WorldWideScience

Sample records for model high temperature

  1. Dynamic Model of High Temperature PEM Fuel Cell Stack Temperature

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Kær, Søren Knudsen

    2007-01-01

    The present work involves the development of a model for predicting the dynamic temperature of a high temperature PEM (HTPEM) fuel cell stack. The model is developed to test different thermal control strategies before implementing them in the actual system. The test system consists of a prototype...... parts, where also the temperatures are measured. The heat balance of the system involves a fuel cell model to describe the heat added by the fuel cells when a current is drawn. Furthermore the model also predicts the temperatures, when heating the stack with external heating elements for start-up, heat...... the stack at a high stoichiometric air flow. This is possible because of the PBI fuel cell membranes used, and the very low pressure drop in the stack. The model consists of a discrete thermal model dividing the stack into three parts: inlet, middle and end and predicting the temperatures in these three...

  2. The high temperature Ising model is a critical percolation model

    NARCIS (Netherlands)

    Meester, R.W.J.; Camia, F.; Balint, A.

    2010-01-01

    We define a new percolation model by generalising the FK representation of the Ising model, and show that on the triangular lattice and at high temperatures, the critical point in the new model corresponds to the Ising model. Since the new model can be viewed as Bernoulli percolation on a random

  3. A model of evaluating the pseudogap temperature for high ...

    Indian Academy of Sciences (India)

    We have presented a model of evaluating the pseudogap temperature for high temperature superconductors using paraconductivity approach. The theoretical analysis is based on the crossing point technique of the conductivity expressions. The pseudogap temperature T ∗ is found to depend on dimension and is ...

  4. A high temperature interparticle potential for an alternative gauge model

    International Nuclear Information System (INIS)

    Doria, R.M.

    1984-01-01

    A thermal Wilson loop for a model with two gauge fields associated with the same gauge group is discussed. Deconfinement appears at high temperature. It is not possible however specify the colour of the deconfined matter. (Author) [pt

  5. A model of evaluating the pseudogap temperature for high ...

    Indian Academy of Sciences (India)

    DOI: 10.1007/s12043-015-1088-3; ePublication: 30 September 2015. Abstract. We have presented a model of evaluating the pseudogap temperature for high- temperature superconductors using paraconductivity approach. The theoretical analysis is based on the crossing point technique of the conductivity expressions.

  6. A THERMODYNAMIC CAVITATION MODEL APPLICABLE TO HIGH TEMPERATURE FLOW

    Directory of Open Access Journals (Sweden)

    De-Min Liu

    2011-01-01

    Full Text Available Cavitation is not only related with pressure, but also affected by temperature. Under high temperature, temperature depression of liquids is caused by latent heat of vaporization. The cavitation characteristics under such condition are different from those under room temperature. The paper focuses on thermodynamic cavitation based on the Rayleigh-Plesset equation and modifies the mass transfer equation with fully consideration of the thermodynamic effects and physical properties. To validate the modified model, the external and internal flow fields, such as hydrofoil NACA0015 and nozzle, are calculated, respectively. The hydrofoil NACA0015's cavitation characteristic is calculated by the modified model at different temperatures. The pressure coefficient is found in accordance with the experimental data. The nozzle cavitation under the thermodynamic condition is calculated and compared with the experiment.

  7. Heat Transfer Modeling for Rigid High-Temperature Fibrous Insulation

    Science.gov (United States)

    Daryabeigi, Kamran; Cunnington, George R.; Knutson, Jeffrey R.

    2012-01-01

    Combined radiation and conduction heat transfer through a high-temperature, high-porosity, rigid multiple-fiber fibrous insulation was modeled using a thermal model previously used to model heat transfer in flexible single-fiber fibrous insulation. The rigid insulation studied was alumina enhanced thermal barrier (AETB) at densities between 130 and 260 kilograms per cubic meter. The model consists of using the diffusion approximation for radiation heat transfer, a semi-empirical solid conduction model, and a standard gas conduction model. The relevant parameters needed for the heat transfer model were estimated from steady-state thermal measurements in nitrogen gas at various temperatures and environmental pressures. The heat transfer modeling methodology was evaluated by comparison with standard thermal conductivity measurements, and steady-state thermal measurements in helium and carbon dioxide gases. The heat transfer model is applicable over the temperature range of 300 to 1360 K, pressure range of 0.133 to 101.3 x 10(exp 3) Pa, and over the insulation density range of 130 to 260 kilograms per cubic meter in various gaseous environments.

  8. A constitutive model with damage for high temperature superalloys

    Science.gov (United States)

    Sherwood, J. A.; Stouffer, D. C.

    1988-01-01

    A unified constitutive model is searched for that is applicable for high temperature superalloys used in modern gas turbines. Two unified inelastic state variable constitutive models were evaluated for use with the damage parameter proposed by Kachanov. The first is a model (Bodner, Partom) in which hardening is modeled through the use of a single state variable that is similar to drag stress. The other (Ramaswamy) employs both a drag stress and back stress. The extension was successful for predicting the tensile, creep, fatigue, torsional and nonproportional response of Rene' 80 at several temperatures. In both formulations, a cumulative damage parameter is introduced to model the changes in material properties due to the formation of microcracks and microvoids that ultimately produce a macroscopic crack. A back stress/drag stress/damage model was evaluated for Rene' 95 at 1200 F and is shown to predict the tensile, creep, and cyclic loading responses reasonably well.

  9. Modeling high temperature materials behavior for structural analysis

    CERN Document Server

    Naumenko, Konstantin

    2016-01-01

    This monograph presents approaches to characterize inelastic behavior of materials and structures at high temperature. Starting from experimental observations, it discusses basic features of inelastic phenomena including creep, plasticity, relaxation, low cycle and thermal fatigue. The authors formulate constitutive equations to describe the inelastic response for the given states of stress and microstructure. They introduce evolution equations to capture hardening, recovery, softening, ageing and damage processes. Principles of continuum mechanics and thermodynamics are presented to provide a framework for the modeling materials behavior with the aim of structural analysis of high-temperature engineering components.

  10. A High Temperature Liquid Plasma Model of the Sun

    Directory of Open Access Journals (Sweden)

    Robitaille P.-M.

    2007-01-01

    Full Text Available In this work, a liquid model of the Sun is presented wherein the entire solar mass is viewed as a high density/high energy plasma. This model challenges our current understanding of the densities associated with the internal layers of the Sun, advocating a relatively constant density, almost independent of radial position. The incompressible nature of liquids is advanced to prevent solar collapse from gravitational forces. The liquid plasma model of the Sun is a non-equilibrium approach, where nuclear reactions occur throughout the solar mass. The primary means of addressing internal heat transfer are convection and conduction. As a result of the convective processes on the solar surface, the liquid model brings into question the established temperature of the solar photosphere by highlighting a violation of Kirchhoff’s law of thermal emission. Along these lines, the model also emphasizes that radiative emission is a surface phenomenon. Evidence that the Sun is a high density/high energy plasma is based on our knowledge of Planckian thermal emission and condensed matter, including the existence of pressure ionization and liquid metallic hydrogen at high temperatures and pressures. Prior to introducing the liquid plasma model, the historic and scientific justifications for the gaseous model of the Sun are reviewed and the gaseous equations of state are also discussed.

  11. Modeling Study of High Pressure and High Temperature Reservoir Fluids

    DEFF Research Database (Denmark)

    Varzandeh, Farhad

    S-characterization combinations and 260 reservoir fluids. PC-SAFT with the new general characterization method is shown to give the lowest AAD% and maximum deviation in calculation of saturation pressure, density and STO density, among all the tested characterization methods for PC-SAFT. Application of the new characterization...... be highly rewarding if successfully produced. This PhD project is part of the NextOil (New Extreme Oil and Gas in the Danish North Sea) project which is intended to reduce the uncertainties in HPHT field development. The main focus of this PhD is on accurate description of the reservoir fluid behavior under...... HPHT conditions to minimize the production risks from these types of reservoirs. In particular, the study has thoroughly evaluated several non-cubic Equations of State (EoSs) which are considered promising for HPHT fluid modeling, showing their advantages and short comings based on an extensive...

  12. FEM Modeling of the Relationship between the High-Temperature Hardness and High-Temperature, Quasi-Static Compression Experiment.

    Science.gov (United States)

    Zhang, Tao; Jiang, Feng; Yan, Lan; Xu, Xipeng

    2017-12-26

    The high-temperature hardness test has a wide range of applications, but lacks test standards. The purpose of this study is to develop a finite element method (FEM) model of the relationship between the high-temperature hardness and high-temperature, quasi-static compression experiment, which is a mature test technology with test standards. A high-temperature, quasi-static compression test and a high-temperature hardness test were carried out. The relationship between the high-temperature, quasi-static compression test results and the high-temperature hardness test results was built by the development of a high-temperature indentation finite element (FE) simulation. The simulated and experimental results of high-temperature hardness have been compared, verifying the accuracy of the high-temperature indentation FE simulation.The simulated results show that the high temperature hardness basically does not change with the change of load when the pile-up of material during indentation is ignored. The simulated and experimental results show that the decrease in hardness and thermal softening are consistent. The strain and stress of indentation were analyzed from the simulated contour. It was found that the strain increases with the increase of the test temperature, and the stress decreases with the increase of the test temperature.

  13. FEM Modeling of the Relationship between the High-Temperature Hardness and High-Temperature, Quasi-Static Compression Experiment

    Directory of Open Access Journals (Sweden)

    Tao Zhang

    2017-12-01

    Full Text Available The high-temperature hardness test has a wide range of applications, but lacks test standards. The purpose of this study is to develop a finite element method (FEM model of the relationship between the high-temperature hardness and high-temperature, quasi-static compression experiment, which is a mature test technology with test standards. A high-temperature, quasi-static compression test and a high-temperature hardness test were carried out. The relationship between the high-temperature, quasi-static compression test results and the high-temperature hardness test results was built by the development of a high-temperature indentation finite element (FE simulation. The simulated and experimental results of high-temperature hardness have been compared, verifying the accuracy of the high-temperature indentation FE simulation.The simulated results show that the high temperature hardness basically does not change with the change of load when the pile-up of material during indentation is ignored. The simulated and experimental results show that the decrease in hardness and thermal softening are consistent. The strain and stress of indentation were analyzed from the simulated contour. It was found that the strain increases with the increase of the test temperature, and the stress decreases with the increase of the test temperature.

  14. Dynamic Model of the High Temperature Proton Exchange Membrane Fuel Cell Stack Temperature

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Kær, Søren Knudsen

    2009-01-01

    The present work involves the development of a model for predicting the dynamic temperature of a high temperature proton exchange membrane (HTPEM) fuel cell stack. The model is developed to test different thermal control strategies before implementing them in the actual system. The test system....... The temperature is predicted in these three parts, where they also are measured. The heat balance of the system involves a fuel cell model to describe the heat added by the fuel cells when a current is drawn. Furthermore the model also predicts the temperatures when heating the stack with external heating...... elements for start-up, heat conduction through stack insulation, cathode air convection, and heating of the inlet gases in the manifold. Various measurements are presented to validate the model predictions of the stack temperatures....

  15. High-temperature series expansions for random Potts models

    Directory of Open Access Journals (Sweden)

    M.Hellmund

    2005-01-01

    Full Text Available We discuss recently generated high-temperature series expansions for the free energy and the susceptibility of random-bond q-state Potts models on hypercubic lattices. Using the star-graph expansion technique, quenched disorder averages can be calculated exactly for arbitrary uncorrelated coupling distributions while keeping the disorder strength p as well as the dimension d as symbolic parameters. We present analyses of the new series for the susceptibility of the Ising (q=2 and 4-state Potts model in three dimensions up to the order 19 and 18, respectively, and compare our findings with results from field-theoretical renormalization group studies and Monte Carlo simulations.

  16. High temperature viscoplastic ratchetting: Material response or modeling artifact

    International Nuclear Information System (INIS)

    Freed, A.D.

    1991-01-01

    Ratchetting, the net accumulation of strain over a loading cycle, is a deformation mechanism that leads to distortions in shape, often resulting in a loss of function that culminates in structural failure. Viscoplastic ratchetting is prevalent at high homologous temperatures where viscous characteristics are prominent in material response. This deformation mechanism is accentuated by the presence of a mean stress; a consequence of interaction between thermal gradients and structural constraints. Favorable conditions for viscoplastic ratchetting exist in the Stirling engines being developed by the National Aeronautics and Space Administration (NASA) and the Department of Energy (DOE) for space and terrestrial power applications. To assess the potential for ratchetting and its effect on durability of high temperature structures requires a viscoplastic analysis of the design. But ratchetting is a very difficult phenomenon to accurately model. One must therefore ask whether the results from such an analysis are indicative of actual material behavior, or if they are artifacts of the theory being used in the analysis. There are several subtle aspects in a viscoplastic model that must be dealt with in order to accurately model ratchetting behavior, and therefore obtain meaningful predictions from it. In this paper, some of these subtlties and the necessary ratchet experiments needed to obtain an accurate viscoplastic representation of a material are discussed

  17. A model of evaluating the pseudogap temperature for high ...

    Indian Academy of Sciences (India)

    The observation of pseudogap in normal-state properties of high-temperature supercon- ducting (HTS) oxide materials has raised many questions about the origin and its relation with superconductivity. Emery and Kevilson [1] first used the term pseudogap temper- ature for underdoped high-Tc materials. The temperature at ...

  18. Temperature response functions introduce high uncertainty in modelled carbon stocks in cold temperature regimes

    Science.gov (United States)

    Portner, H.; Wolf, A.; Bugmann, H.

    2009-04-01

    function of Lloyd&Taylor therefore is an adequate choice to model the temperature dependency of soil organic matter decomposition. The Ticino catchment (300-2300m) in Southern Switzerland was used to study the sensitivity of long-term changes (100 years) in the prediction of carbon storage. The uncertainty in temperature response introduced into the model lead to high uncertainties in long-term soil carbon stocks. Interestingly, the uncertainty increased with decreasing temperature and increasing elevation. The carbon pools in lower elevations (mean annual temperature > 15 °C) turned over faster and little carbon accumulated in the soil. The carbon pools in higher elevations and hence in higher latitudes experiencing colder temperature (mean annual temperature < 15 °C) turned over slower and therefore accumulated more carbon over the simulation period. Therefore, the high elevation soils stored more carbon, but the prediction of the carbon pool size had a much higher uncertainty than the low elevation soils. We concluded that with our model, the predictions of the potential loss of soil carbon in cold temperature regimes is more uncertain than the carbon loss in warmer regions, both due to the higher soil carbon pools, but also due to the higher uncertainty found in our simulations.

  19. Deterministic Modeling of the High Temperature Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ortensi, J.; Cogliati, J. J.; Pope, M. A.; Ferrer, R. M.; Ougouag, A. M.

    2010-06-01

    Idaho National Laboratory (INL) is tasked with the development of reactor physics analysis capability of the Next Generation Nuclear Power (NGNP) project. In order to examine INL’s current prismatic reactor deterministic analysis tools, the project is conducting a benchmark exercise based on modeling the High Temperature Test Reactor (HTTR). This exercise entails the development of a model for the initial criticality, a 19 column thin annular core, and the fully loaded core critical condition with 30 columns. Special emphasis is devoted to the annular core modeling, which shares more characteristics with the NGNP base design. The DRAGON code is used in this study because it offers significant ease and versatility in modeling prismatic designs. Despite some geometric limitations, the code performs quite well compared to other lattice physics codes. DRAGON can generate transport solutions via collision probability (CP), method of characteristics (MOC), and discrete ordinates (Sn). A fine group cross section library based on the SHEM 281 energy structure is used in the DRAGON calculations. HEXPEDITE is the hexagonal z full core solver used in this study and is based on the Green’s Function solution of the transverse integrated equations. In addition, two Monte Carlo (MC) based codes, MCNP5 and PSG2/SERPENT, provide benchmarking capability for the DRAGON and the nodal diffusion solver codes. The results from this study show a consistent bias of 2–3% for the core multiplication factor. This systematic error has also been observed in other HTTR benchmark efforts and is well documented in the literature. The ENDF/B VII graphite and U235 cross sections appear to be the main source of the error. The isothermal temperature coefficients calculated with the fully loaded core configuration agree well with other benchmark participants but are 40% higher than the experimental values. This discrepancy with the measurement stems from the fact that during the experiments the

  20. Quasispin model of itinerant magnetism: High-temperature theory

    International Nuclear Information System (INIS)

    Liu, S.H.

    1977-01-01

    The high-temperature properties of itinerant magnetic systems are examined by using the coherent-potential approximation. We assume a local moment on each atom so that at elevated temperatures there is a number of reversed spins. The coherent potential is solved, and from that the moment on each atom is determined self-consistently. It is found that when the condition for ferromagnetic ordering is satisfied, the local moments persist even above the critical temperature. Conversely, if local moments do not exist at high temperatures, the system can at most condense into a spin-density-wave state. Furthermore, spin-flip scatterings of the conduction electrons from the local moments give rise to additional correlation not treated in the coherent-potential approximation. This correlation energy is an important part of the coupling energy of the local moments. The relations between our work and the theories of Friedel, Hubbard, and others are discussed

  1. Modeling and analytical simulation of high-temperature gas filtration ...

    African Journals Online (AJOL)

    High temperature filtration in combustion and gasification processes is a highly interdisciplinary field. Thus, particle technology in general has to be supported by elements of physics, chemistry, thermodynamics and heat and mass transfer processes. Presented in this paper is the analytical method for describing ...

  2. A distributed stream temperature model using high resolution temperature observations (vol 11, pg 1469, 2007)

    NARCIS (Netherlands)

    Westhoff, M. C.; Savenije, H.G.; Luxemburg, W. M. J.; Stelling, G.S.; van de Giesen, N.C.; Selker, J. S.; Pfister, L.; Uhlenbrook, S.

    2007-01-01

    Distributed temperature data are used as input and as calibration data for an energy based temperature model of a first order stream in Luxembourg. A DTS (Distributed Temperature Sensing) system with a fiber optic cable of 1500m was used to measure stream water temperature with 1m resolution each 2

  3. Thermal modelling of PV module performance under high ambient temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Diarra, D.C.; Harrison, S.J. [Queen' s Univ., Kingston, ON (Canada). Dept. of Mechanical and Materials Engineering Solar Calorimetry Lab; Akuffo, F.O. [Kwame Nkrumah Univ. of Science and Technology, Kumasi (Ghana). Dept. of Mechanical Engineering

    2005-07-01

    When predicting the performance of photovoltaic (PV) generators, the actual performance is typically lower than test results conducted under standard test conditions because the radiant energy absorbed in the module under normal operation raises the temperature of the cell and other multilayer components. The increase in temperature translates to a lower conversion efficiency of the solar cells. In order to address these discrepancies, a thermal model of a characteristic PV module was developed to assess and predict its performance under real field-conditions. The PV module consisted of monocrystalline silicon cells in EVA between a glass cover and a tedlar backing sheet. The EES program was used to compute the equilibrium temperature profile in the PV module. It was shown that heat is dissipated towards the bottom and the top of the module, and that its temperature can be much higher than the ambient temperature. Modelling results indicate that 70-75 per cent of the absorbed solar radiation is dissipated from the solar cells as heat, while 4.7 per cent of the solar energy is absorbed in the glass cover and the EVA. It was also shown that the operating temperature of the PV module decreases with increased wind speed. 2 refs.

  4. 3D Discrete Dislocation Modelling of High Temperature Plasticity

    Czech Academy of Sciences Publication Activity Database

    Záležák, Tomáš; Dlouhý, Antonín

    2011-01-01

    Roč. 465, - (2011), s. 115-118 ISSN 1013-9826. [MSMF /6./ Materials Structure and Micromechanics of Fracture. Brno, 28.06.2010-30.06.2010] R&D Projects: GA MŠk OC 162 Institutional research plan: CEZ:AV0Z20410507 Keywords : discrete dislocation dynamics * high temperature deformation * meso-scale simulations of plasticity * diffusion Subject RIV: BE - Theoretical Physics

  5. Fracture strength of the particulate-reinforced ultra-high temperature ceramics based on a temperature dependent fracture toughness model

    Science.gov (United States)

    Wang, Ruzhuan; Li, Weiguo; Ji, Baohua; Fang, Daining

    2017-10-01

    The particulate-reinforced ultra-high temperature ceramics (pUHTCs) have been particularly developed for fabricating the leading edge and nose cap of hypersonic vehicles. They have drawn intensive attention of scientific community for their superior fracture strength at high temperatures. However, there is no proper model for predicting the fracture strength of the ceramic composites and its dependency on temperature. In order to account for the effect of temperature on the fracture strength, we proposed a concept called energy storage capacity, by which we derived a new model for depicting the temperature dependent fracture toughness of the composites. This model gives a quantitative relationship between the fracture toughness and temperature. Based on this temperature dependent fracture toughness model and Griffith criterion, we developed a new fracture strength model for predicting the temperature dependent fracture strength of pUHTCs at different temperatures. The model takes into account the effects of temperature, flaw size and residual stress without any fitting parameters. The predictions of the fracture strength of pUHTCs in argon or air agreed well with the experimental measurements. Additionally, our model offers a mechanism of monitoring the strength of materials at different temperatures by testing the change of flaw size. This study provides a quantitative tool for design, evaluation and monitoring of the fracture properties of pUHTCs at high temperatures.

  6. Temperature response functions introduce high uncertainty in modelled carbon stocks in cold temperature regimes

    Directory of Open Access Journals (Sweden)

    H. Portner

    2010-11-01

    Full Text Available Models of carbon cycling in terrestrial ecosystems contain formulations for the dependence of respiration on temperature, but the sensitivity of predicted carbon pools and fluxes to these formulations and their parameterization is not well understood. Thus, we performed an uncertainty analysis of soil organic matter decomposition with respect to its temperature dependency using the ecosystem model LPJ-GUESS.

    We used five temperature response functions (Exponential, Arrhenius, Lloyd-Taylor, Gaussian, Van't Hoff. We determined the parameter confidence ranges of the formulations by nonlinear regression analysis based on eight experimental datasets from Northern Hemisphere ecosystems. We sampled over the confidence ranges of the parameters and ran simulations for each pair of temperature response function and calibration site. We analyzed both the long-term and the short-term heterotrophic soil carbon dynamics over a virtual elevation gradient in southern Switzerland.

    The temperature relationship of Lloyd-Taylor fitted the overall data set best as the other functions either resulted in poor fits (Exponential, Arrhenius or were not applicable for all datasets (Gaussian, Van't Hoff. There were two main sources of uncertainty for model simulations: (1 the lack of confidence in the parameter estimates of the temperature response, which increased with increasing temperature, and (2 the size of the simulated soil carbon pools, which increased with elevation, as slower turn-over times lead to higher carbon stocks and higher associated uncertainties. Our results therefore indicate that such projections are more uncertain for higher elevations and hence also higher latitudes, which are of key importance for the global terrestrial carbon budget.

  7. Solubility Measurements and Modeling of Zinc, Lead and Iron Sulfides at High Temperatures and High Pressures

    DEFF Research Database (Denmark)

    Carolina Figueroa Murcia, Diana; Fosbøl, Philip Loldrup; Thomsen, Kaj

    Solubility measurements of sulfides in aqueous solutions are necessary to understand the behaviour of these scaling minerals in geothermal and oil reservoirs. The low solubility levels of Zinc Sulfide (ZnS), Lead Sulfide (PbS) and Iron Sulfide (FeS) make the solubility measurements a challenging...... task. Consequently existing data are rare and scattered. The aim of this work is to develop a reliable experimental procedure and to measure solubility of sulfides at high temperature and pressures. Additionally the experimental data are used for estimation of the solid-liquid equilibrium using...... the Extended UNIQUAC model. The experimental determination of the solubility of ZnS, PbS and FeS is carried out at temperatures up to 200°C and pressures up to 60 bars. The minerals in their pure form are added to ultra-pure water previously degassed with nitrogen. The aqueous solution is prepared in a reduced...

  8. Modeling and simulation of wetted porous thermal barriers operating under high temperature or high heat flux

    Energy Technology Data Exchange (ETDEWEB)

    Costa, V.A.F. [Departamento de Engenharia Mecanica, Universidade de Aveiro, Campus Universitario de Santiago, 3810-193 Aveiro (Portugal); Mendonca, M.L. [Escola Superior de Tecnologia e Gestao de Agueda, Universidade de Aveiro, Zona Industrial da Alagoa, Apartado 473, 3754-909 Agueda (Portugal); Figueiredo, A.R. [Departamento de Engenharia Mecanica, Universidade de Coimbra, Polo II, Pinhal de Marrocos, 3030-201 Coimbra (Portugal)

    2008-07-01

    Porous media with high water content can be successfully used as thermal barriers to operate under high exposure temperatures and/or high heat fluxes. Modeling and simulation of such systems presents difficulties and challenges, which are pointed and worked out in this work. Liquid water and water vapor transfers are considered, including the capillary effects for the liquid phase, as well as the air transfer inside the porous medium. Heat transfer model includes conduction, radiation, enthalpy convection, sensible heating and phase change. A realistic model is considered at the exposed boundary in what concerns mass transfer: the outflow mass transfer is dictated by the water effusion and not by the convection transfer mechanism between the exposed surface and the environment. A set of numerical aspects is detailed, concerning both the numerical modeling and the solution of the discretization equations, which are crucial to obtain successful simulations. Some illustrative results are presented, showing the potential of the wetted porous media when used as thermal barriers, as well as the capabilities of the presented physical and numerical models to deal with such systems. (author)

  9. Modeling and simulation of a wheatstone bridge pressure sensor in high temperature with VHDL-AMS

    OpenAIRE

    Baccar, Sahbi; Levi, Timothée; Dallet, Dominique; Barbara, François

    2013-01-01

    International audience; This paper presents a model of a Wheatstone bridge sensor in VHDL-AMS. This model is useful to take into account the temperature effect on the sensor accuracy. The model is developed on the basis of a resistor model. Simulations are performed for three different combinations of parameters values. They confirm the resistors mismatch effect on the sensor accuracy in high temperature (HT).

  10. High Temperature Test Facility Preliminary RELAP5-3D Input Model Description

    Energy Technology Data Exchange (ETDEWEB)

    Bayless, Paul David [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-12-01

    A RELAP5-3D input model is being developed for the High Temperature Test Facility at Oregon State University. The current model is described in detail. Further refinements will be made to the model as final as-built drawings are released and when system characterization data are available for benchmarking the input model.

  11. High Temperature Flow Response Modeling of Ultra-Fine Grained Titanium

    Directory of Open Access Journals (Sweden)

    Seyed Vahid Sajadifar

    2015-07-01

    Full Text Available This work presents the mechanical behavior modeling of commercial purity titanium subjected to severe plastic deformation (SPD during post-SPD compression, at temperatures of 600-900 °C and at strain rates of 0.001-0.1 s−1. The flow response of the ultra-fine grained microstructure is modeled using the modified Johnson-Cook model as a predictive tool, aiding high temperature forming applications. It was seen that the model was satisfactory at all deformation conditions except for the deformation temperature of 600 °C. In order to improve the predictive capability, the model was extended with a corrective term for predictions at temperatures below 700 °C. The accuracy of the model was displayed with reasonable agreement, resulting in error levels of less than 5% at all deformation temperatures.

  12. Proposal of numerical model for current distribution analysis in high temperature superconducting parallel conductor

    Energy Technology Data Exchange (ETDEWEB)

    Watabe, Akira; Fukui, Satoshi; Sato, Takao; Yamaguchi, Mitsugi

    2004-10-01

    A numerical model to calculate current density distribution in a parallel conductor assembled by multiple high temperature superconducting tapes was proposed. The numerical calculations on the current distribution in the parallel conductor of three high-temperature superconducting tapes were performed by using the developed model. The numerical results showed that the current density distribution in the parallel conductor were affected by the tape arrangement in the conductor.

  13. High resolution temperature models for geothermal exploration in sedimentary basins: methods and applications

    Science.gov (United States)

    van Wees, Jan-Diederik; Bonte, Damien; Verweij, Hanneke; Kramers, Leslie

    2010-05-01

    Key to geothermal exploration success is sufficiently high temperature. This paper focusses on high resolution temperature prediction for geothermal exploration in sedimentary basins. In existing thermal basin models for oil and gas exploration, the focus is on predicting past temperature histories in the sedimentary cover for assessment of oil and gas maturation and expulsion. For detailed 3D models (i.e. involving millions of temperature nodes) these models take long to run and are hard to calibrate to both temperature data in wells and lithosphere boundary conditions. Moreover, spatial variations in basal heat flow is generally not controlled by tectonic boundary conditions. Tectonic models, capable of modelling the thermal consequences of basin evolution, allow to asses spatial heat flow variability based on lithosphere deformation, and provide additional constraints and better quantitative understanding of temperature anomalies. In order to improve modeling capability in terms of model resolution and incorporating tectonic effects, we have developed a novel 3D thermal basin model. In the model transient temperatures are calculated over the last 20 Million years for a 3D heat equation on a regular 3D finite difference grid, allowing for spatial variation in thermal properties, temporal variation in surface temperature and spatial and temporal variations in basal heat flow. Furthermore the model takes into account heat advection, including effects of sedimentation, and lithosphere deformation. The model is iteratively calibrated to temperature data at the well locations, typically taking less than 5 runs. In addition well locations basal heat flow conditions are interpolated based on tectonic constraints. The capabilities of the model are demonstrated for various sedimentary basins, including the Netherlands. The models have been calibrated to extensive well data, showing considerable spatial variability which appears to be related to both tectonic variation as

  14. Modelling of a High Temperature PEM Fuel Cell Stack using Electrochemical Impedance Spectroscopy

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Jespersen, Jesper Lebæk; Kær, Søren Knudsen

    2008-01-01

    This work presents the development of an equivalent circuit model of a 65 cell high temperature PEM (HTPEM) fuel cell stack using Electrochemical Impedance Spectroscopy (EIS). The HTPEM fuel cell membranes used are PBI-based and uses phosphoric acid as proton conductor. The operating temperature...

  15. Toward a reaction rate model of condensed-phase RDX decomposition under high temperatures

    Science.gov (United States)

    Schweigert, Igor

    2015-06-01

    Shock ignition of energetic molecular solids is driven by microstructural heterogeneities, at which even moderate stresses can result in sufficiently high temperatures to initiate material decomposition and chemical energy release. Mesoscale modeling of these ``hot spots'' requires a reaction rate model that describes the energy release with a sub-microsecond resolution and under a wide range of temperatures. No such model is available even for well-studied energetic materials such as RDX. In this presentation, I will describe an ongoing effort to develop a reaction rate model of condensed-phase RDX decomposition under high temperatures using first-principles molecular dynamics, transition-state theory, and reaction network analysis. This work was supported by the Naval Research Laboratory, by the Office of Naval Research, and by the DoD High Performance Computing Modernization Program Software Application Institute for Multiscale Reactive Modeling of Insensitive Munitions.

  16. Soliton star in FL-non-topological soliton model and its behavior at high temperature

    International Nuclear Information System (INIS)

    Xiong Hejin; Li Jiarong

    1992-01-01

    Based on the FL-non-topological soliton model, the possibility of the formation of the FL-soliton star and its behavior at high temperature are discussed. It is found that the stable, cold and spherical FL-soliton star can be formed, under the necessary condition W > 3B. At high temperature, the FL-soliton bag disappears by the phase transition, but there may be some stellar configuration

  17. Consistent negative response of US crops to high temperatures in observations and crop models

    Science.gov (United States)

    Schauberger, Bernhard; Archontoulis, Sotirios; Arneth, Almut; Balkovic, Juraj; Ciais, Philippe; Deryng, Delphine; Elliott, Joshua; Folberth, Christian; Khabarov, Nikolay; Müller, Christoph; Pugh, Thomas A. M.; Rolinski, Susanne; Schaphoff, Sibyll; Schmid, Erwin; Wang, Xuhui; Schlenker, Wolfram; Frieler, Katja

    2017-04-01

    High temperatures are detrimental to crop yields and could lead to global warming-driven reductions in agricultural productivity. To assess future threats, the majority of studies used process-based crop models, but their ability to represent effects of high temperature has been questioned. Here we show that an ensemble of nine crop models reproduces the observed average temperature responses of US maize, soybean and wheat yields. Each day above 30°C diminishes maize and soybean yields by up to 6% under rainfed conditions. Declines observed in irrigated areas, or simulated assuming full irrigation, are weak. This supports the hypothesis that water stress induced by high temperatures causes the decline. For wheat a negative response to high temperature is neither observed nor simulated under historical conditions, since critical temperatures are rarely exceeded during the growing season. In the future, yields are modelled to decline for all three crops at temperatures above 30°C. Elevated CO2 can only weakly reduce these yield losses, in contrast to irrigation.

  18. Unsuppressed fermion-number violation at high temperature: An O(3) model

    International Nuclear Information System (INIS)

    Mottola, E.; Wipf, A.

    1989-01-01

    The O(3) nonlinear σ model in 1+1 dimensions, modified by an explicit symmetry-breaking term, is presented as a model for baryon- and lepton-number violation in the standard electroweak theory. Although arguments based on the Atiyah-Singer index theorem and instanton physics apply to the model, we show by explicit calculations that the rate of chiral fermion-number violation due to the axial anomaly is entirely unsuppressed at sufficiently high temperatures. Our results apply to unbroken gauge theories as well and may require reevaluation of the role of instantons in high-temperature QCD

  19. Characterization of biomass combustion at high temperatures based on an upgraded single particle model

    International Nuclear Information System (INIS)

    Li, Jun; Paul, Manosh C.; Younger, Paul L.; Watson, Ian; Hossain, Mamdud; Welch, Stephen

    2015-01-01

    Highlights: • High temperature rapid biomass combustion is studied based on single particle model. • Particle size changes in devolatilization and char oxidation models are addressed. • Time scales of various thermal sub-processes are compared and discussed. • Potential solutions are suggested to achieve better biomass co-firing performances. - Abstract: Biomass co-firing is becoming a promising solution to reduce CO 2 emissions, due to its renewability and carbon neutrality. Biomass normally has high moisture and volatile contents, complicating its combustion behavior, which is significantly different from that of coal. A computational fluid dynamics (CFD) combustion model of a single biomass particle is employed to study high-temperature rapid biomass combustion. The two-competing-rate model and kinetics/diffusion model are used to model biomass devolatilization reaction and char burnout process, respectively, in which the apparent kinetics used for those two models were from high temperatures and high heating rates tests. The particle size changes during the devolatilization and char burnout are also considered. The mass loss properties and temperature profile during the biomass devolatilization and combustion processes are predicted; and the timescales of particle heating up, drying, devolatilization, and char burnout are compared and discussed. Finally, the results shed light on the effects of particle size on the combustion behavior of biomass particle

  20. Wall temperature measurements at elevated pressures and high temperatures in sooting flames in a gas turbine model combustor

    Science.gov (United States)

    Nau, Patrick; Yin, Zhiyao; Geigle, Klaus Peter; Meier, Wolfgang

    2017-12-01

    Wall temperatures were measured with thermographic phosphors on the quartz walls of a model combustor in ethylene/air swirl flames at 3 bar. Three operating conditions were investigated with different stoichiometries and with or without additional injection of oxidation air downstream of the primary combustion zone. YAG:Eu and YAG:Dy were used to cover a total temperature range of 1000-1800 K. Measurements were challenging due to the high thermal background from soot and window degradation at high temperatures. The heat flux through the windows was estimated from the temperature gradient between the in- and outside of the windows. Differences in temperature and heat flux density profiles for the investigated cases can be explained very well with the previously measured differences in flame temperatures and flame shapes. The heat loss relative to thermal load is quite similar for all investigated flames (15-16%). The results complement previous measurements in these flames to investigate soot formation and oxidation. It is expected, that the data set is a valuable input for numerical simulations of these flames.

  1. Modeling Coupled THM Processes and Brine Migration in Salt at High Temperatures

    International Nuclear Information System (INIS)

    Rutqvist, Jonny; Blanco-Martin, Laura; Molins, Sergi; Trebotich, David; Birkholzer, Jens

    2015-01-01

    In this report, we present FY2015 progress by Lawrence Berkeley National Laboratory (LBNL) related to modeling of coupled thermal-hydrological-mechanical-chemical (THMC) processes in salt and their effect on brine migration at high temperatures. This is a combined milestone report related to milestone Salt R&D Milestone ''Modeling Coupled THM Processes and Brine Migration in Salt at High Temperatures'' (M3FT-15LB0818012) and the Salt Field Testing Milestone (M3FT-15LB0819022) to support the overall objectives of the salt field test planning.

  2. Measurement and modelling of high temperature thermodynamic properties of URh3 alloy

    International Nuclear Information System (INIS)

    Rai, Arun Kumar; Tripathy, Haraprasanna; Jeya Ganesh, B.; Raju, S.

    2012-01-01

    The high temperature phase stability of arc-melted cubic URh 3 intermetallic compound has been investigated using high temperature inverse drop calorimetry in the temperature range of 300–1273 K. URh 3 exists as a line compound with negligible solubility range. Room temperature XRD profile and elemental X-ray mapping experiments on 1273 K/3 h homogenized samples have confirmed the homogeneity and L1 2 (cF8; pm3m) crystal structure of URh 3 . The drop measurements yielded accurate values for the enthalpy increment ΔH T 0 as a function of temperature, from which the specific heat C P has been estimated. The enthalpy data obtained in this study have been compared and combined with the reported data on low temperature C P and also with the ΔH T 0 in the temperature range, 0–840 K, for a comprehensive theoretical analysis using quasiharmonic Debye–Grüneisen formalism. It is found that this model with due allowance for thermal expansion effects can successfully account for the experimentally measured thermal property data in the entire temperature region spanning 0–1273 K. Invoking a combination of measurement and modelling, a comprehensive set of thermodynamic quantities have been obtained for URh 3 .

  3. ANS-5.4 fission gas release model. I. Noble gases at high temperature

    International Nuclear Information System (INIS)

    Noble, L.D.

    1979-01-01

    A correlation to describe the release of volatile radioactive fission products has been developed by the ANS Working Group (ANS 5.4) on Fuel Plenum Activity. The model for release at higher temperatures is identical in form to conventional diffusion equations, but the effective diffusion coefficient incorporates an explicit dependence upon exposure. Because applicable radioactive release data is limited, parameters in the model were determined from stable fission measurements, and calculated or measured fuel temperatures. Although the model predicts high release, particularly at higher exposures, values for many cases of interest are considerably less than the 100% assumed in some accident analyses: providing potential for removal of unnecessary conservations

  4. Computational model for a high temperature electrolyzer coupled to a HTTR for efficient nuclear hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, Daniel; Rojas, Leorlen; Rosales, Jesus; Castro, Landy; Gamez, Abel; Brayner, Carlos, E-mail: danielgonro@gmail.com [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil); Garcia, Lazaro; Garcia, Carlos; Torre, Raciel de la, E-mail: lgarcia@instec.cu [Instituto Superior de Tecnologias y Ciencias Aplicadas (InSTEC), La Habana (Cuba); Sanchez, Danny [Universidade Estadual de Santa Cruz (UESC), Ilheus, BA (Brazil)

    2015-07-01

    High temperature electrolysis process coupled to a very high temperature reactor (VHTR) is one of the most promising methods for hydrogen production using a nuclear reactor as the primary heat source. However there are not references in the scientific publications of a test facility that allow to evaluate the efficiency of the process and other physical parameters that has to be taken into consideration for its accurate application in the hydrogen economy as a massive production method. For this lack of experimental facilities, mathematical models are one of the most used tools to study this process and theirs flowsheets, in which the electrolyzer is the most important component because of its complexity and importance in the process. A computational fluid dynamic (CFD) model for the evaluation and optimization of the electrolyzer of a high temperature electrolysis hydrogen production process flowsheet was developed using ANSYS FLUENT®. Electrolyzer's operational and design parameters will be optimized in order to obtain the maximum hydrogen production and the higher efficiency in the module. This optimized model of the electrolyzer will be incorporated to a chemical process simulation (CPS) code to study the overall high temperature flowsheet coupled to a high temperature accelerator driven system (ADS) that offers advantages in the transmutation of the spent fuel. (author)

  5. Computational model for a high temperature electrolyzer coupled to a HTTR for efficient nuclear hydrogen production

    International Nuclear Information System (INIS)

    Gonzalez, Daniel; Rojas, Leorlen; Rosales, Jesus; Castro, Landy; Gamez, Abel; Brayner, Carlos; Garcia, Lazaro; Garcia, Carlos; Torre, Raciel de la; Sanchez, Danny

    2015-01-01

    High temperature electrolysis process coupled to a very high temperature reactor (VHTR) is one of the most promising methods for hydrogen production using a nuclear reactor as the primary heat source. However there are not references in the scientific publications of a test facility that allow to evaluate the efficiency of the process and other physical parameters that has to be taken into consideration for its accurate application in the hydrogen economy as a massive production method. For this lack of experimental facilities, mathematical models are one of the most used tools to study this process and theirs flowsheets, in which the electrolyzer is the most important component because of its complexity and importance in the process. A computational fluid dynamic (CFD) model for the evaluation and optimization of the electrolyzer of a high temperature electrolysis hydrogen production process flowsheet was developed using ANSYS FLUENT®. Electrolyzer's operational and design parameters will be optimized in order to obtain the maximum hydrogen production and the higher efficiency in the module. This optimized model of the electrolyzer will be incorporated to a chemical process simulation (CPS) code to study the overall high temperature flowsheet coupled to a high temperature accelerator driven system (ADS) that offers advantages in the transmutation of the spent fuel. (author)

  6. Thermohydraulic modeling of very high temperature reactors in regimes with loss of coolant using CFD

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, Uebert G.; Dominguez, Dany S. [Universidade Estadual de Santa Cruz (UESC), Ilh´eus, BA (Brazil). Programa de P´os-Graduacao em Modelagem Computacional em Ciencia e Tecnologia; Mazaira, Leorlen Y.R.; Lira, Carlos A.B.O. [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Departamento de Energia Nuclear; Hernandez, Carlos R.G., E-mail: uebert.gmoreira@gmail.com, E-mail: dsdominguez@gmail.com, E-mail: leored1984@gmail.com, E-mail: cabol@ufpe.br, E-mail: cgh@instec.cu [Instituto Superior de Tecnologas y Ciencias Aplicadas (InSTEC), La Habana (Cuba)

    2017-07-01

    The nuclear energy is a good alternative to meet the continuous increase in world energy demand. In this perspective, VHTRs (Very High Temperature Reactors) are serious candidates for energy generation due to its inherently safe performance, low power density and high conversion efficiency. However, the viability of these reactors depends on an efficient safety system in the operation of nuclear plants. The HTR (High Temperature Reactor)-10 model, an experimental reactor of the pebble bed type, is used as a case study in this work to perform the thermohydraulic simulation. Due to the complex patterns flow that appear in the pebble bed reactor core, and advances in computational capacity, CFD (Computational Fluid Dynamics) techniques are used to simulate these reactors. A realistic approach is adopted to simulate the central annular column of the reactor core, which each pebble bed element is modeled in detail. As geometrical model of the fuel elements was selected the BCC (Body Centered Cubic) arrangement. Previous works indicate this arrangement as the configuration that obtain higher fuel temperatures inside the core. Parameters considered for reactor design are available in the technical report of benchmark issues by IAEA (TECDOC-1694). Among the results obtained, we obtained the temperature profiles with different mass flow rates for the coolant. In general, the temperature distributions calculated are consistent with phenomenological behaviour. Even without consider the reactivity changes to reduce the reactor power or other safety procedures, the maximum temperatures do not exceed the recommended limits for fuel elements. (author)

  7. Semi-analytical wave functions in relativistic average atom model for high-temperature plasmas

    International Nuclear Information System (INIS)

    Guo Yonghui; Duan Yaoyong; Kuai Bin

    2007-01-01

    The semi-analytical method is utilized for solving a relativistic average atom model for high-temperature plasmas. Semi-analytical wave function and the corresponding energy eigenvalue, containing only a numerical factor, are obtained by fitting the potential function in the average atom into hydrogen-like one. The full equations for the model are enumerated, and more attentions are paid upon the detailed procedures including the numerical techniques and computer code design. When the temperature of plasmas is comparatively high, the semi-analytical results agree quite well with those obtained by using a full numerical method for the same model and with those calculated by just a little different physical models, and the result's accuracy and computation efficiency are worthy of note. The drawbacks for this model are also analyzed. (authors)

  8. Experimental testing of olivine-melt equilibrium models at high temperatures

    Science.gov (United States)

    Krasheninnikov, S. P.; Sobolev, A. V.; Batanova, V. G.; Kargaltsev, A. A.; Borisov, A. A.

    2017-08-01

    Data are presented on the equilibrium compositions of olivine and melts in the products of 101 experiments performed at 1300-1600°C, atmospheric pressure, and controlled oxygen fugacity by means of new equipment at the Vernadsky Institute. It was shown that the available models of the olivine-melt equilibrium describe with insufficient adequacy the natural systems at temperatures over 1400°C. The most adequate is the model by Ford et al. (1983). However, this model overestimates systematically the equilibrium temperature with underestimating by 20-40°C at 1450-1600°C. These data point to the need for developing a new, improved quantitative model of the olivine-melt equilibrium for high-temperature magnesian melts, as well as to the possibility of these studies on the basis of the equipment presented.

  9. Modelling the temperature evolution of bone under high intensity focused ultrasound

    Science.gov (United States)

    ten Eikelder, H. M. M.; Bošnački, D.; Elevelt, A.; Donato, K.; Di Tullio, A.; Breuer, B. J. T.; van Wijk, J. H.; van Dijk, E. V. M.; Modena, D.; Yeo, S. Y.; Grüll, H.

    2016-02-01

    Magnetic resonance-guided high intensity focused ultrasound (MR-HIFU) has been clinically shown to be effective for palliative pain management in patients suffering from skeletal metastasis. The underlying mechanism is supposed to be periosteal denervation caused by ablative temperatures reached through ultrasound heating of the cortex. The challenge is exact temperature control during sonication as MR-based thermometry approaches for bone tissue are currently not available. Thus, in contrast to the MR-HIFU ablation of soft tissue, a thermometry feedback to the HIFU is lacking, and the treatment of bone metastasis is entirely based on temperature information acquired in the soft tissue adjacent to the bone surface. However, heating of the adjacent tissue depends on the exact sonication protocol and requires extensive modelling to estimate the actual temperature of the cortex. Here we develop a computational model to calculate the spatial temperature evolution in bone and the adjacent tissue during sonication. First, a ray-tracing technique is used to compute the heat production in each spatial point serving as a source term for the second part, where the actual temperature is calculated as a function of space and time by solving the Pennes bio-heat equation. Importantly, our model includes shear waves that arise at the bone interface as well as all geometrical considerations of transducer and bone geometry. The model was compared with a theoretical approach based on the far field approximation and an MR-HIFU experiment using a bone phantom. Furthermore, we investigated the contribution of shear waves to the heat production and resulting temperatures in bone. The temperature evolution predicted by our model was in accordance with the far field approximation and agreed well with the experimental data obtained in phantoms. Our model allows the simulation of the HIFU treatments of bone metastasis in patients and can be extended to a planning tool prior to MR

  10. Modelling the temperature evolution of bone under high intensity focused ultrasound

    International Nuclear Information System (INIS)

    Ten Eikelder, H M M; Bošnački, D; Breuer, B J T; Van Wijk, J H; Van Dijk, E V M; Modena, D; Yeo, S Y; Grüll, H; Elevelt, A; Donato, K; Di Tullio, A

    2016-01-01

    Magnetic resonance-guided high intensity focused ultrasound (MR-HIFU) has been clinically shown to be effective for palliative pain management in patients suffering from skeletal metastasis. The underlying mechanism is supposed to be periosteal denervation caused by ablative temperatures reached through ultrasound heating of the cortex. The challenge is exact temperature control during sonication as MR-based thermometry approaches for bone tissue are currently not available. Thus, in contrast to the MR-HIFU ablation of soft tissue, a thermometry feedback to the HIFU is lacking, and the treatment of bone metastasis is entirely based on temperature information acquired in the soft tissue adjacent to the bone surface. However, heating of the adjacent tissue depends on the exact sonication protocol and requires extensive modelling to estimate the actual temperature of the cortex. Here we develop a computational model to calculate the spatial temperature evolution in bone and the adjacent tissue during sonication. First, a ray-tracing technique is used to compute the heat production in each spatial point serving as a source term for the second part, where the actual temperature is calculated as a function of space and time by solving the Pennes bio-heat equation. Importantly, our model includes shear waves that arise at the bone interface as well as all geometrical considerations of transducer and bone geometry. The model was compared with a theoretical approach based on the far field approximation and an MR-HIFU experiment using a bone phantom. Furthermore, we investigated the contribution of shear waves to the heat production and resulting temperatures in bone. The temperature evolution predicted by our model was in accordance with the far field approximation and agreed well with the experimental data obtained in phantoms. Our model allows the simulation of the HIFU treatments of bone metastasis in patients and can be extended to a planning tool prior to MR

  11. The two bands model for the high temperature conductivity of the binary rare earth alloys

    International Nuclear Information System (INIS)

    Borgiel, W.

    1983-09-01

    The formula for the high temperature spin disorder resistivity for the concentrated Asub(1-x)Bsub(x)C alloys where A,B is an element of Rare Earth (RE) is determined on the basis of two bands model and the coherent potential approximation (CPA). The conductivity given by the 5d bands coming from the RE compounds has been taken into account

  12. Comparison of kinetic models for atom recombination on high-temperature reusable surface insulation

    Science.gov (United States)

    Willey, Ronald J.

    1993-01-01

    Five kinetic models are compared for their ability to predict recombination coefficients for oxygen and nitrogen atoms over high-temperature reusable surface insulation (HRSI). Four of the models are derived using Rideal-Eley or Langmuir-Hinshelwood catalytic mechanisms to describe the reaction sequence. The fifth model is an empirical expression that offers certain features unattainable through mechanistic description. The results showed that a four-parameter model, with temperature as the only variable, works best with data currently available. The model describes recombination coefficients for oxygen and nitrogen atoms for temperatures from 300 to 1800 K. Kinetic models, with atom concentrations, demonstrate the influence of atom concentration on recombination coefficients. These models can be used for the prediction of heating rates due to catalytic recombination during re-entry or aerobraking maneuvers. The work further demonstrates a requirement for more recombination experiments in the temperature ranges of 300-1000 K, and 1500-1850 K, with deliberate concentration variation to verify model requirements.

  13. High temperature pipeline design

    Energy Technology Data Exchange (ETDEWEB)

    Greenslade, J.G. [Colt Engineering, Calgary, AB (Canada). Pipelines Dept.; Nixon, J.F. [Nixon Geotech Ltd., Calgary, AB (Canada); Dyck, D.W. [Stress Tech Engineering Inc., Calgary, AB (Canada)

    2004-07-01

    It is impractical to transport bitumen and heavy oil by pipelines at ambient temperature unless diluents are added to reduce the viscosity. A diluted bitumen pipeline is commonly referred to as a dilbit pipeline. The diluent routinely used is natural gas condensate. Since natural gas condensate is limited in supply, it must be recovered and reused at high cost. This paper presented an alternative to the use of diluent to reduce the viscosity of heavy oil or bitumen. The following two basic design issues for a hot bitumen (hotbit) pipeline were presented: (1) modelling the restart problem, and, (2) establishing the maximum practical operating temperature. The transient behaviour during restart of a high temperature pipeline carrying viscous fluids was modelled using the concept of flow capacity. Although the design conditions were hypothetical, they could be encountered in the Athabasca oilsands. It was shown that environmental disturbances occur when the fluid is cooled during shut down because the ground temperature near the pipeline rises. This can change growing conditions, even near deeply buried insulated pipelines. Axial thermal loads also constrain the design and operation of a buried pipeline as higher operating temperatures are considered. As such, strain based design provides the opportunity to design for higher operating temperature than allowable stress based design methods. Expansion loops can partially relieve the thermal stress at a given temperature. As the design temperature increase, there is a point at which above grade pipelines become attractive options, although the materials and welding procedures must be suitable for low temperature service. 3 refs., 1 tab., 10 figs.

  14. High temperature limit of the Standard Model due to gauge groups contraction

    Science.gov (United States)

    Gromov, N. A.

    2017-12-01

    The high temperature (high energy) limit of the Standard Model is developed with the help of contractions its gauge groups. The elementary particles evolution in the early Universe from Plank time up to several milliseconds is deduced from this limit theory. Particle properties at the infinite temperature look very unusual: all particles are massless, only neutral Z-bosons, u-quarks, neutrinos and photons are survived in this limit. The weak interactions become long-range and are mediated by neutral currents, quarks have only one color degree of freedom.

  15. Modelling of a High Temperature PEM Fuel Cell Stack using Electrochemical Impedance Spectroscopy

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Jespersen, Jesper Lebæk; Kær, Søren Knudsen

    2008-01-01

    This work presents the development of an equivalent circuit model of a 65 cell high temperature PEM (HTPEM) fuel cell stack using Electrochemical Impedance Spectroscopy (EIS). The HTPEM fuel cell membranes used are PBI-based and uses phosphoric acid as proton conductor. The operating temperature...... of the MEA's is 160-180oC, depending on the purity of the hydrogen used, the load pattern and the desired lifetime. The advantages of the HTPEM fuel cell technology include fast response to load changes and high tolerance to CO (1-3%)...

  16. Kinetic analysis and modelling of combined high-pressure-temperature inactivation of the yeast Zygosaccharomyces bailii.

    Science.gov (United States)

    Reyns, K M; Soontjens, C C; Cornelis, K; Weemaes, C A; Hendrickx, M E; Michiels, C W

    2000-06-01

    Eight foodborne yeasts were screened for sensitivity to high-pressure (HP) inactivation under a limited number of pressure-temperature combinations. The most resistant strains were Zygoascus hellenicus and Zygosaccharomyces bailii. The latter was taken for a detailed study of inactivation kinetics over a wide range of pressures (120-320 MPa) and temperatures (-5 to 45 degrees C). Isobaric and isothermal inactivation experiments were conducted in Tris-HCl buffer pH 6.5 for 48 different combinations of pressure and temperature. Inactivation was biphasic, with a first phase encompassing four to six decades and being described by first-order kinetics, followed by a tailing phase. Decimal reduction times (D) were calculated for the first-order inactivation phase and their temperature and pressure dependence was described. At constant temperature, D decreased with increasing pressure as expected. At constant pressure, D showed a maximum at around 20 degrees C, and decreased both at lower and at higher temperatures. A mathematical expression was developed to describe accurately the inactivation of Z. bailii as a function of pressure and temperature under the experimental conditions employed. A limited number of experiments in buffer at low pH (3-6) suggest that the model is, in principle, applicable at low pH. In apple and orange juice however, higher inactivation than predicted by the model was achieved.

  17. Flux pinning and phase transitions in model high-temperature superconductors with columnar defects

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K.H.; Stroud, D. (Department of Physics, Ohio State University, Columbus, Ohio 43210 (United States)); Girvin, S.M. (Department of Physics, Indiana University, Bloomington, Indiana 47405 (United States))

    1993-07-01

    We calculate the degree of flux pinning by defects in model high-temperature superconductors (HTSC's). The HTSC is modeled as a three-dimensional network of resistively shunted Josephson junctions in an external magnetic field, corresponding to a HTSC in the extreme type-II limit. Disorder is introduced either by randomizing the coupling between grains (model-[ital A] disorder) or by removing grains (model-[ital B] disorder). Three types of defects are considered: point disorder, random line disorder, and periodic line disorder; but the emphasis is on random line disorder. Static and dynamic properties of the models are determined by Monte Carlo simulations and by solution of the analogous coupled overdamped Josephson equations in the presence of thermal noise. Random line defects considerably raise the superconducting transition temperature [ital T][sub [ital c

  18. High Temperature Mechanical Constitutive Modeling of a High-Nb TiAl Alloy

    Directory of Open Access Journals (Sweden)

    DONG Chengli

    2018-02-01

    Full Text Available Uniaxial tensile, low cycle fatigue, fatigue-creep interaction and creep experiments of a novel high-Nb TiAl alloy (i.e. Ti-45Al-8Nb-0.2W-0.2B-0.02Y (atom fraction/% were conducted at 750℃ to obtain its tested data and curves. Based on Chaboche visco-plasticity unified constitutive model, Ohno-Wang modified non-linear kinematic hardening was introduced in Chaboche constitutive model to describe the cyclic hardening/softening, and Kachanov damage was coupled in Chaboche constitutive model to characterize the accelerated creep stage. The differential equations of the constitutive model discretized by explicit Euler method were compiled in to ABAQUS/UMAT to simulate the mechanical behavior of high-Nb TiAl alloy at different test conditions. The results show that Chaboche visco-plasticity unified constitutive model considering both Ohno-Wang modified non-linear kinematic hardening and Kachanov damage is able to simulate the uniaxial tensile, low cycle fatigue, fatigue-creep interaction and creep behavior of high-Nb TiAl alloy and has high accuracy.

  19. Temperature model for process impact non-uniformity in genipin recovery by high pressure processing.

    Science.gov (United States)

    Ramos-de-la-Peña, Ana Mayela; Montañez, Julio C; Reyes-Vega, María de la Luz; Contreras-Esquivel, Juan Carlos

    2015-11-15

    A model for the process impact temperature non-uniformity during high pressure processing (HPP) of genipap fruit purees was found during genipin recovery. Purees were subjected to HPP (130-530 MPa) under quasi-isobaric non-isothermal conditions (15 min; 0, 4.6 and 9.3mg pectinases/g fruit). Genipin and protein concentration was determined, and pH was measured. Polygalacturonase activity was quantified indirectly by protein content (mg/g fruit). First order kinetics described temperature changes (0-4 min). Polygalacturonase was activated at 130 MPa, inactivated reversibly at 330 MPa and activated again at 530 MPa. Enzyme reaction rate constant (k) was placed in the 0-4 min model and temperature from 2 to 15 min was described. Protein content and pH characterization in terms of decimal reduction time improved highly the 2-15 min model. Since temperature changes were modeled, more insight of its behavior in an HPP reactor was obtained, avoiding uniformity assumptions, making easier the industrial scale HPP implementation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Failure Mechanical Behavior of Australian Strathbogie Granite at High Temperatures: Insights from Particle Flow Modeling

    Directory of Open Access Journals (Sweden)

    Sheng-Qi Yang

    2017-05-01

    Full Text Available Thermally induced damage has an important influence on rock mechanics and engineering, especially for high-level radioactive waste repositories, geological carbon storage, underground coal gasification, and hydrothermal systems. Additionally, the wide application of geothermal heat requires knowledge of the geothermal conditions of reservoir rocks at elevated temperature. However, few methods to date have been reported for investigating the micro-mechanics of specimens at elevated temperatures. Therefore, this paper uses a cluster model in particle flow code in two dimensions (PFC2D to simulate the uniaxial compressive testing of Australian Strathbogie granite at various elevated temperatures. The peak strength and ultimate failure mode of the granite specimens at different elevated temperatures obtained by the numerical methods are consistent with those obtained by experimentation. Since the tensile force is always concentrated around the boundary of the crystal, cracks easily occur at the intergranular contacts, especially between the b-b and b-k boundaries where less intragranular contact is observed. The intergranular and intragranular cracking of the specimens is almost constant with increasing temperature at low temperature, and then it rapidly and linearly increases. However, the inflection point of intergranular micro-cracking is less than that of intragranular cracking. Intergranular cracking is more easily induced by a high temperature than intragranular cracking. At an elevated temperature, the cumulative micro-crack counts curve propagates in a stable way during the active period, and it has no unstable crack propagation stage. The micro-cracks and parallel bond forces in the specimens with elevated temperature evolution and axial strain have different characteristics than those at lower temperature. More branch fractures and isolated wider micro-cracks are generated with increasing temperature when the temperature is over 400

  1. Modeling Coupled THM Processes and Brine Migration in Salt at High Temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Rutqvist, Jonny [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Blanco-Martin, Laura [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Molins, Sergi [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Trebotich, David [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Birkholzer, Jens [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-09-01

    In this report, we present FY2015 progress by Lawrence Berkeley National Laboratory (LBNL) related to modeling of coupled thermal-hydrological-mechanical-chemical (THMC) processes in salt and their effect on brine migration at high temperatures. This is a combined milestone report related to milestone Salt R&D Milestone “Modeling Coupled THM Processes and Brine Migration in Salt at High Temperatures” (M3FT-15LB0818012) and the Salt Field Testing Milestone (M3FT-15LB0819022) to support the overall objectives of the salt field test planning.

  2. Modeling of high temperature- and diffusion-controlled die soldering in aluminum high pressure die casting

    DEFF Research Database (Denmark)

    Domkin, Konstantin; Hattel, Jesper Henri; Thorborg, Jesper

    2009-01-01

    Soldering of cast alloys to the dies has been a continuing source of die surface damage in the aluminum die-casting industry. To reduce the repair and maintenance costs, an approach to modeling the damage and predicting the die lifetime is required. The aim of the present study is the estimation...... the die-casting industry. As an example, the model is applied to several cases of high pressure die casting (HPDC) where A380 alloy parts are cast in the H13 steel die. The predicted locations of the higher strength of soldering appear in the "hot spot" areas of the die surface in agreement...

  3. Analytic modeling of a high temperature thermoelectric module for wireless sensors

    Science.gov (United States)

    Köhler, J. E.; Staaf, L. G. H.; Palmqvist, A. E. C.; Enoksson, P.

    2014-11-01

    A novel high temperature thermoelectric module with thermoelectric materials never before combined in a module is currently researched. The module placement in the cooling channels of a jet engine where the cold side will be cooled by high flow cooling air (550° C) and the hot side will be at the wall (800° C). The aim of the project is to drastically reduce the length of the wires by replacing wired sensors with wireless sensors and power these (3-10mW) with thermoelectric harvesters. To optimize the design for the temperature range and the environment an analytic model was constructed. Using known models for this purpose was not possible for this project, as many of the models have too many assumptions, e.g. that the temperature gradient is relatively low, that thick electrodes with very low resistance can be used, that the heat transfer through the base plates are perfect or that the aim of the design is to maximize the efficiency. The analytical model in this paper is a combination of several known models with the aim to examine what materials to use in this specific environment to achieve the highest possible specific power (mW/g).

  4. Analytic modeling of a high temperature thermoelectric module for wireless sensors

    International Nuclear Information System (INIS)

    Köhler, J E; Staaf, L G H; Palmqvist, A E C; Enoksson, P

    2014-01-01

    A novel high temperature thermoelectric module with thermoelectric materials never before combined in a module is currently researched. The module placement in the cooling channels of a jet engine where the cold side will be cooled by high flow cooling air (550° C) and the hot side will be at the wall (800° C). The aim of the project is to drastically reduce the length of the wires by replacing wired sensors with wireless sensors and power these (3-10mW) with thermoelectric harvesters. To optimize the design for the temperature range and the environment an analytic model was constructed. Using known models for this purpose was not possible for this project, as many of the models have too many assumptions, e.g. that the temperature gradient is relatively low, that thick electrodes with very low resistance can be used, that the heat transfer through the base plates are perfect or that the aim of the design is to maximize the efficiency. The analytical model in this paper is a combination of several known models with the aim to examine what materials to use in this specific environment to achieve the highest possible specific power (mW/g)

  5. Mathematical Modeling of the High Temperature Treatment of Birch in a Prototype Furnace

    Directory of Open Access Journals (Sweden)

    Duygu Kocaefe

    2013-01-01

    Full Text Available In recent years, various wood modification technologies have been commercialized as alternatives to the traditional chemical treatments for wood preservation. The high temperature heat treatment of wood is one of these commercially viable and environmentally friendly alternative wood modification technologies. During this treatment, wood is heated to temperatures above 200°C by contacting it with hot gas. The chemical structure of wood changes leading to increased dimensional stability and resistance to microorganisms. Wood darkens making it aesthetically more attractive. However, it loses some of its elasticity. Therefore, the high temperature heat treatment has to be optimized for each species and each technology. The mathematical modeling is an important tool for optimization. It can also be used as a powerful tool for furnace modification and design. A reliable and predictive model was developed to simulate numerically the heat treatment process. Heat treatment experiments were carried out in the prototype furnace of the University of Quebec at Chicoutimi. The model was validated by comparing the predictions with the experimental data. In this paper, the results of the model applied to birch heat treatment are presented. The model predictions are in good agreement with the data.

  6. Comparison of Two Models for Radiative Heat Transfer in High Temperature Thermal Plasmas

    Directory of Open Access Journals (Sweden)

    Matthieu Melot

    2011-01-01

    Full Text Available Numerical simulation of the arc-flow interaction in high-voltage circuit breakers requires a radiation model capable of handling high-temperature participating thermal plasmas. The modeling of the radiative transfer plays a critical role in the overall accuracy of such CFD simulations. As a result of the increase of computational power, CPU intensive methods based on the radiative transfer equation, leading to more accurate results, are now becoming attractive alternatives to current approximate models. In this paper, the predictive capabilities of the finite volume method (RTE-FVM and the P1 model are investigated. A systematic comparison between these two models and analytical solutions are presented for a variety of relevant test cases. Two implementations of each approach are compared, and a critical evaluation is presented.

  7. High temperature shock tube experiments and kinetic modeling study of diisopropyl ketone ignition and pyrolysis

    KAUST Repository

    Barari, Ghazal

    2017-03-10

    Diisopropyl ketone (DIPK) is a promising biofuel candidate, which is produced using endophytic fungal conversion. In this work, a high temperature detailed combustion kinetic model for DIPK was developed using the reaction class approach. DIPK ignition and pyrolysis experiments were performed using the UCF shock tube. The shock tube oxidation experiments were conducted between 1093K and 1630K for different reactant compositions, equivalence ratios (φ=0.5–2.0), and pressures (1–6atm). In addition, methane concentration time-histories were measured during 2% DIPK pyrolysis in argon using cw laser absorption near 3400nm at temperatures between 1300 and 1400K near 1atm. To the best of our knowledge, current ignition delay times (above 1050K) and methane time histories are the first such experiments performed in DIPK at high temperatures. Present data were used as validation targets for the new kinetic model and simulation results showed fair agreement compared to the experiments. The reaction rates corresponding to the main consumption pathways of DIPK were found to have high sensitivity in controlling the reactivity, so these were adjusted to attain better agreement between the simulation and experimental data. A correlation was developed based on the experimental data to predict the ignition delay times using the temperature, pressure, fuel concentration and oxygen concentration.

  8. A constitutive model for particulate-reinforced titanium matrix composites subjected to high strain rates and high temperatures

    Directory of Open Access Journals (Sweden)

    Song Wei-Dong

    2013-01-01

    Full Text Available Quasi-static and dynamic tension tests were conducted to study the mechanical properties of particulate-reinforced titanium matrix composites at strain rates ranging from 0.0001/s to 1000/s and at temperatures ranging from 20 °C to 650 °C Based on the experimental results, a constitutive model, which considers the effects of strain rate and temperature on hot deformation behavior, was proposed for particulate-reinforced titanium matrix composites subjected to high strain rates and high temperatures by using Zener-Hollomon equations including Arrhenius terms. All the material constants used in the model were identified by fitting Zener-Hollomon equations against the experimental results. By comparison of theoretical predictions presented by the model with experimental results, a good agreement was achieved, which indicates that this constitutive model can give an accurate and precise estimate for high temperature flow stress for the studied titanium matrix composites and can be used for numerical simulations of hot deformation behavior of the composites.

  9. Modeling high-temperature superconductors and metallic alloys on the Intel iPSC/860

    International Nuclear Information System (INIS)

    Geist, G.A.; Peyton, B.W.; Shelton, W.A.; Stocks, G.M.

    1990-01-01

    Oak Ridge National Laboratory has embarked on several computational grand Challenges, which require the close cooperation of physicists, mathematicians, and computer scientists. One of these projects is the determination of the material properties of alloys form first principles and, in particular, the electronic structure of high-temperature superconductors. The physical basis for high Tc superconductivity is not well understood. The design of materials with higher critical temperatures and the ability to carry higher current densities can be greatly facilitated by the modeling and detailed study of the electronic structure of existing superconductors. This paper describes the progress to data on this project. We include a description of a self-consistent KKR-CPA method, parallelization of the model, and the incorporation of a dynamic load balancing scheme into the algorithm. We also describe the development and performance of a consolidated KKR-CPA code capable of running on CRAYs, workstations, and several parallel computers without source code modification

  10. High-temperature experimental and thermodynamic modelling research on the pyrometallurgical processing of copper

    Science.gov (United States)

    Hidayat, Taufiq; Shishin, Denis; Decterov, Sergei A.; Hayes, Peter C.; Jak, Evgueni

    2017-01-01

    Uncertainty in the metal price and competition between producers mean that the daily operation of a smelter needs to target high recovery of valuable elements at low operating cost. Options for the improvement of the plant operation can be examined and decision making can be informed based on accurate information from laboratory experimentation coupled with predictions using advanced thermodynamic models. Integrated high-temperature experimental and thermodynamic modelling research on phase equilibria and thermodynamics of copper-containing systems have been undertaken at the Pyrometallurgy Innovation Centre (PYROSEARCH). The experimental phase equilibria studies involve high-temperature equilibration, rapid quenching and direct measurement of phase compositions using electron probe X-ray microanalysis (EPMA). The thermodynamic modelling deals with the development of accurate thermodynamic database built through critical evaluation of experimental data, selection of solution models, and optimization of models parameters. The database covers the Al-Ca-Cu-Fe-Mg-O-S-Si chemical system. The gas, slag, matte, liquid and solid metal phases, spinel solid solution as well as numerous solid oxide and sulphide phases are included. The database works within the FactSage software environment. Examples of phase equilibria data and thermodynamic models of selected systems, as well as possible implementation of the research outcomes to selected copper making processes are presented.

  11. Advanced High-Temperature Reactor Dynamic System Model Development: April 2012 Status

    Energy Technology Data Exchange (ETDEWEB)

    Qualls, A L; Cetiner, M S; Wilson, Jr, T L

    2012-04-30

    The Advanced High-Temperature Reactor (AHTR) is a large-output fluoride-salt-cooled high-temperature reactor (FHR). An early-phase preconceptual design of a 1500 MW(e) power plant was developed in 2011 [Refs. 1 and 2]. An updated version of this plant is shown as Fig. 1. FHRs feature low-pressure liquid fluoride salt cooling, coated-particle fuel, a high-temperature power cycle, and fully passive decay heat rejection. The AHTR is designed to be a “walk away” reactor that requires no action to prevent large off-site releases following even severe reactor accidents. This report describes the development of dynamic system models used to further the AHTR design toward that goal. These models predict system response during warmup, startup, normal operation, and limited off-normal operating conditions. Severe accidents that include a loss-of-fluid inventory are not currently modeled. The scope of the models is limited to the plant power system, including the reactor, the primary and intermediate heat transport systems, the power conversion system, and safety-related or auxiliary heat removal systems. The primary coolant system, the intermediate heat transport system and the reactor building structure surrounding them are shown in Fig. 2. These systems are modeled in the most detail because the passive interaction of the primary system with the surrounding structure and heat removal systems, and ultimately the environment, protects the reactor fuel and the vessel from damage during severe reactor transients. The reactor silo also plays an important role during system warmup. The dynamic system modeling tools predict system performance and response. The goal is to accurately predict temperatures and pressures within the primary, intermediate, and power conversion systems and to study the impacts of design changes on those responses. The models are design tools and are not intended to be used in reactor qualification. The important details to capture in the primary

  12. Modeling Coupled THMC Processes and Brine Migration in Salt at High Temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Rutqvist, Jonny; Blanco Martin, Laura; Mukhopadhyay, Sumit; Houseworth, Jim; Birkholzer, Jens

    2014-08-14

    In this report, we present FY2014 progress by Lawrence Berkeley National Laboratory (LBNL) related to modeling of coupled thermal-hydrological-mechanical-chemical (THMC) processes in salt and their effect on brine migration at high temperatures. LBNL’s work on the modeling of coupled THMC processes in salt was initiated in FY2012, focusing on exploring and demonstrating the capabilities of an existing LBNL modeling tool (TOUGH-FLAC) for simulating temperature-driven coupled flow and geomechanical processes in salt. This work includes development related to, and implementation of, essential capabilities, as well as testing the model against relevant information and published experimental data related to the fate and transport of water. we provide more details on the FY2014 work, first presenting updated tools and improvements made to the TOUGH-FLAC simulator, and the use of this updated tool in a new model simulation of long-term THM behavior within a generic repository in a salt formation. This is followed by the description of current benchmarking and validations efforts, including the TSDE experiment. We then present the current status in the development of constitutive relationships and the dual-continuum model for brine migration. We conclude with an outlook for FY2015, which will be much focused on model validation against field experiments and on the use of the model for the design studies related to a proposed heater experiment.

  13. An experimental and modeling study of the low- and high-temperature oxidation of cyclohexane

    Science.gov (United States)

    Serinyel, Zeynep; Herbinet, Olivier; Frottier, Ophélie; Dirrenberger, Patricia; Warth, Valérie; Glaude, Pierre Alexandre; Battin-Leclerc, Frédérique

    2013-01-01

    The experimental study of the oxidation of cyclohexane has been performed in a jet-stirred reactor at temperatures ranging from 500 to 1100 K (low- and intermediate temperature zones including the negative temperature-coefficient area), at a residence time of 2 s and for dilute mixtures with equivalence ratios of 0.5, 1, and 2. Experiments were carried out at quasi-atmospheric pressure (1.07 bar). The fuel and reaction product mole fractions were measured using online gas chromatography. A total of 34 reaction products have been detected and quantified in this study. Typical reaction products formed in the low-temperature oxidation of cyclohexane include cyclic ethers (1,2-epoxycyclohexane and 1,4-epoxycyclohexane), 5-hexenal (formed from the rapid decomposition of 1,3-epoxycyclohexane), cyclohexanone, and cyclohexene, as well as benzene and phenol. Cyclohexane displays high low-temperature reactivity with well-marked negative temperature-coefficient (NTC) behavior at equivalence ratios 0.5 and 1. The fuel-rich system (ϕ = 2) is much less reactive in the same region and exhibits no NTC. To the best of our knowledge, this is the first jet-stirred reactor study to report NTC in cyclohexane oxidation. Laminar burning velocities were also measured by the heated burner method at initial gas temperatures of 298, 358, and 398 K and at 1 atm. The laminar burning velocity values peak at ϕ = 1.1 and are measured as 40 and 63.1 cm/s for Ti = 298 and 398 K, respectively. An updated detailed chemical kinetic model including low-temperature pathways was used to simulate the present (jet-stirred reactor and laminar burning velocity) and literature experimental (laminar burning velocity, rapid compression machine, and shock tube ignition delay times) data. Reasonable agreement is observed with most of the products observed in our reactor, as well as the literature experimental data considered in this paper. PMID:24124264

  14. Status of the INL high-temperature electrolysis research program –experimental and modeling

    Energy Technology Data Exchange (ETDEWEB)

    J. E. O' Brien; C. M. Stoots; M. G. McKellar; E. A. Harvego; K. G. Condie; G. K. Housley; J. S. Herring; J. J. Hartvigsen

    2009-04-01

    This paper provides a status update on the high-temperature electrolysis (HTE) research and development program at the Idaho National Laboratory (INL), with an overview of recent large-scale system modeling results and the status of the experimental program. System analysis results have been obtained using the commercial code UniSim, augmented with a custom high-temperature electrolyzer module. The process flow diagrams for the system simulations include an advanced nuclear reactor as a source of high-temperature process heat, a power cycle and a coupled steam electrolysis loop. Several reactor types and power cycles have been considered, over a range of reactor coolant outlet temperatures. In terms of experimental research, the INL has recently completed an Integrated Laboratory Scale (ILS) HTE test at the 15 kW level. The initial hydrogen production rate for the ILS test was in excess of 5000 liters per hour. Details of the ILS design and operation will be presented. Current small-scale experimental research is focused on improving the degradation characteristics of the electrolysis cells and stacks. Small-scale testing ranges from single cells to multiple-cell stacks. The INL is currently in the process of testing several state-of-the-art anode-supported cells and is working to broaden its relationship with industry in order to improve the long-term performance of the cells.

  15. Dynamic modeling and experimental investigation of a high temperature PEM fuel cell stack

    DEFF Research Database (Denmark)

    Nguyen, Gia; Sahlin, Simon Lennart; Andreasen, Søren Juhl

    2016-01-01

    . This article presents the development of a dynamic model and the comparison with experimental data from a high temperature proton exchange membrane fuel cell stack operating on hydrogen with carbon monoxide concentrations up to 0.8%, and temperatures from 155 to 175◦C. The dynamic response of the fuel cell......High temperature polymer fuel cells operating at 100 to 200◦C require simple fuel processing and produce high quality heat that can integrate well with domestic heating systems. Because the transportation of hydrogen is challenging, an alternative option is to reform natural gas on site...... is investigated with simulated reformate gas. The dynamic response of the fuel cell stack was compared with a step change in current from 0.09 to 0.18 and back to 0.09 A/cm2 . This article shows that the dynamic model calculates the voltage at steady state well. The dynamic response for a change in current shows...

  16. Study and modelling of an industrial plant for hydrogen production by High Temperature Steam Electrolysis

    International Nuclear Information System (INIS)

    Bertier, L.

    2012-01-01

    HTSE field (High Temperature Steam Electrolysis) is moving from the research phase to development phase. It's now necessary to prove and to possibly improve the technology competitiveness. Therefore we need a tool able to allow communication between hydrogen producers and electrolysis cell stack designers. Designers seek where their efforts have to focus, for example by searching what are the operating best conditions for HTSE (voltage, temperature). On the contrary, the producer wants to choose the most suitable stack for its needs and under the best conditions: hydrogen has to be produced at the lowest price. Two main constraints have been identified to reach this objective: the tool has to be inserted into a process simulation software and needs to be representative of the cell and stack used technology. These constraints are antagonistic. Making an object model in a process simulation usually involves a highly simplified representation of it. To meet these constraints, we have built a model chain starting from the electrode models and leading to a representative model of the HTSE technology used process. Work and added value of this thesis mainly concern a global and local energy optimization approach. Our model allows at each scale an appropriate analysis of the main phenomena occurring in each object and a quantification of the energy and economic impacts of the technology used. This approach leads to a tool able to achieve the technical and economic optimization of a HTSE production unit. (author) [fr

  17. Paramagnetic Meissner effect of high-temperature granular superconductors: Interpretation by anisotropic and isotropic models

    International Nuclear Information System (INIS)

    Chen, F.H.; Horng, W.C.; Hsu, H.T.; Tseng, T.Y.

    1995-01-01

    The field-cooled magnetization of high-T c superconducting ceramics measured in low magnetic field exhibits the paramagnetic Meissner effect (PME), i.e., the diamagnetic signal initially increases with decrease in temperature but reaches a maximum at temperature T d and later decreases with decrease in temperature. Even in some samples the signal is ultimately able to transform inversely into a paramagnetic regime once the sample is cooled below a temperature T p as long as the applied field is sufficiently small. This PME has been observed in various high-T c cuprates and is explained by disparate aspects. An anisotropic model, in which the granular superconductors are assumed to be ideally anisotropic, was first alternatively proposed in the present work so as to theoretically account for this effect. On the other hand, an isotropic model, suitable for granular superconductors with randomly oriented grains, was proposed to deal with the samples prepared by a conventional solid-state reaction method. The anomalous magnetization behavior in the present model was demonstrated to be the superposition of the diamagnetic signal, which occurs as a result of the intragranular shielding currents, over the paramagnetic one due to the induction of the intergranular component induced by these currents where the intergranular one behaved as the effective pinning centers. The PME was demonstrated by this model to exist parasitically in granular superconductors. This intergranular effect is therefore worthy of remark when evaluating the volume fraction of superconductivity for the samples from the Meissner signal, in particular, at a low magnetic field

  18. The elastic solid solution model for minerals at high pressures and temperatures

    Science.gov (United States)

    Myhill, R.

    2018-02-01

    Non-ideality in mineral solid solutions affects their elastic and thermodynamic properties, their thermobaric stability, and the equilibrium phase relations in multiphase assemblages. At a given composition and state of order, non-ideality in minerals is typically modelled via excesses in Gibbs free energy which are either constant or linear with respect to pressure and temperature. This approach has been extremely successful when modelling near-ideal solutions. However, when the lattice parameters of the solution endmembers differ significantly, extrapolations of thermodynamic properties to high pressures using these models may result in significant errors. In this paper, I investigate the effect of parameterising solution models in terms of the Helmholtz free energy, treating volume (or lattice parameters) rather than pressure as an independent variable. This approach has been previously applied to models of order-disorder, but the implications for the thermodynamics and elasticity of solid solutions have not been fully explored. Solid solution models based on the Helmholtz free energy are intuitive at a microscopic level, as they automatically include the energetic contribution from elastic deformation of the endmember lattices. A chemical contribution must also be included in such models, which arises from atomic exchange within the solution. Derivations are provided for the thermodynamic properties of n-endmember solutions. Examples of the use of the elastic model are presented for the alkali halides, pyroxene, garnet, and bridgmanite solid solutions. Elastic theory provides insights into the microscopic origins of non-ideality in a range of solutions, and can make accurate predictions of excess enthalpies, entropies, and volumes as a function of volume and temperature. In solutions where experimental data are sparse or contradictory, the Helmholtz free energy approach can be used to assess the magnitude of excess properties and their variation as a function

  19. High temperature sensor

    Science.gov (United States)

    Tokarz, Richard D.

    1982-01-01

    A high temperature sensor includes a pair of electrical conductors separated by a mass of electrical insulating material. The insulating material has a measurable resistivity within the sensor that changes in relation to the temperature of the insulating material within a high temperature range (1,000 to 2,000 K.). When required, the sensor can be encased within a ceramic protective coating.

  20. The high-temperature expansion of the classical Ising model with Sz2 term

    Directory of Open Access Journals (Sweden)

    M.T. Thomaz

    2012-03-01

    Full Text Available We derive the high-temperature expansion of the Helmholtz free energy up to order β17 of the one-dimensional spin-S Ising model, with single-ion anisotropy term, in the presence of a longitudinal magnetic field. We show that the values of some thermodynamical functions for the ferromagnetic models, in the presence of a weak magnetic field, are not small corrections to their values with h=0. This model with S=3 was applied by Kishine et al. [J.-i. Kishine et al., Phys. Rev. B, 2006, 74, 224419] to analyze experimental data of the single-chain magnet [Mn (saltmen]2 [Ni(pac2 (py2] (PF62 for T<40 K. We show that for T<35 K the thermodynamic functions of the large-spin limit model are poor approximations to their analogous spin-3 functions.

  1. Modelling high Arctic deep permafrost temperature sensitivity in Northeast Greenland based on experimental and field observations

    Science.gov (United States)

    Rasmussen, Laura Helene; Zhang, Wenxin; Hollesen, Jørgen; Cable, Stefanie; Hvidtfeldt Christiansen, Hanne; Jansson, Per-Erik; Elberling, Bo

    2017-04-01

    Permafrost affected areas in Greenland are expected to experience a marked temperature increase within decades. Most studies have considered near-surface permafrost sensitivity, whereas permafrost temperatures below the depths of zero annual amplitude is less studied despite being closely related to changes in near-surface conditions, such as changes in active layer thermal properties, soil moisture and snow depth. In this study, we measured the sensitivity of thermal conductivity (TC) to gravimetric water content (GWC) in frozen and thawed permafrost sediments from fine-sandy and gravelly deltaic and fine-sandy alluvial deposits in the Zackenberg valley, NE Greenland. We further calibrated a coupled heat and water transfer model, the "CoupModel", for one central delta sediment site with average snow depth and further forced it with meteorology from a nearby delta sediment site with a topographic snow accumulation. With the calibrated model, we simulated deep permafrost thermal dynamics in four 20-year scenarios with changes in surface temperature and active layer (AL) soil moisture: a) 3 °C warming and AL water table at 0.5 m depth; b) 3 °C warming and AL water table at 0.1 m depth; c) 6 °C warming and AL water table at 0.5 m depth and d) 6 °C warming and AL water table at 0.1 m depth. Our results indicate that frozen sediments have higher TC than thawed sediments. All sediments show a positive linear relation between TC and soil moisture when frozen, and a logarithmic one when thawed. Gravelly delta sediments were highly sensitive, but never reached above 12 % GWC, indicating a field effect of water retention capacity. Alluvial sediments are less sensitive to soil moisture than deltaic (fine and coarse) sediments, indicating the importance of unfrozen water in frozen sediment. The deltaic site with snow accumulation had 1 °C higher mean annual ground temperature than the average snow depth site. Permafrost temperature at the depth of 18 m increased with 1

  2. Real time thermal hydraulic model for high temperature gas-cooled reactor core

    International Nuclear Information System (INIS)

    Sui Zhe; Sun Jun; Ma Yuanle; Zhang Ruipeng

    2013-01-01

    A real-time thermal hydraulic model of the reactor core was described and integrated into the simulation system for the high temperature gas-cooled pebble bed reactor nuclear power plant, which was developed in the vPower platform, a new simulation environment for nuclear and fossil power plants. In the thermal hydraulic model, the helium flow paths were established by the flow network tools in order to obtain the flow rates and pressure distributions. Meanwhile, the heat structures, representing all the solid heat transfer elements in the pebble bed, graphite reflectors and carbon bricks, were connected by the heat transfer network in order to solve the temperature distributions in the reactor core. The flow network and heat transfer network were coupled and calculated in real time. Two steady states (100% and 50% full power) and two transients (inlet temperature step and flow step) were tested that the quantitative comparisons of the steady results with design data and qualitative analysis of the transients showed the good applicability of the present thermal hydraulic model. (authors)

  3. Thermophysical characterization tools and numerical models for high temperature thermo-structural composite materials

    International Nuclear Information System (INIS)

    Lorrette, Ch.

    2007-04-01

    This work is an original contribution to the study of the thermo-structural composite materials thermal behaviour. It aims to develop a methodology with a new experimental device for thermal characterization adapted to this type of material and to model the heat transfer by conduction within these heterogeneous media. The first part deals with prediction of the thermal effective conductivity of stratified composite materials in the three space directions. For that, a multi scale model using a rigorous morphology analysis of the structure and the elementary properties is proposed and implemented. The second part deals with the thermal characterization at high temperature. It shows how to estimate simultaneously the thermal effusiveness and the thermal conductivity. The present method is based on the observation of the heating from a plane sample submitted to a continuous excitation generated by Joule Effect. Heat transfer is modelled with the quadrupole formalism, temperature is here measured on two sides of the sample. The development of both resistive probes for excitation and linear probes for temperature measurements enables the thermal properties measured up to 1000 C. Finally, some experimental and numerical application examples lead to review the obtained results. (author)

  4. Hydrogen oxidation at high pressure and intermediate temperatures: experiments and kinetic modeling

    DEFF Research Database (Denmark)

    Hashemi, Hamid; Christensen, Jakob Munkholt; Gersen, Sander

    2015-01-01

    , and the present data sup- port recent values for the rate constant. In addition to the current experiments, the mechanism was evaluated against ignition delay time measurements from rapid compression machines and shock tubes. The model was used to analyze the complex dependence of the ignition delay for H 2...... for the reactions HO 2 + OH, OH + OH, and HO 2 +HO 2 were updated based on recent determinations. The modeling pre- dictions were in good agreement with the measurements in the flow reactor. The predicted H 2 oxidation rate was sensitive to the rate of the HO 2 + OH reaction, particularly at lean conditions......Hydrogen oxidation at 50 bar and temperatures of 700–900 K was investigated in a high pressure laminar flow reactor under highly diluted conditions. The experiments provided information about H 2 oxidation at pressures above the third explosion limit. The fuel–air equivalence ratio of the reactants...

  5. Analysis of a high-temperature coal combustor according to a one-dimensional flow model

    Energy Technology Data Exchange (ETDEWEB)

    Chung, P M; Smith, R S

    1977-10-01

    A steady state, one-dimensional analysis for a high temperature coal combustor is presented. An existing solution of solid fuel ignition is employed to describe the ignition of the coal particles. A one-dimensional flow model with radiative heat loss is then constructed to describe the subsequent vaporization of ash and devolatilization, combustion, and gasification of the coal. Combustion is considered to take place either at a flame sheet in the diffusion layer surrounding each particle or at the particle surface. The combustion products are considered to be redistributed in the main gas stream of the combustor according to simplified chemical equilibrium criteria. A simplified devolatilization rate law is formulated, which incorporates in a tractable manner the various competing reactions within the coal particle. Data are presented for the variation of temperatures and mass fractions with position in the combustor and for the influence of various parameters on combustor performance.

  6. Heat Transfer Measurement and Modeling in Rigid High-Temperature Reusable Surface Insulation Tiles

    Science.gov (United States)

    Daryabeigi, Kamran; Knutson, Jeffrey R.; Cunnington, George R.

    2011-01-01

    Heat transfer in rigid reusable surface insulations was investigated. Steady-state thermal conductivity measurements in a vacuum were used to determine the combined contribution of radiation and solid conduction components of heat transfer. Thermal conductivity measurements at higher pressures were then used to estimate the effective insulation characteristic length for gas conduction modeling. The thermal conductivity of the insulation can then be estimated at any temperature and pressure in any gaseous media. The methodology was validated by comparing estimated thermal conductivities with published data on a rigid high-temperature silica reusable surface insulation tile. The methodology was also applied to the alumina enhanced thermal barrier tiles. Thermal contact resistance for thermal conductivity measurements on rigid tiles was also investigated. A technique was developed to effectively eliminate thermal contact resistance on the rigid tile s cold-side surface for the thermal conductivity measurements.

  7. High temperature refrigerator

    International Nuclear Information System (INIS)

    Steyert, W.A. Jr.

    1978-01-01

    A high temperature magnetic refrigerator is described which uses a Stirling-like cycle in which rotating magnetic working material is heated in zero field and adiabatically magnetized, cooled in high field, then adiabatically demagnetized. During this cycle the working material is in heat exchange with a pumped fluid which absorbs heat from a low temperature heat source and deposits heat in a high temperature reservoir. The magnetic refrigeration cycle operates at an efficiency 70% of Carnot

  8. High-Temperature Superconductivity

    Science.gov (United States)

    Tanaka, Shoji

    2006-12-01

    A general review on high-temperature superconductivity was made. After prehistoric view and the process of discovery were stated, the special features of high-temperature superconductors were explained from the materials side and the physical properties side. The present status on applications of high-temperature superconductors were explained on superconducting tapes, electric power cables, magnets for maglev trains, electric motors, superconducting quantum interference device (SQUID) and single flux quantum (SFQ) devices and circuits.

  9. High temperature refrigerator

    Science.gov (United States)

    Steyert, Jr., William A.

    1978-01-01

    A high temperature magnetic refrigerator which uses a Stirling-like cycle in which rotating magnetic working material is heated in zero field and adiabatically magnetized, cooled in high field, then adiabatically demagnetized. During this cycle said working material is in heat exchange with a pumped fluid which absorbs heat from a low temperature heat source and deposits heat in a high temperature reservoir. The magnetic refrigeration cycle operates at an efficiency 70% of Carnot.

  10. Extension of an anisotropic creep model to general high temperature deformation of a single crystal superalloy

    International Nuclear Information System (INIS)

    Pan, L.M.; Ghosh, R.N.; McLean, M.

    1993-01-01

    A physics based model has been developed that accounts for the principal features of anisotropic creep deformation of single crystal superalloys. The present paper extends this model to simulate other types of high temperature deformation under strain controlled test conditions, such as stress relaxation and tension tests at constant strain rate in single crystals subject to axial loading along an arbitrary crystal direction. The approach is applied to the SRR99 single crystal superalloy where a model parameter database is available, determined via analysis of a database of constant stress creep curves. A software package has been generated to simulate the deformation behaviour under complex stress-strain conditions taking into account anisotropic elasticity. (orig.)

  11. Multi-solid model modified to predict paraffin in petroleum fluids at high temperatures and pressures

    International Nuclear Information System (INIS)

    Escobar Remolina, Juan Carlos M; Barrios Ortiz, Wilson; Santoyo Ramirez Gildardo

    2009-01-01

    A thermodynamic structure has been modified in order to calculate cloud point, fluidity and amount of precipitated wax under a wide range of temperature conditions, composition, and high pressures. The model is based on a combination of ideal solution concepts, fluid characterization, and formation of multiple solid phases using Cubic State Equations. The experimental data utilized for testing the prediction capacity and potentiality of a model exhibit different characteristics: continuous series synthetic systems of heavy alkanes, discontinuous series, and dead or living petroleum fluids with indefinite fractions such as C7+, C10+, C20+, and C30+. The samples were taken from the literature, petroleum fluids from the main Colombian reservoirs, and some samples of Bolivian fluids. Results presented in this paper show the minimum standard deviations between experimental data and data calculated with a model. This allows a progress in decision-making processes for flow assurance in reservoirs, wells, and surface facilities in the petroleum industry.

  12. High temperature measuring device

    Science.gov (United States)

    Tokarz, Richard D.

    1983-01-01

    A temperature measuring device for very high design temperatures (to 2,000.degree. C.). The device comprises a homogenous base structure preferably in the form of a sphere or cylinder. The base structure contains a large number of individual walled cells. The base structure has a decreasing coefficient of elasticity within the temperature range being monitored. A predetermined quantity of inert gas is confined within each cell. The cells are dimensionally stable at the normal working temperature of the device. Increases in gaseous pressure within the cells will permanently deform the cell walls at temperatures within the high temperature range to be measured. Such deformation can be correlated to temperature by calibrating similarly constructed devices under known time and temperature conditions.

  13. NIRVANA, a high-temperature creep model for Zircaloy fuel sheathing

    International Nuclear Information System (INIS)

    Sills, H.E.; Holt, R.A.

    1979-05-01

    We have developed a multi-component model to describe the transient plastic deformation of Zircaloy fuel sheathing during high-temperature transients. From deformation maps we identify three deformation mechanisms which, in principle, occur in all three phase fields of Zircaloy (α, α+β, β): diffusional creep, dislocation creep, and athermal strian. A strain component occurring during the α → β transformation is also identified. Microstructural changes which alter deformation rates -grain structure, recrystallization, phase transformation -are accounted for. The individual components of the model represent known metallurgical phenomena. The combined model gives excellent agreement with transient test data from 700-1800 K, a range of heating rates from 0-100 K.s -1 , and a range of strain rates from 10 -5 to 10 -1 .s -1 . To enable comparison with available data the transient creep model was combined with an axially uniform, thin-walled tube representation having anisotropic material properties. The resulting computer code, NIRVANA provides facilities for simulating uniaxial and biaxial tube tests over specified stress/temperature histories. (author)

  14. Creep-Fatigue Damage Investigation and Modeling of Alloy 617 at High Temperatures

    Science.gov (United States)

    Tahir, Fraaz

    The Very High Temperature Reactor (VHTR) is one of six conceptual designs proposed for Generation IV nuclear reactors. Alloy 617, a solid solution strengthened Ni-base superalloy, is currently the primary candidate material for the tubing of the Intermediate Heat Exchanger (IHX) in the VHTR design. Steady-state operation of the nuclear power plant at elevated temperatures leads to creep deformation, whereas loading transients including startup and shutdown generate fatigue. A detailed understanding of the creep-fatigue interaction in Alloy 617 is necessary before it can be considered as a material for nuclear construction in ASME Boiler and Pressure Vessel Code. Current design codes for components undergoing creep-fatigue interaction at elevated temperatures require creep-fatigue testing data covering the entire range from fatigue-dominant to creep-dominant loading. Classical strain-controlled tests, which produce stress relaxation during the hold period, show a saturation in cycle life with increasing hold periods due to the rapid stress-relaxation of Alloy 617 at high temperatures. Therefore, applying longer hold time in these tests cannot generate creep-dominated failure. In this study, uniaxial isothermal creep-fatigue tests with non-traditional loading waveforms were designed and performed at 850 and 950°C, with an objective of generating test data in the creep-dominant regime. The new loading waveforms are hybrid strain-controlled and force-controlled testing which avoid stress relaxation during the creep hold. The experimental data showed varying proportions of creep and fatigue damage, and provided evidence for the inadequacy of the widely-used time fraction rule for estimating creep damage under creep-fatigue conditions. Micro-scale damage features in failed test specimens, such as fatigue cracks and creep voids, were quantified using a Scanning Electron Microscope (SEM) to find a correlation between creep and fatigue damage. Quantitative statistical

  15. A heterogeneous model for burnup calculation in high temperature gas-cooled reactors

    International Nuclear Information System (INIS)

    Perfetti, C. M.; Angahie, S.; Baxter, A.; Ellis, C.

    2008-01-01

    A high resolution MCNPX model is developed to simulate nuclear design characteristics and fuel cycle features of High Temperature Gas-Cooled Reactors. Contrary to the conventional approach in the MCNPX model, fuel regions containing TRISO particles are not homogenized. A cube corner distribution approximation is used to directly model randomly dispersed TRISO fuel particles in a graphite matrix. The universe filling technique is used cover the entire range of fuel particles in the core. The heterogeneous MCNPX model is applied to simulate and analyze the complete fuel cycle of the General Atomics Plutonium-Consumption Modular Helium Reactor (PC-MHR). The PC-MHR reactor design is a variation of the General Atomic MHR design and is designed for the consumption or burning of excess Russian weapons plutonium. The MCNPX burnup calculation of the PC-MHR includes the simulation of a 260 effective full-power day fuel cycle at 600 MWt. Results of the MCNPX calculations suggest that during 260 effective full-power day cycle, 40% reduction in the whole core Pu-239 inventory could be achieved. Results of heterogeneous MCNPX burnup calculations in PC-MHR are compared with results of deterministically calculated values obtained from DIF3D codes. For the 260 effective full-power day cycle, the difference in mass Pu-239 mass reduction calculation using heterogeneous MCNPX and homogeneous DIF3D models is 6%. The difference in MCNPX and DIF3D calculated results for higher actinides are mostly higher than 6%. (authors)

  16. High-temperature sensor

    Science.gov (United States)

    Not Available

    1981-01-29

    A high temperature sensor is described which includes a pair of electrical conductors separated by a mass of electrical insulating material. The insulating material has a measurable resistivity within the sensor that changes in relation to the temperature of the insulating material within a high temperature range (1000 to 2000/sup 0/K). When required, the sensor can be encased within a ceramic protective coating.

  17. A dynamic model of an innovative high-temperature solar heating and cooling system

    Directory of Open Access Journals (Sweden)

    Buonomano Annamaria

    2016-01-01

    Full Text Available In this paper a new simulation model of a novel solar heating and cooling system based on innovative high temperature flat plate evacuated solar thermal collector is presented. The system configuration includes: flat-plate evacuated solar collectors, a double-stage LiBr-H2O absorption chiller, gas-fired auxiliary heater, a closed loop cooling tower, pumps, heat exchangers, storage tanks, valves, mixers and controllers. The novelty of this study lies in the utilization of flat-plate stationary solar collectors, manufactured by TVP Solar, rather than concentrating ones (typically adopted for driving double-stage absorption chillers. Such devices show ultra-high thermal efficiencies, even at very high (about 200°C operating temperatures, thanks to the high vacuum insulation. Aim of the paper is to analyse the energy and economic feasibility of such novel technology, by including it in a prototypal solar heating and cooling system. For this purpose, the solar heating and cooling system design and performance were analysed by means of a purposely developed dynamic simulation model, implemented in TRNSYS. A suitable case study is also presented. Here, the simulated plant is conceived for the space heating and cooling and the domestic hot water production of a small building, whose energy needs are fulfilled through a real installation (settled also for experimental purposes built up close to Naples (South Italy. Simulation results show that the investigated system is able to reach high thermal efficiencies and very good energy performance. Finally, the economic analysis shows results comparable to those achieved through similar renewable energy systems.

  18. Evaluation of trends in high temperature extremes in north-western Europe in regional climate models

    International Nuclear Information System (INIS)

    Min, E; Hazeleger, W; Van Oldenborgh, G J; Sterl, A

    2013-01-01

    Projections of future changes in weather extremes on the regional and local scale depend on a realistic representation of trends in extremes in regional climate models (RCMs). We have tested this assumption for moderate high temperature extremes (the annual maximum of the daily maximum 2 m temperature, T ann.max ). Linear trends in T ann.max from historical runs of 14 RCMs driven by atmospheric reanalysis data are compared with trends in gridded station data. The ensemble of RCMs significantly underestimates the observed trends over most of the north-western European land surface. Individual models do not fare much better, with even the best performing models underestimating observed trends over large areas. We argue that the inability of RCMs to reproduce observed trends is probably not due to errors in large-scale circulation. There is also no significant correlation between the RCM T ann.max trends and trends in radiation or Bowen ratio. We conclude that care should be taken when using RCM data for adaptation decisions. (letter)

  19. Mesonic quasinormal modes of the Sakai-Sugimoto model at high temperature

    International Nuclear Information System (INIS)

    Evans, Nick; Threlfall, Ed

    2008-01-01

    We examine the mesonic thermal spectrum of the Sakai-Sugimoto model of holographic QCD by finding the quasinormal frequencies of the supergravity dual. If flavor is added using D8-D8 branes there exist embeddings where the D-brane world volume contains a black hole. For these embeddings (the high-temperature phase of the Sakai-Sugimoto model) we determine the quasinormal spectra of scalar and vector mesons arising from the world volume Dirac-Born-Infeld (DBI) action of the D-brane. We stress the importance of a coordinate change that makes the infalling quasinormal modes regular at the horizon allowing a simple numerical shooting technique. Finally we examine the effect of finite spatial momentum on quasinormal spectra

  20. Development of a neutronic model for the fuel of a high temperature gas reactor type PBMR

    International Nuclear Information System (INIS)

    Oropeza C, I.; Carmona H, R.; Francois L, J. L.

    2008-01-01

    In this work was developed the neutronic model of a fuel sphere of a nuclear reactor of gas of high temperature to modulate of bed of spheres (PBMR), using the Monte Carlo method with the MCNPx code. In order to be able to verify the fuel model constructed in this investigation, it is used a case of reference, based on an international exercise b enchmark . The benchmark report contains the results sent by different international participants for five phases with respect to the high temperature gas reactor (HTR), fed with uranium, plutonium and thorium. In particular, in first stage of benchmark an infinite adjustment of uranium compound fuel spheres is considered unique, with which our results were compared. This first stage considers two cases: cell calculations with spherical external frontier and cell calculations with cubic external frontier. The objective is to identify any increase in the uncertainty, related to the uranium fuel, that is associated with the plutonium and thorium fuels. In order to validate our results, the values of the neutron multiplication factor were taken in account, in cold and in the heat of the moment from the participants who sent their results obtained with Monte Carlo and deterministic calculations. The model of the fuel sphere developed in this work considers a regular distribution of 15000 Triso particles, in a cubic mesh centered within the sphere. For it was necessary to define the step firstly or p itch o f the cubic mesh. Generally, the results obtained by the participants of benchmark and those of this investigation present good agreement, nevertheless, appear some discrepancies, attributed to factors like different libraries of cross sections used, the nature of the solution: Monte Carlo or deterministic, and the difficulty of some participants to model the external frontier condition of reflection. (Author)

  1. Tribocorrosion in pressurized high temperature water: a mass flow model based on the third body approach

    Energy Technology Data Exchange (ETDEWEB)

    Guadalupe Maldonado, S.

    2014-07-01

    Pressurized water reactors (PWR) used for power generation are operated at elevated temperatures (280-300 °C) and under higher pressure (120-150 bar). In addition to these harsh environmental conditions some components of the PWR assemblies are subject to mechanical loading (sliding, vibration and impacts) leading to undesirable and hardly controllable material degradation phenomena. In such situations wear is determined by the complex interplay (tribocorrosion) between mechanical, material and physical-chemical phenomena. Tribocorrosion in PWR conditions is at present little understood and models need to be developed in order to predict component lifetime over several decades. The goal of this project, carried out in collaboration with the French company AREVA NP, is to develop a predictive model based on the mechanistic understanding of tribocorrosion of specific PWR components (stainless steel control assemblies, stellite grippers). The approach taken here is to describe degradation in terms of electro-chemical and mechanical material flows (third body concept of tribology) from the metal into the friction film (i.e. the oxidized film forming during rubbing on the metal surface) and from the friction film into the environment instead of simple mass loss considerations. The project involves the establishment of mechanistic models for describing the single flows based on ad-hoc tribocorrosion measurements operating at low temperature. The overall behaviour at high temperature and pressure in investigated using a dedicated tribometer (Aurore) including electrochemical control of the contact during rubbing. Physical laws describing the individual flows according to defined mechanisms and as a function of defined physical parameters were identified based on the obtained experimental results and from literature data. The physical laws were converted into mass flow rates and solved as differential equation system by considering the mass balance in compartments

  2. Modelling of the Stress Corrosion Cracking Behaviour for Low Alloy Steels in High Temperature Water

    International Nuclear Information System (INIS)

    Tirbonod, B.

    2000-11-01

    The goal of the model is to calculate the crack growth and to determine the parameters of relevance for the stress corrosion cracking of the low alloy steels in high temperature water for reactor safety purposes. The model assumes for the crack growth mechanism an anodic dissolution initiated by the rupture of the oxide film by creep at the crack tip, a repassivation, and, for representing other possible crack growth mechanisms, a cleavage. The model for the dissolution considers all the parameters of relevance for the dissolution and well accepted laws of physics. The creep is calculated by a constitutive law of Chaboche with the finite element method. The dissolution cell is found to be situated in the region of the crack tip with a length up to a few hundred micrometers. Sensitive parameters for the crack growth are the strain to film rupture, the composition of the electrolyte, the exchange current densities, and the cleavage length. The model is in qualitative agreement with measurements. It is discussed with particular attention to the geometry and dimensions of the dissolution cell and to the species transport in the dissolution cell and along the crack. Further work should be devoted to the comparison of the model to experiments. (author)

  3. THATCH: A computer code for modelling thermal networks of high- temperature gas-cooled nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kroeger, P.G.; Kennett, R.J.; Colman, J.; Ginsberg, T. (Brookhaven National Lab., Upton, NY (United States))

    1991-10-01

    This report documents the THATCH code, which can be used to model general thermal and flow networks of solids and coolant channels in two-dimensional r-z geometries. The main application of THATCH is to model reactor thermo-hydraulic transients in High-Temperature Gas-Cooled Reactors (HTGRs). The available modules simulate pressurized or depressurized core heatup transients, heat transfer to general exterior sinks or to specific passive Reactor Cavity Cooling Systems, which can be air or water-cooled. Graphite oxidation during air or water ingress can be modelled, including the effects of added combustion products to the gas flow and the additional chemical energy release. A point kinetics model is available for analyzing reactivity excursions; for instance due to water ingress, and also for hypothetical no-scram scenarios. For most HTGR transients, which generally range over hours, a user-selected nodalization of the core in r-z geometry is used. However, a separate model of heat transfer in the symmetry element of each fuel element is also available for very rapid transients. This model can be applied coupled to the traditional coarser r-z nodalization. This report described the mathematical models used in the code and the method of solution. It describes the code and its various sub-elements. Details of the input data and file usage, with file formats, is given for the code, as well as for several preprocessing and postprocessing options. The THATCH model of the currently applicable 350 MW{sub th} reactor is described. Input data for four sample cases are given with output available in fiche form. Installation requirements and code limitations, as well as the most common error indications are listed. 31 refs., 23 figs., 32 tabs.

  4. Thermophysical characterization tools and numerical models for high temperature thermo-structural composite materials; Outils de caracterisation thermophysique et modeles numeriques pour les composites thermostructuraux a haute temperature

    Energy Technology Data Exchange (ETDEWEB)

    Lorrette, Ch

    2007-04-15

    This work is an original contribution to the study of the thermo-structural composite materials thermal behaviour. It aims to develop a methodology with a new experimental device for thermal characterization adapted to this type of material and to model the heat transfer by conduction within these heterogeneous media. The first part deals with prediction of the thermal effective conductivity of stratified composite materials in the three space directions. For that, a multi scale model using a rigorous morphology analysis of the structure and the elementary properties is proposed and implemented. The second part deals with the thermal characterization at high temperature. It shows how to estimate simultaneously the thermal effusiveness and the thermal conductivity. The present method is based on the observation of the heating from a plane sample submitted to a continuous excitation generated by Joule Effect. Heat transfer is modelled with the quadrupole formalism, temperature is here measured on two sides of the sample. The development of both resistive probes for excitation and linear probes for temperature measurements enables the thermal properties measured up to 1000 C. Finally, some experimental and numerical application examples lead to review the obtained results. (author)

  5. The Neutron Peak in the Interlayer Tunneling Model of High Temperature Superconductors

    International Nuclear Information System (INIS)

    Yin, L.; Chakravarty, S.; Anderson, P.W.

    1997-01-01

    Recent neutron scattering experiments in optimally doped YBCO exhibit an unusual magnetic peak that appears only below the superconducting transition temperature. The experimental observations are explained within the context of the interlayer tunneling theory of high temperature superconductors. copyright 1997 The American Physical Society

  6. Experimental characterization and mechanical behaviour modelling of MoTiC composite for high temperature applications

    International Nuclear Information System (INIS)

    Cedat, D.; Rey, C.; Cavel, M.; Fandeur, O.; Le Flem, M.

    2008-01-01

    Complete text of publication follows: In the scope of refractory materials development for structural applications in the core of the future nuclear reactors such as Gas Fast Reactors, materials combining carbide and refractory metals are of great interest to avoid the major drawbacks of monolithic ceramics (poorly damage tolerant) and metals (neutronic incompatibility). This work focuses on the study of the molybdenum-titanium carbide composite processed by hot isostatic pressing. Mo-TiC composites were identified as one of the most promising structural materials in term of mechanical strength to operate at temperatures greater than 800 C (nominal processing) and up to 1650 C (accidental scenarios) under a fast neutron flux. The investigated material is a molybdenum-rich material (MoTiC 30vol% ). Scanning Electron Microscopy picture revealed that titanium carbide (the hard phase) is surrounded by a grey thin-layer, created by diffusion during the forming, and identified as TiC-Mo15% by WDS. The sintered Mo-TiC composite presents a core/rim microstructure. Microstructural characterizations have been investigated: SEM, Transmission Electron Microscopy (TEM) and 3D Tomography focused on the original 3D morphology of this material, induced by the forming process. To get a 3D representation of the material, high energy X-ray tomography at the European Synchrotron Radiation Facility (ESRF, Grenoble, France) has been used. In the aim to investigate the high temperature mechanical behaviour of the cermet compressive tests were carried out in 25-700 C temperature range at constant strain rate (ε=5.10 -4 s -1 ). The material shows a slight plastic deformation (εmax=7%) at room temperature and becomes ductile at 700 C (εmax=23%). Numerical simulations were performed on a representative 3D aggregate built by 3D-EBSD experiments which were conducted using a joint high-resolution field emission SEM/EBSD set-up together with a FIB system. 20 layers were acquired by successive

  7. Experimental characterization and mechanical behaviour modelling of MoTiC composite for high temperature applications

    Energy Technology Data Exchange (ETDEWEB)

    Cedat, D.; Rey, C.; Cavel, M. [Ecole Centrale de Paris (MSSMAT), 92 - Chatenay Malabry (France); Fandeur, O. [CEA Saclay, Dept. Modelisation de Systemes et Structures, DEN/DANS/DM2S/SEMT/LM2S, 91 - Gif-sur-Yvette (France); Le Flem, M. [CEA Saclay, Dept. des Materiaux pour le Nucleaire, DEN/DANS/DMN/SRMA, 91 - Gif-sur-Yvette (France)

    2008-07-01

    Complete text of publication follows: In the scope of refractory materials development for structural applications in the core of the future nuclear reactors such as Gas Fast Reactors, materials combining carbide and refractory metals are of great interest to avoid the major drawbacks of monolithic ceramics (poorly damage tolerant) and metals (neutronic incompatibility). This work focuses on the study of the molybdenum-titanium carbide composite processed by hot isostatic pressing. Mo-TiC composites were identified as one of the most promising structural materials in term of mechanical strength to operate at temperatures greater than 800 C (nominal processing) and up to 1650 C (accidental scenarios) under a fast neutron flux. The investigated material is a molybdenum-rich material (MoTiC{sub 30vol%}). Scanning Electron Microscopy picture revealed that titanium carbide (the hard phase) is surrounded by a grey thin-layer, created by diffusion during the forming, and identified as TiC-Mo15% by WDS. The sintered Mo-TiC composite presents a core/rim microstructure. Microstructural characterizations have been investigated: SEM, Transmission Electron Microscopy (TEM) and 3D Tomography focused on the original 3D morphology of this material, induced by the forming process. To get a 3D representation of the material, high energy X-ray tomography at the European Synchrotron Radiation Facility (ESRF, Grenoble, France) has been used. In the aim to investigate the high temperature mechanical behaviour of the cermet compressive tests were carried out in 25-700 C temperature range at constant strain rate ({epsilon}=5.10{sup -4}s{sup -1}). The material shows a slight plastic deformation ({epsilon}max=7%) at room temperature and becomes ductile at 700 C ({epsilon}max=23%). Numerical simulations were performed on a representative 3D aggregate built by 3D-EBSD experiments which were conducted using a joint high-resolution field emission SEM/EBSD set-up together with a FIB system. 20

  8. High temperature pressure gauge

    Science.gov (United States)

    Echtler, J. Paul; Scandrol, Roy O.

    1981-01-01

    A high temperature pressure gauge comprising a pressure gauge positioned in fluid communication with one end of a conduit which has a diaphragm mounted in its other end. The conduit is filled with a low melting metal alloy above the diaphragm for a portion of its length with a high temperature fluid being positioned in the remaining length of the conduit and in the pressure gauge.

  9. High temperature structural silicides

    International Nuclear Information System (INIS)

    Petrovic, J.J.

    1997-01-01

    Structural silicides have important high temperature applications in oxidizing and aggressive environments. Most prominent are MoSi 2 -based materials, which are borderline ceramic-intermetallic compounds. MoSi 2 single crystals exhibit macroscopic compressive ductility at temperatures below room temperature in some orientations. Polycrystalline MoSi 2 possesses elevated temperature creep behavior which is highly sensitive to grain size. MoSi 2 -Si 3 N 4 composites show an important combination of oxidation resistance, creep resistance, and low temperature fracture toughness. Current potential applications of MoSi 2 -based materials include furnace heating elements, molten metal lances, industrial gas burners, aerospace turbine engine components, diesel engine glow plugs, and materials for glass processing

  10. High temperature probe

    Science.gov (United States)

    Swan, Raymond A.

    1994-01-01

    A high temperature probe for sampling, for example, smokestack fumes, and is able to withstand temperatures of 3000.degree. F. The probe is constructed so as to prevent leakage via the seal by placing the seal inside the water jacket whereby the seal is not exposed to high temperature, which destroys the seal. The sample inlet of the probe is also provided with cooling fins about the area of the seal to provide additional cooling to prevent the seal from being destroyed. Also, a heated jacket is provided for maintaining the temperature of the gas being tested as it passes through the probe. The probe includes pressure sensing means for determining the flow velocity of an efficient being sampled. In addition, thermocouples are located in various places on the probe to monitor the temperature of the gas passing there through.

  11. Experimental characterization and mechanical behaviour modelling of Molybdenum -Titanium Carbide composite for high temperature applications.

    OpenAIRE

    Denis , Cédat; Libert , Maximilien; Le Flem , Marion; Fandeur , Olivier; Rey , Colette; Clavel , Michel; Schmitt , Jean-Hubert

    2009-01-01

    International audience; Simulations of the elastic-viscoplastic behaviour of ceramic-metal composite, over the temperature range 298-993K, are performed on realistic aggregates built up from Electron Back Scatter Diffraction methods. Physical based constitutive models are developed in order to characterize the deformation behaviour of body centered cubic (bcc) metal and face centered cubic (fcc) ceramic under various temperatures. While the ceramic keeps elastic, the viscoplastic behaviour of...

  12. High temperature reaction kinetics

    International Nuclear Information System (INIS)

    Jonah, C.D.; Beno, M.F.; Mulac, W.A.; Bartels, D.

    1985-01-01

    During the last year the dependence of the apparent rate of OD + CO on water pressure was measured at 305, 570, 865 and 1223 K. An explanation was found and tested for the H 2 O dependence of the apparent rate of OH(OD) + CO at high temperatures. The isotope effect for OH(D) with CO was determined over the temperature range 330 K to 1225 K. The reason for the water dependence of the rate of OH(OD) + CO near room temperatures has been investigated but no clear explanation has been found. 1 figure

  13. Models for the Configuration and Integrity of Partially Oxidized Fuel Rod Cladding at High Temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Siefken, L.J.

    1999-01-01

    Models were designed to resolve deficiencies in the SCDAP/RELAP5/MOD3.2 calculations of the configuration and integrity of hot, partially oxidized cladding. These models are expected to improve the calculations of several important aspects of fuel rod behavior. First, an improved mapping was established from a compilation of PIE results from severe fuel damage tests of the configuration of melted metallic cladding that is retained by an oxide layer. The improved mapping accounts for the relocation of melted cladding in the circumferential direction. Then, rules based on PIE results were established for calculating the effect of cladding that has relocated from above on the oxidation and integrity of the lower intact cladding upon which it solidifies. Next, three different methods were identified for calculating the extent of dissolution of the oxidic part of the cladding due to its contact with the metallic part. The extent of dissolution effects the stress and thus the integrity of the oxidic part of the cladding. Then, an empirical equation was presented for calculating the stress in the oxidic part of the cladding and evaluating its integrity based on this calculated stress. This empirical equation replaces the current criterion for loss of integrity which is based on temperature and extent of oxidation. Finally, a new rule based on theoretical and experimental results was established for identifying the regions of a fuel rod with oxidation of both the inside and outside surfaces of the cladding. The implementation of these models is expected to eliminate the tendency of the SCDAP/RELAP5 code to overpredict the extent of oxidation of the upper part of fuel rods and to underpredict the extent of oxidation of the lower part of fuel rods and the part with a high concentration of relocated material. This report is a revision and reissue of the report entitled, Improvements in Modeling of Cladding Oxidation and Meltdown.

  14. Deterministic Modeling of the High Temperature Test Reactor with DRAGON-HEXPEDITE

    Energy Technology Data Exchange (ETDEWEB)

    J. Ortensi; M.A. Pope; R.M. Ferrer; J.J. Cogliati; J.D. Bess; A.M. Ougouag

    2010-10-01

    The Idaho National Laboratory (INL) is tasked with the development of reactor physics analysis capability of the Next Generation Nuclear Power (NGNP) project. In order to examine the INL’s current prismatic reactor analysis tools, the project is conducting a benchmark exercise based on modeling the High Temperature Test Reactor (HTTR). This exercise entails the development of a model for the initial criticality, a 19 fuel column thin annular core, and the fully loaded core critical condition with 30 fuel columns. Special emphasis is devoted to physical phenomena and artifacts in HTTR that are similar to phenomena and artifacts in the NGNP base design. The DRAGON code is used in this study since it offers significant ease and versatility in modeling prismatic designs. DRAGON can generate transport solutions via Collision Probability (CP), Method of Characteristics (MOC) and Discrete Ordinates (Sn). A fine group cross-section library based on the SHEM 281 energy structure is used in the DRAGON calculations. The results from this study show reasonable agreement in the calculation of the core multiplication factor with the MC methods, but a consistent bias of 2–3% with the experimental values is obtained. This systematic error has also been observed in other HTTR benchmark efforts and is well documented in the literature. The ENDF/B VII graphite and U235 cross sections appear to be the main source of the error. The isothermal temperature coefficients calculated with the fully loaded core configuration agree well with other benchmark participants but are 40% higher than the experimental values. This discrepancy with the measurement partially stems from the fact that during the experiments the control rods were adjusted to maintain criticality, whereas in the model, the rod positions were fixed. In addition, this work includes a brief study of a cross section generation approach that seeks to decouple the domain in order to account for neighbor effects. This spectral

  15. Development of constitutive models for cyclic plasticity and creep behavior of super alloys at high temperature

    Science.gov (United States)

    Haisler, W. E.

    1983-01-01

    An uncoupled constitutive model for predicting the transient response of thermal and rate dependent, inelastic material behavior was developed. The uncoupled model assumes that there is a temperature below which the total strain consists essentially of elastic and rate insensitive inelastic strains only. Above this temperature, the rate dependent inelastic strain (creep) dominates. The rate insensitive inelastic strain component is modelled in an incremental form with a yield function, blow rule and hardening law. Revisions to the hardening rule permit the model to predict temperature-dependent kinematic-isotropic hardening behavior, cyclic saturation, asymmetric stress-strain response upon stress reversal, and variable Bauschinger effect. The rate dependent inelastic strain component is modelled using a rate equation in terms of back stress, drag stress and exponent n as functions of temperature and strain. A sequence of hysteresis loops and relaxation tests are utilized to define the rate dependent inelastic strain rate. Evaluation of the model has been performed by comparison with experiments involving various thermal and mechanical load histories on 5086 aluminum alloy, 304 stainless steel and Hastelloy X.

  16. High temperature series expansions for the susceptibility of Ising model on the Kagome lattice with nearest neighber interactions

    Directory of Open Access Journals (Sweden)

    Z Jalali mola

    2011-12-01

    Full Text Available  The Ising model is one of the simplest models describing the interacting particles. In this work, we calculate the high temperature series expansions of zero field susceptibility of ising model with ferromagnetic, antiferromagnetic and one antiferromagnetic interactions on two dimensional kagome lattice. Using the Pade´ approximation, we calculate the susceptibility of critical exponent of ferromagnetic ising model γ ≈ 1.75, which is consistent with universality hypothesis. However, antiferromagnetic and one antiferromagnetic interaction ising model doesn’t show any transition at finite temperature because of the effect of magnetic frustration.

  17. High temperature storage loop :

    Energy Technology Data Exchange (ETDEWEB)

    Gill, David Dennis; Kolb, William J.

    2013-07-01

    A three year plan for thermal energy storage (TES) research was created at Sandia National Laboratories in the spring of 2012. This plan included a strategic goal of providing test capability for Sandia and for the nation in which to evaluate high temperature storage (>650ÀC) technology. The plan was to scope, design, and build a flow loop that would be compatible with a multitude of high temperature heat transfer/storage fluids. The High Temperature Storage Loop (HTSL) would be reconfigurable so that it was useful for not only storage testing, but also for high temperature receiver testing and high efficiency power cycle testing as well. In that way, HTSL was part of a much larger strategy for Sandia to provide a research and testing platform that would be integral for the evaluation of individual technologies funded under the SunShot program. DOEs SunShot program seeks to reduce the price of solar technologies to 6/kWhr to be cost competitive with carbon-based fuels. The HTSL project sought to provide evaluation capability for these SunShot supported technologies. This report includes the scoping, design, and budgetary costing aspects of this effort

  18. CONSTITUTIVE MODEL OF STEEL FIBRE REINFORCED CONCRETE SUBJECTED TO HIGH TEMPERATURES

    Directory of Open Access Journals (Sweden)

    Lukas Blesak

    2016-12-01

    Full Text Available Research on structural load-bearing systems exposed to elevated temperatures is an active topic in civil engineering. Carrying out a full-size experiment of a specimen exposed to fire is a challenging task considering not only the preparation labour but also the necessary costs. Therefore, such experiments are simulated using various software and computational models in order to predict the structural behaviour as exactly as possible. In this paper such a procedure, focusing on software simulation, is described in detail. The proposed constitutive model is based on the stress-strain curve and allows predicting SFRC material behaviour in bending at ambient and elevated temperature. SFRC material is represented by the initial linear behaviour, an instantaneous drop of stress after the initial crack occurs and its consequent specific ductility, which influences the overall modelled specimen behaviour under subjected loading. The model is calibrated with ATENA FEM software using experimental results.

  19. Highly efficient high temperature electrolysis

    DEFF Research Database (Denmark)

    Hauch, Anne; Ebbesen, Sune; Jensen, Søren Højgaard

    2008-01-01

    electrolysis is favourable from a thermodynamic point of view, because a part of the required energy can be supplied as thermal heat, and the activation barrier is lowered increasing the H-2 production rate. Only two types of cells operating at high temperature (above 200 degrees C) have been described...... electrolysis using SOECs is competitive to H-2 production from fossil fuels at electricity prices below 0.02-0.03 is an element of per kWh. Though promising SOEC results on H-2 production have been reported a substantial R&D is still required to obtain inexpensive, high performing and long-term stable...

  20. Estimating Important Electrode Parameters of High Temperature PEM Fuel Cells By Fitting a Model to Polarisation Curves and Impedance Spectra

    DEFF Research Database (Denmark)

    Vang, Jakob Rabjerg; Zhou, Fan; Andreasen, Søren Juhl

    2015-01-01

    A high temperature PEM (HTPEM) fuel cell model capable of simulating both steady state and dynamic operation is presented. The purpose is to enable extraction of unknown parameters from sets of impedance spectra and polarisation curves. The model is fitted to two polarisation curves and four...

  1. Life at High Temperatures

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 10; Issue 9. Life at High Temperatures. Ramesh Maheshwari. General Article Volume 10 Issue 9 September 2005 pp 23-36. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/010/09/0023-0036. Keywords.

  2. High temperature superconductivity: Proceedings

    International Nuclear Information System (INIS)

    Bedell, K.S.; Coffey, D.; Meltzer, D.E.; Pines, D.; Schrieffer, J.R.

    1990-01-01

    This book is the result of a symposium at Los Alamos in 1989 on High Temperature Superconductivity. The topics covered include: phenomenology, quantum spin liquids, spin space fluctuations in the insulating and metallic phases, normal state properties, and numerical studies and simulations. (JF)

  3. High Temperature Electrolysis

    DEFF Research Database (Denmark)

    Elder, Rachael; Cumming, Denis; Mogensen, Mogens Bjerg

    2015-01-01

    High temperature electrolysis of carbon dioxide, or co-electrolysis of carbon dioxide and steam, has a great potential for carbon dioxide utilisation. A solid oxide electrolysis cell (SOEC), operating between 500 and 900. °C, is used to reduce carbon dioxide to carbon monoxide. If steam is also i...

  4. Nuclear data libraries assessment for modelling a small fluoride salt-cooled, high-temperature reactor

    Science.gov (United States)

    Mohamed, Hassan; Lindley, Benjamin; Parks, Geoffrey

    2017-01-01

    Nuclear data consists of measured or evaluated probabilities of various fundamental physical interactions involving the nuclei of atoms and their properties. Most fluoride salt-cooled high-temperature reactor (FHR) studies that were reviewed do not give detailed information on the data libraries used in their assessments. Therefore, the main objective of this data libraries comparison study is to investigate whether there are any significant discrepancies between main data libraries, namely ENDF/B-VII, JEFF-3.1 and JEF-2.2. Knowing the discrepancies, especially its magnitude, is important and relevant for readers as to whether further cautions are necessary for any future verification or validation processes when modelling an FHR. The study is performed using AMEC's reactor physics software tool, WIMS. The WIMS calculation is simply a 2-D infinite lattice of fuel assembly calculation. The comparison between the data libraries in terms of infinite multiplication factor, kinf and pin power map are presented. Results show that the discrepancy between JEFF-3.1 and ENDF/B-VII libraries is reasonably small but increases as the fuel depletes due to the data libraries uncertainties that are accumulated at each burnup step. Additionally, there are large discrepancies between JEF-2.2 and ENDF/B-VII because of the inadequacy of the JEF-2.2 library.

  5. On functional integral representations satisfying the constraints in the correlation models of high-temperature superconductors

    International Nuclear Information System (INIS)

    Weller, W.

    1990-01-01

    Functional integral representations are constructed for Fermions with spin 1/2, in which the fields satisfy directly by construction the constraints (e. g., exclusion of double occupancy of a site) appearing in recent models in the theory of high-temperature superconductivity. Thus, the enforcement of the constraints by delta functions in the integration measure is avoided. Perelomov's concept of generalized coherent states is used. However, in constructing such representations, exponential functions of linear combinations of operators (which are difficult to disentangle) are avoided, as is the construction and reduction of the invariant measure. Instead, an ansatz is used for the resolution of the unity operator. This approach also provides more freedom in choosing the appropriate fields. Several new and simple representations with only few elementary fields are given. The representation already used by Wiegmann is recovered. In this case and in any other cases the integration measure is explicitly given. In all these representations, the original Fermi operators are substituted by the product of a spin independent Grassmann field and a spin dependent bosonic (complex) field in accordance with the physical idea of separation of charge and spin degrees of freedom. It is further shown how a change in the integration measure eliminates also zero occupancy (the case of the Heisenberg antiferromagnet). The absence of an explicit delta function constraint in the functional integral is reflected in a special form of the kinetic part of the action. The considered representations are compared with that of the slave boson method. (orig.)

  6. High temperature thermometric phosphors

    Science.gov (United States)

    Allison, Stephen W.; Cates, Michael R.; Boatner, Lynn A.; Gillies, George T.

    1999-03-23

    A high temperature phosphor consists essentially of a material having the general formula LuPO.sub.4 :Dy.sub.(x),Eu.sub.y) wherein: 0.1 wt %.ltoreq.x.ltoreq.20 wt % and 0.1 wt %.ltoreq.y.ltoreq.20 wt %. The high temperature phosphor is in contact with an article whose temperature is to be determined. The article having the phosphor in contact with it is placed in the environment for which the temperature of the article is to be determined. The phosphor is excited by a laser causing the phosphor to fluoresce. The emission from the phosphor is optically focused into a beam-splitting mirror which separates the emission into two separate emissions, the emission caused by the dysprosium dopant and the emission caused by the europium dopent. The separated emissions are optically filtered and the intensities of the emission are detected and measured. The ratio of the intensity of each emission is determined and the temperature of the article is calculated from the ratio of the intensities of the separate emissions.

  7. Modelling of zircaloy-4 degradation in oxygen and nitrogen mixtures at high temperature

    International Nuclear Information System (INIS)

    Lasserre-Gagnaire, Marina

    2013-01-01

    Zircaloy-4 claddings provide the first containment of UO 2 fuel in Pressurised Water Reactors. It has been demonstrated that the fuel assemblies cladding could be exposed to air at high temperature in several accidental situations such as a loss of cooling accident in a spent fuel storage When mixed to oxygen at high temperature, the nitrogen, usually used as an inert gas, causes the accelerated corrosion of the cladding. The kinetic curves obtained by thermogravimetry reveal two stages: a pre-transition and a post-transition one. The pre-transition stage corresponds to the growth of a protective dense oxide layer: the kinetic rate decreases with time and is controlled by oxygen vacancy diffusion in the oxide layer. In the post-transition stage, the oxide layer is no longer protective and the kinetic rate increases with time. Images obtained by optical microscopy of a sample in the post-transition stage reveal the presence of corroded zones characterized by a porous scale with zirconium nitride precipitates at metal - oxide interface. Corrosion of Zy4 plates at 850 deg. C under mixed oxygen - nitrogen atmospheres has been studied during the post-transition stage. A sequence of three reactions is proposed to explain the mechanism of nitrogen-enhanced corrosion and the porosity of the corroded regions. The accelerating effect of nitrogen in the corrosion scale can therefore be described on the basis of an autocatalytic effect of the zirconium nitride precipitates. Then, it is demonstrated that the steady-state approximation as well as the existence of an elementary step controlling the growth process are valid during the post-transition stage. Thanks to the study of the variations of the surface rate of growth with the oxygen and nitrogen partial pressure, the rate-determining step is identified as the external interface reaction step of the oxidation of the zirconium nitride precipitates. Finally, a nucleation and growth model used for thermal reactions in powders

  8. Modelling temperature-dependent heat production over decades in High Arctic coal waste rock piles

    DEFF Research Database (Denmark)

    Hollesen, Jørgen; Elberling, Bo; Jansson, P.E.

    2011-01-01

    .5–32.5 °C lower and that the pile would have been frozen 12–27 years earlier if the pile had been initially saturated with water, constructed with a thickness half of the original or a combination of both. Simulation show that the pile thickness and waste rock pyrite content are important factors......Subsurface heat production from oxidation of pyrite is an important process that may increase subsurface temperatures within coal waste rock piles and increase the release of acid mine drainage, AMD. Waste rock piles in the Arctic are especially vulnerable to changes in subsurface temperatures...... as the release of AMD normally is limited by permafrost. Here we show that temperatures within a 20 year old heat-producing waste rock pile in Svalbard (78°N) can be modelled by the one-dimensional heat and water flow model (CoupModel) with a new temperature-dependent heat-production module that includes both...

  9. Modelling and Evaluation of Heating Strategies for High Temperature Polymer Electrolyte Membrane Fuel Cell Stacks

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Kær, Søren Knudsen

    2008-01-01

    Experiments were conducted on two different cathode air cooled high temperature PEM (HTPEM) fuel cell stacks; a 30 cell 400W prototype stack using two bipolar plates per cell, and a 65 cell 1 kW commercial stack using one bipolar plate per cell. The work seeks to examine the use of different...

  10. Solute strengthening at high temperatures

    Science.gov (United States)

    Leyson, G. P. M.; Curtin, W. A.

    2016-08-01

    The high temperature behavior of solute strengthening has previously been treated approximately using various scaling arguments, resulting in logarithmic and power-law scalings for the stress-dependent energy barrier Δ E(τ ) versus stress τ. Here, a parameter-free solute strengthening model is extended to high temperatures/low stresses without any a priori assumptions on the functional form of Δ E(τ ) . The new model predicts that the well-established low-temperature, with energy barrier Δ {{E}\\text{b}} and zero temperature flow stress {τy0} , transitions to a near-logarithmic form for stresses in the regime 0.2intermediate-temperature and the associated transition for the activation volume. Overall, the present analysis unifies the different qualitative models in the literature and, when coupled with the previous parameter-free solute strengthening model, provides a single predictive model for solute strengthening as a function of composition, temperature, and strain rate over the full range of practical utility.

  11. Adjustment of mathematical models and quality of soybean grains in the drying with high temperatures

    Directory of Open Access Journals (Sweden)

    Paulo C. Coradi

    2016-04-01

    Full Text Available ABSTRACT The aim of this study was to evaluate the influence of the initial moisture content of soybeans and the drying air temperatures on drying kinetics and grain quality, and find the best mathematical model that fit the experimental data of drying, effective diffusivity and isosteric heat of desorption. The experimental design was completely randomized (CRD, with a factorial scheme (4 x 2, four drying temperatures (75, 90, 105 and 120 ºC and two initial moisture contents (25 and 19% d.b., with three replicates. The initial moisture content of the product interferes with the drying time. The model of Wang and Singh proved to be more suitable to describe the drying of soybeans to temperature ranges of the drying air of 75, 90, 105 and 120 °C and initial moisture contents of 19 and 25% (d.b.. The effective diffusivity obtained from the drying of soybeans was higher (2.5 x 10-11 m2 s-1 for a temperature of 120 °C and water content of 25% (d.b.. Drying of soybeans at higher temperatures (above 105 °C and higher initial water content (25% d.b. also increases the amount of energy (3894.57 kJ kg-1, i.e., the isosteric heat of desorption necessary to perform the process. Drying air temperature and different initial moisture contents affected the quality of soybean along the drying time (electrical conductivity of 540.35 µS cm-1g-1; however, not affect the final yield of the oil extracted from soybean grains (15.69%.

  12. Heavy Ion Track Temperature with the High Level of Specific Inelastic Energy Loss in Materials at the Thermal Spike Model

    CERN Document Server

    Didyk, A Yu; Semina, V K

    2003-01-01

    The thermal spike model in materials under the irradiation by swift heavy ions with high specific energy loss is considered taking into account the temperature dependence along the ion trajectrory. The numerical solutions of the temperature system equations for the temperatures of lattice and electrons are obtained, takinig into account the possible heating of lattice up to the melting and evaporation points, i.e., with the two phase transitions are obtained. The pressure in the volume of heavy ion track and their influence on the changes of thermodynamical parameters are introduced. The influence of defects on the "hot" electron free path is discussed. The numerical analysis of the lattice temperature at low and high temperatures of the thermal conductivity and heat capacity parameter values was carried out.

  13. Heavy ion track temperature with the high level of specific inelastic energy loss in materials at the thermal spike model

    International Nuclear Information System (INIS)

    Didyk, A.Yu.; Robuk, V.N.; Semina, V.K.

    2003-01-01

    The thermal spike model in materials under the irradiation by swift heavy ions with high specific energy loss is considered taking into account the temperature dependence along the ion trajectory. The numerical solutions of the temperature system equations for the temperatures of lattice up to the melting and evaporation points, i.e., with the two phase transitions are obtained. The pressure in the volume of heavy ion track and its influence on the changes of thermodynamical parameters are introduced. The influence of defects on the 'hot' electron free path is discussed. The numerical analysis of the lattice temperature at low and high temperatures of the thermal conductivity and heat capacity parameter values was carried out. (author)

  14. Modeling of a Large-Scale High Temperature Regenerative Sulfur Removal Process

    DEFF Research Database (Denmark)

    Konttinen, Jukka T.; Johnsson, Jan Erik

    1999-01-01

    model that does not account for bed hydrodynamics. The pilot-scale test run results, obtained in the test runs of the sulfur removal process with real coal gasifier gas, have been used for parameter estimation. The validity of the reactor model for commercial-scale design applications is discussed.......Regenerable mixed metal oxide sorbents are prime candidates for the removal of hydrogen sulfide from hot gasifier gas in the simplified integrated gasification combined cycle (IGCC) process. As part of the regenerative sulfur removal process development, reactor models are needed for scale......-up. Steady-state kinetic reactor models are needed for reactor sizing, and dynamic models can be used for process control design and operator training. The regenerative sulfur removal process to be studied in this paper consists of two side-by-side fluidized bed reactors operating at temperatures of 400...

  15. Experimental characterization and mechanical behaviour modelling of molybdenum-titanium carbide composite for high temperature applications

    International Nuclear Information System (INIS)

    Cedat, D.; Libert, M.; Rey, C.; Clavel, M.; Schmitt, J.H.; Le Flem, M.; Fandeur, O.

    2009-01-01

    Simulations of the elastic-viscoplastic behaviour of ceramic-metal composite, over the temperature range 298-993 K, are performed on realistic aggregates built up from electron back scatter diffraction methods. Physical based constitutive models are developed in order to characterize the deformation behaviour of body centered cubic (bcc) metal and face centered cubic (fcc) ceramic under various temperatures. While the ceramic keeps elastic, the viscoplastic behaviour of the metal part is described with a dislocation - based model, implemented in the finite element code ABAQUS, in order to compute local strain and stress fields during compressive tests. It is shown that the adopted constitutive laws are able to give back local complex experimental evidence on weak points of the microstructure. (authors)

  16. Experimental characterization and mechanical behaviour modelling of molybdenum-titanium carbide composite for high temperature applications

    Energy Technology Data Exchange (ETDEWEB)

    Cedat, D.; Libert, M.; Rey, C.; Clavel, M.; Schmitt, J.H. [Ecole Cent Paris, MSSMAT, F-92295 Chatenay Malabry (France); Le Flem, M. [CEA Saclay, DEN, DANS, DMN, SRMA, 91 - Gif-sur-Yvette (France); Fandeur, O. [CEA Saclay, DEN, DANS, DM2S, SEMT, LM2S, 91 - Gif-sur-Yvette (France)

    2009-03-15

    Simulations of the elastic-viscoplastic behaviour of ceramic-metal composite, over the temperature range 298-993 K, are performed on realistic aggregates built up from electron back scatter diffraction methods. Physical based constitutive models are developed in order to characterize the deformation behaviour of body centered cubic (bcc) metal and face centered cubic (fcc) ceramic under various temperatures. While the ceramic keeps elastic, the viscoplastic behaviour of the metal part is described with a dislocation - based model, implemented in the finite element code ABAQUS, in order to compute local strain and stress fields during compressive tests. It is shown that the adopted constitutive laws are able to give back local complex experimental evidence on weak points of the microstructure. (authors)

  17. Modelling of zircaloy-4 corrosion in nitrogen and oxygen mixtures at high temperature

    International Nuclear Information System (INIS)

    Lasserre, M.; Peres, V.; Pijolat, M.; Coindreau, O.; Duriez, C.; Mardon, J.P.

    2015-01-01

    Previous studies of zircaloy-4 corrosion in air have shown accelerated corrosion in the 600-1000 Celsius degrees temperature range with Zr nitrides precipitating near the metal/oxide surface. The aim of this series of slides is to assess the influence of N 2 and O 2 partial pressures on the kinetic rate of growth of a new phase and to propose a kinetic modelling of zircaloy-4 corrosion

  18. High ambient temperature reverses hypothalamic MC4 receptor overexpression in an animal model of anorexia nervosa.

    Science.gov (United States)

    Gutiérrez, E; Churruca, I; Zárate, J; Carrera, O; Portillo, M P; Cerrato, M; Vázquez, R; Echevarría, E

    2009-04-01

    The potential involvement of the melanocortin system in the beneficial effects of heat application in rats submitted to activity-based anorexia (ABA), an analogous model of anorexia nervosa (AN), was studied. Once ABA rats had lost 20% of body weight, half of the animals were exposed to a high ambient temperature (HAT) of 32 degrees C, whereas the rest were maintained at 21 degrees C. Control sedentary rats yoked to ABA animals received the same treatment. ABA rats (21 degrees C) showed increased Melanocortin 4 (MC4) receptor and Agouti gene Related Peptide (AgRP) expression, and decreased pro-opiomelanocortin (POMC) mRNA levels (Real Time PCR), with respect to controls. Heat application increased weight gain and food intake, and reduced running rate in ABA rats, when compared with ABA rats at 21 degrees C. However, no changes in body weight and food intake were observed in sedentary rats exposed to heat. Moreover, heat application reduced MC4 receptor, AgRP and POMC expression in ABA rats, but no changes were observed in control rats. These results indicate that hypothalamic MC4 receptor overexpression could occur on the basis of the characteristic hyperactivity, weight loss, and self-starvation of ABA rats, and suggest the involvement of hypothalamic melanocortin neural circuits in behavioural changes shown by AN patients. Changes in AgRP and POMC expression could represent an adaptative response to equilibrate energy balance. Moreover, the fact that HAT reversed hypothalamic MC4 receptor overexpression in ABA rats indicates the involvement of brain melanocortin system in the reported beneficial effects of heat application in AN. A combination of MC4 receptor antagonists and heat application could improve the clinical management of AN.

  19. A Modified Johnson-Cook Model for Flow Behavior of Alloy 800H at Intermediate Strain Rates and High Temperatures

    Science.gov (United States)

    Shokry, Abdallah

    2017-12-01

    A modified Johnson-Cook model for the flow behavior of alloy 800H at intermediate strain rates and high temperatures is presented. The modification is based on a study of the relation between strain hardening and both strain rate and softening parameters. The predicted stresses obtained using the modified model are compared to those obtained using the original Johnson-Cook model. The parameters constitute the two models are determined using the inverse method, Kalman filter. The results show that the modified model fits the experimental data very well for different combinations of strain rates and temperatures, with a mean value of R-squared regression of 0.90 for the modified model and 0.74 for the original Johnson-Cook model.

  20. Investigation of aerosols released at high temperature from nuclear reactor core models

    Energy Technology Data Exchange (ETDEWEB)

    Pinter Csordas, A.; Matus, L.; Czitrovszky, A.; Jani, P.; Maroti, L.; Hozer, Z.; Windberg, P.; Hummel, R

    2000-12-01

    Two experiments were performed to simulate severe reactor accident with air ingress into the hot reactor core. The model bundles contained nine PWR type fuel rods. Their cladding was pre-oxidised by argon-oxygen (test 1) and steam (test 2). The released aerosol was measured continuously by laser particle counters. Morphology and elemental composition of the aerosol particles were studied on samples collected by impactors and quartz filters. The highest aerosol release was detected at the steepest rise of the bundle temperature. A second increase of the aerosol release appeared at the cooling down period. Because of the higher maximum temperature at test 2 about two orders of magnitude more uranium was released than in test 1. The highest emission was found for tin at test 1 and for zirconium and iron at test 2.

  1. High temperature materials and mechanisms

    CERN Document Server

    2014-01-01

    The use of high-temperature materials in current and future applications, including silicone materials for handling hot foods and metal alloys for developing high-speed aircraft and spacecraft systems, has generated a growing interest in high-temperature technologies. High Temperature Materials and Mechanisms explores a broad range of issues related to high-temperature materials and mechanisms that operate in harsh conditions. While some applications involve the use of materials at high temperatures, others require materials processed at high temperatures for use at room temperature. High-temperature materials must also be resistant to related causes of damage, such as oxidation and corrosion, which are accelerated with increased temperatures. This book examines high-temperature materials and mechanisms from many angles. It covers the topics of processes, materials characterization methods, and the nondestructive evaluation and health monitoring of high-temperature materials and structures. It describes the ...

  2. High temperature superconductors

    CERN Document Server

    Paranthaman, Parans

    2010-01-01

    This essential reference provides the most comprehensive presentation of the state of the art in the field of high temperature superconductors. This growing field of research and applications is currently being supported by numerous governmental and industrial initiatives in the United States, Asia and Europe to overcome grid energy distribution issues. The technology is particularly intended for densely populated areas. It is now being commercialized for power-delivery devices, such as power transmission lines and cables, motors and generators. Applications in electric utilities include current limiters, long transmission lines and energy-storage devices that will help industries avoid dips in electric power.

  3. A new high temperature deformation model for Zircaloy clad ballooning under hypothetical LOCA conditions

    International Nuclear Information System (INIS)

    Brzoska, B.; Cheliotis, G.; Kunick, A.; Senski, G.

    1977-01-01

    Assuming Zircaloy clad ballooning occurs predominantly by thermal activated secondary creep, generally a power law is applied to describe the creep rate analytically. According to Norton the creep rate is taken as a power function of the cladding hoop stress multiplied by a numerical constant which is determined by the cladding structural properties and a Boltzmann factor including the creep activation energy, the gas constant and the cladding temperature, respectively. As is well known, the stress exponent is not a constant value in the total range of LOCA stresses, but increases steadily with stress. This difficulty is avoided by introducing into the Norton law a plastic flow-factor including a limiting stress, which was derived by G. Senski using plastic crack models from Dugdale and Irwin. For LOCA applications the limiting stress is identified with the burst stress, which is experimentally determined. A total number of about 290 directly heated KWU burst tests including two types of experiments: (1) controlled temperature transient tests, (ii) creep rupture tests, are used to fit the burst stress of KWU Zircaloy tubes simulating the whole range of LOCA temperatures, heating rates and creep times. (Auth.)

  4. Drought on the North American High Plains: Modeling Effects of Vegetation, Temperature, and Rainfall Perturbations on Regional Hydrology

    Science.gov (United States)

    Hein, A. E.; Condon, L. E.; Maxwell, R. M.

    2017-12-01

    Large scale droughts can disrupt the water supply for agriculture, municipalities and industrial use worldwide. For example, the Dustbowl drought of the 1930s severely damaged agriculture on the North American High Plains. The Dustbowl is generally attributed to three major factors: increased temperature, decreased precipitation, and a change from native grasses that might have tolerated these climate perturbations to dryland wheat farming, which did not. This study explores the individual importance of each of these factors and the feedbacks between them. Previous modeling studies have explored how the High Plains system responds to changes in precipitation or temperature, but these models often depend on simplified or lumped parameter approaches. These approaches may not fully represent all the relevant physical processes, especially those related to energy balance changes due to increased temperature. For this study, we built a high-resolution model of the High Plains using ParFlow-CLM, an integrated hydrologic model that solves both energy and water balances from the subsurface to the top of vegetation. Model inputs including geology and climate forcing, together with representative precipitation and temperature changes for a major drought were assembled from public data. Numerical experiments were run to perturb vegetation, precipitation and temperature separately, as well as a baseline scenario with no changes and a worst-case scenario with all three simultaneously. The impact of each factor on High Plains hydrology and water resources was examined by comparing soil moisture, stream flow and water table levels between the runs. The one-factor experiments were used to show which of these outputs was the most sensitive and responded most quickly to each change. The worst-case scenario revealed interactions between the three factors.

  5. High temperature corrosion of metals

    International Nuclear Information System (INIS)

    Quadakkers, W.J.; Schuster, H.; Ennis, P.J.

    1988-08-01

    This paper covers three main topics: 1. high temperature oxidation of metals and alloys, 2. corrosion in sulfur containing environments and 3. structural changes caused by corrosion. The following 21 subjects are discussed: Influence of implanted yttrium and lanthanum on the oxidation behaviour of beta-NiA1; influence of reactive elements on the adherence and protective properties of alumina scales; problems related to the application of very fine markers in studying the mechanism of thin scale formation; oxidation behaviour of chromia forming Co-Cr-Al alloys with or without reactive element additions; growth and properties of chromia-scales on high-temperature alloys; quantification of the depletion zone in high temperature alloys after oxidation in process gas; effects of HC1 and of N2 in the oxidation of Fe-20Cr; investigation under nuclear safety aspects of Zircaloy-4 oxidation kinetics at high temperatures in air; on the sulfide corrosion of metallic materials; high temperature sulfide corrosion of Mn, Nb and Nb-Si alloys; corrosion behaviour or NiCrAl-based alloys in air and air-SO2 gas mixtures; sulfidation of cobalt at high temperatures; preoxidation for sulfidation protection; fireside corrosion and application of additives in electric utility boilers; transport properties of scales with complex defect structures; observations of whiskers and pyramids during high temperature corrosion of iron in SO2; corrosion and creep of alloy 800H under simulated coal gasification conditions; microstructural changes of HK 40 cast alloy caused by exploitation in tubes in steam reformer installation; microstructural changes during exposure in corrosive environments and their effect on mechanical properties; coatings against carburization; mathematical modeling of carbon diffusion and carbide precipitation in Ni-Cr-based alloys. (MM)

  6. Modeling of the coupled radiative and conductive heat transfer within fibrous media at high temperature

    International Nuclear Information System (INIS)

    Dauvois, Yann

    2016-01-01

    In the present work, the effective heat transfer properties of fibrous medium are determined by taking into account a coupling of heat conduction and radiation. A virtual, statistically homogeneous, two-phase fibrous sample has been built by stacking finite absorbing cylinders in vacuum. These cylinders are dispersed according to prescribed distribution functions defining the cylinder positions and orientations. Cylinder overlappings are allowed. Extinction, absorption and scattering are characterised by radiative statistical functions which allow the Beerian behaviour of a medium to be assessed (or not). They are accurately determined with a Monte Carlo method. Whereas the gaseous phase exhibits a Beerian behaviour, the fibre phase is strongly non Beerian. The radiative power field deposited within the fibrous material is calculated by resolving a model which couples a Generalized Radiative Transfer Equation (GRTE) and a classic Radiative Transfer Equation (RTE). The model of conduction transfer is based on a random walk method without meshing. The simulation of Brownian motion of walkers in fibres allows the energy equation to be solved. The idea of the method is to characterize the temperature in an elementary volume by the density of walkers, which roam the medium. The problem is governed by boundary conditions; A constant concentration of walkers (or a constant flux) is associated with a fixed temperature (or flux). (author) [fr

  7. CFD Model Development and validation for High Temperature Gas Cooled Reactor Cavity Cooling System (RCCS) Applications

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, Yassin [Univ. of Wisconsin, Madison, WI (United Texas A & M Univ., College Station, TX (United States); Corradini, Michael; Tokuhiro, Akira; Wei, Thomas Y.C.

    2014-07-14

    The Reactor Cavity Cooling Systems (RCCS) is a passive safety system that will be incorporated in the VTHR design. The system was designed to remove the heat from the reactor cavity and maintain the temperature of structures and concrete walls under desired limits during normal operation (steady-state) and accident scenarios. A small scale (1:23) water-cooled experimental facility was scaled, designed, and constructed in order to study the complex thermohydraulic phenomena taking place in the RCCS during steady-state and transient conditions. The facility represents a portion of the reactor vessel with nine stainless steel coolant risers and utilizes water as coolant. The facility was equipped with instrumentation to measure temperatures and flow rates and a general verification was completed during the shakedown. A model of the experimental facility was prepared using RELAP5-3D and simulations were performed to validate the scaling procedure. The experimental data produced during the steady-state run were compared with the simulation results obtained using RELAP5-3D. The overall behavior of the facility met the expectations. The facility capabilities were confirmed to be very promising in performing additional experimental tests, including flow visualization, and produce data for code validation.

  8. High temperature air-blown woody biomass gasification model for the estimation of an entrained down-flow gasifier.

    Science.gov (United States)

    Kobayashi, Nobusuke; Tanaka, Miku; Piao, Guilin; Kobayashi, Jun; Hatano, Shigenobu; Itaya, Yoshinori; Mori, Shigekatsu

    2009-01-01

    A high temperature air-blown gasification model for woody biomass is developed based on an air-blown gasification experiment. A high temperature air-blown gasification experiment on woody biomass in an entrained down-flow gasifier is carried out, and then the simple gasification model is developed based on the experimental results. In the experiment, air-blown gasification is conducted to demonstrate the behavior of this process. Pulverized wood is used as the gasification fuel, which is injected directly into the entrained down-flow gasifier by the pulverized wood banner. The pulverized wood is sieved through 60 mesh and supplied at rates of 19 and 27kg/h. The oxygen-carbon molar ratio (O/C) is employed as the operational condition instead of the air ratio. The maximum temperature achievable is over 1400K when the O/C is from 1.26 to 1.84. The results show that the gas composition is followed by the CO-shift reaction equilibrium. Therefore, the air-blown gasification model is developed based on the CO-shift reaction equilibrium. The simple gasification model agrees well with the experimental results. From calculations in large-scale units, the cold gas is able to achieve 80% efficiency in the air-blown gasification, when the woody biomass feedrate is over 1000kg/h and input air temperature is 700K.

  9. Spread in the magnitude of climate model interdecadal global temperature variability traced to disagreements over high-latitude oceans

    Science.gov (United States)

    Brown, Patrick T.; Li, Wenhong; Jiang, Jonathan H.; Su, Hui

    2016-12-01

    Unforced variability in global mean surface air temperature can obscure or exaggerate global warming on interdecadal time scales; thus, understanding both the magnitude and generating mechanisms of such variability is of critical importance for both attribution studies as well as decadal climate prediction. Coupled atmosphere-ocean general circulation models (climate models) simulate a wide range of magnitudes of unforced interdecadal variability in global mean surface air temperature (UITglobal), hampering efforts to quantify the influence of UITglobal on contemporary global temperature trends. Recently, a preliminary consensus has emerged that unforced interdecadal variability in local surface temperatures (UITlocal) over the tropical Pacific Ocean is particularly influential on UITglobal. Therefore, a reasonable hypothesis might be that the large spread in the magnitude of UITglobal across climate models can be explained by the spread in the magnitude of simulated tropical Pacific UITlocal. Here we show that this hypothesis is mostly false. Instead, the spread in the magnitude of UITglobal is linked much more strongly to the spread in the magnitude of UITlocal over high-latitude regions characterized by significant variability in oceanic convection, sea ice concentration, and energy flux at both the surface and the top of the atmosphere. Thus, efforts to constrain the climate model produced range of UITglobal magnitude would be best served by focusing on the simulation of air-sea interaction at high latitudes.

  10. Generic rules for high temperature dimensional reduction and their application to the standard model

    CERN Document Server

    Kajantie, Keijo; Rummukainen, K; Shaposhnikov, Mikhail E

    1996-01-01

    We formulate the rules for dimensional reduction of a generic finite temperature gauge theory to a simpler three-dimensional effective bosonic theory in terms of a matching of Green's functions in the full and the effective theory, and present a computation of a generic set of 1- and 2-loop graphs needed for the application of these rules. As a concrete application we determine the explicit mapping of the physical parameters of the standard electroweak theory to a three-dimensional SU(2)xU(1) gauge-Higgs theory. We argue that this three-dimensional theory has a universal character and appears as an effective theory for many extensions of the Standard Model.

  11. High temperature metallic recuperator

    Science.gov (United States)

    Ward, M. E.; Solmon, N. G.; Smeltzer, C. E.

    1981-06-01

    An industrial 4.5 MM Btu/hr axial counterflow recuperator, fabricated to deliver 1600 F combustion air, was designed to handle rapid cyclic loading, a long life, acceptable costs, and a low maintenance requirement. A cost benefit anlysis of a high temperature waste heat recovery system utilizing the recurperator and components capable of 1600 F combustion air preheat shows that this system would have a payback period of less than two years. Fifteen companies and industrial associations were interviewed and expressed great interest in recuperation in large energy consuming industries. Determination of long term environmental effects on candidate recuperator tubing alloys was completed. Alloys found to be acceptable in the 2200 F flue gas environment of a steel billet reheat furnace, were identified.

  12. Probabilistic Material Strength Degradation Model for Inconel 718 Components Subjected to High Temperature, High-Cycle and Low-Cycle Mechanical Fatigue, Creep and Thermal Fatigue Effects

    Science.gov (United States)

    Bast, Callie C.; Boyce, Lola

    1995-01-01

    The development of methodology for a probabilistic material strength degradation is described. The probabilistic model, in the form of a postulated randomized multifactor equation, provides for quantification of uncertainty in the lifetime material strength of aerospace propulsion system components subjected to a number of diverse random effects. This model is embodied in the computer program entitled PROMISS, which can include up to eighteen different effects. Presently, the model includes five effects that typically reduce lifetime strength: high temperature, high-cycle mechanical fatigue, low-cycle mechanical fatigue, creep and thermal fatigue. Results, in the form of cumulative distribution functions, illustrated the sensitivity of lifetime strength to any current value of an effect. In addition, verification studies comparing predictions of high-cycle mechanical fatigue and high temperature effects with experiments are presented. Results from this limited verification study strongly supported that material degradation can be represented by randomized multifactor interaction models.

  13. Critical temperatures Tc estimated by Josephson-junction array model of layered high Tc superconductors

    International Nuclear Information System (INIS)

    Kawabata, C.; Shenoy, S.R.; Bishop, A.R.

    1994-11-01

    We model high T c superconductors (HTS) by quantum capacitive Josephson junction arrays (JJA), with Angstrom-scale parameters, to obtain an estimate of Tc trends. The basic idea is as follows. Number (or change) and phase are conjugate variables, with the uncertainty products obeying ΔN · Δ Θ > 1. Thus, in HTS, global phase coherence is opposed by charging-energy induced quantum phase fluctuations, especially across Josephson-coupled CuO 2 planes. These have separation d 1 and effective interplanar dielectric constant ε, e.g. from Y atoms in YBaCuO. Decreasing the interplane charging energy E 0 perpendicular to ∼ d 1 /ε, raises Tc. In Section 1, we motivate a modelling of HTS phase excitations by a quantum capacitive 3D JJA model, with XY planar phases. Section 2 gives a physical picture of the HTS transition, relating the complex layered HTS structure to a simpler ''intermediate level'' quantum 3D JJA/XY model. Section 3 sets up a path integral (3+1)D model that reduces to a previously studied anisotropic 3D XY/JJA model, with constants renormalized in some way, by the capacitance. Postponing a detailed analysis to elsewhere, we make a heuristic estimate for the reduction of the previous Tc, by the charging energy. (author). 30 refs, 8 figs

  14. High Temperature Dynamic Response of a Ti-6Al-4V Alloy: A Modified Constitutive Model for Gradual Phase Transformation

    Science.gov (United States)

    Gangireddy, S.; Mates, S. P.

    2017-12-01

    Dynamic deformation behavior of a commercial Ti-6Al-4V alloy is measured between room temperature and beyond the β-transus temperature with high thermal resolution using a rapid-heating Kolsky bar technique. The high thermal resolution allows for a thorough investigation of the dynamic thermal softening behavior of this alloy including effects related to the transformation from the initial hcp α/bcc β dual phase structure to a full β structure for improved modeling of high temperature dynamic manufacturing processes such as high-speed machining. Data are obtained at an average strain rate of 1800 s-1 from room temperature to 1177 °C, with total heating times limited to 3.5 s for all tests. Short heating times prevent thermal distortion of the Kolsky bar loading waves and can allow an investigation of non-equilibrium mechanical behavior, although no such behavior was identified in this study. Between 800 °C and 1000 °C, a progressive change in the thermal softening rate was observed that corresponded well with the equilibrium phase diagram for this alloy. The dynamic thermal softening behavior in the transformation region is incorporated via a new modification of the Johnson-Cook (J-C) viscoplastic constitutive equation. Rate sensitivity is determined at room temperature by combining Kolsky bar data with quasi-static measurements at strain rates from 7.5 × 10-5 s-1 to 0.16 s-1 and the data are fit using multi-parameter optimization to arrive at a full modified J-C model for Ti-6Al-4V to nearly 1200 °C. In its generic form, the modification factor we propose, G( T), is applicable to any material system undergoing gradual phase transformation over a range of temperatures.

  15. Microstructural evolution in a ferritic-martensitic stainless steel and its relation to high-temperature deformation and rupture models

    Energy Technology Data Exchange (ETDEWEB)

    DiMelfi, R.J.; Gruber, E.E.; Kramer, J.M.

    1991-01-01

    The ferritic-martensitic stainless steel HT-9 exhibits an anomalously high creep strength in comparison to its high-temperature flow strength from tensile tests performed at moderate rates. A constitutive relation describing its high-temperature tensile behavior over a wide range of conditions has been developed. When applied to creep conditions the model predicts deformation rates orders of magnitude higher than observed. To account for the observed creep strength, a fine distribution of precipitates is postulated to evolve over time during creep. The precipitate density is calculated at each temperature and stress to give the observed creep rate. The apparent precipitation kinetics thereby extracted from this analysis is used in a model for the rupture-time kinetics that compares favorably with observation. Properly austenitized and tempered material was aged over times comparable to creep conditions, and in a way consistent with the precipitation kinetics from the model. Microstructural observations support the postulates and results of the model system. 16 refs., 10 figs.

  16. High-temperature thermocline TES combining sensible and latent heat - CFD modeling and experimental validation

    Science.gov (United States)

    Zavattoni, Simone A.; Geissbühler, Lukas; Barbato, Maurizio C.; Zanganeh, Giw; Haselbacher, Andreas; Steinfeld, Aldo

    2017-06-01

    The concept of combined sensible/latent heat thermal energy storage (TES) has been exploited to mitigate an intrinsic thermocline TES systems drawback of heat transfer fluid outflow temperature reduction during discharging. In this study, the combined sensible/latent TES prototype under investigation is constituted by a packed bed of rocks and a small amount of encapsulated phase change material (AlSi12) as sensible heat and latent heat sections respectively. The thermo-fluid dynamics behavior of the combined TES prototype was analyzed by means of a computational fluid dynamics approach. Due to the small value of the characteristic vessel-to-particles diameter ratio, the effect of radial void-fraction variation, also known as channeling, was accounted for. Both the sensible and the latent heat sections of the storage were modeled as porous media under the assumption of local thermal non-equilibrium (LTNE). The commercial code ANSYS Fluent 15.0 was used to solve the model's constitutive conservation and transport equations obtaining a fairly good agreement with reference experimental measurements.

  17. A global model for gas cooled reactors for the Generation-4: application to the Very High Temperature Reactor (VHTR)

    International Nuclear Information System (INIS)

    Limaiem, I.

    2006-12-01

    Gas cooled high temperature reactor (HTR) belongs to the new generation of nuclear power plants called Generation IV. The Generation IV gathers the entire future nuclear reactors concept with an effective deployment by 2050. The technological choices relating to the nature of the fuel, the moderator and the coolant as well as the annular geometry of the core lead to some physical characteristics. The most important of these characteristics is the very strong thermal feedback in both active zone and the reflectors. Consequently, HTR physics study requires taking into account the strong coupling between neutronic and thermal hydraulics. The work achieved in this Phd consists in modeling, programming and studying of the neutronic and thermal hydraulics coupling system for block type gas cooled HTR. The coupling system uses a separate resolution of the neutronic and thermal hydraulics problems. The neutronic scheme is a double level Transport (APOLLO2) /Diffusion (CRONOS2) scheme respectively on the scale of the fuel assembly and a reactor core scale. The thermal hydraulics model uses simplified Navier Stokes equations solved in homogeneous porous media in code CAST3M CFD code. A generic homogenization model is used to calculate the thermal hydraulics parameters of the porous media. A de-homogenization model ensures the link between the porous media temperatures of the temperature defined in the neutronic model. The coupling system is made by external procedures communicating between the thermal hydraulics and neutronic computer codes. This Phd thesis contributed to the Very High Temperature Reactor (VHTR) physics studies. In this field, we studied the VHTR core in normal operating mode. The studies concern the VHTR core equilibrium cycle with the control rods and using the neutronic and thermal hydraulics coupling system. These studies allowed the study of the equilibrium between the power, the temperature and Xenon. These studies open new perspective for core

  18. Characterization technique for inhomogeneous 4H-SiC Schottky contacts: A practical model for high temperature behavior

    Science.gov (United States)

    Brezeanu, G.; Pristavu, G.; Draghici, F.; Badila, M.; Pascu, R.

    2017-08-01

    In this paper, a characterization technique for 4H-SiC Schottky diodes with varying levels of metal-semiconductor contact inhomogeneity is proposed. A macro-model, suitable for high-temperature evaluation of SiC Schottky contacts, with discrete barrier height non-uniformity, is introduced in order to determine the temperature interval and bias domain where electrical behavior of the devices can be described by the thermionic emission theory (has a quasi-ideal performance). A minimal set of parameters, the effective barrier height and peff, the non-uniformity factor, is associated. Model-extracted parameters are discussed in comparison with literature-reported results based on existing inhomogeneity approaches, in terms of complexity and physical relevance. Special consideration was given to models based on a Gaussian distribution of barrier heights on the contact surface. The proposed methodology is validated by electrical characterization of nickel silicide Schottky contacts on silicon carbide (4H-SiC), where a discrete barrier distribution can be considered. The same method is applied to inhomogeneous Pt/4H-SiC contacts. The forward characteristics measured at different temperatures are accurately reproduced using this inhomogeneous barrier model. A quasi-ideal behavior is identified for intervals spanning 200 °C for all measured Schottky samples, with Ni and Pt contact metals. A predictable exponential current-voltage variation over at least 2 orders of magnitude is also proven, with a stable barrier height and effective area for temperatures up to 400 °C. This application-oriented characterization technique is confirmed by using model parameters to fit a SiC-Schottky high temperature sensor's response.

  19. On supersymmetry at high temperature

    International Nuclear Information System (INIS)

    Bajc, B.; Senjanovic, G.; Melfo, A.

    1996-08-01

    While it is possible to find examples of field theories with a spontaneously broken symmetry at high temperature, in renormalizable supersymmetric models any internal symmetry always get restored. Recently, a counterexample was suggested in the context of nonrenormalizable supersymmetric theories. We show that non negligible higher loop effects actually restore the symmetry, without compromising the validity of perturbation theory. We give some arguments as to why the proposed mechanism should not work in general. (author). 13 refs, 1 fig

  20. HIGH TEMPERATURE VACUUM MIXER

    Directory of Open Access Journals (Sweden)

    E. D. Chertov

    2015-01-01

    Full Text Available The work is devoted to the creation of a new type of mixer to produce homogeneous mixtures of dissimilar materials applied to recycling of housing and communal services waste. The article describes the design of a dual-chamber device of the original high-temperature vacuum mixer, there investigated the processes occurring in the chambers of such devices. The results of theoretical and experimental research of the process of mixing recycled polyethylene with a mixture of "grinded food waste – Eco wool” are presented. The problem of the optimum choice of bending the curvilinear blades in the working volume of the seal, which is achieved by setting their profile in the form of involute arc of several circles of different radii, is examined . The dependences, allowing to define the limits of the changes of the main mode parameters the angular velocity of rotation of the working body of the mixer using two ways of setting the profile of the curvilinear blade mixer are obtained. Represented design of the mixer is proposed to use for a wide range of tasks associated with the mixing of the components with a strongly pronounced difference of physic al chemical properties and, in particular, in the production of composites out of housing and communal services waste.

  1. Model to simulate high temperature oxidation kinetics of zircaloy-4. Parabolic and linear behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Denis, A.; Moyano, E.; Gracia, A. (Comision Nacional de Energia Atomica, Buenos Aires (Argentina). Departamento de Materiales)

    1982-09-01

    A calculation code to simulate parabolic and linear behaviour of Zircaloy-4 oxidation between 600 and 862/sup 0/C in water vapour was developed. This code consists of solving the diffusion equations by the finite-difference method. This method in its explicit version was employed previously, but this type of calculation becomes impracticable with present-day computers when attempts are made to simulate long-term experiments (24 h). This is why the implicit finite-difference method is proposed here: this method has the advantage of drastically reducing the calculation time. The code allowed us to calculate the relationship between the oxygen mass in the ..cap alpha..-phase to the total oxygen mass, the oxide thickness and the diffusion profile of oxygen in the ..cap alpha..-phase. The results obtained with the model are compared with experimental data existing in the literature for Zircaloy-4, although it could be applied to pure zirconium or other zirconium alloys if more experimental data were available. The singular behaviour of the diffusion profiles in the ..cap alpha..-phase during linear kinetics is particularly analyzed. This work is part of a programme to study the oxide-metal interface movement during vapour oxidation of Zircaloy-4 subjected to temperature transients. Knowledge of this is of vital importance for evaluating mechanical properties of fuel claddings during possible loss of coolant accidents in nuclear power reactors.

  2. Bilinear slack span calculation model. Slack span calculations for high-temperature cables; Bilineares Berechnungsmodell fuer Durchhangberechnungen. Durchhangberechnungen bei Hochtemperaturleitern

    Energy Technology Data Exchange (ETDEWEB)

    Scheel, Joerg; Dib, Ramzi [Fachhochschule Giessen-Friedberg, Friedberg (Germany); Sassmannshausen, Achim [DB Energie GmbH, Frankfurt (Main) (Germany). Arbeitsgebiet Bahnstromleitungen Energieerzeugungs- und Uebertragungssysteme; Riedl, Markus [Eon Netz GmbH, Bayreuth (Germany). Systemtechnik Leitungen

    2010-12-13

    Increasingly, high-temperature cables are used in high-voltage grids. Beyond a given temperature level, their slack span cannot be calculated accurately by conventional simple linear methods. The contribution investigates the behaviour of composite cables at high operating temperatures and its influence on the slack span and presents a more accurate, bilingual calculation method. (orig.)

  3. Temperature calculations on different configurations for disposal of high-level reprocessing waste in a salt dome model

    International Nuclear Information System (INIS)

    Hamstra, J.; Kevenaar, J.W.A.M.

    1978-06-01

    A medium size salt dome is considered as a structure in which a repository can be located for all radioactive wastes to be produced within the scope of a postulated nuclear power program. A dominating design factor for the lay-out of such a waste repository is the temperature distribution in the salt dome resulting from decay heat released from the buried solidified high-level reprocessing waste. Two numerical models are presented for the calculation of both global and local rock salt temperatures. The results of calculations performed with these models are demonstrated to be compatible. Rock salt temperatures related to several types of burial configurations, ranging from two layer configurations with various vertical distances between the layers via a three and a four layer repository to deep bore hole concepts varying from 100 to 600 m bore hole depth, can therefore be calculated with one rather simple unit cell model. The results of these calculations indicate that rock salt temperatures can be kept within acceptable limits to realize a repository using standard mining techniques. The temperatures at mine galery level prove to be a dominating factor in the selection of a repository configuration. More detailed calculations of these temperatures taking into account the loading sequence and the cooling capacity of the mine ventilation are recommended. Finally the apparent advantages of a deep bore hole concept emphasize the need for R and D work with respect to advanced drilling techniques in order to achieve deep dry disposal bore holes that can be realized from a burial mine in the salt dome. (Auth.)

  4. Advances in high temperature chemistry

    CERN Document Server

    Eyring, Leroy

    1969-01-01

    Advances in High Temperature Chemistry, Volume 2 covers the advances in the knowledge of the high temperature behavior of materials and the complex and unfamiliar characteristics of matter at high temperature. The book discusses the dissociation energies and free energy functions of gaseous monoxides; the matrix-isolation technique applied to high temperature molecules; and the main features, the techniques for the production, detection, and diagnosis, and the applications of molecular beams in high temperatures. The text also describes the chemical research in streaming thermal plasmas, as w

  5. A High-Precision Adaptive Thermal Network Model for Monitoring of Temperature Variations in Insulated Gate Bipolar Transistor (IGBT Modules

    Directory of Open Access Journals (Sweden)

    Ning An

    2018-03-01

    Full Text Available This paper proposes a novel method for optimizing the Cauer-type thermal network model considering both the temperature influence on the extraction of parameters and the errors caused by the physical structure. In terms of prediction of the transient junction temperature and the steady-state junction temperature, the conventional Cauer-type parameters are modified, and the general method for estimating junction temperature is studied by using the adaptive thermal network model. The results show that junction temperature estimated by our adaptive Cauer-type thermal network model is more accurate than that of the conventional model.

  6. New descriptive temperature model

    Science.gov (United States)

    Bilitza, D.

    The model profiles of the electron and ion temperature that have been proposed in connection with the International Reference Ionosphere (IRI) are surveyed, with a review given of the available data base. Plasma density is seen as exerting great influence, at least during daytime. It does not, however, appear to be appropriate for deriving the temperature unambiguously from the density value. On the basis of a comparison of measured data from the AE-C and Aeros-B satellites and incoherent backscatter stations Millstone Hill and Arecibo (U.S.) and Jicamarca (Peru), a new model relation between temperature and density is proposed for daylight hours. The relation depends on altitude and the modified magnetic dip latitude.

  7. New descriptive temperature model

    International Nuclear Information System (INIS)

    Bilitza, D.

    1982-01-01

    The model profiles of the electron and ion temperature that have been proposed in connection with the International Reference Ionosphere (IRI) are surveyed, with a review given of the available data base. Plasma density is seen as exerting great influence, at least during daytime. It does not, however, appear to be appropriate for deriving the temperature unambiguously from the density value. On the basis of a comparison of measured data from the AE-C and Aeros-B satellites and incoherent backscatter stations Millstone Hill and Arecibo (U.S.) and Jicamarca (Peru), a new model relation between temperature and density is proposed for daylight hours. The relation depends on altitude and the modified magnetic dip latitude

  8. Summary: High Temperature Downhole Motor

    Energy Technology Data Exchange (ETDEWEB)

    Raymond, David W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-10-01

    Directional drilling can be used to enable multi-lateral completions from a single well pad to improve well productivity and decrease environmental impact. Downhole rotation is typically developed with a motor in the Bottom Hole Assembly (BHA) that develops drilling power (speed and torque) necessary to drive rock reduction mechanisms (i.e., the bit) apart from the rotation developed by the surface rig. Historically, wellbore deviation has been introduced by a “bent-sub,” located in the BHA, that introduces a small angular deviation, typically less than 3 degrees, to allow the bit to drill off-axis with orientation of the BHA controlled at the surface. The development of a high temperature downhole motor would allow reliable use of bent subs for geothermal directional drilling. Sandia National Laboratories is pursuing the development of a high temperature motor that will operate on either drilling fluid (water-based mud) or compressed air to enable drilling high temperature, high strength, fractured rock. The project consists of designing a power section based upon geothermal drilling requirements; modeling and analysis of potential solutions; and design, development and testing of prototype hardware to validate the concept. Drilling costs contribute substantially to geothermal electricity production costs. The present development will result in more reliable access to deep, hot geothermal resources and allow preferential wellbore trajectories to be achieved. This will enable development of geothermal wells with multi-lateral completions resulting in improved geothermal resource recovery, decreased environmental impact and enhanced well construction economics.

  9. High-Burnup-Structure (HBS): Model Development in MARMOT for HBS Formation and Stability Under Radiation and High Temperature

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, K. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bai, X. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Zhang, Y. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Biner, B. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-09-01

    A detailed phase field model for the formation of High Burnup Structure (HBS) was developed and implemented in MARMOT. The model treats the HBS formation as an irradiation-induced recrystallization. The model takes into consideration the stored energy associated with dislocations formed under irradiation. The accumulation of radiation damage, hence, increases the system free energy and triggers recrystallization. The increase in the free energy due to the formation of new grain boundaries is offset by the reduction in the free energy by creating dislocation-free grains at the expense of the deformed grains. The model was first used to study the growth of recrystallized flat and circular grains. The model reults were shown to agree well with theorrtical predictions. The case of HBS formation in UO2 was then investigated. It was found that a threshold dislocation density of (or equivalently a threshold burn-up of 33-40 GWd/t) is required for HBS formation at 1200K, which is in good agrrement with theory and experiments. In future studies, the presence of gas bubbles and their effect on the formation and evolution of HBS will be considered.

  10. High-Burnup-Structure (HBS): Model Development in MARMOT for HBS Formation and Stability Under Radiation and High Temperature

    International Nuclear Information System (INIS)

    Ahmed, K.; Bai, X.; Zhang, Y.; Biner, B.

    2016-01-01

    A detailed phase field model for the formation of High Burnup Structure (HBS) was developed and implemented in MARMOT. The model treats the HBS formation as an irradiation-induced recrystallization. The model takes into consideration the stored energy associated with dislocations formed under irradiation. The accumulation of radiation damage, hence, increases the system free energy and triggers recrystallization. The increase in the free energy due to the formation of new grain boundaries is offset by the reduction in the free energy by creating dislocation-free grains at the expense of the deformed grains. The model was first used to study the growth of recrystallized flat and circular grains. The model results were shown to agree well with theoretical predictions. The case of HBS formation in UO2 was then investigated. It was found that a threshold dislocation density of (or equivalently a threshold burn-up of 33-40 GWd/t) is required for HBS formation at 1200K, which is in good agreement with theory and experiments. In future studies, the presence of gas bubbles and their effect on the formation and evolution of HBS will be considered.

  11. High-Temperature Piezoelectric Sensing

    Science.gov (United States)

    Jiang, Xiaoning; Kim, Kyungrim; Zhang, Shujun; Johnson, Joseph; Salazar, Giovanni

    2014-01-01

    Piezoelectric sensing is of increasing interest for high-temperature applications in aerospace, automotive, power plants and material processing due to its low cost, compact sensor size and simple signal conditioning, in comparison with other high-temperature sensing techniques. This paper presented an overview of high-temperature piezoelectric sensing techniques. Firstly, different types of high-temperature piezoelectric single crystals, electrode materials, and their pros and cons are discussed. Secondly, recent work on high-temperature piezoelectric sensors including accelerometer, surface acoustic wave sensor, ultrasound transducer, acoustic emission sensor, gas sensor, and pressure sensor for temperatures up to 1,250 °C were reviewed. Finally, discussions of existing challenges and future work for high-temperature piezoelectric sensing are presented. PMID:24361928

  12. High-Temperature Piezoelectric Sensing

    Directory of Open Access Journals (Sweden)

    Xiaoning Jiang

    2013-12-01

    Full Text Available Piezoelectric sensing is of increasing interest for high-temperature applications in aerospace, automotive, power plants and material processing due to its low cost, compact sensor size and simple signal conditioning, in comparison with other high-temperature sensing techniques. This paper presented an overview of high-temperature piezoelectric sensing techniques. Firstly, different types of high-temperature piezoelectric single crystals, electrode materials, and their pros and cons are discussed. Secondly, recent work on high-temperature piezoelectric sensors including accelerometer, surface acoustic wave sensor, ultrasound transducer, acoustic emission sensor, gas sensor, and pressure sensor for temperatures up to 1,250 °C were reviewed. Finally, discussions of existing challenges and future work for high-temperature piezoelectric sensing are presented.

  13. High temperature superconductor accelerator magnets

    NARCIS (Netherlands)

    van Nugteren, J.

    2016-01-01

    For future particle accelerators bending dipoles are considered with magnetic fields exceeding 20T. This can only be achieved using high temperature superconductors (HTS). These exhibit different properties from classical low temperature superconductors and still require significant research and

  14. 2D numerical modelling of gas temperature in a nanosecond pulsed longitudinal He-SrBr2 discharge excited in a high temperature gas-discharge tube for the high-power strontium laser

    Science.gov (United States)

    Chernogorova, T. P.; Temelkov, K. A.; Koleva, N. K.; Vuchkov, N. K.

    2016-05-01

    An active volume scaling in bore and length of a Sr atom laser excited in a nanosecond pulse longitudinal He-SrBr2 discharge is carried out. Considering axial symmetry and uniform power input, a 2D model (r, z) is developed by numerical methods for determination of gas temperature in a new large-volume high-temperature discharge tube with additional incompact ZrO2 insulation in the discharge free zone, in order to find out the optimal thermal mode for achievement of maximal output laser parameters. A 2D model (r, z) of gas temperature is developed by numerical methods for axial symmetry and uniform power input. The model determines gas temperature of nanosecond pulsed longitudinal discharge in helium with small additives of strontium and bromine.

  15. On the high-temperature combustion of n-butanol: Shock tube data and an improved kinetic model

    KAUST Repository

    Vasu, Subith S.

    2013-11-21

    The combustion of n-butanol has received significant interest in recent years, because of its potential use in transportation applications. Researchers have extensively studied its combustion chemistry, using both experimental and theoretical methods; however, additional work is needed under specific conditions to improve our understanding of n-butanol combustion. In this study, we report new OH time-history data during the high-temperature oxidation of n-butanol behind reflected shock waves over the temperature range of 1300-1550 K and at pressures near 2 atm. These data were obtained at Stanford University, using narrow-line-width ring dye laser absorption of the R1(5) line of OH near 306.7 nm. Measured OH time histories were modeled using comprehensive n-butanol literature mechanisms. It was found that n-butanol unimolecular decomposition rate constants commonly used in chemical kinetic models, as well as those determined from theoretical studies, are unable to predict the data presented herein. Therefore, an improved high-temperature mechanism is presented here, which incorporates recently reported rate constants measured in a single pulse shock tube [C. M. Rosado-Reyes and W. Tsang, J. Phys. Chem. A 2012, 116, 9825-9831]. Discussions are presented on the validity of the proposed mechanism against other literature shock tube experiments. © 2013 American Chemical Society.

  16. Experimental study and modeling of a high-temperature solar chemical reactor for hydrogen production from methane cracking

    Energy Technology Data Exchange (ETDEWEB)

    Abanades, Stephane; Flamant, Gilles [Processes, Materials, and Solar Energy Laboratory, CNRS (PROMES-CNRS, UPR 8521), 7 Rue du Four Solaire, 66120 Odeillo Font-Romeu (France)

    2007-07-15

    A high-temperature fluid-wall solar reactor was developed for the production of hydrogen from methane cracking. This laboratory-scale reactor features a graphite tubular cavity directly heated by concentrated solar energy, in which the reactive flowing gas dissociates to form hydrogen and carbon black. The solar reactor characterization was achieved with: (a) a thorough experimental study on the reactor performance versus operating conditions and (b) solar reactor modeling. The results showed that the conversion of CH{sub 4} and yield of H{sub 2} can exceed 97% and 90%, respectively, and these depend strongly on temperature and on fluid-wall heat transfer and reaction surface area. In addition to the experimental study, a 2D computational model coupling transport phenomena was developed to predict the mapping of reactor temperature and of species concentration, and the reaction extent at the outlet. The model was validated and kinetics of methane decomposition were identified from simulations and comparison to experimental results. (author)

  17. Experiment and Modeling of Simultaneous Creep, Plasticity and Transformation of High Temperature Shape Memory Alloys During Cyclic Actuation

    Science.gov (United States)

    Kumar, Parikshith K.; Desai, Uri; Chatzigeorgiou, George; Lagoudas, Dimitris C.; Monroe, James; Karaman, Ibrahim; Noebe, Ron; Bigelow, Glen

    2010-01-01

    The present work is focused on studying the cycling actuation behavior of HTSMAs undergoing simultaneous creep and transformation. For the thermomechanical testing, a high temperature test setup was assembled on a MTS frame with the capability to test up to temperatures of 600 C. Constant stress thermal cycling tests were conducted to establish the actuation characteristics and the phase diagram for the chosen HTSMA. Additionally, creep tests were conducted at constant stress levels at different test temperatures to characterize the creep behavior of the alloy over the operational range. A thermodynamic constitutive model is developed and extended to take into account a) the effect of multiple thermal cycling on the generation of plastic strains due to transformation (TRIP strains) and b) both primary and secondary creep effects. The model calibration is based on the test results. The creep tests and the uniaxial tests are used to identify the viscoplastic behavior of the material. The parameters for the SMA properties, regarding the transformation and transformation induced plastic strain evolutions, are obtained from the material phase diagram and the thermomechanical tests. The model is validated by predicting the material behavior at different thermomechanical test conditions.

  18. Characterisation and Modelling of a High Temperature PEM Fuel Cell Stack using Electrochemical Impedance Spectroscopy

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Jespersen, Jesper Lebæk; Schaltz, Erik

    2009-01-01

    temperature PEM (HTPEM) fuel cell stack. A Labview virtual instrument has been developed to perform the signal generation and data acquisition which is needed to perform EIS. The typical output of an EIS measurement on a fuel cell, is a Nyquist plot, which shows the imaginary and real part of the impedance...

  19. Modeling and simulation of high-temperature polymer electrolyte fuel cells; Modellierung und Simulation von Hochtemperatur-Polymerelektrolyt-Brennstoffzellen

    Energy Technology Data Exchange (ETDEWEB)

    Kvesic, Mirko

    2012-07-01

    Fuel cells are electrochemical energy converters that convert chemical energy of constantly fed reactants directly into electricity. The most commonly used fuel gas in this respect is hydrogen, which is either produced in pure form by electrolysis, for example, or as a hydrogen-rich gas mixture (reformate gas), produced by reforming diesel or kerosene e.g. However, a disadvantage of reformate gas is that it contains additional carbon monoxide (CO), which leads to catalyst poisoning in the fuel cell. Since higher operating temperatures also lead to a higher CO tolerance, the use of high-temperature Polymer-Electrolyte-Fuel-Cells (HT-PEFCs) is particularly suitable for reformate operation. The aim of the presented work is the modeling and CFD-simulation of HT-PEFC stacks with the intention of gaining a better understanding of multi-physical processes in the stack operation as well as the optimization and analysis of existing stack designs. The geometric modeling used is based on the Porous Volume Model, which significantly reduces the required number of computing elements. Furthermore, the electrochemical models for hydrogen / air and reformate / air operation, which were taking the CO poisoning effects into account, are developed in this work and implemented in the software ANSYS / Fluent. The resulting simulations indicated the optimal flow configuration for the stack operation in terms of the homogeneous current density distribution, which has a positive effect on the stack aging. Thus, the current densities showed a strong homogeneity regarding the stack configuration anode / cathode in counter-flow and anode / cooling in co-flow. The influence of cooling strategies was examined for the stack performance in a similar way. In the following, the local temperature distribution as well as temperature peaks within the stack could be predicted and validated with experimental measurements. Further on, the model scalability and thus the general validity of the developed

  20. Electromagnetic Modelling of Fiber Sensors for Low-Cost and High Sensitivity Temperature Monitoring

    Directory of Open Access Journals (Sweden)

    William Scarcia

    2015-11-01

    Full Text Available An accurate design of an innovative fiber optic temperature sensor is developed. The sensor is based on a cascade of three microstructured optical fibers (MOFs. In the first one a suitable cascade of long period gratings is designed into the core. A single mode intermediate and a rare-earth activated Fabry-Perot optical cavity are the other two sensor MOF sections. An exhaustive theoretic feasibility investigation is performed employing computer code. The complete set-up for temperature monitoring can be obtained by utilizing only a low cost pump diode laser at 980 nm wavelength and a commercial optical power detector. The simulated sensitivity S = 315.1 μW/°C and the operation range ΔT = 100 °C is good enough for actual applications.

  1. State of the art on high temperature thermal energy storage for power generation. Part 1. Concepts, materials and modellization

    Energy Technology Data Exchange (ETDEWEB)

    Gil, Antoni; Medrano, Marc; Martorell, Ingrid; Cabeza, Luisa F. [GREA Innovacio Concurrent, Universitat de Lleida, Pere de Cabrera s/n, 25001-Lleida (Spain); Lazaro, Ana; Dolado, Pablo; Zalba, Belen [Instituto de Investigacion en Ingenieria de Aragon, I3A, Grupo de Ingenieria Termica y Sistemas Energeticos (GITSE), Dpto. Ingenieria Mecanica, Area de Maquinas y Motores Termicos, Universidad de Zaragoza, Campus Politecnico Rio Ebro, Edificio ' Agustin de Betancourt' , Maria de Luna s/n, 50018 Zaragoza (Spain)

    2010-01-15

    Concentrated solar thermal power generation is becoming a very attractive renewable energy production system among all the different renewable options, as it has have a better potential for dispatchability. This dispatchability is inevitably linked with an efficient and cost-effective thermal storage system. Thus, of all components, thermal storage is a key one. However, it is also one of the less developed. Only a few plants in the world have tested high temperature thermal energy storage systems. In this paper, the different storage concepts are reviewed and classified. All materials considered in literature or plants are listed. And finally, modellization of such systems is reviewed. (author)

  2. Stress corrosion cracking behaviour of low alloy steels in high temperature water: Description and results from modelling

    International Nuclear Information System (INIS)

    Tirbonod, B.

    2001-01-01

    The initiation and growth of a crack by stress and corrosion in the low alloy steels used for the pressure vessels of Boiling Water Reactors may affect the availability and safety of the plant. This paper presents a new model for stress corrosion cracking of the low alloy steels in high temperature water. The model, based on observations, assumes the crack growth mechanism to be based on an anodic dissolution and cleavage. The main results deal with the position of the dissolution cell found at the crack tip, and with the identification of the parameters sensitive to crack growth, among which are the electrolyte composition and the cleavage length. The model is conservative, in qualitative agreement with measurements conducted at PSI, and may be extended to other metal-environment systems. (author)

  3. A model for high temperature creep of single crystal superalloys based on nonlocal damage and viscoplastic material behavior

    Science.gov (United States)

    Trinh, B. T.; Hackl, K.

    2014-07-01

    A model for high temperature creep of single crystal superalloys is developed, which includes constitutive laws for nonlocal damage and viscoplasticity. It is based on a variational formulation, employing potentials for free energy, and dissipation originating from plasticity and damage. Evolution equations for plastic strain and damage variables are derived from the well-established minimum principle for the dissipation potential. The model is capable of describing the different stages of creep in a unified way. Plastic deformation in superalloys incorporates the evolution of dislocation densities of the different phases present. It results in a time dependence of the creep rate in primary and secondary creep. Tertiary creep is taken into account by introducing local and nonlocal damage. Herein, the nonlocal one is included in order to model strain localization as well as to remove mesh dependence of finite element calculations. Numerical results and comparisons with experimental data of the single crystal superalloy LEK94 are shown.

  4. High temperature materials; Materiaux a hautes temperatures

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    The aim of this workshop is to share the needs of high temperature and nuclear fuel materials for future nuclear systems, to take stock of the status of researches in this domain and to propose some cooperation works between the different research organisations. The future nuclear systems are the very high temperature (850 to 1200 deg. C) gas cooled reactors (GCR) and the molten salt reactors (MSR). These systems include not only the reactor but also the fabrication and reprocessing of the spent fuel. This document brings together the transparencies of 13 communications among the 25 given at the workshop: 1) characteristics and needs of future systems: specifications, materials and fuel needs for fast spectrum GCR and very high temperature GCR; 2) high temperature materials out of neutron flux: thermal barriers: materials, resistance, lifetimes; nickel-base metal alloys: status of knowledge, mechanical behaviour, possible applications; corrosion linked with the gas coolant: knowledge and problems to be solved; super-alloys for turbines: alloys for blades and discs; corrosion linked with MSR: knowledge and problems to be solved; 3) materials for reactor core structure: nuclear graphite and carbon; fuel assembly structure materials of the GCR with fast neutron spectrum: status of knowledge and ceramics and cermets needs; silicon carbide as fuel confinement material, study of irradiation induced defects; migration of fission products, I and Cs in SiC; 4) materials for hydrogen production: status of the knowledge and needs for the thermochemical cycle; 5) technologies: GCR components and the associated material needs: compact exchangers, pumps, turbines; MSR components: valves, exchangers, pumps. (J.S.)

  5. High Temperature Superconductor Resonator Detectors

    Data.gov (United States)

    National Aeronautics and Space Administration — High Temperature Superconductor (HTS) infrared detectors were studied for years but never matured sufficiently for infusion into instruments. Several recent...

  6. High Temperature Superconductor Machine Prototype

    DEFF Research Database (Denmark)

    Mijatovic, Nenad; Jensen, Bogi Bech; Træholt, Chresten

    2011-01-01

    A versatile testing platform for a High Temperature Superconductor (HTS) machine has been constructed. The stationary HTS field winding can carry up to 10 coils and it is operated at a temperature of 77K. The rotating armature is at room temperature. Test results and performance for the HTS field...

  7. High-temperature peridotites - lithospheric or asthenospheric?

    International Nuclear Information System (INIS)

    Hops, J.J.; Gurney, J.J.

    1990-01-01

    High-temperature peridotites by definition yield equilibration temperatures greater than 1100 degrees C. On the basis of temperature and pressure calculations, these high-temperature peridotites are amongst the deepest samples entrained by kimberlites on route to the surface. Conflicting models proposing either a lithospheric or asthenospheric origin for the high-temperature peridotites have been suggested. A detailed study of these xenoliths from a single locality, the Jagersfontein kimberlite in the Orange Free State, has been completed as a means of resolving this controversy. 10 refs., 2 figs

  8. High-order scheme for the source-sink term in a one-dimensional water temperature model.

    Directory of Open Access Journals (Sweden)

    Zheng Jing

    Full Text Available The source-sink term in water temperature models represents the net heat absorbed or released by a water system. This term is very important because it accounts for solar radiation that can significantly affect water temperature, especially in lakes. However, existing numerical methods for discretizing the source-sink term are very simplistic, causing significant deviations between simulation results and measured data. To address this problem, we present a numerical method specific to the source-sink term. A vertical one-dimensional heat conduction equation was chosen to describe water temperature changes. A two-step operator-splitting method was adopted as the numerical solution. In the first step, using the undetermined coefficient method, a high-order scheme was adopted for discretizing the source-sink term. In the second step, the diffusion term was discretized using the Crank-Nicolson scheme. The effectiveness and capability of the numerical method was assessed by performing numerical tests. Then, the proposed numerical method was applied to a simulation of Guozheng Lake (located in central China. The modeling results were in an excellent agreement with measured data.

  9. PREFACE: Special section featuring selected papers from the 3rd International Workshop on Numerical Modelling of High Temperature Superconductors Special section featuring selected papers from the 3rd International Workshop on Numerical Modelling of High Temperature Superconductors

    Science.gov (United States)

    Granados, Xavier; Sánchez, Àlvar; López-López, Josep

    2012-10-01

    The development of superconducting applications and superconducting engineering requires the support of consistent tools which can provide models for obtaining a good understanding of the behaviour of the systems and predict novel features. These models aim to compute the behaviour of the superconducting systems, design superconducting devices and systems, and understand and test the behavior of the superconducting parts. 50 years ago, in 1962, Charles Bean provided the superconducting community with a model efficient enough to allow the computation of the response of a superconductor to external magnetic fields and currents flowing through in an understandable way: the so called critical-state model. Since then, in addition to the pioneering critical-state approach, other tools have been devised for designing operative superconducting systems, allowing integration of the superconducting design in nearly standard electromagnetic computer-aided design systems by modelling the superconducting parts with consideration of time-dependent processes. In April 2012, Barcelona hosted the 3rd International Workshop on Numerical Modelling of High Temperature Superconductors (HTS), the third in a series of workshops started in Lausanne in 2010 and followed by Cambridge in 2011. The workshop reflected the state-of-the-art and the new initiatives of HTS modelling, considering mathematical, physical and technological aspects within a wide and interdisciplinary scope. Superconductor Science and Technology is now publishing a selection of papers from the workshop which have been selected for their high quality. The selection comprises seven papers covering mathematical, physical and technological topics which contribute to an improvement in the development of procedures, understanding of phenomena and development of applications. We hope that they provide a perspective on the relevance and growth that the modelling of HTS superconductors has achieved in the past 25 years.

  10. Zirconium-cerin solid solutions: thermodynamic model and thermal stability at high temperature; Solutions solides de zirconium dans la cerine: modele thermodynamique et stabilite thermique a haute temperature

    Energy Technology Data Exchange (ETDEWEB)

    Janvier, C.

    1998-04-02

    The oxides-gaseous dioxygen equilibria and the textural thermal stability of six zirconium-cerin solutions Ce{sub 1-x}Zr{sub x}O{sub 2} (0model where the point defects of solutions are included describe them the best. It becomes then possible to know the variations of the concentrations of the point defects in terms of temperature, oxygen pressure and zirconium concentration. A kinetic study (by calcination at 950 degrees Celsius of the solid solutions) of the specific surface area decrease has revealed a minima (0

  11. High Temperature Electrostrictive Ceramics Project

    Data.gov (United States)

    National Aeronautics and Space Administration — TRS Technologies proposes to develop high temperature electrostrictors from bismuth-based ferroelectrics. These materials will exhibit high strain and low loss in...

  12. Model and mechanism of erosion fracture of refractories at high temperatures

    International Nuclear Information System (INIS)

    Abrajtis, R.J.

    1988-01-01

    A calculational technique to evaluate the refractory erosion resistance is proposed. It is shown that under erosion fracture due to breaking off flow erosion plasters are formed which cover all the fractured surface. The proposed model and mechanism of erosion fracture and erosion plaster stability allow one to perform evaluation calculations of erosion characteristics of refractiories based on zirconium dioxide

  13. Viscoelastic creep of high-temperature concrete

    International Nuclear Information System (INIS)

    Pfeiffer, P.A.; Marchertas, A.H.; Bazant, Z.P.

    1985-01-01

    Presented in this report is the analytical model for analysis of high temperature creep response of concrete. The creep law used is linear (viscoelastic), the temperature and moisture effects on the creep rate and also aging are included. Both constant and transient temperature as well as constant and transient moisture conditions are considered. Examples are presented to correlate experimental data with parameters of the analytical model by the use of a finite element scheme

  14. Predicting Microstructure Development During HighTemperature Nitriding of Martensitic Stainless SteelsUsing Thermodynamic Modeling

    Directory of Open Access Journals (Sweden)

    Tschiptschin André Paulo

    2002-01-01

    Full Text Available Thermodynamic calculations of the Fe-Cr-N System in the region of the Gas Phase Equilibria have been compared with experimental results of maximum nitrogen absorption during nitriding of two Martensitic Stainless Steels (a 6 mm thick sheet of AISI 410S steel and green powder compacts of AISI 434L steel under N2 atmospheres. The calculations have been performed combining the Fe-Cr-N System description contained in the SGTE Solid Solution Database and the gas phase for the N System contained in the SGTE Substances Database. Results show a rather good agreement for total nitrogen absorption in the steel and nitrogen solubility in austenite in the range of temperatures between 1273 K and 1473 K and in the range of pressures between 0.1 and 0.36 MPa. Calculations show that an appropriate choice of heat treatment parameters can lead to optimal nitrogen absorption in the alloy. It was observed in the calculations that an increased pressure stabilizes CrN at expenses of Cr2N - type nitrides.

  15. Modeling and performance of the MHTGR [Modular High-Temperature Gas-Cooled Reactor] reactor cavity cooling system

    International Nuclear Information System (INIS)

    Conklin, J.C.

    1990-04-01

    The Reactor Cavity Cooling System (RCCS) of the Modular High- Temperature Gas-Cooled Reactor (MHTGR) proposed by the U.S. Department of Energy is designed to remove the nuclear afterheat passively in the event that neither the heat transport system nor the shutdown cooling circulator subsystem is available. A computer dynamic simulation for the physical and mathematical modeling of and RCCS is described here. Two conclusions can be made form computations performed under the assumption of a uniform reactor vessel temperature. First, the heat transferred across the annulus from the reactor vessel and then to ambient conditions is very dependent on the surface emissivities of the reactor vessel and RCCS panels. These emissivities should be periodically checked to ensure the safety function of the RCCS. Second, the heat transfer from the reactor vessel is reduced by a maximum of 10% by the presence of steam at 1 atm in the reactor cavity annulus for an assumed constant in the transmission of radiant energy across the annulus can be expected to result in an increase in the reactor vessel temperature for the MHTGR. Further investigation of participating radiation media, including small particles, in the reactor cavity annulus is warranted. 26 refs., 7 figs., 1 tab

  16. High-temperature superconductivity of granulated metals

    CERN Document Server

    Mejlikhov, E Z

    2001-01-01

    Only the area of relatively low temperatures was traditionally considered in the theoretical ands experimental studies on the nanocomposites (granulated metals) conductivity, related to the intergranular electrons tunneling. The conductivity temperature dependence in this mode is exponential. However, according to the experiment the character of the nanocomposites conductivity at higher temperatures essentially changes. The model, relating the peculiarities of the granulated metals conductivity at high temperatures, to the involvement of the multicharged granules in this process under the conditions of high spread of their sizes, is proposed. The model conclusions are in agreement with the experiment

  17. Status on the Component Models Developed in the Modelica Framework: High-Temperature Steam Electrolysis Plant & Gas Turbine Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Suk Kim, Jong [Idaho National Lab. (INL), Idaho Falls, ID (United States); McKellar, Michael [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bragg-Sitton, Shannon M. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Boardman, Richard D. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-10-01

    This report has been prepared as part of an effort to design and build a modeling and simulation (M&S) framework to assess the economic viability of a nuclear-renewable hybrid energy system (N-R HES). In order to facilitate dynamic M&S of such an integrated system, research groups in multiple national laboratories have been developing various subsystems as dynamic physics-based components using the Modelica programming language. In fiscal year (FY) 2015, Idaho National Laboratory (INL) performed a dynamic analysis of two region-specific N-R HES configurations, including the gas-to-liquid (natural gas to Fischer-Tropsch synthetic fuel) and brackish water reverse osmosis desalination plants as industrial processes. In FY 2016, INL has developed two additional subsystems in the Modelica framework: a high-temperature steam electrolysis (HTSE) plant and a gas turbine power plant (GTPP). HTSE has been proposed as a high priority industrial process to be integrated with a light water reactor (LWR) in an N-R HES. This integrated energy system would be capable of dynamically apportioning thermal and electrical energy (1) to provide responsive generation to the power grid and (2) to produce alternative industrial products (i.e., hydrogen and oxygen) without generating any greenhouse gases. A dynamic performance analysis of the LWR/HTSE integration case was carried out to evaluate the technical feasibility (load-following capability) and safety of such a system operating under highly variable conditions requiring flexible output. To support the dynamic analysis, the detailed dynamic model and control design of the HTSE process, which employs solid oxide electrolysis cells, have been developed to predict the process behavior over a large range of operating conditions. As first-generation N-R HES technology will be based on LWRs, which provide thermal energy at a relatively low temperature, complementary temperature-boosting technology was suggested for integration with the

  18. High Temperature Superconductor Accelerator Magnets

    CERN Document Server

    AUTHOR|(CDS)2079328; de Rijk, Gijs; Dhalle, Marc

    2016-11-10

    For future particle accelerators bending dipoles are considered with magnetic fields exceeding $20T$. This can only be achieved using high temperature superconductors (HTS). These exhibit different properties from classical low temperature superconductors and still require significant research and development before they can be applied in a practical accelerator magnet. In order to study HTS in detail, a five tesla demonstrator magnet named Feather-M2 is designed and constructed. The magnet is based on ReBCO coated conductor, which is assembled into a $10kA$ class Roebel cable. A new and optimized Aligned Block layout is used, which takes advantage of the anisotropy of the conductor. This is achieved by providing local alignment of the Roebel cable in the coil windings with the magnetic field lines. A new Network Model capable of analyzing transient electro-magnetic and thermal phenomena in coated conductor cables and coils is developed. This model is necessary to solve critical issues in coated conductor ac...

  19. Equivalent Coil Model for Computing Levitation Forces Between Permanent Magnets and High Temperatures Superconductors

    International Nuclear Information System (INIS)

    Cavia Santos, S.; Garcia-Tabares, L.

    1998-05-01

    A new simple theory has been developed for the study of levitation forces between a permanent magnet and a HTc superconductor. This theory is based on the assumption that both, the magnet and the superconductor, can be modelled by an equivalent coil placed on their surface. While the current flowing through the permanent magnet is constant, the equivalent current through the superconductor can be iether corresponding to screen the overall flux or a constant current corresponding to critical current density when the superconductor is saturated. A test facility has been designed and built for measuring levitation forces at variable approaching speeds. Comparison between theoretical and experimental measurements are presented in the report as well as a general description of the test facility. (Author)

  20. High temperature electrolyzer based on solid oxide co-ionic electrolyte: A theoretical model

    Energy Technology Data Exchange (ETDEWEB)

    Demin, Anatoly; Gorbova, Elena [Institute of High Temperature Electrochemistry, 22 S. Kovalevskoy, 620219 Yekaterinburg (Russian Federation); Tsiakaras, Panagiotis [School of Engineering, Department of Mechanical Engineering, University of Thessaly, Pedion Areos, 383 34 Volos (Greece)

    2007-09-19

    In the present work a theoretical model of a solid oxide electrolyzer based on an electrolyte having both oxygen ion and proton conductivity is considered. The main parameters of the electrolytic process and an electrolyzer (distribution of gas components, electromotive forces and current densities along the electrolyzer channel, average values of electromotive forces and current densities) were calculated depending on a proton transport number and mode of the reactants' feeding (co- and counter-flow). The performed analysis demonstrates considerable influence of the mode of feeding on all parameters of the electrolyzer: operation under the counter-flow mode is preferable as regards the specific characteristics and uniformity of their distribution along the electrolyzer. It is shown that the electrolyser's specific characteristics increase with the increase of the proton transport number. (author)

  1. Insight into the Am-O Phase Equilibria: A Thermodynamic Study Coupling High-Temperature XRD and CALPHAD Modeling.

    Science.gov (United States)

    Epifano, Enrica; Guéneau, Christine; Belin, Renaud C; Vauchy, Romain; Lebreton, Florent; Richaud, Jean-Christophe; Joly, Alexis; Valot, Christophe; Martin, Philippe M

    2017-07-03

    In the frame of minor actinide transmutation, americium can be diluted in UO 2 and (U, Pu)O 2 fuels burned in fast neutron reactors. The first mandatory step to foresee the influence of Am on the in-reactor behavior of transmutation targets or fuel is to have fundamental knowledge of the Am-O binary system and, in particular, of the AmO 2-x phase. In this study, we coupled HT-XRD (high-temperature X-ray diffraction) experiments with CALPHAD thermodynamic modeling to provide new insights into the structural properties and phase equilibria in the AmO 2-x -AmO 1.61+x -Am 2 O 3 domain. Because of this approach, we were able for the first time to assess the relationships between temperature, lattice parameter, and hypostoichiometry for fcc AmO 2-x . We showed the presence of a hyperstoichiometric existence domain for the bcc AmO 1.61+x phase and the absence of a miscibility gap in the fcc AmO 2-x phase, contrary to previous representations of the phase diagram. Finally, with the new experimental data, a new CALPHAD thermodynamic model of the Am-O system was developed, and an improved version of the phase diagram is presented.

  2. Thermal Degradation Kinetics Modeling of Benzophenones and Xanthones during High-Temperature Oxidation of Cyclopia genistoides (L.) Vent. Plant Material.

    Science.gov (United States)

    Beelders, Theresa; de Beer, Dalene; Joubert, Elizabeth

    2015-06-10

    Degradation of the major benzophenones, iriflophenone-3-C-glucoside-4-O-glucoside and iriflophenone-3-C-glucoside, and the major xanthones, mangiferin and isomangiferin, of Cyclopia genistoides followed first-order reaction kinetics during high-temperature oxidation of the plant material at 80 and 90 °C. Iriflophenone-3-C-glucoside-4-O-glucoside was shown to be the most thermally stable compound. Isomangiferin was the second most stable compound at 80 °C, while its degradation rate constant was influenced the most by increased temperature. Mangiferin and iriflophenone-3-C-glucoside had comparable degradation rate constants at 80 °C. The thermal degradation kinetic model was subsequently evaluated by subjecting different batches of plant material to oxidative conditions (90 °C/16 h). The model accurately predicted the individual contents of three of the compounds in aqueous extracts prepared from oxidized plant material. The impact of benzophenone and xanthone degradation was reflected in the decreased total antioxidant capacity of the aqueous extracts, as determined using the oxygen radical absorbance capacity and DPPH(•) scavenging assays.

  3. Can Holstein-Kondo lattice model be used as a candidate for the theory of high transition temperature superconductors

    Directory of Open Access Journals (Sweden)

    R Nourafkan

    2009-08-01

    Full Text Available   It is a common knowledge that the formation of electron pairs is a necessary ingredient of any theoretical work describing superconductivity. Thus, finding the mechanism of the formation of the electron pairs is of utmost importance. There are some experiments on high transition temperature superconductors which support the electron-phonon (e-ph interactions as the pairing mechanism (ARPES, and there are others which support the spin fluctuations as their pairing mechanism (tunneling spectroscopy. In this paper, we introduce the Holstein-Kondo lattice model (H-KLM which incorporates the e-ph as well as the Kondo exchange interaction. We have used the dynamical mean field theory (DMFT to describe heavy fermion semiconductors and have employed the exact-diagonalization technique to obtain our results. The phase diagram of these systems in the parameter space of the e-ph coupling, g, and the Kondo exchange coupling, J, show that the system can be found in the Kondo insulating phase, metallic phase or the bi-polaronic phase. It is shown that these systems develop both spin gap and a charge gap, which are different and possess energies in the range of 1-100 meV. In view of the fact that both spin excitation energies and phonon energies lie in this range, we expect our work on H-KLM opens a way to formalize the theory of the high transition temperature superconductors .

  4. Program for aerodynamic performance tests of helium gas compressor model of the gas turbine high temperature reactor (GTHTR300)

    International Nuclear Information System (INIS)

    Takada, Shoji; Takizuka, Takakazu; Kunimoto, Kazuhiko; Yan, Xing; Itaka, Hidehiko; Mori, Eiji

    2003-01-01

    Research and development program for helium gas compressor aerodynamics was planned for the power conversion system of the Gas Turbine High Temperature Reactor (GTHTR300). The axial compressor with polytropic efficiency of 90% and surge margin more than 30% was designed with 3-dimensional aerodynamic design. Performance and surge margin of the helium gas compressor tends to be lower due to the higher boss ratio which makes the tip clearance wide relative to the blade height, as well as due to a larger number of stages. The compressor was designed on the basis of methods and data for the aerodynamic design of industrial open-cycle gas-turbine. To validate the design of the helium gas compressor of the GTHTR300, aerodynamic performance tests were planned, and a 1/3-scale, 4-stage compressor model was designed. In the tests, the performance data of the helium gas compressor model will be acquired by using helium gas as a working fluid. The maximum design pressure at the model inlet is 0.88 MPa, which allows the Reynolds number to be sufficiently high. The present study is entrusted from the Ministry of Education, Culture, Sports, Science and Technology of Japan. (author)

  5. Temperature-salinity structure of the AMOC in high-resolution ocean simulations and in CMIP5 models

    Science.gov (United States)

    Wang, F.; Xu, X.; Chassignet, E.

    2017-12-01

    On average, the CMIP5 models represent the AMOC structure, water properties, Heat transport and Freshwater transport reasonably well. For temperature, CMIP5 models exhibit a colder northward upper limb and a warmer southward lower limb. the temperature contrast induces weaker heat transport than observation. For salinity, CMIP5 models exhibit saltier southward lower limb, thus contributes to weaker column freshwater transport. Models have large spread, among them, AMOC strength contributes to Heat transport but not freshwater transport. AMOC structure (the overturning depth) contributes to transport-weighted temperature not transport-weighted salinity in southward lower limb. The salinity contrast in upper and lower limb contributes to freshwater transport, but temperature contrast do not contribute to heat transport.

  6. HIGH TEMPERATURE POLYMER FUEL CELLS

    DEFF Research Database (Denmark)

    Jensen, Jens Oluf; Qingfeng, Li; He, Ronghuan

    2003-01-01

    This paper will report recent results from our group on polymer fuel cells (PEMFC) based on the temperature resistant polymer polybenzimidazole (PBI), which allow working temperatures up to 200°C. The membrane has a water drag number near zero and need no water management at all. The high working...

  7. Spread in the magnitude of climate model interdecadal global temperature variability traced to disagreements over high-latitude oceans

    OpenAIRE

    Brown, Patrick T.; Li, Wenhong; Jiang, Jonathan H.; Su, Hui

    2016-01-01

    Unforced variability in global mean surface air temperature can obscure or exaggerate global warming on interdecadal timescales, thus understanding both the magnitude and generating mechanisms of such variability is of critical importance for both attribution studies as well as decadal climate prediction. Coupled atmosphere-ocean general circulation models (climate models) simulate a wide range of magnitudes of unforced interdecadal variability in global mean surface air temperature (UITgloba...

  8. Development of high strength, high temperature ceramics

    Science.gov (United States)

    Hall, W. B.

    1982-01-01

    Improvement in the high-pressure turbopumps, both fuel and oxidizer, in the Space Shuttle main engine were considered. The operation of these pumps is limited by temperature restrictions of the metallic components used in these pumps. Ceramic materials that retain strength at high temperatures and appear to be promising candidates for use as turbine blades and impellers are discussed. These high strength materials are sensitive to many related processing parameters such as impurities, sintering aids, reaction aids, particle size, processing temperature, and post thermal treatment. The specific objectives of the study were to: (1) identify and define the processing parameters that affect the properties of Si3N4 ceramic materials, (2) design and assembly equipment required for processing high strength ceramics, (3) design and assemble test apparatus for evaluating the high temperature properties of Si3N4, and (4) conduct a research program of manufacturing and evaluating Si3N4 materials as applicable to rocket engine applications.

  9. Modeling of mechanical behavior of quenched zirconium-based nuclear fuel claddings after a high temperature oxidation

    International Nuclear Information System (INIS)

    Cabrera-Salcedo, A.

    2012-01-01

    During the second stage of Loss Of Coolant Accident (LOCA) in Pressurized Water Reactors (PWR) zirconium-based fuel claddings undergo a high temperature oxidation (up to 1200 C), then a water quench. After a single-side steam oxidation followed by a direct quench, the cladding is composed of three layers: an oxide (Zirconia) outer layer (formed at HT), always brittle at Room Temperature (RT), an intermediate oxygen stabilized alpha layer, always brittle at RT, called alpha(O), and an inner 'prior-beta' layer, which is the only layer able to keep some significant Post Quench (PQ) ductility at RT. However, hydrogen absorbed because of service exposure or during the LOCA transient, concentrates in this layer and may leads to its embrittlement. To estimate the PQ mechanical properties of these materials, Ring Compression Tests (RCT) are widely used because of their simplicity. Small sample size makes RCTs advantageous when a comparison with irradiated samples is required. Despite their good reproducibility, these tests are difficult to interpret as they often present two or more load drops on the engineering load-displacement curve. Laboratories disagree about their interpretation. This study proposes an original fracture scenario for a stratified PQ cladding tested by RCT, and its associated FE model. Strong oxygen content gradient effect on layers mechanical properties is taken into account in the model. PQ thermal stresses resulting from water quench of HT oxidized cladding are investigated, as well as progressive damage of three layers during an RCT. The proposed scenario is based on interrupted RCT analysis, post- RCT sample's outer layers observation for damage evaluation, RCTs of prior-beta single-layer rings, and mechanical behavior of especially chemically adjusted samples. The force displacement curves appearance is correctly reproduced using the obtained FE model. The proposed fracture scenario elucidates RCTs of quenched zirconium-based nuclear fuel

  10. High Temperature Materials Laboratory (HTML)

    Data.gov (United States)

    Federal Laboratory Consortium — The six user centers in the High Temperature Materials Laboratory (HTML), a DOE User Facility, are dedicated to solving materials problems that limit the efficiency...

  11. High temperature structural insulating material

    Science.gov (United States)

    Chen, W.Y.

    1984-07-27

    A high temperature structural insulating material useful as a liner for cylinders of high temperature engines through the favorable combination of high service temperature (above about 800/sup 0/C), low thermal conductivity (below about 0.2 W/m/sup 0/C), and high compressive strength (above about 250 psi). The insulating material is produced by selecting hollow ceramic beads with a softening temperature above about 800/sup 0/C, a diameter within the range of 20-200 ..mu..m, and a wall thickness in the range of about 2 to 4 ..mu..m; compacting the beads and a compatible silicate binder composition under pressure and sintering conditions to provide the desired structural form with the structure having a closed-cell, compact array of bonded beads.

  12. Highly focalised thermotherapy using a ferrimagnetic cement in the treatment of a melanoma mouse model by low temperature hyperthermia.

    Science.gov (United States)

    Portela, Ana; Vasconcelos, Mário; Fernandes, Maria Helena; Garcia, Mónica; Silva, António; Gabriel, Joaquim; Gartner, Fátima; Amorim, Irina; Cavalheiro, José

    2013-01-01

    Evaluation of the effectiveness of highly focalised thermotherapy (HFT) in a melanoma mouse model, using a ferrimagnetic cement (FC) and repeated low hyperthermia treatments. A melanoma mouse model was induced with B16F10 cells in C57BL6 mice. The FC, injected into the tumour, was used as the magnetic vehicle for HFT. FC location within the tumour was assessed by radiography and its capability to generate heat, when exposed to an external high frequency magnetic field (HFMF), monitored by thermal camera. The HFT treatment consisted of three HFMF exposures, with 48-h intervals, each one lasting 30 min, with a 5-6°C tumour temperature increase. At the end of the experiment, FC samples were characterised by scanning electron microscopy (SEM) and energy dispersion spectroscopy (EDS). The presence of iron contents was analysed in the tumour, lungs, liver and spleen. Histological evaluation and immunohistochemical staining for caspase-3 were performed. Tumour growth was monitored during the experiment. Surface analysis showed FC stabilisation within the tumour, and iron was absent. The thermal camera confirmed the localised temperature increase in the tumour. HFT treatments inhibited the tumour growth by ∼70% compared to controls. This was due to cell destruction by necrosis and apoptosis. The HFT, using the FC, proved to be a minimally invasive technique that statistically inhibited tumour growth. Results suggested that this methodology seems to be a promising technique for the treatment of solid tumours, allowing repeated low hyperthermia treatments, which can be easier and less traumatic than other hyperthermia techniques.

  13. A Modified Constitutive Model for Tensile Flow Behaviors of BR1500HS Ultra-High-Strength Steel at Medium and Low Temperature Regions

    Science.gov (United States)

    Zhao, Jun; Quan, Guo-Zheng; Pan, Jia; Wang, Xuan; Wu, Dong-Sen; Xia, Yu-Feng

    2018-01-01

    Constitutive model of materials is one of the most requisite mathematical model in the finite element analysis, which describes the relationships of flow behaviors with strain, strain rate and temperature. In order to construct such constitutive relationships of ultra-high-strength BR1500HS steel at medium and low temperature regions, the true stress-strain data over a wide temperature range of 293-873 K and strain rate range of 0.01-10 s-1 were collected from a series of isothermal uniaxial tensile tests. The experimental results show that stress-strain relationships are highly non-linear and susceptible to three parameters involving temperature, strain and strain rate. By considering the impacts of strain rate and temperature on strain hardening, a modified constitutive model based on Johnson-Cook model was proposed to characterize flow behaviors in medium and low temperature ranges. The predictability of the improved model was also evaluated by the relative error (W(%)), correlation coefficient (R) and average absolute relative error (AARE). The R-value and AARE-value for modified constitutive model at medium and low temperature regions are 0.9915 & 1.56 % and 0.9570 & 5.39 %, respectively, which indicates that the modified constitutive model can precisely estimate the flow behaviors for BR1500HS steel in the medium and low temperature regions.

  14. Status Report on the High-Temperature Steam Electrolysis Plant Model Developed in the Modelica Framework (FY17)

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Suk [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bragg-Sitton, Shannon M. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Boardman, Richard D. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-08-29

    This report has been prepared as part of an effort to design and build a modeling and simulation (M&S) framework to assess the economic viability of a nuclear-renewable hybrid energy system (N-R HES). In order to facilitate dynamic M&S of such an integrated system, research groups in multiple national laboratories have been developing various subsystems as dynamic physics-based components using the Modelica programming language. In fiscal year 2015 (FY15), Idaho National Laboratory (INL) performed a dynamic analysis of two region-specific N-R HES configurations, including the gas-to-liquid (natural gas to Fischer-Tropsch synthetic fuel) and brackish water reverse osmosis desalination plants as industrial processes. In FY16, INL developed two additional subsystems in the Modelica framework: (1) a high-temperature steam electrolysis (HTSE) plant as a high priority industrial plant to be integrated with a light water reactor (LWR) within an N-R HES and (2) a gas turbine power plant as a secondary energy supply. In FY17, five new components (i.e., a feedwater pump, a multi-stage compression system, a sweep-gas turbine, flow control valves, and pressure control valves) have been incorporated into the HTSE system proposed in FY16, aiming to better realistically characterize all key components of concern. Special attention has been given to the controller settings based on process models (i.e., direct synthesis method), aiming to improve process dynamics and controllability. A dynamic performance analysis of the improved LWR/HTSE integration case was carried out to evaluate the technical feasibility (load-following capability) and safety of such a system operating under highly variable conditions requiring flexible output. The analysis (evaluated in terms of the step response) clearly shows that the FY17 model resulted in superior output responses with much smaller settling times and less oscillatory behavior in response to disturbances in the electric load than those

  15. High temperature divertor plasma operation

    International Nuclear Information System (INIS)

    Ohyabu, Nobuyoshi.

    1991-02-01

    High temperature divertor plasma operation has been proposed, which is expected to enhance the core energy confinement and eliminates the heat removal problem. In this approach, the heat flux is guided through divertor channel to a remote area with a large target surface, resulting in low heat load on the target plate. This allows pumping of the particles escaping from the core and hence maintaining of the high divertor temperature, which is comparable to the core temperature. The energy confinement is then determined by the diffusion coefficient of the core plasma, which has been observed to be much lower than the thermal diffusivity. (author)

  16. Hydrodynamic Effects on Modeling and Control of a High Temperature Active Magnetic Bearing Pump with a Canned Rotor

    Energy Technology Data Exchange (ETDEWEB)

    Melin, Alexander M [ORNL; Kisner, Roger A [ORNL; Fugate, David L [ORNL; Holcomb, David Eugene [ORNL

    2015-01-01

    Embedding instrumentation and control Embedding instrumentation and control (I\\&C) at the component level in nuclear power plants can improve component performance, lifetime, and resilience by optimizing operation, reducing the constraints on physical design, and providing on-board prognostics and diagnostics. However, the extreme environments that many nuclear power plant components operate in makes embedding instrumentation and control at the component level difficult. Successfully utilizing embedded I\\&C requires developing a deep understanding of the system's dynamics and using that knowledge to overcome material and physical limitations imposed by the environment. In this paper, we will develop a coupled dynamic model of a high temperature (700 $^\\circ$C) canned rotor pump that incorporates rotordynamics, hydrodynamics, and active magnetic bearing dynamics. Then we will compare two control design methods, one that uses a simplified decoupled model of the system and another that utilizes the full coupled system model. It will be seen that utilizing all the available knowledge of the system dynamics in the controller design yield an order of magnitude improvement in the magnitude of the magnetic bearing response to disturbances at the same level of control effort, a large reduction in the settling time of the system, and a smoother control action.

  17. RPC operation at high temperature

    CERN Document Server

    Aielli, G; Cardarelli, R; Di Ciaccio, A; Di Stante, L; Liberti, B; Paoloni, A; Pastori, E; Santonico, R

    2003-01-01

    The resistive electrodes of RPCs utilised in several current experiments (ATLAS, CMS, ALICE, BABAR and ARGO) are made of phenolic /melaminic polymers, with room temperature resistivities ranging from 10**1**0 Omega cm, for high rate operation in avalanche mode, to 5 multiplied by 10**1**1 Omega cm, for streamer mode operation at low rate. The resistivity has however a strong temperature dependence, decreasing exponentially with increasing temperature. We have tested several RPCs with different electrode resistivities in avalanche as well as in streamer mode operation. The behaviours of the operating current and of the counting rate have been studied at different temperatures. Long-term operation has also been studied at T = 45 degree C and 35 degree C, respectively, for high and low resistivity electrodes RPCs.

  18. Temperature optimization of high con

    Science.gov (United States)

    Sabry, M.

    2016-06-01

    Active cooling is essential for solar cells operating under high optical concentration ratios. A system comprises four solar cells that are in thermal contact on top of a copper tube is proposed. Water is flowing inside the tube in order to reduce solar cells temperature for increasing their performance. Computational Fluid Dynamics (CFD) simulation of such system has been performed in order to investigate the effect of water flow rate, tube internal diameter, and convective heat transfer coefficient on the temperature of the solar cells. It is found that increasing convective heat transfer coefficient has a significant effect on reducing solar cells temperatures operating at low flow rates and high optical concentration ratios. Also, a further increase of water flow rate has no effect on reducing cells temperatures.

  19. Temperature optimization of high con

    Directory of Open Access Journals (Sweden)

    M. Sabry

    2016-06-01

    Full Text Available Active cooling is essential for solar cells operating under high optical concentration ratios. A system comprises four solar cells that are in thermal contact on top of a copper tube is proposed. Water is flowing inside the tube in order to reduce solar cells temperature for increasing their performance. Computational Fluid Dynamics (CFD simulation of such system has been performed in order to investigate the effect of water flow rate, tube internal diameter, and convective heat transfer coefficient on the temperature of the solar cells. It is found that increasing convective heat transfer coefficient has a significant effect on reducing solar cells temperatures operating at low flow rates and high optical concentration ratios. Also, a further increase of water flow rate has no effect on reducing cells temperatures.

  20. High temperature electronic gain device

    International Nuclear Information System (INIS)

    McCormick, J.B.; Depp, S.W.; Hamilton, D.J.; Kerwin, W.J.

    1979-01-01

    An integrated thermionic device suitable for use in high temperature, high radiation environments is described. Cathode and control electrodes are deposited on a first substrate facing an anode on a second substrate. The substrates are sealed to a refractory wall and evacuated to form an integrated triode vacuum tube

  1. High temperature thermoelectric energy conversion

    International Nuclear Information System (INIS)

    Wood, C.

    1986-01-01

    Considerable advances were made in the late '50's and early early '60's in the theory and development of materials for high-temperature thermoelectric energy conversion. This early work culminated in a variety of materials, spanning a range of temperatures, with the product of the figure of merit, Z, and temperature, T, i.e., the dimensionless figure of merit, ZT, of the order of one. This experimental limitation appeared to be universal and led a number of investigators to explore the possibility that a ZT - also represents a theoretical limitation. It was found not to be so

  2. Moire interferometry at high temperatures

    Science.gov (United States)

    Wu, Jau-Je

    1992-01-01

    The objective of this study was to provide an optical technique allowing full-field in-plane deformation measurements at high temperature by using high-sensitivity moire interferometry. This was achieved by a new approach of performing deformation measurements at high temperatures in a vacuum oven using an achromatic interferometer. The moire system setup was designed with particular consideration for the stability, compactness, flexibility, and ease of control. A vacuum testing environment was provided to minimize the instability of the patterns by protecting the optical instruments from the thermal convection currents. Also, a preparation procedure for the high-temperature specimen grating was developed with the use of the plasma-etched technique. Gold was used as a metallic layer in this procedure. This method was demonstrated on a ceramic block, metal/matrix composite, and quartz. Thermal deformation of a quartz specimen was successfully measured in vacuum at 980 degrees Celsius, with the sensitivity of 417 nm per fringe. The stable and well-defined interference patterns confirmed the feasibility of the developments, including the high-temperature moire system and high-temperature specimen grating. The moire system was demonstrated to be vibration-insensitive. Also, the contrast of interference fringes at high temperature was enhanced by means of a spatial filter and a narrow band interference filter to minimize the background noise from the flow of the specimen and heater. The system was verified by a free thermal expansion test of an aluminum block. Good agreement demonstrated the validity of the optical design. The measurements of thermal deformation mismatch were performed on a graphite/epoxy composite, a metal/matrix composite equipped with an optical fiber, and a cutting tool bit. A high-resolution data-reduction technique was used to measure the strain distribution of the cutting tool bit.

  3. Mechanical Proprieties of Steel at High Temperatures

    Directory of Open Access Journals (Sweden)

    Ana-Diana Ancaş

    2005-01-01

    Full Text Available The experimental test results obtained in the study of steel mechanical proprieties variation in case of high temperatures (fire are presented. The proprieties are referring to: Young’s modulus, E, the elastic limit, σe, and the characteristic diagram of the material (the rotation stress-strain. Theoretical laws that the model the steel behaviour at high temperature have been elaborated based on the most significant studies presented in the literature.

  4. Interface high-temperature superconductivity

    Science.gov (United States)

    Wang, Lili; Ma, Xucun; Xue, Qi-Kun

    2016-12-01

    Cuprate high-temperature superconductors consist of two quasi-two-dimensional (2D) substructures: CuO2 superconducting layers and charge reservoir layers. The superconductivity is realized by charge transfer from the charge reservoir layers into the superconducting layers without chemical dopants and defects being introduced into the latter, similar to modulation-doping in the semiconductor superlattices of AlGaAs/GaAs. Inspired by this scheme, we have been searching for high-temperature superconductivity in ultra-thin films of superconductors epitaxially grown on semiconductor/oxide substrates since 2008. We have observed interface-enhanced superconductivity in both conventional and unconventional superconducting films, including single atomic layer films of Pb and In on Si substrates and single unit cell (UC) films of FeSe on SrTiO3 (STO) substrates. The discovery of high-temperature superconductivity with a superconducting gap of ∼20 meV in 1UC-FeSe/STO has stimulated tremendous interest in the superconductivity community, for it opens a new avenue for both raising superconducting transition temperature and understanding the pairing mechanism of unconventional high-temperature superconductivity. Here, we review mainly the experimental progress on interface-enhanced superconductivity in the three systems mentioned above with emphasis on 1UC-FeSe/STO, studied by scanning tunneling microscopy/spectroscopy, angle-resolved photoemission spectroscopy and transport experiments. We discuss the roles of interfaces and a possible pairing mechanism inferred from these studies.

  5. High temperature superconductor current leads

    Science.gov (United States)

    Hull, John R.; Poeppel, Roger B.

    1995-01-01

    An electrical lead having one end for connection to an apparatus in a cryogenic environment and the other end for connection to an apparatus outside the cryogenic environment. The electrical lead includes a high temperature superconductor wire and an electrically conductive material distributed therein, where the conductive material is present at the one end of the lead at a concentration in the range of from 0 to about 3% by volume, and at the other end of the lead at a concentration of less than about 20% by volume. Various embodiments are shown for groups of high temperature superconductor wires and sheaths.

  6. High temperature corrosion in gasifiers

    Directory of Open Access Journals (Sweden)

    Bakker Wate

    2004-01-01

    Full Text Available Several commercial scale coal gasification combined cycle power plants have been built and successfully operated during the last 5-10 years. Supporting research on materials of construction has been carried out for the last 20 years by EPRI and others. Emphasis was on metallic alloys for heat exchangers and other components in contact with hot corrosive gases at high temperatures. In this paper major high temperature corrosion mechanisms, materials performance in presently operating gasifiers and future research needs will be discussed.

  7. "Green" High-Temperature Polymers

    Science.gov (United States)

    Meador, Michael A.

    1998-01-01

    PMR-15 is a processable, high-temperature polymer developed at the NASA Lewis Research Center in the 1970's principally for aeropropulsion applications. Use of fiber-reinforced polymer matrix composites in these applications can lead to substantial weight savings, thereby leading to improved fuel economy, increased passenger and payload capacity, and better maneuverability. PMR-15 is used fairly extensively in military and commercial aircraft engines components seeing service temperatures as high as 500 F (260 C), such as the outer bypass duct for the F-404 engine. The current world-wide market for PMR-15 materials (resins, adhesives, and composites) is on the order of $6 to 10 million annually.

  8. Development of a deformation and failure model for Zircaloy at high temperatures for light water reactor loss-of-coolant-accident investigations

    International Nuclear Information System (INIS)

    Raff, S.

    1982-11-01

    To describe Zircaloy-4 deformation and failure behaviour at high temperatures (600 to 1400 0 C), the phenomenological model NORA was developed and verified against numerous experimental results. The model can be applied to the calculation of fuel rod cladding deformation during small and large break loss-of-coolant-accidents. (orig./RW) [de

  9. Numerical model of a thermoelectric generator with compact plate-fin heat exchanger for high temperature PEM fuel cell exhaust heat recovery

    DEFF Research Database (Denmark)

    Xin, Gao; Andreasen, Søren Juhl; Chen, Min

    2012-01-01

    This paper presents a numerical model of an exhaust heat recovery system for a high temperature polymer electrolyte membrane fuel cell (HTPEMFC) stack. The system is designed as thermoelectric generators (TEGs) sandwiched in the walls of a compact plate-fin heat exchanger. Its model is based on a...

  10. Chemistry of high temperature superconductors

    CERN Document Server

    1991-01-01

    This review volume contains the most up-to-date articles on the chemical aspects of high temperature oxide superconductors. These articles are written by some of the leading scientists in the field and includes a comprehensive list of references. This is an essential volume for researchers working in the fields of ceramics, materials science and chemistry.

  11. High temperature component life assessment

    CERN Document Server

    Webster, G A

    1994-01-01

    The aim of this book is to investigate and explain the rapid advances in the characterization of high temperature crack growth behaviour which have been made in recent years, with reference to industrial applications. Complicated mathematics has been minimized with the emphasis placed instead on finding solutions using simplified procedures without the need for complex numerical analysis.

  12. Temperature Prediction for High Pressure High Temperature Condensate Gas Flow Through Chokes

    Directory of Open Access Journals (Sweden)

    Changjun Li

    2012-03-01

    Full Text Available This study developed a theoretical model for predicting the downstream temperatures of high pressure high temperature condensate gas flowing through chokes. The model is composed of three parts: the iso-enthalpy choke model derived from continuity equation and energy conservation equation; the liquid-vapor equilibrium model based on the SRK equation of state (EoS; and the enthalpy model based on the Lee-Kesler EoS. Pseudocritical properties of mixtures, which are obtained by mixing rules, are very important in the enthalpy model, so the Lee-Kesler, Plocker-Knapp, Wong-Sandler and Prausnitz-Gunn mixing rules were all researched, and the combination mixing rules with satisfactory accuracy for high pressure high temperature condensate gases were proposed. The temperature prediction model is valid for both the critical and subcritical flows through different kinds of choke valves. The applications show the model is reliable for predicting the downstream temperatures of condensate gases with upstream pressures up to 85.54 MPa and temperatures up to 93.23 °C. The average absolute errors between the measured and calculated temperatures are expected for less than 2 °C by using the model.

  13. Motor models and transient analysis for high-temperature, superconductor switch-based adjustable speed drive applications. Final report

    International Nuclear Information System (INIS)

    Bailey, J.M.

    1996-06-01

    New high-temperature superconductor (HTSC) technology may allow development of an energy-efficient power electronics switch for adjustable speed drive (ASD) applications involving variable-speed motors, superconducting magnetic energy storage systems, and other power conversion equipment. This project developed a motor simulation module for determining optimal applications of HTSC-based power switches in ASD systems

  14. High Temperature, High Power Piezoelectric Composite Transducers

    Directory of Open Access Journals (Sweden)

    Hyeong Jae Lee

    2014-08-01

    Full Text Available Piezoelectric composites are a class of functional materials consisting of piezoelectric active materials and non-piezoelectric passive polymers, mechanically attached together to form different connectivities. These composites have several advantages compared to conventional piezoelectric ceramics and polymers, including improved electromechanical properties, mechanical flexibility and the ability to tailor properties by using several different connectivity patterns. These advantages have led to the improvement of overall transducer performance, such as transducer sensitivity and bandwidth, resulting in rapid implementation of piezoelectric composites in medical imaging ultrasounds and other acoustic transducers. Recently, new piezoelectric composite transducers have been developed with optimized composite components that have improved thermal stability and mechanical quality factors, making them promising candidates for high temperature, high power transducer applications, such as therapeutic ultrasound, high power ultrasonic wirebonding, high temperature non-destructive testing, and downhole energy harvesting. This paper will present recent developments of piezoelectric composite technology for high temperature and high power applications. The concerns and limitations of using piezoelectric composites will also be discussed, and the expected future research directions will be outlined.

  15. High Temperature, High Power Piezoelectric Composite Transducers

    Science.gov (United States)

    Lee, Hyeong Jae; Zhang, Shujun; Bar-Cohen, Yoseph; Sherrit, StewarT.

    2014-01-01

    Piezoelectric composites are a class of functional materials consisting of piezoelectric active materials and non-piezoelectric passive polymers, mechanically attached together to form different connectivities. These composites have several advantages compared to conventional piezoelectric ceramics and polymers, including improved electromechanical properties, mechanical flexibility and the ability to tailor properties by using several different connectivity patterns. These advantages have led to the improvement of overall transducer performance, such as transducer sensitivity and bandwidth, resulting in rapid implementation of piezoelectric composites in medical imaging ultrasounds and other acoustic transducers. Recently, new piezoelectric composite transducers have been developed with optimized composite components that have improved thermal stability and mechanical quality factors, making them promising candidates for high temperature, high power transducer applications, such as therapeutic ultrasound, high power ultrasonic wirebonding, high temperature non-destructive testing, and downhole energy harvesting. This paper will present recent developments of piezoelectric composite technology for high temperature and high power applications. The concerns and limitations of using piezoelectric composites will also be discussed, and the expected future research directions will be outlined. PMID:25111242

  16. High temperature, high power piezoelectric composite transducers.

    Science.gov (United States)

    Lee, Hyeong Jae; Zhang, Shujun; Bar-Cohen, Yoseph; Sherrit, Stewart

    2014-08-08

    Piezoelectric composites are a class of functional materials consisting of piezoelectric active materials and non-piezoelectric passive polymers, mechanically attached together to form different connectivities. These composites have several advantages compared to conventional piezoelectric ceramics and polymers, including improved electromechanical properties, mechanical flexibility and the ability to tailor properties by using several different connectivity patterns. These advantages have led to the improvement of overall transducer performance, such as transducer sensitivity and bandwidth, resulting in rapid implementation of piezoelectric composites in medical imaging ultrasounds and other acoustic transducers. Recently, new piezoelectric composite transducers have been developed with optimized composite components that have improved thermal stability and mechanical quality factors, making them promising candidates for high temperature, high power transducer applications, such as therapeutic ultrasound, high power ultrasonic wirebonding, high temperature non-destructive testing, and downhole energy harvesting. This paper will present recent developments of piezoelectric composite technology for high temperature and high power applications. The concerns and limitations of using piezoelectric composites will also be discussed, and the expected future research directions will be outlined.

  17. NSTX High Temperature Sensor Systems

    International Nuclear Information System (INIS)

    McCormack, B.; Kugel, H.W.; Goranson, P.; Kaita, R.

    1999-01-01

    The design of the more than 300 in-vessel sensor systems for the National Spherical Torus Experiment (NSTX) has encountered several challenging fusion reactor diagnostic issues involving high temperatures and space constraints. This has resulted in unique miniature, high temperature in-vessel sensor systems mounted in small spaces behind plasma facing armor tiles, and they are prototypical of possible high power reactor first-wall applications. In the Center Stack, Divertor, Passive Plate, and vessel wall regions, the small magnetic sensors, large magnetic sensors, flux loops, Rogowski Coils, thermocouples, and Langmuir Probes are qualified for 600 degrees C operation. This rating will accommodate both peak rear-face graphite tile temperatures during operations and the 350 degrees C bake-out conditions. Similar sensor systems including flux loops, on other vacuum vessel regions are qualified for 350 degrees C operation. Cabling from the sensors embedded in the graphite tiles follows narrow routes to exit the vessel. The detailed sensor design and installation methods of these diagnostic systems developed for high-powered ST operation are discussed

  18. High temperature two component explosive

    Science.gov (United States)

    Mars, James E.; Poole, Donald R.; Schmidt, Eckart W.; Wang, Charles

    1981-01-01

    A two component, high temperature, thermally stable explosive composition comprises a liquid or low melting oxidizer and a liquid or low melting organic fuel. The oxidizer and fuel in admixture are incapable of substantial spontaneous exothermic reaction at temperatures on the order of 475.degree. K. At temperatures on the order of 475.degree. K., the oxidizer and fuel in admixture have an activation energy of at least about 40 kcal/mol. As a result of the high activation energy, the preferred explosive compositions are nondetonable as solids at ambient temperature, and become detonable only when heated beyond the melting point. Preferable oxidizers are selected from alkali or alkaline earth metal nitrates, nitrites, perchlorates, and/or mixtures thereof. Preferred fuels are organic compounds having polar hydrophilic groups. The most preferred fuels are guanidinium nitrate, acetamide and mixtures of the two. Most preferred oxidizers are eutectic mixtures of lithium nitrate, potassium nitrate and sodium nitrate, of sodium nitrite, sodium nitrate and potassium nitrate, and of potassium nitrate, calcium nitrate and sodium nitrate.

  19. High temperature superconductors applications in telecommunications

    International Nuclear Information System (INIS)

    Kumar, A.A.; Li, J.; Zhang, M.F.

    1994-01-01

    The purpose of this paper is twofold: to discuss high temperature superconductors with specific reference to their employment in telecommunications applications; and to discuss a few of the limitations of the normally employed two-fluid model. While the debate on the actual usage of high temperature superconductors in the design of electronic and telecommunications devices-obvious advantages versus practical difficulties-needs to be settled in the near future, it is of great interest to investigate the parameters and the assumptions that will be employed in such designs. This paper deals with the issue of providing the microwave design engineer with performance data for such superconducting waveguides. The values of conductivity and surface resistance, which are the primary determining factors of a waveguide performance, are computed based on the two-fluid model. A comparison between two models-a theoretical one in terms of microscopic parameters (termed Model A) and an experimental fit in terms of macroscopic parameters (termed Model B)-shows the limitations and the resulting ambiguities of the two-fluid model at high frequencies and at temperatures close to the transition temperature. The validity of the two-fluid model is then discussed. Our preliminary results show that the electrical transport description in the normal and superconducting phases as they are formulated in the two-fluid model needs to be modified to incorporate the new and special features of high temperature superconductors. Parameters describing the waveguide performance-conductivity, surface resistance and attenuation constant-will be computed. Potential applications in communications networks and large scale integrated circuits will be discussed. Some of the ongoing work will be reported. In particular, a brief proposal is made to investigate of the effects of electromagnetic interference and the concomitant notion of electromagnetic compatibility (EMI/EMC) of high T c superconductors

  20. High-temperature entropy of anionic model for the phase transition in SnCl2.2H2O

    International Nuclear Information System (INIS)

    Freitas, L.C. de; Salinas, S.R.

    1975-01-01

    The basic model of the phase transition in the hydrogen-bonded layered crystal SnCl 2 .2H 2 O to account for the presence of ionic defects is modified. It is easy to obtain a series expansion for the high-temperature entropy of the ionic model in terms of closed subgraphs, with vertices of degree two, of the original three-coordinated 4-8 lattice. High-temperature entropy of the ionic model is shown to be identical to the residual entropy of a simple antiferromagnetic Ising model in a 3-4-8 lattice. This latter model can be solved exact by a set of transformations which lead to a well studied Ising model in a Union Jack lattice [pt

  1. High temperature energy harvester for wireless sensors

    International Nuclear Information System (INIS)

    E Köhler, J; Heijl, R; Staaf, L G H; Palmqvist, A E C; Enoksson, P; Zenkic, S; Svenman, E; Lindblom, A

    2014-01-01

    Implementing energy harvesters and wireless sensors in jet engines will simplify development and decrease costs by reducing the need for cables. Such a device could include a small thermoelectric generator placed in the cooling channels of the jet engine where the temperature is between 500–900 °C. This paper covers the synthesis of suitable thermoelectric materials, design of module and proof of concept tests of a thermoelectric module. The materials and other design variables were chosen based on an analytic model and numerical analysis. The module was optimized for 600–800 °C with the thermoelectric materials n-type Ba 8 Ga 16 Ge 30 and p-type La-doped Yb 14 MnSb 11 , both with among the highest reported figure-of-merit values, zT, for bulk materials in this region. The materials were synthesized and their structures confirmed by x-ray diffraction. Proof of concept modules containing only two thermoelectric legs were built and tested at high temperatures and under high temperature gradients. The modules were designed to survive an ambient temperature gradient of up to 200 °C. The first measurements at low temperature showed that the thermoelectric legs could withstand a temperature gradient of 123 °C and still be functional. The high temperature measurement with 800 °C on the hot side showed that the module remained functional at this temperature. (paper)

  2. High temperature energy harvester for wireless sensors

    Science.gov (United States)

    Köhler, J. E.; Heijl, R.; Staaf, L. G. H.; Zenkic, S.; Svenman, E.; Lindblom, A.; Palmqvist, A. E. C.; Enoksson, P.

    2014-09-01

    Implementing energy harvesters and wireless sensors in jet engines will simplify development and decrease costs by reducing the need for cables. Such a device could include a small thermoelectric generator placed in the cooling channels of the jet engine where the temperature is between 500-900 °C. This paper covers the synthesis of suitable thermoelectric materials, design of module and proof of concept tests of a thermoelectric module. The materials and other design variables were chosen based on an analytic model and numerical analysis. The module was optimized for 600-800 °C with the thermoelectric materials n-type Ba8Ga16Ge30 and p-type La-doped Yb14MnSb11, both with among the highest reported figure-of-merit values, zT, for bulk materials in this region. The materials were synthesized and their structures confirmed by x-ray diffraction. Proof of concept modules containing only two thermoelectric legs were built and tested at high temperatures and under high temperature gradients. The modules were designed to survive an ambient temperature gradient of up to 200 °C. The first measurements at low temperature showed that the thermoelectric legs could withstand a temperature gradient of 123 °C and still be functional. The high temperature measurement with 800 °C on the hot side showed that the module remained functional at this temperature.

  3. Motor for High Temperature Applications

    Science.gov (United States)

    Roopnarine (Inventor)

    2013-01-01

    A high temperature motor has a stator with poles formed by wire windings, and a rotor with magnetic poles on a rotor shaft positioned coaxially within the stator. The stator and rotor are built up from stacks of magnetic-alloy laminations. The stator windings are made of high temperature magnet wire insulated with a vitreous enamel film, and the wire windings are bonded together with ceramic binder. A thin-walled cylinder is positioned coaxially between the rotor and the stator to prevent debris from the stator windings from reaching the rotor. The stator windings are wound on wire spools made of ceramic, thereby avoiding need for mica insulation and epoxy/adhesive. The stator and rotor are encased in a stator housing with rear and front end caps, and rear and front bearings for the rotor shaft are mounted on external sides of the end caps to keep debris from the motor migrating into the bearings' races.

  4. High pressure and high temperature apparatus

    Science.gov (United States)

    Voronov, Oleg A.

    2005-09-13

    A design for high pressure/high temperature apparatus and reaction cell to achieve .about.30 GPa pressure in .about.1 cm volume and .about.100 GPa pressure in .about.1 mm volumes and 20-5000.degree. C. temperatures in a static regime. The device includes profiled anvils (28) action on a reaction cell (14, 16) containing the material (26) to be processed. The reaction cell includes a heater (18) surrounded by insulating layers and screens. Surrounding the anvils are cylindrical inserts and supporting rings (30-48) whose hardness increases towards the reaction cell. These volumes may be increased considerably if applications require it, making use of presses that have larger loading force capability, larger frames and using larger anvils.

  5. Law of mixture used to model the flow behavior of a duplex stainless steel at high temperatures

    International Nuclear Information System (INIS)

    Momeni, A.; Dehghani, K.; Poletti, M.C.

    2013-01-01

    In this investigation the flow curves of a duplex stainless steel were drawn by performing hot compression tests over a wide temperature range of 950–1200 °C and strain rates of 0.001–100 s −1 . The flow curves of ferrite and austenite phases in the duplex structure were depicted by conducting similar hot compression tests on two steels that were cast and prepared with the same chemical compositions. The flow curves of the austenitic steel were found typical of dynamic recrystallization. They were successfully modeled by using the experimental exponential equation proposed by Cingara and McQueen. The flow curves of the ferritic steel were typical of dynamic recovery. They were modeled by the dislocation density evolution function proposed by Estrin and Meckning. Comparing the flow curves of three studied steels, it was found that the flow curves of the duplex steel were very similar and close to those of the ferrite steel. It was understood that in a duplex structure of ferrite and austenite the flow behavior is mostly controlled by the softer phase, i.e. ferrite. The law of mixture was modified to consider the strain partitioning between ferrite and austenite. The distribution coefficients of ferrite and austenite were described and determined at different deformation conditions. The results of modeling satisfactorily predicted the experimental curves. It was shown that the influence of austenite on the flow behavior of the duplex structure is almost low. However, it increases as strain rate or temperature rises. - Highlights: ► Flow curves of austenite and ferrite in the duplex steel were modeled separately. ► The flow behavior of the duplex steel is mostly controlled by ferrite. ► The effect of austenite on flow curve increases with temperature and strain rate. ► The flow curve of the duplex steel is modeled by the modified law of mixture

  6. Characteristics of the Mott transition and electronic states of high-temperature cuprate superconductors from the perspective of the Hubbard model

    Science.gov (United States)

    Kohno, Masanori

    2018-04-01

    A fundamental issue of the Mott transition is how electrons behaving as single particles carrying spin and charge in a metal change into those exhibiting separated spin and charge excitations (low-energy spin excitation and high-energy charge excitation) in a Mott insulator. This issue has attracted considerable attention particularly in relation to high-temperature cuprate superconductors, which exhibit electronic states near the Mott transition that are difficult to explain in conventional pictures. Here, from a new viewpoint of the Mott transition based on analyses of the Hubbard model, we review anomalous features observed in high-temperature cuprate superconductors near the Mott transition.

  7. Use of a High-Resolution 3D Laser Scanner for Minefield Surface Modeling and Terrain Characterization: Temperature Region

    National Research Council Canada - National Science Library

    Jackson, Sam S; Bishop, Michael J

    2005-01-01

    The use of a high-resolution, ground-based 3D laser scanner was recently evaluated for terrestrial site characterization of variable-surface minefield sites and generation of surface and terrain models...

  8. The effect of temperature in high temperature SHPB test

    International Nuclear Information System (INIS)

    Park, Kyoung Joon; Yang, Hyun Mo; Min, Oak Key

    2001-01-01

    The split Hopkinson pressure bar has used for a high strain rate impact test. Also, it has been developed and modified for compression, shear, tension, elevated temperature and subzero tests. In this paper, SHPB compression tests have been performed with pure titanium at elevated temperatures. The range of temperature is from room temperature to 1000 deg. C with interval of 200 .deg. C. To raise temperature of the specimen, a radiant heater which is composed of a pair of ellipsoidal cavities and halogen lamps is developed at high temperature SHPB test. There are some difficulties in a high temperature test such as temperature gradient, lubrication and prevention of oxidation of specimen. The temperature gradient of specimen is affected by the variation of temperature. Barreling occurred at not properly lubricated specimen. Stress-strain relations of pure titanium have been obtained in the range of strain rate at 1900/sec∼2000/sec and temperature at 25 .deg. C∼1000 .deg. C

  9. The Transition of High-Resolution NASA MODIS Sea Surface Temperatures into the WRF Environmental Modeling System

    Science.gov (United States)

    Case, Jonathan L.; Jedlove, Gary J.; Santos, Pablo; Medlin, Jeffrey M.; Rozumalski, Robert A.

    2009-01-01

    The NASA Short-term Prediction Research and Transition (SPoRT) Center has developed a Moderate Resolution Imaging Spectroradiometer (MODIS) sea surface temperature (SST) composite at 2-km resolution that has been implemented in version 3 of the National Weather Service (NWS) Weather Research and Forecasting (WRF) Environmental Modeling System (EMS). The WRF EMS is a complete, full physics numerical weather prediction package that incorporates dynamical cores from both the Advanced Research WRF (ARW) and the Non-hydrostatic Mesoscale Model (NMM). The installation, configuration, and execution of either the ARW or NMM models is greatly simplified by the WRF EMS to encourage its use by NWS Weather Forecast Offices (WFOs) and the university community. The WRF EMS is easy to run on most Linux workstations and clusters without the need for compilers. Version 3 of the WRF EMS contains the most recent public release of the WRF-NMM and ARW modeling system (version 3 of the ARW is described in Skamarock et al. 2008), the WRF Pre-processing System (WPS) utilities, and the WRF Post-Processing program. The system is developed and maintained by the NWS National Science Operations Officer Science and Training Resource Coordinator. To initialize the WRF EMS with high-resolution MODIS SSTs, SPoRT developed the composite product consisting of MODIS SSTs over oceans and large lakes with the NCEP Real-Time Global (RTG) filling data over land points. Filling the land points is required due to minor inconsistencies between the WRF land-sea mask and that used to generate the MODIS SST composites. This methodology ensures a continuous field that adequately initializes all appropriate arrays in WRF. MODIS composites covering the Gulf of Mexico, western Atlantic Ocean and the Caribbean are generated daily at 0400, 0700, 1600, and 1900 UTC corresponding to overpass times of the NASA Aqua and Terra polar orbiting satellites. The MODIS SST product is output in gridded binary-1 (GRIB-1) data

  10. Theory of high temperature plasmas. Final report

    International Nuclear Information System (INIS)

    Davidson, R.C.; Liu, C.S.

    1977-01-01

    This is a report on the technical progress in our analytic studies of high-temperature fusion plasmas. We also emphasize that the research summarized here makes extensive use of computational methods and therefore forms a strong interface with our numerical modeling program which is discussed later in the report

  11. Temperature uniformity mapping in a high pressure high temperature reactor using a temperature sensitive indicator

    NARCIS (Netherlands)

    Grauwet, T.; Plancken, van der I.; Vervoort, L.; Matser, A.M.; Hendrickx, M.; Loey, van A.

    2011-01-01

    Recently, the first prototype ovomucoid-based pressure–temperature–time indicator (pTTI) for high pressure high temperature (HPHT) processing was described. However, for temperature uniformity mapping of high pressure (HP) vessels under HPHT sterilization conditions, this prototype needs to be

  12. A modified phase coherence model for the non-linear c-axis V-I characteristics of highly anisotropic, high temperature superconductors

    CERN Document Server

    Luo Sheng; Huang Sai Jun; He Yu Sheng; Li Chun Guang; Zhang Xue Qiang

    2003-01-01

    A modified Ambegaokar-Halperin thermal-fluctuation model has been developed to describe the c-axis V-I characteristics and low-current ohmic resistance of highly anisotropic superconductors in a magnetic field parallel to the c-axis. The model assumes loss of phase coherence across the CuO-planes associated with the correlated motion of pancake vortices in the liquid state. The predicted V-I characteristics in the current-induced transition from the superconducting to the resistive state are in good agreement with measurements on a 2212-BSCCO single crystal as a function of temperature and field, provided the effect of the interlayer capacitance is taken into account. The measurements are consistent with a flux pancake correlation length within the CuO-planes varying as xi sub 0 /(T/T sub 0 - 1) supnu, where xi sub 0 = 1.57 +- 0.08 mu m and nu = 0.50 +- 0.01. Our measurements imply a current-dependent interlayer resistance above and below T sub c.

  13. Model for the high-temperature oxygen-ordering thermodynamics in YBa2Cu3O6+x - inclusion of electron spin and charge degrees of freedom

    DEFF Research Database (Denmark)

    Schleger, P.; Hardy, W.N.; Casalta, H.

    1994-01-01

    A lattice-gas model for the high temperature oxygen-ordering thermodynamics in YBa2Cu3O6+x is presented, which assumes constant effective pair interactions between oxygen atoms and includes in a simple fashion the effect of the electron spin and charge degrees of freedom. This is done using...

  14. Confinement of high temperature plasmas

    International Nuclear Information System (INIS)

    Bass, R.W.; Ferguson, H.R.; Fletcher, H.J.; Gardner, J.H.; Harrison, B.K.; Larsen, K.M.

    1980-01-01

    A high temperature plasma is confined in the shape of a topological torus by a topologically stable magnetic field which is everywhere constant on and tangent to the surface of the torus. There are exactly an even finite number of closed magnetic field lines on the plasma surface and all other magnetic field lines on the surface are asymptotic to the closed field lines. This magnetic field configuration is achieved by a set of current carrying conductors appropriately arranged with respect to the plasma and carrying suitably selected currents

  15. High-Temperature Test Technology

    Science.gov (United States)

    1987-03-01

    F33615-84-C-3213 Sc. ADDRESS (City. State and ZIP Code) 10. SOURCE OF: FUNDING NOBI . AFWVAL/FIBT PROGRAM PROJECT TASK WORK UNIT Wright-Patterson AFB OH...fly at speeds in excess of Mach 20. Aerodynamic heating "rom these hypersonic speeds will pro - duce vehicle surface temperatures as high as 3000*F. In...We believe that two former suppliers, Pyro-Metrics and lunar Infrared, are no longer in business. In addition, the Hi-Shear product line is now

  16. High-temperature radiation embrittlement of materials

    International Nuclear Information System (INIS)

    Zelenskij, V.F.; Kiryukhin, N.M.; Ozhigov, L.S.; Parkhomenko, A.A.

    1983-01-01

    On the basis of the analysis of literature data and the results obtained by the authors, main features and regularities of the high-temperature radiation embrittlement of materials (HTRE) are described. In important part of charged particle accelerator investigations for imitation and study of HTRE is pointed out. The existing HTRE models are analyzed and a new model taking into account the evolution of defect structure of matrix and grain boundaries under irradiation is suggested

  17. Mixing-to-eruption timescales: an integrated model combining numerical simulations and high-temperature experiments with natural melts

    Science.gov (United States)

    Montagna, Chiara; Perugini, Diego; De Campos, Christina; Longo, Antonella; Dingwell, Donald Bruce; Papale, Paolo

    2015-04-01

    Arrival of magma from depth into shallow reservoirs and associated mixing processes have been documented as possible triggers of explosive eruptions. Quantifying the timing from beginning of mixing to eruption is of fundamental importance in volcanology in order to put constraints about the possible onset of a new eruption. Here we integrate numerical simulations and high-temperature experiment performed with natural melts with the aim to attempt identifying the mixing-to-eruption timescales. We performed two-dimensional numerical simulations of the arrival of gas-rich magmas into shallow reservoirs. We solve the fluid dynamics for the two interacting magmas evaluating the space-time evolution of the physical properties of the mixture. Convection and mingling develop quickly into the chamber and feeding conduit/dyke. Over time scales of hours, the magmas in the reservoir appear to have mingled throughout, and convective patterns become harder to identify. High-temperature magma mixing experiments have been performed using a centrifuge and using basaltic and phonolitic melts from Campi Flegrei (Italy) as initial end-members. Concentration Variance Decay (CVD), an inevitable consequence of magma mixing, is exponential with time. The rate of CVD is a powerful new geochronometer for the time from mixing to eruption/quenching. The mingling-to-eruption time of three explosive volcanic eruptions from Campi Flegrei (Italy) yield durations on the order of tens of minutes. These results are in perfect agreement with the numerical simulations that suggest a maximum mixing time of a few hours to obtain a hybrid mixture. We show that integration of numerical simulation and high-temperature experiments can provide unprecedented results about mixing processes in volcanic systems. The combined application of numerical simulations and CVD geochronometer to the eruptive products of active volcanoes could be decisive for the preparation of hazard mitigation during volcanic unrest.

  18. Application of a Coated Film Catalyst Layer Model to a High Temperature Polymer Electrolyte Membrane Fuel Cell with Low Catalyst Loading Produced by Reactive Spray Deposition Technology

    Directory of Open Access Journals (Sweden)

    Timothy D. Myles

    2015-10-01

    Full Text Available In this study, a semi-empirical model is presented that correlates to previously obtained experimental overpotential data for a high temperature polymer electrolyte membrane fuel cell (HT-PEMFC. The goal is to reinforce the understanding of the performance of the cell from a modeling perspective. The HT-PEMFC membrane electrode assemblies (MEAs were constructed utilizing an 85 wt. % phosphoric acid doped Advent TPS® membranes for the electrolyte and gas diffusion electrodes (GDEs manufactured by Reactive Spray Deposition Technology (RSDT. MEAs with varying ratios of PTFE binder to carbon support material (I/C ratio were manufactured and their performance at various operating temperatures was recorded. The semi-empirical model derivation was based on the coated film catalyst layer approach and was calibrated to the experimental data by a least squares method. The behavior of important physical parameters as a function of I/C ratio and operating temperature were explored.

  19. Predicting the heat of vaporization of iron at high temperatures using time-resolved laser-induced incandescence and Bayesian model selection

    Science.gov (United States)

    Sipkens, Timothy A.; Hadwin, Paul J.; Grauer, Samuel J.; Daun, Kyle J.

    2018-03-01

    Competing theories have been proposed to account for how the latent heat of vaporization of liquid iron varies with temperature, but experimental confirmation remains elusive, particularly at high temperatures. We propose time-resolved laser-induced incandescence measurements on iron nanoparticles combined with Bayesian model plausibility, as a novel method for evaluating these relationships. Our approach scores the explanatory power of candidate models, accounting for parameter uncertainty, model complexity, measurement noise, and goodness-of-fit. The approach is first validated with simulated data and then applied to experimental data for iron nanoparticles in argon. Our results justify the use of Román's equation to account for the temperature dependence of the latent heat of vaporization of liquid iron.

  20. Studies of high temperature superconductors

    International Nuclear Information System (INIS)

    Narlikar, A.

    1989-01-01

    The high temperature superconductors (HTSCs) discovered are from the family of ceramic oxides. Their large scale utilization in electrical utilities and in microelectronic devices are the frontal challenges which can perhaps be effectively met only through consolidated efforts and expertise of a multidisciplinary nature. During the last two years the growth of the new field has occurred on an international scale and perhaps has been more rapid than in most other fields. There has been an extraordinary rush of data and results which are continually being published as short texts dispersed in many excellent journals, some of which were started to ensure rapid publication exclusively in this field. As a result, the literature on HTSCs has indeed become so massive and so diffuse that it is becoming increasingly difficult to keep abreast with the important and reliable facets of this fast-growing field. This provided the motivation to evolve a process whereby both professional investigators and students can have ready access to up-to- date in-depth accounts of major technical advances happening in this field. The present series Studies of High Temperature Superconductors has been launched to, at least in part, fulfill this need

  1. High Temperature Radio Frequency Loads

    CERN Document Server

    Federmann, S; Grudiev, A; Montesinos, E; Syratchev, I

    2011-01-01

    In the context of energy saving and recovery requirements the design of reliable and robust RF power loads which permit a high outlet temperature and high pressure of the cooling water is desirable. Cooling water arriving at the outlet withmore than 150 ◦C and high pressure has a higher value than water with 50 ◦C under low pressure. Conventional RF power loads containing dielectric and magnetic materials as well as sensitive ceramic windows usually do not permit going much higher than 90 ◦C. Here we present and discuss several design concepts for "metal only" RF high power loads. One concept is the application of magnetic steel corrugated waveguides near cutoff – this concept could find practical use above several GHz. Another solution are resonant structures made of steel to be installed in large waveguides for frequencies of 500 MHz or lower. Similar resonant structures above 100 MHz taking advantage of the rather high losses of normal steel may also be used in coaxial line geometries with large di...

  2. Modelling the high temperature behaviour of a technical relevant TiAl-alloy; Modellierung des Hochtemperaturverhaltens einer technisch relevantenTiAl-Legierung

    Energy Technology Data Exchange (ETDEWEB)

    Mohr, R.; Brocks, W. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Werkstofforschung

    2000-07-01

    The design of components of metallic high-temperature materials by the finite element method requires the application of phenomenological viscoplastic material models. The route from the choice of a convenient model, the numerical integration of the equations and the parameter identification to the design of components is described. The Chaboche-model is used whose evolution equations are explicitly integrated. The parameters are determined by graphical and numerical methods in order to use the material model for describing the deformation behaviour of an intermetallic titanium aluminide alloy. (orig.)

  3. High concentration agglomerate dynamics at high temperatures.

    Science.gov (United States)

    Heine, M C; Pratsinis, S E

    2006-11-21

    The dynamics of agglomerate aerosols are investigated at high solids concentrations that are typical in industrial scale manufacture of fine particles (precursor mole fraction larger than 10 mol %). In particular, formation and growth of fumed silica at such concentrations by chemical reaction, coagulation, and sintering is simulated at nonisothermal conditions and compared to limited experimental data and commercial product specifications. Using recent chemical kinetics for silica formation by SiCl4 hydrolysis and neglecting aerosol polydispersity, the evolution of the diameter of primary particles (specific surface area, SSA), hard- and soft-agglomerates, along with agglomerate effective volume fraction (volume occupied by agglomerate) is investigated. Classic Smoluchowski theory is fundamentally limited for description of soft-agglomerate Brownian coagulation at high solids concentrations. In fact, these high concentrations affect little the primary particle diameter (or SSA) but dominate the soft-agglomerate diameter, structure, and volume fraction, leading to gelation consistent with experimental data. This indicates that restructuring and fragmentation should affect product particle characteristics during high-temperature synthesis of nanostructured particles at high concentrations in aerosol flow reactors.

  4. Assessment for the Applicability of Effective Thermal Conductivity Models on the Prismatic Fuel Assembly of Very High Temperature Reactor

    International Nuclear Information System (INIS)

    Shin, Dong-ho; Cho, Hyoung-kyu; Tak, Nam-il; Park, Goon-cherl

    2014-01-01

    A prismatic gas-cooled reactor is promising reactor type in the Nuclear Hydrogen Development and Demonstration (NHDD) project which was launched at KAERI (Korea Atomic Energy Research Institute). One of the most favorable characteristics of a prismatic gas-cooled reactor is its inherent and passive safety. As one of its inherent safety features, the heat flows through the prismatic core radially during the High Pressure Conduction Cooling (HPCC) or Low Pressure Conduction Cooling (LPCC) event and the radial heat transfer cools down the reactor core passively under such conditions. To verify the inherent safety of its design, the GAMMA+ code that is used to analyze VHTR thermo-fluid transients has been developed by KAERI. The code adopts effective thermal conductivity (ETC) model to analyze radial heat transfer in the core as a lumped parameter model. It is because the fuel block has complex geometry with large number of coolant holes and fuel compacts and the detail heat transfer calculations on that geometry needs excessive computation resources. GAMMA+ is adopting the Maxwell-based ETC model, however, there are several ETC models that could be applied to the GAMMA+ code. In this study, several ETC models will be introduced. They will be compared to CFD calculations which have similar condition with the fuel block. And then the most appropriate ETC model will be suggested for calculating the ETC of the fuel block. For the CFD calculation, unit cell tests with simple geometries were conducted. With unit cell test, the applicability of the ETC models were investigated. And proper ETC models were used to calculate the ETC of the fuel block and the results were compared to that of CFD calculation on the fuel block. In this study, the ETC models are introduced and the applicability of the ETC models to VHTR fuel block was investigated. The results of the ETC models were compared to those of CFD calculation. The CFD calculations were conducted for square graphite block

  5. System model development for a methanol reformed 5 kW high temperature PEM fuel cell system

    DEFF Research Database (Denmark)

    Sahlin, Simon Lennart; Andreasen, Søren Juhl; Kær, Søren Knudsen

    2015-01-01

    This work investigates the system performance when reforming methanol in an oil heated reformer system for a 5 kW fuel cell system. A dynamic model of the system is created and evaluated. The system is divided into 4 separate components. These components are the fuel cell, reformer, burner...... and evaporator, which are connected by two separate oil circuits, one with a burner and reformer and one with a fuel cell and evaporator. Experiments were made on the reformer and measured oil and bed temperatures are presented in multiple working points. The system is examined at loads from 0 to 5000 W electric...... and the response time and efficiency of the system are evaluated. The efficiency is estimated to be around 28–30% during load. Startup of the system is estimated to be around 45 min....

  6. High temperature industrial heat pumps

    Energy Technology Data Exchange (ETDEWEB)

    Berghmans, J. (Louvain Univ., Heverlee (Belgium). Inst. Mechanica)

    1990-01-01

    The present report intends to describe the state of the art of high temperature industrial heat pumps. A description is given of present systems on the market. In addition the research and development efforts on this subject are described. Compression (open as well as closed cycle) systems, as well as absorption heat pumps (including transformers), are considered. This state of the art description is based upon literature studies performed by a team of researchers from the Katholieke Universiteit Leuven, Belgium. The research team also analysed the economics of heat pumps of different types under the present economic conditions. The heat pumps are compared with conventional heating systems. This analysis was performed in order to evaluate the present condition of the heat pump in the European industry.

  7. Faraday imaging at high temperatures

    Science.gov (United States)

    Hackel, Lloyd A.; Reichert, Patrick

    1997-01-01

    A Faraday filter rejects background light from self-luminous thermal objects, but transmits laser light at the passband wavelength, thus providing an ultra-narrow optical bandpass filter. The filter preserves images so a camera looking through a Faraday filter at a hot target illuminated by a laser will not see the thermal radiation but will see the laser radiation. Faraday filters are useful for monitoring or inspecting the uranium separator chamber in an atomic vapor laser isotope separation process. Other uses include viewing welds, furnaces, plasma jets, combustion chambers, and other high temperature objects. These filters are can be produced at many discrete wavelengths. A Faraday filter consists of a pair of crossed polarizers on either side of a heated vapor cell mounted inside a solenoid.

  8. Faraday imaging at high temperatures

    International Nuclear Information System (INIS)

    Hackel, L.A.; Reichert, P.

    1997-01-01

    A Faraday filter rejects background light from self-luminous thermal objects, but transmits laser light at the passband wavelength, thus providing an ultra-narrow optical bandpass filter. The filter preserves images so a camera looking through a Faraday filter at a hot target illuminated by a laser will not see the thermal radiation but will see the laser radiation. Faraday filters are useful for monitoring or inspecting the uranium separator chamber in an atomic vapor laser isotope separation process. Other uses include viewing welds, furnaces, plasma jets, combustion chambers, and other high temperature objects. These filters are can be produced at many discrete wavelengths. A Faraday filter consists of a pair of crossed polarizers on either side of a heated vapor cell mounted inside a solenoid. 3 figs

  9. New methods for modeling stream temperature using high resolution LiDAR, solar radiation analysis and flow accumulated values to predict stream temperature

    Science.gov (United States)

    In-stream temperature directly effects a variety of biotic organisms, communities and processes. Changes in stream temperature can render formally suitable habitat unsuitable for aquatic organisms, particularly native cold water species that are not able to adjust. In order to...

  10. High temperature control rod assembly

    Science.gov (United States)

    Vollman, Russell E.

    1991-01-01

    A high temperature nuclear control rod assembly comprises a plurality of substantially cylindrical segments flexibly joined together in succession by ball joints. The segments are made of a high temperature graphite or carbon-carbon composite. The segment includes a hollow cylindrical sleeve which has an opening for receiving neutron-absorbing material in the form of pellets or compacted rings. The sleeve has a threaded sleeve bore and outer threaded surface. A cylindrical support post has a threaded shaft at one end which is threadably engaged with the sleeve bore to rigidly couple the support post to the sleeve. The other end of the post is formed with a ball portion. A hollow cylindrical collar has an inner threaded surface engageable with the outer threaded surface of the sleeve to rigidly couple the collar to the sleeve. the collar also has a socket portion which cooperates with the ball portion to flexibly connect segments together to form a ball and socket-type joint. In another embodiment, the segment comprises a support member which has a threaded shaft portion and a ball surface portion. The threaded shaft portion is engageable with an inner threaded surface of a ring for rigidly coupling the support member to the ring. The ring in turn has an outer surface at one end which is threadably engageably with a hollow cylindrical sleeve. The other end of the sleeve is formed with a socket portion for engagement with a ball portion of the support member. In yet another embodiment, a secondary rod is slidably inserted in a hollow channel through the center of the segment to provide additional strength. A method for controlling a nuclear reactor utilizing the control rod assembly is also included.

  11. Multifunctional, High-Temperature Nanocomposites

    Science.gov (United States)

    Connell, John W.; Smith, Joseph G.; Siochi, Emilie J.; Working, Dennis C.; Criss, Jim M.; Watson, Kent A.; Delozier, Donavon M.; Ghose, Sayata

    2007-01-01

    In experiments conducted as part of a continuing effort to incorporate multifunctionality into advanced composite materials, blends of multi-walled carbon nanotubes and a resin denoted gPETI-330 h (wherein gPETI h is an abbreviation for gphenylethynyl-terminated imide h) were prepared, characterized, and fabricated into moldings. PETI-330 was selected as the matrix resin in these experiments because of its low melt viscosity (2 hours at 280 C), and high temperature performance (>1,000 hours at 288 C). The multi-walled carbon nanotubes (MWCNTs), obtained from the University of Kentucky, were selected because of their electrical and thermal conductivity and their small diameters. The purpose of these experiments was to determine the combination of thermal, electrical, and mechanical properties achievable while still maintaining melt processability. The PETI-330/MWCNT mixtures were prepared at concentrations ranging from 3 to 25 weight-percent of MWCNTs by dry mixing of the constituents in a ball mill using zirconia beads. The resulting powders were characterized for degree of mixing and thermal and rheological properties. The neat resin was found to have melt viscosity between 5 and 10 poise. At 280 C and a fixed strain rate, the viscosity was found to increase with time. At this temperature, the phenylethynyl groups do not readily react and so no significant curing of the resin occurred. For MWCNT-filled samples, melt viscosity was reasonably steady at 280 C and was greater in samples containing greater proportions of MWCNTs. The melt viscosity for 20 weightpercent of MWCNTs was found to be .28,000 poise, which is lower than the initial estimated allowable maximum value of 60,000 poise for injection molding. Hence, MWCNT loadings of as much as 20 percent were deemed to be suitable compositions for scale-up. High-resolution scanning electron microscopy (HRSEM) showed the MWCNTs to be well dispersed in the polymer matrices, while high-resolution transmission electron

  12. High temperature autoclave vacuum seals

    Science.gov (United States)

    Hoffman, J. R.; Simpson, W. G.; Walker, H. M.

    1971-01-01

    Aluminum sheet forms effective sealing film at temperatures up to 728 K. Soft aluminum wire rings provide positive seal between foil and platen. For applications at temperatures above aluminum's service temperature, stainless steel is used as film material and copper wire as sealant.

  13. High temperature incineration. Densification of granules from high temperature incineration

    International Nuclear Information System (INIS)

    Voorde, N. van de; Claes, J.; Taeymans, A.; Hennart, D.; Gijbels, J.; Balleux, W.; Geenen, G.; Vangeel, J.

    1982-01-01

    The incineration system of radioactive waste discussed in this report, is an ''integral'' system, which directly transforms a definite mixture of burnable and unburnable radioactive waste in a final product with a sufficient insolubility to be safely disposed of. At the same time, a significant volume reduction occurs by this treatment. The essential part of the system is a high temperature incinerator. The construction of this oven started in 1974, and while different tests with simulated inactive or very low-level active waste were carried out, the whole system was progressively and continuously extended and adapted, ending finally in an installation with completely remote control, enclosed in an alpha-tight room. In this report, a whole description of the plant and of its auxiliary installations will be given; then the already gained experimental results will be summarized. Finally, the planning for industrial operation will be briefly outlined. An extended test with radioactive waste, which was carried out in March 1981, will be discussed in the appendix

  14. High Temperature Solid Lubricant Coating for High Temperature Wear Applications

    Science.gov (United States)

    DellaCorte, Christopher (Inventor); Edmonds, Brian J (Inventor)

    2014-01-01

    A self-lubricating, friction and wear reducing composite useful over a wide temperature range is described herein. The composite includes metal bonded chromium oxide dispersed in a metal binder having a substantial amount of nickel. The composite contains a fluoride of at least one Group I, Group II, or rare earth metal, and optionally a low temperature lubricant metal.

  15. Thermometry of a high temperature high speed micro heater.

    Science.gov (United States)

    Xu, M; Slovin, G; Paramesh, J; Schlesinger, T E; Bain, J A

    2016-02-01

    A high temperature high-speed tungsten micro heater was fabricated and tested for application in phase change switches to indirectly heat and transform phase change material. Time domain transmissometry was used to measure heater temperature transients for given electrical inputs. Finite element modeling results on heater temperature transients show a good consistency between experiments and simulations with 0.2% mismatch in the best case and 13.1% in the worst case. The heater described in this work can reliably reach 1664 K at a rate of 1.67 × 10(10) K/s and quench to room temperature with a thermal RC time constant (time for T to fall by a factor of e) of less than 40 ns.

  16. Nitrogen metabolism in tambaqui (Colossoma macropomum), a neotropical model teleost: hypoxia, temperature, exercise, feeding, fasting, and high environmental ammonia.

    Science.gov (United States)

    Wood, Chris M; de Souza Netto, José Gadelha; Wilson, Jonathan M; Duarte, Rafael M; Val, Adalberto Luis

    2017-01-01

    The total rate of N-waste excretion (M N ) in juvenile tambaqui living in ion-poor Amazonian water comprised 85 % ammonia-N (M Amm-N ) and 15 % urea-N (M Urea-N ). Both occurred mainly across the gills with only ~5 % of M Amm-N and ~39 % of M Urea-N via the urine. Tambaqui were not especially tolerant to high environmental ammonia (HEA), despite their great resistance to other environmental factors. Nevertheless, they were able to maintain a continued elevation of M Amm-N during and after 48-h exposure to 2.5 mmol L -1 HEA. The normally negative transepithelial potential (-18 mV) increased to -9 mV during the HEA period, which would help to reduce branchial NH 4 + entry. During 3 h of acute environmental hypoxia (30 % saturation), M Amm-N declined, and recovered thereafter, similar to the response seen in other hypoxia-tolerant teleosts; M Urea-N did not change. However, during gradual hypoxia, M Amm-N remained constant, but M Urea-N eventually fell. The acute temperature sensitivities of M Amm-N and M N were low from 28 °C (acclimation) to 33 °C (Q10 ~1.5), but high (~3.8) from 33 to 38 °C, relative to [Formula: see text] (~1.9 throughout). In contrast, M Urea-N exhibited a different pattern over these temperature ranges (Q10 2.6 and 2.1, respectively). The nitrogen quotient (NQ = 0.16-0.23) was high at all temperatures, indicating a 60-85 % reliance on protein to fuel aerobic metabolism in these fasting animals. During steady-state aerobic exercise, [Formula: see text] and M Urea-N increased in parallel with velocity (up to 3.45 body lengths s -1 ), but M Amm (and thus M N ) remained approximately constant. Therefore, the NQ fell progressively, indicating a decreasing reliance on protein-based fuels, as work load increased. In group feeding trials using 45 % protein commercial pellets, tambaqui excreted 82 % (range 39-170 %) of the dietary N within 24 h; N-retention efficiency was inversely related to the ration voluntarily consumed. M

  17. 3D characterization and modeling of low cycle fatigue damage mechanisms at high temperature in a cast aluminum alloy

    International Nuclear Information System (INIS)

    Dezecot, Sebastien; Maurel, Vincent; Buffiere, Jean-Yves; Szmytka, Fabien; Koster, Alain

    2017-01-01

    Synchrotron X-ray tomography was used to monitor damage evolution in three dimensions during in situ Low Cycle Fatigue (LCF) tests at high temperature (250 °C) for an industrial material. The studied material is an AlSi7Cu3Mg aluminum alloy (close to ASTM A319) produced by Lost Foam Casting (LFC), a process which generates coarse microstructures but is nevertheless used for engine parts by the automotive industry. The volume analysis (3D images) has shown that cracks are extremely sensitive to microstructural features: coarse pores and hard particles of the eutectic regions are critical regarding respectively the main crack initiation and the crack growth. Finite Elements (FE) simulations, performed on meshes directly generated from 3D volumes and containing only pores, have revealed that mechanical fields also play a major role on the crack behavior. Initiation sites corresponded to areas of maximum inelastic strain while the crack path was globally correlated to high stress triaxiality and inelastic strain fields.

  18. Computational fluid dynamics analysis of an innovative start-up method of high temperature fuel cells using dynamic 3d model

    Directory of Open Access Journals (Sweden)

    Kupecki Jakub

    2017-03-01

    Full Text Available The article presents a numerical analysis of an innovative method for starting systems based on high temperature fuel cells. The possibility of preheating the fuel cell stacks from the cold state to the nominal working conditions encounters several limitations related to heat transfer and stability of materials. The lack of rapid and safe start-up methods limits the proliferation of MCFCs and SOFCs. For that reason, an innovative method was developed and verified using the numerical analysis presented in the paper. A dynamic 3D model was developed that enables thermo-fluidic investigations and determination of measures for shortening the preheating time of the high temperature fuel cell stacks. The model was implemented in ANSYS Fluent computational fluid dynamic (CFD software and was used for verification of the proposed start-up method. The SOFC was chosen as a reference fuel cell technology for the study. Results obtained from the study are presented and discussed.

  19. High-temperature thermocouples and related methods

    Science.gov (United States)

    Rempe, Joy L [Idaho Falls, ID; Knudson, Darrell L [Firth, ID; Condie, Keith G [Idaho Falls, ID; Wilkins, S Curt [Idaho Falls, ID

    2011-01-18

    A high-temperature thermocouple and methods for fabricating a thermocouple capable of long-term operation in high-temperature, hostile environments without significant signal degradation or shortened thermocouple lifetime due to heat induced brittleness.

  20. High Temperature Superconducting Underground Cable

    International Nuclear Information System (INIS)

    Farrell, Roger A.

    2010-01-01

    The purpose of this Project was to design, build, install and demonstrate the technical feasibility of an underground high temperature superconducting (HTS) power cable installed between two utility substations. In the first phase two HTS cables, 320 m and 30 m in length, were constructed using 1st generation BSCCO wire. The two 34.5 kV, 800 Arms, 48 MVA sections were connected together using a superconducting joint in an underground vault. In the second phase the 30 m BSCCO cable was replaced by one constructed with 2nd generation YBCO wire. 2nd generation wire is needed for commercialization because of inherent cost and performance benefits. Primary objectives of the Project were to build and operate an HTS cable system which demonstrates significant progress towards commercial progress and addresses real world utility concerns such as installation, maintenance, reliability and compatibility with the existing grid. Four key technical areas addressed were the HTS cable and terminations (where the cable connects to the grid), cryogenic refrigeration system, underground cable-to-cable joint (needed for replacement of cable sections) and cost-effective 2nd generation HTS wire. This was the worlds first installation and operation of an HTS cable underground, between two utility substations as well as the first to demonstrate a cable-to-cable joint, remote monitoring system and 2nd generation HTS.

  1. High Temperature Superconducting Underground Cable

    Energy Technology Data Exchange (ETDEWEB)

    Farrell, Roger, A.

    2010-02-28

    The purpose of this Project was to design, build, install and demonstrate the technical feasibility of an underground high temperature superconducting (HTS) power cable installed between two utility substations. In the first phase two HTS cables, 320 m and 30 m in length, were constructed using 1st generation BSCCO wire. The two 34.5 kV, 800 Arms, 48 MVA sections were connected together using a superconducting joint in an underground vault. In the second phase the 30 m BSCCO cable was replaced by one constructed with 2nd generation YBCO wire. 2nd generation wire is needed for commercialization because of inherent cost and performance benefits. Primary objectives of the Project were to build and operate an HTS cable system which demonstrates significant progress towards commercial progress and addresses real world utility concerns such as installation, maintenance, reliability and compatibility with the existing grid. Four key technical areas addressed were the HTS cable and terminations (where the cable connects to the grid), cryogenic refrigeration system, underground cable-to-cable joint (needed for replacement of cable sections) and cost-effective 2nd generation HTS wire. This was the world’s first installation and operation of an HTS cable underground, between two utility substations as well as the first to demonstrate a cable-to-cable joint, remote monitoring system and 2nd generation HTS.

  2. High temperature superconductivity and cold fusion

    International Nuclear Information System (INIS)

    Rabinowitz, M.

    1990-01-01

    There are numerous historical and scientific parallels between high temperature superconductivity (HTSC) and the newly emerging field of cold fusion (CF). Just as the charge carrier effective mass plays an important role in SC, the deuteron effective mass may play a vital role in CF. A new theory including effects of proximity, electron shielding, and decreased effective mass of the fusing nuclei can account for the reported CF results. A quantum-gas model that covers the range from low temperature to superhigh temperature SC indicates an increased T c with reduced dimensionality. A reduced dimensionality effect may also enhance CF. A relation is shown between CF and the significant cluster-impact fusion experiments

  3. Furan Occurrence in Starchy Food Model Systems Processed at High Temperatures: Effect of Ascorbic Acid and Heating Conditions

    DEFF Research Database (Denmark)

    Mariotti, María; Granby, Kit; Fromberg, Arvid

    2012-01-01

    Furan, a potential carcinogen, has been detected in highly consumed starchy foods, such as bread and snacks; however, research on furan generation in these food matrixes has not been undertaken, thus far. The present study explored the effect of ascorbic acid addition and cooking methods (frying...... and baking) over furan occurrence and its relation with the non-enzymatic browning in a wheat flour starchy food model system. Results showed that furan generation significantly increased in the presence of ascorbic acid after 7 min of heating (p

  4. (Krauss) at constant high temperatures

    African Journals Online (AJOL)

    the various physical and chemical factors that may affect freshwater snails. However, it is generally accepted that temperature is one of the most important enviromental factors which can, amongst others, determine the geo- graphical distribution of organisms (Stuckenberg 1969). In order to assess the effect of temperature ...

  5. High Temperature Chemistry at NASA: Hot Topics

    Science.gov (United States)

    Jacobson, Nathan S.

    2014-01-01

    High Temperature issues in aircraft engines Hot section: Ni and Co based Superalloys Oxidation and Corrosion (Durability) at high temperatures. Thermal protection system (TPS) and RCC (Reinforced Carbon-Carbon) on the Space Shuttle Orbiter. High temperatures in other worlds: Planets close to their stars.

  6. High temperature vapors science and technology

    CERN Document Server

    Hastie, John

    2012-01-01

    High Temperature Vapors: Science and Technology focuses on the relationship of the basic science of high-temperature vapors to some areas of discernible practical importance in modern science and technology. The major high-temperature problem areas selected for discussion include chemical vapor transport and deposition; the vapor phase aspects of corrosion, combustion, and energy systems; and extraterrestrial high-temperature species. This book is comprised of seven chapters and begins with an introduction to the nature of the high-temperature vapor state, the scope and literature of high-temp

  7. Modelling water temperature in TOXSWA

    NARCIS (Netherlands)

    Jacobs, C.M.J.; Deneer, J.W.; Adriaanse, P.I.

    2010-01-01

    A reasonably accurate estimate of the water temperature is necessary for a good description of the degradation of plant protection products in water which is used in the surface water model TOXSWA. Based on a consideration of basic physical processes that describe the influence of weather on the

  8. Modeling the Effects of Cu Content and Deformation Variables on the High-Temperature Flow Behavior of Dilute Al-Fe-Si Alloys Using an Artificial Neural Network.

    Science.gov (United States)

    Shakiba, Mohammad; Parson, Nick; Chen, X-Grant

    2016-06-30

    The hot deformation behavior of Al-0.12Fe-0.1Si alloys with varied amounts of Cu (0.002-0.31 wt %) was investigated by uniaxial compression tests conducted at different temperatures (400 °C-550 °C) and strain rates (0.01-10 s -1 ). The results demonstrated that flow stress decreased with increasing deformation temperature and decreasing strain rate, while flow stress increased with increasing Cu content for all deformation conditions studied due to the solute drag effect. Based on the experimental data, an artificial neural network (ANN) model was developed to study the relationship between chemical composition, deformation variables and high-temperature flow behavior. A three-layer feed-forward back-propagation artificial neural network with 20 neurons in a hidden layer was established in this study. The input parameters were Cu content, temperature, strain rate and strain, while the flow stress was the output. The performance of the proposed model was evaluated using the K-fold cross-validation method. The results showed excellent generalization capability of the developed model. Sensitivity analysis indicated that the strain rate is the most important parameter, while the Cu content exhibited a modest but significant influence on the flow stress.

  9. Thermodynamic Temperatures of High-Temperature Fixed Points: Uncertainties Due to Temperature Drop and Emissivity

    Science.gov (United States)

    Castro, P.; Machin, G.; Bloembergen, P.; Lowe, D.; Whittam, A.

    2014-07-01

    This study forms part of the European Metrology Research Programme project implementing the New Kelvin to assign thermodynamic temperatures to a selected set of high-temperature fixed points (HTFPs), Cu, Co-C, Pt-C, and Re-C. A realistic thermal model of these HTFPs, developed in finite volume software ANSYS FLUENT, was constructed to quantify the uncertainty associated with the temperature drop across the back wall of the cell. In addition, the widely applied software package, STEEP3 was used to investigate the influence of cell emissivity. The temperature drop, , relates to the temperature difference due to the net loss of heat from the aperture of the cavity between the back wall of the cavity, viewed by the thermometer, defining the radiance temperature, and the solid-liquid interface of the alloy, defining the transition temperature of the HTFP. The actual value of can be used either as a correction (with associated uncertainty) to thermodynamic temperature evaluations of HTFPs, or as an uncertainty contribution to the overall estimated uncertainty. In addition, the effect of a range of furnace temperature profiles on the temperature drop was calculated and found to be negligible for Cu, Co-C, and Pt-C and small only for Re-C. The effective isothermal emissivity is calculated over the wavelength range from 450 nm to 850 nm for different assumed values of surface emissivity. Even when furnace temperature profiles are taken into account, the estimated emissivities change only slightly from the effective isothermal emissivity of the bare cell. These emissivity calculations are used to estimate the uncertainty in the temperature assignment due to the uncertainty in the emissivity of the blackbody.

  10. New methods for modeling stream temperature using high resolution LiDAR, solar radiation analysis and flow accumulated values

    Science.gov (United States)

    In-stream temperature directly effects a variety of biotic organisms, communities and processes. Changes in stream temperature can render formally suitable habitat unsuitable for aquatic organisms, particularly native cold water species that are not able to adjust. In order to an...

  11. A 3D heat conduction model for block-type high temperature reactors and its implementation into the code DYN3D

    International Nuclear Information System (INIS)

    Baier, Silvio; Kliem, Soeren; Rohde, Ulrich

    2011-01-01

    The gas-cooled high temperature reactor is a concept to produce energy at high temperatures with a high level of inherent safety. It gets special attraction due to e.g. high thermal efficiency and the possibility of hydrogen production. In addition to the PBMR (Pebble Bed Modular Reactor) the (V)HTR (Very high temperature reactor) concept has been established. The basic design of a prismatic HTR consists of the following elements. The fuel is coated with four layers of isotropic materials. These so-called TRISO particles are dispersed into compacts which are placed in a graphite block matrix. The graphite matrix additionally contains holes for the coolant gas. A one-dimensional model is sufficient to describe (the radial) heat transfer in LWRs. But temperature gradients in a prismatic HTR can occur in axial as well as in radial direction, since regions with different heat source release and with different coolant temperature heat up are coupled through the graphite matrix elements. Furthermore heat transfer into reflector elements is possible. DYN3D is a code system for coupled neutron and thermal hydraulics core calculations developed at the Helmholtzzentrum Dresden-Rossendorf. Concerning neutronics DYN3D consists of a two-group and multi-group diffusion approach based on nodal expansion methods. Furthermore a 1D thermal-hydraulics model for parallel coolant flow channels is included. The DYN3D code was extensively verified and validated via numerous numerical and experimental benchmark problems. That includes the NEA CRP benchmarks for PWR and BWR, the Three-Miles-Island-1 main steam line break and the Peach Bottom Turbine Trip benchmarks, as well as measurements carried out in an original-size VVER-1000 mock-up. An overview of the verification and validation activities can be found. Presently a DYN3D-HTR version is under development. It involves a 3D heat conduction model to deal with higher-(than one)-dimensional effects of heat transfer and heat conduction in

  12. High temperature turbine engine structure

    Energy Technology Data Exchange (ETDEWEB)

    Carruthers, W.D.; Boyd, G.L.

    1993-07-20

    A hybrid ceramic/metallic gas turbine is described comprising; a housing defining an inlet, an outlet, and a flow path communicating the inlet with the outlet for conveying a flow of fluid through the housing, a rotor member journaled by the housing in the flow path, the rotor member including a compressor rotor portion rotatively inducting ambient air via the inlet and delivering this air pressurized to the flow path downstream of the compressor rotor, a combustor disposed in the flow path downstream of the compressor receiving the pressurized air along with a supply of fuel to maintain combustion providing a flow of high temperature pressurized combustion products in the flow path downstream thereof, the rotor member including a turbine rotor portion disposed in the flow path downstream of the combustor and rotatively expanding the combustion products toward ambient for flow from the turbine engine via the outlet, the turbine rotor portion providing shaft power driving the compressor rotor portion and an output shaft portion of the rotor member, a disk-like metallic housing portion journaling the rotor member to define a rotational axis therefore, and a disk-like annular ceramic turbine shroud member bounding the flow path downstream of the combustor and circumscribing the turbine rotor portion to define a running clearance therewith, the disk-like ceramic turbine shroud member having a reference axis coaxial with the rotational axis and being spaced axially from the metallic housing portion in mutually parallel concentric relation therewith and a plurality of spacers disposed between ceramic disk-like shroud member and the metallic disk-like housing portion and circumferentially spaced apart, each of the spacers having a first and second end portion having an end surface adjacent the shroud member and the housing portion respectively, the end surfaces having a cylindrical curvature extending transversely relative to the shroud member and the housing portion.

  13. Magnetic Ordering in Layered High Temperature Superconductors

    OpenAIRE

    Sergeeva, G. G.

    1999-01-01

    We discuss the scenario of two-step magnetic ordering in layered high temperature superconductors after charge ordering. As the temperature decreases, the transition from 3D Heisenberg spin behavior to 2D XY coupling of the Cu spins occurs at Berezinskii-Kosterlitz-Thouless temperature in dielectric stripes. Further temperature decreasing leads to the 3D spin glass transition.

  14. Thermoelastic properties of minerals at high temperature

    Indian Academy of Sciences (India)

    obtained when δT is temperature-dependent are in close agreement with experimental data. ... temperature-independent and then by taking δT as temperature-dependent. 2. Method of analysis. The anharmonicity of the lattice vibration is generally due to thermal ... At high temperature, to understand the elastic behaviour.

  15. DURIP95/Ultra High Precision Diagnostic High Temperature Laboratory

    National Research Council Canada - National Science Library

    Newaz, Golam M

    1997-01-01

    The DURIP grant was used to develop an efficient high temperature laboratory with high precision instruments to make deformation and load measurements in high temperature materials including advanced composites...

  16. Final Report for Project 13-4791: New Mechanistic Models of Creep-Fatigue Crack Growth Interactions for Advanced High Temperature Reactor Components

    Energy Technology Data Exchange (ETDEWEB)

    Kruzic, Jamie J [Oregon State Univ., Corvallis, OR (United States); Univ. of New South Wales, Sydney, NSW (Australia); Siegmund, Thomas [Purdue Univ., West Lafayette, IN (United States); Tomar, Vikas

    2018-03-20

    This project developed and validated a novel, multi-scale, mechanism-based model to quantitatively predict creep-fatigue crack growth and failure for Ni-based Alloy 617 at 800°C. Alloy 617 is a target material for intermediate heat exchangers in Generation IV very high temperature reactor designs, and it is envisioned that this model will aid in the design of safe, long lasting nuclear power plants. The technical effectiveness of the model was shown by demonstrating that experimentally observed crack growth rates can be predicted under both steady state and overload crack growth conditions. Feasibility was considered by incorporating our model into a commercially available finite element method code, ABAQUS, that is commonly used by design engineers. While the focus of the project was specifically on an alloy targeted for Generation IV nuclear reactors, the benefits to the public are expected to be wide reaching. Indeed, creep-fatigue failure is a design consideration for a wide range of high temperature mechanical systems that rely on Ni-based alloys, including industrial gas power turbines, advanced ultra-super critical steam turbines, and aerospace turbine engines. It is envisioned that this new model can be adapted to a wide range of engineering applications.

  17. High temperature measurement of water vapor absorption

    Science.gov (United States)

    Keefer, Dennis; Lewis, J. W. L.; Eskridge, Richard

    1985-01-01

    An investigation was undertaken to measure the absorption coefficient, at a wavelength of 10.6 microns, for mixtures of water vapor and a diluent gas at high temperature and pressure. The experimental concept was to create the desired conditions of temperature and pressure in a laser absorption wave, similar to that which would be created in a laser propulsion system. A simplified numerical model was developed to predict the characteristics of the absorption wave and to estimate the laser intensity threshold for initiation. A non-intrusive method for temperature measurement utilizing optical laser-beam deflection (OLD) and optical spark breakdown produced by an excimer laser, was thoroughly investigated and found suitable for the non-equilibrium conditions expected in the wave. Experiments were performed to verify the temperature measurement technique, to screen possible materials for surface initiation of the laser absorption wave and to attempt to initiate an absorption wave using the 1.5 kW carbon dioxide laser. The OLD technique was proven for air and for argon, but spark breakdown could not be produced in helium. It was not possible to initiate a laser absorption wave in mixtures of water and helium or water and argon using the 1.5 kW laser, a result which was consistent with the model prediction.

  18. High temperature superconducting fault current limiter

    Science.gov (United States)

    Hull, John R.

    1997-01-01

    A fault current limiter (10) for an electrical circuit (14). The fault current limiter (10) includes a high temperature superconductor (12) in the electrical circuit (14). The high temperature superconductor (12) is cooled below its critical temperature to maintain the superconducting electrical properties during operation as the fault current limiter (10).

  19. Thermodynamics of High Temperature Plasmas

    Directory of Open Access Journals (Sweden)

    Ettore Minardi

    2009-03-01

    Full Text Available In this work we discuss how and to what extent the thermodynamic concepts and the thermodynamic formalism can be extended to the description of high temperature states of the plasma not necessarily associated with a Boltzmann distribution and with thermal equilibrium.The discussion is based on the “magnetic or electrostatic entropy concept”, an interpretative and predictive tool based on probability and information, defined in a suitably coarse-grained possibility space of all current density or of all electric charge density distributions under testable constraints, and whose variation properties are proven to be related under certain conditions to the equilibrium and the stability of the system. In the case of magnetic equilibrium the potentiality of the magnetic entropy concept is illustrated by comparing the predictions of the current density and pressure profiles with the observations in different tokamak machines and different tokamak regimes, as well as by showing how the equilibrium and the stability in devices as different as the reversed field pinch or the magnetic well are described by the variation properties of the same entropy functional applied to the different situations. In fact it emerges that the maximum of the entropy can be seen in these different cases as an optimization constraint for the minimum of the magnetic energy. The application of the entropy concept to the electrostatic processes shows in particular that the so-called reactive instabilities (non-dissipative, non-resonant instabilities with a marginal point admit a neighboring state with higher entropy and are therefore of special relevance from the point of view of the physical evolution of the system. In this case the thermodynamic formalism allows the introduction of the concept of “thermodynamic fluctuations” of the macroscopic charge density and provides a method for the calculation of the “thermodynamic” fluctuation levels both on the stable as

  20. Development of a structure-dependent material model for complex, high-temperature environments and stresses. Example: turbine blades, turbine discs

    International Nuclear Information System (INIS)

    Schubert, F.

    1988-01-01

    For the optimum use of new high-temperature superalloys for turbine discs and blades, it is necessary to develop new design concepts which, on the one hand, permit a quantitative allocation of the structural characteristics to the deformation behaviour and damage mechanisms and, on the other hand, take into account the real course of stress. It is planned to use PM-Udinet 700 as material for turbine discs and IN 738 LC with supplementary tests of IN 100 for turbine blades. For turbine discs, a probabilistic model is developed, for turbine blades, cooled at the interior, first a deterministic model is developed and then a probabilistic model is prepared. The concept for the development of the models is dealt with in detail. The project started in April 1987, therefore only first investigation results can be reported. (orig.) [de

  1. Resonance integral calculations for high temperature reactors

    International Nuclear Information System (INIS)

    Blake, J.P.H.

    1960-02-01

    Methods of calculation of resonance integrals of finite dilution and temperature are given for both, homogeneous and heterogeneous geometries, together with results obtained from these methods as applied to the design of high temperature reactors. (author)

  2. Hot nuclei: high temperatures, high angular momenta

    International Nuclear Information System (INIS)

    Guerreau, D.

    1991-01-01

    A review is made of the present status concerning the production of hot nuclei above 5 MeV temperature, concentrating mainly on the possible experimental evidences for the attainment of a critical temperature, on the existence of dynamical limitations to the energy deposition and on the experimental signatures for the formation of hot spinning nuclei. The data strongly suggest a nuclear disassembly in collisions involving very heavy ions at moderate incident velocities. Furthermore, hot nuclei seem to be quite stable against rotation on a short time scale. (author) 26 refs.; 12 figs

  3. Deep Trek High Temperature Electronics Project

    Energy Technology Data Exchange (ETDEWEB)

    Bruce Ohme

    2007-07-31

    This report summarizes technical progress achieved during the cooperative research agreement between Honeywell and U.S. Department of Energy to develop high-temperature electronics. Objects of this development included Silicon-on-Insulator (SOI) wafer process development for high temperature, supporting design tools and libraries, and high temperature integrated circuit component development including FPGA, EEPROM, high-resolution A-to-D converter, and a precision amplifier.

  4. High-pressure and high-temperature physical properties of half-metallic full-Heusler alloy Mn{sub 2}RuSi by first-principles and quasi-harmonic Debye model

    Energy Technology Data Exchange (ETDEWEB)

    Song, Ting [State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050 (China); School of Mathematics and Physics, Lanzhou Jiaotong University, Lanzhou 730070 (China); Ma, Qin, E-mail: maqin_lut@yeah.net [State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050 (China); Sun, Xiao-Wei [School of Mathematics and Physics, Lanzhou Jiaotong University, Lanzhou 730070 (China); Liu, Zi-Jiang [School of Mathematics and Physics, Lanzhou Jiaotong University, Lanzhou 730070 (China); Department of Physics, Lanzhou City University, Lanzhou 730070 (China); Wei, Xiao-Ping [School of Mathematics and Physics, Lanzhou Jiaotong University, Lanzhou 730070 (China); Tian, Jun-Hong [School of Mathematics and Physics, Lanzhou Jiaotong University, Lanzhou 730070 (China); Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065 (China)

    2017-02-15

    First-principles calculations based on density functional theory and quasi-harmonic Debye model are used to investigate the high-pressure and high-temperature physical properties, including the lattice constant, magnetic moment, density of states, pressure-volume-temperature relationship, bulk modulus, thermal expansivity, heat capacity, and Grüneisen parameter for the new Mn-based full-Heusler alloy Mn{sub 2}RuSi in CuHg{sub 2}Ti-type structure. The optimized equilibrium lattice constant is consistent with experimental and other theoretical results. The calculated total spin magnetic moment remains an integral value of 2.0 μ{sub B} in the lattice constant range of 5.454–5.758 Å, and then decreases very slowly with the decrease of lattice constant to 5.333 Å. By the spin resolved density of states calculations, we have shown that Mn{sub 2}RuSi compound presents half-metallic ferrimagnetic properties under the equilibrium lattice constant. The effects of temperature and pressure on bulk modulus, thermal expansivity, heat capacity, and Grüneisen parameter are opposite, which are consistent with a compression rate of volume. Furthermore, the results show that the effect of temperature is larger than pressure for heat capacity and the effect of high temperature and pressure on thermal expansion coefficient is small. All the properties of Mn{sub 2}RuSi alloy are summarized in the pressure range of 0–100 GPa and the temperature up to 1200 K. - Highlights: • High-pressure and high-temperature physical properties of Mn2RuSi were investigated. • Ferrimagnetic ground state has been confirmed in Mn2RuSi alloy. • The first-principle calculations and quasi-harmonic Debye model were used. • The pressure up to 100 GPa and the temperature up to 1200 K.

  5. High temperature alloys and ceramic heat exchanger

    International Nuclear Information System (INIS)

    Okamoto, Masaharu

    1984-04-01

    From the standpoint of energy saving, the future operating temperatures of process heat and gas turbine plants will become higher. For this purpose, ceramics is the most promissing candidate material in strength for application to high-temperature heat exchangers. This report deals with a servey of characteristics of several high-temperature metallic materials and ceramics as temperature-resistant materials; including a servey of the state-of-the-art of ceramic heat exchanger technologies developed outside of Japan, and a study of their application to the intermediate heat exchanger of VHTR (a very-high-temperature gas-cooled reactor). (author)

  6. Finite Element Modelling of the effect of tool rake angle on tool temperature and cutting force during high speed machining of AISI 4340 steel

    Science.gov (United States)

    Sulaiman, S.; Roshan, A.; Ariffin, M. K. A.

    2013-12-01

    In this paper, a Finite Element Method (FEM) based on the ABAQUS explicit software which involves Johnson-Cook material model was used to simulate cutting force and tool temperature during high speed machining (HSM) of AISI 4340 steel. In this simulation work, a tool rake angle ranging from 0° to 20° and a range of cutting speeds between 300 to 550 m/min was investigated. The purpose of this simulation analysis was to find optimum tool rake angle where cutting force is smallest as well as tool temperature is lowest during high speed machining. It was found that cutting forces to have a decreasing trend as rake angle increased to positive direction. The optimum rake angle observed between 10° and 18° due to decrease of cutting force as 20% for all simulated cutting speeds. In addition, increasing cutting tool rake angle over its optimum value had negative influence on tool's performance and led to an increase in cutting temperature. The results give a better understanding and recognition of the cutting tool design for high speed machining processes.

  7. High temperature durable catalyst development

    Science.gov (United States)

    Snow, G. C.; Tong, H.

    1981-01-01

    A program has been carried out to develop a catalytic reactor capable of operation in environments representative of those anticipated for advanced automotive gas turbine engines. A reactor consisting of a graded cell honeycomb support with a combination of noble metal and metal oxide catalyst coatings was built and successfully operated for 1000 hr. At an air preheat temperature of 740 K and a propane/air ratio of 0.028 by mass, the adiabatic flame temperature was held at about 1700 K. The graded cell monolithic reaction measured 5 cm in diameter by 10.2 cm in length and was operated at a reference velocity of 14.0 m/s at 1 atm. Measured NOx levels remained below 5 ppm, while unburned hydrocarbon concentrations registered near zero and carbon monoxide levels were nominally below 20 ppm.

  8. Experimental needs of high temperature concrete

    International Nuclear Information System (INIS)

    Chern, J.C.; Marchertas, A.H.

    1985-01-01

    The needs of experimental data on concrete structures under high temperature, ranging up to about 370 0 C for operating reactor conditions and to about 900 0 C and beyond for hypothetical accident conditions, are described. This information is required to supplement analytical methods which are being implemented into the finite element code TEMP-STRESS to treat reinforced concrete structures. Recommended research ranges from material properties of reinforced/prestressed concrete, direct testing of analytical models used in the computer codes, to investigations of certain aspects of concrete behavior, the phenomenology of which is not well understood. 10 refs

  9. High-density genetic map and identification of QTLs for responses to temperature and salinity stresses in the model brown alga Ectocarpus

    Science.gov (United States)

    Avia, Komlan; Coelho, Susana M.; Montecinos, Gabriel J.; Cormier, Alexandre; Lerck, Fiona; Mauger, Stéphane; Faugeron, Sylvain; Valero, Myriam; Cock, J. Mark; Boudry, Pierre

    2017-01-01

    Deciphering the genetic architecture of adaptation of brown algae to environmental stresses such as temperature and salinity is of evolutionary as well as of practical interest. The filamentous brown alga Ectocarpus sp. is a model for the brown algae and its genome has been sequenced. As sessile organisms, brown algae need to be capable of resisting the various abiotic stressors that act in the intertidal zone (e.g. osmotic pressure, temperature, salinity, UV radiation) and previous studies have shown that an important proportion of the expressed genes is regulated in response to hyposaline, hypersaline or oxidative stress conditions. Using the double digest RAD sequencing method, we constructed a dense genetic map with 3,588 SNP markers and identified 39 QTLs for growth-related traits and their plasticity under different temperature and salinity conditions (tolerance to high temperature and low salinity). GO enrichment tests within QTL intervals highlighted membrane transport processes such as ion transporters. Our study represents a significant step towards deciphering the genetic basis of adaptation of Ectocarpus sp. to stress conditions and provides a substantial resource to the increasing list of tools generated for the species. PMID:28256542

  10. Phase diagrams of high temperature and high density QCD

    International Nuclear Information System (INIS)

    Fukushima, Kenji

    2012-01-01

    It is extremely difficult to solve QCD non-perturbatively in general, but at very high temperature and pressure perturbative calculation becomes possible to a certain extent, and it is possible to find out the nontrivial vacuum structure more or less. It is not necessarily a dream anymore at present to investigate the phase structure from the QCD itself, but it is rather general to discuss the phase transitions and the phase structures on the basis of effective models haring the global symmetry in common. It is indispensable to understand the QCD calculations to know the applicability of the models, since various experience obtained in the study of the perturbative calculations are reflected there. At first the finite temperature field theory is introduced. The calculation of grand distribution function Z is described in detail. Then finite temperature Yang-Mills theory is taken up. Finally finite temperature quark effect is studied. Within the limited space of the present note farther descriptions are spared. But it is necessary to go further by constructing the Polyakov loop potential to describe the extended Weiss potentials non-perturbatively for the proper deconfined phase transitions. And it is necessary to assume the setup of the model to break the chiral symmetry spontaneously and so on. (S. Funahashi)

  11. Development of rate-dependent thermoplastic constitutive models for numerical analysis of ceramics at high-temperature

    OpenAIRE

    Penasa, Massimo

    2017-01-01

    Three constitutive models for the mechanical description of the behavior of ceramic materials are developed, implemented into a numerical code, calibrated on experimental data, and validated. - The first model is elastic-plastic and addresses the cold compaction of ceramic powders, combining nonlinear elasticity, elasto-plastic coupling and increase of cohesion. - The second model is thermal-viscous-elastic-plastic and is specifically tailored to describe the thermo-mechanical behavior ...

  12. Can current crop models be used in the phenotyping era for predicting the genetic variability of yield of plants subjected to drought or high temperature?

    Science.gov (United States)

    Parent, Boris; Tardieu, François

    2014-11-01

    A crop model with genetic inputs can potentially simulate yield for a large range of genotypes, sites, and years, thereby indicating where and when a given combination of alleles confers a positive effect. We discuss to what extent current crop models, developed for predicting the effects of climate or cultivation techniques on a reference genotype, are adequate for ranking yields of a large number of genotypes in climatic scenarios with water deficit or high temperatures. We compare here the algorithms involved in 19 crop models. Marked differences exist in the representation of the combined effects of temperature and water deficit on plant development, and in the coordination of these effects with biomass production. The current literature suggests that these differences have a small impact on the yield prediction of a reference genotype because errors on the effects of different traits compensate each other. We propose that they have a larger impact if the crop model is used in a genetic context, because the model has to account for the genetic variability of studied traits. Models with explicit genetic inputs will be increasingly feasible because model parameters corresponding to each genotype can now be measured in phenotyping platforms for large plant collections. This will in turn allow prediction of parameter values from the allelic composition of genotypes. It is therefore timely to adapt crop models to this new context to simulate the allelic effects in present or future climatic scenarios with water or heat stresses. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  13. High Temperature Capacitors for Venus Exploration Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In this SBIR program, TRS Technologies has developed several new dielectrics for high temperature applications including signal conditioning, filtering and energy...

  14. High Temperature Superconducting Inductor for Antenna Matching

    National Research Council Canada - National Science Library

    Cadotte, R

    1998-01-01

    .... Towards this goal, the U.S. Army Research Laboratory is developing a high critical temperature superconducting spiral inductor and cryogenically cooled amplifier to demonstrate increased sensitivity...

  15. High temperature phase equilibria and phase diagrams

    CERN Document Server

    Kuo, Chu-Kun; Yan, Dong-Sheng

    2013-01-01

    High temperature phase equilibria studies play an increasingly important role in materials science and engineering. It is especially significant in the research into the properties of the material and the ways in which they can be improved. This is achieved by observing equilibrium and by examining the phase relationships at high temperature. The study of high temperature phase diagrams of nonmetallic systems began in the early 1900s when silica and mineral systems containing silica were focussed upon. Since then technical ceramics emerged and more emphasis has been placed on high temperature

  16. Advances in high temperature chemistry 1

    CERN Document Server

    Eyring, Leroy

    2013-01-01

    Advances in High Temperature Chemistry, Volume 1 describes the complexities and special and changing characteristics of high temperature chemistry. After providing a brief definition of high temperature chemistry, this nine-chapter book goes on describing the experiments and calculations of diatomic transition metal molecules, as well as the advances in applied wave mechanics that may contribute to an understanding of the bonding, structure, and spectra of the molecules of high temperature interest. The next chapter provides a summary of gaseous ternary compounds of the alkali metals used in

  17. Dynamics of ordering in highly degenerate models with anisotropic grain-boundary potential: Effects of temperature and vortex formation

    DEFF Research Database (Denmark)

    Jeppesen, Claus; Flyvbjerg, Henrik; Mouritsen, Ole G.

    1989-01-01

    -boundary potential on triangular lattices—essentially clock models, except that the potential is not a cosine, but a sine function of the angle between neighboring grain orientations. For not too small Q, these models display two thermally driven phase transitions, one which takes the system from a low...

  18. Improving the temperature predictions of subsurface thermal models by using high-quality input data. Part 1: Uncertainty analysis of the thermal-conductivity parameterization

    DEFF Research Database (Denmark)

    Fuchs, Sven; Balling, Niels

    2016-01-01

    The subsurface temperature field and the geothermal conditions in sedimentary basins are frequently examined by using numerical thermal models. For those models, detailed knowledge of rock thermal properties are paramount for a reliable parameterization of layer properties and boundary conditions...

  19. Investigations into High Temperature Components and Packaging

    Energy Technology Data Exchange (ETDEWEB)

    Marlino, L.D.; Seiber, L.E.; Scudiere, M.B.; M.S. Chinthavali, M.S.; McCluskey, F.P.

    2007-12-31

    The purpose of this report is to document the work that was performed at the Oak Ridge National Laboratory (ORNL) in support of the development of high temperature power electronics and components with monies remaining from the Semikron High Temperature Inverter Project managed by the National Energy Technology Laboratory (NETL). High temperature electronic components are needed to allow inverters to operate in more extreme operating conditions as required in advanced traction drive applications. The trend to try to eliminate secondary cooling loops and utilize the internal combustion (IC) cooling system, which operates with approximately 105 C water/ethylene glycol coolant at the output of the radiator, is necessary to further reduce vehicle costs and weight. The activity documented in this report includes development and testing of high temperature components, activities in support of high temperature testing, an assessment of several component packaging methods, and how elevated operating temperatures would impact their reliability. This report is organized with testing of new high temperature capacitors in Section 2 and testing of new 150 C junction temperature trench insulated gate bipolar transistor (IGBTs) in Section 3. Section 4 addresses some operational OPAL-GT information, which was necessary for developing module level tests. Section 5 summarizes calibration of equipment needed for the high temperature testing. Section 6 details some additional work that was funded on silicon carbide (SiC) device testing for high temperature use, and Section 7 is the complete text of a report funded from this effort summarizing packaging methods and their reliability issues for use in high temperature power electronics. Components were tested to evaluate the performance characteristics of the component at different operating temperatures. The temperature of the component is determined by the ambient temperature (i.e., temperature surrounding the device) plus the

  20. Nuclear fuels for very high temperature applications

    International Nuclear Information System (INIS)

    Lundberg, L.B.; Hobbins, R.R.

    1992-01-01

    The success of the development of nuclear thermal propulsion devices and thermionic space nuclear power generation systems depends on the successful utilization of nuclear fuel materials at temperatures in the range 2000 to 3500 K. Problems associated with the utilization of uranium bearing fuel materials at these very high temperatures while maintaining them in the solid state for the required operating times are addressed. The critical issues addressed include evaporation, melting, reactor neutron spectrum, high temperature chemical stability, fabrication, fission induced swelling, fission product release, high temperature creep, thermal shock resistance, and fuel density, both mass and fissile atom. Candidate fuel materials for this temperature range are based on UO 2 or uranium carbides. Evaporation suppression, such as a sealed cladding, is required for either fuel base. Nuclear performance data needed for design are sparse for all candidate fuel forms in this temperature range, especially at the higher temperatures

  1. Modeling Temperature and Pricing Weather Derivatives Based on Temperature

    Directory of Open Access Journals (Sweden)

    Birhan Taştan

    2017-01-01

    Full Text Available This study first proposes a temperature model to calculate the temperature indices upon which temperature-based derivatives are written. The model is designed as a mean-reverting process driven by a Levy process to represent jumps and other features of temperature. Temperature indices are mainly measured as deviations from a base temperature, and, hence, the proposed model includes jumps because they may constitute an important part of this deviation for some locations. The estimated value of a temperature index and its distribution in this model apply an inversion formula to the temperature model. Second, this study develops a pricing process over calculated index values, which returns a customized price for temperature-based derivatives considering that temperature has unique effects on every economic entity. This personalized price is also used to reveal the trading behavior of a hypothesized entity in a temperature-based derivative trade with profit maximization as the objective. Thus, this study presents a new method that does not need to evaluate the risk-aversion behavior of any economic entity.

  2. Aspects of high temperature superconductivity

    International Nuclear Information System (INIS)

    Deutscher, G.

    1989-01-01

    We present some remarks on special features that distinguish the phenomenology of the new high T c oxides from that of the conventional superconductors. They include a measurable width of the critical region and a high sensitivity to crystallographic defects. A consistent Landau Ginsburg interpretation is possible, with a short coherence length <15 A and a penetration depth <900 A. The latter is somewhat smaller than the currently accepted value, and implies a broad band scheme

  3. Short steel and concrete columns under high temperatures

    Directory of Open Access Journals (Sweden)

    A. E. P. G. A. Jacintho

    Full Text Available The growing demand for knowledge about the effect of high temperatures on structures has stimulated increasing research worldwide. This article presents experimental results for short composite steel and concrete columns subjected to high temperatures in ovens with or without an axial compression load, numerically analyzes the temperature distribution in these columns after 30 and 60 minutes and compares them with experimental results. The models consist of concrete-filled tubes of three different thicknesses and two different diameters, and the concrete fill has conventional properties that remained constant for all of the models. The stress-strain behavior of the composite columns was altered after exposure to high temperatures relative to the same columns at room temperature, which was most evident in the 60-minute tests due to the higher temperatures reached. The computational analysis adopted temperature rise curves that were obtained experimentally.

  4. Model-based Approach for Long-term Creep Curves of Alloy 617 for a High Temperature Gas-cooled Reactor

    International Nuclear Information System (INIS)

    Kim, Woo Gon; Yin, Song Nan; Kim, Yong Wan

    2008-01-01

    Alloy 617 is a principal candidate alloy for the high temperature gas-cooled reactor (HTGR) components, because of its high creep rupture strength coupled with its good corrosion behavior in simulated HTGR-helium and its sufficient workability. To describe a creep strain-time curve well, various constitutive equations have been proposed by Kachanov-Rabotnov, Andrade, Garofalo, Evans and Maruyama, et al.. Among them, the K-R model has been used frequently, because a secondary creep resulting from a balance between a softening and a hardening of materials and a tertiary creep resulting from an appearance and acceleration of the internal or external damage processes are adequately considered. In the case of nickel-base alloys, it has been reported that a tertiary creep at a low strain range may be generated, and this tertiary stage may govern the total creep deformation. Therefore, a creep curve for nickel-based Alloy 617 will be predicted appropriately by using the K-R model that can reflect a tertiary creep. In this paper, the long-term creep curves for Alloy 617 were predicted by using the nonlinear least square fitting (NLSF) method in the K-R model. The modified K-R model was introduced to fit the full creep curves well. The values for the λ and K parameters in the modified K-R model were obtained with stresses

  5. Fusion blanket high-temperature heat transfer

    International Nuclear Information System (INIS)

    Fillo, J.A.

    1983-01-01

    Deep penetration of 14 MeV neutrons makes two-temperature region blankets feasible. A relatively low-temperature (approx. 300 0 C) metallic structure is the vacuum/coolant pressure boundary, while the interior of the blanket, which is a simple packed bed of nonstructural material, operates at very high temperatures (>1000 0 C). The water-cooled shell structure is thermally insulated from the steam-cooled interior. High-temperature steam can dramatically increase the efficiency of electric power generation, as well as produce hydrogen and oxygen-based synthetic fuels at high-efficiency

  6. Neutron diffraction under high pressure and high temperature

    International Nuclear Information System (INIS)

    Komatsu, Kazuki

    2010-01-01

    Neutron diffraction study under high pressure and high temperature is reviewed from the technical point of view. Particularly, cell assembly for the high-PT neutron diffraction using a Paris-Edinburgh cell with the temperature calibration by neutron resonance spectroscopy is introduced. Notes on the errors relevant to high pressure and high temperature experiments in both monochromatic angle dispersive and time-of-flight methods are also discussed. (author)

  7. Fast pyrolysis of biomass at high temperatures

    DEFF Research Database (Denmark)

    Trubetskaya, Anna

    on the electron energy loss spectroscopy (EELS) analysis. In contrast to expectations of graphitic structures to react slower than amorphous samples, beechwood andwheat straw soot were 35 and 571 times more reactive than pinewood soot prepared at 1400°C.The presence of potassium in wheat straw soot mainly...... pyrolysis at high temperatures plays a significant role in the overall combustion process since the biomass type, the reaction kinetics and heat transfer rates during pyrolysis influence the volatile gas release. The solid residue yield and its properties in suspension firing, including particle size...... that potassium has a dominating effect on the soot reactivity compared to nanostructure and particle size. A mathematical model of biomass fast pyrolysis was developed to predict the gas and char yield of wood and herbaceous biomass at heating rates > 600K s-1. The model includes both kinetics and external...

  8. High Temperature Rechargeable Battery Development, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This small business innovation research is intended to develop and proof the concept of a highly efficient, high temperature rechargeable battery for supporting...

  9. High Temperature Electrostrictive Ceramics, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — TRS Technologies proposes to develop high temperature electrostrictors from bismuth-based ferroelectrics. These materials will exhibit high strain and low loss in...

  10. High Temperature Stirling Cooler, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Although Honeybee and others have made huge advances in developing mechanisms, motors, and electronics for use in high temperature/high pressure environments such as...

  11. High temperature stability of materials and structures

    International Nuclear Information System (INIS)

    Solomin, N.V.

    1980-01-01

    The problems of high temperature resistance of materials under the effect of mechanic and thermomechanic stresses are considered as well as the resistance of elements of constructions to high temperature inelastic deformation under loading. New experimental data on material properties are presented, the original technique for calculating inelastic deformation of particular bodies is presented [ru

  12. Thermomechanics of composite structures under high temperatures

    CERN Document Server

    Dimitrienko, Yu I

    2016-01-01

    This pioneering book presents new models for the thermomechanical behavior of composite materials and structures taking into account internal physico-chemical transformations such as thermodecomposition, sublimation and melting at high temperatures (up to 3000 K). It is of great importance for the design of new thermostable materials and for the investigation of reliability and fire safety of composite structures. It also supports the investigation of interaction of composites with laser irradiation and the design of heat-shield systems. Structural methods are presented for calculating the effective mechanical and thermal properties of matrices, fibres and unidirectional, reinforced by dispersed particles and textile composites, in terms of properties of their constituent phases. Useful calculation methods are developed for characteristics such as the rate of thermomechanical erosion of composites under high-speed flow and the heat deformation of composites with account of chemical shrinkage. The author expan...

  13. High temperature solar selective coatings

    Science.gov (United States)

    Kennedy, Cheryl E

    2014-11-25

    Improved solar collectors (40) comprising glass tubing (42) attached to bellows (44) by airtight seals (56) enclose solar absorber tubes (50) inside an annular evacuated space (54. The exterior surfaces of the solar absorber tubes (50) are coated with improved solar selective coatings {48} which provide higher absorbance, lower emittance and resistance to atmospheric oxidation at elevated temperatures. The coatings are multilayered structures comprising solar absorbent layers (26) applied to the meta surface of the absorber tubes (50), typically stainless steel, topped with antireflective Savers (28) comprising at least two layers 30, 32) of refractory metal or metalloid oxides (such as titania and silica) with substantially differing indices of refraction in adjacent layers. Optionally, at least one layer of a noble metal such as platinum can be included between some of the layers. The absorbent layers cars include cermet materials comprising particles of metal compounds is a matrix, which can contain oxides of refractory metals or metalloids such as silicon. Reflective layers within the coating layers can comprise refractory metal silicides and related compounds characterized by the formulas TiSi. Ti.sub.3SiC.sub.2, TiAlSi, TiAN and similar compounds for Zr and Hf. The titania can be characterized by the formulas TiO.sub.2, Ti.sub.3O.sub.5. TiOx or TiO.sub.xN.sub.1-x with x 0 to 1. The silica can be at least one of SiO.sub.2, SiO.sub.2x or SiO.sub.2xN.sub.1-x with x=0 to 1.

  14. Mathematical modelling of powder material motion and transportation in high-temperature flow core during plasma coatings application

    Science.gov (United States)

    Bogdanovich, V. I.; Giorbelidze, M. G.

    2018-03-01

    A problem of mathematical modelling of powder material motion and transportation in gas thermal flow core has been addressed. Undertaken studies indicate significant impact on dynamics of motion of sprayed particles of phenomenological law for drag coefficient and accounting momentum loss of a plasma jet upon acceleration of these particles and their diameter. It is determined that at great dispersion of spraying particles, they reach detail surface at different velocity and significant particles separation takes place at spraying spot. According to the results of mathematical modelling, requirements for admissible dispersion of diameters of particles used for spraying have been formulated. Research has also allowed reducing separation of particles at the spraying spot due to the selection of the method of powder feed to the anode channel of the plasma torch.

  15. Some trends in constitutive equation model development for high-temperature behavior of fast-reactor structural alloys

    International Nuclear Information System (INIS)

    Pugh, C.E.; Robinson, D.N.

    1977-01-01

    The paper addresses some important features of the inelastic behavior of 2 1 / 4 Cr--1Mo steel and indicates a mathematical framework that is capable of representing these types of response. While the constitutive model discussed embraces capabilities beyond those of equations presently used in design analyses; their implementation into practicable analysis methods (such as finite-element programs) is more demanding. For example, in the case of slow time-dependent deformations, the equations governing accumulation of the inelastic strain components and the evolution of the tensorial state variable α are intimately coupled. A part of recommending any such model for use in design must be a quantitative assessment of the economic feasibility of implementation

  16. The Analysis and Modeling of Phase Stability and Multiphase Designs in High Temperature Refractory Metal-Silicon-Boron Alloys

    Science.gov (United States)

    2009-01-27

    the BCC crystal structure, the T: structure also maintains a relatively high coordination number (CN) of metal-metal atomic contacts to retain a...Franceschi, E. A.; Ricaldone, F. Revue de Chimie Minerale 1984, 21, 202. [84SKR] Skriver, H. L. The LMTO Method; Springer: Berlin, 1984. [85FU] Fu

  17. Recrystallization of high temperature superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Kouzoudis, Dimitris [Iowa State Univ., Ames, IA (United States)

    1996-05-09

    Currently one of the most widely used high Tc superconductors is the Bi-based compounds Bi2Sr2CaCu2Oz and Bi2Sr2Ca2Cu3Oz (known as BSCCO 2212 and 2223 compounds) with Tc values of about 85 K and 110 K respectively. Lengths of high performance conductors ranging from 100 to 1000 m long are routinely fabricated and some test magnets have been wound. An additional difficulty here is that although Bi-2212 and Bi-2223 phases exist over a wide range of stoichiometries, neither has been prepared in phase-pure form. So far the most successful method of constructing reliable and robust wires or tapes is the so called powder-in-tube (PIT) technique [1, 2, 3, 4, 5, 6, 7] in which oxide powder of the appropriate stoichiometry and phase content is placed inside a metal tube, deformed into the desired geometry (round wire or flat tape), and annealed to produce the desired superconducting properties. Intermediate anneals are often incorporated between successive deformation steps. Silver is the metal used in this process because it is the most compatible with the reacting phase. In all of the commercial processes for BSCCO, Ag seems to play a special catalytic role promoting the growth of high performance aligned grains that grow in the first few micrometers near the Ag/BSCCO interface. Adjacent to the Ag, the grain alignment is more perfect and the current density is higher than in the center of the tape. It is known that Ag lowers the melting point of several of the phases but the detailed mechanism for growth of these high performance grains is not clearly understood. The purpose of this work is to study the nucleation and growth of the high performance material at this interface.

  18. Assessment of microelectronics packaging for high temperature, high reliability applications

    Energy Technology Data Exchange (ETDEWEB)

    Uribe, F.

    1997-04-01

    This report details characterization and development activities in electronic packaging for high temperature applications. This project was conducted through a Department of Energy sponsored Cooperative Research and Development Agreement between Sandia National Laboratories and General Motors. Even though the target application of this collaborative effort is an automotive electronic throttle control system which would be located in the engine compartment, results of this work are directly applicable to Sandia`s national security mission. The component count associated with the throttle control dictates the use of high density packaging not offered by conventional surface mount. An enabling packaging technology was selected and thermal models defined which characterized the thermal and mechanical response of the throttle control module. These models were used to optimize thick film multichip module design, characterize the thermal signatures of the electronic components inside the module, and to determine the temperature field and resulting thermal stresses under conditions that may be encountered during the operational life of the throttle control module. Because the need to use unpackaged devices limits the level of testing that can be performed either at the wafer level or as individual dice, an approach to assure a high level of reliability of the unpackaged components was formulated. Component assembly and interconnect technologies were also evaluated and characterized for high temperature applications. Electrical, mechanical and chemical characterizations of enabling die and component attach technologies were performed. Additionally, studies were conducted to assess the performance and reliability of gold and aluminum wire bonding to thick film conductor inks. Kinetic models were developed and validated to estimate wire bond reliability.

  19. Turbulent Flow past High Temperature Surfaces

    Science.gov (United States)

    Mehmedagic, Igbal; Thangam, Siva; Carlucci, Pasquale; Buckley, Liam; Carlucci, Donald

    2014-11-01

    Flow over high-temperature surfaces subject to wall heating is analyzed with applications to projectile design. In this study, computations are performed using an anisotropic Reynolds-stress model to study flow past surfaces that are subject to radiative flux. The model utilizes a phenomenological treatment of the energy spectrum and diffusivities of momentum and heat to include the effects of wall heat transfer and radiative exchange. The radiative transport is modeled using Eddington approximation including the weighted effect of nongrayness of the fluid. The time-averaged equations of motion and energy are solved using the modeled form of transport equations for the turbulence kinetic energy and the scalar form of turbulence dissipation with an efficient finite-volume algorithm. The model is applied for available test cases to validate its predictive capabilities for capturing the effects of wall heat transfer. Computational results are compared with experimental data available in the literature. Applications involving the design of projectiles are summarized. Funded in part by U.S. Army, ARDEC.

  20. Correlation Models for Temperature Fields

    KAUST Repository

    North, Gerald R.

    2011-05-16

    This paper presents derivations of some analytical forms for spatial correlations of evolving random fields governed by a white-noise-driven damped diffusion equation that is the analog of autoregressive order 1 in time and autoregressive order 2 in space. The study considers the two-dimensional plane and the surface of a sphere, both of which have been studied before, but here time is introduced to the problem. Such models have a finite characteristic length (roughly the separation at which the autocorrelation falls to 1/e) and a relaxation time scale. In particular, the characteristic length of a particular temporal Fourier component of the field increases to a finite value as the frequency of the particular component decreases. Some near-analytical formulas are provided for the results. A potential application is to the correlation structure of surface temperature fields and to the estimation of large area averages, depending on how the original datastream is filtered into a distribution of Fourier frequencies (e.g., moving average, low pass, or narrow band). The form of the governing equation is just that of the simple energy balance climate models, which have a long history in climate studies. The physical motivation provided by the derivation from a climate model provides some heuristic appeal to the approach and suggests extensions of the work to nonuniform cases.

  1. Sandia_HighTemperatureComponentEvaluation_2015

    Energy Technology Data Exchange (ETDEWEB)

    Cashion, Avery T. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-03-01

    The objective of this project is to perform independent evaluation of high temperature components to determine their suitability for use in high temperature geothermal tools. Development of high temperature components has been increasing rapidly due to demand from the high temperature oil and gas exploration and aerospace industries. Many of these new components are at the late prototype or first production stage of development and could benefit from third party evaluation of functionality and lifetime at elevated temperatures. In addition to independent testing of new components, this project recognizes that there is a paucity of commercial-off-the-shelf COTS components rated for geothermal temperatures. As such, high-temperature circuit designers often must dedicate considerable time and resources to determine if a component exists that they may be able to knead performance out of to meet their requirements. This project aids tool developers by characterization of select COTS component performances beyond published temperature specifications. The process for selecting components includes public announcements of project intent (e.g., FedBizOps), direct discussions with candidate manufacturers,and coordination with other DOE funded programs.

  2. Improving the temperature predictions of subsurface thermal models by using high-quality input data. Part 2: A case study from the Danish-German border region

    DEFF Research Database (Denmark)

    Fuchs, Sven; Balling, Niels

    2016-01-01

    generate significant variations in model heat flow and large variations in temperature gradients. With regard to the utilization of geothermal energy, the Rhaetian and the Middle Buntsandstein sandstone reservoirs are found with temperatures within the range of 40–80 °C, suitable for low enthalpy heating...

  3. High-temperature mass spectrometric study and modeling of thermodynamic properties of binary glass-forming systems containing Bi2O3.

    Science.gov (United States)

    Stolyarova, V L; Shilov, A L; Lopatin, S I; Shugurov, S M

    2014-04-15

    Binary glass-forming systems containing bismuth(III) oxide, especially the Bi2O3-SiO2 system, are of great importance in modern materials science: preparation of thin films, fiber optics, potential solar converters, and radiation shields in nuclear physics. Information on vaporization processes and thermodynamic properties obtained in the present study and the results of modeling of this system will be useful for optimization of the synthesis and applications of Bi2O3-containing materials at high temperatures. High-temperature Knudsen effusion mass spectrometry was used to study the vaporization processes and to determine the partial pressures of components of the Bi2O3-SiO2 system. Measurements were performed with a MS-1301 mass spectrometer. Vaporization was carried out using two iridium-plated molybdenum effusion cells containing the sample under study and pure bismuth(III) oxide (reference substance). Modeling of the thermodynamic properties and structure of glasses and melts in the Bi2O3-SiO2 and Bi2O3-B2O3 systems was performed using a modified approach based on the generalized lattice theory of associated solutions (GLTAS). At a temperature of 1000 K, Bi and O2 were found to be the main vapor species over the samples studied. The Bi2O3 activity as a function of composition of the Bi2O3-SiO2 system was obtained from the measured partial pressures of the vapor species. The thermodynamic properties of mixing from oxides in this system were calculated. The advantages of GLTAS for modeling of glasses and melts in the binary systems containing Bi2O3 were demonstrated. The thermodynamic functions of mixing in glasses and melts of the Bi2O3-SiO2 system determined at 1000 K in the present study, as well as in the Bi2O3-B2O3 system, demonstrated negative deviations from ideality. Modeling of the obtained experimental data using GLTAS allowed a correlation to be found between the thermodynamic properties and the relative number of bonds of various types formed in

  4. High temperature thermometric phosphors for use in a temperature sensor

    Science.gov (United States)

    Allison, Stephen W.; Cates, Michael R.; Boatner, Lynn A.; Gillies, George T.

    1998-01-01

    A high temperature phosphor consists essentially of a material having the general formula LuPO.sub.4 :Dy.sub.(x),Eu.sub.(y), wherein: 0.1 wt %.ltoreq.x.ltoreq.20 wt % and 0.1 wt %.ltoreq.y.ltoreq.20 wt %. The high temperature phosphor is in contact with an article whose temperature is to be determined. The article having the phosphor in contact with it is placed in the environment for which the temperature of the article is to be determined. The phosphor is excited by a laser causing the phosphor to fluoresce. The emission from the phosphor is optically focused into a beam-splitting mirror which separates the emission into two separate emissions, the emission caused by the dysprosium dopant and the emission caused by the europium dopent. The separated emissions are optically filtered and the intensities of the emission are detected and measured. The ratio of the intensity of each emission is determined and the temperature of the article is calculated from the ratio of the intensities of the separate emissions.

  5. Aeronautical applications of high-temperature superconductors

    Science.gov (United States)

    Turney, George E.; Luidens, Roger W.; Uherka, Kenneth; Hull, John

    1989-01-01

    The successful development of high-temperature superconductors (HTS) could have a major impact on future aeronautical propulsion and aeronautical flight vehicle systems. A preliminary examination of the potential application of HTS for aeronautics indicates that significant benefits may be realized through the development and implementation of these newly discovered materials. Applications of high-temperature superconductors (currently substantiated at 95 k) were envisioned for several classes of aeronautical systems, including subsonic and supersonic transports, hypersonic aircraft, V/STOL aircraft, rotorcraft, and solar, microwave and laser powered aircraft. Introduced and described are the particular applications and potential benefits of high-temperature superconductors as related to aeronautics and/or aeronautical systems.

  6. High temperature solid state storage cell

    Science.gov (United States)

    Rea, Jesse R.; Kallianidis, Milton; Kelsey, G. Stephen

    1983-01-01

    A completely solid state high temperature storage cell comprised of a solid rechargeable cathode such as TiS.sub.2, a solid electrolyte which remains solid at the high temperature operating conditions of the cell and which exhibits high ionic conductivity at such elevated temperatures such as an electrolyte comprised of lithium iodide, and a solid lithium or other alkali metal alloy anode (such as a lithium-silicon alloy) with 5-50% by weight of said anode being comprised of said solid electrolyte.

  7. Symposium on high temperature and materials chemistry

    International Nuclear Information System (INIS)

    1989-10-01

    This volume contains the written proceedings of the Symposium on High Temperature and Materials Chemistry held in Berkeley, California on October 24--25, 1989. The Symposium was sponsored by the Materials and Chemical Sciences Division of Lawrence Berkeley Laboratory and by the College of Chemistry of the University of California at Berkeley to discuss directions, trends, and accomplishments in the field of high temperature and materials chemistry. Its purpose was to provide a snapshot of high temperature and materials chemistry and, in so doing, to define status and directions

  8. Symposium on high temperature and materials chemistry

    Energy Technology Data Exchange (ETDEWEB)

    1989-10-01

    This volume contains the written proceedings of the Symposium on High Temperature and Materials Chemistry held in Berkeley, California on October 24--25, 1989. The Symposium was sponsored by the Materials and Chemical Sciences Division of Lawrence Berkeley Laboratory and by the College of Chemistry of the University of California at Berkeley to discuss directions, trends, and accomplishments in the field of high temperature and materials chemistry. Its purpose was to provide a snapshot of high temperature and materials chemistry and, in so doing, to define status and directions.

  9. Silicon Carbide Nanotube Oxidation at High Temperatures

    Science.gov (United States)

    Ahlborg, Nadia; Zhu, Dongming

    2012-01-01

    Silicon Carbide Nanotubes (SiCNTs) have high mechanical strength and also have many potential functional applications. In this study, SiCNTs were investigated for use in strengthening high temperature silicate and oxide materials for high performance ceramic nanocomposites and environmental barrier coating bond coats. The high · temperature oxidation behavior of the nanotubes was of particular interest. The SiCNTs were synthesized by a direct reactive conversion process of multiwall carbon nanotubes and silicon at high temperature. Thermogravimetric analysis (TGA) was used to study the oxidation kinetics of SiCNTs at temperatures ranging from 800degC to1300degC. The specific oxidation mechanisms were also investigated.

  10. High-temperature materials and structural ceramics

    International Nuclear Information System (INIS)

    1990-01-01

    This report gives a survey of research work in the area of high-temperature materials and structural ceramics of the KFA (Juelich Nuclear Research Center). The following topics are treated: (1) For energy facilities: ODS materials for gas turbine blades and heat exchangers; assessment of the remaining life of main steam pipes, material characterization and material stress limits for First-Wall components; metallic and graphitic materials for high-temperature reactors. (2) For process engineering plants: composites for reformer tubes and cracking tubes; ceramic/ceramic joints and metal/ceramic and metal/metal joints; Composites and alloys for rolling bearing and sliding systems up to application temperatures of 1000deg C; high-temperature corrosion of metal and ceramic material; porous ceramic high-temperature filters and moulding coat-mix techniques; electrically conducting ceramic material (superconductors, fuel cells, solid electrolytes); high-temperature light sources (high-temperature chemistry); oil vapor engines with caramic components; ODS materials for components in diesel engines and vehicle gas turbines. (MM) [de

  11. High temperature ceramic/metal joint structure

    Science.gov (United States)

    Boyd, Gary L. (Inventor)

    1991-01-01

    A high temperature turbine engine includes a hybrid ceramic/metallic rotor member having ceramic/metal joint structure. The disclosed joint is able to endure higher temperatures than previously possible, and aids in controlling heat transfer in the rotor member.

  12. High temperatures influence sexual development differentially in ...

    Indian Academy of Sciences (India)

    Samadhan Krushna Phuge

    2017-06-20

    Jun 20, 2017 ... These results suggest that high temperature probably acts through stress hormones and favours the small-sized sex. Keywords. Euphlyctis cyanophlyctis; gonadal development; metamorphosis; sex ratio; temperature-dependent sex determination. 1. Introduction. The process of gonadal sex determination ...

  13. Technology development for high temperature logging tools

    Energy Technology Data Exchange (ETDEWEB)

    Veneruso, A.F.; Coquat, J.A.

    1979-01-01

    A set of prototype, high temperature logging tools (temperature, pressure and flow) were tested successfully to temperatures up to 275/sup 0/C in a Union geothermal well during November 1978 as part of the Geothermal Logging Instrumentation Development Program. This program is being conducted by Sandia Laboratories for the Department of Energy's Division of Geothermal Energy. The progress and plans of this industry based program to develop and apply the high temperature instrumentation technology needed to make reliable geothermal borehole measurements are described. Specifically, this program is upgrading existing sondes for improved high temperature performance, as well as applying new materials (elastomers, polymers, metals and ceramics) and developing component technology such as high temperature cables, cableheads and electronics to make borehole measurements such as formation temperature, flow rate, high resolution pressure and fracture mapping. In order to satisfy critical existing needs, the near term goal is for operation up to 275/sup 0/C and 7000 psi by the end of FY80. The long term goal is for operation up to 350/sup 0/C and 20,000 psi by the end of FY84.

  14. Low Temperature Heating and High Temperature Cooling in Buildings

    DEFF Research Database (Denmark)

    Kazanci, Ongun Berk

    , a holistic system evaluation is necessary to ensure an optimal indoor environment for the occupants and to achieve energy efficiency simultaneously. Low temperature heating and high temperature cooling systems are one of the possible approaches to heat or cool indoor spaces in buildings. In this thesis...... were monitored for one year while different control strategies were tested. Theoretical analyses consisted of comparing the performance of different heating and cooling systems using energy, exergy, and entransy methods under steady-state conditions. Dynamic simulations were used to study the energy...... performance of heating and cooling systems for achieving the same thermal indoor environment. The results show that it is crucial to minimize the heating and cooling demands in the design phase since these demands determine the terminal units and heat sources and sinks that could be used. Low temperature...

  15. Thermodynamics and Transport Phenomena in High Temperature Steam Electrolysis Cells

    Energy Technology Data Exchange (ETDEWEB)

    James E. O' Brien

    2012-03-01

    Hydrogen can be produced from water splitting with relatively high efficiency using high temperature electrolysis. This technology makes use of solid-oxide cells, running in the electrolysis mode to produce hydrogen from steam, while consuming electricity and high temperature process heat. The overall thermal-to-hydrogen efficiency for high temperature electrolysis can be as high as 50%, which is about double the overall efficiency of conventional low-temperature electrolysis. Current large-scale hydrogen production is based almost exclusively on steam reforming of methane, a method that consumes a precious fossil fuel while emitting carbon dioxide to the atmosphere. An overview of high temperature electrolysis technology will be presented, including basic thermodynamics, experimental methods, heat and mass transfer phenomena, and computational fluid dynamics modeling.

  16. High Temperature Superconductor Bolometers for Planetary Science

    Data.gov (United States)

    National Aeronautics and Space Administration — This work is a design study of an instrument optimized for JPL's novel high temperature superconductor bolometers. The work involves designing an imaging...

  17. Ion Based High-Temperature Pressure Sensor

    National Research Council Canada - National Science Library

    Zdenek, Jeffrey S; Anthenien, Ralph A

    2004-01-01

    .... The environment encountered in such engines necessitates high temperature and durable (vibration resistant) devices. Traditional pressure sensors can be used, however thermal insulating materials must be used to protect the diaphragm...

  18. High Temperature Bell Motor, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The National Research Council (NRC) has identified the need for motors and actuators that can operate in extreme high and low temperature environments as a technical...

  19. Panel report on high temperature ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Nolet, T C [ed.

    1979-01-01

    Fundamental research is reported concerning high temperature ceramics for application in turbines, engines, batteries, gasifiers, MHD, fuel cells, heat exchangers, and hot wall combustors. Ceramics microstructure and behavior are included. (FS)

  20. Novel High Temperature Strain Gauge, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced high-temperature sensor technology and bonding methods are of great interests in designing and developing advanced future aircraft. Current state-of-the-art...

  1. Corrosion Inhibition in High Temperature Environment

    Science.gov (United States)

    1993-06-28

    nickel-based or 20 cobalt -based superalloys , or with ferric oxide from high 21 temperature steels, to produce spalling metal vanadates. 22 Similar hot...metallic 5 superalloy Rene 80, or a ceramic, such as silicon nitride or 6 silicon carbide . Rene 80 is a nickel-based superalloy used for gas 7 turbine... superalloys to form 9 nonprotective NaAlO 2 which causes catastrophic hot corrosion. High 10 temperature chromium-containing metals which rely on chromia

  2. High temperature superconductors and other superfluids

    CERN Document Server

    Alexandrov, A S

    2017-01-01

    Written by eminent researchers in the field, this text describes the theory of superconductivity and superfluidity starting from liquid helium and a charged Bose-gas. It also discusses the modern bipolaron theory of strongly coupled superconductors, which explains the basic physical properties of high-temperature superconductors. This book will be of interest to fourth year graduate and postgraduate students, specialist libraries, information centres and chemists working in high-temperature superconductivity.

  3. PLA recycling by hydrolysis at high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Cristina, Annesini Maria; Rosaria, Augelletti; Sara, Frattari, E-mail: sara.frattari@uniroma1.it; Fausto, Gironi [Department of Chemical Engineering Materials Environment, University of Rome “La Sapienza”, Via Eudossiana 18– 00184 Roma (Italy)

    2016-05-18

    In this work the process of PLA hydrolysis at high temperature was studied, in order to evaluate the possibility of chemical recycling of this polymer bio-based. In particular, the possibility to obtain the monomer of lactic acid from PLA degradation was investigated. The results of some preliminary tests, performed in a laboratory batch reactor at high temperature, are presented: the experimental results show that the complete degradation of PLA can be obtained in relatively low reaction times.

  4. Effect of microstructure on the high temperature strength of nitride ...

    Indian Academy of Sciences (India)

    Unknown

    chrome, Model No. Autoscan 60, USA). Existence of phases (α-, β-Si3N4, SiO2, etc) were determined by XRD technique. Both room temperature and high temperature. MOR were determined by 4-point loading in a bending ... Properties of nitride bonded SiC composite materials. Density (g/cm3). Open porosity Mean pore.

  5. High temperature crystalline superconductors from crystallized glasses

    Science.gov (United States)

    Shi, Donglu

    1992-01-01

    A method of preparing a high temperature superconductor from an amorphous phase. The method involves preparing a starting material of a composition of Bi.sub.2 Sr.sub.2 Ca.sub.3 Cu.sub.4 Ox or Bi.sub.2 Sr.sub.2 Ca.sub.4 Cu.sub.5 Ox, forming an amorphous phase of the composition and heat treating the amorphous phase for particular time and temperature ranges to achieve a single phase high temperature superconductor.

  6. An improved oxygen diffusion model to explain the effect of low-temperature baking on high field losses in niobium superconducting cavities

    Energy Technology Data Exchange (ETDEWEB)

    Ciovati, Gianluigi

    2006-07-01

    Radio-frequency (RF) superconducting cavities made of high purity niobium are widely used to accelerate charged particle beams in particle accelerators. The major limitation to achieve RF field values approaching the theoretical limit for niobium is represented by ''anomalous'' losses which degrade the quality factor of the cavities starting at peak surface magnetic fields of about 100 mT, in absence of field emission. These high field losses are often referred to as ''Q-drop''. It has been observed that the Q-drop is drastically reduced by baking the cavities at 120 C for about 48 h under ultrahigh vacuum. An improved oxygen diffusion model for the niobium-oxide system is proposed to explain the benefit of the low-temperature baking on the Q-drop in niobium superconducting rf cavities. The model shows that baking at 120 C for 48 h allows oxygen to diffuse away from the surface, and therefore increasing the lower critical field towards the value for pure niobium.

  7. Multiscale Modeling of Ultra High Temperature Ceramics (UHTC) ZrB2 and HfB2: Application to Lattice Thermal Conductivity

    Science.gov (United States)

    Lawson, John W.; Daw, Murray S.; Squire, Thomas H.; Bauschlicher, Charles W.

    2012-01-01

    We are developing a multiscale framework in computational modeling for the ultra high temperature ceramics (UHTC) ZrB2 and HfB2. These materials are characterized by high melting point, good strength, and reasonable oxidation resistance. They are candidate materials for a number of applications in extreme environments including sharp leading edges of hypersonic aircraft. In particular, we used a combination of ab initio methods, atomistic simulations and continuum computations to obtain insights into fundamental properties of these materials. Ab initio methods were used to compute basic structural, mechanical and thermal properties. From these results, a database was constructed to fit a Tersoff style interatomic potential suitable for atomistic simulations. These potentials were used to evaluate the lattice thermal conductivity of single crystals and the thermal resistance of simple grain boundaries. Finite element method (FEM) computations using atomistic results as inputs were performed with meshes constructed on SEM images thereby modeling the realistic microstructure. These continuum computations showed the reduction in thermal conductivity due to the grain boundary network.

  8. Melt processed high-temperature superconductors

    CERN Document Server

    1993-01-01

    The achievement of large critical currents is critical to the applications of high-temperature superconductors. Recent developments have shown that melt processing is suitable for producing high J c oxide superconductors. Using magnetic forces between such high J c oxide superconductors and magnets, a person could be levitated.This book has grown largely out of research works on melt processing of high-temperature superconductors conducted at ISTEC Superconductivity Research Laboratory. The chapters build on melt processing, microstructural characterization, fundamentals of flux pinning, criti

  9. High-temperature granulites and supercontinents

    Directory of Open Access Journals (Sweden)

    J.L.R. Touret

    2016-01-01

    Full Text Available The formation of continents involves a combination of magmatic and metamorphic processes. These processes become indistinguishable at the crust-mantle interface, where the pressure-temperature (P-T conditions of (ultra high-temperature granulites and magmatic rocks are similar. Continents grow laterally, by magmatic activity above oceanic subduction zones (high-pressure metamorphic setting, and vertically by accumulation of mantle-derived magmas at the base of the crust (high-temperature metamorphic setting. Both events are separated from each other in time; the vertical accretion postdating lateral growth by several tens of millions of years. Fluid inclusion data indicate that during the high-temperature metamorphic episode the granulite lower crust is invaded by large amounts of low H2O-activity fluids including high-density CO2 and concentrated saline solutions (brines. These fluids are expelled from the lower crust to higher crustal levels at the end of the high-grade metamorphic event. The final amalgamation of supercontinents corresponds to episodes of ultra-high temperature metamorphism involving large-scale accumulation of these low-water activity fluids in the lower crust. This accumulation causes tectonic instability, which together with the heat input from the sub-continental lithospheric mantle, leads to the disruption of supercontinents. Thus, the fragmentation of a supercontinent is already programmed at the time of its amalgamation.

  10. High temperature effects on compact-like structures

    Energy Technology Data Exchange (ETDEWEB)

    Bazeia, D.; Lima, E.E.M.; Losano, L. [Universidade Federal da Paraiba, Departamento de Fisica, Joao Pessoa, PB (Brazil)

    2016-08-15

    In this work we investigate the transition from kinks to compactons at high temperatures. We deal with a family of models, described by a real scalar field with standard kinematics, controlled by a single parameter, real and positive. The family of models supports kink-like solutions, and the solutions tend to become compact when the parameter increases to larger and larger values. We study the one-loop corrections at finite temperature, to see how the thermal effects add to the effective potential. The results suggest that the symmetry is restored at very high temperatures. (orig.)

  11. Modeling shoot-tip temperature in the greenhouse environment

    International Nuclear Information System (INIS)

    Faust, J.E.; Heins, R.D.

    1998-01-01

    An energy-balance model is described that predicts vinca (Catharanthus roseus L.) shoot-tip temperature using four environmental measurements: solar radiation and dry bulb, wet bulb, and glazing material temperature. The time and magnitude of the differences between shoot-tip and air temperature were determined in greenhouses maintained at air temperatures of 15, 20, 25, 30, or 35 °C. At night, shoot-tip temperature was always below air temperature. Shoot-tip temperature decreased from 0.5 to 5 °C below air temperature as greenhouse glass temperature decreased from 2 to 15 °C below air temperature. During the photoperiod under low vapor-pressure deficit (VPD) and low air temperature, shoot-tip temperature increased ≈4 °C as solar radiation increased from 0 to 600 W·m -2 . Under high VPD and high air temperature, shoot-tip temperature initially decreased 1 to 2 °C at sunrise, then increased later in the morning as solar radiation increased. The model predicted shoot-tip temperatures within ±1 °C of 81% of the observed 1-hour average shoot-tip temperatures. The model was used to simulate shoot-tip temperatures under different VPD, solar radiation, and air temperatures. Since the rate of leaf and flower development are influenced by the temperature of the meristematic tissues, a model of shoot-tip temperature will be a valuable tool to predict plant development in greenhouses and to control the greenhouse environment based on a plant temperature setpoint. (author)

  12. An integrated model of tritium transport and corrosion in Fluoride Salt-Cooled High-Temperature Reactors (FHRs) – Part I: Theory and benchmarking

    Energy Technology Data Exchange (ETDEWEB)

    Stempien, John D., E-mail: john.stempien@inl.gov; Ballinger, Ronald G., E-mail: hvymet@mit.edu; Forsberg, Charles W., E-mail: cforsber@mit.edu

    2016-12-15

    Highlights: • A model was developed for use with FHRs and benchmarked with experimental data. • Model results match results of tritium diffusion experiments. • Corrosion simulations show reasonable agreement with molten salt loop experiments. • This is the only existing model of tritium transport and corrosion in FHRs. • Model enables proposing and evaluating tritium control options in FHRs. - Abstract: The Fluoride Salt-Cooled High-Temperature Reactor (FHR) is a pebble bed nuclear reactor concept cooled by a liquid fluoride salt known as “flibe” ({sup 7}LiF-BeF{sub 2}). A model of TRITium Diffusion EvolutioN and Transport (TRIDENT) was developed for use with FHRs and benchmarked with experimental data. TRIDENT is the first model to integrate the effects of tritium production in the salt via neutron transmutation, with the effects of the chemical redox potential, tritium mass transfer, tritium diffusion through pipe walls, tritium uptake by graphite, selective chromium attack by tritium fluoride, and corrosion product mass transfer. While data from a forced-convection polythermal loop of molten salt containing tritium did not exist for comparison, TRIDENT calculations were compared to data from static salt diffusion tests in flibe and flinak (0.465LiF-0.115NaF-0.42KF) salts. In each case, TRIDENT matched the transient and steady-state behavior of these tritium diffusion experiments. The corrosion model in TRIDENT was compared against the natural convection flow-loop experiments at the Oak Ridge National Laboratory (ORNL) from the 1960s and early 1970s which used Molten Salt Reactor Experiment (MSRE) fuel-salt containing UF{sub 4}. Despite the lack of data required by TRIDENT for modeling the loops, some reasonable results were obtained. The TRIDENT corrosion rates follow the experimentally observed dependence on the square root of the product of the chromium solid-state diffusion coefficient with time. Additionally the TRIDENT model predicts mass

  13. High-temperature spreading kinetics of metals

    Energy Technology Data Exchange (ETDEWEB)

    Rauch, N.

    2005-05-15

    In this PhD work a drop transfer setup combined with high speed photography has been used to analyze the spreading of Ag on polished polycrystalline Mo and single crystalline Mo (110) and (100) substrates. The objective of this work was to unveil the basic phenomena controlling spreading in metal-metal systems. The observed spreading kinetics were compared with current theories of low and high temperature spreading such as a molecular kinetic model and a fluid flow model. Analyses of the data reveal that the molecular model does describe the fastest velocity data well for all the investigated systems. Therefore, the energy which is dissipated during the spreading process is a dissipation at the triple line rather than dissipation due to the viscosity in the liquid. A comparison of the determined free activation energy for wetting of {delta}G95{approx}145kJ/mol with literature values allows the statement that the rate determining step seems to be a surface diffusion of the Ag atoms along the triple line. In order to investigate possible ridge formation, due to local atomic diffusion of atoms of the substrate at the triple during the spreading process, grooving experiments of the polycrystalline Mo were performed to calculate the surface diffusities that will control ridge evolution. The analyses of this work showed that a ridge formation at the fastest reported wetting velocities was not possible if there is no initial perturbation for a ridge. If there was an initial perturbation for a ridge the ridge had to be much smaller than 1 nm in order to be able to move with the liquid font. Therefore ridge formation does not influence the spreading kinetics for the studied system and the chosen conditions. SEM, AFM and TEM investigations of the triple line showed that ridge formation does also not occur at the end of the wetting experiment when the drop is close to equilibrium and the wetting velocity is slow. (orig.)

  14. Modeling quantum fluid dynamics at nonzero temperatures

    Science.gov (United States)

    Berloff, Natalia G.; Brachet, Marc; Proukakis, Nick P.

    2014-01-01

    The detailed understanding of the intricate dynamics of quantum fluids, in particular in the rapidly growing subfield of quantum turbulence which elucidates the evolution of a vortex tangle in a superfluid, requires an in-depth understanding of the role of finite temperature in such systems. The Landau two-fluid model is the most successful hydrodynamical theory of superfluid helium, but by the nature of the scale separations it cannot give an adequate description of the processes involving vortex dynamics and interactions. In our contribution we introduce a framework based on a nonlinear classical-field equation that is mathematically identical to the Landau model and provides a mechanism for severing and coalescence of vortex lines, so that the questions related to the behavior of quantized vortices can be addressed self-consistently. The correct equation of state as well as nonlocality of interactions that leads to the existence of the roton minimum can also be introduced in such description. We review and apply the ideas developed for finite-temperature description of weakly interacting Bose gases as possible extensions and numerical refinements of the proposed method. We apply this method to elucidate the behavior of the vortices during expansion and contraction following the change in applied pressure. We show that at low temperatures, during the contraction of the vortex core as the negative pressure grows back to positive values, the vortex line density grows through a mechanism of vortex multiplication. This mechanism is suppressed at high temperatures. PMID:24704874

  15. High-temperature superconducting conductors and cables

    International Nuclear Information System (INIS)

    Peterson, D.E.; Maley, M.P.; Boulaevskii, L.; Willis, J.O.; Coulter, J.Y.; Ullmann, J.L.; Cho, Jin; Fleshler, S.

    1996-01-01

    This is the final report of a 3-year LDRD project at LANL. High-temperature superconductivity (HTS) promises more efficient and powerful electrical devices such as motors, generators, and power transmission cables; however this depends on developing HTS conductors that sustain high current densities J c in high magnetic fields at temperatures near liq. N2's bp. Our early work concentrated on Cu oxides but at present, long wire and tape conductors can be best made from BSCCO compounds with high J c at low temperatures, but which are degraded severely at temperatures of interest. This problem is associated with thermally activated motion of magnetic flux lines in BSCCO. Reducing these dc losses at higher temperatures will require a high density of microscopic defects that will pin flux lines and inhibit their motion. Recently it was shown that optimum defects can be produced by small tracks formed by passage of energetic heavy ions. Such defects result when Bi is bombarded with high energy protons. The longer range of protons in matter suggests the possibility of application to tape conductors. AC losses are a major limitation in many applications of superconductivity such as power transmission. The improved pinning of flux lines reduces ac losses, but optimization also involves other factors. Measuring and characterizing these losses with respect to material parameters and conductor design is essential to successful development of ac devices

  16. High Temperature Integrated Thermoelectric Ststem and Materials

    Energy Technology Data Exchange (ETDEWEB)

    Mike S. H. Chu

    2011-06-06

    The final goal of this project is to produce, by the end of Phase II, an all ceramic high temperature thermoelectric module. Such a module design integrates oxide ceramic n-type, oxide ceramic p-type materials as thermoelectric legs and oxide ceramic conductive material as metalizing connection between n-type and p-type legs. The benefits of this all ceramic module are that it can function at higher temperatures (> 700 C), it is mechanically and functionally more reliable and it can be scaled up to production at lower cost. With this all ceramic module, millions of dollars in savings or in new opportunities recovering waste heat from high temperature processes could be made available. A very attractive application will be to convert exhaust heat from a vehicle to reusable electric energy by a thermoelectric generator (TEG). Phase I activities were focused on evaluating potential n-type and p-type oxide compositions as the thermoelectric legs. More than 40 oxide ceramic powder compositions were made and studied in the laboratory. The compositions were divided into 6 groups representing different material systems. Basic ceramic properties and thermoelectric properties of discs sintered from these powders were measured. Powders with different particles sizes were made to evaluate the effects of particle size reduction on thermoelectric properties. Several powders were submitted to a leading thermoelectric company for complete thermoelectric evaluation. Initial evaluation showed that when samples were sintered by conventional method, they had reasonable values of Seebeck coefficient but very low values of electrical conductivity. Therefore, their power factors (PF) and figure of merits (ZT) were too low to be useful for high temperature thermoelectric applications. An unconventional sintering method, Spark Plasma Sintering (SPS) was determined to produce better thermoelectric properties. Particle size reduction of powders also was found to have some positive benefits

  17. Two-temperature model of the energy balance for the plasma of a high-frequency induction discharge near the plasmoid axis

    International Nuclear Information System (INIS)

    Gerasimov, A.V.; Kirpichnikov, A.P.

    2000-01-01

    On the basis of analysis of the equation system for energy balance within near-the-axis range of HF-plasmatron inductor in terms of a two-temperature model one derived the analytical dependences to calculate temperature fields within that range in a two-dimensional definition of the problem. Paper presents the results of calculations carried out for various cross sections of HF-discharge plasmoid. The calculations were carried out for the air plasma under the atmospheric pressure. The derived formulae describe rather accurately distribution of temperature fields near the plasmoid axis and may be applied to tackle rather wide scope of problems dealing with heat transfer [ru

  18. Electronic phase separation and high temperature superconductors

    International Nuclear Information System (INIS)

    Kivelson, S.A.

    1994-01-01

    The authors review the extensive evidence from model calculations that neutral holes in an antiferromagnet separate into hole-rich and hole-poor phases. All known solvable limits of models of holes in a Heisenberg antiferromagnet exhibit this behavior. The authors show that when the phase separation is frustrated by the introduction of long-range Coulomb interactions, the typical consequence is either a modulated (charge density wave) state or a superconducting phase. The authors then review some of the strong experimental evidence supporting an electronically-driven phase separation of the holes in the cuprate superconductors and the related Ni oxides. Finally, the authors argue that frustrated phase separation in these materials can account for many of the anomalous normal state properties of the high temperature superconductors and provide the mechanism of superconductivity. In particular, it is shown that the T-linear resistivity of the normal state is a paraconductivity associated with a novel composite pairing, although the ordered superconducting state is more conventional

  19. A nonlinear multi-proxy model based on manifold learning to reconstruct water temperature from high resolution trace element profiles in biogenic carbonates

    Directory of Open Access Journals (Sweden)

    M. Bauwens

    2010-11-01

    Full Text Available A long standing problem in paleoceanography concerns the reconstruction of water temperature from δ18O carbonate. It is problematic in the case of freshwater influenced environments because the δ18O isotopic composition of the ambient water (related to salinity needs to be known. In this paper we argue for the use of a nonlinear multi-proxy method called Weight Determination by Manifold Regularization (WDMR to develop a temperature reconstruction model that is less sensitive to salinity variations. The motivation for using this type of model is twofold: firstly, observed nonlinear relations between specific proxies and water temperature motivate the use of nonlinear models. Secondly, the use of multi-proxy models enables salinity related variations of a given temperature proxy to be explained by salinity-related information carried by a separate proxy. Our findings confirm that Mg/Ca is a powerful paleothermometer and highlight that reconstruction performance based on this proxy is improved significantly by combining its information with the information for other trace elements in multi-proxy models. Although the models presented here are black-box models that do not use any prior knowledge about the proxies, the comparison of model reconstruction performances based on different proxy combinations do yield useful information about proxy characteristics. Using Mg/Ca, Sr/Ca, Ba/Ca and Pb/Ca the WDMR model enables a temperature reconstruction with a root mean squared error of ± 2.19 °C for a salinity range between 15 and 32.

  20. High temperature facility TS-3000 K

    International Nuclear Information System (INIS)

    Ion, M.; Padureanu, I.; Mateescu, G.; Radulescu, G.

    1998-01-01

    The high temperature facility TS-3000 K is designed for inelastic and quasielastic slow neutron scattering and neutron diffraction experiments in condensed matter studies over a very large temperature range. A large class of materials is proposed for such kind of investigations: 1. Investigation of oxygen disorder, thermal parameters, lattice vibrations and elastic constants of nuclear fuel oxides as UO 2 , ThO 2 , PuO 2 at temperatures up to 3000 K; 2. Large and small angle neutron scattering experiments on disordered materials; 3. Investigation of the fast ion conductor lattice dynamics (superionic) using neutron scattering techniques; 4. Structure and dynamics of the liquid metals and alloys both in high purity state and with various impurities; 5. Investigation of the materials for fusion reactors at temperatures up to 3000 K; 6. Neutron - dynamics studies of the carbon lattice, its modifications, as well as fullerenes, at high temperature; 7. High temperature mass spectrometric measurements; 8. High purity materials. The facility TS-3000 is running under high internal vacuum conditions (under 10 -6 mbar), water cooled, automatically controlled and stabilized within a very large temperature range (Tmax = 3000 K) for samples of 80 x 80 mm size for inelastic neutron scattering or of a smaller size for diffraction investigation. The temperature is measured either by a wolfram - 5% Rh thermocouple or by direct viewing IR electronic thermometer. First investigations are planned at high intensity and resolution spectrometric complex DIN-2PI setup at the fast pulsed reactor IBR-2 of the Joint Institute for Nuclear Research, Dubna. The main parts of the TS-3000 K facility are: - The furnace with tungsten heater, tungsten, niobium or tantalum shields positioned in an accurate geometry depending of the temperature range and neutron optics (Tmax=3000 K); - The power supply assembly, data acquisition and storage, automatic or manual control; - The power three

  1. Progress in advanced high temperature materials technology

    Science.gov (United States)

    Freche, J. C.; Ault, G. M.

    1976-01-01

    Materials for intermediate temperature applications are considered, taking into account possibilities regarding the use of prealloyed powder processing to obtain superalloys with increased strength for turbine disk applications. Materials for high temperature application are also discussed. Attention is given to oxide dispersion strengthened alloys (ODS), ceramics, directionally solidified eutectics, ODS + gamma prime alloys, and composites. A description is presented of various approaches for providing environmental protection.

  2. High temperature estimation through computer vision

    International Nuclear Information System (INIS)

    Segovia de los R, J.A.

    1996-01-01

    The form recognition process has between his purposes to conceive and to analyze the classification algorithms applied to the image representations, sounds or signals of any kind. In a process with a thermal plasma reactor in which cannot be employed conventional dispositives or methods for the measurement of the very high temperatures. The goal of this work was to determine these temperatures in an indirect way. (Author)

  3. High temperature gas dynamics an introduction for physicists and engineers

    CERN Document Server

    Bose, Tarit K

    2014-01-01

    High Temperature Gas Dynamics is a primer for scientists, engineers, and students who would like to have a basic understanding of the physics and the behavior of high-temperature gases. It is a valuable tool for astrophysicists as well. The first chapters treat the basic principles of quantum and statistical mechanics and how to derive thermophysical properties from them. Special topics are included that are rarely found in other textbooks, such as the thermophysical and transport properties of multi-temperature gases and a novel method to compute radiative transfer. Furthermore, collision processes between different particles are discussed. Separate chapters deal with the production of high-temperature gases and with electrical emission in plasmas, as well as related diagnostic techniques.This new edition adds over 100 pages and includes the following updates: several sections on radiative properties of high temperature gases and various radiation models, a section on shocks in magneto-gas-dynamics, a sectio...

  4. Modeling the effect in of criticality from changes in key parameters for small High Temperature Nuclear Reactor (U-BatteryTM) using MCNP4C

    International Nuclear Information System (INIS)

    Pauzi, A M

    2013-01-01

    The neutron transport code, Monte Carlo N-Particle (MCNP) which was wellkown as the gold standard in predicting nuclear reaction was used to model the small nuclear reactor core called U -battery TM, which was develop by the University of Manchester and Delft Institute of Technology. The paper introduces on the concept of modeling the small reactor core, a high temperature reactor (HTR) type with small coated TRISO fuel particle in graphite matrix using the MCNPv4C software. The criticality of the core were calculated using the software and analysed by changing key parameters such coolant type, fuel type and enrichment levels, cladding materials, and control rod type. The criticality results from the simulation were validated using the SCALE 5.1 software by [1] M Ding and J L Kloosterman, 2010. The data produced from these analyses would be used as part of the process of proposing initial core layout and a provisional list of materials for newly design reactor core. In the future, the criticality study would be continued with different core configurations and geometries.

  5. Development of models and online diagnostic monitors of the high-temperature corrosion of refractories in oxy/fuel glass furnaces : final project report.

    Energy Technology Data Exchange (ETDEWEB)

    Griffiths, Stewart K.; Gupta, Amul (Monofrax Inc., Falconer, NY); Walsh, Peter M.; Rice, Steven F.; Velez, Mariano (University of Missouri, Rolla, MO); Allendorf, Mark D.; Pecoraro, George A. (PPG Industries, Inc., Pittsburgh, PA); Nilson, Robert H.; Wolfe, H. Edward (ANH Refractories, Pittsburgh, PA); Yang, Nancy Y. C.; Bugeat, Benjamin () American Air Liquide, Countryside, IL); Spear, Karl E. (Pennsylvania State University, University Park, PA); Marin, Ovidiu () American Air Liquide, Countryside, IL); Ghani, M. Usman (American Air Liquide, Countryside, IL)

    2005-02-01

    This report summarizes the results of a five-year effort to understand the mechanisms and develop models that predict the corrosion of refractories in oxygen-fuel glass-melting furnaces. Thermodynamic data for the Si-O-(Na or K) and Al-O-(Na or K) systems are reported, allowing equilibrium calculations to be performed to evaluate corrosion of silica- and alumina-based refractories under typical furnace operating conditions. A detailed analysis of processes contributing to corrosion is also presented. Using this analysis, a model of the corrosion process was developed and used to predict corrosion rates in an actual industrial glass furnace. The rate-limiting process is most likely the transport of NaOH(gas) through the mass-transport boundary layer from the furnace atmosphere to the crown surface. Corrosion rates predicted on this basis are in better agreement with observation than those produced by any other mechanism, although the absolute values are highly sensitive to the crown temperature and the NaOH(gas) concentration at equilibrium and at the edge of the boundary layer. Finally, the project explored the development of excimer laser induced fragmentation (ELIF) fluorescence spectroscopy for the detection of gas-phase alkali hydroxides (e.g., NaOH) that are predicted to be the key species causing accelerated corrosion in these furnaces. The development of ELIF and the construction of field-portable instrumentation for glass furnace applications are reported and the method is shown to be effective in industrial settings.

  6. Raman spectroscopy in high temperature chemistry

    International Nuclear Information System (INIS)

    Drake, M.C.; Rosenblatt, G.M.

    1979-01-01

    Raman spectroscopy (largely because of advances in laser and detector technology) is assuming a rapidly expanding role in many areas of research. This paper reviews the contribution of Raman spectroscopy in high temperature chemistry including molecular spectroscopy on static systems and gas diagnostic measurements on reactive systems. An important aspect of high temperature chemistry has been the identification and study of the new, and often unusual, gaseous molecules which form at high temperatures. Particularly important is the investigation of vibrational-rotational energy levels and electronic states which determine thermodynamic properties and describe chemical bonding. Some advantages and disadvantages of high temperature Raman spectrosocpy for molecular studies on static systems are compared: (1) Raman vs infrared; (2) gas-phase vs condensed in matries; and (3) atmospheric pressure Raman vs low pressure techniques, including mass spectroscopy, matrix isolation, and molecular beams. Raman studies on molecular properties of gases, melts, and surfaces are presented with emphasis on work not covered in previous reviews of high temperature and matrix isolation Raman spectroscopy

  7. Micro-mechanical modeling of the growth/percolation of pressurized pores in a ceramic matrix at high temperatures; Modelisation micromecanique de la croissance et de la percolation de pores sous pression dans une matrice ceramique a haute temperature

    Energy Technology Data Exchange (ETDEWEB)

    Vincent, P.G

    2007-11-15

    The aim of this work is to propose an elasto-plastic model of damage in a porous ceramics containing two populations of saturated cavities: the nuclear fuel uranium dioxide highly irradiated and at high temperature. The followed approach consists in a multi-scale approach based on the hypothesis of separation of the scales between the two populations of cavities (spherical intragranular pores and spheroidal intergranular pores) and of those of the macroscopic isotropy. The proposed elasto-plastic model of damage treats separately of the elasticity, of the surface of plasticity and of the evolution of the internal parameters of the model with load. The taking into account of different pressures in each population of cavity is carried out for elasticity-plasticity-damage. The model developed for the elastic behaviour takes into account the two populations of cavity, their morphology, their distribution and the pore pressures inside them. The proposed plasticity criteria is based on homogenization methods for non linear behaviours. At the grain scale, the first population of cavity is taken into account by a plasticity criteria of Gurson-Tvegaard-Needleman type. At the scale of grains collection, the presence of a second population of cavity inside a compressible matrix leads to the development of new superior boundaries and pertaining estimations for the effective plasticity surface. These models depend on the morphology and of the distribution of cavities. In the case of drained cavities, an analytical estimation, based on the writing of the classical variational principle with a compressible velocity field and an average on the equiprobable orientations is developed. In the case of saturated cavity, another estimation, based on the variational approach of Ponte Castaneda (1991) with a linear N phases comparison composite is proposed. These models are compared to numerical simulations by finite elements and to numerical simulations using the fast Fourier

  8. High temperature thrust chamber for spacecraft

    Science.gov (United States)

    Chazen, Melvin L. (Inventor); Mueller, Thomas J. (Inventor); Kruse, William D. (Inventor)

    1998-01-01

    A high temperature thrust chamber for spacecraft (20) is provided herein. The high temperature thrust chamber comprises a hollow body member (12) having an outer surface and an internal surface (16) defining the high temperature chamber (10). The body member (12) is made substantially of rhenium. An alloy (18) consisting of iridium and at least alloying metal selected of the group consisting of rhodium, platinum and palladium is deposited on at least a portion of the internal surface (16) of the body member (12). The iridium and the alloying metal are electrodeposited onto the body member (12). A HIP cycle is performed upon the body member (12) to cause the coating of iridium and the alloying metal to form the alloy (18) which protects the body member (12) from oxidation.

  9. High transition temperature superconducting integrated circuit

    International Nuclear Information System (INIS)

    DiIorio, M.S.

    1985-01-01

    This thesis describes the design and fabrication of the first superconducting integrated circuit capable of operating at over 10K. The primary component of the circuit is a dc SQUID (Superconducting QUantum Interference Device) which is extremely sensitive to magnetic fields. The dc SQUID consists of two superconductor-normal metal-superconductor (SNS) Josephson microbridges that are fabricated using a novel step-edge process which permits the use of high transition temperature superconductors. By utilizing electron-beam lithography in conjunction with ion-beam etching, very small microbridges can be produced. Such microbridges lead to high performance dc SQUIDs with products of the critical current and normal resistance reaching 1 mV at 4.2 K. These SQUIDs have been extensively characterized, and exhibit excellent electrical characteristics over a wide temperature range. In order to couple electrical signals into the SQUID in a practical fashion, a planar input coil was integrated for efficient coupling. A process was developed to incorporate the technologically important high transition temperature superconducting materials, Nb-Sn and Nb-Ge, using integrated circuit techniques. The primary obstacles were presented by the metallurgical idiosyncrasies of the various materials, such as the need to deposit the superconductors at elevated temperatures, 800-900 0 C, in order to achieve a high transition temperature

  10. High-temperature discrete dislocation plasticity

    Science.gov (United States)

    Keralavarma, S. M.; Benzerga, A. A.

    2015-09-01

    A framework for solving problems of dislocation-mediated plasticity coupled with point-defect diffusion is presented. The dislocations are modeled as line singularities embedded in a linear elastic medium while the point defects are represented by a concentration field as in continuum diffusion theory. Plastic flow arises due to the collective motion of a large number of dislocations. Both conservative (glide) and nonconservative (diffusion-mediated climb) motions are accounted for. Time scale separation is contingent upon the existence of quasi-equilibrium dislocation configurations. A variational principle is used to derive the coupled governing equations for point-defect diffusion and dislocation climb. Superposition is used to obtain the mechanical fields in terms of the infinite-medium discrete dislocation fields and an image field that enforces the boundary conditions while the point-defect concentration is obtained by solving the stress-dependent diffusion equations on the same finite-element grid. Core-level boundary conditions for the concentration field are avoided by invoking an approximate, yet robust kinetic law. Aspects of the formulation are general but its implementation in a simple plane strain model enables the modeling of high-temperature phenomena such as creep, recovery and relaxation in crystalline materials. With emphasis laid on lattice vacancies, the creep response of planar single crystals in simple tension emerges as a natural outcome in the simulations. A large number of boundary-value problem solutions are obtained which depict transitions from diffusional to power-law creep, in keeping with long-standing phenomenological theories of creep. In addition, some unique experimental aspects of creep in small scale specimens are also reproduced in the simulations.

  11. High temperature superconductivity the road to higher critical temperature

    CERN Document Server

    Uchida, Shin-ichi

    2015-01-01

    This book presents an overview of material-specific factors that influence Tc and give rise to diverse Tc values for copper oxides and iron-based high- Tc superconductors on the basis of more than 25 years of experimental data, to most of which the author has made important contributions. The book then explains why both compounds are distinct from others with similar crystal structure and whether or not one can enhance Tc, which in turn gives a hint on the unresolved pairing mechanism. This is an unprecedented new approach to the problem of high-temperature superconductivity and thus will be inspiring to both specialists and non-specialists interested in this field.   Readers will receive in-depth information on the past, present, and future of high-temperature superconductors, along with special, updated information on what the real highest Tc values are and particularly on the possibility of enhancing Tc for each member material, which is important for application. At this time, the highest Tc has not been...

  12. High temperature getter for compact HID lamps

    Energy Technology Data Exchange (ETDEWEB)

    Maagt, B J de [Central Development Lighting, Philips Lighting B.V., PO Box 80020, 5600JM, Eindhoven (Netherlands); Corazza, A [SAES Getters S.p.A., Viale Italia 77, 20020 Lainate, Milan (Italy)

    2005-09-07

    In high intensity discharge (HID) lamps getters are generally used to remove gaseous impurities that otherwise may have negative effects on the lamp characteristics. Hydrogen, in particular, is a dangerous impurity because it can induce ignition problems and, in lamps with a quartz burner, it can diffuse from the outer bulb into the arc tube and cause early corrosion of the quartz. Recently a new getter, suitable to work in compact HID lamps operated at high temperatures, has been developed: this getter is an appropriate solution to sorb hydrogen at high working temperatures in lamps where the use of a conventional getter is inadequate because of its small capacity for gettering hydrogen, its relatively high hydrogen equilibrium pressure and problems associated with the evaporation of getter and container material. The newly developed getter, named high temperature getter (HTG), is based on a special alloy enclosed in a niobium container. The new alloy is very effective in sorbing hydrogen in the temperature region of 500-900 deg. C. It has been proved that by introducing the HTG the processing of high-wattage compact HID lamps can be simplified and a better lamp performance can be obtained.

  13. High temperature and pressure alkaline electrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Ganley, Jason C. [Department of Chemical Engineering, Howard University, 2013 Lewis K. Downing Hall, 2300 6th Street NW, Washington, DC 20059 (United States)

    2009-05-15

    This paper describes experimental work involving the direct-current electrolysis of highly concentrated potassium hydroxide solutions at high temperatures (up to 400 C) and under various pressures. A high-temperature alkaline electrolysis cell resistant to chemical attack from the highly corrosive electrolyte solution and capable of high-pressure operation was designed and tested. The cell was constructed with a Monel {sup registered} alloy housing and cathode, while various anode materials were compared. The anode materials tested included nickel, Monel alloy, lithiated nickel, and cobalt-plated nickel. The advantages of operating an alkaline electrolysis cell at high temperatures include increasing the ionic conductivity of the electrolyte and enhancing the rates of electrochemical reactions at the electrode surfaces. Cell operation with increasing steam partial pressure over the solution is also shown to enhance cell performance. The prudent selection of anode material also impacts the required terminal potential for a given current density, and consequently the cell's electric power efficiency. The best cell performance was achieved using a cobalt-plated nickel anode at a temperature of 400 C and a steam partial pressure of 8.7 MPa. (author)

  14. Metallic Membranes for High Temperature Hydrogen Separation

    DEFF Research Database (Denmark)

    Ma, Y.H.; Catalano, Jacopo; Guazzone, Federico

    2013-01-01

    Composite palladium membranes have extensively been studied in laboratories and, more recently, in small pilot industrial applications for the high temperature separation of hydrogen from reactant mixtures such as water-gas shift (WGS) reaction or methane steam reforming (MSR). Composite Pd...... than 1000, respectively. This chapter describes in detail composite Pd-based membrane preparation methods, which consist of the grading of the support and the deposition of the dense metal layer, their performances, and their applications in catalytic membrane reactors (CMRs) at high temperatures (400...

  15. High temperature and pressure electrochemical test station

    DEFF Research Database (Denmark)

    Chatzichristodoulou, Christodoulos; Allebrod, Frank; Mogensen, Mogens Bjerg

    2013-01-01

    An electrochemical test station capable of operating at pressures up to 100 bars and temperatures up to 400 ◦C has been established. It enables control of the partial pressures and mass flow of O2, N2, H2, CO2, and H2O in a single or dual environment arrangement, measurements with highly corrosive......, to the electrochemical characterization of high temperature and pressure alkaline electrolysis cells and the use of pseudo-reference electrodes for the separation of each electrode contribution. A future perspective of various electrochemical processes and devices that can be developed with the use of the established...

  16. Brazing, high temperature brazing and diffusion welding

    International Nuclear Information System (INIS)

    1989-01-01

    Brazing and high temperature brazing is a major joining technology within the economically important fields of energy technology, aerospace and automotive engineering, that play a leading role for technical development everywhere in the world. Moreover diffusion welding has gained a strong position especially in advanced technologies due to its specific advantages. Topics of the conference are: 1. high-temperature brazing in application; 2. basis of brazing technology; 3. brazing of light metals; 4. nondestructive testing; 5. diffusion welding; 6. brazing of hard metals and other hard materials; and 7. ceramic-metal brazing. 28 of 20 lectures and 20 posters were recorded separately for the database ENERGY. (orig./MM) [de

  17. Materials for high-temperature fuel cells

    CERN Document Server

    Jiang, San Ping; Lu, Max

    2013-01-01

    There are a large number of books available on fuel cells; however, the majority are on specific types of fuel cells such as solid oxide fuel cells, proton exchange membrane fuel cells, or on specific technical aspects of fuel cells, e.g., the system or stack engineering. Thus, there is a need for a book focused on materials requirements in fuel cells. Key Materials in High-Temperature Fuel Cells is a concise source of the most important and key materials and catalysts in high-temperature fuel cells with emphasis on the most important solid oxide fuel cells. A related book will cover key mater

  18. One-dimensional modeling of radial heat removal during depressurized heatup transients in modular pebble-bed and prismatic high temperature gas-cooled reactors

    International Nuclear Information System (INIS)

    Savage, M.G.

    1984-07-01

    A one-dimensional computational model was developed to evaluate the heat removal capabilities of both prismatic-core and pebble-bed modular HTGRs during depressurized heatup transients. A correlation was incorporated to calculate the temperature- and neutron-fluence-dependent thermal conductivity of graphite. The modified Zehner-Schluender model was used to determine the effective thermal conductivity of a pebble bed, accounting for both conduction and radiation. Studies were performed for prismatic-core and pebble-bed modular HTGRs, and the results were compared to analyses performed by GA and GR, respectively. For the particular modular reactor design studied, the prismatic HTGR peak temperature was 2152.2 0 C at 38 hours following the transient initiation, and the pebble-bed peak temperature was 1647.8 0 C at 26 hours. These results compared favorably with those of GA and GE, with only slight differences caused by neglecting axial heat transfer in a one-dimensional radial model. This study found that the magnitude of the initial power density had a greater effect on the temperature excursion than did the initial temperature

  19. High-Temperature Shape Memory Polymers

    Science.gov (United States)

    Yoonessi, Mitra; Weiss, Robert A.

    2012-01-01

    physical conformation changes when exposed to an external stimulus, such as a change in temperature. Such materials have a permanent shape, but can be reshaped above a critical temperature and fixed into a temporary shape when cooled under stress to below the critical temperature. When reheated above the critical temperature (Tc, also sometimes called the triggering or switching temperature), the materials revert to the permanent shape. The current innovation involves a chemically treated (sulfonated, carboxylated, phosphonated, or other polar function group), high-temperature, semicrystalline thermoplastic poly(ether ether ketone) (Tg .140 C, Tm = 340 C) mix containing organometallic complexes (Zn++, Li+, or other metal, ammonium, or phosphonium salts), or high-temperature ionic liquids (e.g. hexafluorosilicate salt with 1-propyl-3- methyl imidazolium, Tm = 210 C) to form a network where dipolar or ionic interactions between the polymer and the low-molecular-weight or inorganic compound forms a complex that provides a physical crosslink. Hereafter, these compounds will be referred to as "additives". The polymer is semicrystalline, and the high-melt-point crystals provide a temporary crosslink that acts as a permanent crosslink just so long as the melting temperature is not exceeded. In this example case, the melting point is .340 C, and the shape memory critical temperature is between 150 and 250 C. PEEK is an engineering thermoplastic with a high Young fs modulus, nominally 3.6 GPa. An important aspect of the invention is the control of the PEEK functionalization (in this example, the sulfonation degree), and the thermal properties (i.e. melting point) of the additive, which determines the switching temperature. Because the compound is thermoplastic, it can be formed into the "permanent" shape by conventional plastics processing operations. In addition, the compound may be covalently cross - linked after forming the permanent shape by S-PEEK by applying ionizing

  20. Anharmonic Materials and Thermoelasticity at High Temperatures and Pressures

    Science.gov (United States)

    Orlikowski, Daniel

    2005-03-01

    For large-scale constitutive strength models, the shear modulus is typically assumed to be linearly dependent on temperature. However, for materials compressed along or beyond the Hugoniot into high pressure and temperature regimes where there is no experimental measurement or very little, accurate and validated models must be used. To this end, we have investigated and compared, as a function of temperature (Steinberg-Guinan strength model. These results give an indication that anharmonic effects are negligible in tantalum but not in molybdenum for high pressures and temperatures up to melt. This work was performed under the auspices of the U.S. Department of Energy by the University of California Lawrence Livermore National Laboratory under contract W-7405-Eng-48.

  1. Measuring nanowire thermal conductivity at high temperatures

    Science.gov (United States)

    Wang, Xiaomeng; Yang, Juekuan; Xiong, Yucheng; Huang, Baoling; Xu, Terry T.; Li, Deyu; Xu, Dongyan

    2018-02-01

    This work extends the micro-thermal-bridge method for thermal conductivity measurements of nanowires to high temperatures. The thermal-bridge method, based on a microfabricated device with two side-by-side suspended membranes with integrated platinum resistance heaters/thermometers, has been used to determine thermal conductivity of various nanowires/nanotubes/nanoribbons at relatively low temperatures. However, to date, thermal conductivity characterization of nanowires at temperatures above 600 K has seldom been reported presumably due to several technical difficulties including the instability of the microfabricated thermometers, radiation heat loss, and the effect of the background conductance on the measurement. Here we report on our attempt to address the aforementioned challenges and demonstrate thermal conductivity measurement of boron nanoribbons up to 740 K. To eliminate high temperature resistance instability, the device is first annealed at 1023 K for 5 min in an argon atmosphere. Two radiation shields are installed in the measurement chamber to minimize radiation heat loss from the measurement device to the surroundings; and the temperature of the device at each set point is calibrated by an additional thermocouple directly mounted on the chip carrier. The effect of the background conductance is eliminated by adopting a differential measurement scheme. With all these modifications, we successfully measured the thermal conductivity of boron nanoribbons over a wide temperature range from 27 K to 740 K. The measured thermal conductivity increases monotonically with temperature and reaches a plateau of ~2.5 W m‑1 K‑1 at approximately 400 K, with no clear signature of Umklapp scattering observed in the whole measurement temperature range.

  2. Bimodular high temperature planar oxygen gas sensor

    Science.gov (United States)

    Sun, Xiangcheng; Liu, Yixin; Gao, Haiyong; Gao, Puxian; Lei, Yu

    2014-08-01

    A bimodular planar O2 sensor was fabricated using NiO nanoparticles (NPs) thin film coated yttria-stabilized zirconia (YSZ) substrate. The thin film was prepared by radio frequency (r.f.) magnetron sputtering of NiO on YSZ substrate, followed by high temperature sintering. The surface morphology of NiO nanoparticles film was characterized by atomic force microscopy (AFM) and scanning electron microscopy (SEM). X-ray diffraction (XRD) patterns of NiO NPs thin film before and after high temperature O2 sensing demonstrated that the sensing material possesses a good chemical and structure stability. The oxygen detection experiments were performed at 500 °C, 600 °C and 800 °C using the as-prepared bimodular O2 sensor under both potentiometric and resistance modules. For the potentiometric module, a linear relationship between electromotive force (EMF) output of the sensor and the logarithm of O2 concentration was observed at each operating temperature, following the Nernst law. For the resistance module, the logarithm of electrical conductivity was proportional to the logarithm of oxygen concentration at each operating temperature, in good agreement with literature report. In addition, this bimodular sensor shows sensitive, reproducible and reversible response to oxygen under both sensing modules. Integration of two sensing modules into one sensor could greatly enrich the information output and would open a new venue in the development of high temperature gas sensors.

  3. Bimodular high temperature planar oxygen gas sensor

    Directory of Open Access Journals (Sweden)

    Xiangcheng eSun

    2014-08-01

    Full Text Available A bimodular planar O2 sensor was fabricated using NiO nanoparticles (NPs thin film coated yttria-stabilized zirconia (YSZ substrate. The thin film was prepared by radio frequency (r.f. magnetron sputtering of NiO on YSZ substrate, followed by high temperature sintering. The surface morphology of NiO nanoparticles film was characterized by atomic force microscopy (AFM and scanning electron microscopy (SEM. X-ray diffraction (XRD patterns of NiO NPs thin film before and after high temperature O2 sensing demonstrated that the sensing material possesses a good chemical and structure stability. The oxygen detection experiments were performed at 500 °C, 600 °C and 800 °C using the as-prepared bimodular O2 sensor under both potentiometric and resistance modules. For the potentiometric module, a linear relationship between electromotive force (EMF output of the sensor and the logarithm of O2 concentration was observed at each operating temperature, following the Nernst law. For the resistance module, the logarithm of electrical conductivity was proportional to the logarithm of oxygen concentration at each operating temperature, in good agreement with literature report. In addition, this bimodular sensor shows sensitive, reproducible and reversible response to oxygen under both sensing modules. Integration of two sensing modules into one sensor could greatly enrich the information output and would open a new venue in the development of high temperature gas sensors.

  4. Sphaleron rate at high temperature in 1+1 dimensions

    International Nuclear Information System (INIS)

    Smit, Jan; Tang, W.H.

    1999-01-01

    We resolve the controversy in the high temperature behavior of the sphaleron rate in the abelian Higgs model in 1+1 dimensions. The T 2 behavior at intermediate lattice spacings is found to change into T ((2)/(3)) behavior in the continuum limit. The results are supported by analytic arguments that the classical approximation is good for this model

  5. Atomic processes in high temperature plasmas

    International Nuclear Information System (INIS)

    Hahn, Y.

    1991-07-01

    This is the final report on the project Atomic Processes in High Temperature Plasmas', which has been completed in June 30, 1991. The original contract started in 1978. The dielectronic recombination (DR) rate coefficients were calculated for ions with the number of electrons N = 1, 2, 3, 4, 5, 10, 11, and 12. The result was then used to construct a new and improved rate formula. Other important resonant processes, which are closely related to DR, were also studied to interpret experiments and to test the DR theory. The plasma field and the density effects on the rate coefficients was found to be important, and a consistent correction procedure is being developed. The available data on the DR rates and their accuracy do not yet fully meet the requirement for plasma modeling; there are serious gaps in the available data, and the currently adopted theoretical procedure needs improvements. Critical assessment of the current status of the DR problem is presented, and possible future work needed is summarized

  6. A high temperature high pressure cell for quasielastic neutron scattering.

    Science.gov (United States)

    Yang, F; Kaplonski, J; Unruh, T; Mamontov, E; Meyer, A

    2011-08-01

    We present our recent development of a high temperature high pressure cell for neutron scattering. Combining a water cooled Nb1Zr pressure cell body with an internal heating furnace, the sample environment can reach temperatures of up to 1500 K at a pressure of up to 200 MPa at the sample position, with an available sample volume of about 700 mm(3). The cell material Nb1Zr is specifically chosen due to its reasonable mechanical strength at elevated temperatures and fairly small neutron absorption and incoherent scattering cross sections. With this design, an acceptable signal-to-noise ratio of about 10:1 can be achieved. This opens new possibilities for quasielastic neutron scattering studies on different types of neutron spectrometers under high temperature high pressure conditions, which is particularly interesting for geological research on, e.g., water dynamics in silicate melts.

  7. Modeling maximum daily temperature using a varying coefficient regression model

    Science.gov (United States)

    Han Li; Xinwei Deng; Dong-Yum Kim; Eric P. Smith

    2014-01-01

    Relationships between stream water and air temperatures are often modeled using linear or nonlinear regression methods. Despite a strong relationship between water and air temperatures and a variety of models that are effective for data summarized on a weekly basis, such models did not yield consistently good predictions for summaries such as daily maximum temperature...

  8. Weather Derivatives and Stochastic Modelling of Temperature

    Directory of Open Access Journals (Sweden)

    Fred Espen Benth

    2011-01-01

    Full Text Available We propose a continuous-time autoregressive model for the temperature dynamics with volatility being the product of a seasonal function and a stochastic process. We use the Barndorff-Nielsen and Shephard model for the stochastic volatility. The proposed temperature dynamics is flexible enough to model temperature data accurately, and at the same time being analytically tractable. Futures prices for commonly traded contracts at the Chicago Mercantile Exchange on indices like cooling- and heating-degree days and cumulative average temperatures are computed, as well as option prices on them.

  9. Computational Thermodynamic Modeling of Hot Corrosion of Alloys Haynes 242 and HastelloyTM N for Molten Salt Service in Advanced High Temperature Reactors

    Energy Technology Data Exchange (ETDEWEB)

    V. Glazoff, Michael; Charit, Indrajt; Sabharwall, Piyush

    2014-09-17

    An evaluation of thermodynamic aspects of hot corrosion of the superalloys Haynes 242 and HastelloyTM N in the eutectic mixtures of KF and ZrF4 is carried out for development of Advanced High Temperature Reactor (AHTR). This work models the behavior of several superalloys, potential candidates for the AHTR, using computational thermodynamics tool (ThermoCalc), leading to the development of thermodynamic description of the molten salt eutectic mixtures, and on that basis, mechanistic prediction of hot corrosion. The results from these studies indicated that the principal mechanism of hot corrosion was associated with chromium leaching for all of the superalloys described above. However, HastelloyTM N displayed the best hot corrosion performance. This was not surprising given it was developed originally to withstand the harsh conditions of molten salt environment. However, the results obtained in this study provided confidence in the employed methods of computational thermodynamics and could be further used for future alloy design efforts. Finally, several potential solutions to mitigate hot corrosion were proposed for further exploration, including coating development and controlled scaling of intermediate compounds in the KF-ZrF4 system.

  10. HYFIRE: fusion-high temperature electrolysis system

    International Nuclear Information System (INIS)

    Fillo, J.A.; Powell, J.R.; Steinberg, M.; Benenati, R.; Dang, V.D.; Horn, F.; Isaacs, H.; Lazareth, O.; Makowitz, H.; Usher, J.

    1980-01-01

    The Brookhaven National Laboratory (BNL) is carrying out a comprehensive conceptual design study called HYFIRE of a commercial fusion Tokamak reactor, high-temperature electrolysis system. The study is placing particular emphasis on the adaptability of the STARFIRE power reactor to a synfuel application. The HYFIRE blanket must perform three functions: (a) provide high-temperature (approx. 1400 0 C) process steam at moderate pressures (in the range of 10 to 30 atm) to the high-temperature electrolysis (HTE) units; (b) provide high-temperature (approx. 700 to 800 0 C) heat to a thermal power cycle for generation of electricity to the HTE units; and (c) breed enough tritium to sustain the D-T fuel cycle. In addition to thermal energy for the decomposition of steam into its constitutents, H 2 and O 2 , electrical input is required. Power cycle efficiencies of approx. 40% require He cooling for steam superheat. Fourteen hundred degree steam coupled with 40% power cycle efficiency results in a process efficiency (conversion of fusion energy to hydrogen chemical energy) of 50%

  11. Potential applications of high temperature helium

    International Nuclear Information System (INIS)

    Schleicher, R.W. Jr.; Kennedy, A.J.

    1992-09-01

    This paper discusses the DOE MHTGR-SC program's recent activity to improve the economics of the MHTGR without sacrificing safety performance and two potential applications of high temperature helium, the MHTGR gas turbine plant and a process heat application for methanol production from coal

  12. High temperature fatigue behaviour of intermetallics

    Indian Academy of Sciences (India)

    There would be considerable benefits in developing new structural materials where high use temperatures and strength coupled with low density are minimum capabilities. Nickel and titanium aluminides exhibit considerable potential for near-term application in various branches of modern industry due to the number of ...

  13. High temperature impedance spectroscopy of barium stannate ...

    Indian Academy of Sciences (India)

    High temperature impedance spectroscopy of barium stannate, BaSnO3. SHAIL UPADHYAY. Department of Physics, Institute of Technology, Banaras Hindu University, Varanasi 221 005, India. MS received 29 May 2012; revised 14 July 2012. Abstract. Polycrystalline powder of BaSnO3 was prepared at 1300 ◦C using a ...

  14. High temperature applications of nuclear energy

    International Nuclear Information System (INIS)

    1994-08-01

    The meeting was organized to review industry/user needs designs, status of technology and the associated economics for high temperature applications. It was attended by approximately 100 participants from nine countries. The participants presented 17 papers. A separate abstract was prepared for each of these papers. Refs, figs and tabs

  15. High temperatures influence sexual development differentially in ...

    Indian Academy of Sciences (India)

    Although sex determination in amphibians is believed to be a genetic process, environmental factors such as temperatureare known to influence the sex differentiation and development. Extremely low and high temperatures influence gonadaldevelopment and sex ratio in amphibians but the mechanism of action is not ...

  16. Thermoelastic properties of minerals at high temperature

    Indian Academy of Sciences (India)

    The knowledge of elasticity of the minerals is useful for interpreting the structure and composition of the lower mantle and also in seismic studies. The purpose of the present study is to discuss a simple and straightforward method for evaluating thermoelastic properties of minerals at high temperatures. We have extended ...

  17. High-pressure-high-temperature treatment of natural diamonds

    CERN Document Server

    Royen, J V

    2002-01-01

    The results are reported of high-pressure-high-temperature (HPHT) treatment experiments on natural diamonds of different origins and with different impurity contents. The diamonds are annealed in a temperature range up to 2000 sup o C at stabilizing pressures up to 7 GPa. The evolution is studied of different defects in the diamond crystal lattice. The influence of substitutional nitrogen atoms, plastic deformation and the combination of these is discussed. Diamonds are characterized at room and liquid nitrogen temperature using UV-visible spectrophotometry, Fourier transform infrared spectrophotometry and photoluminescence spectrometry. The economic implications of diamond HPHT treatments are discussed.

  18. Nuclear shell effects at high temperatures

    International Nuclear Information System (INIS)

    Davidson, N.J.; Miller, H.G.

    1993-01-01

    In discussing the disappearance of nuclear shell effects at high temperatures, it is important to distinguish between the ''smearing out'' of the single-particle spectrum with increasing temperature and the vanishing of shell related structures in many-body quantities such as the excitation energy per nucleon. We propose a semiempirical method to obtain an upper bound on the temperature required to smooth the single-particle spectrum, and point out that shell effects in many-body parameters may persist above this temperature. We find that the temperature required to smear out the single-particle spectrum is approximately 1 MeV for heavy nuclei (A approx-gt 150) and about 3--4 MeV for light nuclei (A approx-lt 50), in reasonable agreement with the estimate of 41/πA 1/3 obtained from calculations with harmonic oscillator potentials. These temperatures correspond to many-body excitation energies of approximately 20 and 60 MeV, respectively

  19. The Evolution of High Temperature Gas Sensors.

    Energy Technology Data Exchange (ETDEWEB)

    Garzon, F. H. (Fernando H.); Brosha, E. L. (Eric L.); Mukundan, R. (Rangachary)

    2001-01-01

    Gas sensor technology based on high temperature solid electrolytes is maturing rapidly. Recent advances in metal oxide catalysis and thin film materials science has enabled the design of new electrochemical sensors. We have demonstrated prototype amperometric oxygen sensors, nernstian potentiometric oxygen sensors that operate in high sulfur environments, and hydrocarbon and carbon monoxide sensing mixed potentials sensors. Many of these devices exhibit part per million sensitivities, response times on the order of seconds and excellent long-term stability.

  20. A high temperature reactor for ship propulsion

    International Nuclear Information System (INIS)

    Lobet, P.; Seigel, R.; Thompson, A.C.; Beadnell, R.M.; Beeley, P.A.

    2002-01-01

    The initial thermal hydraulic and physics design of a high temperature gas cooled reactor for ship propulsion is described. The choice of thermodynamic cycle and thermal power is made to suit the marine application. Several configurations of a Helium cooled, Graphite moderated reactor are then analysed using the WIMS and MONK codes from AEA Technology. Two geometries of fuel elements formed using micro spheres in prismatic blocks, and various arrangements of control rods and poison rods are examined. Reactivity calculations through life are made and a pattern of rod insertion to flatten the flux is proposed and analysed. Thermal hydraulic calculations are made to find maximum fuel temperature under high power with optimized flow distribution. Maximum temperature after loss of flow and temperatures in the reactor vessel are also computed. The temperatures are significantly below the known limits for the type of fuel proposed. It is concluded that the reactor can provide the required power and lifetime between refueling within likely space and weight constraints. (author)

  1. High temperature intermetallic binders for HVOF carbides

    International Nuclear Information System (INIS)

    Shaw, K.G.; Gruninger, M.F.; Jarosinski, W.J.

    1994-01-01

    Gas turbines technology has a long history of employing the desirable high temperature physical attributes of ceramic-metallic (cermet) materials. The most commonly used coatings incorporate combinations of WC-Co and Cr 3 C 2 -NiCr, which have also been successfully utilized in other non-turbine coating applications. Increased turbine operating temperatures and other high temperature service conditions have made apparent the attractive notion of increasing the temperature capability and corrosion resistance of these coatings. In this study the intermetallic binder NiAl has been used to replace the cobalt and NiCr constituents of conventional WC and Cr 3 C 2 cermet powders. The composite carbide thermal spray powders were fabricated for use in the HVOF coating process. The structure of HVOF deposited NiAl-carbide coatings are compared directly to the more familiar WC-Co and Cr 3 C 2 -NiCr coatings using X-ray diffraction, back-scattered electron imaging (BEI) and electron dispersive spectroscopy (EDS). Hardness variations with temperature are reported and compared between the NiAl and Co/NiCr binders

  2. Sodium immersible high temperature microphone design description

    International Nuclear Information System (INIS)

    Gavin, A.P.; Anderson, T.T.; Janicek, J.J.

    1975-02-01

    Argonne National Laboratory has developed a rugged high-temperature (HT) microphone for use as a sodium-immersed acoustic monitor in Liquid Metal Fast Breeder Reactors (LMFBRs). Microphones of this design have been extensively tested in room temperature water, in air up to 1200 0 F, and in sodium up to 1200 0 F. They have been successfully installed and employed as acoustic monitors in several operating liquid metal systems. The design, construction sequence, calibration, and testing of these microphones are described. 6 references. (U.S.)

  3. Fracture Studies of High Temperature Ceramics.

    Science.gov (United States)

    1980-05-01

    silicon nitride materials containing HgO, CeO2 or ZrO2 sinterinS aids showed a decrease in 1ZC as the temperature exceeded 13000 C. Hlot- pressed silicon...merization of the furfuryl alcohol was subsequently allowed to proceed at 150°C. Alternatively, slurries of 30 volt SiC were cast, polymerized and pyrolized...shown that the densifying agent (MgO, Y2 03 , CeO2 , A120 3 , etc.) used in hot-pressing dramatically affects the high temperature strength proper

  4. Temperature Modelling of the Biomass Pretreatment Process

    DEFF Research Database (Denmark)

    Prunescu, Remus Mihail; Blanke, Mogens; Jensen, Jakob M.

    2012-01-01

    In a second generation biorefinery, the biomass pretreatment stage has an important contribution to the efficiency of the downstream processing units involved in biofuel production. Most of the pretreatment process occurs in a large pressurized thermal reactor that presents an irregular temperature...... distribution. Therefore, an accurate temperature model is critical for observing the biomass pretreatment. More than that, the biomass is also pushed with a constant horizontal speed along the reactor in order to ensure a continuous throughput. The goal of this paper is to derive a temperature model...... that captures the environmental temperature differences inside the reactor using distributed parameters. A Kalman filter is then added to account for any missing dynamics and the overall model is embedded into a temperature soft sensor. The operator of the plant will be able to observe the temperature in any...

  5. The metallurgy of high temperature alloys

    Science.gov (United States)

    Tien, J. K.; Purushothaman, S.

    1976-01-01

    Nickel-base, cobalt-base, and high nickel and chromium iron-base alloys are dissected, and their microstructural and chemical components are assessed with respect to the various functions expected of high temperature structural materials. These functions include the maintenance of mechanical integrity over the strain-rate spectrum from creep resistance through fatigue crack growth resistance, and such alloy stability expectations as microstructural coarsening resistance, phase instability resistance and oxidation and corrosion resistance. Special attention will be given to the perennial conflict and trade-off between strength, ductility and corrosion and oxidation resistance. The newest developments in the constitution of high temperature alloys will also be discussed, including aspects relating to materials conservation.

  6. High Temperature Fluoride Salt Test Loop

    Energy Technology Data Exchange (ETDEWEB)

    Aaron, Adam M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Cunningham, Richard Burns [Univ. of Tennessee, Knoxville, TN (United States); Fugate, David L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Holcomb, David Eugene [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kisner, Roger A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Peretz, Fred J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Robb, Kevin R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wilson, Dane F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Yoder, Jr, Graydon L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-12-01

    Effective high-temperature thermal energy exchange and delivery at temperatures over 600°C has the potential of significant impact by reducing both the capital and operating cost of energy conversion and transport systems. It is one of the key technologies necessary for efficient hydrogen production and could potentially enhance efficiencies of high-temperature solar systems. Today, there are no standard commercially available high-performance heat transfer fluids above 600°C. High pressures associated with water and gaseous coolants (such as helium) at elevated temperatures impose limiting design conditions for the materials in most energy systems. Liquid salts offer high-temperature capabilities at low vapor pressures, good heat transport properties, and reasonable costs and are therefore leading candidate fluids for next-generation energy production. Liquid-fluoride-salt-cooled, graphite-moderated reactors, referred to as Fluoride Salt Reactors (FHRs), are specifically designed to exploit the excellent heat transfer properties of liquid fluoride salts while maximizing their thermal efficiency and minimizing cost. The FHR s outstanding heat transfer properties, combined with its fully passive safety, make this reactor the most technologically desirable nuclear power reactor class for next-generation energy production. Multiple FHR designs are presently being considered. These range from the Pebble Bed Advanced High Temperature Reactor (PB-AHTR) [1] design originally developed by UC-Berkeley to the Small Advanced High-Temperature Reactor (SmAHTR) and the large scale FHR both being developed at ORNL [2]. The value of high-temperature, molten-salt-cooled reactors is also recognized internationally, and Czechoslovakia, France, India, and China all have salt-cooled reactor development under way. The liquid salt experiment presently being developed uses the PB-AHTR as its focus. One core design of the PB-AHTR features multiple 20 cm diameter, 3.2 m long fuel channels

  7. Strain sensing technology for high temperature applications

    Science.gov (United States)

    Williams, W. Dan

    1993-01-01

    This review discusses the status of strain sensing technology for high temperature applications. Technologies covered are those supported by NASA such as required for applications in hypersonic vehicles and engines, advanced subsonic engines, as well as material and structure development. The applications may be at temperatures of 540 C (1000 F) to temperatures in excess of 1400 C (2500 F). The most promising technologies at present are the resistance strain gage and remote sensing schemes. Resistance strain gages discussed include the BCL gage, the LaRC compensated gage, and the PdCr gage. Remote sensing schemes such as laser based speckle strain measurement, phase-shifling interferometry, and x-ray extensometry are discussed. Present status and limitations of these technologies are presented.

  8. Toroidal microinstability studies of high temperature tokamaks

    International Nuclear Information System (INIS)

    Rewoldt, G.; Tang, W.M.

    1989-07-01

    Results from comprehensive kinetic microinstability calculations are presented showing the effects of toroidicity on the ion temperature gradient mode and its relationship to the trapped-electron mode in high-temperature tokamak plasmas. The corresponding particle and energy fluxes have also been computed. It is found that, although drift-type microinstabilities persist over a wide range of values of the ion temperature gradient parameter η i ≡ (dlnT i /dr)/(dlnn i /dr), the characteristic features of the dominant mode are those of the η i -type instability when η i > η ic ∼1.2 to 1.4 and of the trapped-electron mode when η i ic . 16 refs., 7 figs

  9. Gasification of high ash, high ash fusion temperature bituminous coals

    Science.gov (United States)

    Liu, Guohai; Vimalchand, Pannalal; Peng, WanWang

    2015-11-13

    This invention relates to gasification of high ash bituminous coals that have high ash fusion temperatures. The ash content can be in 15 to 45 weight percent range and ash fusion temperatures can be in 1150.degree. C. to 1500.degree. C. range as well as in excess of 1500.degree. C. In a preferred embodiment, such coals are dealt with a two stage gasification process--a relatively low temperature primary gasification step in a circulating fluidized bed transport gasifier followed by a high temperature partial oxidation step of residual char carbon and small quantities of tar. The system to process such coals further includes an internally circulating fluidized bed to effectively cool the high temperature syngas with the aid of an inert media and without the syngas contacting the heat transfer surfaces. A cyclone downstream of the syngas cooler, operating at relatively low temperatures, effectively reduces loading to a dust filtration unit. Nearly dust- and tar-free syngas for chemicals production or power generation and with over 90%, and preferably over about 98%, overall carbon conversion can be achieved with the preferred process, apparatus and methods outlined in this invention.

  10. Quench in high temperature superconductor magnets

    CERN Document Server

    Schwartz, J.

    2013-01-01

    High field superconducting magnets using high temperature superconductors are being developed for high energy physics, nuclear magnetic resonance and energy storage applications. Although the conductor technology has progressed to the point where such large magnets can be readily envisioned, quench protection remains a key challenge. It is well-established that quench propagation in HTS magnets is very slow and this brings new challenges that must be addressed. In this paper, these challenges are discussed and potential solutions, driven by new technologies such as optical fiber based sensors and thermally conducting electrical insulators, are reviewed.

  11. High-Temperature Piezoelectric Ceramic Developed

    Science.gov (United States)

    Sayir, Ali; Farmer, Serene C.; Dynys, Frederick W.

    2005-01-01

    Active combustion control of spatial and temporal variations in the local fuel-to-air ratio is of considerable interest for suppressing combustion instabilities in lean gas turbine combustors and, thereby, achieving lower NOx levels. The actuator for fuel modulation in gas turbine combustors must meet several requirements: (1) bandwidth capability of 1000 Hz, (2) operating temperature compatible with the fuel temperature, which is in the vicinity of 400 F, (3) stroke of approximately 4 mils (100 m), and (4) force of 300 lb-force. Piezoelectric actuators offer the fastest response time (microsecond time constants) and can generate forces in excess of 2000 lb-force. The state-of-the-art piezoceramic material in industry today is Pb(Zr,Ti)O3, called PZT. This class of piezoelectric ceramic is currently used in diesel fuel injectors and in the development of high-response fuel modulation valves. PZT materials are generally limited to operating temperatures of 250 F, which is 150 F lower than the desired operating temperature for gas turbine combustor fuel-modulation injection valves. Thus, there is a clear need to increase the operating temperature range of piezoceramic devices for active combustion control in gas turbine engines.

  12. Energy storage via high temperature superconductivity (SMES)

    Energy Technology Data Exchange (ETDEWEB)

    Mikkonen, R. [Tampere Univ. of Technology (Finland)

    1998-10-01

    The technology concerning high temperature superconductors (HTS) is matured to enabling different kind of prototype applications including SMES. Nowadays when speaking about HTS systems, attention is focused on the operating temperature of 20-30 K, where the critical current and flux density are fairly close to 4.2 K values. In addition by defining the ratio of the energy content of a novel HTS magnetic system and the required power to keep the system at the desired temperature, the optimum settles to the above mentioned temperature range. In the frame of these viewpoints a 5 kJ HTS SMES system has been designed and tested at Tampere University of Technology with a coil manufactured by American Superconductor (AMSC). The HTS magnet has inside and outside diameters of 252 mm and 317 mm, respectively and axial length of 66 mm. It operates at 160 A and carries a total of 160 kA-turns to store the required amount of energy. The effective magnetic inductance is 0.4 H and the peak axial field is 1.7 T. The magnet is cooled to the operating temperature of 20 K with a two stage Gifford-McMahon type cryocooler with a cooling power of 60 W at 77 K and 8 W at 20 K. The magnetic system has been demonstrated to compensate a short term loss of power of a sensitive consumer

  13. High Temperature QCD and Dimensional Reduction

    Science.gov (United States)

    Petersson, Bengt

    2001-04-01

    In this talk I will first give a short discussion of some lattice results for QCD at finite temperature. I will then describe in some detail the technique of dimensional reduction, which in principle is a powerful technique to obtain results on the long distance properties of the quark-gluon plasma. Finally I will describe some new results, which test the technique in a simpler model, namely three dimensional gauge theory.

  14. Electrochemical high-temperature gas sensors

    Science.gov (United States)

    Saruhan, B.; Stranzenbach, M.; Yüce, A.; Gönüllü, Y.

    2012-06-01

    Combustion produced common air pollutant, NOx associates with greenhouse effects. Its high temperature detection is essential for protection of nature. Component-integration capable high-temperature sensors enable the control of combustion products. The requirements are quantitative detection of total NOx and high selectivity at temperatures above 500°C. This study reports various approaches to detect NO and NO2 selectively under lean and humid conditions at temperatures from 300°C to 800°C. All tested electrochemical sensors were fabricated in planar design to enable componentintegration. We suggest first an impedance-metric gas sensor for total NOx-detection consisting of NiO- or NiCr2O4-SE and PYSZ-electrolyte. The electrolyte-layer is about 200μm thickness and constructed of quasi-single crystalline columns. The sensing-electrode (SE) is magnetron sputtered thin-layers of NiO or NiCr2O4. Sensor sensitivity for detection of total NOx has been measured by applying impedance analysis. The cross-sensitivity to other emission gases such as CO, CO2, CH4 and oxygen (5 vol.%) has been determined under 0-1000ppm NO. Sensor maintains its high sensitivity at temperatures up to 550°C and 600°C, depending on the sensing-electrode. NiO-SE yields better selectivity to NO in the presence of oxygen and have shorter response times comparing to NiCr2O4-SE. For higher temperature NO2-sensing capability, a resistive DC-sensor having Al-doped TiO2-sensing layers has been employed. Sensor-sensitivity towards NO2 and cross-sensitivity to CO has been determined in the presence of H2O at temperatures 600°C and 800°C. NO2 concentrations varying from 25 to 100ppm and CO concentrations from 25 to 75ppm can be detected. By nano-tubular structuring of TiO2, NO2 sensitivity of the sensor was increased.

  15. Deformation of high-temperature superconductors

    International Nuclear Information System (INIS)

    Goretta, K.C.; Routbort, J.L.; Miller, D.J.; Chen, N.; Dominguez-Rodriguez, A.; Jimenez-Melendo, M.; De Arellano-Lopez, A.R.

    1994-08-01

    Of the many families of high-temperature superconductors, only the properties of those discovered prior to 1989 - Y-Ba-Cu-O, Tl-Ba(Sr)-Ca-Cu-O, and Bi(Pb)-Sr-Ca-Cu-O - have been studied extensively. Deformation tests have been performed on YBa 2 Cu 3 O x (Y-123), YBa 2 Cu 4 O x (Y-124), TlBa 2 Ca 2 Cu 3 O x (Bi-2223). The tests have revealed that plasticity is generally limited in these compounds and that the rate-controlling diffusional kinetics for creep are very slow. Nevertheless, hot forming has proved to be quite successful for fabrication of bulk high-temperature superconductors, so long as deformation rates are low or large hydrostatic stresses are applied. Steady-state creep data have proved to be useful in designing optimal heat treatments for superconductors and in support of more-fundamental diffusion experiments. The high-temperature superconductors are highly complex oxides, and it is a challenge to understand their deformation responses. In this paper, results of interest and operant creep mechanisms will be reviewed

  16. EPR spectrometry of high temperature superconductors with temperature modulation

    International Nuclear Information System (INIS)

    Aliev, M.K.; Alimov, G.R.; Muminov, T.M.; Olimov, B.; Sokolov, B.Yh.; Usmanov, R.R.; Kholbaev, I.

    1996-01-01

    The system of thermoregulation through light beam within the temperature range of 77 -2 - 10 -1 K. The root-square temperature instability during 5 minutes does not exceed 0.06 K; the temperature gradient in the sample is approximately 0.01 K/mm by T ∼ 90 K. 10 refs., 2 figs

  17. Nontrivial center dominance in high temperature QCD

    Science.gov (United States)

    Ishikawa, K.-I.; Iwasaki, Y.; Nakayama, Yu; Yoshie, T.

    2016-07-01

    We investigate the properties of quarks and gluons above the chiral phase transition temperature Tc, using the renormalization group (RG) improved gauge action and the Wilson quark action with two degenerate quarks mainly on a 323 × 16 lattice. In the one-loop perturbation theory, the thermal ensemble is dominated by the gauge configurations with effectively Z(3) center twisted boundary conditions, making the thermal expectation value of the spatial Polyakov loop take a nontrivial Z(3) center. This is in agreement with our lattice simulation of high temperature quantum chromodynamics (QCD). We further observe that the temporal propagator of massless quarks at extremely high temperature β = 100.0(T ≃ 1058T c) remarkably agrees with the temporal propagator of free quarks with the Z(3) twisted boundary condition for t/Lt ≥ 0.2, but differs from that with the Z(3) trivial boundary condition. As we increase the mass of quarks mq, we find that the thermal ensemble continues to be dominated by the Z(3) twisted gauge field configurations as long as mq ≤ 3.0T and above that the Z(3) trivial configurations come in. The transition is similar to what we found in the departure from the conformal region in the zero-temperature many-flavor conformal QCD on a finite lattice by increasing the mass of quarks.

  18. High temperature cogeneration with thermionic burners

    Science.gov (United States)

    Fitzpatrick, G. O.; Britt, E. J.; Dick, R. S.

    The thermionic cogeneration combustor was conceived to meet industrial requirements for high-temperature direct heat, typically in the form of gas at temperatures from 800 to 1900 K, while at the same time supplying electricity. The thermionic combustor is entirely self-contained, with heat from the combustion region absorbed by the emitters of thermionic converters to be converted to electric power and the high-temperature reject heat from the converters used to preheat the air used for combustion. Depending on the temperature of the process gas produced, energy savings of around 10% with respect to that used to produce the same amount of electricity and heat without cogeneration are possible with present technology, and savings of up to 20% may be possible with advanced converters. Possible thermionic combustor designs currently under investigation include a configuration in which heat is collected by heat pipes lining the periphery of the combustion region, and a fire-tube converter in which combustion occurs within the cylindrical emitter of each converter. Preliminary component tests of these designs have been encouraging.

  19. Discovery of a Highly Unequal-mass Binary T Dwarf with Keck Laser Guide Star Adaptive Optics: A Coevality Test of Substellar Theoretical Models and Effective Temperatures

    Science.gov (United States)

    Liu, Michael C.; Dupuy, Trent J.; Leggett, S. K.

    2010-10-01

    Highly unequal-mass ratio binaries are rare among field brown dwarfs, with the mass ratio distribution of the known census described by q (4.9±0.7). However, such systems enable a unique test of the joint accuracy of evolutionary and atmospheric models, under the constraint of coevality for the individual components (the "isochrone test"). We carry out this test using two of the most extreme field substellar binaries currently known, the T1 + T6 epsilon Ind Bab binary and a newly discovered 0farcs14 T2.0 + T7.5 binary, 2MASS J12095613-1004008AB, identified with Keck laser guide star adaptive optics. The latter is the most extreme tight binary resolved to date (q ≈ 0.5). Based on the locations of the binary components on the Hertzsprung-Russell (H-R) diagram, current models successfully indicate that these two systems are coeval, with internal age differences of log(age) = -0.8 ± 1.3(-1.0+1.2 -1.3) dex and 0.5+0.4 -0.3(0.3+0.3 -0.4) dex for 2MASS J1209-1004AB and epsilon Ind Bab, respectively, as inferred from the Lyon (Tucson) models. However, the total mass of epsilon Ind Bab derived from the H-R diagram (≈ 80 M Jup using the Lyon models) is strongly discrepant with the reported dynamical mass. This problem, which is independent of the assumed age of the epsilon Ind Bab system, can be explained by a ≈ 50-100 K systematic error in the model atmosphere fitting, indicating slightly warmer temperatures for both components; bringing the mass determinations from the H-R diagram and the visual orbit into consistency leads to an inferred age of ≈ 6 Gyr for epsilon Ind Bab, older than previously assumed. Overall, the two T dwarf binaries studied here, along with recent results from T dwarfs in age and mass benchmark systems, yield evidence for small (≈100 K) errors in the evolutionary models and/or model atmospheres, but not significantly larger. Future parallax, resolved spectroscopy, and dynamical mass measurements for 2MASS J1209-1004AB will enable a more

  20. High Temperature Phenomena in Shock Waves

    CERN Document Server

    2012-01-01

    The high temperatures generated in gases by shock waves give rise to physical and chemical phenomena such as molecular vibrational excitation, dissociation, ionization, chemical reactions and inherently related radiation. In continuum regime, these processes start from the wave front, so that generally the gaseous media behind shock waves may be in a thermodynamic and chemical non-equilibrium state. This book presents the state of knowledge of these phenomena. Thus, the thermodynamic properties of high temperature gases, including the plasma state are described, as well as the kinetics of the various chemical phenomena cited above. Numerous results of measurement and computation of vibrational relaxation times, dissociation and reaction rate constants are given, and various ionization and radiative mechanisms and processes are presented. The coupling between these different phenomena is taken into account as well as their interaction with the flow-field. Particular points such as the case of rarefied flows an...

  1. Atomic processes in high temperature plasmas

    International Nuclear Information System (INIS)

    Hahn, Y.

    1990-03-01

    Much theoretical and experimental efforts have been expended in recent years to study those atomic processes which are specially relevant to understanding high temperature laboratory plasmas. For magnetically confined fusion plasmas, the temperature range of interest spans from the hundreds of eV at plasma edges to 10 keV at the center of the plasma, where most of the impurity ions are nearly fully ionized. These highly stripped ions interact strongly with electrons in the plasma, leading to further excitation and ionization of the ions, as well as electron capture. Radiations are emitted during these processes, which easily escape to plasma container walls, thus cooling the plasma. One of the dominant modes of radiation emission has been identified with dielectronic recombination. This paper reviews this work

  2. High temperature gas cooled nuclear reactor

    International Nuclear Information System (INIS)

    Hosegood, S.B.; Lockett, G.E.

    1975-01-01

    For high-temperature gas cooled reactors it is considered advantageous to design the core so that the moderator blocks can be removed and replaced by some means of standpipes normally situated in the top of the reactor vessel. An arrangement is here described to facilitate these operations. The blocks have end faces shaped as irregular hexagons with three long sides of equal length and three short sides also of equal length, one short side being located between each pair of adjacent long sides, and the long sides being inclined towards one another at 60 0 . The block defines a number of coolant channels located parallel to its sides. Application of the arrangement to a high temperature gas-cooled reactor with refuelling standpipes is described. The standpipes are located in the top of the reactor vessel above the tops of the columns and are disposed coaxially above the hexagonal channels, with diameters that allow the passage of the blocks. (U.K.)

  3. Trends in Surface Temperature at High Latitudes

    Science.gov (United States)

    Comiso, Josefino C.

    2012-01-01

    The earliest signal of a climate change is expected to be found in the polar regions where warming is expected to be amplified on account of ice-albedo feedbacks associated with the high reflectivity of snow and ice. Because of general inaccessibility, there is a general paucity of in situ data and hence the need to use satellite data to observe the large-scale variability and trends in surface temperature in the region. Among the most important sensors for monitoring surface temperature has been the Advanced Very High Resolution Radiometer (AVHRR) which was first launched in 1978 and has provided continuous thermal infrared data since 1981. The top of the atmosphere data are converted to surface temperature data through various schemes that accounts for the unique atmospheric and surface conditions in the polar regions. Among the highest source of error in the data is cloud masking which is made more difficult in the polar region because of similar Signatures of clouds and snow lice covered areas. The availability of many more channels in the Moderate Resolution Imaging Spectroradiometer (MODIS) launched on board Terra satellite in December 1999 and on board Aqua in May 2002 (e.g., 36 visible and infrared channels compared to 5 for AVHRR) made it possible to minimize the error. Further capabilities were introduced with the Advanced Microwave Scanning Radiometer (AMSR) which has the appropriate frequency channels for the retrieval of sea surface temperature (SST). The results of analysis of the data show an amplified warming in the Arctic region, compared with global warming. The spatial distribution of warming is, however, not uniform and during the last 3 decades, positive temperature anomalies have been most pronounced in North America, Greenland and the Arctic basin. Some regions of the Arctic such as Siberia and the Bering Sea surprisingly show moderate cooling but this may be because these regions were anomalously warm in the 1980s when the satellite record

  4. Intermetallic-Based High-Temperature Materials

    Energy Technology Data Exchange (ETDEWEB)

    Sikka, V.K.

    1999-04-25

    The intermetallic-based alloys for high-temperature applications are introduced. General characteristics of intermetallics are followed by identification of nickel and iron aluminides as the most practical alloys for commercial applications. An overview of the alloy compositions, melting processes, and mechanical properties for nickel and iron aluminizes are presented. The current applications and commercial producers of nickel and iron aluminizes are given. A brief description of the future prospects of intermetallic-based alloys is also given.

  5. Passivation Of High-Temperature Superconductors

    Science.gov (United States)

    Vasquez, Richard P.

    1991-01-01

    Surfaces of high-temperature superconductors passivated with native iodides, sulfides, or sulfates formed by chemical treatments after superconductors grown. Passivating compounds nearly insoluble in and unreactive with water and protect underlying superconductors from effects of moisture. Layers of cuprous iodide and of barium sulfate grown. Other candidate passivating surface films: iodides and sulfides of bismuth, strontium, and thallium. Other proposed techniques for formation of passivating layers include deposition and gas-phase reaction.

  6. High Temperature Dimensional Reduction and Parity Violation

    CERN Document Server

    Kajantie, Keijo; Rummukainen, K; Shaposhnikov, Mikhail E

    1998-01-01

    The effective super-renormalizable 3-dimensional Lagrangian, describing the high temperature limit of chiral gauge theories, has more symmetry than the original 4d Lagrangian: parity violation is absent. Parity violation appears in the 3d theory only through higher-dimensional operators. We compute the coefficients of dominant P-odd operators in the Standard Electroweak theory and discuss their implications. We also clarify the parametric accuracy obtained with dimensional reduction.

  7. The battle of High Temperature Superconductivity

    OpenAIRE

    Lederer, Pascal

    2015-01-01

    The early development of conflicting theories about the microscopic mechanism of High Temperature Superconductivity is described. The biographical roots of this diversity are stressed, as well as its subjective/objective roots. This study of a specific case of knowledge about a specific fact of nature allows to discuss the subjective and objective roots of scientific pluralism. Relativism, the Duhem-Quine thesis on the underdetermination of theory by facts, are discussed from the stand point ...

  8. High Temperature Perforating System for Geothermal Applications

    Energy Technology Data Exchange (ETDEWEB)

    Smart, Moises E. [Schlumberger Technology Corporation, Sugar Land, TX (United States)

    2017-02-28

    The objective of this project is to develop a perforating system consisting of all the explosive components and hardware, capable of reliable performance in high temperatures geothermal wells (>200 ºC). In this light we will focused on engineering development of these components, characterization of the explosive raw powder and developing the internal infrastructure to increase the production of the explosive from laboratory scale to industrial scale.

  9. Temperature Buffer Test. Final THM modelling

    Energy Technology Data Exchange (ETDEWEB)

    Aakesson, Mattias; Malmberg, Daniel; Boergesson, Lennart; Hernelind, Jan [Clay Technology AB, Lund (Sweden); Ledesma, Alberto; Jacinto, Abel [UPC, Universitat Politecnica de Catalunya, Barcelona (Spain)

    2012-01-15

    The Temperature Buffer Test (TBT) is a joint project between SKB/ANDRA and supported by ENRESA (modelling) and DBE (instrumentation), which aims at improving the understanding and to model the thermo-hydro-mechanical behavior of buffers made of swelling clay submitted to high temperatures (over 100 deg C) during the water saturation process. The test has been carried out in a KBS-3 deposition hole at Aespoe HRL. It was installed during the spring of 2003. Two heaters (3 m long, 0.6 m diameter) and two buffer arrangements have been investigated: the lower heater was surrounded by bentonite only, whereas the upper heater was surrounded by a composite barrier, with a sand shield between the heater and the bentonite. The test was dismantled and sampled during the winter of 2009/2010. This report presents the final THM modelling which was resumed subsequent to the dismantling operation. The main part of this work has been numerical modelling of the field test. Three different modelling teams have presented several model cases for different geometries and different degree of process complexity. Two different numerical codes, Code{sub B}right and Abaqus, have been used. The modelling performed by UPC-Cimne using Code{sub B}right, has been divided in three subtasks: i) analysis of the response observed in the lower part of the test, by inclusion of a number of considerations: (a) the use of the Barcelona Expansive Model for MX-80 bentonite; (b) updated parameters in the vapour diffusive flow term; (c) the use of a non-conventional water retention curve for MX-80 at high temperature; ii) assessment of a possible relation between the cracks observed in the bentonite blocks in the upper part of TBT, and the cycles of suction and stresses registered in that zone at the start of the experiment; and iii) analysis of the performance, observations and interpretation of the entire test. It was however not possible to carry out a full THM analysis until the end of the test due to

  10. Temperature Buffer Test. Final THM modelling

    International Nuclear Information System (INIS)

    Aakesson, Mattias; Malmberg, Daniel; Boergesson, Lennart; Hernelind, Jan; Ledesma, Alberto; Jacinto, Abel

    2012-01-01

    The Temperature Buffer Test (TBT) is a joint project between SKB/ANDRA and supported by ENRESA (modelling) and DBE (instrumentation), which aims at improving the understanding and to model the thermo-hydro-mechanical behavior of buffers made of swelling clay submitted to high temperatures (over 100 deg C) during the water saturation process. The test has been carried out in a KBS-3 deposition hole at Aespoe HRL. It was installed during the spring of 2003. Two heaters (3 m long, 0.6 m diameter) and two buffer arrangements have been investigated: the lower heater was surrounded by bentonite only, whereas the upper heater was surrounded by a composite barrier, with a sand shield between the heater and the bentonite. The test was dismantled and sampled during the winter of 2009/2010. This report presents the final THM modelling which was resumed subsequent to the dismantling operation. The main part of this work has been numerical modelling of the field test. Three different modelling teams have presented several model cases for different geometries and different degree of process complexity. Two different numerical codes, Code B right and Abaqus, have been used. The modelling performed by UPC-Cimne using Code B right, has been divided in three subtasks: i) analysis of the response observed in the lower part of the test, by inclusion of a number of considerations: (a) the use of the Barcelona Expansive Model for MX-80 bentonite; (b) updated parameters in the vapour diffusive flow term; (c) the use of a non-conventional water retention curve for MX-80 at high temperature; ii) assessment of a possible relation between the cracks observed in the bentonite blocks in the upper part of TBT, and the cycles of suction and stresses registered in that zone at the start of the experiment; and iii) analysis of the performance, observations and interpretation of the entire test. It was however not possible to carry out a full THM analysis until the end of the test due to

  11. Very High Temperature Sound Absorption Coating, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Phase I demonstrated experimentally a very high temperature acoustically absorbing coating for ducted acoustics applications. High temperature survivability at 3500...

  12. High temperature and pressure alkaline electrolysis

    DEFF Research Database (Denmark)

    Allebrod, Frank; Chatzichristodoulou, Christodoulos; Mogensen, Mogens Bjerg

    2013-01-01

    and pressures. Two measurement systems were built to perform measurements under high pressures and at elevated temperatures of up to 95 bar and 250 °C, respectively. The conductivity of aqueous KOH and aqueous KOH immobilized in a porous SrTiO3 structure were investigated at elevated temperatures and high...... concentrations of the electrolyte using the van der Pauw method in combination with electrochemical impedance spectroscopy (EIS). Conductivity values as high as 2.9 S cm-1 for 45 wt% KOH aqueous KOH and 0.84 S cm-1 for the immobilized KOH of the same concentration were measured at 200 °C. Porous SrTiO3 was used...... for immobilization of aqueous KOH solutions. Electrolysis cells with this electrolyte and metal foam based gas diffusion electrodes were successfully demonstrated at temperatures up to 250 °C at 40 bar. Different electro-catalysts were tested in order to reduce the oxygen and hydrogen overpotentials. Current...

  13. Elasticity of fluorite at high temperatures

    Science.gov (United States)

    Eke, J.; Tennakoon, S.; Mookherjee, M.

    2017-12-01

    Fluorite (CaF2) is a simple halide with cubic space group symmetry (Fm-3m) and is often used as an internal pressure calibrant in moderate high-pressure/high-temperature experiments [1]. In order to gain insight into the elastic behavior of fluorite, we have conducted Resonant Ultrasound Spectroscopy (RUS) on a single crystal of fluorite with rectangular parallelepiped geometry. Using single crystal X-ray diffraction, we aligned the edges of the rectangular parallelepiped with [-1 1 1], [-1 1 -2], and [-1 -1 0] crystallographic directions. We conducted the RUS measurements up to 620 K. RUS spectra are influenced by the geometry, density, and the full elastic moduli tensor of the material. In our high-temperature RUS experiments, the geometry and density were constrained using thermal expansion from previous studies [2]. We determined the elasticity by minimizing the difference between observed resonance and calculated Eigen frequency using Rayleigh-Ritz method [3]. We found that at room temperature, the single crystal elastic moduli for fluorite are 170, 49, and 33 GPa for C11, C12, and C44 respectively. At room temperatures, the aggregate bulk modulus (K) is 90 GPa and the shear modulus (G) is 43 GPa. We note that the elastic moduli and sound wave velocities decrease linearly as a function of temperature with dVP /dT and dVS /dT being -9.6 ×10-4 and -5.0 ×10-4 km/s/K respectively. Our high-temperature RUS results are in good agreement with previous studies on fluorite using both Ultrasonic methods and Brillouin scattering [4,5]. Acknowledgement: This study is supported by US NSF awards EAR-1639552 and EAR-1634422. References: [1] Speziale, S., Duffy, T. S. 2002, Phys. Chem. Miner., 29, 465-472; [2] Roberts, R. B., White, G. K., 1986, J. Phys. C: Solid State Phys., 19, 7167-7172. [3] Migliori, A., Maynard, J. D., 2005, Rev. Sci. Instrum., 76, 121301. [4] Catlow, C. R. A., Comins, J. D., Germano, F. A., Harley, R. T., Hayes, W., 1978, J. Phys. C Solid State Phys

  14. Study on a transient optical fiber high temperature measurement system

    Science.gov (United States)

    Cai, Lulu; Liu, Yusha; Wang, Yutian

    2009-07-01

    High temperature is one of the most important parameters in the fields of scientific research and industrial production. At present, thermocouple, thermo resistive and radiance thermometer are already technologically mature which can be adopted to measure the general temperature, but when it comes to the transient high temperature that changes pretty quickly in wretched conditions, those traditional pyrometers can not meet the requirements any more. In this paper, we designed a transient optical high temperature measurement system. First, design of the temperature measurement probe. The system took blackbody cavity sensor together with optical fiber to receive the measured signal, here, the integrated emissivity model of the blackbody cavity was established and the optimum structure parameters were confirmed. Secondly, design of the entire temperature measurement system. A contact-noncontact measurement method was applied, which is to make the blackbody cavity and the measured high-temperature source contact, the fiber probe and the blackbody cavity noncontact, as a result, the error caused by contact measurement is overcame and the precision is guaranteed at the same time. In addition, a fiber grating was introduced as the wavelength filter device which can realize the dynamic filter of narrow-band signals and reduce the impact of background light. Thirdly, signal processing. In this part, we applied labVIEW software and wavelet analysis method. All of the signal acquisition and processing were realized in the labVIEW environment. Through calling matlab in labVIEW, the signals from optical fiber detector were wavelet denoised and decomposed, thus the temperature information was extracted, and the temperature value was obtained. On basis of wavelet transformation, the paper adopted the 4dB wavelet with horizontal scale of 5 to realize the feature extraction and noise removal, parts of the signals before and after the wavelet noise removal were given and analyzed

  15. High Temperature Falling Particle Receiver (2012 - 2016) - Final DOE Report

    Energy Technology Data Exchange (ETDEWEB)

    Ho, Clifford K. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-04-15

    The objective of this work was to advance falling particle receiver designs for concentrating solar power applications that will enable higher temperatures (>700 °C) and greater power-cycle efficiencies (≥50% thermal-to-electric). Modeling, design, and testing of components in Phases 1 and 2 led to the successful on-sun demonstration in Phase 3 of the world’s first continuously recirculating high-temperature 1 MWt falling particle receiver that achieved >700 °C particle outlet temperatures at mass flow rates ranging from 1 – 7 kg/s.

  16. Temperature stochastic modeling and weather derivatives pricing ...

    African Journals Online (AJOL)

    ... over a sufficient period to apply a stochastic process that describes the evolution of the temperature. A numerical example of a swap contract pricing is presented, using an approximation formula as well as Monte Carlo simulations. Keywords: Weather derivatives, temperature stochastic model, Monte Carlo simulation.

  17. Permeability and reactivity of Thermotoga maritima in latex bimodal blend coatings at 80 degrees C: a model high temperature biocatalytic coating.

    Science.gov (United States)

    Lyngberg, Olav K; Solheid, Chris; Charaniya, Salim; Ma, Yue; Thiagarajan, Venkata; Scriven, L E; Flickinger, Michael C

    2005-06-01

    Thermostable polymers cast as thin, porous coatings or membranes may be useful for concentrating and stabilizing hyperthermophilic microorganisms as biocatalysts. Hydrogel matrices can be unstable above 65 degrees C. Therefore a 55-microm thick, two layer (cell coat + polymer top coat) bimodal, adhesive latex coating of partially coalesced polystyrene particles was investigated at 80 degrees C using Thermotoga maritima as a model hyperthermophile. Coating permeability (pore structure) was critical for maintaining T. maritima viability. The permeability of bimodal coatings generated from 0.8 v/v of a suspension of non-film-forming 800 nm polystyrene particles with high glass transition temperature (T(g) = 94 degrees C, 26.9% total solids) blended with 0.2 v/v of a suspension of film-forming 158 nm polyacrylate/styrene particles (T(g) approximately -5 degrees C, 40.9% total solids) with 0.3 g sucrose/g latex was measured in a KNO3 diffusion cell. Diffusivity ratio remained above 0.04 (D(eff)/D) when incubated at 80 degrees C in artificial seawater (ASW) for 5 days. KNO3 permeability was corroborated by cryogenic-SEM images of the pore structure. In contrast, the permeability of a mono-dispersed acrylate/vinyl acetate latex Rovace SF091 (T(g) approximately 10 degrees C) rapidly decreased and became impermeable after 2 days incubation in ASW at 80 degrees C. Thermotoga maritima were entrapped in these coatings at a cell density of 49 g cell wet weight/liter of coating volume, 25-fold higher than the density in liquid culture. Viable T. maritima were released from single-layer coatings at 80 degrees C but accurate measurement of the percentage of viable entrapped cells by plate counting was not successful. Metabolic activity could be measured in bilayer coatings by utilization of glucose and maltose, which was identical for latex-entrapped and suspended cells. Starch was hydrolyzed for 200 h by latex-entrapped cells due to the slow diffusion of starch through the

  18. Water temperature modeling in the Garonne River (France

    Directory of Open Access Journals (Sweden)

    Larnier K.

    2010-10-01

    Full Text Available Stream water temperature is one of the most important parameters for water quality and ecosystem studies. Temperature can influence many chemical and biological processes and therefore impacts on the living conditions and distribution of aquatic ecosystems. Simplified models such as statistical models can be very useful for practitioners and water resource management. The present study assessed two statistical models – an equilibrium-based model and stochastic autoregressive model with exogenous inputs – in modeling daily mean water temperatures in the Garonne River from 1988 to 2005. The equilibrium temperature-based model is an approach where net heat flux at the water surface is expressed as a simpler form than in traditional deterministic models. The stochastic autoregressive model with exogenous inputs consists of decomposing the water temperature time series into a seasonal component and a short-term component (residual component. The seasonal component was modeled by Fourier series and residuals by a second-order autoregressive process (Markov chain with use of short-term air temperatures as exogenous input. The models were calibrated using data of the first half of the period 1988–2005 and validated on the second half. Calibration of the models was done using temperatures above 20 °C only to ensure better prediction of high temperatures that are currently at stake for the aquatic conditions of the Garonne River, and particularly for freshwater migrating fishes such as Atlantic Salmon (Salmo salar L.. The results obtained for both approaches indicated that both models performed well with an average root mean square error for observed temperatures above 20 °C that varied on an annual basis from 0.55 °C to 1.72 °C on validation, and good predictions of temporal occurrences and durations of three temperature threshold crossings linked to the conditions of migration and survival of Atlantic Salmon.

  19. High Temperature VARTM of Phenylethynyl Terminated Imides

    Science.gov (United States)

    Cano, Roberto J.; Britton, Sean M.; Jensen, Brian J.; Connell, John W.; Herring, Helen M.; Linberry, Quentin J.; Ghose, Sayata; Watson, Kent A.

    2009-01-01

    Fabrication of composite structures using vacuum assisted resin transfer molding (VARTM) is generally more affordable than conventional autoclave techniques. Recent efforts have focused on adapting VARTM for the fabrication of high temperature composites. Due to their low melt viscosity and long melt stability, certain phenylethynyl terminated imides (PETI) can be processed into composites using high temperature VARTM (HT-VARTM). However, one of the disadvantages of the current HT-VARTM resin systems has been the high porosity of the resultant composites. For aerospace applications, the desired void fraction of less than 2% has not yet been achieved. In the current study, two PETI resins, LaRC PETI-330 and LaRC PETI-8 have been used to make test specimens using HT-VARTM. The resins were infused into ten layers of IM7-6K carbon fiber 5-harness satin fabric at 260 C or 280 C and cured at 371 C. Initial runs yielded composites with high void content, typically greater than 7% by weight. A thermogravimetric-mass spectroscopic study was conducted to determine the source of volatiles leading to high porosity. It was determined that under the thermal cycle used for laminate fabrication, the phenylethynyl endcap was undergoing degradation leading to volatile evolution. By modifying the thermal cycle used in laminate fabrication, the void content was reduced significantly (typically approximately 3%). Densities of the composites were determined using a density gradient column and the glass transition temperatures of the cured composites were measured by dynamic mechanical analysis. Photomicrographs of the panels were taken and void contents were determined by acid digestion. The results of this work are presented herein.

  20. High-temperature brushless DC motor controller

    Science.gov (United States)

    Cieslewski, Crzegorz; Lindblom, Scott C.; Maldonado, Frank J.; Eckert, Michael Nathan

    2017-05-16

    A motor control system for deployment in high temperature environments includes a controller; a first half-bridge circuit that includes a first high-side switching element and a first low-side switching element; a second half-bridge circuit that includes a second high-side switching element and a second low-side switching element; and a third half-bridge circuit that includes a third high-side switching element and a third; low-side switching element. The motor controller is arranged to apply a pulse width modulation (PWM) scheme to switch the first half-bridge circuit, second half-bridge circuit, and third half-bridge circuit to power a motor.

  1. Microstructural Evolution and Mechanical Behavior of High Temperature Solders: Effects of High Temperature Aging

    Science.gov (United States)

    Hasnine, M.; Tolla, B.; Vahora, N.

    2018-04-01

    This paper explores the effects of aging on the mechanical behavior, microstructure evolution and IMC formation on different surface finishes of two high temperature solders, Sn-5 wt.% Ag and Sn-5 wt.% Sb. High temperature aging showed significant degradation of Sn-5 wt.% Ag solder hardness (34%) while aging has little effect on Sn-5 wt.% Sb solder. Sn-5 wt.% Ag experienced rapid grain growth as well as the coarsening of particles during aging. Sn-5 wt.% Sb showed a stable microstructure due to solid solution strengthening and the stable nature of SnSb precipitates. The increase of intermetallic compound (IMC) thickness during aging follows a parabolic relationship with time. Regression analysis (time exponent, n) indicated that IMC growth kinetics is controlled by a diffusion mechanism. The results have important implications in the selection of high temperature solders used in high temperature applications.

  2. The behaviour of concrete at high temperatures and triaxial stress - FE model based on the concrete structure; Betonverhalten bei hohen Temperaturen und triaxialer Beanspruchung - FE-Modell auf der Basis der Betonstruktur

    Energy Technology Data Exchange (ETDEWEB)

    Ameler, J.

    1997-12-31

    In this work, an analytical material model was developed, based on the finite element (FE) method, with which the material behaviour of a normal quartzite concrete under temperature stress can be described. Starting from natural fires, the short term area and temperatures between the normal temperature and about 800 C are of special interest. Altogether, it was found that important processes reducing the strength, which occur in high temperature stresses of concrete, can be directly traced back to the additive or the mortar phase, while others are due to the interaction between the two partners. In this attempted model, the compound material concrete is therefore regarded as a system consisting of two components, the additive and the mortar matrix. The mortar matrix is defined as the part consisting of the cement, the water and the fine proportion of the additive (diameter{<=}4 mm). (orig./MM) [Deutsch] In der vorliegenden Arbeit wurde ein analytisches Werkstoffmodell auf der Basis der FE-Methode entwickelt, mit dem das Werkstoffverhalten eines quarzitischen Normalbetons unter einer Temperaturbeanspruchung beschrieben werden kann. Ausgehend vom natuerlichen Brandgeschehen, interessieren besonders der Kurzzeitbereich und Temperaturen zwischen Normaltemperatur und ca. 800 C. In der Summe zeichnet sich ab, dass wesentliche festigkeitsmindernde Prozesse, die sich bei einer Hochtemperaturbeanspruchung von Beton abspielen, direkt dem Zuschlag bzw. der Moertelphase zugeordnet werden koennen, waehrend andere auf die Interaktion zwischen den beiden Partnern zurueckzufuehren sind. Im vorliegenden Modellansatz wird der Verbundwerkstoff Beton deshalb als ein aus zwei Komponenten bestehendes System betrachtet, dem Zuschlag und der Moertelmatrix. Die Moertelmatrix wird als der aus dem Zement, dem Wasser und dem Feinanteil des Zuschlags (Durchmesser{<=}4 mm) zusammengesetzte Teil definiert. (orig./MM)

  3. Development of Very High Temperature Reactor Technology

    International Nuclear Information System (INIS)

    Lee, Won Jae; Noh, J. M.; Kim, Y. H.

    2009-04-01

    For an efficient production of nuclear hydrogen, the VHTR (Very High Temperature Gas-cooled Reactor) of 950 .deg. C outlet temperature and the interfacing system for the hydrogen production are required. We have developed various evaluation technologies for the performance and safety of VHTR through the accomplishment of this project. First, to evaluate the performance of VHTR, a series of analyses has been performed such as core characteristics at 950 .deg. C, applicability of cooled-vessel, intermediate loop system and high temperature structural integrity. Through the analyses of major accidents such as HPCC and LPCC and the analysis of the risk/performance-informed method, VHTR safety evaluation has been also performed. In addition, various design analysis codes have been developed for a nuclear design, system loop design, system performance analysis, air-ingress accident analysis, fission product/tritium transport analysis, graphite structure seismic analysis and hydrogen explosion analysis, and they are being verified and validated through a lot of international collaborations

  4. Isotopic effect in high temperature superconductors

    International Nuclear Information System (INIS)

    Ohno, Takashi

    2000-01-01

    It is well-known that it essentially contributed to construct the BCB theory that a mechanism on formation of the Cooper pairs was dependent upon a lattice oscillation to change a critical temperature, T(sub c) of a superconductor with isotopic displacement. In this paper, here was, at first, described on an isotopic index actually measured to high temperature superconductors, and was introduced on a study on selective displacement of oxygen position. And then, a detailed measurement of 63-Cu(2) nuclear quadrupole resonance (NQR) at a plane position of YBa2Cu4O8 (Y1248) displaced with 18-O and 16-O, discussion of the isotopic effect on a base of 63-Cu(2) nuclear spin-lattice relaxation ratio, and consideration on the isotopic index according to the isotopic effect were described. As a result of the considerations, it could be concluded that the isotopic effect in a high temperature superconductor proved that antiferromagnetic spin fluctuation was an origin of Cooper pairs cohesive strength. (G.K.)

  5. Oxidation behavior of rhenium at high temperatures

    International Nuclear Information System (INIS)

    Chou, T.C.; Joshi, A.; Packer, C.M.

    1993-01-01

    Oxidation of polycrystalline Re has been studied at temperatures from 1,500 to 1,900 C. During oxidation volatile Re-oxides were emitted in the form of smoke and resulted in dramatic surface recessions of the samples. XRD analysis indicated that ReO 3 was the primary oxide present in the condensed vapor deposits. Preferential oxidation of Re, manifested by the formation of crystallographic facets, was noted on the oxidized surfaces. Etchpits and islands bounded by high-symmetry planes showing a 6-fold symmetry were formed thereon, suggesting that the kinetics of oxidation are slower on close-packed planes. It is demonstrated that surface recession rate, dR/dt, which is equivalent to weight change per unit area and time (dW/A·dt), can be used to characterize oxidation behavior. The overall surface recessions of both the PM-Re and CVD-Re generally increased with oxidation duration and temperature. The CVD-Re exhibits lower recession rates than the PM-Re in the temperature range examined, which is attributable to the stronger basal-plane texture and larger grain size of CVD-Re. Oxidation of PM-Re was observed to be anisotropic. At 1500 degree C, oxidation rates on the direction I (rolling plane) were higher. At higher temperatures (1,700 and 1,900 C), on the other hand, an opposite result was obtained. The differential oxidation rate of the PM-Re is suggested to originate from the synergistic effects of temperature-dependent oxidation behavior and basal-plane texture that have evolved during sample processing. This hypothesis is consistent with the fact that similar activation energies were obtained for the oxidation of CVD-Re and PM-Re (I)

  6. Temperature profiles in high gradient furnaces

    Science.gov (United States)

    Fripp, A. L.; Debnam, W. J.; Woodell, G. A.; Berry, R.; Crouch, R. K.; Sorokach, S. K.

    1989-01-01

    Accurate temperature measurement of the furnace environment is very important in both the science and technology of crystal growth as well as many other materials processing operations. A high degree of both accuracy and precision is acutely needed in the directional solidification of compound semiconductors in which the temperature profiles control the freezing isotherm which, in turn, affects the composition of the growth with a concomitant feedback perturbation on the temperature profile. Directional solidification requires a furnace configuration that will transport heat through the sample being grown. A common growth procedure is the Bridgman Stockbarger technique which basically consists of a hot zone and a cold zone separated by an insulator. In a normal growth procedure the material, contained in an ampoule, is melted in the hot zone and is then moved relative to the furnace toward the cold zone and solidification occurs in the insulated region. Since the primary path of heat between the hot and cold zones is through the sample, both axial and radial temperature gradients exist in the region of the growth interface. There is a need to know the temperature profile of the growth furnace with the crystal that is to be grown as the thermal load. However it is usually not feasible to insert thermocouples inside an ampoule and thermocouples attached to the outside wall of the ampoule have both a thermal and a mechanical contact problem as well as a view angle problem. The objective is to present a technique of calibrating a furnace with a thermal load that closely matches the sample to be grown and to describe procedures that circumvent both the thermal and mechanical contact problems.

  7. NOVEL REFRACTORY MATERIALS FOR HIGH ALKALI, HIGH TEMPERATURE ENVIRONMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Hemrick, James Gordon [ORNL; Smith, Jeffrey D [ORNL; O' Hara, Kelley [University of Missouri, Rolla; Rodrigues-Schroer, Angela [Minteq International, Inc.; Colavito, [Minteq International, Inc.

    2012-08-01

    A project was led by Oak Ridge National Laboratory (ORNL) in collaboration with a research team comprised of the academic institution Missouri University of Science and Technology (MS&T), and the industrial company MINTEQ International, Inc. (MINTEQ), along with representatives from the aluminum, chemical, glass, and forest products industries. The project was to address the need for new innovative refractory compositions by developing a family of novel MgO-Al 2O3, MgAl2O4, or other similar spinel structured or alumina-based unshaped refractory compositions (castables, gunnables, shotcretes, etc.) utilizing new aggregate materials, bond systems, protective coatings, and phase formation techniques (in-situ phase formation, altered conversion temperatures, accelerated reactions, etc). This family of refractory compositions would then be tailored for use in high-temperature, high-alkaline industrial environments like those found in the aluminum, chemical, forest products, glass, and steel industries. Both practical refractory development experience and computer modeling techniques were used to aid in the design of this new family of materials. The newly developed materials were expected to offer alternative material choices for high-temperature, high-alkali environments that were capable of operating at higher temperatures (goal of increasing operating temperature by 100-200oC depending on process) or for longer periods of time (goal of twice the life span of current materials or next process determined service increment). This would lead to less process down time, greater energy efficiency for associated manufacturing processes (more heat kept in process), and materials that could be installed/repaired in a more efficient manner. The overall project goal was a 5% improvement in energy efficiency (brought about through a 20% improvement in thermal efficiency) resulting in a savings of 3.7 TBtu/yr (7.2 billion ft3 natural gas) by the year 2030. Additionally, new

  8. Analytic representations of high-altitude auroral H^+ and O^+ densities, flow velocities and temperatures in terms of drivers for incorporation into global magnetospheric models

    Science.gov (United States)

    Horwitz, James; Zeng, Wen

    2008-10-01

    As new methods of describing multiple fluid species and other advances enhance the capability of global magnetospheric models to simulate the dynamics of multiple ion species, they also allow more accurate incorporation of ionospheric plasma outflows as source populations into these large scale models. Here, we shall describe the distilled results of numerous physics-based simulations of ionospheric plasma outflows influenced by auroral driving agents in terms of compact analytic expressions in terms of precipitation electron energy flux levels, characteristic energy levels of the precipitating electrons, the peak spectral wave densities for low-frequency electrostatic waves which transversely heat ionospheric ions, and solar zenith angle. The simulations are conducted with the UT Arlington Dynamic Fluid Kinetic (DyFK) ionospheric plasma transport code. We present these analytic expressions for ionospheric origin O^+ and H^+ densities, temperatures and field-aligned flow velocities at the 3 RE altitude inner boundaries of typical magnetospheric models.

  9. Creep resistant high temperature martensitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Hawk, Jeffrey A.; Jablonski, Paul D.; Cowen, Christopher J.

    2015-11-13

    The disclosure provides a creep resistant alloy having an overall composition comprised of iron, chromium, molybdenum, carbon, manganese, silicon, nickel, vanadium, niobium, nitrogen, tungsten, cobalt, tantalum, boron, and potentially additional elements. In an embodiment, the creep resistant alloy has a molybdenum equivalent Mo(eq) from 1.475 to 1.700 wt. % and a quantity (C+N) from 0.145 to 0.205. The overall composition ameliorates sources of microstructural instability such as coarsening of M.sub.23C.sub.6 carbides and MX precipitates, and mitigates or eliminates Laves and Z-phase formation. A creep resistant martensitic steel may be fabricated by preparing a melt comprised of the overall composition followed by at least austenizing and tempering. The creep resistant alloy exhibits improved high-temperature creep strength in the temperature environment of around 650.degree. C.

  10. Creep resistant high temperature martensitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Hawk, Jeffrey A.; Jablonski, Paul D.; Cowen, Christopher J.

    2017-01-31

    The disclosure provides a creep resistant alloy having an overall composition comprised of iron, chromium, molybdenum, carbon, manganese, silicon, nickel, vanadium, niobium, nitrogen, tungsten, cobalt, tantalum, boron, copper, and potentially additional elements. In an embodiment, the creep resistant alloy has a molybdenum equivalent Mo(eq) from 1.475 to 1.700 wt. % and a quantity (C+N) from 0.145 to 0.205. The overall composition ameliorates sources of microstructural instability such as coarsening of M.sub.23C.sub.6carbides and MX precipitates, and mitigates or eliminates Laves and Z-phase formation. A creep resistant martensitic steel may be fabricated by preparing a melt comprised of the overall composition followed by at least austenizing and tempering. The creep resistant alloy exhibits improved high-temperature creep strength in the temperature environment of around 650.degree. C.

  11. Permanent magnets composed of high temperature superconductors

    Science.gov (United States)

    Weinstein, Roy; Chen, In-Gann; Liu, Jay; Lau, Kwong

    1991-01-01

    A study of persistent, trapped magnetic field has been pursued with high-temperature superconducting (HTS) materials. The main effort is to study the feasibility of utilization of HTS to fabricate magnets for various devices. The trapped field, when not in saturation, is proportional to the applied field. Thus, it should be possible to replicate complicated field configurations with melt-textured YBa2Cu3O7 (MT-Y123) material, bypassing the need for HTS wires. Presently, materials have been developed from which magnets of 1.5 T, at 77 K, can be fabricated. Much higher field is available at lower operating temperature. Stability of a few percent per year is readily attainable. Results of studies on prototype motors and minimagnets are reported.

  12. FY16 ASME High Temperature Code Activities

    Energy Technology Data Exchange (ETDEWEB)

    Swindeman, M. J. [Chromtech Inc., Oak Ridge, TN (United States); Jetter, R. I. [R. I Jetter Consulting, Pebble Beach, CA (United States); Sham, T. -L. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-09-01

    One of the objectives of the ASME high temperature Code activities is to develop and validate both improvements and the basic features of Section III, Division 5, Subsection HB, Subpart B (HBB). The overall scope of this task is to develop a computer program to be used to assess whether or not a specific component under specified loading conditions will satisfy the elevated temperature design requirements for Class A components in Section III, Division 5, Subsection HB, Subpart B (HBB). There are many features and alternative paths of varying complexity in HBB. The initial focus of this task is a basic path through the various options for a single reference material, 316H stainless steel. However, the program will be structured for eventual incorporation all the features and permitted materials of HBB. Since this task has recently been initiated, this report focuses on the description of the initial path forward and an overall description of the approach to computer program development.

  13. Operator manual: high temperature heat pump

    Energy Technology Data Exchange (ETDEWEB)

    Dyer, D.F.; Maples, G.; Burch, T.E.; Chancellor, P.D.

    1980-03-04

    Experimental data is being obtained from operating a high temperature heat pump system. The use of methanol as a working fluid will necessitate careful monitoring of refrigerant temperatures and pressures with chemical analysis performed on the working fluid during scheduled down time. Materials sent to vendors by Auburn University and quotes received by Auburn concerning equipment (compressor, evaporator, condensor, air heater, dryer, two accumulator tanks, and three expansion valves) are discussed. The simulated dryer and two accumulator tanks were designed by Auburn. The detailed design and pricing estimates are included. Additional information is presented on layout and construction; start-up; testing; shut down; scheduled maintenance and inspection; safety precautions; control system; and trouble shooting.

  14. Air temperature variability in a high-elevation Himalayan catchment

    NARCIS (Netherlands)

    Heynen, Martin; Miles, Evan; Ragettli, Silvan; Buri, Pascal; Immerzeel, Walter W.; Pellicciotti, Francesca

    2016-01-01

    Air temperature is a key control of processes affecting snow and glaciers in high-elevation catchments, including melt, snowfall and sublimation. It is therefore a key input variable to models of land-surface-atmosphere interaction. Despite this importance, its spatial variability is poorly

  15. Measurements and Modeling of III-V Solar Cells at High Temperatures up to 400 ${}^{\\circ}$ C

    Energy Technology Data Exchange (ETDEWEB)

    Perl, Emmett E.; Simon, John; Geisz, John F.; Lee, Minjoo Larry; Friedman, Daniel J.; Steiner, Myles A.

    2016-09-01

    In this paper, we study the performance of 2.0 eV Al0.12Ga0.39In0.49P and 1.4 eV GaAs solar cells over a temperature range of 25-400 degrees C. The temperature-dependent J01 and J02 dark currents are extracted by fitting current-voltage measurements to a two-diode model. We find that the intrinsic carrier concentration ni dominates the temperature dependence of the dark currents, open-circuit voltage, and cell efficiency. To study the impact of temperature on the photocurrent and bandgap of the solar cells, we measure the quantum efficiency and illuminated current-voltage characteristics of the devices up to 400 degrees C. As the temperature is increased, we observe no degradation to the internal quantum efficiency and a decrease in the bandgap. These two factors drive an increase in the short-circuit current density at high temperatures. Finally, we measure the devices at concentrations ranging from ~30 to 1500 suns and observe n = 1 recombination characteristics across the entire temperature range. These findings should be a valuable guide to the design of any system that requires high-temperature solar cell operation.

  16. High-Temperature-High-Volume Lifting for Enhanced Geothermal Systems

    Energy Technology Data Exchange (ETDEWEB)

    Turnquist, Norman [GE Global Research, Munchen (Germany); Qi, Xuele [GE Global Research, Munchen (Germany); Raminosoa, Tsarafidy [GE Global Research, Munchen (Germany); Salas, Ken [GE Global Research, Munchen (Germany); Samudrala, Omprakash [GE Global Research, Munchen (Germany); Shah, Manoj [GE Global Research, Munchen (Germany); Van Dam, Jeremy [GE Global Research, Munchen (Germany); Yin, Weijun [GE Global Research, Munchen (Germany); Zia, Jalal [GE Global Research, Munchen (Germany)

    2013-12-20

    This report summarizes the progress made during the April 01, 2010 – December 30, 2013 period under Cooperative Agreement DE-EE0002752 for the U.S. Department of Energy entitled “High-Temperature-High-Volume Lifting for Enhanced Geothermal Systems.” The overall objective of this program is to advance the technology for well fluids lifting systems to meet the foreseeable pressure, temperature, and longevity needs of the Enhanced Geothermal Systems (EGS) industry for the coming ten years. In this program, lifting system requirements for EGS wells were established via consultation with industry experts and site visits. A number of artificial lift technologies were evaluated with regard to their applicability to EGS applications; it was determined that a system based on electric submersible pump (ESP) technology was best suited to EGS. Technical barriers were identified and a component-level technology development program was undertaken to address each barrier, with the most challenging being the development of a power-dense, small diameter motor that can operate reliably in a 300°C environment for up to three years. Some of the targeted individual component technologies include permanent magnet motor construction, high-temperature insulation, dielectrics, bearings, seals, thrust washers, and pump impellers/diffusers. Advances were also made in thermal management of electric motors. In addition to the overall system design for a full-scale EGS application, a subscale prototype was designed and fabricated. Like the full-scale design, the subscale prototype features a novel “flow-through-the-bore” permanent magnet electric motor that combines the use of high temperature materials with an internal cooling scheme that limits peak internal temperatures to <330°C. While the full-scale high-volume multi-stage pump is designed to lift up to 80 kg/s of process water, the subscale prototype is based on a production design that can pump 20 kg/s and has been modified

  17. Development of Meandering Winding Magnetometer (MWM (Register Trademark)) Eddy Current Sensors for the Health Monitoring, Modeling and Damage Detection of High Temperature Composite Materials

    Science.gov (United States)

    Russell, Richard; Washabaugh, Andy; Sheiretov, Yanko; Martin, Christopher; Goldfine, Neil

    2011-01-01

    The increased use of high-temperature composite materials in modern and next generation aircraft and spacecraft have led to the need for improved nondestructive evaluation and health monitoring techniques. Such technologies are desirable to improve quality control, damage detection, stress evaluation and temperature measurement capabilities. Novel eddy current sensors and sensor arrays, such as Meandering Winding Magnetometers (MWMs) have provided alternate or complimentary techniques to ultrasound and thermography for both nondestructive evaluation (NDE) and structural health monitoring (SHM). This includes imaging of composite material quality, damage detection and .the monitoring of fiber temperatures and multidirectional stresses. Historically, implementation of MWM technology for the inspection of the Space Shuttle Orbiter Reinforced Carbon-Carbon Composite (RCC) leading edge panels was developed by JENTEK Sensors and was subsequently transitioned by NASA as an operational pre and post flight in-situ inspection at the Kennedy Space Center. A manual scanner, which conformed'automatically to the curvature of the RCC panels was developed and used as a secondary technique if a defect was found during an infrared thermography screening, During a recent proof of concept study on composite overwrapped pressure vessels (COPV's), three different MWM sensors were tested at three orientations to demonstrate the ability of the technology to measure stresses at various fiber orientations and depths. These results showed excellent correlation with actual surface strain gage measurements. Recent advancements of this technology have been made applying MWM sensor technology for scanning COPVs for mechanical damage. This presentation will outline the recent advance in the MWM.technology and the development of MWM techniques for NDE and SHM of carbon wraped composite overwrapped pressure vessels (COPVs) including the measurement of internal stresses via a surface mounted sensor

  18. New Temperature-based Models for Predicting Global Solar Radiation

    International Nuclear Information System (INIS)

    Hassan, Gasser E.; Youssef, M. Elsayed; Mohamed, Zahraa E.; Ali, Mohamed A.; Hanafy, Ahmed A.

    2016-01-01

    Highlights: • New temperature-based models for estimating solar radiation are investigated. • The models are validated against 20-years measured data of global solar radiation. • The new temperature-based model shows the best performance for coastal sites. • The new temperature-based model is more accurate than the sunshine-based models. • The new model is highly applicable with weather temperature forecast techniques. - Abstract: This study presents new ambient-temperature-based models for estimating global solar radiation as alternatives to the widely used sunshine-based models owing to the unavailability of sunshine data at all locations around the world. Seventeen new temperature-based models are established, validated and compared with other three models proposed in the literature (the Annandale, Allen and Goodin models) to estimate the monthly average daily global solar radiation on a horizontal surface. These models are developed using a 20-year measured dataset of global solar radiation for the case study location (Lat. 30°51′N and long. 29°34′E), and then, the general formulae of the newly suggested models are examined for ten different locations around Egypt. Moreover, the local formulae for the models are established and validated for two coastal locations where the general formulae give inaccurate predictions. Mostly common statistical errors are utilized to evaluate the performance of these models and identify the most accurate model. The obtained results show that the local formula for the most accurate new model provides good predictions for global solar radiation at different locations, especially at coastal sites. Moreover, the local and general formulas of the most accurate temperature-based model also perform better than the two most accurate sunshine-based models from the literature. The quick and accurate estimations of the global solar radiation using this approach can be employed in the design and evaluation of performance for

  19. Model for the migration of the fission products along the coolant channels of a high temperature gas cooled reactor following a hypothetical accident of complete loss of cooling

    International Nuclear Information System (INIS)

    Dickey, J.M.

    1978-05-01

    Under the assumption that a nonmechanistic accident induces a condition such that it is not possible to cool the core of a high temperature gas cooled reactor, the temperature of the core will gradually rise due to decay heat. There are several barriers to the release of fission products to the environment: the fuel particle coatings, the graphite moderator, the prestressed concrete reactor vessel and the containment. A code, EVAP, has been written to calculate one stage in the release and migration of the fission products along the coolant channels. The calculations, using the code, are reported for 10 fission products, based on typical conditions which might occur in the course of the hypothetical accident. The sensitivity of the results to several important parameters is examined

  20. A Comparative Study on Johnson Cook, Modified Zerilli-Armstrong and Arrhenius-Type Constitutive Models to Predict High-Temperature Flow Behavior of Ti-6Al-4V Alloy in α + β Phase

    Science.gov (United States)

    Cai, Jun; Wang, Kuaishe; Han, Yingying

    2016-03-01

    True stress and true strain values obtained from isothermal compression tests over a wide temperature range from 1,073 to 1,323 K and a strain rate range from 0.001 to 1 s-1 were employed to establish the constitutive equations based on Johnson Cook, modified Zerilli-Armstrong (ZA) and strain-compensated Arrhenius-type models, respectively, to predict the high-temperature flow behavior of Ti-6Al-4V alloy in α + β phase. Furthermore, a comparative study has been made on the capability of the three models to represent the elevated temperature flow behavior of Ti-6Al-4V alloy. Suitability of the three models was evaluated by comparing both the correlation coefficient R and the average absolute relative error (AARE). The results showed that the Johnson Cook model is inadequate to provide good description of flow behavior of Ti-6Al-4V alloy in α + β phase domain, while the predicted values of modified ZA model and the strain-compensated Arrhenius-type model could agree well with the experimental values except under some deformation conditions. Meanwhile, the modified ZA model could track the deformation behavior more accurately than other model throughout the entire temperature and strain rate range.

  1. Piezoelectricity above the Curie temperature? Combining flexoelectricity and functional grading to enable high-temperature electromechanical coupling

    International Nuclear Information System (INIS)

    Mbarki, R.; Baccam, N.; Dayal, Kaushik; Sharma, P.

    2014-01-01

    Most technologically relevant ferroelectrics typically lose piezoelectricity above the Curie temperature. This limits their use to relatively low temperatures. In this Letter, exploiting a combination of flexoelectricity and simple functional grading, we propose a strategy for high-temperature electromechanical coupling in a standard thin film configuration. We use continuum modeling to quantitatively demonstrate the possibility of achieving apparent piezoelectric materials with large and temperature-stable electromechanical coupling across a wide temperature range that extends significantly above the Curie temperature. With Barium and Strontium Titanate, as example materials, a significant electromechanical coupling that is potentially temperature-stable up to 900 °C is possible

  2. Piezoelectricity above the Curie temperature? Combining flexoelectricity and functional grading to enable high-temperature electromechanical coupling

    Energy Technology Data Exchange (ETDEWEB)

    Mbarki, R. [Department of Mechanical Engineering, University of Houston, Houston, Texas 77204 (United States); Baccam, N. [Department of Mathematics, Southwestern University, Georgetown, Texas 78626 (United States); Dayal, Kaushik [Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 (United States); Sharma, P. [Department of Mechanical Engineering and Department of Physics, University of Houston, Houston, Texas 77204 (United States)

    2014-03-24

    Most technologically relevant ferroelectrics typically lose piezoelectricity above the Curie temperature. This limits their use to relatively low temperatures. In this Letter, exploiting a combination of flexoelectricity and simple functional grading, we propose a strategy for high-temperature electromechanical coupling in a standard thin film configuration. We use continuum modeling to quantitatively demonstrate the possibility of achieving apparent piezoelectric materials with large and temperature-stable electromechanical coupling across a wide temperature range that extends significantly above the Curie temperature. With Barium and Strontium Titanate, as example materials, a significant electromechanical coupling that is potentially temperature-stable up to 900 °C is possible.

  3. Piezoelectricity above the Curie temperature? Combining flexoelectricity and functional grading to enable high-temperature electromechanical coupling

    Science.gov (United States)

    Mbarki, R.; Baccam, N.; Dayal, Kaushik; Sharma, P.

    2014-03-01

    Most technologically relevant ferroelectrics typically lose piezoelectricity above the Curie temperature. This limits their use to relatively low temperatures. In this Letter, exploiting a combination of flexoelectricity and simple functional grading, we propose a strategy for high-temperature electromechanical coupling in a standard thin film configuration. We use continuum modeling to quantitatively demonstrate the possibility of achieving apparent piezoelectric materials with large and temperature-stable electromechanical coupling across a wide temperature range that extends significantly above the Curie temperature. With Barium and Strontium Titanate, as example materials, a significant electromechanical coupling that is potentially temperature-stable up to 900 °C is possible.

  4. High-temperature superconductors make major progress

    CERN Multimedia

    CERN Bulletin

    2014-01-01

    This month's Nature Materials featured an important breakthrough for high-temperature superconductors. A new method has been found for processing Bi-2212 high-temperature superconducting round wire in order to drastically increase its critical current density. The result confirms that this conductor is a serious candidate for future very-high-field magnets.   This image shows the cross-section of two Bi-2212 wires. The bottom wire has less leakage and void porosity due to a heat treatment done at an overpressure of 100 bar - about 100 times the pressure used to produce the top wire (image from [Nature Materials, Vol. 13 (2014), 10.1038/nmat3887]). The workhorse for building superconducting accelerator magnets has been, so far, the Niobium-Titanium (Nb-Ti) alloy superconductor. But with Nb-Ti having reached its full potential, other conductors must be used to operate in higher magnetic fields beyond those reached with the LHC magnets. Today, the intermetallic Niobium-Tin (Nb3Sn) is th...

  5. High temperature performance of polymer composites

    CERN Document Server

    Keller, Thomas

    2014-01-01

    The authors explain the changes in the thermophysical and thermomechanical properties of polymer composites under elevated temperatures and fire conditions. Using microscale physical and chemical concepts they allow researchers to find reliable solutions to their engineering needs on the macroscale. In a unique combination of experimental results and quantitative models, a framework is developed to realistically predict the behavior of a variety of polymer composite materials over a wide range of thermal and mechanical loads. In addition, the authors treat extreme fire scenarios up to more than 1000°C for two hours, presenting heat-protection methods to improve the fire resistance of composite materials and full-scale structural members, and discuss their performance after fire exposure. Thanks to the microscopic approach, the developed models are valid for a variety of polymer composites and structural members, making this work applicable to a wide audience, including materials scientists, polymer chemist...

  6. High Temperature Corrosion in Biomass Incineration Plants

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Maahn, Ernst emanuel; Gotthjælp, K.

    1997-01-01

    The aim of the project is to study the role of ash deposits in high temperature corrosion of superheater materials in biomass and refuse fire combined heat and power plants. The project has included the two main activities: a) A chemical characterisation of ash deposits collected from a major...... number of biomass and refuse fired combined heat and power plant boilers, b) Laboratory exposures and metallurgical examinations of material specimens with ash deposits in well-defined gas environments with HCl and SO2 in a furnace....

  7. Multichannel euv spectroscopy of high temperature plasmas

    International Nuclear Information System (INIS)

    Fonck, R.J.

    1983-11-01

    Spectroscopy of magnetically confined high temperature plasmas in the visible through x-ray spectral ranges deals primarily with the study of impurity line radiation or continuum radiation. Detailed knowledge of absolute intensities, temporal behavior, and spatial distributions of the emitted radiation is desired. As tokamak facilities become more complex, larger, and less accessible, there has been an increased emphasis on developing new instrumentation to provide such information in a minimum number of discharges. The availability of spatially-imaging detectors for use in the vacuum ultraviolet region (especially the intensified photodiode array) has generated the development of a variety of multichannel spectrometers for applications on tokamak facilities

  8. High temperature decomposition of hydrogen peroxide

    Science.gov (United States)

    Parrish, Clyde F. (Inventor)

    2011-01-01

    Nitric oxide (NO) is oxidized into nitrogen dioxide (NO.sub.2) by the high temperature decomposition of a hydrogen peroxide solution to produce the oxidative free radicals, hydroxyl and hydroperoxyl. The hydrogen peroxide solution is impinged upon a heated surface in a stream of nitric oxide where it decomposes to produce the oxidative free radicals. Because the decomposition of the hydrogen peroxide solution occurs within the stream of the nitric oxide, rapid gas-phase oxidation of nitric oxide into nitrogen dioxide occurs.

  9. Encapsulation of high temperature molten salts

    Science.gov (United States)

    Oxley, James D.; Mathur, Anoop Kumar

    2017-05-16

    The present disclosure relates to a method of encapsulating microcapsules containing relatively high temperature phase change materials and the microcapsules so produced. The microcapsules are coated with an inorganic binder, film former and an inorganic filler. The microcapsules may include a sacrificial layer that is disposed between the particle and the coating. The microcapsules may also include an inner coating layer, sacrificial layer and outer coating layer. The microcapsules are particularly useful for thermal energy storage in connection with, e.g., heat collected from concentrating solar collectors.

  10. High Temperature Materials Laboratory third annual report

    Energy Technology Data Exchange (ETDEWEB)

    Tennery, V.J.; Foust, F.M.

    1990-12-01

    The High Temperature Materials Laboratory has completed its third year of operation as a designated DOE User Facility at the Oak Ridge National Laboratory. Growth of the user program is evidenced by the number of outside institutions who have executed user agreements since the facility began operation in 1987. A total of 88 nonproprietary agreements (40 university and 48 industry) and 20 proprietary agreements (1 university, 19 industry) are now in effect. Sixty-eight nonproprietary research proposals (39 from university, 28 from industry, and 1 other government facility) and 8 proprietary proposals were considered during this reporting period. Research projects active in FY 1990 are summarized.

  11. Thermal conductivity in high critical temperature superconductors

    International Nuclear Information System (INIS)

    Castello, D.J.

    1990-01-01

    A measuring procedure to obtain the electrical resistivity, thermal conductivity and thermoelectric power of samples of low conductivity has been developed. The setup was designed to allow the removal of the sample in clean fashion, so that further heat treatments could be performed, and therefore no adhesives were used in the mounting of the thermocouples or heat sinks, etc. The heat equation has been analyzed with time-dependent boundary conditions, with the purpose of developing a dynamic measuring method which avoids the long delays involved in reaching thermal equilibrium above 30K. Based on this analysis, the developed measuring method allows a precise and reliable measurements, in a continuous fashion, for temperatures above 25K. The same setup is used in a stationary mode at low temperatures, so the sample needs to be mounted only once. κ(T) has been measured in two ceramic samples of La 2 CuO 4 : the first semiconducting, the other superconducting (SC) as a consequence of an oxygen annealing. Both exhibit a strong thermal resistivity due to defects, though lower in the SC, where two maxima are observed and are attributed to an AF ordering: T N ' ≅ 40K and T N '' ≅ 240K. The low temperature dependence is T 1 .6 and T 2 .3 respectively. It was interpreted that the former sample presents a greater dispersion due to localized excitations, characteristic of amorphouus materials, 'tunneling two-level systems' (TS). A third syntherized sample of CuO exhibits a typical behaviour of an insulator, with T 2 .6 at low temperatures, a maximum at 40K and a decrease in T -1 at high temperatures. κ(T) in a SC sample of La 1 .85Sr 1 .15CuO 4 with T c =35.5K has also been measured, observing a small increase below T c because of the diminishing of the phonon dispersion due to the condensating electrons. κ(T) is lower than in the previous samples and thus a greater number of defects was inferred. At low temperatures, its dependence is T 1 .4 in agreement with the

  12. Contact angle of water droplets in a high temperature, high pressure environment

    International Nuclear Information System (INIS)

    Hayashi, T.; Hazuku, T.; Takamasa, T.; Takamori, K.

    2004-01-01

    This paper presents an experimental study of surface wettability on a stainless plate in a high-temperature, high-pressure environment. Using a pressure vessel, we measured contact angles of water droplets at temperatures from 20 to 300 C. deg. and a constant pressure of 15 MPa, as an indicator of macroscopic surface wettability. Measured contact angles decreased with temperature below 250 C. deg., clustering around a straight line at temperatures below 120 C. deg. and around another line in the range from 120 to 250 C. deg.. At temperatures above 250 C. deg., on the other hand, the contact angles remained constant, independent of temperature, and contrary to the existing theoretical model, no highly hydrophilic condition or null contact angle condition was achieved. This result will enable more accurate assessment of heat transfer not only in steam pipes of a boiler but also in subchannel of a BWR-type reactor. (authors)

  13. Thermal stability of high temperature structural alloys

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, C.E.; Rasefske, R.K.; Castagna, A. [Lockheed Martin Corp., Schenectady, NY (United States)

    1999-03-01

    High temperature structural alloys were evaluated for suitability for long term operation at elevated temperatures. The effect of elevated temperature exposure on the microstructure and mechanical properties of a number of alloys was characterized. Fe-based alloys (330 stainless steel, 800H, and mechanically alloyed MA 956), and Ni-based alloys (Hastelloy X, Haynes 230, Alloy 718, and mechanically alloyed MA 758) were evaluated for room temperature tensile and impact toughness properties after exposure at 750 C for 10,000 hours. Of the Fe-based alloys evaluated, 330 stainless steel and 800H showed secondary carbide (M{sub 23}C{sub 6}) precipitation and a corresponding reduction in ductility and toughness as compared to the as-received condition. Within the group of Ni-based alloys tested, Alloy 718 showed the most dramatic structure change as it formed delta phase during 10,000 hours of exposure at 750 C with significant reductions in strength, ductility, and toughness. Haynes 230 and Hastelloy X showed significant M{sub 23}C{sub 6} carbide precipitation and a resulting reduction in ductility and toughness. Haynes 230 was also evaluated after 10,000 hours of exposure at 850, 950, and 1050 C. For the 750--950 C exposures the M{sub 23}C{sub 6} carbides in Haynes 230 coarsened. This resulted in large reductions in impact strength and ductility for the 750, 850 and 950 C specimens. The 1050 C exposure specimens showed the resolution of M{sub 23}C{sub 6} secondary carbides, and mechanical properties similar to the as-received solution annealed condition.

  14. High temperature helical tubular receiver for concentrating solar power system

    Science.gov (United States)

    Hossain, Nazmul

    In the field of conventional cleaner power generation technology, concentrating solar power systems have introduced remarkable opportunity. In a solar power tower, solar energy concentrated by the heliostats at a single point produces very high temperature. Falling solid particles or heat transfer fluid passing through that high temperature region absorbs heat to generate electricity. Increasing the residence time will result in more heat gain and increase efficiency. A novel design of solar receiver for both fluid and solid particle is approached in this paper which can increase residence time resulting in higher temperature gain in one cycle compared to conventional receivers. The helical tubular solar receiver placed at the focused sunlight region meets the higher outlet temperature and efficiency. A vertical tubular receiver is modeled and analyzed for single phase flow with molten salt as heat transfer fluid and alloy625 as heat transfer material. The result is compared to a journal paper of similar numerical and experimental setup for validating our modeling. New types of helical tubular solar receivers are modeled and analyzed with heat transfer fluid turbulent flow in single phase, and granular particle and air plug flow in multiphase to observe the temperature rise in one cyclic operation. The Discrete Ordinate radiation model is used for numerical analysis with simulation software Ansys Fluent 15.0. The Eulerian granular multiphase model is used for multiphase flow. Applying the same modeling parameters and boundary conditions, the results of vertical and helical receivers are compared. With a helical receiver, higher temperature gain of heat transfer fluid is achieved in one cycle for both single phase and multiphase flow compared to the vertical receiver. Performance is also observed by varying dimension of helical receiver.

  15. High power densities from high-temperature material interactions

    Energy Technology Data Exchange (ETDEWEB)

    Morris, J.F.

    1981-01-01

    Thermionic energy conversion (TEC) and metallic-fluid heat pipes (MFHPs) offer important and unique advantages in terrestrial and space energy processing. And they are well suited to serve together synergistically. TEC and MFHPs operate through working-fluid vaporization, condensation cycles that accept great thermal power densities at high temperatures. TEC and MFHPs have apparently simple, isolated performance mechanisms that are somewhat similar. And they also have obviously difficult, complected material problems that again are somewhat similar. Intensive investigation reveals that aspects of their operating cycles and material problems tend to merge: high-temperature material effects determine the level and lifetime of performance. Simplified equations verify the preceding statement for TEC and MFHPs. Material properties and interactions exert primary influences on operational effectiveness. And thermophysicochemical stabilities dictate operating temperatures which regulate the thermoemissive currents of TEC and the vaporization flow rates of MFHPs. Major high-temperature material problems of TEC and MFHPs have been solved. These solutions lead to productive, cost-effective applications of current TEC and MFHPs - and point to significant improvements with anticipated technological gains.

  16. Multiple Temperature Model for Near Continuum Flows

    International Nuclear Information System (INIS)

    XU, Kun; Liu, Hongwei; Jiang, Jianzheng

    2007-01-01

    In the near continuum flow regime, the flow may have different translational temperatures in different directions. It is well known that for increasingly rarefied flow fields, the predictions from continuum formulation, such as the Navier-Stokes equations, lose accuracy. These inaccuracies may be partially due to the single temperature assumption in the Navier-Stokes equations. Here, based on the gas-kinetic Bhatnagar-Gross-Krook (BGK) equation, a multitranslational temperature model is proposed and used in the flow calculations. In order to fix all three translational temperatures, two constraints are additionally proposed to model the energy exchange in different directions. Based on the multiple temperature assumption, the Navier-Stokes relation between the stress and strain is replaced by the temperature relaxation term, and the Navier-Stokes assumption is recovered only in the limiting case when the flow is close to the equilibrium with the same temperature in different directions. In order to validate the current model, both the Couette and Poiseuille flows are studied in the transition flow regime

  17. High temperature electrolysis for hydrogen production using nuclear energy

    International Nuclear Information System (INIS)

    Herring, J. Stephen; O'brien, James E.; Stoots, Carl M.; Hawkes, Grant L.; Hartvigsen, Joseph J.

    2005-01-01

    High-temperature nuclear reactors have the potential for substantially increasing the efficiency of hydrogen production from water splitting, which can be accomplished via high-temperature electrolysis (HTE) or thermochemical processes. In order to achieve competitive efficiencies, both processes require high-temperature operation (∼850degC). High-temperature electrolytic water splitting supported by nuclear process heat and electricity has the potential to produce hydrogen with overall system efficiencies of 45 to 55%. At the Idaho National Laboratory, we are developing solid-oxide cells to operate in the steam electrolysis mode. The research program includes both experimental and modeling activities. Experimental results were obtained from ten-cell and 22-cell planar electrolysis stacks, fabricated by Ceramatec, Inc. The electrolysis cells are electrolyte-supported, with scandia-stabilized zirconia electrolytes (∼200 μm thick, 64 cm 2 active area), nickel-cermet steam/hydrogen electrodes, and manganite air-side electrodes. The metallic interconnect plates are fabricated from ferritic stainless steel. The experiments were performed over a range of steam inlet mole fractions, gas glow rates, and current densities. Hydrogen production rates greater than 100 normal liters per hour for 196 hours have been demonstrated. In order to evaluate the performance of large-scale HTE operations, we have developed single-cell models, based on FLUENT, and a process model, using the systems-analysis code HYSYS. (author)

  18. High point for CERN and high-temperature superconductors

    CERN Multimedia

    2007-01-01

    Amalia Ballarino is named the Superconductor Industry Person of the year 2006. Amalia Ballarino showing a tape of high-superconducting material used for the LHC current leads.The CERN project leader for the high-temperature superconducting current leads for the LHC, Amalia Ballarino, has received the award for "Superconductor Industry Person of the Year". This award, the most prestigious international award in the development and commercialization of superconductors, is presented by the leading industry newsletter "Superconductor Week". Amalia Ballarino was selected from dozens of nominations from around the world by a panel of recognized leading experts in superconductivity. "It is a great honour for me," says Amalia Ballarino. "It has been many years of hard work, and it’s a great satisfaction to see that the work has been completed successfully." Amalia Ballarino has been working on high-temperature superconducting materials sin...

  19. High Molecular Weight Polybenzimidazole Membranes for High Temperature PEMFC

    DEFF Research Database (Denmark)

    Yang, Jingshuai; Cleemann, Lars Nilausen; Steenberg, T.

    2014-01-01

    tensile strength of 30.3 MPa at room temperature or 7.3 MPa at 130 °C and a proton conductivity of 0.14 S cm–1 at 160 °C. Fuel cell tests with H2 and air at 160 °C showed high open circuit voltage, power density and a low degradation rate of 1.5 μV h–1 at a constant load of 300 mA cm–2.......High temperature operation of proton exchange membrane fuel cells under ambient pressure has been achieved by using phosphoric acid doped polybenzimidazole (PBI) membranes. To optimize the membrane and fuel cells, high performance polymers were synthesized of molecular weights from 30 to 94 k...

  20. Preparing for Extreme Heat in India: Using High-Resolution Climate Models to Explore the Impact of Rising Temperatures on Human Health and Labor Productivity

    Science.gov (United States)

    Shaw, C.

    2016-12-01

    Globally, higher daily peak temperatures and longer, more intense heat waves are becoming increasingly frequent due to climate change. India, with relatively low GDP per capita, high population density, and tropical climate, is particularly vulnerable to these trends. In May 2015, one of the worst heat waves in world history hit the country, culminating in at least 2,300 officially-reported deaths as temperatures in some regions reached 48°C. As a result of climate change, heat waves in this region will last longer, be more extreme, and occur with greater frequency in the coming years. Impacts will be felt most acutely by vulnerable populations, which include not only those with frail health, but also populations otherwise considered healthy whose livelihood involves working under exposure to high temperatures. The problem is exacerbated by low levels of economic development, particularly in the under-provision of medical services, a higher proportion of weather-reliant income sources, and the inability to recover quickly from shocks. Responding to these challenges requires collaboration among the disciplines of climate science, public health, economics, and public policy. This project, presented as an online web application using Esri's ArcGIS Story Map, covers 1) the impact of extreme heat on human mortality, 2) the impact of combined heat and humidity (as measured by wet bulb globe temperature) on labor productivity, and 3) emerging best practices in adaptation planning by local municipalities and NGOs. The work is presented in a format that is designed to allow policymakers to take a deeper dive into the literature linking extreme temperature to human health and labor productivity, combined with interactive mapping tools that allow planners to drill down to data at the district level across the country of India. Further, the work presents a case study of heat adaptation planning efforts that have already been implemented in the city of Ahmedabad, allowing