DEFF Research Database (Denmark)
ElSalamouny, Ehab; Nielsen, Mogens; Sassone, Vladimiro
2010-01-01
Probabilistic trust has been adopted as an approach to taking security sensitive decisions in modern global computing environments. Existing probabilistic trust frameworks either assume fixed behaviour for the principals or incorporate the notion of ‘decay' as an ad hoc approach to cope...... with their dynamic behaviour. Using Hidden Markov Models (HMMs) for both modelling and approximating the behaviours of principals, we introduce the HMM-based trust model as a new approach to evaluating trust in systems exhibiting dynamic behaviour. This model avoids the fixed behaviour assumption which is considered...... the major limitation of existing Beta trust model. We show the consistency of the HMM-based trust model and contrast it against the well known Beta trust model with the decay principle in terms of the estimation precision....
HMM_Model-Checker pour la vérification probabiliste HMM_Model ...
African Journals Online (AJOL)
ASSIA
probabiliste –Télescope Hubble. Abstract. Probabilistic verification for embedded systems continues to attract more and more followers in the research community. Given a probabilistic model, a formula of temporal logic, describing a property of a system and an exploration algorithm to check whether the property is satisfied ...
Objective measures to improve the selection of training speakers in HMM-based child speech synthesis
CSIR Research Space (South Africa)
Govender, Avashna
2016-12-01
Full Text Available Building synthetic child voices is considered a difficult task due to the challenges associated with data collection. As a result, speaker adaptation in conjunction with Hidden Markov Model (HMM)-based synthesis has become prevalent in this domain...
Study on solitary word based on HMM model and Baum-Welch algorithm
Directory of Open Access Journals (Sweden)
Junxia CHEN
Full Text Available This paper introduces the principle of Hidden Markov Model, which is used to describe the Markov process with unknown parameters, is a probability model to describe the statistical properties of the random process. On this basis, designed a solitary word detection experiment based on HMM model, by optimizing the experimental model, Using Baum-Welch algorithm for training the problem of solving the HMM model, HMM model to estimate the parameters of the λ value is found, in this view of mathematics equivalent to other linear prediction coefficient. This experiment in reducing unnecessary HMM training at the same time, reduced the algorithm complexity. In order to test the effectiveness of the Baum-Welch algorithm, The simulation of experimental data, the results show that the algorithm is effective.
Speech-To-Text Conversion STT System Using Hidden Markov Model HMM
Directory of Open Access Journals (Sweden)
Su Myat Mon
2015-06-01
Full Text Available Abstract Speech is an easiest way to communicate with each other. Speech processing is widely used in many applications like security devices household appliances cellular phones ATM machines and computers. The human computer interface has been developed to communicate or interact conveniently for one who is suffering from some kind of disabilities. Speech-to-Text Conversion STT systems have a lot of benefits for the deaf or dumb people and find their applications in our daily lives. In the same way the aim of the system is to convert the input speech signals into the text output for the deaf or dumb students in the educational fields. This paper presents an approach to extract features by using Mel Frequency Cepstral Coefficients MFCC from the speech signals of isolated spoken words. And Hidden Markov Model HMM method is applied to train and test the audio files to get the recognized spoken word. The speech database is created by using MATLAB.Then the original speech signals are preprocessed and these speech samples are extracted to the feature vectors which are used as the observation sequences of the Hidden Markov Model HMM recognizer. The feature vectors are analyzed in the HMM depending on the number of states.
Accelerated Profile HMM Searches.
Directory of Open Access Journals (Sweden)
Sean R Eddy
2011-10-01
Full Text Available Profile hidden Markov models (profile HMMs and probabilistic inference methods have made important contributions to the theory of sequence database homology search. However, practical use of profile HMM methods has been hindered by the computational expense of existing software implementations. Here I describe an acceleration heuristic for profile HMMs, the "multiple segment Viterbi" (MSV algorithm. The MSV algorithm computes an optimal sum of multiple ungapped local alignment segments using a striped vector-parallel approach previously described for fast Smith/Waterman alignment. MSV scores follow the same statistical distribution as gapped optimal local alignment scores, allowing rapid evaluation of significance of an MSV score and thus facilitating its use as a heuristic filter. I also describe a 20-fold acceleration of the standard profile HMM Forward/Backward algorithms using a method I call "sparse rescaling". These methods are assembled in a pipeline in which high-scoring MSV hits are passed on for reanalysis with the full HMM Forward/Backward algorithm. This accelerated pipeline is implemented in the freely available HMMER3 software package. Performance benchmarks show that the use of the heuristic MSV filter sacrifices negligible sensitivity compared to unaccelerated profile HMM searches. HMMER3 is substantially more sensitive and 100- to 1000-fold faster than HMMER2. HMMER3 is now about as fast as BLAST for protein searches.
HMM Adaptation for child speech synthesis
CSIR Research Space (South Africa)
Govender, Avashna
2015-09-01
Full Text Available Hidden Markov Model (HMM)-based synthesis in combination with speaker adaptation has proven to be an approach that is well-suited for child speech synthesis. This paper describes the development and evaluation of different HMM-based child speech...
Directory of Open Access Journals (Sweden)
Nandi Soumyadeep
2007-03-01
Full Text Available Abstract Background Profile Hidden Markov Models (HMM are statistical representations of protein families derived from patterns of sequence conservation in multiple alignments and have been used in identifying remote homologues with considerable success. These conservation patterns arise from fold specific signals, shared across multiple families, and function specific signals unique to the families. The availability of sequences pre-classified according to their function permits the use of negative training sequences to improve the specificity of the HMM, both by optimizing the threshold cutoff and by modifying emission probabilities to minimize the influence of fold-specific signals. A protocol to generate family specific HMMs is described that first constructs a profile HMM from an alignment of the family's sequences and then uses this model to identify sequences belonging to other classes that score above the default threshold (false positives. Ten-fold cross validation is used to optimise the discrimination threshold score for the model. The advent of fast multiple alignment methods enables the use of the profile alignments to align the true and false positive sequences, and the resulting alignments are used to modify the emission probabilities in the original model. Results The protocol, called HMM-ModE, was validated on a set of sequences belonging to six sub-families of the AGC family of kinases. These sequences have an average sequence similarity of 63% among the group though each sub-group has a different substrate specificity. The optimisation of discrimination threshold, by using negative sequences scored against the model improves specificity in test cases from an average of 21% to 98%. Further discrimination by the HMM after modifying model probabilities using negative training sequences is provided in a few cases, the average specificity rising to 99%. Similar improvements were obtained with a sample of G-Protein coupled receptors
A stochastic HMM-based forecasting model for fuzzy time series.
Li, Sheng-Tun; Cheng, Yi-Chung
2010-10-01
Recently, fuzzy time series have attracted more academic attention than traditional time series due to their capability of dealing with the uncertainty and vagueness inherent in the data collected. The formulation of fuzzy relations is one of the key issues affecting forecasting results. Most of the present works adopt IF-THEN rules for relationship representation, which leads to higher computational overhead and rule redundancy. Sullivan and Woodall proposed a Markov-based formulation and a forecasting model to reduce computational overhead; however, its applicability is limited to handling one-factor problems. In this paper, we propose a novel forecasting model based on the hidden Markov model by enhancing Sullivan and Woodall's work to allow handling of two-factor forecasting problems. Moreover, in order to make the nature of conjecture and randomness of forecasting more realistic, the Monte Carlo method is adopted to estimate the outcome. To test the effectiveness of the resulting stochastic model, we conduct two experiments and compare the results with those from other models. The first experiment consists of forecasting the daily average temperature and cloud density in Taipei, Taiwan, and the second experiment is based on the Taiwan Weighted Stock Index by forecasting the exchange rate of the New Taiwan dollar against the U.S. dollar. In addition to improving forecasting accuracy, the proposed model adheres to the central limit theorem, and thus, the result statistically approximates to the real mean of the target value being forecast.
HMM filtering and parameter estimation of an electricity spot price model
International Nuclear Information System (INIS)
Erlwein, Christina; Benth, Fred Espen; Mamon, Rogemar
2010-01-01
In this paper we develop a model for electricity spot price dynamics. The spot price is assumed to follow an exponential Ornstein-Uhlenbeck (OU) process with an added compound Poisson process. In this way, the model allows for mean-reversion and possible jumps. All parameters are modulated by a hidden Markov chain in discrete time. They are able to switch between different economic regimes representing the interaction of various factors. Through the application of reference probability technique, adaptive filters are derived, which in turn, provide optimal estimates for the state of the Markov chain and related quantities of the observation process. The EM algorithm is applied to find optimal estimates of the model parameters in terms of the recursive filters. We implement this self-calibrating model on a deseasonalised series of daily spot electricity prices from the Nordic exchange Nord Pool. On the basis of one-step ahead forecasts, we found that the model is able to capture the empirical characteristics of Nord Pool spot prices. (author)
HMM Logos for visualization of protein families
Directory of Open Access Journals (Sweden)
Schultz Jörg
2004-01-01
Full Text Available Abstract Background Profile Hidden Markov Models (pHMMs are a widely used tool for protein family research. Up to now, however, there exists no method to visualize all of their central aspects graphically in an intuitively understandable way. Results We present a visualization method that incorporates both emission and transition probabilities of the pHMM, thus extending sequence logos introduced by Schneider and Stephens. For each emitting state of the pHMM, we display a stack of letters. The stack height is determined by the deviation of the position's letter emission frequencies from the background frequencies. The stack width visualizes both the probability of reaching the state (the hitting probability and the expected number of letters the state emits during a pass through the model (the state's expected contribution. A web interface offering online creation of HMM Logos and the corresponding source code can be found at the Logos web server of the Max Planck Institute for Molecular Genetics http://logos.molgen.mpg.de. Conclusions We demonstrate that HMM Logos can be a useful tool for the biologist: We use them to highlight differences between two homologous subfamilies of GTPases, Rab and Ras, and we show that they are able to indicate structural elements of Ras.
Hidden Neural Networks: A Framework for HMM/NN Hybrids
DEFF Research Database (Denmark)
Riis, Søren Kamaric; Krogh, Anders Stærmose
1997-01-01
This paper presents a general framework for hybrids of hidden Markov models (HMM) and neural networks (NN). In the new framework called hidden neural networks (HNN) the usual HMM probability parameters are replaced by neural network outputs. To ensure a probabilistic interpretation the HNN is nor...... HMMs on TIMIT continuous speech recognition benchmarks. On the task of recognizing five broad phoneme classes an accuracy of 84% is obtained compared to 76% for a standard HMM. Additionally, we report a preliminary result of 69% accuracy on the TIMIT 39 phoneme task...
Directory of Open Access Journals (Sweden)
Han Kyusuk
2011-01-01
Full Text Available This paper introduces novel attack detection approaches on mobile and wireless device security and network which consider temporal relations between internet packets. In this paper we first present a field selection technique using a Genetic Algorithm and generate a Packet-based Mining Association Rule from an original Mining Association Rule for Support Vector Machine in mobile and wireless network environment. Through the preprocessing with PMAR, SVM inputs can account for time variation between packets in mobile and wireless network. Third, we present Gaussian observation Hidden Markov Model to exploit the hidden relationships between packets based on probabilistic estimation. In our G-HMM approach, we also apply G-HMM feature reduction for better initialization. We demonstrate the usefulness of our SVM and G-HMM approaches with GA on MIT Lincoln Lab datasets and a live dataset that we captured on a real mobile and wireless network. Moreover, experimental results are verified by -fold cross-validation test.
DEFF Research Database (Denmark)
Li, Chunjian; Andersen, Søren Vang
2007-01-01
We propose two blind system identification methods that exploit the underlying dynamics of non-Gaussian signals. The two signal models to be identified are: an Auto-Regressive (AR) model driven by a discrete-state Hidden Markov process, and the same model whose output is perturbed by white Gaussi...... outputs. The signal models are general and suitable to numerous important signals, such as speech signals and base-band communication signals. Applications to speech analysis and blind channel equalization are given to exemplify the efficiency of the new methods....
Hidden Markov Model for Stock Selection
Directory of Open Access Journals (Sweden)
Nguyet Nguyen
2015-10-01
Full Text Available The hidden Markov model (HMM is typically used to predict the hidden regimes of observation data. Therefore, this model finds applications in many different areas, such as speech recognition systems, computational molecular biology and financial market predictions. In this paper, we use HMM for stock selection. We first use HMM to make monthly regime predictions for the four macroeconomic variables: inflation (consumer price index (CPI, industrial production index (INDPRO, stock market index (S&P 500 and market volatility (VIX. At the end of each month, we calibrate HMM’s parameters for each of these economic variables and predict its regimes for the next month. We then look back into historical data to find the time periods for which the four variables had similar regimes with the forecasted regimes. Within those similar periods, we analyze all of the S&P 500 stocks to identify which stock characteristics have been well rewarded during the time periods and assign scores and corresponding weights for each of the stock characteristics. A composite score of each stock is calculated based on the scores and weights of its features. Based on this algorithm, we choose the 50 top ranking stocks to buy. We compare the performances of the portfolio with the benchmark index, S&P 500. With an initial investment of $100 in December 1999, over 15 years, in December 2014, our portfolio had an average gain per annum of 14.9% versus 2.3% for the S&P 500.
An HMM-Like Dynamic Time Warping Scheme for Automatic Speech Recognition
Directory of Open Access Journals (Sweden)
Ing-Jr Ding
2014-01-01
Full Text Available In the past, the kernel of automatic speech recognition (ASR is dynamic time warping (DTW, which is feature-based template matching and belongs to the category technique of dynamic programming (DP. Although DTW is an early developed ASR technique, DTW has been popular in lots of applications. DTW is playing an important role for the known Kinect-based gesture recognition application now. This paper proposed an intelligent speech recognition system using an improved DTW approach for multimedia and home automation services. The improved DTW presented in this work, called HMM-like DTW, is essentially a hidden Markov model- (HMM- like method where the concept of the typical HMM statistical model is brought into the design of DTW. The developed HMM-like DTW method, transforming feature-based DTW recognition into model-based DTW recognition, will be able to behave as the HMM recognition technique and therefore proposed HMM-like DTW with the HMM-like recognition model will have the capability to further perform model adaptation (also known as speaker adaptation. A series of experimental results in home automation-based multimedia access service environments demonstrated the superiority and effectiveness of the developed smart speech recognition system by HMM-like DTW.
Directory of Open Access Journals (Sweden)
Ririn Kusumawati
2016-05-01
In the classification, using Hidden Markov Model, voice signal is analyzed and searched the maximum possible value that can be recognized. The modeling results obtained parameters are used to compare with the sound of Arabic speakers. From the test results' Classification, Hidden Markov Models with Linear Predictive Coding extraction average accuracy of 78.6% for test data sampling frequency of 8,000 Hz, 80.2% for test data sampling frequency of 22050 Hz, 79% for frequencies sampling test data at 44100 Hz.
AdOn HDP-HMM: An Adaptive Online Model for Segmentation and Classification of Sequential Data.
Bargi, Ava; Xu, Richard Yi Da; Piccardi, Massimo
2017-09-21
Recent years have witnessed an increasing need for the automated classification of sequential data, such as activities of daily living, social media interactions, financial series, and others. With the continuous flow of new data, it is critical to classify the observations on-the-fly and without being limited by a predetermined number of classes. In addition, a model should be able to update its parameters in response to a possible evolution in the distributions of the classes. This compelling problem, however, does not seem to have been adequately addressed in the literature, since most studies focus on offline classification over predefined class sets. In this paper, we present a principled solution for this problem based on an adaptive online system leveraging Markov switching models and hierarchical Dirichlet process priors. This adaptive online approach is capable of classifying the sequential data over an unlimited number of classes while meeting the memory and delay constraints typical of streaming contexts. In this paper, we introduce an adaptive ''learning rate'' that is responsible for balancing the extent to which the model retains its previous parameters or adapts to new observations. Experimental results on stationary and evolving synthetic data and two video data sets, TUM Assistive Kitchen and collated Weizmann, show a remarkable performance in terms of segmentation and classification, particularly for sequences from evolutionary distributions and/or those containing previously unseen classes.
Effect of HMM Glutenin Subunits on Wheat Quality Attributes
Directory of Open Access Journals (Sweden)
Daniela Horvat
2009-01-01
Full Text Available Glutenin is a group of polymeric gluten proteins. Glutenin molecules consist of glutenin subunits linked together with disulphide bonds and having higher (HMM-GS and lower (LMM-GS molecular mass. The main objective of this study is the evaluation of the influence of HMM-GS on flour processing properties. Seven bread wheat genotypes with contrasting quality attributes and different HMM-GS composition were analyzed during three years. The composition and quantity of HMM-GS were determined by SDS-PAGE and RP-HPLC, respectively. The quality diversity among genotypes was estimated by the analysis of wheat grain, and flour and bread quality parameters. The presence of HMM glutenin subunits 1 and 2* at Glu-A1 and the subunits 5+10 at Glu-D1 loci, as well as a higher proportion of total HMM-GS, had a positive effect on wheat quality. Cluster analysis of the three groups of data (genotype and HMM-GS, flour and bread quality, and dough rheology yielded the same hierarchical structure for the first top three levels, and similarity of the corresponding dendrograms was proved by the principal eigenvalues of the corresponding Euclidian distance matrices. The obtained similarity in classification based on essentially different types of measurements reflects strong natural association between genetic data, product quality and physical properties. Principal component analysis (PCA was applied to effectively reduce large data set into lower dimensions of latent variables amenable for the analysis. PCA analysis of the total set of data (15 variables revealed a very strong interrelationship between the variables. The first three PCA components accounted for 96 % of the total variance, which was significant to the level of 0.05 and was considered as the level of experimental error. These data imply that the quality of wheat cultivars can be contributed to HMM-GS data and should be taken into account in breeding programs assisted by computer models with the aim to
Important factors in HMM-based phonetic segmentation
CSIR Research Space (South Africa)
Van Niekerk, DR
2007-11-01
Full Text Available , window and step sizes. Taking into account that the segmentation system trains and applies the HMM models on a single speaker only, our first con- cern was the applicability of the window and step sizes that are commonly used for speech recognition...
Appropriate baseline values for HMM-based speech recognition
CSIR Research Space (South Africa)
Barnard, E
2004-11-01
Full Text Available A number of issues realted to the development of speech-recognition systems with Hidden Markov Models (HMM) are discussed. A set of systematic experiments using the HTK toolkit and the TMIT database are used to elucidate matters such as the number...
Cluster-Based Adaptation Using Density Forest for HMM Phone Recognition
DEFF Research Database (Denmark)
Abou-Zleikha, Mohamed; Tan, Zheng-Hua; Christensen, Mads Græsbøll
2014-01-01
The dissimilarity between the training and test data in speech recognition systems is known to have a considerable effect on the recognition accuracy. To solve this problem, we use density forest to cluster the data and use maximum a posteriori (MAP) method to build a cluster-based adapted Gaussian...... mixture models (GMMs) in HMM speech recognition. Specifically, a set of bagged versions of the training data for each state in the HMM is generated, and each of these versions is used to generate one GMM and one tree in the density forest. Thereafter, an acoustic model forest is built by replacing...... the data of each leaf (cluster) in each tree with the corresponding GMM adapted by the leaf data using the MAP method. The results show that the proposed approach achieves 3:8% (absolute) lower phone error rate compared with the standard HMM/GMM and 0:8% (absolute) lower PER compared with bagged HMM/GMM....
Directory of Open Access Journals (Sweden)
Da Liu
2013-01-01
Full Text Available A combined forecast with weights adaptively selected and errors calibrated by Hidden Markov model (HMM is proposed to model the day-ahead electricity price. Firstly several single models were built to forecast the electricity price separately. Then the validation errors from every individual model were transformed into two discrete sequences: an emission sequence and a state sequence to build the HMM, obtaining a transmission matrix and an emission matrix, representing the forecasting ability state of the individual models. The combining weights of the individual models were decided by the state transmission matrixes in HMM and the best predict sample ratio of each individual among all the models in the validation set. The individual forecasts were averaged to get the combining forecast with the weights obtained above. The residuals of combining forecast were calibrated by the possible error calculated by the emission matrix of HMM. A case study of day-ahead electricity market of Pennsylvania-New Jersey-Maryland (PJM, USA, suggests that the proposed method outperforms individual techniques of price forecasting, such as support vector machine (SVM, generalized regression neural networks (GRNN, day-ahead modeling, and self-organized map (SOM similar days modeling.
HMM based automated wheelchair navigation using EOG traces in EEG
Aziz, Fayeem; Arof, Hamzah; Mokhtar, Norrima; Mubin, Marizan
2014-10-01
This paper presents a wheelchair navigation system based on a hidden Markov model (HMM), which we developed to assist those with restricted mobility. The semi-autonomous system is equipped with obstacle/collision avoidance sensors and it takes the electrooculography (EOG) signal traces from the user as commands to maneuver the wheelchair. The EOG traces originate from eyeball and eyelid movements and they are embedded in EEG signals collected from the scalp of the user at three different locations. Features extracted from the EOG traces are used to determine whether the eyes are open or closed, and whether the eyes are gazing to the right, center, or left. These features are utilized as inputs to a few support vector machine (SVM) classifiers, whose outputs are regarded as observations to an HMM. The HMM determines the state of the system and generates commands for navigating the wheelchair accordingly. The use of simple features and the implementation of a sliding window that captures important signatures in the EOG traces result in a fast execution time and high classification rates. The wheelchair is equipped with a proximity sensor and it can move forward and backward in three directions. The asynchronous system achieved an average classification rate of 98% when tested with online data while its average execution time was less than 1 s. It was also tested in a navigation experiment where all of the participants managed to complete the tasks successfully without collisions.
An HMM posterior decoder for sequence feature prediction that includes homology information
DEFF Research Database (Denmark)
Käll, Lukas; Krogh, Anders Stærmose; Sonnhammer, Erik L. L.
2005-01-01
Motivation: When predicting sequence features like transmembrane topology, signal peptides, coil-coil structures, protein secondary structure or genes, extra support can be gained from homologs. Results: We present here a general hidden Markov model (HMM) decoding algorithm that combines probabil......Motivation: When predicting sequence features like transmembrane topology, signal peptides, coil-coil structures, protein secondary structure or genes, extra support can be gained from homologs. Results: We present here a general hidden Markov model (HMM) decoding algorithm that combines......://phobius.cgb.ki.se/poly.html . An implementation of the algorithm is available on request from the authors....
Neuroevolution Mechanism for Hidden Markov Model
Directory of Open Access Journals (Sweden)
Nabil M. Hewahi
2011-12-01
Full Text Available Hidden Markov Model (HMM is a statistical model based on probabilities. HMM is becoming one of the major models involved in many applications such as natural language
processing, handwritten recognition, image processing, prediction systems and many more. In this research we are concerned with finding out the best HMM for a certain application domain. We propose a neuroevolution process that is based first on converting the HMM to a neural network, then generating many neural networks at random where each represents a HMM. We proceed by
applying genetic operators to obtain new set of neural networks where each represents HMMs, and updating the population. Finally select the best neural network based on a fitness function.
Explorations in the History of Machines and Mechanisms : Proceedings of HMM2012
Ceccarelli, Marco
2012-01-01
This book contains the proceedings of HMM2012, the 4th International Symposium on Historical Developments in the field of Mechanism and Machine Science (MMS). These proceedings cover recent research concerning all aspects of the development of MMS from antiquity until the present and its historiography: machines, mechanisms, kinematics, dynamics, concepts and theories, design methods, collections of methods, collections of models, institutions and biographies.
Spotting handwritten words and REGEX using a two stage BLSTM-HMM architecture
Bideault, Gautier; Mioulet, Luc; Chatelain, Clément; Paquet, Thierry
2015-01-01
In this article, we propose a hybrid model for spotting words and regular expressions (REGEX) in handwritten documents. The model is made of the state-of-the-art BLSTM (Bidirectional Long Short Time Memory) neural network for recognizing and segmenting characters, coupled with a HMM to build line models able to spot the desired sequences. Experiments on the Rimes database show very promising results.
A Bayesian Approach for Structural Learning with Hidden Markov Models
Directory of Open Access Journals (Sweden)
Cen Li
2002-01-01
Full Text Available Hidden Markov Models(HMM have proved to be a successful modeling paradigm for dynamic and spatial processes in many domains, such as speech recognition, genomics, and general sequence alignment. Typically, in these applications, the model structures are predefined by domain experts. Therefore, the HMM learning problem focuses on the learning of the parameter values of the model to fit the given data sequences. However, when one considers other domains, such as, economics and physiology, model structure capturing the system dynamic behavior is not available. In order to successfully apply the HMM methodology in these domains, it is important that a mechanism is available for automatically deriving the model structure from the data. This paper presents a HMM learning procedure that simultaneously learns the model structure and the maximum likelihood parameter values of a HMM from data. The HMM model structures are derived based on the Bayesian model selection methodology. In addition, we introduce a new initialization procedure for HMM parameter value estimation based on the K-means clustering method. Experimental results with artificially generated data show the effectiveness of the approach.
Directory of Open Access Journals (Sweden)
El Moubtahij Hicham
2017-12-01
Full Text Available This paper presents an analytical approach of an offline handwritten Arabic text recognition system. It is based on the Hidden Markov Models (HMM Toolkit (HTK without explicit segmentation. The first phase is preprocessing, where the data is introduced in the system after quality enhancements. Then, a set of characteristics (features of local densities and features statistics are extracted by using the technique of sliding windows. Subsequently, the resulting feature vectors are injected to the Hidden Markov Model Toolkit (HTK. The simple database âArabic-Numbersâ and IFN/ENIT are used to evaluate the performance of this system. Keywords: Hidden Markov Models (HMM Toolkit (HTK, Sliding windows
Comparison of HMM experts with MLP experts in the Full Combination Multi-Band Approach to Robust ASR
Hagen, Astrid; Morris, Andrew
2000-01-01
In this paper we apply the Full Combination (FC) multi-band approach, which has originally been introduced in the framework of posterior-based HMM/ANN (Hidden Markov Model/Artificial Neural Network) hybrid systems, to systems in which the ANN (or Multilayer Perceptron (MLP)) is itself replaced by a Multi Gaussian HMM (MGM). Both systems represent the most widely used statistical models for robust ASR (automatic speech recognition). It is shown how the FC formula for the likelihood--based MGMs...
Comparison of HMM and DTW methods in automatic recognition of pathological phoneme pronunciation
Wielgat, Robert; Zielinski, Tomasz P.; Swietojanski, Pawel; Zoladz, Piotr; Król, Daniel; Wozniak, Tomasz; Grabias, Stanislaw
2007-01-01
In the paper recently proposed Human Factor Cepstral Coefficients (HFCC) are used to automatic recognition of pathological phoneme pronunciation in speech of impaired children and efficiency of this approach is compared to application of the standard Mel-Frequency Cepstral Coefficients (MFCC) as a feature vector. Both dynamic time warping (DTW), working on whole words or embedded phoneme patterns, and hidden Markov models (HMM) are used as classifiers in the presented research. Obtained resul...
An improved segmentation-based HMM learning method for Condition-based Maintenance
International Nuclear Information System (INIS)
Liu, T; Lemeire, J; Cartella, F; Meganck, S
2012-01-01
In the domain of condition-based maintenance (CBM), persistence of machine states is a valid assumption. Based on this assumption, we present an improved Hidden Markov Model (HMM) learning algorithm for the assessment of equipment states. By a good estimation of initial parameters, more accurate learning can be achieved than by regular HMM learning methods which start with randomly chosen initial parameters. It is also better in avoiding getting trapped in local maxima. The data is segmented with a change-point analysis method which uses a combination of cumulative sum charts (CUSUM) and bootstrapping techniques. The method determines a confidence level that a state change happens. After the data is segmented, in order to label and combine the segments corresponding to the same states, a clustering technique is used based on a low-pass filter or root mean square (RMS) values of the features. The segments with their labelled hidden state are taken as 'evidence' to estimate the parameters of an HMM. Then, the estimated parameters are served as initial parameters for the traditional Baum-Welch (BW) learning algorithms, which are used to improve the parameters and train the model. Experiments on simulated and real data demonstrate that both performance and convergence speed is improved.
Bearing Performance Degradation Assessment Using Linear Discriminant Analysis and Coupled HMM
International Nuclear Information System (INIS)
Liu, T; Chen, J; Zhou, X N; Xiao, W B
2012-01-01
Bearing is one of the most important units in rotary machinery, its performance may vary significantly under different working stages. Thus it is critical to choose the most effective features for bearing performance degradation prediction. Linear Discriminant Analysis (LDA) is a useful method in finding few feature's dimensions that best discriminate a set of features extracted from original vibration signals. Another challenge in bearing performance degradation is how to build a model to recognize the different conditions with the data coming from different monitoring channels. In this paper, coupled hidden Markov models (CHMM) is presented to model interacting processes which can overcome the defections of the HMM. Because the input data in CHMM are collected by several sensors, and the interacting information can be fused by coupled modalities, it is more effective than HMM which used only one state chain. The model can be used in estimating the bearing performance degradation states according to several observation data. When becoming degradation pattern recognition, the new observation features should be input into the pre-trained CHMM and calculate the performance index (PI) of the outputs, the changing of PI could be used to describe the different degradation level of the bearings. The results show that PI will decline with the increase of the bearing degradation. Assessment results of the whole life time experimental bearing signals validate the feasibility and effectiveness of this method.
Online adaptive learning of Left-Right Continuous HMM for bearings condition assessment
International Nuclear Information System (INIS)
Cartella, F; Liu, T; Meganck, S; Lemeire, J; Sahli, H
2012-01-01
Standard Hidden Markov Models (HMMs) approaches used for condition assessment of bearings assume that all the possible system states are fixed and known a priori and that training data from all of the associated states are available. Moreover, the training procedure is performed offline, and only once at the beginning, with the available training set. These assumptions significantly impede component diagnosis applications when all of the possible states of the system are not known in advance or environmental factors or operative conditions change during the tool's usage. The method introduced in this paper overcomes the above limitations and proposes an approach to detect unknown degradation modalities using a Left-Right Continuous HMM with a variable state space. The proposed HMM is combined with Change Point Detection algorithms to (i) estimate, from historical observations, the initial number of the model's states, as well as to perform an initial guess of the parameters, and (ii) to adaptively recognize new states and, consequently, adjust the model parameters during monitoring. The approach has been tested using real monitoring data taken from the NASA benchmark repository. A comparative study with state of the art techniques shows improvements in terms of reduction of the training procedure iterations, and early detection of unknown states.
Improving a HMM-based off-line handwriting recognition system using MME-PSO optimization
Hamdani, Mahdi; El Abed, Haikal; Hamdani, Tarek M.; Märgner, Volker; Alimi, Adel M.
2011-01-01
One of the trivial steps in the development of a classifier is the design of its architecture. This paper presents a new algorithm, Multi Models Evolvement (MME) using Particle Swarm Optimization (PSO). This algorithm is a modified version of the basic PSO, which is used to the unsupervised design of Hidden Markov Model (HMM) based architectures. For instance, the proposed algorithm is applied to an Arabic handwriting recognizer based on discrete probability HMMs. After the optimization of their architectures, HMMs are trained with the Baum- Welch algorithm. The validation of the system is based on the IfN/ENIT database. The performance of the developed approach is compared to the participating systems at the 2005 competition organized on Arabic handwriting recognition on the International Conference on Document Analysis and Recognition (ICDAR). The final system is a combination between an optimized HMM with 6 other HMMs obtained by a simple variation of the number of states. An absolute improvement of 6% of word recognition rate with about 81% is presented. This improvement is achieved comparing to the basic system (ARAB-IfN). The proposed recognizer outperforms also most of the known state-of-the-art systems.
An HMM-based comparative genomic framework for detecting introgression in eukaryotes.
Directory of Open Access Journals (Sweden)
Kevin J Liu
2014-06-01
Full Text Available One outcome of interspecific hybridization and subsequent effects of evolutionary forces is introgression, which is the integration of genetic material from one species into the genome of an individual in another species. The evolution of several groups of eukaryotic species has involved hybridization, and cases of adaptation through introgression have been already established. In this work, we report on PhyloNet-HMM-a new comparative genomic framework for detecting introgression in genomes. PhyloNet-HMM combines phylogenetic networks with hidden Markov models (HMMs to simultaneously capture the (potentially reticulate evolutionary history of the genomes and dependencies within genomes. A novel aspect of our work is that it also accounts for incomplete lineage sorting and dependence across loci. Application of our model to variation data from chromosome 7 in the mouse (Mus musculus domesticus genome detected a recently reported adaptive introgression event involving the rodent poison resistance gene Vkorc1, in addition to other newly detected introgressed genomic regions. Based on our analysis, it is estimated that about 9% of all sites within chromosome 7 are of introgressive origin (these cover about 13 Mbp of chromosome 7, and over 300 genes. Further, our model detected no introgression in a negative control data set. We also found that our model accurately detected introgression and other evolutionary processes from synthetic data sets simulated under the coalescent model with recombination, isolation, and migration. Our work provides a powerful framework for systematic analysis of introgression while simultaneously accounting for dependence across sites, point mutations, recombination, and ancestral polymorphism.
Fault diagnosis of nuclear-powered equipment based on HMM and SVM
International Nuclear Information System (INIS)
Yue Xia; Zhang Chunliang; Zhu Houyao; Quan Yanming
2012-01-01
For the complexity and the small fault samples of nuclear-powered equipment, a hybrid HMM/SVM method was introduced in fault diagnosis. The hybrid method has two steps: first, HMM is utilized for primary diagnosis, in which the range of possible failure is reduced and the state trends can be observed; then faults can be recognized taking the advantage of the generalization ability of SVM. Experiments on the main pump failure simulator show that the HMM/SVM system has a high recognition rate and can be used in the fault diagnosis of nuclear-powered equipment. (authors)
National Research Council Canada - National Science Library
Halstead, John B
2006-01-01
.... The research uses a combination of statistical learning, feature selection methods, and multivariate statistics to determine the better prediction function approximation with features obtained...
Model selection in periodic autoregressions
Ph.H.B.F. Franses (Philip Hans); R. Paap (Richard)
1994-01-01
textabstractThis paper focuses on the issue of period autoagressive time series models (PAR) selection in practice. One aspect of model selection is the choice for the appropriate PAR order. This can be of interest for the valuation of economic models. Further, the appropriate PAR order is important
Bogiages, Christopher A.; Lotter, Christine
2011-01-01
In their research, scientists generate, test, and modify scientific models. These models can be shared with others and demonstrate a scientist's understanding of how the natural world works. Similarly, students can generate and modify models to gain a better understanding of the content, process, and nature of science (Kenyon, Schwarz, and Hug…
International Nuclear Information System (INIS)
Martin Llorente, F.
1990-01-01
The models of atmospheric pollutants dispersion are based in mathematic algorithms that describe the transport, diffusion, elimination and chemical reactions of atmospheric contaminants. These models operate with data of contaminants emission and make an estimation of quality air in the area. This model can be applied to several aspects of atmospheric contamination
Schmidt-Eisenlohr, F.; Puñal, O.; Klagges, K.; Kirsche, M.
Apart from the general issue of modeling the channel, the PHY and the MAC of wireless networks, there are specific modeling assumptions that are considered for different systems. In this chapter we consider three specific wireless standards and highlight modeling options for them. These are IEEE 802.11 (as example for wireless local area networks), IEEE 802.16 (as example for wireless metropolitan networks) and IEEE 802.15 (as example for body area networks). Each section on these three systems discusses also at the end a set of model implementations that are available today.
Launch vehicle selection model
Montoya, Alex J.
1990-01-01
Over the next 50 years, humans will be heading for the Moon and Mars to build scientific bases to gain further knowledge about the universe and to develop rewarding space activities. These large scale projects will last many years and will require large amounts of mass to be delivered to Low Earth Orbit (LEO). It will take a great deal of planning to complete these missions in an efficient manner. The planning of a future Heavy Lift Launch Vehicle (HLLV) will significantly impact the overall multi-year launching cost for the vehicle fleet depending upon when the HLLV will be ready for use. It is desirable to develop a model in which many trade studies can be performed. In one sample multi-year space program analysis, the total launch vehicle cost of implementing the program reduced from 50 percent to 25 percent. This indicates how critical it is to reduce space logistics costs. A linear programming model has been developed to answer such questions. The model is now in its second phase of development, and this paper will address the capabilities of the model and its intended uses. The main emphasis over the past year was to make the model user friendly and to incorporate additional realistic constraints that are difficult to represent mathematically. We have developed a methodology in which the user has to be knowledgeable about the mission model and the requirements of the payloads. We have found a representation that will cut down the solution space of the problem by inserting some preliminary tests to eliminate some infeasible vehicle solutions. The paper will address the handling of these additional constraints and the methodology for incorporating new costing information utilizing learning curve theory. The paper will review several test cases that will explore the preferred vehicle characteristics and the preferred period of construction, i.e., within the next decade, or in the first decade of the next century. Finally, the paper will explore the interaction
Marchenko, Yulia V.
2012-03-01
Sample selection arises often in practice as a result of the partial observability of the outcome of interest in a study. In the presence of sample selection, the observed data do not represent a random sample from the population, even after controlling for explanatory variables. That is, data are missing not at random. Thus, standard analysis using only complete cases will lead to biased results. Heckman introduced a sample selection model to analyze such data and proposed a full maximum likelihood estimation method under the assumption of normality. The method was criticized in the literature because of its sensitivity to the normality assumption. In practice, data, such as income or expenditure data, often violate the normality assumption because of heavier tails. We first establish a new link between sample selection models and recently studied families of extended skew-elliptical distributions. Then, this allows us to introduce a selection-t (SLt) model, which models the error distribution using a Student\\'s t distribution. We study its properties and investigate the finite-sample performance of the maximum likelihood estimators for this model. We compare the performance of the SLt model to the conventional Heckman selection-normal (SLN) model and apply it to analyze ambulatory expenditures. Unlike the SLNmodel, our analysis using the SLt model provides statistical evidence for the existence of sample selection bias in these data. We also investigate the performance of the test for sample selection bias based on the SLt model and compare it with the performances of several tests used with the SLN model. Our findings indicate that the latter tests can be misleading in the presence of heavy-tailed data. © 2012 American Statistical Association.
Efficient view based 3-D object retrieval using Hidden Markov Model
Jain, Yogendra Kumar; Singh, Roshan Kumar
2013-12-01
Recent research effort has been dedicated to view based 3-D object retrieval, because of highly discriminative property of 3-D object and has multi view representation. The state-of-art method is highly depending on their own camera array setting for capturing views of 3-D object and use complex Zernike descriptor, HAC for representative view selection which limit their practical application and make it inefficient for retrieval. Therefore, an efficient and effective algorithm is required for 3-D Object Retrieval. In order to move toward a general framework for efficient 3-D object retrieval which is independent of camera array setting and avoidance of representative view selection, we propose an Efficient View Based 3-D Object Retrieval (EVBOR) method using Hidden Markov Model (HMM). In this framework, each object is represented by independent set of view, which means views are captured from any direction without any camera array restriction. In this, views are clustered (including query view) to generate the view cluster, which is then used to build the query model with HMM. In our proposed method, HMM is used in twofold: in the training (i.e. HMM estimate) and in the retrieval (i.e. HMM decode). The query model is trained by using these view clusters. The EVBOR query model is worked on the basis of query model combining with HMM. The proposed approach remove statically camera array setting for view capturing and can be apply for any 3-D object database to retrieve 3-D object efficiently and effectively. Experimental results demonstrate that the proposed scheme has shown better performance than existing methods. [Figure not available: see fulltext.
International Nuclear Information System (INIS)
Zhou Yunlong; Zhang Xueqing; Gao Yunpeng; Cheng Yue
2009-01-01
For studying flow regimes of gas/liquid two-phase in a vertical upward pipe, the conductance fluctuation information of four typical flow regimes was collected by a measuring the system with self-made multiple conductivity probes. Owing to the non-stationarity of conductance fluctuation signals of gas-liquid two-phase flow, a kind of' flow regime identification method based on wavelet packet Multi-scale Information Entropy and Hidden Markov Model (HMM) was put forward. First of all, the collected conductance fluctuation signals were decomposed into eight different frequency bands signals. Secondly, the wavelet packet multi-scale information entropy of different frequency bands signals were regarded as the input characteristic vectors of all states HMM which had been trained. In the end the regime identification of' the gas-liquid two-phase flow could be performed. The study showed that the method that HMM was applied to identify the flow regime was superior to the one that BP neural network was used, and the results proved that the method was efficient and feasible. (authors)
Marchenko, Yulia V.; Genton, Marc G.
2012-01-01
for sample selection bias based on the SLt model and compare it with the performances of several tests used with the SLN model. Our findings indicate that the latter tests can be misleading in the presence of heavy-tailed data. © 2012 American Statistical
HMMEditor: a visual editing tool for profile hidden Markov model
Directory of Open Access Journals (Sweden)
Cheng Jianlin
2008-03-01
Full Text Available Abstract Background Profile Hidden Markov Model (HMM is a powerful statistical model to represent a family of DNA, RNA, and protein sequences. Profile HMM has been widely used in bioinformatics research such as sequence alignment, gene structure prediction, motif identification, protein structure prediction, and biological database search. However, few comprehensive, visual editing tools for profile HMM are publicly available. Results We develop a visual editor for profile Hidden Markov Models (HMMEditor. HMMEditor can visualize the profile HMM architecture, transition probabilities, and emission probabilities. Moreover, it provides functions to edit and save HMM and parameters. Furthermore, HMMEditor allows users to align a sequence against the profile HMM and to visualize the corresponding Viterbi path. Conclusion HMMEditor provides a set of unique functions to visualize and edit a profile HMM. It is a useful tool for biological sequence analysis and modeling. Both HMMEditor software and web service are freely available.
Selected Tether Applications Cost Model
Keeley, Michael G.
1988-01-01
Diverse cost-estimating techniques and data combined into single program. Selected Tether Applications Cost Model (STACOM 1.0) is interactive accounting software tool providing means for combining several independent cost-estimating programs into fully-integrated mathematical model capable of assessing costs, analyzing benefits, providing file-handling utilities, and putting out information in text and graphical forms to screen, printer, or plotter. Program based on Lotus 1-2-3, version 2.0. Developed to provide clear, concise traceability and visibility into methodology and rationale for estimating costs and benefits of operations of Space Station tether deployer system.
HMMBinder: DNA-Binding Protein Prediction Using HMM Profile Based Features.
Zaman, Rianon; Chowdhury, Shahana Yasmin; Rashid, Mahmood A; Sharma, Alok; Dehzangi, Abdollah; Shatabda, Swakkhar
2017-01-01
DNA-binding proteins often play important role in various processes within the cell. Over the last decade, a wide range of classification algorithms and feature extraction techniques have been used to solve this problem. In this paper, we propose a novel DNA-binding protein prediction method called HMMBinder. HMMBinder uses monogram and bigram features extracted from the HMM profiles of the protein sequences. To the best of our knowledge, this is the first application of HMM profile based features for the DNA-binding protein prediction problem. We applied Support Vector Machines (SVM) as a classification technique in HMMBinder. Our method was tested on standard benchmark datasets. We experimentally show that our method outperforms the state-of-the-art methods found in the literature.
HMMBinder: DNA-Binding Protein Prediction Using HMM Profile Based Features
Directory of Open Access Journals (Sweden)
Rianon Zaman
2017-01-01
Full Text Available DNA-binding proteins often play important role in various processes within the cell. Over the last decade, a wide range of classification algorithms and feature extraction techniques have been used to solve this problem. In this paper, we propose a novel DNA-binding protein prediction method called HMMBinder. HMMBinder uses monogram and bigram features extracted from the HMM profiles of the protein sequences. To the best of our knowledge, this is the first application of HMM profile based features for the DNA-binding protein prediction problem. We applied Support Vector Machines (SVM as a classification technique in HMMBinder. Our method was tested on standard benchmark datasets. We experimentally show that our method outperforms the state-of-the-art methods found in the literature.
Development of TTS Engine for Indian Accent using Modified HMM Algorithm
Directory of Open Access Journals (Sweden)
Sasanko Sekhar Gantayat
2018-03-01
Full Text Available A text-to-speech (TTS system converts normal language text into speech. An intelligent text-to-speech program allows people with visual impairments or reading disabilities, to listen to written works on a home computer. Many computer operating systems and day to day software applications like Adobe Reader have included text-to-speech systems. This paper is presented to show that how HMM can be used as a tool to convert text to speech.
Research study on harmonized molecular materials (HMM); Bunshi kyocho zairyo ni kansuru chosa kenkyu
Energy Technology Data Exchange (ETDEWEB)
NONE
1997-03-01
As functional material to satisfy various needs for environmental harmonization and efficient conversion for information-oriented and aging societies, HMM were surveyed. Living bodies effectively carry out transmission/processing of information, and transport/conversion of substances, and these functions are based on harmonization between organic molecules, and between those and metal or inorganic ones. HMM is a key substance to artificially realize these bio-related functions. Its R & D aims at (1) Making a breakthrough in production process based on innovation of material separation/conversion technology, (2) Contribution to an information-oriented society by high-efficiency devices, and (3) Growth of a functional bio-material industry. HMM is classified into three categories: (1) Assembly materials such as organic ultra-thin films (LB film, self-organizing film), and organic/inorganic hybrid materials for optoelectronics, sensors and devices, (2) Mesophase materials such as functional separation membrane and photo-conductive material, and (3) Microporous materials such as synthetic catalyst using guest/host materials. 571 refs., 88 figs., 21 tabs.
Fang, Hongqing; He, Lei; Si, Hao; Liu, Peng; Xie, Xiaolei
2014-09-01
In this paper, Back-propagation(BP) algorithm has been used to train the feed forward neural network for human activity recognition in smart home environments, and inter-class distance method for feature selection of observed motion sensor events is discussed and tested. And then, the human activity recognition performances of neural network using BP algorithm have been evaluated and compared with other probabilistic algorithms: Naïve Bayes(NB) classifier and Hidden Markov Model(HMM). The results show that different feature datasets yield different activity recognition accuracy. The selection of unsuitable feature datasets increases the computational complexity and degrades the activity recognition accuracy. Furthermore, neural network using BP algorithm has relatively better human activity recognition performances than NB classifier and HMM. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Directory of Open Access Journals (Sweden)
Neng-Sheng Pai
2014-01-01
Full Text Available This paper applied speech recognition and RFID technologies to develop an omni-directional mobile robot into a robot with voice control and guide introduction functions. For speech recognition, the speech signals were captured by short-time processing. The speaker first recorded the isolated words for the robot to create speech database of specific speakers. After the speech pre-processing of this speech database, the feature parameters of cepstrum and delta-cepstrum were obtained using linear predictive coefficient (LPC. Then, the Hidden Markov Model (HMM was used for model training of the speech database, and the Viterbi algorithm was used to find an optimal state sequence as the reference sample for speech recognition. The trained reference model was put into the industrial computer on the robot platform, and the user entered the isolated words to be tested. After processing by the same reference model and comparing with previous reference model, the path of the maximum total probability in various models found using the Viterbi algorithm in the recognition was the recognition result. Finally, the speech recognition and RFID systems were achieved in an actual environment to prove its feasibility and stability, and implemented into the omni-directional mobile robot.
HMM Adaptation for Improving a Human Activity Recognition System
Directory of Open Access Journals (Sweden)
Rubén San-Segundo
2016-09-01
Full Text Available When developing a fully automatic system for evaluating motor activities performed by a person, it is necessary to segment and recognize the different activities in order to focus the analysis. This process must be carried out by a Human Activity Recognition (HAR system. This paper proposes a user adaptation technique for improving a HAR system based on Hidden Markov Models (HMMs. This system segments and recognizes six different physical activities (walking, walking upstairs, walking downstairs, sitting, standing and lying down using inertial signals from a smartphone. The system is composed of a feature extractor for obtaining the most relevant characteristics from the inertial signals, a module for training the six HMMs (one per activity, and the last module for segmenting new activity sequences using these models. The user adaptation technique consists of a Maximum A Posteriori (MAP approach that adapts the activity HMMs to the user, using some activity examples from this specific user. The main results on a public dataset have reported a significant relative error rate reduction of more than 30%. In conclusion, adapting a HAR system to the user who is performing the physical activities provides significant improvement in the system’s performance.
HMM-based lexicon-driven and lexicon-free word recognition for online handwritten Indic scripts.
Bharath, A; Madhvanath, Sriganesh
2012-04-01
Research for recognizing online handwritten words in Indic scripts is at its early stages when compared to Latin and Oriental scripts. In this paper, we address this problem specifically for two major Indic scripts--Devanagari and Tamil. In contrast to previous approaches, the techniques we propose are largely data driven and script independent. We propose two different techniques for word recognition based on Hidden Markov Models (HMM): lexicon driven and lexicon free. The lexicon-driven technique models each word in the lexicon as a sequence of symbol HMMs according to a standard symbol writing order derived from the phonetic representation. The lexicon-free technique uses a novel Bag-of-Symbols representation of the handwritten word that is independent of symbol order and allows rapid pruning of the lexicon. On handwritten Devanagari word samples featuring both standard and nonstandard symbol writing orders, a combination of lexicon-driven and lexicon-free recognizers significantly outperforms either of them used in isolation. In contrast, most Tamil word samples feature the standard symbol order, and the lexicon-driven recognizer outperforms the lexicon free one as well as their combination. The best recognition accuracies obtained for 20,000 word lexicons are 87.13 percent for Devanagari when the two recognizers are combined, and 91.8 percent for Tamil using the lexicon-driven technique.
Selected sports talent development models
Directory of Open Access Journals (Sweden)
Michal Vičar
2017-06-01
Full Text Available Background: Sports talent in the Czech Republic is generally viewed as a static, stable phenomena. It stands in contrast with widespread praxis carried out in Anglo-Saxon countries that emphasise its fluctuant nature. This is reflected in the current models describing its development. Objectives: The aim is to introduce current models of talent development in sport. Methods: Comparison and analysing of the following models: Balyi - Long term athlete development model, Côté - Developmental model of sport participation, Csikszentmihalyi - The flow model of optimal expertise, Bailey and Morley - Model of talent development. Conclusion: Current models of sport talent development approach talent as dynamic phenomenon, varying in time. They are based in particular on the work of Simonton and his Emergenic and epigenic model and of Gagné and his Differentiated model of giftedness and talent. Balyi's model is characterised by its applicability and impications for practice. Côté's model highlights the role of family and deliberate play. Both models describe periodization of talent development. Csikszentmihalyi's flow model explains how the athlete acquires experience and develops during puberty based on the structure of attention and flow experience. Bailey and Morley's model accents the situational approach to talent and development of skills facilitating its growth.
Sand, Andreas; Kristiansen, Martin; Pedersen, Christian N S; Mailund, Thomas
2013-11-22
Hidden Markov models are widely used for genome analysis as they combine ease of modelling with efficient analysis algorithms. Calculating the likelihood of a model using the forward algorithm has worst case time complexity linear in the length of the sequence and quadratic in the number of states in the model. For genome analysis, however, the length runs to millions or billions of observations, and when maximising the likelihood hundreds of evaluations are often needed. A time efficient forward algorithm is therefore a key ingredient in an efficient hidden Markov model library. We have built a software library for efficiently computing the likelihood of a hidden Markov model. The library exploits commonly occurring substrings in the input to reuse computations in the forward algorithm. In a pre-processing step our library identifies common substrings and builds a structure over the computations in the forward algorithm which can be reused. This analysis can be saved between uses of the library and is independent of concrete hidden Markov models so one preprocessing can be used to run a number of different models.Using this library, we achieve up to 78 times shorter wall-clock time for realistic whole-genome analyses with a real and reasonably complex hidden Markov model. In one particular case the analysis was performed in less than 8 minutes compared to 9.6 hours for the previously fastest library. We have implemented the preprocessing procedure and forward algorithm as a C++ library, zipHMM, with Python bindings for use in scripts. The library is available at http://birc.au.dk/software/ziphmm/.
Selected sports talent development models
Michal Vičar
2017-01-01
Background: Sports talent in the Czech Republic is generally viewed as a static, stable phenomena. It stands in contrast with widespread praxis carried out in Anglo-Saxon countries that emphasise its fluctuant nature. This is reflected in the current models describing its development. Objectives: The aim is to introduce current models of talent development in sport. Methods: Comparison and analysing of the following models: Balyi - Long term athlete development model, Côté - Developmen...
An Efficient Algorithm for Modelling Duration in Hidden Markov Models, with a Dramatic Application
DEFF Research Database (Denmark)
Hauberg, Søren; Sloth, Jakob
2008-01-01
For many years, the hidden Markov model (HMM) has been one of the most popular tools for analysing sequential data. One frequently used special case is the left-right model, in which the order of the hidden states is known. If knowledge of the duration of a state is available it is not possible...... to represent it explicitly with an HMM. Methods for modelling duration with HMM's do exist (Rabiner in Proc. IEEE 77(2):257---286, [1989]), but they come at the price of increased computational complexity. Here we present an efficient and robust algorithm for modelling duration in HMM's, and this algorithm...
MODEL SELECTION FOR SPECTROPOLARIMETRIC INVERSIONS
International Nuclear Information System (INIS)
Asensio Ramos, A.; Manso Sainz, R.; Martínez González, M. J.; Socas-Navarro, H.; Viticchié, B.; Orozco Suárez, D.
2012-01-01
Inferring magnetic and thermodynamic information from spectropolarimetric observations relies on the assumption of a parameterized model atmosphere whose parameters are tuned by comparison with observations. Often, the choice of the underlying atmospheric model is based on subjective reasons. In other cases, complex models are chosen based on objective reasons (for instance, the necessity to explain asymmetries in the Stokes profiles) but it is not clear what degree of complexity is needed. The lack of an objective way of comparing models has, sometimes, led to opposing views of the solar magnetism because the inferred physical scenarios are essentially different. We present the first quantitative model comparison based on the computation of the Bayesian evidence ratios for spectropolarimetric observations. Our results show that there is not a single model appropriate for all profiles simultaneously. Data with moderate signal-to-noise ratios (S/Ns) favor models without gradients along the line of sight. If the observations show clear circular and linear polarization signals above the noise level, models with gradients along the line are preferred. As a general rule, observations with large S/Ns favor more complex models. We demonstrate that the evidence ratios correlate well with simple proxies. Therefore, we propose to calculate these proxies when carrying out standard least-squares inversions to allow for model comparison in the future.
Accelerating Information Retrieval from Profile Hidden Markov Model Databases.
Tamimi, Ahmad; Ashhab, Yaqoub; Tamimi, Hashem
2016-01-01
Profile Hidden Markov Model (Profile-HMM) is an efficient statistical approach to represent protein families. Currently, several databases maintain valuable protein sequence information as profile-HMMs. There is an increasing interest to improve the efficiency of searching Profile-HMM databases to detect sequence-profile or profile-profile homology. However, most efforts to enhance searching efficiency have been focusing on improving the alignment algorithms. Although the performance of these algorithms is fairly acceptable, the growing size of these databases, as well as the increasing demand for using batch query searching approach, are strong motivations that call for further enhancement of information retrieval from profile-HMM databases. This work presents a heuristic method to accelerate the current profile-HMM homology searching approaches. The method works by cluster-based remodeling of the database to reduce the search space, rather than focusing on the alignment algorithms. Using different clustering techniques, 4284 TIGRFAMs profiles were clustered based on their similarities. A representative for each cluster was assigned. To enhance sensitivity, we proposed an extended step that allows overlapping among clusters. A validation benchmark of 6000 randomly selected protein sequences was used to query the clustered profiles. To evaluate the efficiency of our approach, speed and recall values were measured and compared with the sequential search approach. Using hierarchical, k-means, and connected component clustering techniques followed by the extended overlapping step, we obtained an average reduction in time of 41%, and an average recall of 96%. Our results demonstrate that representation of profile-HMMs using a clustering-based approach can significantly accelerate data retrieval from profile-HMM databases.
Accelerating Information Retrieval from Profile Hidden Markov Model Databases.
Directory of Open Access Journals (Sweden)
Ahmad Tamimi
Full Text Available Profile Hidden Markov Model (Profile-HMM is an efficient statistical approach to represent protein families. Currently, several databases maintain valuable protein sequence information as profile-HMMs. There is an increasing interest to improve the efficiency of searching Profile-HMM databases to detect sequence-profile or profile-profile homology. However, most efforts to enhance searching efficiency have been focusing on improving the alignment algorithms. Although the performance of these algorithms is fairly acceptable, the growing size of these databases, as well as the increasing demand for using batch query searching approach, are strong motivations that call for further enhancement of information retrieval from profile-HMM databases. This work presents a heuristic method to accelerate the current profile-HMM homology searching approaches. The method works by cluster-based remodeling of the database to reduce the search space, rather than focusing on the alignment algorithms. Using different clustering techniques, 4284 TIGRFAMs profiles were clustered based on their similarities. A representative for each cluster was assigned. To enhance sensitivity, we proposed an extended step that allows overlapping among clusters. A validation benchmark of 6000 randomly selected protein sequences was used to query the clustered profiles. To evaluate the efficiency of our approach, speed and recall values were measured and compared with the sequential search approach. Using hierarchical, k-means, and connected component clustering techniques followed by the extended overlapping step, we obtained an average reduction in time of 41%, and an average recall of 96%. Our results demonstrate that representation of profile-HMMs using a clustering-based approach can significantly accelerate data retrieval from profile-HMM databases.
A Computational Model of Selection by Consequences
McDowell, J. J.
2004-01-01
Darwinian selection by consequences was instantiated in a computational model that consisted of a repertoire of behaviors undergoing selection, reproduction, and mutation over many generations. The model in effect created a digital organism that emitted behavior continuously. The behavior of this digital organism was studied in three series of…
A computational model of selection by consequences.
McDowell, J J
2004-01-01
Darwinian selection by consequences was instantiated in a computational model that consisted of a repertoire of behaviors undergoing selection, reproduction, and mutation over many generations. The model in effect created a digital organism that emitted behavior continuously. The behavior of this digital organism was studied in three series of computational experiments that arranged reinforcement according to random-interval (RI) schedules. The quantitative features of the model were varied o...
Hidden Markov models in automatic speech recognition
Wrzoskowicz, Adam
1993-11-01
This article describes a method for constructing an automatic speech recognition system based on hidden Markov models (HMMs). The author discusses the basic concepts of HMM theory and the application of these models to the analysis and recognition of speech signals. The author provides algorithms which make it possible to train the ASR system and recognize signals on the basis of distinct stochastic models of selected speech sound classes. The author describes the specific components of the system and the procedures used to model and recognize speech. The author discusses problems associated with the choice of optimal signal detection and parameterization characteristics and their effect on the performance of the system. The author presents different options for the choice of speech signal segments and their consequences for the ASR process. The author gives special attention to the use of lexical, syntactic, and semantic information for the purpose of improving the quality and efficiency of the system. The author also describes an ASR system developed by the Speech Acoustics Laboratory of the IBPT PAS. The author discusses the results of experiments on the effect of noise on the performance of the ASR system and describes methods of constructing HMM's designed to operate in a noisy environment. The author also describes a language for human-robot communications which was defined as a complex multilevel network from an HMM model of speech sounds geared towards Polish inflections. The author also added mandatory lexical and syntactic rules to the system for its communications vocabulary.
Bayesian Model Selection under Time Constraints
Hoege, M.; Nowak, W.; Illman, W. A.
2017-12-01
Bayesian model selection (BMS) provides a consistent framework for rating and comparing models in multi-model inference. In cases where models of vastly different complexity compete with each other, we also face vastly different computational runtimes of such models. For instance, time series of a quantity of interest can be simulated by an autoregressive process model that takes even less than a second for one run, or by a partial differential equations-based model with runtimes up to several hours or even days. The classical BMS is based on a quantity called Bayesian model evidence (BME). It determines the model weights in the selection process and resembles a trade-off between bias of a model and its complexity. However, in practice, the runtime of models is another weight relevant factor for model selection. Hence, we believe that it should be included, leading to an overall trade-off problem between bias, variance and computing effort. We approach this triple trade-off from the viewpoint of our ability to generate realizations of the models under a given computational budget. One way to obtain BME values is through sampling-based integration techniques. We argue with the fact that more expensive models can be sampled much less under time constraints than faster models (in straight proportion to their runtime). The computed evidence in favor of a more expensive model is statistically less significant than the evidence computed in favor of a faster model, since sampling-based strategies are always subject to statistical sampling error. We present a straightforward way to include this misbalance into the model weights that are the basis for model selection. Our approach follows directly from the idea of insufficient significance. It is based on a computationally cheap bootstrapping error estimate of model evidence and is easy to implement. The approach is illustrated in a small synthetic modeling study.
HPeak: an HMM-based algorithm for defining read-enriched regions in ChIP-Seq data
Directory of Open Access Journals (Sweden)
Maher Christopher A
2010-07-01
Full Text Available Abstract Background Protein-DNA interaction constitutes a basic mechanism for the genetic regulation of target gene expression. Deciphering this mechanism has been a daunting task due to the difficulty in characterizing protein-bound DNA on a large scale. A powerful technique has recently emerged that couples chromatin immunoprecipitation (ChIP with next-generation sequencing, (ChIP-Seq. This technique provides a direct survey of the cistrom of transcription factors and other chromatin-associated proteins. In order to realize the full potential of this technique, increasingly sophisticated statistical algorithms have been developed to analyze the massive amount of data generated by this method. Results Here we introduce HPeak, a Hidden Markov model (HMM-based Peak-finding algorithm for analyzing ChIP-Seq data to identify protein-interacting genomic regions. In contrast to the majority of available ChIP-Seq analysis software packages, HPeak is a model-based approach allowing for rigorous statistical inference. This approach enables HPeak to accurately infer genomic regions enriched with sequence reads by assuming realistic probability distributions, in conjunction with a novel weighting scheme on the sequencing read coverage. Conclusions Using biologically relevant data collections, we found that HPeak showed a higher prevalence of the expected transcription factor binding motifs in ChIP-enriched sequences relative to the control sequences when compared to other currently available ChIP-Seq analysis approaches. Additionally, in comparison to the ChIP-chip assay, ChIP-Seq provides higher resolution along with improved sensitivity and specificity of binding site detection. Additional file and the HPeak program are freely available at http://www.sph.umich.edu/csg/qin/HPeak.
A Dynamic Model for Limb Selection
Cox, R.F.A; Smitsman, A.W.
2008-01-01
Two experiments and a model on limb selection are reported. In Experiment 1 left-handed and right-handed participants (N = 36) repeatedly used one hand for grasping a small cube. After a clear switch in the cube’s location, perseverative limb selection was revealed in both handedness groups. In
A Gambler's Model of Natural Selection.
Nolan, Michael J.; Ostrovsky, David S.
1996-01-01
Presents an activity that highlights the mechanism and power of natural selection. Allows students to think in terms of modeling a biological process and instills an appreciation for a mathematical approach to biological problems. (JRH)
Review and selection of unsaturated flow models
Energy Technology Data Exchange (ETDEWEB)
Reeves, M.; Baker, N.A.; Duguid, J.O. [INTERA, Inc., Las Vegas, NV (United States)
1994-04-04
Since the 1960`s, ground-water flow models have been used for analysis of water resources problems. In the 1970`s, emphasis began to shift to analysis of waste management problems. This shift in emphasis was largely brought about by site selection activities for geologic repositories for disposal of high-level radioactive wastes. Model development during the 1970`s and well into the 1980`s focused primarily on saturated ground-water flow because geologic repositories in salt, basalt, granite, shale, and tuff were envisioned to be below the water table. Selection of the unsaturated zone at Yucca Mountain, Nevada, for potential disposal of waste began to shift model development toward unsaturated flow models. Under the US Department of Energy (DOE), the Civilian Radioactive Waste Management System Management and Operating Contractor (CRWMS M&O) has the responsibility to review, evaluate, and document existing computer models; to conduct performance assessments; and to develop performance assessment models, where necessary. This document describes the CRWMS M&O approach to model review and evaluation (Chapter 2), and the requirements for unsaturated flow models which are the bases for selection from among the current models (Chapter 3). Chapter 4 identifies existing models, and their characteristics. Through a detailed examination of characteristics, Chapter 5 presents the selection of models for testing. Chapter 6 discusses the testing and verification of selected models. Chapters 7 and 8 give conclusions and make recommendations, respectively. Chapter 9 records the major references for each of the models reviewed. Appendix A, a collection of technical reviews for each model, contains a more complete list of references. Finally, Appendix B characterizes the problems used for model testing.
Review and selection of unsaturated flow models
International Nuclear Information System (INIS)
Reeves, M.; Baker, N.A.; Duguid, J.O.
1994-01-01
Since the 1960's, ground-water flow models have been used for analysis of water resources problems. In the 1970's, emphasis began to shift to analysis of waste management problems. This shift in emphasis was largely brought about by site selection activities for geologic repositories for disposal of high-level radioactive wastes. Model development during the 1970's and well into the 1980's focused primarily on saturated ground-water flow because geologic repositories in salt, basalt, granite, shale, and tuff were envisioned to be below the water table. Selection of the unsaturated zone at Yucca Mountain, Nevada, for potential disposal of waste began to shift model development toward unsaturated flow models. Under the US Department of Energy (DOE), the Civilian Radioactive Waste Management System Management and Operating Contractor (CRWMS M ampersand O) has the responsibility to review, evaluate, and document existing computer models; to conduct performance assessments; and to develop performance assessment models, where necessary. This document describes the CRWMS M ampersand O approach to model review and evaluation (Chapter 2), and the requirements for unsaturated flow models which are the bases for selection from among the current models (Chapter 3). Chapter 4 identifies existing models, and their characteristics. Through a detailed examination of characteristics, Chapter 5 presents the selection of models for testing. Chapter 6 discusses the testing and verification of selected models. Chapters 7 and 8 give conclusions and make recommendations, respectively. Chapter 9 records the major references for each of the models reviewed. Appendix A, a collection of technical reviews for each model, contains a more complete list of references. Finally, Appendix B characterizes the problems used for model testing
Model Selection with the Linear Mixed Model for Longitudinal Data
Ryoo, Ji Hoon
2011-01-01
Model building or model selection with linear mixed models (LMMs) is complicated by the presence of both fixed effects and random effects. The fixed effects structure and random effects structure are codependent, so selection of one influences the other. Most presentations of LMM in psychology and education are based on a multilevel or…
An evolutionary algorithm for model selection
Energy Technology Data Exchange (ETDEWEB)
Bicker, Karl [CERN, Geneva (Switzerland); Chung, Suh-Urk; Friedrich, Jan; Grube, Boris; Haas, Florian; Ketzer, Bernhard; Neubert, Sebastian; Paul, Stephan; Ryabchikov, Dimitry [Technische Univ. Muenchen (Germany)
2013-07-01
When performing partial-wave analyses of multi-body final states, the choice of the fit model, i.e. the set of waves to be used in the fit, can significantly alter the results of the partial wave fit. Traditionally, the models were chosen based on physical arguments and by observing the changes in log-likelihood of the fits. To reduce possible bias in the model selection process, an evolutionary algorithm was developed based on a Bayesian goodness-of-fit criterion which takes into account the model complexity. Starting from systematically constructed pools of waves which contain significantly more waves than the typical fit model, the algorithm yields a model with an optimal log-likelihood and with a number of partial waves which is appropriate for the number of events in the data. Partial waves with small contributions to the total intensity are penalized and likely to be dropped during the selection process, as are models were excessive correlations between single waves occur. Due to the automated nature of the model selection, a much larger part of the model space can be explored than would be possible in a manual selection. In addition the method allows to assess the dependence of the fit result on the fit model which is an important contribution to the systematic uncertainty.
Genetic search feature selection for affective modeling
DEFF Research Database (Denmark)
Martínez, Héctor P.; Yannakakis, Georgios N.
2010-01-01
Automatic feature selection is a critical step towards the generation of successful computational models of affect. This paper presents a genetic search-based feature selection method which is developed as a global-search algorithm for improving the accuracy of the affective models built....... The method is tested and compared against sequential forward feature selection and random search in a dataset derived from a game survey experiment which contains bimodal input features (physiological and gameplay) and expressed pairwise preferences of affect. Results suggest that the proposed method...
Directory of Open Access Journals (Sweden)
Juri Taborri
2014-09-01
Full Text Available In this work, we decided to apply a hierarchical weighted decision, proposed and used in other research fields, for the recognition of gait phases. The developed and validated novel distributed classifier is based on hierarchical weighted decision from outputs of scalar Hidden Markov Models (HMM applied to angular velocities of foot, shank, and thigh. The angular velocities of ten healthy subjects were acquired via three uni-axial gyroscopes embedded in inertial measurement units (IMUs during one walking task, repeated three times, on a treadmill. After validating the novel distributed classifier and scalar and vectorial classifiers-already proposed in the literature, with a cross-validation, classifiers were compared for sensitivity, specificity, and computational load for all combinations of the three targeted anatomical segments. Moreover, the performance of the novel distributed classifier in the estimation of gait variability in terms of mean time and coefficient of variation was evaluated. The highest values of specificity and sensitivity (>0.98 for the three classifiers examined here were obtained when the angular velocity of the foot was processed. Distributed and vectorial classifiers reached acceptable values (>0.95 when the angular velocity of shank and thigh were analyzed. Distributed and scalar classifiers showed values of computational load about 100 times lower than the one obtained with the vectorial classifier. In addition, distributed classifiers showed an excellent reliability for the evaluation of mean time and a good/excellent reliability for the coefficient of variation. In conclusion, due to the better performance and the small value of computational load, the here proposed novel distributed classifier can be implemented in the real-time application of gait phases recognition, such as to evaluate gait variability in patients or to control active orthoses for the recovery of mobility of lower limb joints.
Melody Track Selection Using Discriminative Language Model
Wu, Xiao; Li, Ming; Suo, Hongbin; Yan, Yonghong
In this letter we focus on the task of selecting the melody track from a polyphonic MIDI file. Based on the intuition that music and language are similar in many aspects, we solve the selection problem by introducing an n-gram language model to learn the melody co-occurrence patterns in a statistical manner and determine the melodic degree of a given MIDI track. Furthermore, we propose the idea of using background model and posterior probability criteria to make modeling more discriminative. In the evaluation, the achieved 81.6% correct rate indicates the feasibility of our approach.
Model selection for Gaussian kernel PCA denoising
DEFF Research Database (Denmark)
Jørgensen, Kasper Winther; Hansen, Lars Kai
2012-01-01
We propose kernel Parallel Analysis (kPA) for automatic kernel scale and model order selection in Gaussian kernel PCA. Parallel Analysis [1] is based on a permutation test for covariance and has previously been applied for model order selection in linear PCA, we here augment the procedure to also...... tune the Gaussian kernel scale of radial basis function based kernel PCA.We evaluate kPA for denoising of simulated data and the US Postal data set of handwritten digits. We find that kPA outperforms other heuristics to choose the model order and kernel scale in terms of signal-to-noise ratio (SNR...
Name segmentation using hidden Markov models and its application in record linkage
Directory of Open Access Journals (Sweden)
Rita de Cassia Braga Gonçalves
2014-10-01
Full Text Available This study aimed to evaluate the use of hidden Markov models (HMM for the segmentation of person names and its influence on record linkage. A HMM was applied to the segmentation of patient’s and mother’s names in the databases of the Mortality Information System (SIM, Information Subsystem for High Complexity Procedures (APAC, and Hospital Information System (AIH. A sample of 200 patients from each database was segmented via HMM, and the results were compared to those from segmentation by the authors. The APAC-SIM and APAC-AIH databases were linked using three different segmentation strategies, one of which used HMM. Conformity of segmentation via HMM varied from 90.5% to 92.5%. The different segmentation strategies yielded similar results in the record linkage process. This study suggests that segmentation of Brazilian names via HMM is no more effective than traditional segmentation approaches in the linkage process.
Expert System Model for Educational Personnel Selection
Directory of Open Access Journals (Sweden)
Héctor A. Tabares-Ospina
2013-06-01
Full Text Available The staff selection is a difficult task due to the subjectivity that the evaluation means. This process can be complemented using a system to support decision. This paper presents the implementation of an expert system to systematize the selection process of professors. The management of software development is divided into 4 parts: requirements, design, implementation and commissioning. The proposed system models a specific knowledge through relationships between variables evidence and objective.
Automated sample plan selection for OPC modeling
Casati, Nathalie; Gabrani, Maria; Viswanathan, Ramya; Bayraktar, Zikri; Jaiswal, Om; DeMaris, David; Abdo, Amr Y.; Oberschmidt, James; Krause, Andreas
2014-03-01
It is desired to reduce the time required to produce metrology data for calibration of Optical Proximity Correction (OPC) models and also maintain or improve the quality of the data collected with regard to how well that data represents the types of patterns that occur in real circuit designs. Previous work based on clustering in geometry and/or image parameter space has shown some benefit over strictly manual or intuitive selection, but leads to arbitrary pattern exclusion or selection which may not be the best representation of the product. Forming the pattern selection as an optimization problem, which co-optimizes a number of objective functions reflecting modelers' insight and expertise, has shown to produce models with equivalent quality to the traditional plan of record (POR) set but in a less time.
Variable selection and model choice in geoadditive regression models.
Kneib, Thomas; Hothorn, Torsten; Tutz, Gerhard
2009-06-01
Model choice and variable selection are issues of major concern in practical regression analyses, arising in many biometric applications such as habitat suitability analyses, where the aim is to identify the influence of potentially many environmental conditions on certain species. We describe regression models for breeding bird communities that facilitate both model choice and variable selection, by a boosting algorithm that works within a class of geoadditive regression models comprising spatial effects, nonparametric effects of continuous covariates, interaction surfaces, and varying coefficients. The major modeling components are penalized splines and their bivariate tensor product extensions. All smooth model terms are represented as the sum of a parametric component and a smooth component with one degree of freedom to obtain a fair comparison between the model terms. A generic representation of the geoadditive model allows us to devise a general boosting algorithm that automatically performs model choice and variable selection.
SVM-dependent pairwise HMM: an application to protein pairwise alignments.
Orlando, Gabriele; Raimondi, Daniele; Khan, Taushif; Lenaerts, Tom; Vranken, Wim F
2017-12-15
Methods able to provide reliable protein alignments are crucial for many bioinformatics applications. In the last years many different algorithms have been developed and various kinds of information, from sequence conservation to secondary structure, have been used to improve the alignment performances. This is especially relevant for proteins with highly divergent sequences. However, recent works suggest that different features may have different importance in diverse protein classes and it would be an advantage to have more customizable approaches, capable to deal with different alignment definitions. Here we present Rigapollo, a highly flexible pairwise alignment method based on a pairwise HMM-SVM that can use any type of information to build alignments. Rigapollo lets the user decide the optimal features to align their protein class of interest. It outperforms current state of the art methods on two well-known benchmark datasets when aligning highly divergent sequences. A Python implementation of the algorithm is available at http://ibsquare.be/rigapollo. wim.vranken@vub.be. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Model Selection in Data Analysis Competitions
DEFF Research Database (Denmark)
Wind, David Kofoed; Winther, Ole
2014-01-01
The use of data analysis competitions for selecting the most appropriate model for a problem is a recent innovation in the field of predictive machine learning. Two of the most well-known examples of this trend was the Netflix Competition and recently the competitions hosted on the online platform...... performers from Kaggle and use previous personal experiences from competing in Kaggle competitions. The stated hypotheses about feature engineering, ensembling, overfitting, model complexity and evaluation metrics give indications and guidelines on how to select a proper model for performing well...... Kaggle. In this paper, we will state and try to verify a set of qualitative hypotheses about predictive modelling, both in general and in the scope of data analysis competitions. To verify our hypotheses we will look at previous competitions and their outcomes, use qualitative interviews with top...
Adverse selection model regarding tobacco consumption
Directory of Open Access Journals (Sweden)
Dumitru MARIN
2006-01-01
Full Text Available The impact of introducing a tax on tobacco consumption can be studied trough an adverse selection model. The objective of the model presented in the following is to characterize the optimal contractual relationship between the governmental authorities and the two type employees: smokers and non-smokers, taking into account that the consumers’ decision to smoke or not represents an element of risk and uncertainty. Two scenarios are run using the General Algebraic Modeling Systems software: one without taxes set on tobacco consumption and another one with taxes set on tobacco consumption, based on an adverse selection model described previously. The results of the two scenarios are compared in the end of the paper: the wage earnings levels and the social welfare in case of a smoking agent and in case of a non-smoking agent.
Multi-category micro-milling tool wear monitoring with continuous hidden Markov models
Zhu, Kunpeng; Wong, Yoke San; Hong, Geok Soon
2009-02-01
In-process monitoring of tool conditions is important in micro-machining due to the high precision requirement and high tool wear rate. Tool condition monitoring in micro-machining poses new challenges compared to conventional machining. In this paper, a multi-category classification approach is proposed for tool flank wear state identification in micro-milling. Continuous Hidden Markov models (HMMs) are adapted for modeling of the tool wear process in micro-milling, and estimation of the tool wear state given the cutting force features. For a noise-robust approach, the HMM outputs are connected via a medium filter to minimize the tool state before entry into the next state due to high noise level. A detailed study on the selection of HMM structures for tool condition monitoring (TCM) is presented. Case studies on the tool state estimation in the micro-milling of pure copper and steel demonstrate the effectiveness and potential of these methods.
Review and selection of unsaturated flow models
Energy Technology Data Exchange (ETDEWEB)
NONE
1993-09-10
Under the US Department of Energy (DOE), the Civilian Radioactive Waste Management System Management and Operating Contractor (CRWMS M&O) has the responsibility to review, evaluate, and document existing computer ground-water flow models; to conduct performance assessments; and to develop performance assessment models, where necessary. In the area of scientific modeling, the M&O CRWMS has the following responsibilities: To provide overall management and integration of modeling activities. To provide a framework for focusing modeling and model development. To identify areas that require increased or decreased emphasis. To ensure that the tools necessary to conduct performance assessment are available. These responsibilities are being initiated through a three-step process. It consists of a thorough review of existing models, testing of models which best fit the established requirements, and making recommendations for future development that should be conducted. Future model enhancement will then focus on the models selected during this activity. Furthermore, in order to manage future model development, particularly in those areas requiring substantial enhancement, the three-step process will be updated and reported periodically in the future.
Expatriates Selection: An Essay of Model Analysis
Directory of Open Access Journals (Sweden)
Rui Bártolo-Ribeiro
2015-03-01
Full Text Available The business expansion to other geographical areas with different cultures from which organizations were created and developed leads to the expatriation of employees to these destinations. Recruitment and selection procedures of expatriates do not always have the intended success leading to an early return of these professionals with the consequent organizational disorders. In this study, several articles published in the last five years were analyzed in order to identify the most frequently mentioned dimensions in the selection of expatriates in terms of success and failure. The characteristics in the selection process that may increase prediction of adaptation of expatriates to new cultural contexts of the some organization were studied according to the KSAOs model. Few references were found concerning Knowledge, Skills and Abilities dimensions in the analyzed papers. There was a strong predominance on the evaluation of Other Characteristics, and was given more importance to dispositional factors than situational factors for promoting the integration of the expatriates.
Post-model selection inference and model averaging
Directory of Open Access Journals (Sweden)
Georges Nguefack-Tsague
2011-07-01
Full Text Available Although model selection is routinely used in practice nowadays, little is known about its precise effects on any subsequent inference that is carried out. The same goes for the effects induced by the closely related technique of model averaging. This paper is concerned with the use of the same data first to select a model and then to carry out inference, in particular point estimation and point prediction. The properties of the resulting estimator, called a post-model-selection estimator (PMSE, are hard to derive. Using selection criteria such as hypothesis testing, AIC, BIC, HQ and Cp, we illustrate that, in terms of risk function, no single PMSE dominates the others. The same conclusion holds more generally for any penalised likelihood information criterion. We also compare various model averaging schemes and show that no single one dominates the others in terms of risk function. Since PMSEs can be regarded as a special case of model averaging, with 0-1 random-weights, we propose a connection between the two theories, in the frequentist approach, by taking account of the selection procedure when performing model averaging. We illustrate the point by simulating a simple linear regression model.
Skewed factor models using selection mechanisms
Kim, Hyoung-Moon
2015-12-21
Traditional factor models explicitly or implicitly assume that the factors follow a multivariate normal distribution; that is, only moments up to order two are involved. However, it may happen in real data problems that the first two moments cannot explain the factors. Based on this motivation, here we devise three new skewed factor models, the skew-normal, the skew-tt, and the generalized skew-normal factor models depending on a selection mechanism on the factors. The ECME algorithms are adopted to estimate related parameters for statistical inference. Monte Carlo simulations validate our new models and we demonstrate the need for skewed factor models using the classic open/closed book exam scores dataset.
Skewed factor models using selection mechanisms
Kim, Hyoung-Moon; Maadooliat, Mehdi; Arellano-Valle, Reinaldo B.; Genton, Marc G.
2015-01-01
Traditional factor models explicitly or implicitly assume that the factors follow a multivariate normal distribution; that is, only moments up to order two are involved. However, it may happen in real data problems that the first two moments cannot explain the factors. Based on this motivation, here we devise three new skewed factor models, the skew-normal, the skew-tt, and the generalized skew-normal factor models depending on a selection mechanism on the factors. The ECME algorithms are adopted to estimate related parameters for statistical inference. Monte Carlo simulations validate our new models and we demonstrate the need for skewed factor models using the classic open/closed book exam scores dataset.
Model structure selection in convolutive mixtures
DEFF Research Database (Denmark)
Dyrholm, Mads; Makeig, S.; Hansen, Lars Kai
2006-01-01
The CICAAR algorithm (convolutive independent component analysis with an auto-regressive inverse model) allows separation of white (i.i.d) source signals from convolutive mixtures. We introduce a source color model as a simple extension to the CICAAR which allows for a more parsimonious represent......The CICAAR algorithm (convolutive independent component analysis with an auto-regressive inverse model) allows separation of white (i.i.d) source signals from convolutive mixtures. We introduce a source color model as a simple extension to the CICAAR which allows for a more parsimonious...... representation in many practical mixtures. The new filter-CICAAR allows Bayesian model selection and can help answer questions like: ’Are we actually dealing with a convolutive mixture?’. We try to answer this question for EEG data....
Behavioral optimization models for multicriteria portfolio selection
Directory of Open Access Journals (Sweden)
Mehlawat Mukesh Kumar
2013-01-01
Full Text Available In this paper, behavioral construct of suitability is used to develop a multicriteria decision making framework for portfolio selection. To achieve this purpose, we rely on multiple methodologies. Analytical hierarchy process technique is used to model the suitability considerations with a view to obtaining the suitability performance score in respect of each asset. A fuzzy multiple criteria decision making method is used to obtain the financial quality score of each asset based upon investor's rating on the financial criteria. Two optimization models are developed for optimal asset allocation considering simultaneously financial and suitability criteria. An empirical study is conducted on randomly selected assets from National Stock Exchange, Mumbai, India to demonstrate the effectiveness of the proposed methodology.
Dang, Shilpa; Chaudhury, Santanu; Lall, Brejesh; Roy, Prasun Kumar
2017-02-15
Effective connectivity (EC) analysis of neuronal groups using fMRI delivers insights about functional-integration. However, fMRI signal has low-temporal resolution due to down-sampling and indirectly measures underlying neuronal activity. The aim is to address above issues for more reliable EC estimates. This paper proposes use of autoregressive hidden Markov model with missing data (AR-HMM-md) in dynamically multi-linked (DML) framework for learning EC using multiple fMRI time series. In our recent work (Dang et al., 2016), we have shown how AR-HMM-md for modelling single fMRI time series outperforms the existing methods. AR-HMM-md models unobserved neuronal activity and lost data over time as variables and estimates their values by joint optimization given fMRI observation sequence. The effectiveness in learning EC is shown using simulated experiments. Also the effects of sampling and noise are studied on EC. Moreover, classification-experiments are performed for Attention-Deficit/Hyperactivity Disorder subjects and age-matched controls for performance evaluation of real data. Using Bayesian model selection, we see that the proposed model converged to higher log-likelihood and demonstrated that group-classification can be performed with higher cross-validation accuracy of above 94% using distinctive network EC which characterizes patients vs. The full data EC obtained from DML-AR-HMM-md is more consistent with previous literature than the classical multivariate Granger causality method. The proposed architecture leads to reliable estimates of EC than the existing latent models. This framework overcomes the disadvantage of low-temporal resolution and improves cross-validation accuracy significantly due to presence of missing data variables and autoregressive process. Copyright © 2016 Elsevier B.V. All rights reserved.
Robust inference in sample selection models
Zhelonkin, Mikhail; Genton, Marc G.; Ronchetti, Elvezio
2015-01-01
The problem of non-random sample selectivity often occurs in practice in many fields. The classical estimators introduced by Heckman are the backbone of the standard statistical analysis of these models. However, these estimators are very sensitive to small deviations from the distributional assumptions which are often not satisfied in practice. We develop a general framework to study the robustness properties of estimators and tests in sample selection models. We derive the influence function and the change-of-variance function of Heckman's two-stage estimator, and we demonstrate the non-robustness of this estimator and its estimated variance to small deviations from the model assumed. We propose a procedure for robustifying the estimator, prove its asymptotic normality and give its asymptotic variance. Both cases with and without an exclusion restriction are covered. This allows us to construct a simple robust alternative to the sample selection bias test. We illustrate the use of our new methodology in an analysis of ambulatory expenditures and we compare the performance of the classical and robust methods in a Monte Carlo simulation study.
Robust inference in sample selection models
Zhelonkin, Mikhail
2015-11-20
The problem of non-random sample selectivity often occurs in practice in many fields. The classical estimators introduced by Heckman are the backbone of the standard statistical analysis of these models. However, these estimators are very sensitive to small deviations from the distributional assumptions which are often not satisfied in practice. We develop a general framework to study the robustness properties of estimators and tests in sample selection models. We derive the influence function and the change-of-variance function of Heckman\\'s two-stage estimator, and we demonstrate the non-robustness of this estimator and its estimated variance to small deviations from the model assumed. We propose a procedure for robustifying the estimator, prove its asymptotic normality and give its asymptotic variance. Both cases with and without an exclusion restriction are covered. This allows us to construct a simple robust alternative to the sample selection bias test. We illustrate the use of our new methodology in an analysis of ambulatory expenditures and we compare the performance of the classical and robust methods in a Monte Carlo simulation study.
Efficiently adapting graphical models for selectivity estimation
DEFF Research Database (Denmark)
Tzoumas, Kostas; Deshpande, Amol; Jensen, Christian S.
2013-01-01
cardinality estimation without making the independence assumption. By carefully using concepts from the field of graphical models, we are able to factor the joint probability distribution over all the attributes in the database into small, usually two-dimensional distributions, without a significant loss...... in estimation accuracy. We show how to efficiently construct such a graphical model from the database using only two-way join queries, and we show how to perform selectivity estimation in a highly efficient manner. We integrate our algorithms into the PostgreSQL DBMS. Experimental results indicate...
Zhang, Wei; Jiang, Ling; Han, Lei
2018-04-01
Convective storm nowcasting refers to the prediction of the convective weather initiation, development, and decay in a very short term (typically 0 2 h) .Despite marked progress over the past years, severe convective storm nowcasting still remains a challenge. With the boom of machine learning, it has been well applied in various fields, especially convolutional neural network (CNN). In this paper, we build a servere convective weather nowcasting system based on CNN and hidden Markov model (HMM) using reanalysis meteorological data. The goal of convective storm nowcasting is to predict if there is a convective storm in 30min. In this paper, we compress the VDRAS reanalysis data to low-dimensional data by CNN as the observation vector of HMM, then obtain the development trend of strong convective weather in the form of time series. It shows that, our method can extract robust features without any artificial selection of features, and can capture the development trend of strong convective storm.
Item selection via Bayesian IRT models.
Arima, Serena
2015-02-10
With reference to a questionnaire that aimed to assess the quality of life for dysarthric speakers, we investigate the usefulness of a model-based procedure for reducing the number of items. We propose a mixed cumulative logit model, which is known in the psychometrics literature as the graded response model: responses to different items are modelled as a function of individual latent traits and as a function of item characteristics, such as their difficulty and their discrimination power. We jointly model the discrimination and the difficulty parameters by using a k-component mixture of normal distributions. Mixture components correspond to disjoint groups of items. Items that belong to the same groups can be considered equivalent in terms of both difficulty and discrimination power. According to decision criteria, we select a subset of items such that the reduced questionnaire is able to provide the same information that the complete questionnaire provides. The model is estimated by using a Bayesian approach, and the choice of the number of mixture components is justified according to information criteria. We illustrate the proposed approach on the basis of data that are collected for 104 dysarthric patients by local health authorities in Lecce and in Milan. Copyright © 2014 John Wiley & Sons, Ltd.
Factors influencing creep model equation selection
International Nuclear Information System (INIS)
Holdsworth, S.R.; Askins, M.; Baker, A.; Gariboldi, E.; Holmstroem, S.; Klenk, A.; Ringel, M.; Merckling, G.; Sandstrom, R.; Schwienheer, M.; Spigarelli, S.
2008-01-01
During the course of the EU-funded Advanced-Creep Thematic Network, ECCC-WG1 reviewed the applicability and effectiveness of a range of model equations to represent the accumulation of creep strain in various engineering alloys. In addition to considering the experience of network members, the ability of several models to describe the deformation characteristics of large single and multi-cast collations of ε(t,T,σ) creep curves have been evaluated in an intensive assessment inter-comparison activity involving three steels, 21/4 CrMo (P22), 9CrMoVNb (Steel-91) and 18Cr13NiMo (Type-316). The choice of the most appropriate creep model equation for a given application depends not only on the high-temperature deformation characteristics of the material under consideration, but also on the characteristics of the dataset, the number of casts for which creep curves are available and on the strain regime for which an analytical representation is required. The paper focuses on the factors which can influence creep model selection and model-fitting approach for multi-source, multi-cast datasets
A Survey on Hidden Markov Model (HMM) Based Intention Prediction Techniques
Mrs. Manisha Bharati; Dr. Santosh Lomte
2016-01-01
The extensive use of virtualization in implementing cloud infrastructure brings unrivaled security concerns for cloud tenants or customers and introduces an additional layer that itself must be completely configured and secured. Intruders can exploit the large amount of cloud resources for their attacks. This paper discusses two approaches In the first three features namely ongoing attacks, autonomic prevention actions, and risk measure are Integrated to our Autonomic Cloud Intrus...
High-dimensional model estimation and model selection
CERN. Geneva
2015-01-01
I will review concepts and algorithms from high-dimensional statistics for linear model estimation and model selection. I will particularly focus on the so-called p>>n setting where the number of variables p is much larger than the number of samples n. I will focus mostly on regularized statistical estimators that produce sparse models. Important examples include the LASSO and its matrix extension, the Graphical LASSO, and more recent non-convex methods such as the TREX. I will show the applicability of these estimators in a diverse range of scientific applications, such as sparse interaction graph recovery and high-dimensional classification and regression problems in genomics.
Halo models of HI selected galaxies
Paul, Niladri; Choudhury, Tirthankar Roy; Paranjape, Aseem
2018-06-01
Modelling the distribution of neutral hydrogen (HI) in dark matter halos is important for studying galaxy evolution in the cosmological context. We use a novel approach to infer the HI-dark matter connection at the massive end (m_H{I} > 10^{9.8} M_{⊙}) from radio HI emission surveys, using optical properties of low-redshift galaxies as an intermediary. In particular, we use a previously calibrated optical HOD describing the luminosity- and colour-dependent clustering of SDSS galaxies and describe the HI content using a statistical scaling relation between the optical properties and HI mass. This allows us to compute the abundance and clustering properties of HI-selected galaxies and compare with data from the ALFALFA survey. We apply an MCMC-based statistical analysis to constrain the free parameters related to the scaling relation. The resulting best-fit scaling relation identifies massive HI galaxies primarily with optically faint blue centrals, consistent with expectations from galaxy formation models. We compare the Hi-stellar mass relation predicted by our model with independent observations from matched Hi-optical galaxy samples, finding reasonable agreement. As a further application, we make some preliminary forecasts for future observations of HI and optical galaxies in the expected overlap volume of SKA and Euclid/LSST.
Selecting a model of supersymmetry breaking mediation
International Nuclear Information System (INIS)
AbdusSalam, S. S.; Allanach, B. C.; Dolan, M. J.; Feroz, F.; Hobson, M. P.
2009-01-01
We study the problem of selecting between different mechanisms of supersymmetry breaking in the minimal supersymmetric standard model using current data. We evaluate the Bayesian evidence of four supersymmetry breaking scenarios: mSUGRA, mGMSB, mAMSB, and moduli mediation. The results show a strong dependence on the dark matter assumption. Using the inferred cosmological relic density as an upper bound, minimal anomaly mediation is at least moderately favored over the CMSSM. Our fits also indicate that evidence for a positive sign of the μ parameter is moderate at best. We present constraints on the anomaly and gauge mediated parameter spaces and some previously unexplored aspects of the dark matter phenomenology of the moduli mediation scenario. We use sparticle searches, indirect observables and dark matter observables in the global fit and quantify robustness with respect to prior choice. We quantify how much information is contained within each constraint.
Selective Oxidation of Lignin Model Compounds.
Gao, Ruili; Li, Yanding; Kim, Hoon; Mobley, Justin K; Ralph, John
2018-05-02
Lignin, the planet's most abundant renewable source of aromatic compounds, is difficult to degrade efficiently to welldefined aromatics. We developed a microwave-assisted catalytic Swern oxidation system using an easily prepared catalyst, MoO 2 Cl 2 (DMSO) 2 , and DMSO as the solvent and oxidant. It demonstrated high efficiency in transforming lignin model compounds containing the units and functional groups found in native lignins. The aromatic ring substituents strongly influenced the selectivity of β-ether phenolic dimer cleavage to generate sinapaldehyde and coniferaldehyde, monomers not usually produced by oxidative methods. Time-course studies on two key intermediates provided insight into the reaction pathway. Owing to the broad scope of this oxidation system and the insight gleaned with regard to its mechanism, this strategy could be adapted and applied in a general sense to the production of useful aromatic chemicals from phenolics and lignin. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Estimation of a multivariate mean under model selection uncertainty
Directory of Open Access Journals (Sweden)
Georges Nguefack-Tsague
2014-05-01
Full Text Available Model selection uncertainty would occur if we selected a model based on one data set and subsequently applied it for statistical inferences, because the "correct" model would not be selected with certainty. When the selection and inference are based on the same dataset, some additional problems arise due to the correlation of the two stages (selection and inference. In this paper model selection uncertainty is considered and model averaging is proposed. The proposal is related to the theory of James and Stein of estimating more than three parameters from independent normal observations. We suggest that a model averaging scheme taking into account the selection procedure could be more appropriate than model selection alone. Some properties of this model averaging estimator are investigated; in particular we show using Stein's results that it is a minimax estimator and can outperform Stein-type estimators.
Psyche Mission: Scientific Models and Instrument Selection
Polanskey, C. A.; Elkins-Tanton, L. T.; Bell, J. F., III; Lawrence, D. J.; Marchi, S.; Park, R. S.; Russell, C. T.; Weiss, B. P.
2017-12-01
NASA has chosen to explore (16) Psyche with their 14th Discovery-class mission. Psyche is a 226-km diameter metallic asteroid hypothesized to be the exposed core of a planetesimal that was stripped of its rocky mantle by multiple hit and run collisions in the early solar system. The spacecraft launch is planned for 2022 with arrival at the asteroid in 2026 for 21 months of operations. The Psyche investigation has five primary scientific objectives: A. Determine whether Psyche is a core, or if it is unmelted material. B. Determine the relative ages of regions of Psyche's surface. C. Determine whether small metal bodies incorporate the same light elements as are expected in the Earth's high-pressure core. D. Determine whether Psyche was formed under conditions more oxidizing or more reducing than Earth's core. E. Characterize Psyche's topography. The mission's task was to select the appropriate instruments to meet these objectives. However, exploring a metal world, rather than one made of ice, rock, or gas, requires development of new scientific models for Psyche to support the selection of the appropriate instruments for the payload. If Psyche is indeed a planetary core, we expect that it should have a detectable magnetic field. However, the strength of the magnetic field can vary by orders of magnitude depending on the formational history of Psyche. The implications of both the extreme low-end and the high-end predictions impact the magnetometer and mission design. For the imaging experiment, what can the team expect for the morphology of a heavily impacted metal body? Efforts are underway to further investigate the differences in crater morphology between high velocity impacts into metal and rock to be prepared to interpret the images of Psyche when they are returned. Finally, elemental composition measurements at Psyche using nuclear spectroscopy encompass a new and unexplored phase space of gamma-ray and neutron measurements. We will present some end
Enhancing Speech Recognition Using Improved Particle Swarm Optimization Based Hidden Markov Model
Directory of Open Access Journals (Sweden)
Lokesh Selvaraj
2014-01-01
Full Text Available Enhancing speech recognition is the primary intention of this work. In this paper a novel speech recognition method based on vector quantization and improved particle swarm optimization (IPSO is suggested. The suggested methodology contains four stages, namely, (i denoising, (ii feature mining (iii, vector quantization, and (iv IPSO based hidden Markov model (HMM technique (IP-HMM. At first, the speech signals are denoised using median filter. Next, characteristics such as peak, pitch spectrum, Mel frequency Cepstral coefficients (MFCC, mean, standard deviation, and minimum and maximum of the signal are extorted from the denoised signal. Following that, to accomplish the training process, the extracted characteristics are given to genetic algorithm based codebook generation in vector quantization. The initial populations are created by selecting random code vectors from the training set for the codebooks for the genetic algorithm process and IP-HMM helps in doing the recognition. At this point the creativeness will be done in terms of one of the genetic operation crossovers. The proposed speech recognition technique offers 97.14% accuracy.
Score-based prediction of genomic islands in prokaryotic genomes using hidden Markov models
Directory of Open Access Journals (Sweden)
Surovcik Katharina
2006-03-01
Full Text Available Abstract Background Horizontal gene transfer (HGT is considered a strong evolutionary force shaping the content of microbial genomes in a substantial manner. It is the difference in speed enabling the rapid adaptation to changing environmental demands that distinguishes HGT from gene genesis, duplications or mutations. For a precise characterization, algorithms are needed that identify transfer events with high reliability. Frequently, the transferred pieces of DNA have a considerable length, comprise several genes and are called genomic islands (GIs or more specifically pathogenicity or symbiotic islands. Results We have implemented the program SIGI-HMM that predicts GIs and the putative donor of each individual alien gene. It is based on the analysis of codon usage (CU of each individual gene of a genome under study. CU of each gene is compared against a carefully selected set of CU tables representing microbial donors or highly expressed genes. Multiple tests are used to identify putatively alien genes, to predict putative donors and to mask putatively highly expressed genes. Thus, we determine the states and emission probabilities of an inhomogeneous hidden Markov model working on gene level. For the transition probabilities, we draw upon classical test theory with the intention of integrating a sensitivity controller in a consistent manner. SIGI-HMM was written in JAVA and is publicly available. It accepts as input any file created according to the EMBL-format. It generates output in the common GFF format readable for genome browsers. Benchmark tests showed that the output of SIGI-HMM is in agreement with known findings. Its predictions were both consistent with annotated GIs and with predictions generated by different methods. Conclusion SIGI-HMM is a sensitive tool for the identification of GIs in microbial genomes. It allows to interactively analyze genomes in detail and to generate or to test hypotheses about the origin of acquired
A kingdom-specific protein domain HMM library for improved annotation of fungal genomes
Directory of Open Access Journals (Sweden)
Oliver Stephen G
2007-04-01
Full Text Available Abstract Background Pfam is a general-purpose database of protein domain alignments and profile Hidden Markov Models (HMMs, which is very popular for the annotation of sequence data produced by genome sequencing projects. Pfam provides models that are often very general in terms of the taxa that they cover and it has previously been suggested that such general models may lack some of the specificity or selectivity that would be provided by kingdom-specific models. Results Here we present a general approach to create domain libraries of HMMs for sub-taxa of a kingdom. Taking fungal species as an example, we construct a domain library of HMMs (called Fungal Pfam or FPfam using sequences from 30 genomes, consisting of 24 species from the ascomycetes group and two basidiomycetes, Ustilago maydis, a fungal pathogen of maize, and the white rot fungus Phanerochaete chrysosporium. In addition, we include the Microsporidion Encephalitozoon cuniculi, an obligate intracellular parasite, and two non-fungal species, the oomycetes Phytophthora sojae and Phytophthora ramorum, both plant pathogens. We evaluate the performance in terms of coverage against the original 30 genomes used in training FPfam and against five more recently sequenced fungal genomes that can be considered as an independent test set. We show that kingdom-specific models such as FPfam can find instances of both novel and well characterized domains, increases overall coverage and detects more domains per sequence with typically higher bitscores than Pfam for the same domain families. An evaluation of the effect of changing E-values on the coverage shows that the performance of FPfam is consistent over the range of E-values applied. Conclusion Kingdom-specific models are shown to provide improved coverage. However, as the models become more specific, some sequences found by Pfam may be missed by the models in FPfam and some of the families represented in the test set are not present in FPfam
Genetic Algorithms Principles Towards Hidden Markov Model
Directory of Open Access Journals (Sweden)
Nabil M. Hewahi
2011-10-01
Full Text Available In this paper we propose a general approach based on Genetic Algorithms (GAs to evolve Hidden Markov Models (HMM. The problem appears when experts assign probability values for HMM, they use only some limited inputs. The assigned probability values might not be accurate to serve in other cases related to the same domain. We introduce an approach based on GAs to find
out the suitable probability values for the HMM to be mostly correct in more cases than what have been used to assign the probability values.
A new Russell model for selecting suppliers
Azadi, Majid; Shabani, Amir; Farzipoor Saen, Reza
2014-01-01
Recently, supply chain management (SCM) has been considered by many researchers. Supplier evaluation and selection plays a significant role in establishing an effective SCM. One of the techniques that can be used for selecting suppliers is data envelopment analysis (DEA). In some situations, to
An integrated model for supplier selection process
Institute of Scientific and Technical Information of China (English)
无
2003-01-01
In today's highly competitive manufacturing environment, the supplier selection process becomes one of crucial activities in supply chain management. In order to select the best supplier(s) it is not only necessary to continuously tracking and benchmarking performance of suppliers but also to make a tradeoff between tangible and intangible factors some of which may conflict. In this paper an integration of case-based reasoning (CBR), analytical network process (ANP) and linear programming (LP) is proposed to solve the supplier selection problem.
Dealing with selection bias in educational transition models
DEFF Research Database (Denmark)
Holm, Anders; Jæger, Mads Meier
2011-01-01
This paper proposes the bivariate probit selection model (BPSM) as an alternative to the traditional Mare model for analyzing educational transitions. The BPSM accounts for selection on unobserved variables by allowing for unobserved variables which affect the probability of making educational tr...... account for selection on unobserved variables and high-quality data are both required in order to estimate credible educational transition models.......This paper proposes the bivariate probit selection model (BPSM) as an alternative to the traditional Mare model for analyzing educational transitions. The BPSM accounts for selection on unobserved variables by allowing for unobserved variables which affect the probability of making educational...... transitions to be correlated across transitions. We use simulated and real data to illustrate how the BPSM improves on the traditional Mare model in terms of correcting for selection bias and providing credible estimates of the effect of family background on educational success. We conclude that models which...
Thomas, D.L.; Johnson, D.; Griffith, B.
2006-01-01
Modeling the probability of use of land units characterized by discrete and continuous measures, we present a Bayesian random-effects model to assess resource selection. This model provides simultaneous estimation of both individual- and population-level selection. Deviance information criterion (DIC), a Bayesian alternative to AIC that is sample-size specific, is used for model selection. Aerial radiolocation data from 76 adult female caribou (Rangifer tarandus) and calf pairs during 1 year on an Arctic coastal plain calving ground were used to illustrate models and assess population-level selection of landscape attributes, as well as individual heterogeneity of selection. Landscape attributes included elevation, NDVI (a measure of forage greenness), and land cover-type classification. Results from the first of a 2-stage model-selection procedure indicated that there is substantial heterogeneity among cow-calf pairs with respect to selection of the landscape attributes. In the second stage, selection of models with heterogeneity included indicated that at the population-level, NDVI and land cover class were significant attributes for selection of different landscapes by pairs on the calving ground. Population-level selection coefficients indicate that the pairs generally select landscapes with higher levels of NDVI, but the relationship is quadratic. The highest rate of selection occurs at values of NDVI less than the maximum observed. Results for land cover-class selections coefficients indicate that wet sedge, moist sedge, herbaceous tussock tundra, and shrub tussock tundra are selected at approximately the same rate, while alpine and sparsely vegetated landscapes are selected at a lower rate. Furthermore, the variability in selection by individual caribou for moist sedge and sparsely vegetated landscapes is large relative to the variability in selection of other land cover types. The example analysis illustrates that, while sometimes computationally intense, a
Uncertainty associated with selected environmental transport models
International Nuclear Information System (INIS)
Little, C.A.; Miller, C.W.
1979-11-01
A description is given of the capabilities of several models to predict accurately either pollutant concentrations in environmental media or radiological dose to human organs. The models are discussed in three sections: aquatic or surface water transport models, atmospheric transport models, and terrestrial and aquatic food chain models. Using data published primarily by model users, model predictions are compared to observations. This procedure is infeasible for food chain models and, therefore, the uncertainty embodied in the models input parameters, rather than the model output, is estimated. Aquatic transport models are divided into one-dimensional, longitudinal-vertical, and longitudinal-horizontal models. Several conclusions were made about the ability of the Gaussian plume atmospheric dispersion model to predict accurately downwind air concentrations from releases under several sets of conditions. It is concluded that no validation study has been conducted to test the predictions of either aquatic or terrestrial food chain models. Using the aquatic pathway from water to fish to an adult for 137 Cs as an example, a 95% one-tailed confidence limit interval for the predicted exposure is calculated by examining the distributions of the input parameters. Such an interval is found to be 16 times the value of the median exposure. A similar one-tailed limit for the air-grass-cow-milk-thyroid for 131 I and infants was 5.6 times the median dose. Of the three model types discussed in this report,the aquatic transport models appear to do the best job of predicting observed concentrations. However, this conclusion is based on many fewer aquatic validation data than were availaable for atmospheric model validation
Quality Quandaries- Time Series Model Selection and Parsimony
DEFF Research Database (Denmark)
Bisgaard, Søren; Kulahci, Murat
2009-01-01
Some of the issues involved in selecting adequate models for time series data are discussed using an example concerning the number of users of an Internet server. The process of selecting an appropriate model is subjective and requires experience and judgment. The authors believe an important...... consideration in model selection should be parameter parsimony. They favor the use of parsimonious mixed ARMA models, noting that research has shown that a model building strategy that considers only autoregressive representations will lead to non-parsimonious models and to loss of forecasting accuracy....
Selection of Hydrological Model for Waterborne Release
International Nuclear Information System (INIS)
Blanchard, A.
1999-01-01
This evaluation will aid in determining the potential impacts of liquid releases to downstream populations on the Savannah River. The purpose of this report is to evaluate the two available models and determine the appropriate model for use in following waterborne release analyses. Additionally, this report will document the Design Basis and Beyond Design Basis accidents to be used in the future study
Application of Bayesian Model Selection for Metal Yield Models using ALEGRA and Dakota.
Energy Technology Data Exchange (ETDEWEB)
Portone, Teresa; Niederhaus, John Henry; Sanchez, Jason James; Swiler, Laura Painton
2018-02-01
This report introduces the concepts of Bayesian model selection, which provides a systematic means of calibrating and selecting an optimal model to represent a phenomenon. This has many potential applications, including for comparing constitutive models. The ideas described herein are applied to a model selection problem between different yield models for hardened steel under extreme loading conditions.
Astrophysical Model Selection in Gravitational Wave Astronomy
Adams, Matthew R.; Cornish, Neil J.; Littenberg, Tyson B.
2012-01-01
Theoretical studies in gravitational wave astronomy have mostly focused on the information that can be extracted from individual detections, such as the mass of a binary system and its location in space. Here we consider how the information from multiple detections can be used to constrain astrophysical population models. This seemingly simple problem is made challenging by the high dimensionality and high degree of correlation in the parameter spaces that describe the signals, and by the complexity of the astrophysical models, which can also depend on a large number of parameters, some of which might not be directly constrained by the observations. We present a method for constraining population models using a hierarchical Bayesian modeling approach which simultaneously infers the source parameters and population model and provides the joint probability distributions for both. We illustrate this approach by considering the constraints that can be placed on population models for galactic white dwarf binaries using a future space-based gravitational wave detector. We find that a mission that is able to resolve approximately 5000 of the shortest period binaries will be able to constrain the population model parameters, including the chirp mass distribution and a characteristic galaxy disk radius to within a few percent. This compares favorably to existing bounds, where electromagnetic observations of stars in the galaxy constrain disk radii to within 20%.
Optimisation of Hidden Markov Model using Baum–Welch algorithm ...
Indian Academy of Sciences (India)
The present work is a part of development of Hidden Markov Model. (HMM) based ... the Himalaya. In this work, HMMs have been developed for forecasting of maximum and minimum ..... data collection teams of Snow and Avalanche Study.
A model for selecting leadership styles.
Perkins, V J
1992-01-01
Occupational therapists lead a variety of groups during their professional activities. Such groups include therapy groups, treatment teams and management meetings. Therefore it is important for each therapist to understand theories of leadership and be able to select the most effective style for him or herself in specific situations. This paper presents a review of leadership theory and research as well as therapeutic groups. It then integrates these areas to assist students and new therapists in identifying a style that is effective for a particular group.
On Optimal Input Design and Model Selection for Communication Channels
Energy Technology Data Exchange (ETDEWEB)
Li, Yanyan [ORNL; Djouadi, Seddik M [ORNL; Olama, Mohammed M [ORNL
2013-01-01
In this paper, the optimal model (structure) selection and input design which minimize the worst case identification error for communication systems are provided. The problem is formulated using metric complexity theory in a Hilbert space setting. It is pointed out that model selection and input design can be handled independently. Kolmogorov n-width is used to characterize the representation error introduced by model selection, while Gel fand and Time n-widths are used to represent the inherent error introduced by input design. After the model is selected, an optimal input which minimizes the worst case identification error is shown to exist. In particular, it is proven that the optimal model for reducing the representation error is a Finite Impulse Response (FIR) model, and the optimal input is an impulse at the start of the observation interval. FIR models are widely popular in communication systems, such as, in Orthogonal Frequency Division Multiplexing (OFDM) systems.
Evaluating bacterial gene-finding HMM structures as probabilistic logic programs
DEFF Research Database (Denmark)
Mørk, Søren; Holmes, Ian
2012-01-01
, a probabilistic dialect of Prolog. Results: We evaluate Hidden Markov Model structures for bacterial protein-coding gene potential, including a simple null model structure, three structures based on existing bacterial gene finders and two novel model structures. We test standard versions as well as ADPH length...
Model selection in kernel ridge regression
DEFF Research Database (Denmark)
Exterkate, Peter
2013-01-01
Kernel ridge regression is a technique to perform ridge regression with a potentially infinite number of nonlinear transformations of the independent variables as regressors. This method is gaining popularity as a data-rich nonlinear forecasting tool, which is applicable in many different contexts....... The influence of the choice of kernel and the setting of tuning parameters on forecast accuracy is investigated. Several popular kernels are reviewed, including polynomial kernels, the Gaussian kernel, and the Sinc kernel. The latter two kernels are interpreted in terms of their smoothing properties......, and the tuning parameters associated to all these kernels are related to smoothness measures of the prediction function and to the signal-to-noise ratio. Based on these interpretations, guidelines are provided for selecting the tuning parameters from small grids using cross-validation. A Monte Carlo study...
Model Selection in Kernel Ridge Regression
DEFF Research Database (Denmark)
Exterkate, Peter
Kernel ridge regression is gaining popularity as a data-rich nonlinear forecasting tool, which is applicable in many different contexts. This paper investigates the influence of the choice of kernel and the setting of tuning parameters on forecast accuracy. We review several popular kernels......, including polynomial kernels, the Gaussian kernel, and the Sinc kernel. We interpret the latter two kernels in terms of their smoothing properties, and we relate the tuning parameters associated to all these kernels to smoothness measures of the prediction function and to the signal-to-noise ratio. Based...... on these interpretations, we provide guidelines for selecting the tuning parameters from small grids using cross-validation. A Monte Carlo study confirms the practical usefulness of these rules of thumb. Finally, the flexible and smooth functional forms provided by the Gaussian and Sinc kernels makes them widely...
Methods for model selection in applied science and engineering.
Energy Technology Data Exchange (ETDEWEB)
Field, Richard V., Jr.
2004-10-01
Mathematical models are developed and used to study the properties of complex systems and/or modify these systems to satisfy some performance requirements in just about every area of applied science and engineering. A particular reason for developing a model, e.g., performance assessment or design, is referred to as the model use. Our objective is the development of a methodology for selecting a model that is sufficiently accurate for an intended use. Information on the system being modeled is, in general, incomplete, so that there may be two or more models consistent with the available information. The collection of these models is called the class of candidate models. Methods are developed for selecting the optimal member from a class of candidate models for the system. The optimal model depends on the available information, the selected class of candidate models, and the model use. Classical methods for model selection, including the method of maximum likelihood and Bayesian methods, as well as a method employing a decision-theoretic approach, are formulated to select the optimal model for numerous applications. There is no requirement that the candidate models be random. Classical methods for model selection ignore model use and require data to be available. Examples are used to show that these methods can be unreliable when data is limited. The decision-theoretic approach to model selection does not have these limitations, and model use is included through an appropriate utility function. This is especially important when modeling high risk systems, where the consequences of using an inappropriate model for the system can be disastrous. The decision-theoretic method for model selection is developed and applied for a series of complex and diverse applications. These include the selection of the: (1) optimal order of the polynomial chaos approximation for non-Gaussian random variables and stationary stochastic processes, (2) optimal pressure load model to be
Selection of Hydrological Model for Waterborne Release
International Nuclear Information System (INIS)
Blanchard, A.
1999-01-01
Following a request from the States of South Carolina and Georgia, downstream radiological consequences from postulated accidental aqueous releases at the three Savannah River Site nonreactor nuclear facilities will be examined. This evaluation will aid in determining the potential impacts of liquid releases to downstream populations on the Savannah River. The purpose of this report is to evaluate the two available models and determine the appropriate model for use in following waterborne release analyses. Additionally, this report will document the accidents to be used in the future study
Random effect selection in generalised linear models
DEFF Research Database (Denmark)
Denwood, Matt; Houe, Hans; Forkman, Björn
We analysed abattoir recordings of meat inspection codes with possible relevance to onfarm animal welfare in cattle. Random effects logistic regression models were used to describe individual-level data obtained from 461,406 cattle slaughtered in Denmark. Our results demonstrate that the largest...
Adapting AIC to conditional model selection
T. van Ommen (Thijs)
2012-01-01
textabstractIn statistical settings such as regression and time series, we can condition on observed information when predicting the data of interest. For example, a regression model explains the dependent variables $y_1, \\ldots, y_n$ in terms of the independent variables $x_1, \\ldots, x_n$.
A Permutation Approach for Selecting the Penalty Parameter in Penalized Model Selection
Sabourin, Jeremy A; Valdar, William; Nobel, Andrew B
2015-01-01
Summary We describe a simple, computationally effcient, permutation-based procedure for selecting the penalty parameter in LASSO penalized regression. The procedure, permutation selection, is intended for applications where variable selection is the primary focus, and can be applied in a variety of structural settings, including that of generalized linear models. We briefly discuss connections between permutation selection and existing theory for the LASSO. In addition, we present a simulation study and an analysis of real biomedical data sets in which permutation selection is compared with selection based on the following: cross-validation (CV), the Bayesian information criterion (BIC), Scaled Sparse Linear Regression, and a selection method based on recently developed testing procedures for the LASSO. PMID:26243050
Evaluating bacterial gene-finding HMM structures as probabilistic logic programs.
Mørk, Søren; Holmes, Ian
2012-03-01
Probabilistic logic programming offers a powerful way to describe and evaluate structured statistical models. To investigate the practicality of probabilistic logic programming for structure learning in bioinformatics, we undertook a simplified bacterial gene-finding benchmark in PRISM, a probabilistic dialect of Prolog. We evaluate Hidden Markov Model structures for bacterial protein-coding gene potential, including a simple null model structure, three structures based on existing bacterial gene finders and two novel model structures. We test standard versions as well as ADPH length modeling and three-state versions of the five model structures. The models are all represented as probabilistic logic programs and evaluated using the PRISM machine learning system in terms of statistical information criteria and gene-finding prediction accuracy, in two bacterial genomes. Neither of our implementations of the two currently most used model structures are best performing in terms of statistical information criteria or prediction performances, suggesting that better-fitting models might be achievable. The source code of all PRISM models, data and additional scripts are freely available for download at: http://github.com/somork/codonhmm. Supplementary data are available at Bioinformatics online.
The genealogy of samples in models with selection.
Neuhauser, C; Krone, S M
1997-02-01
We introduce the genealogy of a random sample of genes taken from a large haploid population that evolves according to random reproduction with selection and mutation. Without selection, the genealogy is described by Kingman's well-known coalescent process. In the selective case, the genealogy of the sample is embedded in a graph with a coalescing and branching structure. We describe this graph, called the ancestral selection graph, and point out differences and similarities with Kingman's coalescent. We present simulations for a two-allele model with symmetric mutation in which one of the alleles has a selective advantage over the other. We find that when the allele frequencies in the population are already in equilibrium, then the genealogy does not differ much from the neutral case. This is supported by rigorous results. Furthermore, we describe the ancestral selection graph for other selective models with finitely many selection classes, such as the K-allele models, infinitely-many-alleles models. DNA sequence models, and infinitely-many-sites models, and briefly discuss the diploid case.
Modeling shape selection of buckled dielectric elastomers
Langham, Jacob; Bense, Hadrien; Barkley, Dwight
2018-02-01
A dielectric elastomer whose edges are held fixed will buckle, given a sufficiently applied voltage, resulting in a nontrivial out-of-plane deformation. We study this situation numerically using a nonlinear elastic model which decouples two of the principal electrostatic stresses acting on an elastomer: normal pressure due to the mutual attraction of oppositely charged electrodes and tangential shear ("fringing") due to repulsion of like charges at the electrode edges. These enter via physically simplified boundary conditions that are applied in a fixed reference domain using a nondimensional approach. The method is valid for small to moderate strains and is straightforward to implement in a generic nonlinear elasticity code. We validate the model by directly comparing the simulated equilibrium shapes with the experiment. For circular electrodes which buckle axisymetrically, the shape of the deflection profile is captured. Annular electrodes of different widths produce azimuthal ripples with wavelengths that match our simulations. In this case, it is essential to compute multiple equilibria because the first model solution obtained by the nonlinear solver (Newton's method) is often not the energetically favored state. We address this using a numerical technique known as "deflation." Finally, we observe the large number of different solutions that may be obtained for the case of a long rectangular strip.
Modeling HIV-1 drug resistance as episodic directional selection.
Murrell, Ben; de Oliveira, Tulio; Seebregts, Chris; Kosakovsky Pond, Sergei L; Scheffler, Konrad
2012-01-01
The evolution of substitutions conferring drug resistance to HIV-1 is both episodic, occurring when patients are on antiretroviral therapy, and strongly directional, with site-specific resistant residues increasing in frequency over time. While methods exist to detect episodic diversifying selection and continuous directional selection, no evolutionary model combining these two properties has been proposed. We present two models of episodic directional selection (MEDS and EDEPS) which allow the a priori specification of lineages expected to have undergone directional selection. The models infer the sites and target residues that were likely subject to directional selection, using either codon or protein sequences. Compared to its null model of episodic diversifying selection, MEDS provides a superior fit to most sites known to be involved in drug resistance, and neither one test for episodic diversifying selection nor another for constant directional selection are able to detect as many true positives as MEDS and EDEPS while maintaining acceptable levels of false positives. This suggests that episodic directional selection is a better description of the process driving the evolution of drug resistance.
Modeling HIV-1 drug resistance as episodic directional selection.
Directory of Open Access Journals (Sweden)
Ben Murrell
Full Text Available The evolution of substitutions conferring drug resistance to HIV-1 is both episodic, occurring when patients are on antiretroviral therapy, and strongly directional, with site-specific resistant residues increasing in frequency over time. While methods exist to detect episodic diversifying selection and continuous directional selection, no evolutionary model combining these two properties has been proposed. We present two models of episodic directional selection (MEDS and EDEPS which allow the a priori specification of lineages expected to have undergone directional selection. The models infer the sites and target residues that were likely subject to directional selection, using either codon or protein sequences. Compared to its null model of episodic diversifying selection, MEDS provides a superior fit to most sites known to be involved in drug resistance, and neither one test for episodic diversifying selection nor another for constant directional selection are able to detect as many true positives as MEDS and EDEPS while maintaining acceptable levels of false positives. This suggests that episodic directional selection is a better description of the process driving the evolution of drug resistance.
Variable selection for mixture and promotion time cure rate models.
Masud, Abdullah; Tu, Wanzhu; Yu, Zhangsheng
2016-11-16
Failure-time data with cured patients are common in clinical studies. Data from these studies are typically analyzed with cure rate models. Variable selection methods have not been well developed for cure rate models. In this research, we propose two least absolute shrinkage and selection operators based methods, for variable selection in mixture and promotion time cure models with parametric or nonparametric baseline hazards. We conduct an extensive simulation study to assess the operating characteristics of the proposed methods. We illustrate the use of the methods using data from a study of childhood wheezing. © The Author(s) 2016.
Two-step variable selection in quantile regression models
Directory of Open Access Journals (Sweden)
FAN Yali
2015-06-01
Full Text Available We propose a two-step variable selection procedure for high dimensional quantile regressions, in which the dimension of the covariates, pn is much larger than the sample size n. In the first step, we perform ℓ1 penalty, and we demonstrate that the first step penalized estimator with the LASSO penalty can reduce the model from an ultra-high dimensional to a model whose size has the same order as that of the true model, and the selected model can cover the true model. The second step excludes the remained irrelevant covariates by applying the adaptive LASSO penalty to the reduced model obtained from the first step. Under some regularity conditions, we show that our procedure enjoys the model selection consistency. We conduct a simulation study and a real data analysis to evaluate the finite sample performance of the proposed approach.
Partner Selection Optimization Model of Agricultural Enterprises in Supply Chain
Feipeng Guo; Qibei Lu
2013-01-01
With more and more importance of correctly selecting partners in supply chain of agricultural enterprises, a large number of partner evaluation techniques are widely used in the field of agricultural science research. This study established a partner selection model to optimize the issue of agricultural supply chain partner selection. Firstly, it constructed a comprehensive evaluation index system after analyzing the real characteristics of agricultural supply chain. Secondly, a heuristic met...
Effect of Model Selection on Computed Water Balance Components
Jhorar, R.K.; Smit, A.A.M.F.R.; Roest, C.W.J.
2009-01-01
Soil water flow modelling approaches as used in four selected on-farm water management models, namely CROPWAT. FAIDS, CERES and SWAP, are compared through numerical experiments. The soil water simulation approaches used in the first three models are reformulated to incorporate ail evapotranspiration
Ensembling Variable Selectors by Stability Selection for the Cox Model
Directory of Open Access Journals (Sweden)
Qing-Yan Yin
2017-01-01
Full Text Available As a pivotal tool to build interpretive models, variable selection plays an increasingly important role in high-dimensional data analysis. In recent years, variable selection ensembles (VSEs have gained much interest due to their many advantages. Stability selection (Meinshausen and Bühlmann, 2010, a VSE technique based on subsampling in combination with a base algorithm like lasso, is an effective method to control false discovery rate (FDR and to improve selection accuracy in linear regression models. By adopting lasso as a base learner, we attempt to extend stability selection to handle variable selection problems in a Cox model. According to our experience, it is crucial to set the regularization region Λ in lasso and the parameter λmin properly so that stability selection can work well. To the best of our knowledge, however, there is no literature addressing this problem in an explicit way. Therefore, we first provide a detailed procedure to specify Λ and λmin. Then, some simulated and real-world data with various censoring rates are used to examine how well stability selection performs. It is also compared with several other variable selection approaches. Experimental results demonstrate that it achieves better or competitive performance in comparison with several other popular techniques.
Validation of elk resource selection models with spatially independent data
Priscilla K. Coe; Bruce K. Johnson; Michael J. Wisdom; John G. Cook; Marty Vavra; Ryan M. Nielson
2011-01-01
Knowledge of how landscape features affect wildlife resource use is essential for informed management. Resource selection functions often are used to make and validate predictions about landscape use; however, resource selection functions are rarely validated with data from landscapes independent of those from which the models were built. This problem has severely...
A Working Model of Natural Selection Illustrated by Table Tennis
Dinc, Muhittin; Kilic, Selda; Aladag, Caner
2013-01-01
Natural selection is one of the most important topics in biology and it helps to clarify the variety and complexity of organisms. However, students in almost every stage of education find it difficult to understand the mechanism of natural selection and they can develop misconceptions about it. This article provides an active model of natural…
Augmented Self-Modeling as an Intervention for Selective Mutism
Kehle, Thomas J.; Bray, Melissa A.; Byer-Alcorace, Gabriel F.; Theodore, Lea A.; Kovac, Lisa M.
2012-01-01
Selective mutism is a rare disorder that is difficult to treat. It is often associated with oppositional defiant behavior, particularly in the home setting, social phobia, and, at times, autism spectrum disorder characteristics. The augmented self-modeling treatment has been relatively successful in promoting rapid diminishment of selective mutism…
Response to selection in finite locus models with nonadditive effects
Esfandyari, Hadi; Henryon, Mark; Berg, Peer; Thomasen, Jørn Rind; Bijma, Piter; Sørensen, Anders Christian
2017-01-01
Under the finite-locus model in the absence of mutation, the additive genetic variation is expected to decrease when directional selection is acting on a population, according to quantitative-genetic theory. However, some theoretical studies of selection suggest that the level of additive
Elementary Teachers' Selection and Use of Visual Models
Lee, Tammy D.; Gail Jones, M.
2018-02-01
As science grows in complexity, science teachers face an increasing challenge of helping students interpret models that represent complex science systems. Little is known about how teachers select and use models when planning lessons. This mixed methods study investigated the pedagogical approaches and visual models used by elementary in-service and preservice teachers in the development of a science lesson about a complex system (e.g., water cycle). Sixty-seven elementary in-service and 69 elementary preservice teachers completed a card sort task designed to document the types of visual models (e.g., images) that teachers choose when planning science instruction. Quantitative and qualitative analyses were conducted to analyze the card sort task. Semistructured interviews were conducted with a subsample of teachers to elicit the rationale for image selection. Results from this study showed that both experienced in-service teachers and novice preservice teachers tended to select similar models and use similar rationales for images to be used in lessons. Teachers tended to select models that were aesthetically pleasing and simple in design and illustrated specific elements of the water cycle. The results also showed that teachers were not likely to select images that represented the less obvious dimensions of the water cycle. Furthermore, teachers selected visual models more as a pedagogical tool to illustrate specific elements of the water cycle and less often as a tool to promote student learning related to complex systems.
Target Selection Models with Preference Variation Between Offenders
Townsley, Michael; Birks, Daniel; Ruiter, Stijn; Bernasco, Wim; White, Gentry
2016-01-01
Objectives: This study explores preference variation in location choice strategies of residential burglars. Applying a model of offender target selection that is grounded in assertions of the routine activity approach, rational choice perspective, crime pattern and social disorganization theories,
COPS model estimates of LLEA availability near selected reactor sites
International Nuclear Information System (INIS)
Berkbigler, K.P.
1979-11-01
The COPS computer model has been used to estimate local law enforcement agency (LLEA) officer availability in the neighborhood of selected nuclear reactor sites. The results of these analyses are presented both in graphic and tabular form in this report
Molecular modelling of a chemodosimeter for the selective detection ...
Indian Academy of Sciences (India)
Wintec
Molecular modelling of a chemodosimeter for the selective detection of. As(III) ion in water. † ... high levels of arsenic cause severe skin diseases in- cluding skin cancer ..... Special Attention to Groundwater in SE Asia (eds) D. Chakraborti, A ...
Model Selection in Continuous Test Norming With GAMLSS.
Voncken, Lieke; Albers, Casper J; Timmerman, Marieke E
2017-06-01
To compute norms from reference group test scores, continuous norming is preferred over traditional norming. A suitable continuous norming approach for continuous data is the use of the Box-Cox Power Exponential model, which is found in the generalized additive models for location, scale, and shape. Applying the Box-Cox Power Exponential model for test norming requires model selection, but it is unknown how well this can be done with an automatic selection procedure. In a simulation study, we compared the performance of two stepwise model selection procedures combined with four model-fit criteria (Akaike information criterion, Bayesian information criterion, generalized Akaike information criterion (3), cross-validation), varying data complexity, sampling design, and sample size in a fully crossed design. The new procedure combined with one of the generalized Akaike information criterion was the most efficient model selection procedure (i.e., required the smallest sample size). The advocated model selection procedure is illustrated with norming data of an intelligence test.
Directory of Open Access Journals (Sweden)
Ser Javier Del
2005-01-01
Full Text Available We consider the case of two correlated sources, and . The correlation between them has memory, and it is modelled by a hidden Markov chain. The paper studies the problem of reliable communication of the information sent by the source over an additive white Gaussian noise (AWGN channel when the output of the other source is available as side information at the receiver. We assume that the receiver has no a priori knowledge of the correlation statistics between the sources. In particular, we propose the use of a turbo code for joint source-channel coding of the source . The joint decoder uses an iterative scheme where the unknown parameters of the correlation model are estimated jointly within the decoding process. It is shown that reliable communication is possible at signal-to-noise ratios close to the theoretical limits set by the combination of Shannon and Slepian-Wolf theorems.
Multi-stream LSTM-HMM decoding and histogram equalization for noise robust keyword spotting.
Wöllmer, Martin; Marchi, Erik; Squartini, Stefano; Schuller, Björn
2011-09-01
Highly spontaneous, conversational, and potentially emotional and noisy speech is known to be a challenge for today's automatic speech recognition (ASR) systems, which highlights the need for advanced algorithms that improve speech features and models. Histogram Equalization is an efficient method to reduce the mismatch between clean and noisy conditions by normalizing all moments of the probability distribution of the feature vector components. In this article, we propose to combine histogram equalization and multi-condition training for robust keyword detection in noisy speech. To better cope with conversational speaking styles, we show how contextual information can be effectively exploited in a multi-stream ASR framework that dynamically models context-sensitive phoneme estimates generated by a long short-term memory neural network. The proposed techniques are evaluated on the SEMAINE database-a corpus containing emotionally colored conversations with a cognitive system for "Sensitive Artificial Listening".
histoneHMM: Differential analysis of histone modifications with broad genomic footprints
Czech Academy of Sciences Publication Activity Database
Heinig, M.; Colomé-Tatché, M.; Taudt, A.; Rintisch, C.; Schafer, S.; Pravenec, Michal; Hubner, N.; Vingron, M.; Johannes, F.
2015-01-01
Roč. 16, Feb 22 (2015), s. 60 ISSN 1471-2105 R&D Projects: GA MŠk(CZ) 7E10067; GA ČR(CZ) GA13-04420S Institutional support: RVO:67985823 Keywords : ChIP - seq * histone modifications * Hidden Markov model * computational biology * differential analysis Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.435, year: 2015
Selection Criteria in Regime Switching Conditional Volatility Models
Directory of Open Access Journals (Sweden)
Thomas Chuffart
2015-05-01
Full Text Available A large number of nonlinear conditional heteroskedastic models have been proposed in the literature. Model selection is crucial to any statistical data analysis. In this article, we investigate whether the most commonly used selection criteria lead to choice of the right specification in a regime switching framework. We focus on two types of models: the Logistic Smooth Transition GARCH and the Markov-Switching GARCH models. Simulation experiments reveal that information criteria and loss functions can lead to misspecification ; BIC sometimes indicates the wrong regime switching framework. Depending on the Data Generating Process used in the experiments, great care is needed when choosing a criterion.
Rafii-Tari, Hedyeh; Liu, Jindong; Payne, Christopher J; Bicknell, Colin; Yang, Guang-Zhong
2014-01-01
Despite increased use of remote-controlled steerable catheter navigation systems for endovascular intervention, most current designs are based on master configurations which tend to alter natural operator tool interactions. This introduces problems to both ergonomics and shared human-robot control. This paper proposes a novel cooperative robotic catheterization system based on learning-from-demonstration. By encoding the higher-level structure of a catheterization task as a sequence of primitive motions, we demonstrate how to achieve prospective learning for complex tasks whilst incorporating subject-specific variations. A hierarchical Hidden Markov Model is used to model each movement primitive as well as their sequential relationship. This model is applied to generation of motion sequences, recognition of operator input, and prediction of future movements for the robot. The framework is validated by comparing catheter tip motions against the manual approach, showing significant improvements in the quality of catheterization. The results motivate the design of collaborative robotic systems that are intuitive to use, while reducing the cognitive workload of the operator.
One-Shot Learning of Human Activity With an MAP Adapted GMM and Simplex-HMM.
Rodriguez, Mario; Orrite, Carlos; Medrano, Carlos; Makris, Dimitrios
2016-05-10
This paper presents a novel activity class representation using a single sequence for training. The contribution of this representation lays on the ability to train an one-shot learning recognition system, useful in new scenarios where capturing and labeling sequences is expensive or impractical. The method uses a universal background model of local descriptors obtained from source databases available on-line and adapts it to a new sequence in the target scenario through a maximum a posteriori adaptation. Each activity sample is encoded in a sequence of normalized bag of features and modeled by a new hidden Markov model formulation, where the expectation-maximization algorithm for training is modified to deal with observations consisting in vectors in a unit simplex. Extensive experiments in recognition have been performed using one-shot learning over the public datasets Weizmann, KTH, and IXMAS. These experiments demonstrate the discriminative properties of the representation and the validity of application in recognition systems, achieving state-of-the-art results.
The Use of Evolution in a Central Action Selection Model
Directory of Open Access Journals (Sweden)
F. Montes-Gonzalez
2007-01-01
Full Text Available The use of effective central selection provides flexibility in design by offering modularity and extensibility. In earlier papers we have focused on the development of a simple centralized selection mechanism. Our current goal is to integrate evolutionary methods in the design of non-sequential behaviours and the tuning of specific parameters of the selection model. The foraging behaviour of an animal robot (animat has been modelled in order to integrate the sensory information from the robot to perform selection that is nearly optimized by the use of genetic algorithms. In this paper we present how selection through optimization finally arranges the pattern of presented behaviours for the foraging task. Hence, the execution of specific parts in a behavioural pattern may be ruled out by the tuning of these parameters. Furthermore, the intensive use of colour segmentation from a colour camera for locating a cylinder sets a burden on the calculations carried out by the genetic algorithm.
A Hybrid Multiple Criteria Decision Making Model for Supplier Selection
Directory of Open Access Journals (Sweden)
Chung-Min Wu
2013-01-01
Full Text Available The sustainable supplier selection would be the vital part in the management of a sustainable supply chain. In this study, a hybrid multiple criteria decision making (MCDM model is applied to select optimal supplier. The fuzzy Delphi method, which can lead to better criteria selection, is used to modify criteria. Considering the interdependence among the selection criteria, analytic network process (ANP is then used to obtain their weights. To avoid calculation and additional pairwise comparisons of ANP, a technique for order preference by similarity to ideal solution (TOPSIS is used to rank the alternatives. The use of a combination of the fuzzy Delphi method, ANP, and TOPSIS, proposing an MCDM model for supplier selection, and applying these to a real case are the unique features of this study.
Variable selection in Logistic regression model with genetic algorithm.
Zhang, Zhongheng; Trevino, Victor; Hoseini, Sayed Shahabuddin; Belciug, Smaranda; Boopathi, Arumugam Manivanna; Zhang, Ping; Gorunescu, Florin; Subha, Velappan; Dai, Songshi
2018-02-01
Variable or feature selection is one of the most important steps in model specification. Especially in the case of medical-decision making, the direct use of a medical database, without a previous analysis and preprocessing step, is often counterproductive. In this way, the variable selection represents the method of choosing the most relevant attributes from the database in order to build a robust learning models and, thus, to improve the performance of the models used in the decision process. In biomedical research, the purpose of variable selection is to select clinically important and statistically significant variables, while excluding unrelated or noise variables. A variety of methods exist for variable selection, but none of them is without limitations. For example, the stepwise approach, which is highly used, adds the best variable in each cycle generally producing an acceptable set of variables. Nevertheless, it is limited by the fact that it commonly trapped in local optima. The best subset approach can systematically search the entire covariate pattern space, but the solution pool can be extremely large with tens to hundreds of variables, which is the case in nowadays clinical data. Genetic algorithms (GA) are heuristic optimization approaches and can be used for variable selection in multivariable regression models. This tutorial paper aims to provide a step-by-step approach to the use of GA in variable selection. The R code provided in the text can be extended and adapted to other data analysis needs.
CCHMM_PROF: a HMM-based coiled-coil predictor with evolutionary information
DEFF Research Database (Denmark)
Bartoli, Lisa; Fariselli, Piero; Krogh, Anders
2009-01-01
tools are available for predicting coiled-coil domains in protein sequences, including those based on position-specific score matrices and machine learning methods. RESULTS: In this article, we introduce a hidden Markov model (CCHMM_PROF) that exploits the information contained in multiple sequence...... alignments (profiles) to predict coiled-coil regions. The new method discriminates coiled-coil sequences with an accuracy of 97% and achieves a true positive rate of 79% with only 1% of false positives. Furthermore, when predicting the location of coiled-coil segments in protein sequences, the method reaches...
A Semi-Continuous State-Transition Probability HMM-Based Voice Activity Detector
Directory of Open Access Journals (Sweden)
H. Othman
2007-02-01
Full Text Available We introduce an efficient hidden Markov model-based voice activity detection (VAD algorithm with time-variant state-transition probabilities in the underlying Markov chain. The transition probabilities vary in an exponential charge/discharge scheme and are softly merged with state conditional likelihood into a final VAD decision. Working in the domain of ITU-T G.729 parameters, with no additional cost for feature extraction, the proposed algorithm significantly outperforms G.729 Annex B VAD while providing a balanced tradeoff between clipping and false detection errors. The performance compares very favorably with the adaptive multirate VAD, option 2 (AMR2.
A Semi-Continuous State-Transition Probability HMM-Based Voice Activity Detector
Directory of Open Access Journals (Sweden)
Othman H
2007-01-01
Full Text Available We introduce an efficient hidden Markov model-based voice activity detection (VAD algorithm with time-variant state-transition probabilities in the underlying Markov chain. The transition probabilities vary in an exponential charge/discharge scheme and are softly merged with state conditional likelihood into a final VAD decision. Working in the domain of ITU-T G.729 parameters, with no additional cost for feature extraction, the proposed algorithm significantly outperforms G.729 Annex B VAD while providing a balanced tradeoff between clipping and false detection errors. The performance compares very favorably with the adaptive multirate VAD, option 2 (AMR2.
Applying Four Different Risk Models in Local Ore Selection
International Nuclear Information System (INIS)
Richmond, Andrew
2002-01-01
Given the uncertainty in grade at a mine location, a financially risk-averse decision-maker may prefer to incorporate this uncertainty into the ore selection process. A FORTRAN program risksel is presented to calculate local risk-adjusted optimal ore selections using a negative exponential utility function and three dominance models: mean-variance, mean-downside risk, and stochastic dominance. All four methods are demonstrated in a grade control environment. In the case study, optimal selections range with the magnitude of financial risk that a decision-maker is prepared to accept. Except for the stochastic dominance method, the risk models reassign material from higher cost to lower cost processing options as the aversion to financial risk increases. The stochastic dominance model usually was unable to determine the optimal local selection
Statistical model selection with “Big Data”
Directory of Open Access Journals (Sweden)
Jurgen A. Doornik
2015-12-01
Full Text Available Big Data offer potential benefits for statistical modelling, but confront problems including an excess of false positives, mistaking correlations for causes, ignoring sampling biases and selecting by inappropriate methods. We consider the many important requirements when searching for a data-based relationship using Big Data, and the possible role of Autometrics in that context. Paramount considerations include embedding relationships in general initial models, possibly restricting the number of variables to be selected over by non-statistical criteria (the formulation problem, using good quality data on all variables, analyzed with tight significance levels by a powerful selection procedure, retaining available theory insights (the selection problem while testing for relationships being well specified and invariant to shifts in explanatory variables (the evaluation problem, using a viable approach that resolves the computational problem of immense numbers of possible models.
Selection, calibration, and validation of models of tumor growth.
Lima, E A B F; Oden, J T; Hormuth, D A; Yankeelov, T E; Almeida, R C
2016-11-01
This paper presents general approaches for addressing some of the most important issues in predictive computational oncology concerned with developing classes of predictive models of tumor growth. First, the process of developing mathematical models of vascular tumors evolving in the complex, heterogeneous, macroenvironment of living tissue; second, the selection of the most plausible models among these classes, given relevant observational data; third, the statistical calibration and validation of models in these classes, and finally, the prediction of key Quantities of Interest (QOIs) relevant to patient survival and the effect of various therapies. The most challenging aspects of this endeavor is that all of these issues often involve confounding uncertainties: in observational data, in model parameters, in model selection, and in the features targeted in the prediction. Our approach can be referred to as "model agnostic" in that no single model is advocated; rather, a general approach that explores powerful mixture-theory representations of tissue behavior while accounting for a range of relevant biological factors is presented, which leads to many potentially predictive models. Then representative classes are identified which provide a starting point for the implementation of OPAL, the Occam Plausibility Algorithm (OPAL) which enables the modeler to select the most plausible models (for given data) and to determine if the model is a valid tool for predicting tumor growth and morphology ( in vivo ). All of these approaches account for uncertainties in the model, the observational data, the model parameters, and the target QOI. We demonstrate these processes by comparing a list of models for tumor growth, including reaction-diffusion models, phase-fields models, and models with and without mechanical deformation effects, for glioma growth measured in murine experiments. Examples are provided that exhibit quite acceptable predictions of tumor growth in laboratory
Brandt, Laura A.; Benscoter, Allison; Harvey, Rebecca G.; Speroterra, Carolina; Bucklin, David N.; Romañach, Stephanie; Watling, James I.; Mazzotti, Frank J.
2017-01-01
Climate envelope models are widely used to describe potential future distribution of species under different climate change scenarios. It is broadly recognized that there are both strengths and limitations to using climate envelope models and that outcomes are sensitive to initial assumptions, inputs, and modeling methods Selection of predictor variables, a central step in modeling, is one of the areas where different techniques can yield varying results. Selection of climate variables to use as predictors is often done using statistical approaches that develop correlations between occurrences and climate data. These approaches have received criticism in that they rely on the statistical properties of the data rather than directly incorporating biological information about species responses to temperature and precipitation. We evaluated and compared models and prediction maps for 15 threatened or endangered species in Florida based on two variable selection techniques: expert opinion and a statistical method. We compared model performance between these two approaches for contemporary predictions, and the spatial correlation, spatial overlap and area predicted for contemporary and future climate predictions. In general, experts identified more variables as being important than the statistical method and there was low overlap in the variable sets (0.9 for area under the curve (AUC) and >0.7 for true skill statistic (TSS). Spatial overlap, which compares the spatial configuration between maps constructed using the different variable selection techniques, was only moderate overall (about 60%), with a great deal of variability across species. Difference in spatial overlap was even greater under future climate projections, indicating additional divergence of model outputs from different variable selection techniques. Our work is in agreement with other studies which have found that for broad-scale species distribution modeling, using statistical methods of variable
Models of microbiome evolution incorporating host and microbial selection.
Zeng, Qinglong; Wu, Steven; Sukumaran, Jeet; Rodrigo, Allen
2017-09-25
Numerous empirical studies suggest that hosts and microbes exert reciprocal selective effects on their ecological partners. Nonetheless, we still lack an explicit framework to model the dynamics of both hosts and microbes under selection. In a previous study, we developed an agent-based forward-time computational framework to simulate the neutral evolution of host-associated microbial communities in a constant-sized, unstructured population of hosts. These neutral models allowed offspring to sample microbes randomly from parents and/or from the environment. Additionally, the environmental pool of available microbes was constituted by fixed and persistent microbial OTUs and by contributions from host individuals in the preceding generation. In this paper, we extend our neutral models to allow selection to operate on both hosts and microbes. We do this by constructing a phenome for each microbial OTU consisting of a sample of traits that influence host and microbial fitnesses independently. Microbial traits can influence the fitness of hosts ("host selection") and the fitness of microbes ("trait-mediated microbial selection"). Additionally, the fitness effects of traits on microbes can be modified by their hosts ("host-mediated microbial selection"). We simulate the effects of these three types of selection, individually or in combination, on microbiome diversities and the fitnesses of hosts and microbes over several thousand generations of hosts. We show that microbiome diversity is strongly influenced by selection acting on microbes. Selection acting on hosts only influences microbiome diversity when there is near-complete direct or indirect parental contribution to the microbiomes of offspring. Unsurprisingly, microbial fitness increases under microbial selection. Interestingly, when host selection operates, host fitness only increases under two conditions: (1) when there is a strong parental contribution to microbial communities or (2) in the absence of a strong
Development of an Environment for Software Reliability Model Selection
1992-09-01
now is directed to other related problems such as tools for model selection, multiversion programming, and software fault tolerance modeling... multiversion programming, 7. Hlardware can be repaired by spare modules, which is not. the case for software, 2-6 N. Preventive maintenance is very important
Fuzzy Investment Portfolio Selection Models Based on Interval Analysis Approach
Directory of Open Access Journals (Sweden)
Haifeng Guo
2012-01-01
Full Text Available This paper employs fuzzy set theory to solve the unintuitive problem of the Markowitz mean-variance (MV portfolio model and extend it to a fuzzy investment portfolio selection model. Our model establishes intervals for expected returns and risk preference, which can take into account investors' different investment appetite and thus can find the optimal resolution for each interval. In the empirical part, we test this model in Chinese stocks investment and find that this model can fulfill different kinds of investors’ objectives. Finally, investment risk can be decreased when we add investment limit to each stock in the portfolio, which indicates our model is useful in practice.
Diversified models for portfolio selection based on uncertain semivariance
Chen, Lin; Peng, Jin; Zhang, Bo; Rosyida, Isnaini
2017-02-01
Since the financial markets are complex, sometimes the future security returns are represented mainly based on experts' estimations due to lack of historical data. This paper proposes a semivariance method for diversified portfolio selection, in which the security returns are given subjective to experts' estimations and depicted as uncertain variables. In the paper, three properties of the semivariance of uncertain variables are verified. Based on the concept of semivariance of uncertain variables, two types of mean-semivariance diversified models for uncertain portfolio selection are proposed. Since the models are complex, a hybrid intelligent algorithm which is based on 99-method and genetic algorithm is designed to solve the models. In this hybrid intelligent algorithm, 99-method is applied to compute the expected value and semivariance of uncertain variables, and genetic algorithm is employed to seek the best allocation plan for portfolio selection. At last, several numerical examples are presented to illustrate the modelling idea and the effectiveness of the algorithm.
Pairagon: a highly accurate, HMM-based cDNA-to-genome aligner.
Lu, David V; Brown, Randall H; Arumugam, Manimozhiyan; Brent, Michael R
2009-07-01
The most accurate way to determine the intron-exon structures in a genome is to align spliced cDNA sequences to the genome. Thus, cDNA-to-genome alignment programs are a key component of most annotation pipelines. The scoring system used to choose the best alignment is a primary determinant of alignment accuracy, while heuristics that prevent consideration of certain alignments are a primary determinant of runtime and memory usage. Both accuracy and speed are important considerations in choosing an alignment algorithm, but scoring systems have received much less attention than heuristics. We present Pairagon, a pair hidden Markov model based cDNA-to-genome alignment program, as the most accurate aligner for sequences with high- and low-identity levels. We conducted a series of experiments testing alignment accuracy with varying sequence identity. We first created 'perfect' simulated cDNA sequences by splicing the sequences of exons in the reference genome sequences of fly and human. The complete reference genome sequences were then mutated to various degrees using a realistic mutation simulator and the perfect cDNAs were aligned to them using Pairagon and 12 other aligners. To validate these results with natural sequences, we performed cross-species alignment using orthologous transcripts from human, mouse and rat. We found that aligner accuracy is heavily dependent on sequence identity. For sequences with 100% identity, Pairagon achieved accuracy levels of >99.6%, with one quarter of the errors of any other aligner. Furthermore, for human/mouse alignments, which are only 85% identical, Pairagon achieved 87% accuracy, higher than any other aligner. Pairagon source and executables are freely available at http://mblab.wustl.edu/software/pairagon/
A Primer for Model Selection: The Decisive Role of Model Complexity
Höge, Marvin; Wöhling, Thomas; Nowak, Wolfgang
2018-03-01
Selecting a "best" model among several competing candidate models poses an often encountered problem in water resources modeling (and other disciplines which employ models). For a modeler, the best model fulfills a certain purpose best (e.g., flood prediction), which is typically assessed by comparing model simulations to data (e.g., stream flow). Model selection methods find the "best" trade-off between good fit with data and model complexity. In this context, the interpretations of model complexity implied by different model selection methods are crucial, because they represent different underlying goals of modeling. Over the last decades, numerous model selection criteria have been proposed, but modelers who primarily want to apply a model selection criterion often face a lack of guidance for choosing the right criterion that matches their goal. We propose a classification scheme for model selection criteria that helps to find the right criterion for a specific goal, i.e., which employs the correct complexity interpretation. We identify four model selection classes which seek to achieve high predictive density, low predictive error, high model probability, or shortest compression of data. These goals can be achieved by following either nonconsistent or consistent model selection and by either incorporating a Bayesian parameter prior or not. We allocate commonly used criteria to these four classes, analyze how they represent model complexity and what this means for the model selection task. Finally, we provide guidance on choosing the right type of criteria for specific model selection tasks. (A quick guide through all key points is given at the end of the introduction.)
Selection of climate change scenario data for impact modelling
DEFF Research Database (Denmark)
Sloth Madsen, M; Fox Maule, C; MacKellar, N
2012-01-01
Impact models investigating climate change effects on food safety often need detailed climate data. The aim of this study was to select climate change projection data for selected crop phenology and mycotoxin impact models. Using the ENSEMBLES database of climate model output, this study...... illustrates how the projected climate change signal of important variables as temperature, precipitation and relative humidity depends on the choice of the climate model. Using climate change projections from at least two different climate models is recommended to account for model uncertainty. To make...... the climate projections suitable for impact analysis at the local scale a weather generator approach was adopted. As the weather generator did not treat all the necessary variables, an ad-hoc statistical method was developed to synthesise realistic values of missing variables. The method is presented...
A SUPPLIER SELECTION MODEL FOR SOFTWARE DEVELOPMENT OUTSOURCING
Directory of Open Access Journals (Sweden)
Hancu Lucian-Viorel
2010-12-01
Full Text Available This paper presents a multi-criteria decision making model used for supplier selection for software development outsourcing on e-marketplaces. This model can be used in auctions. The supplier selection process becomes complex and difficult on last twenty years since the Internet plays an important role in business management. Companies have to concentrate their efforts on their core activities and the others activities should be realized by outsourcing. They can achieve significant cost reduction by using e-marketplaces in their purchase process and by using decision support systems on supplier selection. In the literature were proposed many approaches for supplier evaluation and selection process. The performance of potential suppliers is evaluated using multi criteria decision making methods rather than considering a single factor cost.
Adverse Selection Models with Three States of Nature
Directory of Open Access Journals (Sweden)
Daniela MARINESCU
2011-02-01
Full Text Available In the paper we analyze an adverse selection model with three states of nature, where both the Principal and the Agent are risk neutral. When solving the model, we use the informational rents and the efforts as variables. We derive the optimal contract in the situation of asymmetric information. The paper ends with the characteristics of the optimal contract and the main conclusions of the model.
Comparing the staffing models of outsourcing in selected companies
Chaloupková, Věra
2010-01-01
This thesis deals with problems of takeover of employees in outsourcing. The capital purpose is to compare the staffing model of outsourcing in selected companies. To compare in selected companies I chose multi-criteria analysis. This thesis is dividend into six chapters. The first charter is devoted to the theoretical part. In this charter describes the basic concepts as outsourcing, personal aspects, phase of the outsourcing projects, communications and culture. The rest of thesis is devote...
ERP Software Selection Model using Analytic Network Process
Lesmana , Andre Surya; Astanti, Ririn Diar; Ai, The Jin
2014-01-01
During the implementation of Enterprise Resource Planning (ERP) in any company, one of the most important issues is the selection of ERP software that can satisfy the needs and objectives of the company. This issue is crucial since it may affect the duration of ERP implementation and the costs incurred for the ERP implementation. This research tries to construct a model of the selection of ERP software that are beneficial to the company in order to carry out the selection of the right ERP sof...
Economic assessment model architecture for AGC/AVLIS selection
International Nuclear Information System (INIS)
Hoglund, R.L.
1984-01-01
The economic assessment model architecture described provides the flexibility and completeness in economic analysis that the selection between AGC and AVLIS demands. Process models which are technology-specific will provide the first-order responses of process performance and cost to variations in process parameters. The economics models can be used to test the impacts of alternative deployment scenarios for a technology. Enterprise models provide global figures of merit for evaluating the DOE perspective on the uranium enrichment enterprise, and business analysis models compute the financial parameters from the private investor's viewpoint
IT vendor selection model by using structural equation model & analytical hierarchy process
Maitra, Sarit; Dominic, P. D. D.
2012-11-01
Selecting and evaluating the right vendors is imperative for an organization's global marketplace competitiveness. Improper selection and evaluation of potential vendors can dwarf an organization's supply chain performance. Numerous studies have demonstrated that firms consider multiple criteria when selecting key vendors. This research intends to develop a new hybrid model for vendor selection process with better decision making. The new proposed model provides a suitable tool for assisting decision makers and managers to make the right decisions and select the most suitable vendor. This paper proposes a Hybrid model based on Structural Equation Model (SEM) and Analytical Hierarchy Process (AHP) for long-term strategic vendor selection problems. The five steps framework of the model has been designed after the thorough literature study. The proposed hybrid model will be applied using a real life case study to assess its effectiveness. In addition, What-if analysis technique will be used for model validation purpose.
Model Selection in Historical Research Using Approximate Bayesian Computation
Rubio-Campillo, Xavier
2016-01-01
Formal Models and History Computational models are increasingly being used to study historical dynamics. This new trend, which could be named Model-Based History, makes use of recently published datasets and innovative quantitative methods to improve our understanding of past societies based on their written sources. The extensive use of formal models allows historians to re-evaluate hypotheses formulated decades ago and still subject to debate due to the lack of an adequate quantitative framework. The initiative has the potential to transform the discipline if it solves the challenges posed by the study of historical dynamics. These difficulties are based on the complexities of modelling social interaction, and the methodological issues raised by the evaluation of formal models against data with low sample size, high variance and strong fragmentation. Case Study This work examines an alternate approach to this evaluation based on a Bayesian-inspired model selection method. The validity of the classical Lanchester’s laws of combat is examined against a dataset comprising over a thousand battles spanning 300 years. Four variations of the basic equations are discussed, including the three most common formulations (linear, squared, and logarithmic) and a new variant introducing fatigue. Approximate Bayesian Computation is then used to infer both parameter values and model selection via Bayes Factors. Impact Results indicate decisive evidence favouring the new fatigue model. The interpretation of both parameter estimations and model selection provides new insights into the factors guiding the evolution of warfare. At a methodological level, the case study shows how model selection methods can be used to guide historical research through the comparison between existing hypotheses and empirical evidence. PMID:26730953
Sample selection and taste correlation in discrete choice transport modelling
DEFF Research Database (Denmark)
Mabit, Stefan Lindhard
2008-01-01
explain counterintuitive results in value of travel time estimation. However, the results also point at the difficulty of finding suitable instruments for the selection mechanism. Taste heterogeneity is another important aspect of discrete choice modelling. Mixed logit models are designed to capture...... the question for a broader class of models. It is shown that the original result may be somewhat generalised. Another question investigated is whether mode choice operates as a self-selection mechanism in the estimation of the value of travel time. The results show that self-selection can at least partly...... of taste correlation in willingness-to-pay estimation are presented. The first contribution addresses how to incorporate taste correlation in the estimation of the value of travel time for public transport. Given a limited dataset the approach taken is to use theory on the value of travel time as guidance...
Short-Run Asset Selection using a Logistic Model
Directory of Open Access Journals (Sweden)
Walter Gonçalves Junior
2011-06-01
Full Text Available Investors constantly look for significant predictors and accurate models to forecast future results, whose occasional efficacy end up being neutralized by market efficiency. Regardless, such predictors are widely used for seeking better (and more unique perceptions. This paper aims to investigate to what extent some of the most notorious indicators have discriminatory power to select stocks, and if it is feasible with such variables to build models that could anticipate those with good performance. In order to do that, logistical regressions were conducted with stocks traded at Bovespa using the selected indicators as explanatory variables. Investigated in this study were the outputs of Bovespa Index, liquidity, the Sharpe Ratio, ROE, MB, size and age evidenced to be significant predictors. Also examined were half-year, logistical models, which were adjusted in order to check the potential acceptable discriminatory power for the asset selection.
Uncertain programming models for portfolio selection with uncertain returns
Zhang, Bo; Peng, Jin; Li, Shengguo
2015-10-01
In an indeterminacy economic environment, experts' knowledge about the returns of securities consists of much uncertainty instead of randomness. This paper discusses portfolio selection problem in uncertain environment in which security returns cannot be well reflected by historical data, but can be evaluated by the experts. In the paper, returns of securities are assumed to be given by uncertain variables. According to various decision criteria, the portfolio selection problem in uncertain environment is formulated as expected-variance-chance model and chance-expected-variance model by using the uncertainty programming. Within the framework of uncertainty theory, for the convenience of solving the models, some crisp equivalents are discussed under different conditions. In addition, a hybrid intelligent algorithm is designed in the paper to provide a general method for solving the new models in general cases. At last, two numerical examples are provided to show the performance and applications of the models and algorithm.
The Properties of Model Selection when Retaining Theory Variables
DEFF Research Database (Denmark)
Hendry, David F.; Johansen, Søren
Economic theories are often fitted directly to data to avoid possible model selection biases. We show that embedding a theory model that specifies the correct set of m relevant exogenous variables, x{t}, within the larger set of m+k candidate variables, (x{t},w{t}), then selection over the second...... set by their statistical significance can be undertaken without affecting the estimator distribution of the theory parameters. This strategy returns the theory-parameter estimates when the theory is correct, yet protects against the theory being under-specified because some w{t} are relevant....
Fixation probability in a two-locus intersexual selection model.
Durand, Guillermo; Lessard, Sabin
2016-06-01
We study a two-locus model of intersexual selection in a finite haploid population reproducing according to a discrete-time Moran model with a trait locus expressed in males and a preference locus expressed in females. We show that the probability of ultimate fixation of a single mutant allele for a male ornament introduced at random at the trait locus given any initial frequency state at the preference locus is increased by weak intersexual selection and recombination, weak or strong. Moreover, this probability exceeds the initial frequency of the mutant allele even in the case of a costly male ornament if intersexual selection is not too weak. On the other hand, the probability of ultimate fixation of a single mutant allele for a female preference towards a male ornament introduced at random at the preference locus is increased by weak intersexual selection and weak recombination if the female preference is not costly, and is strong enough in the case of a costly male ornament. The analysis relies on an extension of the ancestral recombination-selection graph for samples of haplotypes to take into account events of intersexual selection, while the symbolic calculation of the fixation probabilities is made possible in a reasonable time by an optimizing algorithm. Copyright © 2016 Elsevier Inc. All rights reserved.
Spatial Fleming-Viot models with selection and mutation
Dawson, Donald A
2014-01-01
This book constructs a rigorous framework for analysing selected phenomena in evolutionary theory of populations arising due to the combined effects of migration, selection and mutation in a spatial stochastic population model, namely the evolution towards fitter and fitter types through punctuated equilibria. The discussion is based on a number of new methods, in particular multiple scale analysis, nonlinear Markov processes and their entrance laws, atomic measure-valued evolutions and new forms of duality (for state-dependent mutation and multitype selection) which are used to prove ergodic theorems in this context and are applicable for many other questions and renormalization analysis for a variety of phenomena (stasis, punctuated equilibrium, failure of naive branching approximations, biodiversity) which occur due to the combination of rare mutation, mutation, resampling, migration and selection and make it necessary to mathematically bridge the gap (in the limit) between time and space scales.
Uniform design based SVM model selection for face recognition
Li, Weihong; Liu, Lijuan; Gong, Weiguo
2010-02-01
Support vector machine (SVM) has been proved to be a powerful tool for face recognition. The generalization capacity of SVM depends on the model with optimal hyperparameters. The computational cost of SVM model selection results in application difficulty in face recognition. In order to overcome the shortcoming, we utilize the advantage of uniform design--space filling designs and uniformly scattering theory to seek for optimal SVM hyperparameters. Then we propose a face recognition scheme based on SVM with optimal model which obtained by replacing the grid and gradient-based method with uniform design. The experimental results on Yale and PIE face databases show that the proposed method significantly improves the efficiency of SVM model selection.
How Many Separable Sources? Model Selection In Independent Components Analysis
DEFF Research Database (Denmark)
Woods, Roger P.; Hansen, Lars Kai; Strother, Stephen
2015-01-01
among potential model categories with differing numbers of Gaussian components. Based on simulation studies, the assumptions and approximations underlying the Akaike Information Criterion do not hold in this setting, even with a very large number of observations. Cross-validation is a suitable, though....../Principal Components Analysis (mixed ICA/PCA) model described here accommodates one or more Gaussian components in the independent components analysis model and uses principal components analysis to characterize contributions from this inseparable Gaussian subspace. Information theory can then be used to select from...... might otherwise be questionable. Failure of the Akaike Information Criterion in model selection also has relevance in traditional independent components analysis where all sources are assumed non-Gaussian....
Selecting an optimal mixed products using grey relationship model
Directory of Open Access Journals (Sweden)
Farshad Faezy Razi
2013-06-01
Full Text Available This paper presents an integrated supplier selection and inventory management using grey relationship model (GRM as well as multi-objective decision making process. The proposed model of this paper first ranks different suppliers based on GRM technique and then determines the optimum level of inventory by considering different objectives. To show the implementation of the proposed model, we use some benchmark data presented by Talluri and Baker [Talluri, S., & Baker, R. C. (2002. A multi-phase mathematical programming approach for effective supply chain design. European Journal of Operational Research, 141(3, 544-558.]. The preliminary results indicate that the proposed model of this paper is capable of handling different criteria for supplier selection.
Model selection and inference a practical information-theoretic approach
Burnham, Kenneth P
1998-01-01
This book is unique in that it covers the philosophy of model-based data analysis and an omnibus strategy for the analysis of empirical data The book introduces information theoretic approaches and focuses critical attention on a priori modeling and the selection of a good approximating model that best represents the inference supported by the data Kullback-Leibler information represents a fundamental quantity in science and is Hirotugu Akaike's basis for model selection The maximized log-likelihood function can be bias-corrected to provide an estimate of expected, relative Kullback-Leibler information This leads to Akaike's Information Criterion (AIC) and various extensions and these are relatively simple and easy to use in practice, but little taught in statistics classes and far less understood in the applied sciences than should be the case The information theoretic approaches provide a unified and rigorous theory, an extension of likelihood theory, an important application of information theory, and are ...
Working covariance model selection for generalized estimating equations.
Carey, Vincent J; Wang, You-Gan
2011-11-20
We investigate methods for data-based selection of working covariance models in the analysis of correlated data with generalized estimating equations. We study two selection criteria: Gaussian pseudolikelihood and a geodesic distance based on discrepancy between model-sensitive and model-robust regression parameter covariance estimators. The Gaussian pseudolikelihood is found in simulation to be reasonably sensitive for several response distributions and noncanonical mean-variance relations for longitudinal data. Application is also made to a clinical dataset. Assessment of adequacy of both correlation and variance models for longitudinal data should be routine in applications, and we describe open-source software supporting this practice. Copyright © 2011 John Wiley & Sons, Ltd.
Evidence accumulation as a model for lexical selection.
Anders, R; Riès, S; van Maanen, L; Alario, F X
2015-11-01
We propose and demonstrate evidence accumulation as a plausible theoretical and/or empirical model for the lexical selection process of lexical retrieval. A number of current psycholinguistic theories consider lexical selection as a process related to selecting a lexical target from a number of alternatives, which each have varying activations (or signal supports), that are largely resultant of an initial stimulus recognition. We thoroughly present a case for how such a process may be theoretically explained by the evidence accumulation paradigm, and we demonstrate how this paradigm can be directly related or combined with conventional psycholinguistic theory and their simulatory instantiations (generally, neural network models). Then with a demonstrative application on a large new real data set, we establish how the empirical evidence accumulation approach is able to provide parameter results that are informative to leading psycholinguistic theory, and that motivate future theoretical development. Copyright © 2015 Elsevier Inc. All rights reserved.
Integrated model for supplier selection and performance evaluation
Directory of Open Access Journals (Sweden)
Borges de Araújo, Maria Creuza
2015-08-01
Full Text Available This paper puts forward a model for selecting suppliers and evaluating the performance of those already working with a company. A simulation was conducted in a food industry. This sector has high significance in the economy of Brazil. The model enables the phases of selecting and evaluating suppliers to be integrated. This is important so that a company can have partnerships with suppliers who are able to meet their needs. Additionally, a group method is used to enable managers who will be affected by this decision to take part in the selection stage. Finally, the classes resulting from the performance evaluation are shown to support the contractor in choosing the most appropriate relationship with its suppliers.
Attention-based Memory Selection Recurrent Network for Language Modeling
Liu, Da-Rong; Chuang, Shun-Po; Lee, Hung-yi
2016-01-01
Recurrent neural networks (RNNs) have achieved great success in language modeling. However, since the RNNs have fixed size of memory, their memory cannot store all the information about the words it have seen before in the sentence, and thus the useful long-term information may be ignored when predicting the next words. In this paper, we propose Attention-based Memory Selection Recurrent Network (AMSRN), in which the model can review the information stored in the memory at each previous time ...
The Selection of ARIMA Models with or without Regressors
DEFF Research Database (Denmark)
Johansen, Søren; Riani, Marco; Atkinson, Anthony C.
We develop a $C_{p}$ statistic for the selection of regression models with stationary and nonstationary ARIMA error term. We derive the asymptotic theory of the maximum likelihood estimators and show they are consistent and asymptotically Gaussian. We also prove that the distribution of the sum...
Model selection for contingency tables with algebraic statistics
Krampe, A.; Kuhnt, S.; Gibilisco, P.; Riccimagno, E.; Rogantin, M.P.; Wynn, H.P.
2009-01-01
Goodness-of-fit tests based on chi-square approximations are commonly used in the analysis of contingency tables. Results from algebraic statistics combined with MCMC methods provide alternatives to the chi-square approximation. However, within a model selection procedure usually a large number of
Computationally efficient thermal-mechanical modelling of selective laser melting
Yang, Y.; Ayas, C.; Brabazon, Dermot; Naher, Sumsun; Ul Ahad, Inam
2017-01-01
The Selective laser melting (SLM) is a powder based additive manufacturing (AM) method to produce high density metal parts with complex topology. However, part distortions and accompanying residual stresses deteriorates the mechanical reliability of SLM products. Modelling of the SLM process is
Multivariate time series modeling of selected childhood diseases in ...
African Journals Online (AJOL)
This paper is focused on modeling the five most prevalent childhood diseases in Akwa Ibom State using a multivariate approach to time series. An aggregate of 78,839 reported cases of malaria, upper respiratory tract infection (URTI), Pneumonia, anaemia and tetanus were extracted from five randomly selected hospitals in ...
Rank-based model selection for multiple ions quantum tomography
International Nuclear Information System (INIS)
Guţă, Mădălin; Kypraios, Theodore; Dryden, Ian
2012-01-01
The statistical analysis of measurement data has become a key component of many quantum engineering experiments. As standard full state tomography becomes unfeasible for large dimensional quantum systems, one needs to exploit prior information and the ‘sparsity’ properties of the experimental state in order to reduce the dimensionality of the estimation problem. In this paper we propose model selection as a general principle for finding the simplest, or most parsimonious explanation of the data, by fitting different models and choosing the estimator with the best trade-off between likelihood fit and model complexity. We apply two well established model selection methods—the Akaike information criterion (AIC) and the Bayesian information criterion (BIC)—two models consisting of states of fixed rank and datasets such as are currently produced in multiple ions experiments. We test the performance of AIC and BIC on randomly chosen low rank states of four ions, and study the dependence of the selected rank with the number of measurement repetitions for one ion states. We then apply the methods to real data from a four ions experiment aimed at creating a Smolin state of rank 4. By applying the two methods together with the Pearson χ 2 test we conclude that the data can be suitably described with a model whose rank is between 7 and 9. Additionally we find that the mean square error of the maximum likelihood estimator for pure states is close to that of the optimal over all possible measurements. (paper)
A Self-Adaptive Hidden Markov Model for Emotion Classification in Chinese Microblogs
Directory of Open Access Journals (Sweden)
Li Liu
2015-01-01
we propose a modified version of hidden Markov model (HMM classifier, called self-adaptive HMM, whose parameters are optimized by Particle Swarm Optimization algorithms. Since manually labeling large-scale dataset is difficult, we also employ the entropy to decide whether a new unlabeled tweet shall be contained in the training dataset after being assigned an emotion using our HMM-based approach. In the experiment, we collected about 200,000 Chinese tweets from Sina Weibo. The results show that the F-score of our approach gets 76% on happiness and fear and 65% on anger, surprise, and sadness. In addition, the self-adaptive HMM classifier outperforms Naive Bayes and Support Vector Machine on recognition of happiness, anger, and sadness.
Measures and limits of models of fixation selection.
Directory of Open Access Journals (Sweden)
Niklas Wilming
Full Text Available Models of fixation selection are a central tool in the quest to understand how the human mind selects relevant information. Using this tool in the evaluation of competing claims often requires comparing different models' relative performance in predicting eye movements. However, studies use a wide variety of performance measures with markedly different properties, which makes a comparison difficult. We make three main contributions to this line of research: First we argue for a set of desirable properties, review commonly used measures, and conclude that no single measure unites all desirable properties. However the area under the ROC curve (a classification measure and the KL-divergence (a distance measure of probability distributions combine many desirable properties and allow a meaningful comparison of critical model performance. We give an analytical proof of the linearity of the ROC measure with respect to averaging over subjects and demonstrate an appropriate correction of entropy-based measures like KL-divergence for small sample sizes in the context of eye-tracking data. Second, we provide a lower bound and an upper bound of these measures, based on image-independent properties of fixation data and between subject consistency respectively. Based on these bounds it is possible to give a reference frame to judge the predictive power of a model of fixation selection. We provide open-source python code to compute the reference frame. Third, we show that the upper, between subject consistency bound holds only for models that predict averages of subject populations. Departing from this we show that incorporating subject-specific viewing behavior can generate predictions which surpass that upper bound. Taken together, these findings lay out the required information that allow a well-founded judgment of the quality of any model of fixation selection and should therefore be reported when a new model is introduced.
Bakker, Eric
2010-02-15
A generalized description of the response behavior of potentiometric polymer membrane ion-selective electrodes is presented on the basis of ion-exchange equilibrium considerations at the sample-membrane interface. This paper includes and extends on previously reported theoretical advances in a more compact yet more comprehensive form. Specifically, the phase boundary potential model is used to derive the origin of the Nernstian response behavior in a single expression, which is valid for a membrane containing any charge type and complex stoichiometry of ionophore and ion-exchanger. This forms the basis for a generalized expression of the selectivity coefficient, which may be used for the selectivity optimization of ion-selective membranes containing electrically charged and neutral ionophores of any desired stoichiometry. It is shown to reduce to expressions published previously for specialized cases, and may be effectively applied to problems relevant in modern potentiometry. The treatment is extended to mixed ion solutions, offering a comprehensive yet formally compact derivation of the response behavior of ion-selective electrodes to a mixture of ions of any desired charge. It is compared to predictions by the less accurate Nicolsky-Eisenman equation. The influence of ion fluxes or any form of electrochemical excitation is not considered here, but may be readily incorporated if an ion-exchange equilibrium at the interface may be assumed in these cases.
Fisher-Wright model with deterministic seed bank and selection.
Koopmann, Bendix; Müller, Johannes; Tellier, Aurélien; Živković, Daniel
2017-04-01
Seed banks are common characteristics to many plant species, which allow storage of genetic diversity in the soil as dormant seeds for various periods of time. We investigate an above-ground population following a Fisher-Wright model with selection coupled with a deterministic seed bank assuming the length of the seed bank is kept constant and the number of seeds is large. To assess the combined impact of seed banks and selection on genetic diversity, we derive a general diffusion model. The applied techniques outline a path of approximating a stochastic delay differential equation by an appropriately rescaled stochastic differential equation. We compute the equilibrium solution of the site-frequency spectrum and derive the times to fixation of an allele with and without selection. Finally, it is demonstrated that seed banks enhance the effect of selection onto the site-frequency spectrum while slowing down the time until the mutation-selection equilibrium is reached. Copyright © 2016 Elsevier Inc. All rights reserved.
Forecasting house prices in the 50 states using Dynamic Model Averaging and Dynamic Model Selection
DEFF Research Database (Denmark)
Bork, Lasse; Møller, Stig Vinther
2015-01-01
We examine house price forecastability across the 50 states using Dynamic Model Averaging and Dynamic Model Selection, which allow for model change and parameter shifts. By allowing the entire forecasting model to change over time and across locations, the forecasting accuracy improves substantia......We examine house price forecastability across the 50 states using Dynamic Model Averaging and Dynamic Model Selection, which allow for model change and parameter shifts. By allowing the entire forecasting model to change over time and across locations, the forecasting accuracy improves...
How Many Separable Sources? Model Selection In Independent Components Analysis
Woods, Roger P.; Hansen, Lars Kai; Strother, Stephen
2015-01-01
Unlike mixtures consisting solely of non-Gaussian sources, mixtures including two or more Gaussian components cannot be separated using standard independent components analysis methods that are based on higher order statistics and independent observations. The mixed Independent Components Analysis/Principal Components Analysis (mixed ICA/PCA) model described here accommodates one or more Gaussian components in the independent components analysis model and uses principal components analysis to characterize contributions from this inseparable Gaussian subspace. Information theory can then be used to select from among potential model categories with differing numbers of Gaussian components. Based on simulation studies, the assumptions and approximations underlying the Akaike Information Criterion do not hold in this setting, even with a very large number of observations. Cross-validation is a suitable, though computationally intensive alternative for model selection. Application of the algorithm is illustrated using Fisher's iris data set and Howells' craniometric data set. Mixed ICA/PCA is of potential interest in any field of scientific investigation where the authenticity of blindly separated non-Gaussian sources might otherwise be questionable. Failure of the Akaike Information Criterion in model selection also has relevance in traditional independent components analysis where all sources are assumed non-Gaussian. PMID:25811988
A model for the sustainable selection of building envelope assemblies
Energy Technology Data Exchange (ETDEWEB)
Huedo, Patricia, E-mail: huedo@uji.es [Universitat Jaume I (Spain); Mulet, Elena, E-mail: emulet@uji.es [Universitat Jaume I (Spain); López-Mesa, Belinda, E-mail: belinda@unizar.es [Universidad de Zaragoza (Spain)
2016-02-15
The aim of this article is to define an evaluation model for the environmental impacts of building envelopes to support planners in the early phases of materials selection. The model is intended to estimate environmental impacts for different combinations of building envelope assemblies based on scientifically recognised sustainability indicators. These indicators will increase the amount of information that existing catalogues show to support planners in the selection of building assemblies. To define the model, first the environmental indicators were selected based on the specific aims of the intended sustainability assessment. Then, a simplified LCA methodology was developed to estimate the impacts applicable to three types of dwellings considering different envelope assemblies, building orientations and climate zones. This methodology takes into account the manufacturing, installation, maintenance and use phases of the building. Finally, the model was validated and a matrix in Excel was created as implementation of the model. - Highlights: • Method to assess the envelope impacts based on a simplified LCA • To be used at an earlier phase than the existing methods in a simple way. • It assigns a score by means of known sustainability indicators. • It estimates data about the embodied and operating environmental impacts. • It compares the investment costs with the costs of the consumed energy.
A model for the sustainable selection of building envelope assemblies
International Nuclear Information System (INIS)
Huedo, Patricia; Mulet, Elena; López-Mesa, Belinda
2016-01-01
The aim of this article is to define an evaluation model for the environmental impacts of building envelopes to support planners in the early phases of materials selection. The model is intended to estimate environmental impacts for different combinations of building envelope assemblies based on scientifically recognised sustainability indicators. These indicators will increase the amount of information that existing catalogues show to support planners in the selection of building assemblies. To define the model, first the environmental indicators were selected based on the specific aims of the intended sustainability assessment. Then, a simplified LCA methodology was developed to estimate the impacts applicable to three types of dwellings considering different envelope assemblies, building orientations and climate zones. This methodology takes into account the manufacturing, installation, maintenance and use phases of the building. Finally, the model was validated and a matrix in Excel was created as implementation of the model. - Highlights: • Method to assess the envelope impacts based on a simplified LCA • To be used at an earlier phase than the existing methods in a simple way. • It assigns a score by means of known sustainability indicators. • It estimates data about the embodied and operating environmental impacts. • It compares the investment costs with the costs of the consumed energy.
On selection of optimal stochastic model for accelerated life testing
International Nuclear Information System (INIS)
Volf, P.; Timková, J.
2014-01-01
This paper deals with the problem of proper lifetime model selection in the context of statistical reliability analysis. Namely, we consider regression models describing the dependence of failure intensities on a covariate, for instance, a stressor. Testing the model fit is standardly based on the so-called martingale residuals. Their analysis has already been studied by many authors. Nevertheless, the Bayes approach to the problem, in spite of its advantages, is just developing. We shall present the Bayes procedure of estimation in several semi-parametric regression models of failure intensity. Then, our main concern is the Bayes construction of residual processes and goodness-of-fit tests based on them. The method is illustrated with both artificial and real-data examples. - Highlights: • Statistical survival and reliability analysis and Bayes approach. • Bayes semi-parametric regression modeling in Cox's and AFT models. • Bayes version of martingale residuals and goodness-of-fit test
Model building strategy for logistic regression: purposeful selection.
Zhang, Zhongheng
2016-03-01
Logistic regression is one of the most commonly used models to account for confounders in medical literature. The article introduces how to perform purposeful selection model building strategy with R. I stress on the use of likelihood ratio test to see whether deleting a variable will have significant impact on model fit. A deleted variable should also be checked for whether it is an important adjustment of remaining covariates. Interaction should be checked to disentangle complex relationship between covariates and their synergistic effect on response variable. Model should be checked for the goodness-of-fit (GOF). In other words, how the fitted model reflects the real data. Hosmer-Lemeshow GOF test is the most widely used for logistic regression model.
Statistical modelling in biostatistics and bioinformatics selected papers
Peng, Defen
2014-01-01
This book presents selected papers on statistical model development related mainly to the fields of Biostatistics and Bioinformatics. The coverage of the material falls squarely into the following categories: (a) Survival analysis and multivariate survival analysis, (b) Time series and longitudinal data analysis, (c) Statistical model development and (d) Applied statistical modelling. Innovations in statistical modelling are presented throughout each of the four areas, with some intriguing new ideas on hierarchical generalized non-linear models and on frailty models with structural dispersion, just to mention two examples. The contributors include distinguished international statisticians such as Philip Hougaard, John Hinde, Il Do Ha, Roger Payne and Alessandra Durio, among others, as well as promising newcomers. Some of the contributions have come from researchers working in the BIO-SI research programme on Biostatistics and Bioinformatics, centred on the Universities of Limerick and Galway in Ireland and fu...
Modeling and Solving the Liner Shipping Service Selection Problem
DEFF Research Database (Denmark)
Karsten, Christian Vad; Balakrishnan, Anant
We address a tactical planning problem, the Liner Shipping Service Selection Problem (LSSSP), facing container shipping companies. Given estimated demand between various ports, the LSSSP entails selecting the best subset of non-simple cyclic sailing routes from a given pool of candidate routes...... to accurately model transshipment costs and incorporate routing policies such as maximum transit time, maritime cabotage rules, and operational alliances. Our hop-indexed arc flow model is smaller and easier to solve than path flow models. We outline a preprocessing procedure that exploits both the routing...... requirements and the hop limits to reduce problem size, and describe techniques to accelerate the solution procedure. We present computational results for realistic problem instances from the benchmark suite LINER-LIB....
Improved hidden Markov model for nosocomial infections.
Khader, Karim; Leecaster, Molly; Greene, Tom; Samore, Matthew; Thomas, Alun
2014-12-01
We propose a novel hidden Markov model (HMM) for parameter estimation in hospital transmission models, and show that commonly made simplifying assumptions can lead to severe model misspecification and poor parameter estimates. A standard HMM that embodies two commonly made simplifying assumptions, namely a fixed patient count and binomially distributed detections is compared with a new alternative HMM that does not require these simplifying assumptions. Using simulated data, we demonstrate how each of the simplifying assumptions used by the standard model leads to model misspecification, whereas the alternative model results in accurate parameter estimates. © The Authors 2013. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.
Variable Selection for Regression Models of Percentile Flows
Fouad, G.
2017-12-01
Percentile flows describe the flow magnitude equaled or exceeded for a given percent of time, and are widely used in water resource management. However, these statistics are normally unavailable since most basins are ungauged. Percentile flows of ungauged basins are often predicted using regression models based on readily observable basin characteristics, such as mean elevation. The number of these independent variables is too large to evaluate all possible models. A subset of models is typically evaluated using automatic procedures, like stepwise regression. This ignores a large variety of methods from the field of feature (variable) selection and physical understanding of percentile flows. A study of 918 basins in the United States was conducted to compare an automatic regression procedure to the following variable selection methods: (1) principal component analysis, (2) correlation analysis, (3) random forests, (4) genetic programming, (5) Bayesian networks, and (6) physical understanding. The automatic regression procedure only performed better than principal component analysis. Poor performance of the regression procedure was due to a commonly used filter for multicollinearity, which rejected the strongest models because they had cross-correlated independent variables. Multicollinearity did not decrease model performance in validation because of a representative set of calibration basins. Variable selection methods based strictly on predictive power (numbers 2-5 from above) performed similarly, likely indicating a limit to the predictive power of the variables. Similar performance was also reached using variables selected based on physical understanding, a finding that substantiates recent calls to emphasize physical understanding in modeling for predictions in ungauged basins. The strongest variables highlighted the importance of geology and land cover, whereas widely used topographic variables were the weakest predictors. Variables suffered from a high
Numerical Model based Reliability Estimation of Selective Laser Melting Process
DEFF Research Database (Denmark)
Mohanty, Sankhya; Hattel, Jesper Henri
2014-01-01
Selective laser melting is developing into a standard manufacturing technology with applications in various sectors. However, the process is still far from being at par with conventional processes such as welding and casting, the primary reason of which is the unreliability of the process. While...... of the selective laser melting process. A validated 3D finite-volume alternating-direction-implicit numerical technique is used to model the selective laser melting process, and is calibrated against results from single track formation experiments. Correlation coefficients are determined for process input...... parameters such as laser power, speed, beam profile, etc. Subsequently, uncertainties in the processing parameters are utilized to predict a range for the various outputs, using a Monte Carlo method based uncertainty analysis methodology, and the reliability of the process is established....
Modelling Technical and Economic Parameters in Selection of Manufacturing Devices
Directory of Open Access Journals (Sweden)
Naqib Daneshjo
2017-11-01
Full Text Available Sustainable science and technology development is also conditioned by continuous development of means of production which have a key role in structure of each production system. Mechanical nature of the means of production is complemented by controlling and electronic devices in context of intelligent industry. A selection of production machines for a technological process or technological project has so far been practically resolved, often only intuitively. With regard to increasing intelligence, the number of variable parameters that have to be considered when choosing a production device is also increasing. It is necessary to use computing techniques and decision making methods according to heuristic methods and more precise methodological procedures during the selection. The authors present an innovative model for optimization of technical and economic parameters in the selection of manufacturing devices for industry 4.0.
Selection of Models for Ingestion Pathway and Relocation Radii Determination
International Nuclear Information System (INIS)
Blanchard, A.
1998-01-01
The distance at which intermediate phase protective actions (such as food interdiction and relocation) may be needed following postulated accidents at three Savannah River Site nonreactor nuclear facilities will be determined by modeling. The criteria used to select dispersion/deposition models are presented. Several models were considered, including ARAC, MACCS, HOTSPOT, WINDS (coupled with PUFF-PLUME), and UFOTRI. Although ARAC and WINDS are expected to provide more accurate modeling of atmospheric transport following an actual release, analyses consistent with regulatory guidance for planning purposes may be accomplished with comparatively simple dispersion models such as HOTSPOT and UFOTRI. A recommendation is made to use HOTSPOT for non-tritium facilities and UFOTRI for tritium facilities
Selection of Models for Ingestion Pathway and Relocation
International Nuclear Information System (INIS)
Blanchard, A.; Thompson, J.M.
1998-01-01
The area in which intermediate phase protective actions (such as food interdiction and relocation) may be needed following postulated accidents at three Savannah River Site nonreactor nuclear facilities will be determined by modeling. The criteria used to select dispersion/deposition models are presented. Several models are considered, including ARAC, MACCS, HOTSPOT, WINDS (coupled with PUFF-PLUME), and UFOTRI. Although ARAC and WINDS are expected to provide more accurate modeling of atmospheric transport following an actual release, analyses consistent with regulatory guidance for planning purposes may be accomplished with comparatively simple dispersion models such as HOTSPOT and UFOTRI. A recommendation is made to use HOTSPOT for non-tritium facilities and UFOTRI for tritium facilities. The most recent Food and Drug Administration Derived Intervention Levels (August 1998) are adopted as evaluation guidelines for ingestion pathways
Selection of Models for Ingestion Pathway and Relocation
International Nuclear Information System (INIS)
Blanchard, A.; Thompson, J.M.
1999-01-01
The area in which intermediate phase protective actions (such as food interdiction and relocation) may be needed following postulated accidents at three Savannah River Site nonreactor nuclear facilities will be determined by modeling. The criteria used to select dispersion/deposition models are presented. Several models are considered, including ARAC, MACCS, HOTSPOT, WINDS (coupled with PUFF-PLUME), and UFOTRI. Although ARAC and WINDS are expected to provide more accurate modeling of atmospheric transport following an actual release, analyses consistent with regulatory guidance for planning purposes may be accomplished with comparatively simple dispersion models such as HOTSPOT and UFOTRI. A recommendation is made to use HOTSPOT for non-tritium facilities and UFOTRI for tritium facilities. The most recent Food and Drug Administration Derived Intervention Levels (August 1998) are adopted as evaluation guidelines for ingestion pathways
Predicting artificailly drained areas by means of selective model ensemble
DEFF Research Database (Denmark)
Møller, Anders Bjørn; Beucher, Amélie; Iversen, Bo Vangsø
. The approaches employed include decision trees, discriminant analysis, regression models, neural networks and support vector machines amongst others. Several models are trained with each method, using variously the original soil covariates and principal components of the covariates. With a large ensemble...... out since the mid-19th century, and it has been estimated that half of the cultivated area is artificially drained (Olesen, 2009). A number of machine learning approaches can be used to predict artificially drained areas in geographic space. However, instead of choosing the most accurate model....... The study aims firstly to train a large number of models to predict the extent of artificially drained areas using various machine learning approaches. Secondly, the study will develop a method for selecting the models, which give a good prediction of artificially drained areas, when used in conjunction...
Directory of Open Access Journals (Sweden)
Henry de-Graft Acquah
2013-01-01
Full Text Available Information Criteria provides an attractive basis for selecting the best model from a set of competing asymmetric price transmission models or theories. However, little is understood about the sensitivity of the model selection methods to model complexity. This study therefore fits competing asymmetric price transmission models that differ in complexity to simulated data and evaluates the ability of the model selection methods to recover the true model. The results of Monte Carlo experimentation suggest that in general BIC, CAIC and DIC were superior to AIC when the true data generating process was the standard error correction model, whereas AIC was more successful when the true model was the complex error correction model. It is also shown that the model selection methods performed better in large samples for a complex asymmetric data generating process than with a standard asymmetric data generating process. Except for complex models, AIC's performance did not make substantial gains in recovery rates as sample size increased. The research findings demonstrate the influence of model complexity in asymmetric price transmission model comparison and selection.
Coding with partially hidden Markov models
DEFF Research Database (Denmark)
Forchhammer, Søren; Rissanen, J.
1995-01-01
Partially hidden Markov models (PHMM) are introduced. They are a variation of the hidden Markov models (HMM) combining the power of explicit conditioning on past observations and the power of using hidden states. (P)HMM may be combined with arithmetic coding for lossless data compression. A general...... 2-part coding scheme for given model order but unknown parameters based on PHMM is presented. A forward-backward reestimation of parameters with a redefined backward variable is given for these models and used for estimating the unknown parameters. Proof of convergence of this reestimation is given....... The PHMM structure and the conditions of the convergence proof allows for application of the PHMM to image coding. Relations between the PHMM and hidden Markov models (HMM) are treated. Results of coding bi-level images with the PHMM coding scheme is given. The results indicate that the PHMM can adapt...
An Improved Nested Sampling Algorithm for Model Selection and Assessment
Zeng, X.; Ye, M.; Wu, J.; WANG, D.
2017-12-01
Multimodel strategy is a general approach for treating model structure uncertainty in recent researches. The unknown groundwater system is represented by several plausible conceptual models. Each alternative conceptual model is attached with a weight which represents the possibility of this model. In Bayesian framework, the posterior model weight is computed as the product of model prior weight and marginal likelihood (or termed as model evidence). As a result, estimating marginal likelihoods is crucial for reliable model selection and assessment in multimodel analysis. Nested sampling estimator (NSE) is a new proposed algorithm for marginal likelihood estimation. The implementation of NSE comprises searching the parameters' space from low likelihood area to high likelihood area gradually, and this evolution is finished iteratively via local sampling procedure. Thus, the efficiency of NSE is dominated by the strength of local sampling procedure. Currently, Metropolis-Hasting (M-H) algorithm and its variants are often used for local sampling in NSE. However, M-H is not an efficient sampling algorithm for high-dimensional or complex likelihood function. For improving the performance of NSE, it could be feasible to integrate more efficient and elaborated sampling algorithm - DREAMzs into the local sampling. In addition, in order to overcome the computation burden problem of large quantity of repeating model executions in marginal likelihood estimation, an adaptive sparse grid stochastic collocation method is used to build the surrogates for original groundwater model.
Stochastic isotropic hyperelastic materials: constitutive calibration and model selection
Mihai, L. Angela; Woolley, Thomas E.; Goriely, Alain
2018-03-01
Biological and synthetic materials often exhibit intrinsic variability in their elastic responses under large strains, owing to microstructural inhomogeneity or when elastic data are extracted from viscoelastic mechanical tests. For these materials, although hyperelastic models calibrated to mean data are useful, stochastic representations accounting also for data dispersion carry extra information about the variability of material properties found in practical applications. We combine finite elasticity and information theories to construct homogeneous isotropic hyperelastic models with random field parameters calibrated to discrete mean values and standard deviations of either the stress-strain function or the nonlinear shear modulus, which is a function of the deformation, estimated from experimental tests. These quantities can take on different values, corresponding to possible outcomes of the experiments. As multiple models can be derived that adequately represent the observed phenomena, we apply Occam's razor by providing an explicit criterion for model selection based on Bayesian statistics. We then employ this criterion to select a model among competing models calibrated to experimental data for rubber and brain tissue under single or multiaxial loads.
Modeling selective pressures on phytoplankton in the global ocean.
Directory of Open Access Journals (Sweden)
Jason G Bragg
Full Text Available Our view of marine microbes is transforming, as culture-independent methods facilitate rapid characterization of microbial diversity. It is difficult to assimilate this information into our understanding of marine microbe ecology and evolution, because their distributions, traits, and genomes are shaped by forces that are complex and dynamic. Here we incorporate diverse forces--physical, biogeochemical, ecological, and mutational--into a global ocean model to study selective pressures on a simple trait in a widely distributed lineage of picophytoplankton: the nitrogen use abilities of Synechococcus and Prochlorococcus cyanobacteria. Some Prochlorococcus ecotypes have lost the ability to use nitrate, whereas their close relatives, marine Synechococcus, typically retain it. We impose mutations for the loss of nitrogen use abilities in modeled picophytoplankton, and ask: in which parts of the ocean are mutants most disadvantaged by losing the ability to use nitrate, and in which parts are they least disadvantaged? Our model predicts that this selective disadvantage is smallest for picophytoplankton that live in tropical regions where Prochlorococcus are abundant in the real ocean. Conversely, the selective disadvantage of losing the ability to use nitrate is larger for modeled picophytoplankton that live at higher latitudes, where Synechococcus are abundant. In regions where we expect Prochlorococcus and Synechococcus populations to cycle seasonally in the real ocean, we find that model ecotypes with seasonal population dynamics similar to Prochlorococcus are less disadvantaged by losing the ability to use nitrate than model ecotypes with seasonal population dynamics similar to Synechococcus. The model predictions for the selective advantage associated with nitrate use are broadly consistent with the distribution of this ability among marine picocyanobacteria, and at finer scales, can provide insights into interactions between temporally varying
Modeling selective pressures on phytoplankton in the global ocean.
Bragg, Jason G; Dutkiewicz, Stephanie; Jahn, Oliver; Follows, Michael J; Chisholm, Sallie W
2010-03-10
Our view of marine microbes is transforming, as culture-independent methods facilitate rapid characterization of microbial diversity. It is difficult to assimilate this information into our understanding of marine microbe ecology and evolution, because their distributions, traits, and genomes are shaped by forces that are complex and dynamic. Here we incorporate diverse forces--physical, biogeochemical, ecological, and mutational--into a global ocean model to study selective pressures on a simple trait in a widely distributed lineage of picophytoplankton: the nitrogen use abilities of Synechococcus and Prochlorococcus cyanobacteria. Some Prochlorococcus ecotypes have lost the ability to use nitrate, whereas their close relatives, marine Synechococcus, typically retain it. We impose mutations for the loss of nitrogen use abilities in modeled picophytoplankton, and ask: in which parts of the ocean are mutants most disadvantaged by losing the ability to use nitrate, and in which parts are they least disadvantaged? Our model predicts that this selective disadvantage is smallest for picophytoplankton that live in tropical regions where Prochlorococcus are abundant in the real ocean. Conversely, the selective disadvantage of losing the ability to use nitrate is larger for modeled picophytoplankton that live at higher latitudes, where Synechococcus are abundant. In regions where we expect Prochlorococcus and Synechococcus populations to cycle seasonally in the real ocean, we find that model ecotypes with seasonal population dynamics similar to Prochlorococcus are less disadvantaged by losing the ability to use nitrate than model ecotypes with seasonal population dynamics similar to Synechococcus. The model predictions for the selective advantage associated with nitrate use are broadly consistent with the distribution of this ability among marine picocyanobacteria, and at finer scales, can provide insights into interactions between temporally varying ocean processes and
Two-Stage Hidden Markov Model in Gesture Recognition for Human Robot Interaction
Directory of Open Access Journals (Sweden)
Nhan Nguyen-Duc-Thanh
2012-07-01
Full Text Available Hidden Markov Model (HMM is very rich in mathematical structure and hence can form the theoretical basis for use in a wide range of applications including gesture representation. Most research in this field, however, uses only HMM for recognizing simple gestures, while HMM can definitely be applied for whole gesture meaning recognition. This is very effectively applicable in Human-Robot Interaction (HRI. In this paper, we introduce an approach for HRI in which not only the human can naturally control the robot by hand gesture, but also the robot can recognize what kind of task it is executing. The main idea behind this method is the 2-stages Hidden Markov Model. The 1st HMM is to recognize the prime command-like gestures. Based on the sequence of prime gestures that are recognized from the 1st stage and which represent the whole action, the 2nd HMM plays a role in task recognition. Another contribution of this paper is that we use the output Mixed Gaussian distribution in HMM to improve the recognition rate. In the experiment, we also complete a comparison of the different number of hidden states and mixture components to obtain the optimal one, and compare to other methods to evaluate this performance.
Monthly streamflow forecasting based on hidden Markov model and Gaussian Mixture Regression
Liu, Yongqi; Ye, Lei; Qin, Hui; Hong, Xiaofeng; Ye, Jiajun; Yin, Xingli
2018-06-01
Reliable streamflow forecasts can be highly valuable for water resources planning and management. In this study, we combined a hidden Markov model (HMM) and Gaussian Mixture Regression (GMR) for probabilistic monthly streamflow forecasting. The HMM is initialized using a kernelized K-medoids clustering method, and the Baum-Welch algorithm is then executed to learn the model parameters. GMR derives a conditional probability distribution for the predictand given covariate information, including the antecedent flow at a local station and two surrounding stations. The performance of HMM-GMR was verified based on the mean square error and continuous ranked probability score skill scores. The reliability of the forecasts was assessed by examining the uniformity of the probability integral transform values. The results show that HMM-GMR obtained reasonably high skill scores and the uncertainty spread was appropriate. Different HMM states were assumed to be different climate conditions, which would lead to different types of observed values. We demonstrated that the HMM-GMR approach can handle multimodal and heteroscedastic data.
Modeling selective attention using a neuromorphic analog VLSI device.
Indiveri, G
2000-12-01
Attentional mechanisms are required to overcome the problem of flooding a limited processing capacity system with information. They are present in biological sensory systems and can be a useful engineering tool for artificial visual systems. In this article we present a hardware model of a selective attention mechanism implemented on a very large-scale integration (VLSI) chip, using analog neuromorphic circuits. The chip exploits a spike-based representation to receive, process, and transmit signals. It can be used as a transceiver module for building multichip neuromorphic vision systems. We describe the circuits that carry out the main processing stages of the selective attention mechanism and provide experimental data for each circuit. We demonstrate the expected behavior of the model at the system level by stimulating the chip with both artificially generated control signals and signals obtained from a saliency map, computed from an image containing several salient features.
Genomic Selection in Plant Breeding: Methods, Models, and Perspectives.
Crossa, José; Pérez-Rodríguez, Paulino; Cuevas, Jaime; Montesinos-López, Osval; Jarquín, Diego; de Los Campos, Gustavo; Burgueño, Juan; González-Camacho, Juan M; Pérez-Elizalde, Sergio; Beyene, Yoseph; Dreisigacker, Susanne; Singh, Ravi; Zhang, Xuecai; Gowda, Manje; Roorkiwal, Manish; Rutkoski, Jessica; Varshney, Rajeev K
2017-11-01
Genomic selection (GS) facilitates the rapid selection of superior genotypes and accelerates the breeding cycle. In this review, we discuss the history, principles, and basis of GS and genomic-enabled prediction (GP) as well as the genetics and statistical complexities of GP models, including genomic genotype×environment (G×E) interactions. We also examine the accuracy of GP models and methods for two cereal crops and two legume crops based on random cross-validation. GS applied to maize breeding has shown tangible genetic gains. Based on GP results, we speculate how GS in germplasm enhancement (i.e., prebreeding) programs could accelerate the flow of genes from gene bank accessions to elite lines. Recent advances in hyperspectral image technology could be combined with GS and pedigree-assisted breeding. Copyright © 2017 Elsevier Ltd. All rights reserved.
A Model of Social Selection and Successful Altruism
1989-10-07
D., The evolution of social behavior. Annual Reviews of Ecological Systems, 5:325-383 (1974). 2. Dawkins , R., The selfish gene . Oxford: Oxford...alive and well. it will be important to re- examine this striking historical experience,-not in terms o, oversimplified models of the " selfish gene ," but...Darwinian Analysis The acceptance by many modern geneticists of the axiom that the basic unit of selection Is the " selfish gene " quickly led to the
Pareto-Optimal Model Selection via SPRINT-Race.
Zhang, Tiantian; Georgiopoulos, Michael; Anagnostopoulos, Georgios C
2018-02-01
In machine learning, the notion of multi-objective model selection (MOMS) refers to the problem of identifying the set of Pareto-optimal models that optimize by compromising more than one predefined objectives simultaneously. This paper introduces SPRINT-Race, the first multi-objective racing algorithm in a fixed-confidence setting, which is based on the sequential probability ratio with indifference zone test. SPRINT-Race addresses the problem of MOMS with multiple stochastic optimization objectives in the proper Pareto-optimality sense. In SPRINT-Race, a pairwise dominance or non-dominance relationship is statistically inferred via a non-parametric, ternary-decision, dual-sequential probability ratio test. The overall probability of falsely eliminating any Pareto-optimal models or mistakenly returning any clearly dominated models is strictly controlled by a sequential Holm's step-down family-wise error rate control method. As a fixed-confidence model selection algorithm, the objective of SPRINT-Race is to minimize the computational effort required to achieve a prescribed confidence level about the quality of the returned models. The performance of SPRINT-Race is first examined via an artificially constructed MOMS problem with known ground truth. Subsequently, SPRINT-Race is applied on two real-world applications: 1) hybrid recommender system design and 2) multi-criteria stock selection. The experimental results verify that SPRINT-Race is an effective and efficient tool for such MOMS problems. code of SPRINT-Race is available at https://github.com/watera427/SPRINT-Race.
Establishment of selected acute pulmonary thromboembolism model in experimental sheep
International Nuclear Information System (INIS)
Fan Jihai; Gu Xiulian; Chao Shengwu; Zhang Peng; Fan Ruilin; Wang Li'na; Wang Lulu; Wang Ling; Li Bo; Chen Taotao
2010-01-01
Objective: To establish a selected acute pulmonary thromboembolism model in experimental sheep suitable for animal experiment. Methods: By using Seldinger's technique the catheter sheath was placed in both the femoral vein and femoral artery in ten sheep. Under C-arm DSA guidance the catheter was inserted through the catheter sheath into the pulmonary artery. Via the catheter appropriate amount of sheep autologous blood clots was injected into the selected pulmonary arteries. The selected acute pulmonary thromboembolism model was thus established. Pulmonary angiography was performed to check the results. The pulmonary arterial pressure, femoral artery pressure,heart rates and partial pressure of oxygen in arterial blood (PaO 2 ) were determined both before and after the treatment. The above parameters obtained after the procedure were compared with the recorded parameters measured before the procedure, and the sheep model quality was evaluated. Results: The baseline of pulmonary arterial pressure was (27.30 ± 9.58) mmHg,femoral artery pressure was (126.4 ± 13.72) mmHg, heart rate was (103 ± 15) bpm and PaO 2 was (87.7 ± 12.04) mmHg. Sixty minutes after the injection of (30 ± 5) ml thrombotic agglomerates, the pulmonary arterial pressures rose to (52 ± 49) mmHg, femoral artery pressures dropped to (100 ± 21) mmHg. The heart rates went up to (150 ± 26) bpm. The PaO 2 fell to (25.3 ± 11.2) mmHg. After the procedure the above parameters were significantly different from that measured before the procedure in all ten animals (P < 0.01). The pulmonary arteriography clearly demonstrated that the selected pulmonary arteries were successfully embolized. Conclusion: The anatomy of sheep's femoral veins,vena cava system, pulmonary artery and right heart system are suitable for the establishment of the catheter passage, for this reason, selected acute pulmonary thromboembolism model can be easily created in experimental sheep. The technique is feasible and the model
Selection of key terrain attributes for SOC model
DEFF Research Database (Denmark)
Greve, Mogens Humlekrog; Adhikari, Kabindra; Chellasamy, Menaka
As an important component of the global carbon pool, soil organic carbon (SOC) plays an important role in the global carbon cycle. SOC pool is the basic information to carry out global warming research, and needs to sustainable use of land resources. Digital terrain attributes are often use...... was selected, total 2,514,820 data mining models were constructed by 71 differences grid from 12m to 2304m and 22 attributes, 21 attributes derived by DTM and the original elevation. Relative importance and usage of each attributes in every model were calculated. Comprehensive impact rates of each attribute...
A decision model for energy resource selection in China
International Nuclear Information System (INIS)
Wang Bing; Kocaoglu, Dundar F.; Daim, Tugrul U.; Yang Jiting
2010-01-01
This paper evaluates coal, petroleum, natural gas, nuclear energy and renewable energy resources as energy alternatives for China through use of a hierarchical decision model. The results indicate that although coal is still the major preferred energy alternative, it is followed closely by renewable energy. The sensitivity analysis indicates that the most critical criterion for energy selection is the current energy infrastructure. A hierarchical decision model is used, and expert judgments are quantified, to evaluate the alternatives. Criteria used for the evaluations are availability, current energy infrastructure, price, safety, environmental impacts and social impacts.
Covariate selection for the semiparametric additive risk model
DEFF Research Database (Denmark)
Martinussen, Torben; Scheike, Thomas
2009-01-01
This paper considers covariate selection for the additive hazards model. This model is particularly simple to study theoretically and its practical implementation has several major advantages to the similar methodology for the proportional hazards model. One complication compared...... and study their large sample properties for the situation where the number of covariates p is smaller than the number of observations. We also show that the adaptive Lasso has the oracle property. In many practical situations, it is more relevant to tackle the situation with large p compared with the number...... of observations. We do this by studying the properties of the so-called Dantzig selector in the setting of the additive risk model. Specifically, we establish a bound on how close the solution is to a true sparse signal in the case where the number of covariates is large. In a simulation study, we also compare...
Optimal foraging in marine ecosystem models: selectivity, profitability and switching
DEFF Research Database (Denmark)
Visser, Andre W.; Fiksen, Ø.
2013-01-01
ecological mechanics and evolutionary logic as a solution to diet selection in ecosystem models. When a predator can consume a range of prey items it has to choose which foraging mode to use, which prey to ignore and which ones to pursue, and animals are known to be particularly skilled in adapting...... to the preference functions commonly used in models today. Indeed, depending on prey class resolution, optimal foraging can yield feeding rates that are considerably different from the ‘switching functions’ often applied in marine ecosystem models. Dietary inclusion is dictated by two optimality choices: 1...... by letting predators maximize energy intake or more properly, some measure of fitness where predation risk and cost are also included. An optimal foraging or fitness maximizing approach will give marine ecosystem models a sound principle to determine trophic interactions...
Selection of productivity improvement techniques via mathematical modeling
Directory of Open Access Journals (Sweden)
Mahassan M. Khater
2011-07-01
Full Text Available This paper presents a new mathematical model to select an optimal combination of productivity improvement techniques. The proposed model of this paper considers four-stage cycle productivity and the productivity is assumed to be a linear function of fifty four improvement techniques. The proposed model of this paper is implemented for a real-world case study of manufacturing plant. The resulted problem is formulated as a mixed integer programming which can be solved for optimality using traditional methods. The preliminary results of the implementation of the proposed model of this paper indicate that the productivity can be improved through a change on equipments and it can be easily applied for both manufacturing and service industries.
An Introduction to Model Selection: Tools and Algorithms
Directory of Open Access Journals (Sweden)
Sébastien Hélie
2006-03-01
Full Text Available Model selection is a complicated matter in science, and psychology is no exception. In particular, the high variance in the object of study (i.e., humans prevents the use of Poppers falsification principle (which is the norm in other sciences. Therefore, the desirability of quantitative psychological models must be assessed by measuring the capacity of the model to fit empirical data. In the present paper, an error measure (likelihood, as well as five methods to compare model fits (the likelihood ratio test, Akaikes information criterion, the Bayesian information criterion, bootstrapping and cross-validation, are presented. The use of each method is illustrated by an example, and the advantages and weaknesses of each method are also discussed.
The Impact of Varied Discrimination Parameters on Mixed-Format Item Response Theory Model Selection
Whittaker, Tiffany A.; Chang, Wanchen; Dodd, Barbara G.
2013-01-01
Whittaker, Chang, and Dodd compared the performance of model selection criteria when selecting among mixed-format IRT models and found that the criteria did not perform adequately when selecting the more parameterized models. It was suggested by M. S. Johnson that the problems when selecting the more parameterized models may be because of the low…
Wind scatterometry with improved ambiguity selection and rain modeling
Draper, David Willis
Although generally accurate, the quality of SeaWinds on QuikSCAT scatterometer ocean vector winds is compromised by certain natural phenomena and retrieval algorithm limitations. This dissertation addresses three main contributors to scatterometer estimate error: poor ambiguity selection, estimate uncertainty at low wind speeds, and rain corruption. A quality assurance (QA) analysis performed on SeaWinds data suggests that about 5% of SeaWinds data contain ambiguity selection errors and that scatterometer estimation error is correlated with low wind speeds and rain events. Ambiguity selection errors are partly due to the "nudging" step (initialization from outside data). A sophisticated new non-nudging ambiguity selection approach produces generally more consistent wind than the nudging method in moderate wind conditions. The non-nudging method selects 93% of the same ambiguities as the nudged data, validating both techniques, and indicating that ambiguity selection can be accomplished without nudging. Variability at low wind speeds is analyzed using tower-mounted scatterometer data. According to theory, below a threshold wind speed, the wind fails to generate the surface roughness necessary for wind measurement. A simple analysis suggests the existence of the threshold in much of the tower-mounted scatterometer data. However, the backscatter does not "go to zero" beneath the threshold in an uncontrolled environment as theory suggests, but rather has a mean drop and higher variability below the threshold. Rain is the largest weather-related contributor to scatterometer error, affecting approximately 4% to 10% of SeaWinds data. A simple model formed via comparison of co-located TRMM PR and SeaWinds measurements characterizes the average effect of rain on SeaWinds backscatter. The model is generally accurate to within 3 dB over the tropics. The rain/wind backscatter model is used to simultaneously retrieve wind and rain from SeaWinds measurements. The simultaneous
Selection of Representative Models for Decision Analysis Under Uncertainty
Meira, Luis A. A.; Coelho, Guilherme P.; Santos, Antonio Alberto S.; Schiozer, Denis J.
2016-03-01
The decision-making process in oil fields includes a step of risk analysis associated with the uncertainties present in the variables of the problem. Such uncertainties lead to hundreds, even thousands, of possible scenarios that are supposed to be analyzed so an effective production strategy can be selected. Given this high number of scenarios, a technique to reduce this set to a smaller, feasible subset of representative scenarios is imperative. The selected scenarios must be representative of the original set and also free of optimistic and pessimistic bias. This paper is devoted to propose an assisted methodology to identify representative models in oil fields. To do so, first a mathematical function was developed to model the representativeness of a subset of models with respect to the full set that characterizes the problem. Then, an optimization tool was implemented to identify the representative models of any problem, considering not only the cross-plots of the main output variables, but also the risk curves and the probability distribution of the attribute-levels of the problem. The proposed technique was applied to two benchmark cases and the results, evaluated by experts in the field, indicate that the obtained solutions are richer than those identified by previously adopted manual approaches. The program bytecode is available under request.
Multilevel selection in a resource-based model
Ferreira, Fernando Fagundes; Campos, Paulo R. A.
2013-07-01
In the present work we investigate the emergence of cooperation in a multilevel selection model that assumes limiting resources. Following the work by R. J. Requejo and J. Camacho [Phys. Rev. Lett.0031-900710.1103/PhysRevLett.108.038701 108, 038701 (2012)], the interaction among individuals is initially ruled by a prisoner's dilemma (PD) game. The payoff matrix may change, influenced by the resource availability, and hence may also evolve to a non-PD game. Furthermore, one assumes that the population is divided into groups, whose local dynamics is driven by the payoff matrix, whereas an intergroup competition results from the nonuniformity of the growth rate of groups. We study the probability that a single cooperator can invade and establish in a population initially dominated by defectors. Cooperation is strongly favored when group sizes are small. We observe the existence of a critical group size beyond which cooperation becomes counterselected. Although the critical size depends on the parameters of the model, it is seen that a saturation value for the critical group size is achieved. The results conform to the thought that the evolutionary history of life repeatedly involved transitions from smaller selective units to larger selective units.
Partially Hidden Markov Models
DEFF Research Database (Denmark)
Forchhammer, Søren Otto; Rissanen, Jorma
1996-01-01
Partially Hidden Markov Models (PHMM) are introduced. They differ from the ordinary HMM's in that both the transition probabilities of the hidden states and the output probabilities are conditioned on past observations. As an illustration they are applied to black and white image compression where...
METHODS OF SELECTING THE EFFECTIVE MODELS OF BUILDINGS REPROFILING PROJECTS
Directory of Open Access Journals (Sweden)
Александр Иванович МЕНЕЙЛЮК
2016-02-01
Full Text Available The article highlights the important task of project management in reprofiling of buildings. It is expedient to pay attention to selecting effective engineering solutions to reduce the duration and cost reduction at the project management in the construction industry. This article presents a methodology for the selection of efficient organizational and technical solutions for the reconstruction of buildings reprofiling. The method is based on a compilation of project variants in the program Microsoft Project and experimental statistical analysis using the program COMPEX. The introduction of this technique in the realigning of buildings allows choosing efficient models of projects, depending on the given constraints. Also, this technique can be used for various construction projects.
Applying a Hybrid MCDM Model for Six Sigma Project Selection
Directory of Open Access Journals (Sweden)
Fu-Kwun Wang
2014-01-01
Full Text Available Six Sigma is a project-driven methodology; the projects that provide the maximum financial benefits and other impacts to the organization must be prioritized. Project selection (PS is a type of multiple criteria decision making (MCDM problem. In this study, we present a hybrid MCDM model combining the decision-making trial and evaluation laboratory (DEMATEL technique, analytic network process (ANP, and the VIKOR method to evaluate and improve Six Sigma projects for reducing performance gaps in each criterion and dimension. We consider the film printing industry of Taiwan as an empirical case. The results show that our study not only can use the best project selection, but can also be used to analyze the gaps between existing performance values and aspiration levels for improving the gaps in each dimension and criterion based on the influential network relation map.
A Reliability Based Model for Wind Turbine Selection
Directory of Open Access Journals (Sweden)
A.K. Rajeevan
2013-06-01
Full Text Available A wind turbine generator output at a specific site depends on many factors, particularly cut- in, rated and cut-out wind speed parameters. Hence power output varies from turbine to turbine. The objective of this paper is to develop a mathematical relationship between reliability and wind power generation. The analytical computation of monthly wind power is obtained from weibull statistical model using cubic mean cube root of wind speed. Reliability calculation is based on failure probability analysis. There are many different types of wind turbinescommercially available in the market. From reliability point of view, to get optimum reliability in power generation, it is desirable to select a wind turbine generator which is best suited for a site. The mathematical relationship developed in this paper can be used for site-matching turbine selection in reliability point of view.
Automation of Endmember Pixel Selection in SEBAL/METRIC Model
Bhattarai, N.; Quackenbush, L. J.; Im, J.; Shaw, S. B.
2015-12-01
The commonly applied surface energy balance for land (SEBAL) and its variant, mapping evapotranspiration (ET) at high resolution with internalized calibration (METRIC) models require manual selection of endmember (i.e. hot and cold) pixels to calibrate sensible heat flux. Current approaches for automating this process are based on statistical methods and do not appear to be robust under varying climate conditions and seasons. In this paper, we introduce a new approach based on simple machine learning tools and search algorithms that provides an automatic and time efficient way of identifying endmember pixels for use in these models. The fully automated models were applied on over 100 cloud-free Landsat images with each image covering several eddy covariance flux sites in Florida and Oklahoma. Observed land surface temperatures at automatically identified hot and cold pixels were within 0.5% of those from pixels manually identified by an experienced operator (coefficient of determination, R2, ≥ 0.92, Nash-Sutcliffe efficiency, NSE, ≥ 0.92, and root mean squared error, RMSE, ≤ 1.67 K). Daily ET estimates derived from the automated SEBAL and METRIC models were in good agreement with their manual counterparts (e.g., NSE ≥ 0.91 and RMSE ≤ 0.35 mm day-1). Automated and manual pixel selection resulted in similar estimates of observed ET across all sites. The proposed approach should reduce time demands for applying SEBAL/METRIC models and allow for their more widespread and frequent use. This automation can also reduce potential bias that could be introduced by an inexperienced operator and extend the domain of the models to new users.
Fuzzy Goal Programming Approach in Selective Maintenance Reliability Model
Directory of Open Access Journals (Sweden)
Neha Gupta
2013-12-01
Full Text Available 800x600 In the present paper, we have considered the allocation problem of repairable components for a parallel-series system as a multi-objective optimization problem and have discussed two different models. In first model the reliability of subsystems are considered as different objectives. In second model the cost and time spent on repairing the components are considered as two different objectives. These two models is formulated as multi-objective Nonlinear Programming Problem (MONLPP and a Fuzzy goal programming method is used to work out the compromise allocation in multi-objective selective maintenance reliability model in which we define the membership functions of each objective function and then transform membership functions into equivalent linear membership functions by first order Taylor series and finally by forming a fuzzy goal programming model obtain a desired compromise allocation of maintenance components. A numerical example is also worked out to illustrate the computational details of the method. Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4
Development of Solar Drying Model for Selected Cambodian Fish Species
Hubackova, Anna; Kucerova, Iva; Chrun, Rithy; Chaloupkova, Petra; Banout, Jan
2014-01-01
A solar drying was investigated as one of perspective techniques for fish processing in Cambodia. The solar drying was compared to conventional drying in electric oven. Five typical Cambodian fish species were selected for this study. Mean solar drying temperature and drying air relative humidity were 55.6°C and 19.9%, respectively. The overall solar dryer efficiency was 12.37%, which is typical for natural convection solar dryers. An average evaporative capacity of solar dryer was 0.049 kg·h−1. Based on coefficient of determination (R 2), chi-square (χ 2) test, and root-mean-square error (RMSE), the most suitable models describing natural convection solar drying kinetics were Logarithmic model, Diffusion approximate model, and Two-term model for climbing perch and Nile tilapia, swamp eel and walking catfish and Channa fish, respectively. In case of electric oven drying, the Modified Page 1 model shows the best results for all investigated fish species except Channa fish where the two-term model is the best one. Sensory evaluation shows that most preferable fish is climbing perch, followed by Nile tilapia and walking catfish. This study brings new knowledge about drying kinetics of fresh water fish species in Cambodia and confirms the solar drying as acceptable technology for fish processing. PMID:25250381
Development of Solar Drying Model for Selected Cambodian Fish Species
Directory of Open Access Journals (Sweden)
Anna Hubackova
2014-01-01
Full Text Available A solar drying was investigated as one of perspective techniques for fish processing in Cambodia. The solar drying was compared to conventional drying in electric oven. Five typical Cambodian fish species were selected for this study. Mean solar drying temperature and drying air relative humidity were 55.6°C and 19.9%, respectively. The overall solar dryer efficiency was 12.37%, which is typical for natural convection solar dryers. An average evaporative capacity of solar dryer was 0.049 kg·h−1. Based on coefficient of determination (R2, chi-square (χ2 test, and root-mean-square error (RMSE, the most suitable models describing natural convection solar drying kinetics were Logarithmic model, Diffusion approximate model, and Two-term model for climbing perch and Nile tilapia, swamp eel and walking catfish and Channa fish, respectively. In case of electric oven drying, the Modified Page 1 model shows the best results for all investigated fish species except Channa fish where the two-term model is the best one. Sensory evaluation shows that most preferable fish is climbing perch, followed by Nile tilapia and walking catfish. This study brings new knowledge about drying kinetics of fresh water fish species in Cambodia and confirms the solar drying as acceptable technology for fish processing.
Continuum model for chiral induced spin selectivity in helical molecules
Energy Technology Data Exchange (ETDEWEB)
Medina, Ernesto [Centro de Física, Instituto Venezolano de Investigaciones Científicas, 21827, Caracas 1020 A (Venezuela, Bolivarian Republic of); Groupe de Physique Statistique, Institut Jean Lamour, Université de Lorraine, 54506 Vandoeuvre-les-Nancy Cedex (France); Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287 (United States); González-Arraga, Luis A. [IMDEA Nanoscience, Cantoblanco, 28049 Madrid (Spain); Finkelstein-Shapiro, Daniel; Mujica, Vladimiro [Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287 (United States); Berche, Bertrand [Centro de Física, Instituto Venezolano de Investigaciones Científicas, 21827, Caracas 1020 A (Venezuela, Bolivarian Republic of); Groupe de Physique Statistique, Institut Jean Lamour, Université de Lorraine, 54506 Vandoeuvre-les-Nancy Cedex (France)
2015-05-21
A minimal model is exactly solved for electron spin transport on a helix. Electron transport is assumed to be supported by well oriented p{sub z} type orbitals on base molecules forming a staircase of definite chirality. In a tight binding interpretation, the spin-orbit coupling (SOC) opens up an effective π{sub z} − π{sub z} coupling via interbase p{sub x,y} − p{sub z} hopping, introducing spin coupled transport. The resulting continuum model spectrum shows two Kramers doublet transport channels with a gap proportional to the SOC. Each doubly degenerate channel satisfies time reversal symmetry; nevertheless, a bias chooses a transport direction and thus selects for spin orientation. The model predicts (i) which spin orientation is selected depending on chirality and bias, (ii) changes in spin preference as a function of input Fermi level and (iii) back-scattering suppression protected by the SO gap. We compute the spin current with a definite helicity and find it to be proportional to the torsion of the chiral structure and the non-adiabatic Aharonov-Anandan phase. To describe room temperature transport, we assume that the total transmission is the result of a product of coherent steps.
Selection of models to calculate the LLW source term
International Nuclear Information System (INIS)
Sullivan, T.M.
1991-10-01
Performance assessment of a LLW disposal facility begins with an estimation of the rate at which radionuclides migrate out of the facility (i.e., the source term). The focus of this work is to develop a methodology for calculating the source term. In general, the source term is influenced by the radionuclide inventory, the wasteforms and containers used to dispose of the inventory, and the physical processes that lead to release from the facility (fluid flow, container degradation, wasteform leaching, and radionuclide transport). In turn, many of these physical processes are influenced by the design of the disposal facility (e.g., infiltration of water). The complexity of the problem and the absence of appropriate data prevent development of an entirely mechanistic representation of radionuclide release from a disposal facility. Typically, a number of assumptions, based on knowledge of the disposal system, are used to simplify the problem. This document provides a brief overview of disposal practices and reviews existing source term models as background for selecting appropriate models for estimating the source term. The selection rationale and the mathematical details of the models are presented. Finally, guidance is presented for combining the inventory data with appropriate mechanisms describing release from the disposal facility. 44 refs., 6 figs., 1 tab
Selection Strategies for Social Influence in the Threshold Model
Karampourniotis, Panagiotis; Szymanski, Boleslaw; Korniss, Gyorgy
The ubiquity of online social networks makes the study of social influence extremely significant for its applications to marketing, politics and security. Maximizing the spread of influence by strategically selecting nodes as initiators of a new opinion or trend is a challenging problem. We study the performance of various strategies for selection of large fractions of initiators on a classical social influence model, the Threshold model (TM). Under the TM, a node adopts a new opinion only when the fraction of its first neighbors possessing that opinion exceeds a pre-assigned threshold. The strategies we study are of two kinds: strategies based solely on the initial network structure (Degree-rank, Dominating Sets, PageRank etc.) and strategies that take into account the change of the states of the nodes during the evolution of the cascade, e.g. the greedy algorithm. We find that the performance of these strategies depends largely on both the network structure properties, e.g. the assortativity, and the distribution of the thresholds assigned to the nodes. We conclude that the optimal strategy needs to combine the network specifics and the model specific parameters to identify the most influential spreaders. Supported in part by ARL NS-CTA, ARO, and ONR.
A Dual-Stage Two-Phase Model of Selective Attention
Hubner, Ronald; Steinhauser, Marco; Lehle, Carola
2010-01-01
The dual-stage two-phase (DSTP) model is introduced as a formal and general model of selective attention that includes both an early and a late stage of stimulus selection. Whereas at the early stage information is selected by perceptual filters whose selectivity is relatively limited, at the late stage stimuli are selected more efficiently on a…
A Constraint Model for Constrained Hidden Markov Models
DEFF Research Database (Denmark)
Christiansen, Henning; Have, Christian Theil; Lassen, Ole Torp
2009-01-01
A Hidden Markov Model (HMM) is a common statistical model which is widely used for analysis of biological sequence data and other sequential phenomena. In the present paper we extend HMMs with constraints and show how the familiar Viterbi algorithm can be generalized, based on constraint solving ...
Estimation and variable selection for generalized additive partial linear models
Wang, Li
2011-08-01
We study generalized additive partial linear models, proposing the use of polynomial spline smoothing for estimation of nonparametric functions, and deriving quasi-likelihood based estimators for the linear parameters. We establish asymptotic normality for the estimators of the parametric components. The procedure avoids solving large systems of equations as in kernel-based procedures and thus results in gains in computational simplicity. We further develop a class of variable selection procedures for the linear parameters by employing a nonconcave penalized quasi-likelihood, which is shown to have an asymptotic oracle property. Monte Carlo simulations and an empirical example are presented for illustration. © Institute of Mathematical Statistics, 2011.
Quantitative modeling of selective lysosomal targeting for drug design
DEFF Research Database (Denmark)
Trapp, Stefan; Rosania, G.; Horobin, R.W.
2008-01-01
log K ow. These findings were validated with experimental results and by a comparison to the properties of antimalarial drugs in clinical use. For ten active compounds, nine were predicted to accumulate to a greater extent in lysosomes than in other organelles, six of these were in the optimum range...... predicted by the model and three were close. Five of the antimalarial drugs were lipophilic weak dibasic compounds. The predicted optimum properties for a selective accumulation of weak bivalent bases in lysosomes are consistent with experimental values and are more accurate than any prior calculation...
A Neuronal Network Model for Pitch Selectivity and Representation.
Huang, Chengcheng; Rinzel, John
2016-01-01
Pitch is a perceptual correlate of periodicity. Sounds with distinct spectra can elicit the same pitch. Despite the importance of pitch perception, understanding the cellular mechanism of pitch perception is still a major challenge and a mechanistic model of pitch is lacking. A multi-stage neuronal network model is developed for pitch frequency estimation using biophysically-based, high-resolution coincidence detector neurons. The neuronal units respond only to highly coincident input among convergent auditory nerve fibers across frequency channels. Their selectivity for only very fast rising slopes of convergent input enables these slope-detectors to distinguish the most prominent coincidences in multi-peaked input time courses. Pitch can then be estimated from the first-order interspike intervals of the slope-detectors. The regular firing pattern of the slope-detector neurons are similar for sounds sharing the same pitch despite the distinct timbres. The decoded pitch strengths also correlate well with the salience of pitch perception as reported by human listeners. Therefore, our model can serve as a neural representation for pitch. Our model performs successfully in estimating the pitch of missing fundamental complexes and reproducing the pitch variation with respect to the frequency shift of inharmonic complexes. It also accounts for the phase sensitivity of pitch perception in the cases of Schroeder phase, alternating phase and random phase relationships. Moreover, our model can also be applied to stochastic sound stimuli, iterated-ripple-noise, and account for their multiple pitch perceptions.
Zhang, Xinyu; Cao, Jiguo; Carroll, Raymond J
2015-03-01
We consider model selection and estimation in a context where there are competing ordinary differential equation (ODE) models, and all the models are special cases of a "full" model. We propose a computationally inexpensive approach that employs statistical estimation of the full model, followed by a combination of a least squares approximation (LSA) and the adaptive Lasso. We show the resulting method, here called the LSA method, to be an (asymptotically) oracle model selection method. The finite sample performance of the proposed LSA method is investigated with Monte Carlo simulations, in which we examine the percentage of selecting true ODE models, the efficiency of the parameter estimation compared to simply using the full and true models, and coverage probabilities of the estimated confidence intervals for ODE parameters, all of which have satisfactory performances. Our method is also demonstrated by selecting the best predator-prey ODE to model a lynx and hare population dynamical system among some well-known and biologically interpretable ODE models. © 2014, The International Biometric Society.
Acute leukemia classification by ensemble particle swarm model selection.
Escalante, Hugo Jair; Montes-y-Gómez, Manuel; González, Jesús A; Gómez-Gil, Pilar; Altamirano, Leopoldo; Reyes, Carlos A; Reta, Carolina; Rosales, Alejandro
2012-07-01
Acute leukemia is a malignant disease that affects a large proportion of the world population. Different types and subtypes of acute leukemia require different treatments. In order to assign the correct treatment, a physician must identify the leukemia type or subtype. Advanced and precise methods are available for identifying leukemia types, but they are very expensive and not available in most hospitals in developing countries. Thus, alternative methods have been proposed. An option explored in this paper is based on the morphological properties of bone marrow images, where features are extracted from medical images and standard machine learning techniques are used to build leukemia type classifiers. This paper studies the use of ensemble particle swarm model selection (EPSMS), which is an automated tool for the selection of classification models, in the context of acute leukemia classification. EPSMS is the application of particle swarm optimization to the exploration of the search space of ensembles that can be formed by heterogeneous classification models in a machine learning toolbox. EPSMS does not require prior domain knowledge and it is able to select highly accurate classification models without user intervention. Furthermore, specific models can be used for different classification tasks. We report experimental results for acute leukemia classification with real data and show that EPSMS outperformed the best results obtained using manually designed classifiers with the same data. The highest performance using EPSMS was of 97.68% for two-type classification problems and of 94.21% for more than two types problems. To the best of our knowledge, these are the best results reported for this data set. Compared with previous studies, these improvements were consistent among different type/subtype classification tasks, different features extracted from images, and different feature extraction regions. The performance improvements were statistically significant
Radial Domany-Kinzel models with mutation and selection
Lavrentovich, Maxim O.; Korolev, Kirill S.; Nelson, David R.
2013-01-01
We study the effect of spatial structure, genetic drift, mutation, and selective pressure on the evolutionary dynamics in a simplified model of asexual organisms colonizing a new territory. Under an appropriate coarse-graining, the evolutionary dynamics is related to the directed percolation processes that arise in voter models, the Domany-Kinzel (DK) model, contact process, and so on. We explore the differences between linear (flat front) expansions and the much less familiar radial (curved front) range expansions. For the radial expansion, we develop a generalized, off-lattice DK model that minimizes otherwise persistent lattice artifacts. With both simulations and analytical techniques, we study the survival probability of advantageous mutants, the spatial correlations between domains of neutral strains, and the dynamics of populations with deleterious mutations. “Inflation” at the frontier leads to striking differences between radial and linear expansions. For a colony with initial radius R0 expanding at velocity v, significant genetic demixing, caused by local genetic drift, occurs only up to a finite time t*=R0/v, after which portions of the colony become causally disconnected due to the inflating perimeter of the expanding front. As a result, the effect of a selective advantage is amplified relative to genetic drift, increasing the survival probability of advantageous mutants. Inflation also modifies the underlying directed percolation transition, introducing novel scaling functions and modifications similar to a finite-size effect. Finally, we consider radial range expansions with deflating perimeters, as might arise from colonization initiated along the shores of an island.
Developing a conceptual model for selecting and evaluating online markets
Directory of Open Access Journals (Sweden)
Sadegh Feizollahi
2013-04-01
Full Text Available There are many evidences, which emphasis on the benefits of using new technologies of information and communication in international business and many believe that E-Commerce can help satisfy customer explicit and implicit requirements. Internet shopping is a concept developed after the introduction of electronic commerce. Information technology (IT and its applications, specifically in the realm of the internet and e-mail promoted the development of e-commerce in terms of advertising, motivating and information. However, with the development of new technologies, credit and financial exchange on the internet websites were constructed so to facilitate e-commerce. The proposed study sends a total of 200 questionnaires to the target group (teachers - students - professionals - managers of commercial web sites and it manages to collect 130 questionnaires for final evaluation. Cronbach's alpha test is used for measuring reliability and to evaluate the validity of measurement instruments (questionnaires, and to assure construct validity, confirmatory factor analysis is employed. In addition, in order to analyze the research questions based on the path analysis method and to determine markets selection models, a regular technique is implemented. In the present study, after examining different aspects of e-commerce, we provide a conceptual model for selecting and evaluating online marketing in Iran. These findings provide a consistent, targeted and holistic framework for the development of the Internet market in the country.
Ensemble Prediction Model with Expert Selection for Electricity Price Forecasting
Directory of Open Access Journals (Sweden)
Bijay Neupane
2017-01-01
Full Text Available Forecasting of electricity prices is important in deregulated electricity markets for all of the stakeholders: energy wholesalers, traders, retailers and consumers. Electricity price forecasting is an inherently difficult problem due to its special characteristic of dynamicity and non-stationarity. In this paper, we present a robust price forecasting mechanism that shows resilience towards the aggregate demand response effect and provides highly accurate forecasted electricity prices to the stakeholders in a dynamic environment. We employ an ensemble prediction model in which a group of different algorithms participates in forecasting 1-h ahead the price for each hour of a day. We propose two different strategies, namely, the Fixed Weight Method (FWM and the Varying Weight Method (VWM, for selecting each hour’s expert algorithm from the set of participating algorithms. In addition, we utilize a carefully engineered set of features selected from a pool of features extracted from the past electricity price data, weather data and calendar data. The proposed ensemble model offers better results than the Autoregressive Integrated Moving Average (ARIMA method, the Pattern Sequence-based Forecasting (PSF method and our previous work using Artificial Neural Networks (ANN alone on the datasets for New York, Australian and Spanish electricity markets.
A Network Analysis Model for Selecting Sustainable Technology
Directory of Open Access Journals (Sweden)
Sangsung Park
2015-09-01
Full Text Available Most companies develop technologies to improve their competitiveness in the marketplace. Typically, they then patent these technologies around the world in order to protect their intellectual property. Other companies may use patented technologies to develop new products, but must pay royalties to the patent holders or owners. Should they fail to do so, this can result in legal disputes in the form of patent infringement actions between companies. To avoid such situations, companies attempt to research and develop necessary technologies before their competitors do so. An important part of this process is analyzing existing patent documents in order to identify emerging technologies. In such analyses, extracting sustainable technology from patent data is important, because sustainable technology drives technological competition among companies and, thus, the development of new technologies. In addition, selecting sustainable technologies makes it possible to plan their R&D (research and development efficiently. In this study, we propose a network model that can be used to select the sustainable technology from patent documents, based on the centrality and degree of a social network analysis. To verify the performance of the proposed model, we carry out a case study using actual patent data from patent databases.
Cliff-edge model of obstetric selection in humans.
Mitteroecker, Philipp; Huttegger, Simon M; Fischer, Barbara; Pavlicev, Mihaela
2016-12-20
The strikingly high incidence of obstructed labor due to the disproportion of fetal size and the mother's pelvic dimensions has puzzled evolutionary scientists for decades. Here we propose that these high rates are a direct consequence of the distinct characteristics of human obstetric selection. Neonatal size relative to the birth-relevant maternal dimensions is highly variable and positively associated with reproductive success until it reaches a critical value, beyond which natural delivery becomes impossible. As a consequence, the symmetric phenotype distribution cannot match the highly asymmetric, cliff-edged fitness distribution well: The optimal phenotype distribution that maximizes population mean fitness entails a fraction of individuals falling beyond the "fitness edge" (i.e., those with fetopelvic disproportion). Using a simple mathematical model, we show that weak directional selection for a large neonate, a narrow pelvic canal, or both is sufficient to account for the considerable incidence of fetopelvic disproportion. Based on this model, we predict that the regular use of Caesarean sections throughout the last decades has led to an evolutionary increase of fetopelvic disproportion rates by 10 to 20%.
Addressing selected problems of the modelling of digital control systems
International Nuclear Information System (INIS)
Sedlak, J.
2004-12-01
The introduction of digital systems to practical activities at nuclear power plants brings about new requirements for their modelling for the purposes of reliability analyses required for plant licensing as well as for inclusion into PSA studies and subsequent use in applications for the assessment of events, limits and conditions, and risk monitoring. It is very important to assess, both qualitatively and quantitatively, the effect of this change on operational safety. The report describes selected specific features of reliability analysis of digital system and recommends methodological procedures. The chapters of the report are as follows: (1) Flexibility and multifunctionality of the system. (2) General framework of reliability analyses (Understanding the system; Qualitative analysis; Quantitative analysis; Assessment of results, comparison against criteria; Documenting system reliability analyses; Asking for comments and their evaluation); and (3) Suitable reliability models (Reliability models of basic events; Monitored components with repair immediately following defect or failure; Periodically tested components; Constant unavailability (probability of failure to demand); Application of reliability models for electronic components; Example of failure rate decomposition; Example modified for diagnosis successfulness; Transfer of reliability analyses to PSA; Common cause failures - CCF; Software backup and CCF type failures, software versus hardware). (P.A.)
A CONCEPTUAL MODEL FOR IMPROVED PROJECT SELECTION AND PRIORITISATION
Directory of Open Access Journals (Sweden)
P. J. Viljoen
2012-01-01
Full Text Available
ENGLISH ABSTRACT: Project portfolio management processes are often designed and operated as a series of stages (or project phases and gates. However, the flow of such a process is often slow, characterised by queues waiting for a gate decision and by repeated work from previous stages waiting for additional information or for re-processing. In this paper the authors propose a conceptual model that applies supply chain and constraint management principles to the project portfolio management process. An advantage of the proposed model is that it provides the ability to select and prioritise projects without undue changes to project schedules. This should result in faster flow through the system.
AFRIKAANSE OPSOMMING: Prosesse om portefeuljes van projekte te bestuur word normaalweg ontwerp en bedryf as ’n reeks fases en hekke. Die vloei deur so ’n proses is dikwels stadig en word gekenmerk deur toue wat wag vir besluite by die hekke en ook deur herwerk van vorige fases wat wag vir verdere inligting of vir herprosessering. In hierdie artikel word ‘n konseptuele model voorgestel. Die model berus op die beginsels van voorsieningskettings sowel as van beperkingsbestuur, en bied die voordeel dat projekte geselekteer en geprioritiseer kan word sonder onnodige veranderinge aan projekskedules. Dit behoort te lei tot versnelde vloei deur die stelsel.
Evolving the structure of hidden Markov Models
DEFF Research Database (Denmark)
won, K. J.; Prugel-Bennett, A.; Krogh, A.
2006-01-01
A genetic algorithm (GA) is proposed for finding the structure of hidden Markov Models (HMMs) used for biological sequence analysis. The GA is designed to preserve biologically meaningful building blocks. The search through the space of HMM structures is combined with optimization of the emission...... and transition probabilities using the classic Baum-Welch algorithm. The system is tested on the problem of finding the promoter and coding region of C. jejuni. The resulting HMM has a superior discrimination ability to a handcrafted model that has been published in the literature....
Detecting Structural Breaks using Hidden Markov Models
DEFF Research Database (Denmark)
Ntantamis, Christos
Testing for structural breaks and identifying their location is essential for econometric modeling. In this paper, a Hidden Markov Model (HMM) approach is used in order to perform these tasks. Breaks are defined as the data points where the underlying Markov Chain switches from one state to another....... The estimation of the HMM is conducted using a variant of the Iterative Conditional Expectation-Generalized Mixture (ICE-GEMI) algorithm proposed by Delignon et al. (1997), that permits analysis of the conditional distributions of economic data and allows for different functional forms across regimes...
Selection of an appropriately simple storm runoff model
Directory of Open Access Journals (Sweden)
A. I. J. M. van Dijk
2010-03-01
Full Text Available An appropriately simple event runoff model for catchment hydrological studies was derived. The model was selected from several variants as having the optimum balance between simplicity and the ability to explain daily observations of streamflow from 260 Australian catchments (23–1902 km^{2}. Event rainfall and runoff were estimated from the observations through a combination of baseflow separation and storm flow recession analysis, producing a storm flow recession coefficient (k_{QF}. Various model structures with up to six free parameters were investigated, covering most of the equations applied in existing lumped catchment models. The performance of alternative structures and free parameters were expressed in Aikake's Final Prediction Error Criterion (FPEC and corresponding Nash-Sutcliffe model efficiencies (NSME for event runoff totals. For each model variant, the number of free parameters was reduced in steps based on calculated parameter sensitivity. The resulting optimal model structure had two or three free parameters; the first describing the non-linear relationship between event rainfall and runoff (S_{max}, the second relating runoff to antecedent groundwater storage (C_{Sg}, and a third that described initial rainfall losses (L_{i}, but which could be set at 8 mm without affecting model performance too much. The best three parameter model produced a median NSME of 0.64 and outperformed, for example, the Soil Conservation Service Curve Number technique (median NSME 0.30–0.41. Parameter estimation in ungauged catchments is likely to be challenging: 64% of the variance in k_{QF} among stations could be explained by catchment climate indicators and spatial correlation, but corresponding numbers were a modest 45% for C_{Sg}, 21% for S_{max} and none for L_{i}, respectively. In gauged catchments, better
Impact of selected troposphere models on Precise Point Positioning convergence
Kalita, Jakub; Rzepecka, Zofia
2016-04-01
The Precise Point Positioning (PPP) absolute method is currently intensively investigated in order to reach fast convergence time. Among various sources that influence the convergence of the PPP, the tropospheric delay is one of the most important. Numerous models of tropospheric delay are developed and applied to PPP processing. However, with rare exceptions, the quality of those models does not allow fixing the zenith path delay tropospheric parameter, leaving difference between nominal and final value to the estimation process. Here we present comparison of several PPP result sets, each of which based on different troposphere model. The respective nominal values are adopted from models: VMF1, GPT2w, MOPS and ZERO-WET. The PPP solution admitted as reference is based on the final troposphere product from the International GNSS Service (IGS). The VMF1 mapping function was used for all processing variants in order to provide capability to compare impact of applied nominal values. The worst case initiates zenith wet delay with zero value (ZERO-WET). Impact from all possible models for tropospheric nominal values should fit inside both IGS and ZERO-WET border variants. The analysis is based on data from seven IGS stations located in mid-latitude European region from year 2014. For the purpose of this study several days with the most active troposphere were selected for each of the station. All the PPP solutions were determined using gLAB open-source software, with the Kalman filter implemented independently by the authors of this work. The processing was performed on 1 hour slices of observation data. In addition to the analysis of the output processing files, the presented study contains detailed analysis of the tropospheric conditions for the selected data. The overall results show that for the height component the VMF1 model outperforms GPT2w and MOPS by 35-40% and ZERO-WET variant by 150%. In most of the cases all solutions converge to the same values during first
On model selections for repeated measurement data in clinical studies.
Zou, Baiming; Jin, Bo; Koch, Gary G; Zhou, Haibo; Borst, Stephen E; Menon, Sandeep; Shuster, Jonathan J
2015-05-10
Repeated measurement designs have been widely used in various randomized controlled trials for evaluating long-term intervention efficacies. For some clinical trials, the primary research question is how to compare two treatments at a fixed time, using a t-test. Although simple, robust, and convenient, this type of analysis fails to utilize a large amount of collected information. Alternatively, the mixed-effects model is commonly used for repeated measurement data. It models all available data jointly and allows explicit assessment of the overall treatment effects across the entire time spectrum. In this paper, we propose an analytic strategy for longitudinal clinical trial data where the mixed-effects model is coupled with a model selection scheme. The proposed test statistics not only make full use of all available data but also utilize the information from the optimal model deemed for the data. The performance of the proposed method under various setups, including different data missing mechanisms, is evaluated via extensive Monte Carlo simulations. Our numerical results demonstrate that the proposed analytic procedure is more powerful than the t-test when the primary interest is to test for the treatment effect at the last time point. Simulations also reveal that the proposed method outperforms the usual mixed-effects model for testing the overall treatment effects across time. In addition, the proposed framework is more robust and flexible in dealing with missing data compared with several competing methods. The utility of the proposed method is demonstrated by analyzing a clinical trial on the cognitive effect of testosterone in geriatric men with low baseline testosterone levels. Copyright © 2015 John Wiley & Sons, Ltd.
Computationally efficient thermal-mechanical modelling of selective laser melting
Yang, Yabin; Ayas, Can
2017-10-01
The Selective laser melting (SLM) is a powder based additive manufacturing (AM) method to produce high density metal parts with complex topology. However, part distortions and accompanying residual stresses deteriorates the mechanical reliability of SLM products. Modelling of the SLM process is anticipated to be instrumental for understanding and predicting the development of residual stress field during the build process. However, SLM process modelling requires determination of the heat transients within the part being built which is coupled to a mechanical boundary value problem to calculate displacement and residual stress fields. Thermal models associated with SLM are typically complex and computationally demanding. In this paper, we present a simple semi-analytical thermal-mechanical model, developed for SLM that represents the effect of laser scanning vectors with line heat sources. The temperature field within the part being build is attained by superposition of temperature field associated with line heat sources in a semi-infinite medium and a complimentary temperature field which accounts for the actual boundary conditions. An analytical solution of a line heat source in a semi-infinite medium is first described followed by the numerical procedure used for finding the complimentary temperature field. This analytical description of the line heat sources is able to capture the steep temperature gradients in the vicinity of the laser spot which is typically tens of micrometers. In turn, semi-analytical thermal model allows for having a relatively coarse discretisation of the complimentary temperature field. The temperature history determined is used to calculate the thermal strain induced on the SLM part. Finally, a mechanical model governed by elastic-plastic constitutive rule having isotropic hardening is used to predict the residual stresses.
Multicriteria decision group model for the selection of suppliers
Directory of Open Access Journals (Sweden)
Luciana Hazin Alencar
2008-08-01
Full Text Available Several authors have been studying group decision making over the years, which indicates how relevant it is. This paper presents a multicriteria group decision model based on ELECTRE IV and VIP Analysis methods, to those cases where there is great divergence among the decision makers. This model includes two stages. In the first, the ELECTRE IV method is applied and a collective criteria ranking is obtained. In the second, using criteria ranking, VIP Analysis is applied and the alternatives are selected. To illustrate the model, a numerical application in the context of the selection of suppliers in project management is used. The suppliers that form part of the project team have a crucial role in project management. They are involved in a network of connected activities that can jeopardize the success of the project, if they are not undertaken in an appropriate way. The question tackled is how to select service suppliers for a project on behalf of an enterprise that assists the multiple objectives of the decision-makers.Vários autores têm estudado decisão em grupo nos últimos anos, o que indica a relevância do assunto. Esse artigo apresenta um modelo multicritério de decisão em grupo baseado nos métodos ELECTRE IV e VIP Analysis, adequado aos casos em que se tem uma grande divergência entre os decisores. Esse modelo é composto por dois estágios. No primeiro, o método ELECTRE IV é aplicado e uma ordenação dos critérios é obtida. No próximo estágio, com a ordenação dos critérios, o método VIP Analysis é aplicado e as alternativas são selecionadas. Para ilustrar o modelo, uma aplicação numérica no contexto da seleção de fornecedores em projetos é realizada. Os fornecedores que fazem parte da equipe do projeto têm um papel fundamental no gerenciamento de projetos. Eles estão envolvidos em uma rede de atividades conectadas que, caso não sejam executadas de forma apropriada, podem colocar em risco o sucesso do
Improving permafrost distribution modelling using feature selection algorithms
Deluigi, Nicola; Lambiel, Christophe; Kanevski, Mikhail
2016-04-01
The availability of an increasing number of spatial data on the occurrence of mountain permafrost allows the employment of machine learning (ML) classification algorithms for modelling the distribution of the phenomenon. One of the major problems when dealing with high-dimensional dataset is the number of input features (variables) involved. Application of ML classification algorithms to this large number of variables leads to the risk of overfitting, with the consequence of a poor generalization/prediction. For this reason, applying feature selection (FS) techniques helps simplifying the amount of factors required and improves the knowledge on adopted features and their relation with the studied phenomenon. Moreover, taking away irrelevant or redundant variables from the dataset effectively improves the quality of the ML prediction. This research deals with a comparative analysis of permafrost distribution models supported by FS variable importance assessment. The input dataset (dimension = 20-25, 10 m spatial resolution) was constructed using landcover maps, climate data and DEM derived variables (altitude, aspect, slope, terrain curvature, solar radiation, etc.). It was completed with permafrost evidences (geophysical and thermal data and rock glacier inventories) that serve as training permafrost data. Used FS algorithms informed about variables that appeared less statistically important for permafrost presence/absence. Three different algorithms were compared: Information Gain (IG), Correlation-based Feature Selection (CFS) and Random Forest (RF). IG is a filter technique that evaluates the worth of a predictor by measuring the information gain with respect to the permafrost presence/absence. Conversely, CFS is a wrapper technique that evaluates the worth of a subset of predictors by considering the individual predictive ability of each variable along with the degree of redundancy between them. Finally, RF is a ML algorithm that performs FS as part of its
A Model for Selection of Eyespots on Butterfly Wings.
Sekimura, Toshio; Venkataraman, Chandrasekhar; Madzvamuse, Anotida
2015-01-01
The development of eyespots on the wing surface of butterflies of the family Nympalidae is one of the most studied examples of biological pattern formation.However, little is known about the mechanism that determines the number and precise locations of eyespots on the wing. Eyespots develop around signaling centers, called foci, that are located equidistant from wing veins along the midline of a wing cell (an area bounded by veins). A fundamental question that remains unsolved is, why a certain wing cell develops an eyespot, while other wing cells do not. We illustrate that the key to understanding focus point selection may be in the venation system of the wing disc. Our main hypothesis is that changes in morphogen concentration along the proximal boundary veins of wing cells govern focus point selection. Based on previous studies, we focus on a spatially two-dimensional reaction-diffusion system model posed in the interior of each wing cell that describes the formation of focus points. Using finite element based numerical simulations, we demonstrate that variation in the proximal boundary condition is sufficient to robustly select whether an eyespot focus point forms in otherwise identical wing cells. We also illustrate that this behavior is robust to small perturbations in the parameters and geometry and moderate levels of noise. Hence, we suggest that an anterior-posterior pattern of morphogen concentration along the proximal vein may be the main determinant of the distribution of focus points on the wing surface. In order to complete our model, we propose a two stage reaction-diffusion system model, in which an one-dimensional surface reaction-diffusion system, posed on the proximal vein, generates the morphogen concentrations that act as non-homogeneous Dirichlet (i.e., fixed) boundary conditions for the two-dimensional reaction-diffusion model posed in the wing cells. The two-stage model appears capable of generating focus point distributions observed in
A Model for Selection of Eyespots on Butterfly Wings.
Directory of Open Access Journals (Sweden)
Toshio Sekimura
Full Text Available The development of eyespots on the wing surface of butterflies of the family Nympalidae is one of the most studied examples of biological pattern formation.However, little is known about the mechanism that determines the number and precise locations of eyespots on the wing. Eyespots develop around signaling centers, called foci, that are located equidistant from wing veins along the midline of a wing cell (an area bounded by veins. A fundamental question that remains unsolved is, why a certain wing cell develops an eyespot, while other wing cells do not.We illustrate that the key to understanding focus point selection may be in the venation system of the wing disc. Our main hypothesis is that changes in morphogen concentration along the proximal boundary veins of wing cells govern focus point selection. Based on previous studies, we focus on a spatially two-dimensional reaction-diffusion system model posed in the interior of each wing cell that describes the formation of focus points. Using finite element based numerical simulations, we demonstrate that variation in the proximal boundary condition is sufficient to robustly select whether an eyespot focus point forms in otherwise identical wing cells. We also illustrate that this behavior is robust to small perturbations in the parameters and geometry and moderate levels of noise. Hence, we suggest that an anterior-posterior pattern of morphogen concentration along the proximal vein may be the main determinant of the distribution of focus points on the wing surface. In order to complete our model, we propose a two stage reaction-diffusion system model, in which an one-dimensional surface reaction-diffusion system, posed on the proximal vein, generates the morphogen concentrations that act as non-homogeneous Dirichlet (i.e., fixed boundary conditions for the two-dimensional reaction-diffusion model posed in the wing cells. The two-stage model appears capable of generating focus point distributions
Hidden Markov models for labeled sequences
DEFF Research Database (Denmark)
Krogh, Anders Stærmose
1994-01-01
A hidden Markov model for labeled observations, called a class HMM, is introduced and a maximum likelihood method is developed for estimating the parameters of the model. Instead of training it to model the statistics of the training sequences it is trained to optimize recognition. It resembles MMI...
Multiphysics modeling of selective laser sintering/melting
Ganeriwala, Rishi Kumar
A significant percentage of total global employment is due to the manufacturing industry. However, manufacturing also accounts for nearly 20% of total energy usage in the United States according to the EIA. In fact, manufacturing accounted for 90% of industrial energy consumption and 84% of industry carbon dioxide emissions in 2002. Clearly, advances in manufacturing technology and efficiency are necessary to curb emissions and help society as a whole. Additive manufacturing (AM) refers to a relatively recent group of manufacturing technologies whereby one can 3D print parts, which has the potential to significantly reduce waste, reconfigure the supply chain, and generally disrupt the whole manufacturing industry. Selective laser sintering/melting (SLS/SLM) is one type of AM technology with the distinct advantage of being able to 3D print metals and rapidly produce net shape parts with complicated geometries. In SLS/SLM parts are built up layer-by-layer out of powder particles, which are selectively sintered/melted via a laser. However, in order to produce defect-free parts of sufficient strength, the process parameters (laser power, scan speed, layer thickness, powder size, etc.) must be carefully optimized. Obviously, these process parameters will vary depending on material, part geometry, and desired final part characteristics. Running experiments to optimize these parameters is costly, energy intensive, and extremely material specific. Thus a computational model of this process would be highly valuable. In this work a three dimensional, reduced order, coupled discrete element - finite difference model is presented for simulating the deposition and subsequent laser heating of a layer of powder particles sitting on top of a substrate. Validation is provided and parameter studies are conducted showing the ability of this model to help determine appropriate process parameters and an optimal powder size distribution for a given material. Next, thermal stresses upon
DEFF Research Database (Denmark)
Yang, Ziheng; Nielsen, Rasmus
2008-01-01
Current models of codon substitution are formulated at the levels of nucleotide substitution and do not explicitly consider the separate effects of mutation and selection. They are thus incapable of inferring whether mutation or selection is responsible for evolution at silent sites. Here we impl...... codon usage in mammals. Estimates of selection coefficients nevertheless suggest that selection on codon usage is weak and most mutations are nearly neutral. The sensitivity of the analysis on the assumed mutation model is discussed.......Current models of codon substitution are formulated at the levels of nucleotide substitution and do not explicitly consider the separate effects of mutation and selection. They are thus incapable of inferring whether mutation or selection is responsible for evolution at silent sites. Here we...... implement a few population genetics models of codon substitution that explicitly consider mutation bias and natural selection at the DNA level. Selection on codon usage is modeled by introducing codon-fitness parameters, which together with mutation-bias parameters, predict optimal codon frequencies...
Consistency in Estimation and Model Selection of Dynamic Panel Data Models with Fixed Effects
Directory of Open Access Journals (Sweden)
Guangjie Li
2015-07-01
Full Text Available We examine the relationship between consistent parameter estimation and model selection for autoregressive panel data models with fixed effects. We find that the transformation of fixed effects proposed by Lancaster (2002 does not necessarily lead to consistent estimation of common parameters when some true exogenous regressors are excluded. We propose a data dependent way to specify the prior of the autoregressive coefficient and argue for comparing different model specifications before parameter estimation. Model selection properties of Bayes factors and Bayesian information criterion (BIC are investigated. When model uncertainty is substantial, we recommend the use of Bayesian Model Averaging to obtain point estimators with lower root mean squared errors (RMSE. We also study the implications of different levels of inclusion probabilities by simulations.
Hyperopt: a Python library for model selection and hyperparameter optimization
Bergstra, James; Komer, Brent; Eliasmith, Chris; Yamins, Dan; Cox, David D.
2015-01-01
Sequential model-based optimization (also known as Bayesian optimization) is one of the most efficient methods (per function evaluation) of function minimization. This efficiency makes it appropriate for optimizing the hyperparameters of machine learning algorithms that are slow to train. The Hyperopt library provides algorithms and parallelization infrastructure for performing hyperparameter optimization (model selection) in Python. This paper presents an introductory tutorial on the usage of the Hyperopt library, including the description of search spaces, minimization (in serial and parallel), and the analysis of the results collected in the course of minimization. This paper also gives an overview of Hyperopt-Sklearn, a software project that provides automatic algorithm configuration of the Scikit-learn machine learning library. Following Auto-Weka, we take the view that the choice of classifier and even the choice of preprocessing module can be taken together to represent a single large hyperparameter optimization problem. We use Hyperopt to define a search space that encompasses many standard components (e.g. SVM, RF, KNN, PCA, TFIDF) and common patterns of composing them together. We demonstrate, using search algorithms in Hyperopt and standard benchmarking data sets (MNIST, 20-newsgroups, convex shapes), that searching this space is practical and effective. In particular, we improve on best-known scores for the model space for both MNIST and convex shapes. The paper closes with some discussion of ongoing and future work.
Model catalysis by size-selected cluster deposition
Energy Technology Data Exchange (ETDEWEB)
Anderson, Scott [Univ. of Utah, Salt Lake City, UT (United States)
2015-11-20
This report summarizes the accomplishments during the last four years of the subject grant. Results are presented for experiments in which size-selected model catalysts were studied under surface science and aqueous electrochemical conditions. Strong effects of cluster size were found, and by correlating the size effects with size-dependent physical properties of the samples measured by surface science methods, it was possible to deduce mechanistic insights, such as the factors that control the rate-limiting step in the reactions. Results are presented for CO oxidation, CO binding energetics and geometries, and electronic effects under surface science conditions, and for the electrochemical oxygen reduction reaction, ethanol oxidation reaction, and for oxidation of carbon by water.
Quantitative genetic models of sexual selection by male choice.
Nakahashi, Wataru
2008-09-01
There are many examples of male mate choice for female traits that tend to be associated with high fertility. I develop quantitative genetic models of a female trait and a male preference to show when such a male preference can evolve. I find that a disagreement between the fertility maximum and the viability maximum of the female trait is necessary for directional male preference (preference for extreme female trait values) to evolve. Moreover, when there is a shortage of available male partners or variance in male nongenetic quality, strong male preference can evolve. Furthermore, I also show that males evolve to exhibit a stronger preference for females that are more feminine (less resemblance to males) than the average female when there is a sexual dimorphism caused by fertility selection which acts only on females.
Analytical Modelling Of Milling For Tool Design And Selection
International Nuclear Information System (INIS)
Fontaine, M.; Devillez, A.; Dudzinski, D.
2007-01-01
This paper presents an efficient analytical model which allows to simulate a large panel of milling operations. A geometrical description of common end mills and of their engagement in the workpiece material is proposed. The internal radius of the rounded part of the tool envelope is used to define the considered type of mill. The cutting edge position is described for a constant lead helix and for a constant local helix angle. A thermomechanical approach of oblique cutting is applied to predict forces acting on the tool and these results are compared with experimental data obtained from milling tests on a 42CrMo4 steel for three classical types of mills. The influence of some tool's geometrical parameters on predicted cutting forces is presented in order to propose optimisation criteria for design and selection of cutting tools
ModelMage: a tool for automatic model generation, selection and management.
Flöttmann, Max; Schaber, Jörg; Hoops, Stephan; Klipp, Edda; Mendes, Pedro
2008-01-01
Mathematical modeling of biological systems usually involves implementing, simulating, and discriminating several candidate models that represent alternative hypotheses. Generating and managing these candidate models is a tedious and difficult task and can easily lead to errors. ModelMage is a tool that facilitates management of candidate models. It is designed for the easy and rapid development, generation, simulation, and discrimination of candidate models. The main idea of the program is to automatically create a defined set of model alternatives from a single master model. The user provides only one SBML-model and a set of directives from which the candidate models are created by leaving out species, modifiers or reactions. After generating models the software can automatically fit all these models to the data and provides a ranking for model selection, in case data is available. In contrast to other model generation programs, ModelMage aims at generating only a limited set of models that the user can precisely define. ModelMage uses COPASI as a simulation and optimization engine. Thus, all simulation and optimization features of COPASI are readily incorporated. ModelMage can be downloaded from http://sysbio.molgen.mpg.de/modelmage and is distributed as free software.
Nuralitha, Suci; Murdiyarso, Lydia S.; Siregar, Josephine E.; Syafruddin, Din; Roelands, Jessica; Verhoef, Jan; Hoepelman, Andy I.M.; Marzuki, Sangkot
2017-01-01
The evolutionary selection of malaria parasites within an individual host plays a critical role in the emergence of drug resistance. We have compared the selection of atovaquone resistance mutants in mouse models reflecting two different causes of failure of malaria treatment, an inadequate
CHAIN-WISE GENERALIZATION OF ROAD NETWORKS USING MODEL SELECTION
Directory of Open Access Journals (Sweden)
D. Bulatov
2017-05-01
Full Text Available Streets are essential entities of urban terrain and their automatized extraction from airborne sensor data is cumbersome because of a complex interplay of geometric, topological and semantic aspects. Given a binary image, representing the road class, centerlines of road segments are extracted by means of skeletonization. The focus of this paper lies in a well-reasoned representation of these segments by means of geometric primitives, such as straight line segments as well as circle and ellipse arcs. We propose the fusion of raw segments based on similarity criteria; the output of this process are the so-called chains which better match to the intuitive perception of what a street is. Further, we propose a two-step approach for chain-wise generalization. First, the chain is pre-segmented using circlePeucker and finally, model selection is used to decide whether two neighboring segments should be fused to a new geometric entity. Thereby, we consider both variance-covariance analysis of residuals and model complexity. The results on a complex data-set with many traffic roundabouts indicate the benefits of the proposed procedure.
A computational neural model of goal-directed utterance selection.
Klein, Michael; Kamp, Hans; Palm, Guenther; Doya, Kenji
2010-06-01
It is generally agreed that much of human communication is motivated by extra-linguistic goals: we often make utterances in order to get others to do something, or to make them support our cause, or adopt our point of view, etc. However, thus far a computational foundation for this view on language use has been lacking. In this paper we propose such a foundation using Markov Decision Processes. We borrow computational components from the field of action selection and motor control, where a neurobiological basis of these components has been established. In particular, we make use of internal models (i.e., next-state transition functions defined on current state action pairs). The internal model is coupled with reinforcement learning of a value function that is used to assess the desirability of any state that utterances (as well as certain non-verbal actions) can bring about. This cognitive architecture is tested in a number of multi-agent game simulations. In these computational experiments an agent learns to predict the context-dependent effects of utterances by interacting with other agents that are already competent speakers. We show that the cognitive architecture can account for acquiring the capability of deciding when to speak in order to achieve a certain goal (instead of performing a non-verbal action or simply doing nothing), whom to address and what to say. Copyright 2010 Elsevier Ltd. All rights reserved.
Selection Bias in Educational Transition Models: Theory and Empirical Evidence
DEFF Research Database (Denmark)
Holm, Anders; Jæger, Mads
variables. This paper, first, explains theoretically how selection on unobserved variables leads to waning coefficients and, second, illustrates empirically how selection leads to biased estimates of the effect of family background on educational transitions. Our empirical analysis using data from...
Wentworth, Mami Tonoe
Uncertainty quantification plays an important role when making predictive estimates of model responses. In this context, uncertainty quantification is defined as quantifying and reducing uncertainties, and the objective is to quantify uncertainties in parameter, model and measurements, and propagate the uncertainties through the model, so that one can make a predictive estimate with quantified uncertainties. Two of the aspects of uncertainty quantification that must be performed prior to propagating uncertainties are model calibration and parameter selection. There are several efficient techniques for these processes; however, the accuracy of these methods are often not verified. This is the motivation for our work, and in this dissertation, we present and illustrate verification frameworks for model calibration and parameter selection in the context of biological and physical models. First, HIV models, developed and improved by [2, 3, 8], describe the viral infection dynamics of an HIV disease. These are also used to make predictive estimates of viral loads and T-cell counts and to construct an optimal control for drug therapy. Estimating input parameters is an essential step prior to uncertainty quantification. However, not all the parameters are identifiable, implying that they cannot be uniquely determined by the observations. These unidentifiable parameters can be partially removed by performing parameter selection, a process in which parameters that have minimal impacts on the model response are determined. We provide verification techniques for Bayesian model calibration and parameter selection for an HIV model. As an example of a physical model, we employ a heat model with experimental measurements presented in [10]. A steady-state heat model represents a prototypical behavior for heat conduction and diffusion process involved in a thermal-hydraulic model, which is a part of nuclear reactor models. We employ this simple heat model to illustrate verification
Enhanced Map-Matching Algorithm with a Hidden Markov Model for Mobile Phone Positioning
Directory of Open Access Journals (Sweden)
An Luo
2017-10-01
Full Text Available Numerous map-matching techniques have been developed to improve positioning, using Global Positioning System (GPS data and other sensors. However, most existing map-matching algorithms process GPS data with high sampling rates, to achieve a higher correct rate and strong universality. This paper introduces a novel map-matching algorithm based on a hidden Markov model (HMM for GPS positioning and mobile phone positioning with a low sampling rate. The HMM is a statistical model well known for providing solutions to temporal recognition applications such as text and speech recognition. In this work, the hidden Markov chain model was built to establish a map-matching process, using the geometric data, the topologies matrix of road links in road network and refined quad-tree data structure. HMM-based map-matching exploits the Viterbi algorithm to find the optimized road link sequence. The sequence consists of hidden states in the HMM model. The HMM-based map-matching algorithm is validated on a vehicle trajectory using GPS and mobile phone data. The results show a significant improvement in mobile phone positioning and high and low sampling of GPS data.
Heat transfer modelling and stability analysis of selective laser melting
International Nuclear Information System (INIS)
Gusarov, A.V.; Yadroitsev, I.; Bertrand, Ph.; Smurov, I.
2007-01-01
The process of direct manufacturing by selective laser melting basically consists of laser beam scanning over a thin powder layer deposited on a dense substrate. Complete remelting of the powder in the scanned zone and its good adhesion to the substrate ensure obtaining functional parts with improved mechanical properties. Experiments with single-line scanning indicate, that an interval of scanning velocities exists where the remelted tracks are uniform. The tracks become broken if the scanning velocity is outside this interval. This is extremely undesirable and referred to as the 'balling' effect. A numerical model of coupled radiation and heat transfer is proposed to analyse the observed instability. The 'balling' effect at high scanning velocities (above ∼20 cm/s for the present conditions) can be explained by the Plateau-Rayleigh capillary instability of the melt pool. Two factors stabilize the process with decreasing the scanning velocity: reducing the length-to-width ratio of the melt pool and increasing the width of its contact with the substrate
Hierarchical material models for fragmentation modeling in NIF-ALE-AMR
International Nuclear Information System (INIS)
Fisher, A C; Masters, N D; Koniges, A E; Anderson, R W; Gunney, B T N; Wang, P; Becker, R; Dixit, P; Benson, D J
2008-01-01
Fragmentation is a fundamental process that naturally spans micro to macroscopic scales. Recent advances in algorithms, computer simulations, and hardware enable us to connect the continuum to microstructural regimes in a real simulation through a heterogeneous multiscale mathematical model. We apply this model to the problem of predicting how targets in the NIF chamber dismantle, so that optics and diagnostics can be protected from damage. The mechanics of the initial material fracture depend on the microscopic grain structure. In order to effectively simulate the fragmentation, this process must be modeled at the subgrain level with computationally expensive crystal plasticity models. However, there are not enough computational resources to model the entire NIF target at this microscopic scale. In order to accomplish these calculations, a hierarchical material model (HMM) is being developed. The HMM will allow fine-scale modeling of the initial fragmentation using computationally expensive crystal plasticity, while the elements at the mesoscale can use polycrystal models, and the macroscopic elements use analytical flow stress models. The HMM framework is built upon an adaptive mesh refinement (AMR) capability. We present progress in implementing the HMM in the NIF-ALE-AMR code. Additionally, we present test simulations relevant to NIF targets
Hierarchical material models for fragmentation modeling in NIF-ALE-AMR
Energy Technology Data Exchange (ETDEWEB)
Fisher, A C; Masters, N D; Koniges, A E; Anderson, R W; Gunney, B T N; Wang, P; Becker, R [Lawrence Livermore National Laboratory, PO Box 808, Livermore, CA 94551 (United States); Dixit, P; Benson, D J [University of California San Diego, 9500 Gilman Dr., La Jolla. CA 92093 (United States)], E-mail: fisher47@llnl.gov
2008-05-15
Fragmentation is a fundamental process that naturally spans micro to macroscopic scales. Recent advances in algorithms, computer simulations, and hardware enable us to connect the continuum to microstructural regimes in a real simulation through a heterogeneous multiscale mathematical model. We apply this model to the problem of predicting how targets in the NIF chamber dismantle, so that optics and diagnostics can be protected from damage. The mechanics of the initial material fracture depend on the microscopic grain structure. In order to effectively simulate the fragmentation, this process must be modeled at the subgrain level with computationally expensive crystal plasticity models. However, there are not enough computational resources to model the entire NIF target at this microscopic scale. In order to accomplish these calculations, a hierarchical material model (HMM) is being developed. The HMM will allow fine-scale modeling of the initial fragmentation using computationally expensive crystal plasticity, while the elements at the mesoscale can use polycrystal models, and the macroscopic elements use analytical flow stress models. The HMM framework is built upon an adaptive mesh refinement (AMR) capability. We present progress in implementing the HMM in the NIF-ALE-AMR code. Additionally, we present test simulations relevant to NIF targets.
Equilibrium and nonequilibrium attractors for a discrete, selection-migration model
James F. Selgrade; James H. Roberds
2003-01-01
This study presents a discrete-time model for the effects of selection and immigration on the demographic and genetic compositions of a population. Under biologically reasonable conditions, it is shown that the model always has an equilibrium. Although equilibria for similar models without migration must have real eigenvalues, for this selection-migration model we...
Performance Measurement Model for the Supplier Selection Based on AHP
Directory of Open Access Journals (Sweden)
Fabio De Felice
2015-10-01
Full Text Available The performance of the supplier is a crucial factor for the success or failure of any company. Rational and effective decision making in terms of the supplier selection process can help the organization to optimize cost and quality functions. The nature of supplier selection processes is generally complex, especially when the company has a large variety of products and vendors. Over the years, several solutions and methods have emerged for addressing the supplier selection problem (SSP. Experience and studies have shown that there is no best way for evaluating and selecting a specific supplier process, but that it varies from one organization to another. The aim of this research is to demonstrate how a multiple attribute decision making approach can be effectively applied for the supplier selection process.
Lutz, Arthur F.; ter Maat, Herbert W.; Biemans, Hester; Shrestha, Arun B.; Wester, Philippus; Immerzeel, Walter W.|info:eu-repo/dai/nl/290472113
2016-01-01
Climate change impact studies depend on projections of future climate provided by climate models. The number of climate models is large and increasing, yet limitations in computational capacity make it necessary to compromise the number of climate models that can be included in a climate change
Lutz, Arthur F.; Maat, ter Herbert W.; Biemans, Hester; Shrestha, Arun B.; Wester, Philippus; Immerzeel, Walter W.
2016-01-01
Climate change impact studies depend on projections of future climate provided by climate models. The number of climate models is large and increasing, yet limitations in computational capacity make it necessary to compromise the number of climate models that can be included in a climate change
An Analysis and Implementation of the Hidden Markov Model to Technology Stock Prediction
Directory of Open Access Journals (Sweden)
Nguyet Nguyen
2017-11-01
Full Text Available Future stock prices depend on many internal and external factors that are not easy to evaluate. In this paper, we use the Hidden Markov Model, (HMM, to predict a daily stock price of three active trading stocks: Apple, Google, and Facebook, based on their historical data. We first use the Akaike information criterion (AIC and Bayesian information criterion (BIC to choose the numbers of states from HMM. We then use the models to predict close prices of these three stocks using both single observation data and multiple observation data. Finally, we use the predictions as signals for trading these stocks. The criteria tests’ results showed that HMM with two states worked the best among two, three and four states for the three stocks. Our results also demonstrate that the HMM outperformed the naïve method in forecasting stock prices. The results also showed that active traders using HMM got a higher return than using the naïve forecast for Facebook and Google stocks. The stock price prediction method has a significant impact on stock trading and derivative hedging.
An Integrated DEMATEL-QFD Model for Medical Supplier Selection
Mehtap Dursun; Zeynep Şener
2014-01-01
Supplier selection is considered as one of the most critical issues encountered by operations and purchasing managers to sharpen the company’s competitive advantage. In this paper, a novel fuzzy multi-criteria group decision making approach integrating quality function deployment (QFD) and decision making trial and evaluation laboratory (DEMATEL) method is proposed for supplier selection. The proposed methodology enables to consider the impacts of inner dependence among supplier assessment cr...
Hogan, Daniel R; Salomon, Joshua A; Canning, David; Hammitt, James K; Zaslavsky, Alan M; Bärnighausen, Till
2012-01-01
Objectives Population-based HIV testing surveys have become central to deriving estimates of national HIV prevalence in sub-Saharan Africa. However, limited participation in these surveys can lead to selection bias. We control for selection bias in national HIV prevalence estimates using a novel approach, which unlike conventional imputation can account for selection on unobserved factors. Methods For 12 Demographic and Health Surveys conducted from 2001 to 2009 (N=138 300), we predict HIV status among those missing a valid HIV test with Heckman-type selection models, which allow for correlation between infection status and participation in survey HIV testing. We compare these estimates with conventional ones and introduce a simulation procedure that incorporates regression model parameter uncertainty into confidence intervals. Results Selection model point estimates of national HIV prevalence were greater than unadjusted estimates for 10 of 12 surveys for men and 11 of 12 surveys for women, and were also greater than the majority of estimates obtained from conventional imputation, with significantly higher HIV prevalence estimates for men in Cote d'Ivoire 2005, Mali 2006 and Zambia 2007. Accounting for selective non-participation yielded 95% confidence intervals around HIV prevalence estimates that are wider than those obtained with conventional imputation by an average factor of 4.5. Conclusions Our analysis indicates that national HIV prevalence estimates for many countries in sub-Saharan African are more uncertain than previously thought, and may be underestimated in several cases, underscoring the need for increasing participation in HIV surveys. Heckman-type selection models should be included in the set of tools used for routine estimation of HIV prevalence. PMID:23172342
Evaluation of uncertainties in selected environmental dispersion models
International Nuclear Information System (INIS)
Little, C.A.; Miller, C.W.
1979-01-01
Compliance with standards of radiation dose to the general public has necessitated the use of dispersion models to predict radionuclide concentrations in the environment due to releases from nuclear facilities. Because these models are only approximations of reality and because of inherent variations in the input parameters used in these models, their predictions are subject to uncertainty. Quantification of this uncertainty is necessary to assess the adequacy of these models for use in determining compliance with protection standards. This paper characterizes the capabilities of several dispersion models to predict accurately pollutant concentrations in environmental media. Three types of models are discussed: aquatic or surface water transport models, atmospheric transport models, and terrestrial and aquatic food chain models. Using data published primarily by model users, model predictions are compared to observations
Bayesian model selection of template forward models for EEG source reconstruction.
Strobbe, Gregor; van Mierlo, Pieter; De Vos, Maarten; Mijović, Bogdan; Hallez, Hans; Van Huffel, Sabine; López, José David; Vandenberghe, Stefaan
2014-06-01
Several EEG source reconstruction techniques have been proposed to identify the generating neuronal sources of electrical activity measured on the scalp. The solution of these techniques depends directly on the accuracy of the forward model that is inverted. Recently, a parametric empirical Bayesian (PEB) framework for distributed source reconstruction in EEG/MEG was introduced and implemented in the Statistical Parametric Mapping (SPM) software. The framework allows us to compare different forward modeling approaches, using real data, instead of using more traditional simulated data from an assumed true forward model. In the absence of a subject specific MR image, a 3-layered boundary element method (BEM) template head model is currently used including a scalp, skull and brain compartment. In this study, we introduced volumetric template head models based on the finite difference method (FDM). We constructed a FDM head model equivalent to the BEM model and an extended FDM model including CSF. These models were compared within the context of three different types of source priors related to the type of inversion used in the PEB framework: independent and identically distributed (IID) sources, equivalent to classical minimum norm approaches, coherence (COH) priors similar to methods such as LORETA, and multiple sparse priors (MSP). The resulting models were compared based on ERP data of 20 subjects using Bayesian model selection for group studies. The reconstructed activity was also compared with the findings of previous studies using functional magnetic resonance imaging. We found very strong evidence in favor of the extended FDM head model with CSF and assuming MSP. These results suggest that the use of realistic volumetric forward models can improve PEB EEG source reconstruction. Copyright © 2014 Elsevier Inc. All rights reserved.
Global economic consequences of selected surgical diseases: a modelling study.
Alkire, Blake C; Shrime, Mark G; Dare, Anna J; Vincent, Jeffrey R; Meara, John G
2015-04-27
The surgical burden of disease is substantial, but little is known about the associated economic consequences. We estimate the global macroeconomic impact of the surgical burden of disease due to injury, neoplasm, digestive diseases, and maternal and neonatal disorders from two distinct economic perspectives. We obtained mortality rate estimates for each disease for the years 2000 and 2010 from the Institute of Health Metrics and Evaluation Global Burden of Disease 2010 study, and estimates of the proportion of the burden of the selected diseases that is surgical from a paper by Shrime and colleagues. We first used the value of lost output (VLO) approach, based on the WHO's Projecting the Economic Cost of Ill-Health (EPIC) model, to project annual market economy losses due to these surgical diseases during 2015-30. EPIC attempts to model how disease affects a country's projected labour force and capital stock, which in turn are related to losses in economic output, or gross domestic product (GDP). We then used the value of lost welfare (VLW) approach, which is conceptually based on the value of a statistical life and is inclusive of non-market losses, to estimate the present value of long-run welfare losses resulting from mortality and short-run welfare losses resulting from morbidity incurred during 2010. Sensitivity analyses were performed for both approaches. During 2015-30, the VLO approach projected that surgical conditions would result in losses of 1·25% of potential GDP, or $20·7 trillion (2010 US$, purchasing power parity) in the 128 countries with data available. When expressed as a proportion of potential GDP, annual GDP losses were greatest in low-income and middle-income countries, with up to a 2·5% loss in output by 2030. When total welfare losses are assessed (VLW), the present value of economic losses is estimated to be equivalent to 17% of 2010 GDP, or $14·5 trillion in the 175 countries assessed with this approach. Neoplasm and injury account
2013-04-03
... procedure acceptable to the NRC staff for providing summary details of mathematical modeling methods used in... NUCLEAR REGULATORY COMMISSION [NRC-2013-0062] Reporting Procedure for Mathematical Models Selected... Regulatory Guide (RG) 4.4, ``Reporting Procedure for Mathematical Models Selected to Predict Heated Effluent...
Roberts, Steven; Martin, Michael A
2010-01-01
Concerns have been raised about findings of associations between particulate matter (PM) air pollution and mortality that have been based on a single "best" model arising from a model selection procedure, because such a strategy may ignore model uncertainty inherently involved in searching through a set of candidate models to find the best model. Model averaging has been proposed as a method of allowing for model uncertainty in this context. To propose an extension (double BOOT) to a previously described bootstrap model-averaging procedure (BOOT) for use in time series studies of the association between PM and mortality. We compared double BOOT and BOOT with Bayesian model averaging (BMA) and a standard method of model selection [standard Akaike's information criterion (AIC)]. Actual time series data from the United States are used to conduct a simulation study to compare and contrast the performance of double BOOT, BOOT, BMA, and standard AIC. Double BOOT produced estimates of the effect of PM on mortality that have had smaller root mean squared error than did those produced by BOOT, BMA, and standard AIC. This performance boost resulted from estimates produced by double BOOT having smaller variance than those produced by BOOT and BMA. Double BOOT is a viable alternative to BOOT and BMA for producing estimates of the mortality effect of PM.
Model-independent plot of dynamic PET data facilitates data interpretation and model selection.
Munk, Ole Lajord
2012-02-21
When testing new PET radiotracers or new applications of existing tracers, the blood-tissue exchange and the metabolism need to be examined. However, conventional plots of measured time-activity curves from dynamic PET do not reveal the inherent kinetic information. A novel model-independent volume-influx plot (vi-plot) was developed and validated. The new vi-plot shows the time course of the instantaneous distribution volume and the instantaneous influx rate. The vi-plot visualises physiological information that facilitates model selection and it reveals when a quasi-steady state is reached, which is a prerequisite for the use of the graphical analyses by Logan and Gjedde-Patlak. Both axes of the vi-plot have direct physiological interpretation, and the plot shows kinetic parameter in close agreement with estimates obtained by non-linear kinetic modelling. The vi-plot is equally useful for analyses of PET data based on a plasma input function or a reference region input function. The vi-plot is a model-independent and informative plot for data exploration that facilitates the selection of an appropriate method for data analysis. Copyright © 2011 Elsevier Ltd. All rights reserved.
A Two-Channel Training Algorithm for Hidden Markov Model and Its Application to Lip Reading
Directory of Open Access Journals (Sweden)
Foo Say Wei
2005-01-01
Full Text Available Hidden Markov model (HMM has been a popular mathematical approach for sequence classification such as speech recognition since 1980s. In this paper, a novel two-channel training strategy is proposed for discriminative training of HMM. For the proposed training strategy, a novel separable-distance function that measures the difference between a pair of training samples is adopted as the criterion function. The symbol emission matrix of an HMM is split into two channels: a static channel to maintain the validity of the HMM and a dynamic channel that is modified to maximize the separable distance. The parameters of the two-channel HMM are estimated by iterative application of expectation-maximization (EM operations. As an example of the application of the novel approach, a hierarchical speaker-dependent visual speech recognition system is trained using the two-channel HMMs. Results of experiments on identifying a group of confusable visemes indicate that the proposed approach is able to increase the recognition accuracy by an average of 20% compared with the conventional HMMs that are trained with the Baum-Welch estimation.
Hidden Markov Model for quantitative prediction of snowfall
Indian Academy of Sciences (India)
A Hidden Markov Model (HMM) has been developed for prediction of quantitative snowfall in Pir-Panjal and Great Himalayan mountain ranges of Indian Himalaya. The model predicts snowfall for two days in advance using daily recorded nine meteorological variables of past 20 winters from 1992–2012. There are six ...
The Selection of Turbulence Models for Prediction of Room Airflow
DEFF Research Database (Denmark)
Nielsen, Peter V.
This paper discusses the use of different turbulence models and their advantages in given situations. As an example, it is shown that a simple zero-equation model can be used for the prediction of special situations as flow with a low level of turbulence. A zero-equation model with compensation...
Stem biomass and volume models of selected tropical tree species ...
African Journals Online (AJOL)
Stem biomass and stem volume were modelled as a function of diameter (at breast height; Dbh) and stem height (height to the crown base). Logarithmic models are presented that utilise Dbh and height data to predict tree component biomass and stem volumes. Alternative models are given that afford prediction based on ...
Model selection criteria : how to evaluate order restrictions
Kuiper, R.M.
2012-01-01
Researchers often have ideas about the ordering of model parameters. They frequently have one or more theories about the ordering of the group means, in analysis of variance (ANOVA) models, or about the ordering of coefficients corresponding to the predictors, in regression models.A researcher might
The Living Dead: Transformative Experiences in Modelling Natural Selection
Petersen, Morten Rask
2017-01-01
This study considers how students change their coherent conceptual understanding of natural selection through a hands-on simulation. The results show that most students change their understanding. In addition, some students also underwent a transformative experience and used their new knowledge in a leisure time activity. These transformative…
Modelling the negative effects of landscape fragmentation on habitat selection
Langevelde, van F.
2015-01-01
Landscape fragmentation constrains movement of animals between habitat patches. Fragmentation may, therefore, limit the possibilities to explore and select the best habitat patches, and some animals may have to cope with low-quality patches due to these movement constraints. If so, these individuals
Lightweight Graphical Models for Selectivity Estimation Without Independence Assumptions
DEFF Research Database (Denmark)
Tzoumas, Kostas; Deshpande, Amol; Jensen, Christian S.
2011-01-01
the attributes in the database into small, usually two-dimensional distributions. We describe several optimizations that can make selectivity estimation highly efficient, and we present a complete implementation inside PostgreSQL’s query optimizer. Experimental results indicate an order of magnitude better...
Martin-StPaul, N. K.; Ay, J. S.; Guillemot, J.; Doyen, L.; Leadley, P.
2014-12-01
Species distribution models (SDMs) are widely used to study and predict the outcome of global changes on species. In human dominated ecosystems the presence of a given species is the result of both its ecological suitability and human footprint on nature such as land use choices. Land use choices may thus be responsible for a selection bias in the presence/absence data used in SDM calibration. We present a structural modelling approach (i.e. based on structural equation modelling) that accounts for this selection bias. The new structural species distribution model (SSDM) estimates simultaneously land use choices and species responses to bioclimatic variables. A land use equation based on an econometric model of landowner choices was joined to an equation of species response to bioclimatic variables. SSDM allows the residuals of both equations to be dependent, taking into account the possibility of shared omitted variables and measurement errors. We provide a general description of the statistical theory and a set of applications on forest trees over France using databases of climate and forest inventory at different spatial resolution (from 2km to 8km). We also compared the outputs of the SSDM with outputs of a classical SDM (i.e. Biomod ensemble modelling) in terms of bioclimatic response curves and potential distributions under current climate and climate change scenarios. The shapes of the bioclimatic response curves and the modelled species distribution maps differed markedly between SSDM and classical SDMs, with contrasted patterns according to species and spatial resolutions. The magnitude and directions of these differences were dependent on the correlations between the errors from both equations and were highest for higher spatial resolutions. A first conclusion is that the use of classical SDMs can potentially lead to strong miss-estimation of the actual and future probability of presence modelled. Beyond this selection bias, the SSDM we propose represents
Model selection for integrated pest management with stochasticity.
Akman, Olcay; Comar, Timothy D; Hrozencik, Daniel
2018-04-07
In Song and Xiang (2006), an integrated pest management model with periodically varying climatic conditions was introduced. In order to address a wider range of environmental effects, the authors here have embarked upon a series of studies resulting in a more flexible modeling approach. In Akman et al. (2013), the impact of randomly changing environmental conditions is examined by incorporating stochasticity into the birth pulse of the prey species. In Akman et al. (2014), the authors introduce a class of models via a mixture of two birth-pulse terms and determined conditions for the global and local asymptotic stability of the pest eradication solution. With this work, the authors unify the stochastic and mixture model components to create further flexibility in modeling the impacts of random environmental changes on an integrated pest management system. In particular, we first determine the conditions under which solutions of our deterministic mixture model are permanent. We then analyze the stochastic model to find the optimal value of the mixing parameter that minimizes the variance in the efficacy of the pesticide. Additionally, we perform a sensitivity analysis to show that the corresponding pesticide efficacy determined by this optimization technique is indeed robust. Through numerical simulations we show that permanence can be preserved in our stochastic model. Our study of the stochastic version of the model indicates that our results on the deterministic model provide informative conclusions about the behavior of the stochastic model. Copyright © 2017 Elsevier Ltd. All rights reserved.
A Method for Driving Route Predictions Based on Hidden Markov Model
Directory of Open Access Journals (Sweden)
Ning Ye
2015-01-01
Full Text Available We present a driving route prediction method that is based on Hidden Markov Model (HMM. This method can accurately predict a vehicle’s entire route as early in a trip’s lifetime as possible without inputting origins and destinations beforehand. Firstly, we propose the route recommendation system architecture, where route predictions play important role in the system. Secondly, we define a road network model, normalize each of driving routes in the rectangular coordinate system, and build the HMM to make preparation for route predictions using a method of training set extension based on K-means++ and the add-one (Laplace smoothing technique. Thirdly, we present the route prediction algorithm. Finally, the experimental results of the effectiveness of the route predictions that is based on HMM are shown.
Directory of Open Access Journals (Sweden)
Mark N Read
2016-09-01
Full Text Available The advent of two-photon microscopy now reveals unprecedented, detailed spatio-temporal data on cellular motility and interactions in vivo. Understanding cellular motility patterns is key to gaining insight into the development and possible manipulation of the immune response. Computational simulation has become an established technique for understanding immune processes and evaluating hypotheses in the context of experimental data, and there is clear scope to integrate microscopy-informed motility dynamics. However, determining which motility model best reflects in vivo motility is non-trivial: 3D motility is an intricate process requiring several metrics to characterize. This complicates model selection and parameterization, which must be performed against several metrics simultaneously. Here we evaluate Brownian motion, Lévy walk and several correlated random walks (CRWs against the motility dynamics of neutrophils and lymph node T cells under inflammatory conditions by simultaneously considering cellular translational and turn speeds, and meandering indices. Heterogeneous cells exhibiting a continuum of inherent translational speeds and directionalities comprise both datasets, a feature significantly improving capture of in vivo motility when simulated as a CRW. Furthermore, translational and turn speeds are inversely correlated, and the corresponding CRW simulation again improves capture of our in vivo data, albeit to a lesser extent. In contrast, Brownian motion poorly reflects our data. Lévy walk is competitive in capturing some aspects of neutrophil motility, but T cell directional persistence only, therein highlighting the importance of evaluating models against several motility metrics simultaneously. This we achieve through novel application of multi-objective optimization, wherein each model is independently implemented and then parameterized to identify optimal trade-offs in performance against each metric. The resultant Pareto
Selected Constitutive Models for Simulating the Hygromechanical Response of Wood
DEFF Research Database (Denmark)
Frandsen, Henrik Lund
, the boundary conditions are discussed based on discrepancies found for similar research on moisture transport in paper stacks. Paper III: A new sorption hysteresis model suitable for implementation into a numerical method is developed. The prevailing so-called scanning curves are modeled by closed......-form expressions, which only depend on the current relative humidity of the air and current moisture content of the wood. Furthermore, the expressions for the scanning curves are formulated independent of the temperature and species-dependent boundary curves. Paper IV: The sorption hysteresis model developed...... are discussed. The constitutive moisture transport models are coupled with a heat transport model yielding terms that describe the so-called Dufour and Sorret effects, however, with multiple phases and hysteresis included. Paper VII: In this paper the modeling of transverse couplings in creep of wood...
Edla, Shwetha; Kovvali, Narayan; Papandreou-Suppappola, Antonia
2012-01-01
Constructing statistical models of electrocardiogram (ECG) signals, whose parameters can be used for automated disease classification, is of great importance in precluding manual annotation and providing prompt diagnosis of cardiac diseases. ECG signals consist of several segments with different morphologies (namely the P wave, QRS complex and the T wave) in a single heart beat, which can vary across individuals and diseases. Also, existing statistical ECG models exhibit a reliance upon obtaining a priori information from the ECG data by using preprocessing algorithms to initialize the filter parameters, or to define the user-specified model parameters. In this paper, we propose an ECG modeling technique using the sequential Markov chain Monte Carlo (SMCMC) filter that can perform simultaneous model selection, by adaptively choosing from different representations depending upon the nature of the data. Our results demonstrate the ability of the algorithm to track various types of ECG morphologies, including intermittently occurring ECG beats. In addition, we use the estimated model parameters as the feature set to classify between ECG signals with normal sinus rhythm and four different types of arrhythmia.
Selected Aspects of Computer Modeling of Reinforced Concrete Structures
Directory of Open Access Journals (Sweden)
Szczecina M.
2016-03-01
Full Text Available The paper presents some important aspects concerning material constants of concrete and stages of modeling of reinforced concrete structures. The problems taken into account are: a choice of proper material model for concrete, establishing of compressive and tensile behavior of concrete and establishing the values of dilation angle, fracture energy and relaxation time for concrete. Proper values of material constants are fixed in simple compression and tension tests. The effectiveness and correctness of applied model is checked on the example of reinforced concrete frame corners under opening bending moment. Calculations are performed in Abaqus software using Concrete Damaged Plasticity model of concrete.
Bayesian model selection validates a biokinetic model for zirconium processing in humans
2012-01-01
Background In radiation protection, biokinetic models for zirconium processing are of crucial importance in dose estimation and further risk analysis for humans exposed to this radioactive substance. They provide limiting values of detrimental effects and build the basis for applications in internal dosimetry, the prediction for radioactive zirconium retention in various organs as well as retrospective dosimetry. Multi-compartmental models are the tool of choice for simulating the processing of zirconium. Although easily interpretable, determining the exact compartment structure and interaction mechanisms is generally daunting. In the context of observing the dynamics of multiple compartments, Bayesian methods provide efficient tools for model inference and selection. Results We are the first to apply a Markov chain Monte Carlo approach to compute Bayes factors for the evaluation of two competing models for zirconium processing in the human body after ingestion. Based on in vivo measurements of human plasma and urine levels we were able to show that a recently published model is superior to the standard model of the International Commission on Radiological Protection. The Bayes factors were estimated by means of the numerically stable thermodynamic integration in combination with a recently developed copula-based Metropolis-Hastings sampler. Conclusions In contrast to the standard model the novel model predicts lower accretion of zirconium in bones. This results in lower levels of noxious doses for exposed individuals. Moreover, the Bayesian approach allows for retrospective dose assessment, including credible intervals for the initially ingested zirconium, in a significantly more reliable fashion than previously possible. All methods presented here are readily applicable to many modeling tasks in systems biology. PMID:22863152
A model selection support system for numerical simulations of nuclear thermal-hydraulics
International Nuclear Information System (INIS)
Gofuku, Akio; Shimizu, Kenji; Sugano, Keiji; Yoshikawa, Hidekazu; Wakabayashi, Jiro
1990-01-01
In order to execute efficiently a dynamic simulation of a large-scaled engineering system such as a nuclear power plant, it is necessary to develop intelligent simulation support system for all phases of the simulation. This study is concerned with the intelligent support for the program development phase and is engaged in the adequate model selection support method by applying AI (Artificial Intelligence) techniques to execute a simulation consistent with its purpose and conditions. A proto-type expert system to support the model selection for numerical simulations of nuclear thermal-hydraulics in the case of cold leg small break loss-of-coolant accident of PWR plant is now under development on a personal computer. The steps to support the selection of both fluid model and constitutive equations for the drift flux model have been developed. Several cases of model selection were carried out and reasonable model selection results were obtained. (author)
Schwaab, Douglas G.
1991-01-01
A mathematical programing model is presented to optimize the selection of Orbital Replacement Unit on-orbit spares for the Space Station. The model maximizes system availability under the constraints of logistics resupply-cargo weight and volume allocations.
Random forest (RF) modeling has emerged as an important statistical learning method in ecology due to its exceptional predictive performance. However, for large and complex ecological datasets there is limited guidance on variable selection methods for RF modeling. Typically, e...
Elsheikh, Ahmed H.; Wheeler, Mary Fanett; Hoteit, Ibrahim
2014-01-01
A Hybrid Nested Sampling (HNS) algorithm is proposed for efficient Bayesian model calibration and prior model selection. The proposed algorithm combines, Nested Sampling (NS) algorithm, Hybrid Monte Carlo (HMC) sampling and gradient estimation using
Meuwissen, Theo H E; Indahl, Ulf G; Ødegård, Jørgen
2017-12-27
Non-linear Bayesian genomic prediction models such as BayesA/B/C/R involve iteration and mostly Markov chain Monte Carlo (MCMC) algorithms, which are computationally expensive, especially when whole-genome sequence (WGS) data are analyzed. Singular value decomposition (SVD) of the genotype matrix can facilitate genomic prediction in large datasets, and can be used to estimate marker effects and their prediction error variances (PEV) in a computationally efficient manner. Here, we developed, implemented, and evaluated a direct, non-iterative method for the estimation of marker effects for the BayesC genomic prediction model. The BayesC model assumes a priori that markers have normally distributed effects with probability [Formula: see text] and no effect with probability (1 - [Formula: see text]). Marker effects and their PEV are estimated by using SVD and the posterior probability of the marker having a non-zero effect is calculated. These posterior probabilities are used to obtain marker-specific effect variances, which are subsequently used to approximate BayesC estimates of marker effects in a linear model. A computer simulation study was conducted to compare alternative genomic prediction methods, where a single reference generation was used to estimate marker effects, which were subsequently used for 10 generations of forward prediction, for which accuracies were evaluated. SVD-based posterior probabilities of markers having non-zero effects were generally lower than MCMC-based posterior probabilities, but for some regions the opposite occurred, resulting in clear signals for QTL-rich regions. The accuracies of breeding values estimated using SVD- and MCMC-based BayesC analyses were similar across the 10 generations of forward prediction. For an intermediate number of generations (2 to 5) of forward prediction, accuracies obtained with the BayesC model tended to be slightly higher than accuracies obtained using the best linear unbiased prediction of SNP
Varying Coefficient Panel Data Model in the Presence of Endogenous Selectivity and Fixed Effects
Malikov, Emir; Kumbhakar, Subal C.; Sun, Yiguo
2013-01-01
This paper considers a flexible panel data sample selection model in which (i) the outcome equation is permitted to take a semiparametric, varying coefficient form to capture potential parameter heterogeneity in the relationship of interest, (ii) both the outcome and (parametric) selection equations contain unobserved fixed effects and (iii) selection is generalized to a polychotomous case. We propose a two-stage estimator. Given consistent parameter estimates from the selection equation obta...
Required experimental accuracy to select between supersymmetrical models
Grellscheid, David
2004-03-01
We will present a method to decide a priori whether various supersymmetrical scenarios can be distinguished based on sparticle mass data alone. For each model, a scan over all free SUSY breaking parameters reveals the extent of that model's physically allowed region of sparticle-mass-space. Based on the geometrical configuration of these regions in mass-space, it is possible to obtain an estimate of the required accuracy of future sparticle mass measurements to distinguish between the models. We will illustrate this algorithm with an example. This talk is based on work done in collaboration with B C Allanach (LAPTH, Annecy) and F Quevedo (DAMTP, Cambridge).
Development of Solar Drying Model for Selected Cambodian Fish Species
Hubackova, Anna; Kucerova, Iva; Chrun, Rithy; Chaloupkova, Petra; Banout, Jan
2014-01-01
A solar drying was investigated as one of perspective techniques for fish processing in Cambodia. The solar drying was compared to conventional drying in electric oven. Five typical Cambodian fish species were selected for this study. Mean solar drying temperature and drying air relative humidity were 55.6°C and 19.9%, respectively. The overall solar dryer efficiency was 12.37%, which is typical for natural convection solar dryers. An average evaporative capacity of solar dryer was 0.049 kg·h...
Identification of landscape features influencing gene flow: How useful are habitat selection models?
Gretchen H. Roffler; Michael K. Schwartz; Kristine Pilgrim; Sandra L. Talbot; George K. Sage; Layne G. Adams; Gordon Luikart
2016-01-01
Understanding how dispersal patterns are influenced by landscape heterogeneity is critical for modeling species connectivity. Resource selection function (RSF) models are increasingly used in landscape genetics approaches. However, because the ecological factors that drive habitat selection may be different from those influencing dispersal and gene flow, it is...
Optimal covariance selection for estimation using graphical models
Vichik, Sergey; Oshman, Yaakov
2011-01-01
We consider a problem encountered when trying to estimate a Gaussian random field using a distributed estimation approach based on Gaussian graphical models. Because of constraints imposed by estimation tools used in Gaussian graphical models, the a priori covariance of the random field is constrained to embed conditional independence constraints among a significant number of variables. The problem is, then: given the (unconstrained) a priori covariance of the random field, and the conditiona...
A Neuronal Network Model for Pitch Selectivity and Representation
Huang, Chengcheng; Rinzel, John
2016-01-01
Pitch is a perceptual correlate of periodicity. Sounds with distinct spectra can elicit the same pitch. Despite the importance of pitch perception, understanding the cellular mechanism of pitch perception is still a major challenge and a mechanistic model of pitch is lacking. A multi-stage neuronal network model is developed for pitch frequency estimation using biophysically-based, high-resolution coincidence detector neurons. The neuronal units respond only to highly coincident input among c...
Fuzzy Multicriteria Model for Selection of Vibration Technology
Directory of Open Access Journals (Sweden)
María Carmen Carnero
2016-01-01
Full Text Available The benefits of applying the vibration analysis program are well known and have been so for decades. A large number of contributions have been produced discussing new diagnostic, signal treatment, technical parameter analysis, and prognosis techniques. However, to obtain the expected benefits from a vibration analysis program, it is necessary to choose the instrumentation which guarantees the best results. Despite its importance, in the literature, there are no models to assist in taking this decision. This research describes an objective model using Fuzzy Analytic Hierarchy Process (FAHP to make a choice of the most suitable technology among portable vibration analysers. The aim is to create an easy-to-use model for processing, manufacturing, services, and research organizations, to guarantee adequate decision-making in the choice of vibration analysis technology. The model described recognises that judgements are often based on ambiguous, imprecise, or inadequate information that cannot provide precise values. The model incorporates judgements from several decision-makers who are experts in the field of vibration analysis, maintenance, and electronic devices. The model has been applied to a Health Care Organization.
Multi-Criteria Decision Making For Determining A Simple Model of Supplier Selection
Harwati
2017-06-01
Supplier selection is a decision with many criteria. Supplier selection model usually involves more than five main criteria and more than 10 sub-criteria. In fact many model includes more than 20 criteria. Too many criteria involved in supplier selection models sometimes make it difficult to apply in many companies. This research focuses on designing supplier selection that easy and simple to be applied in the company. Analytical Hierarchy Process (AHP) is used to weighting criteria. The analysis results there are four criteria that are easy and simple can be used to select suppliers: Price (weight 0.4) shipment (weight 0.3), quality (weight 0.2) and services (weight 0.1). A real case simulation shows that simple model provides the same decision with a more complex model.
Nikzad-Langerodi, Ramin; Lughofer, Edwin; Cernuda, Carlos; Reischer, Thomas; Kantner, Wolfgang; Pawliczek, Marcin; Brandstetter, Markus
2018-07-12
selection of samples by active learning (AL) used for subsequent model adaptation is advantageous compared to passive (random) selection in case that a drift leads to persistent prediction bias allowing more rapid adaptation at lower reference measurement rates. Fully unsupervised adaptation using FLEXFIS-PLS could improve predictive accuracy significantly for light drifts but was not able to fully compensate for prediction bias in case of significant lack of fit w.r.t. the latent variable space. Copyright © 2018 Elsevier B.V. All rights reserved.
Selecting a climate model subset to optimise key ensemble properties
Directory of Open Access Journals (Sweden)
N. Herger
2018-02-01
Full Text Available End users studying impacts and risks caused by human-induced climate change are often presented with large multi-model ensembles of climate projections whose composition and size are arbitrarily determined. An efficient and versatile method that finds a subset which maintains certain key properties from the full ensemble is needed, but very little work has been done in this area. Therefore, users typically make their own somewhat subjective subset choices and commonly use the equally weighted model mean as a best estimate. However, different climate model simulations cannot necessarily be regarded as independent estimates due to the presence of duplicated code and shared development history. Here, we present an efficient and flexible tool that makes better use of the ensemble as a whole by finding a subset with improved mean performance compared to the multi-model mean while at the same time maintaining the spread and addressing the problem of model interdependence. Out-of-sample skill and reliability are demonstrated using model-as-truth experiments. This approach is illustrated with one set of optimisation criteria but we also highlight the flexibility of cost functions, depending on the focus of different users. The technique is useful for a range of applications that, for example, minimise present-day bias to obtain an accurate ensemble mean, reduce dependence in ensemble spread, maximise future spread, ensure good performance of individual models in an ensemble, reduce the ensemble size while maintaining important ensemble characteristics, or optimise several of these at the same time. As in any calibration exercise, the final ensemble is sensitive to the metric, observational product, and pre-processing steps used.
Selecting a climate model subset to optimise key ensemble properties
Herger, Nadja; Abramowitz, Gab; Knutti, Reto; Angélil, Oliver; Lehmann, Karsten; Sanderson, Benjamin M.
2018-02-01
End users studying impacts and risks caused by human-induced climate change are often presented with large multi-model ensembles of climate projections whose composition and size are arbitrarily determined. An efficient and versatile method that finds a subset which maintains certain key properties from the full ensemble is needed, but very little work has been done in this area. Therefore, users typically make their own somewhat subjective subset choices and commonly use the equally weighted model mean as a best estimate. However, different climate model simulations cannot necessarily be regarded as independent estimates due to the presence of duplicated code and shared development history. Here, we present an efficient and flexible tool that makes better use of the ensemble as a whole by finding a subset with improved mean performance compared to the multi-model mean while at the same time maintaining the spread and addressing the problem of model interdependence. Out-of-sample skill and reliability are demonstrated using model-as-truth experiments. This approach is illustrated with one set of optimisation criteria but we also highlight the flexibility of cost functions, depending on the focus of different users. The technique is useful for a range of applications that, for example, minimise present-day bias to obtain an accurate ensemble mean, reduce dependence in ensemble spread, maximise future spread, ensure good performance of individual models in an ensemble, reduce the ensemble size while maintaining important ensemble characteristics, or optimise several of these at the same time. As in any calibration exercise, the final ensemble is sensitive to the metric, observational product, and pre-processing steps used.
Selected developments and applications of Leontief models in industrial ecology
International Nuclear Information System (INIS)
Stroemman, Anders Hammer
2005-01-01
Thesis Outline: This thesis investigates issues of environmental repercussions on processes of three spatial scales; a single process plant, a regional value chain and the global economy. The first paper investigates environmental repercussions caused by a single process plant using an open Leontief model with combined physical and monetary units in what is commonly referred to as a hybrid life cycle model. Physical capital requirements are treated as any other good. Resources and environmental stressors, thousands in total, are accounted for and assessed by aggregation using standard life cycle impact assessment methods. The second paper presents a methodology for establishing and combining input-output matrices and life-cycle inventories in a hybrid life cycle inventory. Information contained within different requirements matrices are combined and issues of double counting that arise are addressed and methods for eliminating these are developed and presented. The third paper is an extension of the first paper. Here the system analyzed is increased from a single plant and component in the production network to a series of nodes, constituting a value chain. The hybrid framework proposed in paper two is applied to analyze the use of natural gas, methanol and hydrogen as transportation fuels. The fourth paper presents the development of a World Trade Model with Bilateral Trade, an extension of the World Trade Model (Duchin, 2005). The model is based on comparative advantage and is formulated as a linear program. It endogenously determines the regional output of sectors and bilateral trade flows between regions. The model may be considered a Leontief substitution model where substitution of production is allowed between regions. The primal objective of the model requires the minimization of global factor costs. The fifth paper demonstrates how the World Trade Model with Bilateral Trade can be applied to address questions relevant for industrial ecology. The model is
Model validity and frequency band selection in operational modal analysis
Au, Siu-Kui
2016-12-01
Experimental modal analysis aims at identifying the modal properties (e.g., natural frequencies, damping ratios, mode shapes) of a structure using vibration measurements. Two basic questions are encountered when operating in the frequency domain: Is there a mode near a particular frequency? If so, how much spectral data near the frequency can be included for modal identification without incurring significant modeling error? For data with high signal-to-noise (s/n) ratios these questions can be addressed using empirical tools such as singular value spectrum. Otherwise they are generally open and can be challenging, e.g., for modes with low s/n ratios or close modes. In this work these questions are addressed using a Bayesian approach. The focus is on operational modal analysis, i.e., with 'output-only' ambient data, where identification uncertainty and modeling error can be significant and their control is most demanding. The approach leads to 'evidence ratios' quantifying the relative plausibility of competing sets of modeling assumptions. The latter involves modeling the 'what-if-not' situation, which is non-trivial but is resolved by systematic consideration of alternative models and using maximum entropy principle. Synthetic and field data are considered to investigate the behavior of evidence ratios and how they should be interpreted in practical applications.
Selecting salient frames for spatiotemporal video modeling and segmentation.
Song, Xiaomu; Fan, Guoliang
2007-12-01
We propose a new statistical generative model for spatiotemporal video segmentation. The objective is to partition a video sequence into homogeneous segments that can be used as "building blocks" for semantic video segmentation. The baseline framework is a Gaussian mixture model (GMM)-based video modeling approach that involves a six-dimensional spatiotemporal feature space. Specifically, we introduce the concept of frame saliency to quantify the relevancy of a video frame to the GMM-based spatiotemporal video modeling. This helps us use a small set of salient frames to facilitate the model training by reducing data redundancy and irrelevance. A modified expectation maximization algorithm is developed for simultaneous GMM training and frame saliency estimation, and the frames with the highest saliency values are extracted to refine the GMM estimation for video segmentation. Moreover, it is interesting to find that frame saliency can imply some object behaviors. This makes the proposed method also applicable to other frame-related video analysis tasks, such as key-frame extraction, video skimming, etc. Experiments on real videos demonstrate the effectiveness and efficiency of the proposed method.
Statistical mechanics of sparse generalization and graphical model selection
International Nuclear Information System (INIS)
Lage-Castellanos, Alejandro; Pagnani, Andrea; Weigt, Martin
2009-01-01
One of the crucial tasks in many inference problems is the extraction of an underlying sparse graphical model from a given number of high-dimensional measurements. In machine learning, this is frequently achieved using, as a penalty term, the L p norm of the model parameters, with p≤1 for efficient dilution. Here we propose a statistical mechanics analysis of the problem in the setting of perceptron memorization and generalization. Using a replica approach, we are able to evaluate the relative performance of naive dilution (obtained by learning without dilution, following by applying a threshold to the model parameters), L 1 dilution (which is frequently used in convex optimization) and L 0 dilution (which is optimal but computationally hard to implement). Whereas both L p diluted approaches clearly outperform the naive approach, we find a small region where L 0 works almost perfectly and strongly outperforms the simpler to implement L 1 dilution
Selection of References in Wind Turbine Model Predictive Control Design
DEFF Research Database (Denmark)
Odgaard, Peter Fogh; Hovgaard, Tobias
2015-01-01
a model predictive controller for a wind turbine. One of the important aspects for a tracking control problem is how to setup the optimal reference tracking problem, as it might be relevant to track, e.g., the three concurrent references: optimal pitch angle, optimal rotational speed, and optimal power......Lowering the cost of energy is one of the major focus areas in the wind turbine industry. Recent research has indicated that wind turbine controllers based on model predictive control methods can be useful in obtaining this objective. A number of design considerations have to be made when designing....... The importance if the individual references differ depending in particular on the wind speed. In this paper we investigate the performance of a reference tracking model predictive controller with two different setups of the used optimal reference signals. The controllers are evaluated using an industrial high...
SELECT NUMERICAL METHODS FOR MODELING THE DYNAMICS SYSTEMS
Directory of Open Access Journals (Sweden)
Tetiana D. Panchenko
2016-07-01
Full Text Available The article deals with the creation of methodical support for mathematical modeling of dynamic processes in elements of the systems and complexes. As mathematical models ordinary differential equations have been used. The coefficients of the equations of the models can be nonlinear functions of the process. The projection-grid method is used as the main tool. It has been described iterative method algorithms taking into account the approximate solution prior to the first iteration and proposed adaptive control computing process. The original method of estimation error in the calculation solutions as well as for a given level of error of the technique solutions purpose adaptive method for solving configuration parameters is offered. A method for setting an adaptive method for solving the settings for a given level of error is given. The proposed method can be used for distributed computing.
Mathematical Model of the Emissions of a selected vehicle
Directory of Open Access Journals (Sweden)
Matušů Radim
2014-10-01
Full Text Available The article addresses the quantification of exhaust emissions from gasoline engines during transient operation. The main targeted emissions are carbon monoxide and carbon dioxide. The result is a mathematical model describing the production of individual emissions components in all modes (static and dynamic. It also describes the procedure for the determination of emissions from the engine’s operating parameters. The result is compared with other possible methods of measuring emissions. The methodology is validated using the data from an on-road measurement. The mathematical model was created on the first route and validated on the second route.
Graphical models for inferring single molecule dynamics
Directory of Open Access Journals (Sweden)
Gonzalez Ruben L
2010-10-01
Full Text Available Abstract Background The recent explosion of experimental techniques in single molecule biophysics has generated a variety of novel time series data requiring equally novel computational tools for analysis and inference. This article describes in general terms how graphical modeling may be used to learn from biophysical time series data using the variational Bayesian expectation maximization algorithm (VBEM. The discussion is illustrated by the example of single-molecule fluorescence resonance energy transfer (smFRET versus time data, where the smFRET time series is modeled as a hidden Markov model (HMM with Gaussian observables. A detailed description of smFRET is provided as well. Results The VBEM algorithm returns the model’s evidence and an approximating posterior parameter distribution given the data. The former provides a metric for model selection via maximum evidence (ME, and the latter a description of the model’s parameters learned from the data. ME/VBEM provide several advantages over the more commonly used approach of maximum likelihood (ML optimized by the expectation maximization (EM algorithm, the most important being a natural form of model selection and a well-posed (non-divergent optimization problem. Conclusions The results demonstrate the utility of graphical modeling for inference of dynamic processes in single molecule biophysics.
An Optimization Model For Strategy Decision Support to Select Kind of CPO’s Ship
Suaibah Nst, Siti; Nababan, Esther; Mawengkang, Herman
2018-01-01
The selection of marine transport for the distribution of crude palm oil (CPO) is one of strategy that can be considered in reducing cost of transport. The cost of CPO’s transport from one area to CPO’s factory located at the port of destination may affect the level of CPO’s prices and the number of demands. In order to maintain the availability of CPO a strategy is required to minimize the cost of transporting. In this study, the strategy used to select kind of charter ships as barge or chemical tanker. This study aims to determine an optimization model for strategy decision support in selecting kind of CPO’s ship by minimizing costs of transport. The select of ship was done randomly, so that two-stage stochastic programming model was used to select the kind of ship. Model can help decision makers to select either barge or chemical tanker to distribute CPO.
The Optimal Portfolio Selection Model under g-Expectation
Directory of Open Access Journals (Sweden)
Li Li
2014-01-01
complicated and sophisticated, the optimal solution turns out to be surprisingly simple, the payoff of a portfolio of two binary claims. Also I give the economic meaning of my model and the comparison with that one in the work of Jin and Zhou, 2008.
An ecosystem model for tropical forest disturbance and selective logging
Maoyi Huang; Gregory P. Asner; Michael Keller; Joseph A. Berry
2008-01-01
[1] A new three-dimensional version of the Carnegie-Ames-Stanford Approach (CASA) ecosystem model (CASA-3D) was developed to simulate regional carbon cycling in tropical forest ecosystems after disturbances such as logging. CASA-3D has the following new features: (1) an alternative approach for calculating absorbed photosynthetically active radiation (APAR) using new...
Process chain modeling and selection in an additive manufacturing context
DEFF Research Database (Denmark)
Thompson, Mary Kathryn; Stolfi, Alessandro; Mischkot, Michael
2016-01-01
This paper introduces a new two-dimensional approach to modeling manufacturing process chains. This approach is used to consider the role of additive manufacturing technologies in process chains for a part with micro scale features and no internal geometry. It is shown that additive manufacturing...... evolving fields like additive manufacturing....
Selecting Tools to Model Integer and Binomial Multiplication
Pratt, Sarah Smitherman; Eddy, Colleen M.
2017-01-01
Mathematics teachers frequently provide concrete manipulatives to students during instruction; however, the rationale for using certain manipulatives in conjunction with concepts may not be explored. This article focuses on area models that are currently used in classrooms to provide concrete examples of integer and binomial multiplication. The…
Modeling Selected Climatic Variables in Ibadan, Oyo State, Nigeria ...
African Journals Online (AJOL)
PROF. O. E. OSUAGWU
2013-09-01
Sep 1, 2013 ... The aim of this study was fitting the modified generalized burr density function to total rainfall and temperature data obtained from the meteorological unit in the Department of. Environmental Modelling and Management of the Forestry Research Institute of Nigeria. (FRIN) in Ibadan, Oyo State, Nigeria.
Parameter Estimation and Model Selection for Mixtures of Truncated Exponentials
DEFF Research Database (Denmark)
Langseth, Helge; Nielsen, Thomas Dyhre; Rumí, Rafael
2010-01-01
Bayesian networks with mixtures of truncated exponentials (MTEs) support efficient inference algorithms and provide a flexible way of modeling hybrid domains (domains containing both discrete and continuous variables). On the other hand, estimating an MTE from data has turned out to be a difficul...
THERMODYNAMIC MODEL AND VISCOSITY OF SELECTED ZIRCONIA CONTAINING SILICATE GLASSES
Directory of Open Access Journals (Sweden)
MÁRIA CHROMČÍKOVÁ
2013-03-01
Full Text Available The compositional dependence of viscosity, and viscous flow activation energy of glasses with composition xNa2O∙(15-x K2O∙yCaO∙(10-yZnO∙zZrO2∙(75-zSiO2 (x = 0, 7.5, 15; y = 0, 5, 10; z = 0, 1, 3, 5, 7 was analyzed. The studied glasses were described by the thermodynamic model of Shakhmatkin and Vedishcheva considering the glass as an equilibrium ideal solution of species with stoichiometry given by the composition of stable crystalline phases of respective glass forming system. Viscosity-composition relationships were described by the regression approach considering the viscous flow activation energy and the particular isokome temperature as multilinear function of equilibrium molar amounts of system components. The classical approach where the mole fractions of individual oxides are considered as independent variables was compared with the thermodynamic model. On the basis of statistical analysis there was proved that the thermodynamic model is able to describe the composition property relationships with higher reliability. Moreover, due its better physical justification, thermodynamic model can be even used for predictive purposes.
Model Selection and Accounting for Model Uncertainty in Graphical Models Using OCCAM’s Window
1991-07-22
mental work; C, strenuous physical work; D, systolic blood pressure: E. ratio of 13 and Qt proteins; F, family anamnesis of coronary heart disease...of F, family anamnesis . The models are shown in Figure 4. 12 Table 1: Risk factors for Coronary lfeart Disea:W B No Yes A No Yes No Yes F E D C...a link from smoking (A) to systolic blood pressure (D). There is decisive evidence in favour of the marginal independence of family anamnesis of
On a Robust MaxEnt Process Regression Model with Sample-Selection
Directory of Open Access Journals (Sweden)
Hea-Jung Kim
2018-04-01
Full Text Available In a regression analysis, a sample-selection bias arises when a dependent variable is partially observed as a result of the sample selection. This study introduces a Maximum Entropy (MaxEnt process regression model that assumes a MaxEnt prior distribution for its nonparametric regression function and finds that the MaxEnt process regression model includes the well-known Gaussian process regression (GPR model as a special case. Then, this special MaxEnt process regression model, i.e., the GPR model, is generalized to obtain a robust sample-selection Gaussian process regression (RSGPR model that deals with non-normal data in the sample selection. Various properties of the RSGPR model are established, including the stochastic representation, distributional hierarchy, and magnitude of the sample-selection bias. These properties are used in the paper to develop a hierarchical Bayesian methodology to estimate the model. This involves a simple and computationally feasible Markov chain Monte Carlo algorithm that avoids analytical or numerical derivatives of the log-likelihood function of the model. The performance of the RSGPR model in terms of the sample-selection bias correction, robustness to non-normality, and prediction, is demonstrated through results in simulations that attest to its good finite-sample performance.
A BAYESIAN NONPARAMETRIC MIXTURE MODEL FOR SELECTING GENES AND GENE SUBNETWORKS.
Zhao, Yize; Kang, Jian; Yu, Tianwei
2014-06-01
It is very challenging to select informative features from tens of thousands of measured features in high-throughput data analysis. Recently, several parametric/regression models have been developed utilizing the gene network information to select genes or pathways strongly associated with a clinical/biological outcome. Alternatively, in this paper, we propose a nonparametric Bayesian model for gene selection incorporating network information. In addition to identifying genes that have a strong association with a clinical outcome, our model can select genes with particular expressional behavior, in which case the regression models are not directly applicable. We show that our proposed model is equivalent to an infinity mixture model for which we develop a posterior computation algorithm based on Markov chain Monte Carlo (MCMC) methods. We also propose two fast computing algorithms that approximate the posterior simulation with good accuracy but relatively low computational cost. We illustrate our methods on simulation studies and the analysis of Spellman yeast cell cycle microarray data.
A model of directional selection applied to the evolution of drug resistance in HIV-1.
Seoighe, Cathal; Ketwaroo, Farahnaz; Pillay, Visva; Scheffler, Konrad; Wood, Natasha; Duffet, Rodger; Zvelebil, Marketa; Martinson, Neil; McIntyre, James; Morris, Lynn; Hide, Winston
2007-04-01
Understanding how pathogens acquire resistance to drugs is important for the design of treatment strategies, particularly for rapidly evolving viruses such as HIV-1. Drug treatment can exert strong selective pressures and sites within targeted genes that confer resistance frequently evolve far more rapidly than the neutral rate. Rapid evolution at sites that confer resistance to drugs can be used to help elucidate the mechanisms of evolution of drug resistance and to discover or corroborate novel resistance mutations. We have implemented standard maximum likelihood methods that are used to detect diversifying selection and adapted them for use with serially sampled reverse transcriptase (RT) coding sequences isolated from a group of 300 HIV-1 subtype C-infected women before and after single-dose nevirapine (sdNVP) to prevent mother-to-child transmission. We have also extended the standard models of codon evolution for application to the detection of directional selection. Through simulation, we show that the directional selection model can provide a substantial improvement in sensitivity over models of diversifying selection. Five of the sites within the RT gene that are known to harbor mutations that confer resistance to nevirapine (NVP) strongly supported the directional selection model. There was no evidence that other mutations that are known to confer NVP resistance were selected in this cohort. The directional selection model, applied to serially sampled sequences, also had more power than the diversifying selection model to detect selection resulting from factors other than drug resistance. Because inference of selection from serial samples is unlikely to be adversely affected by recombination, the methods we describe may have general applicability to the analysis of positive selection affecting recombining coding sequences when serially sampled data are available.
Parameter Selection and Performance Analysis of Mobile Terminal Models Based on Unity3D
Institute of Scientific and Technical Information of China (English)
KONG Li-feng; ZHAO Hai-ying; XU Guang-mei
2014-01-01
Mobile platform is now widely seen as a promising multimedia service with a favorable user group and market prospect. To study the influence of mobile terminal models on the quality of scene roaming, a parameter setting platform of mobile terminal models is established to select the parameter selection and performance index on different mobile platforms in this paper. This test platform is established based on model optimality principle, analyzing the performance curve of mobile terminals in different scene models and then deducing the external parameter of model establishment. Simulation results prove that the established test platform is able to analyze the parameter and performance matching list of a mobile terminal model.
Evaluation and comparison of alternative fleet-level selective maintenance models
International Nuclear Information System (INIS)
Schneider, Kellie; Richard Cassady, C.
2015-01-01
Fleet-level selective maintenance refers to the process of identifying the subset of maintenance actions to perform on a fleet of repairable systems when the maintenance resources allocated to the fleet are insufficient for performing all desirable maintenance actions. The original fleet-level selective maintenance model is designed to maximize the probability that all missions in a future set are completed successfully. We extend this model in several ways. First, we consider a cost-based optimization model and show that a special case of this model maximizes the expected value of the number of successful missions in the future set. We also consider the situation in which one or more of the future missions may be canceled. These models and the original fleet-level selective maintenance optimization models are nonlinear. Therefore, we also consider an alternative model in which the objective function can be linearized. We show that the alternative model is a good approximation to the other models. - Highlights: • Investigate nonlinear fleet-level selective maintenance optimization models. • A cost based model is used to maximize the expected number of successful missions. • Another model is allowed to cancel missions if reliability is sufficiently low. • An alternative model has an objective function that can be linearized. • We show that the alternative model is a good approximation to the other models
Using hidden Markov models to align multiple sequences.
Mount, David W
2009-07-01
A hidden Markov model (HMM) is a probabilistic model of a multiple sequence alignment (msa) of proteins. In the model, each column of symbols in the alignment is represented by a frequency distribution of the symbols (called a "state"), and insertions and deletions are represented by other states. One moves through the model along a particular path from state to state in a Markov chain (i.e., random choice of next move), trying to match a given sequence. The next matching symbol is chosen from each state, recording its probability (frequency) and also the probability of going to that state from a previous one (the transition probability). State and transition probabilities are multiplied to obtain a probability of the given sequence. The hidden nature of the HMM is due to the lack of information about the value of a specific state, which is instead represented by a probability distribution over all possible values. This article discusses the advantages and disadvantages of HMMs in msa and presents algorithms for calculating an HMM and the conditions for producing the best HMM.
Model-supported selection of distribution coefficients for performance assessment
International Nuclear Information System (INIS)
Ochs, M.; Lothenbach, B.; Shibata, Hirokazu; Yui, Mikazu
1999-01-01
A thermodynamic speciation/sorption model is used to illustrate typical problems encountered in the extrapolation of batch-type K d values to repository conditions. For different bentonite-groundwater systems, the composition of the corresponding equilibrium solutions and the surface speciation of the bentonite is calculated by treating simultaneously solution equilibria of soluble components of the bentonite as well as ion exchange and acid/base reactions at the bentonite surface. K d values for Cs, Ra, and Ni are calculated by implementing the appropriate ion exchange and surface complexation equilibria in the bentonite model. Based on this approach, hypothetical batch experiments are contrasted with expected conditions in compacted backfill. For each of these scenarios, the variation of K d values as a function of groundwater composition is illustrated for Cs, Ra, and Ni. The applicability of measured, batch-type K d values to repository conditions is discussed. (author)
Selected bibliography on the modeling and control of plant processes
Viswanathan, M. M.; Julich, P. M.
1972-01-01
A bibliography of information pertinent to the problem of simulating plants is presented. Detailed simulations of constituent pieces are necessary to justify simple models which may be used for analysis. Thus, this area of study is necessary to support the Earth Resources Program. The report sums up the present state of the problem of simulating vegetation. This area holds the hope of major benefits to mankind through understanding the ecology of a region and in improving agricultural yield.
Fuzzy Multicriteria Model for Selection of Vibration Technology
María Carmen Carnero
2016-01-01
The benefits of applying the vibration analysis program are well known and have been so for decades. A large number of contributions have been produced discussing new diagnostic, signal treatment, technical parameter analysis, and prognosis techniques. However, to obtain the expected benefits from a vibration analysis program, it is necessary to choose the instrumentation which guarantees the best results. Despite its importance, in the literature, there are no models to assist in taking this...
Organization And Financing Models Of Health Service In Selected Countries
Directory of Open Access Journals (Sweden)
Branimir Marković
2009-07-01
Full Text Available The introductory part of the work gives a short theoretical presentation regarding possible financing models of health services in the world. In the applicative part of the work we shall present the basic practical models of financing health services in the countries that are the leaders of classic methods of health services financing, e. g. the USA, Great Britain, Germany and Croatia. Working out the applicative part of the work we gave the greatest significance to analysis of some macroeconomic indicators in health services (tendency of total health consumption in relation to GDP, average consumption per insured person etc., to structure analysis of health insurance and just to the scheme of health service organization and financing. We presume that each model of health service financing contains certain limitations that can cause problem (weak organization, increase of expenses etc.. This is the reason why we, in the applicative part of the work, paid a special attention to analysis of financial difficulties in the health sector and pointed to the needs and possibilities of solving them through possible reform measures. The end part of the work aims to point out to advantages and disadvantages of individual financing sources through the comparison method (budgetary – taxes or social health insurance – contributions.
A Model for Service Life Control of Selected Device Systems
Directory of Open Access Journals (Sweden)
Zieja Mariusz
2014-04-01
Full Text Available This paper presents a way of determining distribution of limit state exceedence time by a diagnostic parameter which determines accuracy of maintaining zero state. For calculations it was assumed that the diagnostic parameter is deviation from nominal value (zero state. Change of deviation value occurs as a result of destructive processes which occur during service. For estimation of deviation increasing rate in probabilistic sense, was used a difference equation from which, after transformation, Fokker-Planck differential equation was obtained [4, 11]. A particular solution of the equation is deviation increasing rate density function which was used for determining exceedance probability of limit state. The so-determined probability was then used to determine density function of limit state exceedance time, by increasing deviation. Having at disposal the density function of limit state exceedance time one determined service life of a system of maladjustment. In the end, a numerical example based on operational data of selected aircraft [weapon] sights was presented. The elaborated method can be also applied to determining residual life of shipboard devices whose technical state is determined on the basis of analysis of values of diagnostic parameters.
Probabilistic wind power forecasting with online model selection and warped gaussian process
International Nuclear Information System (INIS)
Kou, Peng; Liang, Deliang; Gao, Feng; Gao, Lin
2014-01-01
Highlights: • A new online ensemble model for the probabilistic wind power forecasting. • Quantifying the non-Gaussian uncertainties in wind power. • Online model selection that tracks the time-varying characteristic of wind generation. • Dynamically altering the input features. • Recursive update of base models. - Abstract: Based on the online model selection and the warped Gaussian process (WGP), this paper presents an ensemble model for the probabilistic wind power forecasting. This model provides the non-Gaussian predictive distributions, which quantify the non-Gaussian uncertainties associated with wind power. In order to follow the time-varying characteristics of wind generation, multiple time dependent base forecasting models and an online model selection strategy are established, thus adaptively selecting the most probable base model for each prediction. WGP is employed as the base model, which handles the non-Gaussian uncertainties in wind power series. Furthermore, a regime switch strategy is designed to modify the input feature set dynamically, thereby enhancing the adaptiveness of the model. In an online learning framework, the base models should also be time adaptive. To achieve this, a recursive algorithm is introduced, thus permitting the online updating of WGP base models. The proposed model has been tested on the actual data collected from both single and aggregated wind farms
Rustamov, Samir; Mustafayev, Elshan; Clements, Mark A.
2018-04-01
The context analysis of customer requests in a natural language call routing problem is investigated in the paper. One of the most significant problems in natural language call routing is a comprehension of client request. With the aim of finding a solution to this issue, the Hybrid HMM and ANFIS models become a subject to an examination. Combining different types of models (ANFIS and HMM) can prevent misunderstanding by the system for identification of user intention in dialogue system. Based on these models, the hybrid system may be employed in various language and call routing domains due to nonusage of lexical or syntactic analysis in classification process.
Directory of Open Access Journals (Sweden)
Rustamov Samir
2018-04-01
Full Text Available The context analysis of customer requests in a natural language call routing problem is investigated in the paper. One of the most significant problems in natural language call routing is a comprehension of client request. With the aim of finding a solution to this issue, the Hybrid HMM and ANFIS models become a subject to an examination. Combining different types of models (ANFIS and HMM can prevent misunderstanding by the system for identification of user intention in dialogue system. Based on these models, the hybrid system may be employed in various language and call routing domains due to nonusage of lexical or syntactic analysis in classification process.
Models for MOX fuel behaviour. A selective review
International Nuclear Information System (INIS)
Massih, Ali R.
2006-01-01
This report reviews the basic physical properties of light water reactor mixed-oxide (MOX) fuel comprising nuclear characteristics, thermal properties such as melting temperature, thermal conductivity, thermal expansion, and heat capacity, and compares these with properties of conventional UO 2 fuel. These properties are generally well understood for MOX fuel and are well described by appropriate models developed for engineering analysis. Moreover, certain modelling approaches of MOX fuel in-reactor behaviour, regarding densification, swelling, fission product gas release, helium release, fuel creep and grain growth, are evaluated and compared with the models for UO 2 . In MOX fuel the presence of plutonium rich agglomerates adds to the complexity of fuel behaviour on the micro scale. In addition, we survey the recent fuel performance experience and post irradiation examinations on several types of MOX fuel types. We discuss the data from these examinations, regarding densification, swelling, fission product gas release and the evolution of the microstructure during irradiation. The results of our review indicate that in general MOX fuel has a higher fission gas release and helium release than UO 2 fuel. Part of this increase is due to the higher operating temperatures of MOX fuel relative to UO 2 fuel due to the lower thermal conductivity of MOX material. But this effect by itself seems to be insufficient to make for the difference in the observed fission gas release of UO 2 vs. MOX fuel. Furthermore, the irradiation induced creep rate of MOX fuel is higher than that of UO 2 . This effect can reduce the pellet-clad interaction intensity in fuel rods. Finally, we suggest that certain physical based approaches discussed in the report are implemented in the fuel performance code to account for the behaviour of MOX fuel during irradiation
Models for MOX fuel behaviour. A selective review
Energy Technology Data Exchange (ETDEWEB)
Massih, Ali R. [Quantum Technologies AB, Uppsala Science Park (Sweden)
2006-12-15
This report reviews the basic physical properties of light water reactor mixed-oxide (MOX) fuel comprising nuclear characteristics, thermal properties such as melting temperature, thermal conductivity, thermal expansion, and heat capacity, and compares these with properties of conventional UO{sub 2} fuel. These properties are generally well understood for MOX fuel and are well described by appropriate models developed for engineering analysis. Moreover, certain modelling approaches of MOX fuel in-reactor behaviour, regarding densification, swelling, fission product gas release, helium release, fuel creep and grain growth, are evaluated and compared with the models for UO{sub 2}. In MOX fuel the presence of plutonium rich agglomerates adds to the complexity of fuel behaviour on the micro scale. In addition, we survey the recent fuel performance experience and post irradiation examinations on several types of MOX fuel types. We discuss the data from these examinations, regarding densification, swelling, fission product gas release and the evolution of the microstructure during irradiation. The results of our review indicate that in general MOX fuel has a higher fission gas release and helium release than UO{sub 2} fuel. Part of this increase is due to the higher operating temperatures of MOX fuel relative to UO{sub 2} fuel due to the lower thermal conductivity of MOX material. But this effect by itself seems to be insufficient to make for the difference in the observed fission gas release of UO{sub 2} vs. MOX fuel. Furthermore, the irradiation induced creep rate of MOX fuel is higher than that of UO{sub 2}. This effect can reduce the pellet-clad interaction intensity in fuel rods. Finally, we suggest that certain physical based approaches discussed in the report are implemented in the fuel performance code to account for the behaviour of MOX fuel during irradiation.
Causal Inference and Model Selection in Complex Settings
Zhao, Shandong
Propensity score methods have become a part of the standard toolkit for applied researchers who wish to ascertain causal effects from observational data. While they were originally developed for binary treatments, several researchers have proposed generalizations of the propensity score methodology for non-binary treatment regimes. In this article, we firstly review three main methods that generalize propensity scores in this direction, namely, inverse propensity weighting (IPW), the propensity function (P-FUNCTION), and the generalized propensity score (GPS), along with recent extensions of the GPS that aim to improve its robustness. We compare the assumptions, theoretical properties, and empirical performance of these methods. We propose three new methods that provide robust causal estimation based on the P-FUNCTION and GPS. While our proposed P-FUNCTION-based estimator preforms well, we generally advise caution in that all available methods can be biased by model misspecification and extrapolation. In a related line of research, we consider adjustment for posttreatment covariates in causal inference. Even in a randomized experiment, observations might have different compliance performance under treatment and control assignment. This posttreatment covariate cannot be adjusted using standard statistical methods. We review the principal stratification framework which allows for modeling this effect as part of its Bayesian hierarchical models. We generalize the current model to add the possibility of adjusting for pretreatment covariates. We also propose a new estimator of the average treatment effect over the entire population. In a third line of research, we discuss the spectral line detection problem in high energy astrophysics. We carefully review how this problem can be statistically formulated as a precise hypothesis test with point null hypothesis, why a usual likelihood ratio test does not apply for problem of this nature, and a doable fix to correctly
On extended liability in a model of adverse selection
Dieter Balkenborg
2004-01-01
We consider a model where a judgment-proof firm needs finance to realize a project. This project might cause an environmental hazard with a probability that is the private knowledge of the firm. Thus there is asymmetric information with respect to the environmental riskiness of the project. We consider the implications of a simple joint and strict liability rule on the lender and the firm where, in case of a damage, the lender is responsible for that part of the liability which the judgment-p...
Xu, Zhiqiang
2017-02-16
Attributed graph clustering, also known as community detection on attributed graphs, attracts much interests recently due to the ubiquity of attributed graphs in real life. Many existing algorithms have been proposed for this problem, which are either distance based or model based. However, model selection in attributed graph clustering has not been well addressed, that is, most existing algorithms assume the cluster number to be known a priori. In this paper, we propose two efficient approaches for attributed graph clustering with automatic model selection. The first approach is a popular Bayesian nonparametric method, while the second approach is an asymptotic method based on a recently proposed model selection criterion, factorized information criterion. Experimental results on both synthetic and real datasets demonstrate that our approaches for attributed graph clustering with automatic model selection significantly outperform the state-of-the-art algorithm.
Xu, Zhiqiang; Cheng, James; Xiao, Xiaokui; Fujimaki, Ryohei; Muraoka, Yusuke
2017-01-01
Attributed graph clustering, also known as community detection on attributed graphs, attracts much interests recently due to the ubiquity of attributed graphs in real life. Many existing algorithms have been proposed for this problem, which are either distance based or model based. However, model selection in attributed graph clustering has not been well addressed, that is, most existing algorithms assume the cluster number to be known a priori. In this paper, we propose two efficient approaches for attributed graph clustering with automatic model selection. The first approach is a popular Bayesian nonparametric method, while the second approach is an asymptotic method based on a recently proposed model selection criterion, factorized information criterion. Experimental results on both synthetic and real datasets demonstrate that our approaches for attributed graph clustering with automatic model selection significantly outperform the state-of-the-art algorithm.
SU-F-R-10: Selecting the Optimal Solution for Multi-Objective Radiomics Model
International Nuclear Information System (INIS)
Zhou, Z; Folkert, M; Wang, J
2016-01-01
Purpose: To develop an evidential reasoning approach for selecting the optimal solution from a Pareto solution set obtained by a multi-objective radiomics model for predicting distant failure in lung SBRT. Methods: In the multi-objective radiomics model, both sensitivity and specificity are considered as the objective functions simultaneously. A Pareto solution set with many feasible solutions will be resulted from the multi-objective optimization. In this work, an optimal solution Selection methodology for Multi-Objective radiomics Learning model using the Evidential Reasoning approach (SMOLER) was proposed to select the optimal solution from the Pareto solution set. The proposed SMOLER method used the evidential reasoning approach to calculate the utility of each solution based on pre-set optimal solution selection rules. The solution with the highest utility was chosen as the optimal solution. In SMOLER, an optimal learning model coupled with clonal selection algorithm was used to optimize model parameters. In this study, PET, CT image features and clinical parameters were utilized for predicting distant failure in lung SBRT. Results: Total 126 solution sets were generated by adjusting predictive model parameters. Each Pareto set contains 100 feasible solutions. The solution selected by SMOLER within each Pareto set was compared to the manually selected optimal solution. Five-cross-validation was used to evaluate the optimal solution selection accuracy of SMOLER. The selection accuracies for five folds were 80.00%, 69.23%, 84.00%, 84.00%, 80.00%, respectively. Conclusion: An optimal solution selection methodology for multi-objective radiomics learning model using the evidential reasoning approach (SMOLER) was proposed. Experimental results show that the optimal solution can be found in approximately 80% cases.
SU-F-R-10: Selecting the Optimal Solution for Multi-Objective Radiomics Model
Energy Technology Data Exchange (ETDEWEB)
Zhou, Z; Folkert, M; Wang, J [UT Southwestern Medical Center, Dallas, TX (United States)
2016-06-15
Purpose: To develop an evidential reasoning approach for selecting the optimal solution from a Pareto solution set obtained by a multi-objective radiomics model for predicting distant failure in lung SBRT. Methods: In the multi-objective radiomics model, both sensitivity and specificity are considered as the objective functions simultaneously. A Pareto solution set with many feasible solutions will be resulted from the multi-objective optimization. In this work, an optimal solution Selection methodology for Multi-Objective radiomics Learning model using the Evidential Reasoning approach (SMOLER) was proposed to select the optimal solution from the Pareto solution set. The proposed SMOLER method used the evidential reasoning approach to calculate the utility of each solution based on pre-set optimal solution selection rules. The solution with the highest utility was chosen as the optimal solution. In SMOLER, an optimal learning model coupled with clonal selection algorithm was used to optimize model parameters. In this study, PET, CT image features and clinical parameters were utilized for predicting distant failure in lung SBRT. Results: Total 126 solution sets were generated by adjusting predictive model parameters. Each Pareto set contains 100 feasible solutions. The solution selected by SMOLER within each Pareto set was compared to the manually selected optimal solution. Five-cross-validation was used to evaluate the optimal solution selection accuracy of SMOLER. The selection accuracies for five folds were 80.00%, 69.23%, 84.00%, 84.00%, 80.00%, respectively. Conclusion: An optimal solution selection methodology for multi-objective radiomics learning model using the evidential reasoning approach (SMOLER) was proposed. Experimental results show that the optimal solution can be found in approximately 80% cases.
A Framework for Bioacoustic Vocalization Analysis Using Hidden Markov Models
Directory of Open Access Journals (Sweden)
Ebenezer Out-Nyarko
2009-11-01
Full Text Available Using Hidden Markov Models (HMMs as a recognition framework for automatic classification of animal vocalizations has a number of benefits, including the ability to handle duration variability through nonlinear time alignment, the ability to incorporate complex language or recognition constraints, and easy extendibility to continuous recognition and detection domains. In this work, we apply HMMs to several different species and bioacoustic tasks using generalized spectral features that can be easily adjusted across species and HMM network topologies suited to each task. This experimental work includes a simple call type classification task using one HMM per vocalization for repertoire analysis of Asian elephants, a language-constrained song recognition task using syllable models as base units for ortolan bunting vocalizations, and a stress stimulus differentiation task in poultry vocalizations using a non-sequential model via a one-state HMM with Gaussian mixtures. Results show strong performance across all tasks and illustrate the flexibility of the HMM framework for a variety of species, vocalization types, and analysis tasks.
Selective Cooperation in Early Childhood - How to Choose Models and Partners.
Directory of Open Access Journals (Sweden)
Jonas Hermes
Full Text Available Cooperation is essential for human society, and children engage in cooperation from early on. It is unclear, however, how children select their partners for cooperation. We know that children choose selectively whom to learn from (e.g. preferring reliable over unreliable models on a rational basis. The present study investigated whether children (and adults also choose their cooperative partners selectively and what model characteristics they regard as important for cooperative partners and for informants about novel words. Three- and four-year-old children (N = 64 and adults (N = 14 saw contrasting pairs of models differing either in physical strength or in accuracy (in labeling known objects. Participants then performed different tasks (cooperative problem solving and word learning requiring the choice of a partner or informant. Both children and adults chose their cooperative partners selectively. Moreover they showed the same pattern of selective model choice, regarding a wide range of model characteristics as important for cooperation (preferring both the strong and the accurate model for a strength-requiring cooperation tasks, but only prior knowledge as important for word learning (preferring the knowledgeable but not the strong model for word learning tasks. Young children's selective model choice thus reveals an early rational competence: They infer characteristics from past behavior and flexibly consider what characteristics are relevant for certain tasks.
Selected topics in phenomenology of the standard model
International Nuclear Information System (INIS)
Roberts, R.G.
1991-01-01
These lectures cover some aspects of phenomenology of topics in high energy physics which advertise the success of the standard model in dealing with a wide variety of experimental data. First we begin with a look at deep inelastic scattering. This tells us about the structure of the nucleon, which is understood in terms of the SU(3) gauge theory of QCD, which then allows the information on quark and gluon distributions to be carried over to other 'hard' processes such as hadronic production of jets. Recent data on electroweak processes can estimate the value of Sin 2 θw to a precision where the inclusion of radiative corrections allow bounds to be made on the mass of the top quark. Electroweak effects arise in e + e - collisions, but we first present a review of the recent history of this topic within the context of QCD. We bring the subject up to date with a look at the physics at (or near) the Z pole where the measurement of asymmetries can give more information. We look at the conventional description of quark mixing by the CKM matrix and see how the mixing parameters are systematically being extracted from a variety of reactions and decays. In turn, the values can be used to set bounds on the top quark mass. The matter of CP violation in weak interactions is addressed within the context of the standard model, recent data on ε'/ε being the source of current excitement. Finally, we at the theoretical description and experimental efforts to search for the top quark. (author)
Schmidtmann, I; Elsäßer, A; Weinmann, A; Binder, H
2014-12-30
For determining a manageable set of covariates potentially influential with respect to a time-to-event endpoint, Cox proportional hazards models can be combined with variable selection techniques, such as stepwise forward selection or backward elimination based on p-values, or regularized regression techniques such as component-wise boosting. Cox regression models have also been adapted for dealing with more complex event patterns, for example, for competing risks settings with separate, cause-specific hazard models for each event type, or for determining the prognostic effect pattern of a variable over different landmark times, with one conditional survival model for each landmark. Motivated by a clinical cancer registry application, where complex event patterns have to be dealt with and variable selection is needed at the same time, we propose a general approach for linking variable selection between several Cox models. Specifically, we combine score statistics for each covariate across models by Fisher's method as a basis for variable selection. This principle is implemented for a stepwise forward selection approach as well as for a regularized regression technique. In an application to data from hepatocellular carcinoma patients, the coupled stepwise approach is seen to facilitate joint interpretation of the different cause-specific Cox models. In conditional survival models at landmark times, which address updates of prediction as time progresses and both treatment and other potential explanatory variables may change, the coupled regularized regression approach identifies potentially important, stably selected covariates together with their effect time pattern, despite having only a small number of events. These results highlight the promise of the proposed approach for coupling variable selection between Cox models, which is particularly relevant for modeling for clinical cancer registries with their complex event patterns. Copyright © 2014 John Wiley & Sons
Detecting consistent patterns of directional adaptation using differential selection codon models.
Parto, Sahar; Lartillot, Nicolas
2017-06-23
Phylogenetic codon models are often used to characterize the selective regimes acting on protein-coding sequences. Recent methodological developments have led to models explicitly accounting for the interplay between mutation and selection, by modeling the amino acid fitness landscape along the sequence. However, thus far, most of these models have assumed that the fitness landscape is constant over time. Fluctuations of the fitness landscape may often be random or depend on complex and unknown factors. However, some organisms may be subject to systematic changes in selective pressure, resulting in reproducible molecular adaptations across independent lineages subject to similar conditions. Here, we introduce a codon-based differential selection model, which aims to detect and quantify the fine-grained consistent patterns of adaptation at the protein-coding level, as a function of external conditions experienced by the organism under investigation. The model parameterizes the global mutational pressure, as well as the site- and condition-specific amino acid selective preferences. This phylogenetic model is implemented in a Bayesian MCMC framework. After validation with simulations, we applied our method to a dataset of HIV sequences from patients with known HLA genetic background. Our differential selection model detects and characterizes differentially selected coding positions specifically associated with two different HLA alleles. Our differential selection model is able to identify consistent molecular adaptations as a function of repeated changes in the environment of the organism. These models can be applied to many other problems, ranging from viral adaptation to evolution of life-history strategies in plants or animals.
Fox, Eric W; Hill, Ryan A; Leibowitz, Scott G; Olsen, Anthony R; Thornbrugh, Darren J; Weber, Marc H
2017-07-01
Random forest (RF) modeling has emerged as an important statistical learning method in ecology due to its exceptional predictive performance. However, for large and complex ecological data sets, there is limited guidance on variable selection methods for RF modeling. Typically, either a preselected set of predictor variables are used or stepwise procedures are employed which iteratively remove variables according to their importance measures. This paper investigates the application of variable selection methods to RF models for predicting probable biological stream condition. Our motivating data set consists of the good/poor condition of n = 1365 stream survey sites from the 2008/2009 National Rivers and Stream Assessment, and a large set (p = 212) of landscape features from the StreamCat data set as potential predictors. We compare two types of RF models: a full variable set model with all 212 predictors and a reduced variable set model selected using a backward elimination approach. We assess model accuracy using RF's internal out-of-bag estimate, and a cross-validation procedure with validation folds external to the variable selection process. We also assess the stability of the spatial predictions generated by the RF models to changes in the number of predictors and argue that model selection needs to consider both accuracy and stability. The results suggest that RF modeling is robust to the inclusion of many variables of moderate to low importance. We found no substantial improvement in cross-validated accuracy as a result of variable reduction. Moreover, the backward elimination procedure tended to select too few variables and exhibited numerous issues such as upwardly biased out-of-bag accuracy estimates and instabilities in the spatial predictions. We use simulations to further support and generalize results from the analysis of real data. A main purpose of this work is to elucidate issues of model selection bias and instability to ecologists interested in
Quantile Forecasting for Credit Risk Management Using Possibly Mis-specified Hidden Markov Models
Banachewicz, K.P.; Lucas, A.
2008-01-01
Recent models for credit risk management make use of hidden Markov models (HMMs). HMMs are used to forecast quantiles of corporate default rates. Little research has been done on the quality of such forecasts if the underlying HMM is potentially misspecified. In this paper, we focus on
Activity recognition using semi-Markov models on real world smart home datasets
van Kasteren, T.L.M.; Englebienne, G.; Kröse, B.J.A.
2010-01-01
Accurately recognizing human activities from sensor data recorded in a smart home setting is a challenging task. Typically, probabilistic models such as the hidden Markov model (HMM) or conditional random fields (CRF) are used to map the observed sensor data onto the hidden activity states. A
gamboostLSS: An R Package for Model Building and Variable Selection in the GAMLSS Framework
Hofner, Benjamin; Mayr, Andreas; Schmid, Matthias
2014-01-01
Generalized additive models for location, scale and shape are a flexible class of regression models that allow to model multiple parameters of a distribution function, such as the mean and the standard deviation, simultaneously. With the R package gamboostLSS, we provide a boosting method to fit these models. Variable selection and model choice are naturally available within this regularized regression framework. To introduce and illustrate the R package gamboostLSS and its infrastructure, we...
Transverse tripolar stimulation of peripheral nerve: a modelling study of spatial selectivity
Deurloo, K.E.I.; Holsheimer, J.; Boom, H.B.K.
1998-01-01
Various anode-cathode configurations in a nerve cuff are modelled to predict their spatial selectivity characteristics for functional nerve stimulation. A 3D volume conductor model of a monofascicular nerve is used for the computation of stimulation-induced field potentials, whereas a cable model of
Experiment selection for the discrimination of semi-quantitative models of dynamical systems
Vatcheva, [No Value; de Jong, H; Bernard, O; Mars, NJI
Modeling an experimental system often results in a number of alternative models that are all justified by the available experimental data. To discriminate among these models, additional experiments are needed. Existing methods for the selection of discriminatory experiments in statistics and in
Model selection in Bayesian segmentation of multiple DNA alignments.
Oldmeadow, Christopher; Keith, Jonathan M
2011-03-01
The analysis of multiple sequence alignments is allowing researchers to glean valuable insights into evolution, as well as identify genomic regions that may be functional, or discover novel classes of functional elements. Understanding the distribution of conservation levels that constitutes the evolutionary landscape is crucial to distinguishing functional regions from non-functional. Recent evidence suggests that a binary classification of evolutionary rates is inappropriate for this purpose and finds only highly conserved functional elements. Given that the distribution of evolutionary rates is multi-modal, determining the number of modes is of paramount concern. Through simulation, we evaluate the performance of a number of information criterion approaches derived from MCMC simulations in determining the dimension of a model. We utilize a deviance information criterion (DIC) approximation that is more robust than the approximations from other information criteria, and show our information criteria approximations do not produce superfluous modes when estimating conservation distributions under a variety of circumstances. We analyse the distribution of conservation for a multiple alignment comprising four primate species and mouse, and repeat this on two additional multiple alignments of similar species. We find evidence of six distinct classes of evolutionary rates that appear to be robust to the species used. Source code and data are available at http://dl.dropbox.com/u/477240/changept.zip.
An Evaluation Model To Select an Integrated Learning System in a Large, Suburban School District.
Curlette, William L.; And Others
The systematic evaluation process used in Georgia's DeKalb County School System to purchase comprehensive instructional software--an integrated learning system (ILS)--is described, and the decision-making model for selection is presented. Selection and implementation of an ILS were part of an instructional technology plan for the DeKalb schools…
Augmented Self-Modeling as a Treatment for Children with Selective Mutism.
Kehle, Thomas J.; Madaus, Melissa R.; Baratta, Victoria S.; Bray, Melissa A.
1998-01-01
Describes the treatment of three children experiencing selective mutism. The procedure utilized incorporated self-modeling, mystery motivators, self-reinforcement, stimulus fading, spacing, and antidepressant medication. All three children evidenced a complete cessation of selective mutism and maintained their treatment gains at follow-up.…
Selecting a Response in Task Switching: Testing a Model of Compound Cue Retrieval
Schneider, Darryl W.; Logan, Gordon D.
2009-01-01
How can a task-appropriate response be selected for an ambiguous target stimulus in task-switching situations? One answer is to use compound cue retrieval, whereby stimuli serve as joint retrieval cues to select a response from long-term memory. In the present study, the authors tested how well a model of compound cue retrieval could account for a…
Multi-scale habitat selection modeling: A review and outlook
Kevin McGarigal; Ho Yi Wan; Kathy A. Zeller; Brad C. Timm; Samuel A. Cushman
2016-01-01
Scale is the lens that focuses ecological relationships. Organisms select habitat at multiple hierarchical levels and at different spatial and/or temporal scales within each level. Failure to properly address scale dependence can result in incorrect inferences in multi-scale habitat selection modeling studies.
The use of vector bootstrapping to improve variable selection precision in Lasso models
Laurin, C.; Boomsma, D.I.; Lubke, G.H.
2016-01-01
The Lasso is a shrinkage regression method that is widely used for variable selection in statistical genetics. Commonly, K-fold cross-validation is used to fit a Lasso model. This is sometimes followed by using bootstrap confidence intervals to improve precision in the resulting variable selections.
Towards a pro-health food-selection model for gatekeepers in ...
African Journals Online (AJOL)
The purpose of this study was to develop a pro-health food selection model for gatekeepers of Bulawayo high-density suburbs in Zimbabwe. Gatekeepers in five suburbs constituted the study population from which a sample of 250 subjects was randomly selected. Of the total respondents (N= 182), 167 had their own ...
Hidden Markov modeling of frequency-following responses to Mandarin lexical tones.
Llanos, Fernando; Xie, Zilong; Chandrasekaran, Bharath
2017-11-01
The frequency-following response (FFR) is a scalp-recorded electrophysiological potential reflecting phase-locked activity from neural ensembles in the auditory system. The FFR is often used to assess the robustness of subcortical pitch processing. Due to low signal-to-noise ratio at the single-trial level, FFRs are typically averaged across thousands of stimulus repetitions. Prior work using this approach has shown that subcortical encoding of linguistically-relevant pitch patterns is modulated by long-term language experience. We examine the extent to which a machine learning approach using hidden Markov modeling (HMM) can be utilized to decode Mandarin tone-categories from scalp-record electrophysiolgical activity. We then assess the extent to which the HMM can capture biologically-relevant effects (language experience-driven plasticity). To this end, we recorded FFRs to four Mandarin tones from 14 adult native speakers of Chinese and 14 of native English. We trained a HMM to decode tone categories from the FFRs with varying size of averages. Tone categories were decoded with above-chance accuracies using HMM. The HMM derived metric (decoding accuracy) revealed a robust effect of language experience, such that FFRs from native Chinese speakers yielded greater accuracies than native English speakers. Critically, the language experience-driven plasticity was captured with average sizes significantly smaller than those used in the extant literature. Our results demonstrate the feasibility of HMM in assessing the robustness of neural pitch. Machine-learning approaches can complement extant analytical methods that capture auditory function and could reduce the number of trials needed to capture biological phenomena. Copyright © 2017 Elsevier B.V. All rights reserved.
Decision support model for selecting and evaluating suppliers in the construction industry
Directory of Open Access Journals (Sweden)
Fernando Schramm
2012-12-01
Full Text Available A structured evaluation of the construction industry's suppliers, considering aspects which make their quality and credibility evident, can be a strategic tool to manage this specific supply chain. This study proposes a multi-criteria decision model for suppliers' selection from the construction industry, as well as an efficient evaluation procedure for the selected suppliers. The model is based on SMARTER (Simple Multi-Attribute Rating Technique Exploiting Ranking method and its main contribution is a new approach to structure the process of suppliers' selection, establishing explicit strategic policies on which the company management system relied to make the suppliers selection. This model was applied to a Civil Construction Company in Brazil and the main results demonstrate the efficiency of the proposed model. This study allowed the development of an approach to Construction Industry which was able to provide a better relationship among its managers, suppliers and partners.
Frisch, Simon; Dshemuchadse, Maja; Görner, Max; Goschke, Thomas; Scherbaum, Stefan
2015-11-01
Selective attention biases information processing toward stimuli that are relevant for achieving our goals. However, the nature of this bias is under debate: Does it solely rely on the amplification of goal-relevant information or is there a need for additional inhibitory processes that selectively suppress currently distracting information? Here, we explored the processes underlying selective attention with a dynamic, modeling-based approach that focuses on the continuous evolution of behavior over time. We present two dynamic neural field models incorporating the diverging theoretical assumptions. Simulations with both models showed that they make similar predictions with regard to response times but differ markedly with regard to their continuous behavior. Human data observed via mouse tracking as a continuous measure of performance revealed evidence for the model solely based on amplification but no indication of persisting selective distracter inhibition.
Which risk models perform best in selecting ever-smokers for lung cancer screening?
A new analysis by scientists at NCI evaluates nine different individualized lung cancer risk prediction models based on their selections of ever-smokers for computed tomography (CT) lung cancer screening.
Zarindast, Atousa; Seyed Hosseini, Seyed Mohamad; Pishvaee, Mir Saman
2017-06-01
Robust supplier selection problem, in a scenario-based approach has been proposed, when the demand and exchange rates are subject to uncertainties. First, a deterministic multi-objective mixed integer linear programming is developed; then, the robust counterpart of the proposed mixed integer linear programming is presented using the recent extension in robust optimization theory. We discuss decision variables, respectively, by a two-stage stochastic planning model, a robust stochastic optimization planning model which integrates worst case scenario in modeling approach and finally by equivalent deterministic planning model. The experimental study is carried out to compare the performances of the three models. Robust model resulted in remarkable cost saving and it illustrated that to cope with such uncertainties, we should consider them in advance in our planning. In our case study different supplier were selected due to this uncertainties and since supplier selection is a strategic decision, it is crucial to consider these uncertainties in planning approach.
Fuzzy decision-making: a new method in model selection via various validity criteria
International Nuclear Information System (INIS)
Shakouri Ganjavi, H.; Nikravesh, K.
2001-01-01
Modeling is considered as the first step in scientific investigations. Several alternative models may be candida ted to express a phenomenon. Scientists use various criteria to select one model between the competing models. Based on the solution of a Fuzzy Decision-Making problem, this paper proposes a new method in model selection. The method enables the scientist to apply all desired validity criteria, systematically by defining a proper Possibility Distribution Function due to each criterion. Finally, minimization of a utility function composed of the Possibility Distribution Functions will determine the best selection. The method is illustrated through a modeling example for the A verage Daily Time Duration of Electrical Energy Consumption in Iran
Traditional and robust vector selection methods for use with similarity based models
International Nuclear Information System (INIS)
Hines, J. W.; Garvey, D. R.
2006-01-01
Vector selection, or instance selection as it is often called in the data mining literature, performs a critical task in the development of nonparametric, similarity based models. Nonparametric, similarity based modeling (SBM) is a form of 'lazy learning' which constructs a local model 'on the fly' by comparing a query vector to historical, training vectors. For large training sets the creation of local models may become cumbersome, since each training vector must be compared to the query vector. To alleviate this computational burden, varying forms of training vector sampling may be employed with the goal of selecting a subset of the training data such that the samples are representative of the underlying process. This paper describes one such SBM, namely auto-associative kernel regression (AAKR), and presents five traditional vector selection methods and one robust vector selection method that may be used to select prototype vectors from a larger data set in model training. The five traditional vector selection methods considered are min-max, vector ordering, combination min-max and vector ordering, fuzzy c-means clustering, and Adeli-Hung clustering. Each method is described in detail and compared using artificially generated data and data collected from the steam system of an operating nuclear power plant. (authors)
Modeling the effect of selection history on pop-out visual search.
Directory of Open Access Journals (Sweden)
Yuan-Chi Tseng
Full Text Available While attentional effects in visual selection tasks have traditionally been assigned "top-down" or "bottom-up" origins, more recently it has been proposed that there are three major factors affecting visual selection: (1 physical salience, (2 current goals and (3 selection history. Here, we look further into selection history by investigating Priming of Pop-out (POP and the Distractor Preview Effect (DPE, two inter-trial effects that demonstrate the influence of recent history on visual search performance. Using the Ratcliff diffusion model, we model observed saccadic selections from an oddball search experiment that included a mix of both POP and DPE conditions. We find that the Ratcliff diffusion model can effectively model the manner in which selection history affects current attentional control in visual inter-trial effects. The model evidence shows that bias regarding the current trial's most likely target color is the most critical parameter underlying the effect of selection history. Our results are consistent with the view that the 3-item color-oddball task used for POP and DPE experiments is best understood as an attentional decision making task.
On market timing and portfolio selectivity: modifying the Henriksson-Merton model
Goś, Krzysztof
2011-01-01
This paper evaluates selected functionalities of the parametrical Henriksson-Merton test, a tool designed for measuring the market timing and portfolio selectivity capabilities. It also provides a solution to two significant disadvantages of the model: relatively indirect interpretation and vulnerability to parameter insignificance. The model has been put to test on a group of Polish mutual funds in a period of 63 months (January 2004 – March 2009), providing unsatisfa...
Modeling Directional Selectivity Using Self-Organizing Delay-Aadaptation Maps
Tversky, Mr. Tal; Miikkulainen, Dr. Risto
2002-01-01
Using a delay adaptation learning rule, we model the activity-dependent development of directionally selective cells in the primary visual cortex. Based on input stimuli, a learning rule shifts delays to create synchronous arrival of spikes at cortical cells. As a result, delays become tuned creating a smooth cortical map of direction selectivity. This result demonstrates how delay adaption can serve as a powerful abstraction for modeling temporal learning in the brain.
Stock Selection for Portfolios Using Expected Utility-Entropy Decision Model
Directory of Open Access Journals (Sweden)
Jiping Yang
2017-09-01
Full Text Available Yang and Qiu proposed and then recently improved an expected utility-entropy (EU-E measure of risk and decision model. When segregation holds, Luce et al. derived an expected utility term, plus a constant multiplies the Shannon entropy as the representation of risky choices, further demonstrating the reasonability of the EU-E decision model. In this paper, we apply the EU-E decision model to selecting the set of stocks to be included in the portfolios. We first select 7 and 10 stocks from the 30 component stocks of Dow Jones Industrial Average index, and then derive and compare the efficient portfolios in the mean-variance framework. The conclusions imply that efficient portfolios composed of 7(10 stocks selected using the EU-E model with intermediate intervals of the tradeoff coefficients are more efficient than that composed of the sets of stocks selected using the expected utility model. Furthermore, the efficient portfolio of 7(10 stocks selected by the EU-E decision model have almost the same efficient frontier as that of the sample of all stocks. This suggests the necessity of incorporating both the expected utility and Shannon entropy together when taking risky decisions, further demonstrating the importance of Shannon entropy as the measure of uncertainty, as well as the applicability of the EU-E model as a decision-making model.
Neural Underpinnings of Decision Strategy Selection: A Review and a Theoretical Model.
Wichary, Szymon; Smolen, Tomasz
2016-01-01
In multi-attribute choice, decision makers use decision strategies to arrive at the final choice. What are the neural mechanisms underlying decision strategy selection? The first goal of this paper is to provide a literature review on the neural underpinnings and cognitive models of decision strategy selection and thus set the stage for a neurocognitive model of this process. The second goal is to outline such a unifying, mechanistic model that can explain the impact of noncognitive factors (e.g., affect, stress) on strategy selection. To this end, we review the evidence for the factors influencing strategy selection, the neural basis of strategy use and the cognitive models of this process. We also present the Bottom-Up Model of Strategy Selection (BUMSS). The model assumes that the use of the rational Weighted Additive strategy and the boundedly rational heuristic Take The Best can be explained by one unifying, neurophysiologically plausible mechanism, based on the interaction of the frontoparietal network, orbitofrontal cortex, anterior cingulate cortex and the brainstem nucleus locus coeruleus. According to BUMSS, there are three processes that form the bottom-up mechanism of decision strategy selection and lead to the final choice: (1) cue weight computation, (2) gain modulation, and (3) weighted additive evaluation of alternatives. We discuss how these processes might be implemented in the brain, and how this knowledge allows us to formulate novel predictions linking strategy use and neural signals.
Neural Underpinnings of Decision Strategy Selection: A Review and a Theoretical Model
Wichary, Szymon; Smolen, Tomasz
2016-01-01
In multi-attribute choice, decision makers use decision strategies to arrive at the final choice. What are the neural mechanisms underlying decision strategy selection? The first goal of this paper is to provide a literature review on the neural underpinnings and cognitive models of decision strategy selection and thus set the stage for a neurocognitive model of this process. The second goal is to outline such a unifying, mechanistic model that can explain the impact of noncognitive factors (e.g., affect, stress) on strategy selection. To this end, we review the evidence for the factors influencing strategy selection, the neural basis of strategy use and the cognitive models of this process. We also present the Bottom-Up Model of Strategy Selection (BUMSS). The model assumes that the use of the rational Weighted Additive strategy and the boundedly rational heuristic Take The Best can be explained by one unifying, neurophysiologically plausible mechanism, based on the interaction of the frontoparietal network, orbitofrontal cortex, anterior cingulate cortex and the brainstem nucleus locus coeruleus. According to BUMSS, there are three processes that form the bottom-up mechanism of decision strategy selection and lead to the final choice: (1) cue weight computation, (2) gain modulation, and (3) weighted additive evaluation of alternatives. We discuss how these processes might be implemented in the brain, and how this knowledge allows us to formulate novel predictions linking strategy use and neural signals. PMID:27877103
Neural underpinnings of decision strategy selection: a review and a theoretical model
Directory of Open Access Journals (Sweden)
Szymon Wichary
2016-11-01
Full Text Available In multi-attribute choice, decision makers use various decision strategies to arrive at the final choice. What are the neural mechanisms underlying decision strategy selection? The first goal of this paper is to provide a literature review on the neural underpinnings and cognitive models of decision strategy selection and thus set the stage for a unifying neurocognitive model of this process. The second goal is to outline such a unifying, mechanistic model that can explain the impact of noncognitive factors (e.g. affect, stress on strategy selection. To this end, we review the evidence for the factors influencing strategy selection, the neural basis of strategy use and the cognitive models explaining this process. We also present the neurocognitive Bottom-Up Model of Strategy Selection (BUMSS. The model assumes that the use of the rational, normative Weighted Additive strategy and the boundedly rational heuristic Take The Best can be explained by one unifying, neurophysiologically plausible mechanism, based on the interaction of the frontoparietal network, orbitofrontal cortex, anterior cingulate cortex and the brainstem nucleus locus coeruleus. According to BUMSS, there are three processes that form the bottom-up mechanism of decision strategy selection and lead to the final choice: 1 cue weight computation, 2 gain modulation, and 3 weighted additive evaluation of alternatives. We discuss how these processes might be implemented in the brain, and how this knowledge allows us to formulate novel predictions linking strategy use and neurophysiological indices.
An Uncertain Wage Contract Model with Adverse Selection and Moral Hazard
Directory of Open Access Journals (Sweden)
Xiulan Wang
2014-01-01
it can be characterized as an uncertain variable. Moreover, the employee's effort is unobservable to the employer, and the employee can select her effort level to maximize her utility. Thus, an uncertain wage contract model with adverse selection and moral hazard is established to maximize the employer's expected profit. And the model analysis mainly focuses on the equivalent form of the proposed wage contract model and the optimal solution to this form. The optimal solution indicates that both the employee's effort level and the wage increase with the employee's ability. Lastly, a numerical example is given to illustrate the effectiveness of the proposed model.
Complex Behavior in a Selective Aging Neuron Model Based on Small World Networks
International Nuclear Information System (INIS)
Zhang Guiqing; Chen Tianlun
2008-01-01
Complex behavior in a selective aging simple neuron model based on small world networks is investigated. The basic elements of the model are endowed with the main features of a neuron function. The structure of the selective aging neuron model is discussed. We also give some properties of the new network and find that the neuron model displays a power-law behavior. If the brain network is small world-like network, the mean avalanche size is almost the same unless the aging parameter is big enough.
Procedure for the Selection and Validation of a Calibration Model I-Description and Application.
Desharnais, Brigitte; Camirand-Lemyre, Félix; Mireault, Pascal; Skinner, Cameron D
2017-05-01
Calibration model selection is required for all quantitative methods in toxicology and more broadly in bioanalysis. This typically involves selecting the equation order (quadratic or linear) and weighting factor correctly modelizing the data. A mis-selection of the calibration model will generate lower quality control (QC) accuracy, with an error up to 154%. Unfortunately, simple tools to perform this selection and tests to validate the resulting model are lacking. We present a stepwise, analyst-independent scheme for selection and validation of calibration models. The success rate of this scheme is on average 40% higher than a traditional "fit and check the QCs accuracy" method of selecting the calibration model. Moreover, the process was completely automated through a script (available in Supplemental Data 3) running in RStudio (free, open-source software). The need for weighting was assessed through an F-test using the variances of the upper limit of quantification and lower limit of quantification replicate measurements. When weighting was required, the choice between 1/x and 1/x2 was determined by calculating which option generated the smallest spread of weighted normalized variances. Finally, model order was selected through a partial F-test. The chosen calibration model was validated through Cramer-von Mises or Kolmogorov-Smirnov normality testing of the standardized residuals. Performance of the different tests was assessed using 50 simulated data sets per possible calibration model (e.g., linear-no weight, quadratic-no weight, linear-1/x, etc.). This first of two papers describes the tests, procedures and outcomes of the developed procedure using real LC-MS-MS results for the quantification of cocaine and naltrexone. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
A concurrent optimization model for supplier selection with fuzzy quality loss
International Nuclear Information System (INIS)
Rosyidi, C.; Murtisari, R.; Jauhari, W.
2017-01-01
The purpose of this research is to develop a concurrent supplier selection model to minimize the purchasing cost and fuzzy quality loss considering process capability and assembled product specification. Design/methodology/approach: This research integrates fuzzy quality loss in the model to concurrently solve the decision making in detailed design stage and manufacturing stage. Findings: The resulted model can be used to concurrently select the optimal supplier and determine the tolerance of the components. The model balances the purchasing cost and fuzzy quality loss. Originality/value: An assembled product consists of many components which must be purchased from the suppliers. Fuzzy quality loss is integrated in the supplier selection model to allow the vagueness in final assembly by grouping the assembly into several grades according to the resulted assembly tolerance.
International Nuclear Information System (INIS)
Elsheikh, Ahmed H.; Wheeler, Mary F.; Hoteit, Ibrahim
2014-01-01
A Hybrid Nested Sampling (HNS) algorithm is proposed for efficient Bayesian model calibration and prior model selection. The proposed algorithm combines, Nested Sampling (NS) algorithm, Hybrid Monte Carlo (HMC) sampling and gradient estimation using Stochastic Ensemble Method (SEM). NS is an efficient sampling algorithm that can be used for Bayesian calibration and estimating the Bayesian evidence for prior model selection. Nested sampling has the advantage of computational feasibility. Within the nested sampling algorithm, a constrained sampling step is performed. For this step, we utilize HMC to reduce the correlation between successive sampled states. HMC relies on the gradient of the logarithm of the posterior distribution, which we estimate using a stochastic ensemble method based on an ensemble of directional derivatives. SEM only requires forward model runs and the simulator is then used as a black box and no adjoint code is needed. The developed HNS algorithm is successfully applied for Bayesian calibration and prior model selection of several nonlinear subsurface flow problems
A concurrent optimization model for supplier selection with fuzzy quality loss
Energy Technology Data Exchange (ETDEWEB)
Rosyidi, C.; Murtisari, R.; Jauhari, W.
2017-07-01
The purpose of this research is to develop a concurrent supplier selection model to minimize the purchasing cost and fuzzy quality loss considering process capability and assembled product specification. Design/methodology/approach: This research integrates fuzzy quality loss in the model to concurrently solve the decision making in detailed design stage and manufacturing stage. Findings: The resulted model can be used to concurrently select the optimal supplier and determine the tolerance of the components. The model balances the purchasing cost and fuzzy quality loss. Originality/value: An assembled product consists of many components which must be purchased from the suppliers. Fuzzy quality loss is integrated in the supplier selection model to allow the vagueness in final assembly by grouping the assembly into several grades according to the resulted assembly tolerance.
Statistical approach for selection of regression model during validation of bioanalytical method
Directory of Open Access Journals (Sweden)
Natalija Nakov
2014-06-01
Full Text Available The selection of an adequate regression model is the basis for obtaining accurate and reproducible results during the bionalytical method validation. Given the wide concentration range, frequently present in bioanalytical assays, heteroscedasticity of the data may be expected. Several weighted linear and quadratic regression models were evaluated during the selection of the adequate curve fit using nonparametric statistical tests: One sample rank test and Wilcoxon signed rank test for two independent groups of samples. The results obtained with One sample rank test could not give statistical justification for the selection of linear vs. quadratic regression models because slight differences between the error (presented through the relative residuals were obtained. Estimation of the significance of the differences in the RR was achieved using Wilcoxon signed rank test, where linear and quadratic regression models were treated as two independent groups. The application of this simple non-parametric statistical test provides statistical confirmation of the choice of an adequate regression model.
Energy Technology Data Exchange (ETDEWEB)
Elsheikh, Ahmed H., E-mail: aelsheikh@ices.utexas.edu [Institute for Computational Engineering and Sciences (ICES), University of Texas at Austin, TX (United States); Institute of Petroleum Engineering, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom); Wheeler, Mary F. [Institute for Computational Engineering and Sciences (ICES), University of Texas at Austin, TX (United States); Hoteit, Ibrahim [Department of Earth Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal (Saudi Arabia)
2014-02-01
A Hybrid Nested Sampling (HNS) algorithm is proposed for efficient Bayesian model calibration and prior model selection. The proposed algorithm combines, Nested Sampling (NS) algorithm, Hybrid Monte Carlo (HMC) sampling and gradient estimation using Stochastic Ensemble Method (SEM). NS is an efficient sampling algorithm that can be used for Bayesian calibration and estimating the Bayesian evidence for prior model selection. Nested sampling has the advantage of computational feasibility. Within the nested sampling algorithm, a constrained sampling step is performed. For this step, we utilize HMC to reduce the correlation between successive sampled states. HMC relies on the gradient of the logarithm of the posterior distribution, which we estimate using a stochastic ensemble method based on an ensemble of directional derivatives. SEM only requires forward model runs and the simulator is then used as a black box and no adjoint code is needed. The developed HNS algorithm is successfully applied for Bayesian calibration and prior model selection of several nonlinear subsurface flow problems.
Mental health courts and their selection processes: modeling variation for consistency.
Wolff, Nancy; Fabrikant, Nicole; Belenko, Steven
2011-10-01
Admission into mental health courts is based on a complicated and often variable decision-making process that involves multiple parties representing different expertise and interests. To the extent that eligibility criteria of mental health courts are more suggestive than deterministic, selection bias can be expected. Very little research has focused on the selection processes underpinning problem-solving courts even though such processes may dominate the performance of these interventions. This article describes a qualitative study designed to deconstruct the selection and admission processes of mental health courts. In this article, we describe a multi-stage, complex process for screening and admitting clients into mental health courts. The selection filtering model that is described has three eligibility screening stages: initial, assessment, and evaluation. The results of this study suggest that clients selected by mental health courts are shaped by the formal and informal selection criteria, as well as by the local treatment system.
Maximum entropy perception-action space: a Bayesian model of eye movement selection
Colas , Francis; Bessière , Pierre; Girard , Benoît
2010-01-01
International audience; In this article, we investigate the issue of the selection of eye movements in a free-eye Multiple Object Tracking task. We propose a Bayesian model of retinotopic maps with a complex logarithmic mapping. This model is structured in two parts: a representation of the visual scene, and a decision model based on the representation. We compare different decision models based on different features of the representation and we show that taking into account uncertainty helps...
Island-Model Genomic Selection for Long-Term Genetic Improvement of Autogamous Crops.
Yabe, Shiori; Yamasaki, Masanori; Ebana, Kaworu; Hayashi, Takeshi; Iwata, Hiroyoshi
2016-01-01
Acceleration of genetic improvement of autogamous crops such as wheat and rice is necessary to increase cereal production in response to the global food crisis. Population and pedigree methods of breeding, which are based on inbred line selection, are used commonly in the genetic improvement of autogamous crops. These methods, however, produce a few novel combinations of genes in a breeding population. Recurrent selection promotes recombination among genes and produces novel combinations of genes in a breeding population, but it requires inaccurate single-plant evaluation for selection. Genomic selection (GS), which can predict genetic potential of individuals based on their marker genotype, might have high reliability of single-plant evaluation and might be effective in recurrent selection. To evaluate the efficiency of recurrent selection with GS, we conducted simulations using real marker genotype data of rice cultivars. Additionally, we introduced the concept of an "island model" inspired by evolutionary algorithms that might be useful to maintain genetic variation through the breeding process. We conducted GS simulations using real marker genotype data of rice cultivars to evaluate the efficiency of recurrent selection and the island model in an autogamous species. Results demonstrated the importance of producing novel combinations of genes through recurrent selection. An initial population derived from admixture of multiple bi-parental crosses showed larger genetic gains than a population derived from a single bi-parental cross in whole cycles, suggesting the importance of genetic variation in an initial population. The island-model GS better maintained genetic improvement in later generations than the other GS methods, suggesting that the island-model GS can utilize genetic variation in breeding and can retain alleles with small effects in the breeding population. The island-model GS will become a new breeding method that enhances the potential of genomic
Island-Model Genomic Selection for Long-Term Genetic Improvement of Autogamous Crops.
Directory of Open Access Journals (Sweden)
Shiori Yabe
Full Text Available Acceleration of genetic improvement of autogamous crops such as wheat and rice is necessary to increase cereal production in response to the global food crisis. Population and pedigree methods of breeding, which are based on inbred line selection, are used commonly in the genetic improvement of autogamous crops. These methods, however, produce a few novel combinations of genes in a breeding population. Recurrent selection promotes recombination among genes and produces novel combinations of genes in a breeding population, but it requires inaccurate single-plant evaluation for selection. Genomic selection (GS, which can predict genetic potential of individuals based on their marker genotype, might have high reliability of single-plant evaluation and might be effective in recurrent selection. To evaluate the efficiency of recurrent selection with GS, we conducted simulations using real marker genotype data of rice cultivars. Additionally, we introduced the concept of an "island model" inspired by evolutionary algorithms that might be useful to maintain genetic variation through the breeding process. We conducted GS simulations using real marker genotype data of rice cultivars to evaluate the efficiency of recurrent selection and the island model in an autogamous species. Results demonstrated the importance of producing novel combinations of genes through recurrent selection. An initial population derived from admixture of multiple bi-parental crosses showed larger genetic gains than a population derived from a single bi-parental cross in whole cycles, suggesting the importance of genetic variation in an initial population. The island-model GS better maintained genetic improvement in later generations than the other GS methods, suggesting that the island-model GS can utilize genetic variation in breeding and can retain alleles with small effects in the breeding population. The island-model GS will become a new breeding method that enhances the
Directory of Open Access Journals (Sweden)
Vaida Marius
2009-12-01
Full Text Available In realizing this study I started from the premise that, by elaborating certain orientation models and initial selection for the speed skating and their application will appear superior results, necessary results, taking into account the actual evolution of the high performance sport in general and of the speed skating, in special.The target of this study has been the identification of an orientation model and a complete initial selection that should be based on the favorable aptitudes of the speed skating. On the basis of the made researched orientation models and initial selection has been made, things that have been demonstrated experimental that are not viable, the study starting from the data of the 120 copies, the complete experiment being made by 32 subjects separated in two groups, one using the proposed model and the other formed fromsubjects randomly selected.These models can serve as common working instruments both for the orientation process and for the initial selection one, being able to integrate in the proper practical activity, these being used easily both by coaches that are in charge with the proper selection of the athletes but also by the physical education teachers orschool teachers that are in contact with children of an early age.
Yang, Ziheng; Zhu, Tianqi
2018-02-20
The Bayesian method is noted to produce spuriously high posterior probabilities for phylogenetic trees in analysis of large datasets, but the precise reasons for this overconfidence are unknown. In general, the performance of Bayesian selection of misspecified models is poorly understood, even though this is of great scientific interest since models are never true in real data analysis. Here we characterize the asymptotic behavior of Bayesian model selection and show that when the competing models are equally wrong, Bayesian model selection exhibits surprising and polarized behaviors in large datasets, supporting one model with full force while rejecting the others. If one model is slightly less wrong than the other, the less wrong model will eventually win when the amount of data increases, but the method may become overconfident before it becomes reliable. We suggest that this extreme behavior may be a major factor for the spuriously high posterior probabilities for evolutionary trees. The philosophical implications of our results to the application of Bayesian model selection to evaluate opposing scientific hypotheses are yet to be explored, as are the behaviors of non-Bayesian methods in similar situations.
Shi, Jinfei; Zhu, Songqing; Chen, Ruwen
2017-12-01
An order selection method based on multiple stepwise regressions is proposed for General Expression of Nonlinear Autoregressive model which converts the model order problem into the variable selection of multiple linear regression equation. The partial autocorrelation function is adopted to define the linear term in GNAR model. The result is set as the initial model, and then the nonlinear terms are introduced gradually. Statistics are chosen to study the improvements of both the new introduced and originally existed variables for the model characteristics, which are adopted to determine the model variables to retain or eliminate. So the optimal model is obtained through data fitting effect measurement or significance test. The simulation and classic time-series data experiment results show that the method proposed is simple, reliable and can be applied to practical engineering.
Modeling of Clostridium tyrobutyricum for Butyric Acid Selectivity in Continuous Fermentation
Directory of Open Access Journals (Sweden)
Jianjun Du
2014-04-01
Full Text Available A mathematical model was developed to describe batch and continuous fermentation of glucose to organic acids with Clostridium tyrobutyricum. A modified Monod equation was used to describe cell growth, and a Luedeking-Piret equation was used to describe the production of butyric and acetic acids. Using the batch fermentation equations, models predicting butyric acid selectivity for continuous fermentation were also developed. The model showed that butyric acid production was a strong function of cell mass, while acetic acid production was a function of cell growth rate. Further, it was found that at high acetic acid concentrations, acetic acid was metabolized to butyric acid and that this conversion could be modeled. In batch fermentation, high butyric acid selectivity occurred at high initial cell or glucose concentrations. In continuous fermentation, decreased dilution rate improved selectivity; at a dilution rate of 0.028 h−1, the selectivity reached 95.8%. The model and experimental data showed that at total cell recycle, the butyric acid selectivity could reach 97.3%. This model could be used to optimize butyric acid production using C. tyrobutyricum in a continuous fermentation scheme. This is the first study that mathematically describes batch, steady state, and dynamic behavior of C. tyrobutyricum for butyric acid production.
Cross-validation pitfalls when selecting and assessing regression and classification models.
Krstajic, Damjan; Buturovic, Ljubomir J; Leahy, David E; Thomas, Simon
2014-03-29
We address the problem of selecting and assessing classification and regression models using cross-validation. Current state-of-the-art methods can yield models with high variance, rendering them unsuitable for a number of practical applications including QSAR. In this paper we describe and evaluate best practices which improve reliability and increase confidence in selected models. A key operational component of the proposed methods is cloud computing which enables routine use of previously infeasible approaches. We describe in detail an algorithm for repeated grid-search V-fold cross-validation for parameter tuning in classification and regression, and we define a repeated nested cross-validation algorithm for model assessment. As regards variable selection and parameter tuning we define two algorithms (repeated grid-search cross-validation and double cross-validation), and provide arguments for using the repeated grid-search in the general case. We show results of our algorithms on seven QSAR datasets. The variation of the prediction performance, which is the result of choosing different splits of the dataset in V-fold cross-validation, needs to be taken into account when selecting and assessing classification and regression models. We demonstrate the importance of repeating cross-validation when selecting an optimal model, as well as the importance of repeating nested cross-validation when assessing a prediction error.
Directory of Open Access Journals (Sweden)
Xiaofeng Lv
2018-01-01
Full Text Available Sensor data-based test selection optimization is the basis for designing a test work, which ensures that the system is tested under the constraint of the conventional indexes such as fault detection rate (FDR and fault isolation rate (FIR. From the perspective of equipment maintenance support, the ambiguity isolation has a significant effect on the result of test selection. In this paper, an improved test selection optimization model is proposed by considering the ambiguity degree of fault isolation. In the new model, the fault test dependency matrix is adopted to model the correlation between the system fault and the test group. The objective function of the proposed model is minimizing the test cost with the constraint of FDR and FIR. The improved chaotic discrete particle swarm optimization (PSO algorithm is adopted to solve the improved test selection optimization model. The new test selection optimization model is more consistent with real complicated engineering systems. The experimental result verifies the effectiveness of the proposed method.
Labonne, Jacques; Hendry, Andrew P
2010-07-01
The standard predictions of ecological speciation might be nuanced by the interaction between natural and sexual selection. We investigated this hypothesis with an individual-based model tailored to the biology of guppies (Poecilia reticulata). We specifically modeled the situation where a high-predation population below a waterfall colonizes a low-predation population above a waterfall. Focusing on the evolution of male color, we confirm that divergent selection causes the appreciable evolution of male color within 20 generations. The rate and magnitude of this divergence were reduced when dispersal rates were high and when female choice did not differ between environments. Adaptive divergence was always coupled to the evolution of two reproductive barriers: viability selection against immigrants and hybrids. Different types of sexual selection, however, led to contrasting results for another potential reproductive barrier: mating success of immigrants. In some cases, the effects of natural and sexual selection offset each other, leading to no overall reproductive isolation despite strong adaptive divergence. Sexual selection acting through female choice can thus strongly modify the effects of divergent natural selection and thereby alter the standard predictions of ecological speciation. We also found that under no circumstances did divergent selection cause appreciable divergence in neutral genetic markers.
Indiveri, Giacomo
2008-09-03
Biological organisms perform complex selective attention operations continuously and effortlessly. These operations allow them to quickly determine the motor actions to take in response to combinations of external stimuli and internal states, and to pay attention to subsets of sensory inputs suppressing non salient ones. Selective attention strategies are extremely effective in both natural and artificial systems which have to cope with large amounts of input data and have limited computational resources. One of the main computational primitives used to perform these selection operations is the Winner-Take-All (WTA) network. These types of networks are formed by arrays of coupled computational nodes that selectively amplify the strongest input signals, and suppress the weaker ones. Neuromorphic circuits are an optimal medium for constructing WTA networks and for implementing efficient hardware models of selective attention systems. In this paper we present an overview of selective attention systems based on neuromorphic WTA circuits ranging from single-chip vision sensors for selecting and tracking the position of salient features, to multi-chip systems implement saliency-map based models of selective attention.
Directory of Open Access Journals (Sweden)
Giacomo Indiveri
2008-09-01
Full Text Available Biological organisms perform complex selective attention operations continuously and effortlessly. These operations allow them to quickly determine the motor actions to take in response to combinations of external stimuli and internal states, and to pay attention to subsets of sensory inputs suppressing non salient ones. Selective attention strategies are extremely effective in both natural and artificial systems which have to cope with large amounts of input data and have limited computational resources. One of the main computational primitives used to perform these selection operations is the Winner-Take-All (WTA network. These types of networks are formed by arrays of coupled computational nodes that selectively amplify the strongest input signals, and suppress the weaker ones. Neuromorphic circuits are an optimal medium for constructing WTA networks and for implementing efficient hardware models of selective attention systems. In this paper we present an overview of selective attention systems based on neuromorphic WTA circuits ranging from single-chip vision sensors for selecting and tracking the position of salient features, to multi-chip systems implement saliency-map based models of selective attention.
Johnson, David L.; Jansen, Ritsert C.; Arendonk, Johan A.M. van
1999-01-01
A mixture model approach is employed for the mapping of quantitative trait loci (QTL) for the situation where individuals, in an outbred population, are selectively genotyped. Maximum likelihood estimation of model parameters is obtained from an Expectation-Maximization (EM) algorithm facilitated by
Optimal Selection of the Sampling Interval for Estimation of Modal Parameters by an ARMA- Model
DEFF Research Database (Denmark)
Kirkegaard, Poul Henning
1993-01-01
Optimal selection of the sampling interval for estimation of the modal parameters by an ARMA-model for a white noise loaded structure modelled as a single degree of- freedom linear mechanical system is considered. An analytical solution for an optimal uniform sampling interval, which is optimal...
DEFF Research Database (Denmark)
Zhang, Yi; Wang, Huai; Wang, Zhongxu
2017-01-01
, this paper benchmarks the most commonly-employed lifetime models of power semiconductor devices for offshore Modular Multilevel Converters (MMC) based wind farms. The benchmarking reveals that the lifetime model selection has a significant impact on the lifetime estimation. The use of analytical lifetime...
Bergee, Martin J.; Westfall, Claude R.
2005-01-01
This is the third study in a line of inquiry whose purpose has been to develop a theoretical model of selected extra musical variables' influence on solo and small-ensemble festival ratings. Authors of the second of these (Bergee & McWhirter, 2005) had used binomial logistic regression as the basis for their model-formulation strategy. Their…
Robert F. Conrad; Malcolm Gillis; D. Evan Mercer
2005-01-01
A dynamic model of selective harvesting in multi-species,multi-age tropical forests is developed. Forests are predicted to exhibit different optimal harvesting profiles depending on the nature of their joint cost functions and own or cross-species stock effects. The model is applied to the controversy about incentives produced by various taxes. The impacts of specific...
SELECTION OF EFFECTIVE MODELS OF PROJECT IMPLEMENTATION IN A CHANGING FINANCIAL SITUATION
Directory of Open Access Journals (Sweden)
Александр Иванович МЕНЕЙЛЮК
2015-06-01
Full Text Available The article describes the methods of selecting effective models of construction projects of residential buildings and recommendations for its use. The technique is based on the construction of the models in the program Microsoft Project and analysis using the program COMPEX. Methods can be used not only for building projects. It is especially effective in a variable financial situation.
Raaijmakers, Steven F.; Baars, Martine; Schaap, Lydia; Paas, Fred; van Merriënboer, Jeroen; van Gog, Tamara
2018-01-01
Self-assessment and task-selection skills are crucial in self-regulated learning situations in which students can choose their own tasks. Prior research suggested that training with video modeling examples, in which another person (the model) demonstrates and explains the cyclical process of problem-solving task performance, self-assessment, and…
Testing the normality assumption in the sample selection model with an application to travel demand
van der Klaauw, B.; Koning, R.H.
2003-01-01
In this article we introduce a test for the normality assumption in the sample selection model. The test is based on a flexible parametric specification of the density function of the error terms in the model. This specification follows a Hermite series with bivariate normality as a special case.
Testing the normality assumption in the sample selection model with an application to travel demand
van der Klauw, B.; Koning, R.H.
In this article we introduce a test for the normality assumption in the sample selection model. The test is based on a flexible parametric specification of the density function of the error terms in the model. This specification follows a Hermite series with bivariate normality as a special case.
Use of the AIC with the EM algorithm: A demonstration of a probability model selection technique
Energy Technology Data Exchange (ETDEWEB)
Glosup, J.G.; Axelrod M.C. [Lawrence Livermore National Lab., CA (United States)
1994-11-15
The problem of discriminating between two potential probability models, a Gaussian distribution and a mixture of Gaussian distributions, is considered. The focus of our interest is a case where the models are potentially non-nested and the parameters of the mixture model are estimated through the EM algorithm. The AIC, which is frequently used as a criterion for discriminating between non-nested models, is modified to work with the EM algorithm and is shown to provide a model selection tool for this situation. A particular problem involving an infinite mixture distribution known as Middleton`s Class A model is used to demonstrate the effectiveness and limitations of this method.
DEFF Research Database (Denmark)
Mikkelsen, Frederik Vissing
eective computational tools for estimating unknown structures in dynamical systems, such as gene regulatory networks, which may be used to predict downstream eects of interventions in the system. A recommended algorithm based on the computational tools is presented and thoroughly tested in various......Broadly speaking, this thesis is devoted to model selection applied to ordinary dierential equations and risk estimation under model selection. A model selection framework was developed for modelling time course data by ordinary dierential equations. The framework is accompanied by the R software...... package, episode. This package incorporates a collection of sparsity inducing penalties into two types of loss functions: a squared loss function relying on numerically solving the equations and an approximate loss function based on inverse collocation methods. The goal of this framework is to provide...
He, Zhangyi; Beaumont, Mark; Yu, Feng
2017-07-05
We explore the effect of different mechanisms of natural selection on the evolution of populations for one- and two-locus systems. We compare the effect of viability and fecundity selection in the context of the Wright-Fisher model with selection under the assumption of multiplicative fitness. We show that these two modes of natural selection correspond to different orderings of the processes of population regulation and natural selection in the Wright-Fisher model. We find that under the Wright-Fisher model these two different orderings can affect the distribution of trajectories of haplotype frequencies evolving with genetic recombination. However, the difference in the distribution of trajectories is only appreciable when the population is in significant linkage disequilibrium. We find that as linkage disequilibrium decays the trajectories for the two different models rapidly become indistinguishable. We discuss the significance of these findings in terms of biological examples of viability and fecundity selection, and speculate that the effect may be significant when factors such as gene migration maintain a degree of linkage disequilibrium. Copyright © 2017 He et al.
A hidden Markov model approach for determining expression from genomic tiling micro arrays
Directory of Open Access Journals (Sweden)
Krogh Anders
2006-05-01
Full Text Available Abstract Background Genomic tiling micro arrays have great potential for identifying previously undiscovered coding as well as non-coding transcription. To-date, however, analyses of these data have been performed in an ad hoc fashion. Results We present a probabilistic procedure, ExpressHMM, that adaptively models tiling data prior to predicting expression on genomic sequence. A hidden Markov model (HMM is used to model the distributions of tiling array probe scores in expressed and non-expressed regions. The HMM is trained on sets of probes mapped to regions of annotated expression and non-expression. Subsequently, prediction of transcribed fragments is made on tiled genomic sequence. The prediction is accompanied by an expression probability curve for visual inspection of the supporting evidence. We test ExpressHMM on data from the Cheng et al. (2005 tiling array experiments on ten Human chromosomes 1. Results can be downloaded and viewed from our web site 2. Conclusion The value of adaptive modelling of fluorescence scores prior to categorisation into expressed and non-expressed probes is demonstrated. Our results indicate that our adaptive approach is superior to the previous analysis in terms of nucleotide sensitivity and transfrag specificity.
Examining speed versus selection in connectivity models using elk migration as an example
Brennan, Angela; Hanks, Ephraim M.; Merkle, Jerod A.; Cole, Eric K.; Dewey, Sarah R.; Courtemanch, Alyson B.; Cross, Paul C.
2018-01-01
ContextLandscape resistance is vital to connectivity modeling and frequently derived from resource selection functions (RSFs). RSFs estimate relative probability of use and tend to focus on understanding habitat preferences during slow, routine animal movements (e.g., foraging). Dispersal and migration, however, can produce rarer, faster movements, in which case models of movement speed rather than resource selection may be more realistic for identifying habitats that facilitate connectivity.ObjectiveTo compare two connectivity modeling approaches applied to resistance estimated from models of movement rate and resource selection.MethodsUsing movement data from migrating elk, we evaluated continuous time Markov chain (CTMC) and movement-based RSF models (i.e., step selection functions [SSFs]). We applied circuit theory and shortest random path (SRP) algorithms to CTMC, SSF and null (i.e., flat) resistance surfaces to predict corridors between elk seasonal ranges. We evaluated prediction accuracy by comparing model predictions to empirical elk movements.ResultsAll connectivity models predicted elk movements well, but models applied to CTMC resistance were more accurate than models applied to SSF and null resistance. Circuit theory models were more accurate on average than SRP models.ConclusionsCTMC can be more realistic than SSFs for estimating resistance for fast movements, though SSFs may demonstrate some predictive ability when animals also move slowly through corridors (e.g., stopover use during migration). High null model accuracy suggests seasonal range data may also be critical for predicting direct migration routes. For animals that migrate or disperse across large landscapes, we recommend incorporating CTMC into the connectivity modeling toolkit.
Lam, Lun Tak; Sun, Yi; Davey, Neil; Adams, Rod; Prapopoulou, Maria; Brown, Marc B; Moss, Gary P
2010-06-01
The aim was to employ Gaussian processes to assess mathematically the nature of a skin permeability dataset and to employ these methods, particularly feature selection, to determine the key physicochemical descriptors which exert the most significant influence on percutaneous absorption, and to compare such models with established existing models. Gaussian processes, including automatic relevance detection (GPRARD) methods, were employed to develop models of percutaneous absorption that identified key physicochemical descriptors of percutaneous absorption. Using MatLab software, the statistical performance of these models was compared with single linear networks (SLN) and quantitative structure-permeability relationships (QSPRs). Feature selection methods were used to examine in more detail the physicochemical parameters used in this study. A range of statistical measures to determine model quality were used. The inherently nonlinear nature of the skin data set was confirmed. The Gaussian process regression (GPR) methods yielded predictive models that offered statistically significant improvements over SLN and QSPR models with regard to predictivity (where the rank order was: GPR > SLN > QSPR). Feature selection analysis determined that the best GPR models were those that contained log P, melting point and the number of hydrogen bond donor groups as significant descriptors. Further statistical analysis also found that great synergy existed between certain parameters. It suggested that a number of the descriptors employed were effectively interchangeable, thus questioning the use of models where discrete variables are output, usually in the form of an equation. The use of a nonlinear GPR method produced models with significantly improved predictivity, compared with SLN or QSPR models. Feature selection methods were able to provide important mechanistic information. However, it was also shown that significant synergy existed between certain parameters, and as such it
Elsheikh, A. H.
2013-12-01
Calibration of subsurface flow models is an essential step for managing ground water aquifers, designing of contaminant remediation plans, and maximizing recovery from hydrocarbon reservoirs. We investigate an efficient sampling algorithm known as nested sampling (NS), which can simultaneously sample the posterior distribution for uncertainty quantification, and estimate the Bayesian evidence for model selection. Model selection statistics, such as the Bayesian evidence, are needed to choose or assign different weights to different models of different levels of complexities. In this work, we report the first successful application of nested sampling for calibration of several nonlinear subsurface flow problems. The estimated Bayesian evidence by the NS algorithm is used to weight different parameterizations of the subsurface flow models (prior model selection). The results of the numerical evaluation implicitly enforced Occam\\'s razor where simpler models with fewer number of parameters are favored over complex models. The proper level of model complexity was automatically determined based on the information content of the calibration data and the data mismatch of the calibrated model.
gamboostLSS: An R Package for Model Building and Variable Selection in the GAMLSS Framework
Directory of Open Access Journals (Sweden)
Benjamin Hofner
2016-10-01
Full Text Available Generalized additive models for location, scale and shape are a flexible class of regression models that allow to model multiple parameters of a distribution function, such as the mean and the standard deviation, simultaneously. With the R package gamboostLSS, we provide a boosting method to fit these models. Variable selection and model choice are naturally available within this regularized regression framework. To introduce and illustrate the R package gamboostLSS and its infrastructure, we use a data set on stunted growth in India. In addition to the specification and application of the model itself, we present a variety of convenience functions, including methods for tuning parameter selection, prediction and visualization of results. The package gamboostLSS is available from the Comprehensive R Archive Network (CRAN at https://CRAN.R-project.org/package=gamboostLSS.
Predictive and Descriptive CoMFA Models: The Effect of Variable Selection.
Sepehri, Bakhtyar; Omidikia, Nematollah; Kompany-Zareh, Mohsen; Ghavami, Raouf
2018-01-01
Aims & Scope: In this research, 8 variable selection approaches were used to investigate the effect of variable selection on the predictive power and stability of CoMFA models. Three data sets including 36 EPAC antagonists, 79 CD38 inhibitors and 57 ATAD2 bromodomain inhibitors were modelled by CoMFA. First of all, for all three data sets, CoMFA models with all CoMFA descriptors were created then by applying each variable selection method a new CoMFA model was developed so for each data set, 9 CoMFA models were built. Obtained results show noisy and uninformative variables affect CoMFA results. Based on created models, applying 5 variable selection approaches including FFD, SRD-FFD, IVE-PLS, SRD-UVEPLS and SPA-jackknife increases the predictive power and stability of CoMFA models significantly. Among them, SPA-jackknife removes most of the variables while FFD retains most of them. FFD and IVE-PLS are time consuming process while SRD-FFD and SRD-UVE-PLS run need to few seconds. Also applying FFD, SRD-FFD, IVE-PLS, SRD-UVE-PLS protect CoMFA countor maps information for both fields. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
The selection pressures induced non-smooth infectious disease model and bifurcation analysis
International Nuclear Information System (INIS)
Qin, Wenjie; Tang, Sanyi
2014-01-01
Highlights: • A non-smooth infectious disease model to describe selection pressure is developed. • The effect of selection pressure on infectious disease transmission is addressed. • The key factors which are related to the threshold value are determined. • The stabilities and bifurcations of model have been revealed in more detail. • Strategies for the prevention of emerging infectious disease are proposed. - Abstract: Mathematical models can assist in the design strategies to control emerging infectious disease. This paper deduces a non-smooth infectious disease model induced by selection pressures. Analysis of this model reveals rich dynamics including local, global stability of equilibria and local sliding bifurcations. Model solutions ultimately stabilize at either one real equilibrium or the pseudo-equilibrium on the switching surface of the present model, depending on the threshold value determined by some related parameters. Our main results show that reducing the threshold value to a appropriate level could contribute to the efficacy on prevention and treatment of emerging infectious disease, which indicates that the selection pressures can be beneficial to prevent the emerging infectious disease under medical resource limitation
Sensor selection of helicopter transmission systems based on physical model and sensitivity analysis
Directory of Open Access Journals (Sweden)
Lyu Kehong
2014-06-01
Full Text Available In the helicopter transmission systems, it is important to monitor and track the tooth damage evolution using lots of sensors and detection methods. This paper develops a novel approach for sensor selection based on physical model and sensitivity analysis. Firstly, a physical model of tooth damage and mesh stiffness is built. Secondly, some effective condition indicators (CIs are presented, and the optimal CIs set is selected by comparing their test statistics according to Mann–Kendall test. Afterwards, the selected CIs are used to generate a health indicator (HI through sen slop estimator. Then, the sensors are selected according to the monotonic relevance and sensitivity to the damage levels. Finally, the proposed method is verified by the simulation and experimental data. The results show that the approach can provide a guide for health monitoring of helicopter transmission systems, and it is effective to reduce the test cost and improve the system’s reliability.
Zhou, Yuan; Shi, Tie-Mao; Hu, Yuan-Man; Gao, Chang; Liu, Miao; Song, Lin-Qi
2011-12-01
Based on geographic information system (GIS) technology and multi-objective location-allocation (LA) model, and in considering of four relatively independent objective factors (population density level, air pollution level, urban heat island effect level, and urban land use pattern), an optimized location selection for the urban parks within the Third Ring of Shenyang was conducted, and the selection results were compared with the spatial distribution of existing parks, aimed to evaluate the rationality of the spatial distribution of urban green spaces. In the location selection of urban green spaces in the study area, the factor air pollution was most important, and, compared with single objective factor, the weighted analysis results of multi-objective factors could provide optimized spatial location selection of new urban green spaces. The combination of GIS technology with LA model would be a new approach for the spatial optimizing of urban green spaces.
The MCDM Model for Personnel Selection Based on SWARA and ARAS Methods
Directory of Open Access Journals (Sweden)
Darjan Karabasevic
2015-05-01
Full Text Available Competent employees are the key resource in an organization for achieving success and, therefore, competitiveness on the market. The aim of the recruitment and selection process is to acquire personnel with certain competencies required for a particular position, i.e.,a position within the company. Bearing in mind the fact that in the process of decision making decision-makers have underused the methods of making decisions, this paper aims to establish an MCDM model for the evaluation and selection of candidates in the process of the recruitment and selection of personnel based on the SWARA and the ARAS methods. Apart from providing an MCDM model, the paper will additionally provide a set of evaluation criteria for the position of a sales manager (the middle management in the telecommunication industry which will also be used in the numerical example. On the basis of a numerical example, in the process of employment, theproposed MCDMmodel can be successfully usedin selecting candidates.
Modeling of Clostridium tyrobutyricum for Butyric Acid Selectivity in Continuous Fermentation
Du, Jianjun; McGraw, Amy; Hestekin, Jamie
2014-01-01
A mathematical model was developed to describe batch and continuous fermentation of glucose to organic acids with Clostridium tyrobutyricum. A modified Monod equation was used to describe cell growth, and a Luedeking-Piret equation was used to describe the production of butyric and acetic acids. Using the batch fermentation equations, models predicting butyric acid selectivity for continuous fermentation were also developed. The model showed that butyric acid production was a strong function ...
Modeling of Clostridium t yrobutyricum for Butyric Acid Selectivity in Continuous Fermentation
Jianjun Du; Amy McGraw; Jamie A. Hestekin
2014-01-01
A mathematical model was developed to describe batch and continuous fermentation of glucose to organic acids with Clostridium tyrobutyricum . A modified Monod equation was used to describe cell growth, and a Luedeking-Piret equation was used to describe the production of butyric and acetic acids. Using the batch fermentation equations, models predicting butyric acid selectivity for continuous fermentation were also developed. The model showed that butyric acid production was a strong function...
A reaction-diffusion model to capture disparity selectivity in primary visual cortex.
Directory of Open Access Journals (Sweden)
Mohammed Sultan Mohiuddin Siddiqui
Full Text Available Decades of experimental studies are available on disparity selective cells in visual cortex of macaque and cat. Recently, local disparity map for iso-orientation sites for near-vertical edge preference is reported in area 18 of cat visual cortex. No experiment is yet reported on complete disparity map in V1. Disparity map for layer IV in V1 can provide insight into how disparity selective complex cell receptive field is organized from simple cell subunits. Though substantial amounts of experimental data on disparity selective cells is available, no model on receptive field development of such cells or disparity map development exists in literature. We model disparity selectivity in layer IV of cat V1 using a reaction-diffusion two-eye paradigm. In this model, the wiring between LGN and cortical layer IV is determined by resource an LGN cell has for supporting connections to cortical cells and competition for target space in layer IV. While competing for target space, the same type of LGN cells, irrespective of whether it belongs to left-eye-specific or right-eye-specific LGN layer, cooperate with each other while trying to push off the other type. Our model captures realistic 2D disparity selective simple cell receptive fields, their response properties and disparity map along with orientation and ocular dominance maps. There is lack of correlation between ocular dominance and disparity selectivity at the cell population level. At the map level, disparity selectivity topography is not random but weakly clustered for similar preferred disparities. This is similar to the experimental result reported for macaque. The details of weakly clustered disparity selectivity map in V1 indicate two types of complex cell receptive field organization.
Darlington, P J
1972-02-01
Mathematical biologists have failed to produce a satisfactory general model for evolution of altruism, i.e., of behaviors by which "altruists" benefit other individuals but not themselves; kin selection does not seem to be a sufficient explanation of nonreciprocal altruism. Nonmathematical (but mathematically acceptable) models are now proposed for evolution of negative altruism in dual-determinant and of positive altruism in tri-determinant systems. Peck orders, territorial systems, and an ant society are analyzed as examples. In all models, evolution is primarily by individual selection, probably supplemented by group selection. Group selection is differential extinction of populations. It can act only on populations preformed by selection at the individual level, but can either cancel individual selective trends (effecting evolutionary homeostasis) or supplement them; its supplementary effect is probably increasingly important in the evolution of increasingly organized populations.
Archer, C Ruth; Hunt, John
2015-11-01
Aging evolved because the strength of natural selection declines over the lifetime of most organisms. Weak natural selection late in life allows the accumulation of deleterious mutations and may favor alleles that have positive effects on fitness early in life, but costly pleiotropic effects expressed later on. While this decline in natural selection is central to longstanding evolutionary explanations for aging, a role for sexual selection and sexual conflict in the evolution of lifespan and aging has only been identified recently. Testing how sexual selection and sexual conflict affect lifespan and aging is challenging as it requires quantifying male age-dependent reproductive success. This is difficult in the invertebrate model organisms traditionally used in aging research. Research using crickets (Orthoptera: Gryllidae), where reproductive investment can be easily measured in both sexes, has offered exciting and novel insights into how sexual selection and sexual conflict affect the evolution of aging, both in the laboratory and in the wild. Here we discuss how sexual selection and sexual conflict can be integrated alongside evolutionary and mechanistic theories of aging using crickets as a model. We then highlight the potential for research using crickets to further advance our understanding of lifespan and aging. Copyright © 2015 Elsevier Inc. All rights reserved.
Directory of Open Access Journals (Sweden)
Branka Marasović
2009-03-01
Full Text Available In this paper we select an optimal portfolio on the Croatian capital market by using the multicriterial programming. In accordance with the modern portfolio theory maximisation of returns at minimal risk should be the investment goal of any successful investor. However, contrary to the expectations of the modern portfolio theory, the tests carried out on a number of financial markets reveal the existence of other indicators important in portfolio selection. Considering the importance of variables other than return and risk, selection of the optimal portfolio becomes a multicriterial problem which should be solved by using the appropriate techniques.In order to select an optimal portfolio, absolute values of criteria, like return, risk, price to earning value ratio (P/E, price to book value ratio (P/B and price to sale value ratio (P/S are included in our multicriterial model. However the problem might occur as the mean values of some criteria are significantly different for different sectors and because financial managers emphasize that comparison of the same criteria for different sectors could lead us to wrong conclusions. In the second part of the paper, relative values of previously stated criteria (in relation to mean value of sector are included in model for selecting optimal portfolio. Furthermore, the paper shows that if relative values of criteria are included in multicriterial model for selecting optimal portfolio, return in subsequent period is considerably higher than if absolute values of the same criteria were used.
Using Random Forests to Select Optimal Input Variables for Short-Term Wind Speed Forecasting Models
Directory of Open Access Journals (Sweden)
Hui Wang
2017-10-01
Full Text Available Achieving relatively high-accuracy short-term wind speed forecasting estimates is a precondition for the construction and grid-connected operation of wind power forecasting systems for wind farms. Currently, most research is focused on the structure of forecasting models and does not consider the selection of input variables, which can have significant impacts on forecasting performance. This paper presents an input variable selection method for wind speed forecasting models. The candidate input variables for various leading periods are selected and random forests (RF is employed to evaluate the importance of all variable as features. The feature subset with the best evaluation performance is selected as the optimal feature set. Then, kernel-based extreme learning machine is constructed to evaluate the performance of input variables selection based on RF. The results of the case study show that by removing the uncorrelated and redundant features, RF effectively extracts the most strongly correlated set of features from the candidate input variables. By finding the optimal feature combination to represent the original information, RF simplifies the structure of the wind speed forecasting model, shortens the training time required, and substantially improves the model’s accuracy and generalization ability, demonstrating that the input variables selected by RF are effective.
International Nuclear Information System (INIS)
Miller, C.W.; Dunning, D.E. Jr.; Etnier, E.L.; Hoffman, F.O.; Little, C.A.; Meyer, H.R.; Shaeffer, D.L.; Till, J.E.
1979-07-01
Evaluations of selected predictive models and parameters used in the assessment of the environmental transport and dosimetry of radionuclides are summarized. Mator sections of this report include a validation of the Gaussian plume disperson model, comparison of the output of a model for the transport of 131 I from vegetation to milk with field data, validation of a model for the fraction of aerosols intercepted by vegetation, an evaluation of dose conversion factors for 232 Th, an evaluation of considering the effect of age dependency on population dose estimates, and a summary of validation results for hydrologic transport models
Jun, Gyuchan T; Morris, Zoe; Eldabi, Tillal; Harper, Paul; Naseer, Aisha; Patel, Brijesh; Clarkson, John P
2011-05-19
There is an increasing recognition that modelling and simulation can assist in the process of designing health care policies, strategies and operations. However, the current use is limited and answers to questions such as what methods to use and when remain somewhat underdeveloped. The aim of this study is to provide a mechanism for decision makers in health services planning and management to compare a broad range of modelling and simulation methods so that they can better select and use them or better commission relevant modelling and simulation work. This paper proposes a modelling and simulation method comparison and selection tool developed from a comprehensive literature review, the research team's extensive expertise and inputs from potential users. Twenty-eight different methods were identified, characterised by their relevance to different application areas, project life cycle stages, types of output and levels of insight, and four input resources required (time, money, knowledge and data). The characterisation is presented in matrix forms to allow quick comparison and selection. This paper also highlights significant knowledge gaps in the existing literature when assessing the applicability of particular approaches to health services management, where modelling and simulation skills are scarce let alone money and time. A modelling and simulation method comparison and selection tool is developed to assist with the selection of methods appropriate to supporting specific decision making processes. In particular it addresses the issue of which method is most appropriate to which specific health services management problem, what the user might expect to be obtained from the method, and what is required to use the method. In summary, we believe the tool adds value to the scarce existing literature on methods comparison and selection.
Directory of Open Access Journals (Sweden)
Kang-Wook Lee
2017-05-01
Full Text Available An important issue for international businesses and academia is selecting countries in which to expand in order to achieve entrepreneurial sustainability. This study develops a country selection model for sustainable construction businesses using both objective and subjective information. The objective information consists of 14 variables related to country risk and project performance in 32 countries over 25 years. This hybrid model applies subjective weighting from industrial experts to objective information using a fuzzy LinPreRa-based Analytic Hierarchy Process. The hybrid model yields a more accurate country selection compared to a purely objective information-based model in experienced countries. Interestingly, the hybrid model provides some different predictions with only subjective opinions in unexperienced countries, which implies that expert opinion is not always reliable. In addition, feedback from five experts in top international companies is used to validate the model’s completeness, effectiveness, generality, and applicability. The model is expected to aid decision makers in selecting better candidate countries that lead to sustainable business success.
A Heckman selection model for the safety analysis of signalized intersections.
Directory of Open Access Journals (Sweden)
Xuecai Xu
Full Text Available The objective of this paper is to provide a new method for estimating crash rate and severity simultaneously.This study explores a Heckman selection model of the crash rate and severity simultaneously at different levels and a two-step procedure is used to investigate the crash rate and severity levels. The first step uses a probit regression model to determine the sample selection process, and the second step develops a multiple regression model to simultaneously evaluate the crash rate and severity for slight injury/kill or serious injury (KSI, respectively. The model uses 555 observations from 262 signalized intersections in the Hong Kong metropolitan area, integrated with information on the traffic flow, geometric road design, road environment, traffic control and any crashes that occurred during two years.The results of the proposed two-step Heckman selection model illustrate the necessity of different crash rates for different crash severity levels.A comparison with the existing approaches suggests that the Heckman selection model offers an efficient and convenient alternative method for evaluating the safety performance at signalized intersections.
A Time-Series Water Level Forecasting Model Based on Imputation and Variable Selection Method.
Yang, Jun-He; Cheng, Ching-Hsue; Chan, Chia-Pan
2017-01-01
Reservoirs are important for households and impact the national economy. This paper proposed a time-series forecasting model based on estimating a missing value followed by variable selection to forecast the reservoir's water level. This study collected data from the Taiwan Shimen Reservoir as well as daily atmospheric data from 2008 to 2015. The two datasets are concatenated into an integrated dataset based on ordering of the data as a research dataset. The proposed time-series forecasting model summarily has three foci. First, this study uses five imputation methods to directly delete the missing value. Second, we identified the key variable via factor analysis and then deleted the unimportant variables sequentially via the variable selection method. Finally, the proposed model uses a Random Forest to build the forecasting model of the reservoir's water level. This was done to compare with the listing method under the forecasting error. These experimental results indicate that the Random Forest forecasting model when applied to variable selection with full variables has better forecasting performance than the listing model. In addition, this experiment shows that the proposed variable selection can help determine five forecast methods used here to improve the forecasting capability.
A Time-Series Water Level Forecasting Model Based on Imputation and Variable Selection Method
Directory of Open Access Journals (Sweden)
Jun-He Yang
2017-01-01
Full Text Available Reservoirs are important for households and impact the national economy. This paper proposed a time-series forecasting model based on estimating a missing value followed by variable selection to forecast the reservoir’s water level. This study collected data from the Taiwan Shimen Reservoir as well as daily atmospheric data from 2008 to 2015. The two datasets are concatenated into an integrated dataset based on ordering of the data as a research dataset. The proposed time-series forecasting model summarily has three foci. First, this study uses five imputation methods to directly delete the missing value. Second, we identified the key variable via factor analysis and then deleted the unimportant variables sequentially via the variable selection method. Finally, the proposed model uses a Random Forest to build the forecasting model of the reservoir’s water level. This was done to compare with the listing method under the forecasting error. These experimental results indicate that the Random Forest forecasting model when applied to variable selection with full variables has better forecasting performance than the listing model. In addition, this experiment shows that the proposed variable selection can help determine five forecast methods used here to improve the forecasting capability.
Automating an integrated spatial data-mining model for landfill site selection
Abujayyab, Sohaib K. M.; Ahamad, Mohd Sanusi S.; Yahya, Ahmad Shukri; Ahmad, Siti Zubaidah; Aziz, Hamidi Abdul
2017-10-01
An integrated programming environment represents a robust approach to building a valid model for landfill site selection. One of the main challenges in the integrated model is the complicated processing and modelling due to the programming stages and several limitations. An automation process helps avoid the limitations and improve the interoperability between integrated programming environments. This work targets the automation of a spatial data-mining model for landfill site selection by integrating between spatial programming environment (Python-ArcGIS) and non-spatial environment (MATLAB). The model was constructed using neural networks and is divided into nine stages distributed between Matlab and Python-ArcGIS. A case study was taken from the north part of Peninsular Malaysia. 22 criteria were selected to utilise as input data and to build the training and testing datasets. The outcomes show a high-performance accuracy percentage of 98.2% in the testing dataset using 10-fold cross validation. The automated spatial data mining model provides a solid platform for decision makers to performing landfill site selection and planning operations on a regional scale.
Model selection with multiple regression on distance matrices leads to incorrect inferences.
Directory of Open Access Journals (Sweden)
Ryan P Franckowiak
Full Text Available In landscape genetics, model selection procedures based on Information Theoretic and Bayesian principles have been used with multiple regression on distance matrices (MRM to test the relationship between multiple vectors of pairwise genetic, geographic, and environmental distance. Using Monte Carlo simulations, we examined the ability of model selection criteria based on Akaike's information criterion (AIC, its small-sample correction (AICc, and the Bayesian information criterion (BIC to reliably rank candidate models when applied with MRM while varying the sample size. The results showed a serious problem: all three criteria exhibit a systematic bias toward selecting unnecessarily complex models containing spurious random variables and erroneously suggest a high level of support for the incorrectly ranked best model. These problems effectively increased with increasing sample size. The failure of AIC, AICc, and BIC was likely driven by the inflated sample size and different sum-of-squares partitioned by MRM, and the resulting effect on delta values. Based on these findings, we strongly discourage the continued application of AIC, AICc, and BIC for model selection with MRM.
Ning, Jing; Chen, Yong; Piao, Jin
2017-07-01
Publication bias occurs when the published research results are systematically unrepresentative of the population of studies that have been conducted, and is a potential threat to meaningful meta-analysis. The Copas selection model provides a flexible framework for correcting estimates and offers considerable insight into the publication bias. However, maximizing the observed likelihood under the Copas selection model is challenging because the observed data contain very little information on the latent variable. In this article, we study a Copas-like selection model and propose an expectation-maximization (EM) algorithm for estimation based on the full likelihood. Empirical simulation studies show that the EM algorithm and its associated inferential procedure performs well and avoids the non-convergence problem when maximizing the observed likelihood. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Empirical test of Capital Asset Pricing Model on Selected Banking Shares from Borsa Istanbul
Directory of Open Access Journals (Sweden)
Fuzuli Aliyev
2018-03-01
Full Text Available In this paper we tested Capital Asset Pricing Model (shortly CAPM hereafter on the selected banking stocks of Borsa Istanbul. Here we tried to explain how to price financial assets based on their risks in the case of BIST-100 index. CAPM is an important model in the portfolio management theory used by economic agents for the selection of financial assets. We used 12 random banking stocks’ monthly return data for 2001–2010 periods. To test the validity of the CAPM, we first derived the regression equation for the risk-free interest rate and risk premium relationship using January 2001–December 2009 data. Then, estimated January–December 2010 returns with the equation. Comparing forecasted return with the actual return, we concluded that the CAPM is valid for the portfolio consisting of the 12 banks traded in the ISE, i.e. The model could predict the overall outcome of portfolio of selected banking shares
A Site Selection Model for a Straw-Based Power Generation Plant with CO2 Emissions
Directory of Open Access Journals (Sweden)
Hao Lv
2014-10-01
Full Text Available The decision on the location of a straw-based power generation plant has a great influence on the plant’s operation and performance. This study explores traditional theories for site selection. Using integer programming, the study optimizes the economic and carbon emission outcomes of straw-based power generation as two objectives, with the supply and demand of straw as constraints. It provides a multi-objective mixed-integer programming model to solve the site selection problem for a straw-based power generation plant. It then provides a case study to demonstrate the application of the model in the decision on the site selection for a straw-based power generation plant with a Chinese region. Finally, the paper discusses the result of the model in the context of the wider aspect of straw-based power generation.
Institute of Scientific and Technical Information of China (English)
郑勋; 李海鹰; 孟令云; 许心越; 陈旭
2015-01-01
An improved social force model based on exit selection is proposed to simulate pedestrians’ microscopic behaviors in subway station. The modification lies in considering three factors of spatial distance, occupant density and exit width. In addition, the problem of pedestrians selecting exit frequently is solved as follows: not changing to other exits in the affected area of one exit, using the probability of remaining preceding exit and invoking function of exit selection after several simulation steps. Pedestrians in subway station have some special characteristics, such as explicit destinations, different familiarities with subway station. Finally, Beijing Zoo Subway Station is taken as an example and the feasibility of the model results is verified through the comparison of the actual data and simulation data. The simulation results show that the improved model can depict the microscopic behaviors of pedestrians in subway station.
Genomic Selection Accuracy using Multifamily Prediction Models in a Wheat Breeding Program
Directory of Open Access Journals (Sweden)
Elliot L. Heffner
2011-03-01
Full Text Available Genomic selection (GS uses genome-wide molecular marker data to predict the genetic value of selection candidates in breeding programs. In plant breeding, the ability to produce large numbers of progeny per cross allows GS to be conducted within each family. However, this approach requires phenotypes of lines from each cross before conducting GS. This will prolong the selection cycle and may result in lower gains per year than approaches that estimate marker-effects with multiple families from previous selection cycles. In this study, phenotypic selection (PS, conventional marker-assisted selection (MAS, and GS prediction accuracy were compared for 13 agronomic traits in a population of 374 winter wheat ( L. advanced-cycle breeding lines. A cross-validation approach that trained and validated prediction accuracy across years was used to evaluate effects of model selection, training population size, and marker density in the presence of genotype × environment interactions (G×E. The average prediction accuracies using GS were 28% greater than with MAS and were 95% as accurate as PS. For net merit, the average accuracy across six selection indices for GS was 14% greater than for PS. These results provide empirical evidence that multifamily GS could increase genetic gain per unit time and cost in plant breeding.
A finite volume alternate direction implicit approach to modeling selective laser melting
DEFF Research Database (Denmark)
Hattel, Jesper Henri; Mohanty, Sankhya
2013-01-01
Over the last decade, several studies have attempted to develop thermal models for analyzing the selective laser melting process with a vision to predict thermal stresses, microstructures and resulting mechanical properties of manufactured products. While a holistic model addressing all involved...... to accurately simulate the process, are constrained by either the size or scale of the model domain. A second challenging aspect involves the inclusion of non-linear material behavior into the 3D implicit FE models. An alternating direction implicit (ADI) method based on a finite volume (FV) formulation...... is proposed for modeling single-layer and few-layers selective laser melting processes. The ADI technique is implemented and applied for two cases involving constant material properties and non-linear material behavior. The ADI FV method consume less time while having comparable accuracy with respect to 3D...
Objective Model Selection for Identifying the Human Feedforward Response in Manual Control.
Drop, Frank M; Pool, Daan M; van Paassen, Marinus Rene M; Mulder, Max; Bulthoff, Heinrich H
2018-01-01
Realistic manual control tasks typically involve predictable target signals and random disturbances. The human controller (HC) is hypothesized to use a feedforward control strategy for target-following, in addition to feedback control for disturbance-rejection. Little is known about human feedforward control, partly because common system identification methods have difficulty in identifying whether, and (if so) how, the HC applies a feedforward strategy. In this paper, an identification procedure is presented that aims at an objective model selection for identifying the human feedforward response, using linear time-invariant autoregressive with exogenous input models. A new model selection criterion is proposed to decide on the model order (number of parameters) and the presence of feedforward in addition to feedback. For a range of typical control tasks, it is shown by means of Monte Carlo computer simulations that the classical Bayesian information criterion (BIC) leads to selecting models that contain a feedforward path from data generated by a pure feedback model: "false-positive" feedforward detection. To eliminate these false-positives, the modified BIC includes an additional penalty on model complexity. The appropriate weighting is found through computer simulations with a hypothesized HC model prior to performing a tracking experiment. Experimental human-in-the-loop data will be considered in future work. With appropriate weighting, the method correctly identifies the HC dynamics in a wide range of control tasks, without false-positive results.
Olofsson, Sara K.; Geli, Patricia; Andersson, Dan I.; Cars, Otto
2005-01-01
Antibiotic dosing regimens may vary in their capacity to select mutants. Our hypothesis was that selection of a more resistant bacterial subpopulation would increase with the time within a selective window (SW), i.e., when drug concentrations fall between the MICs of two strains. An in vitro kinetic model was used to study the selection of two Escherichia coli strains with different susceptibilities to cefotaxime. The bacterial mixtures were exposed to cefotaxime for 24 h and SWs of 1, 2, 4, 8, and 12 h. A mathematical model was developed that described the selection of preexisting and newborn mutants and the post-MIC effect (PME) as functions of pharmacokinetic parameters. Our main conclusions were as follows: (i) the selection between preexisting mutants increased with the time within the SW; (ii) the emergence and selection of newborn mutants increased with the time within the SW (with a short time, only 4% of the preexisting mutants were replaced by newborn mutants, compared to the longest times, where 100% were replaced); and (iii) PME increased with the area under the concentration-time curve (AUC) and was slightly more pronounced with a long elimination half-life (T1/2) than with a short T1/2 situation, when AUC is fixed. We showed that, in a dynamic competition between strains with different levels of resistance, the appearance of newborn high-level resistant mutants from the parental strains and the PME can strongly affect the outcome of the selection and that pharmacodynamic models can be used to predict the outcome of resistance development. PMID:16304176
Influence of Selective Edge Removal and Refractory Period in a Self-Organized Critical Neuron Model
International Nuclear Information System (INIS)
Lin Min; Gang, Zhao; Chen Tianlun
2009-01-01
A simple model for a set of integrate-and-fire neurons based on the weighted network is introduced. By considering the neurobiological phenomenon in brain development and the difference of the synaptic strength, we construct weighted networks develop with link additions and followed by selective edge removal. The network exhibits the small-world and scale-free properties with high network efficiency. The model displays an avalanche activity on a power-law distribution. We investigate the effect of selective edge removal and the neuron refractory period on the self-organized criticality of the system. (condensed matter: structural, mechanical, and thermal properties)
A multicriteria decision making model for assessment and selection of an ERP in a logistics context
Pereira, Teresa; Ferreira, Fernanda A.
2017-07-01
The aim of this work is to apply a methodology of decision support based on a multicriteria decision analyses (MCDA) model that allows the assessment and selection of an Enterprise Resource Planning (ERP) in a Portuguese logistics company by Group Decision Maker (GDM). A Decision Support system (DSS) that implements a MCDA - Multicriteria Methodology for the Assessment and Selection of Information Systems / Information Technologies (MMASSI / IT) is used based on its features and facility to change and adapt the model to a given scope. Using this DSS it was obtained the information system that best suited to the decisional context, being this result evaluated through a sensitivity and robustness analysis.
DEFF Research Database (Denmark)
Knudsen, Jenny Dahl; Odenholt, Inga; Erlendsdottir, Helga
2003-01-01
Pharmacokinetic (PK) and pharmacodynamic (PD) properties for the selection of resistant pneumococci were studied by using three strains of the same serotype (6B) for mixed-culture infection in time-kill experiments in vitro and in three different animal models, the mouse peritonitis, the mouse....../ml was used in the rabbit tissue cage model. During the different treatment regimens, the differences in numbers of CFU between treated and control animals were calculated to measure the efficacies of the regimens. Selective media with erythromycin or different penicillin concentrations were used to quantify...
PARAMETER ESTIMATION AND MODEL SELECTION FOR INDOOR ENVIRONMENTS BASED ON SPARSE OBSERVATIONS
Directory of Open Access Journals (Sweden)
Y. Dehbi
2017-09-01
Full Text Available This paper presents a novel method for the parameter estimation and model selection for the reconstruction of indoor environments based on sparse observations. While most approaches for the reconstruction of indoor models rely on dense observations, we predict scenes of the interior with high accuracy in the absence of indoor measurements. We use a model-based top-down approach and incorporate strong but profound prior knowledge. The latter includes probability density functions for model parameters and sparse observations such as room areas and the building footprint. The floorplan model is characterized by linear and bi-linear relations with discrete and continuous parameters. We focus on the stochastic estimation of model parameters based on a topological model derived by combinatorial reasoning in a first step. A Gauss-Markov model is applied for estimation and simulation of the model parameters. Symmetries are represented and exploited during the estimation process. Background knowledge as well as observations are incorporated in a maximum likelihood estimation and model selection is performed with AIC/BIC. The likelihood is also used for the detection and correction of potential errors in the topological model. Estimation results are presented and discussed.
Parameter Estimation and Model Selection for Indoor Environments Based on Sparse Observations
Dehbi, Y.; Loch-Dehbi, S.; Plümer, L.
2017-09-01
This paper presents a novel method for the parameter estimation and model selection for the reconstruction of indoor environments based on sparse observations. While most approaches for the reconstruction of indoor models rely on dense observations, we predict scenes of the interior with high accuracy in the absence of indoor measurements. We use a model-based top-down approach and incorporate strong but profound prior knowledge. The latter includes probability density functions for model parameters and sparse observations such as room areas and the building footprint. The floorplan model is characterized by linear and bi-linear relations with discrete and continuous parameters. We focus on the stochastic estimation of model parameters based on a topological model derived by combinatorial reasoning in a first step. A Gauss-Markov model is applied for estimation and simulation of the model parameters. Symmetries are represented and exploited during the estimation process. Background knowledge as well as observations are incorporated in a maximum likelihood estimation and model selection is performed with AIC/BIC. The likelihood is also used for the detection and correction of potential errors in the topological model. Estimation results are presented and discussed.
Using the Animal Model to Accelerate Response to Selection in a Self-Pollinating Crop
Cowling, Wallace A.; Stefanova, Katia T.; Beeck, Cameron P.; Nelson, Matthew N.; Hargreaves, Bonnie L. W.; Sass, Olaf; Gilmour, Arthur R.; Siddique, Kadambot H. M.
2015-01-01
We used the animal model in S0 (F1) recurrent selection in a self-pollinating crop including, for the first time, phenotypic and relationship records from self progeny, in addition to cross progeny, in the pedigree. We tested the model in Pisum sativum, the autogamous annual species used by Mendel to demonstrate the particulate nature of inheritance. Resistance to ascochyta blight (Didymella pinodes complex) in segregating S0 cross progeny was assessed by best linear unbiased prediction over two cycles of selection. Genotypic concurrence across cycles was provided by pure-line ancestors. From cycle 1, 102/959 S0 plants were selected, and their S1 self progeny were intercrossed and selfed to produce 430 S0 and 575 S2 individuals that were evaluated in cycle 2. The analysis was improved by including all genetic relationships (with crossing and selfing in the pedigree), additive and nonadditive genetic covariances between cycles, fixed effects (cycles and spatial linear trends), and other random effects. Narrow-sense heritability for ascochyta blight resistance was 0.305 and 0.352 in cycles 1 and 2, respectively, calculated from variance components in the full model. The fitted correlation of predicted breeding values across cycles was 0.82. Average accuracy of predicted breeding values was 0.851 for S2 progeny of S1 parent plants and 0.805 for S0 progeny tested in cycle 2, and 0.878 for S1 parent plants for which no records were available. The forecasted response to selection was 11.2% in the next cycle with 20% S0 selection proportion. This is the first application of the animal model to cyclic selection in heterozygous populations of selfing plants. The method can be used in genomic selection, and for traits measured on S0-derived bulks such as grain yield. PMID:25943522
International Nuclear Information System (INIS)
Shafieloo, Arman
2012-01-01
By introducing Crossing functions and hyper-parameters I show that the Bayesian interpretation of the Crossing Statistics [1] can be used trivially for the purpose of model selection among cosmological models. In this approach to falsify a cosmological model there is no need to compare it with other models or assume any particular form of parametrization for the cosmological quantities like luminosity distance, Hubble parameter or equation of state of dark energy. Instead, hyper-parameters of Crossing functions perform as discriminators between correct and wrong models. Using this approach one can falsify any assumed cosmological model without putting priors on the underlying actual model of the universe and its parameters, hence the issue of dark energy parametrization is resolved. It will be also shown that the sensitivity of the method to the intrinsic dispersion of the data is small that is another important characteristic of the method in testing cosmological models dealing with data with high uncertainties
On theoretical models of gene expression evolution with random genetic drift and natural selection.
Directory of Open Access Journals (Sweden)
Osamu Ogasawara
2009-11-01
Full Text Available The relative contributions of natural selection and random genetic drift are a major source of debate in the study of gene expression evolution, which is hypothesized to serve as a bridge from molecular to phenotypic evolution. It has been suggested that the conflict between views is caused by the lack of a definite model of the neutral hypothesis, which can describe the long-run behavior of evolutionary change in mRNA abundance. Therefore previous studies have used inadequate analogies with the neutral prediction of other phenomena, such as amino acid or nucleotide sequence evolution, as the null hypothesis of their statistical inference.In this study, we introduced two novel theoretical models, one based on neutral drift and the other assuming natural selection, by focusing on a common property of the distribution of mRNA abundance among a variety of eukaryotic cells, which reflects the result of long-term evolution. Our results demonstrated that (1 our models can reproduce two independently found phenomena simultaneously: the time development of gene expression divergence and Zipf's law of the transcriptome; (2 cytological constraints can be explicitly formulated to describe long-term evolution; (3 the model assuming that natural selection optimized relative mRNA abundance was more consistent with previously published observations than the model of optimized absolute mRNA abundances.The models introduced in this study give a formulation of evolutionary change in the mRNA abundance of each gene as a stochastic process, on the basis of previously published observations. This model provides a foundation for interpreting observed data in studies of gene expression evolution, including identifying an adequate time scale for discriminating the effect of natural selection from that of random genetic drift of selectively neutral variations.
Hydraulic head interpolation using ANFIS—model selection and sensitivity analysis
Kurtulus, Bedri; Flipo, Nicolas
2012-01-01
The aim of this study is to investigate the efficiency of ANFIS (adaptive neuro fuzzy inference system) for interpolating hydraulic head in a 40-km 2 agricultural watershed of the Seine basin (France). Inputs of ANFIS are Cartesian coordinates and the elevation of the ground. Hydraulic head was measured at 73 locations during a snapshot campaign on September 2009, which characterizes low-water-flow regime in the aquifer unit. The dataset was then split into three subsets using a square-based selection method: a calibration one (55%), a training one (27%), and a test one (18%). First, a method is proposed to select the best ANFIS model, which corresponds to a sensitivity analysis of ANFIS to the type and number of membership functions (MF). Triangular, Gaussian, general bell, and spline-based MF are used with 2, 3, 4, and 5 MF per input node. Performance criteria on the test subset are used to select the 5 best ANFIS models among 16. Then each is used to interpolate the hydraulic head distribution on a (50×50)-m grid, which is compared to the soil elevation. The cells where the hydraulic head is higher than the soil elevation are counted as "error cells." The ANFIS model that exhibits the less "error cells" is selected as the best ANFIS model. The best model selection reveals that ANFIS models are very sensitive to the type and number of MF. Finally, a sensibility analysis of the best ANFIS model with four triangular MF is performed on the interpolation grid, which shows that ANFIS remains stable to error propagation with a higher sensitivity to soil elevation.
Directory of Open Access Journals (Sweden)
Bryan Howell
Full Text Available Spinal cord stimulation (SCS is an alternative or adjunct therapy to treat chronic pain, a prevalent and clinically challenging condition. Although SCS has substantial clinical success, the therapy is still prone to failures, including lead breakage, lead migration, and poor pain relief. The goal of this study was to develop a computational model of SCS and use the model to compare activation of neural elements during intradural and extradural electrode placement. We constructed five patient-specific models of SCS. Stimulation thresholds predicted by the model were compared to stimulation thresholds measured intraoperatively, and we used these models to quantify the efficiency and selectivity of intradural and extradural SCS. Intradural placement dramatically increased stimulation efficiency and reduced the power required to stimulate the dorsal columns by more than 90%. Intradural placement also increased selectivity, allowing activation of a greater proportion of dorsal column fibers before spread of activation to dorsal root fibers, as well as more selective activation of individual dermatomes at different lateral deviations from the midline. Further, the results suggest that current electrode designs used for extradural SCS are not optimal for intradural SCS, and a novel azimuthal tripolar design increased stimulation selectivity, even beyond that achieved with an intradural paddle array. Increased stimulation efficiency is expected to increase the battery life of implantable pulse generators, increase the recharge interval of rechargeable implantable pulse generators, and potentially reduce stimulator volume. The greater selectivity of intradural stimulation may improve the success rate of SCS by mitigating the sensitivity of pain relief to malpositioning of the electrode. The outcome of this effort is a better quantitative understanding of how intradural electrode placement can potentially increase the selectivity and efficiency of SCS
A Bayesian Approach to Model Selection in Hierarchical Mixtures-of-Experts Architectures.
Tanner, Martin A.; Peng, Fengchun; Jacobs, Robert A.
1997-03-01
There does not exist a statistical model that shows good performance on all tasks. Consequently, the model selection problem is unavoidable; investigators must decide which model is best at summarizing the data for each task of interest. This article presents an approach to the model selection problem in hierarchical mixtures-of-experts architectures. These architectures combine aspects of generalized linear models with those of finite mixture models in order to perform tasks via a recursive "divide-and-conquer" strategy. Markov chain Monte Carlo methodology is used to estimate the distribution of the architectures' parameters. One part of our approach to model selection attempts to estimate the worth of each component of an architecture so that relatively unused components can be pruned from the architecture's structure. A second part of this approach uses a Bayesian hypothesis testing procedure in order to differentiate inputs that carry useful information from nuisance inputs. Simulation results suggest that the approach presented here adheres to the dictum of Occam's razor; simple architectures that are adequate for summarizing the data are favored over more complex structures. Copyright 1997 Elsevier Science Ltd. All Rights Reserved.
The effect of mis-specification on mean and selection between the Weibull and lognormal models
Jia, Xiang; Nadarajah, Saralees; Guo, Bo
2018-02-01
The lognormal and Weibull models are commonly used to analyse data. Although selection procedures have been extensively studied, it is possible that the lognormal model could be selected when the true model is Weibull or vice versa. As the mean is important in applications, we focus on the effect of mis-specification on mean. The effect on lognormal mean is first considered if the lognormal sample is wrongly fitted by a Weibull model. The maximum likelihood estimate (MLE) and quasi-MLE (QMLE) of lognormal mean are obtained based on lognormal and Weibull models. Then, the impact is evaluated by computing ratio of biases and ratio of mean squared errors (MSEs) between MLE and QMLE. For completeness, the theoretical results are demonstrated by simulation studies. Next, the effect of the reverse mis-specification on Weibull mean is discussed. It is found that the ratio of biases and the ratio of MSEs are independent of the location and scale parameters of the lognormal and Weibull models. The influence could be ignored if some special conditions hold. Finally, a model selection method is proposed by comparing ratios concerning biases and MSEs. We also present a published data to illustrate the study in this paper.
Using maximum entropy modeling for optimal selection of sampling sites for monitoring networks
Stohlgren, Thomas J.; Kumar, Sunil; Barnett, David T.; Evangelista, Paul H.
2011-01-01
Environmental monitoring programs must efficiently describe state shifts. We propose using maximum entropy modeling to select dissimilar sampling sites to capture environmental variability at low cost, and demonstrate a specific application: sample site selection for the Central Plains domain (453,490 km2) of the National Ecological Observatory Network (NEON). We relied on four environmental factors: mean annual temperature and precipitation, elevation, and vegetation type. A “sample site” was defined as a 20 km × 20 km area (equal to NEON’s airborne observation platform [AOP] footprint), within which each 1 km2 cell was evaluated for each environmental factor. After each model run, the most environmentally dissimilar site was selected from all potential sample sites. The iterative selection of eight sites captured approximately 80% of the environmental envelope of the domain, an improvement over stratified random sampling and simple random designs for sample site selection. This approach can be widely used for cost-efficient selection of survey and monitoring sites.
Zeng, Xueqiang; Luo, Gang
2017-12-01
Machine learning is broadly used for clinical data analysis. Before training a model, a machine learning algorithm must be selected. Also, the values of one or more model parameters termed hyper-parameters must be set. Selecting algorithms and hyper-parameter values requires advanced machine learning knowledge and many labor-intensive manual iterations. To lower the bar to machine learning, miscellaneous automatic selection methods for algorithms and/or hyper-parameter values have been proposed. Existing automatic selection methods are inefficient on large data sets. This poses a challenge for using machine learning in the clinical big data era. To address the challenge, this paper presents progressive sampling-based Bayesian optimization, an efficient and automatic selection method for both algorithms and hyper-parameter values. We report an implementation of the method. We show that compared to a state of the art automatic selection method, our method can significantly reduce search time, classification error rate, and standard deviation of error rate due to randomization. This is major progress towards enabling fast turnaround in identifying high-quality solutions required by many machine learning-based clinical data analysis tasks.
Directory of Open Access Journals (Sweden)
Kadhim Raheem Erzaij
2016-06-01
Full Text Available Engineering equipment is essential part in the construction project and usually manufactured with long lead times, large costs and special engineering requirements. Construction manager targets that equipment to be delivered in the site need date with the right quantity, appropriate cost and required quality, and this entails an efficient supplier can satisfy these targets. Selection of engineering equipment supplier is a crucial managerial process .it requires evaluation of multiple suppliers according to multiple criteria. This process is usually performed manually and based on just limited evaluation criteria, so better alternatives may be neglected. Three stages of survey comprised number of public and private companies in Iraqi construction sector were employed to identify main criteria and sub criteria for supplier selection and their priorities.The main criteria identified were quality of product, commercial aspect, delivery, reputation and position, and system quality . An effective technique in multiple criteria decision making (MCDM as analytical hierarchy process (AHP have been used to get importance weights of criteria based on experts judgment. Thereafter, a management software system for Evaluation and Selection of Engineering Equipment Suppliers (ESEES has been developed based on the results obtained from AHP. This model was validated in a case study at municipality of Baghdad involved actual cases of selection pumps suppliers for infrastructure projects .According to experts, this model can improve the current process followed in the supplier selection and aid decision makers to adopt better choices in the domain of selection engineering equipment suppliers.
Classification of Multiple Seizure-Like States in Three Different Rodent Models of Epileptogenesis.
Guirgis, Mirna; Serletis, Demitre; Zhang, Jane; Florez, Carlos; Dian, Joshua A; Carlen, Peter L; Bardakjian, Berj L
2014-01-01
Epilepsy is a dynamical disease and its effects are evident in over fifty million people worldwide. This study focused on objective classification of the multiple states involved in the brain's epileptiform activity. Four datasets from three different rodent hippocampal preparations were explored, wherein seizure-like-events (SLE) were induced by the perfusion of a low - Mg(2+) /high-K(+) solution or 4-Aminopyridine. Local field potentials were recorded from CA3 pyramidal neurons and interneurons and modeled as Markov processes. Specifically, hidden Markov models (HMM) were used to determine the nature of the states present. Properties of the Hilbert transform were used to construct the feature spaces for HMM training. By sequentially applying the HMM training algorithm, multiple states were identified both in episodes of SLE and nonSLE activity. Specifically, preSLE and postSLE states were differentiated and multiple inner SLE states were identified. This was accomplished using features extracted from the lower frequencies (1-4 Hz, 4-8 Hz) alongside those of both the low- (40-100 Hz) and high-gamma (100-200 Hz) of the recorded electrical activity. The learning paradigm of this HMM-based system eliminates the inherent bias associated with other learning algorithms that depend on predetermined state segmentation and renders it an appropriate candidate for SLE classification.
QRS complex detection based on continuous density hidden Markov models using univariate observations
Sotelo, S.; Arenas, W.; Altuve, M.
2018-04-01
In the electrocardiogram (ECG), the detection of QRS complexes is a fundamental step in the ECG signal processing chain since it allows the determination of other characteristics waves of the ECG and provides information about heart rate variability. In this work, an automatic QRS complex detector based on continuous density hidden Markov models (HMM) is proposed. HMM were trained using univariate observation sequences taken either from QRS complexes or their derivatives. The detection approach is based on the log-likelihood comparison of the observation sequence with a fixed threshold. A sliding window was used to obtain the observation sequence to be evaluated by the model. The threshold was optimized by receiver operating characteristic curves. Sensitivity (Sen), specificity (Spc) and F1 score were used to evaluate the detection performance. The approach was validated using ECG recordings from the MIT-BIH Arrhythmia database. A 6-fold cross-validation shows that the best detection performance was achieved with 2 states HMM trained with QRS complexes sequences (Sen = 0.668, Spc = 0.360 and F1 = 0.309). We concluded that these univariate sequences provide enough information to characterize the QRS complex dynamics from HMM. Future works are directed to the use of multivariate observations to increase the detection performance.
A first approach to Arrhythmogenic Cardiomyopathy detection through ECG and Hidden Markov Models
Energy Technology Data Exchange (ETDEWEB)
Jimenez-Serrano, S.; Sanz Sanchez, J.; Martínez Hinarejos, C.D.; Igual Muñoz, B.; Millet Roig, J.; Zorio Grima, Z.; Castells, F.
2016-07-01
Arrhythmogenic Cardiomyopathy (ACM) is a heritable cardiac disease causing sudden cardiac death in young people. Its clinical diagnosis includes major and minor criteria based on alterations of the electrocardiogram (ECG). The aim of this study is to evaluate Hidden Markov Models (HMM) in order to assess its possible potential of classification among subjects affected by ACM and those relatives who do not suffer the disease through 12-lead ECG recordings. Database consists of 12-lead ECG recordings from 32 patients diagnosed with ACM, and 37 relatives of those affected, but without gene mutation. Using the HTK toolkit and a hold-out strategy in order to train and evaluate a set of HMM models, we performed a grid search through the number of states and Gaussians across these HMM models. Results show that two different HMM models achieved the best balance between sensibility and specificity. The first one needed 35 states and 2 Gaussians and its performance was 0.7 and 0.8 in sensibility and specificity respectively. The second one achieved a sensibility and specificity values of 0.8 and 0.7 respectively with 50 states and 4 Gaussians. The results of this study show that HMM models can achieve an acceptable level of sensibility and specificity in the classification among ECG registers between those affected by ACM and the control group. All the above suggest that this approach could help to detect the disease in a non-invasive way, especially within the context of family screening, improving sensitivity in detection by ECG. (Author)
Model selection for convolutive ICA with an application to spatiotemporal analysis of EEG
DEFF Research Database (Denmark)
Dyrholm, Mads; Makeig, S.; Hansen, Lars Kai
2007-01-01
We present a new algorithm for maximum likelihood convolutive independent component analysis (ICA) in which components are unmixed using stable autoregressive filters determined implicitly by estimating a convolutive model of the mixing process. By introducing a convolutive mixing model...... for the components, we show how the order of the filters in the model can be correctly detected using Bayesian model selection. We demonstrate a framework for deconvolving a subspace of independent components in electroencephalography (EEG). Initial results suggest that in some cases, convolutive mixing may...
A model-based approach for identifying signatures of ancient balancing selection in genetic data.
DeGiorgio, Michael; Lohmueller, Kirk E; Nielsen, Rasmus
2014-08-01
While much effort has focused on detecting positive and negative directional selection in the human genome, relatively little work has been devoted to balancing selection. This lack of attention is likely due to the paucity of sophisticated methods for identifying sites under balancing selection. Here we develop two composite likelihood ratio tests for detecting balancing selection. Using simulations, we show that these methods outperform competing methods under a variety of assumptions and demographic models. We apply the new methods to whole-genome human data, and find a number of previously-identified loci with strong evidence of balancing selection, including several HLA genes. Additionally, we find evidence for many novel candidates, the strongest of which is FANK1, an imprinted gene that suppresses apoptosis, is expressed during meiosis in males, and displays marginal signs of segregation distortion. We hypothesize that balancing selection acts on this locus to stabilize the segregation distortion and negative fitness effects of the distorter allele. Thus, our methods are able to reproduce many previously-hypothesized signals of balancing selection, as well as discover novel interesting candidates.
A model-based approach for identifying signatures of ancient balancing selection in genetic data.
Directory of Open Access Journals (Sweden)
Michael DeGiorgio
2014-08-01
Full Text Available While much effort has focused on detecting positive and negative directional selection in the human genome, relatively little work has been devoted to balancing selection. This lack of attention is likely due to the paucity of sophisticated methods for identifying sites under balancing selection. Here we develop two composite likelihood ratio tests for detecting balancing selection. Using simulations, we show that these methods outperform competing methods under a variety of assumptions and demographic models. We apply the new methods to whole-genome human data, and find a number of previously-identified loci with strong evidence of balancing selection, including several HLA genes. Additionally, we find evidence for many novel candidates, the strongest of which is FANK1, an imprinted gene that suppresses apoptosis, is expressed during meiosis in males, and displays marginal signs of segregation distortion. We hypothesize that balancing selection acts on this locus to stabilize the segregation distortion and negative fitness effects of the distorter allele. Thus, our methods are able to reproduce many previously-hypothesized signals of balancing selection, as well as discover novel interesting candidates.