WorldWideScience

Sample records for model heat sink

  1. Heat sink analytical modelling

    OpenAIRE

    Guitart Corominas, Joaquim

    2010-01-01

    Electronics has leaded most technological advances of the past 60 years. There are technologies with domains particularly developed for electronics such as material science, electromagnetism, system dynamics and also heat transfer. The relation to heat transfer is because the heat generation of electronics devices. Commonly, these devices need additional cooling in order to avoid extreme temperatures inside it. Heat sinks allow this supplementary cooling, so they are omnipresent i...

  2. An analytical model for annular flow boiling heat transfer in microchannel heat sinks

    Energy Technology Data Exchange (ETDEWEB)

    Megahed, A.; Hassan, I. [Concordia University, Montreal, QC (Canada). Dept. of Mechanical and Industrial Engineering

    2009-07-01

    An analytical model has been developed to predict flow boiling heat transfer coefficient in microchannel heat sinks. The new analytical model is proposed to predict the two-phase heat transfer coefficient during annular flow regime based on the separated model. Opposing to the majority of annular flow heat transfer models, the model is based on fundamental conservation principles. The model considers the characteristics of microchannel heat sink during annular flow and eliminates using any empirical closure relations. Comparison with limited experimental data was found to validate the usefulness of this analytical model. The model predicts the experimental data with a mean absolute error 8%. (author)

  3. Modeling and simulation of heat sinks for computer processors in COMSOL Multiphysics

    OpenAIRE

    2012-01-01

    In this study, the heat transfer of three desktop- computer heat sinks was analyzed. The objective of using these heat sinks is to avoid overheating of the computer’s processing unit and in turn reduce the corresponding loss in the unit’s service time. The heat sinks were modeled using COMSOL Multiphysics with the actual dimensions of the devices, and heat generation was modeled with a point source. In the next step, the heat sink designs were modified to achieve a lower temperature in the hi...

  4. Microchannel heat sink assembly

    Science.gov (United States)

    Bonde, Wayne L.; Contolini, Robert J.

    1992-01-01

    The present invention provides a microchannel heat sink with a thermal range from cryogenic temperatures to several hundred degrees centigrade. The heat sink can be used with a variety of fluids, such as cryogenic or corrosive fluids, and can be operated at a high pressure. The heat sink comprises a microchannel layer preferably formed of silicon, and a manifold layer preferably formed of glass. The manifold layer comprises an inlet groove and outlet groove which define an inlet manifold and an outlet manifold. The inlet manifold delivers coolant to the inlet section of the microchannels, and the outlet manifold receives coolant from the outlet section of the microchannels. In one embodiment, the manifold layer comprises an inlet hole extending through the manifold layer to the inlet manifold, and an outlet hole extending through the manifold layer to the outlet manifold. Coolant is supplied to the heat sink through a conduit assembly connected to the heat sink. A resilient seal, such as a gasket or an O-ring, is disposed between the conduit and the hole in the heat sink in order to provide a watetight seal. In other embodiments, the conduit assembly may comprise a metal tube which is connected to the heat sink by a soft solder. In still other embodiments, the heat sink may comprise inlet and outlet nipples. The present invention has application in supercomputers, integrated circuits and other electronic devices, and is suitable for cooling materials to superconducting temperatures.

  5. A Distributed Method for Modeling Effective Cryogenic Flat Cable Heat Sinking

    Science.gov (United States)

    Zobrist, N. R.; Daal, M.; Sadoulet, B.; Golwala, S.

    2014-09-01

    A common challenge in low temperature instrumentation is adequately heat sinking signal wires between room temperature and devices at base temperature. Using cryostat space for adequate heat sinking typically comes at the cost of complexity or experimental space. As such, it is useful to know how much heat sinking is adequate given the materials, heat sources and cooling capacities involved. We present a differential equation for modeling the heat flowing out of a flat cable along an interval over which it is adhered to an insulating interface which is bound to a metallic heat sinking surface and numerical results for realistic heat sinks in the Kelvin range. We also present a computational method for solving this differential equation.

  6. Passive Vaporizing Heat Sink

    Science.gov (United States)

    Knowles, TImothy R.; Ashford, Victor A.; Carpenter, Michael G.; Bier, Thomas M.

    2011-01-01

    A passive vaporizing heat sink has been developed as a relatively lightweight, compact alternative to related prior heat sinks based, variously, on evaporation of sprayed liquids or on sublimation of solids. This heat sink is designed for short-term dissipation of a large amount of heat and was originally intended for use in regulating the temperature of spacecraft equipment during launch or re-entry. It could also be useful in a terrestrial setting in which there is a requirement for a lightweight, compact means of short-term cooling. This heat sink includes a hermetic package closed with a pressure-relief valve and containing an expendable and rechargeable coolant liquid (e.g., water) and a conductive carbon-fiber wick. The vapor of the liquid escapes when the temperature exceeds the boiling point corresponding to the vapor pressure determined by the setting of the pressure-relief valve. The great advantage of this heat sink over a melting-paraffin or similar phase-change heat sink of equal capacity is that by virtue of the =10x greater latent heat of vaporization, a coolant-liquid volume equal to =1/10 of the paraffin volume can suffice.

  7. Heat Sink Design and Optimization

    Science.gov (United States)

    2015-12-01

    Natural convection Radiation Design Modeling Optimization 16. SECURITY CLASSIFICATION OF: 17...Hs = 3.94 in.  Width Ws = 5.42 in.  Fins  Height Hf = 0.98 in.  Length...different fin thicknesses (tf) The next parameter considered was fin height, Hf . Smaller height has a negative influence on overall heat sink

  8. Modeling of a heat sink and high heat flux vapor chamber

    Science.gov (United States)

    Vadnjal, Aleksander

    An increasing demand for a higher heat flux removal capability within a smaller volume for high power electronics led us to focus on a novel cold plate design. A high heat flux evaporator and micro channel heat sink are the main components of a cold plate which is capable of removing couple of 100 W/cm2. In order to describe performance of such porous media device a proper modeling has to be addressed. A universal approach based on the volume average theory (VAT) to transport phenomena in porous media is shown. An approach on how to treat the closure for momentum and energy equations is addressed and a proper definition for friction factors and heat transfer coefficients are discussed. A numerical scheme using a solution to Navier-Stokes equations over a representative elementary volume (REV) and the use of VAT is developed to show how to compute friction factors and heat transfer coefficients. The calculation show good agreement with the experimental data. For the heat transfer coefficient closure, a proper average for both fluid and solid is investigated. Different types of heating are also investigated in order to determine how it influences the heat transfer coefficient. A higher heat fluxes in small area condensers led us to the micro channels in contrast to the classical heat fin design. A micro channel can have various shapes to enhance heat transfer, but the shape that will lead to a higher heat flux removal with a moderate pumping power needs to be determined. The standard micro-channel terminology is usually used for channels with a simple cross section, e.g. square, round, triangle, etc., but here the micro channel cross section is going to be expanded to describe more complicated and interconnected micro scale channel cross sections. The micro channel geometries explored are pin fins (in-line and staggered) and sintered porous micro channels. The problem solved here is a conjugate problem involving two heat transfer mechanisms; (1) porous media

  9. Model Development and Experimental Validation of the Fusible Heat Sink Design for Exploration Vehicles

    Science.gov (United States)

    Cognata, Thomas J.; Leimkuehler, Thomas; Sheth, Rubik; Le, Hung

    2013-01-01

    The Fusible Heat Sink is a novel vehicle heat rejection technology which combines a flow through radiator with a phase change material. The combined technologies create a multi-function device able to shield crew members against Solar Particle Events (SPE), reduce radiator extent by permitting sizing to the average vehicle heat load rather than to the peak vehicle heat load, and to substantially absorb heat load excursions from the average while constantly maintaining thermal control system setpoints. This multi-function technology provides great flexibility for mission planning, making it possible to operate a vehicle in hot or cold environments and under high or low heat load conditions for extended periods of time. This paper describes the modeling and experimental validation of the Fusible Heat Sink technology. The model developed was intended to meet the radiation and heat rejection requirements of a nominal MMSEV mission. Development parameters and results, including sizing and model performance will be discussed. From this flight-sized model, a scaled test-article design was modeled, designed, and fabricated for experimental validation of the technology at Johnson Space Center thermal vacuum chamber facilities. Testing showed performance comparable to the model at nominal loads and the capability to maintain heat loads substantially greater than nominal for extended periods of time.

  10. Performance evaluation of RANS-based turbulence models in simulating a honeycomb heat sink

    Science.gov (United States)

    Subasi, Abdussamet; Ozsipahi, Mustafa; Sahin, Bayram; Gunes, Hasan

    2017-07-01

    As well-known, there is not a universal turbulence model that can be used to model all engineering problems. There are specific applications for each turbulence model that make it appropriate to use, and it is vital to select an appropriate model and wall function combination that matches the physics of the problem considered. Therefore, in this study, performance of six well-known Reynolds-Averaged Navier-Stokes ( RANS) based turbulence models which are the Standard k {{-}} ɛ, the Renormalized Group k- ɛ, the Realizable k- ɛ, the Reynolds Stress Model, the k- ω and the Shear Stress Transport k- ω and accompanying wall functions which are the standard, the non-equilibrium and the enhanced are evaluated via 3D simulation of a honeycomb heat sink. The CutCell method is used to generate grid for the part including heat sink called test section while a hexahedral mesh is employed to discretize to inlet and outlet sections. A grid convergence study is conducted for verification process while experimental data and well-known correlations are used to validate the numerical results. Prediction of pressure drop along the test section, mean base plate temperature of the heat sink and temperature at the test section outlet are regarded as a measure of the performance of employed models and wall functions. The results indicate that selection of turbulence models and wall functions has a great influence on the results and, therefore, need to be selected carefully. Hydraulic and thermal characteristics of the honeycomb heat sink can be determined in a reasonable accuracy using RANS- based turbulence models provided that a suitable turbulence model and wall function combination is selected.

  11. Performance evaluation of RANS-based turbulence models in simulating a honeycomb heat sink

    Science.gov (United States)

    Subasi, Abdussamet; Ozsipahi, Mustafa; Sahin, Bayram; Gunes, Hasan

    2017-02-01

    As well-known, there is not a universal turbulence model that can be used to model all engineering problems. There are specific applications for each turbulence model that make it appropriate to use, and it is vital to select an appropriate model and wall function combination that matches the physics of the problem considered. Therefore, in this study, performance of six well-known Reynolds-Averaged Navier-Stokes (RANS) based turbulence models which are the Standard k - ɛ, the Renormalized Group k - ɛ, the Realizable k - ɛ, the Reynolds Stress Model, the k - ω and the Shear Stress Transport k - ω and accompanying wall functions which are the standard, the non-equilibrium and the enhanced are evaluated via 3D simulation of a honeycomb heat sink. The CutCell method is used to generate grid for the part including heat sink called test section while a hexahedral mesh is employed to discretize to inlet and outlet sections. A grid convergence study is conducted for verification process while experimental data and well-known correlations are used to validate the numerical results. Prediction of pressure drop along the test section, mean base plate temperature of the heat sink and temperature at the test section outlet are regarded as a measure of the performance of employed models and wall functions. The results indicate that selection of turbulence models and wall functions has a great influence on the results and, therefore, need to be selected carefully. Hydraulic and thermal characteristics of the honeycomb heat sink can be determined in a reasonable accuracy using RANS-based turbulence models provided that a suitable turbulence model and wall function combination is selected.

  12. Thermal modeling optimization and experimental validation for a single concentrator solar cell system with a heat sink

    Institute of Scientific and Technical Information of China (English)

    Cui Min; Chen Nuo-Fu; Deng Jin-Xiang; Liu Li-Ying

    2013-01-01

    A single concentrator solar cell model with a heat sink is established to simulate the thermal performance of the system by varying the number,height,and thickness of fins,the base thickness and thermal resistance of the thermal conductive adhesive.Influence disciplines of those parameters on temperatures of the solar cell and heat sink are obtained.With optimized number,height and thickness of fins,and the thickness values of base of 8,1.4 cm,1.5 mm,and 2 mm,the lowest temperatures of the solar cell and heat sink are 41.7 ℃ and 36.3 ℃ respectively.A concentrator solar cell prototype with a heat sink fabricated based on the simulation optimized structure is built.Outdoor temperatures of the prototype are tested.Temperatures of the solar cell and heat sink are stabilized with time continuing at about 37 ℃-38 ℃ and 35 ℃-36 ℃ respectively,slightly lower than the simulation results because of effects of the wind and cloud.Thus the simulation model enables to predict the thermal performance of the system,and the simulation results can be a reference for designing heat sinks in the field of single concentrator solar cells.

  13. Topology Optimization of Thermal Heat Sinks

    DEFF Research Database (Denmark)

    Klaas Haertel, Jan Hendrik; Engelbrecht, Kurt; Lazarov, Boyan Stefanov

    2015-01-01

    In this paper, topology optimization is applied to optimize the cooling performance of thermal heat sinks. The coupled two-dimensional thermofluid model of a heat sink cooled with forced convection and a density-based topology optimization including density filtering and projection are implemented...... in COMSOL Multiphysics. The optimization objective is to minimize the heat sink’s temperature for a prescribed pressure drop and fixed heat generation. To conduct the optimization, COMSOL’s Optimization Module with GCMMA as the optimization method is used. The implementation of this topology optimization...

  14. Electronically controlled heat sink for high-power laser diodes

    Science.gov (United States)

    Vetrovec, John

    2009-05-01

    We report on a novel electronically controlled active heat sink for high-power laser diodes offering unparalleled capacity in high-heat flux handling and temperature control. The heat sink receives diode waste heat at high flux and transfers it at reduced flux to environment, coolant fluid, heat pipe, or structure. Thermal conductance of the heat sink is electronically adjustable, allowing for precise control of diode temperature and the diode light wavelength. When pumping solid-state or alkaline vapor lasers, diode wavelength can be precisely temperature-tuned to the gain medium absorption features. This paper presents the heat sink physics, engineering design, and performance modeling.

  15. Investigation of Heat Sink Efficiency for Electronic Component Cooling Applications

    DEFF Research Database (Denmark)

    Staliulionis, Ž.; Zhang, Zhe; Pittini, Riccardo

    2014-01-01

    Research and optimisation of cooling of electronic components using heat sinks becomes increasingly important in modern industry. Numerical methods with experimental real-world verification are the main tools to evaluate efficiency of heat sinks or heat sink systems. Here the investigation...... of relatively simple heat sink application is performed using modeling based on finite element method, and also the potential of such analysis was demonstrated by real-world measurements and comparing obtained results. Thermal modeling was accomplished using finite element analysis software COMSOL and thermo......-imaging camera was used to measure the thermal field distribution. Ideas for future research involving improvement of the experimental setup and modeling verification are given....

  16. Impingement heat sinks for air cooled high power electronic modules

    Energy Technology Data Exchange (ETDEWEB)

    Kang, S.S.; Holahan, M.F. [IBM Corp., Rochester, MN (United States)

    1995-12-31

    The subject of the present work is a parallel plate heat sink that is designed so that the air flow impinges at the fin tips and exhausts over the two open side faces. This type of design attempts to achieve an air flow direction that is substantially opposite to the heat flow direction within the fins so as to exploit the greater heat transfer effectiveness of counterflow heat exchange. A one dimensional model of the heat sink was developed with the assumption of air flow from the fin tips to the fin base. This simplified model was used to identify an initial heat sink geometry to cool a specific multichip module. Computational Fluid Dynamics models that account for the actual flow pattern within the heat sink were used to study a range of variations to the initial geometry and to identify the best geometry over the range examined. Experimental heat transfer and pressure drop data is reported for two heat sink prototypes. The test data is in good agreement with CFD predictions. Suitable correlations for the heat sink thermal resistance and pressure drop versus the air flow rate are developed. The developed heat sink demonstrated an area specific thermal resistance better than 8.7 C (W/cm{sup 2}).

  17. Multilead, Vaporization-Cooled Soldering Heat Sink

    Science.gov (United States)

    Rice, John

    1995-01-01

    Vaporization-cooled heat sink proposed for use during soldering of multiple electrical leads of packaged electronic devices to circuit boards. Heat sink includes compliant wicks held in grooves on edges of metal fixture. Wicks saturated with water. Prevents excessive increases in temperature at entrances of leads into package.

  18. Performances of thermoelectric cooler integrated with microchannel heat sinks

    Energy Technology Data Exchange (ETDEWEB)

    Reiyu Chein; Yehong Chen [National Chung Hsing University, Taichung (Taiwan). Department of Mechanical Engineering

    2005-09-01

    In this study, experimental and theoretical studies on thermoelectric cooler (TEC) performance for cooling a refrigerated object (water in a tank) were performed. Microchannel heat sinks fabricated with etched silicon wafers were employed on the TEC hot side to dissipate heat. The measurements show that the temperature of the refrigerated object decreased with time. A theoretical model based on a lumped system was established to predict the transient behavior of the variation in temperature for the refrigerated object with time. The theoretical predicted temperature variation was in good agreement with the measured data. The relationship among the heat sink thermal resistances, TEC electric current input and minimum refrigerated objected temperature was examined based on the theoretical model. The calculated minimum temperatures were showed for the several cases of heat sink thermal resistance on the TEC hot side and electric current input. The minimum temperature can be obtained by increasing the electrical current input and decreasing the heat sink thermal resistance. (author)

  19. Numerical topology optimization of heat sinks

    OpenAIRE

    Van Oevelen, Tijs; Baelmans, Martine

    2014-01-01

    The availability of flexible production techniques challenges their full exploitation during thermo-hydraulic design of micro heat sinks. In this context, a systematic approach capable to take advantage of the practically unlimited design freedom is highly desirable. Therefore, we propose to use topology optimization, a numerical design optimization method well-established in structural mechanics problems. In this paper, the fundamentals of topology optimization, and its application in thermo...

  20. Enhanced heat sink with geometry induced wall-jet

    Energy Technology Data Exchange (ETDEWEB)

    Hossain, Md. Mahamudul, E-mail: sohel0991@gmail.com; Tikadar, Amitav; Bari, Fazlul; Morshed, A. K. M. M. [Department of Mechanical Engineering Bangladesh University of Engineering and Technology, Dhaka-1000. Bangladesh (Bangladesh)

    2016-07-12

    Mini-channels embedded in solid matrix have already proven to be a very efficient way of electronic cooling. Traditional mini-channel heat sinks consist of single layer of parallel channels. Although mini-channel heat sink can achieve very high heat flux, its pumping requirement for circulating liquid through the channel increase very sharply as the flow velocity increases. The pumping requirements of the heat sink can be reduced by increasing its performance. In this paper a novel approach to increase the thermal performance of the mini-channel heat sink is proposed through geometry induced wall jet which is a passive technique. Geometric irregularities along the channel length causes abrupt pressure change between the channels which causes cross flow through the interconnections thus one channel faces suction and other channel jet action. This suction and jet action disrupts boundary layer causing enhanced heat transfer performance. A CFD model has been developed using commercially available software package FLUENT to evaluate the technique. A parametric study of the velocities and the effect of the position of the wall-jets have been performed. Significant reduction in thermal resistance has been observed for wall-jets, it is also observed that this reduction in thermal resistance is dependent on the position and shape of the wall jet.

  1. A new method to optimize natural convection heat sinks

    Science.gov (United States)

    Lampio, K.; Karvinen, R.

    2017-08-01

    The performance of a heat sink cooled by natural convection is strongly affected by its geometry, because buoyancy creates flow. Our model utilizes analytical results of forced flow and convection, and only conduction in a solid, i.e., the base plate and fins, is solved numerically. Sufficient accuracy for calculating maximum temperatures in practical applications is proved by comparing the results of our model with some simple analytical and computational fluid dynamics (CFD) solutions. An essential advantage of our model is that it cuts down on calculation CPU time by many orders of magnitude compared with CFD. The shorter calculation time makes our model well suited for multi-objective optimization, which is the best choice for improving heat sink geometry, because many geometrical parameters with opposite effects influence the thermal behavior. In multi-objective optimization, optimal locations of components and optimal dimensions of the fin array can be found by simultaneously minimizing the heat sink maximum temperature, size, and mass. This paper presents the principles of the particle swarm optimization (PSO) algorithm and applies it as a basis for optimizing existing heat sinks.

  2. Study on the sensitivity of the vertical cooling (heat sink) on the displacements of the mid-tropospheric ridge using a linear model

    Indian Academy of Sciences (India)

    A Chandrasekar

    2002-12-01

    A linear model of the response of a stratified atmosphere to isolated heat sources in spherical coordinates is used to study the maintenance of the mean position of the mid tropospheric ridge and its displacement. It is well known that the performance of the southwest Indian monsoon is related to the latitudinal position of the April 500 hPa ridge along 75°E. It was demonstrated that an anomalous cooling associated with the increased snow cover in Eurasia can result in moderate southward displacement of the mid-tropospheric ridge. The results of this study indicate that the vertically integrated cooling rate (strength of heat sink) has more effect on the southward displacement of the ridge when the sink is closer to the ridge.

  3. Heat transfer performance of a novel double-layer mini-channel heat sink

    Science.gov (United States)

    Tang, Biao; Zhou, Rui; Bai, Pengfei; Fu, Ting; Lu, Longsheng; Zhou, Guofu

    2017-03-01

    High pressure drop and significant non-uniformity in temperature distribution along the streamwise direction are still challenges to the design of mini-channel heat sink. High density mini-channel arrays with high liquid-wall contact area are usually pursued in a conventional single-layer design of heat sink, which also inevitably brings high pressure drop. A novel double-layer structured heat sink is proposed in this paper. Four heat sinks with various designs in mini-channel density and flow direction were fabricated and studied experimentally on the heat transfer performance. The single factor of heat load does not show obvious effect on the overall thermal resistance of the heat sinks. On the other hand, slight decrease in thermal resistance was found with the increase in heat load at high flow rates. Moreover, a computational fluid dynamics modeling work was conducted. The results indicate that the parallel cross-flow field regulated by the double-layer structure enhances the heat exchange in both horizontal and vertical directions and consequently gives an uniform temperature distribution and high heat transfer efficiency.

  4. On modeling weak sinks in MODPATH

    Science.gov (United States)

    Abrams, Daniel B.; Haitjema, Henk; Kauffman, Leon J.

    2012-01-01

    Regional groundwater flow systems often contain both strong sinks and weak sinks. A strong sink extracts water from the entire aquifer depth, while a weak sink lets some water pass underneath or over the actual sink. The numerical groundwater flow model MODFLOW may allow a sink cell to act as a strong or weak sink, hence extracting all water that enters the cell or allowing some of that water to pass. A physical strong sink can be modeled by either a strong sink cell or a weak sink cell, with the latter generally occurring in low resolution models. Likewise, a physical weak sink may also be represented by either type of sink cell. The representation of weak sinks in the particle tracing code MODPATH is more equivocal than in MODFLOW. With the appropriate parameterization of MODPATH, particle traces and their associated travel times to weak sink streams can be modeled with adequate accuracy, even in single layer models. Weak sink well cells, on the other hand, require special measures as proposed in the literature to generate correct particle traces and individual travel times and hence capture zones. We found that the transit time distributions for well water generally do not require special measures provided aquifer properties are locally homogeneous and the well draws water from the entire aquifer depth, an important observation for determining the response of a well to non-point contaminant inputs.

  5. Quasi-passive heat sink for high-power laser diodes

    Science.gov (United States)

    Vetrovec, John

    2009-02-01

    We report on a novel heat sink for high-power laser diodes offering unparalleled capacity in high-heat flux handling and temperature control. The heat sink uses a liquid coolant flowing at high speed in a miniature closed and sealed loop. Diode waste heat is received at high flux and transferred to environment, coolant fluid, heat pipe, or structure at a reduced flux. When pumping solid-state or alkali vapor lasers, diode wavelength can be electronically tuned to the absorption features of the laser gain medium. This paper presents the heat sink physics, engineering design, performance modeling, and configurations.

  6. Progress in the development of active heat sink for high-power laser diodes

    Science.gov (United States)

    Vetrovec, John; Feeler, Ryan; Bonham, Steve

    2010-02-01

    We report on the development of a novel active heat sink for high-power laser diodes offering unparalleled capacity in high-heat flux handling and temperature control. The heat sink receives diode waste heat at high flux and transfers it at reduced flux to environment, coolant fluid, heat pipe, or structure. Thermal conductance of the heat sink is electronically adjustable, allowing for precise control of diode temperature and the output light wavelength. When pumping solid-state lasers, diode wavelength can be precisely tuned to the absorption features of the laser gain medium. This paper presents the AHS concept, scaling laws, model predictions, and data from initial testing.

  7. Heat transfer interface between a high temperature heat source and a heat sink

    Energy Technology Data Exchange (ETDEWEB)

    du Pre, F.K.; Jaspers, H.A.

    1977-10-11

    A heat-transfer interface between and separating a high temperature heat source and a heat sink is formed by the adjacent walls of the heat source and heat sink with a thin gap between these walls and helium gas sealed in the gap, the walls preferably defining concentric hemispheres; this interface being particularly feasible as separable walls of the heater portion of a Stirling engine and a heat source.

  8. Heat Transfer of Heat Sinking Vest with Phase-change Material

    Institute of Scientific and Technical Information of China (English)

    QIU Yifen; JIANG Nan; WU Wei; ZHANG Guangwei; XIAO Baoliang

    2011-01-01

    To investigate thermal protection effects of heat sinking vest with phase-change material (PCM),human thermoregulation model is introduced,and a thermal mathematical model of heat transfer with phase change has been developed with the enthalpy method.The uniform energy equation is constructed for the whole domain,and the equation is implicitly discreted by control volume and finite difference method.Then the enthalpy in each node is solved by using chasing method to calculate the tridiagonal equations,and the inner surface temperature of PCM could be obtained.According to the human thermoregulation model of heat sinking vest,the dynamic temperature distribution and sweat of the body are solved.Calculation results indicate that the change of core temperature matches the experimental result,and the sweat difference is small.This thermal mathematical model of heat transfer with phase change is credible and appropriate.Through comparing the dynamic temperature distribution and sweat of the body wearing heat sinking vest to results of the body not wearing this clothing,it is evident that wearing heat sinking vest can reduce the body heat load significantly.

  9. A Thesis on Design Optimization of Heat Sink in Power Electronics

    Directory of Open Access Journals (Sweden)

    P.Chennakesavarao

    2014-10-01

    height of fins to reduce the weight of the heat sink. We will perform CFD analysis of the power amplifier by mounting the optimized heat sink and plot temperature, pressure and velocity distribution in the power amplifier enclosure. Efforts are made to optimize temperature, pressure and velocity distribution in the power amplifier enclosure by reorienting the power modules in the enclosure. UNIGRAPHICS software is used for 3D modeling SOLID WORKS FLOW SIMULATION software is used for thermal and CFD analysis.

  10. Novel natural convection heat sink design concepts from first principles

    OpenAIRE

    Fletcher, Derek E.

    2016-01-01

    Approved for public release; distribution is unlimited This was a two-part numerical study using ANSYS Fluent to develop novel heat sink concepts from first principles. The objective of this research was to highlight geometric structures that incorporate the principles of the stack effect to improve the heat transfer capability of a heat sink under natural convection. The first part investigated the heat transfer/fluid flow characteristics of vertically aligned tubes. The gaps between tube...

  11. Genetic Algorithm Design of a 3D Printed Heat Sink

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Tong [ORNL; Ozpineci, Burak [ORNL; Ayers, Curtis William [ORNL

    2016-01-01

    In this paper, a genetic algorithm- (GA-) based approach is discussed for designing heat sinks based on total heat generation and dissipation for a pre-specified size andshape. This approach combines random iteration processesand genetic algorithms with finite element analysis (FEA) to design the optimized heat sink. With an approach that prefers survival of the fittest , a more powerful heat sink can bedesigned which can cool power electronics more efficiently. Some of the resulting designs can only be 3D printed due totheir complexity. In addition to describing the methodology, this paper also includes comparisons of different cases to evaluate the performance of the newly designed heat sinkcompared to commercially available heat sinks.

  12. Analysis of microchannel heat sink performance using nanofluids

    Energy Technology Data Exchange (ETDEWEB)

    Chein, Reiyu; Huang, Guanming [Department of Mechanical Engineering, National Chung Hsing University, 250 Kuo-Kuang Rd., Taichung City 402 (China)

    2005-12-01

    In this study, silicon microchannel heat sink performance using nanofluids as coolants was analyzed. The nanofluid was a mixture of pure water and nanoscale Cu particles with various volume fractions. The heat transfer and friction coefficients required in the analysis were based on theoretical models and experimental correlations. In the theoretical model, nanofluid was treated as a single-phase fluid. In the experimental correlation, thermal dispersion due to particle random motion was included. The microchannel heat sink performances for two specific geometries, one with W{sub ch}=W{sub fin}=100 {mu}m and L{sub ch}=300 {mu}m, the other with W{sub ch}=W{sub fin}=57 {mu}m and L{sub ch}=365 {mu}m, were examined. Because of the increased thermal conductivity and thermal dispersion effects, it was found that the performances were greatly improved for these two specific geometries when nanofluids were used as the coolants. In addition to heat transfer enhancement, the existence of nanoparticles in the fluid did not produce extra pressure drop because of small particle size and low particle volume fraction. (author)

  13. Mixed Convection of Alumina/Water Nanofluid in Microchannels using Modified Buongiorno’s Model in Presence of Heat Source/Sink

    Directory of Open Access Journals (Sweden)

    Amir Malvandi

    2016-01-01

    Full Text Available The nanoparticle migration effects on mixed convection of alumina/water nanofluid in a vertical microchannel in the presence of heat source/sink with asymmetric wall heating are theoretically investigated. The modified two-component heterogeneous model is employed for the nanofluid in the hypothesis that the Brownian motion and the thermophoresis are the only significant bases of nanoparticle migration. Because of low dimensional structures in microchannels, a linear slip condition is considered at the surfaces, which appropriately represents the non-equilibrium region near the interface. Considering hydrodynamically and thermally fully developed flow, the basic partial differential equations including the continuity, momentum, energy, and nanoparticle fraction have been reduced to two-point ordinary boundary value differential equations before they have been solved numerically. The scale analysis of governing equations has shown that the buoyancy effects due to the temperature distribution is insignificant, however, the buoyancy effects due to the concentration distribution of nanoparticles have considerable effects on the flow and heat transfer characteristics of nanofluids. It is also revealed that the imposed thermal asymmetry would change the direction of nanoparticle migration and distorts the symmetry of the velocity, temperature and nanoparticle concentration profiles. Moreover, the best performance of the system is achieved under one-sided heating and a greater slip velocity at the walls.

  14. Optimization of the thermal performance of multi-layer silicon microchannel heat sinks

    Directory of Open Access Journals (Sweden)

    Xu Shanglong

    2016-01-01

    Full Text Available The objective is to optimize the configuration sizes and thermal performance of a multilayer silicon microchannel heat sink by the thermal resistance network model. The effect of structural parameter on the thermal resistance is analyzed by numercal simulation. Taking the thermal resistance as an objective function, a nonlinear and multi-constrained optimization model are proposed for the silicon microchannel heat sink in electronic chips cooling. The sequential quadratic programming (SQP method is used to do the optimization design of the configuration sizes of the microchannel. For the heat sink with the size of 20mm×20mm and the power of 400 W, the optimized microchannel number, layer, height and width are 40 and 2, 2.2mm and 0.2mm, respectively, and its corresponding total thermal resistance for whole microchannel heat sink is 0.0424 K/W.

  15. TEM Pump With External Heat Source And Sink

    Science.gov (United States)

    Nesmith, Bill J.

    1991-01-01

    Proposed thermoelectric/electromagnetic (TEM) pump driven by external source of heat and by two or more heat pipe radiator heat sink(s). Thermoelectrics generate electrical current to circulate liquid metal in secondary loop of two-fluid-loop system. Intended for use with space and terrestrial dual loop liquid metal nuclear reactors. Applications include spacecraft on long missions or terrestrial beacons or scientific instruments having to operate in remote areas for long times. Design modified to include multiple radiators, converters, and ducts, as dictated by particular application.

  16. Phase Change Material Heat Sink for an ISS Flight Experiment

    Science.gov (United States)

    Quinn, Gregory; Stieber, Jesse; Sheth, Rubik; Ahlstrom, Thomas

    2015-01-01

    A flight experiment is being constructed to utilize the persistent microgravity environment of the International Space Station (ISS) to prove out operation of a microgravity compatible phase change material (PCM) heat sink. A PCM heat sink can help to reduce the overall mass and volume of future exploration spacecraft thermal control systems (TCS). The program is characterizing a new PCM heat sink that incorporates a novel phase management approach to prevent high pressures and structural deformation that often occur with PCM heat sinks undergoing cyclic operation in microgravity. The PCM unit was made using brazed aluminum construction with paraffin wax as the fusible material. It is designed to be installed into a propylene glycol and water cooling loop, with scaling consistent with the conceptual designs for the Orion Multipurpose Crew Vehicle. This paper reports on the construction of the PCM heat sink and on initial ground test results conducted at UTC Aerospace Systems prior to delivery to NASA. The prototype will be tested later on the ground and in orbit via a self-contained experiment package developed by NASA Johnson Space Center to operate in an ISS EXPRESS rack.

  17. Optimization of Heat-Sink Cooling Structure in EAST with Hydraulic Expansion Technique%Optimization of Heat-Sink Cooling Structure in EAST with Hydraulic Expansion Technique

    Institute of Scientific and Technical Information of China (English)

    许铁军; 黄生洪; 谢韩; 宋云涛; 张平; 戢翔; 高大明

    2011-01-01

    Considering utilization of the original chromium-bronze material, two processing techniques including hydraulic expansion and high temperature vacuum welding were proposed for the optimization of heat-sink structure in EAST. The heat transfer performance of heat-sink with or without cooling tube was calculated and different types of connection between tube and heat-sink were compared by conducting a special test. It is shown from numerical analysis that the diameter of heat-sink channel can be reduced from 12 mm to 10 mm. Compared with the original sample, the thermal contact resistance between tube and heat-sink for welding sample can reduce the heat transfer performance by 10%, while by 20% for the hydraulic expansion sample. However, the welding technique is more complicated and expensive than hydraulic expansion technique. Both the processing technique and the heat transfer performance of heat-sink prototype should be further considered for the optimization of heat-sink structure in EAST.

  18. Analysis of Interrupted Rectangular Microchannel Heat Sink with High Aspect Ratio

    Directory of Open Access Journals (Sweden)

    Harshin Kamal

    2017-01-01

    Full Text Available A computational modelling of microchannel heat sinks with high aspect ratio has been performed to compare the geometrical features in the plane parallel to the heating surface and to determine the optimum configuration for the best heat transfer characteristics. A periodic thermal development of flow can cause significant heat transfer enhancement. A consensus on a particular geometrical configuration that provides the best heat transfer characteristics has not been reached in the literature, although many novel ideas have been proposed recently. Firstly the validity and applicability of microchannel sink modelling is presented followed by an optimization of parameters of interrupted microchannel heat sink. Consequences of the multichannel effect due to the introduction of transverse microchamber are also presented. It has been shown that the average Nusselt number of the microchannel heat sink increases by the introduction of a transverse microchamber with the additional advantage of a lower pressure drop. There exists an optimum width for the transverse microchamber for which the interrupted microchannel heat sink shows optimum characteristics.

  19. High Efficiency Microchannel Diamond Heat Sinks Project

    Data.gov (United States)

    National Aeronautics and Space Administration — While absolute power levels in microelectronic devices are relatively modest (a few tens to a few hundred watts), heat fluxes can be significant (~50 W/cm2 in...

  20. HEAT TRANSFER ENHANCEMENT OF SMALL SCALE HEAT SINKS USING VIBRATING PIN FIN

    Directory of Open Access Journals (Sweden)

    Suabsakul Gururatana

    2013-01-01

    Full Text Available Heat sinks are widely adopted in electronics cooling together with different technologies to enhance the cooling process. For the small electronics application, the small scale pin fins heat sinks are extensively used to dissipate heat in electronics devices. Due to the limit of space in the small devices, it is impossible to increase heat transfer area. In order to improve the heat transfer performance, the applying the forced vibration is one of challenging method. This study applies the vibration frequency between 50 to 1,000 Hz to pin fins heat sinks. The results of numerical simulation clearly show satisfied heat transfer augmentation. However, the Pressure drop significantly increases with frequency. This phenomenon affects the heat transfer enhancement performance that it increases with frequency until certain value then it drops rapidly. The results of this study can help designing heat sinks for electronics cooling by employing the concept of vibration.

  1. Nanofluid jet impingement heat transfer characteristics in the rectangular mini-fin heat sink

    Science.gov (United States)

    Naphon, Paisarn; Nakharintr, Lursukd

    2012-11-01

    The nanofluid jet impingement heat transfer characteristics in a rectangular mini-fin heat sink are studied. The heat sink is fabricated from aluminum by a wire electrical discharge machine. The nanofluid is a mixture of deionized water and nanoscale TiO2 particles with a volume nanoparticle concentration of 0.2%. The results obtained for nanofluid jet impingement cooling in the rectangular mini-fin heat sink are compared with those found in the water jet impingement cooling. The effects of the inlet temperature of the nanofluid, its Reynolds number, and the heat flux on the heat transfer characteristics of the rectangular mini-fin heat sink are considered. It is found that the average heat transfer rates for the nanofluid as coolant are higher than those for deionized water.

  2. Infrared evaluation of the heat-sink bipolar diathermy dissection technique.

    Science.gov (United States)

    Allan, J; Dusseldorp, J; Rabey, N G; Malata, C M; Goltsman, D; Phoon, A F

    2015-08-01

    The use of the bipolar diathermy dissection technique is widespread amongst surgeons performing flap perforator dissection and microvascular surgery. The 'heat-sink' modification uses a DeBakey forcep as a heat sinking interposition between the bipolar tip and the main (vascular or flap) pedicle aiming to protect it from the thermal effects of the bipolar diathermy. This study examines the thermal effects of bipolar cautery upon the microvasculature and investigates the efficacy of heat sinking as a thermally protective technique in microsurgical dissection. A chicken thigh microsurgical training model was used to examine the effects of bipolar cautery. The effects of bipolar were examined using high definition, real-time infrared thermographic imaging (FLIR Systems) and temperature quantitatively assessed at various distances away from the point of bipolar cautery. Comparison was made using the heat sink technique to determine if it conferred a thermoprotective effect compared to the standard technique without heat sink. Using paired t-test analysis (SPSS) the heat sink modification of the bipolar dissection technique was found to have a highly statistically significant effect (P < 0.000000001) in reducing the conductive temperature along the vascular pedicle. This protective effect kept temperatures comparable to controls. Bipolar cautery is an extremely safe method of electrosurgery, however when its use is required within 3 mm of important vascular architecture, the heat-sink method is a viable and easy technique to prevent thermal spread and limit potential coagulopathic changes. Copyright © 2015 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  3. Modelación y simulación de disipadores de calor para procesadores de computadora en COMSOL Multiphysics Modeling and simulation of heat sinks for computer processors in COMSOL Multiphysics

    Directory of Open Access Journals (Sweden)

    Sulin Garro Acón

    2012-11-01

    Full Text Available En este estudio se analizó la transferencia de calor en tres disipadores de calor utilizados para enfriar los procesadores de computadoras de escritorio. El objetivo de estos disipadores es evitar el sobrecalentamiento de la unidad de procesamiento y la consecuente reducción de la vida útil del computador. Los disipadores de calor se modelaron usando COMSOL Multiphysics con las dimensiones reales de los dispositivos y la generación de calor se modeló con una fuente puntual. Luego se modificaron los diseños de los disipadores para lograr una temperatura más baja en la zona más caliente del procesador. El resultado fue una reducción en la temperatura en el rango de 5-78 grados Kelvin, al rediseñarse el disipador de calor con variaciones feasibles como la reducción del grosor de las placas de intercambio de calor y el aumento de su número. Esto demuestra la posibilidad de desarrollar diseños optimizados para disipadores de calor que no requieran más materiales sino una mejor ingeniería. El trabajo se inició como parte del curso CM-4101 Modelización y Simulación.In this study, the heat transfer of three desktop- computer heat sinks was analyzed. The objective of using these heat sinks is to avoid overheating of the computer’s processing unit and in turn reduce the corresponding loss in the unit’s service time. The heat sinks were modeled using COMSOL Multiphysics with the actual dimensions of the devices, and heat generation was modeled with a point source. In the next step, the heat sink designs were modified to achieve a lower temperature in the higher temperature location on the heat sink. The results were temperature reductions in the range of 5-78 degrees Kelvin, by making feasible variations in design such as reducing the thickness of the heat exchanger fins and increasing their number. This paper demonstrates that there is room to develop improved designs that do not require more materials but rather a better engineering

  4. Flow Boiling Heat Transfer in Two-Phase Micro Channel Heat Sink at Low Water Mass Flux

    Science.gov (United States)

    Kuznetsov, Vladimir V.; Shamirzaev, Alisher S.

    2009-08-01

    Boiling heat transfer at water flow with low mass flux in heat sink which contained rectangular microchannels was studied. The stainless steel heat sink contained ten parallel microchannels with a size of 640 × 2050 μm in cross-section with typical wall roughness of 10-15 μm. The local flow boiling heat transfer coefficients were measured at mass velocity of 17 and 51 kg/m2s, heat flux on 30 to 150 kW/m2 and vapor quality of up to 0.8 at pressure in the channels closed to atmospheric one. It was observed that Kandlikar nucleate boiling correlation is in good agreement with the experimental data at mass flow velocity of 85 kg/m2s. At smaller mass flux the Kandlikar model and Zhang, Hibiki and Mishima model demonstrate incorrect trend of heat transfer coefficients variation with vapor quality.

  5. Novel Natural Convection Heat Sink Design Concepts From First Principles

    Science.gov (United States)

    2016-06-01

    Appendix B. Upon the conclusion of this study, Plunkett Associates used a Direct Metal Laser Sintering process to construct novel heat sinks that...on the design, pin-fins in the horizontal and upward vertical direction can be comparable while the downward vertical direction provides the worst...number of tubes were varied and all additional variations are a direct result of the manipulation of these three parameters. Table 1. Governing

  6. Thermal design heat sinks, thermoelectrics, heat pipes, compact heat exchangers, and solar cells

    CERN Document Server

    Lee, H S

    2010-01-01

    The proposed is written as a senior undergraduate or the first-year graduate textbook,covering modern thermal devices such as heat sinks, thermoelectric generators and coolers, heat pipes, and heat exchangers as design components in larger systems. These devices are becoming increasingly important and fundamental in thermal design across such diverse areas as microelectronic cooling, green or thermal energy conversion, and thermal control and management in space, etc. However, there is no textbook available covering this range of topics. The proposed book may be used as a capstone design cours

  7. Performance analysis of nanofluid-cooled microchannel heat sinks

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, T.-H. [Department of Mechanical Engineering, Wufeng Institute of Technology, Chia-Yi 621, Taiwan (China); Chein Reiyu [Department of Mechanical Engineering, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung 402, Taiwan (China)], E-mail: rychein@dragon.nchu.edu.tw

    2007-10-15

    Microchannel heat sink (MCHS) performance using copper-water (Cu-H{sub 2}O) and carbon nanotube-water (CNT-H{sub 2}O) nanofluids as coolants is addressed analytically in this study. The velocity and temperature distributions in the MCHS were obtained by modeling the MCHS as a porous media. The resulting velocity and temperature were then used to evaluate the thermal resistance that characterizes MCHS performance. It was found that the nanofluid reduced the temperature difference between the MCHS bottom wall and bulk nanofluid compared with that from pure fluid. This temperature difference produces a reduction in conductive thermal resistance, which is one of the two sources contributing the total thermal resistance of the MCHS. The other source of thermal resistance, termed as convective thermal resistance, was found to increase when nanofluid is employed as the coolant due to the increase in viscosity and decrease in thermal capacity. Under the condition of a given pressure drop across the MCHS, optimum values of aspect ratio and porosity that producing the minimum thermal resistance can be found. It was found that using nanofluid can enhance the MCHS performance when the porosity and aspect ratio are less than the optimum porosity and aspect ratio. When the porosity and channel aspect ratio are higher than optimum porosity and aspect ratio, the nanofluid did not produce a significant change in MCHS thermal resistance.

  8. Intensification of heat transfer in high-power laser diode bars by means of porous metal heat-sink

    Science.gov (United States)

    Apollonov, V. V.; Derzhavin, S. I.; Kuzminov, V. V.; Mashkovskiy, D. A.; Timoshkin, V. N.; Philonenko, V.

    1999-01-01

    To intensify a heat transfer in high-power emitters based on laser diode bars we propose the use of a heat sink from a porous permeable material cooled by a fluid flow [1-3]. The main advantage of this class of materials is the possibility of removing significant heat flows with compact heat sink. An analysis of the characteristic values of the thermal loads and their relations with the material and liquid parameters drawn from an one-dimensional model of stationary one-sided heat exchange shows the possibility of heat flow removal of more than 1.5 kW/cm 2 at room temperature in a liquid. Methods for improving the effectiveness of the strategy are considered.

  9. Influence of Transverse Magnetic Field on Microchannel Heat Sink Performance

    Directory of Open Access Journals (Sweden)

    K. Narrein

    2016-01-01

    Full Text Available The aim of the present numerical investigation is to analyze the effects of transverse magnetic field on heat transfer and fluid flow characteristics in a rectangular microchannel heat sink (MCHS. The effects of Hartmann number, channel aspect ratio, total channel height and total channel width on heat transfer and fluid flow characteristics are widely investigated. The governing equations for three-dimensional steady, laminar flow and conjugate heat transfer of a microchannel are solved using the finite volume method. The obtained results are discussed with various combinations of pertinent parameters involved in the study. The results reveal that magnetic field can enhance the thermal performance of the MCHS but it is accompanied with a slight increase in pressure drop.

  10. Numerical study of thermal performance of perforated circular pin fin heat sinks in forced convection

    Science.gov (United States)

    Wen, Mao-Yu; Yeh, Cheng-Hsiung

    2017-06-01

    This paper presents a numerical simulation of the heat transfer performance under forced convection for two different types of circular pin fin heat sinks with (Type A) and without (Type B) a hollow in the heated base. COMSOL Multiphysics, which is used for the thermal hydraulic analyses, has proven to be a powerful finite-element-based simulation tool for solving multiple physics-based systems of partial and ordinary differential equations. The standard κ - \\varepsilon two-equations turbulence model is employed to describe the turbulent structure and behavior. The numerical results are validated with the experimental results, and are shown to be in good agreement. The effects of the Reynolds number, height of the fin, finning factor and the perforated base plate on the heat-transfer coefficient are investigated and evaluated. The present study strongly recommends the use of a small hollow ( (Dh /Db ) heat sink.

  11. Heat Transfer Enhancement by Finned Heat Sinks with Micro-structured Roughness

    Science.gov (United States)

    Ventola, L.; Chiavazzo, E.; Calignano, F.; Manfredi, D.; Asinari, P.

    2014-04-01

    We investigated the benefits of micro-structured roughness on heat transfer performance of heat sinks, cooled by forced air. Heat sinks in aluminum alloy by direct metal laser sintering (DMLS) manufacturing technique were fabricated; values of the average surface roughness Ra from 1 to 25 microns (standard milling leads to roughness around 1 micron) under turbulent regimes (Reynolds number based on heating edge from 3000 to 17000) have been explored. An enhancement of 50% in thermal performances with regards to standard manufacturing was observed. This may open the way for huge boost in the technology of electronic cooling by DMLS.

  12. Temperature Histories in Ceramic-Insulated Heat-Sink Nozzle

    Science.gov (United States)

    Ciepluch, Carl C.

    1960-01-01

    Temperature histories were calculated for a composite nozzle wall by a simplified numerical integration calculation procedure. These calculations indicated that there is a unique ratio of insulation and metal heat-sink thickness that will minimize total wall thickness for a given operating condition and required running time. The optimum insulation and metal thickness will vary throughout the nozzle as a result of the variation in heat-transfer rate. The use of low chamber pressure results in a significant increase in the maximum running time of a given weight nozzle. Experimentally measured wall temperatures were lower than those calculated. This was due in part to the assumption of one-dimensional or slab heat flow in the calculation procedure.

  13. Liquid metal heat sink for high-power laser diodes

    Science.gov (United States)

    Vetrovec, John; Litt, Amardeep S.; Copeland, Drew A.; Junghans, Jeremy; Durkee, Roger

    2013-02-01

    We report on the development of a novel, ultra-low thermal resistance active heat sink (AHS) for thermal management of high-power laser diodes (HPLD) and other electronic and photonic components. AHS uses a liquid metal coolant flowing at high speed in a miniature closed and sealed loop. The liquid metal coolant receives waste heat from an HPLD at high flux and transfers it at much reduced flux to environment, primary coolant fluid, heat pipe, or structure. Liquid metal flow is maintained electromagnetically without any moving parts. Velocity of liquid metal flow can be controlled electronically, thus allowing for temperature control of HPLD wavelength. This feature also enables operation at a stable wavelength over a broad range of ambient conditions. Results from testing an HPLD cooled by AHS are presented.

  14. An Experimental Study on the Thermal Resistance Characteristics of Layered Heat Sink

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Joung Ha [Department of Mechanical Engineering, Graduate School of Hanyang University, Seoul (Korea); Yun, Jae Ho; Kwon, Oh Kyung [Air-Conditioning and Refrigerating Research Team, Korea Institute of Industrial Technology, Chonan (Korea); Lee, Chang Sik [Department of Mechanical Engineering, Hanyang University, Seoul (Korea)

    2001-04-01

    This paper has been made to investigate the thermal performance characteristics for the several types of layered aluminum heat sinks with offset-trip fin. Heat sinks with different fin height, fin length, number of fin layer and slanted fin are prepared and tested for natural convection as well as forced convection. The experimental results for layered heat sink (LHS) are compared to those for advanced pin fin heat sink (PHS) so that the appropriate heat sink can be designed or chosen according to the heating conditions. The overall heat transfer performances for LHS are almost comparable to those of PHS under natural convection, and become 1.2 {approx} 1.5 times as high as those of PHS under forced convection situation. This study shows that fin height and number of fin layer are important parameters, which have a serious influence on thermal performance for layered heat sinks. 6 refs., 14 figs., 1 tab.

  15. New Configurations of Micro Plate-Fin Heat Sink to Reduce Coolant Pumping Power

    DEFF Research Database (Denmark)

    Kolaei, Alireza Rezania; Rosendahl, Lasse

    2012-01-01

    The thermal resistance of heat exchangers has a strong influence on the electric power produced by a thermoelectric generator (TEG). In this work, a real TEG device is applied to three configurations of micro plate-fin heat sink. The distance between certain microchannels is varied to find...... the optimum heat sink configuration. The particular focus of this study is to reduce the coolant mass flow rate by considering the thermal resistances of the heat sinks and, thereby, to reduce the coolant pumping power in the system. The threedimensional governing equations for the fluid flow and the heat...... heat sink configurations reduces the coolant pumping power in the system....

  16. Numerical study of thermal performance of perforated circular pin fin heat sinks in forced convection

    Science.gov (United States)

    Wen, Mao-Yu; Yeh, Cheng-Hsiung

    2016-12-01

    This paper presents a numerical simulation of the heat transfer performance under forced convection for two different types of circular pin fin heat sinks with (Type A) and without (Type B) a hollow in the heated base. COMSOL Multiphysics, which is used for the thermal hydraulic analyses, has proven to be a powerful finite-element-based simulation tool for solving multiple physics-based systems of partial and ordinary differential equations. The standard κ- ɛ two-equations turbulence model is employed to describe the turbulent structure and behavior. The numerical results are validated with the experimental results, and are shown to be in good agreement. The effects of the Reynolds number, height of the fin, finning factor and the perforated base plate on the heat-transfer coefficient are investigated and evaluated. The present study strongly recommends the use of a small hollow ( (Dh /Db ) sink.

  17. Optimization of nanofluid-cooled microchannel heat sink

    Directory of Open Access Journals (Sweden)

    Adham Ahmed Mohammed

    2016-01-01

    Full Text Available The optimization of a nanofluid-cooled rectangular microchannel heat sink is reported. Two nanofluids with volume fraction of 1 %, 3 %, 5 %, 7 % and 9 % are employed to enhance the overall performance of the system. An optimization scheme is applied consisting of a systematic thermal resistance model as an analysis method and the elitist non-dominated sorting genetic algorithm (NSGA-II. The optimized results showed that the increase in the particles volume fraction results in a decrease in the total thermal resistance and an increase in the pumping power. For volume fractions of 1 %, 3 %, 5 %, 7 % and 9 %, the thermal resistances were 0.072, 0.07151, 0.07075, 0.07024 and 0.070 [oK W-1] for the SiC-H2O while, they were 0.0705, 0.0697, 0.0694, 0.0692 and 0.069 [oK W-1] for the TiO2-H2O. The associated pumping power were 0.633, 0.638, 0.704, 0.757 and 0.807 [W] for the SiC-H2O while they were 0.645, 0.675, 0.724, 0.755 and 0.798 [W] for the TiO2-H2O. In addition, for the same operating conditions, the nanofluid-cooled system outperformed the water-cooled system in terms of the total thermal resistance (0.069 and 0.11 for nanofluid-cooled and water-cooled systems, respectively. Based on the results observed in this study, nanofluids should be considered as the future coolant for electronic devices cooling systems.

  18. 2014 PGSFR Safety Analysis for Loss of Heat Sink

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, J. H.; Lee, K. L.; Choi, C. W.; Jeong, T. K.; Yoo, J.; Chang, W. P.; Ahn, S. J.; Lee, S. W.; Kang, S. H.; Ha, K. S. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    KAERI has been developing a conceptual design of the PGSFR (Prototype Gen-4 Sodium-cooled Fast Reactor) with the thermal power of 392.1 MWt, which is the pool type SFR (Sodium-cooled Fast Reactor) with metal fuel. The PGSFR consists of the PHTS (Primary Heat Transport System), the IHTS (Intermediate Heat Transport System), and the DHRS (Decay Heat Removal System). A LOHS (Loss Of Heat Sink) accident has been investigated for a safety evaluation of the PGSFR using the MARS-LMR code. The safety analysis is evaluated by a CDF (Cumulative Damage Function). In case of the LOHS accident, the tentative safety criterion is the CDF of under 0.05. The LOHS accident has been evaluated in the PGSFR using MARS-LMR. The accident was initiated by both of PHTS pump trip. In the results, the CDF was predicted below a tentative safety criterion of 0.05 with a sufficient margin. The DHRS acceptably functioned for removing the core decay heat during long-term cooling period. Furthermore, it has been elucidated that LOHS with LOOP is more conservative than LOHS without LOOP.

  19. Experimental microchannel heat sink performance studies using nano-fluids

    Energy Technology Data Exchange (ETDEWEB)

    Chein, Reiyu; Chuang, Jason [Department of Mechanical Engineering, National Chung Hsing University, 250 Kuo-Kuang Rd., Taichung City, Taiwan (China)

    2007-01-15

    In this study, microchannel heat sink (MCHS) performance using nano-fluids as coolants is addressed. We first carried out a simple theoretical analysis that indicated more energy and lower MCHS wall temperature could be obtained under the assumption that heat transfer could be enhanced by the presence of nano-particles. Experiments were then performed to verify the theoretical predictions. A silicon MCHS was made and CuO-H{sub 2}O mixtures without a dispersion agent were used as the coolants. The CuO particle volume fraction was in the range of 0.2 to 0.4%. It was found that nano-fluid-cooled MCHS could absorb more energy than water-cooled MCHS when the flow rate was low. For high flow rates, the heat transfer was dominated by the volume flow rate and nano-particles did not contribute to the extra heat absorption. The measured MCHS wall temperature variations agreed with the theoretical prediction for low flow rate. For high flow rate, the measured MCHS wall temperatures did not completely agree with the theoretical prediction due to the particle agglomeration and deposition. It was also found that raising the nano-fluid bulk temperature could prevent the particles from being agglomerated into larger scale particle clusters. The experimental result also indicated that only slightly increase in pressure drop due to the presence of nano-particles in MCHS operation. (author)

  20. Investigation of heat sink of endothermic hydrocarbon fuels

    Institute of Scientific and Technical Information of China (English)

    GUO Yong-sheng; LIN Rui-sen

    2005-01-01

    Endothermic hydrocarbon fuels are advanced coolants for high-temperature structures of spacecraft. No data of tested-cooling-ability of endothermic fuels have been broadly discussed in literature. In this work a high-temperature flow calorimeter was designed, and the cooling capacity of six different hydrocarbon fuels were measured. Experimental results showed that these hydrocarbon fuels have capacity for cooling high-temperature structures, and that the cooling capacity of fuel N-1 can reach 3.15 M J/kg, which can nearly satisfy the requirement of thermal management for a Mach 3 cruise aircraft, whose heat sink requirement is about 3.5 M J/kg. The endothermic velocity of hydrocarbon fuels was also measured by the calorimeter.

  1. Evaluating Thermoelectric Power Generation Device Performance Using a Rectangular Microchannel Heat Sink

    DEFF Research Database (Denmark)

    Kolaei, Alireza Rezania; Rosendahl, Lasse

    2011-01-01

    In this work, a microchannel heat sink is applied to a thermoelectric power generation (TEG) device and compared with a traditional heat sink. The advantages and disadvantages of using each heat sink in a TEG device are evaluated. The microchannel hydraulic diameter is 5.33 x 10-4 m...... and that of the macrochannel is 2.13 x 10-3 m. Pressure drops and heat removed in the micro heat sink configuration are obtained for six different mass flow rates for the laminar and turbulent fluid flow regimes. By computationally applying a constant temperature difference between the hot and cold sides of the TEG, the fluid...... and thermal parameters are considered for both laminar and turbulent regimes in the channels. Furthermore, using the temperature difference through each TEG, the system efficiency is calculated. The results show that the microchannel heat sink gives a higher pressure drop, but the heat flow across the TEG...

  2. Thermal effect of a thermoelectric generator on parallel microchannel heat sink

    DEFF Research Database (Denmark)

    Kolaei, Alireza Rezania; Rosendahl, Lasse

    2012-01-01

    Thermoelectric generators (TEG) convert heat energy to electrical power by means of semiconductor charge carriers serving as working fluid. In this work, a TEG is applied to a parallel microchannel heat sink. The effect of the inlet plenum arrangement on the laminar flow distribution...... in the channels is considered at a wide range of the pressure drop along the heat sink. The particular focus of this study is geometrical effect of the TEG on the heat transfer characteristics in the micro-heat sink. The hydraulic diameter of the microchannels is 270 μm, and three heat fluxes are applied...

  3. Characterization of Single Phase and Two Phase Heat and Momentum Transport in a Spiraling Radial Inow Microchannel Heat Sink

    Science.gov (United States)

    Ruiz, Maritza

    Thermal management of systems under high heat fluxes on the order of hundreds of W/cm2 is important for the safety, performance and lifetime of devices, with innovative cooling technologies leading to improved performance of electronics or concentrating solar photovoltaics. A novel, spiraling radial inflow microchannel heat sink for high flux cooling applications, using a single phase or vaporizing coolant, has demonstrated enhanced heat transfer capabilities. The design of the heat sink provides an inward swirl flow between parallel, coaxial disks that form a microchannel of 1 cm radius and 300 micron channel height with a single inlet and a single outlet. The channel is heated on one side through a conducting copper surface, and is essentially adiabatic on the opposite side to simulate a heat sink scenario for electronics or concentrated photovoltaics cooling. Experimental results on the heat transfer and pressure drop characteristics in the heat sink, using single phase water as a working fluid, revealed heat transfer enhancements due to flow acceleration and induced secondary flows when compared to unidirectional laminar fully developed flow between parallel plates. Additionally, thermal gradients on the surface are small relative to the bulk fluid temperature gain, a beneficial feature for high heat flux cooling applications. Heat flux levels of 113 W/cm2 at a surface temperature of 77 deg C were reached with a ratio of pumping power to heat rate of 0.03%. Analytical models on single phase flow are used to explore the parametric trends of the flow rate and passage geometry on the streamlines and pressure drop through the device. Flow boiling heat transfer and pressure drop characteristics were obtained for this heat sink using water at near atmospheric pressure as the working fluid for inlet subcooling levels ranging from 20 to 80 deg C and mean mass flux levels ranging from 184-716 kg/m. 2s. Flow enhancements similar to singlephase flow were expected, as well

  4. Analytical Thermal and Cost Optimization of Micro-Structured Plate-Fin Heat Sink

    DEFF Research Database (Denmark)

    Rezaniakolaei, Alireza; Rosendahl, Lasse

    Microchannel heat sinks have been widely used in the field of thermo-fluids due to the rapid growth in technological applications which require high rates of heat transfer in relatively small spaces and volumes. In this work, a micro plate-fin heat sink is optimized parametrically, to minimize...... the thermal resistance and to maximize the cost performance of the heat sink. The width and the height of the microchannels, and the fin thickness are analytically optimized at a wide range of pumping power. Using an effective numeric test, the generated equations also discuss the optimum parameters at three...... sizes of the substrate plat of the heat sink. Results show that, at any pumping power there are specific values of the channel width and fin thickness which produce minimum thermal resistance in the heat sink. The results also illustrate that, a larger channel width and a smaller fin thickness lead...

  5. Aluminum heat sink enables power transistors to be mounted integrally with printed circuit board

    Science.gov (United States)

    Seaward, R. C.

    1967-01-01

    Power transistor is provided with an integral flat plate aluminum heat sink which mounts directly on a printed circuit board containing associated circuitry. Standoff spacers are used to attach the heat sink to the printed circuit board containing the remainder of the circuitry.

  6. Effects of distance between arc and heat sink on stress and distortion in DC-LSND welding technology

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The characteristics of temperatures, stresses and strains fields have been studied numerically for a titanium alloy sheet welded with an improved gas tungsten arc welding method, in which a trailing spot heat sink is introduced to control the welding stress and distortion. The impinging jet model is employed to describe the intense heat transfer between the cooling media and the top surface of the workpiece. The influence of the distance between arc and heat sink is investigated. Results show that there is an ideal range of distance. Using the ideal distance, a low stress and no distortion welding structure can be derived.

  7. BACKUP AND ULTIMATE HEAT SINKS IN CANDU REACTORS FOR PROLONGED SBO ACCIDENTS

    Directory of Open Access Journals (Sweden)

    T. NITHEANANDAN

    2013-10-01

    The efficacy of available backup and ultimate heat sinks, available in a CANDU 6 reactor, in mitigating the consequences of a prolonged station blackout scenario was analysed using the MAAP4-CANDU code. The analysis indicated that the steam generator secondary side water inventory is the most effective heat sink during the accident. Additional heat sinks such as the primary coolant, moderator, calandria vault water and end shield water are also able to remove decay heat; however, a gradually increasing mismatch between heat generation and heat removal occurs over the course of the postulated event. This mismatch is equivalent to an additional water inventory estimated to be 350,000 kg at the time of calandria vessel failure. In the Enhanced CANDU 6 reactor ∼2,040,000 kg of water in the reserve water tank is available for prolonged emergencies requiring heat sinks.

  8. Boiling heat transfer in a hydrofoil-based micro pin fin heat sink

    Energy Technology Data Exchange (ETDEWEB)

    Kosar, Ali; Peles, Yoav [Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180 (United States)

    2007-03-15

    Flow boiling of R-123 in a hydrofoil-based micro pin fin heat sink was investigated. Average two-phase heat transfer coefficients were obtained over effective heat fluxes ranging from 19 to 312 W/cm{sup 2} and mass fluxes from 976 to 2349 kg/m{sup 2} s. The paper presents a flow map, which divides the data into three flow pattern regions: bubbly, wavy intermittent and spray-annular flows. Heat transfer coefficient trends and flow morphologies were used to infer boiling heat transfer mechanisms. Existing conventional scale correlations for circular tubes resulted in large scatter and were not able to predict the heat transfer coefficients accurately. (author)

  9. Heat sink design considerations in medium power electronic applications with long power cycles

    CERN Document Server

    AUTHOR|(SzGeCERN)744611; Papastergiou, Konstantinos; Thiringer, Torbjörn; Bongiorno, Massimo

    2015-01-01

    The aim of this work is to investigate the impact of the heat sink thickness and material, as well as, of the convection coefficient of the water cooling system on the power-electronics module thermal stressing. The heat extraction capability of different thicknesses is tested. It is concluded that the thickest heat sink results in marginally lower temperature variation at the junction level compared to the second thickest one. In the thickest heat sink case, the linear dependence of the thermal resistance on the thickness counteracts the benefit of the increased thermal capacitance. The increase in the cooling medium flow rate, which corresponds to an increase in the convection coefficient between the heat sink bottom surface and the water, can be avoided by increasing the thickness of the heat sink. In this way, the energy consumption of the cooling system is reduced. The increase in the flow rate drastically reduces the thermal stressing in the thinnest heat sink case. The increase of the heat sink thickne...

  10. Experimental and Transient Thermal Analysis of Heat Sink Fin for CPU processor for better performance

    Science.gov (United States)

    Ravikumar, S.; Subash Chandra, Parisaboina; Harish, Remella; Sivaji, Tallapaneni

    2017-05-01

    The advancement of the digital computer and its utilization day by day is rapidly increasing. But the reliability of electronic components is critically affected by the temperature at which the junction operates. The designers are forced to shorten the overall system dimensions, in extracting the heat and controlling the temperature which focus the studies of electronic cooling. In this project Thermal analysis is carried out with a commercial package provided by ANSYS. The geometric variables and design of heat sink for improving the thermal performance is experimented. This project utilizes thermal analysis to identify a cooling solution for a desktop computer, which uses a 5 W CPU. The design is able to cool the chassis with heat sink joined to the CPU is adequate to cool the whole system. This work considers the circular cylindrical pin fins and rectangular plate heat sink fins design with aluminium base plate and the control of CPU heat sink processes.

  11. Heat transfer performance of Al2O3/water nanofluids in a mini channel heat sink.

    Science.gov (United States)

    Dominic, A; Sarangan, J; Suresh, S; Sai, Monica

    2014-03-01

    The high density heat removal in electronic packaging is a challenging task of modern days. Finding compact, energy efficient and cost effective methods of heat removal is being the interest of researchers. In the present work, mini channel with forced convective heat transfer in simultaneously developing regime is investigated as the heat transfer coefficient is inversely proportional to hydraulic diameter. Mini channel heat sink is made from the aluminium plate of 30 mm square with 8 mm thickness. It has 15 mini channel of 0.9 mm width, 1.3 mm height and 0.9 mm of pitch. DI water and water based 0.1% and 0.2% volume fractions of Al2O3/water nanofluids are used as coolant. The flow rates of the coolants are maintained in such a way that it is simultaneously developing. Reynolds number is varied from 400 to 1600 and heat input is varied from 40 W to 70 W. The results showed that heat transfer coefficient is more than the heat transfer coefficient of fully developed flow. Also the heat transfer is more for nanofluids compared to DI water.

  12. BACKUP AND ULTIMATE HEAT SINKS IN CANDU REACTORS FOR PROLONGED SBO ACCIDENTS

    National Research Council Canada - National Science Library

    Nitheanandan, T; Brown, M.J

    2013-01-01

    .... The efficacy of available backup and ultimate heat sinks, available in a CANDU 6 reactor, in mitigating the consequences of a prolonged station blackout scenario was analysed using the MAAP4-CANDU code...

  13. CTE-Matched, Liquid-Cooled, High Thermal Conductivity Heat Sink Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose the development of a CTE-matched, liquid-cooled, high thermal conductivity heat sink for use in spacecraft thermal management applications. The material...

  14. Endothermic Heat-Sink of Hydrocarbon Fuels for Scramjet Cooling AIAA 2002-3871

    National Research Council Canada - National Science Library

    Huang, H

    2002-01-01

    Storable liquid hydrocarbon fuels, such as JP-7, JP-8+ 100, and JP-10, that can undergo endothermic reactions may provide sufficient heat sink to enable hypersonic flight without having to resort to cryogenic fuels...

  15. Backup and Ultimate Heat Sinks in CANDU Reactors For Prolonged SBO Accidents

    Energy Technology Data Exchange (ETDEWEB)

    Nitheanandan, T.; Brown, M. J. [Atomic Energy of Canada Limited, Ontario (Canada)

    2013-10-15

    In a pressurized heavy water reactor, following loss of the primary coolant, severe core damage would begin with the depletion of the liquid moderator, exposing the top row of internally-voided fuel channels to steam cooling conditions on the inside and outside. The uncovered fuel channels would heat up, deform and disassemble into core debris. Large inventories of water passively reduce the rate of progression of the accident, prolonging the time for complete loss of engineered heat sinks. The efficacy of available backup and ultimate heat sinks, available in a CANDU 6 reactor, in mitigating the consequences of a prolonged station blackout scenario was analysed using the MAAP4-CANDU code. The analysis indicated that the steam generator secondary side water inventory is the most effective heat sink during the accident. Additional heat sinks such as the primary coolant, moderator, calandria vault water and end shield water are also able to remove decay heat; however, a gradually increasing mismatch between heat generation and heat removal occurs over the course of the postulated event. This mismatch is equivalent to an additional water inventory estimated to be 350,000 kg at the time of calandria vessel failure. In the Enhanced CANDU 6 reactor ∼2,040,000 kg of water in the reserve water tank is available for prolonged emergencies requiring heat sinks.

  16. Boiling Delay phenomenon in a Thermosyphon Heat Sink and Its Effect on Device Performance

    Institute of Scientific and Technical Information of China (English)

    WeilinHu; YihuiZhou; 等

    1994-01-01

    A new kind of thermosyphon heat sink has been studied and developed,its peformance being measured.It was found that a remarkable boiling delay phenomenon occurs during its work.The phenomenon is described and explained and its effects on thermoresistance performance at both steady and transient states are discussed.The thermoresistance of this sink is found to be 0.029℃/W at air velocity 5m/s.THis heat sink will satisfy the needs of cooling rectifier diodes and thyristors of rated currents up to 1000 amperes.

  17. Numerical investigation of entropy generation in microchannels heat sink with different shapes

    Science.gov (United States)

    Alfaryjat, A. A.; Stanciu, D.; Dobrovicescu, A.; Badescu, V.; Aldhaidhawi, M.

    2016-08-01

    Entropy generation of 3D cross sections circular, square, and hexagon shapes microchannel heat sinks (MCHS) were numerically performed. The governing equations (continuity, momentum and energy) along with the boundary conditions and the study state conjugate heat transfer problem were solved using the finite volume method (FVM). The Reynolds number in the range of 100 to 1600 and heat flux of 125, 150, 175 and 200 kW/m2 were covered in this study. The overall entropy generation rate and entropy generation number are obtained by integrating the volumetric rate components over the entire heat sink. The results indicated that entropy generation decreases with increases of the Reynolds number. Decreasing the heat flux led to decreasing entropy generation. The square microchannel heat sink has the lowest entropy generation and entropy generation number

  18. Numerical Evaluation of Flow and Heat Transfer in Plate-Pin Fin Heat Sinks with Various Pin Cross-Sections

    OpenAIRE

    Zhou, Feng; Catton, Ivan

    2011-01-01

    A numerical investigation of the thermal and hydraulic performance of twenty different plate-pin fin heat sinks with various shapes of pin cross-section (square, circular, elliptic, NACA profile and dropform) and different ratios of pin widths to plate fin spacing (0.3, 0.4, 0.5 and 0.6) was performed. Finite Volume Method based CFD software, Ansys CFX, was used as the 3-D Reynolds-averaged Navier-Stokes Solver. A k-ω based Shear-Stress-Transport model was used to predict the turbulent flow a...

  19. Numerical prediction of micro-channel LD heat sink operated with antifreeze based on CFD method

    Science.gov (United States)

    Liu, Gang; Liu, Yang; Wang, Chao; Wang, Wentao; Wang, Gang; Tang, Xiaojun

    2014-12-01

    To theoretically study the feasibility of antifreeze coolants applied as cooling fluids for high power LD heat sink, detailed Computational Fluid Dynamics (CFD) analysis of liquid cooled micro-channels heat sinks is presented. The performance operated with antifreeze coolant (ethylene glycol aqueous solution) compared with pure water are numerical calculated for the heat sinks with the same micro-channels structures. The maximum thermal resistance, total pressure loss (flow resistance), thermal resistance vs. flow-rate, and pressure loss vs. flow-rate etc. characteristics are numerical calculated. The results indicate that the type and temperature of coolants plays an important role on the performance of heat sinks. The whole thermal resistance and pressure loss of heat sinks increase significantly with antifreeze coolants compared with pure water mainly due to its relatively lower thermal conductivity and higher fluid viscosity. The thermal resistance and pressure loss are functions of the flow rate and operation temperature. Increasing of the coolant flow rate can reduce the thermal resistance of heat sinks; meanwhile increase the pressure loss significantly. The thermal resistance tends to a limit with increasing flow rate, while the pressure loss tends to increase exponentially with increasing flow rate. Low operation temperature chiefly increases the pressure loss rather than thermal resistance due to the remarkable increasing of fluid viscosity. The actual working point of the cooling circulation system can be determined on the basis of the pressure drop vs. flow rate curve for the micro-channel heat sink and that for the circulation system. In the same system, if the type or/and temperature of the coolant is changed, the working point is accordingly influenced, that is, working flow rate and pressure is changed simultaneously, due to which the heat sink performance is influenced. According to the numerical simulation results, if ethylene glycol aqueous

  20. Fluid-cooled heat sink for use in cooling various devices

    Energy Technology Data Exchange (ETDEWEB)

    Bharathan, Desikan; Bennion, Kevin; Kelly, Kenneth; Narumanchi, Sreekant

    2017-09-12

    The disclosure provides a fluid-cooled heat sink having a heat transfer base, a shroud, and a plurality of heat transfer fins in thermal communication with the heat transfer base and the shroud, where the heat transfer base, heat transfer fins, and the shroud form a central fluid channel through which a forced or free cooling fluid may flow. The heat transfer pins are arranged around the central fluid channel with a flow space provided between adjacent pins, allowing for some portion of the central fluid channel flow to divert through the flow space. The arrangement reduces the pressure drop of the flow through the fins, optimizes average heat transfer coefficients, reduces contact and fin-pin resistances, and reduces the physical footprint of the heat sink in an operating environment.

  1. Integrated Behavior of Carbon and Copper Alloy Heat Sink Under Different Heat Loads and Cooling Conditions

    Institute of Scientific and Technical Information of China (English)

    Li Hua; Li Jiangang; Chen Junling; Hu Jiansheng

    2005-01-01

    An actively water-cooled limiter has been designed for the long pulse operation of an HT-7 device, by adopting an integrated structure-doped graphite and a copper alloy heat sink with a super carbon sheet serving as a compliant layer between them. The behaviors of the integrated structure were evaluated in an electron beam facility under different heat loads and cooling conditions. The surface temperature and bulk temperature distribution were carefully measured by optical pyrometers and thermocouples under a steady state heat flux of 1 to 5 MW/m2 and a water flow rate of 3 m3/h, 4.5 m3/h and 6 m3/h, respectively. It was found that the surface temperature increased rapidly with the heat flux rising, but decreased only slightly with the water flow rate rising. The surface temperature reached approximately 1200℃ at 5 MW/m2 of heat flux and 6 ms/h of water flow. The primary experimental results indicate that the integrated design meets the requirements for the heat expelling capacity of the HT-7 device. A set of numerical simulations was also completed, whose outcome was in good accord with the experimental results.

  2. Experimental investigation on the thermal performance and optimization of heat sink with U-shape heat pipes

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Tian Shen [Faculty of Engineering and Technology, Multimedia University, 75450 Melaka (Malaysia); Hung, Yew Mun [School of Engineering, Monash University, 46150 Bandar Sunway (Malaysia)

    2010-11-15

    Experimental investigation is carried out to study the thermal performance of a heat sink with finned U-shape heat pipes which is a contemporary central processing unit (CPU) cooler compatible for a wide range of high-frequency microprocessors. The optimum range of operating heat load based on thermal resistance analysis of the heat sink is characterized. The convection heat transfer coefficient between the fins and the ambient air is estimated by using Bessel's modified equation in conjunction with the results obtained through the experimental investigation. The thermal optimization of the heat sink involves the determination of the optimized L-ratio (ratio of the evaporator section length to the condenser section length) of the U-shape heat pipe, by evaluating the minima of the thermal resistance function, in which case the empirical convection heat transfer coefficient is applied in the calculation. In conjunction with this, the optimal L-ratio of a U-shape heat pipe is found to be dependent on other geometrical parameters such as the heat pipe diameter and the fin spacing, which are of practical engineering importance in the optimum design of the heat sink. (author)

  3. Effect of the inter-block spacing on the thermal performance of a PCM based heat sink

    Energy Technology Data Exchange (ETDEWEB)

    Faraji, M.; El Qarnia, H. [Cadi Ayyad Univ., Marrakech (Morocco). Faculte des sciences Semlalia, Dept. de physique, Laboratoire de mecanique des fluides et d' energetique; El Khadir, L. [Cadi Ayyad Univ., Marrakech (Morocco). Faculte des sciences Semlalia, Dept. de physique, Laboratoire d' tomatique de l' Environnement et Procedes de Transferts

    2010-07-01

    Advanced electronic devices require efficient thermal control systems. Heat transfer analysis of such systems is challenging because of constraints regarding space limitations, power consumption and noise level. This study considered the problem of melting and natural convection in a rectangular enclosure heated with 3 heat sources with a constant and uniform volumetric heat generation. The heat sources were protruding and mounted on a vertical conducting plate. Conjugate conduction in a plate and heat sources coupled with natural convection and melting process were examined in an effort to determine the effects of the inter-blocks spacing ratio on the thermal performance of the cooling PCM-heat sink. The percentage contribution of substrate heat conduction on the total removed heat from heat sources was also investigated. Correlations were derived for the non- dimensional secured working time and the corresponding melt fraction. In order to investigate the thermal behaviour of the proposed heat sink, a mathematical model was developed based on the mass, momentum and energy conservation equations. The results revealed that for lower inter-blocks spacing, the dimensionless secured working time needed by the chips to reach the critical temperature was maximized. The highest inter-blocks spacing ratio provoked a sudden rise in chip temperatures and thus reduced the dimensionless secured working time. It was concluded that this approach can be used in the design of PCM-based cooling systems. 9 refs., 2 tabs., 4 figs.

  4. Numerical study of metal foam heat sinks under uniform impinging flow

    Science.gov (United States)

    Andreozzi, A.; Bianco, N.; Iasiello, M.; Naso, V.

    2017-01-01

    The ever-increasing demand for performance improvement and miniaturization of electronics has led to a significant generation of waste heat that must be dissipated to ensure a reliable device operation. The miniaturization of the components complicates this task. In fact, reducing the heat transfer area, at the same required heat rate, it is necessary to increase the heat flux, so that the materials operate in a temperature range suitable to its proper functioning. Traditional heat sinks are no longer capable of dissipating the generated heat and innovative approaches are needed to address the emerging thermal management challenges. Recently, heat transfer in open-cell metal foams under an impinging jet has received attention due to the considerable heat transfer potential of combining two cooling technologies: impinging jet and porous medium. This paper presents a numerical study on Finned Metal Foam (FMF) and Metal Foam (MF) heat sinks under impinging air jet cooling. The analysis is carried out by means of the commercial software COMSOL Multiphysics®. The purpose is to analyze the thermal performance of the metal foam heat sink, finned or not, varying its geometric parameters. Results are presented in terms of predicted dissipated heat rate, convective heat transfer coefficient and pressure losses.

  5. Mixed Convection Flow of Casson Nanofluid over a Stretching Sheet with Convectively Heated Chemical Reaction and Heat Source/Sink

    Directory of Open Access Journals (Sweden)

    T. Hayat

    2015-01-01

    Full Text Available The present study addresses the mixed convection flow of non-Newtonian nanofluid over a stretching surface in presence of thermal radiation, heat source/sink and first order chemical reaction. Casson fluid model is adopted in the present study. Magnetic field contribution is incorporated in the momentum equation whereas the aspects of nanoparticles are considered in the energy and concentration equations. Convective boundary conditions for both heat and mass transfer are utilized. Similarity transformations are employed to reduce the partial differential equations into ordinary differential equations. Series solutions of the resulting problem are obtained. Impacts of all the physical parameters on the velocity, temperature and concentration fields are analyzed graphically. Numerical values of different involved parameters for local skin friction coefficient, local Nusselt and Sherwood numbers are obtained and discussed.

  6. Enhancing ultra-high CPV passive cooling using least-material finned heat sinks

    Energy Technology Data Exchange (ETDEWEB)

    Micheli, Leonardo, E-mail: lm409@exeter.ac.uk; Mallick, Tapas K., E-mail: T.K.Mallick@exeter.ac.uk [Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall TR10 9FE (United Kingdom); Fernandez, Eduardo F., E-mail: E.Fernandez-Fernandez2@exeter.ac.uk [Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall TR10 9FE (United Kingdom); Centre of Advanced Studies in Energy and Environment, University of Jaen, Jaen 23071 (Spain); Almonacid, Florencia, E-mail: facruz@ujaen.es [Centre of Advanced Studies in Energy and Environment, University of Jaen, Jaen 23071 (Spain); Reddy, K. S., E-mail: ksreddy@iitm.ac.in [Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai, 600036 (India)

    2015-09-28

    Ultra-high concentrating photovoltaic (CPV) systems aim to increase the cost-competiveness of CPV by increasing the concentrations over 2000 suns. In this work, the design of a heat sink for ultra-high concentrating photovoltaic (CPV) applications is presented. For the first time, the least-material approach, widely used in electronics to maximize the thermal dissipation while minimizing the weight of the heat sink, has been applied in CPV. This method has the potential to further decrease the cost of this technology and to keep the multijunction cell within the operative temperature range. The designing procedure is described in the paper and the results of a thermal simulation are shown to prove the reliability of the solution. A prediction of the costs is also reported: a cost of 0.151$/W{sub p} is expected for a passive least-material heat sink developed for 4000x applications.

  7. Enhancing ultra-high CPV passive cooling using least-material finned heat sinks

    Science.gov (United States)

    Micheli, Leonardo; Fernandez, Eduardo F.; Almonacid, Florencia; Reddy, K. S.; Mallick, Tapas K.

    2015-09-01

    Ultra-high concentrating photovoltaic (CPV) systems aim to increase the cost-competiveness of CPV by increasing the concentrations over 2000 suns. In this work, the design of a heat sink for ultra-high concentrating photovoltaic (CPV) applications is presented. For the first time, the least-material approach, widely used in electronics to maximize the thermal dissipation while minimizing the weight of the heat sink, has been applied in CPV. This method has the potential to further decrease the cost of this technology and to keep the multijunction cell within the operative temperature range. The designing procedure is described in the paper and the results of a thermal simulation are shown to prove the reliability of the solution. A prediction of the costs is also reported: a cost of 0.151/Wp is expected for a passive least-material heat sink developed for 4000x applications.

  8. Study of heat sink thermal protection systems for hypersonic research aircraft

    Science.gov (United States)

    Vahl, W. A.; Edwards, C. L. W.

    1978-01-01

    The feasibility of using a single metallic heat sink thermal protection system (TPS) over a projected flight test program for a hypersonic research vehicle was studied using transient thermal analyses and mission performance calculations. Four materials, aluminum, titanium, Lockalloy, and beryllium, as well as several combinations, were evaluated. Influence of trajectory parameters were considered on TPS and mission performance for both the clean vehicle configuration as well as with an experimental scramjet mounted. From this study it was concluded that a metallic heat sink TPS can be effectively employed for a hypersonic research airplane flight envelope which includes dash missions in excess of Mach 8 and 60 seconds of cruise at Mach numbers greater than 6. For best heat sink TPS match over the flight envelope, Lockalloy and titanium appear to be the most promising candidates

  9. Experimental investigation of thermoelectric power generation versus coolant pumping power in a microchannel heat sink

    DEFF Research Database (Denmark)

    Kolaei, Alireza Rezania; Rosendahl, Lasse; Andreasen, Søren Juhl

    2012-01-01

    The coolant heat sinks in thermoelectric generators (TEG) play an important role in order to power generation in the energy systems. This paper explores the effective pumping power required for the TEGs cooling at five temperature difference of the hot and cold sides of the TEG. In addition......, the temperature distribution and the pressure drop in sample microchannels are considered at four sample coolant flow rates. The heat sink contains twenty plate-fin microchannels with hydraulic diameter equal to 0.93 mm. The experimental results show that there is a unique flow rate that gives maximum net...

  10. Experimental and numerical investigation of pressure drop and heat transfer coefficient in converging-diverging microchannel heat sink

    Science.gov (United States)

    Chakravarthii, M. K. Dheepan; Mutharasu, D.; Shanmugan, S.

    2017-07-01

    The major challenge in microelectronic chips is to eliminate the generated heat for stable and reliable operation of the devices. Microchannel heat sinks are efficient method to dissipate high heat flux. The pressure drop and heat transfer coefficient are the important parameters which determine the thermal-hydraulic performance of the microchannel heat sink. In this study, a converging-diverging (CD) microchannel heat sink was experimentally investigated for the variation of pressure drop and heat transfer coefficient. De-ionized water was considered as the working fluid. Experiments were conducted for single phase fluid flow with mass flow rate and heat flux ranging from 0.001232 to 0.01848 kg/s and 10-50 W/cm2 respectively. The fluid and solid temperature were measured to calculate the heat transfer coefficients. Numerical results were computed using the CFD software and validated against the experimental results. The CD microchannel possesses high heat transfer coefficient than the straight microchannels. Theoretical correlations were proposed for comparing the experimental Nusselt number of CD microchannel. Evaluation of thermal-hydraulic performance of CD microchannel is important to quantify its applications in electronics cooling.

  11. Experimental and numerical investigation of pressure drop and heat transfer coefficient in converging-diverging microchannel heat sink

    Science.gov (United States)

    Chakravarthii, M. K. Dheepan; Mutharasu, D.; Shanmugan, S.

    2017-01-01

    The major challenge in microelectronic chips is to eliminate the generated heat for stable and reliable operation of the devices. Microchannel heat sinks are efficient method to dissipate high heat flux. The pressure drop and heat transfer coefficient are the important parameters which determine the thermal-hydraulic performance of the microchannel heat sink. In this study, a converging-diverging (CD) microchannel heat sink was experimentally investigated for the variation of pressure drop and heat transfer coefficient. De-ionized water was considered as the working fluid. Experiments were conducted for single phase fluid flow with mass flow rate and heat flux ranging from 0.001232 to 0.01848 kg/s and 10-50 W/cm2 respectively. The fluid and solid temperature were measured to calculate the heat transfer coefficients. Numerical results were computed using the CFD software and validated against the experimental results. The CD microchannel possesses high heat transfer coefficient than the straight microchannels. Theoretical correlations were proposed for comparing the experimental Nusselt number of CD microchannel. Evaluation of thermal-hydraulic performance of CD microchannel is important to quantify its applications in electronics cooling.

  12. Heat Transfer and Friction Characteristics of the Microfluidic Heat Sink with Variously-Shaped Ribs for Chip Cooling

    Directory of Open Access Journals (Sweden)

    Gui-Lian Wang

    2015-04-01

    Full Text Available This paper experimentally and numerically investigated the heat transfer and friction characteristics of microfluidic heat sinks with variously-shaped micro-ribs, i.e., rectangular, triangular and semicircular ribs. The micro-ribs were fabricated on the sidewalls of microfluidic channels by a surface-micromachining micro-electro-mechanical system (MEMS process and used as turbulators to improve the heat transfer rate of the microfluidic heat sink. The results indicate that the utilizing of micro-ribs provides a better heat transfer rate, but also increases the pressure drop penalty for microchannels. Furthermore, the heat transfer and friction characteristics of the microchannels are strongly affected by the rib shape. In comparison, the triangular ribbed microchannel possesses the highest Nusselt number and friction factor among the three rib types.

  13. Heat transfer and friction characteristics of the microfluidic heat sink with variously-shaped ribs for chip cooling.

    Science.gov (United States)

    Wang, Gui-Lian; Yang, Da-Wei; Wang, Yan; Niu, Di; Zhao, Xiao-Lin; Ding, Gui-Fu

    2015-04-22

    This paper experimentally and numerically investigated the heat transfer and friction characteristics of microfluidic heat sinks with variously-shaped micro-ribs, i.e., rectangular, triangular and semicircular ribs. The micro-ribs were fabricated on the sidewalls of microfluidic channels by a surface-micromachining micro-electro-mechanical system (MEMS) process and used as turbulators to improve the heat transfer rate of the microfluidic heat sink. The results indicate that the utilizing of micro-ribs provides a better heat transfer rate, but also increases the pressure drop penalty for microchannels. Furthermore, the heat transfer and friction characteristics of the microchannels are strongly affected by the rib shape. In comparison, the triangular ribbed microchannel possesses the highest Nusselt number and friction factor among the three rib types.

  14. Constructal multi-scale structure of PCM-based heat sinks

    Science.gov (United States)

    Salimpour, Mohammad Reza; Kalbasi, Rasool; Lorenzini, Giulio

    2016-11-01

    This paper inquires the effectiveness of a PCM-based heat sink as a reliable solution to portable electronic devices. This sink is composed of a PCM with low thermal conductivity and fins to boost its conductivity. The optimization is subjected to fixed heat sink volume filled with PCM between vertical equidistant fins. New fins are installed in the unheated space existing in each enclosure which is not involved in thermal distribution from vertical fins to the PCM. Based on the same principle, new fins generations are augmented stepwise to the multi-scale structure. The steps of adding fins will continue up to the point that the objective function reaches its maximal value, i.e., maximizing the longest safe operation time without allowing the electronics to reach the critical temperature. The results indicate that in each length of the enclosure, the optimum volume fraction and the best fins distance values exist in which the heat sink performance becomes maximum, and adding more fins lowers the performance of the heat sink. Increasing the enclosure's length by 2n does not change them. For an enclosure with constant length, the optimal number of steps for adding fins within the enclosure is a function of the fin thickness. The results indicate that increasing the thickness changes the optimal number of adding fins inside the enclosure (normally a decrease). As the fin thickness is lowered, there will be a higher effect by adding vertical fins in the enclosure. Numerical simulations cover the Rayleigh number range 2× 105≤ RaH ≤ 2.7× 108 , where H is the heat sink height.

  15. Copper matrix composites as heat sink materials for water-cooled divertor target

    Directory of Open Access Journals (Sweden)

    Jeong-Ha You

    2015-12-01

    Full Text Available According to the recent high heat flux (HHF qualification tests of ITER divertor target mock-ups and the preliminary design studies of DEMO divertor target, the performance of CuCrZr alloy, the baseline heat sink material for DEMO divertor, seems to only marginally cover the envisaged operation regime. The structural integrity of the CuCrZr heat sink was shown to be affected by plastic fatigue at 20 MW/m². The relatively high neutron irradiation dose expected for the DEMO divertor target is another serious concern, as it would cause significant embrittlement below 250 °C or irradiation creep above 350 °C. Hence, an advanced design concept of the divertor target needs to be devised for DEMO in order to enhance the HHF performance so that the structural design criteria are fulfilled for full operation scenarios including slow transients. The biggest potential lies in copper-matrix composite materials for the heat sink. In this article, three promising Cu-matrix composite materials are reviewed in terms of thermal, mechanical and HHF performance as structural heat sink materials. The considered candidates are W particle-reinforced, W wire-reinforced and SiC fiber-reinforced Cu matrix composites. The comprehensive results of recent studies on fabrication technology, design concepts, materials properties and the HHF performance of mock-ups are presented. Limitations and challenges are discussed.

  16. Flow and Heat Transfer in Micro Pin Fin Heat Sinks with Nano-Encapsulated Phase Change Materials

    CERN Document Server

    Rajabifar, Bahram; Zhang, Yuwen; Khanna, Sanjeev K

    2016-01-01

    In this paper, a 3D conjugated heat transfer model for Nano-Encapsulated Phase Change Materials (NEPCMs) cooled Micro Pin Fin Heat Sink (MPFHS) is presented. The governing equations of flow and heat transfer are solved using a finite volume method based on collocated grid and the results are validated with the available data reported in the literature. The effect of nanoparticles volume fraction (C = 0.1, 0.2, 0.3), inlet velocity (Vin = 0.015, 0.030, 0.045 m/s), and bottom wall temperature (Twall = 299.15, 303.15, 315.15, 350.15 K) are studied on Nusselt and Euler numbers as well as temperature contours in the system. The results indicate that significant heat transfer enhancement is achieved when using NEPCM slurry as an advanced coolant. The maximum Nusselt number when NEPCM slurry (C = 0.3) with Vin = 0.015, 0.030, 0.045 (m/s) is employed, are 2.27, 1.81, 1.56 times higher than the ones with base fluid, respectively. However, with increasing bottom wall temperature, the Nusselt number first increases then...

  17. Evaluation of heat sink materials for thermal management of lithium batteries

    Science.gov (United States)

    Dimpault-Darcy, E. C.; Miller, K.

    1988-01-01

    Aluminum, neopentyl glycol (NPG), and resins FT and KT are evaluated theoretically and experimentally as heat sink materials for lithium battery packs. The thermal performances of the two resins are compared in a thermal vacuum experiment. As solutions to the sublimation property were not immediately apparent, a theoretical comparison of the thermal performance of NPG versus KT, Al, and no material, is presented.

  18. Evaluation of heat sink materials for thermal management of lithium batteries

    Science.gov (United States)

    Dimpault-Darcy, E. C.; Miller, K.

    1988-01-01

    Aluminum, neopentyl glycol (NPG), and resins FT and KT are evaluated theoretically and experimentally as heat sink materials for lithium battery packs. The thermal performances of the two resins are compared in a thermal vacuum experiment. As solutions to the sublimation property were not immediately apparent, a theoretical comparison of the thermal performance of NPG versus KT, Al, and no material, is presented.

  19. Experimental study on thermal performance of heat sinks: the effect of hydraulic diameter and geometric shape

    Science.gov (United States)

    Marzougui, M.; Hammami, M.; Maad, R. Ben

    2016-10-01

    The main purpose of this study is focused on experimental investigation of cooling performance of various minichannel designs. The hydraulic dimension of one of the heat sink is 3 mm while that of the other is 2 mm. Deionised water was used as the coolant for studies conducted in both the heat sinks. Tests were done for a wide range of flow rates (0.7 l-9 l h-1) and heat inputs (5-40 kW/m2). Irrespective of the hydraulic diameter and the geometric configuration, profits and boundaries of each channel shape are analyzed and discussed in the clarity of experimental data. The total thermal resistance and the average heat transfer coefficient are compared for the various channels inspected.

  20. Viscoelastic Fluid over a Stretching Sheet with Electromagnetic Effects and Nonuniform Heat Source/Sink

    Directory of Open Access Journals (Sweden)

    Kai-Long Hsiao

    2010-01-01

    Full Text Available A magnetic hydrodynamic (MHD of an incompressible viscoelastic fluid over a stretching sheet with electric and magnetic dissipation and nonuniform heat source/sink has been studied. The buoyant effect and the electric number E1 couple with magnetic parameter M to represent the dominance of the electric and magnetic effects, and adding the specific item of nonuniform heat source/sink is presented in governing equations which are the main contribution of this study. The similarity transformation, the finite-difference method, Newton method, and Gauss elimination method have been used to analyze the present problem. The numerical solutions of the flow velocity distributions, temperature profiles, and the important wall unknown values of f''(0 and θ'(0 have been carried out. The parameter Pr, E1, or Ec can increase the heat transfer effects, but the parameter M or A* may decrease the heat transfer effects.

  1. Common-Mode EMI Reduction in Switching Flyback Power Supply by Implementing Cancellation Method of Heat-Sink Capacitor

    Directory of Open Access Journals (Sweden)

    Mohammad Rouholah Yazdani

    2015-01-01

    Full Text Available Electromagnetic compatibility in switching power converters which are noise sources themselves, has a special importance. Electromagnetic interference (EMI in the form of conducted or radiated reaches to sensitive sections and interferes with their operation. On the other, electromagnetic compatibility (EMC standards causes another forces to reduce noise in switching converters. Major part of noise is due to the common-mode (CM current passes through parasitic elements to the circuit ground (Earth. One of the important parasitic elements from the CM noise viewpoint is the switch heat-sink capacitor (common-mode capacitor. In this paper, a cancellation method of the heat-sink capacitor via a passive circuit is proposed in a 50W isolated flyback converter and is also modeled in OrCAD software. Also, experimental measurement results of the CM electromagnetic interference in regular and proposed flyback converter prototypes are presented to examine the modeling accuracy. Based on the experimental results, significant reduction of CM-EMI is verified after applying the cancellation method of the heat-sink capacitor.

  2. BACKUP AND ULTIMATE HEAT SINKS IN CANDU REACTORS FOR PROLONGED SBO ACCIDENTS

    OpenAIRE

    T. NITHEANANDAN; BROWN, M J

    2013-01-01

    In a pressurized heavy water reactor, following loss of the primary coolant, severe core damage would begin with the depletion of the liquid moderator, exposing the top row of internally-voided fuel channels to steam cooling conditions on the inside and outside. The uncovered fuel channels would heat up, deform and disassemble into core debris. Large inventories of water passively reduce the rate of progression of the accident, prolonging the time for complete loss of engineered heat sinks. ...

  3. FEM simulation for cold press forging forming of the round-fin heat sink

    Science.gov (United States)

    Wang, Kesheng; Han, Yu; Zhang, Haiyan; Zhang, Lihan

    2013-05-01

    In this paper, the finite element method is used to investigate the forming process of cold press forging for the round-fin heat sink in the automotive lighting. A series of simulations on the round-fin heat sink forming using the program DEFORM were carried out. The blank thickness and friction coefficient on the formation of round-fin were studied, and the tooling structure with counterpressure on the heat sink formation was also investigated. The results show that the blank thickness is very good for the round-fin formation, and the thicker the blank is, the better the round-fin can be formed; and also When both the punch-blank interface and the die-blank interface have the same value of friction factor, the larger value of friction factor is in favor of round-fin forming, the further investigation reveals that the friction at the punch-blank interface has more significant effect on preventing the initiation of flow-through compared with the friction at the die-blank interface, which implies that the punch-blank interface has more significant effect on the material flow in the formation of round-fin. Meanwhile, The tooling structure with counterpressure is helpful to the formation of round-fin heat sink, which not only ensures the height of each round-fin on the heat sink is uniform but also retards the initiation of flow-through on the reverse side of round-fin. In addition, the experiments of press forging process were conducted to validate the finite element analysis, and the simulation results are in good agreement with the experimental data.

  4. Model thermal response to minor radiative energy sources and sinks in the middle atmosphere

    Science.gov (United States)

    Fomichev, V. I.; Fu, C.; de Grandpré, J.; Beagley, S. R.; Ogibalov, V. P.; McConnell, J. C.

    2004-10-01

    This paper presents the thermal response of the Canadian middle atmosphere model (CMAM) to minor radiative energy sources and sinks. These include chemical heating, infrared (IR) H2O cooling, sphericity effect in solar heating, and solar heating in the near-IR CO2 bands. All of these energy sources/sinks can be considered as minor ones either in terms of their magnitude or in terms of the limited height region where they are of importance or both. To examine the thermal response of the middle atmosphere, a version of the CMAM with an interactive gas phase chemistry scheme has been used in a series of multiyear experiments for conditions of perpetual July. Each of the analyzed mechanisms may provide a noticeable contribution into the model energy balance that results in a statistically significant model response. Various forcing terms due to minor energy sources/sinks have different spatial and temporal distributions. Their magnitudes vary from tenths K d-1 for the sphericity effect up to ˜10 K d-1 for chemical heating that provides corresponding thermal responses of a few to about 20 K in the middle atmosphere. The model thermal response depends on the magnitude of the applied forcing but is not always local and can be spread beyond the regions where the forcing terms are initially applied. On a globally averaged basis the local strength of the model response is nearly proportional to the magnitude of the small forcing terms but shows nonlinearity when forcing due to chemical heating exceeds ˜1 K d-1 in the mesosphere. Accounting for the combined effects of the minor energy sources and sinks leads to a better agreement between the model temperature field and observations.

  5. Thermophoresis on boundary layer heat and mass transfer flow of Walters-B fluid past a radiate plate with heat sink/source

    Science.gov (United States)

    Vasu, B.; Gorla, Rama Subba Reddy; Murthy, P. V. S. N.

    2016-09-01

    The Walters-B liquid model is employed to simulate medical creams and other rheological liquids encountered in biotechnology and chemical engineering. This rheological model introduces supplementary terms into the momentum conservation equation. The combined effects of thermal radiation and heat sink/source on transient free convective, laminar flow and mass transfer in a viscoelastic fluid past a vertical plate are presented by taking thermophoresis effect into account. The transformed conservation equations are solved using a stable, robust finite difference method. A parametric study illustrating the influence of viscoelasticity parameter (Γ), thermophoretic parameter (τ), thermal radiation parameter (F), heat sink/source (ϕ), Prandtl number (Pr), Schmidt number (Sc), thermal Grashof number (Gr), solutal Grashof number (Gm), temperature and concentration profiles as well as local skin-friction, Nusselt and Sherwood number is conducted. The results of this parametric study are shown graphically and inform of table. The study has applications in polymer materials processing.

  6. Thermophoresis on boundary layer heat and mass transfer flow of Walters-B fluid past a radiate plate with heat sink/source

    Science.gov (United States)

    Vasu, B.; Gorla, Rama Subba Reddy; Murthy, P. V. S. N.

    2017-05-01

    The Walters-B liquid model is employed to simulate medical creams and other rheological liquids encountered in biotechnology and chemical engineering. This rheological model introduces supplementary terms into the momentum conservation equation. The combined effects of thermal radiation and heat sink/source on transient free convective, laminar flow and mass transfer in a viscoelastic fluid past a vertical plate are presented by taking thermophoresis effect into account. The transformed conservation equations are solved using a stable, robust finite difference method. A parametric study illustrating the influence of viscoelasticity parameter ( Γ), thermophoretic parameter ( τ), thermal radiation parameter ( F), heat sink/source ( ϕ), Prandtl number ( Pr), Schmidt number ( Sc), thermal Grashof number ( Gr), solutal Grashof number ( Gm), temperature and concentration profiles as well as local skin-friction, Nusselt and Sherwood number is conducted. The results of this parametric study are shown graphically and inform of table. The study has applications in polymer materials processing.

  7. Thermal performance of ethylene glycol based nanofluids in an electronic heat sink.

    Science.gov (United States)

    Selvakumar, P; Suresh, S

    2014-03-01

    Heat transfer in electronic devices such as micro processors and power converters is much essential to keep these devices cool for the better functioning of the systems. Air cooled heat sinks are not able to remove the high heat flux produced by the today's electronic components. Liquids work better than air in removing heat. Thermal conductivity which is the most essential property of any heat transfer fluid can be enhanced by adding nano scale solid particles which possess higher thermal conductivity than the liquids. In this work the convective heat transfer and pressure drop characteristics of the water/ethylene glycol mixture based nanofluids consisting of Al2O3, CuO nanoparticles with a volume concentration of 0.1% are studied experimentally in a rectangular channel heat sink. The nano particles are characterized using Scanning Electron Microscope and the nannofluids are prepared by using an ultrasonic vibrator and Sodium Lauryl Salt surfactant. The experimental results showed that nanofluids of 0.1% volume concentration give higher convective heat transfer coefficient values than the plain water/ethylene glycol mixture which is prepared in the volume ratio of 70:30. There is no much penalty in the pressure drop values due to the inclusion of nano particles in the water/ethylene glycol mixture.

  8. Thermal and Hydraulic Performances of Nanofluids Flow in Microchannel Heat Sink with Multiple Zigzag Flow Channels

    OpenAIRE

    Duangthongsuk Weerapun

    2017-01-01

    This article presents an experimental investigation on the heat transfer performance and pressure drop characteristic of two types of nanofluids flowing through microchannel heat sink with multiple zigzag flow channel structures (MZMCHS). SiO2 nanoparticles dispersed in DI water with concentrations of 0.3 and 0.6 vol.% were used as working fluid. MZMCHS made from copper material with dimension of 28 × 33 mm. Hydraulic diameter of MZMCHs is designed at 1 mm, 7 number of flow channels and heat ...

  9. Buoyancy-Driven Radiative Unsteady Magnetohydrodynamic Heat Transfer over a Stretching Sheet with non-Uniform Heat Source/sink

    Directory of Open Access Journals (Sweden)

    Dulal Pal

    2016-01-01

    Full Text Available In the present study an unsteady mixed convection boundary layer flow of an electrically conduct- ing fluid over an stretching permeable sheet in the presence of transverse magnetic field, thermal radiation and non-uniform heat source/sink effects is investigated. The unsteadiness in the flow and temperature fields is due to the time-dependent nature of the stretching velocity and the surface temperature. Both opposing and assisting flows are considered. The dimensionless governing or- dinary non-linear differential equations are solved numerically by applying shooting method using Runge-Kutta-Fehlberg method. The effects of unsteadiness parameter, buoyancy parameter, thermal radiation, Eckert number, Prandtl number and non-uniform heat source/sink parameter on the flow and heat transfer characteristics are thoroughly examined. Comparisons of the present results with previously published results for the steady case are found to be excellent.

  10. Climate. Varying planetary heat sink led to global-warming slowdown and acceleration.

    Science.gov (United States)

    Chen, Xianyao; Tung, Ka-Kit

    2014-08-22

    A vacillating global heat sink at intermediate ocean depths is associated with different climate regimes of surface warming under anthropogenic forcing: The latter part of the 20th century saw rapid global warming as more heat stayed near the surface. In the 21st century, surface warming slowed as more heat moved into deeper oceans. In situ and reanalyzed data are used to trace the pathways of ocean heat uptake. In addition to the shallow La Niña-like patterns in the Pacific that were the previous focus, we found that the slowdown is mainly caused by heat transported to deeper layers in the Atlantic and the Southern oceans, initiated by a recurrent salinity anomaly in the subpolar North Atlantic. Cooling periods associated with the latter deeper heat-sequestration mechanism historically lasted 20 to 35 years.

  11. Numerical study of forced convection in a turbulent heat sink made of several rows of blocks of square form

    Science.gov (United States)

    Bouchenafa, Rachid; Saim, Rachid; Abboudi, Said

    2015-09-01

    Forced convection is a phenomenon associated with the heat transfer fluid flows. The presence of convection affects simultaneously the thermal and hydrodynamic fields, the problem is thus coupled. This form of heat transfer inside ducts occurs in many practical applications such as solar collectors, heat exchangers, cooling of electronic components as well as chemical and nuclear. In this work, we are interested primarily for a numerical study of thermo-hydraulic performances of an incompressible turbulent flow of air through a heat sink composed of several rows of bars of square section. Profiles and the axial velocity fields, as well as profiles and the distribution of the Nusselt number are plotted for all the geometry considered and chosen for different sections. The effects of geometrical parameters of the model and the operating parameters on the dynamic and thermal behavior of the air are analyzed.

  12. Heat Sinking, Cross Talk, and Temperature Stability for Large, Close-Packed Arrays of Microcalorimeters

    Science.gov (United States)

    Imoto, Naoko; Bandler, SImon; Brekosky, Regis; Chervenak, James; Figueroa-Felicano, Enectali; Finkbeiner, Frederick; Kelley, Richard; Kilbourne, Caroline; Porter, Frederick; Sadleir, Jack; Smith, Stephen

    2007-01-01

    We are developing large, close-packed arrays of x-ray transition-edge sensor (TES) microcalorimeters. In such a device, sufficient heat sinking is important to to minimize thermal cross talk between pixels and to stabilize the bath temperature for all pixels. We have measured cross talk on out 8 x 8 arrays and studied the shape and amount of thermal crosstalk as a function of pixel location and efficiency of electrothermal feedback. In this presentation, we will compare measurements made on arrays with and without a backside, heat-sinking copper layer, as well as results of devices on silicon-nitride membranes and on solid substrates, and we will discuss the implications for energy resolution and maximum count rate. We will also discuss the dependence of pulse height upon bath temperature, and the measured and required stability of the bath temperature.

  13. Optimal design of divertor heat sink with different geometric configurations of sectorial extended surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Rimza, Sandeep, E-mail: sandeepr@ipr.res.in [Divertor and First Wall Technology Development Division, Institute for Plasma Research (IPR), Bhat – 382428, Gandhinagar, Gujarat (India); Satpathy, Kamalakanta, E-mail: satpathy@ipr.res.in [Divertor and First Wall Technology Development Division, Institute for Plasma Research (IPR), Bhat – 382428, Gandhinagar, Gujarat (India); Khirwadkar, Samir, E-mail: sameer@ipr.res.in [Divertor and First Wall Technology Development Division, Institute for Plasma Research (IPR), Bhat – 382428, Gandhinagar, Gujarat (India); Velusamy, Karupanna, E-mail: kvelu@igcar.gov.in [Mechanics and Hydraulics Division, Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam 603102 (India)

    2015-11-15

    Highlights: • Effect of design variables in enhancing heat removal potential with pumping power assessed. • The optimization objective is to minimize the thimble temperature. • Investigation of optimum design parameters for various Reynolds number. • Practicability of the optimum designs is verified through structural analysis. • Benchmark validation of divertor finger mock-up against in-house experiment and good agreement is achieved. - Abstract: Cooling of fusion reactor divertor by helium is widely accepted due to its chemical and neutronic inertness and superior safety aspect. However, its poor thermo physical characteristics need high pressure to remove large heat flux encountered in fusion power plant (DEMO). In the perspective of DEMO, it is desirable to explore efficient cooling technology for divertor that can handle high heat flux. Toward this, a novel sectorial extended surface (SES) was proposed by the authors Rimza et al. (2014) [2]. The present work focuses on design optimization of divertor finger mock-up with SES to enhance the thermal hydraulic performance. The maximum thimble temperature is considered as the vital design constraint. Various non-dimensional design variables, viz., relative pitch, thickness, jet diameter, the ratio of height of SES to jet diameter and circumferential position of the SES are considered for the present optimization study. The effects of design variables on thermal performance of the divertor are evaluated in the Reynolds number (Re) range of 7.5 × 10{sup 4}–1.2 × 10{sup 5}. The analysis reveals that, the heat transfer performance of divertor finger mock-up with SES is improved for two optimum designs having relative pitch and thickness of 0.30 and 0.56, respectively. Also, it is observed that finger mock-up heat sink with SES performs better, when the ratio of SES height to jet diameter, reduces to 0.75 at the cost of marginally higher pumping power. The effects of jet diameter and circumferential

  14. [Urban heat island effect based on urban heat island source and sink indices in Shenyang, Northeast China].

    Science.gov (United States)

    Li, Li-Guang; Xu, Shen-Lai; Wang, Hong-Bo; Zhao, Zi-Qi; Cai, Fu; Wu, Jin-Wen; Chen, Peng-Shi; Zhang, Yu-Shu

    2013-12-01

    Based on the remote images in 2001 and 2010, the source and sink areas of urban heat island (UHI) in Shenyang City, Northeast China were determined by GIS technique. The effect of urban regional landscape pattern on UHI effect was assessed with land surface temperature (LST), area rate index (CI) of the source and sink areas and intensity index (LI) of heat island. The results indicated that the land use type changed significantly from 2001 to 2010, which significantly changed the source and sink areas of UHI, especially in the second and third circle regions. The source and sink areas were 94.3% and 5.7% in the first circle region, 64.0% and 36.0% in the third circle region in 2001, while they were 93.4% and 6.6%, 70.2% and 29.8% in 2010, respectively. It suggested that the land use pattern extended by a round shape in Shenyang led to the corresponding UHI pattern. The LST in the study area tended to decrease from the first circle region to the third. The UHI intensity was characterized with a single center in 2001 and with several centers in 2010, and the grade of UHI intensity was in a decreasing trend from 2001 to 2010. The absolute value of CI increased from the first circle region to the third, and the L1 was close to 1, suggesting the change in land use pattern had no significant influence on UHI in Shenyang.

  15. Modeling Atmospheric CO2 Processes to Constrain the Missing Sink

    Science.gov (United States)

    Kawa, S. R.; Denning, A. S.; Erickson, D. J.; Collatz, J. C.; Pawson, S.

    2005-01-01

    We report on a NASA supported modeling effort to reduce uncertainty in carbon cycle processes that create the so-called missing sink of atmospheric CO2. Our overall objective is to improve characterization of CO2 source/sink processes globally with improved formulations for atmospheric transport, terrestrial uptake and release, biomass and fossil fuel burning, and observational data analysis. The motivation for this study follows from the perspective that progress in determining CO2 sources and sinks beyond the current state of the art will rely on utilization of more extensive and intensive CO2 and related observations including those from satellite remote sensing. The major components of this effort are: 1) Continued development of the chemistry and transport model using analyzed meteorological fields from the Goddard Global Modeling and Assimilation Office, with comparison to real time data in both forward and inverse modes; 2) An advanced biosphere model, constrained by remote sensing data, coupled to the global transport model to produce distributions of CO2 fluxes and concentrations that are consistent with actual meteorological variability; 3) Improved remote sensing estimates for biomass burning emission fluxes to better characterize interannual variability in the atmospheric CO2 budget and to better constrain the land use change source; 4) Evaluating the impact of temporally resolved fossil fuel emission distributions on atmospheric CO2 gradients and variability. 5) Testing the impact of existing and planned remote sensing data sources (e.g., AIRS, MODIS, OCO) on inference of CO2 sources and sinks, and use the model to help establish measurement requirements for future remote sensing instruments. The results will help to prepare for the use of OCO and other satellite data in a multi-disciplinary carbon data assimilation system for analysis and prediction of carbon cycle changes and carbodclimate interactions.

  16. Comparative Effectiveness of Different Phase Change Materials to Improve Cooling Performance of Heat Sinks for Electronic Devices

    Directory of Open Access Journals (Sweden)

    Ahmad Hasan

    2016-08-01

    Full Text Available This paper thermo-physically characterizes salt hydrate, paraffin wax and milk fat as phase change materials (PCMs. The three PCMs are compared in terms of improving heat sink (HS performance for cooling electronic packaging. An experimental study is carried out on commercially available finned HS with and without PCM under natural ventilation (NV and forced ventilation (FV at different heat loads (4 W to 10 W. The results indicate that integration of all of the PCMs into the HS improves its cooling performance; however, milk fat lags behind the other two PCMs in terms of cooling produced. A three-dimensional pressure-based conjugate heat transfer model has been developed and validated with experimental results. The model predicts the parametric influence of PCM melting range, thermal conductivity and density on HS thermal management performance. The HS cooling performance improves with increased density and conductivity while it deteriorates with the wider melting range of the PCMs.

  17. Local convective heat transfer coefficient and friction factor of CuO/water nanofluid in a microchannel heat sink

    Science.gov (United States)

    Chabi, A. R.; Zarrinabadi, S.; Peyghambarzadeh, S. M.; Hashemabadi, S. H.; Salimi, M.

    2017-02-01

    Forced convective heat transfer in a microchannel heat sink (MCHS) using CuO/water nanofluids with 0.1 and 0.2 vol% as coolant was investigated. The experiments were focused on the heat transfer enhancement in the channel entrance region at Re Hydraulic performance of the MCHS was also estimated by measuring friction factor and pressure drop. Results showed that higher convective heat transfer coefficient was obtained at the microchannel entrance. Maximum enhancement of the average heat transfer coefficient compared with deionized water was about 40 % for 0.2 vol% nanofluid at Re = 1150. Enhancement of the convective heat transfer coefficient of nanofluid decreased with further increasing of Reynolds number.

  18. A comparison of micro-structured flat-plate and cross-cut heat sinks for thermoelectric generation application

    DEFF Research Database (Denmark)

    Rezania, Alireza; Rosendahl, L. A.

    2015-01-01

    . In this study, a micro-structured plate-fin heat sink is compared to a modified design of cross-cut heat sink applied to TEGs over a range of temperatures and thermal conductivities. The particular focus of this study is to explore the net power output from the TEG module. The three-dimensional governing...... equations for the flow and heat transfer are solved using computational fluid dynamics (CFD) in conjunction with the thermoelectric characteristics of the TEG over a wide range of flow inlet velocities. The results show that at small flow inlet velocity, the maximum net power output in TEG with plate......Heat sink configuration has strong impact on net power output from thermoelectric generators (TEGs). A weak cooling strategy can even cause negative net power output from the thermoelectric device. However, the net power output can be significantly improved by optimal design of the heat sink...

  19. Internal stresses and voids in SiC particle reinforced aluminum composites for heat sink applications

    OpenAIRE

    Schöbel, M.; Altendorfer, W.; Degischer, H.P.; S. Vaucher; Buslaps, T.; Di Michiel, M.; Hofmann, M.

    2011-01-01

    Abstract Metal matrix composites (MMC) are being developed for power electronic IGBT modules, where the heat generated by the high power densities has to be dissipated from the chips into a heat sink. As a means of increasing long term stability a base plate material is needed with a good thermal conductivity (TC) combined with a low coefficient of thermal expansion (CTE) matching the ceramic insulator. SiC particle reinforced aluminum (AlSiC) offers the high TC of a metal with the...

  20. NATURAL CONVECTION IN MHD TRANSIENT FLOW PAST AN ACCELERATED VERTICAL PLATE WITH HEAT SINK

    Directory of Open Access Journals (Sweden)

    N. AHMED

    2014-09-01

    Full Text Available The problem of an MHD heat and mass transfer flow past an accelerated infinite vertical plate in a porous medium in presence of chemical reaction, thermal diffusion and first order heat sink is studied. A magnetic field of uniform strength is assumed to be applied normal to the field directed to the fluid region. The resulting system of equations governing the fluid motion is solved by adopting Laplace Transform technique in closed form. The effects of the physical parameters involved in the problem on the flow and the transport characteristics are studied graphs.

  1. A heat-sinking self-referencing fiber optic emission probe

    Science.gov (United States)

    Djeu, Nicholas; Shimoji, Yutaka

    2016-09-01

    A novel heat-sinking, self-referencing fiber optic emission probe having a sapphire fiber probe head is described. The laser heating effect in a GaAs wafer (on a polytetrafluoroethylene (PTFE) platform) has been measured with the probe in both the noncontact proximity mode and the contact mode. The GaAs/PTFE composite was selected to simulate the thermal conductivity of animal tissues. It was found that for the same laser power delivered to the wafer, the temperature rise in the contact mode was only 42% of that in the proximity mode. Additionally, a demonstration of the self-referencing capability of the probe is also presented.

  2. Heat sink welding of austenitic stainless steel pipes to control distortion and residual stress

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, H.; Albert, S.K.; Bhaduri, A.K. [Materials Technology Div., Indira Gandhi Centre for Atomic Research, Kalpakkam (India)

    2007-07-01

    Construction of India's Prototype Fast Breeder Reactor (PFBR) involves extensive welding of austenitic stainless steels pipes of different dimensions. Due to high thermal expansion coefficient and poor thermal conductivity of this class of steels, welding can result in significant distortion of these pipes. Attempts to arrest this distortion can lead to high levels of residual stresses in the welded parts. Heat sink welding is one of the techniques often employed to minimize distortion and residual stress in austenitic stainless steel pipe welding. This technique has also been employed to repair welding of the piping of the Boiling Water Reactors (BWRs) subjected to radiation induced intergranular stress corrosion cracking (IGSCC). In the present study, a comparison of the distortion in two pipe welds, one made with heat sink welding and another a normal welds. Pipes of dimensions 350{phi} x 250(L) x 8(t) mm was fabricated from 316LN plates of dimensions 1100 x 250 x 8 mm by bending and long seam (L-seam) welding by SMAW process. Two fit ups with a root gap of 2 mm, land height of 1mm and a groove angle of 70 were prepared using these pipes for circumferential seam (C-seam) welding. Dimensions at predetermined points in the fit up were made before and after welding to check the variation in radius, circumference and and ovality of the pipes. Root pass for both the pipe fit up were carried out using conventional GTAW process with 1.6 mm AWS ER 16-8-2 as consumables. Welding of one of the pipe fit ups were completed using conventions GTAW process while the other was completed using heat sink welding. For second and subsequent layers of welding using this process, water was sprayed at the root side of the joint while welding was in progress. Flow rate of the water was {proportional_to}6 1/minute. Welding parameters employed were same as those used for the other pipe weld. Results of the dimensional measurements showed that there is no circumferential shrinkage in

  3. Heat Source/Sink in a Magneto-Hydrodynamic Non-Newtonian Fluid Flow in a Porous Medium: Dual Solutions.

    Science.gov (United States)

    Hayat, Tasawar; Awais, Muhammad; Imtiaz, Amna

    2016-01-01

    This communication deals with the properties of heat source/sink in a magneto-hydrodynamic flow of a non-Newtonian fluid immersed in a porous medium. Shrinking phenomenon along with the permeability of the wall is considered. Mathematical modelling is performed to convert the considered physical process into set of coupled nonlinear mathematical equations. Suitable transformations are invoked to convert the set of partial differential equations into nonlinear ordinary differential equations which are tackled numerically for the solution computations. It is noted that dual solutions for various physical parameters exist which are analyzed in detail.

  4. Natural Heat-Sinking Control Method for High-Speed Actuation of the SMA

    Directory of Open Access Journals (Sweden)

    Tamio Arai

    2008-11-01

    Full Text Available This paper describes two methodologies for increasing the actuation speed of the shape memory alloy (SMA actuator in ambient environment. The first method involves the implementation of a simple, light-weight heat sink, which consists only of a combination of an outer metal tube with the silicone grease, but able to cool the heated alloy effectively. The second method describes a high current pulse actuation that actuates the alloy fastly using pulses in the milliseconds order. We hypothesize that a fast actuation of the SMA results in small increase in temperature, due to energy transformation from heat energy to the kinetic energy in the SMA. This new heating method revolutionizes the actuation of the alloy for a significantly faster response.

  5. Experimental Study of Single Phase Flow in a Closed-Loop Cooling System with Integrated Mini-Channel Heat Sink

    Directory of Open Access Journals (Sweden)

    Lei Ma

    2016-06-01

    Full Text Available The flow and heat transfer characteristics of a closed-loop cooling system with a mini-channel heat sink for thermal management of electronics is studied experimentally. The heat sink is designed with corrugated fins to improve its heat dissipation capability. The experiments are performed using variable coolant volumetric flow rates and input heating powers. The experimental results show a high and reliable thermal performance using the heat sink with corrugated fins. The heat transfer capability is improved up to 30 W/cm2 when the base temperature is kept at a stable and acceptable level. Besides the heat transfer capability enhancement, the capability of the system to transfer heat for a long distance is also studied and a fast thermal response time to reach steady state is observed once the input heating power or the volume flow rate are varied. Under different input heat source powers and volumetric flow rates, our results suggest potential applications of the designed mini-channel heat sink in cooling microelectronics.

  6. Nanofluid Flow past an Unsteady Permeable Shrinking Sheet with Heat Source or Sink and Newtonian Heating in a Porous Medium

    Directory of Open Access Journals (Sweden)

    M.Lavanya

    2016-02-01

    Full Text Available The consideration of nanofluids has been paid a good attention on the forced convection; the analysis focusing nanofluids in porous media are limited in literature. Thus, the use of nanofluids in porous media would be very much helpful in heat and mass transfer enhancement. In this paper, the influence of variable suction, Newtonian heating and heat source or sink heat and mass transfer over a permeable shrinking sheet embedded in a porous medium filled with a nanofluid is discussed in detail. The solutions of the nonlinear equations governing the velocɨty, temperature and concentration profiles are solved numerically using Runge-Kutta Gill procedure together with shooting method and graphical results for the resulting parameters are displayed and discussed. The influence of the physical parameters on skin-friction coefficient, local Nusselt number and local Sherwood number are shown in a tabulated form.

  7. Fluid-cooled heat sink with improved fin areas and efficiencies for use in cooling various devices

    Science.gov (United States)

    Bharathan, Desikan; Bennion, Kevin; Kelly, Kenneth; Narumanchi, Sreekant

    2015-04-21

    The disclosure provides a fluid-cooled heat sink having a heat transfer base and a plurality of heat transfer fins in thermal communication with the heat transfer base, where the heat transfer base and the heat transfer fins form a central fluid channel through which a forced or free cooling fluid may flow. The heat transfer pins are arranged around the central fluid channel with a flow space provided between adjacent pins, allowing for some portion of the central fluid channel flow to divert through the flow space. The arrangement reduces the pressure drop of the flow through the fins, optimizes average heat transfer coefficients, reduces contact and fin-pin resistances, and reduces the physical footprint of the heat sink in an operating environment.

  8. Waste Tyres as Heat Sink to Reduce the Driveway Surface Temperatures in Malaysia

    Directory of Open Access Journals (Sweden)

    Aniza Abdul Aziz

    2013-12-01

    Full Text Available The development of roads and driveways are on the rise as automobiles are now a necessity to all. This excessive development with its requirements increased the urban heat temperature and the generation of waste tyres. Waste tyre management has therefore been taken seriously by developed countries and since the European directive to ban used tyre products and whole tire disposal from landfill in 2003 and 2006 respectively, many researchers have looked for alternative ways to use the waste tyre. In Malaysia, The Smart and Cool Home Developer attempted to develop an eco-house by utilising waste tyre as the foundation for the driveway and claimed that the buried tyres act as a heat sink for the concrete and reduce the surface temperature of the driveway. Hence investigations were conducted on two sample houses to investigate this phenomenon. Findings from this pilot study show that waste tyres do act as a heat sink to the concrete driveways which affect the ambient temperature and relative humidity of the immediate surroundings.

  9. Mixed convection flow with non-uniform heat source/sink in a doubly stratified magnetonanofluid

    Science.gov (United States)

    Mehmood, K.; Hussain, S.; Sagheer, M.

    2016-06-01

    In this study, we explore the unsteady flow of viscous nanofluid driven by an inclined stretching sheet. The novelty of the present study is to account for the effect of a non-uniform heat source/sink in a thermally and solutally stratified magnetonanofluid. Governing system of nonlinear partial differential equations is converted into a system of nonlinear ordinary differential equations. Solution of the transformed system is obtained using RK4 method with shooting technique. It is observed that increase in the values of thermal and mass stratification parameter reduce the velocity profile and increase in the values of variable thermal conductivity parameter and non-uniform heat source/sink parameters enhance the temperature distribution. Moreover, skin friction coefficient, Nusselt number and Sherwood number are discussed. Obtained results are displayed both graphically and in tabular form to illustrate the effect of different parameters on the velocity, temperature and concentration profiles. Numerical results are compared with previous published results and found to be in good agreement for special cases of the emerging parameters.

  10. Large scale three-dimensional topology optimisation of heat sinks cooled by natural convection

    DEFF Research Database (Denmark)

    Alexandersen, Joe; Sigmund, Ole; Aage, Niels

    2016-01-01

    This work presents the application of density-based topology optimisation to the design of three-dimensional heat sinks cooled by natural convection. The governing equations are the steady-state incompressible Navier-Stokes equations coupled to the thermal convection-diffusion equation through...... and several optimised designs are presented for Grashof numbers between 103 and 106. Interestingly, it is observed that the number of branches in the optimised design increases with increasing Grashof numbers, which is opposite to two-dimensional topology optimised designs. Furthermore, the obtained...... topologies verify prior conclusions regarding fin length/thickness ratios and Biot numbers, but also indicate that carefully tailored and complex geometries may improve cooling behaviour considerably compared to simple heat fin geometries. (C) 2016 Elsevier Ltd. All rights reserved....

  11. Design and simulation of a novel high-efficiency cooling heat-sink structure using fluid-thermodynamics

    Science.gov (United States)

    Hongqi, Jing; Li, Zhong; Yuxi, Ni; Junjie, Zhang; Suping, Liu; Xiaoyu, Ma

    2015-10-01

    A novel high-efficiency cooling mini-channel heat-sink structure has been designed to meet the package technology demands of high power density laser diode array stacks. Thermal and water flowing characteristics have been simulated using the Ansys-Fluent software. Owing to the increased effective cooling area, this mini-channel heat-sink structure has a better cooling effect when compared with the traditional macro-channel heat-sinks. Owing to the lower flow velocity in this novel high efficient cooling structure, the chillers' water-pressure requirement is reduced. Meanwhile, the machining process of this high-efficiency cooling mini-channel heat-sink structure is simple and the cost is relatively low, it also has advantages in terms of high durability and long lifetime. This heat-sink is an ideal choice for the package of high power density laser diode array stacks. Project supported by the Defense Industrial Technology Development Program (No. B1320133033).

  12. Inline Array Jet Impingement Cooling Using Al2O3 / Water Nanofluid In A Plate Finned Electronic Heat Sink

    Directory of Open Access Journals (Sweden)

    R. Reji Kumar

    2016-07-01

    Full Text Available - Jet impingement cooling is a technique used for cooling the electronic systems. In this work, heat transfer and pressure drop characteristics of deionized water and Al2O3/water nanofluid in an electronic heat sink having aluminium plate fins and provision for jet impingement cooling have been studied. A novel heat sink contains two rows of plate fins of size 29mm x 24mm x 0.56mm. A thin plate having 110 holes of diameter 2.5 mm is used to produce number of jets. The plate is kept inside the heat sink in such a way that H/dn is 5.2 mm and adjacent jet spacing is 2mm. The overall dimension of the heat sink is 60x60x 65 mm. For this work we prepared a Al2O3/water nanofluid by dispersing specified quantity of nanoparticles in to deionized water by using a ultrasonic bath. Experiments were conducted under constant heat flux condition and the volume flow rate of the fluid was in the range of 1.315 to 2.778. It is found from the results that the nanofluid removes heat better than water in the jet impingement cooling with very low rise in pressure drop.

  13. Thermal Fluid Analysis of the Heat Sink and Chip Carrier Assembly for a US Army Research Laboratory Liquid-Fueled Thermophotovoltaic Power Source Demonstrator

    Science.gov (United States)

    2016-09-01

    ARL-TR-7829 ● SEP 2016 US Army Research Laboratory Thermal Fluid Analysis of the Heat Sink and Chip Carrier Assembly for a US...ARL-TR-7829 ● SEP 2016 US Army Research Laboratory Thermal Fluid Analysis of the Heat Sink and Chip Carrier Assembly for a US...4. TITLE AND SUBTITLE Thermal Fluid Analysis of the Heat Sink and Chip Carrier Assembly for a US Army Research Laboratory Liquid-Fueled

  14. Thermal and Hydraulic Performances of Nanofluids Flow in Microchannel Heat Sink with Multiple Zigzag Flow Channels

    Directory of Open Access Journals (Sweden)

    Duangthongsuk Weerapun

    2017-01-01

    Full Text Available This article presents an experimental investigation on the heat transfer performance and pressure drop characteristic of two types of nanofluids flowing through microchannel heat sink with multiple zigzag flow channel structures (MZMCHS. SiO2 nanoparticles dispersed in DI water with concentrations of 0.3 and 0.6 vol.% were used as working fluid. MZMCHS made from copper material with dimension of 28 × 33 mm. Hydraulic diameter of MZMCHs is designed at 1 mm, 7 number of flow channels and heat transfer area is about 1,238 mm2. Effects of particle concentration and flow rate on the thermal and hydraulic performances are determined and then compare with the common base fluid. The results indicated that the heat transfer coefficient of nanofluids was higher than that of the water and increased with increasing particle concentration as well as Reynolds number. For pressure drop, the particle concentrations have no significant effect on the pressure drop across the test section.

  15. Large scale three-dimensional topology optimisation of heat sinks cooled by natural convection

    CERN Document Server

    Alexandersen, Joe; Aage, Niels

    2015-01-01

    This work presents the application of density-based topology optimisation to the design of three-dimensional heat sinks cooled by natural convection. The governing equations are the steady-state incompressible Navier-Stokes equations coupled to the thermal convection-diffusion equation through the Bousinessq approximation. The fully coupled non-linear multiphysics system is solved using stabilised trilinear equal-order finite elements in a parallel framework allowing for the optimisation of large scale problems with order of 40-330 million state degrees of freedom. The flow is assumed to be laminar and several optimised designs are presented for Grashof numbers between $10^3$ and $10^6$. Interestingly, it is observed that the number of branches in the optimised design increases with increasing Grashof numbers, which is opposite to two-dimensional optimised designs.

  16. Preparation of diamond/Cu microchannel heat sink by chemical vapor deposition

    Institute of Scientific and Technical Information of China (English)

    刘学璋; 罗浩; 苏栩; 余志明

    2015-01-01

    A Ti interlayer with thickness about 300 nm was sputtered on Cu microchannels, followed by an ultrasonic seeding with nanodiamond powders. Adherent diamond film with crystalline grains close to thermal equilibrium shape was tightly deposited by hot-filament chemical vapor deposition (HF-CVD). The nucleation and growth of diamond were investigated with micro-Raman spectroscope and field emission scanning electron microscope (FE-SEM) with energy dispersive X-ray detector (EDX). Results show that the nucleation density is found to be up to 1010 cm−2. The enhancement of the nucleation kinetics can be attributed to the nanometer rough Ti interlayer surface. An improved absorption of nanodiamond particles is found, which act as starting points for the diamond nucleation during HF-CVD process. Furthermore, finite element simulation was conducted to understand the thermal management properties of prepared diamond/Cu microchannel heat sink.

  17. Using AlN-Coated Heat Sink to Improve the Heat Dissipation of LED Packages

    Directory of Open Access Journals (Sweden)

    Jean Ming-Der

    2016-01-01

    Full Text Available This study optimizes aluminum nitride (AlN ceramics, in order to enhance the thermal performance of light-emitting diode (LED packages. AlN coatings are grown on copper/ aluminum substrates as a heat interface material, using an electrostatic spraying process. The effect of the deposition parameters on the coatings is determined. The thermal performance of AlN coated Cu/Al substrates is evaluated in terms of the heat dissipated and compared by measuring the LED case temperature. The structure and properties of the coating are also examined a scanning electron microscopy (SEM. In sum, the thermal performance of the LED is increased and good heat resistance characteristics are obtained. The results show that using AlN ceramic coating on a copper/aluminum substrate increases the thermal performance.

  18. Dicing of high-power white LEDs in heat sinks with the water jet-guided laser

    Science.gov (United States)

    Mai, Tuan Anh; Housh, Roy; Brulé, Arnaud; Richerzhagen, Bernold

    2007-02-01

    High-brightness LEDs are compound semiconductor devices and distinguish themselves from conventional LEDs by their exceptional luminosity. Today they are increasingly used as light sources, replacing conventional incandescent and fluorescent lamp technologies. HB LEDs are difficult to manufacture, as they must be grown by sophisticated epitaxial growth techniques such as MOCVD. They are packaged like power semiconductors, using surface mount technology and thermal pads. After having been successfully applied to GaN scribing for side-emitting LEDs, the Laser MicroJet (R) is used today for cutting heat sinks of HB white LEDs. Due to the high-emitted light power, the generated heat must be dissipated through a heat sink. Materials typically employed are metals with high heat conductivity, notably CuW and molybdenum. Applying the Laser MicroJet (R) the achieved cutting quality in these metals is outstanding - smooth edges, no contamination, no burrs, no heat damage, no warping - all this at high speed.

  19. Effect of Gas Phase Heat Sink on Suppression of Opposed Flow Flame Spread over Thin Solid Fuels in Microgravity Environment

    Directory of Open Access Journals (Sweden)

    Vinayak Malhotra

    2012-01-01

    Full Text Available A two-dimensional numerical model of opposed flow flame spread over thin solid fuel is formulated and modeled to study the effect of gas phase heat sink (a wire mesh placed parallel to the fuel surface on the flame-spread rate and flame extinction. The work focuses on the performance of the wire mesh in microgravity environment at an oxygen concentration 21%. The simulations were carried out for various mesh parameters (wire diameter, “” and number of wires per unit length, “” and mesh distance perpendicular to fuel surface “”. Simulations show that wire mesh is effective in reducing flame-spread rate when placed at distance less than flame width (which is about 1 cm. Mesh wire diameter is determined not to have major influence on heat transfer. However, smaller wire diameter is preferred for better aerodynamics and for increasing heat transfer surface area (here prescribed by parameter “”. Flame suppression exhibits stronger dependence on number of wires per unit length; however, it is relatively insensitive to number of wires per unit length beyond certain value (here 20 cm−1.

  20. Effects of thermal property variations on the liquid flow and heat transfer in microchannel heat sinks

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhigang [Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100080 (China); Graduate School of Chinese Academy of Sciences, Beijing 100080 (China); Huai, Xiulan; Tao, Yujia; Chen, Huanzhuo [Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100080 (China)

    2007-12-15

    Three-dimensional conjugate numerical simulations using the inlet, average and variable thermal properties respectively were performed for the laminar water flow and heat transfer in rectangular microchannels with D{sub h} of 0.333 mm at Re of 101-1775. Both average and variable properties are adopted in data reduction. The calculated local and average characteristics of flow and heat transfer are compared among different methods, and with the experiments, correlations and simplified theoretical solution data from published literatures. Compared with the inlet property method, both average and variable property methods have significantly lower f{sub app}, but higher convective heat transfer coefficient h{sub z} and Nu{sub z}. Compared with the average property method, the variable property method has higher f{sub app}Re{sub ave} and lower h{sub z} at the beginning, but lower f{sub app}Re{sub ave} and higher h{sub z} at the later section of the channel. The calculated Nu{sub ave} agree well with the Sieder-Tate correlation and the recently reported experiment, validating the traditional macroscale theory in predicting the flow and heat transfer characteristics in the dimension and Re range of the present work. (author)

  1. Natural convection unsteady magnetohydrodynamic mass transfer flow past an infinite vertical porous plate in presence of suction and heat sink

    Directory of Open Access Journals (Sweden)

    S. S. Das, S. Parija, R. K. Padhy, M. Sahu

    2012-01-01

    Full Text Available This paper investigates the natural convection unsteady magnetohydrodynamic mass transfer flow of a viscous incompressible electrically conducting fluid past an infinite vertical porous flat plate in presence of constant suction and heat sink. Using multi parameter perturbation technique, the governing equations of the flow field are solved and approximate solutions are obtained. The effects of the flow parameters on the velocity, temperature, concentration distribution and also on the skin friction and rate of heat transfer are discussed with the help of figures and table. It is observed that a growing magnetic parameter or Schmidt number or heat sink parameter leads to retard the transient velocity of the flow field at all points, while the Grashof numbers for heat and mass transfer show the reverse effect. It is further found that a growing Prandtl number or heat sink parameter decreases the transient temperature of the flow field at all points while the heat source parameter reverses the effect. The concentration distribution of the flow field suffers a decrease in boundary layer thickness in presence of heavier diffusive species (growing Sc at all points of the flow field. The effect of increasing Prandtl number Pr is to decrease the magnitude of skin-friction and to increase the rate of heat transfer at the wall for MHD flow, while the effect of increasing magnetic parameter M is to decrease their values at all points.

  2. Radiation and Mass Transfer Effects on MHD Free Convective Dissipative Fluid in the Presence of Heat Source/Sink

    Directory of Open Access Journals (Sweden)

    S. Suneetha

    2011-01-01

    Full Text Available Thermal radiation effects on MHD flow past an impulsively started vertical plate in the presence of heat source/sink is investigated, by taking into account the heat due to viscous dissipation. The governing boundary layer equations of the flow field are solved by an implicit finite difference method of Crank-Nicholson type. A parametric study is performed to illustrate the influence of radiation parameter, magnetic parameter, Grashof number, Prandtl number, Eckert number on the velocity, temperature and concentration profiles. Also, the local and average skin-friction, Nusselt number and Sherwood number are presented graphically. The numerical results reveal that the radiation induces a rise in both the velocity and temperature, and a decrease in the concentration. Also with an increase in the heat absorption/generation parameter the velocity increases whereas the temperature decreases. The model finds applications in solar energy collection systems, geophysics and astrophysics, aero space and also in the design of high temperature chemical process systems.

  3. High-order scheme for the source-sink term in a one-dimensional water temperature model

    Science.gov (United States)

    Jing, Zheng; Kang, Ling

    2017-01-01

    The source-sink term in water temperature models represents the net heat absorbed or released by a water system. This term is very important because it accounts for solar radiation that can significantly affect water temperature, especially in lakes. However, existing numerical methods for discretizing the source-sink term are very simplistic, causing significant deviations between simulation results and measured data. To address this problem, we present a numerical method specific to the source-sink term. A vertical one-dimensional heat conduction equation was chosen to describe water temperature changes. A two-step operator-splitting method was adopted as the numerical solution. In the first step, using the undetermined coefficient method, a high-order scheme was adopted for discretizing the source-sink term. In the second step, the diffusion term was discretized using the Crank-Nicolson scheme. The effectiveness and capability of the numerical method was assessed by performing numerical tests. Then, the proposed numerical method was applied to a simulation of Guozheng Lake (located in central China). The modeling results were in an excellent agreement with measured data. PMID:28264005

  4. Numerical Simulation and Experimental Validation for the Thermal Analysis of a Compact LED Recessed Downlight with Heat Sink Design

    Directory of Open Access Journals (Sweden)

    Huan-Chu Hsu

    2016-12-01

    Full Text Available Light emitting diode (LED-recessed downlighting is currently mainly used for indoor lighting of residential and commercial buildings. Maintaining a low junction temperature and increasing the lifetime and reliability of LED lighting is desirable. This study investigated designed heat sinks’ heat dissipation and capability of maintaining a low junction temperature, as well as increases in the lifetime and reliability of the lighting. This paper presents a designed traditional trapezoidal aluminum finned heat sink (ALFHS and annular open cell copper foam heat sink (CUFHS mounted to a 10 W compact LED-recessed downlight (CLRDL and individually installed in a simulation 105 mm × 105 mm × 100 mm (L × W × H test box. The purpose was to evaluate the temperature performance by testing the downlight in a small enclosed space with high ambient temperature while the LED is in operation. The downlight exhibited a long lifetime at normal use temperature and functioned according to Arrhenius’ law. Numerical simulation was performed first and followed by experimental validation. The heat sink design was the main factor in the heat management of the CLRDL. The heat sinks height was determined using numerical simulation and experimental validation before and after installation (INST of the ALFHS and CUFHS. The CUFHS height was initially selected based on a larger heat dissipation capacity, and then by determining the ALFHS height. Both the ALFHS and CUFHS with the same height of 17 mm exhibited a similar capacity of heat dissipation before INST. Subsequent to INST, the temperature of the solder point of the ALFHS was higher than that of the CUFHS with an identical height of 17 mm. To compare the heat dissipation behavior of the two heat sinks, the ALFHS height was increased to 23 mm, which is 6 mm higher than that of the CUFHS. The results of a stationary simulation study for junction temperature coincides with the experimental results tested obtained

  5. Effect of heat radiation in a Walter’s liquid B fluid over a stretching sheet with non-uniform heat source/sink and elastic deformation

    Directory of Open Access Journals (Sweden)

    A.K. Abdul Hakeem

    2014-07-01

    Full Text Available In this present article heat transfer in a Walter’s liquid B fluid over an impermeable stretching sheet with non-uniform heat source/sink, elastic deformation and radiation are reported. The basic boundary layer equations for momentum and heat transfer, which are non-linear partial differential equations, are converted into non-linear ordinary differential equations by means of similarity transformation. The dimensionless governing equations for this investigation are solved analytically using hyper geometric functions. The results are carried out for prescribed surface temperature (PST and prescribed power law surface heat flux (PHF. The effects of viscous dissipation, Prandtl number, Eckert number, heat source/sink parameter with elastic deformation and radiation are shown in the several plots and addressed.

  6. Braze Development of Graphite Fiber for Use in Phase Change Material Heat Sinks

    Science.gov (United States)

    Quinn, Gregory; Beringer, Woody; Gleason, Brian; Stephan, Ryan

    2011-01-01

    Hamilton Sundstrand (HS), together with NASA Johnson Space Center, developed methods to metallurgically join graphite fiber to aluminum. The goal of the effort was to demonstrate improved thermal conductance, tensile strength and manufacturability compared to existing epoxy bonded techniques. These improvements have the potential to increase the performance and robustness of phase change material heat sinks that use graphite fibers as an interstitial material. Initial work focused on evaluating joining techniques from four suppliers, each consisting of a metallization step followed by brazing or soldering of one inch square blocks of Fibercore graphite fiber material to aluminum end sheets. Results matched the strength and thermal conductance of the epoxy bonded control samples, so two suppliers were down-selected for a second round of braze development. The second round of braze samples had up to a 300% increase in strength and up to a 132% increase in thermal conductance over the bonded samples. However, scalability and repeatability proved to be significant hurdles with the metallization approach. An alternative approach was pursued which used a nickel braze allow to prepare the carbon fibers for joining with aluminum. Initial results on sample blocks indicate that this approach should be repeatable and scalable with good strength and thermal conductance when compared with epoxy bonding.

  7. Modelling fungal sink competitiveness with grains for assimilates in wheat infected by a biotrophic pathogen.

    Science.gov (United States)

    Bancal, Marie-Odile; Hansart, Amandine; Sache, Ivan; Bancal, Pierre

    2012-07-01

    Experiments have shown that biotrophic fungi divert assimilates for their growth. However, no attempt has been made either to account for this additional sink or to predict to what extent it competes with both grain filling and plant reserve metabolism for carbon. Fungal sink competitiveness with grains was quantified by a mixed experimental-modelling approach based on winter wheat infected by Puccinia triticina. One week after anthesis, plants grown under controlled conditions were inoculated with varying loads. Sporulation was recorded while plants underwent varying degrees of shading, ensuring a range of both fungal sink and host source levels. Inoculation load significantly increased both sporulating area and rate. Shading significantly affected net assimilation, reserve mobilization and sporulating area, but not grain filling or sporulation rates. An existing carbon partitioning (source-sink) model for wheat during the grain filling period was then enhanced, in which two parameters characterize every sink: carriage capacity and substrate affinity. Fungal sink competitiveness with host sources and sinks was modelled by representing spore production as another sink in diseased wheat during grain filling. Data from the experiment were fitted to the model to provide the fungal sink parameters. Fungal carriage capacity was 0·56 ± 0·01 µg dry matter °Cd(-1) per lesion, much less than grain filling capacity, even in highly infected plants; however, fungal sporulation had a competitive priority for assimilates over grain filling. Simulation with virtual crops accounted for the importance of the relative contribution of photosynthesis loss, anticipated reserve depletion and spore production when light level and disease severity vary. The grain filling rate was less reduced than photosynthesis; however, over the long term, yield loss could double because the earlier reserve depletion observed here would shorten the duration of grain filling. Source-sink modelling

  8. Heat Transfer in MHD Dusty Boundary Layer Flow over an Inclined Stretching Sheet with Non-Uniform Heat Source/Sink

    Directory of Open Access Journals (Sweden)

    G. K. Ramesh

    2012-01-01

    Full Text Available This paper presents the study of momentum and heat transfer characteristics in a hydromagnetic flow of dusty fluid over an inclined stretching sheet with non-uniform heat source/sink, where the flow is generated due to a linear stretching of the sheet. Using a similarity transformation, the governing equations of the problem are reduced to a coupled third-order nonlinear ordinary differential equations and are solved numerically by Runge-Kutta-Fehlberg fourth-fifth-order method using symbolic software Maple. Our numerical solutions are shown to agree with the available results in the literature and then employ the numerical results to bring out the effects of the fluid-particle interaction parameter, local Grashof number, angle of inclination, heat source/sink parameter, Chandrasekhar number, and the Prandtl number on the flow and heat transfer characteristics. The results have possible technological applications in liquid-based systems involving stretchable materials.

  9. Effects of thermal radiation and heat transfer over an unsteady stretching surface embedded in a porous medium in the presence of heat source or sink

    Directory of Open Access Journals (Sweden)

    Elsayed M. A Elbashbeshy

    2011-01-01

    Full Text Available The effects of thermal radiation and heat transfer over an unsteady stretching surface embedded in a porous medium in the presence of heat source or sink are studied. The governing time dependent boundary layer equations are transformed to ordinary differential equations containing radiation parameter, permeability parameter, heat source or sink parameter, Prandtl number, and unsteadiness parameter. These equations are solved numerically by applying Nachtsheim-Swinger shooting iteration technique together with Rung-Kutta fourth order integration scheme. The velocity profiles, temperature profiles, the skin friction coefficient, and the rate of heat transfer are computed and discussed in details for various values of the different parameters. Comparison of the obtained numerical results is made with previously published results.

  10. Numerical Study on Flow and Heat Transfer Performance of Rectangular Heat Sink with Compound Heat Transfer Enhancement Structures

    Directory of Open Access Journals (Sweden)

    Di Zhang

    2014-04-01

    Full Text Available Modern gas turbine blade is operating at high temperature which requires abundant cooling. Considering both heat transfer rate and pumping power for internal passages, developing efficient cooling passages is of great importance. Ribbed channel has been proved as effective heat transfer enhancement technology for considerable heat transfer characteristics; however, the pressure loss is impressive. Dimple and protrusion are frequently considered as new heat transfer augmentation tools for their low friction loss in recent years. Numerical simulations are adopted to investigate the thermal performance of rectangular channel with compound heat transfer enhancement structures with ribs, dimples, and protrusions. Among all configurations, the nondimensional dimple/protrusion depths are 0.2. The results present the flow structures of all channel configurations. The Nu/Nu0 distributions of channel section are discussed for each case. The pressure penalty f/f0 and the thermal performance TP are also considered as important parameters for heat transfer enhancement. It can be concluded that the optimal structure of the compound heat transfer enhancement structure is rib + protrusion (D = 6 mm + dimple (D = 15 mm.

  11. Development of heat sink concept for near-term fusion power plant divertor

    Science.gov (United States)

    Rimza, Sandeep; Khirwadkar, Samir; Velusamy, Karupanna

    2017-04-01

    Development of an efficient divertor concept is an important task to meet in the scenario of the future fusion power plant. The divertor, which is a vital part of the reactor has to discharge the considerable fraction of the total fusion thermal power (∼15%). Therefore, it has to survive very high thermal fluxes (∼10 MW/m2). In the present paper, an efficient divertor heat exchanger cooled by helium is proposed for the fusion tokamak. The Plasma facing surface of divertor made-up of several modules to overcome the stresses caused by high heat flux. The thermal hydraulic performance of one such module is numerically investigated in the present work. The result shows that the proposed design is capable of handling target heat flux values of 10 MW/m2. The computational model has been validated against high-heat flux experiments and a satisfactory agreement is noticed between the present simulation and the reported results.

  12. INTENSIFICATION OF HEAT TRANSFER FROM THE IC CHIP TO THE HEAT SINK THROUGH THE USE OF NANOFILM THERMOELECTRIC HEAT PUMP

    Directory of Open Access Journals (Sweden)

    T. A. Ismailov

    2014-01-01

    Full Text Available The article considers the to enhance the efficiency the thermoelectric heat pump by making the branches of semiconductor p- and n-type as nanofilms and creating conditions for the emergence of additional thermoeffect between the hot and cold junctions of dissimilar metals that will create a more efficient heat pumps with small dimensions.

  13. INTERANNUAL VARIATIONS OF ATMOSPHERIC HEAT SOURCES AND MOISTURE SINKS OVER THE EQUATORIAL PACIFIC AND THEIR RELATIONS TO THE SST ANOMALIES

    Institute of Scientific and Technical Information of China (English)

    蓝光东; 温之平; 贺海晏

    2004-01-01

    The interannual variations of atmospheric heat sources and moisture sinks over the Equatorial Pacific and their relations with the SST anomalies are studied using ECMWF reanalysis data from 1979 to 1993. It is found by singular value decomposition (SVD) analysis that the region in the tropical Pacific with high positive correlation between the vertically integrated heat source anomaly and the SST anomaly, and between the vertically integrated moisture sink anomaly and the SST anomaly, is mainly located in a long and narrow belt to the east of 170 (E between 5 (S and 5 (N. The analysis of the vertical structure of atmospheric heat sources and moisture sinks shows that the interannual variations of Q1, Q2 and SST in the equatorial central and eastern Pacific are strongly and positively correlated in the whole troposphere except the bottom (962.5 hPa) and the top (85 hPa) layers. However, in the western Pacific, the interannual variations of Q1 below 850 hPa is negatively related to the SST. The correlation coefficient at the level 962.5 hPa reaches even -0.59. In other layers the positive correlation between the interannual variations of Q1, Q2 and the SST are weak in the western Pacific.

  14. Convective heat and mass transfer in three-dimensional mixed convection flow of viscoelastic fluid in presence of chemical reaction and heat source/sink

    Science.gov (United States)

    Bilal Ashraf, M.; Alsaedi, A.; Hayat, T.; Shehzad, S. A.

    2017-06-01

    Heat and mass transfer effects in the three-dimensional mixed convection flow of a viscoelastic fluid with internal heat source/sink and chemical reaction have been investigated in the present work. The flow generation is because of an exponentially stretching surface. Magnetic field normal to the direction of flow is considered. Convective conditions at the surface are also encountered. Appropriate similarity transformations are utilized to reduce the boundary layer partial differential equations into the ordinary differential equations. The homotopy analysis method is used to develop the solution expressions. Impacts of different controlling parameters such as ratio parameter, Hartman number, internal heat source/sink, chemical reaction, mixed convection, concentration buoyancy parameter and Biot numbers on the velocity, temperature and concentration profiles are analyzed. The local Nusselt and Sherwood numbers are sketched and examined.

  15. MHD FREE CONVECTION FLOW PAST AN INFINITE VERTICAL PLATE WITH FIRST ORDER CHEMICAL REACTION AND HEAT SOURCE/SINK

    Directory of Open Access Journals (Sweden)

    Dr.Abhay Kumar Jha

    2012-07-01

    Full Text Available The objective of this paper is to study heat and mass transfer on an unsteady two dimensional hydromagnetic laminar mixed convective boundary layer flow of an incompressible fluid past a semi-infinite vertical plate with heat source/ sink. The plate moves with constant velocity in the direction of fluid flow while the free stream velocity follows an exponentially increasing small perturbation law. The dimensionless governing equations are solved analytically using two terms harmonic and non-harmonic functions .the results obtainedand discussed with help of graphs and tables to observe the effect of various parameter concerned in the problem under investigation.

  16. Radiation Effects in Dual Heat Sinks for Cooling of Concentrated Photovoltaics

    Science.gov (United States)

    2016-06-01

    and lower operating temperature at near horizontal angles of inclination of the CPV panel . However, numerical modeling with conditions more closely...heat transfer and lower operating temperature at near horizontal angles of inclination of the CPV panel . However, numerical modeling with conditions...Schematic of a Concentrated Photovoltaic System. Source: [4]..................2 Figure 2. Temperature-Efficiency Curves of Select Solar Cells. Adapted from

  17. Sources and Sinks: A Stochastic Model of Evolution in Heterogeneous Environments

    Science.gov (United States)

    Hermsen, Rutger; Hwa, Terence

    2010-12-01

    We study evolution driven by spatial heterogeneity in a stochastic model of source-sink ecologies. A sink is a habitat where mortality exceeds reproduction so that a local population persists only due to immigration from a source. Immigrants can, however, adapt to conditions in the sink by mutation. To characterize the adaptation rate, we derive expressions for the first arrival time of adapted mutants. The joint effects of migration, mutation, birth, and death result in two distinct parameter regimes. These results may pertain to the rapid evolution of drug-resistant pathogens and insects.

  18. Design, development, and fabrication of a prototype ice pack heat sink subsystem. Potassium bifluoride/water solution investigations. [for portable life support systems

    Science.gov (United States)

    Roebelen, G. J., Jr.; Kellner, J. D.

    1977-01-01

    A series of investigations was conducted to characterize the physical properties of potassium bifluoride and water solutions for use as the fusible heat sink material in a regenerable portable life support system.

  19. Microchannel Heat Sink with Micro Encapsulated Phase Change Material (MEPCM) Slurry

    Science.gov (United States)

    2009-05-31

    beds or fluidized beds , depending on the concentration of the slurry. The authors assumed local thermal equilibrium for both liquid and solid...simulating MEPCM slurry flows assumed homogeneous distribution of particles. The model proposed by Tao et al. [16] use fluidized bed correlations to solve...directly fabricated in a silicon substrate and had direct circulation of water. It is so compact that heat is efficiently carried from the substrate

  20. 3-Dimensional numerical study of cooling performance of a heat sink with air-water flow through mini-channel

    Science.gov (United States)

    Majumder, Sambit; Majumder, Abhik; Bhaumik, Swapan

    2016-07-01

    The present microelectronics market demands devices with high power dissipation capabilities having enhanced cooling per unit area. The drive for miniaturizing the devices to even micro level dimensions is shooting up the applied heat flux on such devices, resulting in complexity in heat transfer and cooling management. In this paper, a method of CPU processor cooling is introduced where active and passive cooling techniques are incorporated simultaneously. A heat sink consisting of fins is designed, where water flows internally through the mini-channel fins and air flows externally. Three dimensional numerical simulations are performed for large set of Reynolds number in laminar region using finite volume method for both developing flows. The dimensions of mini-channel fins are varied for several aspect ratios such as 1, 1.33, 2 and 4. Constant temperature (T) boundary condition is applied at heat sink base. Channel fluid temperature, pressure drop are analyzed to obtain best cooling option in the present study. It has been observed that as the aspect ratio of the channel decreases Nusselt number decreases while pressure drop increases. However, Nusselt number increases with increase in Reynolds number.

  1. Optimization of microchannel heat sink using genetic algorithm and Taguchi method

    Science.gov (United States)

    Singh, Bhanu Pratap; Garg, Harry; Lall, Arun K.

    2016-04-01

    Active cooling using microchannel is a challenging area. The optimization and miniaturization of the devices is increasing the heat loads and affecting the operating performance of the system. The microchannel based cooling systems are widely used and overcomes most of the limitations of the existing solutions. Microchannels help in reducing dimensions and therefore finding many important applications in the microfluidics domain. The microchannel performance is related to the geometry, material and flow conditions. Optimized selection of controllable parameters is a key issue while designing the microchannel based cooling system. The proposed work presents a simulation based study according to Taguchi design of experiment with Reynolds number, aspect ratio and plenum length as input parameters to determine SN ratio. The objective of this study is to maximize the heat transfer. Mathematical models based on these parameters were developed which helps in global optimization using Genetic Algorithm. Genetic algorithm further employed to optimize the input parameters and generates global solution points for the proposed work. It was concluded that the optimized value for heat transfer coefficient and Nusselt number was 2620.888 W/m2K and 3.4708 as compare to values obtained through SN ratio based parametric study i.e. 2601.3687 W/m2K and 3.447 respectively. Hence an error of 0.744% and 0.68% was detected in heat transfer coefficient and Nusselt number respectively.

  2. Geothermal as a heat sink application for raising air conditioning efficency

    Science.gov (United States)

    Ibrahim, Hesham Safwat Osman Mohamed

    2016-04-01

    Objective: Geothermal applications in heating, ventilation, air-conditioning is a US technology for more than 30 years old ,which saves more than 30% average energy cost than the traditional air-conditioning systems systems. Applying this technology in Middle East and African countries would be very feasible specially in Egypt specially as it suffers Electric crisis --The temperature of the condensers and the heat rejecting equipment is much higher than the Egyptian land at different depth which is a great advantages, and must be measured, recorded, and studied accurately -The Far goal of the proposal is to construct from soil analysis a temperature gradient map for Egypt and , African countries on different depth till 100 m which is still unclear nowadays and must be measured and recorded in databases through researches - The main model of the research is to study the heat transfer gradient through the ground earth borehole,grout,high density polyethylene pipes , and water inlet temperature which affect the electric efficiency of the ground source heat pump air conditioning unit Impact on the Region: Such research result will contribute widely in Energy saving sector specially the air conditioning sector in Egypt and the African countries which consumes more than 30% of the electric consumption of the total consumption . and encouraging Green systems such Geothermal to be applied

  3. Comparison of Frictional Heating Models

    Energy Technology Data Exchange (ETDEWEB)

    Davies, Nicholas R [ORNL; Blau, Peter Julian [ORNL

    2013-10-01

    The purpose of this work was to compare the predicted temperature rises using four well-known models for frictional heating under a few selected conditions in which similar variable inputs are provided to each model. Classic papers by Archard, Kuhlmann-Wilsdorf, Lim and Ashby, and Rabinowicz have been examined, and a spreadsheet (Excel ) was developed to facilitate the calculations. This report may be used in conjunction with that spreadsheet. It explains the background, assumptions, and rationale used for the calculations. Calculated flash temperatures for selected material combinations, under a range of applied loads and sliding speeds, are tabulated. The materials include AISI 52100 bearing steel, CDA 932 bronze, NBD 200 silicon nitride, Ti-6Al-4V alloy, and carbon-graphite material. Due to the assumptions made by the different models, and the direct way in which certain assumed quantities, like heat sink distances or asperity dimensions, enter into the calculations, frictional hearing results may differ significantly; however, they can be similar in certain cases in light of certain assumptions that are shared between the models.

  4. Sinking of North Atlantic waters in a global ocean model: location and controlling factors

    Science.gov (United States)

    Katsman, Caroline; Drijfhout, Sybren; Dijkstra, Henk; Spall, Michael

    2017-04-01

    The Atlantic Meridional Overturning Circulation (AMOC) plays an important role in climate. The classical view of an ocean conveyor belt with northward surface currents and southward return currents transporting convectively-formed waters from the subpolar North Atlantic Ocean to other ocean basins suggests a tight relation between convection and sinking. However, convection regions feature very little vertical mass transport. Instead, it has been argued that the sinking of waters must take place near boundaries where ageostrophic processes affect the flow. So far, this has been confirmed in highly idealized regional model studies and in laboratory experiments. It is, however, unclear how well the sinking of dense waters is represented in the current generation of global ocean models and climate models, and whether the factors driving and controlling the sinking in these models are in accordance with the developed theory. This is of crucial importance for our confidence in projections of the future behavior of the AMOC, which are based on this type of model. In this study, we analyze the characteristics of the vertical transport in two global ocean models: an eddy-permitting model at 0.25 degree resolution and its coarser 1.0 degree resolution counterpart. We show that the sinking indeed predominantly occurs in a narrow region close to the boundary in both model simulations, and not in deep convection regions. Notably, the amount of vertical transport that is found along the edges of the North Atlantic Ocean is highly variable in space, and large differences exist between the two model versions. In the eddy-permitting model, the magnitude of the local sinking appears to be governed by alongshore variations in density near the boundary, in line with theory.

  5. Magnetic field effects on unsteady convective flow along a vertical porous flat surface embedded in a porous medium with constant suction and heat sink

    Directory of Open Access Journals (Sweden)

    S. S. Das, J. Mohanty, P. Das

    2011-07-01

    Full Text Available The magnetohydrodynamic unsteady convective flow of a viscous incompressible fluid along a vertical porous plate embedded in a porous medium with constant suction and heat sink is considered. Approximate solutions for velocity, temperature, skin friction and rate of heat transfer are obtained by solving the governing equations of the flow field using multi parameter perturbation technique. The effects of various flow parameters affecting the flow field are discussed with the help of figures and table. It is observed that a growing magnetic parameter or heat sink parameter retards the transient velocity of the flow field while the Grashof number or permeability parameter reverses the effect. Further, an increase in magnetic parameter or Prandtl number or heat sink parameter decreases the transient temperature of the flow field. A growing permeability parameter enhances the magnitude of skin friction and the rate of heat transfer at the wall, while the magnetic parameter reverses the effect.

  6. Magnetohydrodynamic Mixed Convection Stagnation-Point Flow of a Power-Law Non-Newtonian Nanofluid towards a Stretching Surface with Radiation and Heat Source/Sink

    Directory of Open Access Journals (Sweden)

    Macha Madhu

    2015-01-01

    Full Text Available Two-dimensional MHD mixed convection boundary layer flow of heat and mass transfer stagnation-point flow of a non-Newtonian power-law nanofluid towards a stretching surface in the presence of thermal radiation and heat source/sink is investigated numerically. The non-Newtonian nanofluid model incorporates the effects of Brownian motion and thermophoresis. The basic transport equations are made dimensionless first and the complete nonlinear differential equations with associated boundary conditions are solved numerically by finite element method (FEM. The numerical calculations for velocity, temperature, and nanoparticles volume fraction profiles for different values of the physical parameters to display the interesting aspects of the solutions are presented graphically and discussed. The skin friction coefficient, the local Nusslet number and the Sherwood number are exhibited and examined. Our results are compatible with the existing results for a special case.

  7. Modelación y simulación de disipadores de calor para procesadores de computadora en COMSOL Multiphysics Modeling and simulation of heat sinks for computer processors in COMSOL Multiphysics

    OpenAIRE

    2012-01-01

    En este estudio se analizó la transferencia de calor en tres disipadores de calor utilizados para enfriar los procesadores de computadoras de escritorio. El objetivo de estos disipadores es evitar el sobrecalentamiento de la unidad de procesamiento y la consecuente reducción de la vida útil del computador. Los disipadores de calor se modelaron usando COMSOL Multiphysics con las dimensiones reales de los dispositivos y la generación de calor se modeló con una fuente puntual. Luego se modificar...

  8. Finite difference modeling of sinking stage curved beam based on revised Vlasov equations

    Institute of Scientific and Technical Information of China (English)

    张磊; 朱真才; 沈刚; 曹国华

    2015-01-01

    For the static analysis of the sinking stage curved beam, a finite difference model was presented based on the proposed revised Vlasov equations. First, revised Vlasov equations for thin-walled curved beams with closed sections were deduced considering the shear strain on the mid-surface of the cross-section. Then, the finite difference formulation of revised Vlasov equations was implemented with the parabolic interpolation based on Taylor series. At last, the finite difference model was built by substituting geometry and boundary conditions of the sinking stage curved beam into the finite difference formulation. The validity of present work is confirmed by the published literature and ANSYS simulation results. It can be concluded that revised Vlasov equations are more accurate than the original one in the analysis of thin-walled beams with closed sections, and that present finite difference model is applicable in the evaluation of the sinking stage curved beam.

  9. Cross diffusion and MHD effects on a high order chemically reactive micropolar fluid of naturally convective heat and mass transfer past through an infinite vertical porous medium with a constant heat sink

    Science.gov (United States)

    Arifuzzaman, S. M.; Rana, B. M. Jewel; Ahmed, R.; Ahmmed, S. F.

    2017-06-01

    High order chemically reactive micropolar fluid flow through an infinite vertical porous medium with thermal diffusion, mass diffusion, MHD, thermal radiation and heat sink has been studied. A flow model is established by employing the well-known boundary layer approximations. In order to obtain non-dimensional system of equations, a similarity transformation is applied on the flow model. The stability and convergence analysis have been analyzed. The obtained non-dimensional equations have been solved by explicit finite difference method. The effects of various parameters entering into the problem on velocity, angular velocity, temperature and concentration are shown graphically.

  10. Dual Solutions of MHD Boundary Layer Flow past an Exponentially Stretching Sheet with Non-Uniform Heat Source/Sink

    Directory of Open Access Journals (Sweden)

    Raju CSK

    2016-01-01

    Full Text Available In this study we analyzed the momentum and heat transfer characteristics of MHD boundary layer flow over an exponentially stretching surface in porous medium in the presence of radiation, non-uniform heat source/sink, external pressure and suction/injection. Dual solutions are presented for both suction and injection cases. The heat transfer analysis is carried out for both prescribed surface temperature (PST and prescribed heat flux (PHF cases. The governing equations of the flow are transformed into system of nonlinear ordinary differential equations by using similarity transformation and solved numerically using bvp4c Matlab package. The impact of various non-dimensional governing parameters on velocity, temperature profiles for both PST and PHF cases, friction factor and rate of heat transfer is discussed and presented with the help of graphs and tables. Results indicate that dual solutions exist only for certain range of suction or injection parameters. It is also observed that the exponential parameter have tendency to increase the heat transfer rate for both PST and PHF cases.

  11. Numerical simulation of heat transfer and fluid flow with lid-driven square cavity and discrete source-sink pairs

    Science.gov (United States)

    Bhuiyan, Abdul Halim; Alam, Md Shahidul; Alim, M. A.

    2017-06-01

    In this paper heat transfer and fluid flow in a two-dimensional lid-driven square cavity with discrete source-sink is studied. A finite element method is used for solving the governing equations. The parametric studies are Darcy number in the range of 10-5 to 10-1, Grashof number in the range of 103 to 105, Reynolds number constant at 100 and Prandtl number constant at 0.71. Galerkin weighted residual method is used to perform numerical solutions. The streamlines, isotherms, average Nusselt number, and average temperature of the fluid in the enclosure are presented for the dimensionless parameters. It is found that the heat transfer rate is decreased for decreasing of Darcy number.

  12. Unsteady Flow of Third Grade Fluid over an Oscillatory Stretching Sheet with Thermal Radiation and Heat Source/Sink

    Science.gov (United States)

    Ali, Nasir; Khan, Sami Ullah; Abbas, Zaheer

    2015-12-01

    The aim of this article is to investigate the unsteady boundary layer flow and heat transfer analysis in a third grade fluid over an oscillatory stretching sheet under the influences of thermal radiation and heat source/sink. The convective boundary condition at the sheet is imposed to determine the temperature distribution. Homotopy analysis method (HAM) is used to solve dimensionless nonlinear partial differential equations. The effects of involved parameters on both velocity and temperature fields are illustrated in detail through various plots. It is found that the amplitude of velocity decreases by increasing the ratio of the oscillation frequency of the sheet to its stretching rate and Hartmann number while it increases by increasing the third grade fluid parameter. On contrary, the temperature field is found to be a decreasing function of the third grade fluid parameter.

  13. MHD effects on heat transfer over stretching sheet embedded in porous medium with variable viscosity, viscous dissipation and heat source/sink

    Directory of Open Access Journals (Sweden)

    Hunegnaw Dessie

    2014-09-01

    Full Text Available In this analysis, MHD boundary layer flow and heat transfer of a fluid with variable viscosity through a porous medium towards a stretching sheet by taking in to the effects of viscous dissipation in presence of heat source/sink is considered. The symmetry groups admitted by the corresponding boundary value problem are obtained by using Lie’s scaling group of transformations. These transformations are used to convert the partial differential equations of the governing equations into self-similar non-linear ordinary differential equations. Numerical solutions of these equations are obtained by Runge-Kutta fourth order with shooting method. Numerical results obtained for different parameters such as viscosity variation parameter A, permeability parameter k1, heat source/sink parameter λ, magnetic field parameter M, Prandtl number Pr, and Eckert number Ec are drawn graphically and effects of different flow parameters on velocity and temperature profiles are discussed. The skin-friction coefficient -f″(0 and heat transfer coefficient −θ′(0 are presented in tables.

  14. 铜铝微通道热沉的三维数值结构优化%3D Numerical Geometric Optimization of Copper and Aluminum Microchannel Heat Sink

    Institute of Scientific and Technical Information of China (English)

    李骥; 史忠山

    2012-01-01

    在恒定泵功0.05 W条件下,对水冷铜基和铝基微通道热沉对流换热进行详细数值模拟和结构优化.通过将数值预测结果与前人已发表的试验结果进行对比,验证所使用的数值模型的正确性.同时讨论在恒定泵功下微通道几何结构对微通道热沉中温度分布的影响.模拟结果显示水冷铜基微通道热沉最优的几何结构参数为通道深为580 μm,通道宽为90 μm,通道密度为100个/cm;铝基微通道热沉最优的几何结构参数为通道深为620 μm,通道宽为80 μm,通道密度为100个/cm.%Under a constant pumping power of 0.05 W for water-cooled micro heat sinks, a semi-normalized 3-dimensional heat transfer model has been used to simulate the heat transfer performance of copper-based and aluminum-based parallel microchannel heat sinks and optimize the geometric structure of these types of micro heat sinks. The model is validated by comparing the predicted results with previously published experimental results. And the effect of the microchannel geometry on the temperature distribution in the microchannel heat sink is presented and discussed. The results turn out to be that optimal microchannel geometry is the microchannel number of 100 per centimeter, a channel width of 90 um and a channel depth of about 580 um for copper-based microchannel heat sinks and the microchannel number of 100 per centimeter, a channel width of 80 um and a channel depth of about 620 um for aluminum-based microchannel heat sinks.

  15. Innovative commercial ``ground source'' heat pump system sources and sinks: Engineering and economics

    Energy Technology Data Exchange (ETDEWEB)

    Sachs, H.M.; Lowenstein, A.I.; Henderson, H.I. Jr.; Carlson, S.W.; Risser, J.E.

    1998-07-01

    Geothermal heat pumps, which will be called GX systems in this paper, have been employed in specialty applications on both residential and commercial buildings for several decades. GX systems generally have very competitive life cycle costs, but somewhat higher initial costs. The incremental cost of the ground heat exchanger cost is close to the average cost per ton, so GX systems work best with very efficient building shells. Innovative methods can reduce the ground heat exchanger cost. These include better coupling of the heat exchange boreholes to the ground, hybrid systems that use low cost closed fluid coolers to supplement the ground heat exchanger where cooling loads dominate, open loop systems, and opportunistic systems that use sewage effluent or other non-standard sources for heat exchange. These approaches and their benefits are illustrated through five case studies.

  16. Modeling the reversible sink effect in response to transient contaminant sources

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Dongye; Little, John C.; Hodgson, Alfred T.

    2001-02-01

    A physically based diffusion model is used to evaluate the sink effect of diffusion-controlled indoor materials and to predict the transient contaminant concentration in indoor air in response to several time-varying contaminant sources. For simplicity, it is assumed the predominant indoor material is a homogeneous slab, initially free of contaminant, and the air within the room is well mixed. The model enables transient volatile organic compound (VOC) concentrations to be predicted based on the material/air partition coefficient (K) and the material-phase diffusion coefficient (D) of the sink. Model predictions are made for three scenarios, each mimicking a realistic situation in a building. Styrene, phenol, and naphthalene are used as representative VOCs. A styrene butadiene rubber (SBR) backed carpet, vinyl flooring (VF), and a polyurethane foam (PUF) carpet cushion are considered as typical indoor sinks. In scenarios involving a sinusoidal VOC input and a double exponential decaying input, the model predicts the sink has a modest impact for SBR/styrene, but the effect increases for VF/phenol and PUF/naphthalene. In contrast, for an episodic chemical spill, SBR is predicted to reduce the peak styrene concentration considerably. A parametric study reveals for systems involving a large equilibrium constant (K), the kinetic constant (D) will govern the shape of the resulting gas-phase concentration profile. On the other hand, for systems with a relaxed mass transfer resistance, K will dominate the profile.

  17. Unsteady MHD flow of a dusty nanofluid past a vertical stretching surface with non-uniform heat source/sink

    Directory of Open Access Journals (Sweden)

    C. Sulochana

    2016-02-01

    Full Text Available We analyzed the momentum and heat transfer characteristics of unsteady MHD flow of a dusty nanofluid over a vertical stretching surface in presence of volume fraction of dust and nano particles with non uniform heat source/sink. We considered two types of nanofluids namely Ag-water and Cu-water embedded with conducting dust particles. The governing equations are transformed in to nonlinear ordinary differential equations by using similarity transformation and solved numerically using Shooting technique. The effects of non-dimensional governing parameters on velocity and temperature profiles for fluid and dust phases are discussed and presented through graphs. Also, the skin friction coefficient and Nusselt number are discussed and presented for two dusty nanofluids separately in tabular form. Results indicate that an increase in the volume fraction of dust particles enhances the heat transfer in Cu-water nanofluid compared with Ag-water nanofluid and a raise in the volume fraction of nano particles shows uniform heat transfer in both Cu-water and Ag-water nanofluids.

  18. Heat-shock effects on photosynthesis and sink-source dynamics in wheat (Triticum aestivum L.)

    NARCIS (Netherlands)

    Schapendonk, A.H.C.M.; Xu, H.Y.; Putten, van der P.E.L.; Spiertz, J.H.J.

    2007-01-01

    To assess the mechanisms causing genotypic differences in heat tolerance of wheat (Triticum aestivum L.), physiological responses to a heat shock in a vegetative (`end of tillering¿) or a reproductive (`early grain filling¿) stage were studied. Three cultivars ¿ Lavett, Ciano-79 and Attila ¿

  19. Novel mathematical model for predicting the dissolution profile of spherical particles under non-sink conditions.

    Science.gov (United States)

    Agata, Yasuyoshi; Iwao, Yasunori; Miyagishima, Atsuo; Itai, Shigeru

    2010-04-01

    A mechanistic mathematical model was designed to predict dissolution patterns under non-sink conditions. Sulfamethoxazole was used as a model drug, and its physico-chemical properties such as solubility, density, and intrinsic dissolution rate constant etc., were investigated in order to apply these experimental values to the proposed model. Dissolution tests were employed as a way of validating the mathematical model, and it was found that the predictions given by the model were surprisingly accurate for all particle sizes. In addition, a simulation focused on forecasting the fraction of the drug that was dissolved at a certain time point when various initial particle diameters were used was also particularly valuable. Therefore, these results demonstrated that the model enables dissolution profiles to be analyzed under non-sink conditions.

  20. Experimental study on thermal performance of micro pin fin heat sinks with various shapes

    Science.gov (United States)

    Hua, Junye; Li, Gui; Zhao, Xiaobao; Li, Qihe

    2017-03-01

    This paper presents a visualization experimental study on the heat transfer characteristics of various shapes of micro pin fins, including the circular, ellipse, diamond, square and triangle shape micro pin fin arrays with various equivalent diameters and pin fin density. The influences study of different sizes and shapes of pin fin on Nusselt number and heat transfer coefficient have been conducted. The results show that with the increase of the flow rate, the temperature of the bottom of the experimental section decreases. And the Nusselt number of different shapes of micro pin fins increases with the increase of Re. In which, the heat transfer performance of the ellipse shape pin fin appears better among the other shapes of pin fins. However, the higher pin fin of the ellipse shape density leads to a weaker flow performance. Besides, the micro-scale heat transfer correlation between the Nusselt number and the Reynolds number is fitted based on the experimental data.

  1. Magnetohydrodynamic 3D slip flow in a suspension of carbon nanotubes over a slendering sheet with heat source/sink

    Science.gov (United States)

    Kumar, R. V. M. S. S. Kiran; Varma, S. Vijaya Kumar; Raju, C. S. K.; Ibrahim, S. M.; Lorenzini, G.; Lorenzini, E.

    2017-05-01

    Carbon nanotubes are allotropes of carbon with a cylindrical nanostructure. These cylindrical carbon molecules have unusual properties, which are valuable for nanotechnology, electronics, optics and other fields of materials science and technology. With this intention, we investigate the three-dimensional magnetohydrodynamic convective heat and mass transfer of nanofluid over a slendering stretching sheet filled with porous medium and heat source/sink. For balancing the flow, temperature and concentration slip mechanisms are also taken into account. In this investigation simulation performed by mixing the two types of carbon nanotubes, namely single- and multi-walled carbon nanotubes, into water as base fluid. The governing system of partial differential equations is transformed into nonlinear ordinary differential equations which answered by using R-K-Fehlberg-integration scheme. The impact of various pertinent parameters on velocity, temperature and concentration as well as the friction factor coefficient, local Nusselt and local Sherwood number is derived and discussed through graphs and tables for both single- and multi-walled carbon nanotubes cases. It is found that the momentum boundary layer thickness of SWCNTs is thicker than MWCNTs. These results can help us to conclude that SWCNTs are helpful for minimizing the friction between the particles, whereas MWCNTs are helpful for boosting the heat and mass transfer rate.

  2. Optimal performance of heat engines with a finite source or sink and inequalities between means

    Science.gov (United States)

    Johal, Ramandeep S.

    2016-07-01

    Given a system with a finite heat capacity and a heat reservoir, and two values of initial temperatures, T+ and T-(efficiency in the two cases, we need to consider three regimes as suggested by an inequality, the so-called arithmetic mean-geometric mean inequality, involving the arithmetic and the geometric means of the two temperature values T+ and T-. In each of these regimes, the efficiency at total work obeys certain universal bounds, given only in terms of the ratio of initial temperatures. The general theoretical results are exemplified for thermodynamic systems for which internal energy and temperature are power laws of the entropy. The conclusions may serve as benchmarks in the design of heat engines, where we can choose the nature of the finite system, so as to tune the total extractable work and/or the corresponding efficiency.

  3. An improved sink particle algorithm for SPH simulations

    CERN Document Server

    Hubber, D A; Whitworth, A P

    2013-01-01

    Numerical simulations of star formation frequently rely on the implementation of sink particles, (a) to avoid expending computational resource on the detailed internal physics of individual collapsing protostars, (b) to derive mass functions, binary statistics and clustering kinematics (and hence to make comparisons with observation), and (c) to model radiative and mechanical feedback; sink particles are also used in other contexts, for example to represent accreting black holes in galactic nuclei. We present a new algorithm for creating and evolving sink particles in SPH simulations, which appears to represent a significant improvement over existing algorithms {\\refrpt -- particularly in situations where sinks are introduced after the gas has become optically thick to its own cooling radiation and started to heat up by adiabatic compression}. (i) It avoids spurious creation of sinks. (ii) It regulates the accretion of matter onto a sink so as to mitigate non-physical perturbations in the vicinity of the sink...

  4. Thermal management optimization of an air-cooled Li-ion battery module using pin-fin heat sinks for hybrid electric vehicles

    Science.gov (United States)

    Mohammadian, Shahabeddin K.; Zhang, Yuwen

    2015-01-01

    Three dimensional transient thermal analysis of an air-cooled module that contains prismatic Li-ion cells next to a special kind of aluminum pin fin heat sink whose heights of pin fins increase linearly through the width of the channel in air flow direction was studied for thermal management of Lithium-ion battery pack. The effects of pin fins arrangements, discharge rates, inlet air flow velocities, and inlet air temperatures on the battery were investigated. The results showed that despite of heat sinks with uniform pin fin heights that increase the standard deviation of the temperature field, using this kind of pin fin heat sink compare to the heat sink without pin fins not only decreases the bulk temperature inside the battery, but also decreases the standard deviation of the temperature field inside the battery as well. Increasing the inlet air temperature leads to decreasing the standard deviation of the temperature field while increases the maximum temperature of the battery. Furthermore, increasing the inlet air velocity first increases the standard deviation of the temperature field till reaches to the maximum point, and after that decreases. Also, increasing the inlet air velocity leads to decrease in the maximum temperature of the battery.

  5. Feasibility study of a dedicated nuclear desalination system: Low-pressure Inherent heat sink Nuclear Desalination plant (LIND

    Directory of Open Access Journals (Sweden)

    Ho Sik Kim

    2015-04-01

    Full Text Available In this paper, we suggest the conceptual design of a water-cooled reactor system for a low-pressure inherent heat sink nuclear desalination plant (LIND that applies the safety-related design concepts of high temperature gas-cooled reactors to a water-cooled reactor for inherent and passive safety features. Through a scoping analysis, we found that the current LIND design satisfied several essential thermal–hydraulic and neutronic design requirements. In a thermal–hydraulic analysis using an analytical method based on the Wooton–Epstein correlation, we checked the possibility of safely removing decay heat through the steel containment even if all the active safety systems failed. In a neutronic analysis using the Monte Carlo N-particle transport code, we estimated a cycle length of approximately 6 years under 200 MWth and 4.5% enrichment. The very long cycle length and simple safety features minimize the burdens from the operation, maintenance, and spent-fuel management, with a positive impact on the economic feasibility. Finally, because a nuclear reactor should not be directly coupled to a desalination system to prevent the leakage of radioactive material into the desalinated water, three types of intermediate systems were studied: a steam producing system, a hot water system, and an organic Rankine cycle system.

  6. Feasibility study of a dedicate nuclear desalination system: Low-pressure inherent heat sink nuclear desalination plant (LIND)

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ho Sik; No, Hee Cheon; Jo, Yu Gwan; Wivisono, Andhika Feri; Park, Byung Ha; Choi, Jin Young; Lee, Jeong Ik; Jeong, Yong Hoon; Cho, Nam Zin [Dept. of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2015-04-15

    In this paper, we suggest the conceptual design of a water-cooled reactor system for a low-pressure inherent heat sink nuclear desalination plant (LIND) that applies the safety-related design concepts of high temperature gas-cooled reactors to a water-cooled reactor for inherent and passive safety features. Through a scoping analysis, we found that the current LIND design satisfied several essential thermal-hydraulic and neutronic design requirements. In a thermal-hydraulic analysis using an analytical method based on the Wooton-Epstein correlation, we checked the possibility of safely removing decay heat through the steel containment even if all the active safety systems failed. In a neutronic analysis using the Monte Carlo N-particle transport code, we estimated a cycle length of approximately 6 years under 200 MW{sub th} and 4.5% enrichment. The very long cycle length and simple safety features minimize the burdens from the operation, maintenance, and spent-fuel management, with a positive impact on the economic feasibility. Finally, because a nuclear reactor should not be directly coupled to a desalination system to prevent the leakage of radioactive material into the desalinated water, three types of intermediate systems were studied: a steam producing system, a hot water system, and an organic Rankine cycle system.

  7. Nanoscale characterization of the thermal interface resistance of a heat-sink composite material by in situ TEM.

    Science.gov (United States)

    Kawamoto, Naoyuki; Kakefuda, Yohei; Mori, Takao; Hirose, Kenji; Mitome, Masanori; Bando, Yoshio; Golberg, Dmitri

    2015-11-20

    We developed an original method of in situ nanoscale characterization of thermal resistance utilizing a high-resolution transmission electron microscope (HRTEM). The focused electron beam of the HRTEM was used as a contact-free heat source and a piezo-movable nanothermocouple was developed as a thermal detector. This method has a high flexibility of supplying thermal-flux directions for nano/microscale thermal conductivity analysis, and is a powerful way to probe the thermal properties of complex or composite materials. Using this method we performed reproducible measurements of electron beam-induced temperature changes in pre-selected sections of a heat-sink α-Al(2)O(3)/epoxy-based resin composite. Observed linear behavior of the temperature change in a filler reveals that Fourier's law holds even at such a mesoscopic scale. In addition, we successfully determined the thermal resistance of the nanoscale interfaces between neighboring α-Al(2)O(3) fillers to be 1.16 × 10(-8) m(2)K W(-1), which is 35 times larger than that of the fillers themselves. This method that we have discovered enables evaluation of thermal resistivity of composites on the nanoscale, combined with the ultimate spatial localization and resolution sample analysis capabilities that TEM entails.

  8. Nanoscale characterization of the thermal interface resistance of a heat-sink composite material by in situ TEM

    Science.gov (United States)

    Kawamoto, Naoyuki; Kakefuda, Yohei; Mori, Takao; Hirose, Kenji; Mitome, Masanori; Bando, Yoshio; Golberg, Dmitri

    2015-11-01

    We developed an original method of in situ nanoscale characterization of thermal resistance utilizing a high-resolution transmission electron microscope (HRTEM). The focused electron beam of the HRTEM was used as a contact-free heat source and a piezo-movable nanothermocouple was developed as a thermal detector. This method has a high flexibility of supplying thermal-flux directions for nano/microscale thermal conductivity analysis, and is a powerful way to probe the thermal properties of complex or composite materials. Using this method we performed reproducible measurements of electron beam-induced temperature changes in pre-selected sections of a heat-sink α-Al2O3/epoxy-based resin composite. Observed linear behavior of the temperature change in a filler reveals that Fourier’s law holds even at such a mesoscopic scale. In addition, we successfully determined the thermal resistance of the nanoscale interfaces between neighboring α-Al2O3 fillers to be 1.16 × 10-8 m2K W-1, which is 35 times larger than that of the fillers themselves. This method that we have discovered enables evaluation of thermal resistivity of composites on the nanoscale, combined with the ultimate spatial localization and resolution sample analysis capabilities that TEM entails.

  9. Global Modelling of the total OH reactivity: validation against measurements and atmospheric implications of the 'missing' sink

    Science.gov (United States)

    Ferracci, Valerio; Archibald, Alexander T.; Pyle, John A.

    2017-04-01

    The removal of most trace gases emitted into the atmosphere is primarily initiated by reaction with the hydroxyl radical, OH. A number of field campaigns over the last two decades have observed the presence of a "missing" sink of the OH radical in a variety of regions across the planet, from urban areas to remote forests: comparison of the direct measurements of the OH loss rate, also known as total OH reactivity, with the sum of individual known OH sinks (obtained via the simultaneous detection of species such as volatile organic compounds and nitrogen oxides) indicated that, in some cases, up to 80% of the total OH loss rate was unaccounted for. The implications of this finding are significant, as a potentially major OH sink operating in the atmosphere is not currently accounted for in atmospheric models: the presence of an additional OH sink might, for instance, lead to an increase in the atmospheric lifetime of a number of trace species, including high-impact greenhouse gases such as methane. The only modelling of the total OH reactivity is currently performed on a regional scale; a thorough assessment of the impact of the missing sink on the chemistry and climate of the planet by global modelling is therefore highly desirable. In this work a chemistry-climate model (the Met Office's Unified Model with the United Kingdom Chemistry and Aerosols scheme, UM-UKCA) was used to calculate the total OH reactivity at the planetary boundary layer. The model output was validated against available field measurements to verify that the known OH sinks observed in the field were reproduced correctly by the model: a good agreement was found between the data from more than 30 field campaigns and the model output. Following this, the effects of introducing novel OH sinks in the chemistry scheme were investigated. The first step was the introduction in the model of the newly characterised reactions of peroxy radicals (RO2) with OH, the kinetics and products of which have only

  10. High Density Die Casting (HDDC): new frontiers in the manufacturing of heat sinks

    Science.gov (United States)

    Sce, Andrea; Caporale, Lorenzo

    2014-07-01

    Finding a good solution for thermal management problems is every day more complex. due to the power density and the required performances. When a solution suitable for high volumes is needed. die-casting and extrusion are the most convenient technologies. However designers have to face the well-known limitations for those processes. High Density Die Casting (HDDC) is a process under advanced development. in order to overcome the extrusion and traditional die casting limits by working with alloys having much better thermal performances than the traditional die-casting process. while keeping the advantages of a flexible 3D design and a low cost for high volumes. HDDC offers the opportunity to design combining different materials (aluminium and copper. aluminium and stainless steel) obtaining a structure with zero porosity and overcoming some of die-casting limits. as shown in this paper. A dedicated process involving embedded heat pipes is currently under development in order to offer the possibility to dramatically improve the heat spreading.

  11. 3D phase-field modelling of dislocation loop sink strengths

    Science.gov (United States)

    Thuinet, L.; Rouchette, H.; Legris, A.

    2017-01-01

    This work presents a 3D phase-field model to correctly evaluate dislocation loop sink strength. This method is applied to a wide range of microstructures (dislocation loops of various types with isotropic or anisotropic elasticity, like in Zr, cohabitation of different types of loop in the same calculation domain), which allows to exhibit several original results. Among them, in the case of isotropic elasticity, our model shows that the sink strength of vacancy loops is higher than that of interstitial ones for low loop radii. In the case of Zr, the effect on sink biases of the shape anisotropy of self-interstitial atoms, already exhibited in the case of straight dislocations, is enhanced for loops and stabilizes basal vacancy and prism-plane interstitial ones. Moreover, isotropic elastic interactions promote the coexistence of parallel vacancy and interstitial loops. This result is still valid in the case of prism-plane loops in Zr, which could provide explanations to several experimental facts.

  12. Evaluation of the Safety Issue Concerning the Potential for Loss of Decay Heat Removal Function due to Crude Oil Spill in the Ultimate Heat Sink of Nuclear Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Jong Chull; Roh, Kyung Wan; Yune, Young Gill; Kang, Dong Gu; Kim, Hho Jhung [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2008-05-15

    A barge crashed into a moored oil tanker at about 7:15 a.m., Dec. 12, 2007, dumping around 10,500 tons of crude oil into the sea in Korea. The incident took place about 15 kilometers northwest of Manripo beach in South Chungcheong where is Korea's west coast in the Yellow Sea. In a few days, the oil slicks spread to the northern and southern tips of the Taean Peninsula by strong winds and tides. As time went the spilled oil floating on the surface of sea water was volatilized to become tar-balls and lumps and drifted far away in the southern direction. 13 days after the incident, some of oil slicks and tar lumps were observed to flow in the service water intake at the Younggwang nuclear power plants (NPPs) operating 6 reactors, which are over 150 km away from the incident spot in the southeastern direction. According to the report by the Younggwang NPPs, a total weight 83 kg of tar lumps was removed for about 3 days. Oil spills in the sea can happen in any country or anytime due to human errors or mistakes, wars, terrors, intentional dumping of waste oils, and natural disasters like typhoon and tsunami. In fact, there have been 7 major oil spills over 10,000 tons that have occurred around the world since 1983. As such serious oil spill incidents may happen near the operating power plants using the sea water as ultimate heat sink. To ensure the safe operation of nuclear reactors it is required to evaluate the potential for loss of decay heat removal function of nuclear reactors due to the spilled oils flowing in the service water intake, from which the service water is pumped. Thus, Korea Institute of Nuclear Safety identified this problem as one of the important safety. When an incident of crude oil spill from an oil carrier occurs in the sea near the nuclear power plants, the spilled oil can be transported to the intake pit, where all service water pumps locate, by sea current and wind drift (induced) current. The essential service water pumps take the

  13. The Study for Saving Energy and Optimization of LED Street Light Heat Sink Design

    Directory of Open Access Journals (Sweden)

    Chi-Chang Hsieh

    2015-01-01

    Full Text Available LED lamps are characterized by high energy efficiency, high luminance, and long lifespans. However, the heat radiation problem caused by the extra high power shortens the lifespan and reduces the luminous efficiency of such lamps. This study introduced the development of a novel cooling fin structure for LED lamps and compared its performance with those of commercially available products. The objective of the design was to reduce the maximum temperature and temperature difference on the fin, the amount of aluminum required for fin manufacturing, and CO2 emissions to save energy. The study employed the Taguchi method for experiment planning and used gray relational analysis and principal component analysis to determine the optimal parameter combination for cooling fins. The results showed that the maximum temperature on the fin surface dropped by 2.62°C in environments without forced convection, which indicated improved lighting efficiency. Furthermore, the amount of aluminum used per unit volume for fins was reduced by 15%, which effectively reduced CO2 emissions during the manufacturing process.

  14. An improved sink particle algorithm for SPH simulations

    Science.gov (United States)

    Hubber, D. A.; Walch, S.; Whitworth, A. P.

    2013-04-01

    Numerical simulations of star formation frequently rely on the implementation of sink particles: (a) to avoid expending computational resource on the detailed internal physics of individual collapsing protostars, (b) to derive mass functions, binary statistics and clustering kinematics (and hence to make comparisons with observation), and (c) to model radiative and mechanical feedback; sink particles are also used in other contexts, for example to represent accreting black holes in galactic nuclei. We present a new algorithm for creating and evolving sink particles in smoothed particle hydrodynamic (SPH) simulations, which appears to represent a significant improvement over existing algorithms - particularly in situations where sinks are introduced after the gas has become optically thick to its own cooling radiation and started to heat up by adiabatic compression. (i) It avoids spurious creation of sinks. (ii) It regulates the accretion of matter on to a sink so as to mitigate non-physical perturbations in the vicinity of the sink. (iii) Sinks accrete matter, but the associated angular momentum is transferred back to the surrounding medium. With the new algorithm - and modulo the need to invoke sufficient resolution to capture the physics preceding sink formation - the properties of sinks formed in simulations are essentially independent of the user-defined parameters of sink creation, or the number of SPH particles used.

  15. Similarity solution to three dimensional boundary layer flow of second grade nanofluid past a stretching surface with thermal radiation and heat source/sink

    Energy Technology Data Exchange (ETDEWEB)

    Hayat, T. [Department of Mathematics, Quaid-I-Azam University 45320, Islamabad 44000 (Pakistan); Nonlinear Analysis and Applied Mathematics (NAAM) Research Group, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah 21589 (Saudi Arabia); Muhammad, Taseer [Department of Mathematics, Quaid-I-Azam University 45320, Islamabad 44000 (Pakistan); Shehzad, S. A., E-mail: ali-qau70@yahoo.com [Department of Mathematics, Comsats Institute of Information Technology, Sahiwal 57000 (Pakistan); Alsaedi, A. [Nonlinear Analysis and Applied Mathematics (NAAM) Research Group, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah 21589 (Saudi Arabia)

    2015-01-15

    Development of human society greatly depends upon solar energy. Heat, electricity and water from nature can be obtained through solar power. Sustainable energy generation at present is a critical issue in human society development. Solar energy is regarded one of the best sources of renewable energy. Hence the purpose of present study is to construct a model for radiative effects in three-dimensional of nanofluid. Flow of second grade fluid by an exponentially stretching surface is considered. Thermophoresis and Brownian motion effects are taken into account in presence of heat source/sink and chemical reaction. Results are derived for the dimensionless velocities, temperature and concentration. Graphs are plotted to examine the impacts of physical parameters on the temperature and concentration. Numerical computations are presented to examine the values of skin-friction coefficients, Nusselt and Sherwood numbers. It is observed that the values of skin-friction coefficients are more for larger values of second grade parameter. Moreover the radiative effects on the temperature and concentration are quite reverse.

  16. Anisotropy in thermal conductivity of graphite flakes–SiC{sub p}/matrix composites: Implications in heat sinking design for thermal management applications

    Energy Technology Data Exchange (ETDEWEB)

    Molina, J.M., E-mail: jmmj@ua.es [Instituto Universitario de Materiales de Alicante, Universidad de Alicante, Ap. 99, E-03080 Alicante (Spain); Departamento de Física Aplicada, Universidad de Alicante, Ap. 99, E-03080 Alicante (Spain); Departamento de Química Inorgánica, Universidad de Alicante, Ap. 99, | E-03080 Alicante (Spain); Louis, E. [Instituto Universitario de Materiales de Alicante, Universidad de Alicante, Ap. 99, E-03080 Alicante (Spain); Departamento de Física Aplicada, Universidad de Alicante, Ap. 99, E-03080 Alicante (Spain); Unidad Asociada del Consejo Superior de Investigaciones Científicas, Universidad de Alicante, Ap. 99, | E-03080 Alicante (Spain)

    2015-11-15

    Within the frame of heat dissipation for electronics, a very interesting family of anisotropic composite materials, fabricated by liquid infiltration of a matrix into preforms of oriented graphite flakes and SiC particles, has been recently proposed. Aiming to investigate the implications of the inherent anisotropy of these composites on their thermal conductivity, and hence on their potential applications, materials with matrices of Al–12 wt.% Si alloy and epoxy polymer have been fabricated. Samples have been cut at a variable angle with respect to the flakes plane and thermal conductivity has been measured by means of two standard techniques, namely, steady state technique and laser flash method. Experimental results are presented and discussed in terms of current models, from which important technological implications for heat sinking design can be derived. - Highlights: • Anisotropy in thermal conductivity of graphite flakes-based composites is evaluated. • Samples are cut in a direction forming a variable angle with the oriented flakes. • For angles 0° and 90°, thermal conductivity does not depend on sample geometry. • For intermediate angles, thermal conductivity strongly depends on sample geometry. • “Thin” samples must be thicker than 600 μm, “thick” samples must be encapsulated.

  17. Simulation of melting of a nano-enhanced phase change material (NePCM in a square cavity with two heat source–sink pairs

    Directory of Open Access Journals (Sweden)

    Aziz Ebrahimi

    2015-12-01

    Full Text Available Melting of a NePCM in a square cavity with different arrangements of two heat source–sink pairs flush-mounted on the vertical sidewalls is investigated numerically. The governing equations were solved on a non-uniform mesh using a pressure-based finite volume method with an enthalpy porosity technique to trace the solid–liquid interface. Four different cases are studied: Case I where the sources and sinks are separately placed on two vertical sidewalls; Case II where the sources and sinks are alternately placed on two vertical sidewalls; Case III where the sources are placed below the sinks on the vertical sidewalls; and Case IV where the sources are placed above the sinks on the vertical sidewalls. It was found that, Case II has the highest liquid fraction and Case IV possesses the lowest liquid fraction at the final stages of the melting process. In addition, the impacts of the nanoparticle loading are analyzed. In all the cases studied, the volumetric concentration of nanoparticles of 2% would result in the highest melting rate.

  18. Modeling and Simulation of Sensor-to-Sink Data Transport Reliability in WSNs

    Directory of Open Access Journals (Sweden)

    Faisal Karim Shaikh

    2012-01-01

    Full Text Available The fundamental functionality of WSN (Wireless Sensor Networks is to transport data from sensor nodes to the sink. To increase the fault tolerance, inherent sensor node redundancy in WSN can be exploited but the reliability guarantees are not ensured. The data transport process in WSN is devised as a set of operations on raw data generated in response to user requirements. The different operations filter the raw data to rationalize the reliable transport. Accordingly, we provide reliability models for various data transport semantics. In this paper we argue for the effectiveness of the proposed reliability models by comparing analytically and via simulations in TOSSIM.

  19. Validation of a heat conduction model for finite domain, non-uniformly heated, laminate bodies

    Science.gov (United States)

    Desgrosseilliers, Louis; Kabbara, Moe; Groulx, Dominic; White, Mary Anne

    2016-07-01

    Infrared thermographic validation is shown for a closed-form analytical heat conduction model for non-uniformly heated, laminate bodies with an insulated domain boundary. Experiments were conducted by applying power to rectangular electric heaters and cooled by natural convection in air, but also apply to constant-temperature heat sources and forced convection. The model accurately represents two-dimensional laminate heat conduction behaviour giving rise to heat spreading using one-dimensional equations for the temperature distributions and heat transfer rates under steady-state and pseudo-steady-state conditions. Validation of the model with an insulated boundary (complementing previous studies with an infinite boundary) provides useful predictions of heat spreading performance and simplified temperature uniformity calculations (useful in log-mean temperature difference style heat exchanger calculations) for real laminate systems such as found in electronics heat sinks, multi-ply stovetop cookware and interface materials for supercooled salt hydrates. Computational determinations of implicit insulated boundary condition locations in measured data, required to assess model equation validation, were also demonstrated. Excellent goodness of fit was observed (both root-mean-square error and R 2 values), in all cases except when the uncertainty of low temperatures measured via infrared thermography hindered the statistical significance of the model fit. The experimental validation in all other cases supports use of the model equations in design calculations and heat exchange simulations.

  20. Biopharmaceutical modeling of drug supersaturation during lipid-based formulation digestion considering an absorption sink.

    Science.gov (United States)

    Stillhart, Cordula; Imanidis, Georgios; Griffin, Brendan T; Kuentz, Martin

    2014-12-01

    In vitro lipolysis is widely utilized for predicting in vivo performance of oral lipid-based formulations (LBFs). However, evaluation of LBFs in the absence of an absorption sink may have limited in vivo relevance. This study aimed at employing biopharmaceutical modeling to simulate LBF digestion and drug supersaturation in a continuous absorptive environment. Three fenofibrate-loaded LBFs were characterized in vitro (dispersion and lipolysis) and drug precipitation was monitored using in-line Raman spectroscopy. In vitro data were combined with pharmacokinetic data derived from an in vivo study in pigs to simulate intestinal LBF transit. This biopharmaceutical model allowed calculation of lipolysis-triggered drug supersaturation while drug and lipolysis products are absorbed from the intestine. The biopharmaceutical model predicted that, in a continuous absorption environment, fenofibrate supersaturation was considerably lower compared to in vitro lipolysis (non-sink). Hence, the extensive drug precipitation observed in vitro was predicted to be unlikely in vivo. The absorption of lipolysis products increased drug supersaturation, but drug precipitation was unlikely for highly permeable drugs. Biopharmaceutical modeling is a valuable approach for predicting LBFs performance in vivo. In the absence of in vitro tools simulating absorptive conditions, modeling strategies should be further considered.

  1. Detailed study of the heat sink of Saint-Laurent-des-Eaux nuclear plant; Etude detaillee de la source froide de la centrale de Saint-Laurent des Eaux

    Energy Technology Data Exchange (ETDEWEB)

    Audrerie, Y

    1997-12-31

    This work is dedicated to a detailed study of the reliability of the heat sink of the nuclear plant which is situated on the banks of the Loire river. In the first part the requirements the heat sink has to comply with are reviewed, in the second part the various operating modes, the different procedures established to cope with the hazards of the river: icing up, frost, overflow, lowest water, choking are reported. This analysis highlights the good compliance of the heat sink with the specifications but some improvements about periodic testing are proposed. (A.C.)

  2. Using plant growth modeling to analyse C source-sink relations under drought: inter and intra specific comparison

    Directory of Open Access Journals (Sweden)

    Benoit ePallas

    2013-11-01

    Full Text Available The ability to assimilate C and allocate NSC (non structural carbohydrates to the most appropriate organs is crucial to maximize plant ecological or agronomic performance. Such C source and sink activities are differentially affected by environmental constraints. Under drought, plant growth is generally more sink than source limited as organ expansion or appearance rate is earlier and stronger affected than C assimilation. This favors plant survival and recovery but not always agronomic performance as NSC are stored rather than used for growth due to a modified metabolism in source and sink leaves. Such interactions between plant C and water balance are complex and plant modeling can help analyzing their impact on plant phenotype. This paper addresses the impact of trade-offs between C sink and source activities and plant production under drought, combining experimental and modeling approaches. Two contrasted monocotyledonous species (rice, oil palm were studied. Experimentally, the sink limitation of plant growth under moderate drought was confirmed as well as the modifications in NSC metabolism in source and sink organs. Under severe stress, when C source became limiting, plant NSC concentration decreased. Two plant models dedicated to oil palm and rice morphogenesis were used to perform a sensitivity analysis and further explore how to optimize C sink and source drought sensitivity to maximize plant growth. Modeling results highlighted that optimal drought sensitivity depends both on drought type and species and that modeling is a great opportunity to analyse such complex processes. Further modeling needs and more generally the challenge of using models to support complex trait breeding are discussed.

  3. Crystal Sinking Modeling for Designing Iodine Crystallizer in Thermochemical Sulfur-Iodine Hydrogen Production Process

    Energy Technology Data Exchange (ETDEWEB)

    Park, Byung Heung [Korea National University of Transportation, Chungju (Korea, Republic of); Jeong, Seong-Uk [Korea Institute of Energy Research, Daejeon (Korea, Republic of); Kang, Jeong Won [Korea University, Seoul (Korea, Republic of)

    2014-12-15

    SI process is a thermochemical process producing hydrogen by decomposing water while recycling sulfur and iodine. Various technologies have been developed to improve the efficiency on Section III of SI process, where iodine is separated and recycled. EED(electro-electrodialysis) could increase the efficiency of Section III without additional chemical compounds but a substantial amount of I{sub 2} from a process stream is loaded on EED. In order to reduce the load, a crystallization technology prior to EED is considered as an I{sub 2} removal process. In this work, I{sub 2} particle sinking behavior was modeled to secure basic data for designing an I{sub 2} crystallizer applied to I{sub 2}-saturated HI{sub x} solutions. The composition of HI{sub x} solution was determined by thermodynamic UVa model and correlation equations and pure properties were used to evaluate the solution properties. A multiphysics computational tool was utilized to calculate particle sinking velocity changes with respect to I{sub 2} particle radius and temperature. The terminal velocity of an I{sub 2} particle was estimated around 0.5 m/s under considered radius (1.0 to 2.5 mm) and temperature (10 to 50 .deg. C) ranges and it was analyzed that the velocity is more dependent on the solution density than the solution viscosity.

  4. Cluster banding heat source model

    Institute of Scientific and Technical Information of China (English)

    Zhang Liguo; Ji Shude; Yang Jianguo; Fang Hongyuan; Li Yafan

    2006-01-01

    Concept of cluster banding heat source model is put forward for the problem of overmany increment steps in the process of numerical simulation of large welding structures, and expression of cluster banding heat source model is deduced based on energy conservation law.Because the expression of cluster banding heat source model deduced is suitable for random weld width, quantitative analysis of welding stress field for large welding structures which have regular welds can be made quickly.

  5. Detecting a Terrestrial Biosphere Sink for Carbon Dioxide: Interannual Ecosystem Modeling for the Mid-1980s

    Science.gov (United States)

    Potter, Christopher S.; Klooster, Steven A.; Brooks, Vanessa; Gore, Warren J. (Technical Monitor)

    1998-01-01

    There is considerable uncertainty as to whether interannual variability in climate and terrestrial ecosystem production is sufficient to explain observed variation in atmospheric carbon content over the past 20-30 years. In this paper, we investigated the response of net CO2 exchange in terrestrial ecosystems to interannual climate variability (1983 to 1988) using global satellite observations as drivers for the NASA-CASA (Carnegie-Ames-Stanford Approach) simulation model. This computer model of net ecosystem production (NEP) is calibrated for interannual simulations driven by monthly satellite vegetation index data (NDVI) from the NOAA Advanced Very High Resolution Radiometer (AVHRR) at 1 degree spatial resolution. Major results from NASA-CASA simulations suggest that from 1985 to 1988, the northern middle-latitude zone (between 30 and 60 degrees N) was the principal region driving progressive annual increases in global net primary production (NPP; i.e., the terrestrial biosphere sink for carbon). The average annual increase in NPP over this predominantly northern forest zone was on the order of +0.4 Pg (10 (exp 15) g) C per year. This increase resulted mainly from notable expansion of the growing season for plant carbon fixation toward the zonal latitude extremes, a pattern uniquely demonstrated in our regional visualization results. A net biosphere source flux of CO2 in 1983-1984, coinciding with an El Nino event, was followed by a major recovery of global NEP in 1985 which lasted through 1987 as a net carbon sink of between 0.4 and 2.6 Avg C per year. Analysis of model controls on NPP and soil heterotrophic CO2 fluxes (Rh) suggests that regional warming in northern forests can enhance ecosystem production significantly. In seasonally dry tropical zones, periodic drought and temperature drying effects may carry over with at least a two-year lag time to adversely impact ecosystem production. These yearly patterns in our model-predicted NEP are consistent in

  6. Fluid Flow and Heat Transfer on Microchannel Heat Sink With Changeable Cross-sections%变截面微通道散热器流动和传热特性

    Institute of Scientific and Technical Information of China (English)

    夏国栋; 李云飞; 翟玉玲; 蒋静; 马丹丹

    2015-01-01

    为了解决电子芯片散热问题,通过数值模拟的方法,研究了去离子水流经微通道散热器时的流动和传热特性.微通道散热器由无氧铜层叠焊接而成,散热器内微通道当量直径为0.23 mm,去离子水流经散热器时平均雷诺数为252~1060,加热面热流密度为2×106 W/m2.结果表明:不同雷诺数时,三角凹穴周期性变截面微通道散热器的传热性能明显优于矩形等截面直通道散热器;前者加热面平均温度和最高温度均比后者低2~3℃,且两者压降相差不大;随着去离子水流量的增加,散热器加热面平均温度降低,但当流量增加到一定程度后,加热面温度变化不明显,说明不能单靠增大泵功来强化传热.%To slove the heat transfer problem of electronic chips, this paper studied the fluid flow and heat transfer condition when deionized water flew through the microchannel heat sink. The heat sink was welded by cooper and the microchannel had a hydraulic diameter of 0. 23 mm. The heating flux was 2 × 106 W/m2 and the Re was between 252 and 1 060. Results show that the periodically changeable cross-sections microchannel heat sink with triangular reentrant cavities has a better performance than conventional rectangular microchannel heat sink, and both the heating surface’s average temperature and maximum temperature of the former is 2-3℃ lower than the later one and the pressure loss difference between the two heat sinks is small; with the increase of the flow rate the heating surface’s average temperature is reduced;when the flow rate increases to a appropriate degree, the temperature change will not be obvious, and it suggests that the heat transfer performance cannot be enhanced only by increasing the power of pumps.

  7. Numerical modeling of microwave heating

    Directory of Open Access Journals (Sweden)

    Shukla A.K.

    2010-01-01

    Full Text Available The present study compares the temperature distribution within cylindrical samples heated in microwave furnace with those achieved in radiatively-heated (conventional furnace. Using a two-dimensional finite difference approach the thermal profiles were simulated for cylinders of varying radii (0.65, 6.5, and 65 cm and physical properties. The influence of susceptor-assisted microwave heating was also modeled for the same. The simulation results reveal differences in the heating behavior of samples in microwaves. The efficacy of microwave heating depends on the sample size and its thermal conductivity.

  8. Using Bayesian hierarchical models to better understand nitrate sources and sinks in agricultural watersheds.

    Science.gov (United States)

    Xia, Yongqiu; Weller, Donald E; Williams, Meghan N; Jordan, Thomas E; Yan, Xiaoyuan

    2016-11-15

    Export coefficient models (ECMs) are often used to predict nutrient sources and sinks in watersheds because ECMs can flexibly incorporate processes and have minimal data requirements. However, ECMs do not quantify uncertainties in model structure, parameters, or predictions; nor do they account for spatial and temporal variability in land characteristics, weather, and management practices. We applied Bayesian hierarchical methods to address these problems in ECMs used to predict nitrate concentration in streams. We compared four model formulations, a basic ECM and three models with additional terms to represent competing hypotheses about the sources of error in ECMs and about spatial and temporal variability of coefficients: an ADditive Error Model (ADEM), a SpatioTemporal Parameter Model (STPM), and a Dynamic Parameter Model (DPM). The DPM incorporates a first-order random walk to represent spatial correlation among parameters and a dynamic linear model to accommodate temporal correlation. We tested the modeling approach in a proof of concept using watershed characteristics and nitrate export measurements from watersheds in the Coastal Plain physiographic province of the Chesapeake Bay drainage. Among the four models, the DPM was the best--it had the lowest mean error, explained the most variability (R(2) = 0.99), had the narrowest prediction intervals, and provided the most effective tradeoff between fit complexity (its deviance information criterion, DIC, was 45.6 units lower than any other model, indicating overwhelming support for the DPM). The superiority of the DPM supports its underlying hypothesis that the main source of error in ECMs is their failure to account for parameter variability rather than structural error. Analysis of the fitted DPM coefficients for cropland export and instream retention revealed some of the factors controlling nitrate concentration: cropland nitrate exports were positively related to stream flow and watershed average slope

  9. Two-Phase Flow in High-Heat-Flux Micro-Channel Heat Sink for Refrigeration Cooling Applications. Part 1: Micro-Channel Heat Sink for Direct Refrigeration Cooling

    Science.gov (United States)

    2008-09-01

    relation [Shah and London (1978), Incropera and Dewitt (2002)]: Boiling and Two-Phase Flow Laboratory 21 AP,pg = L- fsp.,G 2V, (1.3.4) where f,,.,Reg = 24...1.4.1) where q is the fin efficiency. Since the top wall is adiabatic, the fin efficiency is given by [ Incropera and Dewitt (2002)] tanh (m Hh...phase convection heat transfer coefficient prevalent in the highly subcooled inlet is given by the relation ( Incropera and Dewitt, 2002) Nu = -h D

  10. Modeling of radiation-induced sink evolution in 6061 aluminum alloy in nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Sang Il; Kim, Ji Hyun [Department of Nuclear Science and Engineering, School of Mechanical and Nuclear Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan (Korea, Republic of); Lee, Gyeong-Geun; Kwon, Junhyun [Division of Nuclear Materials Research, Korea Atomic Energy Research Institute (KAERI), Daejeon (Korea, Republic of)

    2016-11-15

    The objective of this study is a detailed analysis of the radiation effects on sink generation and growth in order to understand the phenomenon of irradiation hardening of 6061 aluminum alloy in research reactor conditions. In order to have a fundamental understanding, various sink behavior characteristics such as size and number density of dislocation loop, void, and precipitation were calculated and examined. Thereafter, theoretical assessment of various sink effects on irradiation hardening was conducted based on the mean field rate theory (MFRT). Dislocation loop, void, and precipitation were examined by defect flux. For the quantitative analysis of radiation-induced degradation, change in sink size was calculated using number density. 6061 Alloy showed great dependence on precipitation generation and growth. However, dislocation loop and void did not have any significant effect on irradiation hardening. Finally, the behavior of sinks was compared with the experimental results for validation. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Dual solutions for unsteady mixed convection flow of MHD micropolar fluid over a stretching/shrinking sheet with non-uniform heat source/sink

    Directory of Open Access Journals (Sweden)

    N. Sandeep

    2015-12-01

    Full Text Available The aim of the present study is to investigate the influence of non-uniform heat source/sink, mass transfer and chemical reaction on an unsteady mixed convection boundary layer flow of a magneto-micropolar fluid past a stretching/shrinking sheet in the presence of viscous dissipation and suction/injection. The governing equations of the flow, heat and mass transfer are transformed into system of nonlinear ordinary differential equations by using similarity transformation and then solved numerically using Shooting technique with Matlab Package. The influence of non-dimensional governing parameters on velocity, microrotation, temperature and concentration profiles are discussed and presented with the help of their graphical representations. Also, friction factor, heat and mass transfer rates have been computed and presented through tables. Under some special conditions, present results are compared with the existed results to check the accuracy and validity of the present study. An excellent agreement is observed with the existed results.

  12. 芯片偏置对散热器倾斜程度影响分析%Effect Analysis of Chip Offset on Heat Sink Tilt Degree

    Institute of Scientific and Technical Information of China (English)

    龚宝龙

    2015-01-01

    采用有限元分析方法,仿真分析多种芯片偏心位置及散热器倾斜状况,比较散热器倾斜程度,优化芯片最佳的偏置位置,为芯片摆放提供最优建议。通过不同芯片位置对散热器倾斜程度影响的分析,得出以下结论:芯片向正上方偏移时,散热器的倾斜程度与芯片偏置距离呈线性关系。故芯片偏置距离越小,散热器的倾斜程度越小;向上偏置一定距离后,还需再向左或向右偏置的话,都会增加散热器的倾斜程度;芯片斜置时,平衡芯片几何中心至2个固定孔的距离,使芯片至2个固定孔距离差最小,可使散热器倾斜程度最小。%By applying finite element analysis method,the effect of chip offset on heat sink tilt phenomenon is analyzed.The best offset location of chip was identified and some suggestions for chips were provided.According to the results,the following conclusions were drawn:when the chip offset is located directly above,the relationship be-tween tilt of heat sink and chip offset distance is linear.Thus,as the chip offset distance decreases, the tilt degree decreases.If the offset is moved up-ward a certain distance and if its direction is re-quired to be towards the left or towards the right, tilt of heat sink will increase.When the chip off-sets obliquely,minimizing the distance between chip and two fixed holes,the tilt degree of the heat sink tilt can be minimized.

  13. Key knowledge and data gaps in modelling the influence of CO2 concentration on the terrestrial carbon sink.

    Science.gov (United States)

    Pugh, T A M; Müller, C; Arneth, A; Haverd, V; Smith, B

    2016-09-20

    Primary productivity of terrestrial vegetation is expected to increase under the influence of increasing atmospheric carbon dioxide concentrations ([CO2]). Depending on the fate of such additionally fixed carbon, this could lead to an increase in terrestrial carbon storage, and thus a net terrestrial sink of atmospheric carbon. Such a mechanism is generally believed to be the primary global driver behind the observed large net uptake of anthropogenic CO2 emissions by the biosphere. Mechanisms driving CO2 uptake in the Terrestrial Biosphere Models (TBMs) used to attribute and project terrestrial carbon sinks, including that from increased [CO2], remain in large parts unchanged since those models were conceived two decades ago. However, there exists a large body of new data and understanding providing an opportunity to update these models, and directing towards important topics for further research. In this review we highlight recent developments in understanding of the effects of elevated [CO2] on photosynthesis, and in particular on the fate of additionally fixed carbon within the plant with its implications for carbon turnover rates, on the regulation of photosynthesis in response to environmental limitations on in-plant carbon sinks, and on emergent ecosystem responses. We recommend possible avenues for model improvement and identify requirements for better data on core processes relevant to the understanding and modelling of the effect of increasing [CO2] on the global terrestrial carbon sink. Copyright © 2016 The Authors. Published by Elsevier GmbH.. All rights reserved.

  14. Global net land carbon sink: Results from the Multi-scale Synthesis and Terrestrial Model Intercomparison Project (MsTMIP)

    Science.gov (United States)

    Huntzinger, D. N.; Schwalm, C. R.; Michalak, A. M.; Cook, R. B.; Jacobson, A. R.; Schaefer, K. M.; Dasgupta, A.; Poco, J.

    2013-12-01

    The Multi-scale Synthesis and Model Intercomparison Project (MsTMIP) is a formal model intercomparison effort focused on improving the diagnosis and attribution of carbon exchange at regional and global scales. Here we present results from the terrestrial biospheric models participating in the MsTMIP effort, focusing on global and regional model estimates of the net land carbon sink. When compared to estimates of the residual net land sink inferred from atmospheric CO2 observations (i.e., fossil fuel emission + land use land cover change - atmospheric increase - ocean uptake), MsTMIP models predict, on average, a weaker global net land uptake of carbon. There is a large spread in MsTMIP estimates of the net land sink (e.g., -2.5 to 5.0 Pg C/yr in 2010, where a negative flux represents a net release to the atmosphere). Some models consistently show the land surface as a net source of carbon to the atmosphere, which is inconsistent with the atmospheric record. In addition, we examine how model estimates of the cumulative global net sink diverge over the period 1900 to 2010, and the degree to which model sensitivity to forcing factors and fundamental differences in model formulation contribute to this divergence. We link differences in estimates of the cumulative land sink back to each model's sensitivity to key forcing factors including climate variability, CO2 fertilization, nitrogen limitation, and land cover / land-use change. For example, the strength of carbon uptake in most models appears to be strongly coupled with atmospheric CO2 concentrations (CO2 fertilization effect). The strength of this relationship, however, varies across models with some models exhibiting a very strong CO2 fertilization effect (e.g., ORCHIDEE), while others not so (e.g., CLM). To inform the comparison across models, structural differences (i.e., which processes are included and how those processes are parameterized) among the participating models are evaluated using hierarchical

  15. Modeling branching effects on source-sink relationships of the cotton plant

    CERN Document Server

    Li, Dong; Guo, Yan; De Reffye, P; Zhan, Zhigang

    2010-01-01

    Compared with classical process-based models, the functional-structural plant models provide more efficient tools to explore the impact of changes in plant structures on plant functioning. In this paper we investigated the effects of branches on the sourcesink interaction for the cotton plant (Gossypium hirsutum L.) based on a two-treatment experiment conducted on cotton grown in the field: the singlestem plants and the plants with only two vegetative branches. It was observed that the branched cotton had more organs for the whole plant but the organs on the trunk were smaller than those on the single-stem cotton. The phytomer production of the branches was four or five growth cycles delayed compared with the main stem. The organs on the trunk had similar dynamics of expansion for both treatments. Effects of branches were evaluated by using the functionalstructural model GREENLAB. It allowed estimating the coefficients of sink strength to differentiate the biomass acquisition abilities of organs between diffe...

  16. Climatic features of atmospheric heat source/sink over theQinghai-Xizang Plateau in 35 years and its relation torainfall in China

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Using the 1961—1995 monthly averaged meteorological data from 148 surface stationsin the Qinghai-Xizang Plateau (QXP) and its surrounding areas, calculation of the 35-year atmos-pheric heat source/sink () and an analysis on its climatic features and relation to rainfall inChina have been made. It is found that on the average, the atmospheric heat source over the QXPis the strongest in June (78 W / m2) and cold source is the strongest in December (-72 W/m2). Thesensible heat of the surface increases remarkably over the southwest of the QXP, causing the ob-vious increase of there in February and March, which makes a center of the atmospheric heatsource appear over the north slope of the Himalayas. Afterwards, this center continues to intensifyand experiences noticeable migration westwards twice, separately occurring in April and June. Thetime when the atmosphere over the east of the QXP becomes heat source and reaches strongestis one month later than that over the southwest of the QXP. In summer, the latent heat of conden-sation becomes a heating factor as important as the sensible heat and is also a main factor thatmakes the atmospheric heat source over the east of the QXP continue growing. On the interde-cadal time scale, of the QXP shows an abrupt change in 1977 and a remarkable increase after1977. The atmospheric heat source of the spring over the QXP is a good indicator for the subse-quent summer rainfall over the valleys of the Changjiang and Huaihe rivers and South China andNorth China. There is remarkable positive correlation between the QXP heat source of summerand the summer rainfall in the valleys of the Changjiang River

  17. Effects of aligned magneticfield and radiation on the flow of ferrofluids over a flat plate with non-uniform heat source/sink

    Directory of Open Access Journals (Sweden)

    Sandeep N

    2015-03-01

    Full Text Available In this study we analyzed the influence of radiation and aligned magneticfield on the flow of ferrofluids over a flat plate in presence of non-uniform heat source/sink and slip velocity.  We considered Fe3O4 magnetic nano particles embedded within the two types of base fluids namely water and kerosene. The governing partial differential equations are transformed into nonlinear ordinary differential equations by using similarity transformation and solved numerically using bvp5c Matlab package. The effects of dimensionless quantities on the flow and temperature profiles along with the friction factor and Nusselt number is discussed and presented through graphs and tables. It is found that present results have an excellent agreement with the existed studies under some special assumptions. Results indicate that a raise in the aligned angle enhances the skin friction coefficient and heat transfer rate.

  18. CANDU heat sinks improvements as a follow up to Fukushima Daiichi accident ''the regulator perspective''

    Energy Technology Data Exchange (ETDEWEB)

    Mesmous, Noreddine; Harwood, Chris [Canadian Nuclear Safety Commission, Ottawa, ON (Canada)

    2015-06-15

    The purpose of this paper is to provide a summary of the Canadian Nuclear Safety Commission (CNSC) recommendations related to improving the heat sink strategy as a follow up to the Fukushima Daiichi Accident (FDA). As a follow up to FDA, CNSC staff tasked the Nuclear Power Plant (NPP) licensees to review the lessons learned from the FDA and re-examine the NPP safety cases. The reviews have examined the CANDU defence-in-depth strategy and considered events more severe than those that have historically been regarded as credible, and evaluated their impact on the NPPs safety. Availability of emergency equipment was shown to be crucial during the FDA and its availability could have arrested the accident progression early enough to minimize any radioactive release to the environment. As a result, licensees presented appropriate evaluations of the means to provide coolant make-up to the primary Heat Transport System (HTS), boilers, moderator, calandria vault, and irradiated fuel pools.

  19. 新型CPU散热器内空气流动与换热特性的数值研究%Numerical Study on Flow and Heat Transfer Characteristics of Air in A New CPU Heat Sink

    Institute of Scientific and Technical Information of China (English)

    伊丽娜; 郑文龙; 王博杰; 王文

    2015-01-01

    Aiming at the insufficient heat exchange performance of rectangular channel fin heat sink for electronic chips, a new heat sink with interrupted and folded fins was proposed. Numerical simulations on the flow and heat transfer of air in single flow channel for the two kinds of heat sink mentioned above were performed. The parameters of f,j, dimensionless factor (j/f) 1/3 andδwere comprehensively analyzed, and the results show that interrupted and folded fins can make fluid boundary layer thickness thinner and promote disturbances, thus the convection heat transfer was enhanced. According to field synergy theory and generalized temperature gradient uniformity principle, the inherent laws of heat transfer enhancement was deeply excavated. The new structure is proved to be superior to the rectangular structure. Moreover, the result provides a reference to the design of heat sink for cooling the electronic chips.%针对应用于电子芯片的矩形通道翅片散热器换热性能的不足,提出了一种新型打断翻折型翅片散热器,并对两种散热器单通道内的流动换热进行CFD数值模拟。本文综合分析了f、j、无量纲因子(j/f)1/3和δ等参数,证明了打断和翻折翅片可以减薄边界层厚度、促进流体扰动和强化对流换热的效果。根据场协同理论和广义温度梯度均匀化原则,深层挖掘强化换热的内在规律;证明新型结构优于矩形结构,为用散热器冷却电子芯片提供了参考。

  20. Link or sink: a modelling interpretation of the open Baltic biogeochemistry

    Directory of Open Access Journals (Sweden)

    M. Vichi

    2004-01-01

    Full Text Available A 1-D model system, consisting of the 1-D version of the Princeton Ocean Model (POM coupled with the European Regional Seas Ecosystem Model (ERSEM has been applied to a sub-basin of the Baltic Proper, the Bornholm basin. The model has been forced with 3h meteorological data for the period 1979-1990, producing a 12-year hindcast validated with datasets from the Baltic Environmental Database for the same period. The model results demonstrate the model to hindcast the time-evolution of the physical structure very well, confirming the view of the open Baltic water column as a three layer system of surface, intermediate and bottom waters. Comparative analyses of modelled hydrochemical components with respect to the independent data have shown that the long-term system behaviour of the model is within the observed ranges. Also primary production processes, deduced from oxygen (oversaturation are hindcast correctly over the entire period and the annual net primary production is within the observed range. The largest mismatch with observations is found in simulating the biogeochemistry of the Baltic intermediate waters. Modifications in the structure of the model (addition of fast-sinking detritus and polysaccharide dynamics have shown that the nutrient dynamics are linked to the quality and dimensions of the organic matter produced in the euphotic zone, highlighting the importance of the residence time of the organic matter within the microbial foodweb in the intermediate waters. Experiments with different scenarios of riverine nutrient loads, assessed in the limits of a 1-D setup, have shown that the external input of organic matter makes the open Baltic model more heterotrophic. The characteristics of the inputs also drive the dynamics of nitrogen in the bottom layers leading either to nitrate accumulation (when the external sources are inorganic, or to coupled nitrification-denitrification (under strong organic inputs. The model indicates the

  1. Link or sink: a modelling interpretation of the open Baltic biogeochemistry

    Directory of Open Access Journals (Sweden)

    J. W. Baretta

    2004-08-01

    Full Text Available A 1-D model system, consisting of the 1-D version of the Princeton Ocean Model (POM coupled with the European Regional Seas Ecosystem Model (ERSEM has been applied to a sub-basin of the Baltic Proper, the Bornholm basin. The model has been forced with 3h meteorological data for the period 1979-1990, producing a 12-year hindcast validated with datasets from the Baltic Environmental Database for the same period. The model results demonstrate the model to hindcast the time-evolution of the physical structure very well, confirming the view of the open Baltic water column as a three layer system of surface, intermediate and bottom waters. Comparative analyses of modelled hydrochemical components with respect to the independent data have shown that the long-term system behaviour of the model is within the observed ranges. Also primary production processes, deduced from oxygen (oversaturation are hindcast correctly over the entire period and the annual net primary production is within the observed range. The largest mismatch with observations is found in simulating the biogeochemistry of the Baltic intermediate waters. Modifications in the structure of the model (addition of fast-sinking detritus and polysaccharide dynamics have shown that the nutrient dynamics is linked to the quality and dimensions of the organic matter produced in the euphotic zone, highlighting the importance of the residence time of the organic matter within the microbial foodweb in the intermediate waters. Experiments with different scenarios of riverine nutrient loads, assessed in the limits of a 1-D setup, have shown that the external input of organic matter makes the open Baltic model more heterotrophic. The characteristics of the inputs also drive the dynamics of nitrogen in the bottom layers leading either to nitrate accumulation (when the external sources are inorganic, or to coupled nitrification-denitrification (under strong organic inputs. The model indicates the

  2. Spread from the Sink to the Patient: In Situ Study Using Green Fluorescent Protein (GFP)-Expressing Escherichia coli To Model Bacterial Dispersion from Hand-Washing Sink-Trap Reservoirs.

    Science.gov (United States)

    Kotay, Shireen; Chai, Weidong; Guilford, William; Barry, Katie; Mathers, Amy J

    2017-04-15

    There have been an increasing number of reports implicating Gammaproteobacteria as often carrying genes of drug resistance from colonized sink traps to vulnerable hospitalized patients. However, the mechanism of transmission from the wastewater of the sink P-trap to patients remains poorly understood. Herein we report the use of a designated hand-washing sink lab gallery to model dispersion of green fluorescent protein (GFP)-expressing Escherichia coli from sink wastewater to the surrounding environment. We found no dispersion of GFP-expressing E. coli directly from the P-trap to the sink basin or surrounding countertop with coincident water flow from a faucet. However, when the GFP-expressing E. coli cells were allowed to mature in the P-trap under conditions similar to those in a hospital environment, a GFP-expressing E. coli-containing putative biofilm extended upward over 7 days to reach the strainer. This subsequently resulted in droplet dispersion to the surrounding areas (dispersion rather than dispersion directly from the P-trap. This work helps to further define the mode of transmission of bacteria from a P-trap reservoir to a vulnerable hospitalized patient.IMPORTANCE Many recent reports demonstrate that sink drain pipes become colonized with highly consequential multidrug-resistant bacteria, which then results in hospital-acquired infections. However, the mechanism of dispersal of bacteria from the sink to patients has not been fully elucidated. Through establishment of a unique sink gallery, this work found that a staged mode of transmission involving biofilm growth from the lower pipe to the sink strainer and subsequent splatter to the bowl and surrounding area occurs rather than splatter directly from the water in the lower pipe. We have also demonstrated that bacterial transmission can occur via connections in wastewater plumbing to neighboring sinks. This work helps to more clearly define the mechanism and risk of transmission from a wastewater

  3. Oxygen cycling in the northern Benguela Upwelling System: Modelling oxygen sources and sinks

    Science.gov (United States)

    Schmidt, Martin; Eggert, Anja

    2016-12-01

    This paper elucidates the oxygen dynamics in the northern Benguela Upwelling System by means of process oriented, numerical modelling. Owing to the complex physical-biological interaction in this system, a coupled hydrodynamic-biogeochemical model is required to grasp the various aspects of the oxygen dynamics. We used high-resolution atmospheric fields derived from observations to force our model, available since 1999. The model results represent a 15 years, consistent data set of realistic hydrographic and ecosystem variables, including oxygen distribution patterns. After a concise description of the main aspects of the model, we use the model data to analyse the components contributing to the oxygen dynamics, namely, the ocean circulation, the exchange between ocean and atmosphere as well as the local biogeochemical oxygen cycling in the system. We thoroughly validate the model with available field observations and remote sensing data. The strengths of coastal upwelling, which controls the nutrient supply to the euphotic zone, as well as the poleward undercurrent that carries oxygen and nutrients to the shelf in the northern Benguela Upwelling System are well reproduced in the model. Among the biological oxygen sinks, mineralisation in the sediment, respiration of zooplankton and nitrification in the water column are important. We also found that vertical migration of zooplankton in response to the oxygen conditions provides a regulating feedback, which may prevent a complete deoxygenation of suboxic waters. As long as oxygen or nitrate are available in the bottom waters, the activities of chemolithoautotrophic sulphur bacteria on the sediment surface keep the redoxcline within the sediment and prevent the release of hydrogen sulphide into the water column. By horizontal integration of the simulated ocean-atmosphere oxygen flux, it can be shown that the Kunene upwelling cell between 16 ° S and 18 ° S is a boundary between the equatorial ocean, characterise by

  4. 用于发动机羽流试验研究的液氦热沉设计%Liquid helium heat sink design for experimental study of engine's plume and vacuum effects

    Institute of Scientific and Technical Information of China (English)

    凌桂龙; 王文龙; 蔡国飙; 张建华

    2011-01-01

    超低温大型卧式热沉采用液氦制冷,将在国内实现热沉表面温度低于10K,主要用于航天发动机羽流效应试验,同时兼顾卫星等热真空试验.热沉主体结构为卧式圆筒型,为减小热损失,液氦热沉去掉了骨架,外部装有液氮热沉,两者采用一体化设计,液氮热沉既做液氦热沉的防辐射屏,又做液氦热沉的支撑.为增大抽速,舱体封头端设计了可拆卸的羽流吸附泵.羽流试验时液氦热沉、羽流吸附泵通液氦制冷,液氮热沉通液氮制冷,各部分热沉单独供液.对此大型热沉进行了方案设计、参数计算,对热沉预冷及稳态工况时的液氮、液氦消耗量进行了估算,分析了羽流试验时热沉抽气速率随试验工质温度的变化关系,得出液氦热沉对氮气的抽气速率可以达到107 L/s量级.%The large horizontal ultra-low temperature heat sink,based on liquid helium cooling,could firstly realize heat sink surface temperature below 10 K in China,and is mainly applied to spacecraft-thruster vacuum plume effects' experimental study and the thermal vacuum test of satellite simultaneously.In order to minimize heat loss,the main structure of heat sink frame was removed,and the liquid helium heat sink was enclosed by a liquid nitrogen heat sink.Both of them were designed integrally so that the liquid nitrogen heat sink is not only the anti-radiation panel for liquid helium heat sink,but also the frame brace.To increase the pumping speed of heat sink,a plume adsorption pump was developed and mounted on the end of the vacuum chamber.At the experiment of vacuum plume,vacuum plume adsorption pump and liquid nitrogen heat sink were cooled by liquid helium and liquid nitrogen,respectively.The analysis was conducted for key parameters of heat sink,such as estimating the liquid nitrogen,liquid helium consumption in pre-cooling process and steady-state condition,and comparing the relationship between pumping speed of heat sink and

  5. Organic carbon stock modelling for the quantification of the carbon sinks in terrestrial ecosystems

    Science.gov (United States)

    Durante, Pilar; Algeet, Nur; Oyonarte, Cecilio

    2017-04-01

    Given the recent environmental policies derived from the serious threats caused by global change, practical measures to decrease net CO2 emissions have to be put in place. Regarding this, carbon sequestration is a major measure to reduce atmospheric CO2 concentrations within a short and medium term, where terrestrial ecosystems play a basic role as carbon sinks. Development of tools for quantification, assessment and management of organic carbon in ecosystems at different scales and management scenarios, it is essential to achieve these commitments. The aim of this study is to establish a methodological framework for the modeling of this tool, applied to a sustainable land use planning and management at spatial and temporal scale. The methodology for carbon stock estimation in ecosystems is based on merger techniques between carbon stored in soils and aerial biomass. For this purpose, both spatial variability map of soil organic carbon (SOC) and algorithms for calculation of forest species biomass will be created. For the modelling of the SOC spatial distribution at different map scales, it is necessary to fit in and screen the available information of soil database legacy. Subsequently, SOC modelling will be based on the SCORPAN model, a quantitative model use to assess the correlation among soil-forming factors measured at the same site location. These factors will be selected from both static (terrain morphometric variables) and dynamic variables (climatic variables and vegetation indexes -NDVI-), providing to the model the spatio-temporal characteristic. After the predictive model, spatial inference techniques will be used to achieve the final map and to extrapolate the data to unavailable information areas (automated random forest regression kriging). The estimated uncertainty will be calculated to assess the model performance at different scale approaches. Organic carbon modelling of aerial biomass will be estimate using LiDAR (Light Detection And Ranging

  6. Radiation effects on the flow of Powell-Eyring fluid past an unsteady inclined stretching sheet with non-uniform heat source/sink.

    Directory of Open Access Journals (Sweden)

    Tasawar Hayat

    Full Text Available This study investigates the unsteady flow of Powell-Eyring fluid past an inclined stretching sheet. Unsteadiness in the flow is due to the time-dependence of the stretching velocity and wall temperature. Mathematical analysis is performed in the presence of thermal radiation and non-uniform heat source/sink. The relevant boundary layer equations are reduced into self-similar forms by suitable transformations. The analytic solutions are constructed in a series form by homotopy analysis method (HAM. The convergence interval of the auxiliary parameter is obtained. Graphical results displaying the influence of interesting parameters are given. Numerical values of skin friction coefficient and local Nusselt number are computed and analyzed.

  7. Scaling group analysis on MHD effects on heat transfer near a stagnation point on a linearly stretching sheet with variable viscosity and thermal conductivity, viscous dissipation and heat source/sink

    Directory of Open Access Journals (Sweden)

    Dessie Hunegnaw

    2015-01-01

    Full Text Available The effects of variable viscosity and thermal conductivity on MHD heat transfer flow of viscous incompressible electrically conducting fluid near stagnation point flow on non-conducting stretching sheet in presence of uniform transfer magnetic field with heat source/sink and viscous dissipation has been analyzed. The governing partial differential equations are transformed into ordinary differential equations using a special form of Lie group transformations and then solved using Fourth order Runge-Kutta Method. Effects of different physical parameters on the flow and heat transfer characteristics are analyzed. Variations of different parameters on skin fiction coefficient-f′′(0 and temperature gradient −θ′(0 are presented in tabular form.

  8. Effects of Thermal Diffusion and Viscous Dissipation on Unsteady MHD Free Convection Flow Past a Vertical Porous Plate Under Oscillatory Suction Velocity with Heat Sink

    Directory of Open Access Journals (Sweden)

    Prabhakar Reddy B.

    2014-05-01

    Full Text Available The thermal diffusion and viscous dissipation effects on an unsteady MHD free convection heat and mass transfer flow of an incompressible, electrically conducting, fluid past an infinite vertical porous plate embedded in a porous medium of time dependent permeability under oscillatory suction velocity in the presence of a heat absorbing sink have been studied. It is considered that the influence of a uniform magnetic field acts normal to the flow and the permeability of the porous medium fluctuates with time. The dimensionless governing equations for this investigation have been solved numerically by using the efficient Galerkin finite element method. The numerical results obtained have been presented through graphs and tables for the thermal Grashof number (Gr > 0 corresponding to the cooling of the porous plate and (Gr < 0 corresponding to heating of the porous plate to observe the effects of various material parameters encountered in the problem under investigation. Numerical data for skin-friction, Nusselt and Sherwood numbers are tabulated and then discussed.

  9. Understanding looping kinetics of a long polymer molecule in solution. Exact solution for delta function sink model

    Science.gov (United States)

    Ganguly, Moumita; Chakraborty, Aniruddha

    2017-10-01

    A diffusion theory for intramolecular reactions of polymer chain in dilute solution is formulated. We give a detailed analytical expression for calculation of rate of polymer looping in solution. The physical problem of looping can be modeled mathematically with the use of a Smoluchowski-like equation with a Dirac delta function sink of finite strength. The solution of this equation is expressed in terms of Laplace Transform of the Green's function for end-to-end motion of the polymer in absence of the sink. We have defined two different rate constants, the long term rate constant and the average rate constant. The average rate constant and long term rate constant varies with several parameters such as length of the polymer (N), bond length (b) and the relaxation time τR. The long term rate constant is independent of the initial probability distribution.

  10. a Model Analysis of the Spatial Distribution and Temporal Trends of Nitrous Oxide Sources and Sinks

    Science.gov (United States)

    Nevison, Cynthia Dale

    1994-01-01

    Nitrous oxide ({N_ {2}O}), an atmospheric trace gas that contributes to both greenhouse warming and stratospheric ozone depletion, is increasing at an annual rate of about 0.25%/yr. By use of a global model of the changing terrestrial nitrogen cycle, the timing and magnitude of this increase are shown to be consistent with enhanced microbial N _2O production due to fertilizer, land clearing, livestock manure, and human sewage. Fertilizer appears to be a particularly important source. Increasing emissions from additional anthropogenic N_2O sources, including fossil fuel combustion and nylon production are also shown to coincide with and contribute to N _2O's annual atmospheric increase. Collectively, these industrial, combustion-related, and enhanced microbial N_2O emissions add up to a total anthropogenic source of about 5 Tg N/yr. Natural N_2O emissions from microbial activity in soils and oceans and from natural fires are estimated to produce an annual source of about 11 Tg N/yr, of which the oceans contribute a substantially larger fraction than reported in most current budgets. In contrast to anthropogenic emissions, which are increasing rapidly, natural emissions are predicted to remain relatively constant from 1860 to 2050, although this prediction ignores possible enhancements in microbial N_2O production due to global warming. Also in contrast to anthropogenic emissions, which are heavily dominated by the northern hemisphere, the natural source is fairly evenly distributed over the Earth. The predicted magnitude of the natural source is checked against an estimate of the N_2O stratospheric sink, while the predicted present day distribution of natural and anthropogenic sources is tested in a 3-dimensional transport model run. This run reproduces the observed 1ppb interhemispheric gradient (higher in the north), and suggests that larger gradients may exist over strong continental source regions. Substantial increases in most anthropogenic N _2O sources are

  11. A multi-quadric area-sink for analytic element modeling of groundwater flow

    Science.gov (United States)

    Strack, O. D. L.; Janković, I.

    1999-12-01

    It is shown that the approach presented by Strack (Strack, O.D.L., 1989. Groundwater Mechanics. Prentice Hall, New Jersey) for determining the discharge potential for an area-sink leads to a function that is unique except for an arbitrary constant. The approach is applied to a special area-sink, namely one with an extraction rate that varies inside a polygon as a multi-quadric interpolator (Hardy, R.L., 1971. Multiquadric equations of topography and other irregular surfaces. Journal of Geophysical Research 76, 1905-1915). The principle of over-specification presented by Janković and Barnes (Janković, I., Barnes, R., 1999a. Three-dimensional flow through large numbers of spheroidal inhomogeneities. Journal of Hydrology 226, 224-233), is used to obtain an approximate solution. Several examples are presented herewith.

  12. A source-sink model of the generation of plate tectonics from non-Newtonian mantle flow

    Science.gov (United States)

    Bercovici, David

    1995-01-01

    A model of mantle convection which generates plate tectonics requires strain rate- or stress-dependent rheology in order to produce strong platelike flows with weak margins as well as strike-slip deformation and plate spin (i.e., toroidal motion). Here, we employ a simple model of source-sink driven surface flow to determine the form of such a rheology that is appropriate for Earth's present-day plate motions. In this model, lithospheric motion is treated as shallow layer flow driven by sources and sinks which correspond to spreading centers and subduction zones, respectively. Two plate motion models are used to derive the source sink field. As originally implied in the simpler Cartesian version of this model, the classical power law rheologies do not generate platelike flows as well as the hypothetical Whitehead-Gans stick-slip rheology (which incorporates a simple self-lubrication mechanism). None of the fluid rheologies examined, however, produce more than approximately 60% of the original maximum shear. For either plate model, the viscosity fields produced by the power law rheologies are diffuse, and the viscosity lows over strike-slip shear zones or pseudo-margins are not as small as over the prescribed convergent-divergent margins. In contrast, the stick-slip rheology generates very platelike viscosity fields, with sharp gradients at the plate boundaries, and margins with almost uniformly low viscosity. Power law rheologies with high viscosity contrasts, however, lead to almost equally favorable comparisons, though these also yield the least platelike viscosity fields. This implies that the magnitude of toroidal flow and platelike strength distributions are not necessarily related and thus may present independent constraints on the determination of a self-consistent plate-mantle rheology.

  13. Manufacturing W fibre-reinforced Cu composite pipes for application as heat sink in divertor targets of future nuclear fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Alexander v.; You, Jeong-Ha [Max-Planck-Institut fuer Plasmaphysik, 85748 Garching (Germany); Ewert, Dagmar [Institut fuer Textil- und Verfahrenstechnik Denkendorf, 73770 Denkendorf (Germany); Siefken, Udo [Louis Renner GmbH, 85221 Dachau (Germany)

    2016-07-01

    An important plasma-facing component (PFC) in future nuclear fusion reactors is the so-called divertor which allows power exhaust and removal of impurities from the main plasma. The most highly loaded parts of a divertor are the target plates which have to withstand intense particle bombardment. This intense particle bombardment leads to high heat fluxes onto the target plates which in turn lead to severe thermomechanical loads. With regard to future nuclear fusion reactors, an improvement of the performance of divertor targets is desirable in order to ensure reliable long term operation of such PFCs. The performance of a divertor target is most closely linked to the properties of the materials that are used for its design. W fibre-reinforced Cu (Wf/Cu) composites are regarded as promising heat sink materials in this respect. These materials do not only feature adequate thermophysical and mechanical properties, they do also offer metallurgical flexibility as their microstructure and hence their macroscopic properties can be tailored. The contribution will point out how Wf/Cu composites can be used to realise an advanced design of a divertor target and how these materials can be fabricated by means of liquid Cu infiltration.

  14. Flow and Thermal Performance of a Water-Cooled Periodic Transversal Elliptical Microchannel Heat Sink for Chip Cooling.

    Science.gov (United States)

    Wei, Bo; Yang, Mo; Wang, Zhiyun; Xu, Hongtao; Zhang, Yuwen

    2015-04-01

    Flow and thermal performance of transversal elliptical microchannels were investigated as a passive scheme to enhance the heat transfer performance of laminar fluid flow. The periodic transversal elliptical micro-channel is designed and its pressure drop and heat transfer characteristics in laminar flow are numerically investigated. Based on the comparison with a conventional straight micro- channel having rectangular cross section, it is found that periodic transversal elliptical microchannel not only has great potential to reduce pressure drop but also dramatically enhances heat transfer performance. In addition, when the Reynolds number equals to 192, the pressure drop of the transversal elliptical channel is 36.5% lower than that of the straight channel, while the average Nusselt number is 72.8% higher; this indicates that the overall thermal performance of the periodic transversal elliptical microchannel is superior to the conventional straight microchannel. It is suggested that such transversal elliptical microchannel are attractive candidates for cooling future electronic chips effectively with much lower pressure drop.

  15. An assessment of RELAP5 MOD3.1.1 condensation heat transfer modeling with GIRAFFE heat transfer tests

    Energy Technology Data Exchange (ETDEWEB)

    Boyer, B.D.; Parlatan, Y.; Slovik, G.C. [and others

    1995-09-01

    RELAP5 MOD3.1.1 is being used to simulate Loss of Coolant Accidents (LOCA) for the Simplified Boiling Water Reactor (SBWR) being proposed by General Electric (GE). One of the major components associated with the SBWR is the Passive Containment Cooling System (PCCS) which provides the long-term heat sink to reject decay heat. The RELAP5 MOD3.1.1 code is being assessed for its ability to represent accurately the PCCS. Data from the Phase 1, Step 1 Heat Transfer Tests performed at Toshiba`s Gravity-Driven Integral Full-Height Test for Passive Heat Removal (GIRAFFE) facility will be used for assessing the ability of RELAP5 to model condensation in the presence of noncondensables. The RELAP5 MOD3.1.1 condensation model uses the University of California at Berkeley (UCB) correlation developed by Vierow and Schrock. The RELAP5 code uses this heat transfer coefficient with the gas velocity effect multiplier being limited to 2. This heat transfer option was used to analyze the condensation heat transfer in the GIRAFFE PCCS heat exchanger tubes in the Phase 1, Step 1 Heat Transfer Tests which were at a pressure of 3 bar and had a range of nitrogen partial pressure fractions from 0.0 to 0.10. The results of a set of RELAP5 calculations at these conditions were compared with the GIRAFFE data. The effects of PCCS cell noding on the heat transfer process were also studied. The UCB correlation, as implemented in RELAP5, predicted the heat transfer to {plus_minus}5% of the data with a three--node model. The three-node model has a large cell in the entrance region which smeared out the entrance effects on the heat transfer, which tend to overpredict the condensation. Hence, the UCB correlation predicts condensation heat transfer correlation implemented in the code must be removed to allow for accurate calculations with smaller cell sizes.

  16. Latent Heating Retrieval from TRMM Observations Using a Simplified Thermodynamic Model

    Science.gov (United States)

    Grecu, Mircea; Olson, William S.

    2003-01-01

    A procedure for the retrieval of hydrometeor latent heating from TRMM active and passive observations is presented. The procedure is based on current methods for estimating multiple-species hydrometeor profiles from TRMM observations. The species include: cloud water, cloud ice, rain, and graupel (or snow). A three-dimensional wind field is prescribed based on the retrieved hydrometeor profiles, and, assuming a steady-state, the sources and sinks in the hydrometeor conservation equations are determined. Then, the momentum and thermodynamic equations, in which the heating and cooling are derived from the hydrometeor sources and sinks, are integrated one step forward in time. The hydrometeor sources and sinks are reevaluated based on the new wind field, and the momentum and thermodynamic equations are integrated one more step. The reevalution-integration process is repeated until a steady state is reached. The procedure is tested using cloud model simulations. Cloud-model derived fields are used to synthesize TRMM observations, from which hydrometeor profiles are derived. The procedure is applied to the retrieved hydrometeor profiles, and the latent heating estimates are compared to the actual latent heating produced by the cloud model. Examples of procedure's applications to real TRMM data are also provided.

  17. Mathematical model of induction heating

    Science.gov (United States)

    Rak, Josef

    2017-07-01

    One of mathematical models of induction heating can be described by a parabolic differential equation with the specific Joule looses in the body. Advantage of this method is that the detailed knowledge of the 3D-magnetic field is not necessary and move of the body or the inductor can be easily implemented. The specific Joule looses can computed by solving the Fredholm integral equation of the second kind for the eddy current of density by the Nyström method with the singularity subtraction.

  18. A heat transfer model of a horizontal ground heat exchanger

    Science.gov (United States)

    Mironov, R. E.; Shtern, Yu. I.; Shtern, M. Yu.; Rogachev, M. S.

    2016-04-01

    Ground-source heat pumps are gaining popularity in Eastern Europe, especially those which are using the horizontal ground heat exchanger (GHX). Due to the difficulty of accessing GHX after the installation, materials and the quality of the installation must satisfy the very high requirements. An inaccurate calculation of GHX can be the reason of a scarcity of heat power in a crucial moment. So far, there isn't any appropriate mathematical description of the horizontal GHX which takes into account the mutual influence of GHX pipes on each other. To solve this problem we used the temperature wave approach. As a result, a mathematical model which describes the dependence of the heat transfer rate per unit length of the horizontal GHX pipe on the thermal properties of soil, operating time of GHX and the distance between pipes was obtained. Using this model, heat transfer rates per unit length of a horizontal GHX were plotted as functions of the distance between pipes and operating time. The modeling shows that heat transfer rates decreases rapidly with the distance between pipes lower then 2 meters. After the launch of heat pump, heat power of GHX is reduced during the first 20 - 30 days and get steady after that. The obtained results correlate with experimental data. Therefore the proposed mathematical model can be used to design a horizontal GHX with the optimal characteristics, and predict its capability during operation.

  19. Impact of transport and modelling errors on the estimation of methane sources and sinks by inverse modelling

    Science.gov (United States)

    Locatelli, Robin; Bousquet, Philippe; Chevallier, Frédéric

    2013-04-01

    Since the nineties, inverse modelling by assimilating atmospheric measurements into a chemical transport model (CTM) has been used to derive sources and sinks of atmospheric trace gases. More recently, the high global warming potential of methane (CH4) and unexplained variations of its atmospheric mixing ratio caught the attention of several research groups. Indeed, the diversity and the variability of methane sources induce high uncertainty on the present and the future evolution of CH4 budget. With the increase of available measurement data to constrain inversions (satellite data, high frequency surface and tall tower observations, FTIR spectrometry,...), the main limiting factor is about to become the representation of atmospheric transport in CTMs. Indeed, errors in transport modelling directly converts into flux changes when assuming perfect transport in atmospheric inversions. Hence, we propose an inter-model comparison in order to quantify the impact of transport and modelling errors on the CH4 fluxes estimated into a variational inversion framework. Several inversion experiments are conducted using the same set-up (prior emissions, measurement and prior errors, OH field, initial conditions) of the variational system PYVAR, developed at LSCE (Laboratoire des Sciences du Climat et de l'Environnement, France). Nine different models (ACTM, IFS, IMPACT, IMPACT1x1, MOZART, PCTM, TM5, TM51x1 and TOMCAT) used in TRANSCOM-CH4 experiment (Patra el al, 2011) provide synthetic measurements data at up to 280 surface sites to constrain the inversions performed using the PYVAR system. Only the CTM (and the meteorological drivers which drive them) used to create the pseudo-observations vary among inversions. Consequently, the comparisons of the nine inverted methane fluxes obtained for 2005 give a good order of magnitude of the impact of transport and modelling errors on the estimated fluxes with current and future networks. It is shown that transport and modelling errors

  20. Dynamics and controls of urban heat sink and island phenomena in a desert city: Development of a local climate zone scheme using remotely-sensed inputs

    Science.gov (United States)

    Nassar, Ahmed K.; Blackburn, G. Alan; Whyatt, J. Duncan

    2016-09-01

    This study aims to determine the dynamics and controls of Surface Urban Heat Sinks (SUHS) and Surface Urban Heat Islands (SUHI) in desert cities, using Dubai as a case study. A Local Climate Zone (LCZ) schema was developed to subdivide the city into different zones based on similarities in land cover and urban geometry. Proximity to the Gulf Coast was also determined for each LCZ. The LCZs were then used to sample seasonal and daily imagery from the MODIS thermal sensor to determine Land Surface Temperature (LST) variations relative to desert sand. Canonical correlation techniques were then applied to determine which factors explained the variability between urban and desert LST. Our results indicate that the daytime SUHS effect is greatest during the summer months (typically ∼3.0 °C) with the strongest cooling effects in open high-rise zones of the city. In contrast, the night-time SUHI effect is greatest during the winter months (typically ∼3.5 °C) with the strongest warming effects in compact mid-rise zones of the city. Proximity to the Arabian Gulf had the largest influence on both SUHS and SUHI phenomena, promoting daytime cooling in the summer months and night-time warming in the winter months. However, other parameters associated with the urban environment such as building height had an influence on daytime cooling, with larger buildings promoting shade and variations in airflow. Likewise, other parameters such as sky view factor contributed to night-time warming, with higher temperatures associated with limited views of the sky.

  1. Sink or swim? Geodynamic and petrological model constraints on the fate of Archaean primary crust

    Science.gov (United States)

    Kaus, B.; Johnson, T.; Brown, M.; VanTongeren, J. A.

    2013-12-01

    Ambient mantle potential temperatures in the Archaean were significantly higher than 1500 °C, leading to a high percent of melting and generating thick MgO-rich primary crust underlain by highly residual mantle. However, the preserved volume of this crust is low suggesting much of it was recycled. Here we couple calculated phase equilibria for hydrated and anhydrous low to high MgO crust compositions and their complementary mantle residues with 2-D numerical geodynamic models to investigate lithosphere dynamics in the early Earth. We show that, with increasing ambient mantle potential temperature, the density of primary crust increases more dramatically than the density of residual mantle decreases and the base of MgO-rich primary crust becomes gravitationally unstable with respect to the underlying mantle even when fully hydrated. To study this process we use geodynamic models that include the effects of melt extraction, crust formation and depletion of the mantle in combination with laboratory-constrained dislocation and diffusion creep rheologies for the mantle. The models show that the base of the gravitationally unstable lithosphere delaminates through relatively small-scale Rayleigh-Taylor instabilities, but only if the viscosity of the mantle lithosphere is sufficiently low. Thickening of the crust above upwelling mantle and heating at the base of the crust are the main mechanisms that trigger the delamination process. Scaling laws were developed that are in good agreement with the numerical simulations and show that the key parameters that control the instability are the density contrast between crust and underlying mantle lithosphere, the thickness of the unstable layer and the effective viscosity of the upper mantle. Depending on uncertainties in the melting relations and rheology (hydrous or anhydrous) of the mantle, this process is shown to efficiently recycle the crust above potential temperatures of 1550-1600 °C. However, below these temperatures

  2. Reconsideration of Criteria and Modeling in Order to Optimize the Efficiency of Irreversible Thermomechanical Heat Engines

    Directory of Open Access Journals (Sweden)

    Michel Feidt

    2010-12-01

    Full Text Available The purpose of this work is to precise and complete one recently proposed in the literature and relative to a general criterion to maximize the first law efficiency of irreversible heat engines. It is shown that the previous proposal seems to be a particular case. A new proposal has been developed for a Carnot irreversible thermomechanical heat engine at steady state associated to two infinite heat reservoirs (hot source, and cold sink: this constitutes the studied system. The presence of heat leak is accounted for, with the most simple form, as is done generally in the literature. Irreversibility is modeled through , created internal entropy rate in the converter (engine, and , total created entropy rate in the system. Heat transfer laws are represented as general functions of temperatures. These concepts are particularized to the most common heat transfer law (linear one. Consequences of the proposal are examined; some new analytical results are proposed for efficiencies.

  3. Source-sink landscape theory and its ecological significance

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    applied to non-point source pollution control,biologic diversity protection,urban heat island effect mitigation,etc.However,the landscape evaluation models need to be calibrated respectively,because different ecological processes correspond with different source-sink landscapes and evaluation models for the different study areas.This theory is helpful to further study landscape pattern and ecological process,and offers a basis for new landscape index design.

  4. Numerical modeling of the thermoelectric cooler with a complementary equation for heat circulation in air gaps

    Science.gov (United States)

    Fang, En; Wu, Xiaojie; Yu, Yuesen; Xiu, Junrui

    2017-03-01

    In this paper, a numerical model is developed by combining thermodynamics with heat transfer theory. Taking inner and external multi-irreversibility into account, it is with a complementary equation for heat circulation in air gaps of a steady cooling system with commercial thermoelectric modules operating in refrigeration mode. With two modes concerned, the equation presents the heat flowing through air gaps which forms heat circulations between both sides of thermoelectric coolers (TECs). In numerical modelling, a TEC is separated as two temperature controlled constant heat flux reservoirs in a thermal resistance network. In order to obtain the parameter values, an experimental apparatus with a commercial thermoelectric cooler was built to characterize the performance of a TEC with heat source and sink assembly. At constant power dissipation, steady temperatures of heat source and both sides of the thermoelectric cooler were compared with those in a standard numerical model. The method displayed that the relationship between Φf and the ratio Φ_{c}'/Φ_{c} was linear as expected. Then, for verifying the accuracy of proposed numerical model, the data in another system were recorded. It is evident that the experimental results are in good agreement with simulation(proposed model) data at different heat transfer rates. The error is small and mainly results from the instabilities of thermal resistances with temperature change and heat flux, heat loss of the device vertical surfaces and measurements.

  5. A Heat Dynamic Model for Intelligent Heating of Buildings

    DEFF Research Database (Denmark)

    Thavlov, Anders; Bindner, Henrik W.

    2015-01-01

    This article presents a heat dynamic model for prediction of the indoor temperature in an office building. The model has been used in several flexible load applications, where the indoor temperature is allowed to vary around a given reference to provide power system services by shifting the heati...

  6. Divergence in sink contributions to population persistence.

    Science.gov (United States)

    Heinrichs, Julie A; Lawler, Joshua J; Schumaker, Nathan H; Wilsey, Chad B; Bender, Darren J

    2015-12-01

    Population sinks present unique conservation challenges. The loss of individuals in sinks can compromise persistence; but conversely, sinks can improve viability by improving connectivity and facilitating the recolonization of vacant sources. To assess the contribution of sinks to regional population persistence of declining populations, we simulated source-sink dynamics for 3 very different endangered species: Black-capped Vireos (Vireo atricapilla) at Fort Hood, Texas, Ord's kangaroo rats (Dipodomys ordii) in Alberta, and Northern Spotted Owls (Strix occidentalis caurina) in the northwestern United States. We used empirical data from these case studies to parameterize spatially explicit individual-based models. We then used the models to quantify population abundance and persistence with and without long-term sinks. The contributions of sink habitats varied widely. Sinks were detrimental, particularly when they functioned as strong sinks with few emigrants in declining populations (e.g., Alberta's Ord's kangaroo rat) and benign in robust populations (e.g., Black-capped Vireos) when Brown-headed Cowbird (Molothrus ater) parasitism was controlled. Sinks, including ecological traps, were also crucial in delaying declines when there were few sources (e.g., in Black-capped Vireo populations with no Cowbird control). Sink contributions were also nuanced. For example, sinks that supported large, variable populations were subject to greater extinction risk (e.g., Northern Spotted Owls). In each of our case studies, new context-dependent sinks emerged, underscoring the dynamic nature of sources and sinks and the need for frequent re-assessment. Our results imply that management actions based on assumptions that sink habitats are generally harmful or helpful risk undermining conservation efforts for declining populations.

  7. Caldera collapse: Perspectives from comparing Galápagos volcanoes, nuclear-test sinks, sandbox models, and volcanoes on Mars

    Science.gov (United States)

    Howard, K.A.

    2010-01-01

    The 1968 trapdoor collapse (1.5 km3) of Fernandina caldera in the Galapágos Islands developed the same kinds of structures as found in small sandbox-collapse models and in concentrically zoned sinks formed in desert alluvium by fault subsidence into underground nuclear-explosion cavities. Fernandina’s collapse developed through shear failure in which the roof above the evacuating chamber was lowered mostly intact. This coherent subsidence contrasts to chaotic piecemeal collapse at small, rocky pit craters, underscoring the role of rock strength relative to subsidence size. The zoning at Fernandina implies that the deflated magma chamber underlay a central basin and a bordering inward-dipping monocline, which separates a blind inner reverse fault from an outer zone of normal faulting. Similar concentric zoning patterns can be recognized in coherent subsidence structures ranging over 16 orders of magnitude in size, from sandbox experiments to the giant Olympus Mons caldera on Mars.

  8. Parasite sources and sinks in a patched Ross-Macdonald malaria model with human and mosquito movement: Implications for control.

    Science.gov (United States)

    Ruktanonchai, Nick W; Smith, David L; De Leenheer, Patrick

    2016-09-01

    We consider the dynamics of a mosquito-transmitted pathogen in a multi-patch Ross-Macdonald malaria model with mobile human hosts, mobile vectors, and a heterogeneous environment. We show the existence of a globally stable steady state, and a threshold that determines whether a pathogen is either absent from all patches, or endemic and present at some level in all patches. Each patch is characterized by a local basic reproduction number, whose value predicts whether the disease is cleared or not when the patch is isolated: patches are known as "demographic sinks" if they have a local basic reproduction number less than one, and hence would clear the disease if isolated; patches with a basic reproduction number above one would sustain endemic infection in isolation, and become "demographic sources" of parasites when connected to other patches. Sources are also considered focal areas of transmission for the larger landscape, as they export excess parasites to other areas and can sustain parasite populations. We show how to determine the various basic reproduction numbers from steady state estimates in the patched network and knowledge of additional model parameters, hereby identifying parasite sources in the process. This is useful in the context of control of the infection on natural landscapes, because a commonly suggested strategy is to target focal areas, in order to make their corresponding basic reproduction numbers less than one, effectively turning them into sinks. We show that this is indeed a successful control strategy-albeit a conservative and possibly expensive one-in case either the human host, or the vector does not move. However, we also show that when both humans and vectors move, this strategy may fail, depending on the specific movement patterns exhibited by hosts and vectors.

  9. Business models of heat entrepreneurship in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Okkonen, Lasse [North Karelia University of Applied Sciences, Yliopistokatu 6, FI-80100 Joensuu (Finland); Suhonen, Niko [University of Eastern Finland, Department of Law, P.O. Box 111, FI-80101 Joensuu (Finland)

    2010-07-15

    This paper presents the business models of small-scale heat energy production in Finland. Firstly, the development of heat entrepreneurship in the country is presented, including the remarkable growth of small and medium size enterprises (SMEs) in the last 15 years. Secondly, the concept of business model (business architecture of product/service flows and earning logics) is modified to the framework of wood heat production. The business model concept, and its sub-concepts, is applied in a brief review of current heat energy businesses in Finland. We arrive at a business model of heat entrepreneurships that are public companies/utilities, public-private partnerships, private companies and cooperatives, Energy Saving Company (ESCO), network model of large enterprise and franchising. Descriptive cases of these models are presented. Finally, the paper concludes with a discussion on the applicability of the business models in different operational environments and geographical contexts. (author)

  10. Modeling of intraluminal heating of biological tissue: implications for treatment of benign prostatic hyperplasia.

    Science.gov (United States)

    Anvari, B; Rastegar, S; Motamedi, M

    1994-09-01

    A computer model for predicting the thermal response of a biological tissue to different intraluminal heating modalities is presented. A practical application of the model is to calculate the temperature distributions during thermal coagulation of prostate by contact heating and radiative heating. The model uses a two-dimensional axisymmetric diffusion approximation method to calculate the light distribution during radiative heating. The traditional Pennes' bio-heat equation is used to calculate the temperatures in the presence of blood flow. An implicit finite difference scheme with nonuniform grid spacings is used to solve the diffusion equation for light distribution and the bio-heat equation. Model results indicate that the radiative heating of prostate by Nd:YAG (1064 mm) and diode (810 mm) lasers can be a more effective and efficient means of coagulating a large volume of prostate, as compared to contact heating of the tissue. Blood perfusion is shown to provide a considerable heat sink as the laser exposure time is increased. Surface cooling by irrigation during the laser irradiation of tissue is shown to be an effective method for delaying tissue explosion and obtaining a large volume of coagulated tissue. The model also shows that the volume of the coagulated tissue is appreciably altered by a change in the rate of energy deposition.

  11. Universal model of slow pyrolysis technology producing biochar and heat from standard biomass needed for the techno-economic assessment.

    Science.gov (United States)

    Klinar, Dušan

    2016-04-01

    Biochar as a soil amendment and carbon sink becomes in last period one of the vast, interesting product of slow pyrolysis. Simplest and most used industrial process arrangement is a production of biochar and heat at the same time. Proposed mass and heat balance model consist of heat consumers (heat demand side) and heat generation-supply side. Direct burning of all generated uncondensed volatiles from biomass provides heat. Calculation of the mass and heat balance of both sides reveals the internal distribution of masses and energy inside process streams and units. Thermodynamic calculations verified not only the concept but also numerical range of the results. The comparisons with recent published scientific and vendors data prove its general applicability and reliability. The model opens the possibility for process efficiency innovations. Finally, the model was adapted to give more investors favorable results and support techno-economic assessments entirely.

  12. Sinking, merging and stationary plumes in a coupled chemotaxis-fluid model: a high-resolution numerical approach

    KAUST Repository

    Chertock, A.

    2012-02-02

    Aquatic bacteria like Bacillus subtilis are heavier than water yet they are able to swim up an oxygen gradient and concentrate in a layer below the water surface, which will undergo Rayleigh-Taylor-type instabilities for sufficiently high concentrations. In the literature, a simplified chemotaxis-fluid system has been proposed as a model for bio-convection in modestly diluted cell suspensions. It couples a convective chemotaxis system for the oxygen-consuming and oxytactic bacteria with the incompressible Navier-Stokes equations subject to a gravitational force proportional to the relative surplus of the cell density compared to the water density. In this paper, we derive a high-resolution vorticity-based hybrid finite-volume finite-difference scheme, which allows us to investigate the nonlinear dynamics of a two-dimensional chemotaxis-fluid system with boundary conditions matching an experiment of Hillesdon et al. (Bull. Math. Biol., vol. 57, 1995, pp. 299-344). We present selected numerical examples, which illustrate (i) the formation of sinking plumes, (ii) the possible merging of neighbouring plumes and (iii) the convergence towards numerically stable stationary plumes. The examples with stable stationary plumes show how the surface-directed oxytaxis continuously feeds cells into a high-concentration layer near the surface, from where the fluid flow (recurring upwards in the space between the plumes) transports the cells into the plumes, where then gravity makes the cells sink and constitutes the driving force in maintaining the fluid convection and, thus, in shaping the plumes into (numerically) stable stationary states. Our numerical method is fully capable of solving the coupled chemotaxis-fluid system and enabling a full exploration of its dynamics, which cannot be done in a linearised framework. © 2012 Cambridge University Press.

  13. Bioacessibility of PAHs in fuel soot assessed by an in vitro digestive model: effect of including an absorptive sink.

    Science.gov (United States)

    Zhang, Yanyan; Pignatello, Joseph J; Tao, Shu; Xing, Baoshan

    2015-03-17

    Polycyclic aromatic hydrocarbons (PAHs) associated with soot or black carbon can enter the human digestive tract by unintentional ingestion of soil or other particles. This study investigated the bioaccessibility of 11 PAHs in a composite fuel soot sample using an in vitro digestive model that included silicone sheet as an absorptive sink during the small intestinal digestion stage. The sheet was meant to simulate the passive transfer of PAHs in lumen fluid across the small intestinal epithelium, which was postulated to promote desorption of labile PAHs from the soot by steepening the soot-fluid concentration gradient. We show that the presence of silicone sheet during a 4 h default digestion time significantly increased the apparent bioaccessible fraction (Bapp, %), defined as the sum in the sheet and digestive fluid relative to the total PAH determined. The ability to increase Bapp for most PAHs leveled off above a sheet-to-soot ratio of 2.0 g per 50 mg, indicating that the sheet is an effective absorptive sink and promotes desorption in the mentioned way. Enhancement of Bapp by the sheet correlated positively with the octanol-water partition coefficient (Kow), even though the partition coefficient of PAH between sheet and digestive fluid (which contains bile acid micelles) correlated negatively with Kow. It was hypothesized that PAHs initially in the soot exist in labile and nonlabile states. The fraction of labile PAH still sorbed to the soot residue after digestion, and the maximum possible (limiting) bioaccessibility (Blim) could be estimated by varying the sheet-to-soot ratio. We show conclusively that the increase in bioccessibility due to the presence of the sheet is accounted for by a corresponding decrease in fraction of labile PAH still sorbed to the soot. The Blim ranged from 30.8 to 62.4%, independent of molecular size. The nonlabile fraction of individual PAHs (69.2-37.6% in this case) is therefore large and needs to be taken into account in risk

  14. Dynamic Heat Transfer Model of Refrigerated Foodstuff

    DEFF Research Database (Denmark)

    Cai, Junping; Risum, Jørgen; Thybo, Claus

    2006-01-01

    their temperature relation. This paper discusses the dynamic heat transfer model of foodstuff inside the display cabinet, one-dimensional dynamic model is developed, and the Explicit Finite Difference Method is applied, to handle the unsteady heat transfer problem with phase change, as well as time varying boundary...

  15. New models for droplet heating and evaporation

    KAUST Repository

    Sazhin, Sergei S.

    2013-02-01

    A brief summary of new models for droplet heating and evaporation, developed mainly at the Sir Harry Ricardo Laboratory of the University of Brighton during 2011-2012, is presented. These are hydrodynamic models for mono-component droplet heating and evaporation, taking into account the effects of the moving boundary due to evaporation, hydrodynamic models of multi-component droplet heating and evaporation, taking and not taking into account the effects of the moving boundary, new kinetic models of mono-component droplet heating and evaporation, and a model for mono-component droplet evaporation, based on molecular dynamics simulation. The results, predicted by the new models are compared with experimental data and the prehctions of the previously developed models where possible. © 2013 Asian Network for Scientific Information.

  16. Modelling of Ammonia Heat Pump Desuperheaters

    DEFF Research Database (Denmark)

    Christensen, Stefan Wuust; Elmegaard, Brian; Markussen, Wiebke Brix

    2015-01-01

    This paper presents a study of modelling desuperheating in ammonia heat pumps. Focus is on the temperature profile of the superheated refrigerant. Typically, the surface area of a heat exchanger is estimated using the Log Mean Temperature Difference (LMTD) method. The assumption of this method...... is that the specific heat is constant throughout the temperature glide of the refrigerant in the heat exchanger. However, considering ammonia as refrigerant, the LMTD method does not give accurate results due to significant variations of the specific heat. By comparing the actual temperature profiles from a one....... The area of the heat exchanger can be increased or the condensation temperature can be raised to achieve the same temperature difference for the discretized model as for the LMTD. This would affect the compressor work, hence the COP of the system. Furthermore, for higher condenser pressure, and thus higher...

  17. Terrestrial Carbon Sinks in the Brazilian Amazon and Cerrado Region Predicted from MODIS Satellite Data and Ecosystem Modeling

    Science.gov (United States)

    Potter, C.; Klooster, S.; Huete, A.; Genovese, V.; Bustamante, M.; Ferreira, L. Guimaraes; deOliveira, R. C., Jr.; Zepp, R.

    2009-01-01

    A simulation model based on satellite observations of monthly vegetation cover from the Moderate Resolution Imaging Spectroradiometer (MODIS) was used to estimate monthly carbon fluxes in terrestrial ecosystems of Brazilian Amazon and Cerrado regions over the period 2000-2004. Net ecosystem production (NEP) flux for atmospheric CO2 in the region for these years was estimated. Consistently high carbon sink fluxes in terrestrial ecosystems on a yearly basis were found in the western portions of the states of Acre and Rondonia and the northern portions of the state of Par a. These areas were not significantly impacted by the 2002-2003 El Nino event in terms of net annual carbon gains. Areas of the region that show periodically high carbon source fluxes from terrestrial ecosystems to the atmosphere on yearly basis were found throughout the state of Maranhao and the southern portions of the state of Amazonas. As demonstrated though tower site comparisons, NEP modeled with monthly MODIS Enhanced Vegetation Index (EVI) inputs closely resembles the measured seasonal carbon fluxes at the LBA Tapajos tower site. Modeling results suggest that the capacity for use of MODIS Enhanced Vegetation Index (EVI) data to predict seasonal uptake rates of CO2 in Amazon forests and Cerrado woodlands is strong.

  18. Assessing the carbon sink of afforestation with the Carbon Budget Model at the country level: an example for Italy

    Directory of Open Access Journals (Sweden)

    Pilli R

    2015-08-01

    Full Text Available In the context of the Kyoto Protocol, the mandatory accounting of Afforestation and Reforestation (AR activities requires estimating the forest carbon (C stock changes for any direct human-induced expansion of forest since 1990. We used the Carbon Budget Model (CBM to estimate C stock changes and emissions from fires on AR lands at country level. Italy was chosen because it has one of the highest annual rates of AR in Europe and the same model was recently applied to Italy’s forest management area. We considered the time period 1990-2020 with two case studies reflecting different average annual rates of AR: 78 kha yr-1, based on the 2013 Italian National Inventory Report (NIR, official estimates, and 28 kha yr-1, based on the Italian Land Use Inventory System (IUTI estimates. We compared these two different AR rates with eight regional forest inventories and three independent local studies. The average annual C stock change estimated by CBM, excluding harvest or natural disturbances, was equal to 1738 Gg C yr-1 (official estimates and 630 Gg C yr-1 (IUTI estimates. Results for the official estimates are consistent with the estimates reported by Italy to the KP for the period 2008-2010; for 2011 our estimates are about 20% higher than the country’s data, probably due to different assumptions on the fire disturbances, the AR rate and the dead wood and litter pools. Furthermore, our analysis suggests that: (i the impact on the AR sink of different assumptions of species composition is small; (ii the amount of harvest provided by AR has been negligible for the past (< 3% and is expected to be small in the near future (up to 8% in 2020; (iii forest fires up to 2011 had a small impact on the AR sink (on average, < 100 Gg C yr-1. Finally the comparison of the historical AR rates reported by NIR and IUTI with other independent sources gives mixed results: the regional inventories support the AR rates reported by the NIR, while some local studies

  19. Heating, ventilation and air conditioning system modelling

    Energy Technology Data Exchange (ETDEWEB)

    Whalley, R.; Abdul-Ameer, A. [British University in Dubai (United Arab Emirates)

    2011-03-15

    Heating, ventilation and air conditioning modelling methods, for large scale, spatially dispersed systems are considered. Existing techniques are discussed and proposals for the application of novel analysis approaches are outlined. The use of distributed-lumped parameter procedures enabling the incorporation of the relatively concentrated and significantly dispersed, system element characteristics, is advocated. A dynamic model for a heating, ventilation and air conditioning system comprising inlet and exhaust fans, with air recirculation, heating/cooling and filtration units is presented. Pressure, airflow and temperature predictions within the system are computed following input, disturbance changes and purging operations. The generalised modelling advancements adopted and the applicability of the model for heating, ventilation and air conditioning system simulation, re-configuration and diagnostics is emphasised. The employment of the model for automatic, multivariable controller design purposes is commented upon. (author)

  20. New models for estimating the carbon sink capacity of Spanish softwood species

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz-Peinado, R.; Rio, M. del; Montero, G.

    2011-07-01

    Quantifying the carbon balance in forests is one of the main challenges in forest management. Forest carbon stocks are usually estimated indirectly through biomass equations applied to forest inventories, frequently considering different tree biomass components. The aim of this study is to develop systems of equations for predicting tree biomass components for the main forest softwood species in Spain: Abies alba Mill., A. pinsapo Boiss., Juniperus thurifera L., Pinus canariensis Sweet ex Spreng., P. halepensis Mill., P. nigra Arn., P. pinaster Ait., P. pinea L., P. sylvestris L., P. uncinata Mill. For each species, a system of additive biomass models was fitted using seemingly unrelated regression. Diameter at the breast height and total height were used as independent variables. Diameter appears in all component models, while tree height was included in the stem component model of all species and in some branch component equations. Total height was included in order to improve biomass estimations at different sites. These biomass models were compared to previously available equations in order to test their accuracy and it was found that they yielded better fitting statistics in all cases. Moreover, the models fulfil the additivity property. We also developed root:shoot ratios in order to determine the partitioning into aboveground and belowground biomass. A number of differences were found between species, with a minimum of 0.183 for A. alba and a maximum of 0.385 for P. uncinata. The mean value for the softwood species studied was 0.265. Since the Spanish National Forest Inventory (NFI) records species, tree diameter and height of sample trees, these biomass models and ratios can be used to accurately estimate carbon stocks from NFI data. (Author) 55 refs.

  1. Simplified models for heat transfer in rooms

    Science.gov (United States)

    Graca, Guilherme C. C. Carrilho Da

    Buildings protect their occupants from the outside environment. As a semi-enclosed environment, buildings tend to contain the internally generated heat and air pollutants, as well as the solar and conductive heat gains that can occur in the facade. In the warmer months of the year this generally leads to overheating, creating a need for a cooling system. Ventilation air replaces contaminated air in the building and is often used as the dominant medium for heat transfer between indoor and outdoor environments. The goal of the research presented in this thesis is to develop a better understanding of the important parameters in the performance of ventilation systems and to develop simplified convective heat transfer models. The general approach used in this study seeks to capture the dominant physical processes for these problems with first order accuracy, and develop simple models that show the correct system behavior trends. Dimensional analysis, in conjunction with simple momentum and energy conservation, scaled model experiments and numerical simulations, is used to improve airflow and heat transfer rate predictions in both single and multi room ventilation systems. This study includes the three commonly used room ventilation modes: mixing, displacement and cross-ventilation. A new modeling approach to convective heat transfer between the building and the outside is presented: the concept of equivalent room heat transfer coefficient. The new model quantifies the reduction in heat transfer between ventilation air and internal room surfaces caused by limited thermal capacity and temperature variation of the air for the three modes studied. Particular emphasis is placed on cross-ventilation, and on the development of a simple model to characterize the airflow patterns that occur in this case. The implementation of the models in a building thermal simulation software tool is presented as well as comparisons between model predictions, experimental results and complex

  2. Cattaneo-Christov model for radiative heat transfer of magnetohydrodynamic Casson-ferrofluid: A numerical study

    Science.gov (United States)

    Ali, M. E.; Sandeep, N.

    The knowledge of heat transfer in MHD nanofluid flows over different geometries is very important for heat exchangers design, transpiration, fiber coating, etc. Recent days, heat transfer of non-Newtonian nanofluids plays a major role in manufacturing processes due to its shear thinning and thickening properties. Naturally, magnetite (Fe3O4) nanoparticles move randomly within the base fluid. By applying the transverse magnetic field, the motion of those nanoparticles becomes uniform. This phenomenon is very useful in heat transfer processes. With this initiation, a mathematical model is developed to investigate the heat transfer behaviour of electrically conducting MHD flow of a Casson nanofluid over a cone, wedge and a plate. We consider a Cattaneo-Christov heat flux model with variable source/sink and nonlinear radiation effects. We also considered water as the base fluid suspended with magnetite nanoparticles. R-K-Felhberg-integration scheme is employed to resolve the altered governing nonlinear equations. Impacts of governing parameters on common profiles (temperature and velocity) are conversed (in three cases). By viewing the same parameters, the friction factor coefficient and heat transfer rate are discussed with the assistance of tables. It is found that the boundary layers (thermal and flow) over three geometries (cone, wedge and a plate) are not uniform. It is also found that the thermal relaxation parameter effectively enhances the heat local Nusselt number and the heat transfer performance is high in the flow over a wedge when compared with the flows over a cone and plate.

  3. Heat transfer of sub-merged jet impingement on pin-fin heat sinks with silver nanofluid%Ag纳米流体浸没射流冲击换热特性

    Institute of Scientific and Technical Information of China (English)

    夏国栋; 周明正; 周利军; 崔珍珍; 杨瑞波

    2011-01-01

    Silver-water nanofluid, used as the working fluid in this study, was prepared in one step employing ultrasound-assisted membrane reaction. The heat transfer of submerged jet impacting pin-fin heat sinks was investigated experimentally with silver nanofluid of different concentrations. The results indicate that the silver nanoparticles prepared are uniformly distributed in base fluid and with an average grain size of 4.8 nm. The surfactant used in this study has great influence on the viscosity of nanofluids. Compared with the base fluid (water and surfactant), the heat transfer coefficient of nanofluids is increased by 6.23%, 9.24% and 17. 53%, respectively, with the silver nanoparticle mass fraction of 0.02%, 0.08% and 0. 12%, under the same jet velocity. Compared with water, the heat transfer coefficient is enhanced by 6. 61% with the silver nanoparticle of 0.12%.%采用超声膜扩散法一步制备出水基Ag纳米流体作为实验工质,并对不同质量分数的Ag纳米流体在受限浸没阵列射流冲击针肋热沉中的流动和换热特性进行了实验研究.结果表明:采用超声膜扩散法制备的Ag纳米颗粒粒径分布均匀,平均粒径只有4.8 nm;表面活性剂对纳米流体的黏度影响较大;相同射流速度下,与基液(水+表面活性剂)相比,Ag粒子质量分数分别为0.02%、0.08%、0.12Z的纳米流体传热系数分别提高6.23%、9.24%、17.53Z;与纯水相比,Ag粒子质量分数为0.12%时,纳米流体传热系数增加6.61%.

  4. Development of a sink-source interaction model for the growth of short-rotation coppice willow and in silico exploration of genotype×environment effects.

    Science.gov (United States)

    Cerasuolo, M; Richter, G M; Richard, B; Cunniff, J; Girbau, S; Shield, I; Purdy, S; Karp, A

    2016-02-01

    Identifying key performance traits is essential for elucidating crop growth processes and breeding. In Salix spp., genotypic diversity is being exploited to tailor new varieties to overcome environmental yield constraints. Process-based models can assist these efforts by identifying key parameters of yield formation for different genotype×environment (G×E) combinations. Here, four commercial willow varieties grown in contrasting environments (west and south-east UK) were intensively sampled for growth traits over two 2-year rotations. A sink-source interaction model was developed to parameterize the balance of source (carbon capture/mobilization) and sink formation (morphogenesis, carbon allocation) during growth. Global sensitivity analysis consistently identified day length for the onset of stem elongation as most important factor for yield formation, followed by various 'sink>source' controlling parameters. In coastal climates, the chilling control of budburst ranked higher compared with the more eastern climate. Sensitivity to drought, including canopy size and rooting depth, was potentially growth limiting in the south-east and west of the UK. Potential yields increased from the first to the second rotation, but less so for broad- than for narrow-leaved varieties (20 and 47%, respectively), which had established less well initially (-19%). The establishment was confounded by drought during the first rotation, affecting broad- more than narrow-leaved canopy phenotypes (-29%). The analysis emphasized quantum efficiency at low light intensity as key to assimilation; however, on average, sink parameters were more important than source parameters. The G×E pairings described with this new process model will help to identify parameters of sink-source control for future willow breeding.

  5. Modeling of heat explosion with convection.

    Science.gov (United States)

    Belk, Michael; Volpert, Vitaly

    2004-06-01

    The work is devoted to numerical simulations of the interaction of heat explosion with natural convection. The model consists of the heat equation with a nonlinear source term describing heat production due to an exothermic chemical reaction coupled with the Navier-Stokes equations under the Boussinesq approximation. We show how complex regimes appear through successive bifurcations leading from a stable stationary temperature distribution without convection to a stationary symmetric convective solution, stationary asymmetric convection, periodic in time oscillations, and finally aperiodic oscillations. A simplified model problem is suggested. It describes the main features of solutions of the complete problem.

  6. Modeling microscale heat transfer using Calore.

    Energy Technology Data Exchange (ETDEWEB)

    Gallis, Michail A.; Rader, Daniel John; Wong, Chung-Nin Channy; Bainbridge, Bruce L.; Torczynski, John Robert; Piekos, Edward Stanley

    2005-09-01

    Modeling microscale heat transfer with the computational-heat-transfer code Calore is discussed. Microscale heat transfer problems differ from their macroscopic counterparts in that conductive heat transfer in both solid and gaseous materials may have important noncontinuum effects. In a solid material, three noncontinuum effects are considered: ballistic transport of phonons across a thin film, scattering of phonons from surface roughness at a gas-solid interface, and scattering of phonons from grain boundaries within the solid material. These processes are modeled for polycrystalline silicon, and the thermal-conductivity values predicted by these models are compared to experimental data. In a gaseous material, two noncontinuum effects are considered: ballistic transport of gas molecules across a thin gap and accommodation of gas molecules to solid conditions when reflecting from a solid surface. These processes are modeled for arbitrary gases by allowing the gas and solid temperatures across a gas-solid interface to differ: a finite heat transfer coefficient (contact conductance) is imposed at the gas-solid interface so that the temperature difference is proportional to the normal heat flux. In this approach, the behavior of gas in the bulk is not changed from behavior observed under macroscopic conditions. These models are implemented in Calore as user subroutines. The user subroutines reside within Sandia's Source Forge server, where they undergo version control and regression testing and are available to analysts needing these capabilities. A Calore simulation is presented that exercises these models for a heated microbeam separated from an ambient-temperature substrate by a thin gas-filled gap. Failure to use the noncontinuum heat transfer models for the solid and the gas causes the maximum temperature of the microbeam to be significantly underpredicted.

  7. Demand modelling for central heating systems

    Energy Technology Data Exchange (ETDEWEB)

    Heller, A.

    2000-07-01

    Most researchers in the field of heat demand estimation have focussed on explaning the load for a given plant based on rather few measurements. This approach is simply the only one adaptable with the very limited data material and limited computer power. This way of dealing with the subject is here called the top-down approach, due to the fact that one tries to explain the load from the overall data. The results of such efforts are discussed in the report, leading to inspiration for own work. Also the significance of the findings to the causes for given heat loads are discussed and summarised. Contrary to the top-down approach applied in literature, a here-called bottom-up approach is applied in this work, describing the causes of a given partial load in detail and combining them to explain the total load for the system. Three partial load 'components' are discussed: 1) Space heating. 2) Hot-Water Consumption. 3) Heat losses in pipe networks. The report is aimed at giving an introduction to these subjects, but at the same time at collecting the previous work done by the author. Space heating is shortly discussed and loads are generated by an advanced simulation model. A hot water consumption model is presented and heat loads, generated by this model, utilised in the overall work. Heat loads due to heat losses in district heating a given a high priority in the current work. Hence a detailed presentation and overview of the subject is given to solar heating experts normally not dealing with district heating. Based on the 'partial' loads generated by the above-mentioned method, an overall load model is built in the computer simulation environment TRNSYS. The final tool is then employed for the generation of time series for heat demand, representing a district heating area. The results are compared to alternative methods for the generation of heat demand profiles. Results form this comparison will be presented. Computerised modelling of systems

  8. Coupled Seepage and Heat Transfer Intake Model

    Institute of Scientific and Technical Information of China (English)

    WU Junhua; YOU Shijun; ZHANG Huan; LI Haishan

    2009-01-01

    In the beach well intake system, heat is transferred from soil to fluid when seawater is filtered through the aquifer, providing higher temperature source water to the seawater source heat pump (SWHP) system in winter. A 3-D coupled seepage and heat transfer model for studying beach well intake system is established by adopting the computer code FLUENT. Numerical results of this model are compared with the experimental results under the same conditions. Based on the experiment-verified coupled model, numerical simulation of the supply water temperature is studied over a heating season. Results show that the minimum temperature of supply water is 275.2 K when this intake system continuously provides seawater with flow rate of 35 m3/h to SWHP. Results also indicate that the supply water temperature is higher than seawater, and that the minimum temperature of supply water lags behind seawater, ensuring effective and reliable operation of SWHP.

  9. Computational model of miniature pulsating heat pipes.

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Mario J.; Givler, Richard C.

    2013-01-01

    The modeling work described herein represents Sandia National Laboratories (SNL) portion of a collaborative three-year project with Northrop Grumman Electronic Systems (NGES) and the University of Missouri to develop an advanced, thermal ground-plane (TGP), which is a device, of planar configuration, that delivers heat from a source to an ambient environment with high efficiency. Work at all three institutions was funded by DARPA/MTO; Sandia was funded under DARPA/MTO project number 015070924. This is the final report on this project for SNL. This report presents a numerical model of a pulsating heat pipe, a device employing a two phase (liquid and its vapor) working fluid confined in a closed loop channel etched/milled into a serpentine configuration in a solid metal plate. The device delivers heat from an evaporator (hot zone) to a condenser (cold zone). This new model includes key physical processes important to the operation of flat plate pulsating heat pipes (e.g. dynamic bubble nucleation, evaporation and condensation), together with conjugate heat transfer with the solid portion of the device. The model qualitatively and quantitatively predicts performance characteristics and metrics, which was demonstrated by favorable comparisons with experimental results on similar configurations. Application of the model also corroborated many previous performance observations with respect to key parameters such as heat load, fill ratio and orientation.

  10. Computational model of miniature pulsating heat pipes

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Mario J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Givler, Richard C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2013-01-01

    The modeling work described herein represents Sandia National Laboratories (SNL) portion of a collaborative three-year project with Northrop Grumman Electronic Systems (NGES) and the University of Missouri to develop an advanced, thermal ground-plane (TGP), which is a device, of planar configuration, that delivers heat from a source to an ambient environment with high efficiency. Work at all three institutions was funded by DARPA/MTO; Sandia was funded under DARPA/MTO project number 015070924. This is the final report on this project for SNL. This report presents a numerical model of a pulsating heat pipe, a device employing a two phase (liquid and its vapor) working fluid confined in a closed loop channel etched/milled into a serpentine configuration in a solid metal plate. The device delivers heat from an evaporator (hot zone) to a condenser (cold zone). This new model includes key physical processes important to the operation of flat plate pulsating heat pipes (e.g. dynamic bubble nucleation, evaporation and condensation), together with conjugate heat transfer with the solid portion of the device. The model qualitatively and quantitatively predicts performance characteristics and metrics, which was demonstrated by favorable comparisons with experimental results on similar configurations. Application of the model also corroborated many previous performance observations with respect to key parameters such as heat load, fill ratio and orientation.

  11. Mathematical Modeling of Spiral Heat Exchanger

    Directory of Open Access Journals (Sweden)

    Probal Guha , Vaishnavi Unde

    2014-04-01

    Full Text Available Compact Heat Exchangers (CHEs are increasingly being used on small and medium scale industries. Due to their compact size and efficient design, they facilitate more efficient heat transfer. Better heat transfer would imply lesser fuel consumption for the operations of the plant, giving improvement to overall efficiency. This reduction in consumption of fuel is a step towards sustainable development. This report exclusively deals with the study the spiral heat exchanger.The design considerations for spiral heat exchanger is that the flow within the spiral has been assumed as flow through a duct and by using Shah London empirical equation for Nusselt number design parameters are further optimized.This is accompanied by a detailed energy balance to generate a concise mathematical model

  12. Modeling Classical Heat Conduction in FLAG

    Energy Technology Data Exchange (ETDEWEB)

    Ramsey, Scott D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hendon, Raymond Cori [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-01-12

    The Los Alamos National Laboratory FLAG code contains both electron and ion heat conduction modules; these have been constructed to be directly relevant to user application problems. However, formal code verification of these modules requires quantitative comparison to exact solutions of the underlying mathematical models. A wide variety of exact solutions to the classical heat conduction equation are available for this purpose. This report summarizes efforts involving the representation of the classical heat conduction equation as following from the large electron-ion coupling limit of the electron and ion 3T temperature equations, subject to electron and ion conduction processes. In FLAG, this limiting behavior is quantitatively verified using a simple exact solution of the classical heat conduction equation. For this test problem, both heat conduction modules produce nearly identical spatial electron and ion temperature profiles that converge at slightly less than 2nd order to the corresponding exact solution.

  13. Thermal Performance of Laser Diode Array under Constant Convective Heat Transfer Boundary Condition

    Institute of Scientific and Technical Information of China (English)

    YIN Cong; HUANG Lei; HE Fa-Hong; GONG Ma-Li

    2007-01-01

    Three-dimensional heat transfer model of laser diode array under constant convective heat transfer coefficient boundary condition is established and analytical temperature profiles within its heat sink are obtained by separation of variables. The influences on thermal resistance and maximum temperature variation among emitters from heat sink structure parameters and convective heat transfer coefficient are brought forward. The derived formula enables the thermal optimization of laser diode array.

  14. New models for conventional and heat exchangers enhanced with tube inserts for heat exchanger network retrofit

    OpenAIRE

    Jiang, N; Shelley, J D; Smith, Robin

    2014-01-01

    The retrofit of heat exchanger networks requires detailed models of the heat exchangers for the detailed assessment of network performance. Network retrofit options include heat transfer enhancement. There is thus a requirement for detailed models of heat exchanger performance, including heat transfer enhancement, suitable for inclusion in network retrofit optimization algorithms. Such models must be robust, computationally efficient and accurate enough to reflect the heat transfer and pressu...

  15. A numerical investigation of the sCO{sub 2} recompression cycle off-design behaviour, coupled to a sodium cooled fast reactor, for seasonal variation in the heat sink temperature

    Energy Technology Data Exchange (ETDEWEB)

    Floyd, J., E-mail: jeremy.floyd@cea.fr [CEA, DEN, Département d’Etudes des Réacteurs, Service d’Etudes des Systèmes Innovants, F-13108 Saint Paul Lez Durance (France); Alpy, N., E-mail: nicolas.alpy@cea.fr [CEA, DEN, Département d’Etudes des Réacteurs, Service d’Etudes des Systèmes Innovants, F-13108 Saint Paul Lez Durance (France); Moisseytsev, A., E-mail: amoissey@anl.gov [Nuclear Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Haubensack, D., E-mail: david.haubensack@cea.fr [CEA, DEN, Département d’Etudes des Réacteurs, Service d’Etudes des Systèmes Innovants, F-13108 Saint Paul Lez Durance (France); Rodriguez, G., E-mail: gilles.rodriguez@cea.fr [CEA, DEN, Département de Technologie Nucléaire, F-13108 Saint Paul Lez Durance (France); Sienicki, J., E-mail: sienicki@anl.gov [Nuclear Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Avakian, G., E-mail: gilles.avakian@cea.fr [CEA, DEN, Département d’Etudes des Réacteurs, Service d’Etudes des Systèmes Innovants, F-13108 Saint Paul Lez Durance (France)

    2013-07-15

    Highlights: • Year-round behaviour of the supercritical CO{sub 2} recompression cycle is simulated. • Behaviour of the system was uncertain due to large changes in the fluid properties. • Cycle thermodynamic optimisation and component preliminary designs were performed. • No off design cycle stability issues, compressors operate away from surge region. • Independent speed control of compressors maintains power and cycle efficiency. -- Abstract: Supercritical CO{sub 2} cycles are particularly attractive for Generation IV Sodium-Cooled Fast Reactors (SFRs) as they can be simple and compact, but still offer steam-cycle equivalent efficiency while also removing potential for Na/H{sub 2}O reactions. However, CO{sub 2} thermophysical properties are very sensitive close to the critical point which raises, in particular, questions about the compressor and so cycle off-design behaviour when subject to inevitable temperature increases that result from seasonal variations in the heat sink temperature. This publication reports the numerical investigation of such an issue that has been performed using the Plant Dynamics Code (ANL, USA), the cycle being optimised for the next French SFR, ASTRID (1500 MW{sub th}), as a test-case. On design, the net plant efficiency is 42.2% for a high pressure (25 MPa) turbine with an inlet temperature of 515 °C and considering a cycle low temperature of 35 °C. The off-design cycle behaviour is studied based on preliminary designs for the main components and assuming the use of a fixed heat sink flow rate. First results obtained using a common fixed shaft speed for all turbomachines, without any other active control, show no stability issues and roughly constant density (and volumetric flow rate) at the main compressor inlet for the range of heat sink temperature considered (21–40 °C). This occurs because the new stationary states are found without requiring a significant shift of mass to the higher pressure level, meaning the

  16. Modelling Heat Exchangers for Domestic Boilers

    Directory of Open Access Journals (Sweden)

    S. F. C. F. Teixeira

    2000-01-01

    Full Text Available In the present paper the thermal behaviour of fin-tube heat exchangers is modeled. Particular attention has been given to the plate fins. The heat fluxes in the fins are described using a finite volume technique to discretize the energy equation. The thermal interactions with the water in the tubes and the surrounding air are treated as external boundaries, using appropriate relationships for forced convection in pipes and flat plates. The numerical results are presented in terms of dimensionless numbers (Fourier, Biot and geometric ratios which are found to be representative for this particular geometry. Furthermore, the effect of thermal gradients along the fin surface upon the fin efficiency is investigated. Based on a differential model for the heat balances, design charts have been developed for the thermal analysis of heat exchangers.

  17. Model-Free Adaptive Heating Process Control

    OpenAIRE

    Ivana LUKÁČOVÁ; Piteľ, Ján

    2009-01-01

    The aim of this paper is to analyze the dynamic behaviour of a Model-Free Adaptive (MFA) heating process control. The MFA controller is designed as three layer neural network with proportional element. The method of backward propagation of errors was used for neural network training. Visualization and training of the artificial neural network was executed by Netlab in Matlab environment. Simulation of the MFA heating process control with outdoor temperature compensation has proved better resu...

  18. VISCOELASTIC MODELS OF TIDALLY HEATED EXOMOONS

    Energy Technology Data Exchange (ETDEWEB)

    Dobos, Vera [Konkoly Thege Miklos Astronomical Institute, Research Centre of Astronomy and Earth Sciences, Hungarian Academy of Sciences, H-1121 Konkoly Thege Miklós út 15-17, Budapest (Hungary); Turner, Edwin L., E-mail: dobos@konkoly.hu [Department of Astrophysical Sciences, Princeton University, 08544, 4 Ivy Lane, Peyton Hall, Princeton, NJ (United States)

    2015-05-01

    Tidal heating of exomoons may play a key role in their habitability, since the elevated temperature can melt the ice on the body even without significant solar radiation. The possibility of life has been intensely studied on solar system moons such as Europa or Enceladus where the surface ice layer covers a tidally heated water ocean. Tidal forces may be even stronger in extrasolar systems, depending on the properties of the moon and its orbit. To study the tidally heated surface temperature of exomoons, we used a viscoelastic model for the first time. This model is more realistic than the widely used, so-called fixed Q models because it takes into account the temperature dependence of the tidal heat flux and the melting of the inner material. Using this model, we introduced the circumplanetary Tidal Temperate Zone (TTZ), which strongly depends on the orbital period of the moon and less on its radius. We compared the results with the fixed Q model and investigated the statistical volume of the TTZ using both models. We have found that the viscoelastic model predicts 2.8 times more exomoons in the TTZ with orbital periods between 0.1 and 3.5 days than the fixed Q model for plausible distributions of physical and orbital parameters. The viscoelastic model provides more promising results in terms of habitability because the inner melting of the body moderates the surface temperature, acting like a thermostat.

  19. Numerical Modeling of Ablation Heat Transfer

    Science.gov (United States)

    Ewing, Mark E.; Laker, Travis S.; Walker, David T.

    2013-01-01

    A unique numerical method has been developed for solving one-dimensional ablation heat transfer problems. This paper provides a comprehensive description of the method, along with detailed derivations of the governing equations. This methodology supports solutions for traditional ablation modeling including such effects as heat transfer, material decomposition, pyrolysis gas permeation and heat exchange, and thermochemical surface erosion. The numerical scheme utilizes a control-volume approach with a variable grid to account for surface movement. This method directly supports implementation of nontraditional models such as material swelling and mechanical erosion, extending capabilities for modeling complex ablation phenomena. Verifications of the numerical implementation are provided using analytical solutions, code comparisons, and the method of manufactured solutions. These verifications are used to demonstrate solution accuracy and proper error convergence rates. A simple demonstration of a mechanical erosion (spallation) model is also provided to illustrate the unique capabilities of the method.

  20. In-Cylinder Heat Transfer Modelling

    Directory of Open Access Journals (Sweden)

    Žák Zdeněk

    2016-12-01

    Full Text Available The goal of the paper is to discuss specific features of the in-cylinder heat transfer calculation based on widely used empirical formulas. The potential of in-house codes compared with commercially available software packages is presented. The principles of user models in the GT-SUITE environment are also explained. The results of calibrated models are briefly discussed.

  1. Design of STM32-based automatic monitor for dust on air conditioning heat sink%基于STM32的空调散热片粉尘自动监测仪的设计

    Institute of Scientific and Technical Information of China (English)

    顾芳; 付洋; 张仙玲; 曹骏; 杨娟; 陈子煊; 管靓; 张加宏

    2014-01-01

    An ultra-low-power high-precision automatic dust monitor was designed and implemented to accurately detect dust on the air conditioning heat sink. The system is composed of ARM processor,photoelectric sensor array module,weak sig-nal processing circuit,analog-digital conversion circuits,LCD touch screen display and input module,sound and light alarm system,relay switch control circuit,clock module and serial communication module. Taking STM32 microprocessor as a master controller,the differential detection for dust on the air conditioning heat sink is executed by the pulse-driving photoelectric sen-sor array. The low-noise AD7195 ADC excited by AD is used to convert the amplified and filtered voltage signals into digital sig-nals. The microprocessor is employed to analyze and process the received digital signals,which can generate the monitoring re-sults displayed by LCD and the sound-light alarm,forcibly close air conditioning,and remind the user promptly that they have to clean the air conditioning heat sink. The practical application shows that the intelligent automatic dust monitor for air condi-tioning heat sink can effectively and precisely achieve real-time display,optoelectronic alarm,PC communications and other functions. It can be used to monitor various types of air conditioning heat sink,and has a strong practical value.%为了对空调散热片上的粉尘进行准确检测,设计并实现了一种超低功耗高精度粉尘自动监测仪。该系统由ARM处理器、阵列式光电传感器模块、微弱信号调理电路、模/数转换电路、触摸屏液晶显示及输入模块、声光报警系统、继电器开关控制电路、时钟模块以及串口通信模块构成。以STM32微处理器为主控,通过脉冲驱动阵列式光电传感器对空调散热片粉尘进行差分检测,并利用交流激励低噪声AD7195模数转换器将经过放大滤波处理后的电压信号转换成数字量。微处理器接受数字量后进行

  2. Heat and Moisture Transport in Unsaturated Porous Media -- A Coupled Model in Terms of Chemical Potential

    CERN Document Server

    Sullivan, Eric

    2013-01-01

    Transport phenomena in porous media are commonplace in our daily lives. Examples and applications include heat and moisture transport in soils, baking and drying of food stuffs, curing of cement, and evaporation of fuels in wild fires. Of particular interest to this study are heat and moisture transport in unsaturated soils. Historically, mathematical models for these processes are derived by coupling classical Darcy's, Fourier's, and Fick's laws with volume averaged conservation of mass and energy and empirically based source and sink terms. Recent experimental and mathematical research has proposed modifications and suggested limitations in these classical equations. The primary goal of this thesis is to derive a thermodynamically consistent system of equations for heat and moisture transport in terms of the chemical potential that addresses some of these limitations. The physical processes of interest are primarily diffusive in nature and, for that reason, we focus on using the macroscale chemical potentia...

  3. Heat Pump Clothes Dryer Model Development

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Bo [ORNL

    2016-01-01

    A heat pump clothes dryer (HPCD) is an innovative appliance that uses a vapor compression system to dry clothes. Air circulates in a closed loop through the drum, so no vent is required. The condenser heats air to evaporate moisture out of the clothes, and the evaporator condenses water out of the air stream. As a result, the HPCD can achieve 50% energy savings compared to a conventional electric resistance dryer. We developed a physics-based, quasi-steady-state HPCD system model with detailed heat exchanger and compressor models. In a novel approach, we applied a heat and mass transfer effectiveness model to simulate the drying process of the clothes load in the drum. The system model is able to simulate the inherently transient HPCD drying process, to size components, and to reveal trends in key variables (e.g. compressor discharge temperature, power consumption, required drying time, etc.) The system model was calibrated using experimental data on a prototype HPCD. In the paper, the modeling method is introduced, and the model predictions are compared with experimental data measured on a prototype HPCD.

  4. Tidally Heated Terrestrial Exoplanets: Viscoelastic Response Models

    CERN Document Server

    Henning, Wade G; Sasselov, Dimitar D; 10.1088/0004-637X/707/2/1000

    2009-01-01

    Tidal friction in exoplanet systems, driven by orbits that allow for durable nonzero eccentricities at short heliocentric periods, can generate internal heating far in excess of the conditions observed in our own solar system. Secular perturbations or a notional 2:1 resonance between a Hot Earth and Hot Jupiter can be used as a baseline to consider the thermal evolution of convecting bodies subject to strong viscoelastic tidal heating. We compare results first from simple models using a fixed Quality factor and Love number, and then for three different viscoelastic rheologies: the Maxwell body, the Standard Anelastic Solid, and the Burgers body. The SAS and Burgers models are shown to alter the potential for extreme tidal heating by introducing the possibility of new equilibria and multiple response peaks. We find that tidal heating tends to exceed radionuclide heating at periods below 10-30 days, and exceed insolation only below 1-2 days. Extreme cases produce enough tidal heat to initiate global-scale parti...

  5. Multidimensional numerical modeling of heat exchangers

    Science.gov (United States)

    Sha, W. T.; Yang, C. I.; Kao, T. T.; Cho, S. M.

    A comprehensive, multidimensional, thermal-hydraulic model is developed for the analysis of shell-and-tube heat exchangers for liquid-metal services. For the shellside fluid, the conservation equations of mass, momentum, and energy for continuum fluids are modified using the concept of porosity, surface permeability and distributed resistance to account for the blockage effects due to the presence of heat-transfer tubes, flow baffles/shrouds, the support plates, etc. On the tubeside, the heat-transfer tubes are connected in parallel between the inlet and outlet plenums, and tubeside flow distribution is calculated based on the plenum-to-plenum pressure difference being equal for all tubes. It is assumed that the fluid remains single-phase on the shell side and may undergo phase-change on the tube side, thereby simulating the conditions of Liquid Metal Fast Breeder Reactor (LMFBR) intermediate heat exchangers (IHX) and steam generators (SG).

  6. Heat treatment modelling using strongly continuous semigroups.

    Science.gov (United States)

    Malek, Alaeddin; Abbasi, Ghasem

    2015-07-01

    In this paper, mathematical simulation of bioheat transfer phenomenon within the living tissue is studied using the thermal wave model. Three different sources that have therapeutic applications in laser surgery, cornea laser heating and cancer hyperthermia are used. Spatial and transient heating source, on the skin surface and inside biological body, are considered by using step heating, sinusoidal and constant heating. Mathematical simulations describe a non-Fourier process. Exact solution for the corresponding non-Fourier bioheat transfer model that has time lag in its heat flux is proposed using strongly continuous semigroup theory in conjunction with variational methods. The abstract differential equation, infinitesimal generator and corresponding strongly continuous semigroup are proposed. It is proved that related semigroup is a contraction semigroup and is exponentially stable. Mathematical simulations are done for skin burning and thermal therapy in 10 different models and the related solutions are depicted. Unlike numerical solutions, which suffer from uncertain physical results, proposed analytical solutions do not have unwanted numerical oscillations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. The dynamic of annual carbon allocation to wood in European forests is consistent with a combined source-sink limitation of growth: implications for modelling

    Science.gov (United States)

    Guillemot, J.; Martin-StPaul, N. K.; Dufrêne, E.; François, C.; Soudani, K.; Ourcival, J. M.; Delpierre, N.

    2015-02-01

    The extent to which forest growth is limited by carbon (C) supply (source control) or by cambial activity (sink control) will condition the response of trees to global changes. However, the physiological processes responsible for the limitation of forest growth are still under debate. The aim of this study is to evaluate the key drivers of the annual carbon allocation to wood along large soil and climate regional gradients in five tree species representative of the main European forest biomes (Fagus sylvatica, Quercus petraea, Quercus ilex, Quercus robur and Picea abies). Combining field measurements and process-based simulations at 49 sites (931 site-years), we assessed the stand biomass growth dependences at both inter-site and inter-annual scales. Specifically, the relative influence of forest C balance (source control), direct environmental control (water and temperature controls of sink activity) and allocation adjustments related to age, past climate conditions, competition intensity and soil nutrient availability on growth were quantified. The inter-site variability in stand C allocation to wood was predominantly driven by an age-related decline. The direct control of temperature or water stress on sink activity (i.e. independently from their effects on C supply) exerted a strong influence on the annual stand woody growth in all the species considered, including deciduous temperate species. The lagged effect of the past environment conditions was a significant driver of the annual C allocation to wood. Carbon supply appeared to strongly limit growth only in deciduous temperate species. We provide an evaluation of the spatio-temporal dynamics of annual carbon allocation to wood in European forests. Our study supports the premise that European forest growth is under a complex control including both source and sink limitations. The relative influences of the different growth drivers strongly vary across years and spatial ecological gradients. We suggest a

  8. Modelling of Thermal Behavior of Borehole Heat Exchangers of Geothermal Heat Pump Heating Systems

    Directory of Open Access Journals (Sweden)

    Gornov V.F.

    2016-01-01

    Full Text Available This article reports results of comparing the accuracy of the software package “INSOLAR.GSHP.12”, modeling non-steady thermal behavior of geothermal heat pump heating systems (GHCS and of the similar model “conventional” using finite difference methods for solving spatial non-steady problems of heat conductivity. The software package is based on the method of formulating mathematical models of thermal behavior of ground low-grade heat collection systems developed by INSOLAR group of companies. Equations of mathematical model of spatial non-steady thermal behavior of ground mass of low-grade heat collection system obtained by the developed method have been solved analytically that significantly reduced computing time spent by the software complex “INSOLAR.GSHP.12” for calculations. The method allows to turn aside difficulties associated with information uncertainty of mathematical models of the ground thermal behavior and approximation of external factors affecting the ground. Use of experimentally obtained information about the ground natural thermal behavior in the software package allows to partially take into account the whole complex of factors (such as availability of groundwater, their velocity and thermal behavior, structure and arrangement of ground layers, the Earth’s thermal background, precipitation, phase transformations of moisture in the pore space, and more, significantly influencing the formation of thermal behavior of the ground mass of a low-grade geothermal heat collection system. Numerical experiments presented in the article confirmed the high convergence of the results obtained through the software package “INSOLAR.GSHP.12” with solutions obtained by conventional finite-difference methods.

  9. Viscoelastic Models of Tidally Heated Exomoons

    CERN Document Server

    Dobos, Vera

    2015-01-01

    Tidal heating of exomoons may play a key role in their habitability, since the elevated temperature can melt the ice on the body even without significant solar radiation. The possibility of life is intensely studied on Solar System moons such as Europa or Enceladus, where the surface ice layer covers tidally heated water ocean. Tidal forces may be even stronger in extrasolar systems, depending on the properties of the moon and its orbit. For studying the tidally heated surface temperature of exomoons, we used a viscoelastic model for the first time. This model is more realistic than the widely used, so-called fixed Q models, because it takes into account the temperature dependency of the tidal heat flux, and the melting of the inner material. With the use of this model we introduced the circumplanetary Tidal Temperate Zone (TTZ), that strongly depends on the orbital period of the moon, and less on its radius. We compared the results with the fixed Q model and investigated the statistical volume of the TTZ usi...

  10. A one-dimensional heat transfer model for parallel-plate thermoacoustic heat exchangers

    NARCIS (Netherlands)

    de Jong, Anne; Wijnant, Ysbrand H.; de Boer, Andries

    2014-01-01

    A one-dimensional (1D) laminar oscillating flow heat transfer model is derived and applied to parallel-plate thermoacoustic heat exchangers. The model can be used to estimate the heat transfer from the solid wall to the acoustic medium, which is required for the heat input/output of thermoacoustic

  11. Analytical solution to Terzaghi's consolidation model considering local source/sink term%存在局部源汇的Terzaghi固结模型解析

    Institute of Scientific and Technical Information of China (English)

    仇玉良; 丁洲祥

    2012-01-01

    The traditional Terzaghi's consolidation theory model usually considers the consolidation process caused only by surcharge, ignoring the effect of source/sink term which occurs during vacuum well dewatering and artificial ground water recharge, etc. Based on the Terzaghi's model and introducing discontinuous first derivative to take account of local source/sink term, the analytical solution to Terzaghi's source/sink-caused consolidation is put forward using the method of variable separation. Through a case study, the excess pore pressure distribution in soil foundation is studied under the condition of double-drainage and constant source/sink. A comparison is made to analyze the difference between the degrees of consolidation produced respectively by source/sink and surcharge. The results show that the location and the intensity of local source/sink, and coefficient of consolidation play a major role in the development of the excess pore pressure; the distribution curve of the excess pore pressure is characterized by the upper and lower segments divided by source/sink location. The proposed solution can be applied to such source/sink-induced engineering practice as ground settlement and upheaval, etc.%经典Terzaghi固结理论模型通常仅考虑外荷载变化引起的土体固结,而没有考虑工程中真空井点降水、回灌等问题引出的局部源汇对土体固结过程的影响。为此在Terzaghi模型基础上,采用一阶导数的不连续性引入局部源汇条件,然后按分离变量法导出了存在局部源汇的Terzaghi固结解析解。结合算例简要分析了定常源汇情况下双面排水地基中超静孔压的分布规律,以及局部源汇引起的固结度与传统的荷载引起的固结度的差异规律。结果表明:源汇点埋深、源汇强度和土层固结系数对负超静孔压的发展规律具有重要影响;超静孔压的空间分布形态以源汇点为界分为上下两段曲线。此可用于分析

  12. Inverse modeling of CO2 sources and sinks using satellite observations of CO2 from TES and surface flask measurements

    Directory of Open Access Journals (Sweden)

    C. A. M. Brenninkmeijer

    2011-02-01

    Full Text Available We infer CO2 surface fluxes using satellite observations of mid-tropospheric CO2 from the Tropospheric Emission Spectrometer (TES and measurements of CO2 from surface flasks in a time-independent inversion analysis based on the GEOS-Chem model. Using TES CO2 observations over oceans, spanning 40° S–40° N, we find that the horizontal and vertical coverage of the TES and flask data are complementary. This complementarity is demonstrated by combining the datasets in a joint inversion, which provides better constraints than from either dataset alone, when a posteriori CO2 distributions are evaluated against independent ship and aircraft CO2 data. In particular, the joint inversion offers improved constraints in the tropics where surface measurements are sparse, such as the tropical forests of South America, which the joint inversion suggests was a weak sink of −0.17 ± 0.20 Pg C in 2006. Aggregating the annual surface-to-atmosphere fluxes from the joint inversion yields −1.13 ± 0.21 Pg C for the global ocean, −2.77 ± 0.20 Pg C for the global land biosphere and −3.90 ± 0.29 Pg C for the total global natural flux (defined as the sum of all biospheric, oceanic, and biomass burning contributions but excluding CO2 emissions from fossil fuel combustion. These global ocean, global land and total global fluxes are shown to be in the range of other inversion results for 2006. To achieve these results, a latitude dependent bias in TES CO2 in the Southern Hemisphere was assessed and corrected using aircraft flask data, and we demonstrate that our results have low sensitivity to variations in the bias correction approach. Overall, this analysis suggests that future carbon data assimilation systems can benefit by integrating in situ and satellite observations of CO2 and that the vertical information provided by satellite observations of mid-tropospheric CO2 combined with measurements of surface CO2, provides an important additional constraint for

  13. Characterization and modeling of the heat source

    Energy Technology Data Exchange (ETDEWEB)

    Glickstein, S.S.; Friedman, E.

    1993-10-01

    A description of the input energy source is basic to any numerical modeling formulation designed to predict the outcome of the welding process. The source is fundamental and unique to each joining process. The resultant output of any numerical model will be affected by the initial description of both the magnitude and distribution of the input energy of the heat source. Thus, calculated weld shape, residual stresses, weld distortion, cooling rates, metallurgical structure, material changes due to excessive temperatures and potential weld defects are all influenced by the initial characterization of the heat source. Understandings of both the physics and the mathematical formulation of these sources are essential for describing the input energy distribution. This section provides a brief review of the physical phenomena that influence the input energy distributions and discusses several different models of heat sources that have been used in simulating arc welding, high energy density welding and resistance welding processes. Both simplified and detailed models of the heat source are discussed.

  14. MODEL OF LASER-TIG HYBRID WELDING HEAT SOURCE

    Institute of Scientific and Technical Information of China (English)

    Chen Yanbin; Li Liqun; Feng Xiaosong; Fang Junfei

    2004-01-01

    The welding mechanism of laser-TIG hybrid welding process is analyzed. With the variation of arc current, the welding process is divided into two patterns: deep-penetration welding and heat conductive welding. The heat flow model of hybrid welding is presented. As to deep-penetration welding, the heat source includes a surface heat flux and a volume heat flux. The heat source of heat conductive welding is composed of two Gaussian distribute surface heat sources. With this heat source model, a temperature field is calculated. The finite element code MARC is employed for this purpose. The calculation results show a good agreement with the experimental data.

  15. Modelling heating effects in cryocooled protein crystals

    CERN Document Server

    Nicholson, J; Fayz, K; Fell, B; Garman, E

    2001-01-01

    With the application of intense X-ray beams from third generation synchrotron sources, damage to cryocooled macromolecular crystals is being observed more commonly . In order to fully utilize synchrotron facilities now available for studying biological crystals, it is essential to understand the processes involved in radiation damage and beam heating so that, if possible, action can be taken to slow the rate of damage. Finite Element Analysis (FEA) has been applied to model the heating effects of X-rays on cryocooled protein crystals, and to compare the relative cooling efficiencies of nitrogen and helium.

  16. Modeling of Dielectric Heating within Lyophilization Process

    Directory of Open Access Journals (Sweden)

    Jan Kyncl

    2014-01-01

    Full Text Available A process of lyophilization of paper books is modeled. The process of drying is controlled by a dielectric heating system. From the physical viewpoint, the task represents a 2D coupled problem described by two partial differential equations for the electric and temperature fields. The material parameters are supposed to be temperature-dependent functions. The continuous mathematical model is solved numerically. The methodology is illustrated with some examples whose results are discussed.

  17. Heat flux modulation in domino dynamo model

    CERN Document Server

    Reshetnyak, Maxim

    2012-01-01

    Using domino dynamo model we show how variations of the heat flux at the core-mantle boundary change frequency of geomagnetic field reversals. In fact, we are able to demonstrate effect known from the modern 3D planetary dynamo models using ensemble of the interacting spins, which obey equations of the Langevin-type with a random force. We also consider applications to the giant- planets and offer explanations of some specific episodes of the geomagnetic field in the past.

  18. How Capillary Rafts Sink

    CERN Document Server

    Protiere, S; Aristoff, J; Stone, H

    2010-01-01

    We present a fluid dynamics video showing how capillary rafts sink. Small objects trapped at an interface are very common in Nature (insects walking on water, ant rafts, bubbles or pollen at the water-air interface, membranes...) and are found in many multiphase industrial processes. Thanks to Archimedes principle we can easily predict whether an object sinks or floats. But what happens when several small particles are placed at an interface between two fluids. In this case surface tension also plays an important role. These particles self-assemble by capillarity and thus form what we call a "capillary raft". We show how such capillary rafts sink for varying sizes of particles and define how this parameter affects the sinking process.

  19. Heat transfer model for quenching by submerging

    Energy Technology Data Exchange (ETDEWEB)

    Passarella, D N; Varas, F [Departamento de Matematica Aplicada II, E.T.S. de Ing. de Telecomunicacion, Universidad de Vigo, Campus Marcosende, 36310 Vigo (Spain); MartIn, E B, E-mail: diego@dma.uvigo.es, E-mail: fvaras@uvigo.es, E-mail: emortega@uvigo.es [Area de Mecanica de Fluidos, E.T.S. de Ing. Industriales, Universidad de Vigo, Campus Marcosende, 36310 Vigo (Spain)

    2011-05-01

    In quenching by submerging the workpiece is cooled due to vaporization, convective flow and interaction of both mechanisms. The dynamics of these phenomena is very complex and the corresponding heat fluxes are strongly dependent on local flow variables such as velocity of fluid and vapor fraction. This local dependence may produce very different cooling rates along the piece, responsible for inappropriate metallurgical transformations, variability of material properties and residual stresses. In order to obtain an accurate description of cooling during quenching, a mathematical model of heat transfer is presented here. The model is based on the drift-flux mixture-model for multiphase flows, including an equation of conservation of energy for the liquid phase and specific boundary conditions that account for evaporation and presence of vapor phase on the surface of the piece. The model was implemented on Comsol Multiphysics software. Generation of appropriate initial and boundary conditions, as well as numerical resolution details, is briefly discussed. To test the model, a simple flow condition was analyzed. The effect of vapor fraction on heat transfer is assessed. The presence of the typical vapor blanket and its collapse can be recovered by the model, and its effect on the cooling rates on different parts of the piece is analyzed. Comparisons between numerical results and data from literature are made.

  20. Using L-systems for modeling source-sink interactions, architecture and physiology of growing trees: the L-PEACH model.

    Science.gov (United States)

    Allen, M T; Prusinkiewicz, P; DeJong, T M

    2005-06-01

    Functional-structural plant models simulate the development of plant structure, taking into account plant physiology and environmental factors. The L-PEACH model is based on the development of peach trees. It demonstrates the usefulness of L-systems in constructing functional-structural models. L-PEACH uses L-systems both to simulate the development of tree structure and to solve differential equations for carbohydrate flow and allocation. New L-system-based algorithms are devised for simulating the behavior of dynamically changing structures made of hundreds of interacting, time-varying, nonlinear components. L-PEACH incorporates a carbon-allocation model driven by source-sink interactions between tree components. Storage and mobilization of carbohydrates during the annual life cycle of a tree are taken into account. Carbohydrate production in the leaves is simulated based on the availability of water and light. Apices, internodes, leaves and fruit grow according to the resulting local carbohydrate supply. L-PEACH outputs an animated three-dimensional visual representation of the growing tree and user-specified statistics that characterize selected stages of plant development. The model is applied to simulate a tree's response to fruit thinning and changes in water stress. L-PEACH may be used to assist in horticultural decision-making processes after being calibrated to specific trees.

  1. A simplified heat pump model for use in solar plus heat pump system simulation studies

    OpenAIRE

    Perers, Bengt; Anderssen, Elsa; Nordman, Roger; Kovacs, Peter

    2012-01-01

    Solar plus heat pump systems are often very complex in design, with sometimes special heat pump arrangements and control. Therefore detailed heat pump models can give very slow system simulations and still not so accurate results compared to real heat pump performance in a system. The idea here is to start from a standard measured performance map of test points for a heat pump according to EN 14825 and then determine characteristic parameters for a simplified correlation based model of the he...

  2. MHD Mixed Convection Flow from a Vertical Plate Embedded in a Saturated Porous Medium with Melting and Heat Source or Sink

    Directory of Open Access Journals (Sweden)

    M.V.D.N.S.Madhavi

    2017-03-01

    Full Text Available We analysed in this paper the problem of MHD mixed convection flow from a vertical plate embedded in a saturated porous medium in the presence of melting, thermal dispersion, radiation and heat absorption or generation effects for aiding and opposing external flows. Similarity solution for the governing equations is obtained for the flow equations in steady state. The equations are numerically solved by Runge-Kutta fourth order method coupled with shooting technique. The effect of melting and heat absorption or generation under different parametric conditions on velocity, temperature and heat transfer was analyzed for both aiding and opposing flows

  3. Heat transfer modeling an inductive approach

    CERN Document Server

    Sidebotham, George

    2015-01-01

    This innovative text emphasizes a "less-is-more" approach to modeling complicated systems such as heat transfer by treating them first as "1-node lumped models" that yield simple closed-form solutions. The author develops numerical techniques for students to obtain more detail, but also trains them to use the techniques only when simpler approaches fail. Covering all essential methods offered in traditional texts, but with a different order, Professor Sidebotham stresses inductive thinking and problem solving as well as a constructive understanding of modern, computer-based practice. Readers learn to develop their own code in the context of the material, rather than just how to use packaged software, offering a deeper, intrinsic grasp behind models of heat transfer. Developed from over twenty-five years of lecture notes to teach students of mechanical and chemical engineering at The Cooper Union for the Advancement of Science and Art, the book is ideal for students and practitioners across engineering discipl...

  4. 3D characterization of thermal fatigue damage in monofilament reinforced copper for heat sink applications in fusion reactor systems; 3D-Charakterisierung von thermischer Ermuedungsschaedigung in Monofilament verstaerktem Kupfer zur Anwendung als Waermeleiter in Kernfusionsreaktorsystemen

    Energy Technology Data Exchange (ETDEWEB)

    Schoebel, Michael; Degischer, H. Peter [Vienna Univ. of Technology (Austria). Inst. of Materials Science and Technology; Brendel, Annegret [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany); Harrer, Bernhard [Upper Austria Univ. of Applied Sciences, Wels (Austria); Di Michiel, Marco [European Synchrotron Radiation Facility (ESRF), 38 - Grenoble (France)

    2012-07-01

    Monofilament reinforced metals (MFRM) are developed as high temperature heat sink materials for fusion reactor applications. These composites combine the high thermal conductivity (TC) of a Cu matrix with low thermal expansion (CTE) of SiC or W filaments. The CTE mismatch between matrix and reinforcement lead to high micro stresses under operation conditions. Stress induced thermal fatigue damage such as interface delamination and fiber/matrix damage degrades the thermal properties of these composites. Different interface designs are developed for SiC as well as W filaments to improve bonding strength and increase the long term stability. Conventional as well as synchrotron tomography was applied on different MFRMs to characterize thermal fatigue damage and its propagation before, during and after thermal cycling. (orig.)

  5. Heat Transfer Model for Hot Air Balloons

    Science.gov (United States)

    Llado-Gambin, Adriana

    A heat transfer model and analysis for hot air balloons is presented in this work, backed with a flow simulation using SolidWorks. The objective is to understand the major heat losses in the balloon and to identify the parameters that affect most its flight performance. Results show that more than 70% of the heat losses are due to the emitted radiation from the balloon envelope and that convection losses represent around 20% of the total. A simulated heating source is also included in the modeling based on typical thermal input from a balloon propane burner. The burner duty cycle to keep a constant altitude can vary from 10% to 28% depending on the atmospheric conditions, and the ambient temperature is the parameter that most affects the total thermal input needed. The simulation and analysis also predict that the gas temperature inside the balloon decreases at a rate of -0.25 K/s when there is no burner activity, and it increases at a rate of +1 K/s when the balloon pilot operates the burner. The results were compared to actual flight data and they show very good agreement indicating that the major physical processes responsible for balloon performance aloft are accurately captured in the simulation.

  6. Borehole model for simulation transport geothermal heat with heat pipe system and with forced circulation of heat carrier

    Directory of Open Access Journals (Sweden)

    Lenhard Richard

    2012-04-01

    Full Text Available In the call OPVaV-2008/2.2/01-SORO Operational Programme Research and Development - knowledge and technology transfer from research and development into practice (ITMS-26220220057, whose strategic goal is "Device to use low-potential geothermal heat without forced circulation of heat carrier deep in the well "in the Department of Energy laboratory techniques to construct a simulator of transport low potential of geothermal energy in comparative test-drilling in the laboratory. The article describes a device that was designed as a scale model of two deep boreholes each of which withdraws the earth's heat by heat transfer technology and heat carrier. Device using forced circulation of heat carrier will respond in the construction of equipment currently used to transport heat from deep borehole. As the heat carrier will be used CO2. Facilities without using forced circulation of heat carrier, the new technology, which will be used as heat carrier ammonia (NH3.

  7. Nanoflare heating model for collisionless solar corona

    Indian Academy of Sciences (India)

    U L VISAKH KUMAR; BILIN SUSAN VARGHESE; P J KURIAN

    2017-02-01

    The problem of coronal heating remains one of the greatest unresolved problems in space science. Magnetic reconnection plays a significant role in heating the solar corona. When two oppositely directed magnetic fields come closer to form a current sheet, the current density of the plasma increases due to which magnetic reconnection and conversion of magnetic energy into thermal energy takes place. The present paper deals with a model for reconnection occurring in the solar corona under steady state in collisionless regime. The model predicts that reconnection time in the solar corona varies inversely with the cube of magnetic field and varies directly with the Lindquist number. Our analysis shows that reconnections are occurring within a time interval of600 s in the solar corona, producing nanoflares in the energy range $10^{21}–10^{23}$ erg/s which matches with Yohkoh X-ray observations.

  8. Nanoflare heating model for collisionless solar corona

    Science.gov (United States)

    Visakh Kumar, U. L.; Varghese, Bilin Susan; Kurian, P. J.

    2017-02-01

    The problem of coronal heating remains one of the greatest unresolved problems in space science. Magnetic reconnection plays a significant role in heating the solar corona. When two oppositely directed magnetic fields come closer to form a current sheet, the current density of the plasma increases due to which magnetic reconnection and conversion of magnetic energy into thermal energy takes place. The present paper deals with a model for reconnection occurring in the solar corona under steady state in collisionless regime. The model predicts that reconnection time in the solar corona varies inversely with the cube of magnetic field and varies directly with the Lindquist number. Our analysis shows that reconnections are occurring within a time interval of 600 s in the solar corona, producing nanoflares in the energy range 10 21-10 23 erg /s which matches with Yohkoh X-ray observations.

  9. Vertical eddy heat fluxes from model simulations

    Science.gov (United States)

    Stone, Peter H.; Yao, Mao-Sung

    1991-01-01

    Vertical eddy fluxes of heat are calculated from simulations with a variety of climate models, ranging from three-dimensional GCMs to a one-dimensional radiative-convective model. The models' total eddy flux in the lower troposphere is found to agree well with Hantel's analysis from observations, but in the mid and upper troposphere the models' values are systematically 30 percent to 50 percent smaller than Hantel's. The models nevertheless give very good results for the global temperature profile, and the reason for the discrepancy is unclear. The model results show that the manner in which the vertical eddy flux is carried is very sensitive to the parameterization of moist convection. When a moist adiabatic adjustment scheme with a critical value for the relative humidity of 100 percent is used, the vertical transports by large-scale eddies and small-scale convection on a global basis are equal: but when a penetrative convection scheme is used, the large-scale flux on a global basis is only about one-fifth to one-fourth the small-scale flux. Comparison of the model results with observations indicates that the results with the latter scheme are more realistic. However, even in this case, in mid and high latitudes the large and small-scale vertical eddy fluxes of heat are comparable in magnitude above the planetary boundary layer.

  10. Heat transfer in Rockwool modelling and method of measurement. Modelling radiative heat transfer in fibrous materials

    Energy Technology Data Exchange (ETDEWEB)

    Dyrboel, Susanne

    1998-05-01

    Fibrous materials are some of the most widely used materials for thermal insulation. In this project the focus of interest has been on fibrous materials for building application. Interest in improving the thermal properties of insulation materials is increasing as legislation is being tightened to reduce the overall energy consumption. A knowledge of the individual heat transfer mechanisms - whereby heat is transferred within a particular material is an essential tool to improve continuously the thermal properties of the material. Heat is transferred in fibrous materials by four different transfer mechanisms: conduction through air, conduction through fibres, thermal radiation and convection. In a particular temperature range the conduction through air can be regarded as a constant, and conduction through fibres is an insignificant part of the total heat transfer. Radiation, however, constitutes 25-40% of the total heat transfer in light fibrous materials. In Denmark and a number of other countries convection in fibrous materials is considered as non-existent when calculating heat transmission as well as when designing building structures. Two heat transfer mechanisms have been the focus of the current project: radiation heat transfer and convection. The radiation analysis serves to develop a model that can be used in further work to gain a wider knowledge of the way in which the morphology of the fibrous material, i.e. fibre diameter distribution, fibre orientation distribution etc., influences the radiation heat transfer under different conditions. The convection investigation serves to examine whether considering convection as non-existent is a fair assumption to use in present and future building structures. The assumption applied in practically is that convection makes a notable difference only in very thick insulation, at external temperatures below -20 deg. C, and at very low densities. For lager thickness dimensions the resulting heat transfer through the

  11. Climatic features of atmospheric heat source/sink over theQinghai-Xizang Plateau in 35 years and its relation torainfall in China

    Institute of Scientific and Technical Information of China (English)

    ZHAO; Ping

    2001-01-01

    [1]Yeh, T. C., Gao, Y. X., The Meteorology of the Qinghai-Xizang Plateau (in Chinese), Beijing: Science Press, 1979, 2-59.[2]Ji, G. L., Yao, L. C., Yuan, F. M. et al., Characteristics of surface and atmospheric heating fields over Qinghai-Xizang Plateau during the winter in 1982, Science in China, Ser. B, 1986, 29(8): 876-888.[3]Chen. L. X., Reiter, E. R., Feng, Z. Q., The atmospheric heat source over the Tibetan plateau: May-August 1979. Mon.Wea. Rev., 1985, 113(10): 1771-1790.[4]Yanai, M., Li, C., Song, Z. S., Seasonal heating of the Tibetan plateau and its effects on the evolution of the Asian summer monsoon, Journal of the Meteorological Society of Japan, 1992, 70(1): 319-350.[5]Zhao, P., Chen, L. X., The climate characteristics of surface turbulent exchange coefficients and surface heat source over the Qinghai-Tibetan plateau, Acta Meteorologica Sinica, 2000, 14(1): 13-29.[6]Zhao, P., Chen, L. X., The calculation of solar albedo and radiation balance and the analysis of their climate characteristics over the Qinghai-Tibetan plateau, Advances in Atmospheric Sciences, 2000, 17(1): 140-156.[7]Fu, C. B., Wang, Q., The definition and detection of the abrupt climatic change, Scientia Atmospheria Sinica (in Chinese),1992. 16 (4): 482-493.

  12. The dynamic of the annual carbon allocation to wood in European tree species is consistent with a combined source-sink limitation of growth: implications for modelling

    Science.gov (United States)

    Guillemot, J.; Martin-StPaul, N. K.; Dufrene, E.; Francois, C.; Soudani, K.; Ourcival, J. M.; Delpierre, N.

    2015-05-01

    appeared to strongly limit growth only in temperate deciduous species. We provide an evaluation of the spatio-temporal dynamics of the annual C allocation to wood in French forests. Our study supports the premise that the growth of European tree species is subject to complex control processes that include both source and sink limitations. The relative influences of the growth drivers strongly vary with time and across spatial ecological gradients. We suggest a straightforward modelling framework with which to implement these combined forest growth limitations into terrestrial biosphere models.

  13. Analysis of frozen startup of high-temperature heat pipes and three-dimensional modeling of block-heated heat pipes

    Science.gov (United States)

    Faghri, Amir

    1991-11-01

    The use of high-temperature heat pipes has been proposed for cooling the leading edges and nose cones of re-entry vehicles, rail guns, and laser mirrors, as well as for the thermal management of future hypersonic vehicle structures. The startup behavior of high temperature heat pipes from the frozen state was investigated both numerically and experimentally for various heat loads and input locations. A high temperature sodium/stainless steel heat pipe with multiple heat sources and sinks was fabricated, processed, and tested. A numerical simulation of the transient heat pipe performance including the vapor region, wick structure, and the heat pipe wall is given. Furthermore, experimental and numerical analyses of several operating parameters of a low-temperature copper-water heat pipe under uniform circumferential heating and block heating has been performed. Finally, a numerical analysis of transient heat pipe performance including nonconventional heat pipes with nonuniform heat distributions is presented. Numerical calculations were then made for a leading edge heat pipe with localized high heat fluxes.

  14. Modeling a Cold Crucible Induction Heated Melter

    Energy Technology Data Exchange (ETDEWEB)

    Grant L. Hawkes

    2003-06-01

    FIDAP has been used to simulate melting of radioactive waste glass in a cold crucible induction heated melter. A model has been created that couples the magnetic vector potential (real and imaginary) to a transient startup of the melting process. This magnetic field is coupled to the mass, momentum, and energy equations that vary with time and position as the melt grows. The coupling occurs with the electrical conductivity of the glass as it rises above the melt temperature of the glass and heat is generated. Natural convection within the molten glass helps determine the shape of the melt as it progresses in time. An electromagnetic force is also implemented that is dependent on the electrical properties and frequency of the coil. This study shows the progression of the melt shape with time along with temperatures, power input, velocities, and magnetic vector potential. A power controller is implemented that controls the primary coil current and power.

  15. Modeling a Cold Crucible Induction Heated Melter

    Energy Technology Data Exchange (ETDEWEB)

    Hawkes, G.L.

    2003-05-09

    FIDAP has been used to simulate melting of radioactive waste glass in a cold crucible induction heated melter. A model has been created that couples the magnetic vector potential (real and imaginary) to a transient startup of the melting process. This magnetic field is coupled with mass, momentum, and energy equations that vary with time and position as the melt grows. The coupling occurs with the electrical conductivity of the glass as it rises above the melt temperature of the glass and heat is generated. Natural convection within the molten glass helps determine the shape of the melt as it progresses in time. An electromagnetic force is also implemented that is dependent on the electrical properties and frequency of the coil. This study shows the progression of the melt shape with time along with temperatures, power input, velocities, and magnetic vector potential. A power controller is implemented that controls the primary coil current and power.

  16. A one-dimensional heat transfer model for parallel-plate thermoacoustic heat exchangers.

    Science.gov (United States)

    de Jong, J A; Wijnant, Y H; de Boer, A

    2014-03-01

    A one-dimensional (1D) laminar oscillating flow heat transfer model is derived and applied to parallel-plate thermoacoustic heat exchangers. The model can be used to estimate the heat transfer from the solid wall to the acoustic medium, which is required for the heat input/output of thermoacoustic systems. The model is implementable in existing (quasi-)1D thermoacoustic codes, such as DeltaEC. Examples of generated results show good agreement with literature results. The model allows for arbitrary wave phasing; however, it is shown that the wave phasing does not significantly influence the heat transfer.

  17. Heat-pump-assisted dryer: Pt. 1; Mathematical model

    Energy Technology Data Exchange (ETDEWEB)

    Pendyala, V.R.; Devotta, S.; Patwardhan, V.S. (National Chemical Lab., Poona (India))

    1990-07-01

    A mathematical model for an integrated heat-pump-assisted dryer has been developed. The dryer has been modelled considering the heat transfer and simultaneous heat and mass transfer zones. The heat-pump heat exchangers have been modelled by writing the enthalpy balance for differential lengths considering the various zones on the air and working-fluid sides. The compressor has been described by the polytropic compression equation. The model has been used for simulating an existing system using R11 to study the effect of approach velocity of air to the evaporator and of the suction superheat on the specific energy consumption of the heat pump assisted dryer. (author).

  18. A simplified heat pump model for use in solar plus heat pump system simulation studies

    DEFF Research Database (Denmark)

    Perers, Bengt; Andersen, Elsa; Nordman, Roger

    2012-01-01

    Solar plus heat pump systems are often very complex in design, with sometimes special heat pump arrangements and control. Therefore detailed heat pump models can give very slow system simulations and still not so accurate results compared to real heat pump performance in a system. The idea here...... is to start from a standard measured performance map of test points for a heat pump according to EN 14825 and then determine characteristic parameters for a simplified correlation based model of the heat pump. By plotting heat pump test data in different ways including power input and output form and not only...... as COP, a simplified relation could be seen. By using the same methodology as in the EN 12975 QDT part in the collector test standard it could be shown that a very simple model could describe the heat pump test data very accurately, by identifying 4 parameters in the correlation equation found....

  19. A simplified heat pump model for use in solar plus heat pump system simulation studies

    DEFF Research Database (Denmark)

    Perers, Bengt; Andersen, Elsa; Nordman, Roger

    2012-01-01

    Solar plus heat pump systems are often very complex in design, with sometimes special heat pump arrangements and control. Therefore detailed heat pump models can give very slow system simulations and still not so accurate results compared to real heat pump performance in a system. The idea here...... is to start from a standard measured performance map of test points for a heat pump according to EN 14825 and then determine characteristic parameters for a simplified correlation based model of the heat pump. By plotting heat pump test data in different ways including power input and output form and not only...... as COP, a simplified relation could be seen. By using the same methodology as in the EN 12975 QDT part in the collector test standard it could be shown that a very simple model could describe the heat pump test data very accurately, by identifying 4 parameters in the correlation equation found....

  20. Verification of Conjugate Heat Transfer Models in a Closed Volume with Radiative Heat Source

    Directory of Open Access Journals (Sweden)

    Maksimov Vyacheslav I.

    2016-01-01

    Full Text Available The results of verification of mathematical model of convective-conductive heat transfer in a closed volume with a thermally conductive enclosing structures are presented. Experiments were carried out to determine the temperature of floor premises in the working conditions of radiant heating systems. Comparison of mathematical modelling of temperature fields and experiments showed their good agreement. It is concluded that the mathematical model of conjugate heat transfers in the air cavity with a heat-conducting and heat-retaining walls correspond to the real process of formation of temperature fields in premises with gas infrared heaters system.

  1. Local business models for district heat production; Kaukolaemmoen paikalliset liiketoimintamallit

    Energy Technology Data Exchange (ETDEWEB)

    Hakala, L.; Pesola, A.; Vanhanen, J.

    2012-12-15

    Local district heating business, outside large urban centers, is a profitable business in Finland, which can be practiced with several different business models. In addition to the traditional, local district heating business, local district heat production can be also based on franchising business model, on integrated service model or on different types of cooperation models, either between a local district heat producer and industrial site providing surplus heat or between a local district heat producer and a larger district heating company. Locally available wood energy is currently utilized effectively in the traditional district heating business model, in which a local entrepreneur produces heat to consumers in the local area. The franchising model is a more advanced version of the traditional district heating entrepreneurship. In this model, franchisor funds part of the investments, as well as offers centralized maintenance and fuel supply, for example. In the integrated service model, the local district heat producer offers also energy efficiency services and other value-added services, which are based on either the local district heat suppliers or his partner's expertise. In the cooperation model with industrial site, the local district heating business is based on the utilization of the surplus heat from the industrial site. In some cases, profitable operating model approach may be a district heating company outsourcing operations of one or more heating plants to a local entrepreneur. It can be concluded that all business models for district heat production (traditional district heat business model, franchising, integrated service model, cooperative model) discussed in this report can be profitable in Finnish conditions, as well for the local heat producer as for the municipality - and, above all, they produce cost-competitive heat for the end-user. All the models were seen as viable and interesting and having possibilities for expansion Finland

  2. Developing and modelling of ohmic heating for solid food products

    DEFF Research Database (Denmark)

    Feyissa, Aberham Hailu; Frosch, Stina

    such as meat and seafood is not industrially utilized yet. Therefore, the aim of the current work is to model and develop the ohmic heating technology for heating of solid meat and seafood. A 3D mathematical model of coupled heat transfer and electric field during ohmic heating of meat products has been......Heating of solid foods using the conventional technologies is time-consuming due to the fact that heat transfer is limited by internal conduction within the product. This is a big challenge to food manufactures who wish to heat the product faster to the desired core temperature and to ensure more...... uniform quality across the product. Ohmic heating is one of the novel technologies potentially solving this problem by allowing volumetric heating of the product and thereby reducing or eliminating temperature gradients within the product. However, the application of ohmic heating for solid food products...

  3. Numerical Simulation of the Interrupted Microchannel Heat Sink With Spoilers in Transverse Zones%基于横断扰流结构微通道的数值仿真优化

    Institute of Scientific and Technical Information of China (English)

    夏国栋; 王海岩; 苑中显; 柴磊; 李健

    2012-01-01

    The interrupted microchannel heat sink with spoilers in transverse zones is a novel structure. It consists of a set of separated zones adjoining parallel mierochannels and transverse microchambers with spoilers. The heat transfer enhancement depends strongly on the disturbed effect by the spoilers in transverse zones. The structural parameters, including the lengths and widths of the rectangular microchannel regions and the spoilers have an important influence on the behavior of fluid flow and heat transfer in the microchannel with spoilers in transverse zones. This paper reports an investigation of the influence of structural parameters with three-dimensional numerical simulation over the whole heat sink. The steady, laminar flow and heat transfer equations were solved by the finite-volume method. The analysis shows that when the lengths of inlet and outlet zones both are 5 mm and the heat transfer length is 10 mm, the optimized structural parameters are L1/L2 --4. 187 5, L2 = 0.4 mm, W1 = W2 = 0. 35 mm, and 0.5 〈 H2/H1 〈 1.%横断扰流结构微通道热沉是新型微通道结构的一种,其具体构型是在割断的直通道横断区布置扰流元,通过其对横断区流体的扰流冲击作用强化整个微通道的对流换热,扰流元与直通道段的长度、宽度及位置关系对微通道内流体流动与换热有重要影响.针对横断扰流结构微通道单相液体流动与传热特性,通过CFD计算流体力学模拟与分析软件进行全通道三维数值模拟.模型采用有限容积法、SIMPLE算法进行层流计算.计算及分析结果显示,当微通道进出口段均为5mm、换热段为10mm时,横断扰流结构微通道的最优换热尺寸为:L1/L2=4.1875且L2=0.4mm,W1=W2=0.35mm,0.5〈H2/H1〈1.

  4. A modeling approach for district heating systems with focus on transient heat transfer in pipe networks

    DEFF Research Database (Denmark)

    Mohammadi, Soma; Bojesen, Carsten

    2015-01-01

    finite element method is applied to simulate transient temperature changes in pipe networks. The model is calculating time series data related to supply temperature to the DHN from heat production units, heat loads and return temperature related to each consumer to calculate dynamic temperature changes...... district heating networks [DHN] characteristics. This paper is presenting a new developed model, which reflects the thermo-dynamic behavior of DHN. It is designed for tree network topologies. The purpose of the model is to serve as a basis for applying a variety of scenarios towards lowering...... the temperature in DH systems. The main focus is on modeling transient heat transfer in pipe networks regarding the time delays between the heat supply unit and the consumers, the heat loss in the pipe networks and the consumers’ dynamic heat loads. A pseudo-dynamic approach is adopted and also the implicit...

  5. Analysis of Secondary Emergency Passive Heat Sink's Ability to Relieve Accident of CPR1000%CPR1000二次侧非能动应急热阱设计与事故缓解能力分析

    Institute of Scientific and Technical Information of China (English)

    王明军; 张亚培; 田文喜; 苏光辉; 秋穗正

    2012-01-01

    The transient thermal hydraulic characteristics of CPR1000 were analyzed using RELAP5/MOD3. 4 to verify the capability of the adopting air-cooled heat exchanger's emergency passive heat sink (EPHS) for accident mitigation under the condition of feed-water line break (FLB). The calculation results show that the EPHS of CPR1000 can supply the water to steam generator immediately and remove the core residual heat after the FLB successfully. Therefore, it demonstrates that the design of the EPHS of CPR1000 is successful.%在主给水管道破裂事故下,利用RELAP5/MOD3.4程序对CPR1000压水堆一回路热工水力参数瞬态特性进行分析计算,验证采用空冷换热器的CPR1000二次侧非能动应急热阱对事故的缓解能力.计算结果表明:CPR1000在发生主给水管道破裂事故后,二次侧非能动应急热阱完全可及时向蒸汽发生器补水,同时导出堆芯余热,保证反应堆处于安全状态,从而验证了CPR1000二次侧非能动应急热阱的设计是成功的.

  6. What do they know about Heat and Heat Conduction? A case study to excavate Pre-service Physics Teachers’ Mental Model in Heat and Heat Conduction

    Science.gov (United States)

    Sari, I. M.

    2017-02-01

    Teacher plays a crucial role in Education. Helping students construct scientifically mental model is one of obligation of Physics Education Department of Teacher Education Institute that produce physics teacher. Excavating students’ mental model is necessary to be done in physics education. This research was first to identify 23 physics students’ mental model of heat and heat conduction. A series of semi-structured interviews was conducted to excavate the students’ understanding of heat and mental models on heat conduction. The students who involved in this study come from different level from sophomore to master degree in Physics Education Department. This study adopted a constant comparison method to obtain the patterns of the participants’ responses through the students’ writing, drawing and verbal utterances. The framework for assessing mental model and the instruments were adopted and adapted from Chiou and Anderson (2010). We also compared the students’ understanding of heat and mental models on heat conduction. The result shows that Heat is treated as Intrinsic property, material substances, and caloric flow. None of students expressed heat as transfer of thermal energy. Moreover, there are two kinds of students’ fundamental component of mental model in heat conduction were found: medium and molecules. Students understanding of heat and fundamental components of mental model in heat conduction are not resulted from running mental model.

  7. Heat Flow Pattern and Thermal Resistance Modeling of Anisotropic Heat Spreaders

    Science.gov (United States)

    Falakzaadeh, F.; Mehryar, R.

    2017-01-01

    To ensure safe operating temperatures of the ever smaller heat generating electronic devices, drastic measures should be taken. Heat spreaders are used to increase surface area, by spreading the heat without necessarily transferring it to the ambient in the first place. The heat flow pattern is investigated in heat spreaders and the fundamental differences regarding how heat conducts in different materials is addressed. Isotropic materials are compared with anisotropic ones having a specifically higher in-plane thermal conductivity than through plane direction. Thermal resistance models are proposed for anisotropic and isotropic heat spreaders in compliance with the order of magnitude of dimensions used in electronics packaging. After establishing thermal resistance models for both the isotropic and anisotropic cases, numerical results are used to find a correlation for predicting thermal resistance in anisotropic heat spreaders with high anisotropy ratios.

  8. Experimental investigation of forced convective heat transfer performance in nanofluids of Al2O3/water and CuO/water in a serpentine shaped micro channel heat sink

    Science.gov (United States)

    Sivakumar, A.; Alagumurthi, N.; Senthilvelan, T.

    2016-07-01

    The microchannels are device used to remove high heat fluxes from smaller area. In this experimental research work the heat transfer performance of nanofluids of Al2O3/water and CuO/water were compared. The important character of such fluids is the enhanced thermal conductivity, in comparison with base fluid without considerable alteration in physical and chemical properties. The effect of forced convective heat transfer coefficient was calculated using serpentine shaped microchannel heat exchanger. Furthermore we calculated the forced convective heat transfer coefficient of the nanofluids using theoretical correlations in order to compare the results with the experimental data. The heat transfer coefficient for different particle concentration and temperature were analysed using forced convection heat transfer using nanofluids. The findings indicate considerable enhancement in convective heat transfer coefficient of the nanofluids as compared to the basefluid. The results also shows that CuO/water nanofluid has increased heat transfer coefficient compared with Al2O3/water and base fluids. Moreover the experimental results indicate there is increased forced convective heat transfer coefficient with the increase in nano particle concentration.

  9. Mathematical model for calculation of the heat-hydraulic modes of heating points of heat-supplying systems

    Science.gov (United States)

    Shalaginova, Z. I.

    2016-03-01

    The mathematical model and calculation method of the thermal-hydraulic modes of heat points, based on the theory of hydraulic circuits, being developed at the Melentiev Energy Systems Institute are presented. The redundant circuit of the heat point was developed, in which all possible connecting circuits (CC) of the heat engineering equipment and the places of possible installation of control valve were inserted. It allows simulating the operating modes both at central heat points (CHP) and individual heat points (IHP). The configuration of the desired circuit is carried out automatically by removing the unnecessary links. The following circuits connecting the heating systems (HS) are considered: the dependent circuit (direct and through mixing elevator) and independent one (through the heater). The following connecting circuits of the load of hot water supply (HWS) were considered: open CC (direct water pumping from pipelines of heat networks) and a closed CC with connecting the HWS heaters on single-level (serial and parallel) and two-level (sequential and combined) circuits. The following connecting circuits of the ventilation systems (VS) were also considered: dependent circuit and independent one through a common heat exchanger with HS load. In the heat points, water temperature regulators for the hot water supply and ventilation and flow regulators for the heating system, as well as to the inlet as a whole, are possible. According to the accepted decomposition, the model of the heat point is an integral part of the overall heat-hydraulic model of the heat-supplying system having intermediate control stages (CHP and IHP), which allows to consider the operating modes of the heat networks of different levels connected with each other through CHP as well as connected through IHP of consumers with various connecting circuits of local systems of heat consumption: heating, ventilation and hot water supply. The model is implemented in the Angara data

  10. Phase change heat transfer during cryosurgery of lung cancer using hyperbolic heat conduction model.

    Science.gov (United States)

    Kumar, Ajay; Kumar, Sushil; Katiyar, V K; Telles, Shirley

    2017-05-01

    The paper reports a numerical study of phase change heat transfer process in lung cancer undergoing cryosurgery. A two dimensional hyperbolic bio-heat model with non-ideal property of tissue, blood perfusion and metabolism is used to analyze the problem. The governing equations are solved by finite difference method based on enthalpy formulation. Effects of relaxation time of heat flux in hyperbolic model on freezing process have been examined. A comparative investigation of two different models (hyperbolic and parabolic bio-heat models) is also presented. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Modeling of Heating During Food Processing

    Science.gov (United States)

    Zheleva, Ivanka; Kamburova, Veselka

    Heat transfer processes are important for almost all aspects of food preparation and play a key role in determining food safety. Whether it is cooking, baking, boiling, frying, grilling, blanching, drying, sterilizing, or freezing, heat transfer is part of the processing of almost every food. Heat transfer is a dynamic process in which thermal energy is transferred from one body with higher temperature to another body with lower temperature. Temperature difference between the source of heat and the receiver of heat is the driving force in heat transfer.

  12. Sinking Coastal Cities

    Science.gov (United States)

    Erkens, G.; Stuurman, R.; De Lange, G.; Bucx, T.; Lambert, J.

    2014-12-01

    In many coastal cities land subsidence now exceeds absolute sea level rise up to a factor of ten. Without action, parts of Jakarta, Ho Chi Minh City, Bangkok and numerous other coastal cities will continue to sink, even below sea level. The ever increasing industrial and domestic demand for water in these cities results in excessive groundwater extraction, causing severe subsidence. In addition, coastal cities are often faced with larger natural subsidence, as they are built on thick sequences of soft soil. The impacts of subsidence are further exacerbated by climate-induced sea level rise. Land subsidence results in two types damage: foremost it increases flood vulnerability (frequency, inundation depth and duration of floods), with floods causing major economic damage and loss of lives. Secondly, differential land movement causes significant economic losses in the form of structural damage and high maintenance costs of roads and transportation networks, sewage systems, buildings and foundations. The total damage worldwide is estimated at billions of dollars annually. To survey the extent of groundwater associated subsidence, we conducted a quick-assessment of subsidence in a series of mega-cities (Jakarta, Ho Chi Minh City, Dhaka, New Orleans and Bangkok). For each city research questions included: what are the main causes, how much is the current subsidence rate and what are predictions, where are the vulnerable areas, what are the impacts and risks, how can adverse impacts can be mitigated or compensated for, and what governmental bodies are involved and responsible to act? Using the assessment, this paper discusses subsidence modelling and measurement results from the selected cities. The focus is on the importance of delayed settlement after increases in hydraulic heads, the role of the subsurface composition for subsidence rates and best practice solutions for subsiding cities. For the latter, urban (ground)water management, adaptive flood risk management

  13. Combining litter observations with a regional ocean model to identify sources and sinks of floating debris in a semi-enclosed basin: The Adriatic Sea

    DEFF Research Database (Denmark)

    Carlson, Daniel F.; Suaria, Giuseppe; Aliani, Stefano

    2017-01-01

    originated from the Istrian peninsula to the Italian city of Termoli, as well as the Croatian island of Cres and the Kornati archipelago. Particles spent a total of roughly 47 days afloat. Coastal currents, notably the eastern and western Adriatic currents, resulted in large alongshore displacements. Our...... model. Sources and sinks for debris observed in the central and southern Adriatic in May 2013 and March 2015 included the Italian coastline from Pescara to Brindisi, the Croatian island of Mljet, and the coastline from Dubrovnik through Montenegro to Albania. Debris observed in the northern Adriatic...... results indicate that anthropogenic macro debris originates largely from coastal sources near population centers and is advected by the cyclonic surface circulation until it strands on the southwest (Italian) coast, exits the Adriatic, or recirculates in the southern gyre....

  14. Radiative Heating in MSL Entry: Comparison of Flight Heating Discrepancy to Ground Test and Predictive Models

    Science.gov (United States)

    Cruden, Brett A.; Brandis, Aaron M.; White, Todd R.; Mahzari, Milad; Bose, Deepak

    2014-01-01

    During the recent entry of the Mars Science Laboratory (MSL), the heat shield was equipped with thermocouple stacks to measure in-depth heating of the thermal protection system (TPS). When only convective heating was considered, the derived heat flux from gauges in the stagnation region was found to be underpredicted by as much as 17 W/sq cm, which is significant compared to the peak heating of 32 W/sq cm. In order to quantify the contribution of radiative heating phenomena to the discrepancy, ground tests and predictive simulations that replicated the MSL entry trajectory were performed. An analysis is carried through to assess the quality of the radiation model and the impact to stagnation line heating. The impact is shown to be significant, but does not fully explain the heating discrepancy.

  15. Mathematical Modeling of Spiral Heat Exchanger

    OpenAIRE

    Probal Guha , Vaishnavi Unde

    2014-01-01

    Compact Heat Exchangers (CHEs) are increasingly being used on small and medium scale industries. Due to their compact size and efficient design, they facilitate more efficient heat transfer. Better heat transfer would imply lesser fuel consumption for the operations of the plant, giving improvement to overall efficiency. This reduction in consumption of fuel is a step towards sustainable development. This report exclusively deals with the study the spiral heat ...

  16. Transport lattice models of heat transport in skin with spatially heterogeneous, temperature-dependent perfusion.

    Science.gov (United States)

    Gowrishankar, T R; Stewart, Donald A; Martin, Gregory T; Weaver, James C

    2004-11-17

    Investigation of bioheat transfer problems requires the evaluation of temporal and spatial distributions of temperature. This class of problems has been traditionally addressed using the Pennes bioheat equation. Transport of heat by conduction, and by temperature-dependent, spatially heterogeneous blood perfusion is modeled here using a transport lattice approach. We represent heat transport processes by using a lattice that represents the Pennes bioheat equation in perfused tissues, and diffusion in nonperfused regions. The three layer skin model has a nonperfused viable epidermis, and deeper regions of dermis and subcutaneous tissue with perfusion that is constant or temperature-dependent. Two cases are considered: (1) surface contact heating and (2) spatially distributed heating. The model is relevant to the prediction of the transient and steady state temperature rise for different methods of power deposition within the skin. Accumulated thermal damage is estimated by using an Arrhenius type rate equation at locations where viable tissue temperature exceeds 42 degrees C. Prediction of spatial temperature distributions is also illustrated with a two-dimensional model of skin created from a histological image. The transport lattice approach was validated by comparison with an analytical solution for a slab with homogeneous thermal properties and spatially distributed uniform sink held at constant temperatures at the ends. For typical transcutaneous blood gas sensing conditions the estimated damage is small, even with prolonged skin contact to a 45 degrees C surface. Spatial heterogeneity in skin thermal properties leads to a non-uniform temperature distribution during a 10 GHz electromagnetic field exposure. A realistic two-dimensional model of the skin shows that tissue heterogeneity does not lead to a significant local temperature increase when heated by a hot wire tip. The heat transport system model of the skin was solved by exploiting the mathematical

  17. Transport lattice models of heat transport in skin with spatially heterogeneous, temperature-dependent perfusion

    Directory of Open Access Journals (Sweden)

    Martin Gregory T

    2004-11-01

    Full Text Available Abstract Background Investigation of bioheat transfer problems requires the evaluation of temporal and spatial distributions of temperature. This class of problems has been traditionally addressed using the Pennes bioheat equation. Transport of heat by conduction, and by temperature-dependent, spatially heterogeneous blood perfusion is modeled here using a transport lattice approach. Methods We represent heat transport processes by using a lattice that represents the Pennes bioheat equation in perfused tissues, and diffusion in nonperfused regions. The three layer skin model has a nonperfused viable epidermis, and deeper regions of dermis and subcutaneous tissue with perfusion that is constant or temperature-dependent. Two cases are considered: (1 surface contact heating and (2 spatially distributed heating. The model is relevant to the prediction of the transient and steady state temperature rise for different methods of power deposition within the skin. Accumulated thermal damage is estimated by using an Arrhenius type rate equation at locations where viable tissue temperature exceeds 42°C. Prediction of spatial temperature distributions is also illustrated with a two-dimensional model of skin created from a histological image. Results The transport lattice approach was validated by comparison with an analytical solution for a slab with homogeneous thermal properties and spatially distributed uniform sink held at constant temperatures at the ends. For typical transcutaneous blood gas sensing conditions the estimated damage is small, even with prolonged skin contact to a 45°C surface. Spatial heterogeneity in skin thermal properties leads to a non-uniform temperature distribution during a 10 GHz electromagnetic field exposure. A realistic two-dimensional model of the skin shows that tissue heterogeneity does not lead to a significant local temperature increase when heated by a hot wire tip. Conclusions The heat transport system model of the

  18. Metal hydride heat pump engineering demonstration and evaluation model

    Science.gov (United States)

    Lynch, Franklin E.

    1993-01-01

    Future generations of portable life support systems (PLSS's) for space suites (extravehicular mobility units or EMU's) may require regenerable nonventing thermal sinks (RNTS's). For purposes of mobility, a PLSS must be as light and compact as possible. Previous venting PLSS's have employed water sublimators to reject metabolic and equipment heat from EMU's. It is desirable for long-duration future space missions to minimize the use of water and other consumables that need to be periodically resupplied. The emission of water vapor also interferes with some types of instrumentation that might be used in future space exploration. The test article is a type of RNTS based on a metal hydride heat pump (MHHP). The task of reservicing EMU's after use must be made less demanding in terms of time, procedures, and equipment. The capability for quick turnaround post-EVA servicing (30 minutes) is a challenging requirement for many of the RNTS options. The MHHP is a very simple option that can be regenerated in the airlock within the 30 minute limit by the application of a heating source and a cooling sink. In addition, advanced PLSS's must provide a greater degree of automatic control, relieving astronauts of the need to manually adjust temperatures in their liquid cooled ventilation garments (LCVG's). The MHHP includes automatic coolant controls with the ability to follow thermal load swings from minimum to maximum in seconds. The MHHP includes a coolant loop subsystem with pump and controls, regeneration equipment for post-EVA servicing, and a PC-based data acquisition and control system (DACS).

  19. A diffusion model for drying of a heat sensitive solid under multiple heat input modes.

    Science.gov (United States)

    Sun, Lan; Islam, Md Raisul; Ho, J C; Mujumdar, A S

    2005-09-01

    To obtain optimal drying kinetics as well as quality of the dried product in a batch dryer, the energy required may be supplied by combining different modes of heat transfer. In this work, using potato slice as a model heat sensitive drying object, experimental studies were conducted using a batch heat pump dryer designed to permit simultaneous application of conduction and radiation heat. Four heat input schemes were compared: pure convection, radiation-coupled convection, conduction-coupled convection and radiation-conduction-coupled convection. A two-dimensional drying model was developed assuming the drying rate to be controlled by liquid water diffusion. Both drying rates and temperatures within the slab during drying under all these four heat input schemes showed good accord with measurements. Radiation-coupled convection is the recommended heat transfer scheme from the viewpoint of high drying rate and low energy consumption.

  20. A simplified model of heat transfer in heat exchangers and stack plates of thermoacoustic refrigerators

    Science.gov (United States)

    Herman, Cila; Chen, Yuwen

    2006-08-01

    A simplified model of heat transfer was developed to investigate the thermal behavior of heat exchangers and stack plates of thermoacoustic devices. The model took advantage of previous results describing the thermal behavior of the thermoacoustic core and heat transfer in oscillating flow to study the performance of heat exchangers attached to the core. The configuration considered is a flat tube (with a working fluid flowing in the tube) of the thickness of the stack plate attached to both ends of the stack plate. Geometrical and operational parameters as well as thermophysical properties of the heat exchangers, transport fluids in the heat exchangers, stack plate and the thermoacoustic working fluid were organized into dimensionless groups that allowed accounting for their impact on the performance of the heat exchangers. Two types of thermal boundary conditions were considered: constant temperature and constant heat flux along the heat exchanger tubes. Numerical simulations were carried out with the model introduced in the paper. The temperature distributions and heat fluxes near the edge of the stack plate were found to be nonlinear. The influence of system parameters on the thermal performance of the heat exchangers was analyzed.

  1. EXPERIMENTAL STUDY OF HYBRID HEAT SINK SINTERED WITH METAL FOAMS FILLED WITH PHASE CHANGE MATERIALS%封装有相变材料的金属泡沫复合散热器实验研究

    Institute of Scientific and Technical Information of China (English)

    王杰利; 屈治国; 李文强; 陶文铨; 卢天健

    2011-01-01

    相变材料的固液相变具有较高的相变潜热且相变体积变化小,在间歇性工作的电子器件的温控中得到广泛的应用.本文采用将铜泡沫嵌入相变材料中的方法来强化同液相变的传热性能的方法,提出一种封装有金属泡沫和相变材料的复合式散热器结构,实验研究了该散热器的加热表面的温度与时间的变化关系,分析铜泡沫孔隙率、孔密度以及石蜡物性等各个参数对该复合式热沉散热效果的影响.%Phase change materials (PCM) have high latent heat of fusion with controllable temperature stability and have been used in thermal management for high power electronic device working in intermittent condition. Due to low thermal conductivity of PCM, high porosity open-cell metal foams can be embedded in the PCM to improve the thermal conductivity. In this paper, a hybrid heat sink with hollow substrate in which cooper metal foams filled with paraffin wax are sintered inside the hollow space is proposed. The temperature variations of heater surface are tested experimentally.The influence of metal foam porosity, pore diameter and PCM thermal property on total thermal resistance is experimentally studied.

  2. Mathematical modeling of heat transfer in production premises heated by gas infrared emitters

    Directory of Open Access Journals (Sweden)

    Maksimov Vyacheslav I.

    2017-01-01

    Full Text Available The results of numerical modeling of the process of free convective heat transfer in the regime of turbulent convection in a closed rectangular region heated by an infrared radiator are presented. The system of Navier-Stokes equations in the Boussinesq approximation is solved, the energy equation for the gas and the heat conduction equations for the enclosing vertical and horizontal walls. A comparative analysis of the heat transfer regimes in the considered region for different Grashof numbers is carried out. The features of the formation of heated air flows relative to the infrared emitter located at some distance from the upper horizontal boundary of the region are singled out.

  3. Thermal Enhancement of Silicon Carbide (SiC) Power Electronics and Laser Bars: Statistical Design Optimization of a Liquid-Cooled Power Electronic Heat Sink

    Science.gov (United States)

    2015-08-01

    trigonometric identity . Output response variables chosen were: 1) peak temperature at the base of the pin fin array, T-max, 2) pressure drop across...restriction). Consistent with the prior two analyses, the main effects order of importance is identical for the two models. In this case, the C factor

  4. Modeling terahertz heating effects on water

    DEFF Research Database (Denmark)

    Kristensen, Torben T.L.; Withayachumnankul, Withawat; Jepsen, Peter Uhd;

    2010-01-01

    We apply Kirchhoff’s heat equation to model the influence of a CW terahertz beam on a sample of water, which is assumed to be static. We develop a generalized model, which easily can be applied to other liquids and solids by changing the material constants. If the terahertz light source is focused...... down to a spot with a diameter of 0.5 mm, we find that the steadystate temperature increase per milliwatt of transmitted power is 1.8◦C/mW. A quantum cascade laser can produce a CW beam in the order of several milliwatts and this motivates the need to estimate the effect of beam power on the sample...... temperature. For THz time domain systems, we indicate how to use our model as a worst-case approximation based on the beam average power. It turns out that THz pulses created from photoconductive antennas give a negligible increase in temperature. As biotissue contains a high water content, this leads...

  5. Transectional heat transfer in thermoregulating bigeye tuna (Thunnus obesus) - a 2D heat flux model.

    Science.gov (United States)

    Boye, Jess; Musyl, Michael; Brill, Richard; Malte, Hans

    2009-11-01

    We developed a 2D heat flux model to elucidate routes and rates of heat transfer within bigeye tuna Thunnus obesus Lowe 1839 in both steady-state and time-dependent settings. In modeling the former situation, we adjusted the efficiencies of heat conservation in the red and the white muscle so as to make the output of the model agree as closely as possible with observed cross-sectional isotherms. In modeling the latter situation, we applied the heat exchanger efficiencies from the steady-state model to predict the distribution of temperature and heat fluxes in bigeye tuna during their extensive daily vertical excursions. The simulations yielded a close match to the data recorded in free-swimming fish and strongly point to the importance of the heat-producing and heat-conserving properties of the white muscle. The best correspondence between model output and observed data was obtained when the countercurrent heat exchangers in the blood flow pathways to the red and white muscle retained 99% and 96% (respectively) of the heat produced in these tissues. Our model confirms that the ability of bigeye tuna to maintain elevated muscle temperatures during their extensive daily vertical movements depends on their ability to rapidly modulate heating and cooling rates. This study shows that the differential cooling and heating rates could be fully accounted for by a mechanism where blood flow to the swimming muscles is either exclusively through the heat exchangers or completely shunted around them, depending on the ambient temperature relative to the body temperature. Our results therefore strongly suggest that such a mechanism is involved in the extensive physiological thermoregulatory abilities of endothermic bigeye tuna.

  6. Heat exchanger modeling and identification for control of waste heat recovery systems in diesel engines

    NARCIS (Netherlands)

    Feru, E.; Willems, F.P.T.; Rojer, C.; Jager, B. de; Steinbuch, M.

    2013-01-01

    To meet future CO2 emission targets, Waste Heat Recovery systems have recently attracted much attention for automotive applications, especially for long haul trucks. This paper focuses on the development of a dynamic counter-flow heat exchanger model for control purposes. The model captures the dyna

  7. Modeling heat efficiency, flow and scale-up in the corotating disc scraped surface heat exchanger

    DEFF Research Database (Denmark)

    Friis, Alan; Szabo, Peter; Karlson, Torben

    2002-01-01

    A comparison of two different scale corotating disc scraped surface heat exchangers (CDHE) was performed experimentally. The findings were compared to predictions from a finite element model. We find that the model predicts well the flow pattern of the two CDHE's investigated. The heat transfer...

  8. Heat exchanger modeling and identification for control of waste heat recovery systems in diesel engines

    NARCIS (Netherlands)

    Feru, E.; Willems, F.P.T.; Rojer, C.; Jager, B. de; Steinbuch, M.

    2013-01-01

    To meet future CO2 emission targets, Waste Heat Recovery systems have recently attracted much attention for automotive applications, especially for long haul trucks. This paper focuses on the development of a dynamic counter-flow heat exchanger model for control purposes. The model captures the dyna

  9. A heterogeneous model for heat transfer in packed beds

    NARCIS (Netherlands)

    Wijngaarden, R.J.; Westerterp, K.R.

    1993-01-01

    If transient heat transfer occurs in a packed bed or a reaction is carried out on the pellets, the heterogeneity of the bed is essential because of the heat flow between pellets and gas. Global heat parameters for the packed bed, such as λeff and αw, are usually derived from homogeneous models. Ther

  10. A heat dissipating model for water cooling garments

    Directory of Open Access Journals (Sweden)

    Yang Kai

    2013-01-01

    Full Text Available A water cooling garment is a functional clothing used to dissipate human body’s redundant energy in extravehicular environment or other hot environment. Its heat dissipating property greatly affects body’s heat balance. In this paper, a heat dissipating model for the water cooling garment is established and verified experimentally using the experimental thermal-manikin.

  11. Heat source models in simulation of heat flow in friction stir welding

    DEFF Research Database (Denmark)

    Schmidt, Henrik Nikolaj Blich; Hattel, Jesper

    2004-01-01

    . The convective heat transfer due to the material flow affects the temperature fields. Models presented previously in the literature allow the heat to flow through the probe volume, and the majority neglects the influence of the contact condition as the sliding condition is assumed. In this work, a number......The objective of the present paper is to investigate the effect of including the tool probe and the material flow in the numerical modelling of heat flow in friction stir welding (FSW). The contact condition at the interface between the tool and workpiece controls the heat transfer mechanisms...... of cases is established. Each case represents a combination of a contact condition, i.e. sliding and sticking, and a stage of refinement regarding the heat source distribution. In the most detailed models, the heat flow is forced around the probe volume by prescribing a velocity field in shear layers...

  12. Heat Source Models in Simulation of Heat Flow in Friction Stir Welding

    DEFF Research Database (Denmark)

    Schmidt, Henrik Nikolaj Blich; Hattel, Jesper

    2004-01-01

    . The convective heat transfer due to the material flow affects the temperature fields. Models presented previously in literature allow the heat to flow through the probe volume, and the majority of them neglect the influence of the contact condition as the sliding condition is assumed. In the present work......The objective of the present paper is to investigate the effect of including the tool probe and the material flow in the numerical modelling of heat flow in Friction Stir Welding (FSW). The contact condition at the interface between the tool and workpiece controls the heat transfer mechanisms......, a number of cases are established. Each case represents a combination of a contact condition, i.e. sliding and sticking, and a stage of refinement regarding the heat source distribution. In the most detailed models the heat flow is forced around the probe volume by prescribing a velocity field in shear...

  13. Numerical Modeling of Fin and Tube Heat Exchanger for Waste Heat Recovery

    DEFF Research Database (Denmark)

    Singh, Shobhana; Sørensen, Kim; Condra, Thomas Joseph

    associates conjugate heat transfer phenomenon with the turbulent flow to describe the variable temperature and velocity profile. The performance of heat exchanger design is investigated in terms of overall heat transfer coefficient, Nusselt number, Colburn j-factor, flow resistance factor, and efficiency......In the present work, multiphysics numerical modeling is carried out to predict the performance of a liquid-gas fin and tube heat exchanger design. Three-dimensional (3D) steady-state numerical model using commercial software COMSOL based on finite element method (FEM) is developed. The study...... between fin and tube. The present numerical model predicts the performance of the heat exchanger design, therefore, can be applied to existing waste heat recovery systems to improve the overall performance with optimized design and process-dependent parameters....

  14. Effects of Deep Water Source-Sink Terms in 3rd generation Wave Model SWAN using different wind data in Black Sea

    Science.gov (United States)

    Kirezci, Cagil; Ozyurt Tarakcioglu, Gulizar

    2016-04-01

    Coastal development in Black Sea has increased in recent years. Therefore, careful monitoring of the storms and verification of numerical tools with reliable data has become important. Previous studies by Kirezci and Ozyurt (2015) investigated extreme events in Black Sea using different wind datasets (NCEP's CFSR and ECMWF's operational datasets) and different numerical tools (SWAN and Wavewatch III). These studies showed that significant effect to results is caused by the deep water source-sink terms (wave growth by wind, deep water dissipation of wave energy (whitecapping) and deep water non-linear wave-wave interactions). According to Timmermans(2015), uncertainty about wind forcing and the process of nonlinear wave-wave interactions are found to be dominant in numerical wave modelling. Therefore, in this study deep water source and sink term solution approaches of 3rd generation numerical tool (SWAN model) are tested, validated and compared using the selected extreme storms in Black Sea. 45 different storms and storm like events observed in Black Sea between years 1994-1999 are selected to use in the models. The storm selection depends on the instrumental wave data (significant wave heights, mean wave period and mean wave direction) obtained in NATO-TU Waves project by the deep water buoy measurements at Hopa, Sinop, Gelendzhik, and wind data (mean and peak wind speeds, storm durations) of the regarding events. 2 different wave growth by wind with the corresponding deep water dissipation terms and 3 different wave -wave interaction terms of SWAN model are used in this study. Wave growth by wind consist of two parts, linear growth which is explained by Cavaleri and Malanotte-Rizzoli(1981),and dominant exponential growth. There are two methods in SWAN model for exponential growth of wave, first one by Snyder et al. (1981), rescaled in terms of friction velocity by Komen et. al (1984) which is derived using driving wind speed at 10m elevation with related drag

  15. Sensitivity Analysis of the Gap Heat Transfer Model in BISON.

    Energy Technology Data Exchange (ETDEWEB)

    Swiler, Laura Painton; Schmidt, Rodney C.; Williamson, Richard (INL); Perez, Danielle (INL)

    2014-10-01

    This report summarizes the result of a NEAMS project focused on sensitivity analysis of the heat transfer model in the gap between the fuel rod and the cladding used in the BISON fuel performance code of Idaho National Laboratory. Using the gap heat transfer models in BISON, the sensitivity of the modeling parameters and the associated responses is investigated. The study results in a quantitative assessment of the role of various parameters in the analysis of gap heat transfer in nuclear fuel.

  16. An Analytical Model of Joule Heating in Piezoresistive Microcantilevers

    OpenAIRE

    Chongdu Cho; Mohd Zahid Ansari

    2010-01-01

    The present study investigates Joule heating in piezoresistive microcantilever sensors. Joule heating and thermal deflections are a major source of noise in such sensors. This work uses analytical and numerical techniques to characterise the Joule heating in 4-layer piezoresistive microcantilevers made of silicon and silicon dioxide substrates but with the same U-shaped silicon piezoresistor. A theoretical model for predicting the temperature generated due to Joule heating is developed. The c...

  17. Agent-based modelling of heating system adoption in Norway

    Energy Technology Data Exchange (ETDEWEB)

    Sopha, Bertha Maya; Kloeckner, Christian A.; Hertwich, Edgar G.

    2010-07-01

    Full text: This paper introduces agent-based modelling as a methodological approach to understand the effect of decision making mechanism on the adoption of heating systems in Norway. The model is used as an experimental/learning tool to design possible interventions, not for prediction. The intended users of the model are therefore policy designers. Primary heating system adoptions of electric heating, heat pump and wood pellet heating were selected. Random topology was chosen to represent social network among households. Agents were households with certain location, number of peers, current adopted heating system, employed decision strategy, and degree of social influence in decision making. The overall framework of decision-making integrated theories from different disciplines; customer behavior theory, behavioral economics, theory of planned behavior, and diffusion of innovation, in order to capture possible decision making processes in households. A mail survey of 270 Norwegian households conducted in 2008 was designed specifically for acquiring data for the simulation. The model represents real geographic area of households and simulates the overall fraction of adopted heating system under study. The model was calibrated with historical data from Statistics Norway (SSB). Interventions with respects to total cost, norms, indoor air quality, reliability, supply security, required work, could be explored using the model. For instance, the model demonstrates that a considerable total cost (investment and operating cost) increase of electric heating and heat pump, rather than a reduction of wood pellet heating's total cost, are required to initiate and speed up wood pellet adoption. (Author)

  18. The Sinking and Spreading of The Antarctic Deep Ice Shelf Water In The Ross Sea Studied By In Situ Observaions and Numerical Modeling

    Science.gov (United States)

    Rubino, A.; Budillon, G.; Pierini, S.; Spezie, G.

    The sinking and spreading of the Deep Ice Shelf Water (DISW) in the Ross Sea are analyzed using in situ observations and the results of a nonlinear, reduced-gravity, frontal layered numerical "plume" model which is able to simulate the motion of a bottom-arrested current over realistic topography. The model is forced by prescribing the thickness of the DISW vein as well as its density structure at the southern model boundary. The ambient temperature and salinity are imposed using hydrographic data acquired by the Italian PNRA-CLIMA project. In the model water of the quiescent ambient ocean is allowed to entrain in the active deep layer due to a simple param- eterization of turbulent mixing. The importance of forcing the model with a realistic ambient density is demonstrated by carrying out a numerical simulation in which the bottom active layer is forced using an idealized ambient density. In a more realis- tic simulation the path and the density structure of the DISW vein flowing over the Challenger Basin are obtained and are found to be in good agreement with data. The evolution of the deep current beyond the continental shelf is also simulated. It provides useful information on the water flow and mixing in a region of the Ross Sea where the paucity of experimental data does not allow for a detailed description of the deep ocean dynamics.

  19. MODEL OF HEAT SIMULATOR FOR DATA CENTERS

    Directory of Open Access Journals (Sweden)

    Jan Novotný

    2016-08-01

    Full Text Available The aim of this paper is to present a design and a development of a heat simulator, which will be used for a flow research in data centers. The designed heat simulator is based on an ideological basis of four-processor 1U Supermicro server. The designed heat simulator enables to control the flow and heat output within the range of 10–100 %. The paper covers also the results of testing measurements of mass flow rates and heat flow rates in the simulator. The flow field at the outlet of the server was measured by the stereo PIV method. The heat flow rate was determined, based on measuring the temperature field at the inlet and outlet of the simulator and known mass flow rate.

  20. Present-day heat flow model of Mars

    Science.gov (United States)

    Parro, Laura M.; Jiménez-Díaz, Alberto; Mansilla, Federico; Ruiz, Javier

    2017-04-01

    Until the acquisition of in-situ measurements, the study of the present-day heat flow of Mars must rely on indirect methods, mainly based on the relation between the thermal state of the lithosphere and its mechanical strength, or on theoretical models of internal evolution. Here, we present a first-order global model for the present-day surface heat flow for Mars, based on the radiogenic heat production of the crust and mantle, on scaling of heat flow variations arising from crustal thickness and topography variations, and on the heat flow derived from the effective elastic thickness of the lithosphere beneath the North Polar Region. Our preferred model finds heat flows varying between 14 and 25 mW m-2, with an average value of 19 mW m-2. Similar results (although about ten percent higher) are obtained if we use heat flow based on the lithospheric strength of the South Polar Region. Moreover, expressing our results in terms of the Urey ratio (the ratio between total internal heat production and total heat loss through the surface), we estimate values close to 0.7-0.75, which indicates a moderate contribution of secular cooling to the heat flow of Mars (consistent with the low heat flow values deduced from lithosphere strength), unless heat-producing elements abundances for Mars are subchondritic.

  1. Present-day heat flow model of Mars.

    Science.gov (United States)

    Parro, Laura M; Jiménez-Díaz, Alberto; Mansilla, Federico; Ruiz, Javier

    2017-04-03

    Until the acquisition of in-situ measurements, the study of the present-day heat flow of Mars must rely on indirect methods, mainly based on the relation between the thermal state of the lithosphere and its mechanical strength, or on theoretical models of internal evolution. Here, we present a first-order global model for the present-day surface heat flow for Mars, based on the radiogenic heat production of the crust and mantle, on scaling of heat flow variations arising from crustal thickness and topography variations, and on the heat flow derived from the effective elastic thickness of the lithosphere beneath the North Polar Region. Our preferred model finds heat flows varying between 14 and 25 mW m(-2), with an average value of 19 mW m(-2). Similar results (although about ten percent higher) are obtained if we use heat flow based on the lithospheric strength of the South Polar Region. Moreover, expressing our results in terms of the Urey ratio (the ratio between total internal heat production and total heat loss through the surface), we estimate values close to 0.7-0.75, which indicates a moderate contribution of secular cooling to the heat flow of Mars (consistent with the low heat flow values deduced from lithosphere strength), unless heat-producing elements abundances for Mars are subchondritic.

  2. Floating Versus Sinking

    Science.gov (United States)

    Vella, Dominic

    2015-01-01

    Small objects that are more dense than water may still float at the air-water interface because of surface tension. Whether this is possible depends not only on the density and size of the object, but also on its shape and surface properties, whether other objects are nearby, and how gently the object is placed at the interface. This review surveys recent work to quantify when objects can float and when they must sink. Much interest in this area has been driven by studies of the adaptations of water-walking insects to life at interfaces. I therefore discuss these results in the context of this and other applications.

  3. Absorption Cycle Heat Pump Model for Control Design

    DEFF Research Database (Denmark)

    Vinther, Kasper; Just Nielsen, Rene; Nielsen, Kirsten Mølgaard

    2015-01-01

    Heat pumps have recently received increasing interest due to green energy initiatives and increasing energy prices. In this paper, a nonlinear dynamic model of a single-effect LiBr-water absorption cycle heat pump is derived for simulation and control design purposes. The model is based...... on an actual heat pump located at a larger district heating plant. The model is implemented in Modelica and is based on energy and mass balances, together with thermodynamic property functions for LiBr and water and staggered grid representations for heat exchangers. Model parameters have been fitted...... to operational data and different scenarios are simulated to investigate the operational stability of the heat pump. Finally, this paper provides suggestions and examples of derivation of lower order linear models for control design. © Copyright IEEE - All rights reserved....

  4. Multilevel Flow Modeling of Domestic Heating Systems

    DEFF Research Database (Denmark)

    Hu, Junjie; Lind, Morten; You, Shi

    2012-01-01

    of complementing this reasoning methodology. Domestic heating systems, as the main resource to meet the thermal requirements of end-users, have different implementations in Europe in order to achieve various degrees of controllability and heating efficiencies. As all the heating systems serve the same basic needs...... i.e. supplying and transferring thermal energy, it is off interest to use MFM to investigate similarities and differences between different implementations. In this paper, three typical domestic European heating systems, which differ from each other in the number of temperature sensors and auxiliary...

  5. Experimental investigation and modelling of heat capacity, heat of fusion and melting interval of rocks

    Energy Technology Data Exchange (ETDEWEB)

    Leth-Miller, R.; Jensen, A.D.; Glarborg, P.; Jensen, L.M.; Hansen, P.B.; Joergensen, S.B

    2003-11-28

    The heat capacity and heat of fusion were measured for a number of minerals using differential scanning calorimetry (DSC). The DSC measurements showed that the heat of fusion for the minerals is very low compared to the heat of fusion for pure crystalline phases reported elsewhere. A model for the melting behaviour of mineral materials in terms of melting interval, heat capacities and heat of fusion has been developed. The only model input is the chemical composition of the mineral material. The model was developed to be implemented in a detailed model of a cupola furnace, thus the focus for the development was not only precision but also to obtain a model that was continuous and differentiable. The model is based on several different submodels that each covers a part of the heating and melting of rocks. Each submodel is based on large amounts of empirical data. Comparison of the model and the DSC measurements showed reasonable agreement for the model to be used when a fast estimate is needed and experimental data is not available.

  6. Modeling of Strip Heating Process in Vertical Continuous Annealing Furnace

    Institute of Scientific and Technical Information of China (English)

    WAN Fei; WANG Yong-qin; QIN Shu-ren

    2012-01-01

    The mechanism for heat transfer of radiation is usually adopted to heat strip in vertical continuous annealing furnace. The rate of heat transfer among strip and other objects can be hugely affected by the parameters of strip speed, geometry factors and radiating characteristic of surfaces of strip, radiating tubes and walls of furnace. A model including all parameters is proposed for calculating the heat transfer coefficient, predicting the strip tempera- ture and boundary temperature of strip through analyzing these parameters. The boundary temperature is a important datum and different from average arithmetic value of temperature of strip and temperature in furnace. Also, the model can be used to analyze the relation for temperature of strip and heat transfer coefficient, total heat transfer quantity and heating time. The model is built by using the radiating heat transfer rate, the Newtonrs law of cooling, and lumped system analysis. The results of calculation are compared to the data from production line. The comparisons indicate that the model can well predict the heating process. The model is already applied for process control in pro- duction line. Also, this research will provide a new method for analyzing the radiation heat transfer.

  7. Numerical Modelling of Indution Heating - Fundamentals

    DEFF Research Database (Denmark)

    Zhang, Wenqi

    Induction heating is extensively used for brazing and heat treatment of materials to produce consumer and industrial products; structural assemblies; electrical and electronic products; mining, machine, and hand tools; ordnance equipment; and aerospace assemblies. It is often applied when rapid a...

  8. Numerical Modelling of Indution Heating - Fundamentals

    DEFF Research Database (Denmark)

    Zhang, Wenqi

    Induction heating is extensively used for brazing and heat treatment of materials to produce consumer and industrial products; structural assemblies; electrical and electronic products; mining, machine, and hand tools; ordnance equipment; and aerospace assemblies. It is often applied when rapid a...

  9. Modelling heat transfer in heterogeneous media using fractional calculus.

    Science.gov (United States)

    Sierociuk, Dominik; Dzielinski, Andrzej; Sarwas, Grzegorz; Petras, Ivo; Podlubny, Igor; Skovranek, Tomas

    2013-05-13

    This paper presents the results of modelling the heat transfer process in heterogeneous media with the assumption that part of the heat flux is dispersed in the air around the beam. The heat transfer process in a solid material (beam) can be described by an integer order partial differential equation. However, in heterogeneous media, it can be described by a sub- or hyperdiffusion equation which results in a fractional order partial differential equation. Taking into consideration that part of the heat flux is dispersed into the neighbouring environment we additionally modify the main relation between heat flux and the temperature, and we obtain in this case the heat transfer equation in a new form. This leads to the transfer function that describes the dependency between the heat flux at the beginning of the beam and the temperature at a given distance. This article also presents the experimental results of modelling real plant in the frequency domain based on the obtained transfer function.

  10. OPTIMIZATION OF HEATING OF GEAR WHEEL USING NUMERICAL MODELING

    Directory of Open Access Journals (Sweden)

    Sona Benesova

    2013-05-01

    Full Text Available Successful heat treating and carburizing of gear wheels for wind turbine gear boxes requires that plastic deformation in the wheel is minimized. Numerical modeling using the DEFORM software was aimed at exploring the effects of the base, on which the gear wheel rests during heating, on the heating process. Homogeneous heating was assumed. It was found that the base heats up more quickly than the workpiece. It is the consequence of the base's shape and volume. As a result, the base expands and slides against the wheel, predominantly at the first heating stage. Later on, it prevents the gear wheel from expanding, causing plastic deformation in the wheel. The findings were used for designing new heating schedules to minimize these undesirable interactions and to reduce the plastic deformation to a negligible magnitude. In addition, this paper presents an example of a practical use of numerical modeling in the DEFORM software.

  11. OPTIMIZATION OF HEATING OF GEAR WHEEL USING NUMERICAL MODELING

    Directory of Open Access Journals (Sweden)

    Soňa Benešová

    2013-09-01

    Full Text Available Successful heat treating and carburizing of gear wheels for wind turbine gear boxes requires that plastic deformation in the wheel is minimized. Numerical modeling using the DEFORM software was aimed at exploring the effects of the base, on which the gear wheel rests during heating, on the heating process. Homogeneous heating was assumed. It was found that the base heats up more quickly than the workpiece. It is the consequence of the base's shape and volume. As a result, the base expands and slides against the wheel, predominantly at the first heating stage. Later on, it prevents the gear wheel from expanding, causing plastic deformation in the wheel. The findings were used for designing new heating schedules to minimize these undesirable interactions and to reduce the plastic deformation to a negligible magnitude. In addition, this paper presents an example of a practical use of numerical modeling in the DEFORM software.

  12. Computer modeling of heat treating austenitic and nickel based alloys

    Science.gov (United States)

    Glickstein, S. S.; Friedman, E.; Berman, R. M.

    1982-05-01

    The adequacy of the heat treating process depends upon the thermal cycle experienced by the material during heat treating in the furnace and quenching. While thermocouples placed at the surface of the material during heat treating can assure the adequacy of the process for the material at the surface, assurance that inner regions of the material are experiencing the proper temperature transient is not guaranteed. To assess present process standards for heat treating 17-4 PH stainless steel and air quenching Inoconel X after solution treatment, computer models of the heat transfer within the material were developed. Sensitivity studies were conducted to determine the effects of material bar diameter, peak temperature, material properties, heat transfer coefficients, and neighboring bar stock. The computer modeling provided an easy and inexpensive technique for determining the adequacy of present heat treating process standards and for ensuring that future standards will provide the desired requirements. Details of these sensitivity studies are presented.

  13. Mathematical Model of Moving Heat-Transfer Agents

    Directory of Open Access Journals (Sweden)

    R. I. Yesman

    2010-01-01

    Full Text Available A mathematical model of moving heat-transfer agents which is applied in power systems and plants has been developed in the paper. A paper presents the mathematical model as a closed system of differential convective heat-transfer equations that includes a continuity equation, a motion equation, an energy equation.Various variants of boundary conditions on the surfaces of calculation flow and heat exchange zone are considered in the paper.

  14. Influence of Heat Sink and Source Temperature on Operation Reliability of Natural Circulation System%冷源、热源温度对自然循环系统运行可靠性的影响分析

    Institute of Scientific and Technical Information of China (English)

    玉宇; 钱晓明; 高庆瀚; 王晓轩

    2012-01-01

    物理过程失效是导致非能动系统运行失效的重要因素之一,必须在非能动系统可靠性分析中予以考虑.而对于物理过程失效,目前尚无成熟的分析方法.本文提出采用蒙特卡罗模拟方法研究冷源温度、热源温度在其合理范围内变化对自然循环系统运行可靠性的影响.结果表明,冷源、热源温度变化对系统物理过程失效具有重要影响,且运行列数越少,影响越显著.计算结果说明系统运行失效是物理过程失效与设备失效综合作用的结果,但并非二者的简单叠加,物理过程失效与设备失效是互为条件的;当系统设计安全裕量较大时,即使参与运行的设备列数不能满足设计要求,也并不一定导致系统失效.%In the Probabilistic Safety Assessment (PSA), Fault Tree (FT) is the approach commonly used for system reliability analysis. And it is the important feature of passive system and the basic difference from the active system that nuclear plant is able to be driven to safe state or shutdown by inherent safety characters of the reactor and physical principles, and is independent of human interfere or the operations of outside equipments, when the reactor is in the abnormal condition. Therefore, the passive system is widely used in new generation Nuclear Power Plant (NPP), such as AP1000 NPPs and high-temperature gas-cooled reactors to improve the safety. At the same time, since the passive system operation is depending on natural force, both the driven force and resistance are influenced by many uncertain factors, physical process failure become one of the significant causes for the system failure, which need to be considered in, the system reliability analysis. FT method is not power enough to deal with this condition. For the passive system which is operating based on natural circulation, temperature of heat source and sink are important influence factors on system operation. Monte Carlo (MC) simulation is

  15. Renewable energy for passive house heating - Part II. Model

    Energy Technology Data Exchange (ETDEWEB)

    Badescu, V. [Candida Oancea Institute of Solar Energy, Faculty of Mechanical Engineering, Polytechnic University of Bucharest, Bucharest (Romania); Sicre, B. [Computational Physics, Technical University of Chemnitz, Institute of Physics, Chemnitz (Germany)

    2003-07-01

    The evaluation of renewable energy used to increase the environmental friendliness of passive houses (PH) is the topic of this paper. A time-dependent model of passive house thermal behavior is developed. The heat transfer through the high thermal inertia elements is analyzed by using a one-dimensional time-dependent conduction heat-transfer equation that is solved numerically by using a standard Netlib solver (PDECHEB). Appropriate models for the conduction through the low thermal inertia elements are used, as well as a simple approach of the solar radiation transmission through the windows. The model takes into account in a detailed fashion the internal heat sources. Also, the operation of ventilation/heating system is described and common-practice control strategies are implemented. Three renewable energy sources are considered. First, there is the passive solar heating due to the large window on the facade oriented south. Second, the active solar collector system provides thermal energy for space heating or domestic hot water preparation. Third, a ground heat exchanger (GHE) increases the fresh air temperature during the cold season. The model was applied to the Pirmasens Passive House (Rhineland Palatinate, Germany). The passive solar heating system provides most part of the heating energy during November, December, February and March while in January the ground heat exchanger is the most important renewable energy source. January and February require use of additional conventional energy sources. A clever use of the active solar heating system could avoid consuming classical fuels during November, December and March. The ground heat exchanger is a reliable renewable source of energy. It provides heat during all the day and its (rather small) heat flux is increasing when the weather becomes colder. The air temperature at heater exit is normally lower than 46 {sup o}C. This is a good reason for the use of renewable energy to replace the classical fuel or the

  16. Renewable energy for passive house heating. Part 2. Model

    Energy Technology Data Exchange (ETDEWEB)

    Badescu, V. [Polytechnic Univ., Bucharest (Romania). Faculty of Mechanical Engineering; Sicre, B. [Technical Univ., Chemnitz (Germany). Computational Physics

    2003-12-01

    The evaluation of renewable energy used to increase the environmental friendliness of passive houses (PH) is the topic of this paper. A time-dependent model of passive house thermal behavior is developed. The heat-transfer through the high thermal inertia elements is analyzed by using a 1D time-dependent conduction heat-transfer equation that is solved numerically by using a standard Netlib solver (PDECHEB). Appropriate models for the conduction through the low thermal inertia elements are used, as well as a simple approach of the solar radiation transmission through the windows. The model takes into account in a detailed fashion the internal heat sources. Also, the operation of ventilation/heating system is described and common practice control strategies are implemented. Three renewable energy sources are considered. First, there is the passive solar heating due to the large window on the facade oriented south. Second, the active solar collectors system provides thermal energy for space heating or hot domestic water preparation. Third, a ground heat exchanger (GHE) increases the fresh air temperature during the cold season. The model was applied to the Pirmasens Passive House (Rhineland Palatinate, Germany). The passive solar heating system provides most part of the heating energy during November, December, February and March while in January the ground heat exchanger is the most important renewable energy source. January and February require use of additional conventional energy sources. A clever use of the active solar heating system could avoid consuming classical fuels during November, December and March. The ground heat exchanger is a reliable renewable source of energy. It provides heat during all the day and its (rather small) heat flux is increasing when the weather becomes colder. The air temperature at heater exit is normally lower than 46 {sup o}C. This is a good reason for the use of renewable energy to replace the classical fuel or the wood to be

  17. Multiphysics Numerical Modeling of a Fin and Tube Heat Exchanger

    DEFF Research Database (Denmark)

    Singh, Shobhana; Sørensen, Kim; Condra, Thomas Joseph

    2015-01-01

    ). For the purposes here, only gas flowing over the fin side is simulated assuming constant inner tube wall temperature. The study couples conjugate heat transfer mechanism with turbulent flow in order to describe the temperature and velocity profile. In addition, performance characteristics of the heat exchanger...... design in terms of heat transfer and pressure loss are determined by parameters such as overall heat transfer coefficient, Colburn j-factor, flow resistance factor, and efficiency index. The model provides useful insights necessary for optimization of heat exchanger design....

  18. Numerical Simulation of Different Models of Heat Pipe Heat Exchanger Using AcuSolve

    Directory of Open Access Journals (Sweden)

    Zainal Nurul Amira

    2017-01-01

    Full Text Available In this paper, a numerical simulation of heat pipe heat exchanger (HPHE is computed by using CFD solver program i.e. AcuSolve. Two idealized model of HPHE are created with different variant of entry’s dimension set to be case 1 and case 2. The geometry of HPHE is designed in SolidWorks and imported to AcuSolve to simulate the fluid flow numerically. The design of HPHE is the key to provide a heat exchanger system to work proficient as expected. Finally, the result is used to optimize and improving heat recovery systems of the increasing demand for energy efficiency in industry.

  19. The porosity in a fluidized bed heat transfer model

    NARCIS (Netherlands)

    Visser, G; Visser, G.; Valk, M.

    1993-01-01

    A mathematical model of heat transfer between a fluidized bed and an immersed surface and a model of gas flow and porosity, both recently published, were combined and further modified in the area of low velocities where the particle convective component of heat transfer is low or neglectable. Experi

  20. Temperature fields in machining processes and heat transfer models

    Energy Technology Data Exchange (ETDEWEB)

    Palazzo, G.; Pasquino, R. [University of Salerno Via Ponte Donmelillo, Fisciano (Italy). Department of Mechanical Engineering; Bellomo, N. [Politecnico Torino Corso Duca degli Abruzzi, Torino (Italy). Department of Mathematics

    2002-07-01

    This paper deals with the modelling of the heat transfer process with special attention to the characterization of the thermal field during turning processes. Specifically, the measurement of the thermal field and the selection of the proper heat transfer models are dealt with. The analysis is developed in view of the solution of direct and inverse problems. (author)

  1. The porosity in a fluidized bed heat transfer model

    NARCIS (Netherlands)

    Visser, G.; Valk, M.

    1993-01-01

    A mathematical model of heat transfer between a fluidized bed and an immersed surface and a model of gas flow and porosity, both recently published, were combined and further modified in the area of low velocities where the particle convective component of heat transfer is low or neglectable. Experi

  2. Structure of the transport uncertainty in mesoscale inversions of CO2 sources and sinks using ensemble model simulations

    Directory of Open Access Journals (Sweden)

    J. Noilhan

    2009-06-01

    Full Text Available We study the characteristics of a statistical ensemble of mesoscale simulations in order to estimate the model error in the simulation of CO2 concentrations. The ensemble consists of ten members and the reference simulation using the operationnal short range forecast PEARP, perturbed using the Singular Vector technique. We then used this ensemble of simulations as the initial and boundary conditions for the meso scale model (Méso-NH simulations, which uses CO2 fluxes from the ISBA-A-gs land surface model. The final ensemble represents the model dependence to the boundary conditions, conserving the physical properties of the dynamical schemes, but excluding the intrinsic error of the model. First, the variance of our ensemble is estimated over the domain, with associated spatial and temporal correlations. Second, we extract the signal from noisy horizontal correlations, due to the limited size ensemble, using diffusion equation modelling. The computational cost of such ensemble limits the number of members (simulations especially when running online the carbon flux and the atmospheric models. In the theory, 50 to 100 members would be required to explore the overall sensitivity of the ensemble. The present diffusion model allows us to extract a significant part of the noisy error, and makes this study feasable with a limited number of simulations. Finally, we compute the diagonal and non-diagonal terms of the observation error covariance matrix and introduced it into our CO2 flux matrix inversion for 18 days of the 2005 intensive campaign CERES over the South West of France. Variances are based on model-data mismatch to ensure we treat model bias as well as ensemble dispersion, whereas spatial and temporal covariances are estimated with our method. The horizontal structure of the ensemble variance manifests the discontinuities of the mesoscale structures during the day, but remains locally driven during the night. On the vertical, surface layer

  3. Health Externalities and Heat savings in Energy System Modelling

    DEFF Research Database (Denmark)

    Zvingilaite, Erika

    from the rest of the energy system. This PhD study contributes to the development in energy system modelling, by including heat saving options – insulation of walls, roofs and floors, replacing of windows and installing ventilation system with heat recovery – in the Danish heat and power sector...... and included in an energy system optimisation model. The performed analysis of the Danish heat and power sector concludes that accounting for spatial variation of health damage costs in heat and power system optimisation model has an effect on the optimal technology mix and distribution of energy plants among...... and are popular as secondary heating technologies in Denmark, can cause indoor and outdoor air pollution locally. Hence, consumers can be exposed to their own air pollution, which can cause damage to their health. Such damage costs should be internalised in consumer decision making. The PhD study demonstrates...

  4. Modeling and Simulation of Heat Transfer in Loaded Continuous Heat Treatment Furnace

    Institute of Scientific and Technical Information of China (English)

    KANG Jin-wu; HUANG Tian-you; PURUSHOTHAMAN Radhakrishnan; WANG Wei-wei; RONG Yi-ming

    2004-01-01

    Continuous furnaces are widely used in the heat treatment of mass-produced parts. However, the heating up process of parts in continuous furnace is still decided by experience. In this paper the heat transfer in the continuous furnace is formulated firstly. The heat balance in each zone is discussed and equations are given. Coupled with the model for heat transfer between workpieces and furnace and the heat transfer in the workload as well presented in the former developed CHT-bf for batch furnaces, a program CHT-cf for continuous furnaces was developed. The model deals with two typical movements of parts: continuous or step by step. The moving speed of parts and load pattern can be optimized based on the calculated temperature distributions and curves, especially, the fastest heated and slowest-heated temperature-distance profiles. A case study is carried out for the heat treatment of a kind of hook-shaped part. The calculated results are analyzed and in good agreement with the measured ones.

  5. Structure of the transport uncertainty in mesoscale inversions of CO2 sources and sinks using ensemble model simulations

    Directory of Open Access Journals (Sweden)

    J. Noilhan

    2008-12-01

    Full Text Available We study the characteristics of a statistical ensemble of mesoscale simulations in order to estimate the model error in the simulation of CO2 concentrations. The ensemble consists of ten members and the reference simulation using the operationnal short range forecast PEARP, perturbed by Singular Vector (SV technic. We then used this ensemble of simulations as the initial and boundary conditions for the meso scale model simulations, here the atmospheric transport model Méso-NH, transporting CO2 fluxes from the ISBA-A-gs land surface model. The final ensemble represents the model dependence to the boundary conditions, conserving the physical properties of the dynamical schemes. First, the variance of our ensemble is estimated over the domain, with associated spatial and temporal correlations. Second, we extract the signal from noisy horizontal correlations, due to the limited size ensemble, using diffusion equation modelling. Finally, we compute the diagonal and non-diagonal terms of the observation error covariance matrix and introduced it into our CO2 flux matrix inversion over 18 days of the 2005 intensive campaign CERES over the South West of France. On the horizontal plane, variance of the ensemble follows the discontinuities of the mesoscale structures during the day, but remain locally driven during the night. On the vertical, surface layer variance shows large correlations with the upper levels in the boundary layer (>0.6, down to 0.4 with the low free troposphere. Large temporal correlations were found during the afternoon (>0.5 for several hours, reduced during the night. Diffusion equation model extracted relevant error covariance signals on the horizontal space, and shows reduced correlations over mountain area and during the night over the continent. The posterior error reduction on the inverted CO2 fluxes accounting for the model error correlations illustrates finally the predominance of the temporal over the spatial correlations

  6. Electromagnetic Energy Sink

    CERN Document Server

    Valagiannopoulos, Constantinos A; Simovski, Constantin R; Tretyakov, Sergei A; Maslovski, Stanislav I

    2015-01-01

    The ideal black body fully absorbs all incident rays, that is, all propagating waves created by arbitrary sources. The known idealized realization of a black body is the perfectly matched layer (PML), widely used in numerical electromagnetics. However, ideal black bodies and PMLs do not interact with evanescent fields existing near any finite-size source, and the energy stored in these fields cannot be harvested. Here we introduce the concept of the ideal conjugate matched layer (CML), which fully absorbs energy of both propagating and evanescent fields of sources acting as an ideal sink for electromagnetic energy. Conjugate matched absorbers have exciting application potentials, as resonant attractors of electromagnetic energy into the absorber volume. We derive the conditions on the constitutive parameters of media which can serve as CML materials, numerically study the performance of planar and cylindrical CML and discuss possible realizations of such materials as metal-dielectric composites.

  7. Forests as carbon sinks

    Energy Technology Data Exchange (ETDEWEB)

    Houghton, R.A.; Woodwell, R.M. [Woods Hole Research Center, Woods Hole, MA (United States)

    1995-11-01

    When the nations of the world signed and later ratified the United Nations Framework Convention on Climate Change (FCCC), they accepted the difficult challenge of stabilizing the composition of the atmosphere with respect to the greenhouse gases (GHGs). Success will require a reduction in both use of fossil fuels and rates of deforestation. Forests have a large enough influence on the atmosphere that one of the options for stabilizing the concentrations of GHGs in the atmosphere includes the use of forests as a carbon sink through reforestation of large areas. We identify in this paper the potential and the limitations of such projects. We discuss the implications of four approaches in management of forests globally: (i) continued deforestation, (ii) halting deforestation, (iii) net reforestation including agroforestry, and (iv) substituting the use of wood fuels for fossil fuels.

  8. Forests as carbon sinks

    Energy Technology Data Exchange (ETDEWEB)

    Houghton, R.A.; Woodwell, R.M. [Woods Hole Research Center, Woods Hole, MA (United States)

    1995-11-01

    When the nations of the world signed and later ratified the United Nations Framework Convention on Climate Change (FCCC), they accepted the difficult challenge of stabilizing the composition of the atmosphere with respect to the greenhouse gases (GHGs). Success will require a reduction in both use of fossil fuels and rates of deforestation. Forests have a large enough influence on the atmosphere that one of the options for stabilizing the concentrations of GHGs in the atmosphere includes the use of forests as a carbon sink through reforestation of large areas. We identify in this paper the potential and the limitations of such projects. We discuss the implications of four approaches in management of forests globally: (i) continued deforestation, (ii) halting deforestation, (iii) net reforestation including agroforestry, and (iv) substituting the use of wood fuels for fossil fuels.

  9. Modelling the heat dynamics of buildings using stochastic

    DEFF Research Database (Denmark)

    Andersen, Klaus Kaae; Madsen, Henrik

    2000-01-01

    This paper describes the continuous time modelling of the heat dynamics of a building. The considered building is a residential like test house divided into two test rooms with a water based central heating. Each test room is divided into thermal zones in order to describe both short and long term...... variations. Besides modelling the heat transfer between thermal zones, attention is put on modelling the heat input from radiators and solar radiation. The applied modelling procedure is based on collected building performance data and statistical methods. The statistical methods are used in parameter...... estimation and model validation, while physical knowledge is used in forming the model structure. The suggested lumped parameter model is thus based on thermodynamics and formulated as a system of stochastic differential equations. Due to the continuous time formulation the parameters of the model...

  10. Modeling of Heat Exchange with Developed Nucleate Boiling on Tenons

    Directory of Open Access Journals (Sweden)

    A. V. Оvsiannik

    2007-01-01

    Full Text Available The paper proposes a thermal and physical model for heat exchange processes with developed nucleate boiling on the developed surfaces (tenons with various contours of heat transfer surface. Dependences for calculating convective heat exchange factor have been obtained on the basis of modeling representation. Investigations have shown that an intensity of convective heat exchange does not depend on tenon profile when boiling takes place on the tenons. The intensity is determined by operating conditions, thermal and physical properties of liquid, internal characteristics of boiling processes and geometrical characteristics of a tenon.

  11. Modeling the Heating of Biological Tissue based on the Hyperbolic Heat Transfer Equation

    CERN Document Server

    Tung, M M; Molina, J A Lopez; Rivera, M J; Berjano, E J

    2008-01-01

    In modern surgery, a multitude of minimally intrusive operational techniques are used which are based on the punctual heating of target zones of human tissue via laser or radio-frequency currents. Traditionally, these processes are modeled by the bioheat equation introduced by Pennes, who considers Fourier's theory of heat conduction. We present an alternative and more realistic model established by the hyperbolic equation of heat transfer. To demonstrate some features and advantages of our proposed method, we apply the obtained results to different types of tissue heating with high energy fluxes, in particular radiofrequency heating and pulsed laser treatment of the cornea to correct refractive errors. Hopefully, the results of our approach help to refine surgical interventions in this novel field of medical treatment.

  12. Population dynamics of sinking phytoplankton in stratified waters

    NARCIS (Netherlands)

    Huisman, J.; Sommeijer, B.P.

    2002-01-01

    We analyze the predictions of a reaction-advection-diffusion model to pinpoint the necessary conditions for bloom development of sinking phytoplanktonspecies in stratified waters. This reveals that there are two parameter windows that can sustain sinking phytoplankton, a turbulence window and atherm

  13. Terrestrial Carbon Sinks in the Brazilian Amazon and Cerrado Region Predicted from MODIS Satellite Data and Ecosystem Modeling

    Science.gov (United States)

    A simulation model based on satellite observations of monthly vegetation cover from the Moderate Resolution Imaging Spectroradiometer (MODIS) was used to estimate monthly carbon fluxes in terrestrial ecosystems of Brazilian Amazon and Cerrado regions over the period 2000-2004. Pr...

  14. Thermal Indices and Thermophysiological Modeling for Heat Stress.

    Science.gov (United States)

    Havenith, George; Fiala, Dusan

    2015-12-15

    The assessment of the risk of human exposure to heat is a topic as relevant today as a century ago. The introduction and use of heat stress indices and models to predict and quantify heat stress and heat strain has helped to reduce morbidity and mortality in industrial, military, sports, and leisure activities dramatically. Models used range from simple instruments that attempt to mimic the human-environment heat exchange to complex thermophysiological models that simulate both internal and external heat and mass transfer, including related processes through (protective) clothing. This article discusses the most commonly used indices and models and looks at how these are deployed in the different contexts of industrial, military, and biometeorological applications, with focus on use to predict related thermal sensations, acute risk of heat illness, and epidemiological analysis of morbidity and mortality. A critical assessment is made of tendencies to use simple indices such as WBGT in more complex conditions (e.g., while wearing protective clothing), or when employed in conjunction with inappropriate sensors. Regarding the more complex thermophysiological models, the article discusses more recent developments including model individualization approaches and advanced systems that combine simulation models with (body worn) sensors to provide real-time risk assessment. The models discussed in the article range from historical indices to recent developments in using thermophysiological models in (bio) meteorological applications as an indicator of the combined effect of outdoor weather settings on humans.

  15. Two-Phase Flow in High-Heat-Flux Micro-Channel Heat Sink for Refrigeration Cooling Applications. Part 2: Low Temperature Hybrid Micro-Channel/Micro-Jet Impingement Cooling

    Science.gov (United States)

    2008-09-01

    pressure gradient ( Incropera , 1999). Watson (1964) used inviscid theory to determine Boiling and Two-Phase Flow Laboratory 23 thickness h of the wall jet...the pressure drop coefficient, f is inversely proportional to jet Reynolds ( Incropera , 1999) f = KRe,.,, (4.4) and K is fairly constant for the...both pool and forced convection boiling on submerged bodies in saturated liquids", Int. J. Heat Mass Transfer, Vol. 26, pp. 389-399. Incropera , F.P

  16. Three-dimensional transient mathematical model to predict the heat transfer rate of a heat pipe

    Directory of Open Access Journals (Sweden)

    S Boothaisong

    2015-02-01

    Full Text Available A three-dimensional model was developed to simulate the heat transfer rate on a heat pipe in a transient condition. This article presents the details of a calculation domain consisting of a wall, a wick, and a vapor core. The governing equation based on the shape of the pipe was numerically simulated using the finite element method. The developed three-dimensional model attempted to predict the transient temperature, the velocity, and the heat transfer rate profiles at any domain. The values obtained from the model calculation were then compared with the actual results from the experiments. The experiment showed that the time required to attain a steady state (where transient temperature is constant was reasonably consistent with the model. The working fluid r134a (tetrafluoroethane was the quickest to reach the steady state and transferred the greatest amount of heat.

  17. Model-based control of district heating supply temperature

    Energy Technology Data Exchange (ETDEWEB)

    Saarinen, Linn

    2010-11-15

    A model-based control strategy for the supply temperature to a district heating network was tested during three weeks at Idbaecken's CHP plant. The aim was to increase the electricity efficiency by a lower supply temperature, without risking the delivery reliability of heat to the district heating customers. Simulations and tests showed that at high loads, the mean supply temperature could be reduced by 4 deg C and the electricity production could be increased by 2.5%

  18. 2D/3D velocity model for the high resolution 2D and 3D seismic data from the CO2SINK Ketzin Project

    Science.gov (United States)

    Ivanova, A.; Asch, G.; Lueth, S.; Goetz, J.

    2009-04-01

    Seismic traveltime inversion, traveltime tomography and seismic reflection techniques have been applied for two dimensional (2D) and three dimensional (3D) data acquired in conjunction with characterization and monitoring aspects at a carbon dioxide (CO2) geological storage site at Ketzin, Germany (the CO2SINK project) (S.Yordkayhun, 2008). A seismic source comparison from the 2D pilot study regarding acquisition parameters have been tested at the side has shown the weight drop source is suitable concerning the signal penetration, frequency content of the data and minimizing time and costs for the 3D data acquisition. For the Ketzin seismic data, the ability to obtain an accurate 2D/3D interval velocity model is limited by the acquisition geometry, source-generated noise and time shifts due to the near-surface effects producing severe distortions in the data. Moreover, these time shifts are comparable to the dominant periods of the reflections and to the size of structures to be imaged. Therefore, a combination of seismic refraction and state-of-the-art processing techniques, including careful static corrections and more accurate velocity analysis, has resulted in key improvements of the images and has allowed new information about the 2D/3D interval velocities. The results from these studies together with borehole information, hydrogeologic models and seismic modeling will be combined into an integrated 2D/3D velocity model. After that a careful 2D/3D depth migration is to be provided. It can be used as a database for the future monitoring program at the site.

  19. An experimental investigation of flow boiling heat transfer of R-141b and R-1234yf in microchannels

    Directory of Open Access Journals (Sweden)

    Shamirzaev Alisher

    2017-01-01

    Full Text Available This study presents experimental results of flow boiling heat transfer of refrigerants R-141b and R-1234yf in a horizontal microchannel heat sink. The copper microchannel heat sink contains 21 microchannels with 335×930 μm cross-section. Distribution of local heat transfer coefficients along the length and width of the microchannel plate were measured in the range of external heat fluxes from 50 to 550 kW/m2. Finally, comparisons with predictions according to the model of flow boiling heat transfer are reported for the data sets.

  20. Modelling of Temperature Profiles and Transport Scaling in Auxiliary Heated Tokamaks

    DEFF Research Database (Denmark)

    Callen, J.D.; Christiansen, J.P.; Cordey, J.G.;

    1987-01-01

    The temperature profiles produced by various heating profiles are calculated from local heat transport models. The models take the heat flux to be the sum of heat diffusion and a non-diffusive heat flow, consistent with local measurements of heat transport. Two models are developed analytically i...

  1. Heat Pipe Blocks Return Flow

    Science.gov (United States)

    Eninger, J. E.

    1982-01-01

    Metal-foil reed valve in conventional slab-wick heat pipe limits heat flow to one direction only. With sink warmer than source, reed is forced closed and fluid returns to source side through annular transfer wick. When this occurs, wick slab on sink side of valve dries out and heat pipe ceases to conduct heat.

  2. Improving Air-Conditioner and Heat Pump Modeling (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Winkler, J.

    2012-03-01

    A new approach to modeling residential air conditioners and heat pumps allows users to model systems by specifying only the more readily-available SEER/EER/HSPF-type metrics. Manufacturer data was used to generate full sets of model inputs for over 450 heat pumps and air conditioners. A sensitivity analysis identified which inputs can be safely defaulted 'behind-the-scenes' without negatively impacting the reliability of energy simulations.

  3. Improving Air-Conditioner and Heat Pump Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Winkler, Jon [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2012-03-02

    This presentation describes a new approach to modeling residential air conditioners and heat pumps, which allows users to model systems by specifying only the more readily-available SEER/EER/HSPF-type metrics. Manufacturer data was used to generate full sets of model inputs for over 450 heat pumps and air conditioners. A sensitivity analysis identified which inputs can be safely defaulted “behind-the-scenes” without negatively impacting the reliability of energy simulations.

  4. Validation of effective momentum and heat flux models for stratification and mixing in a water pool

    Energy Technology Data Exchange (ETDEWEB)

    Hua Li; Villanueva, W.; Kudinov, P. [Royal Institute of Technology (KTH), Div. of Nuclear Power Safety, Stockholm (Sweden)

    2013-06-15

    The pressure suppression pool is the most important feature of the pressure suppression system in a Boiling Water Reactor (BWR) that acts primarily as a passive heat sink during a loss of coolant accident (LOCA) or when the reactor is isolated from the main heat sink. The steam injection into the pool through the blowdown pipes can lead to short term dynamic phenomena and long term thermal transient in the pool. The development of thermal stratification or mixing in the pool is a transient phenomenon that can influence the pool's pressure suppression capacity. Different condensation regimes depending on the pool's bulk temperature and steam flow rates determine the onset of thermal stratification or erosion of stratified layers. Previously, we have proposed to model the effect of steam injection on the mixing and stratification with the Effective Heat Source (EHS) and the Effective Momentum Source (EMS) models. The EHS model is used to provide thermal effect of steam injection on the pool, preserving heat and mass balance. The EMS model is used to simulate momentum induced by steam injection in different flow regimes. The EMS model is based on the combination of (i) synthetic jet theory, which predicts effective momentum if amplitude and frequency of flow oscillations in the pipe are given, and (ii) model proposed by Aya and Nariai for prediction of the amplitude and frequency of oscillations at a given pool temperature and steam mass flux. The complete EHS/EMS models only require the steam mass flux, initial pool bulk temperature, and design-specific parameters, to predict thermal stratification and mixing in a pressure suppression pool. In this work we use EHS/EMS models implemented in containment thermal hydraulic code GOTHIC. The PPOOLEX experiments (Lappeenranta University of Technology, Finland) are utilized to (a) quantify errors due to GOTHIC's physical models and numerical schemes, (b) propose necessary improvements in GOTHIC sub-grid scale

  5. Stochastic modelling of central heating systems

    DEFF Research Database (Denmark)

    Hansen, Lars Henrik

    1997-01-01

    and the degree Erhvervsforsker (a special Danish degree, equivalent to ``Industrial Ph.D.''). The thesis is mainly concerned with experimental design and system identification for individual components in water based central heating systems. The main contribution to this field is on the nonlinear dynamic...

  6. Global Analysis of Carbon Sources and Sinks with a Comprehensive Model Optimized with GOSAT/Tanso Observations

    Science.gov (United States)

    Denning, A.; Lokupitiya, R. S.; Zupanski, D.; Kawa, S. R.; Baker, D. F.; Doney, S. C.; Gurney, K. R.

    2009-12-01

    We present a system to analyze GOSAT/Tanso data using a combination of existing models of CO2 exchanges due to hourly photosynthesis and respiration, daily air-sea gas exchange, biomass burning, Fossil Fuel Emissions, and atmospheric transport. This comprehensive system allows direct comparison to the observed record of both in-situ and remotely sensed atmospheric CO2 at hourly timescales. We have previously demonstrated that a lower-resolution version of the system has good skill at replicating diurnal, synoptic, and seasonal variations over vegetated land surfaces. The system is driven by meteorological output from the NASA Goddard EOS Data Assimilation System, version 5. Surface weather from the system drives calculations of terrestrial ecosystem metabolism (radiation, precipitation, humidity, temperature) and air-sea gas exchange (wind), with other input data coming from satellite data products (e.g., fPAR and LAI from MODIS, and ocean color from SeaWiFS and MODIS). The analysis system is evaluated using synthetic data on a 2 x 2.5 degree (lat x lon) global grid. Synthetic data are sampled in cloud-free columns along the GOSAT orbital ephemeris and used to estimate multiplicative biases to component fluxes by Ensemble Data Assimilation. The system is quite successful at retrieving mechanistic estimates of spatial patterns of surface carbon fluxes on monthly and annual timescales over land, but is less skillful over the oceans.

  7. Wind power integration with heat pumps, heat storages, and electric vehicles - Energy systems analysis and modelling

    Energy Technology Data Exchange (ETDEWEB)

    Hedegaard, K.

    2013-09-15

    This PhD investigates to which extent heat pumps, heat storages, and electric vehicles can support the integration of wind power. Considering the gaps in existing research, the main focus is put on individual heat pumps in the residential sector (one-family houses) and the possibilities for flexible operation, using the heat storage options available. Several energy systems analyses are performed using the energy system models, Balmorel, developed at the former TSO, ElkraftSystem, and, EnergyPLAN, developed at Aalborg University. The Danish energy system towards 2030, with wind power penetrations of up to 60 %, is used as a case study in most of the analyses. Both models have been developed further, resulting in an improved representation of individual heat pumps and heat storages. An extensive model add-on for Balmorel renders it possible to optimise investment and operation of individual heat pumps and different types of heat storages, in integration with the energy system. Total costs of the energy system are minimised in the optimisation. The add-on incorporates thermal building dynamics and covers various different heat storage options: intelligent heat storage in the building structure for houses with radiator heating and floor heating, respectively, heat accumulation tanks on the space heating circuit, as well as hot water tanks. In EnergyPLAN, some of the heat storage options have been modelled in a technical optimisation that minimises fuel consumption of the energy system and utilises as much wind power as possible. The energy systems analyses reveal that in terms of supporting wind power integration, the installation of individual heat pumps is an important step, while adding heat storages to the heat pumps is less influential. When equipping the heat pumps with heat storages, only moderate system benefits can be gained. Hereof, the main system benefit is that the need for peak/reserve capacity investments can be reduced through peak load shaving; in

  8. Temperature dependence of electronic heat capacity in Holstein model

    CERN Document Server

    Fialko, N S; Lakhno, V D

    2015-01-01

    The dynamics of charge migration was modeled to calculate temperature dependencies of its thermodynamic equilibrium values such as energy and electronic heat capacity in homogeneous adenine fragments. The energy varies from nearly polaron one at T~0 to midpoint of the conductivity band at high temperatures. The peak on the graph of electronic heat capacity is observed at the polaron decay temperature.

  9. Heat Transfer Modeling for Rigid High-Temperature Fibrous Insulation

    Science.gov (United States)

    Daryabeigi, Kamran; Cunnington, George R.; Knutson, Jeffrey R.

    2012-01-01

    Combined radiation and conduction heat transfer through a high-temperature, high-porosity, rigid multiple-fiber fibrous insulation was modeled using a thermal model previously used to model heat transfer in flexible single-fiber fibrous insulation. The rigid insulation studied was alumina enhanced thermal barrier (AETB) at densities between 130 and 260 kilograms per cubic meter. The model consists of using the diffusion approximation for radiation heat transfer, a semi-empirical solid conduction model, and a standard gas conduction model. The relevant parameters needed for the heat transfer model were estimated from steady-state thermal measurements in nitrogen gas at various temperatures and environmental pressures. The heat transfer modeling methodology was evaluated by comparison with standard thermal conductivity measurements, and steady-state thermal measurements in helium and carbon dioxide gases. The heat transfer model is applicable over the temperature range of 300 to 1360 K, pressure range of 0.133 to 101.3 x 10(exp 3) Pa, and over the insulation density range of 130 to 260 kilograms per cubic meter in various gaseous environments.

  10. Sinking coastal cities

    Science.gov (United States)

    Erkens, G.; Bucx, T.; Dam, R.; de Lange, G.; Lambert, J.

    2015-11-01

    In many coastal and delta cities land subsidence now exceeds absolute sea level rise up to a factor of ten. A major cause for severe land subsidence is excessive groundwater extraction related to rapid urbanization and population growth. Without action, parts of Jakarta, Ho Chi Minh City, Bangkok and numerous other coastal cities will sink below sea level. Land subsidence increases flood vulnerability (frequency, inundation depth and duration of floods), with floods causing major economic damage and loss of lives. In addition, differential land movement causes significant economic losses in the form of structural damage and high maintenance costs for (infra)structure. The total damage worldwide is estimated at billions of dollars annually. As subsidence is often spatially variable and can be caused by multiple processes, an assessment of subsidence in delta cities needs to answer questions such as: what are the main causes? What is the current subsidence rate and what are future scenarios (and interaction with other major environmental issues)? Where are the vulnerable areas? What are the impacts and risks? How can adverse impacts be mitigated or compensated for? Who is involved and responsible to act? In this study a quick-assessment of subsidence is performed on the following mega-cities: Jakarta, Ho Chi Minh City, Dhaka, New Orleans and Bangkok. Results of these case studies will be presented and compared, and a (generic) approach how to deal with subsidence in current and future subsidence-prone areas is provided.

  11. Heat mass transfer model of fouling process of calcium carbonate on heat transfer surface

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A new heat mass transfer model was developed to predict the fouling process of calcium carbonate on heat transfer surface. The model took into account not only the crystallization fouling but also the particle fouling which was formed on the heat transfer surface by the suspension particles of calcium carbonate in the su- persaturated solution. Based on experimental results of the fouling process, the deposition and removal rates of the mixing fouling were expressed. Furthermore, the coupling effect of temperature with the fouling process was considered in the physics model. As a result the fouling resistance varying with time was obtained to describe the fouling process and the prediction was compared with experimental data under same conditions. The results showed that the present model could give a good prediction of fouling process, and the deviation was less than 15% of the experimental data in most cases. The new model is credible to predict the fouling process.

  12. Inverse modeling of CO2 sources and sinks using satellite observations of CO2 from TES and surface flask measurements

    Directory of Open Access Journals (Sweden)

    C. A. M. Brenninkmeijer

    2011-06-01

    Full Text Available We infer CO2 surface fluxes using satellite observations of mid-tropospheric CO2 from the Tropospheric Emission Spectrometer (TES and measurements of CO2 from surface flasks in a time-independent inversion analysis based on the GEOS-Chem model. Using TES CO2 observations over oceans, spanning 40° S–40° N, we find that the horizontal and vertical coverage of the TES and flask data are complementary. This complementarity is demonstrated by combining the datasets in a joint inversion, which provides better constraints than from either dataset alone, when a posteriori CO2 distributions are evaluated against independent ship and aircraft CO2 data. In particular, the joint inversion offers improved constraints in the tropics where surface measurements are sparse, such as the tropical forests of South America. Aggregating the annual surface-to-atmosphere fluxes from the joint inversion for the year 2006 yields −1.13±0.21 Pg C for the global ocean, −2.77±0.20 Pg C for the global land biosphere and −3.90±0.29 Pg C for the total global natural flux (defined as the sum of all biospheric, oceanic, and biomass burning contributions but excluding CO2 emissions from fossil fuel combustion. These global ocean and global land fluxes are shown to be near the median of the broad range of values from other inversion results for 2006. To achieve these results, a bias in TES CO2 in the Southern Hemisphere was assessed and corrected using aircraft flask data, and we demonstrate that our results have low sensitivity to variations in the bias correction approach. Overall, this analysis suggests that future carbon data assimilation systems can benefit by integrating in situ and satellite observations of CO2 and that the vertical information provided by satellite observations of mid-tropospheric CO2 combined with measurements of surface CO2, provides an important additional constraint for flux inversions.

  13. An Analytical Model of Joule Heating in Piezoresistive Microcantilevers

    Directory of Open Access Journals (Sweden)

    Chongdu Cho

    2010-11-01

    Full Text Available The present study investigates Joule heating in piezoresistive microcantilever sensors. Joule heating and thermal deflections are a major source of noise in such sensors. This work uses analytical and numerical techniques to characterise the Joule heating in 4-layer piezoresistive microcantilevers made of silicon and silicon dioxide substrates but with the same U-shaped silicon piezoresistor. A theoretical model for predicting the temperature generated due to Joule heating is developed. The commercial finite element software ANSYS Multiphysics was used to study the effect of electrical potential on temperature and deflection produced in the cantilevers. The effect of piezoresistor width on Joule heating is also studied. Results show that Joule heating strongly depends on the applied potential and width of piezoresistor and that a silicon substrate cantilever has better thermal characteristics than a silicon dioxide cantilever.

  14. An analytical model of joule heating in piezoresistive microcantilevers.

    Science.gov (United States)

    Ansari, Mohd Zahid; Cho, Chongdu

    2010-01-01

    The present study investigates Joule heating in piezoresistive microcantilever sensors. Joule heating and thermal deflections are a major source of noise in such sensors. This work uses analytical and numerical techniques to characterise the Joule heating in 4-layer piezoresistive microcantilevers made of silicon and silicon dioxide substrates but with the same U-shaped silicon piezoresistor. A theoretical model for predicting the temperature generated due to Joule heating is developed. The commercial finite element software ANSYS Multiphysics was used to study the effect of electrical potential on temperature and deflection produced in the cantilevers. The effect of piezoresistor width on Joule heating is also studied. Results show that Joule heating strongly depends on the applied potential and width of piezoresistor and that a silicon substrate cantilever has better thermal characteristics than a silicon dioxide cantilever.

  15. Induction and direct resistance heating theory and numerical modeling

    CERN Document Server

    Lupi, Sergio; Aliferov, Aleksandr

    2015-01-01

    This book offers broad, detailed coverage of theoretical developments in induction and direct resistance heating and presents new material on the solution of problems in the application of such heating. The physical basis of induction and conduction heating processes is explained, and electromagnetic phenomena in direct resistance and induction heating of flat workpieces and cylindrical bodies are examined in depth. The calculation of electrical and energetic characteristics of induction and conduction heating systems is then thoroughly reviewed. The final two chapters consider analytical solutions and numerical modeling of problems in the application of induction and direct resistance heating, providing industrial engineers with the knowledge needed in order to use numerical tools in the modern design of installations. Other engineers, scientists, and technologists will find the book to be an invaluable reference that will assist in the efficient utilization of electrical energy.

  16. Convective heat transfer enhancement of laminar flow of latent functionally thermal fluid in a circular tube with constant heat flux: internal heat source model and its application

    Institute of Scientific and Technical Information of China (English)

    张寅平; 胡先旭; 郝磬; 王馨

    2003-01-01

    This paper analyzes the convective heat transfer enhancement mechanism of latent heat functionally thermal fluid. By using the proposed internal heat source model, the influence of each factor affecting the heat transfer enhancement of laminar flow in a circular tube with constant heat flux is analyzed. The main influencing factors and the mechanisms of heat transfer enhancement are clarified, and the influences of the main factors on the heat transfer enhancement are quantitatively analyzed. A modified Nusselt number for internal flow is introduced to describe more effectively the degree of heat transfer enhancement for latent functionally thermal fluid.

  17. Radicals in the marine boundary layer during NEAQS 2004: a model study of day-time and night-time sources and sinks

    Directory of Open Access Journals (Sweden)

    R. Sommariva

    2008-09-01

    Full Text Available This paper describes a modelling study of several HOx and NOx species (OH, HO2, organic peroxy radicals, NO3 and N2O5 in the marine boundary layer. A model based upon the Master Chemical Mechanism (MCM was constrained to observations of chemical and physical parameters made onboard the NOAA ship R/V Brown as part of the New England Air Quality Study (NEAQS in the summer of 2004. The model was used to calculate [OH] and to determine the composition of the peroxy radical pool. Modelled [NO3] and [N2O5] were compared to in-situ measurements by Cavity Ring-Down Spectroscopy. The comparison showed that the model generally overestimated the measurements by 30–50%, on average.

    The model results were analyzed with respect to several chemical and physical parameters, including uptake of NO3 and N2O5 on fog droplets and on aerosol, dry deposition of NO3 and N2O5, gas-phase hydrolysis of N2O5 and reactions of NO3 with NMHCs and peroxy radicals. The results suggest that fog, when present, is an important sink for N2O5 via rapid heterogeneous uptake. The comparison between the model and the measurements were consistent with values of the heterogeneous uptake coefficient of N2O5N2O5>1×10−2, independent of aerosol composition in this marine environment. The analysis of the different loss processes of the nitrate radical showed the important role of the organic peroxy radicals, which accounted for a significant fraction (median: 15% of NO3 gas-phase removal, particularly in the presence of high concentrations of dimethyl sulphide (DMS.

  18. Modeling of waste heat recovery by looped water-in-steel heat pipes

    Energy Technology Data Exchange (ETDEWEB)

    Akyurt, M.; Lamfon, N.J.; Najjar, Y.S.H.; Habeebullah, M.H.; Alp, T.Y. [King Abdulaziz Univ., Jeddah (Saudi Arabia). College of Engineering

    1995-08-01

    Modeling and simulation of a water-in-steel heat pipe heat recovery system is undertaken in this paper. The heat recovery system consists of a looped two-phase thermosyphon that receives heat from the stack of a gas turbine engine and delivers it to the generator of an NH{sub 3}-H{sub 2}O absorption chiller. Variations in the operating temperature as well as evaporator geometry are investigated, and the consequences on system effectiveness are studied. It is concluded that the model for the water-in-steel looped thermosyphon overcomes drawbacks of the water-in-copper thermosyphon, and that the steel system is simpler in design, lower in cost, and more competent in performance. (author)

  19. Prediction of heat transfer to supercritical fluids by the use of Algebraic Heat Flux Models

    Energy Technology Data Exchange (ETDEWEB)

    Pucciarelli, Andrea, E-mail: andrea.pucciarelli@yahoo.it [Università di Pisa, Dipartimento di Ingegneria Civile e Industriale, Largo Lucio Lazzarino 2, 56126 Pisa (Italy); Sharabi, Medhat, E-mail: Medhat.Sharabi@psi.ch [Paul Scherrer Institut, 5232 Villigen PSI, Switzerland and Mechanical Power Engineering Department, Mansoura University, 35516 Mansoura (Egypt); Ambrosini, Walter, E-mail: walter.ambrosini@ing.unipi.it [Università di Pisa, Dipartimento di Ingegneria Civile e Industriale, Largo Lucio Lazzarino 2, 56126 Pisa (Italy)

    2016-02-15

    Highlights: • The Algebraic Heat Flux Model is considered for modelling the turbulence heat flux. • A relation based on AHFM for determining Pr{sub tur} is proposed. • Results are compared with heat transfer to supercritical fluids experimental data. - Abstract: The paper discusses capabilities and limitations of Algebraic Heat Flux Models in predicting heat transfer to supercritical fluids. The model was implemented in a commercial code and used as a basis for obtaining an advanced definition of the turbulent Prandtl number and an improved estimate of the buoyancy production of turbulence kinetic energy. A comparison between the obtained results and experimental data available in literature is performed highlighting promising features, in particular when dealing with trans-pseudo-critical conditions. Experimental conditions using different fluids where analysed showing improvements with respect to two-equation turbulence models; a reference DNS calculation is considered as well for comparison. Calculated wall temperature values are in general well reproduced by the methodology and sensitivity analyses show that improvements may be obtained in future works by selecting case-specific AHFM parameters in association with different turbulence models.

  20. Modelling heat transport through completely positive maps

    CERN Document Server

    Wichterich, H; Gemmer, J; Henrich, M J; Michel, M; Breuer, Heinz-Peter; Gemmer, Jochen; Henrich, Markus J.; Michel, Mathias; Wichterich, Hannu

    2007-01-01

    We investigate heat transport in a spin-1/2 Heisenberg chain, coupled locally to independent thermal baths of different temperature. The analysis is carried out within the framework of the theory of open systems by means of appropriate quantum master equations. The standard microscopic derivation of the weak-coupling Lindblad equation in the secular approximation is considered, and shown to be inadequate for the description of stationary nonequilibrium properties like a non-vanishing energy current. Furthermore, we derive an alternative master equation that is capable to describe a stationary energy current and, at the same time, leads to a completely positive dynamical map. This paves the way for efficient numerical investigations of heat transport in larger systems based on Monte Carlo wave function techniques.

  1. Microscale Heat Conduction Models and Doppler Feedback

    Energy Technology Data Exchange (ETDEWEB)

    Hawari, Ayman I. [North Carolina State Univ., Raleigh, NC (United States); Ougouag, Abderrafi [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-01-22

    The objective of this project is to establish an approach for providing the fundamental input that is needed to estimate the magnitude and time-dependence of the Doppler feedback mechanism in Very High Temperature reactors. This mechanism is the foremost contributor to the passive safety of gas-cooled, graphite-moderated high temperature reactors that use fuel based on Tristructural-Isotropic (TRISO) coated particles. Therefore, its correct prediction is essential to the conduct of safety analyses for these reactors. Since the effect is directly dependent on the actual temperature reached by the fuel during transients, the underlying phenomena of heat deposition, heat transfer and temperature rise must be correctly predicted. To achieve the above objective, this project will explore an approach that accounts for lattice effects as well as local temperature variations and the correct definition of temperature and related local effects.

  2. Finite time exergoeconomic performance optimization for an irreversible universal steady flow variable-temperature heat reservoir heat pump cycle model

    Directory of Open Access Journals (Sweden)

    Huijun Feng, Lingen Chen, Fengrui Sun

    2010-11-01

    Full Text Available An irreversible universal steady flow heat pump cycle model with variable-temperature heat reservoirs and the losses of heat-resistance and internal irreversibility is established by using the theory of finite time thermodynamics. The universal heat pump cycle model consists of two heat-absorbing branches, two heat-releasing branches and two adiabatic branches. Expressions of heating load, coefficient of performance (COP and profit rate of the universal heat pump cycle model are derived, respectively. By means of numerical calculations, heat conductance distributions between hot- and cold-side heat exchangers are optimized by taking the maximum profit rate as objective. There exist an optimal heat conductance distribution and an optimal thermal capacity rate matching between the working fluid and heat reservoirs which lead to a double maximum profit rate. The effects of internal irreversibility, total heat exchanger inventory, thermal capacity rate of the working fluid and heat capacity ratio of the heat reservoirs on the optimal finite time exergoeconomic performance of the cycle are discussed in detail. The results obtained herein include the optimal finite time exergoeconomic performances of endoreversible and irreversible, constant- and variable-temperature heat reservoir Brayton, Otto, Diesel, Atkinson, Dual, Miller and Carnot heat pump cycles.

  3. Modeling Io's Heat Flow: Constraints from Galileo PPR Data

    Science.gov (United States)

    Rathbun, J. A.; Spencer, J. R.; Tamppari, L. K.

    2000-01-01

    We attempt to improve on previous Io heat flow estimates by using higher resolution data from Galileo Photopolarimeter Radiometer (PPR) and improved thermophysical models of the surface, including finite thermal inertia, the pedestal effect, and disk-resolved radiance.

  4. The optimization model of the heat conduction structure

    Institute of Scientific and Technical Information of China (English)

    Yongcun Zhang; Shutian Liu

    2008-01-01

    An optimization model considering a novel thermal performance index to be the objective function is proposed for minimizing the highest temperature in this paper. Firstly, the performance of the conventional heat conduction optimization model, with the dissipation of heat transport potential capacity as the objective function, is evaluated by a one-dimensional heat conduction problem in a planar plate exchanger. Then, a new thermal performance index, named the geometric average temperature, is introduced. The new heat conduction optimization model, with the geometric average temperature as the objective function, is developed and the corresponding finite element formula is presented. The results show that the geometric average temperature is an ideal thermal performance index and the solution of the new model is close to the theoretical optimal solution.

  5. Two-phase plate-fin heat exchanger modeling for waste heat recovery systems in diesel engines

    NARCIS (Netherlands)

    Feru, E.; de Jager, B.; Willems, F.; Steinbuch, M.

    2014-01-01

    This paper presents the modeling and model validation for a modular two-phase heat exchanger that recovers energy in heavy-duty diesel engines. The model is developed for temperature and vapor quality prediction and for control design of the waste heat recovery system. In the studied waste heat reco

  6. Optimization of heat saving in buildings using unsteady heat transfer model

    Directory of Open Access Journals (Sweden)

    Dedinec Aleksandra

    2015-01-01

    Full Text Available Reducing the energy consumption growth rate is increasingly becoming one of the main challenges for ensuring sustainable development, particularly in the buildings as the largest end-use sector in many countries. Along this line, the aim of this paper is to analyse the possibilities for energy savings in the construction of new buildings and reconstruction of the existing ones developing a tool that, in terms of the available heating technologies and insulation, provides answer to the problem of optimal cost effective energy consumption. The tool is composed of an unsteady heat transfer model which is incorporated into a cost-effective energy saving optimization. The unsteady heat transfer model uses annual hourly meteorological data, chosen as typical for the last ten-year period, as well as thermo physical features of the layers of the building walls. The model is tested for the typical conditions in the city of Skopje, Macedonia. The results show that the most cost effective heating technology for the given conditions is the wood fired stove, followed by the inverter air-conditioner. The centralized district heating and the pellet fired stoves are the next options. The least cost effective option is the panel that uses electricity. In this paper, the optimal insulation thickness is presented for each type of heating technology.

  7. Enthalpy model for heating, melting, and vaporization in laser ablation

    OpenAIRE

    Vasilios Alexiades; David Autrique

    2010-01-01

    Laser ablation is used in a growing number of applications in various areas including medicine, archaeology, chemistry, environmental and materials sciences. In this work the heat transfer and phase change phenomena during nanosecond laser ablation of a copper (Cu) target in a helium (He) background gas at atmospheric pressure are presented. An enthalpy model is outlined, which accounts for heating, melting, and vaporization of the target. As far as we know, this is the first model th...

  8. Orion MPCV Continuum RCS Heating Augmentation Model Development

    Science.gov (United States)

    Hyatt, Andrew J.; White, Molly E.

    2014-01-01

    The reaction control system jets of the Orion Multi Purpose Crew Vehicle can have a significant impact on the magnitude and distribution of the surface heat flux on the leeside of the aft-body, when they are fired. Changes in surface heating are expressed in terms of augmentation factor over the baseline smooth body heating. Wind tunnel tests revealed heating augmentation factors as high as 13.0, 7.6, 2.8, and 5.8 for the roll, pitch down, pitch up, and yaw jets respectively. Heating augmentation factor models, based almost exclusively on data from a series of wind tunnel tests have been developed, for the purposes of thermal protection system design. The wind tunnel tests investigated several potential jet-to-freestream similarity parameters, and heating augmentation factors derived from the data showed correlation with the jet-to-freestream momentum ratio. However, this correlation was not utilized in the developed models. Instead augmentation factors were held constant throughout the potential trajectory space. This simplification was driven by the fact that ground to flight traceability and sting effects are not well understood. Given the sensitivity of the reaction control system jet heating augmentation to configuration, geometry, and orientation the focus in the present paper is on the methodology used to develop the models and the lessons learned from the data. The models that are outlined in the present work are specific to the aerothermal database used to design the thermal protection system for the Exploration Flight Test 1 vehicle.

  9. Modeling of Methods to Control Heat-Consumption Efficiency

    Science.gov (United States)

    Tsynaeva, E. A.; Tsynaeva, A. A.

    2016-11-01

    In this work, consideration has been given to thermophysical processes in automated heat consumption control systems (AHCCSs) of buildings, flow diagrams of these systems, and mathematical models describing the thermophysical processes during the systems' operation; an analysis of adequacy of the mathematical models has been presented. A comparison has been made of the operating efficiency of the systems and the methods to control the efficiency. It has been determined that the operating efficiency of an AHCCS depends on its diagram and the temperature chart of central quality control (CQC) and also on the temperature of a low-grade heat source for the system with a heat pump.

  10. Group theory transformation for Soret and Dufour effects on free convective heat and mass transfer with thermophoresis and chemical reaction over a porous stretching surface in the presence of heat source/sink

    Energy Technology Data Exchange (ETDEWEB)

    Kandasamy, R., E-mail: future990@gmail.com [Computational Fluid Dynamics, FSSW, Universiti Tun Hussein Onn Malaysia, 86400 Batu Pahat, Johore (Malaysia); Hayat, T. [Department of Mathematics, Quaid-i-Azam University Islamabad (Pakistan); Department of Mathematics, College of Science, King Saud University, P.O. Box 2455, Riyadh 1451 (Saudi Arabia); Obaidat, S. [Department of Mathematics, College of Science, King Saud University, P.O. Box 2455, Riyadh 1451 (Saudi Arabia)

    2011-06-15

    Highlights: > The group theoretic method is of wide applicability. > Concentration boundary layer is significantly suppressed by the thermophoretic force. > Impact of Soret and Dufour effects in the presence of thermophoresis particle deposition with chemical reaction plays an important role on the flow field. - Abstract: The group theoretic method is applied for solving the problem of combined effect of thermal diffusion and diffusion thermo on free convective heat and mass transfer over a porous stretching surface in the presence of thermophoresis particle deposition with variable stream conditions. The application of one-parameter groups reduces the number of independent variables by one and consequently, the system of governing partial differential equations with the boundary conditions reduces to a system of ordinary differential equations with appropriate boundary conditions. The equations along with the boundary conditions are solved numerically by using Runge Kutta Gill integration scheme with shooting technique. Impact of Soret and Dufour effects in the presence of thermophoresis particle deposition with chemical reaction plays an important role on the flow field. The results thus obtained are presented graphically and discussed.

  11. MODELING OF TEMPERATURE FIELDS IN A SOLID HEAT ACCUMULLATORS

    Directory of Open Access Journals (Sweden)

    S. S. Belimenko

    2016-10-01

    Full Text Available Purpose. Currently, one of the priorities of energy conservation is a cost savings for heating in commercial and residential buildings by the stored thermal energy during the night and its return in the daytime. Economic effect is achieved due to the difference in tariffs for the cost of electricity in the daytime and at night. One of the most common types of devices that allow accumulating and giving the resulting heat are solid heat accumulators. The main purpose of the work: 1 software development for the calculation of the temperature field of a flat solid heat accumulator, working due to the heat energy accumulation in the volume of thermal storage material without phase transition; 2 determination the temperature distribution in its volumes at convective heat transfer. Methodology. To achieve the study objectives a heat transfer theory and Laplace integral transform were used. On its base the problems of determining the temperature fields in the channels of heat accumulators, having different cross-sectional shapes were solved. Findings. Authors have developed the method of calculation and obtained solutions for the determination of temperature fields in channels of the solid heat accumulator in conditions of convective heat transfer. Temperature fields over length and thickness of channels were investigated. Experimental studies on physical models and industrial equipment were conducted. Originality. For the first time the technique of calculating the temperature field in the channels of different cross-section for the solid heat accumulator in the charging and discharging modes was proposed. The calculation results are confirmed by experimental research. Practical value. The proposed technique is used in the design of solid heat accumulators of different power as well as full-scale production of them was organized.

  12. Modeling transient heat transfer in nuclear waste repositories.

    Science.gov (United States)

    Yang, Shaw-Yang; Yeh, Hund-Der

    2009-09-30

    The heat of high-level nuclear waste may be generated and released from a canister at final disposal sites. The waste heat may affect the engineering properties of waste canisters, buffers, and backfill material in the emplacement tunnel and the host rock. This study addresses the problem of the heat generated from the waste canister and analyzes the heat distribution between the buffer and the host rock, which is considered as a radial two-layer heat flux problem. A conceptual model is first constructed for the heat conduction in a nuclear waste repository and then mathematical equations are formulated for modeling heat flow distribution at repository sites. The Laplace transforms are employed to develop a solution for the temperature distributions in the buffer and the host rock in the Laplace domain, which is numerically inverted to the time-domain solution using the modified Crump method. The transient temperature distributions for both the single- and multi-borehole cases are simulated in the hypothetical geological repositories of nuclear waste. The results show that the temperature distributions in the thermal field are significantly affected by the decay heat of the waste canister, the thermal properties of the buffer and the host rock, the disposal spacing, and the thickness of the host rock at a nuclear waste repository.

  13. Calibrated Heat Flow Model for Determining the Heat Conduction Losses in Laser Cutting of CFRP

    Science.gov (United States)

    Mucha, P.; Weber, R.; Speker, N.; Berger, P.; Sommer, B.; Graf, T.

    Laser machining has great potential regarding automation in fabrication of CFRP (carbon-fiber-reinforced plastics) parts, due to the nearly force and tool-wear free processing at high process speeds. The high vaporization temperatures and the large heat conductivity of the carbon fibers lead to a large heat transport into the sample. This causes the formation of a heat-affected zone and a decrease of the process speed. In the present paper,an analytical heat flow model was adapted in order to understand and investigate the heat conduction losses. Thermal sensors were embedded in samples at different distances from the kerf to fit the calculated to the measured temperatures. Heat conduction losses of up to 30% of the laser power were determined. Furthermore, the energy not absorbed by the sample, the energy for sublimating the composite material in the kerf, the energy for the formation of the HAZ, and the residual heat in the sample are compared in an energy balance.

  14. Heat pipe turbine vane cooling

    Energy Technology Data Exchange (ETDEWEB)

    Langston, L.; Faghri, A. [Univ. of Connecticut, Storrs, CT (United States)

    1995-10-01

    The applicability of using heat pipe principles to cool gas turbine vanes is addressed in this beginning program. This innovative concept involves fitting out the vane interior as a heat pipe and extending the vane into an adjacent heat sink, thus transferring the vane incident heat transfer through the heat pipe to heat sink. This design provides an extremely high heat transfer rate and an uniform temperature along the vane due to the internal change of phase of the heat pipe working fluid. Furthermore, this technology can also eliminate hot spots at the vane leading and trailing edges and increase the vane life by preventing thermal fatigue cracking. There is also the possibility of requiring no bleed air from the compressor, and therefore eliminating engine performance losses resulting from the diversion of compressor discharge air. Significant improvement in gas turbine performance can be achieved by using heat pipe technology in place of conventional air cooled vanes. A detailed numerical analysis of a heat pipe vane will be made and an experimental model will be designed in the first year of this new program.

  15. Carbon sinks in temperate forests

    NARCIS (Netherlands)

    Martin, P.H.; Nabuurs, G.J.; Aubinet, M.; Karjalainen, T.; Vine, E.L.; Kinsman, J.; Heath, L.S.

    2001-01-01

    In addition to being scientifically exciting, commercially important, and environmentally essential, temperate forests have also become a key diplomatic item in international climate negotiations as potential sinks for carbon. This review presents the methods used to estimate carbon sequestration, i

  16. Bounds on the dynamics of sink populations with noisy immigration

    DEFF Research Database (Denmark)

    Eager, Eric Alan; Guiver, Chris; Hodgson, Dave

    2014-01-01

    Sink populations are doomed to decline to extinction in the absence of immigration. The dynamics of sink populations are not easily modelled using the standard framework of per capita rates of immigration, because numbers of immigrants are determined by extrinsic sources (for example, source...... populations, or population managers). Here we appeal to a systems and control framework to place upper and lower bounds on both the transient and future dynamics of sink populations that are subject to noisy immigration. Immigration has a number of interpretations and can fit a wide variety of models found...

  17. Fractional Heat Conduction Models and Thermal Diffusivity Determination

    Directory of Open Access Journals (Sweden)

    Monika Žecová

    2015-01-01

    Full Text Available The contribution deals with the fractional heat conduction models and their use for determining thermal diffusivity. A brief historical overview of the authors who have dealt with the heat conduction equation is described in the introduction of the paper. The one-dimensional heat conduction models with using integer- and fractional-order derivatives are listed. Analytical and numerical methods of solution of the heat conduction models with using integer- and fractional-order derivatives are described. Individual methods have been implemented in MATLAB and the examples of simulations are listed. The proposal and experimental verification of the methods for determining thermal diffusivity using half-order derivative of temperature by time are listed at the conclusion of the paper.

  18. Down-Hole Heat Exchangers: Modelling of a Low-Enthalpy Geothermal System for District Heating

    Directory of Open Access Journals (Sweden)

    M. Carlini

    2012-01-01

    Full Text Available In order to face the growing energy demands, renewable energy sources can provide an alternative to fossil fuels. Thus, low-enthalpy geothermal plants may play a fundamental role in those areas—such as the Province of Viterbo—where shallow groundwater basins occur and conventional geothermal plants cannot be developed. This may lead to being fuelled by locally available sources. The aim of the present paper is to exploit the heat coming from a low-enthalpy geothermal system. The experimental plant consists in a down-hole heat exchanger for civil purposes and can supply thermal needs by district heating. An implementation in MATLAB environment is provided in order to develop a mathematical model. As a consequence, the amount of withdrawable heat can be successfully calculated.

  19. MATHEMATICAL MODELLING OF OPERATION HEAT NETWORKS IN VIEW OF HEAT LOSS

    Directory of Open Access Journals (Sweden)

    ZBARAZ L. I.

    2016-08-01

    Full Text Available Goal. In recent years, due to a significant rise in price of energy, the reduction of direct costs for heating becomes a priority. In the utilities especially important to optimization of energy heating system equipment. During transport of thermal energy in the distribution networks thermal losses occur along the length of the hydraulic pipes and the coolant pumping losses. These loss-dependence of the particular distribution network. Changing temperature and the hydraulic regime at the source necessary to achieve the minimum cost of transport for today acting tariffs for energy. Scientific novelty. The studies received law changes head to the source at the qualitative and quantitative methods of regulation. Results. A mathematical model of an extensive network of decentralized heat source heating, which are analyzed using different methods of regulating and found the best.

  20. EnergyPlus Air Source Integrated Heat Pump Model

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Bo [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Energy and Transportation Science Division; Adams, Mark B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Energy and Transportation Science Division; New, Joshua Ryan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Energy and Transportation Science Division

    2016-03-30

    This report summarizes the development of the EnergyPlus air-source integrated heat pump model. It introduces its physics, sub-models, working modes, and control logic. In addition, inputs and outputs of the new model are described, and input data file (IDF) examples are given.

  1. Maximizing Lifetime of Wireless Sensor Networks with Mobile Sink Nodes

    Directory of Open Access Journals (Sweden)

    Yourong Chen

    2014-01-01

    Full Text Available In order to maximize network lifetime and balance energy consumption when sink nodes can move, maximizing lifetime of wireless sensor networks with mobile sink nodes (MLMS is researched. The movement path selection method of sink nodes is proposed. Modified subtractive clustering method, k-means method, and nearest neighbor interpolation method are used to obtain the movement paths. The lifetime optimization model is established under flow constraint, energy consumption constraint, link transmission constraint, and other constraints. The model is solved from the perspective of static and mobile data gathering of sink nodes. Subgradient method is used to solve the lifetime optimization model when one sink node stays at one anchor location. Geometric method is used to evaluate the amount of gathering data when sink nodes are moving. Finally, all sensor nodes transmit data according to the optimal data transmission scheme. Sink nodes gather the data along the shortest movement paths. Simulation results show that MLMS can prolong network lifetime, balance node energy consumption, and reduce data gathering latency under appropriate parameters. Under certain conditions, it outperforms Ratio_w, TPGF, RCC, and GRND.

  2. Sinking coastal cities

    Science.gov (United States)

    Erkens, Gilles; Bucx, Tom; Dam, Rien; De Lange, Ger; Lambert, John

    2014-05-01

    In many coastal and delta cities land subsidence now exceeds absolute sea level rise up to a factor of ten. Without action, parts of Jakarta, Ho Chi Minh City, Bangkok and numerous other coastal cities will sink below sea level. Land subsidence increases flood vulnerability (frequency, inundation depth and duration of floods), with floods causing major economic damage and loss of lives. In addition, differential land movement causes significant economic losses in the form of structural damage and high maintenance costs. This effects roads and transportation networks, hydraulic infrastructure - such as river embankments, sluice gates, flood barriers and pumping stations -, sewage systems, buildings and foundations. The total damage worldwide is estimated at billions of dollars annually. Excessive groundwater extraction after rapid urbanization and population growth is the main cause of severe land subsidence. In addition, coastal cities are often faced with larger natural subsidence, as they are built on thick sequences of soft soil. Because of ongoing urbanization and population growth in delta areas, in particular in coastal megacities, there is, and will be, more economic development in subsidence-prone areas. The impacts of subsidence are further exacerbated by extreme weather events (short term) and rising sea levels (long term).Consequently, detrimental impacts will increase in the near future, making it necessary to address subsidence related problems now. Subsidence is an issue that involves many policy fields, complex technical aspects and governance embedment. There is a need for an integrated approach in order to manage subsidence and to develop appropriate strategies and measures that are effective and efficient on both the short and long term. Urban (ground)water management, adaptive flood risk management and related spatial planning strategies are just examples of the options available. A major rethink is needed to deal with the 'hidden' but urgent

  3. Numerical Modeling of Electroacoustic Logging Including Joule Heating

    Science.gov (United States)

    Plyushchenkov, Boris D.; Nikitin, Anatoly A.; Turchaninov, Victor I.

    It is well known that electromagnetic field excites acoustic wave in a porous elastic medium saturated with fluid electrolyte due to electrokinetic conversion effect. Pride's equations describing this process are written in isothermal approximation. Update of these equations, which allows to take influence of Joule heating on acoustic waves propagation into account, is proposed here. This update includes terms describing the initiation of additional acoustic waves excited by thermoelastic stresses and the heat conduction equation with right side defined by Joule heating. Results of numerical modeling of several problems of propagation of acoustic waves excited by an electric field source with and without consideration of Joule heating effect in their statements are presented. From these results, it follows that influence of Joule heating should be taken into account at the numerical simulation of electroacoustic logging and at the interpretation of its log data.

  4. A SIMPLE EXPERIMENTAL MODEL OF HEAT SHOCK RESPONSE IN RATS

    Directory of Open Access Journals (Sweden)

    Tufi Neder Meyer

    1998-10-01

    Full Text Available Objective: To obtain a simple model for the elicitation of the heat shock response in rats. Design: Laboratory study. Setting: University research laboratories. Sample: Seventy-nine adult male albino rats (weight range 200 g to 570 g. Procedures: Exposure to heat stress by heating animals in a warm bath for 5 min after their rectal temperatures reached 107.60 F (420 C. Liver and lung samples were collected for heat-shock protein 70 (HSP70 detection (Western analysis. Results: Western analysis was positive for HSP70 in the liver and in the lungs of heated animals. There was a temporal correlation between heating and HSP70 detection: it was strongest 1 day after heating and reduced afterwards. No heated animals died. Conclusion: These data show that heating rats in a warm (45o C bath, according to parameters set in this model, elicits efficiently the heat shock response.OBJETIVO: Obter um modelo simples para tentar esclarecer a resposta ao choque térmico em ratos. LOCAL: Laboratório de pesquisa da Universidade. MÉTODO: Amostra: 79 ratos albinos, adultos, entre 200g a 570g. Procedimentos: Exposição ao calor, em banho quente, por 5 minutos, após a temperatura retal chegar a 42 graus centigrados. Biópsias de fígado e pulmão foram obtidas para detectar a proteina 70 (HSP 70, pelo "Western blot". RESULTADOS: As análises foram positivas nos animais aquecidos, com uma correlação entre aquecimento e constatação da HSP 70. Foi mais elevada no primeiro dia e não houve óbitos nos animais aquecidos. CONCLUSÃO: Os ratos aquecidos a 45 graus centígrados respondem eficientemente ao choque térmico.

  5. Foundation Heat Exchanger Final Report: Demonstration, Measured Performance, and Validated Model and Design Tool

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, Patrick [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Im, Piljae [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2012-04-01

    Geothermal heat pumps, sometimes called ground-source heat pumps (GSHPs), have been proven capable of significantly reducing energy use and peak demand in buildings. Conventional equipment for controlling the temperature and humidity of a building, or supplying hot water and fresh outdoor air, must exchange energy (or heat) with the building's outdoor environment. Equipment using the ground as a heat source and heat sink consumes less non-renewable energy (electricity and fossil fuels) because the earth is cooler than outdoor air in summer and warmer in winter. The most important barrier to rapid growth of the GSHP industry is high first cost of GSHP systems to consumers. The most common GSHP system utilizes a closed-loop ground heat exchanger. This type of GSHP system can be used almost anywhere. There is reason to believe that reducing the cost of closed-loop systems is the strategy that would achieve the greatest energy savings with GSHP technology. The cost premium of closed-loop GSHP systems over conventional space conditioning and water heating systems is primarily associated with drilling boreholes or excavating trenches, installing vertical or horizontal ground heat exchangers, and backfilling the excavations. This project investigates reducing the cost of horizontal closed-loop ground heat exchangers by installing them in the construction excavations, augmented when necessary with additional trenches. This approach applies only to new construction of residential and light commercial buildings or additions to such buildings. In the business-as-usual scenario, construction excavations are not used for the horizontal ground heat exchanger (HGHX); instead the HGHX is installed entirely in trenches dug specifically for that purpose. The potential cost savings comes from using the construction excavations for the installation of ground heat exchangers, thereby minimizing the need and expense of digging additional trenches. The term foundation heat exchanger

  6. Foundation Heat Exchanger Final Report: Demonstration, Measured Performance, and Validated Model and Design Tool

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, Patrick [Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States); Im, Piljae [Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)

    2012-01-01

    Geothermal heat pumps, sometimes called ground-source heat pumps (GSHPs), have been proven capable of significantly reducing energy use and peak demand in buildings. Conventional equipment for controlling the temperature and humidity of a building, or supplying hot water and fresh outdoor air, must exchange energy (or heat) with the building's outdoor environment. Equipment using the ground as a heat source and heat sink consumes less non-renewable energy (electricity and fossil fuels) because the earth is cooler than outdoor air in summer and warmer in winter. The most important barrier to rapid growth of the GSHP industry is high first cost of GSHP systems to consumers. The most common GSHP system utilizes a closed-loop ground heat exchanger. This type of GSHP system can be used almost anywhere. There is reason to believe that reducing the cost of closed-loop systems is the strategy that would achieve the greatest energy savings with GSHP technology. The cost premium of closed-loop GSHP systems over conventional space conditioning and water heating systems is primarily associated with drilling boreholes or excavating trenches, installing vertical or horizontal ground heat exchangers, and backfilling the excavations. This project investigates reducing the cost of horizontal closed-loop ground heat exchangers by installing them in the construction excavations, augmented when necessary with additional trenches. This approach applies only to new construction of residential and light commercial buildings or additions to such buildings. In the business-as-usual scenario, construction excavations are not used for the horizontal ground heat exchanger (HGHX); instead the HGHX is installed entirely in trenches dug specifically for that purpose. The potential cost savings comes from using the construction excavations for the installation of ground heat exchangers, thereby minimizing the need and expense of digging additional trenches. The term foundation heat exchanger

  7. Pitfalls in modeling mantle convection with internal heat production

    Science.gov (United States)

    Korenaga, Jun

    2017-05-01

    The mantle of the Earth, and probably of other terrestrial planets as well, is heated from below and within. The heating mode of mantle convection is thus mixed heating, and it is also time dependent because the amount of heat-producing isotopes in the mantle is steadily decreasing by radioactive decay and because the basal heat flux originating in the cooling of the core can vary with time. This mode of transient mixed heating presents its own challenges to the study of mantle convection, but such difficulties are not always appreciated in the recent literature. The purpose of this tutorial is to clarify the issue of heating mode by explaining relevant concepts in a coherent manner, including the internal heating ratio, the Urey ratio, secular cooling, and the connection between the thermal budget of the Earth and the geochemical models of the Earth. The importance of such basic concepts will be explained with some illustrative examples in the context of the thermal evolution of the Earth, and a summary of common pitfalls will be provided, with a possible strategy for how to avoid them.

  8. Verification and Validation of Heat Transfer Model of AGREE Code

    Energy Technology Data Exchange (ETDEWEB)

    Tak, N. I. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Seker, V.; Drzewiecki, T. J.; Downar, T. J. [Department of Nuclear Engineering and Radiological Sciences, Univ. of Michigan, Michigan (United States); Kelly, J. M. [US Nuclear Regulatory Commission, Washington (United States)

    2013-05-15

    The AGREE code was originally developed as a multi physics simulation code to perform design and safety analysis of Pebble Bed Reactors (PBR). Currently, additional capability for the analysis of Prismatic Modular Reactor (PMR) core is in progress. Newly implemented fluid model for a PMR core is based on a subchannel approach which has been widely used in the analyses of light water reactor (LWR) cores. A hexagonal fuel (or graphite block) is discretized into triangular prism nodes having effective conductivities. Then, a meso-scale heat transfer model is applied to the unit cell geometry of a prismatic fuel block. Both unit cell geometries of multi-hole and pin-in-hole types of prismatic fuel blocks are considered in AGREE. The main objective of this work is to verify and validate the heat transfer model newly implemented for a PMR core in the AGREE code. The measured data in the HENDEL experiment were used for the validation of the heat transfer model for a pin-in-hole fuel block. However, the HENDEL tests were limited to only steady-state conditions of pin-in-hole fuel blocks. There exist no available experimental data regarding a heat transfer in multi-hole fuel blocks. Therefore, numerical benchmarks using conceptual problems are considered to verify the heat transfer model of AGREE for multi-hole fuel blocks as well as transient conditions. The CORONA and GAMMA+ codes were used to compare the numerical results. In this work, the verification and validation study were performed for the heat transfer model of the AGREE code using the HENDEL experiment and the numerical benchmarks of selected conceptual problems. The results of the present work show that the heat transfer model of AGREE is accurate and reliable for prismatic fuel blocks. Further validation of AGREE is in progress for a whole reactor problem using the HTTR safety test data such as control rod withdrawal tests and loss-of-forced convection tests.

  9. Modelling of heat and mass transfer processes in neonatology

    Energy Technology Data Exchange (ETDEWEB)

    Ginalski, Maciej K [FLUENT Europe, Sheffield Business Park, Europa Link, Sheffield S9 1XU (United Kingdom); Nowak, Andrzej J [Institute of Thermal Technology, Silesian University of Technology, Konarskiego 22, 44-100 Gliwice (Poland); Wrobel, Luiz C [School of Engineering and Design, Brunel University, Uxbridge UB8 3PH (United Kingdom)], E-mail: maciej.ginalski@ansys.com, E-mail: Andrzej.J.Nowak@polsl.pl, E-mail: luiz.wrobel@brunel.ac.uk

    2008-09-01

    This paper reviews some of our recent applications of computational fluid dynamics (CFD) to model heat and mass transfer problems in neonatology and investigates the major heat and mass transfer mechanisms taking place in medical devices such as incubators and oxygen hoods. This includes novel mathematical developments giving rise to a supplementary model, entitled infant heat balance module, which has been fully integrated with the CFD solver and its graphical interface. The numerical simulations are validated through comparison tests with experimental results from the medical literature. It is shown that CFD simulations are very flexible tools that can take into account all modes of heat transfer in assisting neonatal care and the improved design of medical devices.

  10. Mathematical Modelling and Parameter Optimization of Pulsating Heat Pipes

    CERN Document Server

    Yang, Xin-She; Luan, Tao; Koziel, Slawomir

    2014-01-01

    Proper heat transfer management is important to key electronic components in microelectronic applications. Pulsating heat pipes (PHP) can be an efficient solution to such heat transfer problems. However, mathematical modelling of a PHP system is still very challenging, due to the complexity and multiphysics nature of the system. In this work, we present a simplified, two-phase heat transfer model, and our analysis shows that it can make good predictions about startup characteristics. Furthermore, by considering parameter estimation as a nonlinear constrained optimization problem, we have used the firefly algorithm to find parameter estimates efficiently. We have also demonstrated that it is possible to obtain good estimates of key parameters using very limited experimental data.

  11. Particle model for nonlocal heat transport in fusion plasmas.

    Science.gov (United States)

    Bufferand, H; Ciraolo, G; Ghendrih, Ph; Lepri, S; Livi, R

    2013-02-01

    We present a simple stochastic, one-dimensional model for heat transfer in weakly collisional media as fusion plasmas. Energies of plasma particles are treated as lattice random variables interacting with a rate inversely proportional to their energy schematizing a screened Coulomb interaction. We consider both the equilibrium (microcanonical) and nonequilibrium case in which the system is in contact with heat baths at different temperatures. The model exhibits a characteristic length of thermalization that can be associated with an interaction mean free path and one observes a transition from ballistic to diffusive regime depending on the average energy of the system. A mean-field expression for heat flux is deduced from system heat transport properties. Finally, it is shown that the nonequilibrium steady state is characterized by long-range correlations.

  12. Modelling of heat and mass transfer processes in neonatology.

    Science.gov (United States)

    Ginalski, Maciej K; Nowak, Andrzej J; Wrobel, Luiz C

    2008-09-01

    This paper reviews some of our recent applications of computational fluid dynamics (CFD) to model heat and mass transfer problems in neonatology and investigates the major heat and mass transfer mechanisms taking place in medical devices such as incubators and oxygen hoods. This includes novel mathematical developments giving rise to a supplementary model, entitled infant heat balance module, which has been fully integrated with the CFD solver and its graphical interface. The numerical simulations are validated through comparison tests with experimental results from the medical literature. It is shown that CFD simulations are very flexible tools that can take into account all modes of heat transfer in assisting neonatal care and the improved design of medical devices.

  13. An Energy Savings Model for the Heat Treatment of Castings

    Energy Technology Data Exchange (ETDEWEB)

    Y. Rong; R. Sisson; J. Morral; H. Brody

    2006-12-31

    An integrated system of software, databases, and design rules have been developed, verified, and to be marketed to enable quantitative prediction and optimization of the heat treatment of aluminum castings to increase quality, increase productivity, reduce heat treatment cycle times and reduce energy consumption. The software predicts the thermal cycle in critical locations of individual components in a furnace, the evolution of microstructure, and the attainment of properties in heat treatable aluminum alloy castings. The model takes into account the prior casting process and the specific composition of the component. The heat treatment simulation modules can be used in conjunction with software packages for simulation of the casting process. The system is built upon a quantitative understanding of the kinetics of microstructure evolution in complex multicomponent alloys, on a quantitative understanding of the interdependence of microstructure and properties, on validated kinetic and thermodynamic databases, and validated quantitative models.

  14. Model of Carbon Wire Heating in Accelerator Beam

    CERN Document Server

    Sapinski, M

    2008-01-01

    A heat flow equation with beam-induced heating and various cooling processes for a carbon wire passing through a particle beam is solved. Due to equation nonlinearity a numerical approach based on discretization of the wire movement is used. Heating of the wire due to the beam-induced electromagnetic field is taken into account. An estimation of the wire sublimation rate is made. The model is tested on SPS, LEP and Tevatron Main Injector data. Results are discussed and conclusions about limits of Wire Scanner operation on LHC beams are drawn.

  15. Modelling floor heating systems using a validated two-dimensional ground coupled numerical model

    DEFF Research Database (Denmark)

    Weitzmann, Peter; Kragh, Jesper; Roots, Peter

    2005-01-01

    the floor. This model can be used to design energy efficient houses with floor heating focusing on the heat loss through the floor construction and foundation. It is found that it is impor-tant to model the dynamics of the floor heating system to find the correct heat loss to the ground, and further......This paper presents a two-dimensional simulation model of the heat losses and tempera-tures in a slab on grade floor with floor heating which is able to dynamically model the floor heating system. The aim of this work is to be able to model, in detail, the influence from the floor construction...... and foundation on the performance of the floor heating sys-tem. The ground coupled floor heating model is validated against measurements from a single-family house. The simulation model is coupled to a whole-building energy simu-lation model with inclusion of heat losses and heat supply to the room above...

  16. Bioaccessibility of nitro- and oxy-PAHs in fuel soot assessed by an in vitro digestive model with absorptive sink.

    Science.gov (United States)

    Zhang, Yanyan; Pignatello, Joseph J; Tao, Shu

    2016-11-01

    Ingestion of soot present in soil or other environmental particles is expected to be an important route of exposure to nitro and oxygenated derivatives of polycyclic aromatic hydrocarbons (PAHs). We measured the apparent bioaccessibility (Bapp) of native concentrations of 1-nitropyrene (1N-PYR), 9-fluorenone (9FLO), anthracene-9,10-dione (ATQ), benzo[a]anthracene-7,12-dione (BaAQ), and benzanthrone (BZO) in a composite fuel soot sample using a previously-developed in vitro human gastrointestinal model that includes silicone sheet as a third-phase absorptive sink. Along with Bapp, we determined the 24-h sheet-digestive fluid partition coefficient (Ks,24h), the soot residue-fluid distribution ratio of the labile sorbed fraction after digestion (Kr,lab), and the maximum possible (limiting) bioaccessibility, Blim. The Bapp of PAH derivatives was positively affected by the presence of the sheet due to mass-action removal of the sorbed compounds. In all cases Bapp increased with imposition of fed conditions. The enhancement of Bapp under fed conditions is due to increasingly favorable mass transfer of target compounds from soot to fluid (increasing bile acid concentration, or adding food lipids) or transfer from fluid to sheet (by raising small intestinal pH). Food lipids may also enhance Bapp by mobilizing contaminants from nonlabile to labile states of the soot. Compared to the parent PAH, the derivatives had larger Kr,lab, despite having lower partition coefficients to various hydrophobic reference phases including silicone sheet. The Blim of the derivatives under the default conditions of the model ranged from 65.5% to 34.4%, in the order, 1N-PYR > ATQ > 9FLO > BZO > BaAQ, with no significant correlation with hydrophobic parameters, nor consistent relationship with Blim of the parent PAH. Consistent with earlier experiments on a wider range of PAHs, the results suggest that a major determinant of bioaccessibility is the distribution of chemical between

  17. 3D Reconstruction of a Fluvial Sediment Slug from Source to Sink: reach-scale modeling of the Dart River, NZ

    Science.gov (United States)

    Brasington, J.; Cook, S.; Cox, S.; James, J.; Lehane, N.; McColl, S. T.; Quincey, D. J.; Williams, R. D.

    2014-12-01

    Following heavy rainfall on 4/1/14, a debris flow at Slip Stream (44.59 S 168.34 E) introduced >106 m3 of sediment to the Dart River valley floor in NZ Southern Alps. Runout over an existing fan dammed the Dart River causing a sudden drop in discharge downstream. This broad dam was breached quickly; however the temporary loss of conveyance impounded a 3 km lake with a volume of 6 x 106 m3 and depths that exceed 10 m. Quantifying the impact of this large sediment pulse on the Dart River is urgently needed to assess potential sedimentation downstream and will also provide an ideal vehicle to test theories of bed wave migration in large, extensively braided rivers. Recent advances in geomatics offer the opportunity to study these impacts directly through the production of high-resolution DEMs. These 3D snapshots can then be compared through time to quantify the morphodynamic response of the channel as it adjusts to the change in sediment supply. In this study we describe the methods and results of a novel survey strategy designed to capture of the complex morphology of the Dart River along a remote 40 km reach, from the upstream landslide source to its distal sediment sink in Lake Wakatipu. The scale of this system presents major logistical and methodological challenges, and hitherto would have conventionally be addressed with airborne laser scanning, bringing with it significant deployment constraints and costs. By contrast, we present sub-metre 3D reconstructions of the system (Figure 1), derived from highly redundant aerial photography shot with a non-metric camera from a helicopter survey that extended over an 80 km2 area. Structure-from-Motion photogrammetry was used to solve simultaneously camera position, pose and derive a 3D point cloud based on over 4000 images. Reconstructions were found to exhibit significant systematic error resulting from the implicit estimation of the internal camera orientation parameters, and we show how these effects can be minimized

  18. MATHEMATICAL MODELING OF THERMOPHYSICAL PARAMETERS OF VORTEX HEAT EXCHANGER OF HEATING SYSTEMS OF GAS DISTRIBUTION POINTS PREMISES

    Directory of Open Access Journals (Sweden)

    V. A. Lapin

    2009-09-01

    Full Text Available The mathematical model of heat transfer in vortex heat exchanger using natural gas energy which is released under decompression in gas-main pipe-lines for consumers of gas supply systems (dwellings, public and industrial buildings.

  19. Heat sources in proton exchange membrane (PEM) fuel cells

    Science.gov (United States)

    Ramousse, Julien; Lottin, Olivier; Didierjean, Sophie; Maillet, Denis

    In order to model accurately heat transfer in PEM fuel cell, a particular attention had to be paid to the assessment of heat sources in the cell. Although the total amount of heat released is easily computed from its voltage, local heat sources quantification and localization are not simple. This paper is thus a discussion about heat sources/sinks distribution in a single cell, for which many bold assumptions are encountered in the literature. The heat sources or sinks under consideration are: (1) half-reactions entropy, (2) electrochemical activation, (3) water sorption/desorption at the GDL/membrane interfaces, (4) Joule effect in the membrane and (5) water phase change in the GDL. A detailed thermodynamic study leads to the conclusion that the anodic half-reaction is exothermic (Δ Sr ev a = - 226 J mo l-1 K-1) , instead of being athermic as supposed in most of the thermal studies. As a consequence, the cathodic half-reaction is endothermic (Δ Sr ev c = + 62.8 J mo l-1 K-1) , which results in a heat sink at the cathode side, proportional to the current. In the same way, depending on the water flux through the membrane, sorption can create a large heat sink at one electrode and an equivalent heat source at the other. Water phase change in the GDL - condensation/evaporation - results in heat sources/sinks that should also be taken into account. All these issues are addressed in order to properly set the basis of heat transfer modeling in the cell.

  20. Thermal performance modeling of cross-flow heat exchangers

    CERN Document Server

    Cabezas-Gómez, Luben; Saíz-Jabardo, José Maria

    2014-01-01

    This monograph introduces a numerical computational methodology for thermal performance modeling of cross-flow heat exchangers, with applications in chemical, refrigeration and automobile industries. This methodology allows obtaining effectiveness-number of transfer units (e-NTU) data and has been used for simulating several standard and complex flow arrangements configurations of cross-flow heat exchangers. Simulated results have been validated through comparisons with results from available exact and approximate analytical solutions. Very accurate results have been obtained over wide ranges

  1. Integrated modeling and heat treatment simulation of austempered ductile iron

    Science.gov (United States)

    Hepp, E.; Hurevich, V.; Schäfer, W.

    2012-07-01

    The integrated modeling and simulation of the casting and heat treatment processes for producing austempered ductile iron (ADI) castings is presented. The focus is on describing different models to simulate the austenitization, quenching and austempering steps during ADI heat treatment. The starting point for the heat treatment simulation is the simulated microstructure after solidification and cooling. The austenitization model considers the transformation of the initial ferrite-pearlite matrix into austenite as well as the dissolution of graphite in austenite to attain a uniform carbon distribution. The quenching model is based on measured CCT diagrams. Measurements have been carried out to obtain these diagrams for different alloys with varying Cu, Ni and Mo contents. The austempering model includes nucleation and growth kinetics of the ADI matrix. The model of ADI nucleation is based on experimental measurements made for varied Cu, Ni, Mo contents and austempering temperatures. The ADI kinetic model uses a diffusion controlled approach to model the growth. The models have been integrated in a tool for casting process simulation. Results are shown for the optimization of the heat treatment process of a planetary carrier casting.

  2. Critical review of wind tunnel modeling of atmospheric heat dissipation

    Energy Technology Data Exchange (ETDEWEB)

    Orgill, M.M.

    1977-05-01

    There is increasing concern by scientists that future proposed energy or power parks may significantly affect the environment by releasing large quantities of heat and water vapor to the atmosphere. A critical review is presented of the potential application of physical modeling (wind tunnels) to assess possible atmospheric effects from heat dissipation systems such as cooling towers. A short inventory of low-speed wind tunnel facilities is included in the review. The useful roles of wind tunnels are assessed and the state-of-the-art of physical modeling is briefly reviewed. Similarity criteria are summarized and present limitations in satisfying these criteria are considered. Current physical models are defined and limitations are discussed. Three experimental problems are discussed in which physical modeling may be able to provide data. These are: defining the critical atmospheric heat load; topographic and local circulation effects on thermal plumes; and plume rise and downstream effects.

  3. Towards a Multi-Model Subseasonal Excessive Heat Outlook System

    Science.gov (United States)

    Vintzileos, A.

    2015-12-01

    We developed an experimental realtime subseasonal excessive heat outlook and monitoring system (SEHOMS) based on the detection of heat events in dynamical forecasts and reanalyses. Our definition of a heat event takes into account both the challenges of subseasonal forecasting and the effects of heat stress on human physiology e.g., the dependence of heat impacts on duration, geographical location and timing of the heat event. The prototype outlook system focuses on forecast lead time week-2 and uses the Global Ensemble Forecast System (GEFS) reforecast conducted at ESRL and the NCEP-GEFS operational realtime ensemble forecasts. The prototype monitoring system, on which we base forecast verification, provides a dual output. The first product uses the NCAR/NCEP reanalysis; the second monitoring product is based on the day-1 forecast from the GEFS reforecast and from the operational GEFS realtime forecast. In this presentation we first show results from the prototype forecasting and monitoring system. We then compare these results with forecasts from the SEHOMS in which we gradually add reforecasts obtained from the S2S database (NCEP - Climate forecast System and ECMWF models). Finally we discuss the possibility of expanding the SEHOMS to week-3 and week-4 based on results from the CFS, ECMWF model, and the North American Multi-Model Ensemble system (NMME).

  4. Modelling the heat stress and the recovery of bacterial spores.

    Science.gov (United States)

    Mafart, P; Leguérinel, I

    1997-07-22

    After heat treatment, the temperature incubation and the medium composition, (pH and sodium chloride content) influence the capacity of injured spores to repair heat damage. The concept of heat resistance D- (decimal reduction time) and z-values (temperature increase which results in a ten fold reduction of the D value) is not sufficient and the ratio of spore recovery after incubation should be considered in calculations used in thermal processing of food. This paper aims to derive a model describing the recovery of injured spores as a function of both the heat treatment intensity and the environmental conditions. According to data from numerous investigators, when spores are incubated in unfavorable conditions, the ratio of cell recovery and the apparent D-value are reduced. Moreover the ratio of the apparent D-value and the estimated in optimal incubation D-value is constant and independent of the heat treatment conditions. Beyond these observations it is shown that the ratio of cell recovery with respect to the heat treatment F-value (exposure time, in minutes, at 121.1 degrees C which results in the same destruction ratio that the considered heat treatment does) is linear and can be quantified by using two factors independent of the heat treatment: the gamma-factor reflects the degree of precariousness due to the heat stress while the epsilon-factor reflects more intrinsically the incubation conditions without previous heat treatment. The gamma-factor varies as a function of the incubation temperature according to an Arrhenius law.

  5. Modelling, simulating and optimizing boiler heating surfaces and evaporator circuits

    DEFF Research Database (Denmark)

    Sørensen, Kim; Condra, Thomas Joseph; Houbak, Niels

    2003-01-01

    developed as a Differential-Algebraic-Equation system (DAE) and MATLAB has been applied for the integration of the models. In generalMATLAB has proved to be very stable for these DAE systems. Experimental verication has been carried out at a full scale plant equipped with instrumentation to verify heat....... The dynamic model has been developed for the purpose of determining boiler material temperatures and heat transfer from the ue gas side to the water-/steam side in order to simulate the circulation in the evaporator circuit and hereby the water level uctuations in the drum. The dynamic model has been...

  6. Modelling, simulating and optimizing boiler heating surfaces and evaporator circuits

    DEFF Research Database (Denmark)

    Sørensen, K.; Condra, T.; Houbak, Niels

    2003-01-01

    developed as a Differential-Algebraic-Equation system (DAE) and MATLAB has been applied for the integration of the models. In general MATLAB has proved to be very stable for these DAE systems. Experimental verification has been carried out at a full scale plant equipped with instrumentation to verify heat....... The dynamic model has been developed for the purpose of determining boiler material temperatures and heat transfer from the flue gas side to the water-/steam side in order to simulate the circulation in the evaporator circuit and hereby the water level fluctuations in the drum. The dynamic model has been...

  7. A control model for district heating networks with storage

    NARCIS (Netherlands)

    Scholten, Tjeert; De Persis, Claudio; Tesi, Pietro

    2014-01-01

    In [1] pressure control of hydraulic networks is investigated. We extend this work to district heating systems with storage capabilities and derive a model taking the topology of the network into account. The goal for the derived model is that it should allow for control of the storage level and tem

  8. A control model for district heating networks with storage

    NARCIS (Netherlands)

    Scholten, Tjeert; De Persis, Claudio; Tesi, Pietro

    2014-01-01

    In [1] pressure control of hydraulic networks is investigated. We extend this work to district heating systems with storage capabilities and derive a model taking the topology of the network into account. The goal for the derived model is that it should allow for control of the storage level and tem

  9. A Rotating Plug Model of Friction Stir Welding Heat Transfer

    Science.gov (United States)

    Raghulapadu J. K.; Peddieson, J.; Buchanan, G. R.; Nunes, A. C.

    2006-01-01

    A simplified rotating plug model is employed to study the heat transfer phenomena associated with the fiction stir welding process. An approximate analytical solution is obtained based on this idealized model and used both to demonstrate the qualitative influence of process parameters on predictions and to estimate temperatures produced in typical fiction stir welding situations.

  10. Model for electrical conductivity of muscle meat during Ohmic heating

    NARCIS (Netherlands)

    Sman, van der R.G.M.

    2017-01-01

    A model is presented for predicting the electrical conductivity of muscle meat, which can be used for the evaluation of Ohmic heating. The model computes the conductivity as a function of composition, temperature and microstructure. The muscle meat is thought to be composed of protein, water, salt.

  11. Intrinsic and extrinsic drivers of source-sink dynamics.

    Science.gov (United States)

    Heinrichs, Julie A; Lawler, Joshua J; Schumaker, Nathan H

    2016-02-01

    Many factors affect the presence and exchange of individuals among subpopulations and influence not only the emergence, but the strength of ensuing source-sink dynamics within metapopulations. Yet their relative contributions remain largely unexplored. To help identify the characteristics of empirical systems that are likely to exhibit strong versus weak source-sink dynamics and inform their differential management, we compared the relative roles of influential factors in strengthening source-sink dynamics. In a series of controlled experiments within a spatially explicit individual-based model framework, we varied patch quality, patch size, the dispersion of high- and low-quality patches, population growth rates, dispersal distances, and environmental stochasticity in a factorial design. We then recorded source-sink dynamics that emerged from the simulated habitat and population factors. Long-term differences in births and deaths were quantified for sources and sinks in each system and used in a statistical model to rank the influences of key factors. Our results suggest that systems with species capable of rapid growth, occupying habitat patches with more disparate qualities, with interspersed higher- and lower-quality habitats, and that experience relatively stable environments (i.e., fewer negative perturbations) are more likely to exhibit strong source-sink dynamics. Strong source-sink dynamics emerged under diverse combinations of factors, suggesting that simple inferences of process from pattern will likely be inadequate to predict and assess the strength of source-sink dynamics. Our results also suggest that it may be more difficult to detect and accurately measure source-sink dynamics in slow-growing populations, highly variable environments, and where a subtle gradient of habitat quality exists.

  12. Computational Model of Heat Transfer on the ISS

    Science.gov (United States)

    Torian, John G.; Rischar, Michael L.

    2008-01-01

    SCRAM Lite (SCRAM signifies Station Compact Radiator Analysis Model) is a computer program for analyzing convective and radiative heat-transfer and heat-rejection performance of coolant loops and radiators, respectively, in the active thermal-control systems of the International Space Station (ISS). SCRAM Lite is a derivative of prior versions of SCRAM but is more robust. SCRAM Lite computes thermal operating characteristics of active heat-transport and heat-rejection subsystems for the major ISS configurations from Flight 5A through completion of assembly. The program performs integrated analysis of both internal and external coolant loops of the various ISS modules and of an external active thermal control system, which includes radiators and the coolant loops that transfer heat to the radiators. The SCRAM Lite run time is of the order of one minute per day of mission time. The overall objective of the SCRAM Lite simulation is to process input profiles of equipment-rack, crew-metabolic, and other heat loads to determine flow rates, coolant supply temperatures, and available radiator heat-rejection capabilities. Analyses are performed for timelines of activities, orbital parameters, and attitudes for mission times ranging from a few hours to several months.

  13. AN INVESTIGATION OF THERMAL CHARACTERISTICS OF A SINTERED-WICK HEAT PIPE WITH DOUBLE HEAT SOURCES

    Directory of Open Access Journals (Sweden)

    Nattawut Tharawadee

    2013-01-01

    Full Text Available Heat pipes have been used extensively in the electronic industry for decades especially in laptop computers. For cost-effectiveness, a single heat pipe is designed to simultaneously transfer heat from both the Central Processing Unit (CPU and the Graphics Processing Unit (GPU inside the main board to the heat sink. This causes the efficiency of the heat pipe to change without any theoretical prediction. In this research, thermal performance of a sintered-wick heat pipe with double heat sources has been experimentally and numerically investigated by utilizing the Finite Element Method (FEM. The focus being the effect that the distance between the two heat sources and also the power input pattern (heat source#1 (HT1: heat source#2(HT2 has on temperature and thermal resistance of the heat pipe. The first heat source (HT1 was located at one end and the heat sink was located at another end of the heat pipe, while another heat source (HT2 was placed between HT1 and a heat sink. The ratios of heat input power were controlled at 10W:10W, 20W:10W and 30W:10W. Two copper blocks (15 mm×15 mm were used as heat sources for the evaporator section (Le1, Le2 to electrically supply heat to the bottom half of the heat pipe. A mathematical model using the Finite Element Method (FEM was established to calculate temperature and thermal resistance. The speed of the cooling fan was adjusted to maintain constant operating temperature at the adiabatic section throughout the tests. The operating temperature was controlled at 60 ± 3°C. It was noted that, when distance between the heat sources was increased from 0 mm to 75 mm, thermal resistance slightly decreased from 0.589-0.53°C/W respectively. Heat source 2, therefore, should be placed as close as possible to the condenser section. Both heat sources should have a distance between them of at least 12 mm, which minimizes heat accumulation. When the power input of HT1 was increased from 10 W to 30W (HT2 was

  14. A heat transfer model for slug flow boiling within microchannels

    Science.gov (United States)

    Magnini, Mirco; Thome, John

    2016-11-01

    We propose a novel physics-based model for the fluid mechanics and heat transfer associated with slug flow boiling in horizontal circular microchannels, to update the widely used three-zone model for the design of multi-microchannel evaporators. The flow is modelled as the cyclic passage of a liquid slug, an elongated bubble which traps a thin liquid film against the channel wall, and a dry vapor plug. The capillary flow theory, extended to incorporate evaporation effects, is applied to estimate the bubble velocity along the channel. A liquid film thickness prediction method considering bubble proximity effects, which may limit the radial extension of the film, is included. Theoretical heat transfer models accounting for the thermal inertia of the liquid film and for the recirculating flow within the liquid slug are utilized. The heat transfer model is compared to experimental data taken from three independent studies: 833 slug flow boiling data points covering R134a, R245fa and R236fa and channel diameters from 0.4 mm to 1 mm. The new model predicts more than 80% of the database to within +/- 30 % and it represents an important step toward a complete physics-based modelling of bubble dynamics and heat transfer within microchannels under evaporating flow conditions.

  15. Modelling occupants’ heating set-point prefferences

    DEFF Research Database (Denmark)

    Andersen, Rune Vinther; Olesen, Bjarne W.; Toftum, Jørn

    2011-01-01

    consumption. Simultaneous measurement of the set-point of thermostatic radiator valves (trv), and indoor and outdoor environment characteristics was carried out in 15 dwellings in Denmark in 2008. Linear regression was used to infer a model of occupants’ interactions with trvs. This model could easily......Discrepancies between simulated and actual occupant behaviour can offset the actual energy consumption by several orders of magnitude compared to simulation results. Thus, there is a need to set up guidelines to increase the reliability of forecasts of environmental conditions and energy...

  16. Heat transport modelling in EXTRAP T2R

    Science.gov (United States)

    Frassinetti, L.; Brunsell, P. R.; Cecconello, M.; Drake, J. R.

    2009-02-01

    A model to estimate the heat transport in the EXTRAP T2R reversed field pinch (RFP) is described. The model, based on experimental and theoretical results, divides the RFP electron heat diffusivity χe into three regions, one in the plasma core, where χe is assumed to be determined by the tearing modes, one located around the reversal radius, where χe is assumed not dependent on the magnetic fluctuations and one in the extreme edge, where high χe is assumed. The absolute values of the core and of the reversal χe are determined by simulating the electron temperature and the soft x-ray and by comparing the simulated signals with the experimental ones. The model is used to estimate the heat diffusivity and the energy confinement time during the flat top of standard plasmas, of deep F plasmas and of plasmas obtained with the intelligent shell.

  17. Mathematical modeling of heat transfer in plant community

    Directory of Open Access Journals (Sweden)

    Finnikov K.A.

    2011-12-01

    Full Text Available The conductive, convective and radiation heat exchange process in a natural system including plants aggregation, air lower layer and ground upper layer, is examined. The mathematical model of process is formulated in 1d unsteady approach. The numerical simulation of plants aggregation cooling is performed for the case of a radiation frost. It is found up that mutual influence of plants in an aggregation on the heat exchange with environment grows with the increase of plants size and plants number per ground area. The influence leads to that lower parts of plants are cooled slower, while upper parts are cooled faster. The estimations are made for the quantity of heat emitted in a thermogenic plant that is enough to prevent the plant cold stress. It is shown that in presence of enforced air flow the rate of plants cooling is noticeably lower, as well as the quantity of heat enough to prevent the plant cold stress.

  18. Heat and Mass Transfer Model in Freeze-Dried Medium

    Science.gov (United States)

    Alfat, Sayahdin; Purqon, Acep

    2017-07-01

    There are big problems in agriculture sector every year. One of the major problems is abundance of agricultural product during the peak of harvest season that is not matched by an increase in demand of agricultural product by consumers, this causes a wasted agricultural products. Alternative way was food preservation by freeze dried method. This method was already using heat transfer through conduction and convection to reduce water quality in the food. The main objective of this research was to design a model heat and mass transfer in freeze-dried medium. We had two steps in this research, the first step was design of medium as the heat injection site and the second was simulate heat and mass transfer of the product. During simulation process, we use physical property of some agriculture product. The result will show how temperature and moisture distribution every second. The method of research use finite element method (FEM) and will be illustrated in three dimensional.

  19. Radiative heating in global climate models

    Energy Technology Data Exchange (ETDEWEB)

    Baer, F.; Arsky, N.; Rocque, K. [Univ. of Maryland, College Park, MD (United States)

    1996-04-01

    LWR algorithms from various GCMs vary significantly from one another for the same clear sky input data. This variability becomes pronounced when clouds are included. We demonstrate this effect by intercomparing the various models` output using observed data including clouds from ARM/CART data taken in Oklahoma.

  20. Dynamic Model of Heat Inactivation Kinetics for Bacterial Adaptation▿

    Science.gov (United States)

    Corradini, Maria G.; Peleg, Micha

    2009-01-01

    The Weibullian-log logistic (WeLL) inactivation model was modified to account for heat adaptation by introducing a logistic adaptation factor, which rendered its “rate parameter” a function of both temperature and heating rate. The resulting model is consistent with the observation that adaptation is primarily noticeable in slow heat processes in which the cells are exposed to sublethal temperatures for a sufficiently long time. Dynamic survival patterns generated with the proposed model were in general agreement with those of Escherichia coli and Listeria monocytogenes as reported in the literature. Although the modified model's rate equation has a cumbersome appearance, especially for thermal processes having a variable heating rate, it can be solved numerically with commercial mathematical software. The dynamic model has five survival/adaptation parameters whose determination will require a large experimental database. However, with assumed or estimated parameter values, the model can simulate survival patterns of adapting pathogens in cooked foods that can be used in risk assessment and the establishment of safe preparation conditions. PMID:19201963

  1. Enthalpy model for heating, melting, and vaporization in laser ablation

    Directory of Open Access Journals (Sweden)

    Vasilios Alexiades

    2010-09-01

    Full Text Available Laser ablation is used in a growing number of applications in various areas including medicine, archaeology, chemistry, environmental and materials sciences. In this work the heat transfer and phase change phenomena during nanosecond laser ablation of a copper (Cu target in a helium (He background gas at atmospheric pressure are presented. An enthalpy model is outlined, which accounts for heating, melting, and vaporization of the target. As far as we know, this is the first model that connects the thermodynamics and underlying kinetics of this challenging phase change problem in a self-consistent way.

  2. Heat mass transfer model of fouling process of calcium carbonate on heat transfer surface

    Institute of Scientific and Technical Information of China (English)

    QUAN ZhenHua; CHEN YongChang; MA ChongFang

    2008-01-01

    A new heat mass transfer model was developed to predict the fouling process of calcium carbonate on heat transfer surface.The model took into account not only the crystallization fouling but also the particle fouling which was formed on the heat transfer surface by the suspension particles of calcium carbonate in the su-persaturated solution.Based on experimental results of the fouling process,the deposition and removal rates of the mixing fouling were expressed.Furthermore,the coupling effect of temperature with the fouling process was considered in the physics model.As a result the fouling resistance varying with time was obtained to describe the fouling process and the prediction was compared with experimental data under same conditions.The results showed that the present model could give a good prediction of fouling process,and the deviation was less than 15% of the experimental data in most cases.The new model is credible to predict the fouling process.

  3. An improved sink particle algorithm for SPH simulations

    OpenAIRE

    Hubber, D. A.; Walch, S.; Whitworth, A. P.

    2013-01-01

    Numerical simulations of star formation frequently rely on the implementation of sink particles, (a) to avoid expending computational resource on the detailed internal physics of individual collapsing protostars, (b) to derive mass functions, binary statistics and clustering kinematics (and hence to make comparisons with observation), and (c) to model radiative and mechanical feedback; sink particles are also used in other contexts, for example to represent accreting black holes in galactic n...

  4. Modeling a Thermoelectric Generator Applied to Diesel Automotive Heat Recovery

    Science.gov (United States)

    Espinosa, N.; Lazard, M.; Aixala, L.; Scherrer, H.

    2010-09-01

    Thermoelectric generators (TEGs) are outstanding devices for automotive waste heat recovery. Their packaging, lack of moving parts, and direct heat to electrical conversion are the main benefits. Usually, TEGs are modeled with a constant hot-source temperature. However, energy in exhaust gases is limited, thus leading to a temperature decrease as heat is recovered. Therefore thermoelectric properties change along the TEG, affecting performance. A thermoelectric generator composed of Mg2Si/Zn4Sb3 for high temperatures followed by Bi2Te3 for low temperatures has been modeled using engineering equation solver (EES) software. The model uses the finite-difference method with a strip-fins convective heat transfer coefficient. It has been validated on a commercial module with well-known properties. The thermoelectric connection and the number of thermoelements have been addressed as well as the optimum proportion of high-temperature material for a given thermoelectric heat exchanger. TEG output power has been estimated for a typical commercial vehicle at 90°C coolant temperature.

  5. Non-local model analysis of heat pulse propagation

    Energy Technology Data Exchange (ETDEWEB)

    Iwasaki, Takuya [Interdisciplinary Graduate School of Engineering Sciences, Kyushu Univ., Kasuga, Fukuoka (Japan); Itoh, Sanae-I.; Yagi, Masatoshi

    1998-10-01

    A new theoretical model equation which includes the non-local effect in the heat flux is proposed to study the transient transport phenomena. A non-local heat flux, which is expressed in terms of the integral equation, is superimposed on the conventional form of the heat flux. This model is applied to describe the experimental results from the power switching [Stroth U, et al 1996 Plasma Phys. Control. Fusion 38 1087] and the power modulation experiments [Giannone L, et al 1992 Nucl. Fusion 32 1985] in the W7-AS stellarator. A small fraction of non-local component in the heat flux is found to be very effective in modifying the response against an external modulation. The transient feature of the transport property, which are observed in the response of heat pulse propagation, are qualitatively reproduced by the transport simulations based on this model. A possibility is discussed to determine the correlation length of the non-local effect experimentally by use of the results of transport simulations. (author)

  6. A heat transfer model for biological wastewater treatment system

    Science.gov (United States)

    Lin, S. H.

    A heat transfer model for predicting the water temperature of aeration tank in a biological wastewater treatment plant is presented. The heat transfer mechanisms involved in the development of the heat transfer model include heat gains from solar radiation and biochemical reaction and heat losses from evaporation, aeration, wind blowing and conduction through tank walls. Several empirical correlations were adopted and appropriate assumptions made to facilitate the model development. Experiments were conducted in the biological wastewater treatment plant of a chemical fiber company over a year's period. The operational, weather and temperature data were registered. The daily water temperature data were averaged over a month period and compared with the theoretical prediction. Excellent agreement has been obtained between the predicted and measured temperatures, verifying the proposed heat transfer model. Zusammenfassung Es wird ein Wärmeübergangsmodell zur Berechnung der Wassertemperatur im Belüftungstank einer Anlage zur biologischen Abwasserbehandlung vorgestellt. Die in das Modell eingehenden Wärmeübergangsmechanismen umfassen: solare Wärmeeinstrahlung, biochemische Reaktion, Wärmeverluste durch Verdampfung, Belüftung, Windeinfluß und Leitung durch die Behälterwände. Mehrere empirische Beziehungen sowie vertretbare Annahmen tragen zur Modellvereinfachung bei. An der biologischen Abwasser-Kläranlage einer Chemiefaserfirma wurden ein Jahr lang Experimente durchgeführt und dabei Betriebs-, Wetter- und Temperaturdaten aufgezeichnet. Die täglichen Wassertemperaturen, gemittelt über einen Monat, zeigten ausgezeichnete Übereinstimmung mit den theoretischen Vorausberechnungen und bestätigten so die Brauchbarkeit des vorgeschlagenen Wärmeübergangsmodells.

  7. A probabilistic model of a porous heat exchanger

    Science.gov (United States)

    Agrawal, O. P.; Lin, X. A.

    1995-01-01

    This paper presents a probabilistic one-dimensional finite element model for heat transfer processes in porous heat exchangers. The Galerkin approach is used to develop the finite element matrices. Some of the submatrices are asymmetric due to the presence of the flow term. The Neumann expansion is used to write the temperature distribution as a series of random variables, and the expectation operator is applied to obtain the mean and deviation statistics. To demonstrate the feasibility of the formulation, a one-dimensional model of heat transfer phenomenon in superfluid flow through a porous media is considered. Results of this formulation agree well with the Monte-Carlo simulations and the analytical solutions. Although the numerical experiments are confined to parametric random variables, a formulation is presented to account for the random spatial variations.

  8. Full Eulerian lattice Boltzmann model for conjugate heat transfer.

    Science.gov (United States)

    Hu, Yang; Li, Decai; Shu, Shi; Niu, Xiaodong

    2015-12-01

    In this paper a full Eulerian lattice Boltzmann model is proposed for conjugate heat transfer. A unified governing equation with a source term for the temperature field is derived. By introducing the source term, we prove that the continuity of temperature and its normal flux at the interface is satisfied automatically. The curved interface is assumed to be zigzag lines. All physical quantities are recorded and updated on a Cartesian grid. As a result, any complicated treatment near the interface is avoided, which makes the proposed model suitable to simulate the conjugate heat transfer with complex interfaces efficiently. The present conjugate interface treatment is validated by several steady and unsteady numerical tests, including pure heat conduction, forced convection, and natural convection problems. Both flat and curved interfaces are also involved. The obtained results show good agreement with the analytical and/or finite volume results.

  9. Mechanistic Multidimensional Modeling of Forced Convection Boiling Heat Transfer

    Directory of Open Access Journals (Sweden)

    Michael Z. Podowski

    2009-01-01

    Full Text Available Due to the importance of boiling heat transfer in general, and boiling crisis in particular, for the analysis of operation and safety of both nuclear reactors and conventional thermal power systems, extensive efforts have been made in the past to develop a variety of methods and tools to evaluate the boiling heat transfer coefficient and to assess the onset of temperature excursion and critical heat flux (CHF at various operating conditions of boiling channels. The objective of this paper is to present mathematical modeling concepts behind the development of mechanistic multidimensional models of low-quality forced convection boiling, including the mechanisms leading to temperature excursion and the onset of CHF.

  10. Model for heat-up of structures in VICTORIA

    Energy Technology Data Exchange (ETDEWEB)

    Bixler, N.E.

    1993-12-01

    VICTORIA is a mechanistic computer code that treats fission product behavior in the reactor coolant system during a severe accident. During an accident, fission products that deposit on structural surfaces produce heat loads that can cause fission products to revaporize and possibly cause structures, such as a pipe, to fail. This mechanism had been lacking from the VICTORIA model. This report describes the structural heat-up model that has recently been implemented in the code. A sample problem shows that revaporization of fission products can occur as structures heat up due to radioactive decay. In the sample problem, the mass of deposited fission products reaches a maximum, then diminishes. Similarly, temperatures of the deposited film and adjoining structure reach a maximum, then diminish.

  11. Heat string model of bi-dimensional dc Glidarc

    Science.gov (United States)

    Pellerin, S.; Richard, F.; Chapelle, J.; Cormier, J.-M.; Musiol, K.

    2000-10-01

    The gliding arc discharge (`Glidarc') is the subject of renewed interest in application to a variety of chemical reactions. The gliding arc creates a weakly ionized gas `string' between two horn-shaped electrodes. In this paper, we present a simple model for a bi-dimensional dc Glidarc working in air, in which the conducting zone of the discharge that is heated by the Joule effect is considered as a hot wire cooled by an air flow. Inside this wire, the heat transfer results from thermal conduction. The exchange of heat between the hot wire and the air flow is assured by convection and depends on the wire radius and the relative velocity of the arc with respect to the gas flow. The model correctly describes experimental results and allows us to predict the working parameters of the Glidarc in different experimental situations.

  12. Heating model for metals irradiated by a subpicosecond laser pulse

    Science.gov (United States)

    Chimier, B.; Tikhonchuk, V. T.; Hallo, L.

    2007-05-01

    We propose a model describing the heating and ablation of a metallic target irradiated by a subpicosecond laser pulse. It takes into account the temperature equilibration between the electrons and ions and the density variation of the target material during the heating process. A simple analytical equation of state is developed, which allows one to calculate the total pressure in the heated layer for different electron and ion temperatures. The thermodynamic behavior of a nonequilibrium system is discussed, and nonequilibrium spinodals and cohesion limits are introduced. The model is applied for a description of the thermal ablation process driven by a sub-ps laser pulse. Aluminum and copper targets are considered, and it is shown that the dominant ablation process is due to breaking the nonequilibrium cohesion limit. The numerical results are in good agreement with recent experimental data.

  13. About the possible options for models of convective heat transfer in closed volumes with local heating source

    Directory of Open Access Journals (Sweden)

    Maksimov Vyacheslav I.

    2015-01-01

    Full Text Available Results of mathematical modeling of convective heat transfer in air area surrounded on all sides enclosing structures, in the presence of heat source at the lower boundary of the media are presented. Solved the system of differential equations of unsteady Navier-Stokes equations with the appropriate initial and boundary conditions. The process of convective heat transfer is calculated using the models of turbulence Prandtl and Prandtl-Reichard. Takes into account the processes of heat exchange region considered with the environment. Is carried out the analysis of the dimensionless heat transfer coefficient at interfaces “air – enclosures”. The distributions average along the gas temperature range are obtained.

  14. Induction Heating Process: 3D Modeling and Optimisation

    Science.gov (United States)

    Naar, R.; Bay, F.

    2011-05-01

    An increasing number of problems in mechanics and physics involves multiphysics coupled problems. Among these problems, we can often find electromagnetic coupled problems. Electromagnetic couplings may be involved through the use of direct or induced currents for thermal purposes—in order to generate heat inside a work piece in order to get either a prescribed temperature field or some given mechanical or metallurgical properties through an accurate control of temperature evolution with respect to time-, or for solid or fluid mechanics purposes—in order to create magnetic forces such as in fluid mechanics (electromagnetic stirring,…) or solid mechanics (magnetoforming,…). Induction heat treatment processes is therefore quite difficult to control; trying for instance to minimize distortions generated by such a process is not easy. In order to achieve these objectives, we have developed a computational tool which includes an optimsation stage. A 3D finite element modeling tool for local quenching after induction heating processes has already been developed in our laboratory. The modeling of such a multiphysics coupled process needs taking into account electromagnetic, thermal, mechanical and metallurgical phenomenon—as well as their mutual interactions during the whole process: heating and quenching. The model developed is based on Maxwell equations, heat transfer equation, mechanical equilibrium computations, Johnson-Mehl-Avrami and Koistinen-Marburger laws. All these equations and laws may be coupled but some coupling may be neglected. In our study, we will also focus on induction heating process aiming at optimising the Heat Affected Zone (HAZ). Thus problem is formalized as an optimization problem—minimizing a cost function which measures the difference between computed and optimal temperatures—along with some constraints on process parameters. The optimization algorithms may be of two kinds—either zero-order or first-order algorithms. First

  15. Io Volcanism: Modeling Vapor And Heat Transport

    Science.gov (United States)

    Allen, Daniel R.; Howell, R. R.

    2010-10-01

    Loki is a large, active volcanic source on Jupiter's moon, Io, whose overall temperatures are well explained by current cooling models, but there are unexplainable subtleties. Using the SO2 atmospheric models of Ingersoll (1989) as a starting point, we are investigating how volatiles, specifically sulfur, are transported on the surface and how they modify the temperatures at Loki and other volcanoes. Voyager images reveal light colored deposits, colloquially called "sulfur bergs,” on Loki's dark patera floor that may be sulfur fumaroles. Galileo images show the presence of red short-chain sulfur deposits around the patera. We are investigating the mechanisms that lead to these features. The light deposits are a few kilometers across. Calculations of the mean free paths for day time conditions on Io indicate lengths on the order of 0.1 km while poorly constrained night time conditions indicate mean free paths about 100 times greater, on the order of what is needed to produce the deposits under ballistic conditions. Preliminary calculations reveal horizontal transport length scales for diffuse transport in a collisional atmosphere of approximately 30 km for sublimating S8 sulfur at 300 K. These length scales would be sufficient to move the sulfur from the warm patera floor to the locations of the red sulfur deposits. At a typical Loki temperature of 300 K, the sublimation/evaporation rate of S8 is a few tens of microns/day. It then requires just a few days to deposit an optically thick 100 µm layer of material. Preliminary length scales and sublimation rates are thus of sufficient scale to produce the deposits. Investigations into the sulfur transport and its effect on temperature are ongoing.

  16. Modeling heat and mass transfer in the heat treatment step of yerba maté processing

    Directory of Open Access Journals (Sweden)

    J. M. Peralta

    2007-03-01

    Full Text Available The aim of this research was to estimate the leaf and twig temperature and moisture content of yerba maté branches (Ilex paraguariensis Saint Hilaire during heat treatment, carried out in a rotary kiln dryer. These variables had to be estimated (modeling the heat and mass transfer due to the difficulty of experimental measurement in the dryer. For modeling, the equipment was divided into two zones: the flame or heat treatment zone and the drying zone. The model developed fit well with the experimental data when water loss took place only in leaves. In the first zone, leaf temperature increased until it reached 135°C and then it slowly decreased to 88°C at the exit, despite the gas temperature, which varied in this zone from 460°C to 120°C. Twig temperature increased in the two zones from its inlet temperature (25°C up to 75°C. A model error of about 3% was estimated based on theoretical and experimental data on leaf moisture content.

  17. TOUGH2. Unsaturated Groundwater and Heat Transport Model

    Energy Technology Data Exchange (ETDEWEB)

    Pruess, K. [Lawrence Berkeley National Lab., CA (United States)

    1991-05-01

    TOUGH2 is a new and improved version of TOUGH. TOUGH2 offers added capabilities and user features, including the flexibility to handle different fluid mixtures (water, water with tracer; water, CO2; water, air; water, air, with vapor pressure lowering and water, hydrogen), facilities for processing of geometric data (computational grids), and an internal version control system to ensure referenceability of code applications. TOUGH2 is a multi-dimensional numerical model for simulating the coupled transport of water, vapor, air, and heat in porous and fractured media. The program provides options for specifying injection or withdrawal of heat and fluids. Although primarily designed for studies of high-level nuclear waste isolation in partially saturated geological media, it should also be useful for a wider range of problems in heat and moisture transfer, and in the drying of porous materials. For example, geothermal reservoir simulation problems can be handled simply by setting the air mass function equal to zero on input. The TOUGH2 simulator was developed for problems involving strongly heat-driven flow. To describe these phenomena a multi-phase approach to fluid and heat flow is used, which fully accounts for the movement of gaseous and liquid phases, their transport of latent and sensible heat, and phase transitions between liquid and vapor. TOUGH2 takes account of fluid flow in both liquid and gaseous phases occurring under pressure, viscous, and gravity forces according to Darcy`s law. Interference between the phases is represented by means of relative permeability functions. The code handles binary, but not Knudsen, diffusion in the gas phase and capillary and phase adsorption effects for the liquid phase. Heat transport occurs by means of conduction with thermal conductivity dependent on water saturation, convection, and binary diffusion, which includes both sensible and latent heat.

  18. Physical and numerical modeling of Joule-heated melters

    Energy Technology Data Exchange (ETDEWEB)

    Eyler, L.L.; Skarda, R.J.; Crowder, R.S. III; Trent, D.S.; Reid, C.R.; Lessor, D.L.

    1985-10-01

    The Joule-heated ceramic-lined melter is an integral part of the high level waste immobilization process under development by the US Department of Energy. Scaleup and design of this waste glass melting furnace requires an understanding of the relationships between melting cavity design parameters and the furnace performance characteristics such as mixing, heat transfer, and electrical requirements. Developing empirical models of these relationships through actual melter testing with numerous designs would be a very costly and time consuming task. Additionally, the Pacific Northwest Laboratory (PNL) has been developing numerical models that simulate a Joule-heated melter for analyzing melter performance. This report documents the method used and results of this modeling effort. Numerical modeling results are compared with the more conventional, physical modeling results to validate the approach. Also included are the results of numerically simulating an operating research melter at PNL. Physical Joule-heated melters modeling results used for qualiying the simulation capabilities of the melter code included: (1) a melter with a single pair of electrodes and (2) a melter with a dual pair (two pairs) of electrodes. The physical model of the melter having two electrode pairs utilized a configuration with primary and secondary electrodes. The principal melter parameters (the ratio of power applied to each electrode pair, modeling fluid depth, electrode spacing) were varied in nine tests of the physical model during FY85. Code predictions were made for five of these tests. Voltage drops, temperature field data, and electric field data varied in their agreement with the physical modeling results, but in general were judged acceptable. 14 refs., 79 figs., 17 tabs.

  19. Modeling of well drilling heating on crude oil using microwave

    Science.gov (United States)

    Muntini, Melania Suweni; Pramono, Yono Hadi; Yustiana

    2016-03-01

    As the world's oil reserves are dwindling, some researchers have been prompted to make a breakthrough to further improve the efficiency of exploration and production. One of the technologies used is heating the crude oil. This paper presents the modeling results of heat treatment on crude oil using microwave energy. Modeling is conducted by assuming that the diameter of the well is 11,16 cm, the heat source is applied on the surface of the well, and the cut-off frequency in the air and on crude oil are 1,56 GHz. and 0.91 GHz, respectively. The energy generated by the microwave radiation is converted into heat energy which is absorbed by the crude oil. Consequently, this energy increases the temperature of crude oil through a heat transfer mechanism. The results obtained showed that the temperature of crude oil is about 200°C at a depth of 62.5cm, and at a distance of 3 cm from the center of the well. Temperature along the well follows an exponential function, which is from the center of the well in the direction radially outward from the cylinder axis. It has been observed that the temperature decreases as measured from the well surface along the cylinder.

  20. Explicit Numerical Modeling of Heat Transfer in Glacial Channels

    Science.gov (United States)

    Jarosch, A. H.; Zwinger, T.

    2015-12-01

    Turbulent flow and heat transfer of water in englacial channels is explicitly modelelled and the numerical results are compared to the most commonly used heat transfer parameterization in glaciology, i.e. the Dittus-Boelter equation. The three-dimensional flow is simulated by solving the incompressible Navier-Stokes equations utilizing a variational multiscale method (VMS) turbulence model and the finite-element method (i.e. Elmer-FEM software), which also solves the heat equation. By studying a wide range of key parameters of the system, e.g. channel diameter, Reynolds number, water flux, water temperature and Darcy-Weisbach wall roughness (which is explicitly represented on the wall geometry), it is found that the Dittus-Boelter equation is inadequate for glaciological applications and a new, highly suitable heat transfer parameterization for englacial/subglacial channels will be presented. This new parameterization utilizes a standard combination of dimensionless numbers describing the flow and channel (i.e. Reynolds number, Prandtl number and Darcy-Weisbach roughness) to predict a suitable Nusselt number describing the effective heat transfer and thus can be readily used in existing englacial/subglacial hydrology models.