Mises or Kolmogorov-Smirnov normality testing of the standardized residuals. Performance of the different tests was assessed using 50 simulated data sets per possible calibration model (e.g., linear-no weight, quadratic-no weight, linear-1/x, etc.). This first of two papers describes the tests, procedures and outcomes of the developed procedure using real LC-MS-MS results for the quantification of cocaine and naltrexone. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Nested sampling algorithm for subsurface flow model selection, uncertainty quantification, and nonlinear calibration

    KAUST Repository

    Elsheikh, A. H.

    2013-12-01

    Calibration of subsurface flow models is an essential step for managing ground water aquifers, designing of contaminant remediation plans, and maximizing recovery from hydrocarbon reservoirs. We investigate an efficient sampling algorithm known as nested sampling (NS), which can simultaneously sample the posterior distribution for uncertainty quantification, and estimate the Bayesian evidence for model selection. Model selection statistics, such as the Bayesian evidence, are needed to choose or assign different weights to different models of different levels of complexities. In this work, we report the first successful application of nested sampling for calibration of several nonlinear subsurface flow problems. The estimated Bayesian evidence by the NS algorithm is used to weight different parameterizations of the subsurface flow models (prior model selection). The results of the numerical evaluation implicitly enforced Occam\\'s razor where simpler models with fewer number of parameters are favored over complex models. The proper level of model complexity was automatically determined based on the information content of the calibration data and the data mismatch of the calibrated model.

  18. A Bayesian Approach to Model Selection in Hierarchical Mixtures-of-Experts Architectures.

    Science.gov (United States)

    Tanner, Martin A.; Peng, Fengchun; Jacobs, Robert A.

    1997-03-01

    There does not exist a statistical model that shows good performance on all tasks. Consequently, the model selection problem is unavoidable; investigators must decide which model is best at summarizing the data for each task of interest. This article presents an approach to the model selection problem in hierarchical mixtures-of-experts architectures. These architectures combine aspects of generalized linear models with those of finite mixture models in order to perform tasks via a recursive "divide-and-conquer" strategy. Markov chain Monte Carlo methodology is used to estimate the distribution of the architectures' parameters. One part of our approach to model selection attempts to estimate the worth of each component of an architecture so that relatively unused components can be pruned from the architecture's structure. A second part of this approach uses a Bayesian hypothesis testing procedure in order to differentiate inputs that carry useful information from nuisance inputs. Simulation results suggest that the approach presented here adheres to the dictum of Occam's razor; simple architectures that are adequate for summarizing the data are favored over more complex structures. Copyright 1997 Elsevier Science Ltd. All Rights Reserved.

  19. Selection of Models for Ingestion Pathway and Relocation

    International Nuclear Information System (INIS)

    Blanchard, A.; Thompson, J.M.

    1998-01-01

    The area in which intermediate phase protective actions (such as food interdiction and relocation) may be needed following postulated accidents at three Savannah River Site nonreactor nuclear facilities will be determined by modeling. The criteria used to select dispersion/deposition models are presented. Several models are considered, including ARAC, MACCS, HOTSPOT, WINDS (coupled with PUFF-PLUME), and UFOTRI. Although ARAC and WINDS are expected to provide more accurate modeling of atmospheric transport following an actual release, analyses consistent with regulatory guidance for planning purposes may be accomplished with comparatively simple dispersion models such as HOTSPOT and UFOTRI. A recommendation is made to use HOTSPOT for non-tritium facilities and UFOTRI for tritium facilities. The most recent Food and Drug Administration Derived Intervention Levels (August 1998) are adopted as evaluation guidelines for ingestion pathways

  20. Selection of Models for Ingestion Pathway and Relocation

    International Nuclear Information System (INIS)

    Blanchard, A.; Thompson, J.M.

    1999-01-01

    The area in which intermediate phase protective actions (such as food interdiction and relocation) may be needed following postulated accidents at three Savannah River Site nonreactor nuclear facilities will be determined by modeling. The criteria used to select dispersion/deposition models are presented. Several models are considered, including ARAC, MACCS, HOTSPOT, WINDS (coupled with PUFF-PLUME), and UFOTRI. Although ARAC and WINDS are expected to provide more accurate modeling of atmospheric transport following an actual release, analyses consistent with regulatory guidance for planning purposes may be accomplished with comparatively simple dispersion models such as HOTSPOT and UFOTRI. A recommendation is made to use HOTSPOT for non-tritium facilities and UFOTRI for tritium facilities. The most recent Food and Drug Administration Derived Intervention Levels (August 1998) are adopted as evaluation guidelines for ingestion pathways

  1. Genomic Selection in Plant Breeding: Methods, Models, and Perspectives.

    Science.gov (United States)

    Crossa, José; Pérez-Rodríguez, Paulino; Cuevas, Jaime; Montesinos-López, Osval; Jarquín, Diego; de Los Campos, Gustavo; Burgueño, Juan; González-Camacho, Juan M; Pérez-Elizalde, Sergio; Beyene, Yoseph; Dreisigacker, Susanne; Singh, Ravi; Zhang, Xuecai; Gowda, Manje; Roorkiwal, Manish; Rutkoski, Jessica; Varshney, Rajeev K

    2017-11-01

    Genomic selection (GS) facilitates the rapid selection of superior genotypes and accelerates the breeding cycle. In this review, we discuss the history, principles, and basis of GS and genomic-enabled prediction (GP) as well as the genetics and statistical complexities of GP models, including genomic genotype×environment (G×E) interactions. We also examine the accuracy of GP models and methods for two cereal crops and two legume crops based on random cross-validation. GS applied to maize breeding has shown tangible genetic gains. Based on GP results, we speculate how GS in germplasm enhancement (i.e., prebreeding) programs could accelerate the flow of genes from gene bank accessions to elite lines. Recent advances in hyperspectral image technology could be combined with GS and pedigree-assisted breeding. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Augmented Self-Modeling as a Treatment for Children with Selective Mutism.

    Science.gov (United States)

    Kehle, Thomas J.; Madaus, Melissa R.; Baratta, Victoria S.; Bray, Melissa A.

    1998-01-01

    Describes the treatment of three children experiencing selective mutism. The procedure utilized incorporated self-modeling, mystery motivators, self-reinforcement, stimulus fading, spacing, and antidepressant medication. All three children evidenced a complete cessation of selective mutism and maintained their treatment gains at follow-up.…

  3. Examining speed versus selection in connectivity models using elk migration as an example

    Science.gov (United States)

    Brennan, Angela; Hanks, Ephraim M.; Merkle, Jerod A.; Cole, Eric K.; Dewey, Sarah R.; Courtemanch, Alyson B.; Cross, Paul C.

    2018-01-01

    ContextLandscape resistance is vital to connectivity modeling and frequently derived from resource selection functions (RSFs). RSFs estimate relative probability of use and tend to focus on understanding habitat preferences during slow, routine animal movements (e.g., foraging). Dispersal and migration, however, can produce rarer, faster movements, in which case models of movement speed rather than resource selection may be more realistic for identifying habitats that facilitate connectivity.ObjectiveTo compare two connectivity modeling approaches applied to resistance estimated from models of movement rate and resource selection.MethodsUsing movement data from migrating elk, we evaluated continuous time Markov chain (CTMC) and movement-based RSF models (i.e., step selection functions [SSFs]). We applied circuit theory and shortest random path (SRP) algorithms to CTMC, SSF and null (i.e., flat) resistance surfaces to predict corridors between elk seasonal ranges. We evaluated prediction accuracy by comparing model predictions to empirical elk movements.ResultsAll connectivity models predicted elk movements well, but models applied to CTMC resistance were more accurate than models applied to SSF and null resistance. Circuit theory models were more accurate on average than SRP models.ConclusionsCTMC can be more realistic than SSFs for estimating resistance for fast movements, though SSFs may demonstrate some predictive ability when animals also move slowly through corridors (e.g., stopover use during migration). High null model accuracy suggests seasonal range data may also be critical for predicting direct migration routes. For animals that migrate or disperse across large landscapes, we recommend incorporating CTMC into the connectivity modeling toolkit.

  4. A model of directional selection applied to the evolution of drug resistance in HIV-1.

    Science.gov (United States)

    Seoighe, Cathal; Ketwaroo, Farahnaz; Pillay, Visva; Scheffler, Konrad; Wood, Natasha; Duffet, Rodger; Zvelebil, Marketa; Martinson, Neil; McIntyre, James; Morris, Lynn; Hide, Winston

    2007-04-01

    Understanding how pathogens acquire resistance to drugs is important for the design of treatment strategies, particularly for rapidly evolving viruses such as HIV-1. Drug treatment can exert strong selective pressures and sites within targeted genes that confer resistance frequently evolve far more rapidly than the neutral rate. Rapid evolution at sites that confer resistance to drugs can be used to help elucidate the mechanisms of evolution of drug resistance and to discover or corroborate novel resistance mutations. We have implemented standard maximum likelihood methods that are used to detect diversifying selection and adapted them for use with serially sampled reverse transcriptase (RT) coding sequences isolated from a group of 300 HIV-1 subtype C-infected women before and after single-dose nevirapine (sdNVP) to prevent mother-to-child transmission. We have also extended the standard models of codon evolution for application to the detection of directional selection. Through simulation, we show that the directional selection model can provide a substantial improvement in sensitivity over models of diversifying selection. Five of the sites within the RT gene that are known to harbor mutations that confer resistance to nevirapine (NVP) strongly supported the directional selection model. There was no evidence that other mutations that are known to confer NVP resistance were selected in this cohort. The directional selection model, applied to serially sampled sequences, also had more power than the diversifying selection model to detect selection resulting from factors other than drug resistance. Because inference of selection from serial samples is unlikely to be adversely affected by recombination, the methods we describe may have general applicability to the analysis of positive selection affecting recombining coding sequences when serially sampled data are available.

  5. Coupled variable selection for regression modeling of complex treatment patterns in a clinical cancer registry.

    Science.gov (United States)

    Schmidtmann, I; Elsäßer, A; Weinmann, A; Binder, H

    2014-12-30

    For determining a manageable set of covariates potentially influential with respect to a time-to-event endpoint, Cox proportional hazards models can be combined with variable selection techniques, such as stepwise forward selection or backward elimination based on p-values, or regularized regression techniques such as component-wise boosting. Cox regression models have also been adapted for dealing with more complex event patterns, for example, for competing risks settings with separate, cause-specific hazard models for each event type, or for determining the prognostic effect pattern of a variable over different landmark times, with one conditional survival model for each landmark. Motivated by a clinical cancer registry application, where complex event patterns have to be dealt with and variable selection is needed at the same time, we propose a general approach for linking variable selection between several Cox models. Specifically, we combine score statistics for each covariate across models by Fisher's method as a basis for variable selection. This principle is implemented for a stepwise forward selection approach as well as for a regularized regression technique. In an application to data from hepatocellular carcinoma patients, the coupled stepwise approach is seen to facilitate joint interpretation of the different cause-specific Cox models. In conditional survival models at landmark times, which address updates of prediction as time progresses and both treatment and other potential explanatory variables may change, the coupled regularized regression approach identifies potentially important, stably selected covariates together with their effect time pattern, despite having only a small number of events. These results highlight the promise of the proposed approach for coupling variable selection between Cox models, which is particularly relevant for modeling for clinical cancer registries with their complex event patterns. Copyright © 2014 John Wiley & Sons

  6. A fault diagnosis system for interdependent critical infrastructures based on HMMs

    International Nuclear Information System (INIS)

    Ntalampiras, Stavros; Soupionis, Yannis; Giannopoulos, Georgios

    2015-01-01

    Modern society depends on the smooth functioning of critical infrastructures which provide services of fundamental importance, e.g. telecommunications and water supply. These infrastructures may suffer from faults/malfunctions coming e.g. from aging effects or they may even comprise targets of terrorist attacks. Prompt detection and accommodation of these situations is of paramount significance. This paper proposes a probabilistic modeling scheme for analyzing malicious events appearing in interdependent critical infrastructures. The proposed scheme is based on modeling the relationship between datastreams coming from two network nodes by means of a hidden Markov model (HMM) trained on the parameters of linear time-invariant dynamic systems which estimate the relationships existing among the specific nodes over consecutive time windows. Our study includes an energy network (IEEE 30 model bus) operated via a telecommunications infrastructure. The relationships among the elements of the network of infrastructures are represented by an HMM and the novel data is categorized according to its distance (computed in the probabilistic space) from the training ones. We considered two types of cyber-attacks (denial of service and integrity/replay) and report encouraging results in terms of false positive rate, false negative rate and detection delay. - Highlights: • An HMM-based scheme is proposed for analyzing malicious events in critical infrastructures. • We use the IEEE 30 model bus operated via an emulated ICT infrastructure. • Novel data is categorized based on its probabilistic distance from the training one. • We considered two types of cyber-attacks and report results of extensive experiments

  7. Dark-field hyperlens for high-contrast sub-wavelength imaging

    DEFF Research Database (Denmark)

    Repän, Taavi; Zhukovsky, Sergei; Lavrinenko, Andrei

    2016-01-01

    By now superresolution imaging using hyperbolic metamaterial (HMM) structures – hyperlenses – has been demonstrated both theoretically and experimentally. The hyperlens operation relies on the fact that HMM allows propagation of waves with very large transverse wavevectors, which would be evanesc......By now superresolution imaging using hyperbolic metamaterial (HMM) structures – hyperlenses – has been demonstrated both theoretically and experimentally. The hyperlens operation relies on the fact that HMM allows propagation of waves with very large transverse wavevectors, which would...... be evanescent in common isotropic media (thus giving rise to the diffraction limit). However, nearly all hyperlenses proposed so far have been suitable only for very strong scatterers – such as holes in a metal film. When weaker scatterers, dielectric objects for example, are imaged then incident light forms...... a very strong background, and weak scatterers are not visible due to a poor contrast. We propose a so-called dark-field hyperlens, which would be suitable for imaging of weakly scattering objects. By designing parameters of the HMM, we managed to obtain its response in such way that the hyperlens...

  8. Approximate Learning and Inference for Tracking with Non-overlapping Cameras

    NARCIS (Netherlands)

    Zajdel, W.; Kröse, B.; Hamza, M.H.

    2003-01-01

    Tracking with multiple cameras requires partitioning of ob servations from various sensors into trajectories. In this paper we assume that the observations are generated by a hidden, stochastic 'partition' process and propose a hidden Markov model (HMM) as a generative model for the data. The state

  9. A Biologically Inspired Computational Model of Basal Ganglia in Action Selection.

    Science.gov (United States)

    Baston, Chiara; Ursino, Mauro

    2015-01-01

    The basal ganglia (BG) are a subcortical structure implicated in action selection. The aim of this work is to present a new cognitive neuroscience model of the BG, which aspires to represent a parsimonious balance between simplicity and completeness. The model includes the 3 main pathways operating in the BG circuitry, that is, the direct (Go), indirect (NoGo), and hyperdirect pathways. The main original aspects, compared with previous models, are the use of a two-term Hebb rule to train synapses in the striatum, based exclusively on neuronal activity changes caused by dopamine peaks or dips, and the role of the cholinergic interneurons (affected by dopamine themselves) during learning. Some examples are displayed, concerning a few paradigmatic cases: action selection in basal conditions, action selection in the presence of a strong conflict (where the role of the hyperdirect pathway emerges), synapse changes induced by phasic dopamine, and learning new actions based on a previous history of rewards and punishments. Finally, some simulations show model working in conditions of altered dopamine levels, to illustrate pathological cases (dopamine depletion in parkinsonian subjects or dopamine hypermedication). Due to its parsimonious approach, the model may represent a straightforward tool to analyze BG functionality in behavioral experiments.

  10. A Biologically Inspired Computational Model of Basal Ganglia in Action Selection

    Directory of Open Access Journals (Sweden)

    Chiara Baston

    2015-01-01

    Full Text Available The basal ganglia (BG are a subcortical structure implicated in action selection. The aim of this work is to present a new cognitive neuroscience model of the BG, which aspires to represent a parsimonious balance between simplicity and completeness. The model includes the 3 main pathways operating in the BG circuitry, that is, the direct (Go, indirect (NoGo, and hyperdirect pathways. The main original aspects, compared with previous models, are the use of a two-term Hebb rule to train synapses in the striatum, based exclusively on neuronal activity changes caused by dopamine peaks or dips, and the role of the cholinergic interneurons (affected by dopamine themselves during learning. Some examples are displayed, concerning a few paradigmatic cases: action selection in basal conditions, action selection in the presence of a strong conflict (where the role of the hyperdirect pathway emerges, synapse changes induced by phasic dopamine, and learning new actions based on a previous history of rewards and punishments. Finally, some simulations show model working in conditions of altered dopamine levels, to illustrate pathological cases (dopamine depletion in parkinsonian subjects or dopamine hypermedication. Due to its parsimonious approach, the model may represent a straightforward tool to analyze BG functionality in behavioral experiments.

  11. An Introduction to Model Selection: Tools and Algorithms

    Directory of Open Access Journals (Sweden)

    Sébastien Hélie

    2006-03-01

    Full Text Available Model selection is a complicated matter in science, and psychology is no exception. In particular, the high variance in the object of study (i.e., humans prevents the use of Popper’s falsification principle (which is the norm in other sciences. Therefore, the desirability of quantitative psychological models must be assessed by measuring the capacity of the model to fit empirical data. In the present paper, an error measure (likelihood, as well as five methods to compare model fits (the likelihood ratio test, Akaike’s information criterion, the Bayesian information criterion, bootstrapping and cross-validation, are presented. The use of each method is illustrated by an example, and the advantages and weaknesses of each method are also discussed.

  12. Identification of landscape features influencing gene flow: How useful are habitat selection models?

    Science.gov (United States)

    Gretchen H. Roffler; Michael K. Schwartz; Kristine Pilgrim; Sandra L. Talbot; George K. Sage; Layne G. Adams; Gordon Luikart

    2016-01-01

    Understanding how dispersal patterns are influenced by landscape heterogeneity is critical for modeling species connectivity. Resource selection function (RSF) models are increasingly used in landscape genetics approaches. However, because the ecological factors that drive habitat selection may be different from those influencing dispersal and gene flow, it is...

  13. Statistical modelling in biostatistics and bioinformatics selected papers

    CERN Document Server

    Peng, Defen

    2014-01-01

    This book presents selected papers on statistical model development related mainly to the fields of Biostatistics and Bioinformatics. The coverage of the material falls squarely into the following categories: (a) Survival analysis and multivariate survival analysis, (b) Time series and longitudinal data analysis, (c) Statistical model development and (d) Applied statistical modelling. Innovations in statistical modelling are presented throughout each of the four areas, with some intriguing new ideas on hierarchical generalized non-linear models and on frailty models with structural dispersion, just to mention two examples. The contributors include distinguished international statisticians such as Philip Hougaard, John Hinde, Il Do Ha, Roger Payne and Alessandra Durio, among others, as well as promising newcomers. Some of the contributions have come from researchers working in the BIO-SI research programme on Biostatistics and Bioinformatics, centred on the Universities of Limerick and Galway in Ireland and fu...

  14. How can we model selectively neutral density dependence in evolutionary games.

    Science.gov (United States)

    Argasinski, Krzysztof; Kozłowski, Jan

    2008-03-01

    The problem of density dependence appears in all approaches to the modelling of population dynamics. It is pertinent to classic models (i.e., Lotka-Volterra's), and also population genetics and game theoretical models related to the replicator dynamics. There is no density dependence in the classic formulation of replicator dynamics, which means that population size may grow to infinity. Therefore the question arises: How is unlimited population growth suppressed in frequency-dependent models? Two categories of solutions can be found in the literature. In the first, replicator dynamics is independent of background fitness. In the second type of solution, a multiplicative suppression coefficient is used, as in a logistic equation. Both approaches have disadvantages. The first one is incompatible with the methods of life history theory and basic probabilistic intuitions. The logistic type of suppression of per capita growth rate stops trajectories of selection when population size reaches the maximal value (carrying capacity); hence this method does not satisfy selective neutrality. To overcome these difficulties, we must explicitly consider turn-over of individuals dependent on mortality rate. This new approach leads to two interesting predictions. First, the equilibrium value of population size is lower than carrying capacity and depends on the mortality rate. Second, although the phase portrait of selection trajectories is the same as in density-independent replicator dynamics, pace of selection slows down when population size approaches equilibrium, and then remains constant and dependent on the rate of turn-over of individuals.

  15. Specific acoustic models for spontaneous and dictated style in indonesian speech recognition

    Science.gov (United States)

    Vista, C. B.; Satriawan, C. H.; Lestari, D. P.; Widyantoro, D. H.

    2018-03-01

    The performance of an automatic speech recognition system is affected by differences in speech style between the data the model is originally trained upon and incoming speech to be recognized. In this paper, the usage of GMM-HMM acoustic models for specific speech styles is investigated. We develop two systems for the experiments; the first employs a speech style classifier to predict the speech style of incoming speech, either spontaneous or dictated, then decodes this speech using an acoustic model specifically trained for that speech style. The second system uses both acoustic models to recognise incoming speech and decides upon a final result by calculating a confidence score of decoding. Results show that training specific acoustic models for spontaneous and dictated speech styles confers a slight recognition advantage as compared to a baseline model trained on a mixture of spontaneous and dictated training data. In addition, the speech style classifier approach of the first system produced slightly more accurate results than the confidence scoring employed in the second system.

  16. Molecular modelling of a chemodosimeter for the selective detection ...

    Indian Academy of Sciences (India)

    Wintec

    Molecular modelling of a chemodosimeter for the selective detection of. As(III) ion in water. † ... high levels of arsenic cause severe skin diseases in- cluding skin cancer ..... Special Attention to Groundwater in SE Asia (eds) D. Chakraborti, A ...

  17. Cliff-edge model of obstetric selection in humans.

    Science.gov (United States)

    Mitteroecker, Philipp; Huttegger, Simon M; Fischer, Barbara; Pavlicev, Mihaela

    2016-12-20

    The strikingly high incidence of obstructed labor due to the disproportion of fetal size and the mother's pelvic dimensions has puzzled evolutionary scientists for decades. Here we propose that these high rates are a direct consequence of the distinct characteristics of human obstetric selection. Neonatal size relative to the birth-relevant maternal dimensions is highly variable and positively associated with reproductive success until it reaches a critical value, beyond which natural delivery becomes impossible. As a consequence, the symmetric phenotype distribution cannot match the highly asymmetric, cliff-edged fitness distribution well: The optimal phenotype distribution that maximizes population mean fitness entails a fraction of individuals falling beyond the "fitness edge" (i.e., those with fetopelvic disproportion). Using a simple mathematical model, we show that weak directional selection for a large neonate, a narrow pelvic canal, or both is sufficient to account for the considerable incidence of fetopelvic disproportion. Based on this model, we predict that the regular use of Caesarean sections throughout the last decades has led to an evolutionary increase of fetopelvic disproportion rates by 10 to 20%.

  18. An Optimization Model For Strategy Decision Support to Select Kind of CPO’s Ship

    Science.gov (United States)

    Suaibah Nst, Siti; Nababan, Esther; Mawengkang, Herman

    2018-01-01

    The selection of marine transport for the distribution of crude palm oil (CPO) is one of strategy that can be considered in reducing cost of transport. The cost of CPO’s transport from one area to CPO’s factory located at the port of destination may affect the level of CPO’s prices and the number of demands. In order to maintain the availability of CPO a strategy is required to minimize the cost of transporting. In this study, the strategy used to select kind of charter ships as barge or chemical tanker. This study aims to determine an optimization model for strategy decision support in selecting kind of CPO’s ship by minimizing costs of transport. The select of ship was done randomly, so that two-stage stochastic programming model was used to select the kind of ship. Model can help decision makers to select either barge or chemical tanker to distribute CPO.

  19. Model Selection and Risk Estimation with Applications to Nonlinear Ordinary Differential Equation Systems

    DEFF Research Database (Denmark)

    Mikkelsen, Frederik Vissing

    eective computational tools for estimating unknown structures in dynamical systems, such as gene regulatory networks, which may be used to predict downstream eects of interventions in the system. A recommended algorithm based on the computational tools is presented and thoroughly tested in various......Broadly speaking, this thesis is devoted to model selection applied to ordinary dierential equations and risk estimation under model selection. A model selection framework was developed for modelling time course data by ordinary dierential equations. The framework is accompanied by the R software...... package, episode. This package incorporates a collection of sparsity inducing penalties into two types of loss functions: a squared loss function relying on numerically solving the equations and an approximate loss function based on inverse collocation methods. The goal of this framework is to provide...

  20. Complex Behavior in a Selective Aging Neuron Model Based on Small World Networks

    International Nuclear Information System (INIS)

    Zhang Guiqing; Chen Tianlun

    2008-01-01

    Complex behavior in a selective aging simple neuron model based on small world networks is investigated. The basic elements of the model are endowed with the main features of a neuron function. The structure of the selective aging neuron model is discussed. We also give some properties of the new network and find that the neuron model displays a power-law behavior. If the brain network is small world-like network, the mean avalanche size is almost the same unless the aging parameter is big enough.

  1. Transverse tripolar stimulation of peripheral nerve: a modelling study of spatial selectivity.

    Science.gov (United States)

    Deurloo, K E; Holsheimer, J; Boom, H B

    1998-01-01

    Various anode-cathode configurations in a nerve cuff are modelled to predict their spatial selectivity characteristics for functional nerve stimulation. A 3D volume conductor model of a monofascicular nerve is used for the computation of stimulation-induced field potentials, whereas a cable model of myelinated nerve fibre is used for the calculation of the excitation thresholds of fibres. As well as the usual configurations (monopole, bipole, longitudinal tripole, 'steering' anode), a transverse tripolar configuration (central cathode) is examined. It is found that the transverse tripole is the only configuration giving convex recruitment contours and therefore maximises activation selectivity for a small (cylindrical) bundle of fibres in the periphery of a monofascicular nerve trunk. As the electrode configuration is changed to achieve greater selectivity, the threshold current increases. Therefore threshold currents for fibre excitation with a transverse tripole are relatively high. Inverse recruitment is less extreme than for the other configurations. The influences of several geometrical parameters and model conductivities of the transverse tripole on selectivity and threshold current are analysed. In chronic implantation, when electrodes are encapsulated by a layer of fibrous tissue, threshold currents are low, whereas the shape of the recruitment contours in transverse tripolar stimulation does not change.

  2. Naive scoring of human sleep based on a hidden Markov model of the electroencephalogram.

    Science.gov (United States)

    Yaghouby, Farid; Modur, Pradeep; Sunderam, Sridhar

    2014-01-01

    Clinical sleep scoring involves tedious visual review of overnight polysomnograms by a human expert. Many attempts have been made to automate the process by training computer algorithms such as support vector machines and hidden Markov models (HMMs) to replicate human scoring. Such supervised classifiers are typically trained on scored data and then validated on scored out-of-sample data. Here we describe a methodology based on HMMs for scoring an overnight sleep recording without the benefit of a trained initial model. The number of states in the data is not known a priori and is optimized using a Bayes information criterion. When tested on a 22-subject database, this unsupervised classifier agreed well with human scores (mean of Cohen's kappa > 0.7). The HMM also outperformed other unsupervised classifiers (Gaussian mixture models, k-means, and linkage trees), that are capable of naive classification but do not model dynamics, by a significant margin (p < 0.05).

  3. Unraveling the sub-processes of selective attention: insights from dynamic modeling and continuous behavior.

    Science.gov (United States)

    Frisch, Simon; Dshemuchadse, Maja; Görner, Max; Goschke, Thomas; Scherbaum, Stefan

    2015-11-01

    Selective attention biases information processing toward stimuli that are relevant for achieving our goals. However, the nature of this bias is under debate: Does it solely rely on the amplification of goal-relevant information or is there a need for additional inhibitory processes that selectively suppress currently distracting information? Here, we explored the processes underlying selective attention with a dynamic, modeling-based approach that focuses on the continuous evolution of behavior over time. We present two dynamic neural field models incorporating the diverging theoretical assumptions. Simulations with both models showed that they make similar predictions with regard to response times but differ markedly with regard to their continuous behavior. Human data observed via mouse tracking as a continuous measure of performance revealed evidence for the model solely based on amplification but no indication of persisting selective distracter inhibition.

  4. Country Selection Model for Sustainable Construction Businesses Using Hybrid of Objective and Subjective Information

    Directory of Open Access Journals (Sweden)

    Kang-Wook Lee

    2017-05-01

    Full Text Available An important issue for international businesses and academia is selecting countries in which to expand in order to achieve entrepreneurial sustainability. This study develops a country selection model for sustainable construction businesses using both objective and subjective information. The objective information consists of 14 variables related to country risk and project performance in 32 countries over 25 years. This hybrid model applies subjective weighting from industrial experts to objective information using a fuzzy LinPreRa-based Analytic Hierarchy Process. The hybrid model yields a more accurate country selection compared to a purely objective information-based model in experienced countries. Interestingly, the hybrid model provides some different predictions with only subjective opinions in unexperienced countries, which implies that expert opinion is not always reliable. In addition, feedback from five experts in top international companies is used to validate the model’s completeness, effectiveness, generality, and applicability. The model is expected to aid decision makers in selecting better candidate countries that lead to sustainable business success.

  5. Multimodal Speaker Diarization

    NARCIS (Netherlands)

    Noulas, A.; Englebienne, G.; Kröse, B.J.A.

    2012-01-01

    We present a novel probabilistic framework that fuses information coming from the audio and video modality to perform speaker diarization. The proposed framework is a Dynamic Bayesian Network (DBN) that is an extension of a factorial Hidden Markov Model (fHMM) and models the people appearing in an

  6. Objective Model Selection for Identifying the Human Feedforward Response in Manual Control.

    Science.gov (United States)

    Drop, Frank M; Pool, Daan M; van Paassen, Marinus Rene M; Mulder, Max; Bulthoff, Heinrich H

    2018-01-01

    Realistic manual control tasks typically involve predictable target signals and random disturbances. The human controller (HC) is hypothesized to use a feedforward control strategy for target-following, in addition to feedback control for disturbance-rejection. Little is known about human feedforward control, partly because common system identification methods have difficulty in identifying whether, and (if so) how, the HC applies a feedforward strategy. In this paper, an identification procedure is presented that aims at an objective model selection for identifying the human feedforward response, using linear time-invariant autoregressive with exogenous input models. A new model selection criterion is proposed to decide on the model order (number of parameters) and the presence of feedforward in addition to feedback. For a range of typical control tasks, it is shown by means of Monte Carlo computer simulations that the classical Bayesian information criterion (BIC) leads to selecting models that contain a feedforward path from data generated by a pure feedback model: "false-positive" feedforward detection. To eliminate these false-positives, the modified BIC includes an additional penalty on model complexity. The appropriate weighting is found through computer simulations with a hypothesized HC model prior to performing a tracking experiment. Experimental human-in-the-loop data will be considered in future work. With appropriate weighting, the method correctly identifies the HC dynamics in a wide range of control tasks, without false-positive results.

  7. Selection of Representative Models for Decision Analysis Under Uncertainty

    Science.gov (United States)

    Meira, Luis A. A.; Coelho, Guilherme P.; Santos, Antonio Alberto S.; Schiozer, Denis J.

    2016-03-01

    The decision-making process in oil fields includes a step of risk analysis associated with the uncertainties present in the variables of the problem. Such uncertainties lead to hundreds, even thousands, of possible scenarios that are supposed to be analyzed so an effective production strategy can be selected. Given this high number of scenarios, a technique to reduce this set to a smaller, feasible subset of representative scenarios is imperative. The selected scenarios must be representative of the original set and also free of optimistic and pessimistic bias. This paper is devoted to propose an assisted methodology to identify representative models in oil fields. To do so, first a mathematical function was developed to model the representativeness of a subset of models with respect to the full set that characterizes the problem. Then, an optimization tool was implemented to identify the representative models of any problem, considering not only the cross-plots of the main output variables, but also the risk curves and the probability distribution of the attribute-levels of the problem. The proposed technique was applied to two benchmark cases and the results, evaluated by experts in the field, indicate that the obtained solutions are richer than those identified by previously adopted manual approaches. The program bytecode is available under request.

  8. Financial performance as a decision criterion of credit scoring models selection [doi: 10.21529/RECADM.2017004

    Directory of Open Access Journals (Sweden)

    Rodrigo Alves Silva

    2017-09-01

    Full Text Available This paper aims to show the importance of the use of financial metrics in decision-making of credit scoring models selection. In order to achieve such, we considered an automatic approval system approach and we carried out a performance analysis of the financial metrics on the theoretical portfolios generated by seven credit scoring models based on main statistical learning techniques. The models were estimated on German Credit dataset and the results were analyzed based on four metrics: total accuracy, error cost, risk adjusted return on capital and Sharpe index. The results show that total accuracy, widely used as a criterion for selecting credit scoring models, is unable to select the most profitable model for the company, indicating the need to incorporate financial metrics into the credit scoring model selection process. Keywords Credit risk; Model’s selection; Statistical learning.

  9. A bayesian hierarchical model for classification with selection of functional predictors.

    Science.gov (United States)

    Zhu, Hongxiao; Vannucci, Marina; Cox, Dennis D

    2010-06-01

    In functional data classification, functional observations are often contaminated by various systematic effects, such as random batch effects caused by device artifacts, or fixed effects caused by sample-related factors. These effects may lead to classification bias and thus should not be neglected. Another issue of concern is the selection of functions when predictors consist of multiple functions, some of which may be redundant. The above issues arise in a real data application where we use fluorescence spectroscopy to detect cervical precancer. In this article, we propose a Bayesian hierarchical model that takes into account random batch effects and selects effective functions among multiple functional predictors. Fixed effects or predictors in nonfunctional form are also included in the model. The dimension of the functional data is reduced through orthonormal basis expansion or functional principal components. For posterior sampling, we use a hybrid Metropolis-Hastings/Gibbs sampler, which suffers slow mixing. An evolutionary Monte Carlo algorithm is applied to improve the mixing. Simulation and real data application show that the proposed model provides accurate selection of functional predictors as well as good classification.

  10. Application of Viterbi’s Algorithm for Predicting Rainfall Occurrence and Simulating Wet\\Dry Spells – Comparison with Common Methods

    Directory of Open Access Journals (Sweden)

    M. Ghamghami

    2015-06-01

    Full Text Available Today, there arevarious statistical models for the discrete simulation of the rainfall occurrence/non-occurrence with more emphasizing on long-term climatic statistics. Nevertheless, the accuracy of such models or predictions should be improved in short timescale. In the present paper, it is assumed that the rainfall occurrence/non-occurrence sequences follow a two-layer Hidden Markov Model (HMM consist of a hidden layer (discrete time series of rainfall occurrence and non-occurrence and an observable layer (weather variables, which is considered as a case study in Khoramabad station during the period of 1961-2005. The decoding algorithm of Viterbi has been used for simulation of wet/dry sequences. Performance of five weather variables, as the observable variables, including air pressure, vapor pressure, diurnal air temperature, relative humidity and dew point temperature for choosing the best observed variables were evaluated using some measures oferror evaluation. Results showed that the variable of diurnal air temperatureis the best observable variable for decoding process of wet/dry sequences, which detects the strong physical relationship between those variables. Also the Viterbi output was compared with ClimGen and LARS-WG weather generators, in terms of two accuracy measures including similarity of climatic statistics and forecasting skills. Finally, it is concluded that HMM has more skills rather than the other two weather generators in simulation of wet and dry spells. Therefore, we recommend the use of HMM instead of two other approaches for generation of wet and dry sequences.

  11. Development of modelling method selection tool for health services management: from problem structuring methods to modelling and simulation methods.

    Science.gov (United States)

    Jun, Gyuchan T; Morris, Zoe; Eldabi, Tillal; Harper, Paul; Naseer, Aisha; Patel, Brijesh; Clarkson, John P

    2011-05-19

    There is an increasing recognition that modelling and simulation can assist in the process of designing health care policies, strategies and operations. However, the current use is limited and answers to questions such as what methods to use and when remain somewhat underdeveloped. The aim of this study is to provide a mechanism for decision makers in health services planning and management to compare a broad range of modelling and simulation methods so that they can better select and use them or better commission relevant modelling and simulation work. This paper proposes a modelling and simulation method comparison and selection tool developed from a comprehensive literature review, the research team's extensive expertise and inputs from potential users. Twenty-eight different methods were identified, characterised by their relevance to different application areas, project life cycle stages, types of output and levels of insight, and four input resources required (time, money, knowledge and data). The characterisation is presented in matrix forms to allow quick comparison and selection. This paper also highlights significant knowledge gaps in the existing literature when assessing the applicability of particular approaches to health services management, where modelling and simulation skills are scarce let alone money and time. A modelling and simulation method comparison and selection tool is developed to assist with the selection of methods appropriate to supporting specific decision making processes. In particular it addresses the issue of which method is most appropriate to which specific health services management problem, what the user might expect to be obtained from the method, and what is required to use the method. In summary, we believe the tool adds value to the scarce existing literature on methods comparison and selection.

  12. A Survey on Hidden Markov Model (HMM) Based Intention Prediction Techniques

    OpenAIRE

    Mrs. Manisha Bharati; Dr. Santosh Lomte

    2016-01-01

    The extensive use of virtualization in implementing cloud infrastructure brings unrivaled security concerns for cloud tenants or customers and introduces an additional layer that itself must be completely configured and secured. Intruders can exploit the large amount of cloud resources for their attacks. This paper discusses two approaches In the first three features namely ongoing attacks, autonomic prevention actions, and risk measure are Integrated to our Autonomic Cloud Intrus...

  13. Computationally efficient thermal-mechanical modelling of selective laser melting

    NARCIS (Netherlands)

    Yang, Y.; Ayas, C.; Brabazon, Dermot; Naher, Sumsun; Ul Ahad, Inam

    2017-01-01

    The Selective laser melting (SLM) is a powder based additive manufacturing (AM) method to produce high density metal parts with complex topology. However, part distortions and accompanying residual stresses deteriorates the mechanical reliability of SLM products. Modelling of the SLM process is

  14. 78 FR 20148 - Reporting Procedure for Mathematical Models Selected To Predict Heated Effluent Dispersion in...

    Science.gov (United States)

    2013-04-03

    ... procedure acceptable to the NRC staff for providing summary details of mathematical modeling methods used in... NUCLEAR REGULATORY COMMISSION [NRC-2013-0062] Reporting Procedure for Mathematical Models Selected... Regulatory Guide (RG) 4.4, ``Reporting Procedure for Mathematical Models Selected to Predict Heated Effluent...

  15. Modeling selective attention using a neuromorphic analog VLSI device.

    Science.gov (United States)

    Indiveri, G

    2000-12-01

    Attentional mechanisms are required to overcome the problem of flooding a limited processing capacity system with information. They are present in biological sensory systems and can be a useful engineering tool for artificial visual systems. In this article we present a hardware model of a selective attention mechanism implemented on a very large-scale integration (VLSI) chip, using analog neuromorphic circuits. The chip exploits a spike-based representation to receive, process, and transmit signals. It can be used as a transceiver module for building multichip neuromorphic vision systems. We describe the circuits that carry out the main processing stages of the selective attention mechanism and provide experimental data for each circuit. We demonstrate the expected behavior of the model at the system level by stimulating the chip with both artificially generated control signals and signals obtained from a saliency map, computed from an image containing several salient features.

  16. Assessing the accuracy and stability of variable selection methods for random forest modeling in ecology.

    Science.gov (United States)

    Fox, Eric W; Hill, Ryan A; Leibowitz, Scott G; Olsen, Anthony R; Thornbrugh, Darren J; Weber, Marc H

    2017-07-01

    Random forest (RF) modeling has emerged as an important statistical learning method in ecology due to its exceptional predictive performance. However, for large and complex ecological data sets, there is limited guidance on variable selection methods for RF modeling. Typically, either a preselected set of predictor variables are used or stepwise procedures are employed which iteratively remove variables according to their importance measures. This paper investigates the application of variable selection methods to RF models for predicting probable biological stream condition. Our motivating data set consists of the good/poor condition of n = 1365 stream survey sites from the 2008/2009 National Rivers and Stream Assessment, and a large set (p = 212) of landscape features from the StreamCat data set as potential predictors. We compare two types of RF models: a full variable set model with all 212 predictors and a reduced variable set model selected using a backward elimination approach. We assess model accuracy using RF's internal out-of-bag estimate, and a cross-validation procedure with validation folds external to the variable selection process. We also assess the stability of the spatial predictions generated by the RF models to changes in the number of predictors and argue that model selection needs to consider both accuracy and stability. The results suggest that RF modeling is robust to the inclusion of many variables of moderate to low importance. We found no substantial improvement in cross-validated accuracy as a result of variable reduction. Moreover, the backward elimination procedure tended to select too few variables and exhibited numerous issues such as upwardly biased out-of-bag accuracy estimates and instabilities in the spatial predictions. We use simulations to further support and generalize results from the analysis of real data. A main purpose of this work is to elucidate issues of model selection bias and instability to ecologists interested in

  17. Recruiter Selection Model

    National Research Council Canada - National Science Library

    Halstead, John B

    2006-01-01

    .... The research uses a combination of statistical learning, feature selection methods, and multivariate statistics to determine the better prediction function approximation with features obtained...

  18. Evaluating Forecasting Models for Unemployment Rates by Gender in Selected European Countries

    Directory of Open Access Journals (Sweden)

    Ksenija Dumičić

    2017-03-01

    Full Text Available The unemployment can be considered as one of the main economic problems. The aim of this article is to examine the differences in male and female unemployment rates in selected European countries and to predict their future trends by using different statistical forecasting models. Furthermore, the impact of adding a new data point on the selection of the most appropriate statistical forecasting model and on the overall forecasting errors values is also evaluated. Male and female unemployment rates are observed for twelve European countries in the period from 1991 to 2014. Four statistical forecasting models have been selected and applied and the most appropriate model is considered to be the one with the lowest overall forecasting errors values. The analysis has shown that in the period from 1991 to 2014 the decreasing trend of unemployment rates in the short-run is forecasted for more Eastern Balkan than the EU-28 countries. An additional data point for male and female unemployment rates in 2014 led to somewhat smaller forecasting errors in more than half of the observed countries. However, the additional data point does not necessarily improve forecasting performances of the used statistical forecasting models.

  19. Radial Domany-Kinzel models with mutation and selection

    Science.gov (United States)

    Lavrentovich, Maxim O.; Korolev, Kirill S.; Nelson, David R.

    2013-01-01

    We study the effect of spatial structure, genetic drift, mutation, and selective pressure on the evolutionary dynamics in a simplified model of asexual organisms colonizing a new territory. Under an appropriate coarse-graining, the evolutionary dynamics is related to the directed percolation processes that arise in voter models, the Domany-Kinzel (DK) model, contact process, and so on. We explore the differences between linear (flat front) expansions and the much less familiar radial (curved front) range expansions. For the radial expansion, we develop a generalized, off-lattice DK model that minimizes otherwise persistent lattice artifacts. With both simulations and analytical techniques, we study the survival probability of advantageous mutants, the spatial correlations between domains of neutral strains, and the dynamics of populations with deleterious mutations. “Inflation” at the frontier leads to striking differences between radial and linear expansions. For a colony with initial radius R0 expanding at velocity v, significant genetic demixing, caused by local genetic drift, occurs only up to a finite time t*=R0/v, after which portions of the colony become causally disconnected due to the inflating perimeter of the expanding front. As a result, the effect of a selective advantage is amplified relative to genetic drift, increasing the survival probability of advantageous mutants. Inflation also modifies the underlying directed percolation transition, introducing novel scaling functions and modifications similar to a finite-size effect. Finally, we consider radial range expansions with deflating perimeters, as might arise from colonization initiated along the shores of an island.

  20. Using maximum entropy modeling for optimal selection of sampling sites for monitoring networks

    Science.gov (United States)

    Stohlgren, Thomas J.; Kumar, Sunil; Barnett, David T.; Evangelista, Paul H.

    2011-01-01

    Environmental monitoring programs must efficiently describe state shifts. We propose using maximum entropy modeling to select dissimilar sampling sites to capture environmental variability at low cost, and demonstrate a specific application: sample site selection for the Central Plains domain (453,490 km2) of the National Ecological Observatory Network (NEON). We relied on four environmental factors: mean annual temperature and precipitation, elevation, and vegetation type. A “sample site” was defined as a 20 km × 20 km area (equal to NEON’s airborne observation platform [AOP] footprint), within which each 1 km2 cell was evaluated for each environmental factor. After each model run, the most environmentally dissimilar site was selected from all potential sample sites. The iterative selection of eight sites captured approximately 80% of the environmental envelope of the domain, an improvement over stratified random sampling and simple random designs for sample site selection. This approach can be widely used for cost-efficient selection of survey and monitoring sites.

  1. Selection of key terrain attributes for SOC model

    DEFF Research Database (Denmark)

    Greve, Mogens Humlekrog; Adhikari, Kabindra; Chellasamy, Menaka

    As an important component of the global carbon pool, soil organic carbon (SOC) plays an important role in the global carbon cycle. SOC pool is the basic information to carry out global warming research, and needs to sustainable use of land resources. Digital terrain attributes are often use...... was selected, total 2,514,820 data mining models were constructed by 71 differences grid from 12m to 2304m and 22 attributes, 21 attributes derived by DTM and the original elevation. Relative importance and usage of each attributes in every model were calculated. Comprehensive impact rates of each attribute...

  2. The amino-terminal domain of human signal transducers and ...

    Indian Academy of Sciences (India)

    Unknown

    transferase (GST) moiety was cloned into the expression vector pGEX-2T ... containing 100 µg/ml of ampicillin to mid log phase as indicated by the .... equipped with pulsed field gradients. ... ferent algorithms like hidden Markov model (HMM).

  3. Hand Gesture Modeling and Recognition for Human and Robot Interactive Assembly Using Hidden Markov Models

    Directory of Open Access Journals (Sweden)

    Fei Chen

    2015-04-01

    Full Text Available Gesture recognition is essential for human and robot collaboration. Within an industrial hybrid assembly cell, the performance of such a system significantly affects the safety of human workers. This work presents an approach to recognizing hand gestures accurately during an assembly task while in collaboration with a robot co-worker. We have designed and developed a sensor system for measuring natural human-robot interactions. The position and rotation information of a human worker's hands and fingertips are tracked in 3D space while completing a task. A modified chain-code method is proposed to describe the motion trajectory of the measured hands and fingertips. The Hidden Markov Model (HMM method is adopted to recognize patterns via data streams and identify workers' gesture patterns and assembly intentions. The effectiveness of the proposed system is verified by experimental results. The outcome demonstrates that the proposed system is able to automatically segment the data streams and recognize the gesture patterns thus represented with a reasonable accuracy ratio.

  4. Plasmonic Lithography Utilizing Epsilon Near Zero Hyperbolic Metamaterial.

    Science.gov (United States)

    Chen, Xi; Zhang, Cheng; Yang, Fan; Liang, Gaofeng; Li, Qiaochu; Guo, L Jay

    2017-10-24

    In this work, a special hyperbolic metamaterial (HMM) metamaterial is investigated for plasmonic lithography of period reduction patterns. It is a type II HMM (ϵ ∥ 0) whose tangential component of the permittivity ϵ ∥ is close to zero. Due to the high anisotropy of the type II epsilon-near-zero (ENZ) HMM, only one plasmonic mode can propagate horizontally with low loss in a waveguide system with ENZ HMM as its core. This work takes the advantage of a type II ENZ HMM composed of aluminum/aluminum oxide films and the associated unusual mode to expose a photoresist layer in a specially designed lithography system. Periodic patterns with a half pitch of 58.3 nm were achieved due to the interference of third-order diffracted light of the grating. The lines were 1/6 of the mask with a period of 700 nm and ∼1/7 of the wavelength of the incident light. Moreover, the theoretical analyses performed are widely applicable to structures made of different materials such as silver as well as systems working at deep ultraviolet wavelengths including 193, 248, and 365 nm.

  5. Effects of the Ordering of Natural Selection and Population Regulation Mechanisms on Wright-Fisher Models.

    Science.gov (United States)

    He, Zhangyi; Beaumont, Mark; Yu, Feng

    2017-07-05

    We explore the effect of different mechanisms of natural selection on the evolution of populations for one- and two-locus systems. We compare the effect of viability and fecundity selection in the context of the Wright-Fisher model with selection under the assumption of multiplicative fitness. We show that these two modes of natural selection correspond to different orderings of the processes of population regulation and natural selection in the Wright-Fisher model. We find that under the Wright-Fisher model these two different orderings can affect the distribution of trajectories of haplotype frequencies evolving with genetic recombination. However, the difference in the distribution of trajectories is only appreciable when the population is in significant linkage disequilibrium. We find that as linkage disequilibrium decays the trajectories for the two different models rapidly become indistinguishable. We discuss the significance of these findings in terms of biological examples of viability and fecundity selection, and speculate that the effect may be significant when factors such as gene migration maintain a degree of linkage disequilibrium. Copyright © 2017 He et al.

  6. Generalized Selectivity Description for Polymeric Ion-Selective Electrodes Based on the Phase Boundary Potential Model.

    Science.gov (United States)

    Bakker, Eric

    2010-02-15

    A generalized description of the response behavior of potentiometric polymer membrane ion-selective electrodes is presented on the basis of ion-exchange equilibrium considerations at the sample-membrane interface. This paper includes and extends on previously reported theoretical advances in a more compact yet more comprehensive form. Specifically, the phase boundary potential model is used to derive the origin of the Nernstian response behavior in a single expression, which is valid for a membrane containing any charge type and complex stoichiometry of ionophore and ion-exchanger. This forms the basis for a generalized expression of the selectivity coefficient, which may be used for the selectivity optimization of ion-selective membranes containing electrically charged and neutral ionophores of any desired stoichiometry. It is shown to reduce to expressions published previously for specialized cases, and may be effectively applied to problems relevant in modern potentiometry. The treatment is extended to mixed ion solutions, offering a comprehensive yet formally compact derivation of the response behavior of ion-selective electrodes to a mixture of ions of any desired charge. It is compared to predictions by the less accurate Nicolsky-Eisenman equation. The influence of ion fluxes or any form of electrochemical excitation is not considered here, but may be readily incorporated if an ion-exchange equilibrium at the interface may be assumed in these cases.

  7. A Time-Series Water Level Forecasting Model Based on Imputation and Variable Selection Method.

    Science.gov (United States)

    Yang, Jun-He; Cheng, Ching-Hsue; Chan, Chia-Pan

    2017-01-01

    Reservoirs are important for households and impact the national economy. This paper proposed a time-series forecasting model based on estimating a missing value followed by variable selection to forecast the reservoir's water level. This study collected data from the Taiwan Shimen Reservoir as well as daily atmospheric data from 2008 to 2015. The two datasets are concatenated into an integrated dataset based on ordering of the data as a research dataset. The proposed time-series forecasting model summarily has three foci. First, this study uses five imputation methods to directly delete the missing value. Second, we identified the key variable via factor analysis and then deleted the unimportant variables sequentially via the variable selection method. Finally, the proposed model uses a Random Forest to build the forecasting model of the reservoir's water level. This was done to compare with the listing method under the forecasting error. These experimental results indicate that the Random Forest forecasting model when applied to variable selection with full variables has better forecasting performance than the listing model. In addition, this experiment shows that the proposed variable selection can help determine five forecast methods used here to improve the forecasting capability.

  8. An Improved Test Selection Optimization Model Based on Fault Ambiguity Group Isolation and Chaotic Discrete PSO

    Directory of Open Access Journals (Sweden)

    Xiaofeng Lv

    2018-01-01

    Full Text Available Sensor data-based test selection optimization is the basis for designing a test work, which ensures that the system is tested under the constraint of the conventional indexes such as fault detection rate (FDR and fault isolation rate (FIR. From the perspective of equipment maintenance support, the ambiguity isolation has a significant effect on the result of test selection. In this paper, an improved test selection optimization model is proposed by considering the ambiguity degree of fault isolation. In the new model, the fault test dependency matrix is adopted to model the correlation between the system fault and the test group. The objective function of the proposed model is minimizing the test cost with the constraint of FDR and FIR. The improved chaotic discrete particle swarm optimization (PSO algorithm is adopted to solve the improved test selection optimization model. The new test selection optimization model is more consistent with real complicated engineering systems. The experimental result verifies the effectiveness of the proposed method.

  9. Pharmacodynamic Model To Describe the Concentration-Dependent Selection of Cefotaxime-Resistant Escherichia coli

    Science.gov (United States)

    Olofsson, Sara K.; Geli, Patricia; Andersson, Dan I.; Cars, Otto

    2005-01-01

    Antibiotic dosing regimens may vary in their capacity to select mutants. Our hypothesis was that selection of a more resistant bacterial subpopulation would increase with the time within a selective window (SW), i.e., when drug concentrations fall between the MICs of two strains. An in vitro kinetic model was used to study the selection of two Escherichia coli strains with different susceptibilities to cefotaxime. The bacterial mixtures were exposed to cefotaxime for 24 h and SWs of 1, 2, 4, 8, and 12 h. A mathematical model was developed that described the selection of preexisting and newborn mutants and the post-MIC effect (PME) as functions of pharmacokinetic parameters. Our main conclusions were as follows: (i) the selection between preexisting mutants increased with the time within the SW; (ii) the emergence and selection of newborn mutants increased with the time within the SW (with a short time, only 4% of the preexisting mutants were replaced by newborn mutants, compared to the longest times, where 100% were replaced); and (iii) PME increased with the area under the concentration-time curve (AUC) and was slightly more pronounced with a long elimination half-life (T1/2) than with a short T1/2 situation, when AUC is fixed. We showed that, in a dynamic competition between strains with different levels of resistance, the appearance of newborn high-level resistant mutants from the parental strains and the PME can strongly affect the outcome of the selection and that pharmacodynamic models can be used to predict the outcome of resistance development. PMID:16304176

  10. AUTOMATIC SPEECH RECOGNITION SYSTEM CONCERNING THE MOROCCAN DIALECTE (Darija and Tamazight)

    OpenAIRE

    A. EL GHAZI; C. DAOUI; N. IDRISSI

    2012-01-01

    In this work we present an automatic speech recognition system for Moroccan dialect mainly: Darija (Arab dialect) and Tamazight. Many approaches have been used to model the Arabic and Tamazightphonetic units. In this paper, we propose to use the hidden Markov model (HMM) for modeling these phoneticunits. Experimental results show that the proposed approach further improves the recognition.

  11. The Selection of ARIMA Models with or without Regressors

    DEFF Research Database (Denmark)

    Johansen, Søren; Riani, Marco; Atkinson, Anthony C.

    We develop a $C_{p}$ statistic for the selection of regression models with stationary and nonstationary ARIMA error term. We derive the asymptotic theory of the maximum likelihood estimators and show they are consistent and asymptotically Gaussian. We also prove that the distribution of the sum...

  12. Experiment selection for the discrimination of semi-quantitative models of dynamical systems

    NARCIS (Netherlands)

    Vatcheva, [No Value; de Jong, H; Bernard, O; Mars, NJI

    Modeling an experimental system often results in a number of alternative models that are all justified by the available experimental data. To discriminate among these models, additional experiments are needed. Existing methods for the selection of discriminatory experiments in statistics and in

  13. Fuzzy Investment Portfolio Selection Models Based on Interval Analysis Approach

    Directory of Open Access Journals (Sweden)

    Haifeng Guo

    2012-01-01

    Full Text Available This paper employs fuzzy set theory to solve the unintuitive problem of the Markowitz mean-variance (MV portfolio model and extend it to a fuzzy investment portfolio selection model. Our model establishes intervals for expected returns and risk preference, which can take into account investors' different investment appetite and thus can find the optimal resolution for each interval. In the empirical part, we test this model in Chinese stocks investment and find that this model can fulfill different kinds of investors’ objectives. Finally, investment risk can be decreased when we add investment limit to each stock in the portfolio, which indicates our model is useful in practice.

  14. Multiphysics modeling of selective laser sintering/melting

    Science.gov (United States)

    Ganeriwala, Rishi Kumar

    A significant percentage of total global employment is due to the manufacturing industry. However, manufacturing also accounts for nearly 20% of total energy usage in the United States according to the EIA. In fact, manufacturing accounted for 90% of industrial energy consumption and 84% of industry carbon dioxide emissions in 2002. Clearly, advances in manufacturing technology and efficiency are necessary to curb emissions and help society as a whole. Additive manufacturing (AM) refers to a relatively recent group of manufacturing technologies whereby one can 3D print parts, which has the potential to significantly reduce waste, reconfigure the supply chain, and generally disrupt the whole manufacturing industry. Selective laser sintering/melting (SLS/SLM) is one type of AM technology with the distinct advantage of being able to 3D print metals and rapidly produce net shape parts with complicated geometries. In SLS/SLM parts are built up layer-by-layer out of powder particles, which are selectively sintered/melted via a laser. However, in order to produce defect-free parts of sufficient strength, the process parameters (laser power, scan speed, layer thickness, powder size, etc.) must be carefully optimized. Obviously, these process parameters will vary depending on material, part geometry, and desired final part characteristics. Running experiments to optimize these parameters is costly, energy intensive, and extremely material specific. Thus a computational model of this process would be highly valuable. In this work a three dimensional, reduced order, coupled discrete element - finite difference model is presented for simulating the deposition and subsequent laser heating of a layer of powder particles sitting on top of a substrate. Validation is provided and parameter studies are conducted showing the ability of this model to help determine appropriate process parameters and an optimal powder size distribution for a given material. Next, thermal stresses upon

  15. STUDY CONCERNING THE ELABORATION OF CERTAIN ORIENTATION MODELS AND THE INITIAL SELECTION FOR SPEED SKATING

    Directory of Open Access Journals (Sweden)

    Vaida Marius

    2009-12-01

    Full Text Available In realizing this study I started from the premise that, by elaborating certain orientation models and initial selection for the speed skating and their application will appear superior results, necessary results, taking into account the actual evolution of the high performance sport in general and of the speed skating, in special.The target of this study has been the identification of an orientation model and a complete initial selection that should be based on the favorable aptitudes of the speed skating. On the basis of the made researched orientation models and initial selection has been made, things that have been demonstrated experimental that are not viable, the study starting from the data of the 120 copies, the complete experiment being made by 32 subjects separated in two groups, one using the proposed model and the other formed fromsubjects randomly selected.These models can serve as common working instruments both for the orientation process and for the initial selection one, being able to integrate in the proper practical activity, these being used easily both by coaches that are in charge with the proper selection of the athletes but also by the physical education teachers orschool teachers that are in contact with children of an early age.

  16. A finite volume alternate direction implicit approach to modeling selective laser melting

    DEFF Research Database (Denmark)

    Hattel, Jesper Henri; Mohanty, Sankhya

    2013-01-01

    Over the last decade, several studies have attempted to develop thermal models for analyzing the selective laser melting process with a vision to predict thermal stresses, microstructures and resulting mechanical properties of manufactured products. While a holistic model addressing all involved...... to accurately simulate the process, are constrained by either the size or scale of the model domain. A second challenging aspect involves the inclusion of non-linear material behavior into the 3D implicit FE models. An alternating direction implicit (ADI) method based on a finite volume (FV) formulation...... is proposed for modeling single-layer and few-layers selective laser melting processes. The ADI technique is implemented and applied for two cases involving constant material properties and non-linear material behavior. The ADI FV method consume less time while having comparable accuracy with respect to 3D...

  17. Transverse tripolar stimulation of peripheral nerve: a modelling study of spatial selectivity

    NARCIS (Netherlands)

    Deurloo, K.E.I.; Holsheimer, J.; Boom, H.B.K.

    1998-01-01

    Various anode-cathode configurations in a nerve cuff are modelled to predict their spatial selectivity characteristics for functional nerve stimulation. A 3D volume conductor model of a monofascicular nerve is used for the computation of stimulation-induced field potentials, whereas a cable model of

  18. Attention-based Memory Selection Recurrent Network for Language Modeling

    OpenAIRE

    Liu, Da-Rong; Chuang, Shun-Po; Lee, Hung-yi

    2016-01-01

    Recurrent neural networks (RNNs) have achieved great success in language modeling. However, since the RNNs have fixed size of memory, their memory cannot store all the information about the words it have seen before in the sentence, and thus the useful long-term information may be ignored when predicting the next words. In this paper, we propose Attention-based Memory Selection Recurrent Network (AMSRN), in which the model can review the information stored in the memory at each previous time ...

  19. Load Disaggregation via Pattern Recognition: A Feasibility Study of a Novel Method in Residential Building

    Directory of Open Access Journals (Sweden)

    Younghoon Kwak

    2018-04-01

    Full Text Available In response to the need to improve energy-saving processes in older buildings, especially residential ones, this paper describes the potential of a novel method of disaggregating loads in light of the load patterns of household appliances determined in residential buildings. Experiments were designed to be applicable to general residential buildings and four types of commonly used appliances were selected to verify the method. The method assumes that loads are disaggregated and measured by a single primary meter. Following the metering of household appliances and an analysis of the usage patterns of each type, values of electric current were entered into a Hidden Markov Model (HMM to formulate predictions. Thereafter, the HMM repeatedly performed to output the predicted data close to the measured data, while errors between predicted and the measured data were evaluated to determine whether they met tolerance. When the method was examined for 4 days, matching rates in accordance with the load disaggregation outcomes of the household appliances (i.e., laptop, refrigerator, TV, and microwave were 0.994, 0.992, 0.982, and 0.988, respectively. The proposed method can provide insights into how and where within such buildings energy is consumed. As a result, effective and systematic energy saving measures can be derived even in buildings in which monitoring sensors and measurement equipment are not installed.

  20. Covariate selection for the semiparametric additive risk model

    DEFF Research Database (Denmark)

    Martinussen, Torben; Scheike, Thomas

    2009-01-01

    This paper considers covariate selection for the additive hazards model. This model is particularly simple to study theoretically and its practical implementation has several major advantages to the similar methodology for the proportional hazards model. One complication compared...... and study their large sample properties for the situation where the number of covariates p is smaller than the number of observations. We also show that the adaptive Lasso has the oracle property. In many practical situations, it is more relevant to tackle the situation with large p compared with the number...... of observations. We do this by studying the properties of the so-called Dantzig selector in the setting of the additive risk model. Specifically, we establish a bound on how close the solution is to a true sparse signal in the case where the number of covariates is large. In a simulation study, we also compare...

  1. The MCDM Model for Personnel Selection Based on SWARA and ARAS Methods

    Directory of Open Access Journals (Sweden)

    Darjan Karabasevic

    2015-05-01

    Full Text Available Competent employees are the key resource in an organization for achieving success and, therefore, competitiveness on the market. The aim of the recruitment and selection process is to acquire personnel with certain competencies required for a particular position, i.e.,a position within the company. Bearing in mind the fact that in the process of decision making decision-makers have underused the methods of making decisions, this paper aims to establish an MCDM model for the evaluation and selection of candidates in the process of the recruitment and selection of personnel based on the SWARA and the ARAS methods. Apart from providing an MCDM model, the paper will additionally provide a set of evaluation criteria for the position of a sales manager (the middle management in the telecommunication industry which will also be used in the numerical example. On the basis of a numerical example, in the process of employment, theproposed MCDMmodel can be successfully usedin selecting candidates.

  2. A robust multi-objective global supplier selection model under currency fluctuation and price discount

    Science.gov (United States)

    Zarindast, Atousa; Seyed Hosseini, Seyed Mohamad; Pishvaee, Mir Saman

    2017-06-01

    Robust supplier selection problem, in a scenario-based approach has been proposed, when the demand and exchange rates are subject to uncertainties. First, a deterministic multi-objective mixed integer linear programming is developed; then, the robust counterpart of the proposed mixed integer linear programming is presented using the recent extension in robust optimization theory. We discuss decision variables, respectively, by a two-stage stochastic planning model, a robust stochastic optimization planning model which integrates worst case scenario in modeling approach and finally by equivalent deterministic planning model. The experimental study is carried out to compare the performances of the three models. Robust model resulted in remarkable cost saving and it illustrated that to cope with such uncertainties, we should consider them in advance in our planning. In our case study different supplier were selected due to this uncertainties and since supplier selection is a strategic decision, it is crucial to consider these uncertainties in planning approach.

  3. Halo models of HI selected galaxies

    Science.gov (United States)

    Paul, Niladri; Choudhury, Tirthankar Roy; Paranjape, Aseem

    2018-06-01

    Modelling the distribution of neutral hydrogen (HI) in dark matter halos is important for studying galaxy evolution in the cosmological context. We use a novel approach to infer the HI-dark matter connection at the massive end (m_H{I} > 10^{9.8} M_{⊙}) from radio HI emission surveys, using optical properties of low-redshift galaxies as an intermediary. In particular, we use a previously calibrated optical HOD describing the luminosity- and colour-dependent clustering of SDSS galaxies and describe the HI content using a statistical scaling relation between the optical properties and HI mass. This allows us to compute the abundance and clustering properties of HI-selected galaxies and compare with data from the ALFALFA survey. We apply an MCMC-based statistical analysis to constrain the free parameters related to the scaling relation. The resulting best-fit scaling relation identifies massive HI galaxies primarily with optically faint blue centrals, consistent with expectations from galaxy formation models. We compare the Hi-stellar mass relation predicted by our model with independent observations from matched Hi-optical galaxy samples, finding reasonable agreement. As a further application, we make some preliminary forecasts for future observations of HI and optical galaxies in the expected overlap volume of SKA and Euclid/LSST.

  4. PARAMETER ESTIMATION AND MODEL SELECTION FOR INDOOR ENVIRONMENTS BASED ON SPARSE OBSERVATIONS

    Directory of Open Access Journals (Sweden)

    Y. Dehbi

    2017-09-01

    Full Text Available This paper presents a novel method for the parameter estimation and model selection for the reconstruction of indoor environments based on sparse observations. While most approaches for the reconstruction of indoor models rely on dense observations, we predict scenes of the interior with high accuracy in the absence of indoor measurements. We use a model-based top-down approach and incorporate strong but profound prior knowledge. The latter includes probability density functions for model parameters and sparse observations such as room areas and the building footprint. The floorplan model is characterized by linear and bi-linear relations with discrete and continuous parameters. We focus on the stochastic estimation of model parameters based on a topological model derived by combinatorial reasoning in a first step. A Gauss-Markov model is applied for estimation and simulation of the model parameters. Symmetries are represented and exploited during the estimation process. Background knowledge as well as observations are incorporated in a maximum likelihood estimation and model selection is performed with AIC/BIC. The likelihood is also used for the detection and correction of potential errors in the topological model. Estimation results are presented and discussed.

  5. Parameter Estimation and Model Selection for Indoor Environments Based on Sparse Observations

    Science.gov (United States)

    Dehbi, Y.; Loch-Dehbi, S.; Plümer, L.

    2017-09-01

    This paper presents a novel method for the parameter estimation and model selection for the reconstruction of indoor environments based on sparse observations. While most approaches for the reconstruction of indoor models rely on dense observations, we predict scenes of the interior with high accuracy in the absence of indoor measurements. We use a model-based top-down approach and incorporate strong but profound prior knowledge. The latter includes probability density functions for model parameters and sparse observations such as room areas and the building footprint. The floorplan model is characterized by linear and bi-linear relations with discrete and continuous parameters. We focus on the stochastic estimation of model parameters based on a topological model derived by combinatorial reasoning in a first step. A Gauss-Markov model is applied for estimation and simulation of the model parameters. Symmetries are represented and exploited during the estimation process. Background knowledge as well as observations are incorporated in a maximum likelihood estimation and model selection is performed with AIC/BIC. The likelihood is also used for the detection and correction of potential errors in the topological model. Estimation results are presented and discussed.

  6. Automation of Endmember Pixel Selection in SEBAL/METRIC Model

    Science.gov (United States)

    Bhattarai, N.; Quackenbush, L. J.; Im, J.; Shaw, S. B.

    2015-12-01

    The commonly applied surface energy balance for land (SEBAL) and its variant, mapping evapotranspiration (ET) at high resolution with internalized calibration (METRIC) models require manual selection of endmember (i.e. hot and cold) pixels to calibrate sensible heat flux. Current approaches for automating this process are based on statistical methods and do not appear to be robust under varying climate conditions and seasons. In this paper, we introduce a new approach based on simple machine learning tools and search algorithms that provides an automatic and time efficient way of identifying endmember pixels for use in these models. The fully automated models were applied on over 100 cloud-free Landsat images with each image covering several eddy covariance flux sites in Florida and Oklahoma. Observed land surface temperatures at automatically identified hot and cold pixels were within 0.5% of those from pixels manually identified by an experienced operator (coefficient of determination, R2, ≥ 0.92, Nash-Sutcliffe efficiency, NSE, ≥ 0.92, and root mean squared error, RMSE, ≤ 1.67 K). Daily ET estimates derived from the automated SEBAL and METRIC models were in good agreement with their manual counterparts (e.g., NSE ≥ 0.91 and RMSE ≤ 0.35 mm day-1). Automated and manual pixel selection resulted in similar estimates of observed ET across all sites. The proposed approach should reduce time demands for applying SEBAL/METRIC models and allow for their more widespread and frequent use. This automation can also reduce potential bias that could be introduced by an inexperienced operator and extend the domain of the models to new users.

  7. A Hidden Markov Model Representing the Spatial and Temporal Correlation of Multiple Wind Farms

    DEFF Research Database (Denmark)

    Fang, Jiakun; Su, Chi; Hu, Weihao

    2015-01-01

    To accommodate the increasing wind energy with stochastic nature becomes a major issue on power system reliability. This paper proposes a methodology to characterize the spatiotemporal correlation of multiple wind farms. First, a hierarchical clustering method based on self-organizing maps is ado....... The proposed statistical modeling framework is compatible with the sequential power system reliability analysis. A case study on optimal sizing and location of fast-response regulation sources is presented.......To accommodate the increasing wind energy with stochastic nature becomes a major issue on power system reliability. This paper proposes a methodology to characterize the spatiotemporal correlation of multiple wind farms. First, a hierarchical clustering method based on self-organizing maps...... is adopted to categorize the similar output patterns of several wind farms into joint states. Then the hidden Markov model (HMM) is then designed to describe the temporal correlations among these joint states. Unlike the conventional Markov chain model, the accumulated wind power is taken into consideration...

  8. Selecting an interprofessional education model for a tertiary health care setting.

    Science.gov (United States)

    Menard, Prudy; Varpio, Lara

    2014-07-01

    The World Health Organization describes interprofessional education (IPE) and collaboration as necessary components of all health professionals' education - in curriculum and in practice. However, no standard framework exists to guide healthcare settings in developing or selecting an IPE model that meets the learning needs of licensed practitioners in practice and that suits the unique needs of their setting. Initially, a broad review of the grey literature (organizational websites, government documents and published books) and healthcare databases was undertaken for existing IPE models. Subsequently, database searches of published papers using Scopus, Scholars Portal and Medline was undertaken. Through this search process five IPE models were identified in the literature. This paper attempts to: briefly outline the five different models of IPE that are presently offered in the literature; and illustrate how a healthcare setting can select the IPE model within their context using Reeves' seven key trends in developing IPE. In presenting these results, the paper contributes to the interprofessional literature by offering an overview of possible IPE models that can be used to inform the implementation or modification of interprofessional practices in a tertiary healthcare setting.

  9. Multivariate time series modeling of selected childhood diseases in ...

    African Journals Online (AJOL)

    This paper is focused on modeling the five most prevalent childhood diseases in Akwa Ibom State using a multivariate approach to time series. An aggregate of 78,839 reported cases of malaria, upper respiratory tract infection (URTI), Pneumonia, anaemia and tetanus were extracted from five randomly selected hospitals in ...

  10. A Time-Series Water Level Forecasting Model Based on Imputation and Variable Selection Method

    Directory of Open Access Journals (Sweden)

    Jun-He Yang

    2017-01-01

    Full Text Available Reservoirs are important for households and impact the national economy. This paper proposed a time-series forecasting model based on estimating a missing value followed by variable selection to forecast the reservoir’s water level. This study collected data from the Taiwan Shimen Reservoir as well as daily atmospheric data from 2008 to 2015. The two datasets are concatenated into an integrated dataset based on ordering of the data as a research dataset. The proposed time-series forecasting model summarily has three foci. First, this study uses five imputation methods to directly delete the missing value. Second, we identified the key variable via factor analysis and then deleted the unimportant variables sequentially via the variable selection method. Finally, the proposed model uses a Random Forest to build the forecasting model of the reservoir’s water level. This was done to compare with the listing method under the forecasting error. These experimental results indicate that the Random Forest forecasting model when applied to variable selection with full variables has better forecasting performance than the listing model. In addition, this experiment shows that the proposed variable selection can help determine five forecast methods used here to improve the forecasting capability.

  11. Mental health courts and their selection processes: modeling variation for consistency.

    Science.gov (United States)

    Wolff, Nancy; Fabrikant, Nicole; Belenko, Steven

    2011-10-01

    Admission into mental health courts is based on a complicated and often variable decision-making process that involves multiple parties representing different expertise and interests. To the extent that eligibility criteria of mental health courts are more suggestive than deterministic, selection bias can be expected. Very little research has focused on the selection processes underpinning problem-solving courts even though such processes may dominate the performance of these interventions. This article describes a qualitative study designed to deconstruct the selection and admission processes of mental health courts. In this article, we describe a multi-stage, complex process for screening and admitting clients into mental health courts. The selection filtering model that is described has three eligibility screening stages: initial, assessment, and evaluation. The results of this study suggest that clients selected by mental health courts are shaped by the formal and informal selection criteria, as well as by the local treatment system.

  12. Selection Strategies for Social Influence in the Threshold Model

    Science.gov (United States)

    Karampourniotis, Panagiotis; Szymanski, Boleslaw; Korniss, Gyorgy

    The ubiquity of online social networks makes the study of social influence extremely significant for its applications to marketing, politics and security. Maximizing the spread of influence by strategically selecting nodes as initiators of a new opinion or trend is a challenging problem. We study the performance of various strategies for selection of large fractions of initiators on a classical social influence model, the Threshold model (TM). Under the TM, a node adopts a new opinion only when the fraction of its first neighbors possessing that opinion exceeds a pre-assigned threshold. The strategies we study are of two kinds: strategies based solely on the initial network structure (Degree-rank, Dominating Sets, PageRank etc.) and strategies that take into account the change of the states of the nodes during the evolution of the cascade, e.g. the greedy algorithm. We find that the performance of these strategies depends largely on both the network structure properties, e.g. the assortativity, and the distribution of the thresholds assigned to the nodes. We conclude that the optimal strategy needs to combine the network specifics and the model specific parameters to identify the most influential spreaders. Supported in part by ARL NS-CTA, ARO, and ONR.

  13. Selection of models to calculate the LLW source term

    International Nuclear Information System (INIS)

    Sullivan, T.M.

    1991-10-01

    Performance assessment of a LLW disposal facility begins with an estimation of the rate at which radionuclides migrate out of the facility (i.e., the source term). The focus of this work is to develop a methodology for calculating the source term. In general, the source term is influenced by the radionuclide inventory, the wasteforms and containers used to dispose of the inventory, and the physical processes that lead to release from the facility (fluid flow, container degradation, wasteform leaching, and radionuclide transport). In turn, many of these physical processes are influenced by the design of the disposal facility (e.g., infiltration of water). The complexity of the problem and the absence of appropriate data prevent development of an entirely mechanistic representation of radionuclide release from a disposal facility. Typically, a number of assumptions, based on knowledge of the disposal system, are used to simplify the problem. This document provides a brief overview of disposal practices and reviews existing source term models as background for selecting appropriate models for estimating the source term. The selection rationale and the mathematical details of the models are presented. Finally, guidance is presented for combining the inventory data with appropriate mechanisms describing release from the disposal facility. 44 refs., 6 figs., 1 tab

  14. No evidence for the use of DIR, D-D fusions, chromosome 15 open reading frames or VH replacement in the peripheral repertoire was found on application of an improved algorithm, JointML, to 6329 human immunoglobulin H rearrangements

    DEFF Research Database (Denmark)

    Ohm-Laursen, Line; Nielsen, Morten; Larsen, Stine R

    2006-01-01

    gene (VH) replacement. Safe conclusions require large, well-defined sequence samples and algorithms minimizing stochastic assignment of segments. Two computer programs were developed for analysis of heavy chain joints. JointHMM is a profile hidden Markow model, while JointML is a maximum...

  15. Prediction of lipoprotein signal peptides in Gram-negative bacteria

    DEFF Research Database (Denmark)

    Juncker, Agnieszka; Willenbrock, Hanni; Von Heijne, G.

    2003-01-01

    A method to predict lipoprotein signal peptides in Gram-negative Eubacteria, LipoP, has been developed. The hidden Markov model (HMM) was able to distinguish between lipoproteins (SPaseII-cleaved proteins), SPaseI-cleaved proteins, cytoplasmic proteins, and transmembrane proteins. This predictor ...

  16. Parameter Selection and Performance Analysis of Mobile Terminal Models Based on Unity3D

    Institute of Scientific and Technical Information of China (English)

    KONG Li-feng; ZHAO Hai-ying; XU Guang-mei

    2014-01-01

    Mobile platform is now widely seen as a promising multimedia service with a favorable user group and market prospect. To study the influence of mobile terminal models on the quality of scene roaming, a parameter setting platform of mobile terminal models is established to select the parameter selection and performance index on different mobile platforms in this paper. This test platform is established based on model optimality principle, analyzing the performance curve of mobile terminals in different scene models and then deducing the external parameter of model establishment. Simulation results prove that the established test platform is able to analyze the parameter and performance matching list of a mobile terminal model.

  17. Application Of Decision Tree Approach To Student Selection Model- A Case Study

    Science.gov (United States)

    Harwati; Sudiya, Amby

    2016-01-01

    The main purpose of the institution is to provide quality education to the students and to improve the quality of managerial decisions. One of the ways to improve the quality of students is to arrange the selection of new students with a more selective. This research takes the case in the selection of new students at Islamic University of Indonesia, Yogyakarta, Indonesia. One of the university's selection is through filtering administrative selection based on the records of prospective students at the high school without paper testing. Currently, that kind of selection does not yet has a standard model and criteria. Selection is only done by comparing candidate application file, so the subjectivity of assessment is very possible to happen because of the lack standard criteria that can differentiate the quality of students from one another. By applying data mining techniques classification, can be built a model selection for new students which includes criteria to certain standards such as the area of origin, the status of the school, the average value and so on. These criteria are determined by using rules that appear based on the classification of the academic achievement (GPA) of the students in previous years who entered the university through the same way. The decision tree method with C4.5 algorithm is used here. The results show that students are given priority for admission is that meet the following criteria: came from the island of Java, public school, majoring in science, an average value above 75, and have at least one achievement during their study in high school.

  18. In vivo control of CpG and non-CpG DNA methylation by DNA methyltransferases.

    Directory of Open Access Journals (Sweden)

    Julia Arand

    2012-06-01

    Full Text Available The enzymatic control of the setting and maintenance of symmetric and non-symmetric DNA methylation patterns in a particular genome context is not well understood. Here, we describe a comprehensive analysis of DNA methylation patterns generated by high resolution sequencing of hairpin-bisulfite amplicons of selected single copy genes and repetitive elements (LINE1, B1, IAP-LTR-retrotransposons, and major satellites. The analysis unambiguously identifies a substantial amount of regional incomplete methylation maintenance, i.e. hemimethylated CpG positions, with variant degrees among cell types. Moreover, non-CpG cytosine methylation is confined to ESCs and exclusively catalysed by Dnmt3a and Dnmt3b. This sequence position-, cell type-, and region-dependent non-CpG methylation is strongly linked to neighboring CpG methylation and requires the presence of Dnmt3L. The generation of a comprehensive data set of 146,000 CpG dyads was used to apply and develop parameter estimated hidden Markov models (HMM to calculate the relative contribution of DNA methyltransferases (Dnmts for de novo and maintenance DNA methylation. The comparative modelling included wild-type ESCs and mutant ESCs deficient for Dnmt1, Dnmt3a, Dnmt3b, or Dnmt3a/3b, respectively. The HMM analysis identifies a considerable de novo methylation activity for Dnmt1 at certain repetitive elements and single copy sequences. Dnmt3a and Dnmt3b contribute de novo function. However, both enzymes are also essential to maintain symmetrical CpG methylation at distinct repetitive and single copy sequences in ESCs.

  19. A Network Analysis Model for Selecting Sustainable Technology

    Directory of Open Access Journals (Sweden)

    Sangsung Park

    2015-09-01

    Full Text Available Most companies develop technologies to improve their competitiveness in the marketplace. Typically, they then patent these technologies around the world in order to protect their intellectual property. Other companies may use patented technologies to develop new products, but must pay royalties to the patent holders or owners. Should they fail to do so, this can result in legal disputes in the form of patent infringement actions between companies. To avoid such situations, companies attempt to research and develop necessary technologies before their competitors do so. An important part of this process is analyzing existing patent documents in order to identify emerging technologies. In such analyses, extracting sustainable technology from patent data is important, because sustainable technology drives technological competition among companies and, thus, the development of new technologies. In addition, selecting sustainable technologies makes it possible to plan their R&D (research and development efficiently. In this study, we propose a network model that can be used to select the sustainable technology from patent documents, based on the centrality and degree of a social network analysis. To verify the performance of the proposed model, we carry out a case study using actual patent data from patent databases.

  20. An effective approach for annotation of protein families with low sequence similarity and conserved motifs: identifying GDSL hydrolases across the plant kingdom.

    Science.gov (United States)

    Vujaklija, Ivan; Bielen, Ana; Paradžik, Tina; Biđin, Siniša; Goldstein, Pavle; Vujaklija, Dušica

    2016-02-18

    The massive accumulation of protein sequences arising from the rapid development of high-throughput sequencing, coupled with automatic annotation, results in high levels of incorrect annotations. In this study, we describe an approach to decrease annotation errors of protein families characterized by low overall sequence similarity. The GDSL lipolytic family comprises proteins with multifunctional properties and high potential for pharmaceutical and industrial applications. The number of proteins assigned to this family has increased rapidly over the last few years. In particular, the natural abundance of GDSL enzymes reported recently in plants indicates that they could be a good source of novel GDSL enzymes. We noticed that a significant proportion of annotated sequences lack specific GDSL motif(s) or catalytic residue(s). Here, we applied motif-based sequence analyses to identify enzymes possessing conserved GDSL motifs in selected proteomes across the plant kingdom. Motif-based HMM scanning (Viterbi decoding-VD and posterior decoding-PD) and the here described PD/VD protocol were successfully applied on 12 selected plant proteomes to identify sequences with GDSL motifs. A significant number of identified GDSL sequences were novel. Moreover, our scanning approach successfully detected protein sequences lacking at least one of the essential motifs (171/820) annotated by Pfam profile search (PfamA) as GDSL. Based on these analyses we provide a curated list of GDSL enzymes from the selected plants. CLANS clustering and phylogenetic analysis helped us to gain a better insight into the evolutionary relationship of all identified GDSL sequences. Three novel GDSL subfamilies as well as unreported variations in GDSL motifs were discovered in this study. In addition, analyses of selected proteomes showed a remarkable expansion of GDSL enzymes in the lycophyte, Selaginella moellendorffii. Finally, we provide a general motif-HMM scanner which is easily accessible through

  1. HMM Adaptation for Improving a Human Activity Recognition System

    Directory of Open Access Journals (Sweden)

    Rubén San-Segundo

    2016-09-01

    Full Text Available When developing a fully automatic system for evaluating motor activities performed by a person, it is necessary to segment and recognize the different activities in order to focus the analysis. This process must be carried out by a Human Activity Recognition (HAR system. This paper proposes a user adaptation technique for improving a HAR system based on Hidden Markov Models (HMMs. This system segments and recognizes six different physical activities (walking, walking upstairs, walking downstairs, sitting, standing and lying down using inertial signals from a smartphone. The system is composed of a feature extractor for obtaining the most relevant characteristics from the inertial signals, a module for training the six HMMs (one per activity, and the last module for segmenting new activity sequences using these models. The user adaptation technique consists of a Maximum A Posteriori (MAP approach that adapts the activity HMMs to the user, using some activity examples from this specific user. The main results on a public dataset have reported a significant relative error rate reduction of more than 30%. In conclusion, adapting a HAR system to the user who is performing the physical activities provides significant improvement in the system’s performance.

  2. Hybrid nested sampling algorithm for Bayesian model selection applied to inverse subsurface flow problems

    International Nuclear Information System (INIS)

    Elsheikh, Ahmed H.; Wheeler, Mary F.; Hoteit, Ibrahim

    2014-01-01

    A Hybrid Nested Sampling (HNS) algorithm is proposed for efficient Bayesian model calibration and prior model selection. The proposed algorithm combines, Nested Sampling (NS) algorithm, Hybrid Monte Carlo (HMC) sampling and gradient estimation using Stochastic Ensemble Method (SEM). NS is an efficient sampling algorithm that can be used for Bayesian calibration and estimating the Bayesian evidence for prior model selection. Nested sampling has the advantage of computational feasibility. Within the nested sampling algorithm, a constrained sampling step is performed. For this step, we utilize HMC to reduce the correlation between successive sampled states. HMC relies on the gradient of the logarithm of the posterior distribution, which we estimate using a stochastic ensemble method based on an ensemble of directional derivatives. SEM only requires forward model runs and the simulator is then used as a black box and no adjoint code is needed. The developed HNS algorithm is successfully applied for Bayesian calibration and prior model selection of several nonlinear subsurface flow problems

  3. Hybrid nested sampling algorithm for Bayesian model selection applied to inverse subsurface flow problems

    Energy Technology Data Exchange (ETDEWEB)

    Elsheikh, Ahmed H., E-mail: aelsheikh@ices.utexas.edu [Institute for Computational Engineering and Sciences (ICES), University of Texas at Austin, TX (United States); Institute of Petroleum Engineering, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom); Wheeler, Mary F. [Institute for Computational Engineering and Sciences (ICES), University of Texas at Austin, TX (United States); Hoteit, Ibrahim [Department of Earth Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal (Saudi Arabia)

    2014-02-01

    A Hybrid Nested Sampling (HNS) algorithm is proposed for efficient Bayesian model calibration and prior model selection. The proposed algorithm combines, Nested Sampling (NS) algorithm, Hybrid Monte Carlo (HMC) sampling and gradient estimation using Stochastic Ensemble Method (SEM). NS is an efficient sampling algorithm that can be used for Bayesian calibration and estimating the Bayesian evidence for prior model selection. Nested sampling has the advantage of computational feasibility. Within the nested sampling algorithm, a constrained sampling step is performed. For this step, we utilize HMC to reduce the correlation between successive sampled states. HMC relies on the gradient of the logarithm of the posterior distribution, which we estimate using a stochastic ensemble method based on an ensemble of directional derivatives. SEM only requires forward model runs and the simulator is then used as a black box and no adjoint code is needed. The developed HNS algorithm is successfully applied for Bayesian calibration and prior model selection of several nonlinear subsurface flow problems.

  4. Hybrid nested sampling algorithm for Bayesian model selection applied to inverse subsurface flow problems

    KAUST Repository

    Elsheikh, Ahmed H.

    2014-02-01

    A Hybrid Nested Sampling (HNS) algorithm is proposed for efficient Bayesian model calibration and prior model selection. The proposed algorithm combines, Nested Sampling (NS) algorithm, Hybrid Monte Carlo (HMC) sampling and gradient estimation using Stochastic Ensemble Method (SEM). NS is an efficient sampling algorithm that can be used for Bayesian calibration and estimating the Bayesian evidence for prior model selection. Nested sampling has the advantage of computational feasibility. Within the nested sampling algorithm, a constrained sampling step is performed. For this step, we utilize HMC to reduce the correlation between successive sampled states. HMC relies on the gradient of the logarithm of the posterior distribution, which we estimate using a stochastic ensemble method based on an ensemble of directional derivatives. SEM only requires forward model runs and the simulator is then used as a black box and no adjoint code is needed. The developed HNS algorithm is successfully applied for Bayesian calibration and prior model selection of several nonlinear subsurface flow problems. © 2013 Elsevier Inc.

  5. A decision model for energy resource selection in China

    International Nuclear Information System (INIS)

    Wang Bing; Kocaoglu, Dundar F.; Daim, Tugrul U.; Yang Jiting

    2010-01-01

    This paper evaluates coal, petroleum, natural gas, nuclear energy and renewable energy resources as energy alternatives for China through use of a hierarchical decision model. The results indicate that although coal is still the major preferred energy alternative, it is followed closely by renewable energy. The sensitivity analysis indicates that the most critical criterion for energy selection is the current energy infrastructure. A hierarchical decision model is used, and expert judgments are quantified, to evaluate the alternatives. Criteria used for the evaluations are availability, current energy infrastructure, price, safety, environmental impacts and social impacts.

  6. Selection bias in species distribution models: An econometric approach on forest trees based on structural modeling

    Science.gov (United States)

    Martin-StPaul, N. K.; Ay, J. S.; Guillemot, J.; Doyen, L.; Leadley, P.

    2014-12-01

    Species distribution models (SDMs) are widely used to study and predict the outcome of global changes on species. In human dominated ecosystems the presence of a given species is the result of both its ecological suitability and human footprint on nature such as land use choices. Land use choices may thus be responsible for a selection bias in the presence/absence data used in SDM calibration. We present a structural modelling approach (i.e. based on structural equation modelling) that accounts for this selection bias. The new structural species distribution model (SSDM) estimates simultaneously land use choices and species responses to bioclimatic variables. A land use equation based on an econometric model of landowner choices was joined to an equation of species response to bioclimatic variables. SSDM allows the residuals of both equations to be dependent, taking into account the possibility of shared omitted variables and measurement errors. We provide a general description of the statistical theory and a set of applications on forest trees over France using databases of climate and forest inventory at different spatial resolution (from 2km to 8km). We also compared the outputs of the SSDM with outputs of a classical SDM (i.e. Biomod ensemble modelling) in terms of bioclimatic response curves and potential distributions under current climate and climate change scenarios. The shapes of the bioclimatic response curves and the modelled species distribution maps differed markedly between SSDM and classical SDMs, with contrasted patterns according to species and spatial resolutions. The magnitude and directions of these differences were dependent on the correlations between the errors from both equations and were highest for higher spatial resolutions. A first conclusion is that the use of classical SDMs can potentially lead to strong miss-estimation of the actual and future probability of presence modelled. Beyond this selection bias, the SSDM we propose represents

  7. Bayesian model selection of template forward models for EEG source reconstruction.

    Science.gov (United States)

    Strobbe, Gregor; van Mierlo, Pieter; De Vos, Maarten; Mijović, Bogdan; Hallez, Hans; Van Huffel, Sabine; López, José David; Vandenberghe, Stefaan

    2014-06-01

    Several EEG source reconstruction techniques have been proposed to identify the generating neuronal sources of electrical activity measured on the scalp. The solution of these techniques depends directly on the accuracy of the forward model that is inverted. Recently, a parametric empirical Bayesian (PEB) framework for distributed source reconstruction in EEG/MEG was introduced and implemented in the Statistical Parametric Mapping (SPM) software. The framework allows us to compare different forward modeling approaches, using real data, instead of using more traditional simulated data from an assumed true forward model. In the absence of a subject specific MR image, a 3-layered boundary element method (BEM) template head model is currently used including a scalp, skull and brain compartment. In this study, we introduced volumetric template head models based on the finite difference method (FDM). We constructed a FDM head model equivalent to the BEM model and an extended FDM model including CSF. These models were compared within the context of three different types of source priors related to the type of inversion used in the PEB framework: independent and identically distributed (IID) sources, equivalent to classical minimum norm approaches, coherence (COH) priors similar to methods such as LORETA, and multiple sparse priors (MSP). The resulting models were compared based on ERP data of 20 subjects using Bayesian model selection for group studies. The reconstructed activity was also compared with the findings of previous studies using functional magnetic resonance imaging. We found very strong evidence in favor of the extended FDM head model with CSF and assuming MSP. These results suggest that the use of realistic volumetric forward models can improve PEB EEG source reconstruction. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. A Reliability Based Model for Wind Turbine Selection

    Directory of Open Access Journals (Sweden)

    A.K. Rajeevan

    2013-06-01

    Full Text Available A wind turbine generator output at a specific site depends on many factors, particularly cut- in, rated and cut-out wind speed parameters. Hence power output varies from turbine to turbine. The objective of this paper is to develop a mathematical relationship between reliability and wind power generation. The analytical computation of monthly wind power is obtained from weibull statistical model using cubic mean cube root of wind speed. Reliability calculation is based on failure probability analysis. There are many different types of wind turbinescommercially available in the market. From reliability point of view, to get optimum reliability in power generation, it is desirable to select a wind turbine generator which is best suited for a site. The mathematical relationship developed in this paper can be used for site-matching turbine selection in reliability point of view.

  9. Modeling Sexual Selection in Túngara Frog and Rationality of Mate Choice.

    Science.gov (United States)

    Vargas Bernal, Esteban; Sanabria Malagon, Camilo

    2017-12-01

    The males of the species of frogs Engystomops pustulosus produce simple and complex calls to lure females, as a way of intersexual selection. Complex calls lead males to a greater reproductive success than what simple calls do. However, the complex calls are also more attractive to their main predator, the bat Trachops cirrhosus. Therefore, as M. Ryan suggests in (The túngara frog: a study in sexual selection and communication. University of Chicago Press, Chicago, 1985), the complexity of the calls lets the frogs keep a trade-off between reproductive success and predation. In this paper, we verify this trade-off from the perspective of game theory. We first model the proportion of simple calls as a symmetric game of two strategies. We also model the effect of adding a third strategy, males that keep quiet and intercept females, which would play a role of intrasexual selection. Under the assumption that the decision of the males takes into account this trade-off between reproductive success and predation, our model reproduces the observed behavior reported in the literature with minimal assumption on the parameters. From the model with three strategies, we verify that the quiet strategy could only coexists with the simple and complex strategies if the rate at which quiet males intercept females is high, which explains the rarity of the quiet strategy. We conclude that the reproductive strategy of the male frog E. pustulosus is rational.

  10. COPS model estimates of LLEA availability near selected reactor sites

    International Nuclear Information System (INIS)

    Berkbigler, K.P.

    1979-11-01

    The COPS computer model has been used to estimate local law enforcement agency (LLEA) officer availability in the neighborhood of selected nuclear reactor sites. The results of these analyses are presented both in graphic and tabular form in this report

  11. Selective advantage of tolerant cultural traits in the Axelrod-Schelling model

    Science.gov (United States)

    Gracia-Lázaro, C.; Floría, L. M.; Moreno, Y.

    2011-05-01

    The Axelrod-Schelling model incorporates into the original Axelrod’s model of cultural dissemination the possibility that cultural agents placed in culturally dissimilar environments move to other places, the strength of this mobility being controlled by an intolerance parameter. By allowing heterogeneity in the intolerance of cultural agents, and considering it as a cultural feature, i.e., susceptible of cultural transmission (thus breaking the original symmetry of Axelrod-Schelling dynamics), we address here the question of whether tolerant or intolerant traits are more likely to become dominant in the long-term cultural dynamics. Our results show that tolerant traits possess a clear selective advantage in the framework of the Axelrod-Schelling model. We show that the reason for this selective advantage is the development, as time evolves, of a positive correlation between the number of neighbors that an agent has in its environment and its tolerant character.

  12. Congruence analysis of geodetic networks - hypothesis tests versus model selection by information criteria

    Science.gov (United States)

    Lehmann, Rüdiger; Lösler, Michael

    2017-12-01

    Geodetic deformation analysis can be interpreted as a model selection problem. The null model indicates that no deformation has occurred. It is opposed to a number of alternative models, which stipulate different deformation patterns. A common way to select the right model is the usage of a statistical hypothesis test. However, since we have to test a series of deformation patterns, this must be a multiple test. As an alternative solution for the test problem, we propose the p-value approach. Another approach arises from information theory. Here, the Akaike information criterion (AIC) or some alternative is used to select an appropriate model for a given set of observations. Both approaches are discussed and applied to two test scenarios: A synthetic levelling network and the Delft test data set. It is demonstrated that they work but behave differently, sometimes even producing different results. Hypothesis tests are well-established in geodesy, but may suffer from an unfavourable choice of the decision error rates. The multiple test also suffers from statistical dependencies between the test statistics, which are neglected. Both problems are overcome by applying information criterions like AIC.

  13. Statistical power of model selection strategies for genome-wide association studies.

    Directory of Open Access Journals (Sweden)

    Zheyang Wu

    2009-07-01

    Full Text Available Genome-wide association studies (GWAS aim to identify genetic variants related to diseases by examining the associations between phenotypes and hundreds of thousands of genotyped markers. Because many genes are potentially involved in common diseases and a large number of markers are analyzed, it is crucial to devise an effective strategy to identify truly associated variants that have individual and/or interactive effects, while controlling false positives at the desired level. Although a number of model selection methods have been proposed in the literature, including marginal search, exhaustive search, and forward search, their relative performance has only been evaluated through limited simulations due to the lack of an analytical approach to calculating the power of these methods. This article develops a novel statistical approach for power calculation, derives accurate formulas for the power of different model selection strategies, and then uses the formulas to evaluate and compare these strategies in genetic model spaces. In contrast to previous studies, our theoretical framework allows for random genotypes, correlations among test statistics, and a false-positive control based on GWAS practice. After the accuracy of our analytical results is validated through simulations, they are utilized to systematically evaluate and compare the performance of these strategies in a wide class of genetic models. For a specific genetic model, our results clearly reveal how different factors, such as effect size, allele frequency, and interaction, jointly affect the statistical power of each strategy. An example is provided for the application of our approach to empirical research. The statistical approach used in our derivations is general and can be employed to address the model selection problems in other random predictor settings. We have developed an R package markerSearchPower to implement our formulas, which can be downloaded from the

  14. Modeling and Experimental Validation of the Electron Beam Selective Melting Process

    Directory of Open Access Journals (Sweden)

    Wentao Yan

    2017-10-01

    Full Text Available Electron beam selective melting (EBSM is a promising additive manufacturing (AM technology. The EBSM process consists of three major procedures: ① spreading a powder layer, ② preheating to slightly sinter the powder, and ③ selectively melting the powder bed. The highly transient multi-physics phenomena involved in these procedures pose a significant challenge for in situ experimental observation and measurement. To advance the understanding of the physical mechanisms in each procedure, we leverage high-fidelity modeling and post-process experiments. The models resemble the actual fabrication procedures, including ① a powder-spreading model using the discrete element method (DEM, ② a phase field (PF model of powder sintering (solid-state sintering, and ③ a powder-melting (liquid-state sintering model using the finite volume method (FVM. Comprehensive insights into all the major procedures are provided, which have rarely been reported. Preliminary simulation results (including powder particle packing within the powder bed, sintering neck formation between particles, and single-track defects agree qualitatively with experiments, demonstrating the ability to understand the mechanisms and to guide the design and optimization of the experimental setup and manufacturing process.

  15. Human Commercial Models' Eye Colour Shows Negative Frequency-Dependent Selection.

    Directory of Open Access Journals (Sweden)

    Isabela Rodrigues Nogueira Forti

    Full Text Available In this study we investigated the eye colour of human commercial models registered in the UK (400 female and 400 male and Brazil (400 female and 400 male to test the hypothesis that model eye colour frequency was the result of negative frequency-dependent selection. The eye colours of the models were classified as: blue, brown or intermediate. Chi-square analyses of data for countries separated by sex showed that in the United Kingdom brown eyes and intermediate colours were significantly more frequent than expected in comparison to the general United Kingdom population (P<0.001. In Brazil, the most frequent eye colour brown was significantly less frequent than expected in comparison to the general Brazilian population. These results support the hypothesis that model eye colour is the result of negative frequency-dependent selection. This could be the result of people using eye colour as a marker of genetic diversity and finding rarer eye colours more attractive because of the potential advantage more genetically diverse offspring that could result from such a choice. Eye colour may be important because in comparison to many other physical traits (e.g., hair colour it is hard to modify, hide or disguise, and it is highly polymorphic.

  16. Detecting critical state before phase transition of complex biological systems by hidden Markov model.

    Science.gov (United States)

    Chen, Pei; Liu, Rui; Li, Yongjun; Chen, Luonan

    2016-07-15

    Identifying the critical state or pre-transition state just before the occurrence of a phase transition is a challenging task, because the state of the system may show little apparent change before this critical transition during the gradual parameter variations. Such dynamics of phase transition is generally composed of three stages, i.e. before-transition state, pre-transition state and after-transition state, which can be considered as three different Markov processes. By exploring the rich dynamical information provided by high-throughput data, we present a novel computational method, i.e. hidden Markov model (HMM) based approach, to detect the switching point of the two Markov processes from the before-transition state (a stationary Markov process) to the pre-transition state (a time-varying Markov process), thereby identifying the pre-transition state or early-warning signals of the phase transition. To validate the effectiveness, we apply this method to detect the signals of the imminent phase transitions of complex systems based on the simulated datasets, and further identify the pre-transition states as well as their critical modules for three real datasets, i.e. the acute lung injury triggered by phosgene inhalation, MCF-7 human breast cancer caused by heregulin and HCV-induced dysplasia and hepatocellular carcinoma. Both functional and pathway enrichment analyses validate the computational results. The source code and some supporting files are available at https://github.com/rabbitpei/HMM_based-method lnchen@sibs.ac.cn or liyj@scut.edu.cn Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  17. Selection of Models for Ingestion Pathway and Relocation Radii Determination

    International Nuclear Information System (INIS)

    Blanchard, A.

    1998-01-01

    The distance at which intermediate phase protective actions (such as food interdiction and relocation) may be needed following postulated accidents at three Savannah River Site nonreactor nuclear facilities will be determined by modeling. The criteria used to select dispersion/deposition models are presented. Several models were considered, including ARAC, MACCS, HOTSPOT, WINDS (coupled with PUFF-PLUME), and UFOTRI. Although ARAC and WINDS are expected to provide more accurate modeling of atmospheric transport following an actual release, analyses consistent with regulatory guidance for planning purposes may be accomplished with comparatively simple dispersion models such as HOTSPOT and UFOTRI. A recommendation is made to use HOTSPOT for non-tritium facilities and UFOTRI for tritium facilities

  18. Progressive sampling-based Bayesian optimization for efficient and automatic machine learning model selection.

    Science.gov (United States)

    Zeng, Xueqiang; Luo, Gang

    2017-12-01

    Machine learning is broadly used for clinical data analysis. Before training a model, a machine learning algorithm must be selected. Also, the values of one or more model parameters termed hyper-parameters must be set. Selecting algorithms and hyper-parameter values requires advanced machine learning knowledge and many labor-intensive manual iterations. To lower the bar to machine learning, miscellaneous automatic selection methods for algorithms and/or hyper-parameter values have been proposed. Existing automatic selection methods are inefficient on large data sets. This poses a challenge for using machine learning in the clinical big data era. To address the challenge, this paper presents progressive sampling-based Bayesian optimization, an efficient and automatic selection method for both algorithms and hyper-parameter values. We report an implementation of the method. We show that compared to a state of the art automatic selection method, our method can significantly reduce search time, classification error rate, and standard deviation of error rate due to randomization. This is major progress towards enabling fast turnaround in identifying high-quality solutions required by many machine learning-based clinical data analysis tasks.

  19. N-mix for fish: estimating riverine salmonid habitat selection via N-mixture models

    Science.gov (United States)

    Som, Nicholas A.; Perry, Russell W.; Jones, Edward C.; De Juilio, Kyle; Petros, Paul; Pinnix, William D.; Rupert, Derek L.

    2018-01-01

    Models that formulate mathematical linkages between fish use and habitat characteristics are applied for many purposes. For riverine fish, these linkages are often cast as resource selection functions with variables including depth and velocity of water and distance to nearest cover. Ecologists are now recognizing the role that detection plays in observing organisms, and failure to account for imperfect detection can lead to spurious inference. Herein, we present a flexible N-mixture model to associate habitat characteristics with the abundance of riverine salmonids that simultaneously estimates detection probability. Our formulation has the added benefits of accounting for demographics variation and can generate probabilistic statements regarding intensity of habitat use. In addition to the conceptual benefits, model application to data from the Trinity River, California, yields interesting results. Detection was estimated to vary among surveyors, but there was little spatial or temporal variation. Additionally, a weaker effect of water depth on resource selection is estimated than that reported by previous studies not accounting for detection probability. N-mixture models show great promise for applications to riverine resource selection.

  20. Location-based Mobile Relay Selection and Impact of Inaccurate Path Loss Model Parameters

    DEFF Research Database (Denmark)

    Nielsen, Jimmy Jessen; Madsen, Tatiana Kozlova; Schwefel, Hans-Peter

    2010-01-01

    In this paper we propose a relay selection scheme which uses collected location information together with a path loss model for relay selection, and analyze the performance impact of mobility and different error causes on this scheme. Performance is evaluated in terms of bit error rate...... by simulations. The SNR measurement based relay selection scheme proposed previously is unsuitable for use with fast moving users in e.g. vehicular scenarios due to a large signaling overhead. The proposed location based scheme is shown to work well with fast moving users due to a lower signaling overhead...... in these situations. As the location-based scheme relies on a path loss model to estimate link qualities and select relays, the sensitivity with respect to inaccurate estimates of the unknown path loss model parameters is investigated. The parameter ranges that result in useful performance were found...

  1. On theoretical models of gene expression evolution with random genetic drift and natural selection.

    Directory of Open Access Journals (Sweden)

    Osamu Ogasawara

    2009-11-01

    Full Text Available The relative contributions of natural selection and random genetic drift are a major source of debate in the study of gene expression evolution, which is hypothesized to serve as a bridge from molecular to phenotypic evolution. It has been suggested that the conflict between views is caused by the lack of a definite model of the neutral hypothesis, which can describe the long-run behavior of evolutionary change in mRNA abundance. Therefore previous studies have used inadequate analogies with the neutral prediction of other phenomena, such as amino acid or nucleotide sequence evolution, as the null hypothesis of their statistical inference.In this study, we introduced two novel theoretical models, one based on neutral drift and the other assuming natural selection, by focusing on a common property of the distribution of mRNA abundance among a variety of eukaryotic cells, which reflects the result of long-term evolution. Our results demonstrated that (1 our models can reproduce two independently found phenomena simultaneously: the time development of gene expression divergence and Zipf's law of the transcriptome; (2 cytological constraints can be explicitly formulated to describe long-term evolution; (3 the model assuming that natural selection optimized relative mRNA abundance was more consistent with previously published observations than the model of optimized absolute mRNA abundances.The models introduced in this study give a formulation of evolutionary change in the mRNA abundance of each gene as a stochastic process, on the basis of previously published observations. This model provides a foundation for interpreting observed data in studies of gene expression evolution, including identifying an adequate time scale for discriminating the effect of natural selection from that of random genetic drift of selectively neutral variations.

  2. WPMSD: A Malicious Script Detection Method Inspired by the Process of Immunoglobulin Secretion

    Directory of Open Access Journals (Sweden)

    Hui Zhao

    2011-10-01

    Full Text Available Inspired by the process of immunoglobulin secretion in biological body, we present a Web Page Malicious Script Detection Method (WPMSD. In this paper, Firstly, the basic definitions of artificial immune items are given. Secondly, according to the spreading range of malicious script, the immunoglobulin number is changed as the detector clone proliferation is stimulated by malicious scripts. Further more, the nonlinear dynamics of antibody number is discussed. Thirdly, we propose a probability approach to trigger alarms to inform that the detected scripts are harmful. Finally, the WPMSD collects the effective immunoglobulin set based on Hidden Markov Model (HMM to update the detector gene library. Compared with the traditional immune based detection methods, such as Negative Selection Algorithm (NSA, Dynamic Colonel Selection (DynamiCS, and Variable size Detector (Vdetector, the false alarm rate of WPMSD has been reduced by 18.09%, 12.6%, and 7.47% respectively.

  3. Bayesian selection of misspecified models is overconfident and may cause spurious posterior probabilities for phylogenetic trees.

    Science.gov (United States)

    Yang, Ziheng; Zhu, Tianqi

    2018-02-20

    The Bayesian method is noted to produce spuriously high posterior probabilities for phylogenetic trees in analysis of large datasets, but the precise reasons for this overconfidence are unknown. In general, the performance of Bayesian selection of misspecified models is poorly understood, even though this is of great scientific interest since models are never true in real data analysis. Here we characterize the asymptotic behavior of Bayesian model selection and show that when the competing models are equally wrong, Bayesian model selection exhibits surprising and polarized behaviors in large datasets, supporting one model with full force while rejecting the others. If one model is slightly less wrong than the other, the less wrong model will eventually win when the amount of data increases, but the method may become overconfident before it becomes reliable. We suggest that this extreme behavior may be a major factor for the spuriously high posterior probabilities for evolutionary trees. The philosophical implications of our results to the application of Bayesian model selection to evaluate opposing scientific hypotheses are yet to be explored, as are the behaviors of non-Bayesian methods in similar situations.

  4. Monitoring Farmland Loss Caused by Urbanization in Beijing from Modis Time Series Using Hierarchical Hidden Markov Model

    Science.gov (United States)

    Yuan, Y.; Meng, Y.; Chen, Y. X.; Jiang, C.; Yue, A. Z.

    2018-04-01

    In this study, we proposed a method to map urban encroachment onto farmland using satellite image time series (SITS) based on the hierarchical hidden Markov model (HHMM). In this method, the farmland change process is decomposed into three hierarchical levels, i.e., the land cover level, the vegetation phenology level, and the SITS level. Then a three-level HHMM is constructed to model the multi-level semantic structure of farmland change process. Once the HHMM is established, a change from farmland to built-up could be detected by inferring the underlying state sequence that is most likely to generate the input time series. The performance of the method is evaluated on MODIS time series in Beijing. Results on both simulated and real datasets demonstrate that our method improves the change detection accuracy compared with the HMM-based method.

  5. Speech Acquisition and Automatic Speech Recognition for Integrated Spacesuit Audio Systems

    Science.gov (United States)

    Huang, Yiteng; Chen, Jingdong; Chen, Shaoyan

    2010-01-01

    A voice-command human-machine interface system has been developed for spacesuit extravehicular activity (EVA) missions. A multichannel acoustic signal processing method has been created for distant speech acquisition in noisy and reverberant environments. This technology reduces noise by exploiting differences in the statistical nature of signal (i.e., speech) and noise that exists in the spatial and temporal domains. As a result, the automatic speech recognition (ASR) accuracy can be improved to the level at which crewmembers would find the speech interface useful. The developed speech human/machine interface will enable both crewmember usability and operational efficiency. It can enjoy a fast rate of data/text entry, small overall size, and can be lightweight. In addition, this design will free the hands and eyes of a suited crewmember. The system components and steps include beam forming/multi-channel noise reduction, single-channel noise reduction, speech feature extraction, feature transformation and normalization, feature compression, model adaption, ASR HMM (Hidden Markov Model) training, and ASR decoding. A state-of-the-art phoneme recognizer can obtain an accuracy rate of 65 percent when the training and testing data are free of noise. When it is used in spacesuits, the rate drops to about 33 percent. With the developed microphone array speech-processing technologies, the performance is improved and the phoneme recognition accuracy rate rises to 44 percent. The recognizer can be further improved by combining the microphone array and HMM model adaptation techniques and using speech samples collected from inside spacesuits. In addition, arithmetic complexity models for the major HMMbased ASR components were developed. They can help real-time ASR system designers select proper tasks when in the face of constraints in computational resources.

  6. Numerical Model based Reliability Estimation of Selective Laser Melting Process

    DEFF Research Database (Denmark)

    Mohanty, Sankhya; Hattel, Jesper Henri

    2014-01-01

    Selective laser melting is developing into a standard manufacturing technology with applications in various sectors. However, the process is still far from being at par with conventional processes such as welding and casting, the primary reason of which is the unreliability of the process. While...... of the selective laser melting process. A validated 3D finite-volume alternating-direction-implicit numerical technique is used to model the selective laser melting process, and is calibrated against results from single track formation experiments. Correlation coefficients are determined for process input...... parameters such as laser power, speed, beam profile, etc. Subsequently, uncertainties in the processing parameters are utilized to predict a range for the various outputs, using a Monte Carlo method based uncertainty analysis methodology, and the reliability of the process is established....

  7. Selecting Sensitive Parameter Subsets in Dynamical Models With Application to Biomechanical System Identification.

    Science.gov (United States)

    Ramadan, Ahmed; Boss, Connor; Choi, Jongeun; Peter Reeves, N; Cholewicki, Jacek; Popovich, John M; Radcliffe, Clark J

    2018-07-01

    Estimating many parameters of biomechanical systems with limited data may achieve good fit but may also increase 95% confidence intervals in parameter estimates. This results in poor identifiability in the estimation problem. Therefore, we propose a novel method to select sensitive biomechanical model parameters that should be estimated, while fixing the remaining parameters to values obtained from preliminary estimation. Our method relies on identifying the parameters to which the measurement output is most sensitive. The proposed method is based on the Fisher information matrix (FIM). It was compared against the nonlinear least absolute shrinkage and selection operator (LASSO) method to guide modelers on the pros and cons of our FIM method. We present an application identifying a biomechanical parametric model of a head position-tracking task for ten human subjects. Using measured data, our method (1) reduced model complexity by only requiring five out of twelve parameters to be estimated, (2) significantly reduced parameter 95% confidence intervals by up to 89% of the original confidence interval, (3) maintained goodness of fit measured by variance accounted for (VAF) at 82%, (4) reduced computation time, where our FIM method was 164 times faster than the LASSO method, and (5) selected similar sensitive parameters to the LASSO method, where three out of five selected sensitive parameters were shared by FIM and LASSO methods.

  8. Modeling of Clostridium tyrobutyricum for Butyric Acid Selectivity in Continuous Fermentation

    OpenAIRE

    Du, Jianjun; McGraw, Amy; Hestekin, Jamie

    2014-01-01

    A mathematical model was developed to describe batch and continuous fermentation of glucose to organic acids with Clostridium tyrobutyricum. A modified Monod equation was used to describe cell growth, and a Luedeking-Piret equation was used to describe the production of butyric and acetic acids. Using the batch fermentation equations, models predicting butyric acid selectivity for continuous fermentation were also developed. The model showed that butyric acid production was a strong function ...

  9. Habitat selection models for Pacific sand lance (Ammodytes hexapterus) in Prince William Sound, Alaska

    Science.gov (United States)

    Ostrand, William D.; Gotthardt, Tracey A.; Howlin, Shay; Robards, Martin D.

    2005-01-01

    We modeled habitat selection by Pacific sand lance (Ammodytes hexapterus) by examining their distribution in relation to water depth, distance to shore, bottom slope, bottom type, distance from sand bottom, and shoreline type. Through both logistic regression and classification tree models, we compared the characteristics of 29 known sand lance locations to 58 randomly selected sites. The best models indicated a strong selection of shallow water by sand lance, with weaker association between sand lance distribution and beach shorelines, sand bottoms, distance to shore, bottom slope, and distance to the nearest sand bottom. We applied an information-theoretic approach to the interpretation of the logistic regression analysis and determined importance values of 0.99, 0.54, 0.52, 0.44, 0.39, and 0.25 for depth, beach shorelines, sand bottom, distance to shore, gradual bottom slope, and distance to the nearest sand bottom, respectively. The classification tree model indicated that sand lance selected shallow-water habitats and remained near sand bottoms when located in habitats with depths between 40 and 60 m. All sand lance locations were at depths lance and the independent variables are discussed.

  10. A Quality Function Deployment-Based Model for Cutting Fluid Selection

    Directory of Open Access Journals (Sweden)

    Kanika Prasad

    2016-01-01

    Full Text Available Cutting fluid is applied for numerous reasons while machining a workpiece, like increasing tool life, minimizing workpiece thermal deformation, enhancing surface finish, flushing away chips from cutting surface, and so on. Hence, choosing a proper cutting fluid for a specific machining application becomes important for enhanced efficiency and effectiveness of a manufacturing process. Cutting fluid selection is a complex procedure as the decision depends on many complicated interactions, including work material’s machinability, rigorousness of operation, cutting tool material, metallurgical, chemical, and human compatibility, reliability and stability of fluid, and cost. In this paper, a decision making model is developed based on quality function deployment technique with a view to respond to the complex character of cutting fluid selection problem and facilitate judicious selection of cutting fluid from a comprehensive list of available alternatives. In the first example, HD-CUTSOL is recognized as the most suitable cutting fluid for drilling holes in titanium alloy with tungsten carbide tool and in the second example, for performing honing operation on stainless steel alloy with cubic boron nitride tool, CF5 emerges out as the best honing fluid. Implementation of this model would result in cost reduction through decreased manpower requirement, enhanced workforce efficiency, and efficient information exploitation.

  11. Primitive Based Action Representation and Recognition

    DEFF Research Database (Denmark)

    Baby, Sanmohan; Krüger, Volker

    2009-01-01

    a sequential and statistical     learning algorithm for   automatic detection of the action primitives and the action grammar   based on these primitives.  We model a set of actions using a   single HMM whose structure is learned incrementally as we observe   new types.   Actions are modeled with sufficient...

  12. A Model of Social Selection and Successful Altruism

    Science.gov (United States)

    1989-10-07

    D., The evolution of social behavior. Annual Reviews of Ecological Systems, 5:325-383 (1974). 2. Dawkins , R., The selfish gene . Oxford: Oxford...alive and well. it will be important to re- examine this striking historical experience,-not in terms o, oversimplified models of the " selfish gene ," but...Darwinian Analysis The acceptance by many modern geneticists of the axiom that the basic unit of selection Is the " selfish gene " quickly led to the

  13. An Optimization Model for the Selection of Bus-Only Lanes in a City.

    Science.gov (United States)

    Chen, Qun

    2015-01-01

    The planning of urban bus-only lane networks is an important measure to improve bus service and bus priority. To determine the effective arrangement of bus-only lanes, a bi-level programming model for urban bus lane layout is developed in this study that considers accessibility and budget constraints. The goal of the upper-level model is to minimize the total travel time, and the lower-level model is a capacity-constrained traffic assignment model that describes the passenger flow assignment on bus lines, in which the priority sequence of the transfer times is reflected in the passengers' route-choice behaviors. Using the proposed bi-level programming model, optimal bus lines are selected from a set of candidate bus lines; thus, the corresponding bus lane network on which the selected bus lines run is determined. The solution method using a genetic algorithm in the bi-level programming model is developed, and two numerical examples are investigated to demonstrate the efficacy of the proposed model.

  14. An Optimization Model for the Selection of Bus-Only Lanes in a City.

    Directory of Open Access Journals (Sweden)

    Qun Chen

    Full Text Available The planning of urban bus-only lane networks is an important measure to improve bus service and bus priority. To determine the effective arrangement of bus-only lanes, a bi-level programming model for urban bus lane layout is developed in this study that considers accessibility and budget constraints. The goal of the upper-level model is to minimize the total travel time, and the lower-level model is a capacity-constrained traffic assignment model that describes the passenger flow assignment on bus lines, in which the priority sequence of the transfer times is reflected in the passengers' route-choice behaviors. Using the proposed bi-level programming model, optimal bus lines are selected from a set of candidate bus lines; thus, the corresponding bus lane network on which the selected bus lines run is determined. The solution method using a genetic algorithm in the bi-level programming model is developed, and two numerical examples are investigated to demonstrate the efficacy of the proposed model.

  15. Efficient spiking neural network model of pattern motion selectivity in visual cortex.

    Science.gov (United States)

    Beyeler, Michael; Richert, Micah; Dutt, Nikil D; Krichmar, Jeffrey L

    2014-07-01

    Simulating large-scale models of biological motion perception is challenging, due to the required memory to store the network structure and the computational power needed to quickly solve the neuronal dynamics. A low-cost yet high-performance approach to simulating large-scale neural network models in real-time is to leverage the parallel processing capability of graphics processing units (GPUs). Based on this approach, we present a two-stage model of visual area MT that we believe to be the first large-scale spiking network to demonstrate pattern direction selectivity. In this model, component-direction-selective (CDS) cells in MT linearly combine inputs from V1 cells that have spatiotemporal receptive fields according to the motion energy model of Simoncelli and Heeger. Pattern-direction-selective (PDS) cells in MT are constructed by pooling over MT CDS cells with a wide range of preferred directions. Responses of our model neurons are comparable to electrophysiological results for grating and plaid stimuli as well as speed tuning. The behavioral response of the network in a motion discrimination task is in agreement with psychophysical data. Moreover, our implementation outperforms a previous implementation of the motion energy model by orders of magnitude in terms of computational speed and memory usage. The full network, which comprises 153,216 neurons and approximately 40 million synapses, processes 20 frames per second of a 40 × 40 input video in real-time using a single off-the-shelf GPU. To promote the use of this algorithm among neuroscientists and computer vision researchers, the source code for the simulator, the network, and analysis scripts are publicly available.

  16. Using the Animal Model to Accelerate Response to Selection in a Self-Pollinating Crop

    Science.gov (United States)

    Cowling, Wallace A.; Stefanova, Katia T.; Beeck, Cameron P.; Nelson, Matthew N.; Hargreaves, Bonnie L. W.; Sass, Olaf; Gilmour, Arthur R.; Siddique, Kadambot H. M.

    2015-01-01

    We used the animal model in S0 (F1) recurrent selection in a self-pollinating crop including, for the first time, phenotypic and relationship records from self progeny, in addition to cross progeny, in the pedigree. We tested the model in Pisum sativum, the autogamous annual species used by Mendel to demonstrate the particulate nature of inheritance. Resistance to ascochyta blight (Didymella pinodes complex) in segregating S0 cross progeny was assessed by best linear unbiased prediction over two cycles of selection. Genotypic concurrence across cycles was provided by pure-line ancestors. From cycle 1, 102/959 S0 plants were selected, and their S1 self progeny were intercrossed and selfed to produce 430 S0 and 575 S2 individuals that were evaluated in cycle 2. The analysis was improved by including all genetic relationships (with crossing and selfing in the pedigree), additive and nonadditive genetic covariances between cycles, fixed effects (cycles and spatial linear trends), and other random effects. Narrow-sense heritability for ascochyta blight resistance was 0.305 and 0.352 in cycles 1 and 2, respectively, calculated from variance components in the full model. The fitted correlation of predicted breeding values across cycles was 0.82. Average accuracy of predicted breeding values was 0.851 for S2 progeny of S1 parent plants and 0.805 for S0 progeny tested in cycle 2, and 0.878 for S1 parent plants for which no records were available. The forecasted response to selection was 11.2% in the next cycle with 20% S0 selection proportion. This is the first application of the animal model to cyclic selection in heterozygous populations of selfing plants. The method can be used in genomic selection, and for traits measured on S0-derived bulks such as grain yield. PMID:25943522

  17. Continuum model for chiral induced spin selectivity in helical molecules

    Energy Technology Data Exchange (ETDEWEB)

    Medina, Ernesto [Centro de Física, Instituto Venezolano de Investigaciones Científicas, 21827, Caracas 1020 A (Venezuela, Bolivarian Republic of); Groupe de Physique Statistique, Institut Jean Lamour, Université de Lorraine, 54506 Vandoeuvre-les-Nancy Cedex (France); Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287 (United States); González-Arraga, Luis A. [IMDEA Nanoscience, Cantoblanco, 28049 Madrid (Spain); Finkelstein-Shapiro, Daniel; Mujica, Vladimiro [Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287 (United States); Berche, Bertrand [Centro de Física, Instituto Venezolano de Investigaciones Científicas, 21827, Caracas 1020 A (Venezuela, Bolivarian Republic of); Groupe de Physique Statistique, Institut Jean Lamour, Université de Lorraine, 54506 Vandoeuvre-les-Nancy Cedex (France)

    2015-05-21

    A minimal model is exactly solved for electron spin transport on a helix. Electron transport is assumed to be supported by well oriented p{sub z} type orbitals on base molecules forming a staircase of definite chirality. In a tight binding interpretation, the spin-orbit coupling (SOC) opens up an effective π{sub z} − π{sub z} coupling via interbase p{sub x,y} − p{sub z} hopping, introducing spin coupled transport. The resulting continuum model spectrum shows two Kramers doublet transport channels with a gap proportional to the SOC. Each doubly degenerate channel satisfies time reversal symmetry; nevertheless, a bias chooses a transport direction and thus selects for spin orientation. The model predicts (i) which spin orientation is selected depending on chirality and bias, (ii) changes in spin preference as a function of input Fermi level and (iii) back-scattering suppression protected by the SO gap. We compute the spin current with a definite helicity and find it to be proportional to the torsion of the chiral structure and the non-adiabatic Aharonov-Anandan phase. To describe room temperature transport, we assume that the total transmission is the result of a product of coherent steps.

  18. Acute leukemia classification by ensemble particle swarm model selection.

    Science.gov (United States)

    Escalante, Hugo Jair; Montes-y-Gómez, Manuel; González, Jesús A; Gómez-Gil, Pilar; Altamirano, Leopoldo; Reyes, Carlos A; Reta, Carolina; Rosales, Alejandro

    2012-07-01

    Acute leukemia is a malignant disease that affects a large proportion of the world population. Different types and subtypes of acute leukemia require different treatments. In order to assign the correct treatment, a physician must identify the leukemia type or subtype. Advanced and precise methods are available for identifying leukemia types, but they are very expensive and not available in most hospitals in developing countries. Thus, alternative methods have been proposed. An option explored in this paper is based on the morphological properties of bone marrow images, where features are extracted from medical images and standard machine learning techniques are used to build leukemia type classifiers. This paper studies the use of ensemble particle swarm model selection (EPSMS), which is an automated tool for the selection of classification models, in the context of acute leukemia classification. EPSMS is the application of particle swarm optimization to the exploration of the search space of ensembles that can be formed by heterogeneous classification models in a machine learning toolbox. EPSMS does not require prior domain knowledge and it is able to select highly accurate classification models without user intervention. Furthermore, specific models can be used for different classification tasks. We report experimental results for acute leukemia classification with real data and show that EPSMS outperformed the best results obtained using manually designed classifiers with the same data. The highest performance using EPSMS was of 97.68% for two-type classification problems and of 94.21% for more than two types problems. To the best of our knowledge, these are the best results reported for this data set. Compared with previous studies, these improvements were consistent among different type/subtype classification tasks, different features extracted from images, and different feature extraction regions. The performance improvements were statistically significant

  19. Leukocyte Motility Models Assessed through Simulation and Multi-objective Optimization-Based Model Selection.

    Directory of Open Access Journals (Sweden)

    Mark N Read

    2016-09-01

    Full Text Available The advent of two-photon microscopy now reveals unprecedented, detailed spatio-temporal data on cellular motility and interactions in vivo. Understanding cellular motility patterns is key to gaining insight into the development and possible manipulation of the immune response. Computational simulation has become an established technique for understanding immune processes and evaluating hypotheses in the context of experimental data, and there is clear scope to integrate microscopy-informed motility dynamics. However, determining which motility model best reflects in vivo motility is non-trivial: 3D motility is an intricate process requiring several metrics to characterize. This complicates model selection and parameterization, which must be performed against several metrics simultaneously. Here we evaluate Brownian motion, Lévy walk and several correlated random walks (CRWs against the motility dynamics of neutrophils and lymph node T cells under inflammatory conditions by simultaneously considering cellular translational and turn speeds, and meandering indices. Heterogeneous cells exhibiting a continuum of inherent translational speeds and directionalities comprise both datasets, a feature significantly improving capture of in vivo motility when simulated as a CRW. Furthermore, translational and turn speeds are inversely correlated, and the corresponding CRW simulation again improves capture of our in vivo data, albeit to a lesser extent. In contrast, Brownian motion poorly reflects our data. Lévy walk is competitive in capturing some aspects of neutrophil motility, but T cell directional persistence only, therein highlighting the importance of evaluating models against several motility metrics simultaneously. This we achieve through novel application of multi-objective optimization, wherein each model is independently implemented and then parameterized to identify optimal trade-offs in performance against each metric. The resultant Pareto

  20. Order Selection for General Expression of Nonlinear Autoregressive Model Based on Multivariate Stepwise Regression

    Science.gov (United States)

    Shi, Jinfei; Zhu, Songqing; Chen, Ruwen

    2017-12-01

    An order selection method based on multiple stepwise regressions is proposed for General Expression of Nonlinear Autoregressive model which converts the model order problem into the variable selection of multiple linear regression equation. The partial autocorrelation function is adopted to define the linear term in GNAR model. The result is set as the initial model, and then the nonlinear terms are introduced gradually. Statistics are chosen to study the improvements of both the new introduced and originally existed variables for the model characteristics, which are adopted to determine the model variables to retain or eliminate. So the optimal model is obtained through data fitting effect measurement or significance test. The simulation and classic time-series data experiment results show that the method proposed is simple, reliable and can be applied to practical engineering.