WorldWideScience

Sample records for model atmosphere grid

  1. Sonora: A New Generation Model Atmosphere Grid for Brown Dwarfs and Young Extrasolar Giant Planets

    Science.gov (United States)

    Marley, Mark S.; Saumon, Didier; Fortney, Jonathan J.; Morley, Caroline; Lupu, Roxana Elena; Freedman, Richard; Visscher, Channon

    2017-01-01

    Brown dwarf and giant planet atmospheric structure and composition has been studied both by forward models and, increasingly so, by retrieval methods. While indisputably informative, retrieval methods are of greatest value when judged in the context of grid model predictions. Meanwhile retrieval models can test the assumptions inherent in the forward modeling procedure. In order to provide a new, systematic survey of brown dwarf atmospheric structure, emergent spectra, and evolution, we have constructed a new grid of brown dwarf model atmospheres. We ultimately aim for our grid to span substantial ranges of atmospheric metallilcity, C/O ratios, cloud properties, atmospheric mixing, and other parameters. Spectra predicted by our modeling grid can be compared to both observations and retrieval results to aid in the interpretation and planning of future telescopic observations. We thus present Sonora, a new generation of substellar atmosphere models, appropriate for application to studies of L, T, and Y-type brown dwarfs and young extrasolar giant planets. The models describe the expected temperature-pressure profile and emergent spectra of an atmosphere in radiative-convective equilibrium for ranges of effective temperatures and gravities encompassing 200 less than or equal to T(sub eff) less than or equal to 2400 K and 2.5 less than or equal to log g less than or equal to 5.5. In our poster we briefly describe our modeling methodology, enumerate various updates since our group's previous models, and present our initial tranche of models for cloudless, solar metallicity, and solar carbon-to-oxygen ratio, chemical equilibrium atmospheres. These models will be available online and will be updated as opacities and cloud modeling methods continue to improve.

  2. Model atmospheres for M (sub)dwarf stars. 1: The base model grid

    Science.gov (United States)

    Allard, France; Hauschildt, Peter H.

    1995-01-01

    We have calculated a grid of more than 700 model atmospheres valid for a wide range of parameters encompassing the coolest known M dwarfs, M subdwarfs, and brown dwarf candidates: 1500 less than or equal to T(sub eff) less than or equal to 4000 K, 3.5 less than or equal to log g less than or equal to 5.5, and -4.0 less than or equal to (M/H) less than or equal to +0.5. Our equation of state includes 105 molecules and up to 27 ionization stages of 39 elements. In the calculations of the base grid of model atmospheres presented here, we include over 300 molecular bands of four molecules (TiO, VO, CaH, FeH) in the JOLA approximation, the water opacity of Ludwig (1971), collision-induced opacities, b-f and f-f atomic processes, as well as about 2 million spectral lines selected from a list with more than 42 million atomic and 24 million molecular (H2, CH, NH, OH, MgH, SiH, C2, CN, CO, SiO) lines. High-resolution synthetic spectra are obtained using an opacity sampling method. The model atmospheres and spectra are calculated with the generalized stellar atmosphere code PHOENIX, assuming LTE, plane-parallel geometry, energy (radiative plus convective) conservation, and hydrostatic equilibrium. The model spectra give close agreement with observations of M dwarfs across a wide spectral range from the blue to the near-IR, with one notable exception: the fit to the water bands. We discuss several practical applications of our model grid, e.g., broadband colors derived from the synthetic spectra. In light of current efforts to identify genuine brown dwarfs, we also show how low-resolution spectra of cool dwarfs vary with surface gravity, and how the high-regulation line profile of the Li I resonance doublet depends on the Li abundance.

  3. The Stagger-grid: A grid of 3D stellar atmosphere models. I. Methods and general properties

    Science.gov (United States)

    Magic, Z.; Collet, R.; Asplund, M.; Trampedach, R.; Hayek, W.; Chiavassa, A.; Stein, R. F.; Nordlund, Å.

    2013-09-01

    Aims: We present the Stagger-grid, a comprehensive grid of time-dependent, three-dimensional (3D), hydrodynamic model atmospheres for late-type stars with realistic treatment of radiative transfer, covering a wide range in stellar parameters. This grid of 3D models is intended for various applications besides studies of stellar convection and atmospheres per se, including stellar parameter determination, stellar spectroscopy and abundance analysis, asteroseismology, calibration of stellar evolution models, interferometry, and extrasolar planet search. In this introductory paper, we describe the methods we applied for the computation of the grid and discuss the general properties of the 3D models as well as of their temporal and spatial averages (here denoted ⟨3D⟩ models). Methods: All our models were generated with the Stagger-code, using realistic input physics for the equation of state (EOS) and for continuous and line opacities. Our ~ 220 grid models range in effective temperature, Teff, from 4000 to 7000 K in steps of 500 K, in surface gravity, log g, from 1.5 to 5.0 in steps of 0.5 dex, and metallicity, [Fe/H], from - 4.0 to + 0.5 in steps of 0.5 and 1.0 dex. Results: We find a tight scaling relation between the vertical velocity and the surface entropy jump, which itself correlates with the constant entropy value of the adiabatic convection zone. The range in intensity contrast is enhanced at lower metallicity. The granule size correlates closely with the pressure scale height sampled at the depth of maximum velocity. We compare the ⟨3D⟩ models with currently widely applied one-dimensional (1D) atmosphere models, as well as with theoretical 1D hydrostatic models generated with the same EOS and opacity tables as the 3D models, in order to isolate the effects of using self-consistent and hydrodynamic modeling of convection, rather than the classical mixing length theory approach. For the first time, we are able to quantify systematically over a broad

  4. Towards grid-converged wall-modeled LES of atmospheric boundary layer flows

    Science.gov (United States)

    Yellapantula, Shashank; Vijayakumar, Ganesh; Henry de Frahan, Marc; Churchfield, Matthew; Sprague, Michael

    2017-11-01

    Accurate characterization of incoming atmospheric boundary layer (ABL) turbulence is a critical factor in improving accuracy and predictive nature of simulation of wind farm flows. Modern commercial wind turbines operate in the log layer of the ABL that are typically simulated using wall-modeled large-eddy simulation (WMLES). One of the long-standing issues associated with wall modeling for LES and hybrid RANS-LES for atmospheric boundary layers is the over-prediction of the mean-velocity gradient, commonly referred to as log-layer mismatch. Kawai and Larsson in 2012, identified under-resolution of the near-wall region and the incorrect information received by the wall model as potential causes for the log-layer mismatch in WMLES of smooth-wall boundary-layer flows. To solve the log layer mismatch issue, they proposed linking the wall model to the LES solution at a physical of height of ym, instead of the first grid point. In this study, we extend their wall modeling approach to LES of the rough-wall ABL to investigate issues of log-layer mismatch and grid convergence. This work was funded by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Wind Energy Technologies Office, under Contract No. DE-AC36-08-GO28308 with the National Renewable Energy Laboratory.

  5. COLLABORATIVE RESEARCH: CONTINUOUS DYNAMIC GRID ADAPTATION IN A GLOBAL ATMOSPHERIC MODEL: APPLICATION AND REFINEMENT

    Energy Technology Data Exchange (ETDEWEB)

    Prusa, Joseph

    2012-05-08

    This project had goals of advancing the performance capabilities of the numerical general circulation model EULAG and using it to produce a fully operational atmospheric global climate model (AGCM) that can employ either static or dynamic grid stretching for targeted phenomena. The resulting AGCM combined EULAG's advanced dynamics core with the physics of the NCAR Community Atmospheric Model (CAM). Effort discussed below shows how we improved model performance and tested both EULAG and the coupled CAM-EULAG in several ways to demonstrate the grid stretching and ability to simulate very well a wide range of scales, that is, multi-scale capability. We leveraged our effort through interaction with an international EULAG community that has collectively developed new features and applications of EULAG, which we exploited for our own work summarized here. Overall, the work contributed to over 40 peer- reviewed publications and over 70 conference/workshop/seminar presentations, many of them invited.

  6. Challenges of Representing Sub-Grid Physics in an Adaptive Mesh Refinement Atmospheric Model

    Science.gov (United States)

    O'Brien, T. A.; Johansen, H.; Johnson, J. N.; Rosa, D.; Benedict, J. J.; Keen, N. D.; Collins, W.; Goodfriend, E.

    2015-12-01

    Some of the greatest potential impacts from future climate change are tied to extreme atmospheric phenomena that are inherently multiscale, including tropical cyclones and atmospheric rivers. Extremes are challenging to simulate in conventional climate models due to existing models' coarse resolutions relative to the native length-scales of these phenomena. Studying the weather systems of interest requires an atmospheric model with sufficient local resolution, and sufficient performance for long-duration climate-change simulations. To this end, we have developed a new global climate code with adaptive spatial and temporal resolution. The dynamics are formulated using a block-structured conservative finite volume approach suitable for moist non-hydrostatic atmospheric dynamics. By using both space- and time-adaptive mesh refinement, the solver focuses computational resources only where greater accuracy is needed to resolve critical phenomena. We explore different methods for parameterizing sub-grid physics, such as microphysics, macrophysics, turbulence, and radiative transfer. In particular, we contrast the simplified physics representation of Reed and Jablonowski (2012) with the more complex physics representation used in the System for Atmospheric Modeling of Khairoutdinov and Randall (2003). We also explore the use of a novel macrophysics parameterization that is designed to be explicitly scale-aware.

  7. NEW ATLAS9 AND MARCS MODEL ATMOSPHERE GRIDS FOR THE APACHE POINT OBSERVATORY GALACTIC EVOLUTION EXPERIMENT (APOGEE)

    International Nuclear Information System (INIS)

    Mészáros, Sz.; Allende Prieto, C.; De Vicente, A.; Edvardsson, B.; Gustafsson, B.; Castelli, F.; García Pérez, A. E.; Majewski, S. R.; Plez, B.; Schiavon, R.; Shetrone, M.

    2012-01-01

    We present a new grid of model photospheres for the SDSS-III/APOGEE survey of stellar populations of the Galaxy, calculated using the ATLAS9 and MARCS codes. New opacity distribution functions were generated to calculate ATLAS9 model photospheres. MARCS models were calculated based on opacity sampling techniques. The metallicity ([M/H]) spans from –5 to 1.5 for ATLAS and –2.5 to 0.5 for MARCS models. There are three main differences with respect to previous ATLAS9 model grids: a new corrected H 2 O line list, a wide range of carbon ([C/M]) and α element [α/M] variations, and solar reference abundances from Asplund et al. The added range of varying carbon and α-element abundances also extends the previously calculated MARCS model grids. Altogether, 1980 chemical compositions were used for the ATLAS9 grid and 175 for the MARCS grid. Over 808,000 ATLAS9 models were computed spanning temperatures from 3500 K to 30,000 K and log g from 0 to 5, where larger temperatures only have high gravities. The MARCS models span from 3500 K to 5500 K, and log g from 0 to 5. All model atmospheres are publicly available online.

  8. Scientific Final Report: COLLABORATIVE RESEARCH: CONTINUOUS DYNAMIC GRID ADAPTATION IN A GLOBAL ATMOSPHERIC MODEL: APPLICATION AND REFINEMENT

    Energy Technology Data Exchange (ETDEWEB)

    William J. Gutowski; Joseph M. Prusa, Piotr K. Smolarkiewicz

    2012-04-09

    This project had goals of advancing the performance capabilities of the numerical general circulation model EULAG and using it to produce a fully operational atmospheric global climate model (AGCM) that can employ either static or dynamic grid stretching for targeted phenomena. The resulting AGCM combined EULAG's advanced dynamics core with the 'physics' of the NCAR Community Atmospheric Model (CAM). Effort discussed below shows how we improved model performance and tested both EULAG and the coupled CAM-EULAG in several ways to demonstrate the grid stretching and ability to simulate very well a wide range of scales, that is, multi-scale capability. We leveraged our effort through interaction with an international EULAG community that has collectively developed new features and applications of EULAG, which we exploited for our own work summarized here. Overall, the work contributed to over 40 peer-reviewed publications and over 70 conference/workshop/seminar presentations, many of them invited.

  9. Investigating the Effects of Grid Resolution of WRF Model for Simulating the Atmosphere for use in the Study of Wake Turbulence

    Science.gov (United States)

    Prince, Alyssa; Trout, Joseph; di Mercurio, Alexis

    2017-01-01

    The Weather Research and Forecasting (WRF) Model is a nested-grid, mesoscale numerical weather prediction system maintained by the Developmental Testbed Center. The model simulates the atmosphere by integrating partial differential equations, which use the conservation of horizontal momentum, conservation of thermal energy, and conservation of mass along with the ideal gas law. This research investigated the possible use of WRF in investigating the effects of weather on wing tip wake turbulence. This poster shows the results of an investigation into the accuracy of WRF using different grid resolutions. Several atmospheric conditions were modeled using different grid resolutions. In general, the higher the grid resolution, the better the simulation, but the longer the model run time. This research was supported by Dr. Manuel A. Rios, Ph.D. (FAA) and the grant ``A Pilot Project to Investigate Wake Vortex Patterns and Weather Patterns at the Atlantic City Airport by the Richard Stockton College of NJ and the FAA'' (13-G-006). Dr. Manuel A. Rios, Ph.D. (FAA), and the grant ``A Pilot Project to Investigate Wake Vortex Patterns and Weather Patterns at the Atlantic City Airport by the Richard Stockton College of NJ and the FAA''

  10. COLLABORATIVE RESEARCH: CONTINUOUS DYNAMIC GRID ADAPTATION IN A GLOBAL ATMOSPHERIC MODEL: APPLICATION AND REFINEMENT

    Energy Technology Data Exchange (ETDEWEB)

    Gutowski, William J.; Prusa, Joseph M.; Smolarkiewicz, Piotr K.

    2012-05-08

    This project had goals of advancing the performance capabilities of the numerical general circulation model EULAG and using it to produce a fully operational atmospheric global climate model (AGCM) that can employ either static or dynamic grid stretching for targeted phenomena. The resulting AGCM combined EULAG's advanced dynamics core with the "physics" of the NCAR Community Atmospheric Model (CAM). Effort discussed below shows how we improved model performance and tested both EULAG and the coupled CAM-EULAG in several ways to demonstrate the grid stretching and ability to simulate very well a wide range of scales, that is, multi-scale capability. We leveraged our effort through interaction with an international EULAG community that has collectively developed new features and applications of EULAG, which we exploited for our own work summarized here. Overall, the work contributed to over 40 peer-reviewed publications and over 70 conference/workshop/seminar presentations, many of them invited. 3a. EULAG Advances EULAG is a non-hydrostatic, parallel computational model for all-scale geophysical flows. EULAG's name derives from its two computational options: EULerian (flux form) or semi-LAGrangian (advective form). The model combines nonoscillatory forward-in-time (NFT) numerical algorithms with a robust elliptic Krylov solver. A signature feature of EULAG is that it is formulated in generalized time-dependent curvilinear coordinates. In particular, this enables grid adaptivity. In total, these features give EULAG novel advantages over many existing dynamical cores. For EULAG itself, numerical advances included refining boundary conditions and filters for optimizing model performance in polar regions. We also added flexibility to the model's underlying formulation, allowing it to work with the pseudo-compressible equation set of Durran in addition to EULAG's standard anelastic formulation. Work in collaboration with others also extended the

  11. Development of a Grid-Independent Geos-Chem Chemical Transport Model (v9-02) as an Atmospheric Chemistry Module for Earth System Models

    Science.gov (United States)

    Long, M. S.; Yantosca, R.; Nielsen, J. E; Keller, C. A.; Da Silva, A.; Sulprizio, M. P.; Pawson, S.; Jacob, D. J.

    2015-01-01

    The GEOS-Chem global chemical transport model (CTM), used by a large atmospheric chemistry research community, has been re-engineered to also serve as an atmospheric chemistry module for Earth system models (ESMs). This was done using an Earth System Modeling Framework (ESMF) interface that operates independently of the GEOSChem scientific code, permitting the exact same GEOSChem code to be used as an ESM module or as a standalone CTM. In this manner, the continual stream of updates contributed by the CTM user community is automatically passed on to the ESM module, which remains state of science and referenced to the latest version of the standard GEOS-Chem CTM. A major step in this re-engineering was to make GEOS-Chem grid independent, i.e., capable of using any geophysical grid specified at run time. GEOS-Chem data sockets were also created for communication between modules and with external ESM code. The grid-independent, ESMF-compatible GEOS-Chem is now the standard version of the GEOS-Chem CTM. It has been implemented as an atmospheric chemistry module into the NASA GEOS- 5 ESM. The coupled GEOS-5-GEOS-Chem system was tested for scalability and performance with a tropospheric oxidant-aerosol simulation (120 coupled species, 66 transported tracers) using 48-240 cores and message-passing interface (MPI) distributed-memory parallelization. Numerical experiments demonstrate that the GEOS-Chem chemistry module scales efficiently for the number of cores tested, with no degradation as the number of cores increases. Although inclusion of atmospheric chemistry in ESMs is computationally expensive, the excellent scalability of the chemistry module means that the relative cost goes down with increasing number of cores in a massively parallel environment.

  12. Yakutat Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Yakutat, Alaska Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST...

  13. Bermuda Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Bermuda Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is a...

  14. Midway Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Midway Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is a suite...

  15. Towards Adaptive Grids for Atmospheric Boundary-Layer Simulations

    Science.gov (United States)

    van Hooft, J. Antoon; Popinet, Stéphane; van Heerwaarden, Chiel C.; van der Linden, Steven J. A.; de Roode, Stephan R.; van de Wiel, Bas J. H.

    2018-02-01

    We present a proof-of-concept for the adaptive mesh refinement method applied to atmospheric boundary-layer simulations. Such a method may form an attractive alternative to static grids for studies on atmospheric flows that have a high degree of scale separation in space and/or time. Examples include the diurnal cycle and a convective boundary layer capped by a strong inversion. For such cases, large-eddy simulations using regular grids often have to rely on a subgrid-scale closure for the most challenging regions in the spatial and/or temporal domain. Here we analyze a flow configuration that describes the growth and subsequent decay of a convective boundary layer using direct numerical simulation (DNS). We validate the obtained results and benchmark the performance of the adaptive solver against two runs using fixed regular grids. It appears that the adaptive-mesh algorithm is able to coarsen and refine the grid dynamically whilst maintaining an accurate solution. In particular, during the initial growth of the convective boundary layer a high resolution is required compared to the subsequent stage of decaying turbulence. More specifically, the number of grid cells varies by two orders of magnitude over the course of the simulation. For this specific DNS case, the adaptive solver was not yet more efficient than the more traditional solver that is dedicated to these types of flows. However, the overall analysis shows that the method has a clear potential for numerical investigations of the most challenging atmospheric cases.

  16. Westport, Washington Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Westport, Washington Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model....

  17. Nawiliwili, Hawaii Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Nawiliwili, Hawaii Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model....

  18. Monterey, California Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Monterey, California Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model....

  19. Florence, Oregon Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Florence, Oregon Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST...

  20. Lahaina, Hawaii Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Lahaina, Hawaii Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST...

  1. Newport, Oregon Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Newport, Oregon Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST...

  2. Garibaldi, Oregon Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Garibaldi, Oregon Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST...

  3. Keauhou, Hawaii Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Keauhou, Hawaii Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST...

  4. Hanalei, Hawaii Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Hanalei, Hawaii Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST...

  5. Seaside, Oregon Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Seaside, Oregon Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST...

  6. Nikolski, Alaska Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Nikolski, Alaska Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST...

  7. Kahului, Hawaii Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Kahului, Hawaii Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST...

  8. Haleiwa, Hawaii Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Haleiwa, Hawaii Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST...

  9. Savannah, Georgia Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Savannah, Georgia Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST...

  10. Shemya, Alaska Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Shemya, Alaska Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is...

  11. Kodiak, Alaska Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Kodiak, Alaska Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is...

  12. Sitka, Alaska Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Sitka, Alaska Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is...

  13. Homer, Alaska Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Homer, Alaska Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is...

  14. Seward, Alaska Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Seward, Alaska Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is...

  15. Kihei, Hawaii Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Kihei, Hawaii Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is...

  16. Vertical grid of retrieved atmospheric profiles

    International Nuclear Information System (INIS)

    Ceccherini, Simone; Carli, Bruno; Raspollini, Piera

    2016-01-01

    The choice of the vertical grid of atmospheric profiles retrieved from remote sensing observations is discussed considering the two cases of profiles used to represent the results of individual measurements and of profiles used for subsequent data fusion applications. An ozone measurement of the MIPAS instrument is used to assess, for different vertical grids, the quality of the retrieved profiles in terms of profile values, retrieval errors, vertical resolutions and number of degrees of freedom. In the case of individual retrievals no evident advantage is obtained with the use of a grid finer than the one with a reduced number of grid points, which are optimized according to the information content of the observations. Nevertheless, this instrument dependent vertical grid, which seems to extract all the available information, provides very poor results when used for data fusion applications. A loss of about a quarter of the degrees of freedom is observed when the data fusion is made using the instrument dependent vertical grid relative to the data fusion made using a vertical grid optimized for the data fusion product. This result is explained by the analysis of the eigenvalues of the Fisher information matrix and leads to the conclusion that different vertical grids must be adopted when data fusion is the expected application. - Highlights: • Data fusion application is taken into account for the choice of the vertical grid. • The study is performed using ozone profiles retrieved from MIPAS measurements. • A very fine vertical grid is not needed for the analysis of a single instrument. • The instrument dependent vertical grid is not the best choice for data fusion. • A data fusion dependent vertical grid must be used for profiles that will be fused.

  17. Wake Island Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Wake Island Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is a...

  18. Adak, Alaska Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Adak, Alaska Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is a...

  19. Hilo, Hawaii Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Hilo, Hawaii Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is a...

  20. Nantucket, Massachusetts Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Nantucket, Massachusetts Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST)...

  1. A New Stellar Atmosphere Grid and Comparisons with HST /STIS CALSPEC Flux Distributions

    Energy Technology Data Exchange (ETDEWEB)

    Bohlin, Ralph C.; Fleming, Scott W.; Gordon, Karl D.; Koekemoer, Anton M. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Mészáros, Szabolcs; Kovács, József [ELTE Gothard Astrophysical Observatory, H-9700 Szombathely, Szent Imre Herceg St. 112 (Hungary)

    2017-05-01

    The Space Telescope Imaging Spectrograph has measured the spectral energy distributions for several stars of types O, B, A, F, and G. These absolute fluxes from the CALSPEC database are fit with a new spectral grid computed from the ATLAS-APOGEE ATLAS9 model atmosphere database using a chi-square minimization technique in four parameters. The quality of the fits are compared for complete LTE grids by Castelli and Kurucz (CK04) and our new comprehensive LTE grid (BOSZ). For the cooler stars, the fits with the MARCS LTE grid are also evaluated, while the hottest stars are also fit with the NLTE Lanz and Hubeny OB star grids. Unfortunately, these NLTE models do not transition smoothly in the infrared to agree with our new BOSZ LTE grid at the NLTE lower limit of T {sub eff} = 15,000 K. The new BOSZ grid is available via the Space Telescope Institute MAST archive and has a much finer sampled IR wavelength scale than CK04, which will facilitate the modeling of stars observed by the James Webb Space Telescope . Our result for the angular diameter of Sirius agrees with the ground-based interferometric value.

  2. A New Stellar Atmosphere Grid and Comparisons with HST/STIS CALSPEC Flux Distributions

    Science.gov (United States)

    Bohlin, Ralph C.; Mészáros, Szabolcs; Fleming, Scott W.; Gordon, Karl D.; Koekemoer, Anton M.; Kovács, József

    2017-05-01

    The Space Telescope Imaging Spectrograph has measured the spectral energy distributions for several stars of types O, B, A, F, and G. These absolute fluxes from the CALSPEC database are fit with a new spectral grid computed from the ATLAS-APOGEE ATLAS9 model atmosphere database using a chi-square minimization technique in four parameters. The quality of the fits are compared for complete LTE grids by Castelli & Kurucz (CK04) and our new comprehensive LTE grid (BOSZ). For the cooler stars, the fits with the MARCS LTE grid are also evaluated, while the hottest stars are also fit with the NLTE Lanz & Hubeny OB star grids. Unfortunately, these NLTE models do not transition smoothly in the infrared to agree with our new BOSZ LTE grid at the NLTE lower limit of T eff = 15,000 K. The new BOSZ grid is available via the Space Telescope Institute MAST archive and has a much finer sampled IR wavelength scale than CK04, which will facilitate the modeling of stars observed by the James Webb Space Telescope. Our result for the angular diameter of Sirius agrees with the ground-based interferometric value.

  3. Virginia Beach Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Virginia Beach, Virginia Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST)...

  4. Eureka, California Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Eureka, California Forecast Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is a...

  5. Unalaska, Alaska Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Unalaska, Alaska Forecast Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is a...

  6. Cordova, Alaska Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Cordova, Alaska Forecast Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is a...

  7. Chignik, Alaska Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Chignik, Alaska Forecast Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is a...

  8. Fajardo, Puerto Rico Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Fajardo, Puerto Rico Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model....

  9. Ponce, Puerto Rico Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Ponce, Puerto Rico Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model....

  10. Daytona Beach, Florida Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Daytona Beach, Florida Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model....

  11. Sand Point, Alaska Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Sand Point, Alaska Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model....

  12. Neah Bay, Washington Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Neah Bay, Washington Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model....

  13. Toke Point, Washington Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Toke Point, Washington Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model....

  14. Palm Beach, Florida Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Palm Beach, Florida Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model....

  15. Pearl Harbor, Hawaii Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Pearl Harbor, Hawaii Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model....

  16. Arecibo, Puerto Rico Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Arecibo, Puerto Rico Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model....

  17. Port Orford, Oregon Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Port Orford, Oregon Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model....

  18. Kailua-Kona, Hawaii Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Kailua-Kona, Hawaii Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model....

  19. Ocean City, Maryland Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Ocean City, Maryland Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model....

  20. Port Alexander, Alaska Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Port Alexander, Alaska Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model....

  1. La Push, Washington Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The La Push, Washington Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model....

  2. Key West, Florida Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Key West, Florida Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST...

  3. Montauk, New York Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Montauk, New York Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST...

  4. Bar Harbor, ME Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Bar Harbor, Maine Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST...

  5. Apra Harbor, Guam Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Apra Harbor, Guam Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST...

  6. A new global grid model for the determination of atmospheric weighted mean temperature in GPS precipitable water vapor

    Science.gov (United States)

    Huang, Liangke; Jiang, Weiping; Liu, Lilong; Chen, Hua; Ye, Shirong

    2018-05-01

    In ground-based global positioning system (GPS) meteorology, atmospheric weighted mean temperature, T_m , plays a very important role in the progress of retrieving precipitable water vapor (PWV) from the zenith wet delay of the GPS. Generally, most of the existing T_m models only take either latitude or altitude into account in modeling. However, a great number of studies have shown that T_m is highly correlated with both latitude and altitude. In this study, a new global grid empirical T_m model, named as GGTm, was established by a sliding window algorithm using global gridded T_m data over an 8-year period from 2007 to 2014 provided by TU Vienna, where both latitude and altitude variations are considered in modeling. And the performance of GGTm was assessed by comparing with the Bevis formula and the GPT2w model, where the high-precision global gridded T_m data as provided by TU Vienna and the radiosonde data from 2015 are used as reference values. The results show the significant performance of the new GGTm model against other models when compared with gridded T_m data and radiosonde data, especially in the areas with great undulating terrain. Additionally, GGTm has the global mean RMS_{PWV} and RMS_{PWV} /PWV values of 0.26 mm and 1.28%, respectively. The GGTm model, fed only by the day of the year and the station coordinates, could provide a reliable and accurate T_m value, which shows the possible potential application in real-time GPS meteorology, especially for the application of low-latitude areas and western China.

  7. Port Angeles, Washington Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Port Angeles, Washington Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST)...

  8. Los Angeles, California Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Los Angeles, California Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST)...

  9. Crescent City, California Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Crescent City, California Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST)...

  10. Christiansted, Virgin Islands Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Christiansted, Virgin Islands Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST)...

  11. Santa Barbara, California Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Santa Barbara, California Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST)...

  12. Point Reyes, California Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Point Reyes, California Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST)...

  13. San Francisco, California Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The San Francisco, California Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST)...

  14. British Columbia, Canada Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The British Columbia, Canada Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST)...

  15. Arena Cove, California Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Arena Cove, California Forecast Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST...

  16. Elfin Cove, Alaska Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Elfin Cove, Alaska Forecast Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model. MOST is a...

  17. Modelling of pollution dispersion in atmosphere

    International Nuclear Information System (INIS)

    Borysiewicz, M.; Stankiewicz, R.

    1994-01-01

    The paper contains the review of the mathematical foundation of atmospheric dispersion models. The atmospheric phenomena relevant to atmospheric dispersion model are discussed. In particular the parametrization of processes with time and space scales smaller than numerical grid size, limited by available computer power, is presented. The special attention was devoted to similarity theory and parametrization of boundary layer. The numerical methods are analysed and the drawbacks of the method are presented. (author). 99 refs, 15 figs, 3 tabs

  18. San Juan, Puerto Rico Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The San Juan, Puerto Rico Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST) model....

  19. Atmospheric Boundary Layer Modeling for Combined Meteorology and Air Quality Systems

    Science.gov (United States)

    Atmospheric Eulerian grid models for mesoscale and larger applications require sub-grid models for turbulent vertical exchange processes, particularly within the Planetary Boundary Layer (PSL). In combined meteorology and air quality modeling systems consistent PSL modeling of wi...

  20. Charlotte Amalie, Virgin Islands Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Charlotte Amalie, Virgin Islands Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami...

  1. The footprint of atmospheric turbulence in power grid frequency measurements

    Science.gov (United States)

    Haehne, H.; Schottler, J.; Waechter, M.; Peinke, J.; Kamps, O.

    2018-02-01

    Fluctuating wind energy makes a stable grid operation challenging. Due to the direct contact with atmospheric turbulence, intermittent short-term variations in the wind speed are converted to power fluctuations that cause transient imbalances in the grid. We investigate the impact of wind energy feed-in on short-term fluctuations in the frequency of the public power grid, which we have measured in our local distribution grid. By conditioning on wind power production data, provided by the ENTSO-E transparency platform, we demonstrate that wind energy feed-in has a measurable effect on frequency increment statistics for short time scales (renewable generation.

  2. Myrtle Beach, South Carolina Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Myrtle Beach, South Carolina Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST)...

  3. Pago Pago, American Samoa Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Pago Pago, American Samoa Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST)...

  4. Morehead City, North Carolina Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Morehead City, North Carolina Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST)...

  5. Atlantic City, New Jersey Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Atlantic City, New Jersey Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST)...

  6. Cape Hatteras, North Carolina Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Cape Hatteras, North Carolina Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST)...

  7. Port San Luis, California Tsunami Forecast Grids for MOST Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Port San Luis, California Forecast Model Grids provides bathymetric data strictly for tsunami inundation modeling with the Method of Splitting Tsunami (MOST)...

  8. Regional transport model of atmospheric sulfates

    International Nuclear Information System (INIS)

    Rao, K.S.; Thomson, I.; Egan, B.A.

    1977-01-01

    As part of the Sulfate Regional Experiment (SURE) Design Project, a regional transport model of atmospheric sulfates has been developed. This quasi-Lagrangian three-dimensional grid numerical model uses a detailed SO 2 emission inventory of major anthropogenic sources in the Eastern U.S. region, and observed meteorological data during an episode as inputs. The model accounts for advective transport and turbulent diffusion of the pollutants. The chemical transformation of SO 2 and SO 4 /sup =/ and the deposition of the species at the earth's surface are assumed to be linear processes at specified constant rates. The numerical model can predict the daily average concentrations of SO 2 and SO 4 /sup =/ at all receptor locations in the grid region during the episode. Because of the spatial resolution of the grid, this model is particularly suited to investigate the effect of tall stacks in reducing the ambient concentration levels of sulfur pollutants. This paper presents the formulations and assumptions of the regional sulfate transport model. The model inputs and results are discussed. Isopleths of predicted SO 2 and SO 4 /sup =/ concentrations are compared with the observed ground level values. The bulk of the information in this paper is directed to air pollution meteorologists and environmental engineers interested in the atmospheric transport modeling studies of sulfur oxide pollutants

  9. Stellar atmosphere modeling of extremely hot, compact stars

    Science.gov (United States)

    Rauch, Thomas; Ringat, Ellen; Werner, Klaus

    Present X-ray missions like Chandra and XMM-Newton provide excellent spectra of extremely hot white dwarfs, e.g. burst spectra of novae. Their analysis requires adequate NLTE model atmospheres. The Tuebingen Non-LTE Model-Atmosphere Package (TMAP) can calculate such model at-mospheres and spectral energy distributions at a high level of sophistication. We present a new grid of models that is calculated in the parameter range of novae and supersoft X-ray sources and show examples of their application.

  10. Medium Range Forecast (MRF) and Nested Grid Model (NGM)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Nested Grid Model (NGM) and Medium Range Forecast (MRF) Archive is historical digital data set DSI-6140, archived at the NOAA National Centers for Environmental...

  11. The signature of atmospheric tides in sub-daily variations of Earth rotation as unveiled by globally-gridded atmospheric angular momentum functions

    Science.gov (United States)

    Schindelegger, M.; Böhm, J.; Salstein, D. A.; Schuh, H.

    2012-12-01

    Thermally-driven atmospheric tides provide a small but distinct contribution to shortperiod variations of Earth rotation parameters (ERP). The effect of diurnal and semi-diurnal tides, commonly denoted as S1 and S2, respectively, is in the range of 2 - 10 uas for polar motion and 2 - 10 uas for changes in length-of-day (LOD). Even though ocean tides represent a much more dominant driving agent for ERP fluctuations at short time scales, high-frequency atmospheric effects are non-negligible, particularly given the prospective measurement accuracy of space geodetic techniques. However, previous studies, such as Brzezinski et al. (2002), de Viron et al. (2005) or Schindelegger et al. (2011), have been noticeably inconclusive on the exact amplitude and phase values of S1 and S2 atmospheric excitation signals. This study aims at shedding light on the origin of these uncertainties with respect to the axial component of Earth's rotation vector by investigating times series of atmospheric angular momentum (AAM) functions that are given on global grids and computed from three-hourly meteorological data of the European Centre for Medium-Range Weather Forecasts (ECMWF). The signature of diurnal and semi-diurnal atmospheric tides is clearly visible in the gridded axial AAM functions, revealing a distinct spatial and temporal phase difference between pressure and wind tidal constituents of about ± π. It is shown that due to this counterbalance and the explicit axisymmetric spatial structure of S1 and S2, the net effect in sub-diurnal AAM (which is calculated from the global sum of gridded AAM functions) is always a small quantity, particularly sensitive to minor differences between the analysis fields of numerical weather models.

  12. Development of a three-dimensional local scale atmospheric model with turbulence closure model

    International Nuclear Information System (INIS)

    Yamazawa, Hiromi

    1989-05-01

    Through the study to improve SPEEDI's capability, a three-dimensional numerical atmospheric model PHYSIC (Prognostic HYdroStatic model Including turbulence Closure model) was developed to apply it to the transport and diffusion evaluation over complex terrains. The detailed description of the atmospheric model was given. This model consists of five prognostic equations; the momentum equations of horizontal components with the so-called Boussinesq and hydrostatic assumptions, the conservation equations of heat, turbulence kinetic energy and turbulence length scale. The coordinate system used is the terrain following z * coordinate system which allows the existence of complex terrain. The minute formula of the turbulence closure calculation, the surface layer process, the ground surface heat budget, and the atmospheric and solar radiation were also presented. The time integration method used in this model is the Alternating Direction Implicit (A.D.I.) method with a vertically and horizontally staggered grid system. The memory storage needed to execute this model with 31 x 31 x 16 grid points, five layers in soil and double precision variables is about 5.3 MBytes. The CPU time is about 2.2 x 10 -5 s per one step per one grid point with a vector processor FACOM VP-100. (author)

  13. Toward a Unified Representation of Atmospheric Convection in Variable-Resolution Climate Models

    Energy Technology Data Exchange (ETDEWEB)

    Walko, Robert [Univ. of Miami, Coral Gables, FL (United States)

    2016-11-07

    The purpose of this project was to improve the representation of convection in atmospheric weather and climate models that employ computational grids with spatially-variable resolution. Specifically, our work targeted models whose grids are fine enough over selected regions that convection is resolved explicitly, while over other regions the grid is coarser and convection is represented as a subgrid-scale process. The working criterion for a successful scheme for representing convection over this range of grid resolution was that identical convective environments must produce very similar convective responses (i.e., the same precipitation amount, rate, and timing, and the same modification of the atmospheric profile) regardless of grid scale. The need for such a convective scheme has increased in recent years as more global weather and climate models have adopted variable resolution meshes that are often extended into the range of resolving convection in selected locations.

  14. Staggered-grid finite-difference acoustic modeling with the Time-Domain Atmospheric Acoustic Propagation Suite (TDAAPS).

    Energy Technology Data Exchange (ETDEWEB)

    Aldridge, David Franklin; Collier, Sandra L. (U.S. Army Research Laboratory); Marlin, David H. (U.S. Army Research Laboratory); Ostashev, Vladimir E. (NOAA/Environmental Technology Laboratory); Symons, Neill Phillip; Wilson, D. Keith (U.S. Army Cold Regions Research Engineering Lab.)

    2005-05-01

    This document is intended to serve as a users guide for the time-domain atmospheric acoustic propagation suite (TDAAPS) program developed as part of the Department of Defense High-Performance Modernization Office (HPCMP) Common High-Performance Computing Scalable Software Initiative (CHSSI). TDAAPS performs staggered-grid finite-difference modeling of the acoustic velocity-pressure system with the incorporation of spatially inhomogeneous winds. Wherever practical the control structure of the codes are written in C++ using an object oriented design. Sections of code where a large number of calculations are required are written in C or F77 in order to enable better compiler optimization of these sections. The TDAAPS program conforms to a UNIX style calling interface. Most of the actions of the codes are controlled by adding flags to the invoking command line. This document presents a large number of examples and provides new users with the necessary background to perform acoustic modeling with TDAAPS.

  15. Service Oriented Gridded Atmospheric Radiances (SOAR)

    Science.gov (United States)

    Halem, M.; Goldberg, M. D.; Tilmes, C.; Zhou, L.; Shen, S.; Yesha, Y.

    2005-12-01

    We are developing a scalable web service tool that can provide complex griding services on-demand for atmospheric radiance data sets from multiple temperature and moisture sounding sensors on the NASA and NOAA polar orbiting satellites collected over the past three decades. This server-to-server middle ware tool will provide the framework for transforming user requests for an arbitrary spatial/temporal/spectral gridded radiance data set from one or more instruments into an action to invoke a griding process from a set of scientifically validated application programs that have been developed to perform such functions. The invoked web service agents will access, subset, concatenate, convolve, perform statistical and physically based griding operations and present the data as specified level 3 gridded fields for analysis and visualization in multiple formats. Examples of the griding operations consist of spatial-temporal radiance averaging accounting for the field of view instrument response function, first footprint in grid bin, selecting min/max brightness temperatures within a grid element, ratios of channels, filtering, convolving high resolution spectral radiances to match broader band spectral radiances, limb adjustments, calculating variances of radiances falling in grid box and creating visual displays of these fields. The gridded web services tool will support both human input through a WWW GUI as well as a direct computer request through a W3C SOAP/XML web service interface. It will generate regional and global gridded data sets on demand. A second effort will demonstrate the ability to locate, access, subset and grid radiance data for any time period and resolution from remote archives of NOAA and NASA data. The system will queue the work flow requests, stage processing and delivery of arbitrary gridded data sets in a data base and notify the users when the request is completed. This tool will greatly expand satellite sounding data utilization by

  16. Theoretical oscillation frequencies for solar-type dwarfs from stellar models with <3D >-atmospheres

    DEFF Research Database (Denmark)

    Jørgensen, Andreas Christ Sølvsten; Weiss, Achim; Mosumgaard, Jakob Rorsted

    2017-01-01

    We present a new method for replacing the outermost layers of stellar models with interpolated atmospheres based on results from 3D simulations, in order to correct for structural inadequacies of these layers. This replacement is known as patching. Tests, based on 3D atmospheres from three......, and the mismatch in T-eff and log g between the un-patched model and patched 3D atmosphere. We find the eigen frequencies to be unaltered by the patching depth deep within the adiabatic region, while changing the patching quantity or the employed atmosphere grid leads to frequency shifts that may exceed 1 mu Hz....... Likewise, the eigen frequencies are sensitive to mismatches in T-eff or log g. A thorough investigation of the accuracy of a new scheme, for interpolating mean 3D stratifications within the atmosphere grids, is furthermore performed. Throughout large parts of the atmosphere grids, our interpolation scheme...

  17. Medicanes in an ocean-atmosphere coupled regional climate model

    Science.gov (United States)

    Akhtar, N.; Brauch, J.; Dobler, A.; Béranger, K.; Ahrens, B.

    2014-08-01

    So-called medicanes (Mediterranean hurricanes) are meso-scale, marine, and warm-core Mediterranean cyclones that exhibit some similarities to tropical cyclones. The strong cyclonic winds associated with medicanes threaten the highly populated coastal areas around the Mediterranean basin. To reduce the risk of casualties and overall negative impacts, it is important to improve the understanding of medicanes with the use of numerical models. In this study, we employ an atmospheric limited-area model (COSMO-CLM) coupled with a one-dimensional ocean model (1-D NEMO-MED12) to simulate medicanes. The aim of this study is to assess the robustness of the coupled model in simulating these extreme events. For this purpose, 11 historical medicane events are simulated using the atmosphere-only model, COSMO-CLM, and coupled model, with different setups (horizontal atmospheric grid spacings of 0.44, 0.22, and 0.08°; with/without spectral nudging, and an ocean grid spacing of 1/12°). The results show that at high resolution, the coupled model is able to not only simulate most of medicane events but also improve the track length, core temperature, and wind speed of simulated medicanes compared to the atmosphere-only simulations. The results suggest that the coupled model is more proficient for systemic and detailed studies of historical medicane events, and that this model can be an effective tool for future projections.

  18. The more the merrier: grid based modelling of Kepler dwarfs with 5-dimensional stellar grids

    Directory of Open Access Journals (Sweden)

    Serenelli Aldo

    2017-01-01

    Full Text Available We present preliminary results of our grid based modelling (GBM of the dwarf/subgiant sample of stars observed with Kepler including global asteroseismic parameters. GBM analysis in this work is based on a large grid of stellar models that is characterized by five independent parameters: model mass and age, initial metallicity (Zini, initial helium (Yini, and mixing length parameter (αMLT. Using this grid relaxes assumptions used in all previous GBM work where the initial composition is determined by a single parameter and that αMLT is fixed to a solar-calibrated value. The new grid allows us to study, for example, the impact of different galactic chemical enrichment models on the determination of stellar parameters such as mass radius and age. Also, it allows to include new results from stellar atmosphere models on αMLT in the GBM analysis in a simple manner. Alternatively, it can be tested if global asteroseismology is a useful tool to constraint our ignorance on quantities such as Yini and αMLT. Initial findings show that mass determination is robust with respect to freedom in the latter quantities, with a 4.4% maximum deviation for extreme assumptions regarding prior information on Yini – Zini relations and aMLT. On the other hand, tests carried out so far seem to indicate that global seismology does not have much power to constrain Yini – Zni relations of αMLT values without resourcing to additional information.

  19. A variable resolution nonhydrostatic global atmospheric semi-implicit semi-Lagrangian model

    Science.gov (United States)

    Pouliot, George Antoine

    2000-10-01

    The objective of this project is to develop a variable-resolution finite difference adiabatic global nonhydrostatic semi-implicit semi-Lagrangian (SISL) model based on the fully compressible nonhydrostatic atmospheric equations. To achieve this goal, a three-dimensional variable resolution dynamical core was developed and tested. The main characteristics of the dynamical core can be summarized as follows: Spherical coordinates were used in a global domain. A hydrostatic/nonhydrostatic switch was incorporated into the dynamical equations to use the fully compressible atmospheric equations. A generalized horizontal variable resolution grid was developed and incorporated into the model. For a variable resolution grid, in contrast to a uniform resolution grid, the order of accuracy of finite difference approximations is formally lost but remains close to the order of accuracy associated with the uniform resolution grid provided the grid stretching is not too significant. The SISL numerical scheme was implemented for the fully compressible set of equations. In addition, the generalized minimum residual (GMRES) method with restart and preconditioner was used to solve the three-dimensional elliptic equation derived from the discretized system of equations. The three-dimensional momentum equation was integrated in vector-form to incorporate the metric terms in the calculations of the trajectories. Using global re-analysis data for a specific test case, the model was compared to similar SISL models previously developed. Reasonable agreement between the model and the other independently developed models was obtained. The Held-Suarez test for dynamical cores was used for a long integration and the model was successfully integrated for up to 1200 days. Idealized topography was used to test the variable resolution component of the model. Nonhydrostatic effects were simulated at grid spacings of 400 meters with idealized topography and uniform flow. Using a high

  20. Gridded anthropogenic emissions inventory and atmospheric transport of carbonyl sulfide in the U.S.: U.S. Anthropogenic COS Source and Transport

    Energy Technology Data Exchange (ETDEWEB)

    Zumkehr, Andrew [Sierra Nevada Research Institute, University of California, Merced California USA; Hilton, Timothy W. [Sierra Nevada Research Institute, University of California, Merced California USA; Whelan, Mary [Sierra Nevada Research Institute, University of California, Merced California USA; Smith, Steve [Joint Global Change Research Institute, PNNL, College Park Maryland USA; Campbell, J. Elliott [Sierra Nevada Research Institute, University of California, Merced California USA

    2017-02-21

    Carbonyl sulfide (COS or OCS), the most abundant sulfur containing gas in the troposphere, has recently emerged as a potentially important atmospheric tracer for the carbon cycle. Atmospheric inverse modeling studies may be able to use existing tower, airborne, and satellite observations of COS to infer information about photosynthesis. However, such analysis relies on gridded anthropogenic COS source estimates that are largely based on industry activity data from over three decades ago. Here we use updated emission factor data and industry activity data to develop a gridded inventory with a 0.1 degree resolution for the U.S. domain. The inventory includes the primary anthropogenic COS sources including direct emissions from the coal and aluminum industries as well as indirect sources from industrial carbon disulfide emissions. Compared to the previously published inventory, we found that the total anthropogenic source (direct and indirect) is 47% smaller. Using this new gridded inventory to drive the STEM/WRF atmospheric transport model, we found that the anthropogenic contribution to COS variation in the troposphere is small relative to the biosphere influence, which is encouraging of carbon cycle applications in this region. Additional anthropogenic sectors with highly uncertain emission factors require further field measurements.

  1. A Vertically Flow-Following, Icosahedral Grid Model for Medium-Range and Seasonal Prediction. Part 1: Model Description

    Science.gov (United States)

    Bleck, Rainer; Bao, Jian-Wen; Benjamin, Stanley G.; Brown, John M.; Fiorino, Michael; Henderson, Thomas B.; Lee, Jin-Luen; MacDonald, Alexander E.; Madden, Paul; Middlecoff, Jacques; hide

    2015-01-01

    A hydrostatic global weather prediction model based on an icosahedral horizontal grid and a hybrid terrain following/ isentropic vertical coordinate is described. The model is an extension to three spatial dimensions of a previously developed, icosahedral, shallow-water model featuring user-selectable horizontal resolution and employing indirect addressing techniques. The vertical grid is adaptive to maximize the portion of the atmosphere mapped into the isentropic coordinate subdomain. The model, best described as a stacked shallow-water model, is being tested extensively on real-time medium-range forecasts to ready it for possible inclusion in operational multimodel ensembles for medium-range to seasonal prediction.

  2. Development of scheme for predicting atmospheric dispersion of radionuclides during nuclear emergency by using atmospheric dynamic model

    Energy Technology Data Exchange (ETDEWEB)

    Nagai, Haruyasu; Chino, Masamichi; Yamazawa, Hiromi (Japan Atomic Energy Research Inst., Tokyo (Japan))

    1999-07-01

    The meteorological forecast models are critically important for the accuracy of predicting the atmospheric dispersion of radionuclides discharged into atmosphere during nuclear emergencies. Thus, this paper describes a new scheme for predicting environmental impacts due to accidental release of radionuclides by using an atmospheric dynamic model PHYSIC. The advantages of introducing PHYSIC are, (1) three-dimensional local meteorological forecasts can be conducted, (2) synoptic meteorological changes can be considered by inputting grid data of synoptic forecasts from Japan Meteorological Agency to PHYSIC as initial and boundary conditions, (3) forecasts can be improved by nudging method using local meteorological observations, and (4) atmospheric dispersion model can consider the variation of the mixed layer. (author)

  3. Development of scheme for predicting atmospheric dispersion of radionuclides during nuclear emergency by using atmospheric dynamic model

    International Nuclear Information System (INIS)

    Nagai, Haruyasu; Chino, Masamichi; Yamazawa, Hiromi

    1999-01-01

    The meteorological forecast models are critically important for the accuracy of predicting the atmospheric dispersion of radionuclides discharged into atmosphere during nuclear emergencies. Thus, this paper describes a new scheme for predicting environmental impacts due to accidental release of radionuclides by using an atmospheric dynamic model PHYSIC. The advantages of introducing PHYSIC are, (1) three-dimensional local meteorological forecasts can be conducted, (2) synoptic meteorological changes can be considered by inputting grid data of synoptic forecasts from Japan Meteorological Agency to PHYSIC as initial and boundary conditions, (3) forecasts can be improved by nudging method using local meteorological observations, and (4) atmospheric dispersion model can consider the variation of the mixed layer. (author)

  4. Grid Transmission Expansion Planning Model Based on Grid Vulnerability

    Science.gov (United States)

    Tang, Quan; Wang, Xi; Li, Ting; Zhang, Quanming; Zhang, Hongli; Li, Huaqiang

    2018-03-01

    Based on grid vulnerability and uniformity theory, proposed global network structure and state vulnerability factor model used to measure different grid models. established a multi-objective power grid planning model which considering the global power network vulnerability, economy and grid security constraint. Using improved chaos crossover and mutation genetic algorithm to optimize the optimal plan. For the problem of multi-objective optimization, dimension is not uniform, the weight is not easy given. Using principal component analysis (PCA) method to comprehensive assessment of the population every generation, make the results more objective and credible assessment. the feasibility and effectiveness of the proposed model are validated by simulation results of Garver-6 bus system and Garver-18 bus.

  5. A Generic Danish Distribution Grid Model for Smart Grid Technology Testing

    DEFF Research Database (Denmark)

    Cha, Seung-Tae; Wu, Qiuwei; Østergaard, Jacob

    2012-01-01

    This paper describes the development of a generic Danish distribution grid model for smart grid technology testing based on the Bornholm power system. The frequency dependent network equivalent (FDNE) method has been used in order to accurately preserve the desired properties and characteristics...... as a generic Smart Grid benchmark model for testing purposes....... by comparing the transient response of the original Bornholm power system model and the developed generic model under significant fault conditions. The results clearly show that the equivalent generic distribution grid model retains the dynamic characteristics of the original system, and can be used...

  6. Modelling of pollution dispersion in atmosphere; Modelowanie procesow propagacji skazen w atmosferze

    Energy Technology Data Exchange (ETDEWEB)

    Borysiewicz, M; Stankiewicz, R

    1994-12-31

    The paper contains the review of the mathematical foundation of atmospheric dispersion models. The atmospheric phenomena relevant to atmospheric dispersion model are discussed. In particular the parametrization of processes with time and space scales smaller than numerical grid size, limited by available computer power, is presented. The special attention was devoted to similarity theory and parametrization of boundary layer. The numerical methods are analysed and the drawbacks of the method are presented. (author). 99 refs, 15 figs, 3 tabs.

  7. Model coupler for coupling of atmospheric, oceanic, and terrestrial models

    International Nuclear Information System (INIS)

    Nagai, Haruyasu; Kobayashi, Takuya; Tsuduki, Katsunori; Kim, Keyong-Ok

    2007-02-01

    A numerical simulation system SPEEDI-MP, which is applicable for various environmental studies, consists of dynamical models and material transport models for the atmospheric, terrestrial, and oceanic environments, meteorological and geographical databases for model inputs, and system utilities for file management, visualization, analysis, etc., using graphical user interfaces (GUIs). As a numerical simulation tool, a model coupling program (model coupler) has been developed. It controls parallel calculations of several models and data exchanges among them to realize the dynamical coupling of the models. It is applicable for any models with three-dimensional structured grid system, which is used by most environmental and hydrodynamic models. A coupled model system for water circulation has been constructed with atmosphere, ocean, wave, hydrology, and land-surface models using the model coupler. Performance tests of the coupled model system for water circulation were also carried out for the flood event at Saudi Arabia in January 2005 and the storm surge case by the hurricane KATRINA in August 2005. (author)

  8. Triple-layer smart grid business model

    DEFF Research Database (Denmark)

    Ma, Zheng; Lundgaard, Morten; Jørgensen, Bo Nørregaard

    2016-01-01

    Viewing the smart grid with the theory of business models may open opportunities in understanding and capturing values in new markets. This study tries to discover and map the smart grid ecosystem-based business model framework with two different environments (sub-Saharan Africa and Denmark......), and identifies the parameters for the smart grid solutions to the emerging markets. This study develops a triple-layer business model including the organizational (Niche), environmental (Intermediate), and global (Dominators) factors. The result uncovers an interface of market factors and stakeholders...... in a generic smart grid constellation. The findings contribute the transferability potential of the smart grid solutions between countries, and indicate the potential to export and import smart grid solutions based on the business modeling....

  9. A terrestrial biosphere model optimized to atmospheric CO2 concentration and above ground woody biomass

    Science.gov (United States)

    Saito, M.; Ito, A.; Maksyutov, S. S.

    2013-12-01

    This study documents an optimization of a prognostic biosphere model (VISIT; Vegetation Integrative Similator for Trace gases) to observations of atmospheric CO2 concentration and above ground woody biomass by using a Bayesian inversion method combined with an atmospheric tracer transport model (NIES-TM; National Institute for Environmental Studies / Frontier Research Center for Global Change (NIES/FRCGC) off-line global atmospheric tracer transport model). The assimilated observations include 74 station records of surface atmospheric CO2 concentration and aggregated grid data sets of above ground woody biomass (AGB) and net primary productivity (NPP) over the globe. Both the biosphere model and the atmospheric transport model are used at a horizontal resolution of 2.5 deg x 2.5 deg grid with temporal resolutions of a day and an hour, respectively. The atmospheric transport model simulates atmospheric CO2 concentration with nine vertical levels using daily net ecosystem CO2 exchange rate (NEE) from the biosphere model, oceanic CO2 flux, and fossil fuel emission inventory. The models are driven by meteorological data from JRA-25 (Japanese 25-year ReAnalysis) and JCDAS (JMA Climate Data Assimilation System). Statistically optimum physiological parameters in the biosphere model are found by iterative minimization of the corresponding Bayesian cost function. We select thirteen physiological parameter with high sensitivity to NEE, NPP, and AGB for the minimization. Given the optimized physiological parameters, the model shows error reductions in seasonal variation of the CO2 concentrations especially in the northern hemisphere due to abundant observation stations, while errors remain at a few stations that are located in coastal coastal area and stations in the southern hemisphere. The model also produces moderate estimates of the mean magnitudes and probability distributions in AGB and NPP for each biome. However, the model fails in the simulation of the terrestrial

  10. Integrating Solar Power onto the Electric Grid - Bridging the Gap between Atmospheric Science, Engineering and Economics

    Science.gov (United States)

    Ghonima, M. S.; Yang, H.; Zhong, X.; Ozge, B.; Sahu, D. K.; Kim, C. K.; Babacan, O.; Hanna, R.; Kurtz, B.; Mejia, F. A.; Nguyen, A.; Urquhart, B.; Chow, C. W.; Mathiesen, P.; Bosch, J.; Wang, G.

    2015-12-01

    One of the main obstacles to high penetrations of solar power is the variable nature of solar power generation. To mitigate variability, grid operators have to schedule additional reliability resources, at considerable expense, to ensure that load requirements are met by generation. Thus despite the cost of solar PV decreasing, the cost of integrating solar power will increase as penetration of solar resources onto the electric grid increases. There are three principal tools currently available to mitigate variability impacts: (i) flexible generation, (ii) storage, either virtual (demand response) or physical devices and (iii) solar forecasting. Storage devices are a powerful tool capable of ensuring smooth power output from renewable resources. However, the high cost of storage is prohibitive and markets are still being designed to leverage their full potential and mitigate their limitation (e.g. empty storage). Solar forecasting provides valuable information on the daily net load profile and upcoming ramps (increasing or decreasing solar power output) thereby providing the grid advance warning to schedule ancillary generation more accurately, or curtail solar power output. In order to develop solar forecasting as a tool that can be utilized by the grid operators we identified two focus areas: (i) develop solar forecast technology and improve solar forecast accuracy and (ii) develop forecasts that can be incorporated within existing grid planning and operation infrastructure. The first issue required atmospheric science and engineering research, while the second required detailed knowledge of energy markets, and power engineering. Motivated by this background we will emphasize area (i) in this talk and provide an overview of recent advancements in solar forecasting especially in two areas: (a) Numerical modeling tools for coastal stratocumulus to improve scheduling in the day-ahead California energy market. (b) Development of a sky imager to provide short term

  11. A geodesic atmospheric model with a quasi-Lagrangian vertical coordinate

    International Nuclear Information System (INIS)

    Heikes, Ross; Konor, Celal; Randall, David A

    2006-01-01

    The development of the Coupled Colorado State Model (CCoSM) is ultimately motivated by the need to predict and study climate change. All components of CCoSM innovatively blend unique design ideas and advanced computational techniques. The atmospheric model combines a geodesic horizontal grid with a quasi-Lagrangian vertical coordinate to improve the quality of simulations, particularly that of moisture and cloud distributions. Here we briefly describe the dynamical core, physical parameterizations and computational aspects of the atmospheric model, and present our preliminary numerical results. We also briefly discuss the rational behind our design choices and selection of computational techniques

  12. Atmospheres of Brown Dwarfs

    Science.gov (United States)

    Wang, Ruoyan; Seay, Christopher

    2018-01-01

    We construct a grid of brown dwarf model atmospheres spanning a wide range of atmospheric metallicity (0.3x ≤ met ≤ 100x), C/O ratios (0.25x ≤ C/O ≤ 2.5x), and cloud properties, encompassing atmospheres of effective temperatures 200 ≤ Teff ≤ 2400 K and gravities 2.5 ≤ log g ≤ 5.5. We produce the expected temperature-pressure profiles and emergent spectra from an atmosphere in radiative-convective equilibrium. We can then compare our predicted spectra to observations and retrieval results to aid in their predictions and influence future missions and telescopic observations. In our poster we briefly describe our modeling methodology and present our progress on model grid construction, spanning solar and subsolar C/O and metallicity.

  13. Stellar Atmospheric Modelling for the ACCESS Program

    Science.gov (United States)

    Morris, Matthew; Kaiser, Mary Elizabeth; Bohlin, Ralph; Kurucz, Robert; ACCESS Team

    2018-01-01

    A goal of the ACCESS program (Absolute Color Calibration Experiment for Standard Stars) is to enable greater discrimination between theoretical astrophysical models and observations, where the comparison is limited by systematic errors associated with the relative flux calibration of the targets. To achieve these goals, ACCESS has been designed as a sub-orbital rocket borne payload and ground calibration program, to establish absolute flux calibration of stellar targets at flight candidates, as well as a selection of A and G stars from the CALSPEC database. Stellar atmosphere models were generated using Atlas 9 and Atlas 12 Kurucz stellar atmosphere software. The effective temperature, log(g), metallicity, and redenning were varied and the chi-squared statistic was minimized to obtain a best-fit model. A comparison of these models and the results from interpolation between grids of existing models will be presented. The impact of the flexibility of the Atlas 12 input parameters (e.g. solar metallicity fraction, abundances, microturbulent velocity) is being explored.

  14. Modelling the atmospheric dispersion of foot-and-mouth disease virus for emergency preparedness

    DEFF Research Database (Denmark)

    Sørensen, J.H.; Jensen, C.O.; Mikkelsen, T.

    2001-01-01

    A model system for simulating airborne spread of foot-and-mouth disease (FMD) is described. The system includes a virus production model and the local- and mesoscale atmospheric dispersion model RIMPUFF linked to the LINCOM local-scale Row model. LINCOM is used to calculate the sub-grid scale Row...

  15. Rugosity grid derived from gridded bathymetry of Ni'ihau Island, Hawaii, USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Rugosity is derived from gridded (5 m cell size) multibeam bathymetry, collected aboard NOAA ship Hi'ialakai and R/V AHI using the Benthic Terrain Modeler with...

  16. Rugosity grid derived from gridded bathymetry of French Frigate Shoals, Hawaii, USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Rugosity is derived from gridded (5 m cell size) multibeam bathymetry, collected aboard NOAA Ship Hiialaka'i and R/V AHI, using the Benthic Terrain Modeler with...

  17. Rugosity grid derived from gridded bathymetry of Apra Harbor, Guam U.S. Territory

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Rugosity is derived from gridded (1 m cell size) multibeam bathymetry, collected aboard the Survey Vessel Swamp Fox using the Terrain Modeler with rugosity methods...

  18. New method for model coupling using Stampi. Application to the coupling of atmosphere model (MM5) and land-surface model (SOLVEG)

    International Nuclear Information System (INIS)

    Nagai, Haruyasu

    2003-12-01

    A new method to couple atmosphere and land-surface models using the message passing interface (MPI) was proposed to develop an atmosphere-land model for studies on heat, water, and material exchanges around the land surface. A non-hydrostatic atmospheric dynamic model of Pennsylvania State University and National Center for Atmospheric Research (PUS/NCAR-MM5) and a detailed land surface model (SOLVEG) including the surface-layer atmosphere, soil, and vegetation developed at Japan Atomic Energy Research Institute (JAERI) are used as the atmosphere and land-surface models, respectively. Concerning the MPI, a message passing library named Stampi developed at JAERI that can be used between different parallel computers is used. The models are coupled by exchanging calculation results by using MPI on their independent parallel calculations. The modifications for this model coupling are easy, simply adding some modules for data exchanges to each model code without changing each model's original structure. Moreover, this coupling method is flexible and allows the use of independent time step and grid interval for each model. (author)

  19. Vorticity-divergence semi-Lagrangian global atmospheric model SL-AV20: dynamical core

    Science.gov (United States)

    Tolstykh, Mikhail; Shashkin, Vladimir; Fadeev, Rostislav; Goyman, Gordey

    2017-05-01

    SL-AV (semi-Lagrangian, based on the absolute vorticity equation) is a global hydrostatic atmospheric model. Its latest version, SL-AV20, provides global operational medium-range weather forecast with 20 km resolution over Russia. The lower-resolution configurations of SL-AV20 are being tested for seasonal prediction and climate modeling. The article presents the model dynamical core. Its main features are a vorticity-divergence formulation at the unstaggered grid, high-order finite-difference approximations, semi-Lagrangian semi-implicit discretization and the reduced latitude-longitude grid with variable resolution in latitude. The accuracy of SL-AV20 numerical solutions using a reduced lat-lon grid and the variable resolution in latitude is tested with two idealized test cases. Accuracy and stability of SL-AV20 in the presence of the orography forcing are tested using the mountain-induced Rossby wave test case. The results of all three tests are in good agreement with other published model solutions. It is shown that the use of the reduced grid does not significantly affect the accuracy up to the 25 % reduction in the number of grid points with respect to the regular grid. Variable resolution in latitude allows us to improve the accuracy of a solution in the region of interest.

  20. Rugosity 5m grid derived from gridded bathymetry of Brooks Banks, Hawaii, USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Rugosity is derived from gridded (5 m cell size) multibeam bathymetry, collected aboard NOAA ship Hi'ialakai and R/V AHI using the Benthic Terrain Modeler with...

  1. Self-consistent atmosphere modeling with cloud formation for low-mass stars and exoplanets

    Science.gov (United States)

    Juncher, Diana; Jørgensen, Uffe G.; Helling, Christiane

    2017-12-01

    Context. Low-mass stars and extrasolar planets have ultra-cool atmospheres where a rich chemistry occurs and clouds form. The increasing amount of spectroscopic observations for extrasolar planets requires self-consistent model atmosphere simulations to consistently include the formation processes that determine cloud formation and their feedback onto the atmosphere. Aims: Our aim is to complement the MARCS model atmosphere suit with simulations applicable to low-mass stars and exoplanets in preparation of E-ELT, JWST, PLATO and other upcoming facilities. Methods: The MARCS code calculates stellar atmosphere models, providing self-consistent solutions of the radiative transfer and the atmospheric structure and chemistry. We combine MARCS with a kinetic model that describes cloud formation in ultra-cool atmospheres (seed formation, growth/evaporation, gravitational settling, convective mixing, element depletion). Results: We present a small grid of self-consistently calculated atmosphere models for Teff = 2000-3000 K with solar initial abundances and log (g) = 4.5. Cloud formation in stellar and sub-stellar atmospheres appears for Teff day-night energy transport and no temperature inversion.

  2. A pressure drop model for PWR grids

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Dong Seok; In, Wang Ki; Bang, Je Geon; Jung, Youn Ho; Chun, Tae Hyun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1999-12-31

    A pressure drop model for the PWR grids with and without mixing device is proposed at single phase based on the fluid mechanistic approach. Total pressure loss is expressed in additive way for form and frictional losses. The general friction factor correlations and form drag coefficients available in the open literatures are used to the model. As the results, the model shows better predictions than the existing ones for the non-mixing grids, and reasonable agreements with the available experimental data for mixing grids. Therefore it is concluded that the proposed model for pressure drop can provide sufficiently good approximation for grid optimization and design calculation in advanced grid development. 7 refs., 3 figs., 3 tabs. (Author)

  3. A pressure drop model for PWR grids

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Dong Seok; In, Wang Ki; Bang, Je Geon; Jung, Youn Ho; Chun, Tae Hyun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    A pressure drop model for the PWR grids with and without mixing device is proposed at single phase based on the fluid mechanistic approach. Total pressure loss is expressed in additive way for form and frictional losses. The general friction factor correlations and form drag coefficients available in the open literatures are used to the model. As the results, the model shows better predictions than the existing ones for the non-mixing grids, and reasonable agreements with the available experimental data for mixing grids. Therefore it is concluded that the proposed model for pressure drop can provide sufficiently good approximation for grid optimization and design calculation in advanced grid development. 7 refs., 3 figs., 3 tabs. (Author)

  4. The eGo grid model: An open source approach towards a model of German high and extra-high voltage power grids

    Science.gov (United States)

    Mueller, Ulf Philipp; Wienholt, Lukas; Kleinhans, David; Cussmann, Ilka; Bunke, Wolf-Dieter; Pleßmann, Guido; Wendiggensen, Jochen

    2018-02-01

    There are several power grid modelling approaches suitable for simulations in the field of power grid planning. The restrictive policies of grid operators, regulators and research institutes concerning their original data and models lead to an increased interest in open source approaches of grid models based on open data. By including all voltage levels between 60 kV (high voltage) and 380kV (extra high voltage), we dissolve the common distinction between transmission and distribution grid in energy system models and utilize a single, integrated model instead. An open data set for primarily Germany, which can be used for non-linear, linear and linear-optimal power flow methods, was developed. This data set consists of an electrically parameterised grid topology as well as allocated generation and demand characteristics for present and future scenarios at high spatial and temporal resolution. The usability of the grid model was demonstrated by the performance of exemplary power flow optimizations. Based on a marginal cost driven power plant dispatch, being subject to grid restrictions, congested power lines were identified. Continuous validation of the model is nescessary in order to reliably model storage and grid expansion in progressing research.

  5. Using the CIFIST grid of CO5BOLD 3D model atmospheres to study the effects of stellar granulation on photometric colours. I. Grids of 3D corrections in the UBVRI, 2MASS, HIPPARCOS, Gaia, and SDSS systems

    Science.gov (United States)

    Bonifacio, P.; Caffau, E.; Ludwig, H.-G.; Steffen, M.; Castelli, F.; Gallagher, A. J.; Kučinskas, A.; Prakapavičius, D.; Cayrel, R.; Freytag, B.; Plez, B.; Homeier, D.

    2018-03-01

    Context. The atmospheres of cool stars are temporally and spatially inhomogeneous due to the effects of convection. The influence of this inhomogeneity, referred to as granulation, on colours has never been investigated over a large range of effective temperatures and gravities. Aim. We aim to study, in a quantitative way, the impact of granulation on colours. Methods: We use the CIFIST (Cosmological Impact of the FIrst Stars) grid of CO5BOLD (COnservative COde for the COmputation of COmpressible COnvection in a BOx of L Dimensions, L = 2, 3) hydrodynamical models to compute emerging fluxes. These in turn are used to compute theoretical colours in the UBV RI, 2MASS, HIPPARCOS, Gaia and SDSS systems. Every CO5BOLD model has a corresponding one dimensional (1D) plane-parallel LHD (Lagrangian HydroDynamics) model computed for the same atmospheric parameters, which we used to define a "3D correction" that can be applied to colours computed from fluxes computed from any 1D model atmosphere code. As an example, we illustrate these corrections applied to colours computed from ATLAS models. Results: The 3D corrections on colours are generally small, of the order of a few hundredths of a magnitude, yet they are far from negligible. We find that ignoring granulation effects can lead to underestimation of Teff by up to 200 K and overestimation of gravity by up to 0.5 dex, when using colours as diagnostics. We have identified a major shortcoming in how scattering is treated in the current version of the CIFIST grid, which could lead to offsets of the order 0.01 mag, especially for colours involving blue and UV bands. We have investigated the Gaia and HIPPARCOS photometric systems and found that the (G - Hp), (BP - RP) diagram is immune to the effects of granulation. In addition, we point to the potential of the RVS photometry as a metallicity diagnostic. Conclusions: Our investigation shows that the effects of granulation should not be neglected if one wants to use colours as

  6. Evaluation of a Regional Atmospheric Model Using Measurements of Surface Heat Exchange Processes from a Site in Antarctica

    NARCIS (Netherlands)

    Lipzig, N.P.M. van; Meijgaard, E. van; Oerlemans, J.

    1999-01-01

    A regional atmospheric climate model with a horizontal grid spacing of 55 km has been used to simulate the Antarctic atmosphere during an austral summer period. ECMWF reanalyses were used to force the atmospheric prognostic variables from the lateral boundaries. Sea surface temperatures and the sea

  7. The StaggerGrid project

    DEFF Research Database (Denmark)

    Collet, Remo; Magic, Zazralt; Asplund, Martin

    2011-01-01

    In this contribution, we present the STAGGERGRID, a collaborative project for the construction of a comprehensive grid of time-dependent, three-dimensional (3-D), hydrodynamic model atmospheres of solar- and late-type stars with different effective temperatures, surface gravities, and chemical...

  8. Numerical modelling of the atmospheric transport, chemical tranformations and deposition of mercury

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, G; Schneider, B; Eppel, D [GKSS-Forschungszentrum Geesthacht GmbH, Geesthacht-Tesperhude (Germany, F.R.). Inst. fuer Physik; Grassl, H [Hamburg Univ. (Germany, F.R.). Meteorologisches Inst. Max-Planck-Institut fuer Meteorologie, Hamburg (Germany, F.R.); Iverfeldt, A [Swedish Environmental Research Inst., Goeteborg (Sweden); Misra, P K; Bloxam, R; Wong, S [Ontario Ministry of the

    1990-01-01

    Based on recent progress in the understanding of mercury chemistry and biogeochemistry and on the availability of mercury emission data bases this study makes an attempt to model the atmospheric transport of mercury, its chemical transformations in the atmosphere, and the fluxes of mercury to and from the earth's surface by means of an EMEP-type Lagrangian trajectory model for Europe and an Eulerian grid model (ADOM) for North America. Preliminary results with a simplified mercury chemistry scheme in the comprehensive Eulerian model and with a linear chemistry in the Lagrangian model show reasonable agreement with observed mercury concentrations in air and precipitation. (orig.) With 3 figs., 4 tabs.

  9. Models for the modern power grid

    Science.gov (United States)

    Nardelli, Pedro H. J.; Rubido, Nicolas; Wang, Chengwei; Baptista, Murilo S.; Pomalaza-Raez, Carlos; Cardieri, Paulo; Latva-aho, Matti

    2014-10-01

    This article reviews different kinds of models for the electric power grid that can be used to understand the modern power system, the smart grid. From the physical network to abstract energy markets, we identify in the literature different aspects that co-determine the spatio-temporal multilayer dynamics of power system. We start our review by showing how the generation, transmission and distribution characteristics of the traditional power grids are already subject to complex behaviour appearing as a result of the the interplay between dynamics of the nodes and topology, namely synchronisation and cascade effects. When dealing with smart grids, the system complexity increases even more: on top of the physical network of power lines and controllable sources of electricity, the modernisation brings information networks, renewable intermittent generation, market liberalisation, prosumers, among other aspects. In this case, we forecast a dynamical co-evolution of the smart grid and other kind of networked systems that cannot be understood isolated. This review compiles recent results that model electric power grids as complex systems, going beyond pure technological aspects. From this perspective, we then indicate possible ways to incorporate the diverse co-evolving systems into the smart grid model using, for example, network theory and multi-agent simulation.

  10. 60 m Rugosity grid derived from gridded bathymetry of Wake Island, West Central Pacific.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Rugosity is derived from gridded (60 m cell size) multibeam bathymetry, collected aboard NOAA ship Hi'ialakai and R/V AHI using the Benthic Terrain Modeler with...

  11. CRED Rugosity grid derived from gridded bathymetry of Tutuila Island, American Samoa, South Pacific

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Rugosity is derived from gridded (5 m cell size) multibeam bathymetry, collected aboard NOAA Ship Hiialaka'i and R/V AHI, using the Benthic Terrain Modeler with...

  12. Rugosity 60 m grid derived from gridded bathymetry of Rota Island, Mariana Islands, USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Rugosity is derived from gridded (60 m cell size) multibeam bathymetry, collected aboard NOAA Ship Hiialaka'i and R/V AHI, using the Benthic Terrain Modeler with...

  13. The STAGGER-grid: A grid of 3D stellar atmosphere models. V. Synthetic stellar spectra and broad-band photometry

    Science.gov (United States)

    Chiavassa, A.; Casagrande, L.; Collet, R.; Magic, Z.; Bigot, L.; Thévenin, F.; Asplund, M.

    2018-03-01

    Context. The surface structures and dynamics of cool stars are characterised by the presence of convective motions and turbulent flows which shape the emergent spectrum. Aims: We used realistic three-dimensional (3D) radiative hydrodynamical simulations from the STAGGER-grid to calculate synthetic spectra with the radiative transfer code OPTIM3D for stars with different stellar parameters to predict photometric colours and convective velocity shifts. Methods: We calculated spectra from 1000 to 200 000 Å with a constant resolving power of λ/Δλ = 20 000 and from 8470 and 8710 Å (Gaia Radial Velocity Spectrometer - RVS - spectral range) with a constant resolving power of λ/Δλ = 300 000. Results: We used synthetic spectra to compute theoretical colours in the Johnson-Cousins UBV (RI)C, SDSS, 2MASS, Gaia, SkyMapper, Strömgren systems, and HST-WFC3. Our synthetic magnitudes are compared with those obtained using 1D hydrostatic models. We showed that 1D versus 3D differences are limited to a small percent except for the narrow filters that span the optical and UV region of the spectrum. In addition, we derived the effect of the convective velocity fields on selected Fe I lines. We found the overall convective shift for 3D simulations with respect to the reference 1D hydrostatic models, revealing line shifts of between -0.235 and +0.361 km s-1. We showed a net correlation of the convective shifts with the effective temperature: lower effective temperatures denote redshifts and higher effective temperatures denote blueshifts. We conclude that the extraction of accurate radial velocities from RVS spectra need an appropriate wavelength correction from convection shifts. Conclusions: The use of realistic 3D hydrodynamical stellar atmosphere simulations has a small but significant impact on the predicted photometry compared with classical 1D hydrostatic models for late-type stars. We make all the spectra publicly available for the community through the POLLUX database

  14. Evaluating gridded crop model simulations of evapotranspiration and irrigation using survey and remotely sensed data

    Science.gov (United States)

    Lopez Bobeda, J. R.

    2017-12-01

    The increasing use of groundwater for irrigation of crops has exacerbated groundwater sustainability issues faced by water limited regions. Gridded, process-based crop models have the potential to help farmers and policymakers asses the effects water shortages on yield and devise new strategies for sustainable water use. Gridded crop models are typically calibrated and evaluated using county-level survey data of yield, planting dates, and maturity dates. However, little is known about the ability of these models to reproduce observed crop evapotranspiration and water use at regional scales. The aim of this work is to evaluate a gridded version of the Decision Support System for Agrotechnology Transfer (DSSAT) crop model over the continental United States. We evaluated crop seasonal evapotranspiration over 5 arc-minute grids, and irrigation water use at the county level. Evapotranspiration was assessed only for rainfed agriculture to test the model evapotranspiration equations separate from the irrigation algorithm. Model evapotranspiration was evaluated against the Atmospheric Land Exchange Inverse (ALEXI) modeling product. Using a combination of the USDA crop land data layer (CDL) and the USGS Moderate Resolution Imaging Spectroradiometer Irrigated Agriculture Dataset for the United States (MIrAD-US), we selected only grids with more than 60% of their area planted with the simulated crops (corn, cotton, and soybean), and less than 20% of their area irrigated. Irrigation water use was compared against the USGS county level irrigated agriculture water use survey data. Simulated gridded data were aggregated to county level using USDA CDL and USGS MIrAD-US. Only counties where 70% or more of the irrigated land was corn, cotton, or soybean were selected for the evaluation. Our results suggest that gridded crop models can reasonably reproduce crop evapotranspiration at the country scale (RRMSE = 10%).

  15. A mass and energy conserving spectral element atmospheric dynamical core on the cubed-sphere grid

    International Nuclear Information System (INIS)

    Taylor, M A; Edwards, J; Thomas, S; Nair, R

    2007-01-01

    We present results from a conservative formulation of the spectral element method applied to global atmospheric circulation modeling. Exact local conservation of both mass and energy is obtained via a new compatible formulation of the spectral element method. Compatibility insures that the key integral property of the divergence and gradient operators required to show conservation also hold in discrete form. The spectral element method is used on a cubed-sphere grid to discretize the horizontal directions on the sphere. It can be coupled to any conservative vertical/radial discretization. The accuracy and conservation properties of the method are illustrated using a baroclinic instability test case

  16. CARBON NEUTRON STAR ATMOSPHERES

    International Nuclear Information System (INIS)

    Suleimanov, V. F.; Klochkov, D.; Werner, K.; Pavlov, G. G.

    2014-01-01

    The accuracy of measuring the basic parameters of neutron stars is limited in particular by uncertainties in the chemical composition of their atmospheres. For example, the atmospheres of thermally emitting neutron stars in supernova remnants might have exotic chemical compositions, and for one of them, the neutron star in Cas A, a pure carbon atmosphere has recently been suggested by Ho and Heinke. To test this composition for other similar sources, a publicly available detailed grid of the carbon model atmosphere spectra is needed. We have computed this grid using the standard local thermodynamic equilibrium approximation and assuming that the magnetic field does not exceed 10 8  G. The opacities and pressure ionization effects are calculated using the Opacity Project approach. We describe the properties of our models and investigate the impact of the adopted assumptions and approximations on the emergent spectra

  17. Modeling emissions for three-dimensional atmospheric chemistry transport models.

    Science.gov (United States)

    Matthias, Volker; Arndt, Jan A; Aulinger, Armin; Bieser, Johannes; Denier Van Der Gon, Hugo; Kranenburg, Richard; Kuenen, Jeroen; Neumann, Daniel; Pouliot, George; Quante, Markus

    2018-01-24

    Poor air quality is still a threat for human health in many parts of the world. In order to assess measures for emission reductions and improved air quality, three-dimensional atmospheric chemistry transport modeling systems are used in numerous research institutions and public authorities. These models need accurate emission data in appropriate spatial and temporal resolution as input. This paper reviews the most widely used emission inventories on global and regional scale and looks into the methods used to make the inventory data model ready. Shortcomings of using standard temporal profiles for each emission sector are discussed and new methods to improve the spatio-temporal distribution of the emissions are presented. These methods are often neither top-down nor bottom-up approaches but can be seen as hybrid methods that use detailed information about the emission process to derive spatially varying temporal emission profiles. These profiles are subsequently used to distribute bulk emissions like national totals on appropriate grids. The wide area of natural emissions is also summarized and the calculation methods are described. Almost all types of natural emissions depend on meteorological information, which is why they are highly variable in time and space and frequently calculated within the chemistry transport models themselves. The paper closes with an outlook for new ways to improve model ready emission data, for example by using external databases about road traffic flow or satellite data to determine actual land use or leaf area. In a world where emission patterns change rapidly, it seems appropriate to use new types of statistical and observational data to create detailed emission data sets and keep emission inventories up-to-date. Emission data is probably the most important input for chemistry transport model (CTM) systems. It needs to be provided in high temporal and spatial resolution and on a grid that is in agreement with the CTM grid. Simple

  18. Modeling of urban atmospheric pollution and impact on health

    International Nuclear Information System (INIS)

    Myrto, Valari

    2009-10-01

    The goal of this dissertation, is to develop a methodology that provides an improved knowledge of the associations between atmospheric contaminant concentrations and health impact. The propagation of uncertainties from input data to the output concentrations through a Chemistry Transport Model was first studied. The influence of the resolutions of meteorological parameters and emissions data were studied separately, and their relative role was compared. It was found that model results do not improve linearly with the resolution of emission input. A critical resolution was found, beyond which model error becomes higher and the model breaks down. Based on this first investigation concerning the direct down scaling, further research focused on sub grid scale modeling. Thus, a statistical down scaling approach was adopted for the modeling of sub grid-scale concentration variability due to heterogeneous surface emissions. Emission fractions released from different types of sources (industry, roads, residential, natural etc.) were calculated from a high-resolution emission inventory. Then emission fluxes were mapped on surfaces emitting source-specific species. Simulations were run independently over the defined micro-environments allowing the modeling of sub grid-scale concentration variability. Sub grid scale concentrations were therefore combined with demographic and human activity data to provide exposure estimates. The spatial distribution of human exposure was parameterized through a Monte-Carlo model. The new information concerning exposure variability was added to an existing epidemiological model to study relative health risks. A log-linear Poisson regression model was used for this purpose. The principal outcome of the investigation was that a new functionality was added to the regression model which allows the dissociation of the health risk associated with each pollutant (e.g. NO 2 and PM 2.5 ). (author)

  19. Evaluation of load flow and grid expansion in a unit-commitment and expansion optimization model SciGRID International Conference on Power Grid Modelling

    Science.gov (United States)

    Senkpiel, Charlotte; Biener, Wolfgang; Shammugam, Shivenes; Längle, Sven

    2018-02-01

    Energy system models serve as a basis for long term system planning. Joint optimization of electricity generating technologies, storage systems and the electricity grid leads to lower total system cost compared to an approach in which the grid expansion follows a given technology portfolio and their distribution. Modelers often face the problem of finding a good tradeoff between computational time and the level of detail that can be modeled. This paper analyses the differences between a transport model and a DC load flow model to evaluate the validity of using a simple but faster transport model within the system optimization model in terms of system reliability. The main findings in this paper are that a higher regional resolution of a system leads to better results compared to an approach in which regions are clustered as more overloads can be detected. An aggregation of lines between two model regions compared to a line sharp representation has little influence on grid expansion within a system optimizer. In a DC load flow model overloads can be detected in a line sharp case, which is therefore preferred. Overall the regions that need to reinforce the grid are identified within the system optimizer. Finally the paper recommends the usage of a load-flow model to test the validity of the model results.

  20. Development of a smart DC grid model

    Energy Technology Data Exchange (ETDEWEB)

    Dalimunthe, Amty Ma’rufah Ardhiyah; Mindara, Jajat Yuda; Panatarani, Camellia; Joni, I. Made, E-mail: imadejoni@phys.unpad.ac.id [Lab. of Instrumentation System and Functional Material Processing, Physics Department, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Jl. Raya Bandung-Sumedang KM21, Jatinangor 45363, Jawa Barat (Indonesia)

    2016-03-11

    Smart grid and distributed generation should be the solution of the global climate change and the crisis energy of the main source of electrical power generation which is fossil fuel. In order to meet the rising electrical power demand and increasing service quality demands, as well as reduce pollution, the existing power grid infrastructure should be developed into a smart grid and distributed power generation which provide a great opportunity to address issues related to energy efficiency, energy security, power quality and aging infrastructure systems. The conventional of the existing distributed generation system is an AC grid while for a renewable resources requires a DC grid system. This paper explores the model of smart DC grid by introducing a model of smart DC grid with the stable power generation give a minimal and compressed circuitry that can be implemented very cost-effectively with simple components. The PC based application software for controlling was developed to show the condition of the grid and to control the grid become ‘smart’. The model is then subjected to a severe system perturbation, such as incremental change in loads to test the performance of the system again stability. It is concluded that the system able to detect and controlled the voltage stability which indicating the ability of power system to maintain steady voltage within permissible rangers in normal condition.

  1. Development of a smart DC grid model

    International Nuclear Information System (INIS)

    Dalimunthe, Amty Ma’rufah Ardhiyah; Mindara, Jajat Yuda; Panatarani, Camellia; Joni, I. Made

    2016-01-01

    Smart grid and distributed generation should be the solution of the global climate change and the crisis energy of the main source of electrical power generation which is fossil fuel. In order to meet the rising electrical power demand and increasing service quality demands, as well as reduce pollution, the existing power grid infrastructure should be developed into a smart grid and distributed power generation which provide a great opportunity to address issues related to energy efficiency, energy security, power quality and aging infrastructure systems. The conventional of the existing distributed generation system is an AC grid while for a renewable resources requires a DC grid system. This paper explores the model of smart DC grid by introducing a model of smart DC grid with the stable power generation give a minimal and compressed circuitry that can be implemented very cost-effectively with simple components. The PC based application software for controlling was developed to show the condition of the grid and to control the grid become ‘smart’. The model is then subjected to a severe system perturbation, such as incremental change in loads to test the performance of the system again stability. It is concluded that the system able to detect and controlled the voltage stability which indicating the ability of power system to maintain steady voltage within permissible rangers in normal condition.

  2. Modeling the Cloudy Atmospheres of Cool Stars, Brown Dwarfs and Hot Exoplanets

    DEFF Research Database (Denmark)

    Juncher, Diana

    M-dwarfs are very attractive targets when searching for new exoplanets. Unfortunately, they are also very difficult to model since their temperatures are low enough for dust clouds to form in their atmospheres. Because the properties of an exoplanet cannot be determined without knowing the proper......M-dwarfs are very attractive targets when searching for new exoplanets. Unfortunately, they are also very difficult to model since their temperatures are low enough for dust clouds to form in their atmospheres. Because the properties of an exoplanet cannot be determined without knowing......-consistent cloudy atmosphere models that can be used to properly determine the stellar parameters of cool stars. With this enhanced model atmosphere code I have created a grid of cool, dusty atmosphere models ranging in effective temperatures from Teff = 2000 − 3000 K. I have studied the formation and structure...... of their clouds and found that their synthetic spectra fit the observed spectra of mid to late type M-dwarfs and early type L-dwarfs well. With additional development into even cooler regimes, they could be used to characterize the atmospheres of exoplanets and aid us in our search for the kind of chemical...

  3. The on-line coupled atmospheric chemistry model system MECO(n) - Part 5: Expanding the Multi-Model-Driver (MMD v2.0) for 2-way data exchange including data interpolation via GRID (v1.0)

    Science.gov (United States)

    Kerkweg, Astrid; Hofmann, Christiane; Jöckel, Patrick; Mertens, Mariano; Pante, Gregor

    2018-03-01

    As part of the Modular Earth Submodel System (MESSy), the Multi-Model-Driver (MMD v1.0) was developed to couple online the regional Consortium for Small-scale Modeling (COSMO) model into a driving model, which can be either the regional COSMO model or the global European Centre Hamburg general circulation model (ECHAM) (see Part 2 of the model documentation). The coupled system is called MECO(n), i.e., MESSy-fied ECHAM and COSMO models nested n times. In this article, which is part of the model documentation of the MECO(n) system, the second generation of MMD is introduced. MMD comprises the message-passing infrastructure required for the parallel execution (multiple programme multiple data, MPMD) of different models and the communication of the individual model instances, i.e. between the driving and the driven models. Initially, the MMD library was developed for a one-way coupling between the global chemistry-climate ECHAM/MESSy atmospheric chemistry (EMAC) model and an arbitrary number of (optionally cascaded) instances of the regional chemistry-climate model COSMO/MESSy. Thus, MMD (v1.0) provided only functions for unidirectional data transfer, i.e. from the larger-scale to the smaller-scale models.Soon, extended applications requiring data transfer from the small-scale model back to the larger-scale model became of interest. For instance, the original fields of the larger-scale model can directly be compared to the upscaled small-scale fields to analyse the improvements gained through the small-scale calculations, after the results are upscaled. Moreover, the fields originating from the two different models might be fed into the same diagnostic tool, e.g. the online calculation of the radiative forcing calculated consistently with the same radiation scheme. Last but not least, enabling the two-way data transfer between two models is the first important step on the way to a fully dynamical and chemical two-way coupling of the various model instances.In MMD (v1

  4. Wavelet-based Adaptive Mesh Refinement Method for Global Atmospheric Chemical Transport Modeling

    Science.gov (United States)

    Rastigejev, Y.

    2011-12-01

    Numerical modeling of global atmospheric chemical transport presents enormous computational difficulties, associated with simulating a wide range of time and spatial scales. The described difficulties are exacerbated by the fact that hundreds of chemical species and thousands of chemical reactions typically are used for chemical kinetic mechanism description. These computational requirements very often forces researches to use relatively crude quasi-uniform numerical grids with inadequate spatial resolution that introduces significant numerical diffusion into the system. It was shown that this spurious diffusion significantly distorts the pollutant mixing and transport dynamics for typically used grid resolution. The described numerical difficulties have to be systematically addressed considering that the demand for fast, high-resolution chemical transport models will be exacerbated over the next decade by the need to interpret satellite observations of tropospheric ozone and related species. In this study we offer dynamically adaptive multilevel Wavelet-based Adaptive Mesh Refinement (WAMR) method for numerical modeling of atmospheric chemical evolution equations. The adaptive mesh refinement is performed by adding and removing finer levels of resolution in the locations of fine scale development and in the locations of smooth solution behavior accordingly. The algorithm is based on the mathematically well established wavelet theory. This allows us to provide error estimates of the solution that are used in conjunction with an appropriate threshold criteria to adapt the non-uniform grid. Other essential features of the numerical algorithm include: an efficient wavelet spatial discretization that allows to minimize the number of degrees of freedom for a prescribed accuracy, a fast algorithm for computing wavelet amplitudes, and efficient and accurate derivative approximations on an irregular grid. The method has been tested for a variety of benchmark problems

  5. The ICON-1.2 hydrostatic atmospheric dynamical core on triangular grids – Part 1: Formulation and performance of the baseline version

    Directory of Open Access Journals (Sweden)

    H. Wan

    2013-06-01

    Full Text Available As part of a broader effort to develop next-generation models for numerical weather prediction and climate applications, a hydrostatic atmospheric dynamical core is developed as an intermediate step to evaluate a finite-difference discretization of the primitive equations on spherical icosahedral grids. Based on the need for mass-conserving discretizations for multi-resolution modelling as well as scalability and efficiency on massively parallel computing architectures, the dynamical core is built on triangular C-grids using relatively small discretization stencils. This paper presents the formulation and performance of the baseline version of the new dynamical core, focusing on properties of the numerical solutions in the setting of globally uniform resolution. Theoretical analysis reveals that the discrete divergence operator defined on a single triangular cell using the Gauss theorem is only first-order accurate, and introduces grid-scale noise to the discrete model. The noise can be suppressed by fourth-order hyper-diffusion of the horizontal wind field using a time-step and grid-size-dependent diffusion coefficient, at the expense of stronger damping than in the reference spectral model. A series of idealized tests of different complexity are performed. In the deterministic baroclinic wave test, solutions from the new dynamical core show the expected sensitivity to horizontal resolution, and converge to the reference solution at R2B6 (35 km grid spacing. In a dry climate test, the dynamical core correctly reproduces key features of the meridional heat and momentum transport by baroclinic eddies. In the aqua-planet simulations at 140 km resolution, the new model is able to reproduce the same equatorial wave propagation characteristics as in the reference spectral model, including the sensitivity of such characteristics to the meridional sea surface temperature profile. These results suggest that the triangular-C discretization provides a

  6. Atmospheric inverse modeling via sparse reconstruction

    Science.gov (United States)

    Hase, Nils; Miller, Scot M.; Maaß, Peter; Notholt, Justus; Palm, Mathias; Warneke, Thorsten

    2017-10-01

    Many applications in atmospheric science involve ill-posed inverse problems. A crucial component of many inverse problems is the proper formulation of a priori knowledge about the unknown parameters. In most cases, this knowledge is expressed as a Gaussian prior. This formulation often performs well at capturing smoothed, large-scale processes but is often ill equipped to capture localized structures like large point sources or localized hot spots. Over the last decade, scientists from a diverse array of applied mathematics and engineering fields have developed sparse reconstruction techniques to identify localized structures. In this study, we present a new regularization approach for ill-posed inverse problems in atmospheric science. It is based on Tikhonov regularization with sparsity constraint and allows bounds on the parameters. We enforce sparsity using a dictionary representation system. We analyze its performance in an atmospheric inverse modeling scenario by estimating anthropogenic US methane (CH4) emissions from simulated atmospheric measurements. Different measures indicate that our sparse reconstruction approach is better able to capture large point sources or localized hot spots than other methods commonly used in atmospheric inversions. It captures the overall signal equally well but adds details on the grid scale. This feature can be of value for any inverse problem with point or spatially discrete sources. We show an example for source estimation of synthetic methane emissions from the Barnett shale formation.

  7. Application Note: Power Grid Modeling With Xyce.

    Energy Technology Data Exchange (ETDEWEB)

    Sholander, Peter E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-06-01

    This application note describes how to model steady-state power flows and transient events in electric power grids with the SPICE-compatible Xyce TM Parallel Electronic Simulator developed at Sandia National Labs. This application notes provides a brief tutorial on the basic devices (branches, bus shunts, transformers and generators) found in power grids. The focus is on the features supported and assumptions made by the Xyce models for power grid elements. It then provides a detailed explanation, including working Xyce netlists, for simulating some simple power grid examples such as the IEEE 14-bus test case.

  8. Extraction of Vertical Profiles of Atmospheric Variables from Gridded Binary, Edition 2 (GRIB2) Model Output Files

    Science.gov (United States)

    2018-01-18

    new_grid will generate a smaller grid interpolated from the fields of the parent grid (http://www.cpc.ncep.noaa.gov/ products/wesley/wgrib2/new_grid.html...the grid or undefined. “latlon” for –new_grid results in a new grid interpolated from the parent (old) grid, where the listed latitude and longitude...by-2 horizontal grid 0.0001° apart, which translates to about a 10-m separation . 2.2 Extract the Vertical Profile Data The second step is to

  9. Modelling Chinese Smart Grid

    DEFF Research Database (Denmark)

    Yuksel, Ender; Nielson, Hanne Riis; Nielson, Flemming

    In this document, we consider a specific Chinese Smart Grid implementation and try to address the verification problem for certain quantitative properties including performance and battery consumption. We employ stochastic model checking approach and present our modelling and analysis study using...

  10. Ecosystem Based Business Model of Smart Grid

    OpenAIRE

    Lundgaard, Morten Raahauge; Ma, Zheng; Jørgensen, Bo Nørregaard

    2015-01-01

    This paper tries to investigate the ecosystem based business model in a smart grid infrastructure and the potential of value capture in the highly complex macro infrastructure such as smart grid. This paper proposes an alternative perspective to study the smart grid business ecosystem to support the infrastructural challenges, such as the interoperability of business components for smart grid. So far little research has explored the business ecosystem in the smart grid concept. The study on t...

  11. The on-line coupled atmospheric chemistry model system MECO(n – Part 5: Expanding the Multi-Model-Driver (MMD v2.0 for 2-way data exchange including data interpolation via GRID (v1.0

    Directory of Open Access Journals (Sweden)

    A. Kerkweg

    2018-03-01

    Full Text Available As part of the Modular Earth Submodel System (MESSy, the Multi-Model-Driver (MMD v1.0 was developed to couple online the regional Consortium for Small-scale Modeling (COSMO model into a driving model, which can be either the regional COSMO model or the global European Centre Hamburg general circulation model (ECHAM (see Part 2 of the model documentation. The coupled system is called MECO(n, i.e., MESSy-fied ECHAM and COSMO models nested n times. In this article, which is part of the model documentation of the MECO(n system, the second generation of MMD is introduced. MMD comprises the message-passing infrastructure required for the parallel execution (multiple programme multiple data, MPMD of different models and the communication of the individual model instances, i.e. between the driving and the driven models. Initially, the MMD library was developed for a one-way coupling between the global chemistry–climate ECHAM/MESSy atmospheric chemistry (EMAC model and an arbitrary number of (optionally cascaded instances of the regional chemistry–climate model COSMO/MESSy. Thus, MMD (v1.0 provided only functions for unidirectional data transfer, i.e. from the larger-scale to the smaller-scale models.Soon, extended applications requiring data transfer from the small-scale model back to the larger-scale model became of interest. For instance, the original fields of the larger-scale model can directly be compared to the upscaled small-scale fields to analyse the improvements gained through the small-scale calculations, after the results are upscaled. Moreover, the fields originating from the two different models might be fed into the same diagnostic tool, e.g. the online calculation of the radiative forcing calculated consistently with the same radiation scheme. Last but not least, enabling the two-way data transfer between two models is the first important step on the way to a fully dynamical and chemical two-way coupling of the various model

  12. Modelling noise propagation using Grid Resources. Progress within GDI-Grid

    Science.gov (United States)

    Kiehle, Christian; Mayer, Christian; Padberg, Alexander; Stapelfeld, Hartmut

    2010-05-01

    Modelling noise propagation using Grid Resources. Progress within GDI-Grid. GDI-Grid (english: SDI-Grid) is a research project funded by the German Ministry for Science and Education (BMBF). It aims at bridging the gaps between OGC Web Services (OWS) and Grid infrastructures and identifying the potential of utilizing the superior storage capacities and computational power of grid infrastructures for geospatial applications while keeping the well-known service interfaces specified by the OGC. The project considers all major OGC webservice interfaces for Web Mapping (WMS), Feature access (Web Feature Service), Coverage access (Web Coverage Service) and processing (Web Processing Service). The major challenge within GDI-Grid is the harmonization of diverging standards as defined by standardization bodies for Grid computing and spatial information exchange. The project started in 2007 and will continue until June 2010. The concept for the gridification of OWS developed by lat/lon GmbH and the Department of Geography of the University of Bonn is applied to three real-world scenarios in order to check its practicability: a flood simulation, a scenario for emergency routing and a noise propagation simulation. The latter scenario is addressed by the Stapelfeldt Ingenieurgesellschaft mbH located in Dortmund adapting their LimA software to utilize grid resources. Noise mapping of e.g. traffic noise in urban agglomerates and along major trunk roads is a reoccurring demand of the EU Noise Directive. Input data requires road net and traffic, terrain, buildings and noise protection screens as well as population distribution. Noise impact levels are generally calculated in 10 m grid and along relevant building facades. For each receiver position sources within a typical range of 2000 m are split down into small segments, depending on local geometry. For each of the segments propagation analysis includes diffraction effects caused by all obstacles on the path of sound propagation

  13. Impact of atmospheric components on solar clear-sky models at different elevation: Case study Canary Islands

    International Nuclear Information System (INIS)

    Antonanzas-Torres, F.; Antonanzas, J.; Urraca, R.; Alia-Martinez, M.; Martinez-de-Pison, F.J.

    2016-01-01

    Highlights: • Assessment on the performance of solar clear-sky models at different altitude. • SOLIS and REST2 clear-sky models were superior with fine atmospheric inputs. • ESRA proved more robust with low spatial resolution atmospheric inputs. • Over-estimation occurred at the lower site when using inputs from the upper site. - Abstract: The estimation of clear-sky solar irradiance via clear-sky models depends on reliable values of aerosol optical depth, water vapor and ozone content. These atmospheric variables are rarely on-site measured and are generally provided as gridded estimates in very low spatial resolution (1°). The high spatial variability of atmospheric variables within the grid resolution (pixel) leads to important errors in those areas with great atmospheric variability, such as in mountainous regions. In this paper, the performance of three clear-sky solar irradiance models was evaluated in a site with especially great elevation range, the Izana station from the Baseline Surface Radiation Network (Tenerife, Canary Islands) located at a high elevation (2373 m) and just 14 km from the ocean. Aerosols data were obtained from measurements from the Aerosol Robotic Network (AERONET) at the same site. The evaluation was also compared with global horizontal irradiance estimations with clear-sky models in the Guimar station, located at a lower elevation (156 m) and only 11.5 km away from Izana. Results showed a strong influence of elevation on solar radiation estimation under clear-sky conditions.

  14. Parameterizing Subgrid-Scale Orographic Drag in the High-Resolution Rapid Refresh (HRRR) Atmospheric Model

    Science.gov (United States)

    Toy, M. D.; Olson, J.; Kenyon, J.; Smirnova, T. G.; Brown, J. M.

    2017-12-01

    The accuracy of wind forecasts in numerical weather prediction (NWP) models is improved when the drag forces imparted on atmospheric flow by subgrid-scale orography are included. Without such parameterizations, only the terrain resolved by the model grid, along with the small-scale obstacles parameterized by the roughness lengths can have an effect on the flow. This neglects the impacts of subgrid-scale terrain variations, which typically leads to wind speeds that are too strong. Using statistical information about the subgrid-scale orography, such as the mean and variance of the topographic height within a grid cell, the drag forces due to flow blocking, gravity wave drag, and turbulent form drag are estimated and distributed vertically throughout the grid cell column. We recently implemented the small-scale gravity wave drag paramterization of Steeneveld et al. (2008) and Tsiringakis et al. (2017) for stable planetary boundary layers, and the turbulent form drag parameterization of Beljaars et al. (2004) in the High-Resolution Rapid Refresh (HRRR) NWP model developed at the National Oceanic and Atmospheric Administration (NOAA). As a result, a high surface wind speed bias in the model has been reduced and small improvement to the maintenance of stable layers has also been found. We present the results of experiments with the subgrid-scale orographic drag parameterization for the regional HRRR model, as well as for a global model in development at NOAA, showing the direct and indirect impacts.

  15. Advanced Atmospheric Ensemble Modeling Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Buckley, R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Chiswell, S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Kurzeja, R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Maze, G. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Viner, B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Werth, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-09-29

    Ensemble modeling (EM), the creation of multiple atmospheric simulations for a given time period, has become an essential tool for characterizing uncertainties in model predictions. We explore two novel ensemble modeling techniques: (1) perturbation of model parameters (Adaptive Programming, AP), and (2) data assimilation (Ensemble Kalman Filter, EnKF). The current research is an extension to work from last year and examines transport on a small spatial scale (<100 km) in complex terrain, for more rigorous testing of the ensemble technique. Two different release cases were studied, a coastal release (SF6) and an inland release (Freon) which consisted of two release times. Observations of tracer concentration and meteorology are used to judge the ensemble results. In addition, adaptive grid techniques have been developed to reduce required computing resources for transport calculations. Using a 20- member ensemble, the standard approach generated downwind transport that was quantitatively good for both releases; however, the EnKF method produced additional improvement for the coastal release where the spatial and temporal differences due to interior valley heating lead to the inland movement of the plume. The AP technique showed improvements for both release cases, with more improvement shown in the inland release. This research demonstrated that transport accuracy can be improved when models are adapted to a particular location/time or when important local data is assimilated into the simulation and enhances SRNL’s capability in atmospheric transport modeling in support of its current customer base and local site missions, as well as our ability to attract new customers within the intelligence community.

  16. High-resolution surface analysis for extended-range downscaling with limited-area atmospheric models

    Science.gov (United States)

    Separovic, Leo; Husain, Syed Zahid; Yu, Wei; Fernig, David

    2014-12-01

    High-resolution limited-area model (LAM) simulations are frequently employed to downscale coarse-resolution objective analyses over a specified area of the globe using high-resolution computational grids. When LAMs are integrated over extended time frames, from months to years, they are prone to deviations in land surface variables that can be harmful to the quality of the simulated near-surface fields. Nudging of the prognostic surface fields toward a reference-gridded data set is therefore devised in order to prevent the atmospheric model from diverging from the expected values. This paper presents a method to generate high-resolution analyses of land-surface variables, such as surface canopy temperature, soil moisture, and snow conditions, to be used for the relaxation of lower boundary conditions in extended-range LAM simulations. The proposed method is based on performing offline simulations with an external surface model, forced with the near-surface meteorological fields derived from short-range forecast, operational analyses, and observed temperatures and humidity. Results show that the outputs of the surface model obtained in the present study have potential to improve the near-surface atmospheric fields in extended-range LAM integrations.

  17. The influence of atmospheric grid resolution in a climate model-forced ice sheet simulation

    Science.gov (United States)

    Lofverstrom, Marcus; Liakka, Johan

    2018-04-01

    Coupled climate-ice sheet simulations have been growing in popularity in recent years. Experiments of this type are however challenging as ice sheets evolve over multi-millennial timescales, which is beyond the practical integration limit of most Earth system models. A common method to increase model throughput is to trade resolution for computational efficiency (compromise accuracy for speed). Here we analyze how the resolution of an atmospheric general circulation model (AGCM) influences the simulation quality in a stand-alone ice sheet model. Four identical AGCM simulations of the Last Glacial Maximum (LGM) were run at different horizontal resolutions: T85 (1.4°), T42 (2.8°), T31 (3.8°), and T21 (5.6°). These simulations were subsequently used as forcing of an ice sheet model. While the T85 climate forcing reproduces the LGM ice sheets to a high accuracy, the intermediate resolution cases (T42 and T31) fail to build the Eurasian ice sheet. The T21 case fails in both Eurasia and North America. Sensitivity experiments using different surface mass balance parameterizations improve the simulations of the Eurasian ice sheet in the T42 case, but the compromise is a substantial ice buildup in Siberia. The T31 and T21 cases do not improve in the same way in Eurasia, though the latter simulates the continent-wide Laurentide ice sheet in North America. The difficulty to reproduce the LGM ice sheets in the T21 case is in broad agreement with previous studies using low-resolution atmospheric models, and is caused by a substantial deterioration of the model climate between the T31 and T21 resolutions. It is speculated that this deficiency may demonstrate a fundamental problem with using low-resolution atmospheric models in these types of experiments.

  18. Modelling of Diesel Generator Sets That Assist Off-Grid Renewable Energy Micro-grids

    Directory of Open Access Journals (Sweden)

    Johanna Salazar

    2015-08-01

    Full Text Available This paper focuses on modelling diesel generators for off-grid installations based on renewable energies. Variations in Environmental Variables (for example, Solar Radiation and Wind Speed make necessary to include these auxiliary systems in off-grid renewable energy installations, in order to ensure minimal services when the produced renewable energy is not sufficient to fulfill the demand. This paper concentrates on modelling the dynamical behaviour of the diesel generator, in order to use the models and simulations for developing and testing advanced controllers for the overall off-grid system. The Diesel generator is assumed to consist of a diesel motor connected to a synchronous generator through an electromagnetic clutch, with a flywheel to damp variations. Each of the components is modelled using physical models, with the corresponding control systems also modelled: these control systems include the speed and the voltage regulation (in cascade regulation.

  19. The Smart Grid Impact on the Danish DSOs’ Business Model

    DEFF Research Database (Denmark)

    Ma, Zheng; Sommer, Simon; Jørgensen, Bo Nørregaard

    2016-01-01

    The transformation progress of the smart grid challenges the market players' business models. One of those market players is the Distribution System Operators (DSOs). This paper aims to elaborate how smart grid influences the DSOs' business models with case studies of two Danish DSOs — Energi......Fyn and TREFOR. The main findings indicate that the Danish smart grid transformation process influences the Danish DSOs' business models via four smart grid related factors: (1) smart meters, (2) Distributed Energy Resources (DERs), (3) Bidirectional electricity flow, and (4) R&D. Therefore, the results show...... that the smart grid incrementally not revolutionary influences the Danish DSOs' business models, and the smart grid transformation of the Danish electricity grid is slower than the agenda of the official Danish smart grid development strategy....

  20. Introducing Enabling Computational Tools to the Climate Sciences: Multi-Resolution Climate Modeling with Adaptive Cubed-Sphere Grids

    Energy Technology Data Exchange (ETDEWEB)

    Jablonowski, Christiane [Univ. of Michigan, Ann Arbor, MI (United States)

    2015-07-14

    The research investigates and advances strategies how to bridge the scale discrepancies between local, regional and global phenomena in climate models without the prohibitive computational costs of global cloud-resolving simulations. In particular, the research explores new frontiers in computational geoscience by introducing high-order Adaptive Mesh Refinement (AMR) techniques into climate research. AMR and statically-adapted variable-resolution approaches represent an emerging trend for atmospheric models and are likely to become the new norm in future-generation weather and climate models. The research advances the understanding of multi-scale interactions in the climate system and showcases a pathway how to model these interactions effectively with advanced computational tools, like the Chombo AMR library developed at the Lawrence Berkeley National Laboratory. The research is interdisciplinary and combines applied mathematics, scientific computing and the atmospheric sciences. In this research project, a hierarchy of high-order atmospheric models on cubed-sphere computational grids have been developed that serve as an algorithmic prototype for the finite-volume solution-adaptive Chombo-AMR approach. The foci of the investigations have lied on the characteristics of both static mesh adaptations and dynamically-adaptive grids that can capture flow fields of interest like tropical cyclones. Six research themes have been chosen. These are (1) the introduction of adaptive mesh refinement techniques into the climate sciences, (2) advanced algorithms for nonhydrostatic atmospheric dynamical cores, (3) an assessment of the interplay between resolved-scale dynamical motions and subgrid-scale physical parameterizations, (4) evaluation techniques for atmospheric model hierarchies, (5) the comparison of AMR refinement strategies and (6) tropical cyclone studies with a focus on multi-scale interactions and variable-resolution modeling. The results of this research project

  1. The eGo grid model: An open-source and open-data based synthetic medium-voltage grid model for distribution power supply systems

    Science.gov (United States)

    Amme, J.; Pleßmann, G.; Bühler, J.; Hülk, L.; Kötter, E.; Schwaegerl, P.

    2018-02-01

    The increasing integration of renewable energy into the electricity supply system creates new challenges for distribution grids. The planning and operation of distribution systems requires appropriate grid models that consider the heterogeneity of existing grids. In this paper, we describe a novel method to generate synthetic medium-voltage (MV) grids, which we applied in our DIstribution Network GeneratOr (DINGO). DINGO is open-source software and uses freely available data. Medium-voltage grid topologies are synthesized based on location and electricity demand in defined demand areas. For this purpose, we use GIS data containing demand areas with high-resolution spatial data on physical properties, land use, energy, and demography. The grid topology is treated as a capacitated vehicle routing problem (CVRP) combined with a local search metaheuristics. We also consider the current planning principles for MV distribution networks, paying special attention to line congestion and voltage limit violations. In the modelling process, we included power flow calculations for validation. The resulting grid model datasets contain 3608 synthetic MV grids in high resolution, covering all of Germany and taking local characteristics into account. We compared the modelled networks with real network data. In terms of number of transformers and total cable length, we conclude that the method presented in this paper generates realistic grids that could be used to implement a cost-optimised electrical energy system.

  2. Ecosystem Based Business Model of Smart Grid

    DEFF Research Database (Denmark)

    Lundgaard, Morten Raahauge; Ma, Zheng; Jørgensen, Bo Nørregaard

    2015-01-01

    This paper tries to investigate the ecosystem based business model in a smart grid infrastructure and the potential of value capture in the highly complex macro infrastructure such as smart grid. This paper proposes an alternative perspective to study the smart grid business ecosystem to support...... the infrastructural challenges, such as the interoperability of business components for smart grid. So far little research has explored the business ecosystem in the smart grid concept. The study on the smart grid with the theory of business ecosystem may open opportunities to understand market catalysts. This study...... contributes an understanding of business ecosystem applicable for smart grid. Smart grid infrastructure is an intricate business ecosystem, which have several intentions to deliver the value proposition and what it should be. The findings help to identify and capture value from markets....

  3. Identification of grid model parameters using synchrophasor measurements

    Energy Technology Data Exchange (ETDEWEB)

    Boicea, Valentin; Albu, Mihaela [Politehnica University of Bucharest (Romania)

    2012-07-01

    Presently a critical element of the energy networks is represented by the active distribution grids, where generation intermittency and controllable loads contribute to a stochastic varability of the quantities characterizing the grid operation. The capability of controlling the electrical energy transfer is also limited by the incomplete knowledge of the detailed electrical model of each of the grid components. Asset management in distribution grids has to consider dynamic loads, while high loading of network sections might already have degraded some of the assets. Moreover, in case of functional microgrids, all elements need to be modelled accurately and an appropriate measurement layer enabling online control needs to be deployed. In this paper a method for online identification of the actual parameter values in grid electrical models is proposed. Laboratory results validating the proposed method are presented. (orig.)

  4. Analysis of aggregation and disaggregation effects for grid-based hydrological models and the development of improved precipitation disaggregation procedures for GCMs

    Directory of Open Access Journals (Sweden)

    H. S. Wheater

    1999-01-01

    Full Text Available Appropriate representation of hydrological processes within atmospheric General Circulation Models (GCMs is important with respect to internal model dynamics (e.g. surface feedback effects on atmospheric fluxes, continental runoff production and to simulation of terrestrial impacts of climate change. However, at the scale of a GCM grid-square, several methodological problems arise. Spatial disaggregation of grid-square average climatological parameters is required in particular to produce appropriate point intensities from average precipitation. Conversely, aggregation of land surface heterogeneity is necessary for grid-scale or catchment scale application. The performance of grid-based hydrological models is evaluated for two large (104km2 UK catchments. Simple schemes, using sub-grid average of individual land use at 40 km scale and with no calibration, perform well at the annual time-scale and, with the addition of a (calibrated routing component, at the daily and monthly time-scale. Decoupling of hillslope and channel routing does not necessarily improve performance or identifiability. Scale dependence is investigated through application of distribution functions for rainfall and soil moisture at 100 km scale. The results depend on climate, but show interdependence of the representation of sub-grid rainfall and soil moisture distribution. Rainfall distribution is analysed directly using radar rainfall data from the UK and the Arkansas Red River, USA. Among other properties, the scale dependence of spatial coverage upon radar pixel resolution and GCM grid-scale, as well as the serial correlation of coverages are investigated. This leads to a revised methodology for GCM application, as a simple extension of current procedures. A new location-based approach using an image processing technique is then presented, to allow for the preservation of the spatial memory of the process.

  5. Utilization of mesoscale atmospheric dynamic model PHYSIC as a meteorological forecast model in nuclear emergency response system

    International Nuclear Information System (INIS)

    Nagai, Haruyasu; Yamazawa, Hiromi

    1997-01-01

    It is advantageous for an emergency response system to have a forecast function to provide a time margin for countermeasures in case of a nuclear accident. We propose to apply an atmospheric dynamic model PHYSIC (Prognostic HYdroStatic model Including turbulence Closure model) as a meteorological forecast model in the emergency system. The model uses GPV data which are the output of the numerical weather forecast model of Japan Meteorological Agency as the initial and boundary conditions. The roles of PHYSIC are the interface between GPV data and the emergency response system and the forecast of local atmospheric phenomena within the model domain. This paper presents a scheme to use PHYSIC to forecast local wind and its performance. Horizontal grid number of PHYSIC is fixed to 50 x 50, whereas the mesh and domain sizes are determined in consideration of topography causing local winds at an objective area. The model performance was examined for the introduction of GPV data through initial and boundary conditions and the predictability of local wind field and atmospheric stability. The model performance was on an acceptable level as the forecast model. It was also recognized that improvement of cloud calculation was necessary in simulating atmospheric stability. (author)

  6. Toward GEOS-6, A Global Cloud System Resolving Atmospheric Model

    Science.gov (United States)

    Putman, William M.

    2010-01-01

    NASA is committed to observing and understanding the weather and climate of our home planet through the use of multi-scale modeling systems and space-based observations. Global climate models have evolved to take advantage of the influx of multi- and many-core computing technologies and the availability of large clusters of multi-core microprocessors. GEOS-6 is a next-generation cloud system resolving atmospheric model that will place NASA at the forefront of scientific exploration of our atmosphere and climate. Model simulations with GEOS-6 will produce a realistic representation of our atmosphere on the scale of typical satellite observations, bringing a visual comprehension of model results to a new level among the climate enthusiasts. In preparation for GEOS-6, the agency's flagship Earth System Modeling Framework [JDl] has been enhanced to support cutting-edge high-resolution global climate and weather simulations. Improvements include a cubed-sphere grid that exposes parallelism; a non-hydrostatic finite volume dynamical core, and algorithm designed for co-processor technologies, among others. GEOS-6 represents a fundamental advancement in the capability of global Earth system models. The ability to directly compare global simulations at the resolution of spaceborne satellite images will lead to algorithm improvements and better utilization of space-based observations within the GOES data assimilation system

  7. Rugosity 10 m grid derived from gridded bathymetry of Alamagan Island, Commonwealth of the Northern Mariana Islands (CNMI), USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Rugosity is derived from gridded (10 m cell size) multibeam bathymetry, collected aboard NOAA Ship Hi'ialakai and R/V AHI, using the Benthic Terrain Modeler with...

  8. Rugosity 10 m grid derived from gridded bathymetry of Pagan Island, Commonwealth of the Northern Mariana Islands (CNMI), USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Rugosity is derived from gridded (10 m cell size) multibeam bathymetry, collected aboard NOAA Ship Hiialaka'i and R/V AHI, using the Benthic Terrain Modeler with...

  9. Rugosity 10 m grid derived from gridded bathymetry of Agrihan Island, Commonwealth of the Northern Mariana Islands (CNMI), USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Rugosity is derived from gridded (10 m cell size) multibeam bathymetry, collected aboard NOAA Ship Hiialaka'i and R/V AHI, using the Benthic Terrain Modeler with...

  10. Rugosity 10 m grid derived from gridded bathymetry of Maug Island, Commonwealth of the Northern Mariana Islands (CNMI), USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Rugosity is derived from gridded (10 m cell size) multibeam bathymetry, collected aboard NOAA Ship Hiialaka'i and R/V AHI, using the Benthic Terrain Modeler with...

  11. Rugosity 10 m grid derived from gridded bathymetry of Asuncion Island, Commonwealth of the Northern Mariana Islands (CNMI), USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Rugosity is derived from gridded (10 m cell size) multibeam bathymetry collected aboard NOAA Ship Hiialaka'i and R/V AHI, using the Benthic Terrain Modeler with...

  12. Rugosity 10 m grid derived from gridded bathymetry of Guguan Island, Commonwealth of the Northern Mariana Islands (CNMI), USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Rugosity is derived from gridded (5 m cell size) multibeam bathymetry, collected aboard NOAA Ship Hiialaka'i and R/V AHI, using the Benthic Terrain Modeler with...

  13. Development of Numerical Grids for UZ Flow and Transport Modeling

    International Nuclear Information System (INIS)

    Hinds, J.

    2001-01-01

    This Analysis/Model Report (AMR) describes the methods used to develop numerical grids of the unsaturated hydrogeologic system beneath Yucca Mountain. Numerical grid generation is an integral part of the development of a complex, three-dimensional (3-D) model, such as the Unsaturated-Zone Flow and Transport Model (UZ Model) of Yucca Mountain. The resulting numerical grids, developed using current geologic, hydrogeologic, and mineralogic data, provide the necessary framework to: (1) develop calibrated hydrogeologic property sets and flow fields, (2) test conceptual hypotheses of flow and transport, and (3) predict flow and transport behavior under a variety of climatic and thermal loading conditions. Revision 00 of the work described herein follows the planning and work direction outlined in the ''Development of Numerical Grids for UZ Flow and Transport Modeling'' (CRWMS M and O 1999c). The technical scope, content, and management of ICN 01 of this AMR is currently controlled by the planning document, ''Technical Work Plan for Unsaturated Zone (UZ) Flow and Transport Process Model Report'' (BSC 2001a). The scope for the TBV resolution actions in this ICN is described in the ''Technical Work Plan for: Integrated Management of Technical Product Input Department'' (BSC 2001 b, Addendum B, Section 4.1). The steps involved in numerical grid development include: (1) defining the location of important calibration features, (2) determining model grid layers and fault geometry based on the Geologic Framework Model (GFM), the Integrated Site Model (ISM), and definition of hydrogeologic units (HGUs), (3) analyzing and extracting GFM and ISM data pertaining to layer contacts and property distributions, (4) discretizing and refining the two-dimensional (2-D), plan-view numerical grid, (5) generating the 3-D grid with finer resolution at the repository horizon and within the Calico Hills nonwelded (CHn) hydrogeologic unit, and (6) formulating the dual-permeability mesh. The

  14. Verification of land-atmosphere coupling in forecast models, reanalyses and land surface models using flux site observations.

    Science.gov (United States)

    Dirmeyer, Paul A; Chen, Liang; Wu, Jiexia; Shin, Chul-Su; Huang, Bohua; Cash, Benjamin A; Bosilovich, Michael G; Mahanama, Sarith; Koster, Randal D; Santanello, Joseph A; Ek, Michael B; Balsamo, Gianpaolo; Dutra, Emanuel; Lawrence, D M

    2018-02-01

    We confront four model systems in three configurations (LSM, LSM+GCM, and reanalysis) with global flux tower observations to validate states, surface fluxes, and coupling indices between land and atmosphere. Models clearly under-represent the feedback of surface fluxes on boundary layer properties (the atmospheric leg of land-atmosphere coupling), and may over-represent the connection between soil moisture and surface fluxes (the terrestrial leg). Models generally under-represent spatial and temporal variability relative to observations, which is at least partially an artifact of the differences in spatial scale between model grid boxes and flux tower footprints. All models bias high in near-surface humidity and downward shortwave radiation, struggle to represent precipitation accurately, and show serious problems in reproducing surface albedos. These errors create challenges for models to partition surface energy properly and errors are traceable through the surface energy and water cycles. The spatial distribution of the amplitude and phase of annual cycles (first harmonic) are generally well reproduced, but the biases in means tend to reflect in these amplitudes. Interannual variability is also a challenge for models to reproduce. Our analysis illuminates targets for coupled land-atmosphere model development, as well as the value of long-term globally-distributed observational monitoring.

  15. High Resolution Atmospheric Modeling for Wind Energy Applications

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, M; Bulaevskaya, V; Glascoe, L; Singer, M

    2010-03-18

    The ability of the WRF atmospheric model to forecast wind speed over the Nysted wind park was investigated as a function of time. It was found that in the time period we considered (August 1-19, 2008), the model is able to predict wind speeds reasonably accurately for 48 hours ahead, but that its forecast skill deteriorates rapidly after 48 hours. In addition, a preliminary analysis was carried out to investigate the impact of vertical grid resolution on the forecast skill. Our preliminary finding is that increasing vertical grid resolution does not have a significant impact on the forecast skill of the WRF model over Nysted wind park during the period we considered. Additional simulations during this period, as well as during other time periods, will be run in order to validate the results presented here. Wind speed is a difficult parameter to forecast due the interaction of large and small length scale forcing. To accurately forecast the wind speed at a given location, the model must correctly forecast the movement and strength of synoptic systems, as well as the local influence of topography / land use on the wind speed. For example, small deviations in the forecast track or strength of a large-scale low pressure system can result in significant forecast errors for local wind speeds. The purpose of this study is to provide a preliminary baseline of a high-resolution limited area model forecast performance against observations from the Nysted wind park. Validating the numerical weather prediction model performance for past forecasts will give a reasonable measure of expected forecast skill over the Nysted wind park. Also, since the Nysted Wind Park is over water and some distance from the influence of terrain, the impact of high vertical grid spacing for wind speed forecast skill will also be investigated.

  16. Quantifying atmospheric transport, chemistry, and mixing using a new trajectory-box model and a global atmospheric-chemistry GCM

    Directory of Open Access Journals (Sweden)

    H. Riede

    2009-12-01

    Full Text Available We present a novel method for the quantification of transport, chemistry, and mixing along atmospheric trajectories based on a consistent model hierarchy. The hierarchy consists of the new atmospheric-chemistry trajectory-box model CAABA/MJT and the three-dimensional (3-D global ECHAM/MESSy atmospheric-chemistry (EMAC general circulation model. CAABA/MJT employs the atmospheric box model CAABA in a configuration using the atmospheric-chemistry submodel MECCA (M, the photochemistry submodel JVAL (J, and the new trajectory submodel TRAJECT (T, to simulate chemistry along atmospheric trajectories, which are provided offline. With the same chemistry submodels coupled to the 3-D EMAC model and consistent initial conditions and physical parameters, a unique consistency between the two models is achieved. Since only mixing processes within the 3-D model are excluded from the model consistency, comparisons of results from the two models allow to separate and quantify contributions of transport, chemistry, and mixing along the trajectory pathways. Consistency of transport between the trajectory-box model CAABA/MJT and the 3-D EMAC model is achieved via calculation of kinematic trajectories based on 3-D wind fields from EMAC using the trajectory model LAGRANTO. The combination of the trajectory-box model CAABA/MJT and the trajectory model LAGRANTO can be considered as a Lagrangian chemistry-transport model (CTM moving isolated air parcels. The procedure for obtaining the necessary statistical basis for the quantification method is described as well as the comprehensive diagnostics with respect to chemistry.

    The quantification method presented here allows to investigate the characteristics of transport, chemistry, and mixing in a grid-based 3-D model. The analysis of chemical processes within the trajectory-box model CAABA/MJT is easily extendable to include, for example, the impact of different transport pathways or of mixing processes onto

  17. A modified atmospheric non-hydrostatic model on low aspect ratio grids

    Directory of Open Access Journals (Sweden)

    Wen-Yih Sun

    2012-04-01

    Full Text Available It is popular to use a horizontal explicit and a vertical implicit (HE-VI scheme in the compressible non-hydrostatic (NH model. However, when the aspect ratio becomes small, a small time-interval is required in HE-VI, because the Courant-Fredrich-Lewy (CFL criterion is determined by the horizontal grid spacing. Furthermore, simulations from HE-VI can depart from the forward–backward (FB scheme in NH even when the time interval is less than the CFL criterion allowed. Hence, a modified non-hydrostatic (MNH model is proposed, in which the left-hand side of the continuity equation is multiplied by a parameter δ (4≤δ≤16, in this study. When the linearized MNH is solved by FB (can be other schemes, the eigenvalue shows that MNH can suppress the frequency of acoustic waves very effectively but does not have a significant impact on the gravity waves. Hence, MNH enables to use a longer time step than that allowed in the original NH. When the aspect ratio is small, MNH solved by FB can be more accurate and efficient than the NH solved by HE-VI. Therefore, MNH can be very useful to study cloud, Large Eddy Simulation (LES, turbulence, flow over complex terrains, etc., which require fine resolution in both horizontal and vertical directions.

  18. A survey of atmospheric dispersion models applicable to risk studies for nuclear facilities in complex terrain

    International Nuclear Information System (INIS)

    Wittek, P.

    1985-09-01

    Atmospheric dispersion models are reviewed with respect to their application to the consequence assessment within risk studies for nuclear power plants located in complex terrain. This review comprises: seven straight-line Gaussian models, which have been modified in order to take into account in a crude way terrain elevations, enhanced turbulence and some others effects; three trajectory/puff-models, which can handle wind direction changes and the resulting plume or puff trajectories; five three-dimensional wind field models, which calculate the wind field in complex terrain for the application in a grid model; three grid models; one Monte-Carlo-model. The main features of the computer codes are described, along with some informations on the necessary computer time and storage capacity. (orig.) [de

  19. Simulation of a Large Wildfire in a Coupled Fire-Atmosphere Model

    Directory of Open Access Journals (Sweden)

    Jean-Baptiste Filippi

    2018-06-01

    Full Text Available The Aullene fire devastated more than 3000 ha of Mediterranean maquis and pine forest in July 2009. The simulation of combustion processes, as well as atmospheric dynamics represents a challenge for such scenarios because of the various involved scales, from the scale of the individual flames to the larger regional scale. A coupled approach between the Meso-NH (Meso-scale Non-Hydrostatic atmospheric model running in LES (Large Eddy Simulation mode and the ForeFire fire spread model is proposed for predicting fine- to large-scale effects of this extreme wildfire, showing that such simulation is possible in a reasonable time using current supercomputers. The coupling involves the surface wind to drive the fire, while heat from combustion and water vapor fluxes are injected into the atmosphere at each atmospheric time step. To be representative of the phenomenon, a sub-meter resolution was used for the simulation of the fire front, while atmospheric simulations were performed with nested grids from 2400-m to 50-m resolution. Simulations were run with or without feedback from the fire to the atmospheric model, or without coupling from the atmosphere to the fire. In the two-way mode, the burnt area was reproduced with a good degree of realism at the local scale, where an acceleration in the valley wind and over sloping terrain pushed the fire line to locations in accordance with fire passing point observations. At the regional scale, the simulated fire plume compares well with the satellite image. The study explores the strong fire-atmosphere interactions leading to intense convective updrafts extending above the boundary layer, significant downdrafts behind the fire line in the upper plume, and horizontal wind speeds feeding strong inflow into the base of the convective updrafts. The fire-induced dynamics is induced by strong near-surface sensible heat fluxes reaching maximum values of 240 kW m − 2 . The dynamical production of turbulent kinetic

  20. Multi-terminal direct-current grids modeling, analysis, and control

    CERN Document Server

    Chaudhuri, Nilanjan; Majumder, Rajat; Yazdani, Amirnaser

    2014-01-01

    A comprehensive modeling, analysis, and control design framework for multi-terminal direct current (MTDC) grids is presented together with their interaction with the surrounding AC networks and the impact on overall stability. The first book of its kind on the topic of multi-terminal DC (MTDC) grids  Presents a comprehensive modeling framework for MTDC grids which is compatible with the standard AC system modeling for stability studies Includes modal analysis and study of the interactions between the MTDC grid and the surrounding AC systems Addresses the problems of autonomous power sharing an

  1. The Storm Surge and Sub-Grid Inundation Modeling in New York City during Hurricane Sandy

    Directory of Open Access Journals (Sweden)

    Harry V. Wang

    2014-03-01

    Full Text Available Hurricane Sandy inflicted heavy damage in New York City and the New Jersey coast as the second costliest storm in history. A large-scale, unstructured grid storm tide model, Semi-implicit Eulerian Lagrangian Finite Element (SELFE, was used to hindcast water level variation during Hurricane Sandy in the mid-Atlantic portion of the U.S. East Coast. The model was forced by eight tidal constituents at the model’s open boundary, 1500 km away from the coast, and the wind and pressure fields from atmospheric model Regional Atmospheric Modeling System (RAMS provided by Weatherflow Inc. The comparisons of the modeled storm tide with the NOAA gauge stations from Montauk, NY, Long Island Sound, encompassing New York Harbor, Atlantic City, NJ, to Duck, NC, were in good agreement, with an overall root mean square error and relative error in the order of 15–20 cm and 5%–7%, respectively. Furthermore, using large-scale model outputs as the boundary conditions, a separate sub-grid model that incorporates LIDAR data for the major portion of the New York City was also set up to investigate the detailed inundation process. The model results compared favorably with USGS’ Hurricane Sandy Mapper database in terms of its timing, local inundation area, and the depth of the flooding water. The street-level inundation with water bypassing the city building was created and the maximum extent of horizontal inundation was calculated, which was within 30 m of the data-derived estimate by USGS.

  2. Modelling of dynamic equivalents in electric power grids

    International Nuclear Information System (INIS)

    Craciun, Diana Iuliana

    2010-01-01

    In a first part, this research thesis proposes a description of the context and new constraints of electric grids: architecture, decentralized production with the impact of distributed energy resource systems, dynamic simulation, and interest of equivalent models. Then, the author discusses the modelling of the different components of electric grids: synchronous and asynchronous machines, distributed energy resource with power electronic interface, loading models. She addresses the techniques of reduction of electric grid models: conventional reduction methods, dynamic equivalence methods using non linear approaches or evolutionary algorithm-based methods of assessment of parameters. This last approach is then developed and implemented, and a new method of computation of dynamic equivalents is described

  3. Comparison of Two Grid Refinement Approaches for High Resolution Regional Climate Modeling: MPAS vs WRF

    Science.gov (United States)

    Leung, L.; Hagos, S. M.; Rauscher, S.; Ringler, T.

    2012-12-01

    This study compares two grid refinement approaches using global variable resolution model and nesting for high-resolution regional climate modeling. The global variable resolution model, Model for Prediction Across Scales (MPAS), and the limited area model, Weather Research and Forecasting (WRF) model, are compared in an idealized aqua-planet context with a focus on the spatial and temporal characteristics of tropical precipitation simulated by the models using the same physics package from the Community Atmosphere Model (CAM4). For MPAS, simulations have been performed with a quasi-uniform resolution global domain at coarse (1 degree) and high (0.25 degree) resolution, and a variable resolution domain with a high-resolution region at 0.25 degree configured inside a coarse resolution global domain at 1 degree resolution. Similarly, WRF has been configured to run on a coarse (1 degree) and high (0.25 degree) resolution tropical channel domain as well as a nested domain with a high-resolution region at 0.25 degree nested two-way inside the coarse resolution (1 degree) tropical channel. The variable resolution or nested simulations are compared against the high-resolution simulations that serve as virtual reality. Both MPAS and WRF simulate 20-day Kelvin waves propagating through the high-resolution domains fairly unaffected by the change in resolution. In addition, both models respond to increased resolution with enhanced precipitation. Grid refinement induces zonal asymmetry in precipitation (heating), accompanied by zonal anomalous Walker like circulations and standing Rossby wave signals. However, there are important differences between the anomalous patterns in MPAS and WRF due to differences in the grid refinement approaches and sensitivity of model physics to grid resolution. This study highlights the need for "scale aware" parameterizations in variable resolution and nested regional models.

  4. Optimal variable-grid finite-difference modeling for porous media

    International Nuclear Information System (INIS)

    Liu, Xinxin; Yin, Xingyao; Li, Haishan

    2014-01-01

    Numerical modeling of poroelastic waves by the finite-difference (FD) method is more expensive than that of acoustic or elastic waves. To improve the accuracy and computational efficiency of seismic modeling, variable-grid FD methods have been developed. In this paper, we derived optimal staggered-grid finite difference schemes with variable grid-spacing and time-step for seismic modeling in porous media. FD operators with small grid-spacing and time-step are adopted for low-velocity or small-scale geological bodies, while FD operators with big grid-spacing and time-step are adopted for high-velocity or large-scale regions. The dispersion relations of FD schemes were derived based on the plane wave theory, then the FD coefficients were obtained using the Taylor expansion. Dispersion analysis and modeling results demonstrated that the proposed method has higher accuracy with lower computational cost for poroelastic wave simulation in heterogeneous reservoirs. (paper)

  5. A nested-grid limited-area model for short term weather forecasting

    Science.gov (United States)

    Wong, V. C.; Zack, J. W.; Kaplan, M. L.; Coats, G. D.

    1983-01-01

    The present investigation is concerned with a mesoscale atmospheric simulation system (MASS), incorporating the sigma-coordinate primitive equations. The present version of this model (MASS 3.0) has 14 vertical layers, with the upper boundary at 100 mb. There are 128 x 96 grid points in each layer. The earlier version of this model (MASS 2.0) has been described by Kaplan et al. (1982). The current investigation provides a summary of major revisions to that version and a description of the parameterization schemes which are presently included in the model. The planetary boundary layer (PBL) is considered, taking into account aspects of generalized similarity theory and free convection, the surface energy budget, the surface moisture budget, and prognostic equations for the depth h of the PBL. A cloud model is discussed, giving attention to stable precipitation, and cumulus convection.

  6. Grid computing in large pharmaceutical molecular modeling.

    Science.gov (United States)

    Claus, Brian L; Johnson, Stephen R

    2008-07-01

    Most major pharmaceutical companies have employed grid computing to expand their compute resources with the intention of minimizing additional financial expenditure. Historically, one of the issues restricting widespread utilization of the grid resources in molecular modeling is the limited set of suitable applications amenable to coarse-grained parallelization. Recent advances in grid infrastructure technology coupled with advances in application research and redesign will enable fine-grained parallel problems, such as quantum mechanics and molecular dynamics, which were previously inaccessible to the grid environment. This will enable new science as well as increase resource flexibility to load balance and schedule existing workloads.

  7. MODELING THE TRANSPORT AND CHEMICAL EVOLUTION OF ONSHORE AND OFFSHORE EMISSIONS AND THEIR IMPACT ON LOCAL AND REGIONAL AIR QUALITY USING A VARIABLE-GRID-RESOLUTION AIR QUALITY MODEL

    Energy Technology Data Exchange (ETDEWEB)

    Kiran Alapaty

    2003-12-01

    This document, the project's first semiannual report, summarizes the research performed from 04/17/2003 through 10/16/2003. Portions of the research in several of the project's eight tasks were completed, and results obtained are briefly presented. We have tested the applicability of two different atmospheric boundary layer schemes for use in air quality model simulations. Preliminary analysis indicates that a scheme that uses sophisticated atmospheric boundary physics resulted in better simulation of atmospheric circulations. We have further developed and tested a new surface data assimilation technique to improve meteorological simulations, which will also result in improved air quality model simulations. Preliminary analysis of results indicates that using the new data assimilation technique results in reduced modeling errors in temperature and moisture. Ingestion of satellite-derived sea surface temperatures into the mesoscale meteorological model led to significant improvements in simulated clouds and precipitation compared to that obtained using traditional analyzed sea surface temperatures. To enhance the capabilities of an emissions processing system so that it can be used with our variable-grid-resolution air quality model, we have identified potential areas for improvements. Also for use in the variable-grid-resolution air quality model, we have tested a cloud module offline for its functionality, and have implemented and tested an efficient horizontal diffusion algorithm within the model.

  8. Wave Resource Characterization Using an Unstructured Grid Modeling Approach

    Directory of Open Access Journals (Sweden)

    Wei-Cheng Wu

    2018-03-01

    Full Text Available This paper presents a modeling study conducted on the central Oregon coast for wave resource characterization, using the unstructured grid Simulating WAve Nearshore (SWAN model coupled with a nested grid WAVEWATCH III® (WWIII model. The flexibility of models with various spatial resolutions and the effects of open boundary conditions simulated by a nested grid WWIII model with different physics packages were evaluated. The model results demonstrate the advantage of the unstructured grid-modeling approach for flexible model resolution and good model skills in simulating the six wave resource parameters recommended by the International Electrotechnical Commission in comparison to the observed data in Year 2009 at National Data Buoy Center Buoy 46050. Notably, spectral analysis indicates that the ST4 physics package improves upon the ST2 physics package’s ability to predict wave power density for large waves, which is important for wave resource assessment, load calculation of devices, and risk management. In addition, bivariate distributions show that the simulated sea state of maximum occurrence with the ST4 physics package matched the observed data better than with the ST2 physics package. This study demonstrated that the unstructured grid wave modeling approach, driven by regional nested grid WWIII outputs along with the ST4 physics package, can efficiently provide accurate wave hindcasts to support wave resource characterization. Our study also suggests that wind effects need to be considered if the dimension of the model domain is greater than approximately 100 km, or O (102 km.

  9. Some lessons and thoughts from development of an old-fashioned high-resolution atmospheric general circulation model

    Science.gov (United States)

    Ohfuchi, Wataru; Enomoto, Takeshi; Yoshioka, Mayumi K.; Takaya, Koutarou

    2014-05-01

    Some high-resolution simulations with a conventional atmospheric general circulation model (AGCM) were conducted right after the first Earth Simulator started operating in the spring of 2002. More simulations with various resolutions followed. The AGCM in this study, AFES (Agcm For the Earth Simulator), is a primitive equation spectral transform method model with a cumulus convection parameterization. In this presentation, some findings from comparisons between high and low-resolution simulations, and some future perspectives of old-fashioned AGCMs will be discussed. One obvious advantage of increasing resolution is capability of resolving the fine structures of topography and atmospheric flow. By increasing resolution from T39 (about 320 km horizontal grid interval) to T79 (160 km), to T159 (80 km) to T319 (40 km), topographic precipitation over Japan becomes increasingly realistic. This feature is necessary for climate and weather studies involving both global and local aspects. In order to resolve submesoscale (about 100 km horizontal scale) atmospheric circulation, about 10-km grid interval is necessary. Comparing T1279 (10 km) simulations with T319 ones, it is found that, for example, the intensity of heavy rain associated with Baiu front and the central pressure of typhoon become more realistic. These realistic submesoscale phenomena should have impact on larger-sale flow through dynamics and thermodynamics. An interesting finding by increasing horizontal resolution of a conventional AGCM is that some cumulus convection parameterizations, such as Arakawa-Schubert type scheme, gradually stop producing precipitation, while some others, such as Emanuel type, do not. With the former, the grid condensation increases with the model resolution to compensate. Which characteristics are more desirable is arguable but it is an important feature one has to consider when developing a high-resolution conventional AGCM. Many may think that conventional primitive equation

  10. Developing a grid infrastructure in Cuba

    Energy Technology Data Exchange (ETDEWEB)

    Lopez Aldama, D.; Dominguez, M.; Ricardo, H.; Gonzalez, A.; Nolasco, E.; Fernandez, E.; Fernandez, M.; Sanchez, M.; Suarez, F.; Nodarse, F.; Moreno, N.; Aguilera, L.

    2007-07-01

    A grid infrastructure was deployed at Centro de Gestion de la Informacion y Desarrollo de la Energia (CUBAENERGIA) in the frame of EELA project and of a national initiative for developing a Cuban Network for Science. A stand-alone model was adopted to overcome connectivity limitations. The e-infrastructure is based on gLite-3.0 middleware and is fully compatible with EELA-infrastructure. Afterwards, the work was focused on grid applications. The application GATE was deployed from the early beginning for biomedical users. Further, two applications were deployed on the local grid infrastructure: MOODLE for e-learning and AERMOD for assessment of local dispersion of atmospheric pollutants. Additionally, our local grid infrastructure was made interoperable with a Java based distributed system for bioinformatics calculations. This experience could be considered as a suitable approach for national networks with weak Internet connections. (Author)

  11. Improvement of a mesoscale atmospheric dynamic model PHYSIC. Utilization of output from synoptic numerical prediction model for initial and boundary condition

    International Nuclear Information System (INIS)

    Nagai, Haruyasu; Yamazawa, Hiromi

    1995-03-01

    This report describes the improvement of the mesoscale atmospheric dynamic model which is a part of the atmospheric dispersion calculation model PHYSIC. To introduce large-scale meteorological changes into the mesoscale atmospheric dynamic model, it is necessary to make the initial and boundary conditions of the model by using GPV (Grid Point Value) which is the output of the numerical weather prediction model of JMA (Japan Meteorological Agency). Therefore, the program which preprocesses the GPV data to make a input file to PHYSIC was developed and the input process and the methods of spatial and temporal interpolation were improved to correspond to the file. Moreover, the methods of calculating the cloud amount and ground surface moisture from GPV data were developed and added to the model code. As the example of calculation by the improved model, the wind field simulations of a north-west monsoon in winter and a sea breeze in summer in the Tokai area were also presented. (author)

  12. THE LOS ALAMOS NATIONAL LABORATORY ATMOSPHERIC TRANSPORT AND DIFFUSION MODELS

    Energy Technology Data Exchange (ETDEWEB)

    M. WILLIAMS [and others

    1999-08-01

    The LANL atmospheric transport and diffusion models are composed of two state-of-the-art computer codes. The first is an atmospheric wind model called HOThlAC, Higher Order Turbulence Model for Atmospheric circulations. HOTMAC generates wind and turbulence fields by solving a set of atmospheric dynamic equations. The second is an atmospheric diffusion model called RAPTAD, Random Particle Transport And Diffusion. RAPTAD uses the wind and turbulence output from HOTMAC to compute particle trajectories and concentration at any location downwind from a source. Both of these models, originally developed as research codes on supercomputers, have been modified to run on microcomputers. Because the capability of microcomputers is advancing so rapidly, the expectation is that they will eventually become as good as today's supercomputers. Now both models are run on desktop or deskside computers, such as an IBM PC/AT with an Opus Pm 350-32 bit coprocessor board and a SUN workstation. Codes have also been modified so that high level graphics, NCAR Graphics, of the output from both models are displayed on the desktop computer monitors and plotted on a laser printer. Two programs, HOTPLT and RAPLOT, produce wind vector plots of the output from HOTMAC and particle trajectory plots of the output from RAPTAD, respectively. A third CONPLT provides concentration contour plots. Section II describes step-by-step operational procedures, specifically for a SUN-4 desk side computer, on how to run main programs HOTMAC and RAPTAD, and graphics programs to display the results. Governing equations, boundary conditions and initial values of HOTMAC and RAPTAD are discussed in Section III. Finite-difference representations of the governing equations, numerical solution procedures, and a grid system are given in Section IV.

  13. Rugosity 10 m grid derived from gridded bathymetry of Farallon de Pajaros (Uracas) Island, Commonwealth of the Northern Mariana Islands (CNMI), USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Rugosity is derived from gridded (10 m cell size) multibeam bathymetry, collected aboard NOAA Ship Hiialaka'i and R/V AHI, using the Benthic Terrain Modeler with...

  14. Smart Grid Interoperability Maturity Model

    Energy Technology Data Exchange (ETDEWEB)

    Widergren, Steven E.; Levinson, Alex; Mater, J.; Drummond, R.

    2010-04-28

    The integration of automation associated with electricity resources (including transmission and distribution automation and demand-side resources operated by end-users) is key to supporting greater efficiencies and incorporating variable renewable resources and electric vehicles into the power system. The integration problems faced by this community are analogous to those faced in the health industry, emergency services, and other complex communities with many stakeholders. To highlight this issue and encourage communication and the development of a smart grid interoperability community, the GridWise Architecture Council (GWAC) created an Interoperability Context-Setting Framework. This "conceptual model" has been helpful to explain the importance of organizational alignment in addition to technical and informational interface specifications for "smart grid" devices and systems. As a next step to building a community sensitive to interoperability, the GWAC is investigating an interoperability maturity model (IMM) based on work done by others to address similar circumstances. The objective is to create a tool or set of tools that encourages a culture of interoperability in this emerging community. The tools would measure status and progress, analyze gaps, and prioritize efforts to improve the situation.

  15. Grid Frequency Extreme Event Analysis and Modeling: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Florita, Anthony R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Clark, Kara [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Gevorgian, Vahan [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Folgueras, Maria [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Wenger, Erin [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-01

    Sudden losses of generation or load can lead to instantaneous changes in electric grid frequency and voltage. Extreme frequency events pose a major threat to grid stability. As renewable energy sources supply power to grids in increasing proportions, it becomes increasingly important to examine when and why extreme events occur to prevent destabilization of the grid. To better understand frequency events, including extrema, historic data were analyzed to fit probability distribution functions to various frequency metrics. Results showed that a standard Cauchy distribution fit the difference between the frequency nadir and prefault frequency (f_(C-A)) metric well, a standard Cauchy distribution fit the settling frequency (f_B) metric well, and a standard normal distribution fit the difference between the settling frequency and frequency nadir (f_(B-C)) metric very well. Results were inconclusive for the frequency nadir (f_C) metric, meaning it likely has a more complex distribution than those tested. This probabilistic modeling should facilitate more realistic modeling of grid faults.

  16. Synergies Between Grace and Regional Atmospheric Modeling Efforts

    Science.gov (United States)

    Kusche, J.; Springer, A.; Ohlwein, C.; Hartung, K.; Longuevergne, L.; Kollet, S. J.; Keune, J.; Dobslaw, H.; Forootan, E.; Eicker, A.

    2014-12-01

    In the meteorological community, efforts converge towards implementation of high-resolution (precipitation, evapotranspiration and runoff data; confirming that the model does favorably at representing observations. We show that after GRACE-derived bias correction, basin-average hydrological conditions prior to 2002 can be reconstructed better than before. Next, comparing GRACE with CLM forced by EURO-CORDEX simulations allows identifying processes needing improvement in the model. Finally, we compare COSMO-EU atmospheric pressure, a proxy for mass corrections in satellite gravimetry, with ERA-Interim over Europe at timescales shorter/longer than 1 month, and spatial scales below/above ERA resolution. We find differences between regional and global model more pronounced at high frequencies, with magnitude at sub-grid scale and larger scale corresponding to 1-3 hPa (1-3 cm EWH); relevant for the assessment of post-GRACE concepts.

  17. Modelling the fate of persistent organic pollutants in Europe: parameterisation of a gridded distribution model

    International Nuclear Information System (INIS)

    Prevedouros, Konstantinos; MacLeod, Matthew; Jones, Kevin C.; Sweetman, Andrew J.

    2004-01-01

    A regionally segmented multimedia fate model for the European continent is described together with an illustrative steady-state case study examining the fate of γ-HCH (lindane) based on 1998 emission data. The study builds on the regionally segmented BETR North America model structure and describes the regional segmentation and parameterisation for Europe. The European continent is described by a 5 deg. x 5 deg. grid, leading to 50 regions together with four perimetric boxes representing regions buffering the European environment. Each zone comprises seven compartments including; upper and lower atmosphere, soil, vegetation, fresh water and sediment and coastal water. Inter-regions flows of air and water are described, exploiting information originating from GIS databases and other georeferenced data. The model is primarily designed to describe the fate of Persistent Organic Pollutants (POPs) within the European environment by examining chemical partitioning and degradation in each region, and inter-region transport either under steady-state conditions or fully dynamically. A test case scenario is presented which examines the fate of estimated spatially resolved atmospheric emissions of lindane throughout Europe within the lower atmosphere and surface soil compartments. In accordance with the predominant wind direction in Europe, the model predicts high concentrations close to the major sources as well as towards Central and Northeast regions. Elevated soil concentrations in Scandinavian soils provide further evidence of the potential of increased scavenging by forests and subsequent accumulation by organic-rich terrestrial surfaces. Initial model predictions have revealed a factor of 5-10 underestimation of lindane concentrations in the atmosphere. This is explained by an underestimation of source strength and/or an underestimation of European background levels. The model presented can further be used to predict deposition fluxes and chemical inventories, and it

  18. Task-and-role-based access-control model for computational grid

    Institute of Scientific and Technical Information of China (English)

    LONG Tao; HONG Fan; WU Chi; SUN Ling-li

    2007-01-01

    Access control in a grid environment is a challenging issue because the heterogeneous nature and independent administration of geographically dispersed resources in grid require access control to use fine-grained policies. We established a task-and-role-based access-control model for computational grid (CG-TRBAC model), integrating the concepts of role-based access control (RBAC) and task-based access control (TBAC). In this model, condition restrictions are defined and concepts specifically tailored to Workflow Management System are simplified or omitted so that role assignment and security administration fit computational grid better than traditional models; permissions are mutable with the task status and system variables, and can be dynamically controlled. The CG-TRBAC model is proved flexible and extendible. It can implement different control policies. It embodies the security principle of least privilege and executes active dynamic authorization. A task attribute can be extended to satisfy different requirements in a real grid system.

  19. Calculation approaches for grid usage fees to influence the load curve in the distribution grid level

    International Nuclear Information System (INIS)

    Illing, Bjoern

    2014-01-01

    Dominated by the energy policy the decentralized German energy market is changing. One mature target of the government is to increase the contribution of renewable generation to the gross electricity consumption. In order to achieve this target disadvantages like an increased need for capacity management occurs. Load reduction and variable grid fees offer the grid operator solutions to realize capacity management by influencing the load profile. The evolution of the current grid fees towards more causality is required to adapt these approaches. Two calculation approaches are developed in this assignment. On the one hand multivariable grid fees keeping the current components demand and energy charge. Additional to the grid costs grid load dependent parameters like the amount of decentralized feed-ins, time and local circumstances as well as grid capacities are considered. On the other hand the grid fee flat-rate which represents a demand based model on a monthly level. Both approaches are designed to meet the criteria for future grid fees. By means of a case study the effects of the grid fees on the load profile at the low voltage grid is simulated. Thereby the consumption is represented by different behaviour models and the results are scaled at the benchmark grid area. The resulting load curve is analyzed concerning the effects of peak load reduction as well as the integration of renewable energy sources. Additionally the combined effect of grid fees and electricity tariffs is evaluated. Finally the work discusses the launching of grid fees in the tense atmosphere of politics, legislation and grid operation. Results of this work are two calculation approaches designed for grid operators to define the grid fees. Multivariable grid fees are based on the current calculation scheme. Hereby demand and energy charges are weighted by time, locational and load related dependencies. The grid fee flat-rate defines a limitation in demand extraction. Different demand levels

  20. Basin and Range Province, Western US, USGS Grids #2

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These grid files were used to produce gravity and basin depth maps of the Basin and Range Province, western United States. The maps show gravity values and modeled...

  1. Basin and Range Province, Western US, USGS Grids, #1

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These grid files were used to produce gravity and basin depth maps of the Basin and Range Province, western United States. The maps show gravity values and modeled...

  2. Basin and Range Province, Western US, USGS Grids #3

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These grid files were used to produce gravity and basin depth maps of the Basin and Range Province, western United States. The maps show gravity values and modeled...

  3. Basin and Range Province, Western US, USGS Grids #5

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These grid files were used to produce gravity and basin depth maps of the Basin and Range Province, western United States. The maps show gravity values and modeled...

  4. Basin and Range Province, Western US, USGS Grids #4

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These grid files were used to produce gravity and basin depth maps of the Basin and Range Province, western United States. The maps show gravity values and modeled...

  5. Dispersion analysis of the Pn -Pn-1DG mixed finite element pair for atmospheric modelling

    Science.gov (United States)

    Melvin, Thomas

    2018-02-01

    Mixed finite element methods provide a generalisation of staggered grid finite difference methods with a framework to extend the method to high orders. The ability to generate a high order method is appealing for applications on the kind of quasi-uniform grids that are popular for atmospheric modelling, so that the method retains an acceptable level of accuracy even around special points in the grid. The dispersion properties of such schemes are important to study as they provide insight into the numerical adjustment to imbalance that is an important component in atmospheric modelling. This paper extends the recent analysis of the P2 - P1DG pair, that is a quadratic continuous and linear discontinuous finite element pair, to higher polynomial orders and also spectral element type pairs. In common with the previously studied element pair, and also with other schemes such as the spectral element and discontinuous Galerkin methods, increasing the polynomial order is found to provide a more accurate dispersion relation for the well resolved part of the spectrum but at the cost of a number of unphysical spectral gaps. The effects of these spectral gaps are investigated and shown to have a varying impact depending upon the width of the gap. Finally, the tensor product nature of the finite element spaces is exploited to extend the dispersion analysis into two-dimensions.

  6. Comparative analysis of existing models for power-grid synchronization

    International Nuclear Information System (INIS)

    Nishikawa, Takashi; Motter, Adilson E

    2015-01-01

    The dynamics of power-grid networks is becoming an increasingly active area of research within the physics and network science communities. The results from such studies are typically insightful and illustrative, but are often based on simplifying assumptions that can be either difficult to assess or not fully justified for realistic applications. Here we perform a comprehensive comparative analysis of three leading models recently used to study synchronization dynamics in power-grid networks—a fundamental problem of practical significance given that frequency synchronization of all power generators in the same interconnection is a necessary condition for a power grid to operate. We show that each of these models can be derived from first principles within a common framework based on the classical model of a generator, thereby clarifying all assumptions involved. This framework allows us to view power grids as complex networks of coupled second-order phase oscillators with both forcing and damping terms. Using simple illustrative examples, test systems, and real power-grid datasets, we study the inherent frequencies of the oscillators as well as their coupling structure, comparing across the different models. We demonstrate, in particular, that if the network structure is not homogeneous, generators with identical parameters need to be modeled as non-identical oscillators in general. We also discuss an approach to estimate the required (dynamical) system parameters that are unavailable in typical power-grid datasets, their use for computing the constants of each of the three models, and an open-source MATLAB toolbox that we provide for these computations. (paper)

  7. Modelling and Analysis of Smart Grid: A Stochastic Model Checking Case Study

    DEFF Research Database (Denmark)

    Yuksel, Ender; Zhu, Huibiao; Nielson, Hanne Riis

    2012-01-01

    that require novel methods and applications. In this context, an important issue is the verification of certain quantitative properties of the system. In this paper, we consider a specific Chinese Smart Grid implementation as a case study and address the verification problem for performance and energy......Cyber-physical systems integrate information and communication technology functions to the physical elements of a system for monitoring and controlling purposes. The conversion of traditional power grid into a smart grid, a fundamental example of a cyber-physical system, raises a number of issues...... consumption. We employ stochastic model checking approach and present our modelling and analysis study using PRISM model checker....

  8. Schwarz-Christoffel Conformal Mapping based Grid Generation for Global Oceanic Circulation Models

    Science.gov (United States)

    Xu, Shiming

    2015-04-01

    We propose new grid generation algorithms for global ocean general circulation models (OGCMs). Contrary to conventional, analytical forms based dipolar or tripolar grids, the new algorithm are based on Schwarz-Christoffel (SC) conformal mapping with prescribed boundary information. While dealing with the conventional grid design problem of pole relocation, it also addresses more advanced issues of computational efficiency and the new requirements on OGCM grids arisen from the recent trend of high-resolution and multi-scale modeling. The proposed grid generation algorithm could potentially achieve the alignment of grid lines to coastlines, enhanced spatial resolution in coastal regions, and easier computational load balance. Since the generated grids are still orthogonal curvilinear, they can be readily 10 utilized in existing Bryan-Cox-Semtner type ocean models. The proposed methodology can also be applied to the grid generation task for regional ocean modeling when complex land-ocean distribution is present.

  9. Development of numerical Grids for UZ Flow and Transport Modeling

    International Nuclear Information System (INIS)

    P. Dobson

    2004-01-01

    This report describes the methods used to develop numerical grids of the unsaturated hydrogeologic system beneath Yucca Mountain, Nevada. Numerical grid generation is an integral part of the development of the unsaturated zone (UZ) flow and transport model, a complex, three-dimensional (3-D) model of Yucca Mountain. This revision contains changes made to improve the clarity of the description of grid generation. The numerical grids, developed using current geologic, hydrogeologic, and mineralogic data, provide the necessary framework to: (1) develop calibrated hydrogeologic property sets and flow fields, (2) test conceptual hypotheses of flow and transport, and (3) predict flow and transport behavior under a variety of climatic and thermal-loading conditions. The technical scope, content, and management for the current revision of this report are described in the planning document ''Technical Work Plan for: Unsaturated Zone Flow Analysis and Model Report Integration'' (BSC 2004 [DIRS 169654], Section 2). Grids generated and documented in this report supersede those documented in Revision 00 of this report, ''Development of Numerical Grids for UZ Flow and Transport Modeling'' (BSC 2001 [DIRS 159356]). The grids presented in this report are the same as those developed in Revision 01 (BSC 2003 [DIRS 160109]); however, the documentation of the development of the grids in Revision 02 has been updated to address technical inconsistencies and achieve greater transparency, readability, and traceability. The constraints, assumptions, and limitations associated with this report are discussed in the appropriate sections that follow

  10. Semantic Information Modeling for Emerging Applications in Smart Grid

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Qunzhi; Natarajan, Sreedhar; Simmhan, Yogesh; Prasanna, Viktor

    2012-04-16

    Smart Grid modernizes power grid by integrating digital and information technologies. Millions of smart meters, intelligent appliances and communication infrastructures are under deployment allowing advanced IT applications to be developed to secure and manage power grid operations. Demand response (DR) is one such emerging application to optimize electricity demand by curtailing/shifting power load when peak load occurs. Existing DR approaches are mostly based on static plans such as pricing policies and load shedding schedules. However, improvements to power management applications rely on data emanating from existing and new information sources with the growth of Smart Grid information space. In particular, dynamic DR algorithms depend on information from smart meters that report interval-based power consumption measurement, HVAC systems that monitor buildings heat and humidity, and even weather forecast services. In order for emerging Smart Grid applications to take advantage of the diverse data influx, extensible information integration is required. In this paper, we develop an integrated Smart Grid information model using Semantic Web techniques and present case studies of using semantic information for dynamic DR. We show the semantic model facilitates information integration and knowledge representation for developing the next generation Smart Grid applications.

  11. Modeling and Grid Generation of Iced Airfoils

    Science.gov (United States)

    Vickerman, Mary B.; Baez, Marivell; Braun, Donald C.; Hackenberg, Anthony W.; Pennline, James A.; Schilling, Herbert W.

    2007-01-01

    SmaggIce Version 2.0 is a software toolkit for geometric modeling and grid generation for two-dimensional, singleand multi-element, clean and iced airfoils. A previous version of SmaggIce was described in Preparing and Analyzing Iced Airfoils, NASA Tech Briefs, Vol. 28, No. 8 (August 2004), page 32. To recapitulate: Ice shapes make it difficult to generate quality grids around airfoils, yet these grids are essential for predicting ice-induced complex flow. This software efficiently creates high-quality structured grids with tools that are uniquely tailored for various ice shapes. SmaggIce Version 2.0 significantly enhances the previous version primarily by adding the capability to generate grids for multi-element airfoils. This version of the software is an important step in streamlining the aeronautical analysis of ice airfoils using computational fluid dynamics (CFD) tools. The user may prepare the ice shape, define the flow domain, decompose it into blocks, generate grids, modify/divide/merge blocks, and control grid density and smoothness. All these steps may be performed efficiently even for the difficult glaze and rime ice shapes. Providing the means to generate highly controlled grids near rough ice, the software includes the creation of a wrap-around block (called the "viscous sublayer block"), which is a thin, C-type block around the wake line and iced airfoil. For multi-element airfoils, the software makes use of grids that wrap around and fill in the areas between the viscous sub-layer blocks for all elements that make up the airfoil. A scripting feature records the history of interactive steps, which can be edited and replayed later to produce other grids. Using this version of SmaggIce, ice shape handling and grid generation can become a practical engineering process, rather than a laborious research effort.

  12. Three dimensional adaptive mesh refinement on a spherical shell for atmospheric models with lagrangian coordinates

    Science.gov (United States)

    Penner, Joyce E.; Andronova, Natalia; Oehmke, Robert C.; Brown, Jonathan; Stout, Quentin F.; Jablonowski, Christiane; van Leer, Bram; Powell, Kenneth G.; Herzog, Michael

    2007-07-01

    One of the most important advances needed in global climate models is the development of atmospheric General Circulation Models (GCMs) that can reliably treat convection. Such GCMs require high resolution in local convectively active regions, both in the horizontal and vertical directions. During previous research we have developed an Adaptive Mesh Refinement (AMR) dynamical core that can adapt its grid resolution horizontally. Our approach utilizes a finite volume numerical representation of the partial differential equations with floating Lagrangian vertical coordinates and requires resolving dynamical processes on small spatial scales. For the latter it uses a newly developed general-purpose library, which facilitates 3D block-structured AMR on spherical grids. The library manages neighbor information as the blocks adapt, and handles the parallel communication and load balancing, freeing the user to concentrate on the scientific modeling aspects of their code. In particular, this library defines and manages adaptive blocks on the sphere, provides user interfaces for interpolation routines and supports the communication and load-balancing aspects for parallel applications. We have successfully tested the library in a 2-D (longitude-latitude) implementation. During the past year, we have extended the library to treat adaptive mesh refinement in the vertical direction. Preliminary results are discussed. This research project is characterized by an interdisciplinary approach involving atmospheric science, computer science and mathematical/numerical aspects. The work is done in close collaboration between the Atmospheric Science, Computer Science and Aerospace Engineering Departments at the University of Michigan and NOAA GFDL.

  13. Three dimensional adaptive mesh refinement on a spherical shell for atmospheric models with lagrangian coordinates

    International Nuclear Information System (INIS)

    Penner, Joyce E; Andronova, Natalia; Oehmke, Robert C; Brown, Jonathan; Stout, Quentin F; Jablonowski, Christiane; Leer, Bram van; Powell, Kenneth G; Herzog, Michael

    2007-01-01

    One of the most important advances needed in global climate models is the development of atmospheric General Circulation Models (GCMs) that can reliably treat convection. Such GCMs require high resolution in local convectively active regions, both in the horizontal and vertical directions. During previous research we have developed an Adaptive Mesh Refinement (AMR) dynamical core that can adapt its grid resolution horizontally. Our approach utilizes a finite volume numerical representation of the partial differential equations with floating Lagrangian vertical coordinates and requires resolving dynamical processes on small spatial scales. For the latter it uses a newly developed general-purpose library, which facilitates 3D block-structured AMR on spherical grids. The library manages neighbor information as the blocks adapt, and handles the parallel communication and load balancing, freeing the user to concentrate on the scientific modeling aspects of their code. In particular, this library defines and manages adaptive blocks on the sphere, provides user interfaces for interpolation routines and supports the communication and load-balancing aspects for parallel applications. We have successfully tested the library in a 2-D (longitude-latitude) implementation. During the past year, we have extended the library to treat adaptive mesh refinement in the vertical direction. Preliminary results are discussed. This research project is characterized by an interdisciplinary approach involving atmospheric science, computer science and mathematical/numerical aspects. The work is done in close collaboration between the Atmospheric Science, Computer Science and Aerospace Engineering Departments at the University of Michigan and NOAA GFDL

  14. Development of Numerical Grids for UZ Flow and Transport Modeling

    International Nuclear Information System (INIS)

    P. Dobson

    2003-01-01

    This Scientific Analysis report describes the methods used to develop numerical grids of the unsaturated hydrogeologic system beneath Yucca Mountain. Numerical grid generation is an integral part of the development of the Unsaturated Zone Flow and Transport Model (UZ Model), a complex, three-dimensional (3-D) model of Yucca Mountain. This revision incorporates changes made to both the geologic framework model and the proposed repository layout. The resulting numerical grids, developed using current geologic, hydrogeologic, and mineralogic data, provide the necessary framework to: (1) develop calibrated hydrogeologic property sets and flow fields, (2) test conceptual hypotheses of flow and transport, and (3) predict flow and transport behavior under a variety of climatic and thermal-loading conditions. The technical scope, content, and management of this Scientific Analysis report was initially controlled by the planning document, ''Technical Work Plan (TWP) for: Unsaturated Zone Sections of License Application Chapters 8 and 12'' (BSC 2002 [159051], Section 1.6.4). This TWP was later superseded by ''Technical Work Plan for: Performance Assessment Unsaturated Zone'' (BSC 2002 [160819]), which contains the Data Qualification Plan used to qualify the DTN: MO0212GWLSSPAX.000 [161271] (See Attachment IV). Grids generated and documented in this report supersede those documented in previous versions of this report (BSC 2001 [159356]). The constraints, assumptions, and limitations associated with this report are discussed in the appropriate sections that follow. There were no deviations from the TWP scope of work in this report. Two software packages not listed in Table IV-2 of the TWP (BSC 2002 [159051]), ARCINFO V7.2.1 (CRWMS M and O 2000 [157019]; USGS 2000 [148304]) and 2kgrid8.for V1.0 (LBNL 2002 [154787]), were utilized in the development of the numerical grids; the use of additional software is accounted for in the TWP (BSC 2002 [159051], Section 13). The use of

  15. Frontiers in Atmospheric Chemistry Modelling

    Science.gov (United States)

    Colette, Augustin; Bessagnet, Bertrand; Meleux, Frederik; Rouïl, Laurence

    2013-04-01

    The first pan-European kilometre-scale atmospheric chemistry simulation is introduced. The continental-scale air pollution episode of January 2009 is modelled with the CHIMERE offline chemistry-transport model with a massive grid of 2 million horizontal points, performed on 2000 CPU of a high performance computing system hosted by the Research and Technology Computing Center at the French Alternative Energies and Atomic Energy Commission (CCRT/CEA). Besides the technical challenge, which demonstrated the robustness of the selected air quality model, we discuss the added value in terms of air pollution modelling and decision support. The comparison with in-situ observations shows that model biases are significantly improved despite some spurious added spatial variability attributed to shortcomings in the emission downscaling process and coarse resolution of the meteorological fields. The increased spatial resolution is clearly beneficial for the detection of exceedances and exposure modelling. We reveal small scale air pollution patterns that highlight the contribution of city plumes to background air pollution levels. Up to a factor 5 underestimation of the fraction of population exposed to detrimental levels of pollution can be obtained with a coarse simulation if subgrid scale correction such as urban increments are ignored. This experiment opens new perspectives for environmental decision making. After two decades of efforts to reduce air pollutant emissions across Europe, the challenge is now to find the optimal trade-off between national and local air quality management strategies. While the first approach is based on sectoral strategies and energy policies, the later builds upon new alternatives such as urban development. The strategies, the decision pathways and the involvement of individual citizen differ, and a compromise based on cost and efficiency must be found. We illustrated how high performance computing in atmospheric science can contribute to this

  16. Ensemble atmospheric dispersion modeling for emergency response consequence assessments

    International Nuclear Information System (INIS)

    Addis, R.P.; Buckley, R.L.

    2003-01-01

    models. This provides a better understanding of the atmosphere and plume behavior than would a single model output. Atmospheric models often give the impression of greater accuracy than the science is capable of delivering. The ensemble approach is a powerful way to reassert the concept of having a family of equally valid solutions, while enabling outliers to be identified. The U.S. Department of Energy's Savannah River Technology Center (SRTC) has participated in RTMOD and ENSEMBLE. SRTC uses the Regional Atmospheric Modeling System (RAMS) and Lagrangian Particle Dispersion Model (LPDM) to provide plume forecasts in real-time for the European grid as described in the figure. The NOAA northern hemispheric model, Global Forecast System (a combination of the medium range forecast and aviation forecast models), is used to provide the initial and boundary conditions for RAMS. The model plume forecast data are sent to the ENSEMBLE WEB page in real-time where they may be compared with other model outputs. SRTC has participated in all the ENSEMBLE exercises in real-time. An example of the ensemble output is shown in the figure, which shows an overlay of the SRTC (crosshatched) initial 60-hour forecast for the plume overlaid on an ensemble of 5 other model outputs. The plume shadings show the level of consensus for a minimum threshold, enabling modelers to determine consensus between models and identify possible outliers. The traditional approach to provide atmospheric consequence assessment tools to aid decision-makers in response to a release from a nuclear facility is to provide a plume output from a particular model. However, the non-unique nature of solutions to the non-linear equations that govern the atmosphere, and the sensitivity of such equations to perturbations in the initial and boundary conditions, results in any single model output being simply one of many viable solutions. As such, the traditional approach does a disservice to decision-makers by inferring greater

  17. Grid-pattern formation of extracellular matrix on silicon by low-temperature atmospheric-pressure plasma jets for neural network biochip fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Ando, Ayumi, E-mail: ando@ppl.eng.osaka-u.ac.jp [Center for Atomic and Molecular Technologies, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871 (Japan); Uno, Hidetaka; Urisu, Tsuneo [FIRST Research Center for Innovative Nanobiodevice, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi, 464-8603 (Japan); Hamaguchi, Satoshi [Center for Atomic and Molecular Technologies, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871 (Japan)

    2013-07-01

    Grid patterns of extracellular matrices (ECMs) have been formed on silicon (Si) substrates with the use of low-temperature atmospheric-pressure plasma (APP) jets with metal stencil masks and neuron model cells have been successfully cultured on the patterned ECMs. Arrangement of living neuron cells on a microelectronics chip in a desired pattern is one of the major challenges for the fabrication of neuron-cell biochips. The APP-based technique presented in this study offers a cost-effective solution to this problem by providing a simple patterning method of ECMs, which act as biological interfaces between living cells and non-biological materials such as Si.

  18. Application of a Steady Meandering River with Piers Using a Lattice Boltzmann Sub-Grid Model in Curvilinear Coordinate Grid

    Directory of Open Access Journals (Sweden)

    Liping Chen

    2018-05-01

    Full Text Available A sub-grid multiple relaxation time (MRT lattice Boltzmann model with curvilinear coordinates is applied to simulate an artificial meandering river. The method is based on the D2Q9 model and standard Smagorinsky sub-grid scale (SGS model is introduced to simulate meandering flows. The interpolation supplemented lattice Boltzmann method (ISLBM and the non-equilibrium extrapolation method are used for second-order accuracy and boundary conditions. The proposed model was validated by a meandering channel with a 180° bend and applied to a steady curved river with piers. Excellent agreement between the simulated results and previous computational and experimental data was found, showing that MRT-LBM (MRT lattice Boltzmann method coupled with a Smagorinsky sub-grid scale (SGS model in a curvilinear coordinates grid is capable of simulating practical meandering flows.

  19. 2 minute Southcentral Alaska Elevation Grid

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The 2-minute Southcentral Alaska Elevation Grid provides bathymetric data in ASCII raster format of 2-minute resolution in geographic coordinates. This grid is...

  20. Hybrid Spatial Data Model for Indoor Space: Combined Topology and Grid

    Directory of Open Access Journals (Sweden)

    Zhiyong Lin

    2017-11-01

    Full Text Available The construction and application of an indoor spatial data model is an important prerequisite to meet the requirements of diversified indoor spatial location services. The traditional indoor spatial topology model focuses on the construction of topology information. It has high path analysis and query efficiency, but ignores the spatial location information. The grid model retains the plane position information by grid, but increases the data volume and complexity of the model and reduces the efficiency of the model analysis. This paper presents a hybrid model for interior space based on topology and grid. Based on the spatial meshing and spatial division of the interior space, the model retains the position information and topological connectivity information of the interior space by establishing the connection or affiliation between the grid subspace and the topological subspace. The model improves the speed of interior spatial analysis and solves the problem of the topology information and location information updates not being synchronized. In this study, the A* shortest path query efficiency of typical daily indoor activities under the grid model and the hybrid model were compared for the indoor plane of an apartment and a shopping mall. The results obtained show that the hybrid model is 43% higher than the A* algorithm of the grid model as a result of the existence of topology communication information. This paper provides a useful idea for the establishment of a highly efficient and highly available interior spatial data model.

  1. A spectral nudging method for the ACCESS1.3 atmospheric model

    Science.gov (United States)

    Uhe, P.; Thatcher, M.

    2015-06-01

    A convolution-based method of spectral nudging of atmospheric fields is developed in the Australian Community Climate and Earth Systems Simulator (ACCESS) version 1.3 which uses the UK Met Office Unified Model version 7.3 as its atmospheric component. The use of convolutions allow for flexibility in application to different atmospheric grids. An approximation using one-dimensional convolutions is applied, improving the time taken by the nudging scheme by 10-30 times compared with a version using a two-dimensional convolution, without measurably degrading its performance. Care needs to be taken in the order of the convolutions and the frequency of nudging to obtain the best outcome. The spectral nudging scheme is benchmarked against a Newtonian relaxation method, nudging winds and air temperature towards ERA-Interim reanalyses. We find that the convolution approach can produce results that are competitive with Newtonian relaxation in both the effectiveness and efficiency of the scheme, while giving the added flexibility of choosing which length scales to nudge.

  2. Grid based calibration of SWAT hydrological models

    Directory of Open Access Journals (Sweden)

    D. Gorgan

    2012-07-01

    Full Text Available The calibration and execution of large hydrological models, such as SWAT (soil and water assessment tool, developed for large areas, high resolution, and huge input data, need not only quite a long execution time but also high computation resources. SWAT hydrological model supports studies and predictions of the impact of land management practices on water, sediment, and agricultural chemical yields in complex watersheds. The paper presents the gSWAT application as a web practical solution for environmental specialists to calibrate extensive hydrological models and to run scenarios, by hiding the complex control of processes and heterogeneous resources across the grid based high computation infrastructure. The paper highlights the basic functionalities of the gSWAT platform, and the features of the graphical user interface. The presentation is concerned with the development of working sessions, interactive control of calibration, direct and basic editing of parameters, process monitoring, and graphical and interactive visualization of the results. The experiments performed on different SWAT models and the obtained results argue the benefits brought by the grid parallel and distributed environment as a solution for the processing platform. All the instances of SWAT models used in the reported experiments have been developed through the enviroGRIDS project, targeting the Black Sea catchment area.

  3. The MicroGrid: A Scientific Tool for Modeling Computational Grids

    Directory of Open Access Journals (Sweden)

    H.J. Song

    2000-01-01

    Full Text Available The complexity and dynamic nature of the Internet (and the emerging Computational Grid demand that middleware and applications adapt to the changes in configuration and availability of resources. However, to the best of our knowledge there are no simulation tools which support systematic exploration of dynamic Grid software (or Grid resource behavior. We describe our vision and initial efforts to build tools to meet these needs. Our MicroGrid simulation tools enable Globus applications to be run in arbitrary virtual grid resource environments, enabling broad experimentation. We describe the design of these tools, and their validation on micro-benchmarks, the NAS parallel benchmarks, and an entire Grid application. These validation experiments show that the MicroGrid can match actual experiments within a few percent (2% to 4%.

  4. U.S. Isostatic Residual Gravity Grid

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — isores.bin - standard grid containing isostatic residual gravity map for U.S. Grid interval = 4 km. Projection is Albers (central meridian = 96 degrees West; base...

  5. Mass-conserving tracer transport modelling on a reduced latitude-longitude grid with NIES-TM

    Directory of Open Access Journals (Sweden)

    D. Belikov

    2011-03-01

    Full Text Available The need to perform long-term simulations with reasonable accuracy has led to the development of mass-conservative and efficient numerical methods for solving the transport equation in forward and inverse models. We designed and implemented a flux-form (Eulerian tracer transport algorithm in the National Institute for Environmental Studies Transport Model (NIES TM, which is used for simulating diurnal and synoptic-scale variations of tropospheric long-lived constituents, as well as their seasonal and inter-annual variability. Implementation of the flux-form method requires the mass conservative wind fields. However, the model is off-line and is driven by datasets from a global atmospheric model or data assimilation system, in which vertically integrated mass changes are not in balance with the surface pressure tendency and mass conservation is not achieved. To rectify the mass-imbalance, a flux-correction method is employed. To avoid a singularity near the poles, caused by the small grid size arising from the meridional convergence problem, the proposed model uses a reduced latitude–longitude grid scheme, in which the grid size is doubled several times approaching the poles. This approach overcomes the Courant condition in the Polar Regions, maintains a reasonably high integration time-step, and ensures adequate model performance during simulations. To assess the model performance, we performed global transport simulations for SF6, 222Rn, and CO2. The results were compared with observations available from the World Data Centre for Greenhouse Gases, GLOBALVIEW, and the Hateruma monitoring station, Japan. Overall, the results show that the proposed flux-form version of NIES TM can produce tropospheric tracer transport more realistically than previously possible. The reasons for this improvement are discussed.

  6. Model-driven Privacy Assessment in the Smart Grid

    Energy Technology Data Exchange (ETDEWEB)

    Knirsch, Fabian [Salzburg Univ. (Austria); Engel, Dominik [Salzburg Univ. (Austria); Neureiter, Christian [Salzburg Univ. (Austria); Frincu, Marc [Univ. of Southern California, Los Angeles, CA (United States); Prasanna, Viktor [Univ. of Southern California, Los Angeles, CA (United States)

    2015-02-09

    In a smart grid, data and information are transported, transmitted, stored, and processed with various stakeholders having to cooperate effectively. Furthermore, personal data is the key to many smart grid applications and therefore privacy impacts have to be taken into account. For an effective smart grid, well integrated solutions are crucial and for achieving a high degree of customer acceptance, privacy should already be considered at design time of the system. To assist system engineers in early design phase, frameworks for the automated privacy evaluation of use cases are important. For evaluation, use cases for services and software architectures need to be formally captured in a standardized and commonly understood manner. In order to ensure this common understanding for all kinds of stakeholders, reference models have recently been developed. In this paper we present a model-driven approach for the automated assessment of such services and software architectures in the smart grid that builds on the standardized reference models. The focus of qualitative and quantitative evaluation is on privacy. For evaluation, the framework draws on use cases from the University of Southern California microgrid.

  7. New ghost-node method for linking different models with varied grid refinement

    Science.gov (United States)

    James, S.C.; Dickinson, J.E.; Mehl, S.W.; Hill, M.C.; Leake, S.A.; Zyvoloski, G.A.; Eddebbarh, A.-A.

    2006-01-01

    A flexible, robust method for linking grids of locally refined ground-water flow models constructed with different numerical methods is needed to address a variety of hydrologic problems. This work outlines and tests a new ghost-node model-linking method for a refined "child" model that is contained within a larger and coarser "parent" model that is based on the iterative method of Steffen W. Mehl and Mary C. Hill (2002, Advances in Water Res., 25, p. 497-511; 2004, Advances in Water Res., 27, p. 899-912). The method is applicable to steady-state solutions for ground-water flow. Tests are presented for a homogeneous two-dimensional system that has matching grids (parent cells border an integer number of child cells) or nonmatching grids. The coupled grids are simulated by using the finite-difference and finite-element models MODFLOW and FEHM, respectively. The simulations require no alteration of the MODFLOW or FEHM models and are executed using a batch file on Windows operating systems. Results indicate that when the grids are matched spatially so that nodes and child-cell boundaries are aligned, the new coupling technique has error nearly equal to that when coupling two MODFLOW models. When the grids are nonmatching, model accuracy is slightly increased compared to that for matching-grid cases. Overall, results indicate that the ghost-node technique is a viable means to couple distinct models because the overall head and flow errors relative to the analytical solution are less than if only the regional coarse-grid model was used to simulate flow in the child model's domain.

  8. Cellular Automaton Modeling of Dendritic Growth Using a Multi-grid Method

    International Nuclear Information System (INIS)

    Natsume, Y; Ohsasa, K

    2015-01-01

    A two-dimensional cellular automaton model with a multi-grid method was developed to simulate dendritic growth. In the present model, we used a triple-grid system for temperature, solute concentration and solid fraction fields as a new approach of the multi-grid method. In order to evaluate the validity of the present model, we carried out simulations of single dendritic growth, secondary dendrite arm growth, multi-columnar dendritic growth and multi-equiaxed dendritic growth. From the results of the grid dependency from the simulation of single dendritic growth, we confirmed that the larger grid can be used in the simulation and that the computational time can be reduced dramatically. In the simulation of secondary dendrite arm growth, the results from the present model were in good agreement with the experimental data and the simulated results from a phase-field model. Thus, the present model can quantitatively simulate dendritic growth. From the simulated results of multi-columnar and multi-equiaxed dendrites, we confirmed that the present model can perform simulations under practical solidification conditions. (paper)

  9. Development and analysis of prognostic equations for mesoscale kinetic energy and mesoscale (subgrid scale) fluxes for large-scale atmospheric models

    Science.gov (United States)

    Avissar, Roni; Chen, Fei

    1993-01-01

    Generated by landscape discontinuities (e.g., sea breezes) mesoscale circulation processes are not represented in large-scale atmospheric models (e.g., general circulation models), which have an inappropiate grid-scale resolution. With the assumption that atmospheric variables can be separated into large scale, mesoscale, and turbulent scale, a set of prognostic equations applicable in large-scale atmospheric models for momentum, temperature, moisture, and any other gaseous or aerosol material, which includes both mesoscale and turbulent fluxes is developed. Prognostic equations are also developed for these mesoscale fluxes, which indicate a closure problem and, therefore, require a parameterization. For this purpose, the mean mesoscale kinetic energy (MKE) per unit of mass is used, defined as E-tilde = 0.5 (the mean value of u'(sub i exp 2), where u'(sub i) represents the three Cartesian components of a mesoscale circulation (the angle bracket symbol is the grid-scale, horizontal averaging operator in the large-scale model, and a tilde indicates a corresponding large-scale mean value). A prognostic equation is developed for E-tilde, and an analysis of the different terms of this equation indicates that the mesoscale vertical heat flux, the mesoscale pressure correlation, and the interaction between turbulence and mesoscale perturbations are the major terms that affect the time tendency of E-tilde. A-state-of-the-art mesoscale atmospheric model is used to investigate the relationship between MKE, landscape discontinuities (as characterized by the spatial distribution of heat fluxes at the earth's surface), and mesoscale sensible and latent heat fluxes in the atmosphere. MKE is compared with turbulence kinetic energy to illustrate the importance of mesoscale processes as compared to turbulent processes. This analysis emphasizes the potential use of MKE to bridge between landscape discontinuities and mesoscale fluxes and, therefore, to parameterize mesoscale fluxes

  10. Solar Measurement and Modeling | Grid Modernization | NREL

    Science.gov (United States)

    Measurement and Modeling Solar Measurement and Modeling NREL supports grid integration studies , industry, government, and academia by disseminating solar resource measurements, models, and best practices have continuously gathered basic solar radiation information, and they now gather high-resolution data

  11. The extended RBAC model based on grid computing

    Institute of Scientific and Technical Information of China (English)

    CHEN Jian-gang; WANG Ru-chuan; WANG Hai-yan

    2006-01-01

    This article proposes the extended role-based access control (RBAC) model for solving dynamic and multidomain problems in grid computing, The formulated description of the model has been provided. The introduction of context and the mapping relations of context-to-role and context-to-permission help the model adapt to dynamic property in grid environment.The multidomain role inheritance relation by the authorization agent service realizes the multidomain authorization amongst the autonomy domain. A function has been proposed for solving the role inheritance conflict during the establishment of the multidomain role inheritance relation.

  12. THOR: A NEW AND FLEXIBLE GLOBAL CIRCULATION MODEL TO EXPLORE PLANETARY ATMOSPHERES

    Energy Technology Data Exchange (ETDEWEB)

    Mendonça, João M.; Grimm, Simon L.; Grosheintz, Luc; Heng, Kevin, E-mail: joao.mendonca@csh.unibe.ch, E-mail: kevin.heng@csh.unibe.ch [University of Bern, Center for Space and Habitability, Sidlerstrasse 5, CH-3012, Bern (Switzerland)

    2016-10-01

    We have designed and developed, from scratch, a global circulation model (GCM) named THOR that solves the three-dimensional nonhydrostatic Euler equations. Our general approach lifts the commonly used assumptions of a shallow atmosphere and hydrostatic equilibrium. We solve the “pole problem” (where converging meridians on a sphere lead to increasingly smaller time steps near the poles) by implementing an icosahedral grid. Irregularities in the grid, which lead to grid imprinting, are smoothed using the “spring dynamics” technique. We validate our implementation of spring dynamics by examining calculations of the divergence and gradient of test functions. To prevent the computational time step from being bottlenecked by having to resolve sound waves, we implement a split-explicit method together with a horizontally explicit and vertically implicit integration. We validate our GCM by reproducing the Earth and hot-Jupiter-like benchmark tests. THOR was designed to run on graphics processing units (GPUs), which allows for physics modules (radiative transfer, clouds, chemistry) to be added in the future, and is part of the open-source Exoclimes Simulation Platform (www.exoclime.org).

  13. THOR: A NEW AND FLEXIBLE GLOBAL CIRCULATION MODEL TO EXPLORE PLANETARY ATMOSPHERES

    International Nuclear Information System (INIS)

    Mendonça, João M.; Grimm, Simon L.; Grosheintz, Luc; Heng, Kevin

    2016-01-01

    We have designed and developed, from scratch, a global circulation model (GCM) named THOR that solves the three-dimensional nonhydrostatic Euler equations. Our general approach lifts the commonly used assumptions of a shallow atmosphere and hydrostatic equilibrium. We solve the “pole problem” (where converging meridians on a sphere lead to increasingly smaller time steps near the poles) by implementing an icosahedral grid. Irregularities in the grid, which lead to grid imprinting, are smoothed using the “spring dynamics” technique. We validate our implementation of spring dynamics by examining calculations of the divergence and gradient of test functions. To prevent the computational time step from being bottlenecked by having to resolve sound waves, we implement a split-explicit method together with a horizontally explicit and vertically implicit integration. We validate our GCM by reproducing the Earth and hot-Jupiter-like benchmark tests. THOR was designed to run on graphics processing units (GPUs), which allows for physics modules (radiative transfer, clouds, chemistry) to be added in the future, and is part of the open-source Exoclimes Simulation Platform (www.exoclime.org).

  14. Power Grid Construction Project Portfolio Optimization Based on Bi-level programming model

    Science.gov (United States)

    Zhao, Erdong; Li, Shangqi

    2017-08-01

    As the main body of power grid operation, county-level power supply enterprises undertake an important emission to guarantee the security of power grid operation and safeguard social power using order. The optimization of grid construction projects has been a key issue of power supply capacity and service level of grid enterprises. According to the actual situation of power grid construction project optimization of county-level power enterprises, on the basis of qualitative analysis of the projects, this paper builds a Bi-level programming model based on quantitative analysis. The upper layer of the model is the target restriction of the optimal portfolio; the lower layer of the model is enterprises’ financial restrictions on the size of the enterprise project portfolio. Finally, using a real example to illustrate operation proceeding and the optimization result of the model. Through qualitative analysis and quantitative analysis, the bi-level programming model improves the accuracy and normative standardization of power grid enterprises projects.

  15. Optimization of a prognostic biosphere model for terrestrial biomass and atmospheric CO2 variability

    International Nuclear Information System (INIS)

    Saito, M.; Ito, A.; Maksyutov, S.

    2014-01-01

    This study investigates the capacity of a prognostic biosphere model to simulate global variability in atmospheric CO 2 concentrations and vegetation carbon dynamics under current environmental conditions. Global data sets of atmospheric CO 2 concentrations, above-ground biomass (AGB), and net primary productivity (NPP) in terrestrial vegetation were assimilated into the biosphere model using an inverse modeling method combined with an atmospheric transport model. In this process, the optimal physiological parameters of the biosphere model were estimated by minimizing the misfit between observed and modeled values, and parameters were generated to characterize various biome types. Results obtained using the model with the optimized parameters correspond to the observed seasonal variations in CO 2 concentration and their annual amplitudes in both the Northern and Southern Hemispheres. In simulating the mean annual AGB and NPP, the model shows improvements in estimating the mean magnitudes and probability distributions for each biome, as compared with results obtained using prior simulation parameters. However, the model is less efficient in its simulation of AGB for forest type biomes. This misfit suggests that more accurate values of input parameters, specifically, grid mean AGB values and seasonal variabilities in physiological parameters, are required to improve the performance of the simulation model. (authors)

  16. Bathymetric Position Index (BPI) Structures 20 m grid derived from gridded bathymetry of Brooks Banks, Hawaii, USA.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Structures are derived from two scales of a focal mean analysis on bathymetry and slope. The grid is based on gridded (20 m cell size) multibeam bathymetry,...

  17. Bathymetric Position Index (BPI) Zones 5 m grid derived from gridded bathymetry of Brooks Banks, Hawaii, USA.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Zones are derived from a focal mean analysis on bathymetry and slope. The grid is based on gridded (5 m cell size) multibeam bathymetry, collected aboard NOAA...

  18. Bathymetric Position Index (BPI) Structures 5 m grid derived from gridded bathymetry of Kure Atoll, Hawaii, USA.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Structures are derived from two scales of a focal mean analysis on bathymetry and slope. The grid is based on gridded (5 m cell size) multibeam bathymetry,...

  19. Bathymetric Position Index (BPI) Zones 20 m grid derived from gridded bathymetry of Brooks Banks, Hawaii, USA.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Zones are derived from a focal mean analysis on bathymetry and slope. The grid is based on gridded (20 m cell size) multibeam bathymetry, collected aboard NOAA...

  20. Local-scale high-resolution atmospheric dispersion model using large-eddy simulation. LOHDIM-LES

    International Nuclear Information System (INIS)

    Nakayama, Hiromasa; Nagai, Haruyasu

    2016-03-01

    We developed LOcal-scale High-resolution atmospheric DIspersion Model using Large-Eddy Simulation (LOHDIM-LES). This dispersion model is designed based on LES which is effective to reproduce unsteady behaviors of turbulent flows and plume dispersion. The basic equations are the continuity equation, the Navier-Stokes equation, and the scalar conservation equation. Buildings and local terrain variability are resolved by high-resolution grids with a few meters and these turbulent effects are represented by immersed boundary method. In simulating atmospheric turbulence, boundary layer flows are generated by a recycling turbulent inflow technique in a driver region set up at the upstream of the main analysis region. This turbulent inflow data are imposed at the inlet of the main analysis region. By this approach, the LOHDIM-LES can provide detailed information on wind velocities and plume concentration in the investigated area. (author)

  1. Bathymetric Position Index (BPI) Zones 5 m grid derived from gridded bathymetry of Kure Atoll, Hawaii, USA.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Zones are derived from a focal mean analysis on bathymetry and slope. The grid is based on gridded (5 m cell size) multibeam bathymetry, collected aboard R/V...

  2. Accurate path integration in continuous attractor network models of grid cells.

    Science.gov (United States)

    Burak, Yoram; Fiete, Ila R

    2009-02-01

    Grid cells in the rat entorhinal cortex display strikingly regular firing responses to the animal's position in 2-D space and have been hypothesized to form the neural substrate for dead-reckoning. However, errors accumulate rapidly when velocity inputs are integrated in existing models of grid cell activity. To produce grid-cell-like responses, these models would require frequent resets triggered by external sensory cues. Such inadequacies, shared by various models, cast doubt on the dead-reckoning potential of the grid cell system. Here we focus on the question of accurate path integration, specifically in continuous attractor models of grid cell activity. We show, in contrast to previous models, that continuous attractor models can generate regular triangular grid responses, based on inputs that encode only the rat's velocity and heading direction. We consider the role of the network boundary in the integration performance of the network and show that both periodic and aperiodic networks are capable of accurate path integration, despite important differences in their attractor manifolds. We quantify the rate at which errors in the velocity integration accumulate as a function of network size and intrinsic noise within the network. With a plausible range of parameters and the inclusion of spike variability, our model networks can accurately integrate velocity inputs over a maximum of approximately 10-100 meters and approximately 1-10 minutes. These findings form a proof-of-concept that continuous attractor dynamics may underlie velocity integration in the dorsolateral medial entorhinal cortex. The simulations also generate pertinent upper bounds on the accuracy of integration that may be achieved by continuous attractor dynamics in the grid cell network. We suggest experiments to test the continuous attractor model and differentiate it from models in which single cells establish their responses independently of each other.

  3. 2.5-min gravity grid of N. America

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The dgrav gridded data set was produced by NGDC by regridding the Decade of North American (DNAG) 6-km gravity grid of N. America. A grid cell dimension of 2.5...

  4. A grid-independent EMMS/bubbling drag model for bubbling and turbulent fluidization

    DEFF Research Database (Denmark)

    Luo, Hao; Lu, Bona; Zhang, Jingyuan

    2017-01-01

    The EMMS/bubbling drag model takes the effects of meso-scale structures (i.e. bubbles) into modeling of drag coefficient and thus improves coarse-grid simulation of bubbling and turbulent fluidized beds. However, its dependence on grid size has not been fully investigated. In this article, we adopt...... a two-step scheme to extend the EMMS/bubbling model to the sub-grid level. Thus the heterogeneity index, HD, which accounts for the hydrodynamic disparity between homogeneous and heterogeneous fluidization, can be correlated as a function of both local voidage and slip velocity. Simulations over...... a periodic domain show the new drag model is less sensitive to grid size because of the additional dependence on local slip velocity. When applying the new drag model to simulations of realistic bubbling and turbulent fluidized beds, we find grid-independent results are easier to obtain for high...

  5. The AgMIP GRIDded Crop Modeling Initiative (AgGRID) and the Global Gridded Crop Model Intercomparison (GGCMI)

    Science.gov (United States)

    Elliott, Joshua; Muller, Christoff

    2015-01-01

    Climate change is a significant risk for agricultural production. Even under optimistic scenarios for climate mitigation action, present-day agricultural areas are likely to face significant increases in temperatures in the coming decades, in addition to changes in precipitation, cloud cover, and the frequency and duration of extreme heat, drought, and flood events (IPCC, 2013). These factors will affect the agricultural system at the global scale by impacting cultivation regimes, prices, trade, and food security (Nelson et al., 2014a). Global-scale evaluation of crop productivity is a major challenge for climate impact and adaptation assessment. Rigorous global assessments that are able to inform planning and policy will benefit from consistent use of models, input data, and assumptions across regions and time that use mutually agreed protocols designed by the modeling community. To ensure this consistency, large-scale assessments are typically performed on uniform spatial grids, with spatial resolution of typically 10 to 50 km, over specified time-periods. Many distinct crop models and model types have been applied on the global scale to assess productivity and climate impacts, often with very different results (Rosenzweig et al., 2014). These models are based to a large extent on field-scale crop process or ecosystems models and they typically require resolved data on weather, environmental, and farm management conditions that are lacking in many regions (Bondeau et al., 2007; Drewniak et al., 2013; Elliott et al., 2014b; Gueneau et al., 2012; Jones et al., 2003; Liu et al., 2007; M¨uller and Robertson, 2014; Van den Hoof et al., 2011;Waha et al., 2012; Xiong et al., 2014). Due to data limitations, the requirements of consistency, and the computational and practical limitations of running models on a large scale, a variety of simplifying assumptions must generally be made regarding prevailing management strategies on the grid scale in both the baseline and

  6. New Ghost-node method for linking different models with varied grid refinement

    International Nuclear Information System (INIS)

    Mehl, Steffen W.; Hill, Mary Catherine; James, Scott Carlton; Leake, Stanley A.; Zyvoloski, George A.; Dickinson, Jesse E.; Eddebbarh, Al A.

    2006-01-01

    A flexible, robust method for linking grids of locally refined models constructed with different numerical methods is needed to address a variety of hydrologic problems. This work outlines and tests a new ghost-node model-linking method for a refined 'child' model that is contained within a larger and coarser 'parent' model that is based on the iterative method of Mehl and Hill (2002, 2004). The method is applicable to steady-state solutions for ground-water flow. Tests are presented for a homogeneous two-dimensional system that has either matching grids (parent cells border an integer number of child cells; Figure 2a) or non-matching grids (parent cells border a non-integer number of child cells; Figure 2b). The coupled grids are simulated using the finite-difference and finite-element models MODFLOW and FEHM, respectively. The simulations require no alteration of the MODFLOW or FEHM models and are executed using a batch file on Windows operating systems. Results indicate that when the grids are matched spatially so that nodes and child cell boundaries are aligned, the new coupling technique has error nearly equal to that when coupling two MODFLOW models (Mehl and Hill, 2002). When the grids are non-matching, model accuracy is slightly increased over matching-grid cases. Overall, results indicate that the ghost-node technique is a viable means to accurately couple distinct models because the overall error is less than if only the regional model was used to simulate flow in the child model's domain

  7. A Reduced Wind Power Grid Model for Research and Education

    DEFF Research Database (Denmark)

    Akhmatov, Vladislav; Lund, Torsten; Hansen, Anca Daniela

    2007-01-01

    A reduced grid model of a transmission system with a number of central power plants, consumption centers, local wind turbines and a large offshore wind farm is developed and implemented in the simulation tool PowerFactory (DIgSILENT). The reduced grid model is given by Energinet.dk, Transmission...

  8. The impact of model detail on power grid resilience measures

    Science.gov (United States)

    Auer, S.; Kleis, K.; Schultz, P.; Kurths, J.; Hellmann, F.

    2016-05-01

    Extreme events are a challenge to natural as well as man-made systems. For critical infrastructure like power grids, we need to understand their resilience against large disturbances. Recently, new measures of the resilience of dynamical systems have been developed in the complex system literature. Basin stability and survivability respectively assess the asymptotic and transient behavior of a system when subjected to arbitrary, localized but large perturbations in frequency and phase. To employ these methods that assess power grid resilience, we need to choose a certain model detail of the power grid. For the grid topology we considered the Scandinavian grid and an ensemble of power grids generated with a random growth model. So far the most popular model that has been studied is the classical swing equation model for the frequency response of generators and motors. In this paper we study a more sophisticated model of synchronous machines that also takes voltage dynamics into account, and compare it to the previously studied model. This model has been found to give an accurate picture of the long term evolution of synchronous machines in the engineering literature for post fault studies. We find evidence that some stable fix points of the swing equation become unstable when we add voltage dynamics. If this occurs the asymptotic behavior of the system can be dramatically altered, and basin stability estimates obtained with the swing equation can be dramatically wrong. We also find that the survivability does not change significantly when taking the voltage dynamics into account. Further, the limit cycle type asymptotic behaviour is strongly correlated with transient voltages that violate typical operational voltage bounds. Thus, transient voltage bounds are dominated by transient frequency bounds and play no large role for realistic parameters.

  9. Comparison of mesoscale model and tower measurements of surface fluxes during Winter Icing and Storms Program/Atmospheric Radiation Measurement 91

    International Nuclear Information System (INIS)

    Oncley, S.P.; Dudhia, J.

    1994-01-01

    This study is an evaluation of the ability of the Pennsylvania State University/National Center for Atmospheric Research (NCAR) mesoscale model (MM4) to determine surface fluxes to see if measured fluxes should be assimilated into model runs. Fluxes were compared from a high-resolution (5 km grid spacing) MM4 run during one day of the Winter Icing and Storms Programs/Atmospheric Radiation Measurement (WISP/ARM) experiment (over NE Colorado in winter 1991) with direct flux measurements made from a tower over a representative site by a three-dimensional sonic anemometer and fast response temperature and humidity sensors. This tower was part of the NCAR Atmosphere-Surface Turbulent Exchange Research (ASTER) facility. Also, mean values were compared to check whether any differences were due to the model parameterization or model variables

  10. Bathymetric Position Index (BPI) Structures 10 m grid derived from gridded bathymetry of Wake Island, West Central Pacific.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Structures are derived from two scales of a focal mean analysis on bathymetry and slope. The grid is based on gridded (10 m cell size) multibeam bathymetry,...

  11. Bathymetric Position Index (BPI) Structures 5 m grid derived from gridded bathymetry of Ni'ihau Island, Hawaii, USA.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Structures are derived from two scales of a focal mean analysis on bathymetry and slope. The grid is based on gridded (5 m cell size) multibeam bathymetry,...

  12. Bathymetric Position Index (BPI) Zones 60 m grid derived from gridded bathymetry of Rota Island, Mariana Islands, USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Zones are derived from a focal mean analysis on bathymetry and slope. The grid is based on gridded (60 m cell size) multibeam bathymetry, collected aboard NOAA...

  13. Bathymetric Position Index (BPI) Structures 60 m grid derived from gridded bathymetry of Wake Island, West Central Pacific.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Structures are derived from two scales of a focal mean analysis on bathymetry and slope. The grid is based on gridded (60 m cell size) multibeam bathymetry,...

  14. Bathymetric Position Index (BPI) Zones 5 m grid derived from gridded bathymetry of French Frigate Shoals, Hawaii, USA.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Zones are derived from a focal mean analysis on bathymetry and slope. The grid is based on gridded (5 m cell size) multibeam bathymetry, collected aboard NOAA...

  15. Bathymetric Position Index (BPI) Zones 5 m grid derived from gridded bathymetry of Ni'ihau Island, Hawaii, USA.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Zones are derived from a focal mean analysis on bathymetry and slope. The grid is based on gridded (5 m cell size) multibeam bathymetry, collected aboard NOAA...

  16. Bathymetric Position Index (BPI) Structures 5 m grid derived from gridded bathymetry of French Frigate Shoals, Hawaii, USA.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Structures are derived from two scales of a focal mean analysis on bathymetry and slope. The grid is based on gridded (5 m cell size) multibeam bathymetry,...

  17. Bathymetric Position Index (BPI) Zones 60 m grid derived from gridded bathymetry of Wake Island, West Central Pacific.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Zones are derived from a focal mean analysis on bathymetry and slope. The grid is based on gridded (60 m cell size) multibeam bathymetry, collected aboard R/V...

  18. A spectral nudging method for the ACCESS1.3 atmospheric model

    Directory of Open Access Journals (Sweden)

    P. Uhe

    2015-06-01

    Full Text Available A convolution-based method of spectral nudging of atmospheric fields is developed in the Australian Community Climate and Earth Systems Simulator (ACCESS version 1.3 which uses the UK Met Office Unified Model version 7.3 as its atmospheric component. The use of convolutions allow for flexibility in application to different atmospheric grids. An approximation using one-dimensional convolutions is applied, improving the time taken by the nudging scheme by 10–30 times compared with a version using a two-dimensional convolution, without measurably degrading its performance. Care needs to be taken in the order of the convolutions and the frequency of nudging to obtain the best outcome. The spectral nudging scheme is benchmarked against a Newtonian relaxation method, nudging winds and air temperature towards ERA-Interim reanalyses. We find that the convolution approach can produce results that are competitive with Newtonian relaxation in both the effectiveness and efficiency of the scheme, while giving the added flexibility of choosing which length scales to nudge.

  19. Tracer water transport and subgrid precipitation variation within atmospheric general circulation models

    Science.gov (United States)

    Koster, Randal D.; Eagleson, Peter S.; Broecker, Wallace S.

    1988-03-01

    A capability is developed for monitoring tracer water movement in the three-dimensional Goddard Institute for Space Science Atmospheric General Circulation Model (GCM). A typical experiment with the tracer water model follows water evaporating from selected grid squares and determines where this water first returns to the Earth's surface as precipitation or condensate, thereby providing information on the lateral scales of hydrological transport in the GCM. Through a comparison of model results with observations in nature, inferences can be drawn concerning real world water transport. Tests of the tracer water model include a comparison of simulated and observed vertically-integrated vapor flux fields and simulations of atomic tritium transport from the stratosphere to the oceans. The inter-annual variability of the tracer water model results is also examined.

  20. Tracer water transport and subgrid precipitation variation within atmospheric general circulation models

    Science.gov (United States)

    Koster, Randal D.; Eagleson, Peter S.; Broecker, Wallace S.

    1988-01-01

    A capability is developed for monitoring tracer water movement in the three-dimensional Goddard Institute for Space Science Atmospheric General Circulation Model (GCM). A typical experiment with the tracer water model follows water evaporating from selected grid squares and determines where this water first returns to the Earth's surface as precipitation or condensate, thereby providing information on the lateral scales of hydrological transport in the GCM. Through a comparison of model results with observations in nature, inferences can be drawn concerning real world water transport. Tests of the tracer water model include a comparison of simulated and observed vertically-integrated vapor flux fields and simulations of atomic tritium transport from the stratosphere to the oceans. The inter-annual variability of the tracer water model results is also examined.

  1. Hydrography-driven coarsening of grid digital elevation models

    Science.gov (United States)

    Moretti, G.; Orlandini, S.

    2017-12-01

    A new grid coarsening strategy, denoted as hydrography-driven (HD) coarsening, is developed in the present study. The HD coarsening strategy is designed to retain the essential hydrographic features of surface flow paths observed in high-resolution digital elevation models (DEMs): (1) depressions are filled in the considered high-resolution DEM, (2) the obtained topographic data are used to extract a reference grid network composed of all surface flow paths, (3) the Horton order is assigned to each link of the reference grid network, and (4) within each coarse grid cell, the elevation of the point lying along the highest-order path of the reference grid network and displaying the minimum distance to the cell center is assigned to this coarse grid cell center. The capabilities of the HD coarsening strategy to provide consistent surface flow paths with respect to those observed in high-resolution DEMs are evaluated over a synthetic valley and two real drainage basins located in the Italian Alps and in the Italian Apennines. The HD coarsening is found to yield significantly more accurate surface flow path profiles than the standard nearest neighbor (NN) coarsening. In addition, the proposed strategy is found to reduce drastically the impact of depression-filling procedures in coarsened topographic data. The HD coarsening strategy is therefore advocated for all those cases in which the relief of the extracted drainage network is an important hydrographic feature. The figure below reports DEMs of a synthetic valley and extracted surface flow paths. (a) 10-m grid DEM displaying no depressions and extracted surface flow path (gray line). (b) 1-km grid DEM obtained from NN coarsening. (c) 1-km grid DEM obtained from NN coarsening plus depression-filling and extracted surface flow path (light blue line). (d) 1-km grid DEM obtained from HD coarsening and extracted surface flow path (magenta line).

  2. Evaluating 20th Century precipitation characteristics between multi-scale atmospheric models with different land-atmosphere coupling

    Science.gov (United States)

    Phillips, M.; Denning, A. S.; Randall, D. A.; Branson, M.

    2016-12-01

    Multi-scale models of the atmosphere provide an opportunity to investigate processes that are unresolved by traditional Global Climate Models while at the same time remaining viable in terms of computational resources for climate-length time scales. The MMF represents a shift away from large horizontal grid spacing in traditional GCMs that leads to overabundant light precipitation and lack of heavy events, toward a model where precipitation intensity is allowed to vary over a much wider range of values. Resolving atmospheric motions on the scale of 4 km makes it possible to recover features of precipitation, such as intense downpours, that were previously only obtained by computationally expensive regional simulations. These heavy precipitation events may have little impact on large-scale moisture and energy budgets, but are outstanding in terms of interaction with the land surface and potential impact on human life. Three versions of the Community Earth System Model were used in this study; the standard CESM, the multi-scale `Super-Parameterized' CESM where large-scale parameterizations have been replaced with a 2D cloud-permitting model, and a multi-instance land version of the SP-CESM where each column of the 2D CRM is allowed to interact with an individual land unit. These simulations were carried out using prescribed Sea Surface Temperatures for the period from 1979-2006 with daily precipitation saved for all 28 years. Comparisons of the statistical properties of precipitation between model architectures and against observations from rain gauges were made, with specific focus on detection and evaluation of extreme precipitation events.

  3. Maximum capacity model of grid-connected multi-wind farms considering static security constraints in electrical grids

    International Nuclear Information System (INIS)

    Zhou, W; Oodo, S O; He, H; Qiu, G Y

    2013-01-01

    An increasing interest in wind energy and the advance of related technologies have increased the connection of wind power generation into electrical grids. This paper proposes an optimization model for determining the maximum capacity of wind farms in a power system. In this model, generator power output limits, voltage limits and thermal limits of branches in the grid system were considered in order to limit the steady-state security influence of wind generators on the power system. The optimization model was solved by a nonlinear primal-dual interior-point method. An IEEE-30 bus system with two wind farms was tested through simulation studies, plus an analysis conducted to verify the effectiveness of the proposed model. The results indicated that the model is efficient and reasonable.

  4. Maximum capacity model of grid-connected multi-wind farms considering static security constraints in electrical grids

    Science.gov (United States)

    Zhou, W.; Qiu, G. Y.; Oodo, S. O.; He, H.

    2013-03-01

    An increasing interest in wind energy and the advance of related technologies have increased the connection of wind power generation into electrical grids. This paper proposes an optimization model for determining the maximum capacity of wind farms in a power system. In this model, generator power output limits, voltage limits and thermal limits of branches in the grid system were considered in order to limit the steady-state security influence of wind generators on the power system. The optimization model was solved by a nonlinear primal-dual interior-point method. An IEEE-30 bus system with two wind farms was tested through simulation studies, plus an analysis conducted to verify the effectiveness of the proposed model. The results indicated that the model is efficient and reasonable.

  5. Assessment of grid optimisation measures for the German transmission grid using open source grid data

    Science.gov (United States)

    Böing, F.; Murmann, A.; Pellinger, C.; Bruckmeier, A.; Kern, T.; Mongin, T.

    2018-02-01

    The expansion of capacities in the German transmission grid is a necessity for further integration of renewable energy sources into the electricity sector. In this paper, the grid optimisation measures ‘Overhead Line Monitoring’, ‘Power-to-Heat’ and ‘Demand Response in the Industry’ are evaluated and compared against conventional grid expansion for the year 2030. Initially, the methodical approach of the simulation model is presented and detailed descriptions of the grid model and the used grid data, which partly originates from open-source platforms, are provided. Further, this paper explains how ‘Curtailment’ and ‘Redispatch’ can be reduced by implementing grid optimisation measures and how the depreciation of economic costs can be determined considering construction costs. The developed simulations show that the conventional grid expansion is more efficient and implies more grid relieving effects than the evaluated grid optimisation measures.

  6. A business model for the establishment of the European grid infrastructure

    International Nuclear Information System (INIS)

    Candiello, A; Cresti, D; Ferrari, T; Mazzucato, M; Perini, L

    2010-01-01

    An international grid has been built in Europe during the past years in the framework of various EC-funded projects to support the growth of e-Science. After several years of work spent to increase the scale of the infrastructure, to expand the user community and improve the availability of the services delivered, effort is now concentrating on the creation of a new organizational model, capable of fulfilling the vision of a sustainable European grid infrastructure. The European Grid Initiative (EGI) is the proposed framework to seamlessly link at a global level the European national grid e-Infrastructures operated by the National Grid Initiatives and European International Research Organizations, and based on a European Unified Middleware Distribution, which will be the result of a joint effort of various European grid Middleware Consortia. This paper describes the requirements that EGI addresses, the actors contributing to its foundation, the offering and the organizational structure that constitute the EGI business model.

  7. A staggered-grid convolutional differentiator for elastic wave modelling

    Science.gov (United States)

    Sun, Weijia; Zhou, Binzhong; Fu, Li-Yun

    2015-11-01

    The computation of derivatives in governing partial differential equations is one of the most investigated subjects in the numerical simulation of physical wave propagation. An analytical staggered-grid convolutional differentiator (CD) for first-order velocity-stress elastic wave equations is derived in this paper by inverse Fourier transformation of the band-limited spectrum of a first derivative operator. A taper window function is used to truncate the infinite staggered-grid CD stencil. The truncated CD operator is almost as accurate as the analytical solution, and as efficient as the finite-difference (FD) method. The selection of window functions will influence the accuracy of the CD operator in wave simulation. We search for the optimal Gaussian windows for different order CDs by minimizing the spectral error of the derivative and comparing the windows with the normal Hanning window function for tapering the CD operators. It is found that the optimal Gaussian window appears to be similar to the Hanning window function for tapering the same CD operator. We investigate the accuracy of the windowed CD operator and the staggered-grid FD method with different orders. Compared to the conventional staggered-grid FD method, a short staggered-grid CD operator achieves an accuracy equivalent to that of a long FD operator, with lower computational costs. For example, an 8th order staggered-grid CD operator can achieve the same accuracy of a 16th order staggered-grid FD algorithm but with half of the computational resources and time required. Numerical examples from a homogeneous model and a crustal waveguide model are used to illustrate the superiority of the CD operators over the conventional staggered-grid FD operators for the simulation of wave propagations.

  8. Model-driven development of smart grid services using SoaML

    DEFF Research Database (Denmark)

    Kosek, Anna Magdalena; Gehrke, Oliver

    2014-01-01

    This paper presents a model-driven software devel- opment process which can be applied to the design of smart grid services. The Service Oriented Architecture Modelling Language (SoaML) is used to describe the architecture as well as the roles and interactions between service participants....... The individual modelling steps and an example design of a SoaML model for a voltage control service are presented and explained. Finally, the paper discusses a proof-of-concept implementation of the modelled service in a smart grid testing laboratory....

  9. Bathymetric Position Index (BPI) Zones 60 m grid derived from gridded bathymetry of the U.S. Territory of Guam.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Zones are derived from a focal mean analysis on bathymetry and slope. The grid is based on gridded (60 m cell size) multibeam bathymetry, collected aboard NOAA...

  10. Bathymetric Position Index (BPI) Structures 5 m grid derived from gridded bathymetry of Pearl and Hermes Atoll, Hawaii, USA.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Structures are derived from two scales of a focal mean analysis on bathymetry and slope. The grid is based on gridded (5 m cell size) multibeam bathymetry,...

  11. 3D MODEL ATMOSPHERES FOR EXTREMELY LOW-MASS WHITE DWARFS

    Energy Technology Data Exchange (ETDEWEB)

    Tremblay, P.-E. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD, 21218 (United States); Gianninas, A.; Kilic, M. [Department of Physics and Astronomy, University of Oklahoma, 440 W. Brooks St., Norman, OK, 73019 (United States); Ludwig, H.-G. [Zentrum für Astronomie der Universität Heidelberg, Landessternwarte, Königstuhl 12, D-69117 Heidelberg (Germany); Steffen, M. [Leibniz-Institut für Astrophysik Potsdam, An der Sternwarte 16, D-14482 Potsdam (Germany); Freytag, B. [Department of Physics and Astronomy at Uppsala University, Regementsvägen 1, Box 516, SE-75120 Uppsala (Sweden); Hermes, J. J., E-mail: tremblay@stsci.edu [Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom)

    2015-08-20

    We present an extended grid of mean three-dimensional (3D) spectra for low-mass, pure-hydrogen atmosphere DA white dwarfs (WDs). We use CO5BOLD radiation-hydrodynamics 3D simulations covering T{sub eff} = 6000–11,500 K and log g = 5–6.5 (g in cm s{sup −2}) to derive analytical functions to convert spectroscopically determined 1D temperatures and surface gravities to 3D atmospheric parameters. Along with the previously published 3D models, the 1D to 3D corrections are now available for essentially all known convective DA WDs (i.e., log g = 5–9). For low-mass WDs, the correction in temperature is relatively small (a few percent at the most), but the surface gravities measured from the 3D models are lower by as much as 0.35 dex. We revisit the spectroscopic analysis of the extremely low-mass (ELM) WDs, and demonstrate that the 3D models largely resolve the discrepancies seen in the radius and mass measurements for relatively cool ELM WDs in eclipsing double WD and WD + millisecond pulsar binary systems. We also use the 3D corrections to revise the boundaries of the ZZ Ceti instability strip, including the recently found ELM pulsators.

  12. Gridded bathymetry of Penguin Bank, Hawaii, USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded bathymetry (5 m cell size) of Penguin Bank, Hawaii, USA. The netCDF grid and ArcGIS ASCII file include multibeam bathymetry from the Simrad EM3002d, and...

  13. Bathymetric Position Index (BPI) Zones 5 m grid derived from gridded bathymetry of Pearl and Hermes Atoll, Hawaii, USA.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Zones are derived from a focal mean analysis on bathymetry and slope. The grid is based on gridded (5 m cell size) multibeam bathymetry, collected aboard R/V...

  14. Rugosity grid derived from gridded bathymetry of Kure Atoll, Hawaii, USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Rugosity is derived from gridded (5 m cell size) multibeam bathymetry, collected aboard NOAA Ship Hiialaka'i and R/V AHI, and IKONOS derived depths using the Benthic...

  15. Estimation of the time-dependent radioactive source-term from the Fukushima nuclear power plant accident using atmospheric transport modelling

    Science.gov (United States)

    Schoeppner, M.; Plastino, W.; Budano, A.; De Vincenzi, M.; Ruggieri, F.

    2012-04-01

    Several nuclear reactors at the Fukushima Dai-ichi power plant have been severely damaged from the Tōhoku earthquake and the subsequent tsunami in March 2011. Due to the extremely difficult on-site situation it has been not been possible to directly determine the emissions of radioactive material. However, during the following days and weeks radionuclides of 137-Caesium and 131-Iodine (amongst others) were detected at monitoring stations throughout the world. Atmospheric transport models are able to simulate the worldwide dispersion of particles accordant to location, time and meteorological conditions following the release. The Lagrangian atmospheric transport model Flexpart is used by many authorities and has been proven to make valid predictions in this regard. The Flexpart software has first has been ported to a local cluster computer at the Grid Lab of INFN and Department of Physics of University of Roma Tre (Rome, Italy) and subsequently also to the European Mediterranean Grid (EUMEDGRID). Due to this computing power being available it has been possible to simulate the transport of particles originating from the Fukushima Dai-ichi plant site. Using the time series of the sampled concentration data and the assumption that the Fukushima accident was the only source of these radionuclides, it has been possible to estimate the time-dependent source-term for fourteen days following the accident using the atmospheric transport model. A reasonable agreement has been obtained between the modelling results and the estimated radionuclide release rates from the Fukushima accident.

  16. A Costing Analysis for Decision Making Grid Model in Failure-Based Maintenance

    Directory of Open Access Journals (Sweden)

    Burhanuddin M. A.

    2011-01-01

    Full Text Available Background. In current economic downturn, industries have to set good control on production cost, to maintain their profit margin. Maintenance department as an imperative unit in industries should attain all maintenance data, process information instantaneously, and subsequently transform it into a useful decision. Then act on the alternative to reduce production cost. Decision Making Grid model is used to identify strategies for maintenance decision. However, the model has limitation as it consider two factors only, that is, downtime and frequency of failures. We consider third factor, cost, in this study for failure-based maintenance. The objective of this paper is to introduce the formulae to estimate maintenance cost. Methods. Fish bone analysis conducted with Ishikawa model and Decision Making Grid methods are used in this study to reveal some underlying risk factors that delay failure-based maintenance. The goal of the study is to estimate the risk factor that is, repair cost to fit in the Decision Making Grid model. Decision Making grid model consider two variables, frequency of failure and downtime in the analysis. This paper introduces third variable, repair cost for Decision Making Grid model. This approaches give better result to categorize the machines, reduce cost, and boost the earning for the manufacturing plant. Results. We collected data from one of the food processing factories in Malaysia. From our empirical result, Machine C, Machine D, Machine F, and Machine I must be in the Decision Making Grid model even though their frequency of failures and downtime are less than Machine B and Machine N, based on the costing analysis. The case study and experimental results show that the cost analysis in Decision Making Grid model gives more promising strategies in failure-based maintenance. Conclusions. The improvement of Decision Making Grid model for decision analysis with costing analysis is our contribution in this paper for

  17. A Two-Dimensional Gridded Solar Forecasting System using Situation-Dependent Blending of Multiple Weather Models

    Science.gov (United States)

    Lu, S.; Hwang, Y.; Shao, X.; Hamann, H.

    2015-12-01

    Previously, we reported the application of a "weather situation" dependent multi-model blending approach to improve the forecast accuracy of solar irradiance and other atmospheric parameters. The approach uses machine-learning techniques to classify "weather situations" by a set of atmospheric parameters. The "weather situation" classification is location-dependent and each "weather situation" has characteristic forecast errors from a set of individual input numerical weather prediction (NWP) models. The input models are thus corrected or combined differently for different "weather situations" to minimize the overall forecast error. While the original implementation of the model-blending is applicable to only point-like locations having historical data of both measurements and forecasts, here we extend the approach to provide two-dimensional (2D) gridded forecasts. An experimental 2D forecasting system has been set up to provide gridded forecasts of solar irradiance (global horizontal irradiance), temperature, wind speed, and humidity for the contiguous United States (CONUS). Validation results show around 30% enhancement of 0 to 48 hour ahead solar irradiance forecast accuracy compared to the best input NWP model. The forecasting system may be leveraged by other site- or region-specific solar energy forecast products. To enable the 2D forecasting system, historical solar irradiance measurements from around 1,600 selected sites of the remote automated weather stations (RAWS) network have been employed. The CONUS was divided into smaller sub-regions, each containing a group of 10 to 20 RAWS sites. A group of sites, as classified by statistical analysis, have similar "weather patterns", i.e. the NWPs have similar "weather situation" dependent forecast errors for all sites in a group. The model-blending trained by the historical data from a group of sites is then applied for all locations in the corresponding sub-region. We discuss some key techniques developed for

  18. Estimation of Global 1km-grid Terrestrial Carbon Exchange Part I: Developing Inputs and Modelling

    Science.gov (United States)

    Sasai, T.; Murakami, K.; Kato, S.; Matsunaga, T.; Saigusa, N.; Hiraki, K.

    2015-12-01

    Global terrestrial carbon cycle largely depends on a spatial pattern in land cover type, which is heterogeneously-distributed over regional and global scales. However, most studies, which aimed at the estimation of carbon exchanges between ecosystem and atmosphere, remained within several tens of kilometers grid spatial resolution, and the results have not been enough to understand the detailed pattern of carbon exchanges based on ecological community. Improving the sophistication of spatial resolution is obviously necessary to enhance the accuracy of carbon exchanges. Moreover, the improvement may contribute to global warming awareness, policy makers and other social activities. In this study, we show global terrestrial carbon exchanges (net ecosystem production, net primary production, and gross primary production) with 1km-grid resolution. As methodology for computing the exchanges, we 1) developed a global 1km-grid climate and satellite dataset based on the approach in Setoyama and Sasai (2013); 2) used the satellite-driven biosphere model (Biosphere model integrating Eco-physiological And Mechanistic approaches using Satellite data: BEAMS) (Sasai et al., 2005, 2007, 2011); 3) simulated the carbon exchanges by using the new dataset and BEAMS by the use of a supercomputer that includes 1280 CPU and 320 GPGPU cores (GOSAT RCF of NIES). As a result, we could develop a global uniform system for realistically estimating terrestrial carbon exchange, and evaluate net ecosystem production in each community level; leading to obtain highly detailed understanding of terrestrial carbon exchanges.

  19. A priori modeling of chemical reactions on computational grid platforms: Workflows and data models

    International Nuclear Information System (INIS)

    Rampino, S.; Monari, A.; Rossi, E.; Evangelisti, S.; Laganà, A.

    2012-01-01

    Graphical abstract: The quantum framework of the Grid Empowered Molecular Simulator GEMS assembled on the European Grid allows the ab initio evaluation of the dynamics of small systems starting from the calculation of the electronic properties. Highlights: ► The grid based GEMS simulator accurately models small chemical systems. ► Q5Cost and D5Cost file formats provide interoperability in the workflow. ► Benchmark runs on H + H 2 highlight the Grid empowering. ► O + O 2 and N + N 2 calculated k (T)’s fall within the error bars of the experiment. - Abstract: The quantum framework of the Grid Empowered Molecular Simulator GEMS has been assembled on the segment of the European Grid devoted to the Computational Chemistry Virtual Organization. The related grid based workflow allows the ab initio evaluation of the dynamics of small systems starting from the calculation of the electronic properties. Interoperability between computational codes across the different stages of the workflow was made possible by the use of the common data formats Q5Cost and D5Cost. Illustrative benchmark runs have been performed on the prototype H + H 2 , N + N 2 and O + O 2 gas phase exchange reactions and thermal rate coefficients have been calculated for the last two. Results are discussed in terms of the modeling of the interaction and advantages of using the Grid is highlighted.

  20. Challenges in Modeling of the Global Atmosphere

    Science.gov (United States)

    Janjic, Zavisa; Djurdjevic, Vladimir; Vasic, Ratko; Black, Tom

    2015-04-01

    The massively parallel computer architectures require that some widely adopted modeling paradigms be reconsidered in order to utilize more productively the power of parallel processing. For high computational efficiency with distributed memory, each core should work on a small subdomain of the full integration domain, and exchange only few rows of halo data with the neighbouring cores. However, the described scenario implies that the discretization used in the model is horizontally local. The spherical geometry further complicates the problem. Various grid topologies will be discussed and examples will be shown. The latitude-longitude grid with local in space and explicit in time differencing has been an early choice and remained in use ever since. The problem with this method is that the grid size in the longitudinal direction tends to zero as the poles are approached. So, in addition to having unnecessarily high resolution near the poles, polar filtering has to be applied in order to use a time step of decent size. However, the polar filtering requires transpositions involving extra communications. The spectral transform method and the semi-implicit semi-Lagrangian schemes opened the way for a wide application of the spectral representation. With some variations, these techniques are used in most major centers. However, the horizontal non-locality is inherent to the spectral representation and implicit time differencing, which inhibits scaling on a large number of cores. In this respect the lat-lon grid with a fast Fourier transform represents a significant step in the right direction, particularly at high resolutions where the Legendre transforms become increasingly expensive. Other grids with reduced variability of grid distances such as various versions of the cubed sphere and the hexagonal/pentagonal ("soccer ball") grids were proposed almost fifty years ago. However, on these grids, large-scale (wavenumber 4 and 5) fictitious solutions ("grid imprinting

  1. Extracting Urban Morphology for Atmospheric Modeling from Multispectral and SAR Satellite Imagery

    Science.gov (United States)

    Wittke, S.; Karila, K.; Puttonen, E.; Hellsten, A.; Auvinen, M.; Karjalainen, M.

    2017-05-01

    This paper presents an approach designed to derive an urban morphology map from satellite data while aiming to minimize the cost of data and user interference. The approach will help to provide updates to the current morphological databases around the world. The proposed urban morphology maps consist of two layers: 1) Digital Elevation Model (DEM) and 2) land cover map. Sentinel-2 data was used to create a land cover map, which was realized through image classification using optical range indices calculated from image data. For the purpose of atmospheric modeling, the most important classes are water and vegetation areas. The rest of the area includes bare soil and built-up areas among others, and they were merged into one class in the end. The classification result was validated with ground truth data collected both from field measurements and aerial imagery. The overall classification accuracy for the three classes is 91 %. TanDEM-X data was processed into two DEMs with different grid sizes using interferometric SAR processing. The resulting DEM has a RMSE of 3.2 meters compared to a high resolution DEM, which was estimated through 20 control points in flat areas. Comparing the derived DEM with the ground truth DEM from airborne LIDAR data, it can be seen that the street canyons, that are of high importance for urban atmospheric modeling are not detectable in the TanDEM-X DEM. However, the derived DEM is suitable for a class of urban atmospheric models. Based on the numerical modeling needs for regional atmospheric pollutant dispersion studies, the generated files enable the extraction of relevant parametrizations, such as Urban Canopy Parameters (UCP).

  2. EXTRACTING URBAN MORPHOLOGY FOR ATMOSPHERIC MODELING FROM MULTISPECTRAL AND SAR SATELLITE IMAGERY

    Directory of Open Access Journals (Sweden)

    S. Wittke

    2017-05-01

    Full Text Available This paper presents an approach designed to derive an urban morphology map from satellite data while aiming to minimize the cost of data and user interference. The approach will help to provide updates to the current morphological databases around the world. The proposed urban morphology maps consist of two layers: 1 Digital Elevation Model (DEM and 2 land cover map. Sentinel-2 data was used to create a land cover map, which was realized through image classification using optical range indices calculated from image data. For the purpose of atmospheric modeling, the most important classes are water and vegetation areas. The rest of the area includes bare soil and built-up areas among others, and they were merged into one class in the end. The classification result was validated with ground truth data collected both from field measurements and aerial imagery. The overall classification accuracy for the three classes is 91 %. TanDEM-X data was processed into two DEMs with different grid sizes using interferometric SAR processing. The resulting DEM has a RMSE of 3.2 meters compared to a high resolution DEM, which was estimated through 20 control points in flat areas. Comparing the derived DEM with the ground truth DEM from airborne LIDAR data, it can be seen that the street canyons, that are of high importance for urban atmospheric modeling are not detectable in the TanDEM-X DEM. However, the derived DEM is suitable for a class of urban atmospheric models. Based on the numerical modeling needs for regional atmospheric pollutant dispersion studies, the generated files enable the extraction of relevant parametrizations, such as Urban Canopy Parameters (UCP.

  3. High-resolution subgrid models: background, grid generation, and implementation

    Science.gov (United States)

    Sehili, Aissa; Lang, Günther; Lippert, Christoph

    2014-04-01

    The basic idea of subgrid models is the use of available high-resolution bathymetric data at subgrid level in computations that are performed on relatively coarse grids allowing large time steps. For that purpose, an algorithm that correctly represents the precise mass balance in regions where wetting and drying occur was derived by Casulli (Int J Numer Method Fluids 60:391-408, 2009) and Casulli and Stelling (Int J Numer Method Fluids 67:441-449, 2010). Computational grid cells are permitted to be wet, partially wet, or dry, and no drying threshold is needed. Based on the subgrid technique, practical applications involving various scenarios were implemented including an operational forecast model for water level, salinity, and temperature of the Elbe Estuary in Germany. The grid generation procedure allows a detailed boundary fitting at subgrid level. The computational grid is made of flow-aligned quadrilaterals including few triangles where necessary. User-defined grid subdivision at subgrid level allows a correct representation of the volume up to measurement accuracy. Bottom friction requires a particular treatment. Based on the conveyance approach, an appropriate empirical correction was worked out. The aforementioned features make the subgrid technique very efficient, robust, and accurate. Comparison of predicted water levels with the comparatively highly resolved classical unstructured grid model shows very good agreement. The speedup in computational performance due to the use of the subgrid technique is about a factor of 20. A typical daily forecast can be carried out in less than 10 min on a standard PC-like hardware. The subgrid technique is therefore a promising framework to perform accurate temporal and spatial large-scale simulations of coastal and estuarine flow and transport processes at low computational cost.

  4. MAGNETOHYDRODYNAMIC MODELING OF SOLAR SYSTEM PROCESSES ON GEODESIC GRIDS

    Energy Technology Data Exchange (ETDEWEB)

    Florinski, V. [Department of Physics, University of Alabama, Huntsville, AL 35899 (United States); Guo, X. [Center for Space Plasma and Aeronomic Research, University of Alabama, Huntsville, AL 35899 (United States); Balsara, D. S.; Meyer, C. [Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States)

    2013-04-01

    This report describes a new magnetohydrodynamic numerical model based on a hexagonal spherical geodesic grid. The model is designed to simulate astrophysical flows of partially ionized plasmas around a central compact object, such as a star or a planet with a magnetic field. The geodesic grid, produced by a recursive subdivision of a base platonic solid (an icosahedron), is free from control volume singularities inherent in spherical polar grids. Multiple populations of plasma and neutral particles, coupled via charge-exchange interactions, can be simulated simultaneously with this model. Our numerical scheme uses piecewise linear reconstruction on a surface of a sphere in a local two-dimensional 'Cartesian' frame. The code employs Haarten-Lax-van-Leer-type approximate Riemann solvers and includes facilities to control the divergence of the magnetic field and maintain pressure positivity. Several test solutions are discussed, including a problem of an interaction between the solar wind and the local interstellar medium, and a simulation of Earth's magnetosphere.

  5. MAGNETOHYDRODYNAMIC MODELING OF SOLAR SYSTEM PROCESSES ON GEODESIC GRIDS

    International Nuclear Information System (INIS)

    Florinski, V.; Guo, X.; Balsara, D. S.; Meyer, C.

    2013-01-01

    This report describes a new magnetohydrodynamic numerical model based on a hexagonal spherical geodesic grid. The model is designed to simulate astrophysical flows of partially ionized plasmas around a central compact object, such as a star or a planet with a magnetic field. The geodesic grid, produced by a recursive subdivision of a base platonic solid (an icosahedron), is free from control volume singularities inherent in spherical polar grids. Multiple populations of plasma and neutral particles, coupled via charge-exchange interactions, can be simulated simultaneously with this model. Our numerical scheme uses piecewise linear reconstruction on a surface of a sphere in a local two-dimensional 'Cartesian' frame. The code employs Haarten-Lax-van-Leer-type approximate Riemann solvers and includes facilities to control the divergence of the magnetic field and maintain pressure positivity. Several test solutions are discussed, including a problem of an interaction between the solar wind and the local interstellar medium, and a simulation of Earth's magnetosphere.

  6. Fluidized bed catalytic cracking regenerator model: grid effects

    Energy Technology Data Exchange (ETDEWEB)

    Errazu, A.F. (Universidad Nacional del Sur, Conicet, Argentina); De Lasa, H.I.; Sarti, F.

    1979-04-01

    A grid model including thermal effects is proposed. The aim is the simulation of a fluidized catalytic cracking regenerator similar to the industrial unit of Destileria La Palta, YPF, Argentina. It is demonstrated that a simple C.S.T.R. model without bypass of gas feed entering the bed provides a good approach for representing the fluidized bed including the grid region. In addition, by means of the C.S.T.R. model, it is shown that there exist two characteristic operating regions: a zone where (C/sub 0//sup 0/ to C/sub c/) depends on the initial coke concentration and a zone where (C/sub c//sub 0/ to C/sub c/) is controlled by oxygen supply. 40 references, 6 figures, 5 tables.

  7. Quantitative modelling and analysis of a Chinese smart grid: a stochastic model checking case study

    DEFF Research Database (Denmark)

    Yuksel, Ender; Nielson, Hanne Riis; Nielson, Flemming

    2014-01-01

    Cyber-physical systems integrate information and communication technology with the physical elements of a system, mainly for monitoring and controlling purposes. The conversion of traditional power grid into a smart grid, a fundamental example of a cyber-physical system, raises a number of issues...... that require novel methods and applications. One of the important issues in this context is the verification of certain quantitative properties of the system. In this paper, we consider a specific Chinese smart grid implementation as a case study and address the verification problem for performance and energy...... consumption.We employ stochastic model checking approach and present our modelling and analysis study using PRISM model checker....

  8. Four-dimensional variational data assimilation for inverse modelling of atmospheric methane emissions: method and comparison with synthesis inversion

    Directory of Open Access Journals (Sweden)

    J. F. Meirink

    2008-11-01

    Full Text Available A four-dimensional variational (4D-Var data assimilation system for inverse modelling of atmospheric methane emissions is presented. The system is based on the TM5 atmospheric transport model. It can be used for assimilating large volumes of measurements, in particular satellite observations and quasi-continuous in-situ observations, and at the same time it enables the optimization of a large number of model parameters, specifically grid-scale emission rates. Furthermore, the variational method allows to estimate uncertainties in posterior emissions. Here, the system is applied to optimize monthly methane emissions over a 1-year time window on the basis of surface observations from the NOAA-ESRL network. The results are rigorously compared with an analogous inversion by Bergamaschi et al. (2007, which was based on the traditional synthesis approach. The posterior emissions as well as their uncertainties obtained in both inversions show a high degree of consistency. At the same time we illustrate the advantage of 4D-Var in reducing aggregation errors by optimizing emissions at the grid scale of the transport model. The full potential of the assimilation system is exploited in Meirink et al. (2008, who use satellite observations of column-averaged methane mixing ratios to optimize emissions at high spatial resolution, taking advantage of the zooming capability of the TM5 model.

  9. Bathymetric Position Index (BPI) Zones 5 m grid derived from gridded bathymetry of Tau Island, Territory of American Samoa, USA.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Zones are derived from a focal mean analysis on bathymetry and slope. The grid is based on gridded (5 m cell size) multibeam bathymetry, collected aboard R/V...

  10. ATTILA - Atmospheric Tracer Transport In a Langrangian Model

    Energy Technology Data Exchange (ETDEWEB)

    Reithmeier, C.; Sausen, R.

    2000-07-01

    The Lagrangian model ATTILA (atmospheric tracer transport in a Lagrangian model) has been developed to treat the global-scale transport of passive trace species in the atmosphere within the framework of a general circulation model (GCM). ATTILA runs online within the GCM ECHAM4 and uses the GCM produced wind field to advect the centrois of 80.000 to 180.000 constant mass air parcels into which the model atmosphere is divided. Each trace constituent is thereby represented by a mass mixing ratio in each parcel. ATTILA contains state-of-the-art parameterizations of convection, turbulent boundary layer mixing, and interparcel transport and provides an algorithm to map the tracer concentrations from the trajectories to the ECHAM model grid. We use two experiments to evaluate the transport characteristics of ATTILA against observations and the standard semiLagrangian transport scheme of ECHAM. In the first experiment we simulate the distribution of the short-lived tracer Radon ({sup 222}Rn) in order to examine fast vertical transport over continents, and long-range transport from the continents to remote areas. In the second experiment, we simulate the distribution of radiocarbon ({sup 14}C) that was injected into the northern stratosphere during the nuclear weapon tests in the early 60ties, in order to examine upper tropospheric and stratospheric transport characteristics. ATTILA compares well to the observations and in many respects to the semiLagrangian scheme. However, contrary to the semiLagrangian scheme, ATTILA shows a greatly reduced meridional transport in the upper troposphere and lower stratosphere, and a reduced downward flux from the stratosphere to the troposphere, especially in midlatitudes. Since both transport schemes use the same model meteorology, we conclude that the often cited enhanced meridional transport and overestimated downward flux in ECHAM as described above is rather due to the numerical properties of the semiLagrangian scheme than due to an

  11. Parameterized Finite Element Modeling and Buckling Analysis of Six Typical Composite Grid Cylindrical Shells

    Science.gov (United States)

    Lai, Changliang; Wang, Junbiao; Liu, Chuang

    2014-10-01

    Six typical composite grid cylindrical shells are constructed by superimposing three basic types of ribs. Then buckling behavior and structural efficiency of these shells are analyzed under axial compression, pure bending, torsion and transverse bending by finite element (FE) models. The FE models are created by a parametrical FE modeling approach that defines FE models with original natural twisted geometry and orients cross-sections of beam elements exactly. And the approach is parameterized and coded by Patran Command Language (PCL). The demonstrations of FE modeling indicate the program enables efficient generation of FE models and facilitates parametric studies and design of grid shells. Using the program, the effects of helical angles on the buckling behavior of six typical grid cylindrical shells are determined. The results of these studies indicate that the triangle grid and rotated triangle grid cylindrical shell are more efficient than others under axial compression and pure bending, whereas under torsion and transverse bending, the hexagon grid cylindrical shell is most efficient. Additionally, buckling mode shapes are compared and provide an understanding of composite grid cylindrical shells that is useful in preliminary design of such structures.

  12. Assessing the Uncertainty of Tropical Cyclone Simulations in NCAR's Community Atmosphere Model

    Directory of Open Access Journals (Sweden)

    Kevin A Reed

    2011-08-01

    Full Text Available The paper explores the impact of the initial-data, parameter and structural model uncertainty on the simulation of a tropical cyclone-like vortex in the National Center for Atmospheric Research's (NCAR Community Atmosphere Model (CAM. An analytic technique is used to initialize the model with an idealized weak vortex that develops into a tropical cyclone over ten simulation days. A total of 78 ensemble simulations are performed at horizontal grid spacings of 1.0°, 0.5° and 0.25° using two recently released versions of the model, CAM 4 and CAM 5. The ensemble members represent simulations with random small-amplitude perturbations of the initial conditions, small shifts in the longitudinal position of the initial vortex and runs with slightly altered model parameters. The main distinction between CAM 4 and CAM 5 lies within the physical parameterization suite, and the simulations with both CAM versions at the varying resolutions assess the structural model uncertainty. At all resolutions storms are produced with many tropical cyclone-like characteristics. The CAM 5 simulations exhibit more intense storms than CAM 4 by day 10 at the 0.5° and 0.25° grid spacings, while the CAM 4 storm at 1.0° is stronger. There are also distinct differences in the shapes and vertical profiles of the storms in the two variants of CAM. The ensemble members show no distinction between the initial-data and parameter uncertainty simulations. At day 10 they produce ensemble root-mean-square deviations from an unperturbed control simulation on the order of 1--5 m s-1 for the maximum low-level wind speed and 2--10 hPa for the minimum surface pressure. However, there are large differences between the two CAM versions at identical horizontal resolutions. It suggests that the structural uncertainty is more dominant than the initial-data and parameter uncertainties in this study. The uncertainty among the ensemble members is assessed and quantified.

  13. Gridded emission inventory of short-chain chlorinated paraffins and its validation in China.

    Science.gov (United States)

    Jiang, Wanyanhan; Huang, Tao; Mao, Xiaoxuan; Wang, Li; Zhao, Yuan; Jia, Chenhui; Wang, Yanan; Gao, Hong; Ma, Jianmin

    2017-01-01

    China produces approximately 20%-30% of the total global chlorinated paraffins (CPs). The establishment of a short-chain CP (SCCP) emission inventory is a significant step toward risk assessment and regulation of SCCPs in China and throughout the globe. This study developed a gridded SCCPs emission inventory with a 1/4° longitude by 1/4° latitude resolution from 2008 to 2012 for China, which was based on the total annual CPs emissions for the nation. The total national SCCPs emission during this 5-year period was 5651.5 tons. An additive in metal cutting fluids was a major emission source in China, contributing 2680.2 tons to the total atmospheric emissions of SCCPs from 2008 to 2012, followed by the production of CPs (2281.8 tons), plasticizers (514.3 tons), flame retardants (108.6 tons), and net import (66.6 tons). Most of these emission sources are located along the eastern seaboard of China and southern China. A coupled atmospheric transport model was employed to simulate environmental contamination by SCCPs using the gridded emission inventory of SCCPs from 2008 to 2012 as the model initial conditions. Simulated atmospheric and soil concentrations were compared with field monitoring data to validate the emission inventory. The results showed good consistency between modeled and field sampling data, supporting the reliability and credibility of the gridded SCCPs emission inventory that was developed in the present study. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Bathymetric Position Index (BPI) Zones 5 m grid derived from gridded bathymetry of Rose Atoll, Territory of American Samoa, USA.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Zones are derived from a focal mean analysis on bathymetry and slope. The grid is based on gridded (5 m cell size) multibeam bathymetry, collected aboard R/V AHI...

  15. Modeling storage and demand management in power distribution grids

    International Nuclear Information System (INIS)

    Schroeder, Andreas

    2011-01-01

    Grahical abstract: The model informs an optimal investment sizing decision as regards specific 'smart grid' applications such as storage facilities and meters enabling load control. Results indicate that central storage facilities are a more promising option for generation cost reductions as compared to demand management. Highlights: → Stochastic versus deterministic model increases investment efficiency up to 5%. → Deterministic model under-estimates value of load control and storage. → Battery storage is beneficial at investment cost below 850 EUR/MW h. → Demand management equipment is not beneficial at cost beyond 200 EUR. → The stylized 10 kV grid constitutes no shortage factor. -- Abstract: Storage devices and demand control may constitute beneficial tools to optimize electricity generation with a large share of intermittent resources through inter-temporal substitution of load. This paper quantifies the related cost reductions in a simulation model of a simplified stylized medium-voltage grid (10 kV) under uncertain demand and wind output. Benders Decomposition Method is applied to create a two-stage stochastic optimization program. The model informs an optimal investment sizing decision as regards specific 'smart' applications such as storage facilities and meters enabling load control. Model results indicate that central storage facilities are a more promising option for generation cost reductions as compared to demand management. Grid extensions are not appropriate in any of the scenarios. A sensitivity analysis is applied with respect to the market penetration of uncoordinated Plug-In Electric Vehicles which are found to strongly encourage investment into load control equipment for 'smart' charging and slightly improve the case for central storage devices.

  16. 5-minute Gridded Global Relief Data (ETOPO5)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Earth topography five minute grid (ETOPO5) is a gridded data base of worldwide elevations derived from several sources at a resolution of 5 minutes of latitude and...

  17. Mosaic of gridded multibeam bathymetry, gridded LiDAR bathymetry and bathymetry derived from multispectral IKONOS satellite imagery of Tinian Island, Commonwealth of the Northern Marianas Islands, USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded multibeam bathymetry is integrated with gridded LiDAR bathymetry and bathymetry derived from multispectral IKONOS satellite data. Gridded (5 m cell size)...

  18. Bathymetric Position Index (BPI) Structures 40 m grid derived from gridded bathymetry of Howland Island, Pacific Remote Island Areas, Central Pacific.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Structures are derived from two scales of a focal mean analysis on bathymetry and slope. The grid is based on gridded (40 m cell size) multibeam bathymetry,...

  19. Bathymetric Position Index (BPI) Structures 20 m grid derived from gridded bathymetry of Johnston Island, Pacific Remote Island Areas, Central Pacific.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Structures are derived from two scales of a focal mean analysis on bathymetry and slope. The grid is based on gridded (20 m cell size) multibeam bathymetry,...

  20. Bathymetric Position Index (BPI) Structures 20 m grid derived from gridded bathymetry of Baker Island, Pacific Remote Island Areas, Central Pacific.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Structures are derived from two scales of a focal mean analysis on bathymetry and slope. The grid is based on gridded (20 m cell size) multibeam bathymetry,...

  1. Bathymetric Position Index (BPI) Structures 5 m grid derived from gridded bathymetry of Ta'u Island, Territory of American Samoa, USA.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Structures are derived from two scales of a focal mean analysis on bathymetry and slope. The grid is based on gridded (5 m cell size) multibeam bathymetry,...

  2. U.S. Topographic Grid

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — isotop.bin - topographic data for conterminous U.S. projected on an 8 km grid. Projection is Albers, central meridian = 96 degrees West, base latitude = 0 degrees...

  3. On the use of Schwarz-Christoffel conformal mappings to the grid generation for global ocean models

    Science.gov (United States)

    Xu, S.; Wang, B.; Liu, J.

    2015-10-01

    In this article we propose two grid generation methods for global ocean general circulation models. Contrary to conventional dipolar or tripolar grids, the proposed methods are based on Schwarz-Christoffel conformal mappings that map areas with user-prescribed, irregular boundaries to those with regular boundaries (i.e., disks, slits, etc.). The first method aims at improving existing dipolar grids. Compared with existing grids, the sample grid achieves a better trade-off between the enlargement of the latitudinal-longitudinal portion and the overall smooth grid cell size transition. The second method addresses more modern and advanced grid design requirements arising from high-resolution and multi-scale ocean modeling. The generated grids could potentially achieve the alignment of grid lines to the large-scale coastlines, enhanced spatial resolution in coastal regions, and easier computational load balance. Since the grids are orthogonal curvilinear, they can be easily utilized by the majority of ocean general circulation models that are based on finite difference and require grid orthogonality. The proposed grid generation algorithms can also be applied to the grid generation for regional ocean modeling where complex land-sea distribution is present.

  4. Modeling and Grid impedance Variation Analysis of Parallel Connected Grid Connected Inverter based on Impedance Based Harmonic Analysis

    DEFF Research Database (Denmark)

    Kwon, JunBum; Wang, Xiongfei; Bak, Claus Leth

    2014-01-01

    This paper addresses the harmonic compensation error problem existing with parallel connected inverter in the same grid interface conditions by means of impedance-based analysis and modeling. Unlike the single grid connected inverter, it is found that multiple parallel connected inverters and grid...... impedance can make influence to each other if they each have a harmonic compensation function. The analysis method proposed in this paper is based on the relationship between the overall output impedance and input impedance of parallel connected inverter, where controller gain design method, which can...

  5. Maturity Model for Advancing Smart Grid Interoperability

    Energy Technology Data Exchange (ETDEWEB)

    Knight, Mark; Widergren, Steven E.; Mater, J.; Montgomery, Austin

    2013-10-28

    Abstract—Interoperability is about the properties of devices and systems to connect and work properly. Advancing interoperability eases integration and maintenance of the resulting interconnection. This leads to faster integration, lower labor and component costs, predictability of projects and the resulting performance, and evolutionary paths for upgrade. When specifications are shared and standardized, competition and novel solutions can bring new value streams to the community of stakeholders involved. Advancing interoperability involves reaching agreement for how things join at their interfaces. The quality of the agreements and the alignment of parties involved in the agreement present challenges that are best met with process improvement techniques. The GridWise® Architecture Council (GWAC) sponsored by the United States Department of Energy is supporting an effort to use concepts from capability maturity models used in the software industry to advance interoperability of smart grid technology. An interoperability maturity model has been drafted and experience is being gained through trials on various types of projects and community efforts. This paper describes the value and objectives of maturity models, the nature of the interoperability maturity model and how it compares with other maturity models, and experiences gained with its use.

  6. Grid refinement model in lattice Boltzmann method for stream function-vorticity formulations

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Myung Seob [Dept. of Mechanical Engineering, Dongyang Mirae University, Seoul (Korea, Republic of)

    2015-03-15

    In this study, we present a grid refinement model in the lattice Boltzmann method (LBM) for two-dimensional incompressible fluid flow. That is, the model combines the desirable features of the lattice Boltzmann method and stream function-vorticity formulations. In order to obtain an accurate result, very fine grid (or lattice) is required near the solid boundary. Therefore, the grid refinement model is used in the lattice Boltzmann method for stream function-vorticity formulation. This approach is more efficient in that it can obtain the same accurate solution as that in single-block approach even if few lattices are used for computation. In order to validate the grid refinement approach for the stream function-vorticity formulation, the numerical simulations of lid-driven cavity flows were performed and good results were obtained.

  7. A HYBRID SOLAR WIND MODEL OF THE CESE+HLL METHOD WITH A YIN-YANG OVERSET GRID AND AN AMR GRID

    International Nuclear Information System (INIS)

    Feng Xueshang; Zhang Shaohua; Xiang Changqing; Yang Liping; Jiang Chaowei; Wu, S. T.

    2011-01-01

    A hybrid three-dimensional (3D) MHD model for solar wind study is proposed in the present paper with combined grid systems and solvers. The computational domain from the Sun to Earth space is decomposed into the near-Sun and off-Sun domains, which are respectively constructed with a Yin-Yang overset grid system and a Cartesian adaptive mesh refinement (AMR) grid system and coupled with a domain connection interface in the overlapping region between the near-Sun and off-Sun domains. The space-time conservation element and solution element method is used in the near-Sun domain, while the Harten-Lax-Leer method is employed in the off-Sun domain. The Yin-Yang overset grid can avoid well-known singularity and polar grid convergence problems and its body-fitting property helps achieve high-quality resolution near the solar surface. The block structured AMR Cartesian grid can automatically capture far-field plasma flow features, such as heliospheric current sheets and shock waves, and at the same time, it can save significant computational resources compared to the uniformly structured Cartesian grid. A numerical study of the solar wind structure for Carrington rotation 2069 shows that the newly developed hybrid MHD solar wind model successfully produces many realistic features of the background solar wind, in both the solar corona and interplanetary space, by comparisons with multiple solar and interplanetary observations.

  8. A Flexible Atmospheric Modeling Framework for the CESM

    Energy Technology Data Exchange (ETDEWEB)

    Randall, David [Colorado State University; Heikes, Ross [Colorado State University; Konor, Celal [Colorado State University

    2014-11-12

    We have created two global dynamical cores based on the unified system of equations and Z-grid staggering on an icosahedral grid, which are collectively called UZIM (Unified Z-grid Icosahedral Model). The z-coordinate version (UZIM-height) can be run in hydrostatic and nonhydrostatic modes. The sigma-coordinate version (UZIM-sigma) runs in only hydrostatic mode. The super-parameterization has been included as a physics option in both models. The UZIM versions with the super-parameterization are called SUZI. With SUZI-height, we have completed aquaplanet runs. With SUZI-sigma, we are making aquaplanet runs and realistic climate simulations. SUZI-sigma includes realistic topography and a SiB3 model to parameterize the land-surface processes.

  9. The MammoGrid Project Grids Architecture

    CERN Document Server

    McClatchey, Richard; Hauer, Tamas; Estrella, Florida; Saiz, Pablo; Rogulin, Dmitri; Buncic, Predrag; Clatchey, Richard Mc; Buncic, Predrag; Manset, David; Hauer, Tamas; Estrella, Florida; Saiz, Pablo; Rogulin, Dmitri

    2003-01-01

    The aim of the recently EU-funded MammoGrid project is, in the light of emerging Grid technology, to develop a European-wide database of mammograms that will be used to develop a set of important healthcare applications and investigate the potential of this Grid to support effective co-working between healthcare professionals throughout the EU. The MammoGrid consortium intends to use a Grid model to enable distributed computing that spans national borders. This Grid infrastructure will be used for deploying novel algorithms as software directly developed or enhanced within the project. Using the MammoGrid clinicians will be able to harness the use of massive amounts of medical image data to perform epidemiological studies, advanced image processing, radiographic education and ultimately, tele-diagnosis over communities of medical "virtual organisations". This is achieved through the use of Grid-compliant services [1] for managing (versions of) massively distributed files of mammograms, for handling the distri...

  10. High resolution modelling of atmosphere-canopy exchange of acidifying and eutrophying components and carbon dioxide for European forests

    International Nuclear Information System (INIS)

    Pieterse, G.; Bleeker, A.; Vermeulen, A.T.; Erisman, J.W.; Wu, Y.

    2007-01-01

    The Integrated Deposition Model (IDEM) was improved by incorporating a novel multilayer biochemical dry deposition module for gases. The aerosol and base cation deposition module was adopted from IDEM. For evaluation of primary and ecosystem productivity, carbon respiration schemes were included. The resulting Framework for Atmosphere-Canopy Exchange Modelling (FACEM) was then evaluated by the case studies presented here. First, results for deposition of SO x , NO y and NH x were compared with site observations, showing correlations of up to R2 = 0.60. Applicability for grid deposition calculations for these compounds was then evaluated for Europe. The model was clearly able to reproduce the elevated deposition near the important emission areas in Europe. Next, we compared the modelled CO 2 fluxes with measurements from 26 European sites. Correlations of up to R2 = 0.81 indicate good performance. To evaluate grid performance, the 2003 European heat wave was studied in a final case study, resulting in convincing correspondence with the observed productivity anomalies

  11. Large Eddy Simulation of Wall-Bounded Turbulent Flows with the Lattice Boltzmann Method: Effect of Collision Model, SGS Model and Grid Resolution

    Science.gov (United States)

    Pradhan, Aniruddhe; Akhavan, Rayhaneh

    2017-11-01

    Effect of collision model, subgrid-scale model and grid resolution in Large Eddy Simulation (LES) of wall-bounded turbulent flows with the Lattice Boltzmann Method (LBM) is investigated in turbulent channel flow. The Single Relaxation Time (SRT) collision model is found to be more accurate than Multi-Relaxation Time (MRT) collision model in well-resolved LES. Accurate LES requires grid resolutions of Δ+ LBM requires either grid-embedding in the near-wall region, with grid resolutions comparable to DNS, or a wall model. Results of LES with grid-embedding and wall models will be discussed.

  12. Slope grid derived from gridded bathymetry of Apra Harbor, Guam U.S. Territory

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Slope is derived from gridded (1 m cell size) multibeam bathymetry, collected aboard the Survey Vessel Swamp Fox. Cell values reflect the maximum rate of change (in...

  13. Slope grid (5 m) derived from gridded bathymetry of US Territory of Guam

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Slope is derived from gridded (5 m cell size) bathymetry from four sources: Multibeam bathymetry collected by Coral Reef Ecosystem Division aboard NOAA R/V AHI, and...

  14. About the Need of Combining Power Market and Power Grid Model Results for Future Energy System Scenarios

    Science.gov (United States)

    Mende, Denis; Böttger, Diana; Löwer, Lothar; Becker, Holger; Akbulut, Alev; Stock, Sebastian

    2018-02-01

    The European power grid infrastructure faces various challenges due to the expansion of renewable energy sources (RES). To conduct investigations on interactions between power generation and the power grid, models for the power market as well as for the power grid are necessary. This paper describes the basic functionalities and working principles of both types of models as well as steps to couple power market results and the power grid model. The combination of these models is beneficial in terms of gaining realistic power flow scenarios in the grid model and of being able to pass back results of the power flow and restrictions to the market model. Focus is laid on the power grid model and possible application examples like algorithms in grid analysis, operation and dynamic equipment modelling.

  15. Modeling lightning-NOx chemistry on a sub-grid scale in a global chemical transport model

    Directory of Open Access Journals (Sweden)

    A. Gressent

    2016-05-01

    Full Text Available For the first time, a plume-in-grid approach is implemented in a chemical transport model (CTM to parameterize the effects of the nonlinear reactions occurring within high concentrated NOx plumes from lightning NOx emissions (LNOx in the upper troposphere. It is characterized by a set of parameters including the plume lifetime, the effective reaction rate constant related to NOx–O3 chemical interactions, and the fractions of NOx conversion into HNO3 within the plume. Parameter estimates were made using the Dynamical Simple Model of Atmospheric Chemical Complexity (DSMACC box model, simple plume dispersion simulations, and the 3-D Meso-NH (non-hydrostatic mesoscale atmospheric model. In order to assess the impact of the LNOx plume approach on the NOx and O3 distributions on a large scale, simulations for the year 2006 were performed using the GEOS-Chem global model with a horizontal resolution of 2° × 2.5°. The implementation of the LNOx parameterization implies an NOx and O3 decrease on a large scale over the region characterized by a strong lightning activity (up to 25 and 8 %, respectively, over central Africa in July and a relative increase downwind of LNOx emissions (up to 18 and 2 % for NOx and O3, respectively, in July. The calculated variability in NOx and O3 mixing ratios around the mean value according to the known uncertainties in the parameter estimates is at a maximum over continental tropical regions with ΔNOx [−33.1, +29.7] ppt and ΔO3 [−1.56, +2.16] ppb, in January, and ΔNOx [−14.3, +21] ppt and ΔO3 [−1.18, +1.93] ppb, in July, mainly depending on the determination of the diffusion properties of the atmosphere and the initial NO mixing ratio injected by lightning. This approach allows us (i to reproduce a more realistic lightning NOx chemistry leading to better NOx and O3 distributions on the large scale and (ii to focus on other improvements to reduce remaining uncertainties from processes

  16. A mathematical model for turbulent incompressible flows through mixing grids

    International Nuclear Information System (INIS)

    Allaire, G.

    1989-01-01

    A mathematical model is proposed for the computation of turbulent incompressible flows through mixing grids. This model is obtained as follows: in a three-dimentional-domain we represent a mixing grid by small identical wings of size ε 2 periodically distributed at the nodes of a plane regular mesh of size ε, and we consider incompressible Navier-Stokes equations with a no-slip condition on the wings. Using an appropriate homogenization process we pass to the limit when ε tends to zero and we obtain a Brinkman equation, i.e. a Navier-Stokes equation plus a zero-order term for the velocity, in a homogeneous domain without anymore wings. The interest of this model is that the spatial discretization is simpler in a homogeneous domain, and, moreover, the new term, which expresses the grid's mixing effect, can be evaluated with a local computation around a single wing

  17. NOAA Climate Data Record (CDR) of Gridded Satellite Data from ISCCP B1 (GridSat-B1) Infrared Channel Brightness Temperature, Version 2

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Gridded Satellite (GridSat-B1) data provides a uniform set of quality controlled geostationary satellite observations for the visible, infrared window and...

  18. Nonuniform grid implicit spatial finite difference method for acoustic wave modeling in tilted transversely isotropic media

    KAUST Repository

    Chu, Chunlei

    2012-01-01

    Discrete earth models are commonly represented by uniform structured grids. In order to ensure accurate numerical description of all wave components propagating through these uniform grids, the grid size must be determined by the slowest velocity of the entire model. Consequently, high velocity areas are always oversampled, which inevitably increases the computational cost. A practical solution to this problem is to use nonuniform grids. We propose a nonuniform grid implicit spatial finite difference method which utilizes nonuniform grids to obtain high efficiency and relies on implicit operators to achieve high accuracy. We present a simple way of deriving implicit finite difference operators of arbitrary stencil widths on general nonuniform grids for the first and second derivatives and, as a demonstration example, apply these operators to the pseudo-acoustic wave equation in tilted transversely isotropic (TTI) media. We propose an efficient gridding algorithm that can be used to convert uniformly sampled models onto vertically nonuniform grids. We use a 2D TTI salt model to demonstrate its effectiveness and show that the nonuniform grid implicit spatial finite difference method can produce highly accurate seismic modeling results with enhanced efficiency, compared to uniform grid explicit finite difference implementations. © 2011 Elsevier B.V.

  19. Bathymetric Position Index (BPI) Zones 10 m grid derived from gridded bathymetry of Sarigan Island, Commonwealth of the Northern Mariana Islands, USA.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Zones are derived from a focal mean analysis on bathymetry and slope. The grid is based on gridded (10 m cell size) multibeam bathymetry, collected aboard NOAA...

  20. Bathymetric Position Index (BPI) Zones 10 m grid derived from gridded bathymetry of Maug Island, Commonwealth of the Northern Mariana Islands, USA.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Zones are derived from a focal mean analysis on bathymetry and slope. The grid is based on gridded (10 m cell size) multibeam bathymetry, collected aboard NOAA...

  1. Bathymetric Position Index (BPI) Zones 10 m grid derived from gridded bathymetry of Asuncion Island, Commonwealth of the Northern Mariana Islands, USA.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Zones are derived from a focal mean analysis on bathymetry and slope. The grid is based on gridded (10 m cell size) multibeam bathymetry collected aboard NOAA...

  2. Bathymetric Position Index (BPI) Zones 5 m grid derived from gridded bathymetry of Rota Island, Commonwealth of the Northern Mariana Islands, USA.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Zones are derived from a focal mean analysis on bathymetry and slope. The grid is based on gridded (5 m cell size) multibeam bathymetry, collected aboard NOAA...

  3. Bathymetric Position Index (BPI) Zones 10 m grid derived from gridded bathymetry of Agrihan Island, Commonwealth of the Northern Mariana Islands, USA.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Zones are derived from a focal mean analysis on bathymetry and slope. The grid is based on gridded (10 m cell size) multibeam bathymetry, collected aboard NOAA...

  4. Bathymetric Position Index (BPI) Structures 5 m grid derived from gridded bathymetry of Ofu and Olosega Islands, Territory of American Samoa, USA.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Structures are derived from two scales of a focal mean analysis on bathymetry and slope. The grid is based on gridded (5 m cell size) multibeam bathymetry,...

  5. Slope 20 m grid derived from gridded bathymetry of Brooks Banks, Hawaii, USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Slope is derived from gridded (20 m cell size) multibeam bathymetry, collected aboard NOAA ship Hi'ialakai and R/V AHI. Cell values reflect the maximum rate of...

  6. Rugosity grid derived from gridded bathymetry of Pearl and Hermes Atoll, Hawaii, USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Rugosity is derived from gridded (5 m cell size) multibeam bathymetry, collected aboard NOAA Ship Hiialaka'i and R/V AHI, and IKONOS derived depths using the Benthic...

  7. A gridded air counter for measuring exoelectrons

    International Nuclear Information System (INIS)

    Nagase, Makoto; Chiba, Yoshiya; Kirihata, Humiaki.

    1980-01-01

    A gridded air counter with a quenching circuit is described, which serves to detect low-energy electrons such as thermionic electrons, photoelectrons and exoelectrons emitted into the atmospheric air. The air counter consists of a loop-shaped anode and two grids provided for quenching the gas discharge and for protecting the electron emitter from the positive ion bombardment. The quenching circuit with a high input sensitivity of 5 mV detects the initiation gas discharge caused by an incident electron and immediately supplies a rectangular wave pulse of 300 V in amplitude and of more than 3 msec in width to the quenching grid near the anode. Simultaneously, the voltage of the suppressor grid is brought down and kept at -30 V against the earthed sample for the same period of time. Performance of the gridded air counter was examined by use of photoelectrons emitted from an abraded aluminum plate. The quenching action was successfully accomplished in the anode voltage range from 3.65 to 3.95 kV. The photoelectrons emitted into the atmosphere could be counted stably by use of this counter. (author)

  8. Grid modeling, analysis and simulation of different scenarios for a smart low-voltage distribution grid

    DEFF Research Database (Denmark)

    Mihet-Popa, Lucian; Han, Xue; Bindner, Henrik W.

    2013-01-01

    , the number of cabinets and customers and the load per customer. The aim of the model is to design, implement and test the proposed configuration and to investigate whether the low-voltage distribution grid is prepared for the expected future increase of PV penetration, heat pumps and electric cars. The model...

  9. Multi-model global assessment of subseasonal prediction skill of atmospheric rivers

    Science.gov (United States)

    Deflorio, M. J.

    2017-12-01

    Atmospheric rivers (ARs) are global phenomena that are characterized by long, narrow plumes of water vapor transport. They are most often observed in the midlatitudes near climatologically active storm track regions. Because of their frequent association with floods, landslides, and other hydrological impacts on society, there is significant incentive at the intersection of academic research, water management, and policymaking to understand the skill with which state-of-the-art operational weather models can predict ARs weeks-to-months in advance. We use the newly assembled Subseasonal-to-Seasonal (S2S) database, which includes extensive hindcast records of eleven operational weather models, to assess global prediction skill of atmospheric rivers on S2S timescales. We develop a metric to assess AR skill that is suitable for S2S timescales by counting the total number of AR days which occur over each model and observational grid cell during a 2-week time window. This "2-week AR occurrence" metric is suitable for S2S prediction skill assessment because it does not consider discrete hourly or daily AR objects, but rather a smoothed representation of AR occurrence over a longer period of time. Our results indicate that several of the S2S models, especially the ECMWF model, show useful prediction skill in the 2-week forecast window, with significant interannual variation in some regions. We also present results from an experimental forecast of S2S AR prediction skill using the ECMWF and NCEP models.

  10. Smart grid

    International Nuclear Information System (INIS)

    Choi, Dong Bae

    2001-11-01

    This book describes press smart grid from basics to recent trend. It is divided into ten chapters, which deals with smart grid as green revolution in energy with introduction, history, the fields, application and needed technique for smart grid, Trend of smart grid in foreign such as a model business of smart grid in foreign, policy for smart grid in U.S.A, Trend of smart grid in domestic with international standard of smart grid and strategy and rood map, smart power grid as infrastructure of smart business with EMS development, SAS, SCADA, DAS and PQMS, smart grid for smart consumer, smart renewable like Desertec project, convergence IT with network and PLC, application of an electric car, smart electro service for realtime of electrical pricing system, arrangement of smart grid.

  11. Bathymetric Position Index (BPI) Zones 5 m grid derived from gridded bathymetry of Ofu and Olosega Islands, Territory of American Samoa, USA.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Zones are derived from a focal mean analysis on bathymetry and slope. The grid is based on gridded (5 m cell size) multibeam bathymetry, collected aboard R/V...

  12. A Mediated Definite Delegation Model allowing for Certified Grid Job Submission

    CERN Document Server

    Schreiner, Steffen; Grigoras, Costin; Litmaath, Maarten

    2012-01-01

    Grid computing infrastructures need to provide traceability and accounting of their users" activity and protection against misuse and privilege escalation. A central aspect of multi-user Grid job environments is the necessary delegation of privileges in the course of a job submission. With respect to these generic requirements this document describes an improved handling of multi-user Grid jobs in the ALICE ("A Large Ion Collider Experiment") Grid Services. A security analysis of the ALICE Grid job model is presented with derived security objectives, followed by a discussion of existing approaches of unrestricted delegation based on X.509 proxy certificates and the Grid middleware gLExec. Unrestricted delegation has severe security consequences and limitations, most importantly allowing for identity theft and forgery of delegated assignments. These limitations are discussed and formulated, both in general and with respect to an adoption in line with multi-user Grid jobs. Based on the architecture of the ALICE...

  13. Modeling the atmospheric chemistry of TICs

    Science.gov (United States)

    Henley, Michael V.; Burns, Douglas S.; Chynwat, Veeradej; Moore, William; Plitz, Angela; Rottmann, Shawn; Hearn, John

    2009-05-01

    An atmospheric chemistry model that describes the behavior and disposition of environmentally hazardous compounds discharged into the atmosphere was coupled with the transport and diffusion model, SCIPUFF. The atmospheric chemistry model was developed by reducing a detailed atmospheric chemistry mechanism to a simple empirical effective degradation rate term (keff) that is a function of important meteorological parameters such as solar flux, temperature, and cloud cover. Empirically derived keff functions that describe the degradation of target toxic industrial chemicals (TICs) were derived by statistically analyzing data generated from the detailed chemistry mechanism run over a wide range of (typical) atmospheric conditions. To assess and identify areas to improve the developed atmospheric chemistry model, sensitivity and uncertainty analyses were performed to (1) quantify the sensitivity of the model output (TIC concentrations) with respect to changes in the input parameters and (2) improve, where necessary, the quality of the input data based on sensitivity results. The model predictions were evaluated against experimental data. Chamber data were used to remove the complexities of dispersion in the atmosphere.

  14. Comparison of the local-scale atmospheric dispersion model Cedrat with 85KR measurements

    International Nuclear Information System (INIS)

    Rennesson, M.; Devin, P.; Maro, D.; Fitamant, M.L.; Bouland, P.

    2004-01-01

    An accurate model of atmospheric dispersion of radionuclides over the complex terrain of the La Hague reprocessing plant (North Cotentin, France) has been developed by COGEMA, in partnership with Paris VI University. This model, called CEDRAT 1.0.1 (operational since October 2002), takes into account areas typically outside the validity limits of Gaussian models: relief and building influence, short-distance (beyond 500 m from the release point) and stable atmospheric conditions. The modelling tool is based on an original method: a 2D-meshed model for flow resolution at permanent rate in the prevailing wind direction, and a 3D description of the dispersion phenomena, taking into account wet and dry deposits, at permanent or transitory rate. This leads to an effective compromise between rapidity (45 min on a 6000 nodes grid, with a standard PC), robustness and accuracy, coupled with a user-friendly interface. Primarily the validation process consisted of a comparison with the 3D complex dispersion reference model MERCURE, developed by EDF. Then, MERCURE and CEDRAT results were compared on real release scenario basis, for which actual meteorological conditions and tracer data collected at monitoring stations around the site were known. To enlarge this validation process, a second level of comparison was made in collaboration with a IRSN Cherbourg team, through different field experiments, which provided both ground and elevated level measurements (collected with a captive balloon), for different stability classes of the atmosphere. The plume tracer is krypton 85, an inert gas released from a height of 100 m. Thus, the aim of this paper is to present the original method to describe short distance dispersion over complex terrain and its validation enrichment for stability conditions and areas not yet observed, through wind and cross-wind Atmospheric Transfer Coefficients comparisons, at both ground and elevated levels. (author)

  15. Analysis of a power grid using a Kuramoto-like model

    DEFF Research Database (Denmark)

    Filatrella, G.; Nielsen, Arne Hejde; Pedersen, Niels Falsig

    2008-01-01

    We show that there is a link between the Kuramoto paradigm and another system of synchronized oscillators, namely an electrical power distribution grid of generators and consumers. The purpose of this work is to show both the formal analogy and some practical consequences. The mapping can be made...... quantitative, and under some necessary approximations a class of Kuramoto-like models, those with bimodal distribution of the frequencies, is most appropriate for the power-grid. In fact in the power-grid there are two kinds of oscillators: the “sources" delivering power to the “consumers"....

  16. TopoSCALE v.1.0: downscaling gridded climate data in complex terrain

    Science.gov (United States)

    Fiddes, J.; Gruber, S.

    2014-02-01

    Simulation of land surface processes is problematic in heterogeneous terrain due to the the high resolution required of model grids to capture strong lateral variability caused by, for example, topography, and the lack of accurate meteorological forcing data at the site or scale it is required. Gridded data products produced by atmospheric models can fill this gap, however, often not at an appropriate spatial resolution to drive land-surface simulations. In this study we describe a method that uses the well-resolved description of the atmospheric column provided by climate models, together with high-resolution digital elevation models (DEMs), to downscale coarse-grid climate variables to a fine-scale subgrid. The main aim of this approach is to provide high-resolution driving data for a land-surface model (LSM). The method makes use of an interpolation of pressure-level data according to topographic height of the subgrid. An elevation and topography correction is used to downscale short-wave radiation. Long-wave radiation is downscaled by deriving a cloud-component of all-sky emissivity at grid level and using downscaled temperature and relative humidity fields to describe variability with elevation. Precipitation is downscaled with a simple non-linear lapse and optionally disaggregated using a climatology approach. We test the method in comparison with unscaled grid-level data and a set of reference methods, against a large evaluation dataset (up to 210 stations per variable) in the Swiss Alps. We demonstrate that the method can be used to derive meteorological inputs in complex terrain, with most significant improvements (with respect to reference methods) seen in variables derived from pressure levels: air temperature, relative humidity, wind speed and incoming long-wave radiation. This method may be of use in improving inputs to numerical simulations in heterogeneous and/or remote terrain, especially when statistical methods are not possible, due to lack of

  17. From the grid to the smart grid, topologically

    Science.gov (United States)

    Pagani, Giuliano Andrea; Aiello, Marco

    2016-05-01

    In its more visionary acceptation, the smart grid is a model of energy management in which the users are engaged in producing energy as well as consuming it, while having information systems fully aware of the energy demand-response of the network and of dynamically varying prices. A natural question is then: to make the smart grid a reality will the distribution grid have to be upgraded? We assume a positive answer to the question and we consider the lower layers of medium and low voltage to be the most affected by the change. In our previous work, we analyzed samples of the Dutch distribution grid (Pagani and Aiello, 2011) and we considered possible evolutions of these using synthetic topologies modeled after studies of complex systems in other technological domains (Pagani and Aiello, 2014). In this paper, we take an extra important step by defining a methodology for evolving any existing physical power grid to a good smart grid model, thus laying the foundations for a decision support system for utilities and governmental organizations. In doing so, we consider several possible evolution strategies and apply them to the Dutch distribution grid. We show how increasing connectivity is beneficial in realizing more efficient and reliable networks. Our proposal is topological in nature, enhanced with economic considerations of the costs of such evolutions in terms of cabling expenses and economic benefits of evolving the grid.

  18. Probabilistic Modelling of Robustness and Resilience of Power Grid Systems

    DEFF Research Database (Denmark)

    Qin, Jianjun; Sansavini, Giovanni; Nielsen, Michael Havbro Faber

    2017-01-01

    The present paper proposes a framework for the modeling and analysis of resilience of networked power grid systems. A probabilistic systems model is proposed based on the JCSS Probabilistic Model Code (JCSS, 2001) and deterministic engineering systems modeling techniques such as the DC flow model...... cascading failure event scenarios (Nan and Sansavini, 2017). The concept of direct and indirect consequences proposed by the Joint Committee on Structural Safety (JCSS, 2008) is utilized to model the associated consequences. To facilitate a holistic modeling of robustness and resilience, and to identify how...... these characteristics may be optimized these characteristics, the power grid system is finally interlinked with its fundamental interdependent systems, i.e. a societal model, a regulatory system and control feedback loops. The proposed framework is exemplified with reference to optimal decision support for resilience...

  19. Optimization of atmospheric transport models on HPC platforms

    Science.gov (United States)

    de la Cruz, Raúl; Folch, Arnau; Farré, Pau; Cabezas, Javier; Navarro, Nacho; Cela, José María

    2016-12-01

    The performance and scalability of atmospheric transport models on high performance computing environments is often far from optimal for multiple reasons including, for example, sequential input and output, synchronous communications, work unbalance, memory access latency or lack of task overlapping. We investigate how different software optimizations and porting to non general-purpose hardware architectures improve code scalability and execution times considering, as an example, the FALL3D volcanic ash transport model. To this purpose, we implement the FALL3D model equations in the WARIS framework, a software designed from scratch to solve in a parallel and efficient way different geoscience problems on a wide variety of architectures. In addition, we consider further improvements in WARIS such as hybrid MPI-OMP parallelization, spatial blocking, auto-tuning and thread affinity. Considering all these aspects together, the FALL3D execution times for a realistic test case running on general-purpose cluster architectures (Intel Sandy Bridge) decrease by a factor between 7 and 40 depending on the grid resolution. Finally, we port the application to Intel Xeon Phi (MIC) and NVIDIA GPUs (CUDA) accelerator-based architectures and compare performance, cost and power consumption on all the architectures. Implications on time-constrained operational model configurations are discussed.

  20. Rugosity grid (5 m) derived from gridded bathymetry of the US Territory of Guam

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Rugosity is derived from gridded (5 m cell size) bathymetry from four sources: Multibeam bathymetry collected by Coral Reef Ecosystem Division aboard NOAA R/V AHI,...

  1. Evaluating penalized logistic regression models to predict Heat-Related Electric grid stress days

    Energy Technology Data Exchange (ETDEWEB)

    Bramer, L. M.; Rounds, J.; Burleyson, C. D.; Fortin, D.; Hathaway, J.; Rice, J.; Kraucunas, I.

    2017-11-01

    Understanding the conditions associated with stress on the electricity grid is important in the development of contingency plans for maintaining reliability during periods when the grid is stressed. In this paper, heat-related grid stress and the relationship with weather conditions is examined using data from the eastern United States. Penalized logistic regression models were developed and applied to predict stress on the electric grid using weather data. The inclusion of other weather variables, such as precipitation, in addition to temperature improved model performance. Several candidate models and datasets were examined. A penalized logistic regression model fit at the operation-zone level was found to provide predictive value and interpretability. Additionally, the importance of different weather variables observed at different time scales were examined. Maximum temperature and precipitation were identified as important across all zones while the importance of other weather variables was zone specific. The methods presented in this work are extensible to other regions and can be used to aid in planning and development of the electrical grid.

  2. GIS embedded hydrological modeling: the SID&GRID project

    Science.gov (United States)

    Borsi, I.; Rossetto, R.; Schifani, C.

    2012-04-01

    The SID&GRID research project, started April 2010 and funded by Regione Toscana (Italy) under the POR FSE 2007-2013, aims to develop a Decision Support System (DSS) for water resource management and planning based on open source and public domain solutions. In order to quantitatively assess water availability in space and time and to support the planning decision processes, the SID&GRID solution consists of hydrological models (coupling 3D existing and newly developed surface- and ground-water and unsaturated zone modeling codes) embedded in a GIS interface, applications and library, where all the input and output data are managed by means of DataBase Management System (DBMS). A graphical user interface (GUI) to manage, analyze and run the SID&GRID hydrological models based on open source gvSIG GIS framework (Asociación gvSIG, 2011) and a Spatial Data Infrastructure to share and interoperate with distributed geographical data is being developed. Such a GUI is thought as a "master control panel" able to guide the user from pre-processing spatial and temporal data, running the hydrological models, and analyzing the outputs. To achieve the above-mentioned goals, the following codes have been selected and are being integrated: 1. Postgresql/PostGIS (PostGIS, 2011) for the Geo Data base Management System; 2. gvSIG with Sextante (Olaya, 2011) geo-algorithm library capabilities and Grass tools (GRASS Development Team, 2011) for the desktop GIS; 3. Geoserver and Geonetwork to share and discover spatial data on the web according to Open Geospatial Consortium; 4. new tools based on the Sextante GeoAlgorithm framework; 5. MODFLOW-2005 (Harbaugh, 2005) groundwater modeling code; 6. MODFLOW-LGR (Mehl and Hill 2005) for local grid refinement; 7. VSF (Thoms et al., 2006) for the variable saturated flow component; 8. new developed routines for overland flow; 9. new algorithms in Jython integrated in gvSIG to compute the net rainfall rate reaching the soil surface, as input for

  3. Smart Grid Interoperability Maturity Model Beta Version

    Energy Technology Data Exchange (ETDEWEB)

    Widergren, Steven E.; Drummond, R.; Giroti, Tony; Houseman, Doug; Knight, Mark; Levinson, Alex; longcore, Wayne; Lowe, Randy; Mater, J.; Oliver, Terry V.; Slack, Phil; Tolk, Andreas; Montgomery, Austin

    2011-12-02

    The GridWise Architecture Council was formed by the U.S. Department of Energy to promote and enable interoperability among the many entities that interact with the electric power system. This balanced team of industry representatives proposes principles for the development of interoperability concepts and standards. The Council provides industry guidance and tools that make it an available resource for smart grid implementations. In the spirit of advancing interoperability of an ecosystem of smart grid devices and systems, this document presents a model for evaluating the maturity of the artifacts and processes that specify the agreement of parties to collaborate across an information exchange interface. You are expected to have a solid understanding of large, complex system integration concepts and experience in dealing with software component interoperation. Those without this technical background should read the Executive Summary for a description of the purpose and contents of the document. Other documents, such as checklists, guides, and whitepapers, exist for targeted purposes and audiences. Please see the www.gridwiseac.org website for more products of the Council that may be of interest to you.

  4. Bathymetric Position Index (BPI) Structures 10 m grid derived from gridded bathymetry of Supply Reef, Commonwealth of the Northern Mariana Islands (CNMI), USA.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Structures are derived from two scales of a focal mean analysis on bathymetry and slope. The grid is based on gridded (10 m cell size) multibeam bathymetry,...

  5. Bathymetric Position Index (BPI) Structures 10 m grid derived from gridded bathymetry of Maug Island, Commonwealth of the Northern Mariana Islands (CNMI), USA.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Structures are derived from two scales of a focal mean analysis on bathymetry and slope. The grid is based on gridded (10 m cell size) multibeam bathymetry,...

  6. Bathymetric Position Index (BPI) Structures 10 m grid derived from gridded bathymetry of Alamagan Island, Commonwealth of the Northern Mariana Islands (CNMI), USA.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Structures are derived from two scales of a focal mean analysis on bathymetry and slope. The grid is based on gridded (10 m cell size) multibeam bathymetry,...

  7. Bathymetric Position Index (BPI) Structures 5 m grid derived from gridded bathymetry of Rota Island, Commonwealth of the Northern Mariana Islands (CNMI), USA.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Structures are derived from two scales of a focal mean analysis on bathymetry and slope. The grid is based on gridded (5 m cell size) multibeam bathymetry,...

  8. Bathymetric Position Index (BPI) Structures 10 m grid derived from gridded bathymetry of Guguan Island, Commonwealth of the Northern Mariana Islands (CNMI), USA.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Structures are derived from two scales of a focal mean analysis on bathymetry and slope. The grid is based on gridded (10 m cell size) multibeam bathymetry,...

  9. Bathymetric Position Index (BPI) Structures 10 m grid derived from gridded bathymetry of Pagan Island, Commonwealth of the Northern Mariana Islands (CNMI), USA.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Structures are derived from two scales of a focal mean analysis on bathymetry and slope. The grid is based on gridded (10 m cell size) multibeam bathymetry,...

  10. Bathymetric Position Index (BPI) Structures 10 m grid derived from gridded bathymetry of Asuncion Island, Commonwealth of the Northern Mariana Islands (CNMI), USA.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Structures are derived from two scales of a focal mean analysis on bathymetry and slope. The grid is based on gridded (10 m cell size) multibeam bathymetry...

  11. Soil-vegetation-atmosphere transfer modeling

    Energy Technology Data Exchange (ETDEWEB)

    Ikonen, J P; Sucksdorff, Y [Finnish Environment Agency, Helsinki (Finland)

    1997-12-31

    In this study the soil/vegetation/atmosphere-model based on the formulation of Deardorff was refined to hour basis and applied to a field in Vihti. The effect of model parameters on model results (energy fluxes, temperatures) was also studied as well as the effect of atmospheric conditions. The estimation of atmospheric conditions on the soil-vegetation system as well as an estimation of the effect of vegetation parameters on the atmospheric climate was estimated. Areal surface fluxes, temperatures and moistures were also modelled for some river basins in southern Finland. Land-use and soil parameterisation was developed to include properties and yearly variation of all vegetation and soil types. One classification was selected to describe the hydrothermal properties of the soils. Evapotranspiration was verified against the water balance method

  12. Soil-vegetation-atmosphere transfer modeling

    Energy Technology Data Exchange (ETDEWEB)

    Ikonen, J.P.; Sucksdorff, Y. [Finnish Environment Agency, Helsinki (Finland)

    1996-12-31

    In this study the soil/vegetation/atmosphere-model based on the formulation of Deardorff was refined to hour basis and applied to a field in Vihti. The effect of model parameters on model results (energy fluxes, temperatures) was also studied as well as the effect of atmospheric conditions. The estimation of atmospheric conditions on the soil-vegetation system as well as an estimation of the effect of vegetation parameters on the atmospheric climate was estimated. Areal surface fluxes, temperatures and moistures were also modelled for some river basins in southern Finland. Land-use and soil parameterisation was developed to include properties and yearly variation of all vegetation and soil types. One classification was selected to describe the hydrothermal properties of the soils. Evapotranspiration was verified against the water balance method

  13. An interactive computer model for the assessment of continuous release atmospheric transfers

    International Nuclear Information System (INIS)

    Pages, P.; Rancillac, F.

    1983-05-01

    The purpose of the model is to assess air concentrations and soil deposits following a continuous release of gaseous effluents. This is usually part of the problem of assessing the consequences of normal operation of a plant. The atmospheric dispersion model used is the gaussian plume model according to DOURY's scheme. Ground reflexion, the presence of an inversion layer and removal processes (by dry or wet deposition and radioactive decay type) are taken into account. Air and ground concentrations are computed around the release point according to an arbitrary grid with spatial coordinates and accounting for annual frequencies of meteorological conditions. The methodology is presented in detail and assumptions are clearly stated. A conversational structured computer program has been set up in APL which allows to get results easily and to test their sensitivity to various assumptions concerning both input data and model parameters. As an example an application of the model with real data and results is given [fr

  14. Parallel processing and non-uniform grids in global air quality modeling

    NARCIS (Netherlands)

    Berkvens, P.J.F.; Bochev, Mikhail A.

    2002-01-01

    A large-scale global air quality model, running efficiently on a single vector processor, is enhanced to make more realistic and more long-term simulations feasible. Two strategies are combined: non-uniform grids and parallel processing. The communication through the hierarchy of non-uniform grids

  15. Adaptive hierarchical grid model of water-borne pollutant dispersion

    Science.gov (United States)

    Borthwick, A. G. L.; Marchant, R. D.; Copeland, G. J. M.

    Water pollution by industrial and agricultural waste is an increasingly major public health issue. It is therefore important for water engineers and managers to be able to predict accurately the local behaviour of water-borne pollutants. This paper describes the novel and efficient coupling of dynamically adaptive hierarchical grids with standard solvers of the advection-diffusion equation. Adaptive quadtree grids are able to focus on regions of interest such as pollutant fronts, while retaining economy in the total number of grid elements through selective grid refinement. Advection is treated using Lagrangian particle tracking. Diffusion is solved separately using two grid-based methods; one is by explicit finite differences, the other a diffusion-velocity approach. Results are given in two dimensions for pure diffusion of an initially Gaussian plume, advection-diffusion of the Gaussian plume in the rotating flow field of a forced vortex, and the transport of species in a rectangular channel with side wall boundary layers. Close agreement is achieved with analytical solutions of the advection-diffusion equation and simulations from a Lagrangian random walk model. An application to Sepetiba Bay, Brazil is included to demonstrate the method with complex flows and topography.

  16. The GridSite Web/Grid security system

    International Nuclear Information System (INIS)

    McNab, Andrew; Li Yibiao

    2010-01-01

    We present an overview of the current status of the GridSite toolkit, describing the security model for interactive and programmatic uses introduced in the last year. We discuss our experiences of implementing these internal changes and how they and previous rounds of improvements have been prompted by requirements from users and wider security trends in Grids (such as CSRF). Finally, we explain how these have improved the user experience of GridSite-based websites, and wider implications for portals and similar web/grid sites.

  17. Global 3-D FDTD Maxwell's-Equations Modeling of Ionospheric Disturbances Associated with Earthquakes Using an Optimized Geodesic Grid

    Science.gov (United States)

    Simpson, J. J.; Taflove, A.

    2005-12-01

    We report a finite-difference time-domain (FDTD) computational solution of Maxwell's equations [1] that models the possibility of detecting and characterizing ionospheric disturbances above seismic regions. Specifically, we study anomalies in Schumann resonance spectra in the extremely low frequency (ELF) range below 30 Hz as observed in Japan caused by a hypothetical cylindrical ionospheric disturbance above Taiwan. We consider excitation of the global Earth-ionosphere waveguide by lightning in three major thunderstorm regions of the world: Southeast Asia, South America (Amazon region), and Africa. Furthermore, we investigate varying geometries and characteristics of the ionospheric disturbance above Taiwan. The FDTD technique used in this study enables a direct, full-vector, three-dimensional (3-D) time-domain Maxwell's equations calculation of round-the-world ELF propagation accounting for arbitrary horizontal as well as vertical geometrical and electrical inhomogeneities and anisotropies of the excitation, ionosphere, lithosphere, and oceans. Our entire-Earth model grids the annular lithosphere-atmosphere volume within 100 km of sea level, and contains over 6,500,000 grid-points (63 km laterally between adjacent grid points, 5 km radial resolution). We use our recently developed spherical geodesic gridding technique having a spatial discretization best described as resembling the surface of a soccer ball [2]. The grid is comprised entirely of hexagonal cells except for a small fixed number of pentagonal cells needed for completion. Grid-cell areas and locations are optimized to yield a smoothly varying area difference between adjacent cells, thereby maximizing numerical convergence. We compare our calculated results with measured data prior to the Chi-Chi earthquake in Taiwan as reported by Hayakawa et. al. [3]. Acknowledgement This work was suggested by Dr. Masashi Hayakawa, University of Electro-Communications, Chofugaoka, Chofu Tokyo. References [1] A

  18. Bayesian grid matching

    DEFF Research Database (Denmark)

    Hartelius, Karsten; Carstensen, Jens Michael

    2003-01-01

    A method for locating distorted grid structures in images is presented. The method is based on the theories of template matching and Bayesian image restoration. The grid is modeled as a deformable template. Prior knowledge of the grid is described through a Markov random field (MRF) model which r...

  19. A Micro-Grid Simulator Tool (SGridSim) using Effective Node-to-Node Complex Impedance (EN2NCI) Models

    Energy Technology Data Exchange (ETDEWEB)

    Udhay Ravishankar; Milos manic

    2013-08-01

    This paper presents a micro-grid simulator tool useful for implementing and testing multi-agent controllers (SGridSim). As a common engineering practice it is important to have a tool that simplifies the modeling of the salient features of a desired system. In electric micro-grids, these salient features are the voltage and power distributions within the micro-grid. Current simplified electric power grid simulator tools such as PowerWorld, PowerSim, Gridlab, etc, model only the power distribution features of a desired micro-grid. Other power grid simulators such as Simulink, Modelica, etc, use detailed modeling to accommodate the voltage distribution features. This paper presents a SGridSim micro-grid simulator tool that simplifies the modeling of both the voltage and power distribution features in a desired micro-grid. The SGridSim tool accomplishes this simplified modeling by using Effective Node-to-Node Complex Impedance (EN2NCI) models of components that typically make-up a micro-grid. The term EN2NCI models means that the impedance based components of a micro-grid are modeled as single impedances tied between their respective voltage nodes on the micro-grid. Hence the benefit of the presented SGridSim tool are 1) simulation of a micro-grid is performed strictly in the complex-domain; 2) faster simulation of a micro-grid by avoiding the simulation of detailed transients. An example micro-grid model was built using the SGridSim tool and tested to simulate both the voltage and power distribution features with a total absolute relative error of less than 6%.

  20. Nevada Isostatic Gravity Grid

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A 2 kilometer Isostatic anomaly grid for the state of Nevada. Number of columns is 269 and number of rows is 394. The order of the data is from the lower left to the...

  1. Maine Bouguer Gravity Grid

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A 2 kilometer Bouguer anomaly grid for the state of Maine. Number of columns is 197 and number of rows is 292. The order of the data is from the lower left to the...

  2. Minnesota Bouguer Anomaly Grid

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A 1.5 kilometer Bouguer anomaly grid for the state of Minnesota. Number of columns is 404 and number of rows is 463. The order of the data is from the lower left to...

  3. Bolivian Bouguer Anomaly Grid

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A 1 kilometer Bouguer anomaly grid for the country of Bolivia.Number of columns is 550 and number of rows is 900. The order of the data is from the lower left to the...

  4. Slope 60 m grid derived from gridded bathymetry of Guam Island, Mariana Islands, USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Slope is derived from gridded (60 m cell size) multibeam bathymetry, collected aboard NOAA Ship Hiialaka'i and R/V AHI. Cell values reflect the maximum rate of...

  5. Slope 60 m grid derived from gridded bathymetry of Rota Island, Mariana Islands, USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Slope is derived from gridded (60 m cell size) multibeam bathymetry, collected aboard NOAA Ship Hiialaka'i and R/V AHI. Cell values reflect the maximum rate of...

  6. Customer-­Centric Business Models for Smart Grid Development

    OpenAIRE

    Schabram, Sarah

    2013-01-01

    The digitalization of the electricity grid can provide politicians and different kinds of companies with solid benefits in terms of efficiency, renewable integration and control. However, some part of the deployment of smart grids is only possible with the engagement of consumers who are required to change their behavior significantly. This behavioral change can be induced if energy companies (incumbents and new players) adopt business models that do not sell a technology but use technology t...

  7. Modeling and simulation of a micro grid-connected solar PV system

    Directory of Open Access Journals (Sweden)

    Rameen AbdelHady

    2017-04-01

    Full Text Available In 2012, the Ministry of Electricity and Renewable Energy (MERE; began promoting the system of ‘Feed-in Tariff’ in billing. The introduced system allows the user to generate electricity through solar panels mounted on the roofs of residential buildings and governmental organizations and tied to the grid. To benefit from MERE’s approach, the National Water Research Center (NWRC (Qanatir, Egypt set up a pilot rooftop 91 kW PV system. All the generated electricity is fed into the 220 V, 50 Hz low voltage grid serving NWRC premises. In this manuscript a MATLAB Simulink model is constructed mimicking a detailed representation of the system tied either to the local low voltage grid or to the national high voltage grid. The aim of such modeling effort is to provide early evaluation of the system performance. The economical savings of both scenarios are compared based on the new billing system. Results show that the current system saves 100 thousand L.E./year, while tying the system to the national grid will save 235.8 thousand L.E./year.

  8. Coarse Grid Modeling of Turbine Film Cooling Flows Using Volumetric Source Terms

    Science.gov (United States)

    Heidmann, James D.; Hunter, Scott D.

    2001-01-01

    The recent trend in numerical modeling of turbine film cooling flows has been toward higher fidelity grids and more complex geometries. This trend has been enabled by the rapid increase in computing power available to researchers. However, the turbine design community requires fast turnaround time in its design computations, rendering these comprehensive simulations ineffective in the design cycle. The present study describes a methodology for implementing a volumetric source term distribution in a coarse grid calculation that can model the small-scale and three-dimensional effects present in turbine film cooling flows. This model could be implemented in turbine design codes or in multistage turbomachinery codes such as APNASA, where the computational grid size may be larger than the film hole size. Detailed computations of a single row of 35 deg round holes on a flat plate have been obtained for blowing ratios of 0.5, 0.8, and 1.0, and density ratios of 1.0 and 2.0 using a multiblock grid system to resolve the flows on both sides of the plate as well as inside the hole itself. These detailed flow fields were spatially averaged to generate a field of volumetric source terms for each conservative flow variable. Solutions were also obtained using three coarse grids having streamwise and spanwise grid spacings of 3d, 1d, and d/3. These coarse grid solutions used the integrated hole exit mass, momentum, energy, and turbulence quantities from the detailed solutions as volumetric source terms. It is shown that a uniform source term addition over a distance from the wall on the order of the hole diameter is able to predict adiabatic film effectiveness better than a near-wall source term model, while strictly enforcing correct values of integrated boundary layer quantities.

  9. Global Harmonic Current Rejection of Nonlinear Backstepping Control with Multivariable Adaptive Internal Model Principle for Grid-Connected Inverter under Distorted Grid Voltage

    Directory of Open Access Journals (Sweden)

    Yang Yu

    2013-01-01

    Full Text Available Based on a brief review on current harmonics generation mechanism for grid-connected inverter under distorted grid voltage, the harmonic disturbances and uncertain items are immersed into the original state-space differential equation of grid-connected inverter. A new algorithm of global current harmonic rejection based on nonlinear backstepping control with multivariable internal model principle is proposed for grid-connected inverter with exogenous disturbances and uncertainties. A type of multivariable internal model for a class of nonlinear harmonic disturbances is constructed. Based on application of backstepping control law of the nominal system, a multivariable adaptive state feedback controller combined with multivariable internal model and adaptive control law is designed to guarantee the closed-loop system globally uniformly bounded, which is proved by a constructed Lyapunov function. The presented algorithm extends rejection of nonlinear single-input systems to multivariable globally defined normal form, the correctness and effectiveness of which are verified by the simulation results.

  10. An adaptive grid to improve the efficiency and accuracy of modelling underwater noise from shipping

    Science.gov (United States)

    Trigg, Leah; Chen, Feng; Shapiro, Georgy; Ingram, Simon; Embling, Clare

    2017-04-01

    Underwater noise from shipping is becoming a significant concern and has been listed as a pollutant under Descriptor 11 of the Marine Strategy Framework Directive. Underwater noise models are an essential tool to assess and predict noise levels for regulatory procedures such as environmental impact assessments and ship noise monitoring. There are generally two approaches to noise modelling. The first is based on simplified energy flux models, assuming either spherical or cylindrical propagation of sound energy. These models are very quick but they ignore important water column and seabed properties, and produce significant errors in the areas subject to temperature stratification (Shapiro et al., 2014). The second type of model (e.g. ray-tracing and parabolic equation) is based on an advanced physical representation of sound propagation. However, these acoustic propagation models are computationally expensive to execute. Shipping noise modelling requires spatial discretization in order to group noise sources together using a grid. A uniform grid size is often selected to achieve either the greatest efficiency (i.e. speed of computations) or the greatest accuracy. In contrast, this work aims to produce efficient and accurate noise level predictions by presenting an adaptive grid where cell size varies with distance from the receiver. The spatial range over which a certain cell size is suitable was determined by calculating the distance from the receiver at which propagation loss becomes uniform across a grid cell. The computational efficiency and accuracy of the resulting adaptive grid was tested by comparing it to uniform 1 km and 5 km grids. These represent an accurate and computationally efficient grid respectively. For a case study of the Celtic Sea, an application of the adaptive grid over an area of 160×160 km reduced the number of model executions required from 25600 for a 1 km grid to 5356 in December and to between 5056 and 13132 in August, which

  11. Photovoltaic Grid-Connected Modeling and Characterization Based on Experimental Results.

    Science.gov (United States)

    Humada, Ali M; Hojabri, Mojgan; Sulaiman, Mohd Herwan Bin; Hamada, Hussein M; Ahmed, Mushtaq N

    2016-01-01

    A grid-connected photovoltaic (PV) system operates under fluctuated weather condition has been modeled and characterized based on specific test bed. A mathematical model of a small-scale PV system has been developed mainly for residential usage, and the potential results have been simulated. The proposed PV model based on three PV parameters, which are the photocurrent, IL, the reverse diode saturation current, Io, the ideality factor of diode, n. Accuracy of the proposed model and its parameters evaluated based on different benchmarks. The results showed that the proposed model fitting the experimental results with high accuracy compare to the other models, as well as the I-V characteristic curve. The results of this study can be considered valuable in terms of the installation of a grid-connected PV system in fluctuated climatic conditions.

  12. Calculation approaches for grid usage fees to influence the load curve in the distribution grid level; Berechnungsansaetze fuer Netznutzungsentgelte zur Beeinflussung des Lastverlaufs in der Verteilernetzebene

    Energy Technology Data Exchange (ETDEWEB)

    Illing, Bjoern

    2014-09-08

    Dominated by the energy policy the decentralized German energy market is changing. One mature target of the government is to increase the contribution of renewable generation to the gross electricity consumption. In order to achieve this target disadvantages like an increased need for capacity management occurs. Load reduction and variable grid fees offer the grid operator solutions to realize capacity management by influencing the load profile. The evolution of the current grid fees towards more causality is required to adapt these approaches. Two calculation approaches are developed in this assignment. On the one hand multivariable grid fees keeping the current components demand and energy charge. Additional to the grid costs grid load dependent parameters like the amount of decentralized feed-ins, time and local circumstances as well as grid capacities are considered. On the other hand the grid fee flat-rate which represents a demand based model on a monthly level. Both approaches are designed to meet the criteria for future grid fees. By means of a case study the effects of the grid fees on the load profile at the low voltage grid is simulated. Thereby the consumption is represented by different behaviour models and the results are scaled at the benchmark grid area. The resulting load curve is analyzed concerning the effects of peak load reduction as well as the integration of renewable energy sources. Additionally the combined effect of grid fees and electricity tariffs is evaluated. Finally the work discusses the launching of grid fees in the tense atmosphere of politics, legislation and grid operation. Results of this work are two calculation approaches designed for grid operators to define the grid fees. Multivariable grid fees are based on the current calculation scheme. Hereby demand and energy charges are weighted by time, locational and load related dependencies. The grid fee flat-rate defines a limitation in demand extraction. Different demand levels

  13. Export of reactive nitrogen from coal-fired power plants in the U.S.: Estimates from a plume-in-grid modeling study - article no. D04308

    Energy Technology Data Exchange (ETDEWEB)

    Vijayaraghavan, K.; Zhang, Y.; Seigneur, C.; Karamchandani, P.; Snell, H.E.

    2009-02-15

    The export of reactive nitrogen (nitrogen oxides and their oxidation products, collectively referred to as NOy) from coal-fired power plants in the U.S. to the rest of the world could have a significant global contribution to ozone. Traditional Eulerian gridded air quality models cannot characterize accurately the chemistry and transport of plumes from elevated point sources such as power plant stacks. A state-of-the-science plume-in-grid (PinG) air quality model, a reactive plume model embedded in an Eulerian gridded model, is used to estimate the export of NOy from 25 large coal-fired power plants in the U. S. (in terms of NOx and SO{sub 2} emissions) in July 2001 to the global atmosphere. The PinG model used is the Community Multiscale Air Quality Model with Advanced Plume Treatment (CMAQ-APT). A benchmark simulation with only the gridded model, CMAQ, is also conducted for comparison purposes. The simulations with and without advanced plume treatment show differences in the calculated export of NOy from the 25 plants considered reflecting the effect of using a detailed and explicit treatment of plume transport and chemistry. The advanced plume treatment results in 31% greater simulated export of NOy compared to the purely grid-based modeling approach. The export efficiency of NOy (the fraction of NOy emitted that is exported) is predicted to be 21% without APT and 27% with APT. When considering only export through the eastern boundary across the Atlantic, CMAQ-APT predicts that the export efficiency is 24% and that 2% of NOy is exported as NOx, 49% as inorganic nitrate, and 25% as PAN. These results are in reasonably good agreement with an analysis reported in the literature of aircraft measurements over the North Atlantic.

  14. Integration of distributed energy resources into low voltage grid: A market-based multiperiod optimization model

    Energy Technology Data Exchange (ETDEWEB)

    Mashhour, Elahe; Moghaddas-Tafreshi, S.M. [Faculty of Electrical Engineering, K.N. Toosi University of Technology, Seyd Khandan, P.O. Box 16315-1355, Shariati, Tehran (Iran)

    2010-04-15

    This paper develops a multiperiod optimization model for an interconnected micro grid with hierarchical control that participates in wholesale energy market to maximize its benefit (i.e. revenues-costs). In addition to the operational constraints of distributed energy resources (DER) including both inter-temporal and non-inter-temporal types, the adequacy and steady-state security constraints of micro grid and its power losses are incorporated in the optimization model. In the presented model, DER are integrated into low voltage grid considering both technical and economical aspects. This integration as a micro grid can participate in wholesale energy market as an entity with dual role including producer and consumer based on the direction of exchanged power. The developed model is evaluated by testing on a micro grid considering different cases and the results are analyzed. (author)

  15. Atmospheric and Fundamental Parameters of Stars in Hubble's Next Generation Spectral Library

    Science.gov (United States)

    Heap, Sally

    2010-01-01

    Hubble's Next Generation Spectral Library (NGSL) consists of R approximately 1000 spectra of 374 stars of assorted temperature, gravity, and metallicity. We are presently working to determine the atmospheric and fundamental parameters of the stars from the NGSL spectra themselves via full-spectrum fitting of model spectra to the observed (extinction-corrected) spectrum over the full wavelength range, 0.2-1.0 micron. We use two grids of model spectra for this purpose: the very low-resolution spectral grid from Castelli-Kurucz (2004), and the grid from MARCS (2008). Both the observed spectrum and the MARCS spectra are first degraded in resolution to match the very low resolution of the Castelli-Kurucz models, so that our fitting technique is the same for both model grids. We will present our preliminary results with a comparison with those from the Sloan/Segue Stellar Parameter Pipeline, ELODIE, and MILES, etc.

  16. Utah Bouguer Gravity Grid

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A 2.5 kilometer Bouguer anomaly grid for the state of Utah. Number of columns is 196 and number of rows is 245. The order of the data is from the lower left to the...

  17. Mosaic of gridded multibeam and lidar bathymetry of the US Territory of Guam

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded multibeam bathymetry is integrated with gridded lidar bathymetry. Gridded (5 m cell size) multibeam bathymetry were collected aboard NOAA Ship Hiialaka'i and...

  18. Gridded National Inventory of U.S. Methane Emissions

    Science.gov (United States)

    Maasakkers, Joannes D.; Jacob, Daniel J.; Sulprizio, Melissa P.; Turner, Alexander J.; Weitz, Melissa; Wirth, Tom; Hight, Cate; DeFigueiredo, Mark; Desai, Mausami; Schmeltz, Rachel; hide

    2016-01-01

    We present a gridded inventory of US anthropogenic methane emissions with 0.1 deg x 0.1 deg spatial resolution, monthly temporal resolution, and detailed scale dependent error characterization. The inventory is designed to be onsistent with the 2016 US Environmental Protection Agency (EPA) Inventory of US Greenhouse Gas Emissionsand Sinks (GHGI) for 2012. The EPA inventory is available only as national totals for different source types. We use a widerange of databases at the state, county, local, and point source level to disaggregate the inventory and allocate the spatial and temporal distribution of emissions for individual source types. Results show large differences with the EDGAR v4.2 global gridded inventory commonly used as a priori estimate in inversions of atmospheric methane observations. We derive grid-dependent error statistics for individual source types from comparison with the Environmental Defense Fund (EDF) regional inventory for Northeast Texas. These error statistics are independently verified by comparison with the California Greenhouse Gas Emissions Measurement (CALGEM) grid-resolved emission inventory. Our gridded, time-resolved inventory provides an improved basis for inversion of atmospheric methane observations to estimate US methane emissions and interpret the results in terms of the underlying processes.

  19. Preparing for Exascale: Towards convection-permitting, global atmospheric simulations with the Model for Prediction Across Scales (MPAS)

    Science.gov (United States)

    Heinzeller, Dominikus; Duda, Michael G.; Kunstmann, Harald

    2017-04-01

    With strong financial and political support from national and international initiatives, exascale computing is projected for the end of this decade. Energy requirements and physical limitations imply the use of accelerators and the scaling out to orders of magnitudes larger numbers of cores then today to achieve this milestone. In order to fully exploit the capabilities of these Exascale computing systems, existing applications need to undergo significant development. The Model for Prediction Across Scales (MPAS) is a novel set of Earth system simulation components and consists of an atmospheric core, an ocean core, a land-ice core and a sea-ice core. Its distinct features are the use of unstructured Voronoi meshes and C-grid discretisation to address shortcomings of global models on regular grids and the use of limited area models nested in a forcing data set, with respect to parallel scalability, numerical accuracy and physical consistency. Here, we present work towards the application of the atmospheric core (MPAS-A) on current and future high performance computing systems for problems at extreme scale. In particular, we address the issue of massively parallel I/O by extending the model to support the highly scalable SIONlib library. Using global uniform meshes with a convection-permitting resolution of 2-3km, we demonstrate the ability of MPAS-A to scale out to half a million cores while maintaining a high parallel efficiency. We also demonstrate the potential benefit of a hybrid parallelisation of the code (MPI/OpenMP) on the latest generation of Intel's Many Integrated Core Architecture, the Intel Xeon Phi Knights Landing.

  20. Chaotic Dynamics in Smart Grid and Suppression Scheme via Generalized Fuzzy Hyperbolic Model

    NARCIS (Netherlands)

    Sun, Q.; Wang, Y.; Yang, J.; Qiu, Y.; Zhang, H.

    2014-01-01

    This paper presents a method to control chaotic behavior of a typical Smart Grid based on generalized fuzzy hyperbolic model (GFHM). As more and more distributed generations (DG) are incorporated into the Smart Grid, the chaotic behavior occurs increasingly. To verify the behavior, a dynamic model

  1. Gridded multibeam bathymetry of Apra Harbor, Guam U.S. Territory

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded bathymetry from Apra Harbor, Guam U.S. Territory. The netCDF and Arc ASCII grids include multibeam bathymetry from the Reson SeaBat 8125 multibeam sonar...

  2. Multi-scale modeling of urban air pollution: development of a Street-in-Grid model

    Science.gov (United States)

    Kim, Youngseob; Wu, You; Seigneur, Christian; Roustan, Yelva

    2016-04-01

    A new multi-scale model of urban air pollution is presented. This model combines a chemical-transport model (CTM) that includes a comprehensive treatment of atmospheric chemistry and transport at spatial scales greater than 1 km and a street-network model that describes the atmospheric concentrations of pollutants in an urban street network. The street-network model is based on the general formulation of the SIRANE model and consists of two main components: a street-canyon component and a street-intersection component. The street-canyon component calculates the mass transfer velocity at the top of the street canyon (roof top) and the mean wind velocity within the street canyon. The estimation of the mass transfer velocity depends on the intensity of the standard deviation of the vertical velocity at roof top. The effect of various formulations of this mass transfer velocity on the pollutant transport at roof-top level is examined. The street-intersection component calculates the mass transfer from a given street to other streets across the intersection. These mass transfer rates among the streets are calculated using the mean wind velocity calculated for each street and are balanced so that the total incoming flow rate is equal to the total outgoing flow rate from the intersection including the flow between the intersection and the overlying atmosphere at roof top. In the default option, the Leighton photostationary cycle among ozone (O3) and nitrogen oxides (NO and NO2) is used to represent the chemical reactions within the street network. However, the influence of volatile organic compounds (VOC) on the pollutant concentrations increases when the nitrogen oxides (NOx) concentrations are low. To account for the possible VOC influence on street-canyon chemistry, the CB05 chemical kinetic mechanism, which includes 35 VOC model species, is implemented in this street-network model. A sensitivity study is conducted to assess the uncertainties associated with the use of

  3. GEOSPATIAL ANALYSIS OF ATMOSPHERIC HAZE EFFECT BY SOURCE AND SINK LANDSCAPE

    Directory of Open Access Journals (Sweden)

    T. Yu

    2017-09-01

    Full Text Available Based on geospatial analysis model, this paper analyzes the relationship between the landscape patterns of source and sink in urban areas and atmospheric haze pollution. Firstly, the classification result and aerosol optical thickness (AOD of Wuhan are divided into a number of square grids with the side length of 6 km, and the category level landscape indices (PLAND, PD, COHESION, LPI, FRAC_MN and AOD of each grid are calculated. Then the source and sink landscapes of atmospheric haze pollution are selected based on the analysis of the correlation between landscape indices and AOD. Next, to make the following analysis more efficient, the indices selected before should be determined through the correlation coefficient between them. Finally, due to the spatial dependency and spatial heterogeneity of the data used in this paper, spatial autoregressive model and geo-weighted regression model are used to analyze atmospheric haze effect by source and sink landscape from the global and local level. The results show that the source landscape of atmospheric haze pollution is the building, and the sink landscapes are shrub and woodland. PLAND, PD and COHESION are suitable for describing the atmospheric haze effect by source and sink landscape. Comparing these models, the fitting effect of SLM, SEM and GWR is significantly better than that of OLS model. The SLM model is superior to the SEM model in this paper. Although the fitting effect of GWR model is more unsuited than that of SLM, the influence degree of influencing factors on atmospheric haze of different geography can be expressed clearer. Through the analysis results of these models, following conclusions can be summarized: Reducing the proportion of source landscape area and increasing the degree of fragmentation could cut down aerosol optical thickness; And distributing the source and sink landscape evenly and interspersedly could effectively reduce aerosol optical thickness which represents

  4. Geospatial Analysis of Atmospheric Haze Effect by Source and Sink Landscape

    Science.gov (United States)

    Yu, T.; Xu, K.; Yuan, Z.

    2017-09-01

    Based on geospatial analysis model, this paper analyzes the relationship between the landscape patterns of source and sink in urban areas and atmospheric haze pollution. Firstly, the classification result and aerosol optical thickness (AOD) of Wuhan are divided into a number of square grids with the side length of 6 km, and the category level landscape indices (PLAND, PD, COHESION, LPI, FRAC_MN) and AOD of each grid are calculated. Then the source and sink landscapes of atmospheric haze pollution are selected based on the analysis of the correlation between landscape indices and AOD. Next, to make the following analysis more efficient, the indices selected before should be determined through the correlation coefficient between them. Finally, due to the spatial dependency and spatial heterogeneity of the data used in this paper, spatial autoregressive model and geo-weighted regression model are used to analyze atmospheric haze effect by source and sink landscape from the global and local level. The results show that the source landscape of atmospheric haze pollution is the building, and the sink landscapes are shrub and woodland. PLAND, PD and COHESION are suitable for describing the atmospheric haze effect by source and sink landscape. Comparing these models, the fitting effect of SLM, SEM and GWR is significantly better than that of OLS model. The SLM model is superior to the SEM model in this paper. Although the fitting effect of GWR model is more unsuited than that of SLM, the influence degree of influencing factors on atmospheric haze of different geography can be expressed clearer. Through the analysis results of these models, following conclusions can be summarized: Reducing the proportion of source landscape area and increasing the degree of fragmentation could cut down aerosol optical thickness; And distributing the source and sink landscape evenly and interspersedly could effectively reduce aerosol optical thickness which represents atmospheric haze

  5. Rugosity grid derived from gridded bathymetry of Howland Island, Pacific Remote Island Areas, Central Pacific

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Rugosity is derived from gridded (40 m cell size) multibeam bathymetry, collected aboard R/V AHI and NOAA ship Hi'ialakai. Cell values reflect the (surface area) /...

  6. Harmonic current prediction by impedance modeling of grid-tied inverters

    DEFF Research Database (Denmark)

    Pereira, Heverton A.; Freijedo, Francisco D.; Silva, M. M.

    2017-01-01

    and harmonic voltage profiles. Results reinforce that impedance models can represent with relatively accuracy the harmonic current emitted by the PV plants at the point of common coupling (PCC). Lastly, a stress test is performed to show how a variation in the harmonic voltage phase angle impacts the PV plant...... impedance models when used in harmonic integration studies. It is aimed to estimate the harmonic current contribution as a function of the background harmonic voltages components. Time domain simulations based on detailed and average models are compared with the impedance model developed in frequency domain....... In grids with harmonic voltages, impedance models can predict the current distortion for all active power injection scenarios. Furthermore, measurements in a 1.4 MW PV plant connected in a distributed grid are used to validate the simulation based on impedance models during different power injections...

  7. Photovoltaic Grid-Connected Modeling and Characterization Based on Experimental Results

    Science.gov (United States)

    Humada, Ali M.; Hojabri, Mojgan; Sulaiman, Mohd Herwan Bin; Hamada, Hussein M.; Ahmed, Mushtaq N.

    2016-01-01

    A grid-connected photovoltaic (PV) system operates under fluctuated weather condition has been modeled and characterized based on specific test bed. A mathematical model of a small-scale PV system has been developed mainly for residential usage, and the potential results have been simulated. The proposed PV model based on three PV parameters, which are the photocurrent, IL, the reverse diode saturation current, Io, the ideality factor of diode, n. Accuracy of the proposed model and its parameters evaluated based on different benchmarks. The results showed that the proposed model fitting the experimental results with high accuracy compare to the other models, as well as the I-V characteristic curve. The results of this study can be considered valuable in terms of the installation of a grid-connected PV system in fluctuated climatic conditions. PMID:27035575

  8. Climate modelling on the GRID Experiences in the EU-project EELA

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Quiruelas, V.; Fernandez, J.; Cofino, A. S.; Gutierrez, J. M.; Baeza Retamal, C.; Abarca del Rio, R.; Miguel San Martin, R.; Carrillo, M.

    2007-07-01

    Recent trends in climate modeling find in GRID computing a powerful way to achieve results by sharing computing and data distributed resources. In particular, ensemble prediction is based on the generation of multiple simulations from perturbed model conditions to sample the existing uncertainties. In this work, we present a GRID application consisting of a sequence of two state-of-the-art climate models (one global model and one regional model), operable through a web portal (based on Genius). The main goal of the application is providing ensemble-based regional predictions. This requires managing a complex work flow involving long-term jobs and job dependencies in a user-transparent way. In doing so, we identified the weaknesses of current middle ware tools and developed a robust work flow by merging the optimal existing applications with an underlying self-developed work flow application based on the communication with metadata catalogs (currently AMGA) storing application status and dynamic model output generation. As an illustrative scientific challenge, the application is applied to study the El Nino phenomenon, by simulating an El Nino year with different forcing conditions and analyzing the precipitation response over south-american countries subject to flooding risk. GRID computing; Climate models; CAM model; WRF model; Work flow. (Author)

  9. Climate modelling on the GRID Experiences in the EU-project EELA

    International Nuclear Information System (INIS)

    Fernandez-Quiruelas, V.; Fernandez, J.; Cofino, A. S.; Gutierrez, J. M.; Baeza Retamal, C.; Abarca del Rio, R.; Miguel San Martin, R.; Carrillo, M.

    2007-01-01

    Recent trends in climate modeling find in GRID computing a powerful way to achieve results by sharing computing and data distributed resources. In particular, ensemble prediction is based on the generation of multiple simulations from perturbed model conditions to sample the existing uncertainties. In this work, we present a GRID application consisting of a sequence of two state-of-the-art climate models (one global model and one regional model), operable through a web portal (based on Genius). The main goal of the application is providing ensemble-based regional predictions. This requires managing a complex work flow involving long-term jobs and job dependencies in a user-transparent way. In doing so, we identified the weaknesses of current middle ware tools and developed a robust work flow by merging the optimal existing applications with an underlying self-developed work flow application based on the communication with metadata catalogs (currently AMGA) storing application status and dynamic model output generation. As an illustrative scientific challenge, the application is applied to study the El Nino phenomenon, by simulating an El Nino year with different forcing conditions and analyzing the precipitation response over south-american countries subject to flooding risk. GRID computing; Climate models; CAM model; WRF model; Work flow. (Author)

  10. Verification of atmospheric diffusion models using data of long term atmospheric diffusion experiments

    International Nuclear Information System (INIS)

    Tamura, Junji; Kido, Hiroko; Hato, Shinji; Homma, Toshimitsu

    2009-03-01

    Straight-line or segmented plume models as atmospheric diffusion models are commonly used in probabilistic accident consequence assessment (PCA) codes due to cost and time savings. The PCA code, OSCAAR developed by Japan Atomic Energy Research Institute (Present; Japan Atomic Energy Agency) uses the variable puff trajectory model to calculate atmospheric transport and dispersion of released radionuclides. In order to investigate uncertainties involved with the structure of the atmospheric dispersion/deposition model in OSCAAR, we have introduced the more sophisticated computer codes that included regional meteorological models RAMS and atmospheric transport model HYPACT, which were developed by Colorado State University, and comparative analyses between OSCAAR and RAMS/HYPACT have been performed. In this study, model verification of OSCAAR and RAMS/HYPACT was conducted using data of long term atmospheric diffusion experiments, which were carried out in Tokai-mura, Ibaraki-ken. The predictions by models and the results of the atmospheric diffusion experiments indicated relatively good agreements. And it was shown that model performance of OSCAAR was the same degree as it of RAMS/HYPACT. (author)

  11. Slope grid derived from gridded bathymetry of Ofu and Olosega Islands, Territory of American Samoa, USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Slope is derived from gridded (5 m cell size) multibeam bathymetry, collected aboard R/V AHI, and bathymetry derived from multispectral IKONOS satellite imagery....

  12. Slope grid derived from gridded bathymetry of Johnston Island, Pacific Remote Island Areas, Central Pacific.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Slope is derived from gridded (20 m cell size) multibeam bathymetry, collected aboard R/V AHI, and NOAA ship Hi'ialakai. Cell values reflect the maximum rate of...

  13. Slope grid derived from gridded bathymetry of Howland Island, Pacific Remote Island Areas, Central Pacific.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Slope is derived from gridded (40 m cell size) multibeam bathymetry, collected aboard R/V AHI, and NOAA ship Hi'ialakai. Cell values reflect the maximum rate of...

  14. Slope grid derived from gridded bathymetry of Baker Island, Pacific Remote Island Areas, Central Pacific.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Slope is derived from gridded (20 m cell size) multibeam bathymetry, collected aboard R/V AHI, and NOAA ship Hi'ialakai. Cell values reflect the maximum rate of...

  15. Parameterizations of Chromospheric Condensations in dG and dMe Model Flare Atmospheres

    Science.gov (United States)

    Kowalski, Adam F.; Allred, Joel C.

    2018-01-01

    The origin of the near-ultraviolet and optical continuum radiation in flares is critical for understanding particle acceleration and impulsive heating in stellar atmospheres. Radiative-hydrodynamic (RHD) simulations in 1D have shown that high energy deposition rates from electron beams produce two flaring layers at T ∼ 104 K that develop in the chromosphere: a cooling condensation (downflowing compression) and heated non-moving (stationary) flare layers just below the condensation. These atmospheres reproduce several observed phenomena in flare spectra, such as the red-wing asymmetry of the emission lines in solar flares and a small Balmer jump ratio in M dwarf flares. The high beam flux simulations are computationally expensive in 1D, and the (human) timescales for completing NLTE models with adaptive grids in 3D will likely be unwieldy for some time to come. We have developed a prescription for predicting the approximate evolved states, continuum optical depth, and emergent continuum flux spectra of RHD model flare atmospheres. These approximate prescriptions are based on an important atmospheric parameter: the column mass ({m}{ref}) at which hydrogen becomes nearly completely ionized at the depths that are approximately in steady state with the electron beam heating. Using this new modeling approach, we find that high energy flux density (>F11) electron beams are needed to reproduce the brightest observed continuum intensity in IRIS data of the 2014 March 29 X1 solar flare, and that variation in {m}{ref} from 0.001 to 0.02 g cm‑2 reproduces most of the observed range of the optical continuum flux ratios at the peak of M dwarf flares.

  16. A Reference Model for Distribution Grid Control in the 21st Century

    Energy Technology Data Exchange (ETDEWEB)

    Taft, Jeffrey D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); De Martini, Paul [California Inst. of Technology (CalTech), Pasadena, CA (United States); Kristov, Lorenzo [California Independent System Operator, Folsom, CA (United States)

    2015-07-01

    Intensive changes in the structure of the grid due to the penetration of new technologies, coupled with changing societal needs are outpacing the capabilities of traditional grid control systems. The gap is widening at an accelerating rate with the biggest impacts occurring at the distribution level due to the widespread adoption of diverse distribution-connected energy resources (DER) . This paper outlines the emerging distribution grid control environment, defines the new distribution control problem, and provides a distribution control reference model. The reference model offers a schematic representation of the problem domain to inform development of system architecture and control solutions for the high-DER electric system.

  17. A Non-hydrostatic Atmospheric Model for Global High-resolution Simulation

    Science.gov (United States)

    Peng, X.; Li, X.

    2017-12-01

    A three-dimensional non-hydrostatic atmosphere model, GRAPES_YY, is developed on the spherical Yin-Yang grid system in order to enforce global high-resolution weather simulation or forecasting at the CAMS/CMA. The quasi-uniform grid makes the computation be of high efficiency and free of pole problem. Full representation of the three-dimensional Coriolis force is considered in the governing equations. Under the constraint of third-order boundary interpolation, the model is integrated with the semi-implicit semi-Lagrangian method using the same code on both zones. A static halo region is set to ensure computation of cross-boundary transport and updating Dirichlet-type boundary conditions in the solution process of elliptical equations with the Schwarz method. A series of dynamical test cases, including the solid-body advection, the balanced geostrophic flow, zonal flow over an isolated mountain, development of the Rossby-Haurwitz wave and a baroclinic wave, are carried out, and excellent computational stability and accuracy of the dynamic core has been confirmed. After implementation of the physical processes of long and short-wave radiation, cumulus convection, micro-physical transformation of water substances and the turbulent processes in the planetary boundary layer include surface layer vertical fluxes parameterization, a long-term run of the model is then put forward under an idealized aqua-planet configuration to test the model physics and model ability in both short-term and long-term integrations. In the aqua-planet experiment, the model shows an Earth-like structure of circulation. The time-zonal mean temperature, wind components and humidity illustrate reasonable subtropical zonal westerly jet, meridional three-cell circulation, tropical convection and thermodynamic structures. The specific SST and solar insolation being symmetric about the equator enhance the ITCZ and tropical precipitation, which concentrated in tropical region. Additional analysis and

  18. 2.5-min Isostatic Gravity Grid for the United States

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The 2.5-min isostatic gravity data set was produced by regridding the 4-km residual isostatic gravity grid of the U.S. The isostatic residual gravity grid was...

  19. Challenges and Opportunities in Modeling of the Global Atmosphere

    Science.gov (United States)

    Janjic, Zavisa; Djurdjevic, Vladimir; Vasic, Ratko

    2016-04-01

    Modeling paradigms on global scales may need to be reconsidered in order to better utilize the power of massively parallel processing. For high computational efficiency with distributed memory, each core should work on a small subdomain of the full integration domain, and exchange only few rows of halo data with the neighbouring cores. Note that the described scenario strongly favors horizontally local discretizations. This is relatively easy to achieve in regional models. However, the spherical geometry complicates the problem. The latitude-longitude grid with local in space and explicit in time differencing has been an early choice and remained in use ever since. The problem with this method is that the grid size in the longitudinal direction tends to zero as the poles are approached. So, in addition to having unnecessarily high resolution near the poles, polar filtering has to be applied in order to use a time step of a reasonable size. However, the polar filtering requires transpositions involving extra communications as well as more computations. The spectral transform method and the semi-implicit semi-Lagrangian schemes opened the way for application of spectral representation. With some variations, such techniques are currently dominating in global models. Unfortunately, the horizontal non-locality is inherent to the spectral representation and implicit time differencing, which inhibits scaling on a large number of cores. In this respect the lat-lon grid with polar filtering is a step in the right direction, particularly at high resolutions where the Legendre transforms become increasingly expensive. Other grids with reduced variability of grid distances, such as various versions of the cubed sphere and the hexagonal/pentagonal ("soccer ball") grids, were proposed almost fifty years ago. However, on these grids, large-scale (wavenumber 4 and 5) fictitious solutions ("grid imprinting") with significant amplitudes can develop. Due to their large scales, that

  20. Limb-darkening coefficients from line-blanketed non-LTE hot-star model atmospheres

    Science.gov (United States)

    Reeve, D. C.; Howarth, I. D.

    2016-02-01

    We present grids of limb-darkening coefficients computed from non-local thermodynamic equilibrium (non-LTE), line-blanketed TLUSTY model atmospheres, covering effective-temperature and surface-gravity ranges of 15-55 kK and 4.75 dex (cgs) down to the effective Eddington limit, at 2×, 1×, 0.5× (Large Magellanic Cloud), 0.2× (Small Magellanic Cloud), and 0.1× solar. Results are given for the Bessell UBVRICJKHL, Sloan ugriz, Strömgren ubvy, WFCAM ZYJHK, Hipparcos, Kepler, and Tycho passbands, in each case characterized by several different limb-darkening `laws'. We examine the sensitivity of limb darkening to temperature, gravity, metallicity, microturbulent velocity, and wavelength, and make a comparison with LTE models. The dependence on metallicity is very weak, but limb darkening is a moderately strong function of log g in this temperature regime.

  1. A study on improvement of analytical prediction model for spacer grid pressure loss coefficients

    International Nuclear Information System (INIS)

    Lim, Jonh Seon

    2002-02-01

    Nuclear fuel assemblies used in the nuclear power plants consist of the nuclear fuel rods, the control rod guide tubes, an instrument guide tube, spacer grids,a bottom nozzle, a top nozzle. The spacer grid is the most important component of the fuel assembly components for thermal hydraulic and mechanical design and analyses. The spacer grids fixed with the guide tubes support the fuel rods and have the very important role to activate thermal energy transfer by the coolant mixing caused to the turbulent flow and crossflow in the subchannels. In this paper, the analytical spacer grid pressure loss prediction model has been studied and improved by considering the test section wall to spacer grid gap pressure loss independently and applying the appropriate friction drag coefficient to predict pressure loss more accurately at the low Reynolds number region. The improved analytical model has been verified based on the hydraulic pressure drop test results for the spacer grids of three types with 5x5, 16x16, 17x17 arrays, respectively. The pressure loss coefficients predicted by the improved analytical model are coincident with those test results within ±12%. This result shows that the improved analytical model can be used for research and design change of the nuclear fuel assembly

  2. Multi-year Estimates of Methane Fluxes in Alaska from an Atmospheric Inverse Model

    Science.gov (United States)

    Miller, S. M.; Commane, R.; Chang, R. Y. W.; Miller, C. E.; Michalak, A. M.; Dinardo, S. J.; Dlugokencky, E. J.; Hartery, S.; Karion, A.; Lindaas, J.; Sweeney, C.; Wofsy, S. C.

    2015-12-01

    We estimate methane fluxes across Alaska over a multi-year period using observations from a three-year aircraft campaign, the Carbon Arctic Reservoirs Vulnerability Experiment (CARVE). Existing estimates of methane from Alaska and other Arctic regions disagree in both magnitude and distribution, and before the CARVE campaign, atmospheric observations in the region were sparse. We combine these observations with an atmospheric particle trajectory model and a geostatistical inversion to estimate surface fluxes at the model grid scale. We first use this framework to estimate the spatial distribution of methane fluxes across the state. We find the largest fluxes in the south-east and North Slope regions of Alaska. This distribution is consistent with several estimates of wetland extent but contrasts with the distribution in most existing flux models. These flux models concentrate methane in warmer or more southerly regions of Alaska compared to the estimate presented here. This result suggests a discrepancy in how existing bottom-up models translate wetland area into methane fluxes across the state. We next use the inversion framework to explore inter-annual variability in regional-scale methane fluxes for 2012-2014. We examine the extent to which this variability correlates with weather or other environmental conditions. These results indicate the possible sensitivity of wetland fluxes to near-term variability in climate.

  3. Harmonic Interaction Analysis in Grid Connected Converter using Harmonic State Space (HSS) Modeling

    DEFF Research Database (Denmark)

    Kwon, Jun Bum; Wang, Xiongfei; Bak, Claus Leth

    2015-01-01

    -model, are introduced to analyze these problems. However, it is found that Linear Time Invariant (LTI) base model analysis makes it difficult to analyze these phenomenon because of time varying system operation trajectories, varying output impedance seen by grid connected systems and neglected switching component......An increasing number of power electronics based Distributed Generation (DG) systems and loads generate coupled harmonic as well as non-characteristic harmonic with each other. Several methods like impedance based analysis, which is derived from conventional small signal- and average...... during the modeling process. This paper investigates grid connected converter by means of Harmonic State Space (HSS) small signal model, which is modeled from Linear Time varying Periodically (LTP) system. Further, a grid connected converter harmonic matrix is investigated to analyze the harmonic...

  4. Numerical modelling of needle-grid electrodes for negative surface corona charging system

    International Nuclear Information System (INIS)

    Zhuang, Y; Chen, G; Rotaru, M

    2011-01-01

    Surface potential decay measurement is a simple and low cost tool to examine electrical properties of insulation materials. During the corona charging stage, a needle-grid electrodes system is often used to achieve uniform charge distribution on the surface of the sample. In this paper, a model using COMSOL Multiphysics has been developed to simulate the gas discharge. A well-known hydrodynamic drift-diffusion model was used. The model consists of a set of continuity equations accounting for the movement, generation and loss of charge carriers (electrons, positive and negative ions) coupled with Poisson's equation to take into account the effect of space and surface charges on the electric field. Four models with the grid electrode in different positions and several mesh sizes are compared with a model that only has the needle electrode. The results for impulse current and surface charge density on the sample clearly show the effect of the extra grid electrode with various positions.

  5. Surface Modeling, Grid Generation, and Related Issues in Computational Fluid Dynamic (CFD) Solutions

    Science.gov (United States)

    Choo, Yung K. (Compiler)

    1995-01-01

    The NASA Steering Committee for Surface Modeling and Grid Generation (SMAGG) sponsored a workshop on surface modeling, grid generation, and related issues in Computational Fluid Dynamics (CFD) solutions at Lewis Research Center, Cleveland, Ohio, May 9-11, 1995. The workshop provided a forum to identify industry needs, strengths, and weaknesses of the five grid technologies (patched structured, overset structured, Cartesian, unstructured, and hybrid), and to exchange thoughts about where each technology will be in 2 to 5 years. The workshop also provided opportunities for engineers and scientists to present new methods, approaches, and applications in SMAGG for CFD. This Conference Publication (CP) consists of papers on industry overview, NASA overview, five grid technologies, new methods/ approaches/applications, and software systems.

  6. Rugosity grid (5 m) derived from gridded bathymetry of Saipan Island, Commonwealth of the Northern Marianas

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Rugosity is derived from gridded (5 m cell size) bathymetry from two sources: Multibeam bathymetry collected by Coral Reef Ecosystem Division aboard NOAA R/V AHI,...

  7. The Effect of Model Grid Resolution on the Distributed Hydrologic Simulations for Forecasting Stream Flows and Reservoir Storage

    Science.gov (United States)

    Turnbull, S. J.

    2017-12-01

    Within the US Army Corps of Engineers (USACE), reservoirs are typically operated according to a rule curve that specifies target water levels based on the time of year. The rule curve is intended to maximize flood protection by specifying releases of water before the dominant rainfall period for a region. While some operating allowances are permissible, generally the rule curve elevations must be maintained. While this operational approach provides for the required flood control purpose, it may not result in optimal reservoir operations for multi-use impoundments. In the Russian River Valley of California a multi-agency research effort called Forecast-Informed Reservoir Operations (FIRO) is assessing the application of forecast weather and streamflow predictions to potentially enhance the operation of reservoirs in the watershed. The focus of the study has been on Lake Mendocino, a USACE project important for flood control, water supply, power generation and ecological flows. As part of this effort the Engineer Research and Development Center is assessing the ability of utilizing the physics based, distributed watershed model Gridded Surface Subsurface Hydrologic Analysis (GSSHA) model to simulate stream flows, reservoir stages, and discharges while being driven by weather forecast products. A key question in this application is the effect of watershed model resolution on forecasted stream flows. To help resolve this question, GSSHA models of multiple grid resolutions, 30, 50, and 270m, were developed for the upper Russian River, which includes Lake Mendocino. The models were derived from common inputs: DEM, soils, land use, stream network, reservoir characteristics, and specified inflows and discharges. All the models were calibrated in both event and continuous simulation mode using measured precipitation gages and then driven with the West-WRF atmospheric model in prediction mode to assess the ability of the model to function in short term, less than one week

  8. Evaluation of sub grid scale and local wall models in Large-eddy simulations of separated flow

    Directory of Open Access Journals (Sweden)

    Sam Ali Al

    2015-01-01

    Full Text Available The performance of the Sub Grid Scale models is studied by simulating a separated flow over a wavy channel. The first and second order statistical moments of the resolved velocities obtained by using Large-Eddy simulations at different mesh resolutions are compared with Direct Numerical Simulations data. The effectiveness of modeling the wall stresses by using local log-law is then tested on a relatively coarse grid. The results exhibit a good agreement between highly-resolved Large Eddy Simulations and Direct Numerical Simulations data regardless the Sub Grid Scale models. However, the agreement is less satisfactory with relatively coarse grid without using any wall models and the differences between Sub Grid Scale models are distinguishable. Using local wall model retuned the basic flow topology and reduced significantly the differences between the coarse meshed Large-Eddy Simulations and Direct Numerical Simulations data. The results show that the ability of local wall model to predict the separation zone depends strongly on its implementation way.

  9. Modelling and Analysis of DFIG Wind Turbine Harmonics Generated in Grids

    OpenAIRE

    A.Chilambuchelvan; B.BabyPriya,

    2010-01-01

    In this paper an analytic technique for modelling harmonics is proposed for a DFIG wind turbine connected to the grid. An algorithm based on Hilbert transform for the analysis of harmonics in power systems isdeveloped. The simulation results prove the effectiveness of the Hilbert Transform (HT) for power harmonic analysis in DFIG wind turbine connected to a grid.

  10. Coverage map of gridded multibeam and lidar bathymetry of the US Territory of Guam

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded multibeam bathymetry is integrated with gridded lidar bathymetry. Gridded (5 m cell size) multibeam bathymetry were collected aboard NOAA Ship Hiialaka'i and...

  11. Comparison of GCM subgrid fluxes calculated using BATS and SiB schemes with a coupled land-atmosphere high-resolution model

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Jinmei; Arritt, R.W. [Iowa State Univ., Ames, IA (United States)

    1996-12-31

    The importance of land-atmosphere interactions and biosphere in climate change studies has long been recognized, and several land-atmosphere interaction schemes have been developed. Among these, the Simple Biosphere scheme (SiB) of Sellers et al. and the Biosphere Atmosphere Transfer Scheme (BATS) of Dickinson et al. are two of the most widely known. The effects of GCM subgrid-scale inhomogeneities of surface properties in general circulation models also has received increasing attention in recent years. However, due to the complexity of land surface processes and the difficulty to prescribe the large number of parameters that determine atmospheric and soil interactions with vegetation, many previous studies and results seem to be contradictory. A GCM grid element typically represents an area of 10{sup 4}-10{sup 6} km{sup 2}. Within such an area, there exist variations of soil type, soil wetness, vegetation type, vegetation density and topography, as well as urban areas and water bodies. In this paper, we incorporate both BATS and SiB2 land surface process schemes into a nonhydrostatic, compressible version of AMBLE model (Atmospheric Model -- Boundary-Layer Emphasis), and compare the surface heat fluxes and mesoscale circulations calculated using the two schemes. 8 refs., 5 figs.

  12. Simulation of wind-induced snow transport and sublimation in alpine terrain using a fully coupled snowpack/atmosphere model

    Science.gov (United States)

    Vionnet, V.; Martin, E.; Masson, V.; Guyomarc'h, G.; Naaim-Bouvet, F.; Prokop, A.; Durand, Y.; Lac, C.

    2014-03-01

    In alpine regions, wind-induced snow transport strongly influences the spatio-temporal evolution of the snow cover throughout the winter season. To gain understanding on the complex processes that drive the redistribution of snow, a new numerical model is developed. It directly couples the detailed snowpack model Crocus with the atmospheric model Meso-NH. Meso-NH/Crocus simulates snow transport in saltation and in turbulent suspension and includes the sublimation of suspended snow particles. The coupled model is evaluated against data collected around the experimental site of Col du Lac Blanc (2720 m a.s.l., French Alps). First, 1-D simulations show that a detailed representation of the first metres of the atmosphere is required to reproduce strong gradients of blowing snow concentration and compute mass exchange between the snowpack and the atmosphere. Secondly, 3-D simulations of a blowing snow event without concurrent snowfall have been carried out. Results show that the model captures the main structures of atmospheric flow in alpine terrain. However, at 50 m grid spacing, the model reproduces only the patterns of snow erosion and deposition at the ridge scale and misses smaller scale patterns observed by terrestrial laser scanning. When activated, the sublimation of suspended snow particles causes a reduction of deposited snow mass of 5.3% over the calculation domain. Total sublimation (surface + blowing snow) is three times higher than surface sublimation in a simulation neglecting blowing snow sublimation.

  13. Rugosity grid derived from gridded bathymetry of of Baker Island, Pacific Remote Island Areas, Central Pacific.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Rugosity is derived from gridded (20 m cell size) multibeam bathymetry, collected aboard R/V AHI and NOAA ship Hi'ialakai. Cell values reflect the (surface area) /...

  14. Rugosity grid derived from gridded bathymetry of of Johnston Island, Pacific Remote Island Areas, Central Pacific.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Rugosity is derived from gridded (20 m cell size) multibeam bathymetry, collected aboard R/V AHI and NOAA ship Hi'ialakai. Cell values reflect the (surface area) /...

  15. Gridded 5km GHCN-Daily Temperature and Precipitation Dataset, Version 1

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Gridded 5km GHCN-Daily Temperature and Precipitation Dataset (nClimGrid) consists of four climate variables derived from the GHCN-D dataset: maximum temperature,...

  16. Modeling of GE Appliances in GridLAB-D: Peak Demand Reduction

    Energy Technology Data Exchange (ETDEWEB)

    Fuller, Jason C.; Vyakaranam, Bharat GNVSR; Prakash Kumar, Nirupama; Leistritz, Sean M.; Parker, Graham B.

    2012-04-29

    The widespread adoption of demand response enabled appliances and thermostats can result in significant reduction to peak electrical demand and provide potential grid stabilization benefits. GE has developed a line of appliances that will have the capability of offering several levels of demand reduction actions based on information from the utility grid, often in the form of price. However due to a number of factors, including the number of demand response enabled appliances available at any given time, the reduction of diversity factor due to the synchronizing control signal, and the percentage of consumers who may override the utility signal, it can be difficult to predict the aggregate response of a large number of residences. The effects of these behaviors can be modeled and simulated in open-source software, GridLAB-D, including evaluation of appliance controls, improvement to current algorithms, and development of aggregate control methodologies. This report is the first in a series of three reports describing the potential of GE's demand response enabled appliances to provide benefits to the utility grid. The first report will describe the modeling methodology used to represent the GE appliances in the GridLAB-D simulation environment and the estimated potential for peak demand reduction at various deployment levels. The second and third reports will explore the potential of aggregated group actions to positively impact grid stability, including frequency and voltage regulation and spinning reserves, and the impacts on distribution feeder voltage regulation, including mitigation of fluctuations caused by high penetration of photovoltaic distributed generation and the effects on volt-var control schemes.

  17. Improving energy efficiency and smart grid program analysis with agent-based end-use forecasting models

    International Nuclear Information System (INIS)

    Jackson, Jerry

    2010-01-01

    Electric utilities and regulators face difficult challenges evaluating new energy efficiency and smart grid programs prompted, in large part, by recent state and federal mandates and financial incentives. It is increasingly difficult to separate electricity use impacts of individual utility programs from the impacts of increasingly stringent appliance and building efficiency standards, increasing electricity prices, appliance manufacturer efficiency improvements, energy program interactions and other factors. This study reviews traditional approaches used to evaluate electric utility energy efficiency and smart-grid programs and presents an agent-based end-use modeling approach that resolves many of the shortcomings of traditional approaches. Data for a representative sample of utility customers in a Midwestern US utility are used to evaluate energy efficiency and smart grid program targets over a fifteen-year horizon. Model analysis indicates that a combination of the two least stringent efficiency and smart grid program scenarios provides peak hour reductions one-third greater than the most stringent smart grid program suggesting that reductions in peak demand requirements are more feasible when both efficiency and smart grid programs are considered together. Suggestions on transitioning from traditional end-use models to agent-based end-use models are provided.

  18. Use of fundamental condensation heat transfer experiments for the development of a sub-grid liquid jet condensation model

    Energy Technology Data Exchange (ETDEWEB)

    Buschman, Francis X., E-mail: Francis.Buschman@unnpp.gov; Aumiller, David L.

    2017-02-15

    Highlights: • Direct contact condensation data on liquid jets up to 1.7 MPa in pure steam and in the presence of noncondensable gas. • Identified a pressure effect on the impact of noncondensables to suppress condensation heat transfer not captured in existing data or correlations. • Pure steam data is used to develop a new correlation for condensation heat transfer on subcooled liquid jets. • Noncondensable data used to develop a modification to the renewal time estimate used in the Young and Bajorek correlation for condensation suppression in the presence of noncondensables. • A jet injection boundary condition, using a sub-grid jet condensation model, is developed for COBRA-IE which provides a more detailed estimate of the condensation rate on the liquid jet and allows the use of jet specific closure relationships. - Abstract: Condensation on liquid jets is an important phenomenon for many different facets of nuclear power plant transients and analyses such as containment spray cooling. An experimental facility constructed at the Pennsylvania State University, the High Pressure Liquid Jet Condensation Heat Transfer facility (HPLJCHT), has been used to perform steady-state condensation heat transfer experiments in which the temperature of the liquid jet is measured at different axial locations allowing the condensation rate to be determined over the jet length. Test data have been obtained in a pure steam environment and with varying concentrations of noncondensable gas. This data extends the available jet condensation data from near atmospheric pressure up to a pressure of 1.7 MPa. An empirical correlation for the liquid side condensation heat transfer coefficient has been developed based on the data obtained in pure steam. The data obtained with noncondensable gas were used to develop a correlation for the renewal time as used in the condensation suppression model developed by Young and Bajorek. This paper describes a new sub-grid liquid jet

  19. Use of fundamental condensation heat transfer experiments for the development of a sub-grid liquid jet condensation model

    International Nuclear Information System (INIS)

    Buschman, Francis X.; Aumiller, David L.

    2017-01-01

    Highlights: • Direct contact condensation data on liquid jets up to 1.7 MPa in pure steam and in the presence of noncondensable gas. • Identified a pressure effect on the impact of noncondensables to suppress condensation heat transfer not captured in existing data or correlations. • Pure steam data is used to develop a new correlation for condensation heat transfer on subcooled liquid jets. • Noncondensable data used to develop a modification to the renewal time estimate used in the Young and Bajorek correlation for condensation suppression in the presence of noncondensables. • A jet injection boundary condition, using a sub-grid jet condensation model, is developed for COBRA-IE which provides a more detailed estimate of the condensation rate on the liquid jet and allows the use of jet specific closure relationships. - Abstract: Condensation on liquid jets is an important phenomenon for many different facets of nuclear power plant transients and analyses such as containment spray cooling. An experimental facility constructed at the Pennsylvania State University, the High Pressure Liquid Jet Condensation Heat Transfer facility (HPLJCHT), has been used to perform steady-state condensation heat transfer experiments in which the temperature of the liquid jet is measured at different axial locations allowing the condensation rate to be determined over the jet length. Test data have been obtained in a pure steam environment and with varying concentrations of noncondensable gas. This data extends the available jet condensation data from near atmospheric pressure up to a pressure of 1.7 MPa. An empirical correlation for the liquid side condensation heat transfer coefficient has been developed based on the data obtained in pure steam. The data obtained with noncondensable gas were used to develop a correlation for the renewal time as used in the condensation suppression model developed by Young and Bajorek. This paper describes a new sub-grid liquid jet

  20. A decision modeling for phasor measurement unit location selection in smart grid systems

    Science.gov (United States)

    Lee, Seung Yup

    As a key technology for enhancing the smart grid system, Phasor Measurement Unit (PMU) provides synchronized phasor measurements of voltages and currents of wide-area electric power grid. With various benefits from its application, one of the critical issues in utilizing PMUs is the optimal site selection of units. The main aim of this research is to develop a decision support system, which can be used in resource allocation task for smart grid system analysis. As an effort to suggest a robust decision model and standardize the decision modeling process, a harmonized modeling framework, which considers operational circumstances of component, is proposed in connection with a deterministic approach utilizing integer programming. With the results obtained from the optimal PMU placement problem, the advantages and potential that the harmonized modeling process possesses are assessed and discussed.

  1. A model for the design and development of smart micro grids

    Energy Technology Data Exchange (ETDEWEB)

    Torri, Giordano; Scaglia, Antonella; Brocca, Claudio

    2010-09-15

    Energy means secure sources, independence of provisions, reduction of CO2 emissions, efficiency, controllable costs. Diffusion of renewable energies means distributed generation, or generators installed anywhere, connected to grids in several points, random production. This paper describes a model of smart micro grids suitable for limited areas already served by existing networks and for remote zones where electricity is not available. This design integrates distributed generators, load controls and main grid exchange by using a power management system. Maximum energy efficiency and saving is the scope of the design as well as promotion of renewables. Some application cases are shown.

  2. 3D Staggered-Grid Finite-Difference Simulation of Acoustic Waves in Turbulent Moving Media

    Science.gov (United States)

    Symons, N. P.; Aldridge, D. F.; Marlin, D.; Wilson, D. K.; Sullivan, P.; Ostashev, V.

    2003-12-01

    Acoustic wave propagation in a three-dimensional heterogeneous moving atmosphere is accurately simulated with a numerical algorithm recently developed under the DOD Common High Performance Computing Software Support Initiative (CHSSI). Sound waves within such a dynamic environment are mathematically described by a set of four, coupled, first-order partial differential equations governing small-amplitude fluctuations in pressure and particle velocity. The system is rigorously derived from fundamental principles of continuum mechanics, ideal-fluid constitutive relations, and reasonable assumptions that the ambient atmospheric motion is adiabatic and divergence-free. An explicit, time-domain, finite-difference (FD) numerical scheme is used to solve the system for both pressure and particle velocity wavefields. The atmosphere is characterized by 3D gridded models of sound speed, mass density, and the three components of the wind velocity vector. Dependent variables are stored on staggered spatial and temporal grids, and centered FD operators possess 2nd-order and 4th-order space/time accuracy. Accurate sound wave simulation is achieved provided grid intervals are chosen appropriately. The gridding must be fine enough to reduce numerical dispersion artifacts to an acceptable level and maintain stability. The algorithm is designed to execute on parallel computational platforms by utilizing a spatial domain-decomposition strategy. Currently, the algorithm has been validated on four different computational platforms, and parallel scalability of approximately 85% has been demonstrated. Comparisons with analytic solutions for uniform and vertically stratified wind models indicate that the FD algorithm generates accurate results with either a vanishing pressure or vanishing vertical-particle velocity boundary condition. Simulations are performed using a kinematic turbulence wind profile developed with the quasi-wavelet method. In addition, preliminary results are presented

  3. Coupled atmosphere-wildland fire modelling

    Directory of Open Access Journals (Sweden)

    Jacques Henri Balbi

    2009-10-01

    Full Text Available Simulating the interaction between fire and atmosphere is critical to the estimation of the rate of spread of the fire. Wildfire’s convection (i.e., entire plume can modify the local meteorology throughout the atmospheric boundary layer and consequently affect the fire propagation speed and behaviour. In this study, we use for the first time the Méso-NH meso-scale numerical model coupled to the point functional ForeFire simplified physical front-tracking wildfire model to investigate the differences introduced by the atmospheric feedback in propagation speed and behaviour. Both numerical models have been developed as research tools for operational models and are currently used to forecast localized extreme events. These models have been selected because they can be run coupled and support decisions in wildfire management in France and Europe. The main originalities of this combination reside in the fact that Méso-NH is run in a Large Eddy Simulation (LES configuration and that the rate of spread model used in ForeFire provides a physical formulation to take into account the effect of wind and slope. Simulations of typical experimental configurations show that the numerical atmospheric model is able to reproduce plausible convective effects of the heat produced by the fire. Numerical results are comparable to estimated values for fire-induced winds and present behaviour similar to other existing numerical approaches.

  4. Modeling Supermarket Refrigeration Systems for Supervisory Control in Smart Grid

    DEFF Research Database (Denmark)

    Shafiei, Seyed Ehsan; Rasmussen, Henrik; Stoustrup, Jakob

    2013-01-01

    A modular modeling approach of supermarket refrigeration systems (SRS) which is appropriate for smart grid control purposes is presented in this paper. Modeling and identification are performed by just knowing the system configuration and measured data disregarding the physical details. So...

  5. Modeling and control of sustainable power systems. Towards smarter and greener electric grids

    Energy Technology Data Exchange (ETDEWEB)

    Lingfeng Wang (ed.) [Toledo Univ., OH (United States). Electrical Engineering and Computer Science Dept.

    2012-07-01

    The concept of the smart grid promises the world an efficient and intelligent approach of managing energy production, transportation, and consumption by incorporating intelligence, efficiency, and optimality into the power grid. Both energy providers and consumers can take advantage of the convenience, reliability, and energy savings achieved by real-time and intelligent energy management. To this end, the current power grid is experiencing drastic changes and upgrades. For instance, more significant green energy resources such as wind power and solar power are being integrated into the power grid, and higher energy storage capacity is being installed in order to mitigate the intermittency issues brought about by the variable energy resources. At the same time, novel power electronics technologies and operating strategies are being invented and adopted. For instance, Flexible AC transmission systems and phasor measurement units are two promising technologies for improving the power system reliability and power quality. Demand side management will enable the customers to manage the power loads in an active fashion. As a result, modeling and control of modern power grids pose great challenges due to the adoption of new smart grid technologies. In this book, chapters regarding representative applications of smart grid technologies written by world-renowned experts are included, which explain in detail various innovative modeling and control methods. (orig.)

  6. Global Atmosphere Watch Workshop on Measurement-Model ...

    Science.gov (United States)

    The World Meteorological Organization’s (WMO) Global Atmosphere Watch (GAW) Programme coordinates high-quality observations of atmospheric composition from global to local scales with the aim to drive high-quality and high-impact science while co-producing a new generation of products and services. In line with this vision, GAW’s Scientific Advisory Group for Total Atmospheric Deposition (SAG-TAD) has a mandate to produce global maps of wet, dry and total atmospheric deposition for important atmospheric chemicals to enable research into biogeochemical cycles and assessments of ecosystem and human health effects. The most suitable scientific approach for this activity is the emerging technique of measurement-model fusion for total atmospheric deposition. This technique requires global-scale measurements of atmospheric trace gases, particles, precipitation composition and precipitation depth, as well as predictions of the same from global/regional chemical transport models. The fusion of measurement and model results requires data assimilation and mapping techniques. The objective of the GAW Workshop on Measurement-Model Fusion for Global Total Atmospheric Deposition (MMF-GTAD), an initiative of the SAG-TAD, was to review the state-of-the-science and explore the feasibility and methodology of producing, on a routine retrospective basis, global maps of atmospheric gas and aerosol concentrations as well as wet, dry and total deposition via measurement-model

  7. Combined eye-atmosphere visibility model

    Science.gov (United States)

    Kaufman, Y. J.

    1981-01-01

    Existing models of the optical characteristics of the eye are combined with a recent model of optical characteristics of the atmosphere given by its modulation transfer function. This combination results in the combined eye-atmosphere performance given by the product of their modulation transfer functions. An application for the calculation of visibility thresholds in the case of a two-halves field is given.

  8. Global gridded anthropogenic emissions inventory of carbonyl sulfide

    Science.gov (United States)

    Zumkehr, Andrew; Hilton, Tim W.; Whelan, Mary; Smith, Steve; Kuai, Le; Worden, John; Campbell, J. Elliott

    2018-06-01

    Atmospheric carbonyl sulfide (COS or OCS) is the most abundant sulfur containing gas in the troposphere and is an atmospheric tracer for the carbon cycle. Gridded inventories of global anthropogenic COS are used for interpreting global COS measurements. However, previous gridded anthropogenic data are a climatological estimate based on input data that is over three decades old and are not representative of current conditions. Here we develop a new gridded data set of global anthropogenic COS sources that includes more source sectors than previously available and uses the most current emissions factors and industry activity data as input. Additionally, the inventory is provided as annually varying estimates from years 1980-2012 and employs a source specific spatial scaling procedure. We estimate a global source in year 2012 of 406 Gg S y-1 (range of 223-586 Gg S y-1), which is highly concentrated in China and is twice as large as the previous gridded inventory. Our large upward revision in the bottom-up estimate of the source is consistent with a recent top-down estimate based on air-monitoring and Antarctic firn data. Furthermore, our inventory time trends, including a decline in the 1990's and growth after the year 2000, are qualitatively consistent with trends in atmospheric data. Finally, similarities between the spatial distribution in this inventory and remote sensing data suggest that the anthropogenic source could potentially play a role in explaining a missing source in the global COS budget.

  9. Modelling security properties in a grid-based operating system with anti-goals

    OpenAIRE

    Arenas, A.; Aziz, Benjamin; Bicarregui, J.; Matthews, B.; Yang, E.

    2008-01-01

    In this paper, we discuss the use of formal requirements-engineering techniques in capturing security requirements for a Grid-based operating system. We use KAOS goal model to represent two security goals for Grid systems, namely authorisation and single-sign on authentication. We apply goal-refinement to derive security requirements for these two security goals and we develop a model of antigoals and show how system vulnerabilities and threats to the security goals can arise from such anti-m...

  10. Hyperspectral material identification on radiance data using single-atmosphere or multiple-atmosphere modeling

    Science.gov (United States)

    Mariano, Adrian V.; Grossmann, John M.

    2010-11-01

    Reflectance-domain methods convert hyperspectral data from radiance to reflectance using an atmospheric compensation model. Material detection and identification are performed by comparing the compensated data to target reflectance spectra. We introduce two radiance-domain approaches, Single atmosphere Adaptive Cosine Estimator (SACE) and Multiple atmosphere ACE (MACE) in which the target reflectance spectra are instead converted into sensor-reaching radiance using physics-based models. For SACE, known illumination and atmospheric conditions are incorporated in a single atmospheric model. For MACE the conditions are unknown so the algorithm uses many atmospheric models to cover the range of environmental variability, and it approximates the result using a subspace model. This approach is sometimes called the invariant method, and requires the choice of a subspace dimension for the model. We compare these two radiance-domain approaches to a Reflectance-domain ACE (RACE) approach on a HYDICE image featuring concealed materials. All three algorithms use the ACE detector, and all three techniques are able to detect most of the hidden materials in the imagery. For MACE we observe a strong dependence on the choice of the material subspace dimension. Increasing this value can lead to a decline in performance.

  11. CRED Gridded Bathymetry near Northampton Seamounts (100-004), Northwestern Hawaiian Islands

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — File 100-004b is a 60-m ASCII grid of depth data collected near Northampton Seamounts in the Northwestern Hawaiian Islands as of May 2003. This grid has been...

  12. Model of interaction in Smart Grid on the basis of multi-agent system

    Science.gov (United States)

    Engel, E. A.; Kovalev, I. V.; Engel, N. E.

    2016-11-01

    This paper presents model of interaction in Smart Grid on the basis of multi-agent system. The use of travelling waves in the multi-agent system describes the behavior of the Smart Grid from the local point, which is being the complement of the conventional approach. The simulation results show that the absorption of the wave in the distributed multi-agent systems is effectively simulated the interaction in Smart Grid.

  13. Atmospheric dispersion models of radioactivity releases

    International Nuclear Information System (INIS)

    Oza, R.B.

    2016-01-01

    In view of the rapid industrialization in recent time, atmospheric dispersion models have become indispensible 'tools' to ensure that the effects of releases are well within the acceptable limits set by the regulatory authority. In the case of radioactive releases from the nuclear facility, though negligible in quantity and many a times not even measurable, it is required to demonstrate the compliance of these releases to the regulatory limits set by the regulatory authority by carrying out radiological impact assessment. During routine operations of nuclear facility, the releases are so low that environmental impact is usually assessed with the help of atmospheric dispersion models as it is difficult to distinguish negligible contribution of nuclear facility to relatively high natural background radiation. The accidental releases from nuclear facility, though with negligible probability of occurrence, cannot be ruled out. In such cases, the atmospheric dispersion models are of great help to emergency planners for deciding the intervention actions to minimize the consequences in public domain and also to workout strategies for the management of situation. In case of accidental conditions, the atmospheric dispersion models are also utilized for the estimation of probable quantities of radionuclides which might have got released to the atmosphere. Thus, atmospheric dispersion models are an essential tool for nuclear facility during routine operation as well as in the case of accidental conditions

  14. A Reduced Wind Power Grid Model for Research and Education

    Energy Technology Data Exchange (ETDEWEB)

    Akhmatov, V. [Energinet.dk, Fjordvejen 1-11, DK-7000 Fredericia (Denmark); Lund, T.; Hansen, A.D.; Sorensen, P.E. [Risoe National Laboratory, DK-4000 Roskilde (Denmark); Nielsen, A.H. [Centre for Electric Technology, Technical University of Denmark, DK-2800 Kgs. Lyngby (Denmark)

    2006-07-01

    A reduced grid model of a transmission system with a number of central power plants, consumption centers, local wind turbines and a large offshore wind farm is developed and implemented in the simulation tool PowerFactory (DIgSILENT). The reduced grid model is given by Energinet.dk, Transmission System Operator of Denmark (TSO) for Natural Gas and Electricity, to the Danish Universities and the Risoe National Laboratory. Its intended usage is education and studying of interaction between electricity-producing wind turbines and a realistic transmission system. Focus in these studies is on voltage stability issues and on the ride-through capability of different wind turbine concepts, equipped with advanced controllers, developed by the Risoe National Laboratory.

  15. Rugosity grid derived from gridded bathymetry of Ta'u Island of the Manu'a Island group, American Samoa

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Rugosity is derived from gridded (5 m cell size) multibeam bathymetry, collected aboard R/V AHI, and bathymetry derived from multispectral IKONOS satellite imagery...

  16. Rugosity grid derived from gridded bathymetry Ofu and Olosega Islands of the Manu'a Island group, American Samoa

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Rugosity is derived from gridded (5 m cell size) multibeam bathymetry, collected aboard R/V AHI, and bathymetry derived from multispectral IKONOS satellite imagery...

  17. Theory of extended stellar atmospheres. II. A grid of static spherical models for O stars and planetary nebula nuclei

    International Nuclear Information System (INIS)

    Kunasz, P.B.; Hummer, D.G.; Mihalas, D.

    1975-01-01

    Spherical static non-LTE model atmospheres are presented for stars with M/M/sub sun/=30 and 60 at various points on their evolutionary tracks, and for some nuclei of planetary nebulae at two points of a modified Harman-Seaton sequence. The method of Mihalas and Hummer was employed, which uses a parametrized radiation force multiplier to simulate the force of radiation arising from the entire line spectrum. However, in the present work the density structure computed in the LTE models was held fixed in the calculation of the corresponding non-LTE models; in addition, the opacity of an ''average light ion'' was taken into account. The temperatures for the non-LTE models are generally lower, at a given depth, than for the corresponding LTE models when T/sub eff/<45,000 K, while the situation is reversed at higher temperatures. The continuous energy distributions are generally flattened by extension. The Lyman jump is in emission for extended models of massive stars, but never for the models of nuclei of planetary nebulae (this is primarily a temperature effect). The Balmer jumps are always in absorption. The Lyman lines are in emission, and the Balmer lines in absorption; He ii lambda4686 comes into emission in the most extended models without hydrogen line pumping, showing that it is an indicator of atmospheric extension. Very severe limb darkening is found for extended models, which have apparent angular sized significantly smaller than expected from the geometrical size of the star. Extensive tables are given of monochromatic magnitudes, continuum jumps and gradients, Stomgren-system colors, monochromatic extensions, and the profiles and equivalent widths of the hydrogen lines for all models, and of the He ii lines for some of the 60 M/sub X/ models

  18. Smart grid in Denmark 2.0. Implementing three key recommendations from the Smart Grid Network. [DanGrid]; Smart Grid i Danmark 2.0. Implementering af tre centrale anbefalinger fra Smart Grid netvaerket

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-11-01

    In 2011 the Smart Grid Network, established by the Danish Climate and Energy minister in 2010, published a report which identifies 35 recommendations for implementing smart grid in Denmark. The present report was prepared by the Danish Energy Association and Energinet.dk and elaborates three of these recommendations: Concept for controlling the power system; Information model for the dissemination of data; Roadmap for deployment of smart grid. Concept of Smart Grid: The concept mobilizes and enables electric power demand response and production from smaller customers. This is done by customers or devices connected to the power system modify their behavior to meet the needs of the power system. The concept basically distinguishes between two different mechanisms to enable flexibility. One is the use of price signals (variable network tariffs and electricity prices), which gives customers a financial incentive to move their electricity consumption and production to times when it is of less inconvenience to the power system. The second is flexibility products, where a pre-arranged and well-specified performance - for example, a load reduction in a defined network area - can be activated as required by grid operators and / or Energinet.dk at an agreed price. Information Model for Disseminating Data: The future power system is complex with a large number of physical units, companies and individuals are actively involved in the power system. Similarly, the amount of information needed to be collected, communicated and processed grows explosively, and it is therefore essential to ensure a well-functioning IT infrastructure. A crucial element is a standardized information model in the Danish power system. The concept therefore indicates to use international standards to define an information model. Roadmap Focusing on Grid Companies' Role: There is a need to remove two key barriers. The first barrier is that the existing regulation does not support the grid using

  19. Offshore Wind Farms and HVDC Grids Modeling as a Feedback Control System for Stability Analysis

    DEFF Research Database (Denmark)

    Bidadfar, Ali; Saborío-Romano, Oscar; Altin, Müfit

    The low impedance characteristics of DC transmission lines cause the voltage source converter (VSC) in HVDC networks to become electrically closer together and increase the risk of severe interactions between the converters. Such interactions, in turn, intensify the implementation of the grid...... control schemes and may lead the entire system to instability. Assessing the stability and adopting complex coordinated control schemes in an HVDC grid and wind farm turbines are challenging and require a precise model of the HVDC grid, wind farm, and the controllers. In this paper, a linear multivariable...... feedback control system (FCS) model is proposed to represent the dynamic characteristics of HVDC grids and their controllers. The FCS model can be used for different dynamic analyses in time and frequency domains. Moreover, using the FCS model the system stability is analyzed in both open- and closed...

  20. CRED Gridded Bathymetry near Laysan Island (100-006), Northwestern Hawaiian Islands

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — File 100-006b is a 60-m ASCII grid of depth data collected near Laysan Island in the Northwestern Hawaiian Islands as of May 2003. This grid has been produced as...

  1. CRED Gridded Bathymetry near Lisianski Island (100-001), Northwestern Hawaiian Islands

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — File 100-001b is a 60-m ASCII grid of depth data collected near Lisianski Island in the Northwestern Hawaiian Islands as of May 2003. This grid has been produced as...

  2. A Theorem on Grid Access Control

    Institute of Scientific and Technical Information of China (English)

    XU ZhiWei(徐志伟); BU GuanYing(卜冠英)

    2003-01-01

    The current grid security research is mainly focused on the authentication of grid systems. A problem to be solved by grid systems is to ensure consistent access control. This problem is complicated because the hosts in a grid computing environment usually span multiple autonomous administrative domains. This paper presents a grid access control model, based on asynchronous automata theory and the classic Bell-LaPadula model. This model is useful to formally study the confidentiality and integrity problems in a grid computing environment. A theorem is proved, which gives the necessary and sufficient conditions to a grid to maintain confidentiality.These conditions are the formalized descriptions of local (node) relations or relationship between grid subjects and node subjects.

  3. Grid-based modeling for land use planning and environmental resource mapping.

    Energy Technology Data Exchange (ETDEWEB)

    Kuiper, J. A.

    1999-08-04

    Geographic Information System (GIS) technology is used by land managers and natural resource planners for examining resource distribution and conducting project planning, often by visually interpreting spatial data representing environmental or regulatory variables. Frequently, many variables influence the decision-making process, and modeling can improve results with even a small investment of time and effort. Presented are several grid-based GIS modeling projects, including: (1) land use optimization under environmental and regulatory constraints; (2) identification of suitable wetland mitigation sites; and (3) predictive mapping of prehistoric cultural resource sites. As different as the applications are, each follows a similar process of problem conceptualization, implementation of a practical grid-based GIS model, and evaluation of results.

  4. Nonuniform grid implicit spatial finite difference method for acoustic wave modeling in tilted transversely isotropic media

    KAUST Repository

    Chu, Chunlei; Stoffa, Paul L.

    2012-01-01

    sampled models onto vertically nonuniform grids. We use a 2D TTI salt model to demonstrate its effectiveness and show that the nonuniform grid implicit spatial finite difference method can produce highly accurate seismic modeling results with enhanced

  5. Large-eddy simulation and Lagrangian stochastic modelling of solid particle and droplet dispersion and mixing. Application to atmospheric pollution; Dispersion et melange turbulents de particules solides et de gouttelettes par une simulation des grandes echelles et une modelisation stochastique lagrangienne. Application a la pollution de l'atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Vinkovic, I.

    2005-07-15

    In order to study atmospheric pollution and the dispersion of industrial stack emissions, a large eddy simulation with the dynamic Smagorinsky-Germano sub-grid-scale model is coupled with Lagrangian tracking of fluid particles containing scalar, solid particles and droplets. The movement of fluid particles at a sub-grid level is given by a three-dimensional Langevin model. The stochastic model is written in terms of sub-grid-scale statistics at a mesh level. By introducing a diffusion model, the coupling between the large-eddy simulation and the modified three-dimensional Langevin model is applied to passive scalar dispersion. The results are validated by comparison with the wind-tunnel experiments of Fackrell and Robins (1982). The equation of motion of a small rigid sphere in a turbulent flow is introduced. Solid particles and droplets are tracked in a Lagrangian way. The velocity of solid particles and droplets is considered to have a large scale component (directly computed by the large-eddy simulation) and a sub-grid scale part. Because of inertia and gravity effects, solid particles and droplets, deviate from the trajectories of the surrounding fluid particles. Therefore, a modified Lagrangian correlation timescale is introduced into the Langevin model previously developed for the sub-grid velocity of fluid particles. Two-way coupling and collisions are taken into account. The results of the large-eddy simulation with solid particles are compared with the wind-tunnel experiments of Nalpanis et al. (1993) and of Taniere et al. (1997) on sand particles in saltation and in modified saltation, respectively. A model for droplet coalescence and breakup is implemented which allows to predict droplet interactions under turbulent flow conditions in the frame of the Euler/Lagrange approach. Coalescence and breakup are considered as a stochastic process with simple scaling symmetry assumption for the droplet radius, initially proposed by Kolmogorov (1941). At high

  6. Development of computer-based function to estimate radioactive source term by coupling atmospheric model with monitoring data

    International Nuclear Information System (INIS)

    Akiko, Furuno; Hideyuki, Kitabata

    2003-01-01

    atmospheric dynamic equations. Meteorological fields are initialized by using numerical forecasts and/or analysis data from Japan Meteorological Agency. The horizontal and temporal resolutions of the data are 1.25 degree and 6 hours, respectively, and the data have 17 vertical layers. GEARN is a particle random walk model to calculate the atmospheric dispersion of radionuclides by tracing the trajectories of a large number of marker particles discharged from a source. Movement of marker particles in each time step is described by three basic processes: transport by three-dimensional mean winds, turbulence diffusion and deposition. Mean wind fields are provided from MM5 at the interval of 1 hour. The horizontal random movement by diffusion per time step δt is calculated as (6K hor δt) 0.5 * R, where R is a uniform random number between -1 and 1. The horizontal diffusion coefficient K hor is derived from the standard deviation of horizontal diffusion σ hor and the vertical diffusion coefficient is from MM5. The air concentration at each Eulerian grid cell is computed by summing up the number of marker particles in the grid cell. Atmospheric transport simulations are carried out for the matrix of possible release points in Eastern Asia and possible release times. Because the simulations for the matrix need much computation time, it is carried out by using parallel computer. The simulation results of air dose rates are compared with monitoring data by statistical analysis of normalized mean square error, and the best fitted release condition is chosen as source term. fig. 1 (author)

  7. Aggregated Demand Response Modelling for Future Grid Scenarios

    OpenAIRE

    Marzooghi, Hesamoddin; Verbic, Gregor; Hill, David J.

    2015-01-01

    With the increased penetration of intermittent renewable energy sources (RESs) in future grids (FGs), balancing between supply and demand will become more dependent on demand response (DR) and energy storage. Thus, FG feasibility studies will need to consider DR for modelling nett future demand. Against this backdrop, this paper proposes a demand model which integrates the aggregated effect of DR in a simplified representation of the effect of market/dispatch processes aiming at minimising th...

  8. Statistical modeling of the power grid from a wind farm standpoint

    DEFF Research Database (Denmark)

    Farajzadehbibalan, Saber; Ramezani, Mohammad H.; Nielsen, Peter

    2017-01-01

    wind farm over several years which results in the development of a useful model for practical purposes. Secondly, the derived model is computationally inexpensive. Considering an arbitrary wind turbine generator, we show that the behavior of the power grid at the connection point can be represented......In this study, we derive a statistical model of a power grid from the wind farm's standpoint based on dynamic principal component analysis. The main advantages of our model compared to the previously developed models are twofold. Firstly, our proposed model benefits from logged data of an offshore...... by 4 out of 9 registered variables, i.e. 3-phase voltages, 3-phase currents, frequency, and generated active and reactive powers. We further prove that the dynamic nature of the system can be optimally captured by a time lag shift of two samples. To extend the derived model of a wind turbine generator...

  9. A three-dimensional fixed grid model for shallow-water flow

    NARCIS (Netherlands)

    Bijvelds, M.D.J.P.

    1998-01-01

    In this report the implementation and testing of a numerical model that is based on a Cartesian fixed grid in vertical direction is described. The model uses the shallow-water equations and accounts for effects of stratification. In stratified environments, the terrain-following 0-transformation,

  10. High Resolution Simulations of Future Climate in West Africa Using a Variable-Resolution Atmospheric Model

    Science.gov (United States)

    Adegoke, J. O.; Engelbrecht, F.; Vezhapparambu, S.

    2013-12-01

    In previous work demonstrated the application of a var¬iable-resolution global atmospheric model, the conformal-cubic atmospheric model (CCAM), across a wide range of spatial and time scales to investigate the ability of the model to provide realistic simulations of present-day climate and plausible projections of future climate change over sub-Saharan Africa. By applying the model in stretched-grid mode the versatility of the model dynamics, numerical formulation and physical parameterizations to function across a range of length scales over the region of interest, was also explored. We primarily used CCAM to illustrate the capability of the model to function as a flexible downscaling tool at the climate-change time scale. Here we report on additional long term climate projection studies performed by downscaling at much higher resolutions (8 Km) over an area that stretches from just south of Sahara desert to the southern coast of the Niger Delta and into the Gulf of Guinea. To perform these simulations, CCAM was provided with synoptic-scale forcing of atmospheric circulation from 2.5 deg resolution NCEP reanalysis at 6-hourly interval and SSTs from NCEP reanalysis data uses as lower boundary forcing. CCAM 60 Km resolution downscaled to 8 Km (Schmidt factor 24.75) then 8 Km resolution simulation downscaled to 1 Km (Schmidt factor 200) over an area approximately 50 Km x 50 Km in the southern Lake Chad Basin (LCB). Our intent in conducting these high resolution model runs was to obtain a deeper understanding of linkages between the projected future climate and the hydrological processes that control the surface water regime in this part of sub-Saharan Africa.

  11. CRED Gridded Bathymetry near Midway Atoll (100-102), Northwestern Hawaiian Islands

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — File 100-102b is a 60-m ASCII grid of depth data collected near Midway Atoll in the Northwestern Hawaiian Islands as of May 2003. This grid has been produced as part...

  12. CRED Gridded Bathymetry near Maro Reef (100-007), Northwestern Hawaiian Islands

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — File 100-007b is a 60-m ASCII grid of depth data collected near Maro Reef in the Northwestern Hawaiian Islands as of May 2003. This grid has been produced as part of...

  13. The island dynamics model on parallel quadtree grids

    Science.gov (United States)

    Mistani, Pouria; Guittet, Arthur; Bochkov, Daniil; Schneider, Joshua; Margetis, Dionisios; Ratsch, Christian; Gibou, Frederic

    2018-05-01

    We introduce an approach for simulating epitaxial growth by use of an island dynamics model on a forest of quadtree grids, and in a parallel environment. To this end, we use a parallel framework introduced in the context of the level-set method. This framework utilizes: discretizations that achieve a second-order accurate level-set method on non-graded adaptive Cartesian grids for solving the associated free boundary value problem for surface diffusion; and an established library for the partitioning of the grid. We consider the cases with: irreversible aggregation, which amounts to applying Dirichlet boundary conditions at the island boundary; and an asymmetric (Ehrlich-Schwoebel) energy barrier for attachment/detachment of atoms at the island boundary, which entails the use of a Robin boundary condition. We provide the scaling analyses performed on the Stampede supercomputer and numerical examples that illustrate the capability of our methodology to efficiently simulate different aspects of epitaxial growth. The combination of adaptivity and parallelism in our approach enables simulations that are several orders of magnitude faster than those reported in the recent literature and, thus, provides a viable framework for the systematic study of mound formation on crystal surfaces.

  14. Sensitivity to grid resolution in the ability of a chemical transport model to simulate observed oxidant chemistry under high-isoprene conditions

    Directory of Open Access Journals (Sweden)

    K. Yu

    2016-04-01

    Full Text Available Formation of ozone and organic aerosol in continental atmospheres depends on whether isoprene emitted by vegetation is oxidized by the high-NOx pathway (where peroxy radicals react with NO or by low-NOx pathways (where peroxy radicals react by alternate channels, mostly with HO2. We used mixed layer observations from the SEAC4RS aircraft campaign over the Southeast US to test the ability of the GEOS-Chem chemical transport model at different grid resolutions (0.25°  ×  0.3125°, 2°  ×  2.5°, 4°  ×  5° to simulate this chemistry under high-isoprene, variable-NOx conditions. Observations of isoprene and NOx over the Southeast US show a negative correlation, reflecting the spatial segregation of emissions; this negative correlation is captured in the model at 0.25°  ×  0.3125° resolution but not at coarser resolutions. As a result, less isoprene oxidation takes place by the high-NOx pathway in the model at 0.25°  ×  0.3125° resolution (54 % than at coarser resolution (59 %. The cumulative probability distribution functions (CDFs of NOx, isoprene, and ozone concentrations show little difference across model resolutions and good agreement with observations, while formaldehyde is overestimated at coarse resolution because excessive isoprene oxidation takes place by the high-NOx pathway with high formaldehyde yield. The good agreement of simulated and observed concentration variances implies that smaller-scale non-linearities (urban and power plant plumes are not important on the regional scale. Correlations of simulated vs. observed concentrations do not improve with grid resolution because finer modes of variability are intrinsically more difficult to capture. Higher model resolution leads to decreased conversion of NOx to organic nitrates and increased conversion to nitric acid, with total reactive nitrogen oxides (NOy changing little across model resolutions. Model concentrations in the

  15. Idaho Batholith Study Area Density Grid

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A 2 kilometer terrace-density grid for the Idaho batholith study area. Number of columns is 331 and number of rows is 285. The order of the data is from the lower...

  16. A Real Model of a Micro-Grid to Improve Network Stability

    Directory of Open Access Journals (Sweden)

    Petr Marcon

    2017-07-01

    Full Text Available This paper discusses the smart energy model of a smart grid using a significant share of renewable energy sources combined with intelligent control that processes information from a smart metering subsystem. An algorithm to manage the microgrid via the demand-response strategy is proposed, accentuating the requirement that the total volume of energy produced from renewable sources is consumed. Thus, the system utilizes the maximum of renewable sources to reduce CO2 emissions. Another major benefit provided by the algorithm lies in applying the current weather forecast to predict the amount of energy in the grid; electricity can then be transferred between the local and the main backup batteries within the grid, and this option enables the control elements to prepare for a condition yet to occur. Individual parts of the grid are described in this research report together with the results provided by the relevant algorithm.

  17. Evaluating the Impact of Localized GCM Grid Refinement on Regional Tropical Cyclone Climatology and Synoptic Variability using Variable-Resolution CAM-SE

    Science.gov (United States)

    Zarzycki, C.; Jablonowski, C.

    2013-12-01

    Using General Circulation Models (GCMs) to resolve sub-synoptic features in climate simulations has traditionally been difficult due to a multitude of atmospheric processes operating at subgrid scales requiring significant parameterization. For example, at traditional GCM horizontal grid resolutions of 50-300 km, tropical cyclones are generally under-resolved. This paper explores a novel variable-resolution global modeling approach that allows for high spatial resolutions in areas of interest, such as low-latitude ocean basins where tropical cyclogenesis occurs. Such multi-resolution GCM designs allow for targeted use of computing resources at the regional level while maintaining a globally-continuous model domain and may serve to bridge the gap between GCMs with uniform grids and boundary-forced limited area models. A statically-nested, variable-resolution option has recently been introduced into the Community Atmosphere Model's (CAM) Spectral Element (SE) dynamical core. A 110 km CAM-SE grid with a 28 km nest over the Atlantic Ocean has been coupled to land, ocean, and ice components within the Community Earth System Model (CESM). We present the results of a multi-decadal climate simulation using Atmospheric Model Intercomparison Project (AMIP) protocols, which force the model with historical sea surface temperatures and airborne chemical species. To investigate whether refinement improves the representation of tropical cyclones, we compare Atlantic storm statistics to observations with specific focus paid to intensity profiles and track densities. The resolution dependance of both cyclone structure and objective detection between refined and unrefined basins is explored. In addition, we discuss the potential impact of using variable-resolution grids on the large-scale synoptic interannual variability by comparing refined grid simulations to reanalysis data as well as an unrefined, globally-uniform CAM-SE simulation with identical forcing. We also evaluate the

  18. Bathymetric Position Index (BPI) Structures 5 m grid derived from gridded bathymetry of the US Territory of Guam.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Structures are derived from a focal mean analysis on bathymetry and slope. The bathymetry grid (5 m cell size) is derived from bathymetry from four sources:...

  19. Downscaling atmospheric patterns to multi-site precipitation amounts in southern Scandinavia

    DEFF Research Database (Denmark)

    Gelati, Emiliano; Christensen, O.B.; Rasmussen, P.F.

    2010-01-01

    A non-homogeneous hidden Markov model (NHMM) is applied for downscaling atmospheric synoptic patterns to winter multi-site daily precipitation amounts. The implemented NHMM assumes precipitation to be conditional on a hidden weather state that follows a Markov chain, whose transition probabilities...... depend on current atmospheric information. The gridded atmospheric fields are summarized through the singular value decomposition (SVD) technique. SVD is applied to geopotential height and relative humidity at several pressure levels, to identify their principal spatial patterns co...... products of bivariate distributions. Conditional on the weather state, precipitation amounts are modelled separately at each gauge as independent gamma-distributed random variables. This modelling approach is applied to 51 precipitation gauges in Denmark and southern Sweden for the period 1981...

  20. Ionization ratios and elemental abundances in the atmosphere of 68 Tauri

    Science.gov (United States)

    Aouina, A.; Monier, R.

    2017-12-01

    We have derived the ionization ratios of twelve elements in the atmosphere of the star 68 Tauri (HD 27962) using an ATLAS9 model atmosphere with 72 layers computed for the effective temperature and surface gravity of the star. We then computed a grid of synthetic spectra generated by SYNSPEC49 based on an ATLAS9 model atmosphere in order to model one high resolution spectrum secured by one of us (RM) with the échelle spectrograph SOPHIE at Observatoire de Haute Provence. We could determine the abundances of several elements in their dominant ionization stage, including those defining the Am phenomenon. We thus provide new abundance determinations for 68 Tauri using updated accurate atomic data retrieved from the NIST database which extend previous abundance works.

  1. Numerical study on human model shape and grid dependency for indoor thermal comfort evaluation

    International Nuclear Information System (INIS)

    Seo, Jin Won; Choi, Yun Ho; Park, Jae Hong

    2013-01-01

    Various computer-simulated person (CSP) models have been used to represent occupants in indoor airflow simulations using computational fluid dynamics (CFD). Despite the capability of CFD to predict temperature and velocity fields in an automotive cabin or a room in a building, it is more difficult to evaluate the degree of thermal comfort considered by the CSP models. Up to now, the shapes of CSP models and their grid characteristics have not been studied for the evaluation of indoor thermal comfort. In this paper, the effects of the human model's shape and the physical characteristics of the grids are studied. The FLUENT code is used for analysis, and the predicted mean vote (PMV), predicted percentage dissatisfied (PPD), and equivalent homogeneous temperature (EHT) values are used for the evaluation and comparison of thermal comfort. The computational results show that the CSP shape and grid features do not affect the global flow fields or the evaluations of PMV and PPD. However, more precise results are obtained from the evaluation of thermal comfort by EHT when detailed human models with a prism grid are used.

  2. Numerical study on human model shape and grid dependency for indoor thermal comfort evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Jin Won; Choi, Yun Ho [Ajou University, Suwon (Korea, Republic of); Park, Jae Hong [LIG Nexl Co. Ltd, Seongnam (Korea, Republic of)

    2013-02-15

    Various computer-simulated person (CSP) models have been used to represent occupants in indoor airflow simulations using computational fluid dynamics (CFD). Despite the capability of CFD to predict temperature and velocity fields in an automotive cabin or a room in a building, it is more difficult to evaluate the degree of thermal comfort considered by the CSP models. Up to now, the shapes of CSP models and their grid characteristics have not been studied for the evaluation of indoor thermal comfort. In this paper, the effects of the human model's shape and the physical characteristics of the grids are studied. The FLUENT code is used for analysis, and the predicted mean vote (PMV), predicted percentage dissatisfied (PPD), and equivalent homogeneous temperature (EHT) values are used for the evaluation and comparison of thermal comfort. The computational results show that the CSP shape and grid features do not affect the global flow fields or the evaluations of PMV and PPD. However, more precise results are obtained from the evaluation of thermal comfort by EHT when detailed human models with a prism grid are used.

  3. Economic models for management of resources in peer-to-peer and grid computing

    Science.gov (United States)

    Buyya, Rajkumar; Stockinger, Heinz; Giddy, Jonathan; Abramson, David

    2001-07-01

    The accelerated development in Peer-to-Peer (P2P) and Grid computing has positioned them as promising next generation computing platforms. They enable the creation of Virtual Enterprises (VE) for sharing resources distributed across the world. However, resource management, application development and usage models in these environments is a complex undertaking. This is due to the geographic distribution of resources that are owned by different organizations or peers. The resource owners of each of these resources have different usage or access policies and cost models, and varying loads and availability. In order to address complex resource management issues, we have proposed a computational economy framework for resource allocation and for regulating supply and demand in Grid computing environments. The framework provides mechanisms for optimizing resource provider and consumer objective functions through trading and brokering services. In a real world market, there exist various economic models for setting the price for goods based on supply-and-demand and their value to the user. They include commodity market, posted price, tenders and auctions. In this paper, we discuss the use of these models for interaction between Grid components in deciding resource value and the necessary infrastructure to realize them. In addition to normal services offered by Grid computing systems, we need an infrastructure to support interaction protocols, allocation mechanisms, currency, secure banking, and enforcement services. Furthermore, we demonstrate the usage of some of these economic models in resource brokering through Nimrod/G deadline and cost-based scheduling for two different optimization strategies on the World Wide Grid (WWG) testbed that contains peer-to-peer resources located on five continents: Asia, Australia, Europe, North America, and South America.

  4. GridiLoc: A Backtracking Grid Filter for Fusing the Grid Model with PDR Using Smartphone Sensors

    Directory of Open Access Journals (Sweden)

    Jianga Shang

    2016-12-01

    Full Text Available Although map filtering-aided Pedestrian Dead Reckoning (PDR is capable of largely improving indoor localization accuracy, it becomes less efficient when coping with highly complex indoor spaces. For instance, indoor spaces with a few close corners or neighboring passages can lead to particles entering erroneous passages, which can further cause the failure of subsequent tracking. To address this problem, we propose GridiLoc, a reliable and accurate pedestrian indoor localization method through the fusion of smartphone sensors and a grid model. The key novelty of GridiLoc is the utilization of a backtracking grid filter for improving localization accuracy and for handling dead ending issues. In order to reduce the time consumption of backtracking, a topological graph is introduced for representing candidate backtracking points, which are the expected locations at the starting time of the dead ending. Furthermore, when the dead ending is caused by the erroneous step length model of PDR, our solution can automatically calibrate the model by using the historical tracking data. Our experimental results show that GridiLoc achieves a higher localization accuracy and reliability compared with the commonly-used map filtering approach. Meanwhile, it maintains an acceptable computational complexity.

  5. Statistical equilibrium calculations for silicon in early-type model stellar atmospheres

    International Nuclear Information System (INIS)

    Kamp, L.W.

    1976-02-01

    Line profiles of 36 multiplets of silicon (Si) II, III, and IV were computed for a grid of model atmospheres covering the range from 15,000 to 35,000 K in effective temperature and 2.5 to 4.5 in log (gravity). The computations involved simultaneous solution of the steady-state statistical equilibrium equations for the populations and of the equation of radiative transfer in the lines. The variables were linearized, and successive corrections were computed until a minimal accuracy of 1/1000 in the line intensities was reached. The common assumption of local thermodynamic equilibrium (LTE) was dropped. The model atmospheres used also were computed by non-LTE methods. Some effects that were incorporated into the calculations were the depression of the continuum by free electrons, hydrogen and ionized helium line blocking, and auto-ionization and dielectronic recombination, which later were found to be insignificant. Use of radiation damping and detailed electron (quadratic Stark) damping constants had small but significant effects on the strong resonance lines of Si III and IV. For weak and intermediate-strength lines, large differences with respect to LTE computations, the results of which are also presented, were found in line shapes and strengths. For the strong lines the differences are generally small, except for the models at the hot, low-gravity extreme of the range. These computations should be useful in the interpretation of the spectra of stars in the spectral range B0--B5, luminosity classes III, IV, and V

  6. WRF-Fire: coupled weather-wildland fire modeling with the weather research and forecasting model

    Science.gov (United States)

    Janice L. Coen; Marques Cameron; John Michalakes; Edward G. Patton; Philip J. Riggan; Kara M. Yedinak

    2012-01-01

    A wildland fire behavior module (WRF-Fire) was integrated into the Weather Research and Forecasting (WRF) public domain numerical weather prediction model. The fire module is a surface fire behavior model that is two-way coupled with the atmospheric model. Near-surface winds from the atmospheric model are interpolated to a finer fire grid and used, with fuel properties...

  7. Modelin the Transport and Chemical Evolution of Onshore and Offshore Emissions and Their Impact on Local and Regional Air Quality Using a Variable-Grid-Resolution Air Quality Model

    Energy Technology Data Exchange (ETDEWEB)

    Adel Hanna

    2008-10-16

    The overall objective of this research project was to develop an innovative modeling technique to adequately model the offshore/onshore transport of pollutants. The variable-grid modeling approach that was developed alleviates many of the shortcomings of the traditionally used nested regular-grid modeling approach, in particular related to biases near boundaries and the excessive computational requirements when using nested grids. The Gulf of Mexico region contiguous to the Houston-Galveston area and southern Louisiana was chosen as a test bed for the variable-grid modeling approach. In addition to the onshore high pollution emissions from various sources in those areas, emissions from on-shore and off-shore oil and gas exploration and production are additional sources of air pollution. We identified case studies for which to perform meteorological and air quality model simulations. Our approach included developing and evaluating the meteorological, emissions, and chemistry-transport modeling components for the variable-grid applications, with special focus on the geographic areas where the finest grid resolution was used. We evaluated the performance of two atmospheric boundary layer (ABL) schemes, and identified the best-performing scheme for simulating mesoscale circulations for different grid resolutions. Use of a newly developed surface data assimilation scheme resulted in improved meteorological model simulations. We also successfully ingested satellite-derived sea surface temperatures (SSTs) into the meteorological model simulations, leading to further improvements in simulated wind, temperature, and moisture fields. These improved meteorological fields were important for variable-grid simulations, especially related to capturing the land-sea breeze circulations that are critical for modeling offshore/onshore transport of pollutants in the Gulf region. We developed SMOKE-VGR, the variable-grid version of the SMOKE emissions processing model, and tested and

  8. Bathymetric Position Index (BPI) Zones 5 m grid derived from gridded bathymetry of the US Territory of Guam.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — BPI Zones are derived from a focal mean analysis on bathymetry and slope. The bathymetry grid (5 m cell size) is derived from bathymetry from four sources: Multibeam...

  9. Atmospheric transport simulations in support of the Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE)

    Science.gov (United States)

    Henderson, J. M.; Eluszkiewicz, J.; Mountain, M. E.; Nehrkorn, T.; Chang, R. Y.-W.; Karion, A.; Miller, J. B.; Sweeney, C.; Steiner, N.; Wofsy, S. C.; Miller, C. E.

    2015-04-01

    This paper describes the atmospheric modeling that underlies the Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE) science analysis, including its meteorological and atmospheric transport components (polar variant of the Weather Research and Forecasting (WRF) and Stochastic Time Inverted Lagrangian Transport (STILT) models), and provides WRF validation for May-October 2012 and March-November 2013 - the first 2 years of the aircraft field campaign. A triply nested computational domain for WRF was chosen so that the innermost domain with 3.3 km grid spacing encompasses the entire mainland of Alaska and enables the substantial orography of the state to be represented by the underlying high-resolution topographic input field. Summary statistics of the WRF model performance on the 3.3 km grid indicate good overall agreement with quality-controlled surface and radiosonde observations. Two-meter temperatures are generally too cold by approximately 1.4 K in 2012 and 1.1 K in 2013, while 2 m dewpoint temperatures are too low (dry) by 0.2 K in 2012 and too high (moist) by 0.6 K in 2013. Wind speeds are biased too low by 0.2 m s-1 in 2012 and 0.3 m s-1 in 2013. Model representation of upper level variables is very good. These measures are comparable to model performance metrics of similar model configurations found in the literature. The high quality of these fine-resolution WRF meteorological fields inspires confidence in their use to drive STILT for the purpose of computing surface influences ("footprints") at commensurably increased resolution. Indeed, footprints generated on a 0.1° grid show increased spatial detail compared with those on the more common 0.5° grid, better allowing for convolution with flux models for carbon dioxide and methane across the heterogeneous Alaskan landscape. Ozone deposition rates computed using STILT footprints indicate good agreement with observations and exhibit realistic seasonal variability, further indicating that WRF

  10. High Quality Model Predictive Control for Single Phase Grid Connected Photovoltaic Inverters

    DEFF Research Database (Denmark)

    Zangeneh Bighash, Esmaeil; Sadeghzadeh, Seyed Mohammad; Ebrahimzadeh, Esmaeil

    2018-01-01

    Single phase grid-connected inverters with LCL filter are widely used to connect the photovoltaic systems to the utility grid. Among the presented control schemes, predictive control methods are faster and more accurate but are more complex to implement. Recently, the model-predictive control...... algorithm for single-phase inverter has been presented, where the algorithm implementation is straightforward. In the proposed approach, all switching states are tested in each switching period to achieve the control objectives. However, since the number of the switching states in single-phase inverter...... is low, the inverter output current has a high total harmonic distortions. In order to reduce the total harmonic distortions of the injected current, this paper presents a high-quality model-predictive control for one of the newest structure of the grid connected photovoltaic inverter, i.e., HERIC...

  11. Gridded multibeam bathymetry and SHOALS LIDAR bathymetry of Penguin Bank, Hawaii, USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gridded bathymetry (5 m cell size) of Penguin Bank, Hawaii, USA. The netCDF grid and ArcGIS ASCII file include multibeam bathymetry from the Simrad EM3002d, and...

  12. Grid for Earth Science Applications

    Science.gov (United States)

    Petitdidier, Monique; Schwichtenberg, Horst

    2013-04-01

    The civil society at large has addressed to the Earth Science community many strong requirements related in particular to natural and industrial risks, climate changes, new energies. The main critical point is that on one hand the civil society and all public ask for certainties i.e. precise values with small error range as it concerns prediction at short, medium and long term in all domains; on the other hand Science can mainly answer only in terms of probability of occurrence. To improve the answer or/and decrease the uncertainties, (1) new observational networks have been deployed in order to have a better geographical coverage and more accurate measurements have been carried out in key locations and aboard satellites. Following the OECD recommendations on the openness of research and public sector data, more and more data are available for Academic organisation and SMEs; (2) New algorithms and methodologies have been developed to face the huge data processing and assimilation into simulations using new technologies and compute resources. Finally, our total knowledge about the complex Earth system is contained in models and measurements, how we put them together has to be managed cleverly. The technical challenge is to put together databases and computing resources to answer the ES challenges. However all the applications are very intensive computing. Different compute solutions are available and depend on the characteristics of the applications. One of them is Grid especially efficient for independent or embarrassingly parallel jobs related to statistical and parametric studies. Numerous applications in atmospheric chemistry, meteorology, seismology, hydrology, pollution, climate and biodiversity have been deployed successfully on Grid. In order to fulfill requirements of risk management, several prototype applications have been deployed using OGC (Open geospatial Consortium) components with Grid middleware. The Grid has permitted via a huge number of runs to

  13. Using the Atmospheric Radiation Measurement (ARM) Datasets to Evaluate Climate Models in Simulating Diurnal and Seasonal Variations of Tropical Clouds

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hailong [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, Washington; Burleyson, Casey D. [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, Washington; Ma, Po-Lun [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, Washington; Fast, Jerome D. [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, Washington; Rasch, Philip J. [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, Washington

    2018-04-01

    We use the long-term Atmospheric Radiation Measurement (ARM) datasets collected at the three Tropical Western Pacific (TWP) sites as a tropical testbed to evaluate the ability of the Community Atmosphere Model (CAM5) to simulate the various types of clouds, their seasonal and diurnal variations, and their impact on surface radiation. We conducted a series of CAM5 simulations at various horizontal grid spacing (around 2°, 1°, 0.5°, and 0.25°) with meteorological constraints from reanalysis. Model biases in the seasonal cycle of cloudiness are found to be weakly dependent on model resolution. Positive biases (up to 20%) in the annual mean total cloud fraction appear mostly in stratiform ice clouds. Higher-resolution simulations do reduce the positive bias in the frequency of ice clouds, but they inadvertently increase the negative biases in convective clouds and low-level liquid clouds, leading to a positive bias in annual mean shortwave fluxes at the sites, as high as 65 W m-2 in the 0.25° simulation. Such resolution-dependent biases in clouds can adversely lead to biases in ambient thermodynamic properties and, in turn, feedback on clouds. Both the CAM5 model and ARM observations show distinct diurnal cycles in total, stratiform and convective cloud fractions; however, they are out-of-phase by 12 hours and the biases vary by site. Our results suggest that biases in deep convection affect the vertical distribution and diurnal cycle of stratiform clouds through the transport of vapor and/or the detrainment of liquid and ice. We also found that the modelled gridmean surface longwave fluxes are systematically larger than site measurements when the grid that the ARM sites reside in is partially covered by ocean. The modeled longwave fluxes at such sites also lack a discernable diurnal cycle because the ocean part of the grid is warmer and less sensitive to radiative heating/cooling compared to land. Higher spatial resolution is more helpful is this regard. Our

  14. Power Grid Modelling From Wind Turbine Perspective Using Principal Componenet Analysis

    DEFF Research Database (Denmark)

    Farajzadehbibalan, Saber; Ramezani, Mohammad Hossein; Nielsen, Peter

    2015-01-01

    In this study, we derive an eigenvector-based multivariate model of a power grid from the wind farm's standpoint using dynamic principal component analysis (DPCA). The main advantages of our model over previously developed models are being more realistic and having low complexity. We show that th...

  15. Modeling and simulation for smart grid integration of solar/wind energy

    Directory of Open Access Journals (Sweden)

    Ali MEKKAOUI

    2017-07-01

    Full Text Available The complexity of the power grid, in conjunction with the ever increasing demand for electricity, creates the need for efficient analysis and control of the power system. The evolution of the legacy system towards the new smart grid intensifies this need due to the large number of sensors and actuators that must be monitored and controlled, the new types of distributed energy sources that need to be integrated and the new types of loads that must be supported. At the same time, integration of human-activity awareness into the smart grid is emerging and this will allow the system to monitor, share and manage information and actions on the business, as well as the real world. In this context, modelling and simulation is an invaluable tool for system behavior analysis, energy consumption estimation and future state prediction. In this paper, a Smart Grid has been designed by MATLAB/SIMULINK approach for analysis of Active Power. Analysis of active power gives the exact idea to know the range of maximum permissible loads that can be connected to their relevant bus bars. This paper presents the change in the value of Active Power with varying load angle in context with small signal analysis. The Smart Grid, regarded as the next generation power grid, uses two-way flow of electricity and information to create a widely distributed automated energy delivery network.

  16. Wake effects of large offshore wind farms on the mesoscale atmosphere

    DEFF Research Database (Denmark)

    Volker, Patrick; Badger, Jake; Hahmann, Andrea N.

    to the fact that its typical horizontal grid spacing is on the order of 2km, the energy extracted by the turbine, as well as the wake development inside the turbine-containing grid-cells, are not described explicitly, but are parametrized as another sub-grid scale process. In order to appropriately capture...... the wind farm wake recovery and its direction, two properties are important, the total energy extracted by the wind farm and its velocity deficit distribution. In the considered parametrization the individual turbines apply a thrust dependent on a local sub grid scale velocity, which is influenced...... by the up-stream turbines. For the sub-grid scale velocity deficit, the entrainment from the free atmospheric flow into the wake region, is taken into account. Furthermore, since the model horizontal distance is several times larger then the turbine diameter, it has been assumed that the generated...

  17. Modeling of a Photovoltaic-Powered Electric Vehicle Charging Station with Vehicle-to-Grid Implementation

    Directory of Open Access Journals (Sweden)

    Azhar Ul-Haq

    2016-12-01

    Full Text Available This paper is aimed at modelling of a distinct smart charging station for electric vehicles (EVs that is suitable for DC quick EV charging while ensuring minimum stress on the power grid. Operation of the charging station is managed in such a way that it is either supplied by photovoltaic (PV power or the power grid, and the vehicle-to-grid (V2G is also implemented for improving the stability of the grid during peak load hours. The PV interfaced DC/DC converter and grid interfaced DC/AC bidirectional converter share a DC bus. A smooth transition of one operating mode to another demonstrates the effectiveness of the employed control strategy. Modelling and control of the different components are explained and are implemented in Simulink. Simulations illustrate the feasible behaviour of the charging station under all operating modes in terms of the four-way interaction among PV, EVs and the grid along with V2G operation. Additionally, a business model is discussed with comprehensive analysis of cost estimation for the deployment of charging facilities in a residential area. It has been recognized that EVs bring new opportunities in terms of providing regulation services and consumption flexibility by varying the recharging power at a certain time instant. The paper also discusses the potential financial incentives required to inspire EV owners for active participation in the demand response mechanism.

  18. Harmonic Instability Analysis of Single-Phase Grid Connected Converter using Harmonic State Space (HSS) modeling method

    DEFF Research Database (Denmark)

    Kwon, Jun Bum; Wang, Xiongfei; Bak, Claus Leth

    2015-01-01

    The increasing number of renewable energy sources at the distribution grid is becoming a major issue for utility companies, since the grid connected converters are operating at different operating points due to the probabilistic characteristics of renewable energy. Besides, typically, the harmonics...... proposes a new model of a single phase grid connected renewable energy source using the Harmonic State Space modeling approach, which is able to identify such problems and the model can be extended to be applied in the multiple connected converter analysis. The modeling results show the different harmonic...... and impedance from other renewable energy sources are not taken carefully into account in the installation and design. However, this may bring an unknown harmonic instability into the multiple power sourced system and also make the analysis difficult due to the complexity of the grid network. This paper...

  19. RELAP5 model to simulate the thermal-hydraulic effects of grid spacers and cladding rupture during reflood

    Energy Technology Data Exchange (ETDEWEB)

    Nithianandan, C.K.; Klingenfus, J.A.; Reilly, S.S. [B& W Nuclear Technologies, Lynchburg, VA (United States)

    1995-09-01

    Droplet breakup at spacer grids and a cladding swelled and ruptured locations plays an important role in the cooling of nuclear fuel rods during the reflooding period of a loss-of-coolant accident (LOCA) in a pressurized water reactor (PWR). During the reflood phase, a spacer grid affects the thermal-hydraulic system behavior through increased turbulence, droplet breakup due to impact on grid straps, grid rewetting, and liquid holdup due to grid form losses. Recently, models to simulate spacer grid effects and blockage and rupture effects on system thermal hydraulics were added to the B&W Nuclear Technologies (BWNT) version of the RELAP5/MOD2 computer code. Several FLECHT-SEASET forced reflood tests, CCTF Tests C1-19 and C2-6, SCTF Test S3-15, and G2 Test 561 were simulated using RELAP5/MOD2-B&W to verify the applicability of the model at the cladding swelled and rupture locations. The results demonstrate the importance of modeling the thermal-hydraulic effects due to grids, and clad swelling and rupture to correctly predict the clad temperature response during the reflood phase of large break LOCA. The RELAP5 models and the test results are described in this paper.

  20. Mesoscale Climate Evaluation Using Grid Computing

    Science.gov (United States)

    Campos Velho, H. F.; Freitas, S. R.; Souto, R. P.; Charao, A. S.; Ferraz, S.; Roberti, D. R.; Streck, N.; Navaux, P. O.; Maillard, N.; Collischonn, W.; Diniz, G.; Radin, B.

    2012-04-01

    The CLIMARS project is focused to establish an operational environment for seasonal climate prediction for the Rio Grande do Sul state, Brazil. The dynamical downscaling will be performed with the use of several software platforms and hardware infrastructure to carry out the investigation on mesoscale of the global change impact. The grid computing takes advantage of geographically spread out computer systems, connected by the internet, for enhancing the power of computation. The ensemble climate prediction is an appropriated application for processing on grid computing, because the integration of each ensemble member does not have a dependency on information from another ensemble members. The grid processing is employed to compute the 20-year climatology and the long range simulations under ensemble methodology. BRAMS (Brazilian Regional Atmospheric Model) is a mesoscale model developed from a version of the RAMS (from the Colorado State University - CSU, USA). BRAMS model is the tool for carrying out the dynamical downscaling from the IPCC scenarios. Long range BRAMS simulations will provide data for some climate (data) analysis, and supply data for numerical integration of different models: (a) Regime of the extreme events for temperature and precipitation fields: statistical analysis will be applied on the BRAMS data, (b) CCATT-BRAMS (Coupled Chemistry Aerosol Tracer Transport - BRAMS) is an environmental prediction system that will be used to evaluate if the new standards of temperature, rain regime, and wind field have a significant impact on the pollutant dispersion in the analyzed regions, (c) MGB-IPH (Portuguese acronym for the Large Basin Model (MGB), developed by the Hydraulic Research Institute, (IPH) from the Federal University of Rio Grande do Sul (UFRGS), Brazil) will be employed to simulate the alteration of the river flux under new climate patterns. Important meteorological input variables for the MGB-IPH are the precipitation (most relevant

  1. Characterization and Modeling of Atmospheric Flow Within and Above Plant Canopies

    Science.gov (United States)

    Souza Freire Grion, Livia

    source located inside the canopy. The comparison of all simulations with theory and field data provided satisfactory results. The main advantages of using ODT compared to typical 1D canopy-flow models are the ability to represent the coupled canopy-ABL flow with one single modeling approach, the presence of non-local turbulent fluxes, the ability to simulate transient conditions, the straightforward representation of multiple scalar fields, and the presence of only one adjustable parameter (as opposed to the several adjustable constants and boundary conditions needed for other modeling approaches). The results obtained with ODT as a stand-alone model motivated its use as a surface parameterization for Large-Eddy Simulation (LES). In this two-way coupling between LES and ODT, the former is used to simulate the ABL in a case where a canopy is present but cannot be resolved by the LES (i.e., the LES first vertical grid point is above the canopy). ODT is used to represent the flow field between the ground and the first LES grid point, including the region within and just above the canopy. In this work, we tested the ODT-LES model for three different types of canopies and obtained promising results. Although more work is needed in order to improve first and second-order statistics within the canopy (i.e. in the ODT domain), the results obtained for the flow statistics in the LES domain and for the third order statistics in the ODT domain demonstrate that the ODT-LES model is capable of capturing some important features of the canopy-atmosphere interaction. This new surface superparameterization approach using ODT provides a new alternative for simulations that require complex interactions between the flow field and near-surface processes (e.g. sand and snow drift, waves over water surfaces) and can potentially be extended to other large-scale models, such as mesoscale and global circulation models.

  2. Model Stellar Atmospheres and Real Stellar Atmospheres and Status of the ATLAS12 Opacity Sampling Program and of New Programs for Rosseland and for Distribution Function Opacity

    Science.gov (United States)

    Kurucz, Robert L.

    1996-01-01

    I discuss errors in theory and in interpreting observations that are produced by the failure to consider resolution in space, time, and energy. I discuss convection in stellar model atmospheres and in stars. Large errors in abundances are possible such as the factor of ten error in the Li abundance for extreme Population II stars. Finally I discuss the variation of microturbulent velocity with depth, effective temperature, gravity, and abundance. These variations must be dealt with in computing models and grids and in any type of photometric calibration. I have also developed a new opacity-sampling version of my model atmosphere program called ATLAS12. It recognizes more than 1000 atomic and molecular species, each in up to 10 isotopic forms. It can treat all ions of the elements up through Zn and the first 5 ions of heavier elements up through Es. The elemental and isotopic abundances are treated as variables with depth. The fluxes predicted by ATLAS12 are not accurate in intermediate or narrow bandpass intervals because the sample size is too small. A special stripped version of the spectrum synthesis program SYNTHE is used to generate the surface flux for the converged model using the line data on CD-ROMs 1 and 15. ATLAS12 can be used to produce improved models for Am and Ap stars. It should be very useful for investigating diffusion effects in atmospheres. It can be used to model exciting stars for H II regions with abundances consistent with those of the H II region. These programs and line files will be distributed on CD-ROMs.

  3. Recent advances in non-LTE stellar atmosphere models

    Science.gov (United States)

    Sander, Andreas A. C.

    2017-11-01

    In the last decades, stellar atmosphere models have become a key tool in understanding massive stars. Applied for spectroscopic analysis, these models provide quantitative information on stellar wind properties as well as fundamental stellar parameters. The intricate non-LTE conditions in stellar winds dictate the development of adequate sophisticated model atmosphere codes. The increase in both, the computational power and our understanding of physical processes in stellar atmospheres, led to an increasing complexity in the models. As a result, codes emerged that can tackle a wide range of stellar and wind parameters. After a brief address of the fundamentals of stellar atmosphere modeling, the current stage of clumped and line-blanketed model atmospheres will be discussed. Finally, the path for the next generation of stellar atmosphere models will be outlined. Apart from discussing multi-dimensional approaches, I will emphasize on the coupling of hydrodynamics with a sophisticated treatment of the radiative transfer. This next generation of models will be able to predict wind parameters from first principles, which could open new doors for our understanding of the various facets of massive star physics, evolution, and death.

  4. Comparison of LTI and LTP Models for Stability Analysis of Grid Converters

    DEFF Research Database (Denmark)

    Kwon, Jun Bum; Wang, Xiongfei; Blaabjerg, Frede

    2016-01-01

    The stability analysis of grid-connected converters have attracted increasing attentions, due to the oscillations arising in wind power plants, micro-grids, and other emerging power electronics based power systems. The modeling tool of converters thus becomes essential to faithfully reveal...... oscillations without any hidden regions. This paper presents a detailed comparison of two linearized modeling methods, which are, respectively, developed in the Linear Time-Invariant (LTI) and the Linear Time-Periodic (LTP) frameworks. The LTP model can consider the effect of frequency-coupling dynamics, which...... are occurred by the time-varying behavior, while the conventional LTI model can not capture this behavior. The advantages and limits of two models are then illustrated with examples. The compared results are verified in the frequency domain and time domain as well....

  5. Chimera Grid Tools

    Science.gov (United States)

    Chan, William M.; Rogers, Stuart E.; Nash, Steven M.; Buning, Pieter G.; Meakin, Robert

    2005-01-01

    Chimera Grid Tools (CGT) is a software package for performing computational fluid dynamics (CFD) analysis utilizing the Chimera-overset-grid method. For modeling flows with viscosity about geometrically complex bodies in relative motion, the Chimera-overset-grid method is among the most computationally cost-effective methods for obtaining accurate aerodynamic results. CGT contains a large collection of tools for generating overset grids, preparing inputs for computer programs that solve equations of flow on the grids, and post-processing of flow-solution data. The tools in CGT include grid editing tools, surface-grid-generation tools, volume-grid-generation tools, utility scripts, configuration scripts, and tools for post-processing (including generation of animated images of flows and calculating forces and moments exerted on affected bodies). One of the tools, denoted OVERGRID, is a graphical user interface (GUI) that serves to visualize the grids and flow solutions and provides central access to many other tools. The GUI facilitates the generation of grids for a new flow-field configuration. Scripts that follow the grid generation process can then be constructed to mostly automate grid generation for similar configurations. CGT is designed for use in conjunction with a computer-aided-design program that provides the geometry description of the bodies, and a flow-solver program.

  6. A global high-resolution model experiment on the predictability of the atmosphere

    Science.gov (United States)

    Judt, F.

    2016-12-01

    Forecasting high-impact weather phenomena is one of the most important aspects of numerical weather prediction (NWP). Over the last couple of years, a tremendous increase in computing power has facilitated the advent of global convection-resolving NWP models, which allow for the seamless prediction of weather from local to planetary scales. Unfortunately, the predictability of specific meteorological phenomena in these models is not very well known. This raises questions about which forecast problems are potentially tractable, and what is the value of global convection-resolving model predictions for the end user. To address this issue, we use the Yellowstone supercomputer to conduct a global high-resolution predictability experiment with the recently developed Model for Prediction Across Scales (MPAS). The computing power of Yellowstone enables the model to run at a globally uniform resolution of 4 km with 55 vertical levels (>2 billion grid cells). These simulations, which require 3 million core-hours for the entire experiment, allow for the explicit treatment of organized deep moist convection (i.e., thunderstorm systems). Resolving organized deep moist convection alleviates grave limitations of previous predictability studies, which either used high-resolution limited-area models or global simulations with coarser grids and cumulus parameterization. By computing the error growth characteristics in a set of "identical twin" model runs, the experiment will clarify the intrinsic predictability limits of atmospheric phenomena on a wide range of scales, from severe thunderstorms to global-scale wind patterns that affect the distribution of tropical rainfall. Although a major task by itself, this study is intended to be exploratory work for a future predictability experiment going beyond of what has so far been feasible. We hope to use CISL's new Cheyenne supercomputer to conduct a similar predictability experiments on a global mesh with 1-2 km resolution. This

  7. Slope 10 m grid derived from gridded bathymetry of Agrihan Island, Commonwealth of the Northern Mariana Islands (CNMI), USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Slope is derived from gridded (10 m cell size) multibeam bathymetry, collected aboard NOAA Ship Hiialaka'i and R/V AHI. Cell values reflect the maximum rate of...

  8. Slope 10 m grid derived from gridded bathymetry of Pagan Island, Commonwealth of the Northern Mariana Islands (CNMI), USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Slope is derived from gridded (10 m cell size) multibeam bathymetry, collected aboard NOAA Ship Hiialaka'i and R/V AHI. Cell values reflect the maximum rate of...

  9. Slope 10 m grid derived from gridded bathymetry of Guguan Island, Commonwealth of the Northern Mariana Islands (CNMI), USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Slope is derived from gridded (10 m cell size) multibeam bathymetry, collected aboard NOAA Ship Hiialaka'i and R/V AHI. Cell values reflect the maximum rate of...

  10. Slope 10 m grid derived from gridded bathymetry of Maug Island, Commonwealth of the Northern Mariana Islands (CNMI), USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Slope is derived from gridded (10 m cell size) multibeam bathymetry, collected aboard NOAA Ship Hiialaka'i and R/V AHI. Cell values reflect the maximum rate of...

  11. Slope 10 m grid derived from gridded bathymetry of Sarigan Island, Commonwealth of the Northern Mariana Islands (CNMI), USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Slope is derived from gridded (10 m cell size) multibeam bathymetry, collected aboard NOAA Ship Hiialaka'i and R/V AHI. Cell values reflect the maximum rate of...

  12. Slope 10 m grid derived from gridded bathymetry of Supply Reef, Commonwealth of the Northern Mariana Islands (CNMI), USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Slope is derived from gridded (10 m cell size) multibeam bathymetry, collected aboard NOAA Ship Hiialaka'i and R/V AHI. Cell values reflect the maximum rate of...

  13. Determining Maximum Photovoltaic Penetration in a Distribution Grid considering Grid Operation Limits

    DEFF Research Database (Denmark)

    Kordheili, Reza Ahmadi; Bak-Jensen, Birgitte; Pillai, Jayakrishnan Radhakrishna

    2014-01-01

    High penetration of photovoltaic panels in distribution grid can bring the grid to its operation limits. The main focus of the paper is to determine maximum photovoltaic penetration level in the grid. Three main criteria were investigated for determining maximum penetration level of PV panels...... for this grid: even distribution of PV panels, aggregation of panels at the beginning of each feeder, and aggregation of panels at the end of each feeder. Load modeling is done using Velander formula. Since PV generation is highest in the summer due to irradiation, a summer day was chosen to determine maximum......; maximum voltage deviation of customers, cables current limits, and transformer nominal value. Voltage deviation of different buses was investigated for different penetration levels. The proposed model was simulated on a Danish distribution grid. Three different PV location scenarios were investigated...

  14. Deriving vehicle-to-grid business models from consumer preferences

    NARCIS (Netherlands)

    Bohnsack, René; van den Hoed, Robert; Oude Reimer, Hugo

    2015-01-01

    Combining electric cars with utility services seems to be a natural fit and holds the promise to tackle various mobility as well as electricity challenges at the same time. So far no viable business model for vehicle-to-grid technology has emerged, raising the question which characteristics a

  15. Code Shift: Grid Specifications and Dynamic Wind Turbine Models

    DEFF Research Database (Denmark)

    Ackermann, Thomas; Ellis, Abraham; Fortmann, Jens

    2013-01-01

    Grid codes (GCs) and dynamic wind turbine (WT) models are key tools to allow increasing renewable energy penetration without challenging security of supply. In this article, the state of the art and the further development of both tools are discussed, focusing on the European and North American e...

  16. Infrared radiation models for atmospheric methane

    Science.gov (United States)

    Cess, R. D.; Kratz, D. P.; Caldwell, J.; Kim, S. J.

    1986-01-01

    Mutually consistent line-by-line, narrow-band and broad-band infrared radiation models are presented for methane, a potentially important anthropogenic trace gas within the atmosphere. Comparisons of the modeled band absorptances with existing laboratory data produce the best agreement when, within the band models, spurious band intensities are used which are consistent with the respective laboratory data sets, but which are not consistent with current knowledge concerning the intensity of the infrared fundamental band of methane. This emphasizes the need for improved laboratory band absorptance measurements. Since, when applied to atmospheric radiation calculations, the line-by-line model does not require the use of scaling approximations, the mutual consistency of the band models provides a means of appraising the accuracy of scaling procedures. It is shown that Curtis-Godson narrow-band and Chan-Tien broad-band scaling provide accurate means of accounting for atmospheric temperature and pressure variations.

  17. OGC and Grid Interoperability in enviroGRIDS Project

    Science.gov (United States)

    Gorgan, Dorian; Rodila, Denisa; Bacu, Victor; Giuliani, Gregory; Ray, Nicolas

    2010-05-01

    the OGC Web service protocols, the advantages offered by the Grid technology - such as providing a secure interoperability between the distributed geospatial resource -and the issues introduced by the integration of distributed geospatial data in a secure environment: data and service discovery, management, access and computation. enviroGRIDS project proposes a new architecture which allows a flexible and scalable approach for integrating the geospatial domain represented by the OGC Web services with the Grid domain represented by the gLite middleware. The parallelism offered by the Grid technology is discussed and explored at the data level, management level and computation level. The analysis is carried out for OGC Web service interoperability in general but specific details are emphasized for Web Map Service (WMS), Web Feature Service (WFS), Web Coverage Service (WCS), Web Processing Service (WPS) and Catalog Service for Web (CSW). Issues regarding the mapping and the interoperability between the OGC and the Grid standards and protocols are analyzed as they are the base in solving the communication problems between the two environments: grid and geospatial. The presetation mainly highlights how the Grid environment and Grid applications capabilities can be extended and utilized in geospatial interoperability. Interoperability between geospatial and Grid infrastructures provides features such as the specific geospatial complex functionality and the high power computation and security of the Grid, high spatial model resolution and geographical area covering, flexible combination and interoperability of the geographical models. According with the Service Oriented Architecture concepts and requirements of interoperability between geospatial and Grid infrastructures each of the main functionality is visible from enviroGRIDS Portal and consequently, by the end user applications such as Decision Maker/Citizen oriented Applications. The enviroGRIDS portal is the single way

  18. Slope 10 m grid derived from gridded bathymetry of Asuncion Island, Commonwealth of the Northern Mariana Islands (CNMI), USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Slope is derived from gridded (10 m cell size) multibeam bathymetry collected aboard NOAA Ship Hiialaka'i and R/V AHI. Cell values reflect the maximum rate of change...

  19. Slope 5 m grid derived from gridded bathymetry of Rota Island, Commonwealth of the Northern Mariana Islands (CNMI), USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Slope is derived from gridded (5 m cell size) multibeam bathymetry, collected aboard NOAA Ship Hiialaka'i and R/V AHI. Cell values reflect the maximum rate of change...

  20. Analytical Modeling Approach to Study Harmonic Mitigation in AC Grids with Active Impedance at Selective Frequencies

    Directory of Open Access Journals (Sweden)

    Gonzalo Abad

    2018-05-01

    Full Text Available This paper presents an analytical model, oriented to study harmonic mitigation aspects in AC grids. As it is well known, the presence of non-desired harmonics in AC grids can be palliated in several manners. However, in this paper, a power electronic-based active impedance at selective frequencies (ACISEF is used, due to its already proven flexibility and adaptability to the changing characteristics of AC grids. Hence, the proposed analytical model approach is specially conceived to globally consider both the model of the AC grid itself with its electric equivalent impedances, together with the power electronic-based ACISEF, including its control loops. In addition, the proposed analytical model presents practical and useful properties, as it is simple to understand and simple to use, it has low computational cost and simple adaptability to different scenarios of AC grids, and it provides an accurate enough representation of the reality. The benefits of using the proposed analytical model are shown in this paper through some examples of its usefulness, including an analysis of stability and the identification of sources of instability for a robust design, an analysis of effectiveness in harmonic mitigation, an analysis to assist in the choice of the most suitable active impedance under a given state of the AC grid, an analysis of the interaction between different compensators, and so on. To conclude, experimental validation of a 2.15 kA ACISEF in a real 33 kV AC grid is provided, in which real users (household and industry loads and crucial elements such as wind parks and HVDC systems are near inter-connected.