WorldWideScience

Sample records for mode-locked radially polarized

  1. Dual comb generation from a mode-locked fiber laser with orthogonally polarized interlaced pulses.

    Science.gov (United States)

    Akosman, Ahmet E; Sander, Michelle Y

    2017-08-07

    Ultra-high precision dual-comb spectroscopy traditionally requires two mode-locked, fully stabilized lasers with complex feedback electronics. We present a novel mode-locked operation regime in a thulium-holmium co-doped fiber laser, a frequency-halved state with orthogonally polarized interlaced pulses, for dual comb generation from a single source. In a linear fiber laser cavity, an ultrafast pulse train composed of co-generated, equal intensity and orthogonally polarized consecutive pulses at half of the fundamental repetition rate is demonstrated based on vector solitons. Upon optical interference of the orthogonally polarized pulse trains, two stable microwave RF beat combs are formed, effectively down-converting the optical properties into the microwave regime. These co-generated, dual polarization interlaced pulse trains, from one all-fiber laser configuration with common mode suppression, thus provide an attractive compact source for dual-comb spectroscopy, optical metrology and polarization entanglement measurements.

  2. The study of 80 MHz self starting passively mode-locked Erbium-Doped Fiber Laser via nonlinear polarization rotation with SESAM

    International Nuclear Information System (INIS)

    Qamar, F.

    2013-01-01

    Erbium-Doped Fiber Laser, EDF L, passively mode-locked via only Nonlinear Polarization Rotation, NPR, and via NPR with Semiconductor Saturable Absorber Mirror, SESAM, is studied. Self start single pulse train with pulse width of 114 fs and repetition rate (PRR) of 80 MHz has been obtained when 55 cm EDFL, passively mode-locked via NPR only. Inserting SESAM in EDFL cavity leads to shorten the pulse width up to 88 fs, increases the amplitude stability up to 96% and lower the phase noise jittering to around 26 fsec. Stable second harmonic self starting passively mode-locked EDFL with pulse width of 284 fs has also been observed only when SESAM was used in the cavity. Multi-pulsed system passively mode-locked via NPR for EDFL length of 80 cm with time difference between the successive multi-pulses ranged from few picoseconds to nanoseconds, has been observed. The time difference can be controlled by the polarizer controller and the half wave plate. Further controlling of the cavity polarization leads to developing the multiple mode locking pulses train to second harmonic mode-locking pulse train with PRR of 160MHz and pulse width of 156 fs. Three harmonic superposed trains of mode locked pulse have been achieved only when SESAM added to the cavity. (author)

  3. An ultra-long cavity passively mode-locked fiber laser based on nonlinear polarization rotation in a semiconductor optical amplifier

    International Nuclear Information System (INIS)

    Liu, Tonghui; Jia, Dongfang; Yang, Jingwen; Chen, Jiong; Wang, Zhaoying; Yang, Tianxin

    2013-01-01

    In this paper we investigate an ultra-long cavity passively mode-locked fiber laser based on a semiconductor optical amplifier (SOA). Experimental results are presented which indicate that stable mode-locked pulses can be obtained by combining nonlinear polarization rotation (NPR) in the SOA with a polarization controller. By adding a 4 km single mode fiber into the ring cavity, a stable fundamental-order mode-locked pulse train with a repetition rate of 50.72 kHz is generated through the NPR effect in the SOA. The central wavelength, 3 dB bandwidth and single pulse energy of the output pulse are 1543.95 nm, 1.506 nm and 33.12 nJ, respectively. Harmonic mode-locked pulses are also observed in experiments when the parameters are chosen properly. (paper)

  4. Tunable and switchable dual-wavelength passively mode-locked Bi-doped all-fiber ring laser based on nonlinear polarization rotation

    International Nuclear Information System (INIS)

    Luo, A-P; Luo, Z-C; Xu, W-C; Dvoyrin, V V; Mashinsky, V M; Dianov, E M

    2011-01-01

    We demonstrate a tunable and switchable dual-wavelength passively mode-locked Bi-doped all-fiber ring laser by using nonlinear polarization rotation (NPR) technique. Exploiting the spectral filtering effect caused by the combination of the polarizer and intracavity birefringence, the wavelength separation of dual-wavelength mode-locked pulses can be flexibly tuned between 2.38 and 20.45 nm. Taking the advantage of NPR-induced intensity-dependent loss to suppress the mode competition, the stable dual-wavelength pulses output is obtained at room temperature. Moreover, the dual-wavelength switchable operation is achieved by simply rotating the polarization controllers (PCs)

  5. Nonlinear Polarization Rotation-Based Mode-Locked Erbium-Doped Fiber Laser with Three Switchable Operation States

    International Nuclear Information System (INIS)

    Tiu Zian Cheak; Tan Sin Jin; Zarei Arman; Ahmad Harith; Harun Sulaiman Wadi

    2014-01-01

    A simple mode-locked erbium-doped fiber laser (EDFL) with three switchable operation states is proposed and demonstrated based on nonlinear polarization rotation. The EDFL generates a stable square pulse at a third harmonic pulse repetition rate of 87 kHz as the 1480 nm pump power increases from the threshold of 17.5 mW to 34.3 mW. The square pulse duration increases from 105 ns to 245 ns as the pump power increases within this region. The pulse operation switches to the second operation state as the pump power is varied from 48.2 mW to 116.7 mW. The laser operates at a fundamental repetition rate of 29 kHz with a fixed pulse width of 8.5 μs within the pump power region. At a pump power of 116.7 mW, the average output power is 3.84 mW, which corresponds to the pulse energy of 131.5 nJ. When the pump power continues to increase, the pulse train experiences unstable oscillation before it reaches the third stable operation state within a pump power region of 138.9 mW to 145.0 mW. Within this region, the EDFL produces a fixed pulse width of 2.8 μs and a harmonic pulse repetition rate of 58 kHz. (fundamental areas of phenomenology(including applications))

  6. Repetition frequency scaling of an all-polarization maintaining erbium-doped mode-locked fiber laser based on carbon nanotubes saturable absorber

    Energy Technology Data Exchange (ETDEWEB)

    Sotor, J., E-mail: jaroslaw.sotor@pwr.edu.pl; Sobon, G.; Abramski, K. M. [Laser and Fiber Electronics Group, Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw (Poland); Jagiello, J.; Lipinska, L. [Institute of Electronic Materials Technology, Wolczynska 133, 01-919 Warsaw (Poland)

    2015-04-07

    We demonstrate an all-polarization maintaining (PM), mode-locked erbium (Er)-doped fiber laser based on a carbon nanotubes (CNT) saturable absorber (SA). The laser resonator was maximally simplified by using only one passive hybrid component and a pair of fiber connectors with deposited CNTs. The repetition frequency (F{sub rep}) of such a cost-effective and self-starting mode-locked laser was scaled from 54.3 MHz to 358.6 MHz. The highest F{sub rep} was obtained when the total cavity length was shortened to 57 cm. The laser allows ultrashort pulse generation with the duration ranging from 240 fs to 550 fs. Because the laser components were based on PM fibers the laser was immune to the external perturbations and generated laniary polarized light with the degree of polarization (DOP) of 98.7%.

  7. An automatic mode-locked system for passively mode-locked fiber laser

    Science.gov (United States)

    Li, Sha; Xu, Jun; Chen, Guoliang; Mei, Li; Yi, Bo

    2013-12-01

    This paper designs and implements one kind of automatic mode-locked system. It can adjust a passively mode-locked fiber laser to keep steady mode-locked states automatically. So the unsteadiness of traditional passively mode-locked fiber laser can be avoided. The system transforms optical signals into electrical pulse signals and sends them into MCU after processing. MCU calculates the frequency of the signals and judges the state of the output based on a quick judgment algorithm. A high-speed comparator is used to check the signals and the comparison voltage can be adjusted to improve the measuring accuracy. Then by controlling two polarization controllers at an angle of 45degrees to each other, MCU extrudes the optical fibers to change the polarization until it gets proper mode-locked output. So the system can continuously monitor the output signal and get it back to mode-locked states quickly and automatically. States of the system can be displayed on the LCD and PC. The parameters of the steady mode-locked states can be stored into an EEPROM so that the system will get into mode-locked states immediately next time. Actual experiments showed that, for a 6.238MHz passively mode-locked fiber lasers, the system can get into steady mode-locked states automatically in less than 90s after starting the system. The expected lock time can be reduced to less than 20s after follow up improvements.

  8. High-speed polarization-sensitive OCT at 1060 nm using a Fourier domain mode-locked swept source

    DEFF Research Database (Denmark)

    Marschall, Sebastian; Torzicky, Teresa; Klein, Thomas

    2012-01-01

    sufficiently large datasets. Here, we demonstrate PS-OCT imaging at 350 kHz A-scan rate using a two-channel PS-OCT system in conjunction with a Fourier domain mode-locked laser. The light source spectrum spans up to 100nm around the water absorption minimum at 1060 nm. By modulating the laser pump current, we...

  9. Performance Comparison of Mode-Locked Erbium-Doped Fiber Laser with Nonlinear Polarization Rotation and Saturable Absorber Approaches

    International Nuclear Information System (INIS)

    Ismail, M. A.; Tan, S. J.; Shahabuddin, N. S.; Harun, S. W.; Arof, H.; Ahmad, H.

    2012-01-01

    A mode-locked erbium-doped fiber laser (EDFL) is demonstrated using a highly concentrated erbium-doped fiber (EDF) as the gain medium in a ring configuration with and without a saturable absorber (SA). Without the SA, the proposed laser generates soliton pulses with a repetition rate of 12 MHz, pulse width of 1.11 ps and energy pulse of 1.6 pJ. By incorporating SA in the ring cavity, the optical output of the laser changes from soliton to stretched pulses due to the slight change in the group velocity dispersion. With the SA, a cleaner pulse is obtained with a repetition rate of 11.3 MHz, a pulse width of 0.58 ps and a pulse energy of 2.3 pJ. (fundamental areas of phenomenology(including applications))

  10. Uniform spacing interrogation of a Fourier domain mode-locked fiber Bragg grating sensor system using a polarization-maintaining fiber Sagnac interferometer

    Science.gov (United States)

    Lee, Hwi Don; Jung, Eun Joo; Jeong, Myung Yung; Chen, Zhongping; Kim, Chang-Seok

    2014-01-01

    A novel linearized interrogation method is presented for a Fourier domain mode-locked (FDML) fiber Bragg grating (FBG) sensor system. In a high speed regime over several tens of kHz modulations, a sinusoidal wave is available to scan the center wavelength of an FDML wavelength-swept laser, instead of a conventional triangular wave. However, sinusoidal wave modulation suffers from an exaggerated non-uniform wavelength-spacing response in demodulating the time-encoded parameter to the absolute wavelength. In this work, the calibration signal from a polarization-maintaining fiber Sagnac interferometer shares the FDML wavelength-swept laser for FBG sensors to convert the time-encoded FBG signal to the wavelength-encoded uniform-spacing signal. PMID:24489440

  11. Uniform spacing interrogation of a Fourier domain mode-locked fiber Bragg grating sensor system using a polarization-maintaining fiber Sagnac interferometer

    International Nuclear Information System (INIS)

    Lee, Hwi Don; Jeong, Myung Yung; Chen, Zhongping; Kim, Chang-Seok; Jung, Eun Joo

    2013-01-01

    A novel linearized interrogation method is presented for a Fourier domain mode-locked (FDML) fiber Bragg grating (FBG) sensor system. In a high speed regime over several tens of kHz modulations, a sinusoidal wave is available to scan the center wavelength of an FDML wavelength-swept laser, instead of a conventional triangular wave. However, sinusoidal wave modulation suffers from an exaggerated non-uniform wavelength-spacing response in demodulating the time-encoded parameter to the absolute wavelength. In this work, the calibration signal from a polarization-maintaining fiber Sagnac interferometer shares the FDML wavelength-swept laser for FBG sensors to convert the time-encoded FBG signal to the wavelength-encoded uniform-spacing signal. (paper)

  12. Uniform spacing interrogation of a Fourier domain mode-locked fiber Bragg grating sensor system using a polarization-maintaining fiber Sagnac interferometer

    Science.gov (United States)

    Lee, Hwi Don; Jung, Eun Joo; Jeong, Myung Yung; Chen, Zhongping; Kim, Chang-Seok

    2013-06-01

    A novel linearized interrogation method is presented for a Fourier domain mode-locked (FDML) fiber Bragg grating (FBG) sensor system. In a high speed regime over several tens of kHz modulations, a sinusoidal wave is available to scan the center wavelength of an FDML wavelength-swept laser, instead of a conventional triangular wave. However, sinusoidal wave modulation suffers from an exaggerated non-uniform wavelength-spacing response in demodulating the time-encoded parameter to the absolute wavelength. In this work, the calibration signal from a polarization-maintaining fiber Sagnac interferometer shares the FDML wavelength-swept laser for FBG sensors to convert the time-encoded FBG signal to the wavelength-encoded uniform-spacing signal.

  13. Mode locking of Yb:GdYAG ceramic lasers with an isotropic cavity

    International Nuclear Information System (INIS)

    Xu, C W; Tang, D Y; Zhu, H Y; Zhang, J

    2013-01-01

    We report on the passive mode locking of a diode pumped Yb:GdYAG ceramic laser with a near isotropic cavity. It is found that the laser could simultaneously mode lock in the two orthogonal principal polarization directions of the cavity, and the mode locked pulses of the two polarizations have identical features and are temporally perfectly synchronized. However, their pulse energy varies out-of-phase periodically, manifesting the antiphase dynamics of mode locked lasers. (letter)

  14. Mathematical solutions of rate equations of a laser-diode end-pumped passively Q-switched and mode locked Nd-laser with Cr4+:YAG polarized saturable absorber

    International Nuclear Information System (INIS)

    Abdul Ghani, B.; Hammadi, M.

    2012-01-01

    The intracavity frequency-doubling (IFD) of a simultaneous passively Q-switched mode-locked diode-pumped Nd 3 + - laser is studied with a polarized isotropic Cr 4 +: YAG saturable absorber. A general recurrence formula for the mode-locked pulses under the Q-switched envelope at fundamental wavelength has been reconstructed in order to analyze the temporal shape behavior of a single Q-switched envelope with mode-locking pulse trains. This formula has been derived taking into account the impact of the IFD and polarized Cr 4 +: YAG saturable absorber.The presented mathematical model describes the self-induced anisotropy appeared in the polarized Cr 4 +: YAG in the nonlinear stage of the giant pulse formation. For the anisotropic Nd 3 +: YVO 4 active medium, the generated polarized waves are assumed to be fixed through the lasing cycle. Besides, the maximum absorber initial transmission and the minimum mirror reflectivity values have been determined from the second threshold criterion. The calculated numerical results demonstrate the impact of the variation of the input laser parameters (rotational angle of the polarized crystal, absorber initial transmission and the output mirror reflectivity) on the characteristics of the output laser pulse (SH peak power, pulse width, pulse duration and shift pulse position of central mode). The calculated numerical results in this work is in good qualitative and quantitative agreement with the available experimental data reported in the references. (author)

  15. Uniform spacing interrogation of a Fourier domain mode-locked fiber Bragg grating sensor system using a polarization-maintaining fiber Sagnac interferometer

    OpenAIRE

    Lee, Hwi Don; Jung, Eun Joo; Jeong, Myung Yung; Chen, Zhongping; Kim, Chang-Seok

    2013-01-01

    A novel linearized interrogation method is presented for a Fourier domain mode-locked (FDML) fiber Bragg grating (FBG) sensor system. In a high speed regime over several tens of kHz modulations, a sinusoidal wave is available to scan the center wavelength of an FDML wavelength-swept laser, instead of a conventional triangular wave. However, sinusoidal wave modulation suffers from an exaggerated non-uniform wavelength-spacing response in demodulating the time-encoded parameter to the absolute ...

  16. All-fiber radially/azimuthally polarized lasers based on mode coupling of tapered fibers.

    Science.gov (United States)

    Mao, Dong; He, Zhiwen; Lu, Hua; Li, Mingkun; Zhang, Wending; Cui, Xiaoqi; Jiang, Biqiang; Zhao, Jianlin

    2018-04-01

    We demonstrate a mode converter with an insertion loss of 0.36 dB based on mode coupling of tapered single-mode and two-mode fibers, and realize all-fiber flexible cylindrical vector lasers at 1550 nm. Attributing to the continuous distribution of a tangential electric field at taper boundaries, the laser is switchable between the radially and azimuthally polarized states by adjusting the input polarization. In the temporal domain, the operation is controllable among continuous-wave, Q-switched, and mode-locked statuses by changing the saturable absorber or pump strength. The duration of Q-switched radially/azimuthally polarized laser spans from 10.4/10.8 to 6/6.4 μs at the pump range of 38 to 58 mW, while that of the mode-locked pulse varies from 39.2/31.9 to 5.6/5.2 ps by controlling the laser bandwidth. The proposed laser combines the features of a cylindrical vector beam, a fiber laser, and an ultrafast pulse, providing a special and cost-effective source for practical applications.

  17. Mode-locked solid state lasers using diode laser excitation

    Science.gov (United States)

    Holtom, Gary R [Boston, MA

    2012-03-06

    A mode-locked laser employs a coupled-polarization scheme for efficient longitudinal pumping by reshaped laser diode bars. One or more dielectric polarizers are configured to reflect a pumping wavelength having a first polarization and to reflect a lasing wavelength having a second polarization. An asymmetric cavity provides relatively large beam spot sizes in gain medium to permit efficient coupling to a volume pumped by a laser diode bar. The cavity can include a collimation region with a controlled beam spot size for insertion of a saturable absorber and dispersion components. Beam spot size is selected to provide stable mode locking based on Kerr lensing. Pulse durations of less than 100 fs can be achieved in Yb:KGW.

  18. Retinal polarization-sensitive optical coherence tomography at 1060 nm with 350 kHz A-scan rate using an Fourier domain mode locked laser

    DEFF Research Database (Denmark)

    Torzicky, Teresa; Marschall, Sebastian; Pircher, Michael

    2013-01-01

    , averaging several two-dimensional frames allows the generation of high-definition B-scans without the use of an eye-tracking system. The increased penetration depth of the system, which is caused by the longer probing beam wavelength, is beneficial for imaging choroidal and scleral structures and allows...... automated segmentation of these layers based on their polarization characteristics....

  19. A novel mode-locking technique

    International Nuclear Information System (INIS)

    Chen Shaoh; Chen Youming; Chen Taolue; Si Xiangdong; Yang Yi; Deng Ximing

    1993-01-01

    A novel mode-locked Nd:YAG oscillator has been developed by using an ultrafast photoconductive feedback controlled loop, and mode-locked pulses with a duration of 100ps have been obtained. The energy instability of the pulse trains is ±5%. In this type of mode-locking technology, a type of deep-level doped GaAs (Cr-doped) photoconductive switch, which has a fast response in time and is free of avalance process, is used to drive a Pockels' cell to realize mode-locking. The dark resistance of this type of photoconductive switch is 6 orders of magnitude higher than that of the intrinsic single-crystal silicon, and it can reach a level as high as 10 9 ohms. Consequently, it is able to withstand longterm operation at several thousand DC volts. By means of the photoconductive ohmic switch characteristics, the authors have designed a positive feedback control network which has a very fast response time, and can couple a voltage of up to a thousand volts. Using this unit in a Nd:YAG laser, they have successfully realized a very stable mode-locked pulse train with pulse width shorter than 100 ps. The operation principle, and the results of the preliminary experiments are presented here. 1 ref., 3 figs

  20. L-band passively harmonic mode-locked fiber laser based on a graphene saturable absorber

    International Nuclear Information System (INIS)

    Du, J; Zhang, S M; Li, H F; Meng, Y C; Li, X L; Hao, Y P

    2012-01-01

    We have proposed and demonstrated an L-band passively harmonic mode-locked fiber laser based on a graphene saturable absorber (SA). By adjusting the pump power and the polarization controller, we have experimentally observed L-band fundamental and harmonic mode-locked optical pulses. The fundamental optical pulse has the duration of 1.3 ps, and the maximum average output power of 13.16 mW at the incident pump power of 98.8 mW. The order of the harmonic mode-locked optical pulses can be changed over the range from the second to the fourth. From the experimental results, we deduced that the likely origin of the harmonic mode-locked self-stabilization was the result of global and local soliton interactions induced by the unstability continuous wave (CW) components

  1. Mode-locked silicon evanescent lasers.

    Science.gov (United States)

    Koch, Brian R; Fang, Alexander W; Cohen, Oded; Bowers, John E

    2007-09-03

    We demonstrate electrically pumped lasers on silicon that produce pulses at repetition rates up to 40 GHz. The mode locked lasers generate 4 ps pulses with low jitter and extinction ratios above 18 dB, making them suitable for data and telecommunication transmitters and for clock generation and distribution. Results of both passive and hybrid mode locking are discussed. This type of device could enable new silicon based integrated technologies, such as optical time division multiplexing (OTDM), wavelength division multiplexing (WDM), and optical code division multiple access (OCDMA).

  2. A Mode Locked UV-FEL

    CERN Document Server

    Parvin, Parviz

    2004-01-01

    An appropriate resonator has been designed to generate femtosecond mode locked pulses in a UV FEL with the modulator performance based on the gain switching. The gain broadening due to electron energy spread affects on the gain parameters, small signal gain (γ0) and saturation intensity (Is), to determine the optimum output coupling as small.

  3. Mode-locking via dissipative Faraday instability.

    Science.gov (United States)

    Tarasov, Nikita; Perego, Auro M; Churkin, Dmitry V; Staliunas, Kestutis; Turitsyn, Sergei K

    2016-08-09

    Emergence of coherent structures and patterns at the nonlinear stage of modulation instability of a uniform state is an inherent feature of many biological, physical and engineering systems. There are several well-studied classical modulation instabilities, such as Benjamin-Feir, Turing and Faraday instability, which play a critical role in the self-organization of energy and matter in non-equilibrium physical, chemical and biological systems. Here we experimentally demonstrate the dissipative Faraday instability induced by spatially periodic zig-zag modulation of a dissipative parameter of the system-spectrally dependent losses-achieving generation of temporal patterns and high-harmonic mode-locking in a fibre laser. We demonstrate features of this instability that distinguish it from both the Benjamin-Feir and the purely dispersive Faraday instability. Our results open the possibilities for new designs of mode-locked lasers and can be extended to other fields of physics and engineering.

  4. Hysteresis phenomena and multipulse formation of a dissipative system in a passively mode-locked fiber laser

    International Nuclear Information System (INIS)

    Liu Xueming

    2010-01-01

    A model describing the dissipative soliton evolution in a passively mode-locked fiber laser is proposed by using the nonlinear polarization rotation technique and the spectral filtering effect. It is numerically found that the laser alternately evolves on the stable and unstable mode-locking states as a function of the pump strength. Numerical simulations show that the passively mode-locked fiber lasers with large net normal dispersion can operate on multiple pulse behavior and hysteresis phenomena. The experimental observations confirm the theoretical predictions. The theoretical and experimental results achieved are qualitatively distinct from those observed in net-anomalous-dispersion conventional-soliton fiber lasers.

  5. Experimental demonstration of an Er-doped fiber ring laser mode-locked with a Tm–Ho co-doped fiber saturable absorber

    International Nuclear Information System (INIS)

    Tao, Mengmeng; Wu, Junjie; Wu, Yong; Yang, Pengling; Ye, Xisheng; Peng, Junsong

    2013-01-01

    Mode-locking operation of an Er-doped fiber laser with a Tm–Ho co-doped fiber saturable absorber is demonstrated for the first time. Q-switching, Q-switched mode-locking and CW mode-locking operation modes are observed sequentially with increase of the pump power. In the mode-locking operation mode, a repetition rate at the fundamental cavity frequency of 9.05 MHz is obtained with a pulse duration of 46.3 ns. By rotating the polarization controller, a repetition rate up to 887 MHz is achieved, and the pulse duration is shortened to 0.548 ns. (paper)

  6. Deep learning and model predictive control for self-tuning mode-locked lasers

    Science.gov (United States)

    Baumeister, Thomas; Brunton, Steven L.; Nathan Kutz, J.

    2018-03-01

    Self-tuning optical systems are of growing importance in technological applications such as mode-locked fiber lasers. Such self-tuning paradigms require {\\em intelligent} algorithms capable of inferring approximate models of the underlying physics and discovering appropriate control laws in order to maintain robust performance for a given objective. In this work, we demonstrate the first integration of a {\\em deep learning} (DL) architecture with {\\em model predictive control} (MPC) in order to self-tune a mode-locked fiber laser. Not only can our DL-MPC algorithmic architecture approximate the unknown fiber birefringence, it also builds a dynamical model of the laser and appropriate control law for maintaining robust, high-energy pulses despite a stochastically drifting birefringence. We demonstrate the effectiveness of this method on a fiber laser which is mode-locked by nonlinear polarization rotation. The method advocated can be broadly applied to a variety of optical systems that require robust controllers.

  7. Three types of pulses delivered from a nanotube-mode-locked fiber laser

    International Nuclear Information System (INIS)

    Yao, X K

    2015-01-01

    Three types of pulses are experimentally investigated in a switchable normal-dispersion nanotube-mode-locked fiber laser by adjusting polarizer controller and pump power. They are a standard dissipative-soliton (DS), conventional soliton (CS)-like pulse, and noiselike pulse, which correspond to three mode-locking states. The standard DS with a rectangular spectrum possesses a Gaussian-shape pulse. The CS-like operation has a Lorenz shape, and the spectrum involves several sidebands similar to the CS case. For the noiselike pulse with a bell-shaped spectrum, a 317 fs peak rides upon the 132.5 ps pedestal in the autocorrelation trace. The spectra of these three pulse operations are centered at three close wavelengths. The generation of three such different types of pulses in one identical normal- dispersion laser cavity may find an important application for the future of mode-locked laser research. (paper)

  8. Delay differential equations for mode-locked semiconductor lasers.

    Science.gov (United States)

    Vladimirov, Andrei G; Turaev, Dmitry; Kozyreff, Gregory

    2004-06-01

    We propose a new model for passive mode locking that is a set of ordinary delay differential equations. We assume a ring-cavity geometry and Lorentzian spectral filtering of the pulses but do not use small gain and loss and weak saturation approximations. By means of a continuation method, we study mode-locking solutions and their stability. We find that stable mode locking can exist even when the nonlasing state between pulses becomes unstable.

  9. Anapole nanolasers for mode-locking and ultrafast pulse generation

    KAUST Repository

    Gongora, J. S. Totero; Miroshnichenko, Andrey E.; Kivshar, Yuri S.; Fratalocchi, Andrea

    2017-01-01

    Nanophotonics is a rapidly developing field of research with many suggestions for a design of nanoantennas, sensors and miniature metadevices. Despite many proposals for passive nanophotonic devices, the efficient coupling of light to nanoscale optical structures remains a major challenge. In this article, we propose a nanoscale laser based on a tightly confined anapole mode. By harnessing the non-radiating nature of the anapole state, we show how to engineer nanolasers based on InGaAs nanodisks as on-chip sources with unique optical properties. Leveraging on the near-field character of anapole modes, we demonstrate a spontaneously polarized nanolaser able to couple light into waveguide channels with four orders of magnitude intensity than classical nanolasers, as well as the generation of ultrafast (of 100 fs) pulses via spontaneous mode locking of several anapoles. Anapole nanolasers offer an attractive platform for monolithically integrated, silicon photonics sources for advanced and efficient nanoscale circuitry.

  10. Anapole nanolasers for mode-locking and ultrafast pulse generation

    KAUST Repository

    Gongora, J. S. Totero

    2017-05-31

    Nanophotonics is a rapidly developing field of research with many suggestions for a design of nanoantennas, sensors and miniature metadevices. Despite many proposals for passive nanophotonic devices, the efficient coupling of light to nanoscale optical structures remains a major challenge. In this article, we propose a nanoscale laser based on a tightly confined anapole mode. By harnessing the non-radiating nature of the anapole state, we show how to engineer nanolasers based on InGaAs nanodisks as on-chip sources with unique optical properties. Leveraging on the near-field character of anapole modes, we demonstrate a spontaneously polarized nanolaser able to couple light into waveguide channels with four orders of magnitude intensity than classical nanolasers, as well as the generation of ultrafast (of 100 fs) pulses via spontaneous mode locking of several anapoles. Anapole nanolasers offer an attractive platform for monolithically integrated, silicon photonics sources for advanced and efficient nanoscale circuitry.

  11. All fiber passively mode locked zirconium-based erbium-doped fiber laser

    Science.gov (United States)

    Ahmad, H.; Awang, N. A.; Paul, M. C.; Pal, M.; Latif, A. A.; Harun, S. W.

    2012-04-01

    All passively mode locked erbium-doped fiber laser with a zirconium host is demonstrated. The fiber laser utilizes the Non-Linear Polarization Rotation (NPR) technique with an inexpensive fiber-based Polarization Beam Splitter (PBS) as the mode-locking element. A 2 m crystalline Zirconia-Yttria-Alumino-silicate fiber doped with erbium ions (Zr-Y-Al-EDF) acts as the gain medium and generates an Amplified Spontaneous Emission (ASE) spectrum from 1500 nm to 1650 nm. The generated mode-locked pulses have a spectrum ranging from 1548 nm to more than 1605 nm, as well as a 3-dB bandwidth of 12 nm. The mode-locked pulse train has an average output power level of 17 mW with a calculated peak power of 1.24 kW and energy per pulse of approximately 730 pJ. The spectrum also exhibits a Signal-to-Noise Ratio (SNR) of 50 dB as well as a repetition rate of 23.2 MHz. The system is very stable and shows little power fluctuation, in addition to being repeatable.

  12. Scaling laws for mode lockings in circle maps

    International Nuclear Information System (INIS)

    Cvitanovic, P.; Shraiman, B.; Soederberg, B.

    1985-06-01

    The self-similar structure of mode lockings for circle maps is studied by means of the associated Farey trees. We investigate numerically several classes of scaling relations implicit in the Farey organization of mode lockings and discuss the extent to which they lead to universal scaling laws. (orig.)

  13. Heterogeneous Silicon III-V Mode-Locked Lasers

    Science.gov (United States)

    Davenport, Michael Loehrlein

    Mode-locked lasers are useful for a variety of applications, such as sensing, telecommunication, and surgical instruments. This work focuses on integrated-circuit mode-locked lasers: those that combine multiple optical and electronic functions and are manufactured together on a single chip. While this allows production at high volume and lower cost, the true potential of integration is to open applications for mode-locked laser diodes where solid state lasers cannot fit, either due to size and power consumption constraints, or where small optical or electrical paths are needed for high bandwidth. Unfortunately, most high power and highly stable mode-locked laser diode demonstrations in scientific literature are based on the Fabry-Perot resonator design, with cleaved mirrors, and are unsuitable for use in integrated circuits because of the difficulty of producing integrated Fabry-Perot cavities. We use silicon photonics and heterogeneous integration with III-V gain material to produce the most powerful and lowest noise fully integrated mode-locked laser diode in the 20 GHz frequency range. If low noise and high peak power are required, it is arguably the best performing fully integrated mode-locked laser ever demonstrated. We present the design methodology and experimental pathway to realize a fully integrated mode-locked laser diode. The construction of the device, beginning with the selection of an integration platform, and proceeding through the fabrication process to final optimization, is presented in detail. The dependence of mode-locked laser performance on a wide variety of design parameters is presented. Applications for integrated circuit mode-locked lasers are also discussed, as well as proposed methods for using integration to improve mode-locking performance to beyond the current state of the art.

  14. Radially Polarized Conical Beam from an Embedded Etched Fiber

    OpenAIRE

    Kalaidji , D.; Spajer , M.; Marthouret , N.; Grosjean , T.

    2009-01-01

    International audience; We propose a method for producing a conical beam based on the lateral refraction of the TM01 mode from a two-mode fiber after chemical etching of the cladding, and for controlling its radial polarization. The whole power of the guided mode is transferred to the refracted beam with low diffraction. Polarization control by a series of azimuthal detectors and a stress controller affords the transmission of a stabilized radial polarization through an optical fiber. A solid...

  15. Testing ultrafast mode-locking at microhertz relative optical linewidth.

    Science.gov (United States)

    Martin, Michael J; Foreman, Seth M; Schibli, T R; Ye, Jun

    2009-01-19

    We report new limits on the phase coherence of the ultrafast mode-locking process in an octave-spanning Ti:sapphire comb.We find that the mode-locking mechanism correlates optical phase across a full optical octave with less than 2.5 microHZ relative linewidth. This result is at least two orders of magnitude below recent predictions for quantum-limited individual comb-mode linewidths, verifying that the mode-locking mechanism strongly correlates quantum noise across the comb spectrum.

  16. Testing ultrafast mode-locking at microhertz relative optical linewidth

    OpenAIRE

    Martin, Michael J.; Foreman, Seth M.; Schibli, T. R.; Ye, Jun

    2008-01-01

    We report new limits on the phase coherence of the ultrafast mode-locking process in an octave-spanning Ti:sapphire comb. We find that the mode-locking mechanism correlates optical phase across a full optical octave with less than 2.5 micro Hz relative linewidth. This result is at least two orders of magnitude below recent predictions for quantum-limited individual comb-mode linewidths, verifying that the mode-locking mechanism strongly correlates quantum noise across the comb spectrum.

  17. Monolithic Hybrid and Passive Mode-Locked 40GHz Quantum Dot Laser Diodes

    DEFF Research Database (Denmark)

    Thompson, M. G.; Larsson, David; Rae, A. R.

    2006-01-01

    For the first time hybrid and passive mode-locking jitter performance is investigated in 40GHz quantum-dot mode-locked lasers. Record low passive mode-locking jitter of 219fs is presented, along with promising hybrid mode-locking results of 124fs.......For the first time hybrid and passive mode-locking jitter performance is investigated in 40GHz quantum-dot mode-locked lasers. Record low passive mode-locking jitter of 219fs is presented, along with promising hybrid mode-locking results of 124fs....

  18. Self-mode-locked Nd3+:YAG laser

    International Nuclear Information System (INIS)

    Komarov, A K; Komarov, K P; Kuch'yanov, Aleksandr S

    2003-01-01

    Self-mode-locking was observed in a Nd 3+ :YAG laser with a negative feedback without introducing any nonlinear elements into the laser cavity. The laser generates during pumping 300 - 500-ps single pulses on an axial period. (lasers)

  19. Mode-Locked Semiconductor Lasers for Optical Communication Systems

    DEFF Research Database (Denmark)

    Yvind, Kresten; Larsson, David; Oxenløwe, Leif Katsuo

    2005-01-01

    We present investigations on 10 and 40 GHz monolithic mode-locked lasers for applications in optical communications systems. New all-active lasers with one to three quantum wells have been designed, fabricated and characterized....

  20. Radially polarized conical beam from an embedded etched fiber.

    Science.gov (United States)

    Kalaidji, Djamel; Spajer, Michel; Marthouret, Nadège; Grosjean, Thierry

    2009-06-15

    We propose a method for producing a conical beam based on the lateral refraction of the TM(01) mode from a two-mode fiber after chemical etching of the cladding, and for controlling its radial polarization. The whole power of the guided mode is transferred to the refracted beam with low diffraction. Polarization control by a series of azimuthal detectors and a stress controller affords the transmission of a stabilized radial polarization through an optical fiber. A solid component usable for many applications has been obtained.

  1. Optimizing the active region of interband cascade lasers for passive mode-locking

    Directory of Open Access Journals (Sweden)

    K. Ryczko

    2017-01-01

    Full Text Available The work proposes possible designs of active regions for a mode-locked interband cascade laser emitting in the mid infrared. For that purpose we investigated the electronic structure properties of respectively modified GaSb-based type II W-shaped quantum wells, including the effect of external bias in order to simultaneously fulfil the requirements for both the absorber as well as the gain sections of a device. The results show that introducing multiple InAs layers in type II InAs/GaInSb quantum wells or introducing a tensely-strained GaAsSb layer into “W-shaped” type II QWs offers significant difference in optical transitions’ oscillator strengths (characteristic lifetimes of the two oppositely polarized parts of such a laser, being promising for utilization in mode-locked devices.

  2. Multi-operational tuneable Q-switched mode-locking Er fibre laser

    Science.gov (United States)

    Qamar, F. Z.

    2018-01-01

    A wavelength-spacing tuneable, Q-switched mode-locking (QML) erbium-doped fibre laser based on non-linear polarization rotation controlled by four waveplates and a cube polarizer is proposed. A mode-locked pulse train using two quarter-wave plates and a half-wave plate (HWP) is obtained first, and then an extra HWP is inserted into the cavity to produce different operation regimes. The evolutions of temporal and spectral dynamics with different orientation angles of the extra HWP are investigated. A fully modulated stable QML pulse train is observed experimentally. This is, to the author’s best knowledge, the first experimental work reporting QML operation without adding an extra saturable absorber inside the laser cavity. Multi-wavelength pulse laser operation, multi-pulse train continuous-wave mode-locking operation and pulse-splitting operations are also reported at certain HWP angles. The observed operational dynamics are interpreted as a mutual interaction of dispersion, non-linear effect and insertion loss. This work provides a new mechanism for fabricating cheap tuneable multi-wavelength lasers with QML pulses.

  3. Measuring a Fiber-Optic Delay Line Using a Mode-Locked Laser

    Science.gov (United States)

    Tu, Meirong; McKee, Michael R.; Pak, Kyung S.; Yu, Nan

    2010-01-01

    The figure schematically depicts a laboratory setup for determining the optical length of a fiber-optic delay line at a precision greater than that obtainable by use of optical time-domain reflectometry or of mechanical measurement of length during the delay-line-winding process. In this setup, the delay line becomes part of the resonant optical cavity that governs the frequency of oscillation of a mode-locked laser. The length can then be determined from frequency-domain measurements, as described below. The laboratory setup is basically an all-fiber ring laser in which the delay line constitutes part of the ring. Another part of the ring - the laser gain medium - is an erbium-doped fiber amplifier pumped by a diode laser at a wavelength of 980 nm. The loop also includes an optical isolator, two polarization controllers, and a polarizing beam splitter. The optical isolator enforces unidirectional lasing. The polarization beam splitter allows light in only one polarization mode to pass through the ring; light in the orthogonal polarization mode is rejected from the ring and utilized as a diagnostic output, which is fed to an optical spectrum analyzer and a photodetector. The photodetector output is fed to a radio-frequency spectrum analyzer and an oscilloscope. The fiber ring laser can generate continuous-wave radiation in non-mode-locked operation or ultrashort optical pulses in mode-locked operation. The mode-locked operation exhibited by this ring is said to be passive in the sense that no electro-optical modulator or other active optical component is used to achieve it. Passive mode locking is achieved by exploiting optical nonlinearity of passive components in such a manner as to obtain ultra-short optical pulses. In this setup, the particular nonlinear optical property exploited to achieve passive mode locking is nonlinear polarization rotation. This or any ring laser can support oscillation in multiple modes as long as sufficient gain is present to overcome

  4. Tight focusing of radially polarized circular Airy vortex beams

    Science.gov (United States)

    Chen, Musheng; Huang, Sujuan; Shao, Wei

    2017-11-01

    Tight focusing properties of radially polarized circular Airy vortex beams (CAVB) are studied numerically. The light field expressions for the focused fields are derived based on vectorial Debye theory. We also study the relationship between focal profiles, such as light intensity distribution, radius of focal spot and focal length, and the parameters of CAVB. Numerical results demonstrate that we can generate a radially polarized CAVB with super-long focal length, super-strong longitudinal intensity or subwavelength focused spot at the focal plane by properly choosing the parameters of incident light and high numerical aperture (NA) lens. These results have potential applications for optical trapping, optical storage and particle acceleration.

  5. An innovative interpretation of rotating tearing mode locking to an external static current

    International Nuclear Information System (INIS)

    Coelho, R.; Lazzaro, E.

    2001-01-01

    Naturally occurring error fields in tokamaks, which arise from misalignments of the external field coils, may trigger the onset of tearing modes. The conditions under which a static error field is able to lock a rotating tearing mode and how this process takes place are discussed. The analysis presented contributes to a new understanding and interpretation of mode locking, given in terms of the superposition of a slipping layer (a radial layer of very fast mode phase variations) and the tearing layer, where reconnection takes place. In addition, a stabilizing operating window is found to exist, independent of the phase time evolution of the mode. (author). Letter-to-the-editor

  6. Multiwavelength mode-locked erbium-doped fiber laser based on the interaction of graphene and fiber-taper evanescent field

    International Nuclear Information System (INIS)

    Luo, Z Q; Wang, J Z; Zhou, M; Xu, H Y; Cai, Z P; Ye, C C

    2012-01-01

    We report on the generation of multiwavelength passively mode-locked pulses in an erbium-doped fiber laser (EDFL) based on the interaction of graphene and fiber-taper evanescent field. Graphene-polymer nanocomposites in aqueous suspension are trapped by the optical evanescent light and deposited on taper region. The graphene-deposited fiber-taper device not only acts as an excellent saturable absorber for mode-locking, but also induces a polarizing effect to form an artificial birefringent filter for multiwavelength selection. By simultaneously exploiting both functions of this device, four-wavelength continuous-wave mode-locking operation of an EDFL is stably initiated with a pulse width of 8.8 ps and a fundamental repetition rate of 8.034 MHz. This is the first time, to our knowledge, the mode-locked EDFL using such a new geometry of graphene-based tapered-fiber saturable absorber has been demonstrated

  7. Semiconductor Mode-Locked Lasers for Optical Communication Systems

    DEFF Research Database (Denmark)

    Yvind, Kresten

    2003-01-01

    The thesis deals with the design and fabrication of semiconductor mode-locked lasers for use in optical communication systems. The properties of pulse sources and characterization methods are described as well as requirements for application in communication systems. Especially, the importance of...

  8. Material Engineering for Monolithic Semiconductor Mode-Locked Lasers

    DEFF Research Database (Denmark)

    Kulkova, Irina

    This thesis is devoted to the materials engineering for semiconductor monolithic passively mode-locked lasers (MLLs) as a compact energy-efficient source of ultrashort optical pulses. Up to the present day, the achievement of low-noise sub-picosecond pulse generation has remained a challenge...

  9. FDTD simulation of trapping nanowires with linearly polarized and radially polarized optical tweezers.

    Science.gov (United States)

    Li, Jing; Wu, Xiaoping

    2011-10-10

    In this paper a model of the trapping force on nanowires is built by three dimensional finite-difference time-domain (FDTD) and Maxwell stress tensor methods, and the tightly focused laser beam is expressed by spherical vector wave functions (VSWFs). The trapping capacities on nanoscale-diameter nanowires are discussed in terms of a strongly focused linearly polarized beam and radially polarized beam. Simulation results demonstrate that the radially polarized beam has higher trapping efficiency on nanowires with higher refractive indices than linearly polarized beam.

  10. Polariton condensation, superradiance and difference combination parametric resonance in mode-locked laser

    Science.gov (United States)

    Bagayev, S. N.; Arkhipov, R. M.; Arkhipov, M. V.; Egorov, V. S.; Chekhonin, I. A.; Chekhonin, M. A.

    2017-11-01

    The generation of the ring mode-locked laser containing resonant absorption medium in the cavity was investigated. It is shown that near the strong resonant absorption lines a condensation of polaritons arises. Intensive radiation looks like as superradiance in a medium without population inversion. We studied theoretically the microscopic mechanism of these phenomena. It was shown that in this system in absorbing medium a strong self-induced difference combination parametric resonance exists. Superradiance on polaritonic modes in the absorbing medium are due to the emergence of light-induced resonant polarization as a result of fast periodic nonadiabatic quantum jumps in the absorber.

  11. Tunable radio-frequency photonic filter based on an actively mode-locked fiber laser.

    Science.gov (United States)

    Ortigosa-Blanch, A; Mora, J; Capmany, J; Ortega, B; Pastor, D

    2006-03-15

    We propose the use of an actively mode-locked fiber laser as a multitap optical source for a microwave photonic filter. The fiber laser provides multiple optical taps with an optical frequency separation equal to the external driving radio-frequency signal of the laser that governs its repetition rate. All the optical taps show equal polarization and an overall Gaussian apodization, which reduces the sidelobes. We demonstrate continuous tunability of the filter by changing the external driving radio-frequency signal of the laser, which shows good fine tunability in the operating range of the laser from 5 to 10 GHz.

  12. Laser-diode pumped self-mode-locked praseodymium visible lasers with multi-gigahertz repetition rate.

    Science.gov (United States)

    Zhang, Yuxia; Yu, Haohai; Zhang, Huaijin; Di Lieto, Alberto; Tonelli, Mauro; Wang, Jiyang

    2016-06-15

    We demonstrate efficient laser-diode pumped multi-gigahertz (GHz) self-mode-locked praseodymium (Pr3+) visible lasers with broadband spectra from green to deep red for the first time to our knowledge. With a Pr3+-doped GdLiF4 crystal, stable self-mode-locked visible pulsed lasers at the wavelengths of 522 nm, 607 nm, 639 nm, and 720 nm have been obtained with the repetition rates of 2.8 GHz, 3.1 GHz, 3.1 GHz, and 3.0 GHz, respectively. The maximum output power was 612 mW with the slope efficiency of 46.9% at 639 nm. The mode-locking mechanism was theoretically analyzed. The stable second-harmonic mode-locking with doubled repetition frequency was also realized based on the Fabry-Perot effect formed in the laser cavity. In addition, we find that the polarization directions were turned with lasing wavelengths. This work may provide a new way for generating efficient ultrafast pulses with high- and changeable-repetition rates in the visible range.

  13. The transient evolution of AM mode locking a TEA CO2laser

    NARCIS (Netherlands)

    van Goor, F.A.; Bonnie, Ronald J.M.; Witteman, W.J.

    1985-01-01

    The evolution of the pulse in an AM mode-locked TEA CO2laser has been investigated. The experiments have been performed by injecting the mode-locked pulses in a high-pressure slave oscillator at various time intervals after the initiation of the mode-lock process. This technique allows the

  14. Diode array pumped, non-linear mirror Q-switched and mode-locked

    Indian Academy of Sciences (India)

    A non-linear mirror consisting of a lithium triborate crystal and a dichroic output coupler are used to mode-lock (passively) an Nd : YVO4 laser, pumped by a diode laser array. The laser can operate both in cw mode-locked and simultaneously Q-switched and mode-locked (QML) regime. The peak power of the laser while ...

  15. Dispersion engineering of mode-locked fibre lasers

    Science.gov (United States)

    Woodward, R. I.

    2018-03-01

    Mode-locked fibre lasers are important sources of ultrashort pulses, where stable pulse generation is achieved through a balance of periodic amplitude and phase evolutions. A range of distinct cavity pulse dynamics have been revealed, arising from the interplay between dispersion and nonlinearity in addition to dissipative processes such as filtering. This has led to the discovery of numerous novel operating regimes, offering significantly improved laser performance. In this Topical Review, we summarise the main steady-state pulse dynamics reported to date through cavity dispersion engineering, including average solitons, dispersion-managed solitons, dissipative solitons, giant-chirped pulses and similaritons. Characteristic features and the stabilisation mechanism of each regime are described, supported by numerical modelling, in addition to the typical performance and limitations. Opportunities for further pulse energy scaling are discussed, in addition to considering other recent advances including automated self-tuning cavities and fluoride-fibre-based mid-infrared mode-locked lasers.

  16. Color center lasers passively mode locked by quantum wells

    International Nuclear Information System (INIS)

    Islam, M.N.; Soccolich, C.E.; Bar-Joseph, I.; Sauer, N.; Chang, T.Y.; Miller, B.I.

    1989-01-01

    This paper describes how, using multiple quantum well (MQW) saturable absorbers, the authors passively mode locked a NaCl color center laser to produce 275 fs transform-limited, pedestal-free pulses with as high as 3.7 kW peak power. The pulses are tunable from λ = 1.59 to 1.7 μm by choosing MQW's with different bandgaps. They shortened the output pulses from the laser to 25 fs using the technique of soliton compression in a fiber. The steady-state operation of the laser requires the combination of a fast saturable absorber and gain saturation. In addition to the NaCl laser, they passively mode locked a Tl 0 (1):KCl color center laser and produced -- 22 ps pulses. Although the 275 fs pulses from the NaCl laser are Gaussian, when broadened, the pulses acquire an asymmetric spectrum because of carrier-induced refractive index changes

  17. Mode locking in overdamped charge-density-wave systems

    International Nuclear Information System (INIS)

    Alstroem, P.; Levinsen, M.T.

    1988-01-01

    We show that the rich mode-locking structure observed in overdamped charge-density-wave (CDW) systems can be understood in terms of a simple model of driven damped 'particles' without inertia in a non-sinusoidal periodic potential. The analysis shows that the nonchaotic system of a driven overdamped CDW without inertia in general has a 'close-to-chaotic' behavior in an appropriate frequency range. Our results also provide a natural basis for studies of spatially extended CDW systems. (orig.)

  18. Modelling colliding-pulse mode-locked semiconductor lasers

    DEFF Research Database (Denmark)

    Bischoff, Svend

    or to determine the optimum operation conditions. The purpose of this thesis is to elucidate some of the physics of interest in the field of semiconductor laser modelling, semiconductor optics and fiber optics. To be more specific we will investigate: The Colliding-Pulse Mode-Locked (CPM) Quantum Well (QW) laser...... diode; the excitonic semiconductor response for varying material thickness in the case of linear optics; and modulational instability of electromagnetic waves in media with spatially varying non-linearity....

  19. Chirp of monolithic colliding pulse mode-locked diode lasers

    DEFF Research Database (Denmark)

    Hofmann, M.; Bischoff, S.; Franck, Thorkild

    1997-01-01

    Spectrally resolved streak camera measurements of picosecond pulses emitted by hybridly colliding pulse mode-locked (CPM) laser diodes are presented in this letter. Depending on the modulation frequency both blue-chirped (upchirped) and red-chirped (downchirped) pulses can be observed. The two...... different regimes and the transition between them are characterized experimentally and the behavior is explained on the basis of our model for the CPM laser dynamics. (C) 1997 American Institute of Physics....

  20. Self-mode-locked AlGaInP-VECSEL

    Science.gov (United States)

    Bek, R.; Großmann, M.; Kahle, H.; Koch, M.; Rahimi-Iman, A.; Jetter, M.; Michler, P.

    2017-10-01

    We report the mode-locked operation of an AlGaInP-based semiconductor disk laser without a saturable absorber. The active region containing 20 GaInP quantum wells is used in a linear cavity with a curved outcoupling mirror. The gain chip is optically pumped by a 532 nm laser, and mode-locking is achieved by carefully adjusting the pump spot size. For a pump power of 6.8 W, an average output power of up to 30 mW is reached at a laser wavelength of 666 nm. The pulsed emission is characterized using a fast oscilloscope and a spectrum analyzer, demonstrating stable single-pulse operation at a repetition rate of 3.5 GHz. Intensity autocorrelation measurements reveal a FWHM pulse duration of 22 ps with an additional coherence peak on top, indicating noise-like pulses. The frequency spectrum, as well as the Gaussian beam profile and the measured beam propagation factor below 1.1, shows no influence of higher order transverse modes contributing to the mode-locked operation.

  1. Narrow Q-switching pulse width and low mode-locking repetition rate Q-switched mode locking with a new coupled laser cavity

    International Nuclear Information System (INIS)

    Peng, J Y; Zheng, Y; Shen, J P; Shi, Y X

    2013-01-01

    An original diode-pumped Q-switched and mode-locked solid state Nd:GdVO 4 laser is demonstrated. The laser operates with double saturable absorbers and a new coupled laser cavity. The Q-switching envelope width is compressed to be about 15 ns and the mode-locking repetition rate is as low as 90 MHz. (paper)

  2. Passive mode locking at harmonics of the free spectral range of the intracavity filter in a fiber ring laser.

    Science.gov (United States)

    Zhang, Shumin; Lu, Fuyun; Dong, Xinyong; Shum, Ping; Yang, Xiufeng; Zhou, Xiaoqun; Gong, Yandong; Lu, Chao

    2005-11-01

    We report the passive mode-locking at harmonics of the free spectral range (FSR) of the intracavity multi-channel filter in a fiber ring laser. The laser uses a sampled fiber Bragg grating (SFBG) with a free spectral range (FSR) of 0.8 nm, or 99 GHz at 1555 nm, and a length of highly nonlinear photonic crystal fiber with low and flat dispersion. Stable picosecond soliton pulse trains with twofold to sevenfold enhancement in the repetition rate, relative to the FSR of the SFBG, have been achieved. The passive mode-locking mechanism that is at play in this laser relies on a dissipative four-wave mixing process and switching of repetition rate is realized simply by adjustment of the intracavity polarization controllers.

  3. Inter-comb synchronization by mode-to-mode locking

    Science.gov (United States)

    Chun, Byung Jae; Kim, Young-Jin; Kim, Seung-Woo

    2016-08-01

    Two combs of fiber femtosecond lasers are synchronized through the optical frequency reference created by injection-locking of a diode laser to a single comb mode. Maintaining a mHz-level narrow linewidth, the optical frequency reference permits two combs to be stabilized by mode-to-mode locking with a relative stability of 1.52  ×  10-16 at 10 s with a frequency slip of 2.46 mHz. This inter-comb synchronization can be utilized for applications such as dual-comb spectroscopy or ultra-short pulse synthesis without extra narrow-linewidth lasers.

  4. Class-A mode-locked lasers: Fundamental solutions

    Science.gov (United States)

    Kovalev, Anton V.; Viktorov, Evgeny A.

    2017-11-01

    We consider a delay differential equation (DDE) model for mode-locked operation in class-A semiconductor lasers containing both gain and absorber sections. The material processes are adiabatically eliminated as these are considered fast in comparison to the delay time for a long cavity device. We determine the steady states and analyze their bifurcations using DDE-BIFTOOL [Engelborghs et al., ACM Trans. Math. Software 28, 1 (2002)]. Multiple forms of coexistence, transformation, and hysteretic behavior of stable steady states and fundamental periodic regimes are discussed in bifurcation diagrams.

  5. Deep-red semiconductor monolithic mode-locked lasers

    International Nuclear Information System (INIS)

    Kong, L.; Bajek, D.; White, S. E.; Forrest, A. F.; Cataluna, M. A.; Wang, H. L.; Pan, J. Q.; Wang, X. L.; Cui, B. F.; Ding, Y.

    2014-01-01

    A deep-red semiconductor monolithic mode-locked laser is demonstrated. Multi-section laser diodes based on an AlGaAs multi-quantum-well structure were passively mode-locked, enabling the generation of picosecond optical pulses at 752 nm, at pulse repetition rates of 19.37 GHz. An investigation of the dependence of the pulse duration as a function of reverse bias revealed a predominantly exponential decay trend of the pulse duration, varying from 10.5 ps down to 3.5 ps, which can be associated with the concomitant reduction of absorption recovery time with increasing applied field. A 30-MHz-tunability of the pulse repetition rate with bias conditions is also reported. The demonstration of such a compact, efficient and versatile ultrafast laser in this spectral region paves the way for its deployment in a wide range of applications such as biomedical microscopy, pulsed terahertz generation as well as microwave and millimeter-wave generation, with further impact on sensing, imaging and optical communications

  6. Optimum phase noise reduction and repetition rate tuning in quantum-dot mode-locked lasers

    Energy Technology Data Exchange (ETDEWEB)

    Habruseva, T. [CAPPA, Cork Institute of Technology, Cork (Ireland); Tyndall National Institute, Lee Maltings, Cork (Ireland); Aston University, Aston Triangle, B4 7ET Birmingham (United Kingdom); Arsenijević, D.; Kleinert, M.; Bimberg, D. [Institut für Festkörperphysik, Technische Universität Berlin, Berlin (Germany); Huyet, G.; Hegarty, S. P. [CAPPA, Cork Institute of Technology, Cork (Ireland); Tyndall National Institute, Lee Maltings, Cork (Ireland)

    2014-01-13

    Competing approaches exist, which allow control of phase noise and frequency tuning in mode-locked lasers, but no judgement of pros and cons based on a comparative analysis was presented yet. Here, we compare results of hybrid mode-locking, hybrid mode-locking with optical injection seeding, and sideband optical injection seeding performed on the same quantum dot laser under identical bias conditions. We achieved the lowest integrated jitter of 121 fs and a record large radio-frequency (RF) tuning range of 342 MHz with sideband injection seeding of the passively mode-locked laser. The combination of hybrid mode-locking together with optical injection-locking resulted in 240 fs integrated jitter and a RF tuning range of 167 MHz. Using conventional hybrid mode-locking, the integrated jitter and the RF tuning range were 620 fs and 10 MHz, respectively.

  7. Optimum phase noise reduction and repetition rate tuning in quantum-dot mode-locked lasers

    International Nuclear Information System (INIS)

    Habruseva, T.; Arsenijević, D.; Kleinert, M.; Bimberg, D.; Huyet, G.; Hegarty, S. P.

    2014-01-01

    Competing approaches exist, which allow control of phase noise and frequency tuning in mode-locked lasers, but no judgement of pros and cons based on a comparative analysis was presented yet. Here, we compare results of hybrid mode-locking, hybrid mode-locking with optical injection seeding, and sideband optical injection seeding performed on the same quantum dot laser under identical bias conditions. We achieved the lowest integrated jitter of 121 fs and a record large radio-frequency (RF) tuning range of 342 MHz with sideband injection seeding of the passively mode-locked laser. The combination of hybrid mode-locking together with optical injection-locking resulted in 240 fs integrated jitter and a RF tuning range of 167 MHz. Using conventional hybrid mode-locking, the integrated jitter and the RF tuning range were 620 fs and 10 MHz, respectively

  8. Plasmonic rainbow rings induced by white radial polarization.

    Science.gov (United States)

    Lan, Tzu-Hsiang; Chung, Yi-Kuan; Li, Jie-En; Tien, Chung-Hao

    2012-04-01

    This Letter presents a scheme to embed both angular/spectral surface plasmon resonance (SPR) in a unique far-field rainbow feature by tightly focusing (effective NA=1.45) a polychromatic radially polarized beam on an Au (20 nm)/SiO2 (500 nm)/Au (20 nm) sandwich structure. Without the need for angular or spectral scanning, the virtual spectral probe snapshots a wide operation range (n=1-1.42; λ=400-700 nm) of SPR excitation in a locally nanosized region. Combined with the high-speed spectral analysis, a proof-of-concept scenario was given by monitoring the NaCl liquid concentration change in real time. The proposed scheme will certainly has a promising impact on the development of objective-based SPR sensor and biometric studies due to its rapidity and versatility.

  9. Particle confinement by a radially polarized laser Bessel beam

    Science.gov (United States)

    Laredo, Gilad; Kimura, Wayne D.; Schächter, Levi

    2017-03-01

    The stable trajectory of a charged particle in an external guiding field is an essential condition for its acceleration or for forcing it to generate radiation. Examples of possible guiding devices include a solenoidal magnetic field or permanent periodic magnet in klystrons, a wiggler in free-electron lasers, the lattice of any accelerator, and finally the crystal lattice for the case of channeling radiation. We demonstrate that the trajectory of a point-charge in a radially polarized laser Bessel beam may be stable similarly to the case of a positron that bounces back and forth in the potential well generated by two adjacent atomic planes. While in the case of channeling radiation, the transverse motion is controlled by a harmonic oscillator equation, for a Bessel beam the transverse motion is controlled by the Mathieu equation. Some characteristics of the motion are presented.

  10. Plasmonic leak-free focusing lens under radially polarized illumination

    International Nuclear Information System (INIS)

    Li, Xiaowei; Tan, Qiaofeng; Bai, Benfeng; Jin, Guofan

    2010-01-01

    A plasmonic leak-free focusing lens with two asymmetric concentric ring slits under radially polarized illumination is proposed. Each ring slit in the plasmonic lens is designed to generate surface plasmon polaritons (SPPs) with a relative initial phase controlled by the ring slit parameters. Through mutual interference of the SPPs with different phases excited by the two concentric ring slits at the output metal–dielectric interface, the field intensity towards the center of the focusing lens can be enhanced while that leaking to the counter-focus direction is effectively suppressed. The optimal parameters of the plasmonic leak-free lens are theoretically obtained by satisfying the above condition and its focusing performance is demonstrated by numerical simulation. Furthermore, a plasmonic leak-free lens with multiple double-slit groups is proposed and discussed, which exhibits a higher energy density at the focusing spot of the output interface

  11. Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers

    International Nuclear Information System (INIS)

    Tang, D.Y.; Zhao, L.M.; Zhao, B.; Liu, A.Q.

    2005-01-01

    We report results of numerical simulations on multiple-soliton generation and soliton energy quantization in a soliton fiber ring laser passively mode locked by using the nonlinear polarization rotation technique. We found numerically that the formation of multiple solitons in the laser is caused by a peak-power-limiting effect of the laser cavity. It is also the same effect that suppresses the soliton pulse collapse, an intrinsic feature of solitons propagating in gain media, and makes the solitons stable in the laser. Furthermore, we show that the soliton energy quantization observed in the lasers is a natural consequence of the gain competition between the multiple solitons. Enlightened by the numerical result we speculate that multisoliton formation and soliton energy quantization observed in other types of soliton fiber lasers could have a similar mechanism

  12. Properties of InGaAs quantum dot saturable absorbers in monolithic mode-locked lasers

    DEFF Research Database (Denmark)

    Thompson, M.G.; Marinelli, C.; Chu, Y.

    Saturable absorbers properties are characterised in monolithic mode-locked InGaAs quantum dot lasers. We analyse the impact of weak quantum confined Stark effect, fast absorber recovery time and low absorber saturation power on the mode-locking performance.......Saturable absorbers properties are characterised in monolithic mode-locked InGaAs quantum dot lasers. We analyse the impact of weak quantum confined Stark effect, fast absorber recovery time and low absorber saturation power on the mode-locking performance....

  13. 408-fs SESAM mode locked Cr:ZnSe laser

    Science.gov (United States)

    Bu, Xiangbao; Shi, Yuhang; Xu, Jia; Li, Huijuan; Wang, Pu

    2018-01-01

    We report self-starting femtosecond operation of a 127-MHz SESAM mode locked Cr:ZnSe laser around 2420 nm. A thulium doped double clad fiber laser at 1908 nm was used as the pumping source. In the normal dispersion regime, stable pulse pairs with constant phase differences in the multipulse regime were observed. The maximum output power was 342 mW with respect to incident pump power of 4.8 W and the corresponding slope efficiency was 10.4%. By inserting a piece of sapphire plate, dispersion compensation was achieved and the intra-cavity dispersion was moved to the anomalous regime. A maximum output power of 403 mW was obtained and the corresponding slope efficiency was 12.2%. Pulse width was measured to be 408 fs by a collinear autocorrelator using two-photon absorption in an InGaAs photodiode. The laser spectrum in multipulse operation showed a clear periodic modulation.

  14. Instantaneous lineshape analysis of Fourier domain mode-locked lasers.

    Science.gov (United States)

    Todor, Sebastian; Biedermann, Benjamin; Wieser, Wolfgang; Huber, Robert; Jirauschek, Christian

    2011-04-25

    We present a theoretical and experimental analysis of the instantaneous lineshape of Fourier domain mode-locked (FDML) lasers, yielding good agreement. The simulations are performed employing a recently introduced model for FDML operation. Linewidths around 10 GHz are found, which is significantly below the sweep filter bandwidth. The effect of detuning between the sweep filter drive frequency and cavity roundtrip time is studied revealing features that cannot be resolved in the experiment, and shifting of the instantaneous power spectrum against the sweep filter center frequency is analyzed. We show that, in contrast to most other semiconductor based lasers, the instantaneous linewidth is governed neither by external noise sources nor by amplified spontaneous emission, but it is directly determined by the complex FDML dynamics.

  15. Critical Behavior of Light in Mode-Locked Lasers

    Science.gov (United States)

    Weill, Rafi; Rosen, Amir; Gordon, Ariel; Gat, Omri; Fischer, Baruch

    2005-06-01

    Light is shown to exhibit critical and tricritical behavior in passively mode-locked lasers with externally injected pulses. It is a first and unique example of critical phenomena in a one-dimensional many-body light-mode system. The phase diagrams consist of regimes with continuous wave, driven parapulses, spontaneous pulses via mode condensation, and heterogeneous pulses, separated by phase transition lines that terminate with critical or tricritical points. Enhanced non-Gaussian fluctuations and collective dynamics are present at the critical and tricritical points, showing a mode system analog of the critical opalescence phenomenon. The critical exponents are calculated and shown to comply with the mean field theory, which is rigorous in the light system.

  16. Commercial mode-locked vertical external cavity surface emitting lasers

    Science.gov (United States)

    Head, C. Robin; Paboeuf, David; Ortega, Tiago; Lubeigt, Walter; Bialkowski, Bartlomiej; Lin, Jipeng; Hempler, Nils; Maker, Gareth T.; Malcolm, Graeme P. A.

    2018-02-01

    This paper presents the latest efforts in the development of commercial optically-pumped semiconductor disk lasers (SDLs) at M Squared Lasers. Two types of SDLs are currently being developed: an ultrafast system and a continuous wave single frequency system under the names of Dragonfly and Infinite, respectively. Both offer a compact, low-cost, easy-to-use and maintenance-free tool for a range of growing markets including nonlinear microscopy and quantum technology. To facilitate consumer uptake of the SDL technology, the performance specifications aim to closely match the currently employed systems. An extended Dragonfly system is being developed targeting the nonlinear microscopy market, which typically requires 1-W average power pulse trains with pulse durations below 200 fs. The pulse repetition frequency (PRF) of the commonly used laser systems, typically Titanium-sapphire lasers, is 80 MHz. This property is particularly challenging for mode-locked SDLs which tend to operate at GHz repetition rates, due to their short upper state carrier lifetime. Dragonfly has found a compromise at 200 MHz to balance mode-locking instabilities with a low PRF. In the ongoing development of Dragonfly, additional pulse compression and nonlinear spectral broadening stages are used to obtain pulse durations as short as 130 fs with an average power of 0.85 W, approaching the required performance. A variant of the Infinite system was adapted to provide a laser source suitable for the first stage of Sr atom cooling at 461 nm. Such a source requires average powers of approximately 1 W with a sub-MHz linewidth. As direct emission in the blue is not a viable approach at this stage, an SDL emitting at 922 nm followed by an M Squared Lasers SolTiS ECD-X doubler is currently under development. The SDL oscillator delivered >1 W of single frequency (RMS frequency noise <150kHz) light at 922 nm.

  17. Comparison of the noise performance of 10GHz QW and QD mode-locked laser diodes

    DEFF Research Database (Denmark)

    Carpintero, Guillermo; Thompson, Mark G.; Yvind, Kresten

    2010-01-01

    This paper reports the experimental characterization of the noise performance of a quantum dot and a quantum well 10GHz passive mode locked laser diodes.......This paper reports the experimental characterization of the noise performance of a quantum dot and a quantum well 10GHz passive mode locked laser diodes....

  18. Independent tunability of the double-mode-locked cw dye laser.

    LENUS (Irish Health Repository)

    Bourkoff, E

    1979-06-01

    We report a new configuration that enables the double-mode-locked cw dye laser to be independently tunable. In addition, the output coupling at each of the two wavelengths can be independently specified. A series of oscillographs shows some interesting features unique to double mode locking and also shows the effects of varying the two cavity lengths with respect to each other.

  19. Numerical investigations on the performance of external-cavity mode-locked semiconductor lasers

    DEFF Research Database (Denmark)

    Mulet, Josep; Mørk, Jesper

    2004-01-01

    The performance of an external-cavity mode-locked semiconductor laser is analyzed theoretically and numerically. Passive mode-locking is described using a fully-distributed time-domain model including fast effects, spectral hole burning and carrier heating. We provide optimization rules in order ...

  20. Colliding Pulse Mode-Locked Laser Diode using Multimode Interference Reflectors

    NARCIS (Netherlands)

    Gordon Gallegos, Carlos; Guzmán, R.C.; Jimenez, A.; Leijtens, X.J.M.; Carpintero, G.

    2014-01-01

    We present a novel fully monolithic Colliding Pulse Mode-Locked Laser Diode (CPML) using Multimode Interference Reflectors (MMIRs) to create the laser resonator. We demonstrate experimentally for the first time to our knowledge the Colliding Pulse mode-locking of a laser using MMIRs by observation

  1. Active mode locking of quantum cascade lasers in an external ring cavity.

    Science.gov (United States)

    Revin, D G; Hemingway, M; Wang, Y; Cockburn, J W; Belyanin, A

    2016-05-05

    Stable ultrashort light pulses and frequency combs generated by mode-locked lasers have many important applications including high-resolution spectroscopy, fast chemical detection and identification, studies of ultrafast processes, and laser metrology. While compact mode-locked lasers emitting in the visible and near infrared range have revolutionized photonic technologies, the systems operating in the mid-infrared range where most gases have their strong absorption lines, are bulky and expensive and rely on nonlinear frequency down-conversion. Quantum cascade lasers are the most powerful and versatile compact light sources in the mid-infrared range, yet achieving their mode-locked operation remains a challenge, despite dedicated effort. Here we report the demonstration of active mode locking of an external-cavity quantum cascade laser. The laser operates in the mode-locked regime at room temperature and over the full dynamic range of injection currents.

  2. Narrow-band modulation of semiconductor lasers at millimeter wave frequencies (7100 GHz) by mode locking

    International Nuclear Information System (INIS)

    Lau, K.Y.

    1990-01-01

    This paper reports on the possibility of mode locking a semiconductor laser at millimeter wave frequencies approaching and beyond 100 GHz which was investigated theoretically and experimentally. It is found that there are no fundamental theoretical limitations in mode locking at frequencies below 100 GHz. AT these high frequencies, only a few modes are locked and the output usually takes the form of a deep sinusoidal modulation which is synchronized in phase with the externally applied modulation at the intermodal heat frequency. This can be regarded for practical purposes as a highly efficient means of directly modulating an optical carrier over a narrow band at millimeter wave frequencies. Both active and passive mode locking are theoretically possible. Experimentally, predictions on active mode locking have been verified in prior publications up to 40 GHz. For passive mode locking, evidence consistent with passive mode locking was observed in an inhomogeneously pumped GaAIAs laser at a frequency of approximately 70 GHz. A large differential gain-absorption ratio such as that present in an inhomogeneously pumped single quantum well laser is necessary for pushing the passive mode-locking frequency beyond 100 GHz

  3. Diode-pumped mode-locked femtosecond Tm:CLNGG disordered crystal laser.

    Science.gov (United States)

    Ma, J; Xie, G Q; Gao, W L; Yuan, P; Qian, L J; Yu, H H; Zhang, H J; Wang, J Y

    2012-04-15

    A diode-end-pumped passively mode-locked femtosecond Tm-doped calcium lithium niobium gallium garnet (Tm:CLNGG) disordered crystal laser was demonstrated for the first time to our knowledge. With a 790 nm laser diode pumping, stable CW mode-locking operation was obtained by using a semiconductor saturable absorber mirror. The disordered crystal laser generated mode-locked pulses as short as 479 fs, with an average output power of 288 mW, and repetition rate of 99 MHz in 2 μm spectral region. © 2012 Optical Society of America

  4. Self-stabilization of a mode-locked femtosecond fiber laser using a photonic bandgap fiber

    DEFF Research Database (Denmark)

    Liu, Xiaomin; Lægsgaard, Jesper; Turchinovich, Dmitry

    2010-01-01

    We demonstrate a self-stabilization mechanism of a semiconductor saturable absorber mode-locked linearcavity Yb-doped fiber laser using an intracavity photonic bandgap fiber. This mechanism relies on the spectral shift of the laser pulses to a spectral range of higher anomalous dispersion...... and higher loss of the photonic bandgap fiber, as a reaction to the intracavity power buildup. This, in particular, results in a smaller cavity loss for the stably mode-locked laser, as opposed to the Q-switched mode-locking scenario. The laser provides stable 39–49 pJ pulses of around 230 fs duration at 29...

  5. Modeling of mode-locked coupled-resonator optical waveguide lasers

    DEFF Research Database (Denmark)

    Agger, Christian; Skovgård, Troels Suhr; Gregersen, Niels

    2010-01-01

    Coupled-resonator optical waveguides made from coupled high-Q photonic crystal nanocavities are investigated for use as cavities in mode-locked lasers. Such devices show great potential in slowing down light and can serve to reduce the cavity length of a mode-locked laser. An explicit expression...... of the emerging pulse train. A range of tuning around this frequency allows for effective mode locking. Finally, noise is added to the generalized single-cavity eigenfrequencies in order to evaluate the effects of fabrication imperfections on the cold-cavity transmission properties and consequently on the locking...

  6. 532 nm continuous wave mode-locked Nd:GdVO4 laser with SESAM

    International Nuclear Information System (INIS)

    Li, L; Liu, J; Liu, M; Liu, S; Chen, F; Wang, W; Wang, Y

    2009-01-01

    We obtain continuous wave mode-locked Nd:GdVO 4 -KTP laser with a SESAM. This is the first report of CW mode-locked Nd:GdVO 4 -KTP laser with a SESAM to our knowledge. 396 mw CW mode-locked pulse is achieved at the incident power of 7.653 W, with the repetition about 95 MHz. The pulse duration is assumed to be 5.5 ps, this is the shortest green pulse of 532 nm with SESAM

  7. InP/InGaP quantum-dot SESAM mode-locked Alexandrite laser

    Science.gov (United States)

    Ghanbari, Shirin; Fedorova, Ksenia A.; Krysa, Andrey B.; Rafailov, Edik U.; Major, Arkady

    2018-02-01

    A semiconductor saturable absorber mirror (SESAM) passively mode-locked Alexandrite laser was demonstrated. Using an InP/InGaP quantum-dot saturable absorber mirror, pulse duration of 420 fs at 774 nm was obtained. The laser was pumped at 532 nm and generated 325 mW of average output power in mode-locked regime with a pump power of 7.12 W. To the best of our knowledge, this is the first report of a passively mode-locked Alexandrite laser using SESAM in general and quantum-dot SESAM in particular.

  8. Laser dynamics of asynchronous rational harmonic mode-locked fiber soliton lasers

    International Nuclear Information System (INIS)

    Jyu, Siao-Shan; Jiang, Guo-Hao; Lai, Yinchieh

    2013-01-01

    Laser dynamics of asynchronous rational harmonic mode-locked (ARHM) fiber soliton lasers are investigated in detail. In particular, based on the unique laser dynamics of asynchronous mode-locking, we have developed a new method for determining the effective active modulation strength in situ for ARHM lasers. By measuring the magnitudes of the slowly oscillating pulse timing position and central frequency, the effective phase modulation strength at the multiplication frequency of rational harmonic mode-locking can be accurately inferred. The method can be a very useful tool for developing ARHM fiber lasers. (paper)

  9. A net normal dispersion all-fiber laser using a hybrid mode-locking mechanism

    International Nuclear Information System (INIS)

    Xu, Bo; Martinez, Amos; Yamashita, Shinji; Set, Sze Yun; Goh, Chee Seong

    2014-01-01

    We propose and demonstrate an all-fiber, dispersion-mapped, erbium-doped fiber laser with net normal dispersion generating dissipative solitons. The laser is mode-locked by a hybrid mode-locking mechanism consisting of a nonlinear amplifying loop mirror and a carbon nanotube saturable absorber. We achieve self-starting, mode-locked operation generating 2.75 nJ pulses at a fundamental repetition rate of 10.22 MHz with remarkable long term stability. (letter)

  10. Analysis of timing jitter in external-cavity mode-locked semiconductor lasers

    DEFF Research Database (Denmark)

    Mulet, Josep; Mørk, Jesper

    2006-01-01

    We develop a comprehensive theoretical description of passive mode-locking in external-cavity mode-locked semiconductor lasers based on a fully distributed time-domain approach. The model accounts for the dispersion of both gain and refractive index, nonlinear gain saturation from ultrafast...... processes, self-phase modulation, and spontaneous emission noise. Fluctuations of the mode-locked pulses are characterized from the fully distributed model using direct integration of noise-skirts in the phase-noise spectrum and the soliton perturbations introduced by Haus. We implement the model in order...

  11. Experimental investigation of different regimes of mode-locking in a high repetition rate passively mode-locked semiconductor quantum-dot laser.

    Science.gov (United States)

    Kéfélian, Fabien; O'Donoghue, Shane; Todaro, Maria Teresa; McInerney, John; Huyet, Guillaume

    2009-04-13

    We report experimental investigations on a two-section 16-GHz repetition rate InAs/GaAs quantum dot passively mode-locked laser. Near the threshold current, pseudo-periodic Q-switching with complex dynamics is exhibited. Mode-locking operation regimes characterized by different repetition rates and timing jitter levels are encountered up to twice the threshold current. Evolution of the RF spectrum and optical spectrum with current is compared. The different mode-locked regimes are shown to be associated with different spectral and temporal shapes, ranging from 1.3 to 6 ps. This point is discussed by introducing the existence of two different supermodes. Repetition rate evolution and timing jitter increase is attributed to the coupling between the dominant and the secondary supermodes.

  12. The structure of mode-locking regions of piecewise-linear continuous maps: II. Skew sawtooth maps

    Science.gov (United States)

    Simpson, D. J. W.

    2018-05-01

    In two-parameter bifurcation diagrams of piecewise-linear continuous maps on , mode-locking regions typically have points of zero width known as shrinking points. Near any shrinking point, but outside the associated mode-locking region, a significant proportion of parameter space can be usefully partitioned into a two-dimensional array of annular sectors. The purpose of this paper is to show that in these sectors the dynamics is well-approximated by a three-parameter family of skew sawtooth circle maps, where the relationship between the skew sawtooth maps and the N-dimensional map is fixed within each sector. The skew sawtooth maps are continuous, degree-one, and piecewise-linear, with two different slopes. They approximate the stable dynamics of the N-dimensional map with an error that goes to zero with the distance from the shrinking point. The results explain the complicated radial pattern of periodic, quasi-periodic, and chaotic dynamics that occurs near shrinking points.

  13. Cladding-pumped ytterbium-doped fiber laser with radially polarized output.

    Science.gov (United States)

    Lin, Di; Daniel, J M O; Gecevičius, M; Beresna, M; Kazansky, P G; Clarkson, W A

    2014-09-15

    A simple technique for directly generating a radially polarized output beam from a cladding-pumped ytterbium-doped fiber laser is reported. Our approach is based on the use of a nanograting spatially variant waveplate as an intracavity polarization-controlling element. The laser yielded ~32 W of output power (limited by available pump power) with a radially polarized TM (01)-mode output beam at 1040 nm with a corresponding slope efficiency of 66% and a polarization purity of 95%. The beam-propagation factor (M(2)) was measured to be ~1.9-2.1.

  14. Fabrication of a saturable absorber WS2 and its mode locking in solid-state laser

    Science.gov (United States)

    Zhang, Chun-Yu; Zhang, Ling; Tang, Xiao-Ying; Yang, Ying-Ying

    2018-04-01

    We report on a passively mode-locked Nd : LuVO4 laser using a type saturable absorber of tungsten disulfide (WS2) fabricated by chemical vapor deposition method. At the pump power of 3.3 W, 1.18-W average output power of continuous-wave mode-locked laser with optical conversion efficiency of 36% was achieved. To the best of our knowledge, this is the highest output power of passively mode-locked solid-state laser based on WS2. The repetition rate of passively mode-locked pulse was 80 MHz with the pulse energy of 14.8 nJ. Our experimental results show that WS2 is an excellent type of saturable absorber.

  15. On the mechanisms governing the repetition rate of mode-locked semiconductor lasers

    DEFF Research Database (Denmark)

    Mulet, Josep; Mørk, Jesper

    2004-01-01

    We investigate the mechanisms influencing the synchronization locking range of mode-locked lasers. We find that changes in repetition rates can be accomodated through a joint interplay of dispersion and pulse shaping effects....

  16. Identification of amplitude and timing jitter in external-cavity mode-locked semiconductor lasers

    DEFF Research Database (Denmark)

    Mulet, Josep; Mørk, Jesper; Kroh, Marcel

    2004-01-01

    We theoretically and experimentally investigate the dynamics of external-cavity mode-locked semiconductor lasers, focusing on stability properties, optimization of pulsewidth and timing jitter. A new numerical approach allows to clearly separate timing and amplitude jitter....

  17. A 66 fs highly stable single wall carbon nanotube mode locked fiber laser

    International Nuclear Information System (INIS)

    Yu, Zhenhua; Zhang, Xiao; Dong, Xinzheng; Tian, Jinrong; Song, Yanrong; Wang, Yonggang

    2014-01-01

    We demonstrate a highly stable mode locked fiber laser based on single wall carbon nanotubes. The mode locking is achieved by the evanescent field interaction of the propagating light with a single wall carbon nanotube saturable absorber in a microfiber. The pulse width is 66 fs, which, to the best of our knowledge, is the shortest pulse achieved in a carbon nanotube mode locked fiber laser. The maximum average output power is 26 mW, which is about 20 times larger than that of a typical carbon nanotube mode locked fiber laser. The center of the wavelength is 1555 nm, with 54 nm spectral width. The repetition rate is 146 MHz. To investigate the laser’s stability, the output pulses are monitored for 120 h and there is no significant degradation of the laser spectral width or shape. (paper)

  18. Modelling and characterization of colliding-pulse mode-locked (CPM) quantum well lasers. [MPS1

    DEFF Research Database (Denmark)

    Bischoff, Svend; Brorson, S.D.; Franck, T.

    1996-01-01

    A theoretical and experimental study of passive colliding pulse mode-locked quantum well lasers is presented. The theoretical model for the gain dynamics is based on semi-classical density matrixequations. The gain dynamics are characterized exp...

  19. High performance mode locking characteristics of single section quantum dash lasers.

    Science.gov (United States)

    Rosales, Ricardo; Murdoch, S G; Watts, R T; Merghem, K; Martinez, Anthony; Lelarge, Francois; Accard, Alain; Barry, L P; Ramdane, Abderrahim

    2012-04-09

    Mode locking features of single section quantum dash based lasers are investigated. Particular interest is given to the static spectral phase profile determining the shape of the mode locked pulses. The phase profile dependence on cavity length and injection current is experimentally evaluated, demonstrating the possibility of efficiently using the wide spectral bandwidth exhibited by these quantum dash structures for the generation of high peak power sub-picosecond pulses with low radio frequency linewidths.

  20. Short pulse generation in a passively mode-locked photonic crystal semiconductor laser

    DEFF Research Database (Denmark)

    Heuck, Mikkel; Blaaberg, Søren; Mørk, Jesper

    2010-01-01

    We present a new type of passively mode-locked laser with quantum wells embedded in photonic crystal waveguides operating in the slow light regime, which is capable of emitting sub picosecond pulses with widely controllable properties......We present a new type of passively mode-locked laser with quantum wells embedded in photonic crystal waveguides operating in the slow light regime, which is capable of emitting sub picosecond pulses with widely controllable properties...

  1. Study of mode locking in a microwave-pumped diode laser close to the generation threshold

    International Nuclear Information System (INIS)

    Bagaev, Sergei N; Zakharyash, Valerii F; Kashirsky, Aleksandr V; Klementyev, Vasilii M; Kuznetsov, Sergei A; Pivtsov, V S

    2004-01-01

    Active mode locking is studied in a diode laser with a three-mirror resonator upon the microwave modulation of the pump current. The mode-locking region with the minimal width of the spectrum of intermode beats is found, when the microwave frequency is close to the intermode frequency of an external resonator. This region is shown to be located close to the threshold pump current. (lasers, active media)

  2. Phosphorus-free mode-locked semiconductor laser with emission wavelength 1550 nm

    Science.gov (United States)

    Kolodeznyi, E. S.; Novikov, I. I.; Babichev, A. V.; Kurochkin, A. S.; Gladyshev, A. G.; Karachinsky, L. Ya; Gadzhiev, I. M.; Buyalo, M. S.; Usikova, A. A.; Ilynskaya, N. D.; Bougrov, V. E.; Egorov, A. Yu

    2017-11-01

    We have fabricated passive mode-locked laser diodes based on strained InGaAlAs/InGaAs/InP heterostructures with crystal lattice mismatch parameter of +1.0 % between quantum well and barrier. The laser with temperature stabilization at 18 °C was demonstrated 10.027 GHz optical pulse repetition rate with 6 ps pulse duration time. Timing jitter of optical pulses in mode-locked regime was 0.145 ps.

  3. Mode-locked terahertz quantum cascade laser by direct phase synchronization

    International Nuclear Information System (INIS)

    Maussang, K.; Maysonnave, J.; Jukam, N.; Freeman, J. R.; Cavalié, P.; Dhillon, S. S.; Tignon, J.; Khanna, S. P.; Linfield, E. H.; Davies, A. G.; Beere, H. E.; Ritchie, D. A.

    2013-01-01

    Mode-locking of a terahertz quantum cascade laser is achieved using multimode injection seeding. Contrary to standard methods that rely on gain modulation, here a fixed phase relationship is directly imprinted to the laser modes. In this work, we demonstrate the generation of 9 ps phase mode-locked pulses around 2.75 THz. A direct measurement of the emitted field phase shows that it results from the phase of the initial injection

  4. Laser microprocessing of steel with radially and azimuthally polarized femtosecond vortex pulses

    International Nuclear Information System (INIS)

    Allegre, O J; Perrie, W; Edwardson, S P; Dearden, G; Watkins, K G

    2012-01-01

    The use of a liquid-crystal spatial light modulator (SLM) device to convert a linearly polarized femtosecond laser beam into a radially or azimuthally polarized vortex beam is demonstrated. In order to verify the state of polarization at the focal plane, laser induced periodic surface structures (LIPSS) are produced on stainless steel, imprinting the complex vectorial polarization structures and confirming the efficacy of the SLM in producing the desired polarization modes. Stainless steel plates of various thicknesses are micromachined with the radially and azimuthally polarized vortex beams and the resulting cut-outs are analysed. The process efficiency and quality of each mode are compared with those of circular polarization. Radial polarization is confirmed to be the most efficient mode for machining high-aspect-ratio (depth/width > 3) channels thanks to its relatively higher absorptivity. Following our microprocessing tests, liquid-crystal SLMs emerged as a flexible off-the-shelf tool for producing radially and azimuthally polarized beams in existing ultrashort-pulse laser microprocessing systems. (paper)

  5. Diode-Pumped Mode-Locked LiSAF Laser; FINAL

    International Nuclear Information System (INIS)

    None

    1996-01-01

    Under this contract we have developed Cr(sup 3+):LiSrAlF(sub 6) (Cr:LiSAF, LiSAF) mode-locked lasers suitable for generation of polarized electrons for CEBAF. As 670 nm is an excellent wavelength for optical pumping of Cr:LiSAF, we have used a LIGHTWAVE developed 670 nm diode pump module that combines the output of ten diode lasers and yields approximately 2 Watts of optical power. By the use of a diffraction limited pump beam however, it is possible to maintain a small mode size through the length of the crystal and hence extract more power from Cr:LiSAF laser. For this purpose we have developed a 1 Watt, red 660nm laser (LIGHTWAVE model 240R) which serves as an ideal pump for Cr:LiSAF and is a potential replacement of costly and less robust krypton laser. This new system is to compliment LIGHTWAVE Series 240, and is currently being considered for commercialization. Partially developed under this contract is LIGHTWAVEs product model 240 which has already been in our production lines for a few months and is commercially available. This laser produces 2 Watts of output at 532 nm using some of the same technology developed for production of the 660nm red system. It is a potential replacement for argon ion lasers and has better current and cooling requirements and is an excellent pump source for Ti:Al(sub 2)O(sub 3). Also, as a direct result of this contract we now have the capability of commercially developing a mode-locked 100MHz Cr:LiSAF system. Such a laser could be added to our 100 MHz LIGHTWAVE Series 131. The Series 131 lasers provide pico second pulses and were originally developed under another DOE SBIR. Both models of LIGHTWAVE Series 240 lasers, the fiber coupled pump module and the 100MHz LiSAF laser of Series 131 have been partially developed under this contract, and are commercially competitive products

  6. Ultrafast pulse amplification in mode-locked vertical external-cavity surface-emitting lasers

    Energy Technology Data Exchange (ETDEWEB)

    Böttge, C. N., E-mail: boettge@optics.arizona.edu; Hader, J.; Kilen, I.; Moloney, J. V. [College of Optical Sciences, The University of Arizona, 1630 E. University Blvd., Tucson, Arizona 85721 (United States); Koch, S. W. [College of Optical Sciences, The University of Arizona, 1630 E. University Blvd., Tucson, Arizona 85721 (United States); Department of Physics and Material Sciences Center, Philipps-Universität Marburg, Renthof 5, 35032 Marburg (Germany)

    2014-12-29

    A fully microscopic many-body Maxwell–semiconductor Bloch model is used to investigate the influence of the non-equilibrium carrier dynamics on the short-pulse amplification in mode-locked semiconductor microlaser systems. The numerical solution of the coupled equations allows for a self-consistent investigation of the light–matter coupling dynamics, the carrier kinetics in the saturable absorber and the multiple-quantum-well gain medium, as well as the modification of the light field through the pulse-induced optical polarization. The influence of the pulse-induced non-equilibrium modifications of the carrier distributions in the gain medium and the saturable absorber on the single-pulse amplification in the laser cavity is identified. It is shown that for the same structure, quantum wells, and gain bandwidth the non-equilibrium carrier dynamics lead to two preferred operation regimes: one with pulses in the (sub-)100 fs-regime and one with multi-picosecond pulses. The recovery time of the saturable absorber determines in which regime the device operates.

  7. CsPbBr{sub 3} nanocrystal saturable absorber for mode-locking ytterbium fiber laser

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yan; Li, Yue; Xu, Jianqiu; Tang, Yulong, E-mail: yulong@sjtu.edu.cn [Key Laboratory for Laser Plasmas (MOE), Department of Physics and Astronomy, Collaborative Innovation Center of IFSA, Shanghai Jiao Tong University, Shanghai 200240 (China); Hu, Zhiping; Tang, Xiaosheng [Key Laboratory of Optoelectronic Technology and Systems of the Education Ministry of China, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044 (China)

    2016-06-27

    Cesium lead halide perovskite nanocrystals (CsPbX{sub 3}, X = Cl, Br, I) have been reported as efficient light-harvesting and light-emitting semiconductor materials, but their nonlinear optical properties have been seldom touched upon. In this paper, we prepare layered CsPbBr{sub 3} nanocrystal films and characterize their physical properties. Broadband linear absorption from ∼0.8 to over 2.2 μm and nonlinear optical absorption at the 1-μm wavelength region are measured. The CsPbBr{sub 3} saturable absorber (SA), manufactured by drop-casting of colloidal CsPbBr{sub 3} liquid solution on a gold mirror, shows modulation depth and saturation intensity of 13.1% and 10.7 MW/cm{sup 2}, respectively. With this SA, mode-locking operation of a polarization-maintained ytterbium fiber laser produces single pulses with duration of ∼216 ps, maximum average output power of 10.5 mW, and the laser spectrum is centered at ∼1076 nm. This work shows that CsPbBr{sub 3} films can be efficient SA candidates for fiber lasers and also have great potential to become broadband linear and nonlinear optical materials for photonics and optoelectronics.

  8. CsPbBr3 nanocrystal saturable absorber for mode-locking ytterbium fiber laser

    Science.gov (United States)

    Zhou, Yan; Hu, Zhiping; Li, Yue; Xu, Jianqiu; Tang, Xiaosheng; Tang, Yulong

    2016-06-01

    Cesium lead halide perovskite nanocrystals (CsPbX3, X = Cl, Br, I) have been reported as efficient light-harvesting and light-emitting semiconductor materials, but their nonlinear optical properties have been seldom touched upon. In this paper, we prepare layered CsPbBr3 nanocrystal films and characterize their physical properties. Broadband linear absorption from ˜0.8 to over 2.2 μm and nonlinear optical absorption at the 1-μm wavelength region are measured. The CsPbBr3 saturable absorber (SA), manufactured by drop-casting of colloidal CsPbBr3 liquid solution on a gold mirror, shows modulation depth and saturation intensity of 13.1% and 10.7 MW/cm2, respectively. With this SA, mode-locking operation of a polarization-maintained ytterbium fiber laser produces single pulses with duration of ˜216 ps, maximum average output power of 10.5 mW, and the laser spectrum is centered at ˜1076 nm. This work shows that CsPbBr3 films can be efficient SA candidates for fiber lasers and also have great potential to become broadband linear and nonlinear optical materials for photonics and optoelectronics.

  9. Femtosecond mode-locked erbium-doped fiber laser based on MoS2-PVA saturable absorber

    Science.gov (United States)

    Ahmed, M. H. M.; Latiff, A. A.; Arof, H.; Ahmad, H.; Harun, S. W.

    2016-08-01

    We fabricate a free-standing few-layer molybdenum disulfide (MoS2)-polymer composite by liquid phase exfoliation of chemically pristine MoS2 crystals and use this to demonstrate a soliton mode-locked Erbium-doped fiber laser (EDFL). A stable self-started mode-locked soliton pulse is generated by fine-tuning the rotation of the polarization controller at a low threshold pump power of 25 mW. Its solitonic behavior is verified by the presence of Kelly sidebands in the output spectrum. The central wavelength, pulse width, and repetition rate of the laser are 1573.7 nm, 630 fs, and 27.1 MHz, respectively. The maximum pulse energy is 0.141 nJ with peak power of 210 W at pump power of 170 mW. This result contributes to the growing body of work studying the nonlinear optical properties of transition metal dichalcogenides that present new opportunities for ultrafast photonic applications.

  10. Bismuth telluride topological insulator nanosheet saturable absorbers for q-switched mode-locked Tm:ZBLAN waveguide lasers

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Xiantao; Gross, Simon; Withford, Michael J.; Fuerbach, Alexander [Centre for Ultrahigh bandwidth Devices for Optical Systems (CUDOS) and MQ Photonics Research Centre, Dept. of Physics and Astronomy, Macquarie Univ., NSW (Australia); Zhang, Han; Guo, Zhinan [SZU-NUS Collaborative Innovation Centre for Optoelectronic Science and Technology, Key Lab. of Optoelectronic Devices and Systems of Ministry of Education, College of Optoelectronic Engineering, Shenzhen Univ. (China)

    2016-08-15

    Nanosheets of bismuth telluride (Bi{sub 2}Te{sub 3}), a topological insulator material that exhibits broadband saturable absorption due to its non-trivial Dirac-cone like energy structure, are utilized to generate short pulses from Tm:ZBLAN waveguide lasers. By depositing multiple layers of a carefully prepared Bi{sub 2}Te{sub 3} solution onto a glass substrate, the modulation depth and the saturation intensity of the fabricated devices can be controlled and optimized. This approach enables the realization of saturable absorbers that feature a modulation depth of 13% and a saturation intensity of 997 kW/cm{sup 2}. For the first time to our knowledge, Q-switched mode-locked operation of a linearly polarized mid-IR ZBLAN waveguide chip laser was realized in an extended cavity configuration using the topological insulator Bi{sub 2}Te{sub 3}. The maximum average output power of the laser is 16.3 mW and the Q-switched and mode-locked repetition rates are 44 kHz and 436 MHz, respectively. (copyright 2016 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Experimental investigations of pulse shape control in passively mode-locked fiber lasers with net-normal dispersion

    International Nuclear Information System (INIS)

    Wang, L R; Han, D D

    2013-01-01

    Pulse shape control in passively mode-locked fiber lasers with net-normal dispersion is investigated experimentally. Three kinds of pulses with different spectral and temporal shapes are observed, and their pulse-shaping mechanisms are discussed. After a polarization-resolved system external to the cavity, the maximum intensity differences of the two polarization components for the rectangular-spectrum (RS), Gaussian-spectrum (GS), and super-broadband (SB) pulses are measured as ∼20 dB, ∼15 dB, and ∼1 dB, respectively. It is suggested that the equivalent saturable absorption effect plays an increasingly important role from the RS to GS and then to SB pulses in the pulse-shaping processes, while the spectral filtering effect declines. This work could help in systematically understanding pulse formation and proposing guidelines for the realization of pulses with better performance in fiber lasers. (paper)

  12. Electrical tuning of the oscillator strength in type II InAs/GaInSb quantum wells for active region of passively mode-locked interband cascade lasers

    Science.gov (United States)

    Dyksik, Mateusz; Motyka, Marcin; Kurka, Marcin; Ryczko, Krzysztof; Misiewicz, Jan; Schade, Anne; Kamp, Martin; Höfling, Sven; Sęk, Grzegorz

    2017-11-01

    Two designs of active region for an interband cascade laser, based on double or triple GaInSb/InAs type II quantum wells (QWs), were compared with respect to passive mode-locked operation in the mid-infrared range around 4 µm. The layer structure and electron and hole wavefunctions under external electric field were engineered to allow controlling the optical transition oscillator strength and the resulting lifetimes. As a result, the investigated structures can mimic absorber-like and gain-like sections of a mode-locked device when properly polarized with opposite bias. A significantly larger oscillator strength tuning range for triple QWs was experimentally verified by Fourier-transform photoreflectance.

  13. A new method for generating axially-symmetric and radially-polarized beams

    International Nuclear Information System (INIS)

    Niu Chunhui; Gu Benyuan; Dong Bizhen; Zhang Yan

    2005-01-01

    A scheme for generating axially-symmetric and radially-polarized beams is proposed by using two diffractive phase elements (DPEs) made of birefringent materials. The design of these two DPEs is based on the general theory of phase-retrieval of optical system in combination with an iterative algorithm. The first DPE is used for demultiplexing two orthogonally linearly-polarized light beams to produce diffractive patterns, and the second DPE is used for compensating the phase difference to obtain the desired radially-polarized beam

  14. Mode-locking behavior of Izhikevich neurons under periodic external forcing

    Science.gov (United States)

    Farokhniaee, AmirAli; Large, Edward W.

    2017-06-01

    Many neurons in the auditory system of the brain must encode periodic signals. These neurons under periodic stimulation display rich dynamical states including mode locking and chaotic responses. Periodic stimuli such as sinusoidal waves and amplitude modulated sounds can lead to various forms of n :m mode-locked states, in which a neuron fires n action potentials per m cycles of the stimulus. Here, we study mode-locking in the Izhikevich neurons, a reduced model of the Hodgkin-Huxley neurons. The Izhikevich model is much simpler in terms of the dimension of the coupled nonlinear differential equations compared with other existing models, but excellent for generating the complex spiking patterns observed in real neurons. We obtained the regions of existence of the various mode-locked states on the frequency-amplitude plane, called Arnold tongues, for the Izhikevich neurons. Arnold tongue analysis provides useful insight into the organization of mode-locking behavior of neurons under periodic forcing. We find these tongues for both class-1 and class-2 excitable neurons in both deterministic and noisy regimes.

  15. Generation and propagation of radially polarized beams in optical fibers

    DEFF Research Database (Denmark)

    Ramachandran, Siddharth; Kristensen, P; Yan, M F

    2009-01-01

    Beams with polarization singularities have attracted immense recent attention in a wide array of scientific and technological disciplines. We demonstrate a class of optical fibers in which these beams can be generated and propagated over long lengths with unprecedented stability, even...

  16. Status and trends of short pulse generation using mode-locked lasers based on advanced quantum-dot active media

    International Nuclear Information System (INIS)

    Shi, L W; Chen, Y H; Xu, B; Wang, Z C; Jiao, Y H; Wang, Z G

    2007-01-01

    In this review, the potential of mode-locked lasers based on advanced quantum-dot (QD) active media to generate short optical pulses is analysed. A comprehensive review of experimental and theoretical work on related aspects is provided, including monolithic-cavity mode-locked QD lasers and external-cavity mode-locked QD lasers, as well as mode-locked solid-state and fibre lasers based on QD semiconductor saturable absorber mirrors. Performance comparisons are made for state-of-the-art experiments. Various methods for improving important characteristics of mode-locked pulses such as pulse duration, repetition rate, pulse power, and timing jitter through optimization of device design parameters or mode-locking methods are addressed. In addition, gain switching and self-pulsation of QD lasers are also briefly reviewed, concluding with the summary and prospects. (topical review)

  17. Generation of picosecond pulses and frequency combs in actively mode locked external ring cavity quantum cascade lasers

    International Nuclear Information System (INIS)

    Wójcik, Aleksander K.; Belyanin, Alexey; Malara, Pietro; Blanchard, Romain; Mansuripur, Tobias S.; Capasso, Federico

    2013-01-01

    We propose a robust and reliable method of active mode locking of mid-infrared quantum cascade lasers and develop its theoretical description. Its key element is the use of an external ring cavity, which circumvents fundamental issues undermining the stability of mode locking in quantum cascade lasers. We show that active mode locking can give rise to the generation of picosecond pulses and phase-locked frequency combs containing thousands of the ring cavity modes

  18. Analysis on Coupled Vibration of a Radially Polarized Piezoelectric Cylindrical Transducer

    Directory of Open Access Journals (Sweden)

    Jie Xu

    2017-12-01

    Full Text Available Coupled vibration of a radially polarized piezoelectric cylindrical transducer is analyzed with the mechanical coupling coefficient method. The method has been utilized to analyze the metal cylindrical transducer and the axially polarized piezoelectric cylindrical transducer. In this method, the mechanical coupling coefficient is introduced and defined as the stress ratio in different directions. Coupled vibration of the cylindrical transducer is regarded as the interaction of the plane radial vibration of a ring and the longitudinal vibration of a tube. For the radially polarized piezoelectric cylindrical transducer, the radial and longitudinal electric admittances as functions of mechanical coupling coefficients and angular frequencies are derived, respectively. The resonance frequency equations are obtained. The dependence of resonance frequency and mechanical coupling coefficient on aspect ratio is studied. Vibrational distributions on the surfaces of the cylindrical transducer are presented with experimental measurement. On the support of experiments, this work is verified and provides a theoretical foundation for the analysis and design of the radially polarized piezoelectric cylindrical transducer.

  19. Mode-locking in an infinite set of coupled circle maps

    International Nuclear Information System (INIS)

    Alstroem, P.; Ritala, R.K.

    1986-06-01

    We show that the mode-locking in coupled circle maps with random phases is very different from that in a single circle map. A finite nonlinearity K c is needed for a step to appear. The width of the step behaves as (K-K c ) 2 . The complete mode-locking (at K=1 for uncoupled maps) behaves singularly as the coupling is turned on. We argue that our model describes the mode-locking in charge-density-wave materials. Our results are in qualitative agreement with experimental observations by Sherwin and Zettl that only few true steps exist in I-V characteristics and that in addition to these there are some 'incomplete' steps. (orig.)

  20. Gold nanorod saturable absorber for passive mode-locking at 1 μm wavelength

    International Nuclear Information System (INIS)

    Kang, Z; Li, Q; Gao, X J; Jia, Z X; Qin, G S; Qin, W P; Zhang, L; Feng, Y

    2014-01-01

    Gold nanorods (GNRs) were used as a saturable absorber (SA) for passive mode-locking at 1 μm wavelength. The GNR-SA film was fabricated by mixing GNRs with sodium carboxymethylcellulose. The longitudinal surface plasmon resonance absorption of GNRs was used to induce mode-locking. By using the GNR-SA film, stable passive mode-locking at 1039 nm was experimentally demonstrated in an ytterbium-doped fiber laser cavity pumped by a 980 nm laser diode. The laser produced ∼440 ps pulses with a repetition rate of 36.6 MHz and an average output power of ∼1.25 mW for a pump power of ∼82 mW. (letter)

  1. Characteristics and instabilities of mode-locked quantum-dot diode lasers.

    Science.gov (United States)

    Li, Yan; Lester, Luke F; Chang, Derek; Langrock, Carsten; Fejer, M M; Kane, Daniel J

    2013-04-08

    Current pulse measurement methods have proven inadequate to fully understand the characteristics of passively mode-locked quantum-dot diode lasers. These devices are very difficult to characterize because of their low peak powers, high bandwidth, large time-bandwidth product, and large timing jitter. In this paper, we discuss the origin for the inadequacies of current pulse measurement techniques while presenting new ways of examining frequency-resolved optical gating (FROG) data to provide insight into the operation of these devices. Under the assumptions of a partial coherence model for the pulsed laser, it is shown that simultaneous time-frequency characterization is a necessary and sufficient condition for characterization of mode-locking. Full pulse characterization of quantum dot passively mode-locked lasers (QD MLLs) was done using FROG in a collinear configuration using an aperiodically poled lithium niobate waveguide-based FROG pulse measurement system.

  2. Investigation of monolithic passively mode-locked quantum dot lasers with extremely low repetition frequency.

    Science.gov (United States)

    Xu, Tianhong; Cao, Juncheng; Montrosset, Ivo

    2015-01-01

    The dynamical regimes and performance optimization of quantum dot monolithic passively mode-locked lasers with extremely low repetition rate are investigated using the numerical method. A modified multisection delayed differential equation model is proposed to accomplish simulations of both two-section and three-section passively mode-locked lasers with long cavity. According to the numerical simulations, it is shown that fundamental and harmonic mode-locking regimes can be multistable over a wide current range. These dynamic regimes are studied, and the reasons for their existence are explained. In addition, we demonstrate that fundamental pulses with higher peak power can be achieved when the laser is designed to work in a region with smaller differential gain.

  3. An actively mode-locked Ho: YAG solid laser pumped by a Tm: YLF laser

    International Nuclear Information System (INIS)

    Yao, B Q; Cui, Z; Wang, J; Duan, X M; Dai, T Y; Du, Y Q; Yuan, J H; Liu, W

    2015-01-01

    A continuous wave mode-locked (CWML) Ho: YAG laser based on an acousto-optic modulator (AOM) pumped by a 1.9 μm Tm: YLF laser is demonstrated. This is the first time a report on an active CWML Ho: YAG laser has been published. A maximum output power of 1.04 W at 2097.25 nm in the CWML regime is obtained at a pump power of 13.2 W, corresponding to a slope efficiency of 13.3%. The mode-locked pulse repetition frequency is 82.76 MHz and the single pulse energy is 12.57 nJ. The mode-locked pulse width is 102 ps measured through a no-background second harmonic autocorrelation with KTP as the nonlinear crystal. Furthermore, the M 2 factor is calculated to be 1.146. (letter)

  4. Mode-locking in advection-reaction-diffusion systems: An invariant manifold perspective

    Science.gov (United States)

    Locke, Rory A.; Mahoney, John R.; Mitchell, Kevin A.

    2018-01-01

    Fronts propagating in two-dimensional advection-reaction-diffusion systems exhibit a rich topological structure. When the underlying fluid flow is periodic in space and time, the reaction front can lock to the driving frequency. We explain this mode-locking phenomenon using the so-called burning invariant manifolds (BIMs). In fact, the mode-locked profile is delineated by a BIM attached to a relative periodic orbit (RPO) of the front element dynamics. Changes in the type (and loss) of mode-locking can be understood in terms of local and global bifurcations of the RPOs and their BIMs. We illustrate these concepts numerically using a chain of alternating vortices in a channel geometry.

  5. Harmonic Mode-Locked Fiber Laser based on Photonic Crystal Fiber Filled with Topological Insulator Solution

    Directory of Open Access Journals (Sweden)

    Yu-Shan Chen

    2015-04-01

    Full Text Available We reported that the photonic crystal fiber (PCF filled with TI:Bi2Te3 nanosheets solution could act as an effective saturable absorber (SA. Employing this TI-PCF SA device; we constructed an ytterbium-doped all-fiber laser oscillator and achieved the evanescent wave mode-locking operation. Due to the large cavity dispersion; the fundamental mode-locking pulse had the large full width at half maximum (FWHM of 2.33 ns with the repetition rate of ~1.11 MHz; and the radio frequency (RF spectrum with signal-to-noise ratio (SNR of 61 dB. In addition; the transition dynamics from a bunched state of pulses to harmonic mode-locking (HML was also observed; which was up to 26th order.

  6. Mode-locked Ti:sapphire laser oscillators pumped by wavelength-multiplexed laser diodes

    Science.gov (United States)

    Sugiyama, Naoto; Tanaka, Hiroki; Kannari, Fumihiko

    2018-05-01

    We directly pumped a Ti:sapphire laser by combining 478 and 520 nm laser diodes to prevent the effect of absorption loss induced by the pump laser of shorter wavelengths (∼450 nm). We obtain a continuous-wave output power of 660 mW at a total incident pump power of 3.15 W. We demonstrate mode locking using a semiconductor saturable absorber mirror, and 126 fs pulses were obtained at a repetition rate of 192 MHz. At the maximum pump power, the average output power is 315 mW. Shorter mode-locked pulses of 42 and 48 fs were respectively achieved by Kerr-lens mode locking with average output powers of 280 and 360 mW at a repetition rate of 117 MHz.

  7. Transverse spin in the scattering of focused radially and azimuthally polarized vector beams

    Science.gov (United States)

    Singh, Ankit Kumar; Saha, Sudipta; Gupta, Subhasish Dutta; Ghosh, Nirmalya

    2018-04-01

    We study the effect of focusing of the radially and azimuthally polarized vector beams on the spin angular momentum (SAM) density and Poynting vector of scattered waves from a Mie particle. Remarkably, the study reveals that the SAM density of the scattered field is solely transverse in nature for radially and azimuthally polarized incident vector beams; however, the Poynting vector shows the usual longitudinal character. We also demonstrate that the transverse SAM density can further be tuned with wavelength and focusing of the incident beam by exploiting the interference of different scattering modes. These results may stimulate further experimental techniques to detect the transverse spin and Belinfante's spin-momentum densities.

  8. Novel design of low-jitter 10 GHz all-active monolithic mode-locked lasers

    DEFF Research Database (Denmark)

    Larsson, David; Yvind, Kresten; Christiansen, Lotte Jin

    2004-01-01

    Using a novel design, we have fabricated 10 GHz all-active monolithic mode-locked semiconductor lasers that generate 1.4 ps pulses with record-low timing jitter. The dynamical properties of lasers with 1 and 2 QWs are compared.......Using a novel design, we have fabricated 10 GHz all-active monolithic mode-locked semiconductor lasers that generate 1.4 ps pulses with record-low timing jitter. The dynamical properties of lasers with 1 and 2 QWs are compared....

  9. Emergence of resonant mode-locking via delayed feedback in quantum dot semiconductor lasers.

    Science.gov (United States)

    Tykalewicz, B; Goulding, D; Hegarty, S P; Huyet, G; Erneux, T; Kelleher, B; Viktorov, E A

    2016-02-22

    With conventional semiconductor lasers undergoing external optical feedback, a chaotic output is typically observed even for moderate levels of the feedback strength. In this paper we examine single mode quantum dot lasers under strong optical feedback conditions and show that an entirely new dynamical regime is found consisting of spontaneous mode-locking via a resonance between the relaxation oscillation frequency and the external cavity repetition rate. Experimental observations are supported by detailed numerical simulations of rate equations appropriate for this laser type. The phenomenon constitutes an entirely new mode-locking mechanism in semiconductor lasers.

  10. A mode-locked external-cavity quantum-dot laser with a variable repetition rate

    International Nuclear Information System (INIS)

    Wu Jian; Jin Peng; Li Xin-Kun; Wei Heng; Wu Yan-Hua; Wang Fei-Fei; Chen Hong-Mei; Wu Ju; Wang Zhan-Guo

    2013-01-01

    A mode-locked external-cavity laser emitting at 1.17-μm wavelength using an InAs/GaAs quantum-dot gain medium and a discrete semiconductor saturable absorber mirror is demonstrated. By changing the external-cavity length, repetition rates of 854, 912, and 969 MHz are achieved respectively. The narrowest −3-dB radio-frequency linewidth obtained is 38 kHz, indicating that the laser is under stable mode-locking operation. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  11. Control of fibre laser mode-locking by narrow-band Bragg gratings

    International Nuclear Information System (INIS)

    Laegsgaard, J

    2008-01-01

    The use of narrow-band high-reflectivity fibre Bragg gratings (FBGs) as end mirrors in a fibre laser cavity with passive mode-locking provided by a semiconductor saturable absorber mirror (SESAM) is investigated numerically. The FBG is found to control the energy range of stable mode-locking, which may be shifted far outside the regime of SESAM saturation by a suitable choice of FBG and cavity length. The pulse shape is controlled by the combined effects of FBG dispersion and self-phase modulation in the fibres, and a few ps pulses can be obtained with standard uniform FBGs

  12. Harmonic mode-locking using the double interval technique in quantum dot lasers.

    Science.gov (United States)

    Li, Yan; Chiragh, Furqan L; Xin, Yong-Chun; Lin, Chang-Yi; Kim, Junghoon; Christodoulou, Christos G; Lester, Luke F

    2010-07-05

    Passive harmonic mode-locking in a quantum dot laser is realized using the double interval technique, which uses two separate absorbers to stimulate a specific higher-order repetition rate compared to the fundamental. Operating alone these absorbers would otherwise reinforce lower harmonic frequencies, but by operating together they produce the harmonic corresponding to their least common multiple. Mode-locking at a nominal 60 GHz repetition rate, which is the 10(th) harmonic of the fundamental frequency of the device, is achieved unambiguously despite the constraint of a uniformly-segmented, multi-section device layout. The diversity of repetition rates available with this method is also discussed.

  13. Mode-locking of a terahertz laser by direct phase synchronization.

    Science.gov (United States)

    Maysonnave, J; Maussang, K; Freeman, J R; Jukam, N; Madéo, J; Cavalié, P; Rungsawang, R; Khanna, S P; Linfield, E H; Davies, A G; Beere, H E; Ritchie, D A; Dhillon, S S; Tignon, J

    2012-09-10

    A novel scheme to achieve mode-locking of a multimode laser is demonstrated. Traditional methods to produce ultrashort laser pulses are based on modulating the cavity gain or losses at the cavity roundtrip frequency, favoring the pulsed emission. Here, we rather directly act on the phases of the modes, resulting in constructive interference for the appropriated phase relationship. This was performed on a terahertz quantum cascade laser by multimode injection seeding with an external terahertz pulse, resulting in phase mode-locked terahertz laser pulses of 9 ps duration, characterized unambiguously in the time domain.

  14. Pulse-shaping mechanism in colliding-pulse mode-locked laser diodes

    DEFF Research Database (Denmark)

    Bischoff, Svend; Sørensen, Mads Peter; Mørk, J.

    1995-01-01

    The large signal dynamics of passively colliding pulse mode-locked laser diodes is studied. We derive a model which explains modelocking via the interplay of gain and loss dynamics; no bandwidth limiting element is necessary for pulse formation. It is found necessary to have both fast and slow...... absorber dynamics to achieve mode-locking. Significant chirp is predicted for pulses emitted from long lasers, in agreement with experiment. The pulse width shows a strong dependence on both cavity and saturable absorber length. (C) 1995 American Institute of Physics....

  15. Low jitter and high power all-active mode-locked lasers

    DEFF Research Database (Denmark)

    Yvind, Kresten; Larsson, David; Christiansen, Lotte Jin

    2003-01-01

    A novel epitaxial design leading to low loss and low gain saturation improves the properties of 40 GHz mode-locked lasers. We obtain 2.8 ps nearly chirp free pulses with 228 fs jitter and fiber-coupled power of 7 mW.......A novel epitaxial design leading to low loss and low gain saturation improves the properties of 40 GHz mode-locked lasers. We obtain 2.8 ps nearly chirp free pulses with 228 fs jitter and fiber-coupled power of 7 mW....

  16. Three-dimensional graphene based passively mode-locked fiber laser.

    Science.gov (United States)

    Yang, Y; Loeblein, M; Tsang, S H; Chow, K K; Teo, E H T

    2014-12-15

    We present an all-fiber passively mode-locked fiber laser incorporating three-dimensional (3D) graphene as a saturable absorber (SA) for the first time to the best of our knowledge. The 3D graphene is synthesized by template-directed chemical vapor deposition (CVD). The SA is then simply formed by sandwiching the freestanding 3D graphene between two conventional fiber connectors without any deposition process. It is demonstrated that such 3D graphene based SA is capable to produce high quality mode-locked pulses. A passively mode-locked fiber laser is constructed and stable output pulses with a fundamental repetition rate of ~9.9 MHz and a pulse width of ~1 ps are generated from the fiber laser. The average output power of the laser is ~10.5 mW while the output pulse is operating at single pulse region. The results imply that the freestanding 3D graphene can be applied as an effective saturable absorption material for passively mode-locked lasers.

  17. Fourier domain mode-locked swept source at 1050 nm based on a tapered amplifier

    DEFF Research Database (Denmark)

    Marschall, Sebastian; Klein, Thomas; Wieser, Wolfgang

    2010-01-01

    While swept source optical coherence tomography (OCT) in the 1050 nm range is promising for retinal imaging, there are certain challenges. Conventional semiconductor gain media have limited output power, and the performance of high-speed Fourier domain mode-locked (FDML) lasers suffers from...

  18. Broadband Fourier domain mode-locked laser for optical coherence tomography at 1060 nm

    DEFF Research Database (Denmark)

    Marschall, Sebastian; Klein, Thomas; Wieser, Wolfgang

    2012-01-01

    Optical coherence tomography (OCT) in the 1060nm range is interesting for in vivo imaging of the human posterior eye segment (retina, choroid, sclera) due to low absorption in water and deep penetration into the tissue. Rapidly tunable light sources, such as Fourier domain mode-locked (FDML) lasers...

  19. Effects of resonator input power on Kerr lens mode-locked lasers

    Indian Academy of Sciences (India)

    lasers. S KAZEMPOUR, A KESHAVARZ∗ and G HONARASA. Department of Physics, Faculty of Sciences, Shiraz University of Technology, Shiraz, Iran ... Keywords. Femtosecond pulses; Kerr lens sensitivity; Kerr lens mode-locked laser. ... The optical lengths of Kerr medium with thickness d and refractive index n under.

  20. High-power pulsed and CW diode-pumped mode-locked Nd:YAG lasers

    Science.gov (United States)

    Marshall, Larry R.; Hays, A. D.; Kaz, Alex; Kasinski, Jeff; Burnham, R. L.

    1991-01-01

    The operation of both pulsed and CW diode-pumped mode-locked Nd:YAG lasers are presented. The pulsed laser produced 1.0 mJ with pulsewidths of 90 psec at 20 Hz. The CW pumped laser produced 6 W output at 1.064 microns and 3 W output at 532 nm.

  1. Mode-Locked 1.5 um Semiconductor Optical Fiber Ring

    DEFF Research Database (Denmark)

    Pedersen, Niels Vagn; Jakobsen, Kaj Bjarne; Vaa, Michael

    1996-01-01

    The dynamics of a mode-locked SOA fiber ring are investigated experimentally and numerically. Generation of near transform-limited (time-bandwidth product = 0.7) 1.5 um 54 ps FWHM pulses with a peak power of 2.8 mW at a repetition rate of 960 MHz is demonstrated experimentally. The experimental r...

  2. The noise of ultrashort pulse mode-locked lasers beyond the slowly varying envelope approximation

    International Nuclear Information System (INIS)

    Takushima, Y; Haus, H A; Kaertner, F X

    2004-01-01

    The zero-point fluctuations in an L-C circuit of finite Q are revisited. The zero-point energy is shown to approach the value of hbarω 0 /2 only in the limit of an infinite Q. A Fabry-Perot resonator, on the other hand, has bounded zero-point energies of its modes that are equal to hbarω n /2 for each resonance. Based on the Fabry-Perot resonator with broadband noise, we analyse the noise of an ultrafast mode-locked laser when the slowly varying envelope approximation (SVEA) is not valid. This is achieved by reinterpreting the quantized form of the master equation of mode locking as an equation of motion for the electric field rather than for the creation operator of a photon. It is found that in this formulation quantum correlations exist that are not present in the SVEA. The correlations become evident in the spectrum of the zero-point fluctuations and therefore in the background noise of the laser. This behaviour can be detected by homodyne detection of the laser output. The linewidth of the frequency comb generated by the mode-locked laser is not affected by these correlations and is given by the Schawlow-Townes linewidth of an equivalent continuous wave taking the additional intracavity loss due to the mode locking process into account

  3. Multipulse dynamics of a passively mode-locked semiconductor laser with delayed optical feedback

    Science.gov (United States)

    Jaurigue, Lina; Krauskopf, Bernd; Lüdge, Kathy

    2017-11-01

    Passively mode-locked semiconductor lasers are compact, inexpensive sources of short light pulses of high repetition rates. In this work, we investigate the dynamics and bifurcations arising in such a device under the influence of time delayed optical feedback. This laser system is modelled by a system of delay differential equations, which includes delay terms associated with the laser cavity and feedback loop. We make use of specialised path continuation software for delay differential equations to analyse the regime of short feedback delays. Specifically, we consider how the dynamics and bifurcations depend on the pump current of the laser, the feedback strength, and the feedback delay time. We show that an important role is played by resonances between the mode-locking frequencies and the feedback delay time. We find feedback-induced harmonic mode locking and show that a mismatch between the fundamental frequency of the laser and that of the feedback cavity can lead to multi-pulse or quasiperiodic dynamics. The quasiperiodic dynamics exhibit a slow modulation, on the time scale of the gain recovery rate, which results from a beating with the frequency introduced in the associated torus bifurcations and leads to gain competition between multiple pulse trains within the laser cavity. Our results also have implications for the case of large feedback delay times, where a complete bifurcation analysis is not practical. Namely, for increasing delay, there is an ever-increasing degree of multistability between mode-locked solutions due to the frequency pulling effect.

  4. All-fiber Ho-doped mode-locked oscillator based on a graphene saturable absorber

    Czech Academy of Sciences Publication Activity Database

    Sotor, J.; Pawliszewska, M.; Sobon, G.; Kaczmarek, P.; Przewolka, A.; Pasternak, I.; Cajzl, Jakub; Peterka, Pavel; Honzátko, Pavel; Kašík, Ivan; Strupinski, W.; Abramski, K.

    2016-01-01

    Roč. 41, č. 11 (2016), s. 2592-2595 ISSN 0146-9592 R&D Projects: GA ČR GA14-35256S; GA MŠk(CZ) LD15122 Institutional support: RVO:67985882 Keywords : Fiber lasers * Graphene * Mode-locked oscillators Subject RIV: BH - Optics , Masers, Lasers Impact factor: 3.416, year: 2016

  5. Wide-band residual phase-noise measurements on 40-GHz monolithic mode-locked lasers

    DEFF Research Database (Denmark)

    Larsson, David; Hvam, Jørn Märcher

    2005-01-01

    We have performed wide-band residual phase-noise measurements on semiconductor 40-GHz mode-locked lasers by employing electrical waveguide components for the radio-frequency circuit. The intrinsic timing jitters of lasers with one, two, and three quantum wells (QW) are compared and our design......-QW laser. There is good agreement between the measured results and existing theory....

  6. Correlation coefficient measurement of the mode-locked laser tones using four-wave mixing.

    Science.gov (United States)

    Anthur, Aravind P; Panapakkam, Vivek; Vujicic, Vidak; Merghem, Kamel; Lelarge, Francois; Ramdane, Abderrahim; Barry, Liam P

    2016-06-01

    We use four-wave mixing to measure the correlation coefficient of comb tones in a quantum-dash mode-locked laser under passive and active locked regimes. We study the uncertainty in the measurement of the correlation coefficient of the proposed method.

  7. 35 GHz passive mode-locking of InGaAs/GaAs quantum dot lasers at 1.3 μm with Fourier-limited pulses

    DEFF Research Database (Denmark)

    Kuntz, M.; Fiol, G.; Laemmlin, M.

    2004-01-01

    We report 35 GHz passive mode-locking and 20 GHz hybrid mode-locking of quantum dot (QD) lasers at 1.3 ìm. Our investigations show ultrafast absorber recovery times and for the first time transform-limited mode-locked pulses.......We report 35 GHz passive mode-locking and 20 GHz hybrid mode-locking of quantum dot (QD) lasers at 1.3 ìm. Our investigations show ultrafast absorber recovery times and for the first time transform-limited mode-locked pulses....

  8. Broadband features of passively harmonic mode locking in dispersion-managed erbium-doped all-fiber lasers

    Science.gov (United States)

    Geng, Y.; Li, L.; Shu, C. J.; Wang, Y. F.; Tang, D. Y.; Zhao, L. M.

    2018-06-01

    Broadband features of passively harmonic mode locking (HML) in dispersion-managed erbium-doped all-fiber lasers are explored. The bandwidth of HML state is generally narrower than that of fundamental mode locking before pulse breaking occurs. There exists a broadest bandwidth versus the order of HML. HML state with bandwidth up to 61.5 nm is obtained.

  9. 10-GHz 1.59-μm quantum dash passively mode-locked two-section lasers

    DEFF Research Database (Denmark)

    Dontabactouny, Madhoussoudhana; Rosenberg, C.; Semenova, Elizaveta

    2010-01-01

    This paper reports the fabrication and the characterisation of a 10 GHz two-section passively mode-locked quantum dash laser emitting at 1.59 μm. The potential of the device's mode-locking is investigated through an analytical model taking into account both the material parameters and the laser...

  10. Control of radial propagation and polarity in a plasma jet in surrounding Ar

    KAUST Repository

    Gong, W.

    2018-01-08

    In recent years, the use of shielding gas to prevent the diffusion of the ambient air, particularly oxygen and nitrogen species, into the effluent of the atmospheric pressure plasma jet, and thus control the nature of chemical species used in the plasma treatment has increased. In this paper, the radial propagation of a plasma jet in ambient Ar is examined to find the key determinants of the polarity of plasma jets. The dynamics of the discharge reveal that the radial diffusion discharge is a special phenomenon observed only at the falling edge of the pulses. The radial transport of electrons, which is driven by the radial component of the applied electric field at the falling edge of the pulse, is shown to play an important role in increasing the seed electron density in the surrounding Ar. This result suggests a method to provide seed electrons at atmospheric pressure with a negative discharge. The polarity of the plasma jet is found to be determined by the pulse width rather than the polarity of the applied voltage, as it dictates the relative difference in the intensity of the two discharges in a single pulse, where the stronger discharge in a pulse dominates the behavior of the plasma jet. Accordingly, a method to control the polarity of a plasma jet through varying the pulse width is developed. Since plasma jets of different polarities differ remarkably in terms of their characteristics, the method to control the polarity reported in this paper will be of use for such applications as plasma-enhanced processing of materials and plasma biomedicine.

  11. Control of radial propagation and polarity in a plasma jet in surrounding Ar

    Science.gov (United States)

    Gong, W.; Yue, Y.; Ma, F.; Yu, F.; Wan, J.; Nie, L.; Bazaka, K.; Xian, Y.; Lu, X.; Ostrikov, K.

    2018-01-01

    In recent years, the use of shielding gas to prevent the diffusion of the ambient air, particularly oxygen and nitrogen species, into the effluent of the atmospheric pressure plasma jet, and thus control the nature of chemical species used in the plasma treatment has increased. In this paper, the radial propagation of a plasma jet in ambient Ar is examined to find the key determinants of the polarity of plasma jets. The dynamics of the discharge reveal that the radial diffusion discharge is a special phenomenon observed only at the falling edge of the pulses. The radial transport of electrons, which is driven by the radial component of the applied electric field at the falling edge of the pulse, is shown to play an important role in increasing the seed electron density in the surrounding Ar. This result suggests a method to provide seed electrons at atmospheric pressure with a negative discharge. The polarity of the plasma jet is found to be determined by the pulse width rather than the polarity of the applied voltage, as it dictates the relative difference in the intensity of the two discharges in a single pulse, where the stronger discharge in a pulse dominates the behavior of the plasma jet. Accordingly, a method to control the polarity of a plasma jet through varying the pulse width is developed. Since plasma jets of different polarities differ remarkably in terms of their characteristics, the method to control the polarity reported in this paper will be of use for such applications as plasma-enhanced processing of materials and plasma biomedicine.

  12. Passive, active, and hybrid mode-locking in a self-optimized ultrafast diode laser

    Science.gov (United States)

    Alloush, M. Ali; Pilny, Rouven H.; Brenner, Carsten; Klehr, Andreas; Knigge, Andrea; Tränkle, Günther; Hofmann, Martin R.

    2018-02-01

    Semiconductor lasers are promising sources for generating ultrashort pulses. They are directly electrically pumped, allow for a compact design, and therefore they are cost-effective alternatives to established solid-state systems. Additionally, their emission wavelength depends on the bandgap which can be tuned by changing the semiconductor materials. Theoretically, the obtained pulse width can be few tens of femtoseconds. However, the generated pulses are typically in the range of several hundred femtoseconds only. Recently, it was shown that by implementing a spatial light modulator (SLM) for phase and amplitude control inside the resonator the optical bandwidth can be optimized. Consequently, by using an external pulse compressor shorter pulses can be obtained. We present a Fourier-Transform-External-Cavity setup which utilizes an ultrafast edge-emitting diode laser. The used InGaAsP diode is 1 mm long and emits at a center wavelength of 850 nm. We investigate the best conditions for passive, active and hybrid mode-locking operation using the method of self-adaptive pulse shaping. For passive mode-locking, the bandwidth is increased from 2.34 nm to 7.2 nm and ultrashort pulses with a pulse width of 216 fs are achieved after external pulse compression. For active and hybrid mode-locking, we also increased the bandwidth. It is increased from 0.26 nm to 5.06 nm for active mode-locking and from 3.21 nm to 8.7 nm for hybrid mode-locking. As the pulse width is strongly correlated with the bandwidth of the laser, we expect further reduction in the pulse duration by increasing the bandwidth.

  13. Mode-locking dynamics in a quantum-dash Fabry-Pérot laser diode for packet based clock recovery applications

    NARCIS (Netherlands)

    Maldonado-Basilio, R.; Parra-Cetina, J.; Latkowski, S.; Landais, P.; Calabretta, N.

    2012-01-01

    We experimentally investigate the locking/unlocking dynamics of a mode-locked QDash laser diode for packet-based clock-recovery applications. Results show 20 ns locking times for the passively and externally synchronized mode-locking mechanisms.

  14. Polarization reversal of electron cyclotron wave due to radial boundary condition

    International Nuclear Information System (INIS)

    Takahashi, K.; Kaneko, T.; Hatakeyama, R.

    2004-01-01

    The electron cyclotron wave is an important plasma wave in the fields of basic plasma physics and nuclear fusion. Propagation and absorption of electromagnetic waves with electron cyclotron resonance (ECR) frequency are experimentally and theoretically investigated for the case of inhomogeneously magnetized plasma column with peripheral vacuum layer, when a left-hand polarized wave (LHPW) is selectively launched. The polarization reversal from the LHPW to the right-hand polarized wave is found to occur near the ECR point. As a result, it is clarified that the LHPW, which has been considered not to be absorbed at the ECR point, is absorbed near the ECR point. The phenomena can be explained by taking into account the effects of the radial boundary conditions. In addition, it is found that the polarization reversal point can be adjusted by the external parameters, for example, plasma radius. (authors)

  15. Radial polar histogram: obstacle avoidance and path planning for robotic cognition and motion control

    Science.gov (United States)

    Wang, Po-Jen; Keyawa, Nicholas R.; Euler, Craig

    2012-01-01

    In order to achieve highly accurate motion control and path planning for a mobile robot, an obstacle avoidance algorithm that provided a desired instantaneous turning radius and velocity was generated. This type of obstacle avoidance algorithm, which has been implemented in California State University Northridge's Intelligent Ground Vehicle (IGV), is known as Radial Polar Histogram (RPH). The RPH algorithm utilizes raw data in the form of a polar histogram that is read from a Laser Range Finder (LRF) and a camera. A desired open block is determined from the raw data utilizing a navigational heading and an elliptical approximation. The left and right most radii are determined from the calculated edges of the open block and provide the range of possible radial paths the IGV can travel through. In addition, the calculated obstacle edge positions allow the IGV to recognize complex obstacle arrangements and to slow down accordingly. A radial path optimization function calculates the best radial path between the left and right most radii and is sent to motion control for speed determination. Overall, the RPH algorithm allows the IGV to autonomously travel at average speeds of 3mph while avoiding all obstacles, with a processing time of approximately 10ms.

  16. Vacuum laser acceleration using a radially polarized CO sub 2 laser beam

    CERN Document Server

    Liu, Y; He, P

    1999-01-01

    Utilizing the high-power, radially polarized CO sub 2 laser and high-quality electron beam at the Brookhaven Accelerator Test Facility, a vacuum laser acceleration scheme is proposed. In this scheme, optics configuration is simple, a small focused beam spot size can be easily maintained, and optical damage becomes less important. At least 0.5 GeV/m acceleration gradient is achievable by 1 TW laser power.

  17. Theory for passive mode-locking in semiconductor laser structures including the effects of self-phase modulation, dispersion and pulse collisions

    NARCIS (Netherlands)

    Koumans, R.G.M.P.; Roijen, van R.

    1996-01-01

    We present a theory for passive mode-locking in semiconductor laser structures using a semiconductor laser amplifier and absorber. The mode-locking system is described in terms of the different elements in the semiconductor laser structure. We derive mode-locking conditions and show how other

  18. 11-GHz waveguide Nd:YAG laser CW mode-locked with single-layer graphene.

    Science.gov (United States)

    Okhrimchuk, Andrey G; Obraztsov, Petr A

    2015-06-08

    We report stable, passive, continuous-wave (CW) mode-locking of a compact diode-pumped waveguide Nd:YAG laser with a single-layer graphene saturable absorber. The depressed cladding waveguide in the Nd:YAG crystal is fabricated with an ultrafast laser inscription method. The saturable absorber is formed by direct deposition of CVD single-layer graphene on the output coupler. The few millimeter-long cavity provides generation of 16-ps pulses with repetition rates in the GHz range (up to 11.3 GHz) and 12 mW average power. Stable CW mode-locking operation is achieved by controlling the group delay dispersion in the laser cavity with a Gires-Tournois interferometer.

  19. Two-Photon Pumped Synchronously Mode-Locked Bulk GaAs Laser

    Science.gov (United States)

    Cao, W. L.; Vaucher, A. M.; Ling, J. D.; Lee, C. H.

    1982-04-01

    Pulses 7 picoseconds or less in duration have been generated from a bulk GaAs crystal by a synchronous mode-locking technique. The GaAs crystal was optically pumped by two-photon absorption of the emission from a mode-locked Nd:glass laser. Two-photon absorption as the means of excitation increases the volume of the gain medium by increasing the pene-tration depth of the pump intensity, enabling generation of intra-cavity pulses with peak power in the megawatt range. Tuning of the wavelength of the GaAs emission is achieved by varying the temperature. A tuning range covering 840 nm to 885 nm has been observed over a temperature range from 97°K to 260°K. The intensity of the GaAs emission has also been observed to decrease as the temperature of the crystal is increased.

  20. Diode-pumped femtosecond mode-locked Nd, Y-codoped CaF2 laser

    International Nuclear Information System (INIS)

    Zhu, Jiangfeng; Zhang, Lijuan; Gao, Ziye; Wang, Junli; Wang, Zhaohua; Wei, Zhiyi; Su, Liangbi; Zheng, Lihe; Wang, Jingya; Xu, Jun

    2015-01-01

    A passively mode-locked femtosecond laser based on an Nd, Y-codoped CaF 2 disordered crystal was demonstrated. The Y 3+ -codoping in Nd : CaF 2 markedly suppressed the quenching effect and improved the fluorescence quantum efficiency and emission spectra. With a fiber-coupled laser diode as the pump source, the continuous wave tuning range covering from 1042 to 1076 nm was realized, while the mode-locked operation generated 264 fs pulses with an average output power of 180 mW at a repetition rate of 85 MHz. The experimental results show that the Nd, Y-codoped CaF 2 disordered crystal has potential in a new generation diode-pumped high repetition rate chirped pulse amplifier. (letter)

  1. Wavelength-tunable prism-coupled external cavity passively mode-locked quantum-dot laser

    International Nuclear Information System (INIS)

    Wu Yan-Hua; Jian Wu; Jin Peng; Wang Fei-Fei; Hu Fa-Jie; Wei Heng; Wang Zhan-Guo

    2015-01-01

    A wavelength-tunable mode-locked quantum dot laser using an InAs/GaAs quantum-dot gain medium and a discrete semiconductor saturable absorber mirror is demonstrated. A dispersion prism, which has lower optical loss and less spectral narrowing than a blazed grating, is used for wavelength selection and tuning. A wavelength tuning range of 45.5 nm (from 1137.3 nm to 1182.8 nm) under 140-mA injection current in the passive mode-locked regime is achieved. The maximum average power of 19 mW is obtained at the 1170.3-nm wavelength, corresponding to the single pulse energy of 36.5 pJ. (paper)

  2. Quantum dash based single section mode locked lasers for photonic integrated circuits.

    Science.gov (United States)

    Joshi, Siddharth; Calò, Cosimo; Chimot, Nicolas; Radziunas, Mindaugas; Arkhipov, Rostislav; Barbet, Sophie; Accard, Alain; Ramdane, Abderrahim; Lelarge, Francois

    2014-05-05

    We present the first demonstration of an InAs/InP Quantum Dash based single-section frequency comb generator designed for use in photonic integrated circuits (PICs). The laser cavity is closed using a specifically designed Bragg reflector without compromising the mode-locking performance of the self pulsating laser. This enables the integration of single-section mode-locked laser in photonic integrated circuits as on-chip frequency comb generators. We also investigate the relations between cavity modes in such a device and demonstrate how the dispersion of the complex mode frequencies induced by the Bragg grating implies a violation of the equi-distance between the adjacent mode frequencies and, therefore, forbids the locking of the modes in a classical Bragg Device. Finally we integrate such a Bragg Mirror based laser with Semiconductor Optical Amplifier (SOA) to demonstrate the monolithic integration of QDash based low phase noise sources in PICs.

  3. Active mode-locking of mid-infrared quantum cascade lasers with short gain recovery time.

    Science.gov (United States)

    Wang, Yongrui; Belyanin, Alexey

    2015-02-23

    We investigate the dynamics of actively modulated mid-infrared quantum cascade lasers (QCLs) using space- and time-domain simulations of coupled density matrix and Maxwell equations with resonant tunneling current taken into account. We show that it is possible to achieve active mode locking and stable generation of picosecond pulses in high performance QCLs with a vertical laser transition and a short gain recovery time by bias modulation of a short section of a monolithic Fabry-Perot cavity. In fact, active mode locking in QCLs with a short gain recovery time turns out to be more robust to the variation of parameters as compared to previously studied lasers with a long gain recovery time. We investigate the effects of spatial hole burning and phase locking on the laser output.

  4. Fabrication and Characterisation of Low-noise Monolithic Mode-locked Lasers

    DEFF Research Database (Denmark)

    Larsson, David

    2007-01-01

    This thesis deals with the fabrication and characterisation of monolithic semiconductor mode-locked lasers for use in optical communication systems. Other foreseeable applications may be as sources in microwave photonics and optical sampling. The thesis also deals with the design and fabrication...... of intracavity monolithically integrated filters. The common dnominator among the diffrent parts of the thesis is how to achieve and measure the lowest possible noise. Achieving low noise has been pinpointed as one of the most important and difficult challenges for semiconductor mode-locked lasers. The main...... result of this thesis are a fabrication process of a monolithic and deeply etched distributed Bragg reflector and a characterisation system for measurement of quantum limitid timing noise at high repetition rates. The Bragg reflector is a key component in achieving transform limited pulses with low noise...

  5. Passively mode-locked Nd:YVO4 laser operating at 1073 nm and 1085 nm

    Science.gov (United States)

    Waritanant, Tanant; Major, Arkady

    2018-02-01

    A passively mode-locked Nd:YVO4 laser operating at 1073 nm and 1085 nm was demonstrated with an intracavity birefringent filter as the wavelength selecting element. The average output powers achieved were 2.17 W and 2.18 W with optical-to-optical efficiency of 19.6% and 19.7%, respectively. The slope efficiencies were more than 31% at both output wavelengths. The pulse durations at the highest average output power were 10.3 ps and 8.4 ps, respectively. We believe that this is the first report of mode locking of a Nd:YVO4 laser operating at 1073 nm or 1085 nm lines.

  6. Diode-pumped Kerr-lens mode-locked femtosecond Yb:YAG ceramic laser

    Science.gov (United States)

    Zi-Ye, Gao; Jiang-Feng, Zhu; Ke, Wang; Jun-Li, Wang; Zhao-Hua, Wang; Zhi-Yi, Wei

    2016-02-01

    We experimentally demonstrated a diode-pumped Kerr-lens mode-locked femtosecond laser based on an Yb:YAG ceramic. Stable laser pulses with 97-fs duration, 2.8-nJ pulse energy, and 320-mW average power were obtained. The femtosecond oscillator operated at a central wavelength of 1049 nm and a repetition rate of 115 MHz. To the best of our knowledge, this is the first demonstration of a Kerr-lens mode-locked operation in a diode-pumped Yb:YAG ceramic laser with sub-100 fs pulse duration. Project supported by the National Major Scientific Instrument Development Project of China (Grant No. 2012YQ120047), the National Natural Science Foundation of China (Grant No. 61205130), and the Fundamental Research Funds for the Central Universities, China (Grant No. JB140502).

  7. Tungsten diselenide for mode-locked erbium-doped fiber lasers with short pulse duration

    Science.gov (United States)

    Liu, Wenjun; Liu, Mengli; OuYang, Yuyi; Hou, Huanran; Ma, Guoli; Lei, Ming; Wei, Zhiyi

    2018-04-01

    In this paper, a WSe2 film prepared by chemical vapor deposition (CVD) is transferred onto a tapered fiber, and a WSe2 saturable absorber (SA) is fabricated. In order to measure the third-order optical nonlinearity of the WSe2, the Z-scan technique is applied. The modulation depth of the WSe2 SA is measured as being 21.89%. Taking advantage of the remarkable nonlinear absorption characteristic of the WSe2 SA, a mode-locked erbium-doped fiber laser is demonstrated at 1557.4 nm with a bandwidth of 25.8 nm and signal to noise ratio of 96 dB. To the best of our knowledge, the pulse duration of 163.5 fs is confirmed to be the shortest compared with previous mode-locked fiber lasers based on transition-metal dichalcogenides SAs. These results indicate that WSe2 is a powerful competitor in the application of ultrashort pulse lasers.

  8. Mode-locked fiber laser using SU8 resist incorporating carbon nanotubes

    Science.gov (United States)

    Hernandez-Romano, Ivan; Mandridis, Dimitrios; May-Arrioja, Daniel A.; Sanchez-Mondragon, Jose J.; Delfyett, Peter J.

    2011-06-01

    We report the fabrication of a saturable absorber made of a novel polymer SU8 doped with Single Wall Carbon Nanotubes (SWCNTs). A passive mode-locked ring cavity fiber laser was built with a 100 μm thick SU8/SWCNT film inserted between two FC/APC connectors. Self-starting passively mode-locked lasing operation was observed at 1572.04 nm, with a FWHM of 3.26 nm. The autocorrelation trace was 1.536 ps corresponding to a pulse-width of 871 fs. The time-bandwidth product was 0.344, which is close enough to transform-limited sech squared pulses. The repetition rate was 21.27 MHz, and a maximum average output power of 1 mW was also measured.

  9. Quasiperiodicity, mode-locking, and universal scaling in Rayleigh-Benard convection

    International Nuclear Information System (INIS)

    Ecke, R.E.

    1990-01-01

    This major review paper describes research on a model nonlinear dynamical system of small-aspect-ratio Rayleigh-Benard convection in 3 He - 4 He mixtures. The nonlinear effects of mode locking and quasiperiodic behavior are described. Analysis techniques for characterizing the state of the dynamical system include Fourier transforms, Poincare sections, phase differences, transients, multifractal f(∝) spectra and scaling function dynamics. Theoretical results such as the fractal staircase of mode-locked intervals and the Arnold tongues are reproduced in experimental data. New techniques for analyzing scaling dynamics are developed and discussed. This is a tutorial article that introduces the major important concepts in nonlinear dynamics and focuses on experimental problems and techniques. 77 refs

  10. High-Power Hybrid Mode-Locked External Cavity Semiconductor Laser Using Tapered Amplifier with Large Tunability

    Directory of Open Access Journals (Sweden)

    Andreas Schmitt-Sody

    2008-01-01

    Full Text Available We report on hybrid mode-locked laser operation of a tapered semiconductor amplifier in an external ring cavity, generating pulses as short as 0.5 ps at 88.1 MHz with an average power of 60 mW. The mode locking is achieved through a combination of a multiple quantum well saturable absorber (>10% modulation depth and an RF current modulation. This designed laser has 20 nm tuning bandwidth in continuous wave and 10 nm tuning bandwidth in mode locking around 786 nm center wavelength at constant temperature.

  11. Dynamics of a Dispersion-Managed Passively Mode-Locked Er-Doped Fiber Laser Using Single Wall Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Norihiko Nishizawa

    2015-07-01

    Full Text Available We investigated the dynamics of a dispersion-managed, passively mode-locked, ultrashort-pulse, Er-doped fiber laser using a single-wall carbon nanotube (SWNT device. A numerical model was constructed for analysis of the SWNT fiber laser. The initial process of passive mode-locking, the characteristics of the output pulse, and the dynamics inside the cavity were investigated numerically for soliton, dissipative-soliton, and stretched-pulse mode-locking conditions. The dependencies on the total dispersion and recovery time of the SWNTs were also examined. Numerical results showed similar behavior to experimental results.

  12. Compact and high repetition rate Kerr-lens mode-locked 532 nm Nd:YVO4 laser

    International Nuclear Information System (INIS)

    Li, Zuohan; Peng, Jiying; Yuan, Ruixia; Yao, Jianquan; Zheng, Yi; Wang, Tongtong

    2015-01-01

    A compact and feasible CW Kerr-lens-induced mode-locked 532 nm Nd:YVO 4 laser system was experimentally demonstrated for the first time with theoretical analysis. Kerr-lens mode locking with intracavity second harmonic generation provides a promising method to generate a high-repetition-rate picosecond green laser. With an incident pump power of 6 W, the average output power of mode locking was 258 mW at a high repetition rate of 1.1 GHz. (paper)

  13. Terahertz-bandwidth coherence measurements of a quantum dash laser in passive and active mode-locking operation.

    Science.gov (United States)

    Martin, Eamonn; Watts, Regan; Bramerie, Laurent; Shen, Alexandre; Gariah, Harry; Blache, Fabrice; Lelarge, Francois; Barry, Liam

    2012-12-01

    This research carries out coherence measurements of a 42.7 GHz quantum dash (QDash) semiconductor laser when passively, electrically, and optically mode-locked. Coherence of the spectral lines from the mode-locked laser is determined by examining the radio frequency beat-tone linewidth as the mode spacing is increased up to 1.1 THz. Electric-field measurements of the QDash laser are also presented, from which a comparison between experimental results and accepted theory for coherence in passively mode-locked lasers has been performed.

  14. InP femtosecond mode-locked laser in a compound feedback cavity with a switchable repetition rate

    Science.gov (United States)

    Lo, Mu-Chieh; Guzmán, Robinson; Carpintero, Guillermo

    2018-02-01

    A monolithically integrated mode-locked semiconductor laser is proposed. The compound ring cavity is composed of a colliding pulse mode-locking (ML) subcavity and a passive Fabry-Perot feedback subcavity. These two 1.6 mm long subcavities are coupled by using on-chip reflectors at both ends, enabling harmonic mode locking. By changing DC-bias conditions, optical mode spacing from 50 to 450 GHz is experimentally demonstrated. Ultrafast pulses shorter than 0.3 ps emitted from this laser diode are shown in autocorrelation traces.

  15. High brightness photonic band crystal semiconductor lasers in the passive mode locking regime

    Energy Technology Data Exchange (ETDEWEB)

    Rosales, R.; Kalosha, V. P.; Miah, M. J.; Bimberg, D. [Institut für Festkörperphysik, Technische Universität Berlin, Hardenbergstrasse 36, 10623 Berlin (Germany); Posilović, K. [Institut für Festkörperphysik, Technische Universität Berlin, Hardenbergstrasse 36, 10623 Berlin (Germany); PBC Lasers GmbH, Hardenbergstrasse 36, 10623 Berlin (Germany); Pohl, J.; Weyers, M. [Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik, Gustav-Kirchhoff-Str. 4, Berlin 12489 (Germany)

    2014-10-20

    High brightness photonic band crystal lasers in the passive mode locking regime are presented. Optical pulses with peak power of 3 W and peak brightness of about 180 MW cm{sup −2} sr{sup −1} are obtained on a 5 GHz device exhibiting 15 ps pulses and a very low beam divergence in both the vertical and horizontal directions.

  16. High brightness photonic band crystal semiconductor lasers in the passive mode locking regime

    International Nuclear Information System (INIS)

    Rosales, R.; Kalosha, V. P.; Miah, M. J.; Bimberg, D.; Posilović, K.; Pohl, J.; Weyers, M.

    2014-01-01

    High brightness photonic band crystal lasers in the passive mode locking regime are presented. Optical pulses with peak power of 3 W and peak brightness of about 180 MW cm −2  sr −1 are obtained on a 5 GHz device exhibiting 15 ps pulses and a very low beam divergence in both the vertical and horizontal directions.

  17. A PASSIVELY MODE-LOCKED CR4+:FORSTERITE LASER WITH ELEСTRONICALLY CONTROLLED OUTPUT CHARACTERISTICS

    Directory of Open Access Journals (Sweden)

    S. A. Zolotovskaya

    2011-01-01

    Full Text Available Applicability of electronic control of laser output parameters to bulk solid-state laser sources is demonstrated. A single laser source with variable pulse duration for novel imaging and manipulation systems is presented. Stable passive mode-locking of a Cr4+:forsterite laser using a voltage controlled p-n junction quantum dot saturable absorber was achieved. Output shortening from 17,4 to 6,4 ps near-transform limited pulses was obtained by applying reverse bias.

  18. Instability of stationary lasing and self-starting mode locking in external-cavity semiconductor lasers

    International Nuclear Information System (INIS)

    Smetanin, Igor V; Vasil'ev, Petr P

    2009-01-01

    Parameters of external-cavity semiconductor lasers, when the stationary lasing becomes unstable, were analysed within the framework of a theoretical model of self-starting mode locking. In this case, a train of ultrashort pulses can be generated due to intrinsic nonlinearities of the laser medium. A decisive role of the transverse optical field nonuniformity, pump rate, and gain spectral bandwidth in the development of the instability of stationary lasing was demonstrated. (control of laser radiation parameters)

  19. Mode-Locking in Broad-Area Semiconductor Lasers Enhanced by Picosecond-Pulse Injection

    OpenAIRE

    Kaiser, J; Fischer, I; Elsasser, W; Gehrig, E; Hess, O

    2004-01-01

    We present combined experimental and theoretical investigations of the picosecond emission dynamics of broad-area semiconductor lasers (BALs). We enhance the weak longitudinal self-mode-locking that is inherent to BALs by injecting a single optical 50-ps pulse, which triggers the output of a distinct regular train of 13-ps pulses. Modeling based on multimode Maxwell-Bloch equations illustrates how the dynamic interaction of the injected pulse with the internal laser field efficiently couples ...

  20. Instant recording of the duration of a single mode-locked Nd:YAG laser pulse

    International Nuclear Information System (INIS)

    Lompre, L.A.; Mainfray, G.; Thebault, J.

    1975-01-01

    An electro-optic streak camera incorporating a storage memory video system has been developed and used to instantly visualize and record the shape of a 1.06-μ-wavelength pulse generated by a mode-locked Nd:YAG laser. The duration of a single laser pulse (approximately 30 psec) has been directly measured with and without laser amplification. (U.S.)

  1. All-fiber nonlinearity- and dispersion-managed dissipative soliton nanotube mode-locked laser

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Z. [Department of Physics, Bilkent University, 06800 Ankara (Turkey); Nanjing University of Posts and Communications, Nanjing 210003 (China); Popa, D., E-mail: dp387@cam.ac.uk; Wittwer, V. J.; Milana, S.; Hasan, T.; Jiang, Z.; Ferrari, A. C. [Cambridge Graphene Centre, University of Cambridge, Cambridge CB3 0FA (United Kingdom); Ilday, F. Ö. [Department of Physics, Bilkent University, 06800 Ankara (Turkey); Department of Electrical and Electronics Engineering, Bilkent University, 06800 Ankara (Turkey)

    2015-12-14

    We report dissipative soliton generation from an Yb-doped all-fiber nonlinearity- and dispersion-managed nanotube mode-locked laser. A simple all-fiber ring cavity exploits a photonic crystal fiber for both nonlinearity enhancement and dispersion compensation. The laser generates stable dissipative solitons with large linear chirp in the net normal dispersion regime. Pulses that are 8.7 ps long are externally compressed to 118 fs, outperforming current nanotube-based Yb-doped fiber laser designs.

  2. Observation of stable bound soliton with dual-wavelength in a passively mode-locked Er-doped fiber laser

    International Nuclear Information System (INIS)

    Zheng Yu; Tian Jin-Rong; Dong Zi-Kai; Xu Run-Qin; Li Ke-Xuan; Song Yan-Rong

    2017-01-01

    A phase-locked bound state soliton with dual-wavelength is observed experimentally in a passively mode-locked Er-doped fiber (EDF) laser with a fiber loop mirror (FLM). The pulse duration of the soliton is 15 ps and the peak-to-peak separation is 125 ps. The repetition rate of the pulse sequence is 3.47 MHz. The output power is 11.8 mW at the pump power of 128 mW, corresponding to the pulse energy of 1.52 nJ. The FLM with a polarization controller can produce a comb spectrum, which acts as a filter. By adjusting the polarization controller or varying the pump power, the central wavelength of the comb spectrum can be tuned. When it combines with the reflective spectrum of the fiber Bragg grating, the total spectrum of the cavity can be cleaved into two parts, then the bound state soliton with dual-wavelength at 1549.7 nm and 1550.4 nm is obtained. (paper)

  3. Coupled opto electronic oscillator with a passively mode locked extended cavity diode laser

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeongmin; Jang, Gwang Hoon; Yoon, Duseong; Song, Minsoo; Yoon, Tai Hyun [Korea Univ., Seoul (Korea, Republic of)

    2008-11-15

    An opto electronic oscillator(OEO)has very unique properties compared to the conventional quartz based microwave oscillators in that its oscillation frequency is determined by the beat note frequency of a phase coherent optical frequency comb generated as a side bands to an optical single mode carrier by using an electro optic modulator (EOM)or a direct current modulation of a semiconductor laser. Recently, a different type of OEO called a COEO has been demonstrated, where the optical carrier in the OEO system has been replaced by a mode locked laser so that an EOM or a direct current modulation are no longer necessary, but has potentially a much lower phase noise thanks to the high Q value of the optical frequency comb due to the mode locking mechanism. In this paper, we propose and demonstrate a COEO based on a passively mode locked ECDL at 852nm in which the fourth harmonic of the repetition frequency of the ECDL matched exactly the ground state hyperfine splitting frequency of the Cs atoms.

  4. Femtosecond Mode-locked Fiber Laser at 1 μm Via Optical Microfiber Dispersion Management.

    Science.gov (United States)

    Wang, Lizhen; Xu, Peizhen; Li, Yuhang; Han, Jize; Guo, Xin; Cui, Yudong; Liu, Xueming; Tong, Limin

    2018-03-16

    Mode-locked Yb-doped fiber lasers around 1 μm are attractive for high power applications and low noise pulse train generation. Mode-locked fiber lasers working in soliton and stretched-pulse regime outperform others in terms of the laser noise characteristics, mechanical stability and easy maintenance. However, conventional optical fibers always show a normal group velocity dispersion around 1 μm, leading to the inconvenience for necessary dispersion management. Here we show that optical microfibers having a large anomalous dispersion around 1 μm can be integrated into mode-locked Yb-doped fiber lasers with ultralow insertion loss down to -0.06 dB, enabling convenient dispersion management of the laser cavity. Besides, optical microfibers could also be adopted to spectrally broaden and to dechirp the ultrashort pulses outside the laser cavity, giving rise to a pulse duration of about 110 fs. We believe that this demonstration may facilitate all-fiber format high-performance ultrashort pulse generation at 1 μm and may find applications in precision measurements, large-scale facility synchronization and evanescent-field-based optical sensing.

  5. General description and understanding of the nonlinear dynamics of mode-locked fiber lasers.

    Science.gov (United States)

    Wei, Huai; Li, Bin; Shi, Wei; Zhu, Xiushan; Norwood, Robert A; Peyghambarian, Nasser; Jian, Shuisheng

    2017-05-02

    As a type of nonlinear system with complexity, mode-locked fiber lasers are known for their complex behaviour. It is a challenging task to understand the fundamental physics behind such complex behaviour, and a unified description for the nonlinear behaviour and the systematic and quantitative analysis of the underlying mechanisms of these lasers have not been developed. Here, we present a complexity science-based theoretical framework for understanding the behaviour of mode-locked fiber lasers by going beyond reductionism. This hierarchically structured framework provides a model with variable dimensionality, resulting in a simple view that can be used to systematically describe complex states. Moreover, research into the attractors' basins reveals the origin of stochasticity, hysteresis and multistability in these systems and presents a new method for quantitative analysis of these nonlinear phenomena. These findings pave the way for dynamics analysis and system designs of mode-locked fiber lasers. We expect that this paradigm will also enable potential applications in diverse research fields related to complex nonlinear phenomena.

  6. Mode-locking and the transition to chaos in dissipative systems

    International Nuclear Information System (INIS)

    Bak, P.; Bohr, T.; Jensen, M.H.

    1984-01-01

    Dissipative systems with two competing frequencies exhibit transitions to chaos. We have investigated the transition through a study of discrete maps of the circle onto itself, and by constructing and analyzing return maps of differential equations representing some physical systems. The transition is caused by interaction and overlap of mode-locked resonances and takes place at a critical line where the map losses invertibility. At this line the mode-locked intervals trace up a complete Devil's Staircase whose complementary set is a Cantor set with universal fractal dimension D approx. 0.87. Below criticality there is room for quasiperiodic orbits, whose measure is given by an exponent β approx. 0.34 which can be related to D through a scaling relation, just as for second order phase transitions. The Lebesgue measure serves as an order parameter for the transition to chaos. The resistively shunted Josephson junction, and charge density waves (CDWs) in rf electric fields are usually described by the differential equation of the damped driven pendulum. The 2d return map for this equation collapses to ld circle map at and below the transition to chaos. The theoretical results on universal behavior, derived here and elsewhere, can thus readily be checked experimentally by studying real physical systems. Recent experiments on Josephson junctions and CDWs indicating the predicted fractal scaling of mode-locking at criticality are reviewed

  7. Coupled opto electronic oscillator with a passively mode locked extended cavity diode laser

    International Nuclear Information System (INIS)

    Lee, Jeongmin; Jang, Gwang Hoon; Yoon, Duseong; Song, Minsoo; Yoon, Tai Hyun

    2008-01-01

    An opto electronic oscillator(OEO)has very unique properties compared to the conventional quartz based microwave oscillators in that its oscillation frequency is determined by the beat note frequency of a phase coherent optical frequency comb generated as a side bands to an optical single mode carrier by using an electro optic modulator (EOM)or a direct current modulation of a semiconductor laser. Recently, a different type of OEO called a COEO has been demonstrated, where the optical carrier in the OEO system has been replaced by a mode locked laser so that an EOM or a direct current modulation are no longer necessary, but has potentially a much lower phase noise thanks to the high Q value of the optical frequency comb due to the mode locking mechanism. In this paper, we propose and demonstrate a COEO based on a passively mode locked ECDL at 852nm in which the fourth harmonic of the repetition frequency of the ECDL matched exactly the ground state hyperfine splitting frequency of the Cs atoms

  8. Device geometry considerations for ridge waveguide quantum dot mode-locked lasers

    International Nuclear Information System (INIS)

    Mee, J K; Raghunathan, R; Lester, L F; Wright, J B

    2014-01-01

    Quantum dot mode-locked lasers have emerged as a leading source for the efficient generation of high-quality optical pulses from a compact package, attracting considerable attention for support of multiple high-speed applications, owing to characteristics such as low noise operation and high pulse peak power, in addition to the ability to multiplex the output pulse train in temporal and frequency domains in order to obtain hundreds of GHz pulse repetition rates potentially operating at 1 Tbps. This topical review provides a detailed explanation into the primary advantages of quantum dots, identifying the key features that have made them superior to other material systems for passive mode-locking in semiconductor lasers. Following this account, the impact of the device's cavity geometry on the operational range of two-section, monolithic passively mode-locked lasers is investigated both experimentally and analytically. A model is described that predicts regimes of pulsed operation as a function of absorber length to gain length ratio. Experimental measurements of the pulse time-domain characteristics over a wide range of operating temperatures are found to be in excellent agreement with analytical predictions. The impact of ridge waveguide design on the operational range is also examined and the key dimensions that most strongly impact efficient operation are identified. (topical review)

  9. High-energy harmonic mode-locked 2 μm dissipative soliton fiber lasers

    International Nuclear Information System (INIS)

    Yang, Nan; Tang, Yulong; Xu, Jianqiu

    2015-01-01

    High-pulse-energy harmonic mode-locking in 2 μm Tm-doped fiber lasers (TDFLs) is realized, for the first time, by using a short piece of anomalous dispersion gain fiber and the dissipative soliton mode-locking mechanism. Appropriately designing the cavity dispersion map and adjusting the cavity gain, stable harmonic mode-locking of the dissipative soliton TDFL from the 2nd to the 4th order is achieved, with the pulsing repetition rates and pulse energy being 43.4, 65.1, 86.8 MHz, and 6.27, 4.32 and 3.29 nJ, respectively. The harmonic laser pulse has a pulse width of ∼30 ps and a center wavelength of ∼1929 nm with a spectral bandwidth of ∼3.26 nm, giving a highly chirped laser pulse. Two types of soliton molecules are also observed in this laser system. (letter)

  10. Interband optical pulse injection locking of quantum dot mode-locked semiconductor laser.

    Science.gov (United States)

    Kim, Jimyung; Delfyett, Peter J

    2008-07-21

    We experimentally demonstrate optical clock recovery from quantum dot mode-locked semiconductor lasers by interband optical pulse injection locking. The passively mode-locked slave laser oscillating on the ground state or the first excited state transition is locked through the injection of optical pulses generated via the opposite transition bands, i.e. the first excited state or the ground state transition from the hybridly mode-locked master laser, respectively. When an optical pulse train generated via the first excited state from the master laser is injected to the slave laser oscillating via ground state, the slave laser shows an asymmetric locking bandwidth around the nominal repetition rate of the slave laser. In the reverse injection case of, i.e. the ground state (master laser) to the first excited state (slave laser), the slave laser does not lock even though both lasers oscillate at the same cavity frequency. In this case, the slave laser only locks to higher injection rates as compared to its own nominal repetition rate, and also shows a large locking bandwidth of 6.7 MHz.

  11. Black phosphorus saturable absorber for ultrafast mode-locked pulse laser via evanescent field interaction

    Energy Technology Data Exchange (ETDEWEB)

    Park, Kichul; Lee, Young Tack; Choi, Won-Kook; Song, Yong-Won [Center for Opto-electronic Materials and Devices, Korea Institute of Science and Technology, Seoul (Korea, Republic of); Lee, Junsu; Lee, Ju Han [School of Electrical and Computer Engineering, University of Seoul (Korea, Republic of)

    2015-12-15

    Black phosphorus, or BP, has found a lot of applications in recent years including photonics. The most recent studies have shown that the material has an excellent optical nonlinearity useful in many areas, one of which is in saturable absorption for passive mode-locking. A direct interaction scheme for mode-locking, however, has a potential to optically cause permanent damage to the already delicate material. Evanescent field interaction scheme has already been proven to be a useful method to prevent such danger for other 2-dimensional nanomaterials. In this report, we have utilized the evanescent field interaction to demonstrate that the optical nonlinear characteristics of BP is sufficiently strong to use in such an indirect interaction method. The successful demonstration of the passive mode-locking operation has generated pulses with the pulse duration, repetition rate, and time bandwidth product of 2.18 ps, 15.59 MHz, and 0.336, respectively. (copyright 2015 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. radial

    Directory of Open Access Journals (Sweden)

    JOHN WILLIAM BRANCH

    2007-01-01

    Full Text Available La creación de modelos de objetos reales es una tarea compleja para la cual se ha visto que el uso de técnicas tradicionales de modelamiento tiene restricciones. Para resolver algunos de estos problemas, los sensores de rango basados en láser se usan con frecuencia para muestrear la superficie de un objeto desde varios puntos de vista, lo que resulta en un conjunto de imágenes de rango que son registradas e integradas en un modelo final triangulado. En la práctica, debido a las propiedades reflectivas de la superficie, las oclusiones, y limitaciones de acceso, ciertas áreas de la superficie del objeto usualmente no son muestreadas, dejando huecos que pueden crear efectos indeseables en el modelo integrado. En este trabajo, presentamos un nuevo algoritmo para el llenado de huecos a partir de modelos triangulados. El algoritmo comienza localizando la frontera de las regiones donde están los huecos. Un hueco consiste de un camino cerrado de bordes de los triángulos en la frontera que tienen al menos un borde que no es compartido con ningún otro triangulo. El borde del hueco es entonces adaptado mediante un B-Spline donde la variación promedio de la torsión del la aproximación del B-spline es calculada. Utilizando un simple umbral de la variación promedio a lo largo del borde, se puede clasificar automáticamente, entre huecos reales o generados por intervención humana. Siguiendo este proceso de clasificación, se usa entonces una versión automatizada del interpolador de funciones de base radial para llenar el interior del hueco usando los bordes vecinos.

  13. Scaling Fiber Lasers to Large Mode Area: An Investigation of Passive Mode-Locking Using a Multi-Mode Fiber.

    Science.gov (United States)

    Ding, Edwin; Lefrancois, Simon; Kutz, Jose Nathan; Wise, Frank W

    2011-01-01

    The mode-locking of dissipative soliton fiber lasers using large mode area fiber supporting multiple transverse modes is studied experimentally and theoretically. The averaged mode-locking dynamics in a multi-mode fiber are studied using a distributed model. The co-propagation of multiple transverse modes is governed by a system of coupled Ginzburg-Landau equations. Simulations show that stable and robust mode-locked pulses can be produced. However, the mode-locking can be destabilized by excessive higher-order mode content. Experiments using large core step-index fiber, photonic crystal fiber, and chirally-coupled core fiber show that mode-locking can be significantly disturbed in the presence of higher-order modes, resulting in lower maximum single-pulse energies. In practice, spatial mode content must be carefully controlled to achieve full pulse energy scaling. This paper demonstrates that mode-locking performance is very sensitive to the presence of multiple waveguide modes when compared to systems such as amplifiers and continuous-wave lasers.

  14. Gravitational waves from nonlinear couplings of radial and polar nonradial modes in relativistic stars

    International Nuclear Information System (INIS)

    Passamonti, Andrea; Stergioulas, Nikolaos; Nagar, Alessandro

    2007-01-01

    The postbounce oscillations of newly-born relativistic stars are expected to lead to gravitational-wave emission through the excitation of nonradial oscillation modes. At the same time, the star is oscillating in its radial modes, with a central density variation that can reach several percent. Nonlinear couplings between radial oscillations and polar nonradial modes lead to the appearance of combination frequencies (sums and differences of the linear mode frequencies). We study such combination frequencies using a gauge-invariant perturbative formalism, which includes bilinear coupling terms between different oscillation modes. For typical values of the energy stored in each mode we find that gravitational waves emitted at combination frequencies could become detectable in galactic core-collapse supernovae with advanced interferometric or wideband resonant detectors

  15. Manipulation of radial-variant polarization for creating tunable bifocusing spots.

    Science.gov (United States)

    Gu, Bing; Pan, Yang; Wu, Jia-Lu; Cui, Yiping

    2014-02-01

    We propose and generate a new radial-variant vector field (RV-VF) with a distribution of states of polarization described by the square of the radius and exploit its focusing property. Theoretically, we present the analytical expressions for the three-dimensional electric field of the vector field focused by a thin lens under the nonparaxial and paraxial approximations based on the vectorial Rayleigh-Sommerfeld formulas. Numerical simulations indicate that this focused field exhibits bifocusing spots along the optical axis. The underlying mechanism for generating the bifocusing property is analyzed in detail. We give the analytical formula for the interval between two foci. Experimentally, we generate the RV-VFs with alterable topological charge and demonstrate that the interval between two foci is controllable by tuning the radial topological charge. This particular focal field has specific applications for biparticle trapping, manipulating, alignment, transportation, and accelerating along the optical axis.

  16. Generation of Q-Switched Mode-Locked Erbium-Doped Fiber Laser Operating in Dark Regime

    International Nuclear Information System (INIS)

    Tiu, Zian Cheak; Zarei, Arman; Ahmad, Harith; Harun, Sulaiman Wadi

    2016-01-01

    We demonstrate a stable Q-switched mode-locked erbium-doped fiber laser (EDFL) operating in dark regime based on the nonlinear polarization rotation technique. The EDFL produces a pulse train where the Q-switching envelope is formed by multiple dark pulses. The repetition rate of the Q-switched envelope can be increased from 0.96 kHz to 3.26 kHz, whereas the pulse width reduces from 211 μs to 86 μs. The highest pulse of 479 nJ is obtained at the pump power of 55 mW. It is also observed that the dark pulses inside the Q-switching envelope consist of two parts: square and trailing dark pulses. The shortest pulse width of the dark square pulse is obtained at 40.5 μs when the pump power is fixed at 145 mW. The repetition rate of trailing dark pulses can be increased from 27.62 kHz to 50 kHz as the pump power increases from 55 mW to 145 mW. (paper)

  17. Mode-locking peculiarities in an all-fiber erbium-doped ring ultrashort pulse laser with a highly-nonlinear resonator

    Science.gov (United States)

    Dvoretskiy, Dmitriy A.; Sazonkin, Stanislav G.; Kudelin, Igor S.; Orekhov, Ilya O.; Pnev, Alexey B.; Karasik, Valeriy E.; Denisov, Lev K.

    2017-12-01

    Today ultrashort pulse (USP) fiber lasers are in great demand in a frequency metrology field, THz pulse spectroscopy, optical communication, quantum optics application, etc. Therefore mode-locked (ML) fiber lasers have been extensively investigated over the last decade due the number of scientific, medical and industrial applications. It should be noted, that USP fiber lasers can be treated as an ideal platform to expand future applications due to the complex ML nonlinear dynamics in a laser resonator. Up to now a series of novel ML regimes have been investigated e.g. self-similar pulses, noise-like pulses, multi-bound solitons and soliton rain generation. Recently, we have used a highly nonlinear germanosilicate fiber (with germanium oxides concentration in the core 50 mol. %) inside the resonator for more reliable and robust launching of passive mode-locking based on the nonlinear polarization evolution effect in fibers. In this work we have measured promising and stable ML regimes such as stretched pulses, soliton rain and multi-bound solitons formed in a highly-nonlinear ring laser and obtained by intracavity group velocity dispersion (GVD) variation in slightly negative region. As a result, we have obtained the low noise ultrashort pulse generation with duration 59 dB) and relative intensity noise <-101 dBc / Hz.

  18. Radially polarized and passively Q-switched Yb-doped fiber laser based on intracavity birefringent mode discrimination

    Science.gov (United States)

    Sun, Xuehuan; Wu, Yongxiao; Chen, Sanbin; Li, Jianlang

    2018-05-01

    In this paper, we demonstrated a passive Q-switched ytterbium-doped fiber laser with radially polarized beam emission by using a c-cut YVO4 birefringent crystal as the intracavity polarization discriminator, and a Cr4+:YAG crystal as the saturable absorber and output coupler. The maximum averaged laser power reached 3.89 W with a high slope efficiency of 66.5%. The laser pulse had a peak power of 161 W, 160 ns duration, and 151 kHz repetition rate at the absorbed pump power of 6.48 W. Such a radially polarized pulse would facilitate numerous applications.

  19. Evanescent-wave coupled right angled buried waveguide: Applications in carbon nanotube mode-locking

    International Nuclear Information System (INIS)

    Mary, R.; Thomson, R. R.; Kar, A. K.; Brown, G.; Beecher, S. J.; Popa, D.; Sun, Z.; Torrisi, F.; Hasan, T.; Milana, S.; Bonaccorso, F.; Ferrari, A. C.

    2013-01-01

    We present an evanescent-field device based on a right-angled waveguide. This consists of orthogonal waveguides, with their points of intersection lying along an angled facet of the chip. Light guided along one waveguide is incident at the angled dielectric-air facet at an angle exceeding the critical angle, so that the totally internally reflected light is coupled into the second waveguide. By depositing a nanotube film on the angled surface, the chip is then used to mode-lock an Erbium doped fiber ring laser with a repetition rate of 26 MHz, and pulse duration of 800 fs

  20. Dispersive-cavity actively mode-locked fiber laser for stable radio frequency delivery

    International Nuclear Information System (INIS)

    Dai, Yitang; Wang, Ruixin; Yin, Feifei; Xu, Kun; Li, Jianqiang; Lin, Jintong

    2013-01-01

    We report a novel technique for highly stable transfer of a radio frequency (RF) comb over long optical fiber link, which is highly dispersive and is a part of an actively mode-locked fiber laser. Phase fluctuation along the fiber link, which is mainly induced by physical vibration and temperature fluctuations, is automatically compensated by the self-adapted wavelength shifting. Without phase-locking loop or any tunable parts, stable radio frequency is transferred over a 2-km fiber link, with a time jitter suppression ratio larger than 110. (letter)

  1. Active-passively mode-locked dye laser for diagnosis of laser-produced plasmas

    International Nuclear Information System (INIS)

    Teng, Y.L.; Fedosejevs, R.; Sigel, R.

    1981-03-01

    In this report an active-passively mode-locked, flashlamp-pumped dye laser for diagnosis of laser-produced plasmas is described. This dye laser system used as a pulsed light source for high-speed photography of laser-target experiments was synchronized to the ASTERIX III iodine laser pulse with better than 100 ps accuracy. The single pulse energy was 10 μJ, pulse duration less than 10 ps. In 111 shots clear shadowgrams were obtained during a total of 151 target shots, i.e. the system worked well in 74% of the shots. (orig.)

  2. Mode-locked Pr3+-doped silica fiber laser with an external cavity

    DEFF Research Database (Denmark)

    Shi, Yuan; Poulsen, Christian; Sejka, Milan

    1994-01-01

    We present a Pr3+-doped silica-based fiber laser mode-locked by using a linear external cavity with a vibrating mirror. Stable laser pulses with a FWHM of less than 44 ps, peak power greater than 9 W, and repetition rate up to 100 MHz are obtained. The pulse width versus cavity mismatch ΔL and pump...... power have been investigated. With a short piece of nonlinear fiber included in the external cavity, laser pulses of 45 ps have been measured...

  3. Mode-locked 1.5 micrometers semiconductor optical amplifier fiber ring

    DEFF Research Database (Denmark)

    Pedersen, Niels V.; Jakobsen, Kaj Bjarne; Vaa, Michael

    1996-01-01

    The dynamics of a mode-locked SOA fiber ring are investigated experimentally and numerically. Generation of near transform-limited (time-bandwidth product=0.7) 1.5 μm 54 ps FWHM pulses with a peak power of 2.8 mW at a repetition rate of 960 MHz is demonstrated experimentally. The experimental...... results agree well with the simulation results obtained using a transmission line laser model (TLLM) model, Both experiments and numerical simulations show how the RF power and the detuning affect the pulsewidth...

  4. Stability of the mode-locking regime in tapered quantum-dot lasers

    Science.gov (United States)

    Bardella, P.; Drzewietzki, L.; Rossetti, M.; Weber, C.; Breuer, S.

    2018-02-01

    We study numerically and experimentally the role of the injection current and reverse bias voltage on the pulse stability of tapered, passively mode-locked, Quantum Dot (QD) lasers. By using a multi-section delayed differential equation and introducing in the model the QD inhomogenous broadening, we are able to predict the onset of leading and trailing edge instabilities in the emitted pulse trains and to identify specific trends of stability in dependence on the laser biasing conditions. The numerical results are confirmed experimentally trough amplitude and timing stability analysis of the pulses.

  5. Mode locking of electron spin coherences in singly charged quantum dots.

    Science.gov (United States)

    Greilich, A; Yakovlev, D R; Shabaev, A; Efros, Al L; Yugova, I A; Oulton, R; Stavarache, V; Reuter, D; Wieck, A; Bayer, M

    2006-07-21

    The fast dephasing of electron spins in an ensemble of quantum dots is detrimental for applications in quantum information processing. We show here that dephasing can be overcome by using a periodic train of light pulses to synchronize the phases of the precessing spins, and we demonstrate this effect in an ensemble of singly charged (In,Ga)As/GaAs quantum dots. This mode locking leads to constructive interference of contributions to Faraday rotation and presents potential applications based on robust quantum coherence within an ensemble of dots.

  6. Towards attosecond synchronization of remote mode-locked lasers using stabilized transmission of optical comb frequencies

    Science.gov (United States)

    Wilcox, R. B.; Byrd, J. M.; Doolittle, L. R.; Holzwarth, R.; Huang, G.

    2011-09-01

    We propose a method of synchronizing mode-locked lasers separated by hundreds of meters with the possibility of achieving sub-fs performance by locking the phases of corresponding lines in the optical comb spectrum. The optical phase from one comb line is transmitted to the remote laser over an interferometrically stabilized link by locking a single frequency laser to a comb line with high phase stability. We describe how these elements are integrated into a complete system and estimate the potential performance.

  7. Picosecond trigger system useful in mode-locked laser pulse measurements

    International Nuclear Information System (INIS)

    Cunin, B.; Miehe, J.A.; Sipp, B.; Thebault, J.

    1976-01-01

    A highly sensitive tunnel diode trigger useful in temporal intensity build-up measurements of mode-locked lasers has been developed; the device reduces notably the time walk due to the lack of repeatability in intensity of the laser output. The performance of the trigger have been established by means of a GHz wideband-0.1V/cm sensitive real-time oscilloscope and of an image converter camera having a picosecond resolution: the experimental results show that a variation of the amplitude of the laser pulse train of a factor 5 leads to a time jitter of less than 30 ps (Auth.)

  8. Wavelength and pulse duration tunable ultrafast fiber laser mode-locked with carbon nanotubes

    OpenAIRE

    Li, Diao; Jussila, Henri; Wang, Yadong; Hu, Guohua; Albrow-Owen, Tom; C. T. Howe, Richard; Ren, Zhaoyu; Bai, Jintao; Hasan, Tawfique; Sun, Zhipei

    2018-01-01

    Ultrafast lasers with tunable parameters in wavelength and time domains are the choice of light source for various applications such as spectroscopy and communication. Here, we report a wavelength and pulse-duration tunable mode-locked Erbium doped fiber laser with single wall carbon nanotube-based saturable absorber. An intra-cavity tunable filter is employed to continuously tune the output wavelength for 34 nm (from 1525 nm to 1559 nm) and pulse duration from 545 fs to 6.1 ps, respectively....

  9. Terahertz repetition frequencies from harmonic mode-locked monolithic compound-cavity laser diodes

    International Nuclear Information System (INIS)

    Yanson, D. A.; Street, M. W.; McDougall, S. D.; Thayne, I. G.; Marsh, J. H.; Avrutin, E. A.

    2001-01-01

    Compound-cavity laser diodes are mode locked at a harmonic of the fundamental round-trip frequency to achieve repetition rates of up to 2.1 THz. The devices are fabricated from GaAs/AlGaAs material at a wavelength of 860 nm and incorporate two gain sections with an etched slot reflector between them, and a saturable absorber section. Autocorrelation studies are used to investigate device behavior for different reflector types and reflectivity. These lasers may find applications in terahertz imaging, medicine, ultrafast optical links, and atmospheric sensing. [copyright] 2001 American Institute of Physics

  10. Spectral dynamics of square pulses in passively mode-locked fiber lasers

    Science.gov (United States)

    Semaan, Georges; Komarov, Andrey; Niang, Alioune; Salhi, Mohamed; Sanchez, François

    2018-02-01

    We investigate experimentally and numerically the spectral dynamics of square pulses generated in passively mode-locked fiber lasers under the dissipative soliton resonance. The features of the transition from the single-peak spectral profile to the doublet spectrum with increasing pump power are studied. The used master equation takes into account the gain saturation, the quadratic frequency dispersion of the gain and the refractive index, and the cubic-quintic nonlinearity of the losses and refractive index. Experimental data are obtained for an Er:Yb-doped fiber ring laser. The theoretical and experimental results are in good agreement with each other.

  11. Ring-shaped active mode-locked tunable laser using quantum-dot semiconductor optical amplifier

    Science.gov (United States)

    Zhang, Mingxiao; Wang, Yongjun; Liu, Xinyu

    2018-03-01

    In this paper, a lot of simulations has been done for ring-shaped active mode-locked lasers with quantum-dot semiconductor optical amplifier (QD-SOA). Based on the simulation model of QD-SOA, we discussed about the influence towards mode-locked waveform frequency and pulse caused by QD-SOA maximum mode peak gain, active layer loss coefficient, bias current, incident light pulse, fiber nonlinear coefficient. In the meantime, we also take the tunable performance of the laser into consideration. Results showed QD-SOA a better performance than original semiconductor optical amplifier (SOA) in recovery time, line width, and nonlinear coefficients, which makes it possible to output a locked-mode impulse that has a higher impulse power, narrower impulse width as well as the phase is more easily controlled. After a lot of simulations, this laser can realize a 20GHz better locked-mode output pulse after 200 loops, where the power is above 17.5mW, impulse width is less than 2.7ps, moreover, the tunable wavelength range is between 1540nm-1580nm.

  12. Multiple-Pulse Operation and Bound States of Solitons in Passive Mode-Locked Fiber Lasers

    Directory of Open Access Journals (Sweden)

    A. Komarov

    2012-01-01

    Full Text Available We present results of our research on a multiple-pulse operation of passive mode-locked fiber lasers. The research has been performed on basis of numerical simulation. Multihysteresis dependence of both an intracavity energy and peak intensities of intracavity ultrashort pulses on pump power is found. It is shown that the change of a number of ultrashort pulses in a laser cavity can be realized by hard as well as soft regimes of an excitation and an annihilation of new solitons. Bound steady states of interacting solitons are studied for various mechanisms of nonlinear losses shaping ultrashort pulses. Possibility of coding of information on basis of soliton trains with various bonds between neighboring pulses is discussed. The role of dispersive wave emitted by solitons because of lumped intracavity elements in a formation of powerful soliton wings is analyzed. It is found that such powerful wings result in large bounding energies of interacting solitons in steady states. Various problems of a soliton interaction in passive mode-locked fiber lasers are discussed.

  13. Influence of the nuclear Zeeman effect on mode locking in pulsed semiconductor quantum dots

    Science.gov (United States)

    Beugeling, Wouter; Uhrig, Götz S.; Anders, Frithjof B.

    2017-09-01

    The coherence of the electron spin in a semiconductor quantum dot is strongly enhanced by mode locking through nuclear focusing, where the synchronization of the electron spin to periodic pulsing is slowly transferred to the nuclear spins of the semiconductor material, mediated by the hyperfine interaction between these. The external magnetic field that drives the Larmor oscillations of the electron spin also subjects the nuclear spins to a Zeeman-like coupling, albeit a much weaker one. For typical magnetic fields used in experiments, the energy scale of the nuclear Zeeman effect is comparable to that of the hyperfine interaction, so that it is not negligible. In this work, we analyze the influence of the nuclear Zeeman effect on mode locking quantitatively. Within a perturbative framework, we calculate the Overhauser-field distribution after a prolonged period of pulsing. We find that the nuclear Zeeman effect can exchange resonant and nonresonant frequencies. We distinguish between models with a single type and with multiple types of nuclei. For the latter case, the positions of the resonances depend on the individual g factors, rather than on the average value.

  14. Electronic control of different generation regimes in mode-locked all-fibre F8 laser

    Science.gov (United States)

    Kobtsev, Sergey; Ivanenko, Aleksey; Kokhanovskiy, Alexey; Smirnov, Sergey

    2018-04-01

    We demonstrate for the first time an electronically controlled realisation of markedly different generation regimes in a mode-locked all-fibre figure-eight (F8) Yb-doped laser. Electronic adjustment of the ratio of pumping powers of two amplification stages in a nonlinear amplifying loop mirror enables the establishment of stable pulse generation regimes with different degrees of coherence and control over their parameters within relatively broad limits, with the pulse duration range exceeding a factor of two in the picosecond domain for coherent and incoherent pulses, the energy range exceeding an order of magnitude for incoherent pulses (2.2-24.8 nJ) and over a factor of 8 for coherent pulses (1.9-16.2 nJ). Adjustment of the pumping powers allows one to maintain the duration of the coherent pulses and to set their peak power in the range of 32.5-292.5 W. The proposed configuration of electronic control over the radiation parameters of a mode-locked all-fibre F8 laser enables reproducible generation of pulses of different types with specified parameters within a broad range of values.

  15. Dynamics of temporally localized states in passively mode-locked semiconductor lasers

    Science.gov (United States)

    Schelte, C.; Javaloyes, J.; Gurevich, S. V.

    2018-05-01

    We study the emergence and the stability of temporally localized structures in the output of a semiconductor laser passively mode locked by a saturable absorber in the long-cavity regime. For large yet realistic values of the linewidth enhancement factor, we disclose the existence of secondary dynamical instabilities where the pulses develop regular and subsequent irregular temporal oscillations. By a detailed bifurcation analysis we show that additional solution branches that consist of multipulse (molecules) solutions exist. We demonstrate that the various solution curves for the single and multipeak pulses can splice and intersect each other via transcritical bifurcations, leading to a complex web of solutions. Our analysis is based on a generic model of mode locking that consists of a time-delayed dynamical system, but also on a much more numerically efficient, yet approximate, partial differential equation. We compare the results of the bifurcation analysis of both models in order to assess up to which point the two approaches are equivalent. We conclude our analysis by the study of the influence of group velocity dispersion, which is only possible in the framework of the partial differential equation model, and we show that it may have a profound impact on the dynamics of the localized states.

  16. Systematic investigation of the temperature behavior of InAs/InP quantum nanostructure passively mode-locked lasers

    DEFF Research Database (Denmark)

    Klaime, K.; Piron, R.; Grillot, F.

    2013-01-01

    This paper aims to investigate the effects of the temperature on the mode-locking capability of two section InAs/InP quantum nanostructure (QN) passively mode locked lasers. Devices are made with multi-layers of self-assembled InAs QN either grown on InP(100) (5 quantum dashes (QDashes) layers......) or on InP (311)B (6 quantum dots (QDs) layers). Using an analytical model, the mode-locking stability map is extracted for the two types of QN as a function of optical absorption, cavity length, current density and temperature. We believe that this study is of first importance since it reports...... for the first time a systematic investigation of the temperature-dependence on the mode-locking properties of InAs/InP QN devices. Beside, a rigorous comparison between QDashes and QDs temperature dependence is proposed through a proper analysis of the mode-locking stability maps. Experimental results also show...

  17. Self-mode-locking operation of a diode-end-pumped Tm:YAP laser with watt-level output power

    Science.gov (United States)

    Zhang, Su; Zhang, Xinlu; Huang, Jinjer; Wang, Tianhan; Dai, Junfeng; Dong, Guangzong

    2018-03-01

    We report on a high power continuous wave (CW) self-mode-locked Tm:YAP laser pumped by a 792 nm laser diode. Without any additional mode-locking elements in the cavity, stable and self-starting mode-locking operation has been realized. The threshold pump power of the CW self-mode-locked Tm:YAP laser is only 5.4 W. The maximum average output power is as high as 1.65 W at the pump power of 12 W, with the repetition frequency of 468 MHz and the center wavelength of 1943 nm. To the best of our knowledge, this is the first CW self-mode-locked Tm:YAP laser. The experiment results show that the Tm:YAP crystal is a promising gain medium for realizing the high power self-mode-locking operation at 2 µm.

  18. Vortex phase-induced changes of the statistical properties of a partially coherent radially polarized beam.

    Science.gov (United States)

    Guo, Lina; Chen, Yahong; Liu, Xianlong; Liu, Lin; Cai, Yangjian

    2016-06-27

    Partially coherent radially polarized (PCRP) beam was introduced and generated in recent years. In this paper, we investigate the statistical properties of a PCRP beam embedded with a vortex phase (i.e., PCRP vortex beam). We derive the analytical formula for the cross-spectral density matrix of a PCRP vortex beam propagating through a paraxial ABCD optical system and analyze the statistical properties of a PCRP vortex beam focused by a thin lens. It is found that the statistical properties of a PCRP vortex beam on propagation are much different from those of a PCRP beam. The vortex phase induces not only the rotation of the beam spot, but also the changes of the beam shape, the degree of polarization and the state of polarization. We also find that the vortex phase plays a role of resisting the coherence-induced degradation of the intensity distribution and the coherence-induced depolarization. Furthermore, we report experimental generation of a PCRP vortex beam for the first time. Our results will be useful for trapping and rotating particles, free-space optical communications and detection of phase object.

  19. Spectral Stokes singularities of partially coherent radially polarized beams focused by a high numerical aperture objective

    International Nuclear Information System (INIS)

    Luo, Yamei; Lü, Baida

    2010-01-01

    The dynamic behavior of spectral Stokes singularities of partially coherent radially polarized beams focused by a high numerical aperture (NA) objective is studied by using the vectorial Debye diffraction theory and complex spectral Stokes fields. It is shown that there exist s 12 , s 23 , and s 31 singularities, as well as P (completely polarized) and U (unpolarized) singularities. The motion, pair creation and annihilation, and changes in the degree of polarization of s 12 , s 23 , and s 31 singularities, and the handedness reversal of s 12 singularities (C-points) may appear by varying a controlling parameter, such as the truncation parameter, NA, or spatial correlation length. The creation and annihilation occur for a pair of s 12 singularities with opposite topological charge but the same handedness, and for a pair of oppositely charged s 23 or s 31 singularities. The critical value of the truncation parameter, at which the pair annihilation takes place, increases as the semi-angle of the aperture lens (or, equivalently, NA) or spatial correlation length increases. The collision of an s 12 singularity with an L-line (s 3 = 0 contour) leads to a V-point, which is located at the intersection of contours of s 12 = 0 and s 23 = 0 (or s 31 = 0) and is unstable

  20. High-power terahertz optical pulse generation with a dual-wavelength harmonically mode-locked Yb:YAG laser

    International Nuclear Information System (INIS)

    Zhuang, W Z; Chang, M T; Su, K W; Huang, K F; Chen, Y F

    2013-01-01

    We report on high-power terahertz optical pulse generation with a dual-wavelength harmonically mode-locked Yb:YAG laser. A semiconductor saturable absorber mirror is developed to achieve synchronously mode-locked operation at two spectral bands centered at 1031.67 and 1049.42 nm with a pulse duration of 1.54 ps and a pulse repetition rate of 80.3 GHz. With a diamond heat spreader to improve the heat removal efficiency, the average output power can be up to 1.1 W at an absorbed pump power of 5.18 W. The autocorrelation traces reveal that the mode-locked pulse is modulated with a beat frequency of 4.92 THz and displays a modulation depth to be greater than 80%. (paper)

  1. Fields of an ultrashort tightly focused radially polarized laser pulse in a linear response plasma

    Science.gov (United States)

    Salamin, Yousef I.

    2017-10-01

    Analytical expressions for the fields of a radially polarized, ultrashort, and tightly focused laser pulse propagating in a linear-response plasma are derived and discussed. The fields are obtained from solving the inhomogeneous wave equations for the vector and scalar potentials, linked by the Lorenz gauge, in a plasma background. First, the scalar potential is eliminated using the gauge condition, then the vector potential is synthesized from Fourier components of an initial uniform distribution of wavenumbers, and the inverse Fourier transformation is carried out term-by-term in a truncated series (finite sum). The zeroth-order term in, for example, the axial electric field component is shown to model a pulse much better than its widely used paraxial approximation counterpart. Some of the propagation characteristics of the fields are discussed and all fields are shown to have manifested the expected limits for propagation in a vacuum.

  2. Nonlinear High-Energy Pulse Propagation in Graded-Index Multimode Optical Fibers for Mode-Locked Fiber Lasers

    Science.gov (United States)

    2014-12-23

    power kW at nm in a C-GIMF segment in the lowest order mode ; this pulse can be ob- tained from a typical titanium –sapphire mode-locked laser . A much...single- andmulticore double- clad and PCF lasers . He was a Senior Research Scientist at Corning Inc. from 2005 to 2008. He is currently an Assistant...High-Energy Pulse Propagation in Graded-Index Multimode Optical Fibers for Mode-Locked Fiber Lasers 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA9550-12-1

  3. High-power femtosecond pulse generation in a passively mode-locked Nd:SrLaAlO4 laser

    Science.gov (United States)

    Liu, Shan-De; Dong, Lu-Lu; Zheng, Li-He; Berkowski, Marek; Su, Liang-Bi; Ren, Ting-Qi; Peng, Yan-Dong; Hou, Jia; Zhang, Bai-Tao; He, Jing-Liang

    2016-07-01

    A high optical quality Nd:SrLaAlO4 (Nd:SLA) crystal was grown using the Czochralski method and showed broad fluorescence spectrum with a full width at half maximum value of 34 nm, which is beneficial for generating femtosecond laser pulses. A stable diode-pumped passively mode-locked femtosecond Nd:SLA laser with 458 fs pulse duration was achieved for the first time at a central wavelength of 1077.9 nm. The average output power of the continuous-wave mode-locked laser was 520 mW and the repetition rate was 78.5 MHz.

  4. 1.34 µm picosecond self-mode-locked Nd:GdVO4 watt-level laser

    Science.gov (United States)

    Han, Ming; Peng, Jiying; Li, Zuohan; Cao, Qiuyuan; Yuan, Ruixia

    2017-01-01

    With a simple linear configuration, a diode-pumped, self-mode-locked Nd:GdVO4 laser at 1.34 µm is experimentally demonstrated for the first time. Based on the aberrationless theory of self-focusing and thermal lensing effect, through designing and optimizing the resonator, a pulse width as short as 9.1 ps is generated at a repetition rate of 2.0 GHz and the average output power is 2.51 W. The optical conversion efficiency and the slope efficiency for the stable mode-locked operation are approximately 16.7% and 19.2%, respectively.

  5. Effect of the doped fibre length on soliton pulses of a bidirectional mode-locked fibre laser

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, H; Alwi Kutty, N A; Zulkifli, M Z; Harun, S W [Photonics Research Center (Department of Physics), University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2015-08-31

    A passively bidirectional mode-locked fibre laser is demonstrated using a highly concentrated erbium-doped fibre (EDF) as a gain medium. To accomplish mode-locked operation in a short cavity, use is made of carbon nanotubes (CNTs) as a saturable absorber. Soliton pulses are obtained at a wavelength of 1560 nm with a repetition rate ranging from 43.92 MHz to 46.97 MHz and pulse width stretching from 0.56 ps to 0.41 ps as the EDF length is reduced from 60 cm to 30 cm. (lasers)

  6. Analysis of hybrid mode-locking of two-section quantum dot lasers operating at 1.5 microm.

    Science.gov (United States)

    Heck, Martijn J R; Salumbides, Edcel J; Renault, Amandine; Bente, Erwin A J M; Oei, Yok-Siang; Smit, Meint K; van Veldhoven, René; Nötzel, Richard; Eikema, Kjeld S E; Ubachs, Wim

    2009-09-28

    For the first time a detailed study of hybrid mode-locking in two-section InAs/InP quantum dot Fabry-Pérot-type lasers is presented. The output pulses have a typical upchirp of approximately 8 ps/nm, leading to very elongated pulses. The mechanism leading to this typical pulse shape and the phase noise is investigated by detailed radio-frequency and optical spectral studies as well as time-domain studies. The pulse shaping mechanism in these lasers is found to be fundamentally different than the mechanism observed in conventional mode-locked laser diodes, based on quantum well gain or bulk material.

  7. Harmonic mode-locking and sub-round-trip time nonlinear dynamics of electro-optically controlled solid state laser

    Science.gov (United States)

    Gorbunkov, M. V.; Maslova, Yu Ya; Petukhov, V. A.; Semenov, M. A.; Shabalin, Yu V.; Tunkin, V. G.

    2018-03-01

    Harmonic mode-locking in a solid state laser due to optoelectronic control is studied numerically on the basis of two methods. The first one is detailed numeric simulation taking into account laser radiation fine time structure. It is shown that optimally chosen feedback delay leads to self-started mode-locking with generation of desired number of pulses in the laser cavity. The second method is based on discrete maps for short laser pulse energy. Both methods show that the application of combination of positive and negative feedback loops allows to reduce the period of regular nonlinear dynamics down to a fraction of a laser cavity round trip time.

  8. Report on first masing and single mode locking in a prebunched beam FEM oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, M.; Eichenbaum, A.; Kleinman, H. [Tel-Aviv Univ., Ramat-Aviv (Israel)] [and others

    1995-12-31

    Radiation characteristics of a table-top free electron maser (FEM) are described in this paper. The FEM employs a prebunched electron beam and is operated as an oscillator in the low-gain collective (Raman) regime. Using electron beam prebunching single mode locking at any one of the possible oscillation modes was obtained. The electron beam is prebunched by a microwave tube section before it is injected into the wiggler. By tuning the electron beam bunching frequency, the FEM oscillation frequency can be locked to any eigen frequency of the resonant waveguide cavity which is within the frequency band of net gain of the FEM. The oscillation build up process is sped up, when the FEM operates with a prebunched electron beam, and the build-up time of radiation is shortened significantly. First measurements of masing with and without prebunching and characterization of the emitted radiation are reported.

  9. Monolithic mode-locked lasers with deeply dry etched Bragg mirror

    DEFF Research Database (Denmark)

    Larsson, David; Yvind, Kresten; Hvam, Jørn Märcher

    Background: Semiconductor mode-locked lasers are attractive as components in futureultra high-speed telecommunication systems (160-640Gb/s); as picosecond pulse sources,clock-recovery devices and for demultiplexing in Optical Time Division Multiplexing(OTDM) systems. We have recently designed...... it possible to buy epitaxial wafers fromphotonic foundries as in the microelectronic industry.Design: The reflectivity spectrum from the total grating is calculated by matrixmultiplication of the individual periodic grating elements. The period of the grating,given by the mean effective index of the low....... The SiO2-film functions as a mask in the subsequent RIE of thesemiconductor (InP). We are now optimizing the semiconductor RIE to achieve 2 µmdeep waveguides and gratings with smooth vertical sidewalls and smooth bottom surface.This optimization involves optimizing the reaction chamber parameters: CH4/H2...

  10. Mode locking and quasiperiodicity in a discrete-time Chialvo neuron model

    Science.gov (United States)

    Wang, Fengjuan; Cao, Hongjun

    2018-03-01

    The two-dimensional parameter spaces of a discrete-time Chialvo neuron model are investigated. Our studies demonstrate that for all our choice of two parameters (i) the fixed point is destabilized via Neimark-Sacker bifurcation; (ii) there exist mode locking structures like Arnold tongues and shrimps, with periods organized in a Farey tree sequence, embedded in quasiperiodic/chaotic region. We determine analytically the location of the parameter sets where Neimark-Sacker bifurcation occurs, and the location on this curve where Arnold tongues of arbitrary period are born. Properties of the transition that follows the so-called two-torus from quasiperiodicity to chaos are presented clearly and proved strictly by using numerical simulations such as bifurcation diagrams, the largest Lyapunov exponent diagram on MATLAB and C++.

  11. Diode-pumped passively mode-locked sub-picosecond Yb:LuAG ceramic laser

    International Nuclear Information System (INIS)

    Zhu Jiang-Feng; Liu Kai; Wang Jun-Li; Yang Yu; Wang Hui-Bo; Gao Zi-Ye; Jiang Li; Xie Teng-Fei; Chao-Yu Li; Pan Yu-Bai; Wei Zhi-Yi

    2017-01-01

    In this paper the laser activities of a diode-pumped Yb:LuAG ceramic which was prepared by the solid-state reactive sintering method were reported. The maximum output power was 1.86 W in the continuous wave (CW) laser operation, corresponding to a slope efficiency of 53.6%. The CW laser could be tuned from 1030 to 1096 nm by inserting a prism in the cavity. With the assist of a semiconductor saturable absorber mirror (SESAM), passive mode-locking was realized, delivering sub-picosecond pulses with 933 fs duration and an average power of 532 mW at a repetition rate of 90.35 MHz. (paper)

  12. Mode locking in a bismuth fibre laser by using a SESAM

    International Nuclear Information System (INIS)

    Krylov, A A; Dvoirin, V V; Mashinsky, V M; Kryukov, P G; Okhotnikov, O G; Guina, M

    2008-01-01

    By using a semiconductor saturable-absorber mirror (SESAM) optimised for operation in the spectral range from 1100 to 1200 nm, passive mode locking is obtained in a cw bismuth-doped fibre laser. Pumping was performed by a cw ytterbium-doped fibre laser at a wavelength of 1075 nm. The operation of the laser is studied by using either a fibre Bragg grating or a loop fibre Sagnac mirror as the output resonator mirror. Stable laser pulses of duration from 50 ps to 3.5 ns, depending on the output mirror type, were generated. The pulse repetition rate was 11 MHz at a wavelength of ∼1160 nm and the maximum spectral width of 2.1 nm. The maximum average output power was 7.8 mW upon pumping by 1140 mW. (control of laser radiation parameters)

  13. Cascade mode locking: a possible route to chaos in the two-waves hamiltonian system

    International Nuclear Information System (INIS)

    Gell, Y.; Nakach, R.

    1989-06-01

    We present a numerical study of the two-waves Hamiltonian system which reveals the route to large scale stochasticity as a process based on the mode-locking phenomenon. The final chaos is reached after a cascade of lockings, appearing successively for different independent modes of oscillation in the system. Using a Fourier analysis, the different steps in this cascade process are detected by following the change in the frequency of the pronounced modes in the power spectrum; when changing the strength of the pertubation, one observes the locking of the relevant mode to a fixed frequency inherent to the system. It is shown that this mechanism allows for the generation of low frequency oscillations which, due to the nonlinear coupling existing in the system, combine with all the existing peaks into a raised spectrum consisting of broad diffuse patterns, which is the signature of chaotic motion

  14. Characterization of a FBG sensor interrogation system based on a mode-locked laser scheme.

    Science.gov (United States)

    Madrigal, Javier; Fraile-Peláez, Francisco Javier; Zheng, Di; Barrera, David; Sales, Salvador

    2017-10-02

    This paper is focused on the characterization of a fiber Bragg grating (FBG) sensor interrogation system based on a fiber ring laser with a semiconductor optical amplifier as the gain medium, and an in-loop electro-optical modulator. This system operates as a switchable active (pulsed) mode-locked laser. The operation principle of the system is explained theoretically and validated experimentally. The ability of the system to interrogate an array of different FBGs in wavelength and spatial domain is demonstrated. Simultaneously, the influence of several important parameters on the performance of the interrogation technique has been investigated. Specifically, the effects of the bandwidth and the reflectivity of the FBGs, the SOA gain, and the depth of the intensity modulation have been addressed.

  15. Soliton formation and evolution in passively-mode-locked lasers with ultralong anomalous-dispersion fibers

    International Nuclear Information System (INIS)

    Liu Xueming

    2011-01-01

    The soliton formation and evolution are numerically and experimentally investigated in passively-mode-locked lasers where pulses encounter ultralong anomalous-dispersion fibers. The pulse formation and evolution in lasers are determined by two balances, namely, nonlinearity and anomalous-dispersion balance and intracavity filtering and self-amplitude modulation balance. It is numerically found that a higher-energy soliton can be split into identical lower-energy multisolitons with exactly the same physical properties. Simulation results show that the separation of neighboring solitons is variational in the temporal domain. The temporal and spectral characteristics of solitons have large variations throughout the laser cavity, qualitatively distinct from the steady state of conventional solitons. The experimental observations confirm the theoretical predictions.

  16. Kerr-lens mode-locked Ti:Sapphire laser pumped by a single laser diode

    Science.gov (United States)

    Kopylov, D. A.; Esaulkov, M. N.; Kuritsyn, I. I.; Mavritskiy, A. O.; Perminov, B. E.; Konyashchenko, A. V.; Murzina, T. V.; Maydykovskiy, A. I.

    2018-04-01

    The performance of a Ti:sapphire laser pumped by a single 461 nm laser diode is presented for both the continuous-wave and the mode-locked regimes of operation. We introduce a simple astigmatism correction scheme for the laser diode beam consisting of two cylindrical lenses affecting the pump beam along the fast axis of the laser diode, which provides the mode-matching between the nearly square-shaped pump beam and the cavity mode. The resulting efficiency of the suggested Ti:Sapphire oscillator pumped by such a laser diode is analyzed for the Ti:sapphire crystals of 3 mm, 5 mm and 10 mm in length. We demonstrate that such a system provides the generation of ultrashort pulses up to 15 fs in duration with the repetition rate of 87 MHz, the average power being 170 mW.

  17. Electromagnetic frozen waves with radial, azimuthal, linear, circular, and elliptical polarizations

    Science.gov (United States)

    Corato-Zanarella, Mateus; Zamboni-Rached, Michel

    2016-11-01

    Frozen waves (FWs) are a class of diffraction- and attenuation-resistant beams whose intensity pattern along the direction of propagation can be chosen arbitrarily, thus making them relevant for engineering the spatial configuration of optical fields. To date, analyses of such beams have been done essentially for the scalar case, with the vectorial nature of the electromagnetic fields often neglected. Although it is expected that the field components keep the fundamental properties of the scalar FWs, a deeper understanding of their electromagnetic counterparts is mandatory in order to exploit their different possible polarization states. The purpose of this paper is to study the properties of electromagnetic FWs with radial, azimuthal, linear, circular, and elliptical polarizations under paraxial and nonparaxial regimes in nonabsorbing media. An intensity pattern is chosen for a scalar FW, and the vectorial solutions are built after it via the use of Maxwell's equations. The results show that the field components and the longitudinal component of the time-averaged Poynting vector closely follow the pattern chosen even under highly nonparaxial conditions, showing the robustness of the FW structure to parameters variations.

  18. Tm-doped fiber laser mode-locking with MoS2-polyvinyl alcohol saturable absorber

    Science.gov (United States)

    Cao, Liming; Li, Xing; Zhang, Rui; Wu, Duanduan; Dai, Shixun; Peng, Jian; Weng, Jian; Nie, Qiuhua

    2018-03-01

    We have designed an all-fiber passive mode-locking thulium-doped fiber laser that uses molybdenum disulfide (MoS2) as a saturable absorber (SA) material. A free-standing few-layer MoS2-polyvinyl alcohol (PVA) film is fabricated by liquid phase exfoliation (LPE) and is then transferred onto the end face of a fiber connector. The excellent saturable absorption of the fabricated MoS2-based SA allows the laser to output soliton pulses at a pump power of 500 mW. Fundamental frequency mode-locking is realized at a repetition frequency of 13.9 MHz. The central wavelength is 1926 nm, the 3 dB spectral bandwidth is 2.86 nm and the pulse duration is 1.51 ps. Additionally, third-order harmonic mode-locking of the laser is also achieved. The pulse duration is 1.33 ps, which is slightly narrower than the fundamental frequency mode-locking bandwidth. The experimental results demonstrate that the few-layer MoS2-PVA SA is promising for use in 2 μm laser systems.

  19. Investigations of repetition rate stability of a mode-locked quantum dot semiconductor laser in an auxiliary optical fiber cavity

    DEFF Research Database (Denmark)

    Breuer, Stefan; Elsässer, Wolfgang; McInerney, J.G.

    2010-01-01

    We have investigated experimentally the pulse train (mode beating) stability of a monolithic mode-locked multi-section quantum-dot laser with an added passive auxiliary optical fiber cavity. Addition of the weakly coupled (¿ -24dB) cavity reduces the current-induced shift d¿/dI of the principal...

  20. 5-GHz passively mode-locked quantum dot ring laser diode at 1.5 μm

    NARCIS (Netherlands)

    Heck, M.J.R.; Renault, A.; Bente, E.A.J.M.; Oei, Y.S.; Smit, M.K.; Eikema, K.S.E.; Ubachs, W.; Anantathanasarn, S.; Nötzel, R.

    2008-01-01

    In this paper we present the first observation of passive mode-locking in a quantum dot (QD) ring laser operating at wavelengths around 1.5 µm. The device consists of an 18-mm long (electrically pumped) ring cavity, corresponding to a 5-GHz roundtrip frequency. The waveguide width is 2 µm. A

  1. All-fiber Yb-doped fiber laser passively mode-locking by monolayer MoS2 saturable absorber

    Science.gov (United States)

    Zhang, Yue; Zhu, Jianqi; Li, Pingxue; Wang, Xiaoxiao; Yu, Hua; Xiao, Kun; Li, Chunyong; Zhang, Guangyu

    2018-04-01

    We report on an all-fiber passively mode-locked ytterbium-doped (Yb-doped) fiber laser with monolayer molybdenum disulfide (ML-MoS2) saturable absorber (SA) by three-temperature zone chemical vapor deposition (CVD) method. The modulation depth, saturation fluence, and non-saturable loss of this ML-MoS2 are measured to be 3.6%, 204.8 μJ/cm2 and 6.3%, respectively. Based on this ML-MoS2SA, a passively mode-locked Yb-doped fiber laser has been achieved at 979 nm with pulse duration of 13 ps and repetition rate of 16.51 MHz. A mode-locked fiber laser at 1037 nm is also realized with a pulse duration of 475 ps and repetition rate of 26.5 MHz. To the best of our knowledge, this is the first report that the ML-MoS2 SA is used in an all-fiber Yb-doped mode-locked fiber laser at 980 nm. Our work further points the excellent saturable absorption ability of ML-MoS2 in ultrafast photonic applications.

  2. Dual wavelength Mode-Locking of InAs/InP quantum dot laser diodes at 1.5µm

    NARCIS (Netherlands)

    Tahvili, M.S.; Heck, M.J.R.; Nötzel, R.; Smit, M.K.; Bente, E.A.J.M.

    2011-01-01

    We report on stable dual-wavelength mode-locking of 3.1GHz and 10GHz two-section InAs/InP(100) quantum dot laser diodes. Evaluation of relative time delay between different spectral components indicates opposite sign of chirp over the two spectral lobes

  3. Output Power Limitations and Improvements in Passively Mode Locked GaAs/AlGaAs Quantum Well Lasers.

    Science.gov (United States)

    Tandoi, Giuseppe; Ironside, Charles N; Marsh, John H; Bryce, A Catrina

    2012-03-01

    We report a novel approach for increasing the output power in passively mode locked semiconductor lasers. Our approach uses epitaxial structures with an optical trap in the bottom cladding that enlarges the vertical mode size to scale the pulse saturation energy. With this approach we demonstrate a very high peak power of 9.8 W per facet, at a repetition rate of 6.8 GHz and with pulse duration of 0.71 ps. In particular, we compare two GaAs/AlGaAs epilayer designs, a double quantum well design operating at 830 nm and a single quantum well design operating at 795 nm, with vertical mode sizes of 0.5 and 0.75 μm, respectively. We show that a larger mode size not only shifts the mode locking regime of operation towards higher powers, but also produces other improvements in respect of two main failure mechanisms that limit the output power: the catastrophic optical mirror damage and the catastrophic optical saturable absorber damage. For the 830 nm material structure, we also investigate the effect of non-absorbing mirrors on output power and mode locked operation of colliding pulse mode locked lasers.

  4. Pulse-forming and line-broadening in AM mode locking of the TEA-CO2laser

    NARCIS (Netherlands)

    Witteman, W.J.; Olbertz, A.H.M.

    1977-01-01

    The present paper describes AM mode locking for homogeneously broadened systems, a procedure for measuring linewidths under laser conditions, and finally, experimental results for a 1-atm CO2laser. Working in the frequency domain, analytic solutions are given for the pulse bandwidth and pulse shape

  5. Mode-locked ytterbium fiber lasers using a large modulation depth carbon nanotube saturable absorber without an additional spectral filter

    International Nuclear Information System (INIS)

    Pan, Y Z; Miao, J G; Liu, W J; Huang, X J; Wang, Y B

    2014-01-01

    We demonstrate an all-normal-dispersion ytterbium (Yb)-doped fiber laser mode-locked by a higher modulation depth carbon nanotube saturable absorber (CNT-SA) based on an evanescent field interaction scheme. The laser cavity consists of pure normal dispersion fibers without dispersion compensation and an additional spectral filter. It is exhibited that the higher modulation depth CNT-SA could contribute to stabilize the mode-locking operation within a limited range of pump power and generate the highly chirped pulses with a high-energy level in the cavity with large normal dispersion and strong nonlinearity. Stable mode-locked pulses with a maximal energy of 29 nJ with a 5.59 MHz repetition rate at the operating wavelength around 1085 nm have been obtained. The maximal time-bandwidth product is 262.4. The temporal and spectral characteristics of pulses versus pump power are demonstrated. The experimental results suggest that the CNT-SA provides a sufficient nonlinear loss to compensate high nonlinearity and catch up the gain at a different pump power and thus leads to the stable mode locking. (letter)

  6. Dual-wavelength passive and hybrid mode-locking of 3, 4.5 and 10 GHz InAs/InP(100) quantum dot lasers

    NARCIS (Netherlands)

    Tahvili, M.S.; Du, L.; Heck, M.J.R.; Nötzel, R.; Smit, M.K.; Bente, E.A.J.M.

    2012-01-01

    We present an investigation of passive and hybrid mode-locking in Fabry-Pérot type two-section InAs/InP(100) quantum dot lasers that show dual wavelength operation. Over the whole current and voltage range for mode-locking of these lasers, the optical output spectra show two distinct lobes. The two

  7. Passive mode-locking dynamics in a 3.1GHz quantum dot laser diode operating around 1.5μm

    NARCIS (Netherlands)

    Tahvili, M.S.; Heck, M.J.R.; Nötzel, R.; Smit, M.K.; Bente, E.A.J.M.

    2010-01-01

    We report on passive mode-locking in a 3.1GHz InAs/InP(100) quantum dot laser diode operating around 1.5µm. The range of stable passive mode-locking, detailed measurements of the linewidth of the optical modes and the phase modulation in output pulses are presented.

  8. Simultaneous Q-switching and mode-locking in an intracavity frequency doubled diode-pumped Nd:YVO4 / KTP green laser with Cr4+:YAG

    International Nuclear Information System (INIS)

    Mukhopadhyay, P. K.; Ranganathan, K.; George, J.; Nathan, T. P. S.; Alsous, M. B.

    2007-01-01

    We report intracavity second harmonic (at 532 nm) generation in passively Q-switched mode-locked Nd: YVO4 laser. The width of a typical Q-switched envelope of the mode locked pulses for the green laser was around 65 ± 5 ns and the repetition rate for the mode locked pulses was 400 MHz. The intracavity frequency doubling significantly improves the depth of modulation of the mode locked pulses. The peak power of a single mode locked green pulse near the center of the Q-switched envelope was estimated to be more than 2kw and the average green power was 6 times higher than the CW green power at an incident diode pump power of 6W. (author)

  9. Electron acceleration by a radially polarized laser pulse during ionization of low density gases

    Directory of Open Access Journals (Sweden)

    Kunwar Pal Singh

    2011-03-01

    Full Text Available The acceleration of electrons by a radially polarized intense laser pulse has been studied. The axial electric field of the laser is responsible for electron acceleration. The axial electric field increases with decreasing laser spot size; however, the laser pulse gets defocused sooner for smaller values and the electrons do not experience high electric field for long, reducing the energy they can reach. The electron remains confined in the electric field of the laser for longer and the electron energy peaks for the normalized laser spot size nearly equal to the normalized laser intensity parameter. Electron energy peaks for initial laser phase ϕ_{0}=π due to accelerating laser phase and decreases with transverse initial position of the electrons. The energy and angle of the emittance spectrum of the electrons generated during ionization of krypton and argon at low densities have been obtained and a right choice of laser parameters has been suggested to obtain high energy quasimonoenergetic collimated electron beams. It has been found that argon is more suitable than krypton to obtain high energy electron beams due to higher ionization potential of inner shells for the former.

  10. Evidence for non-radial fields in the Sun's photosphere and a possible explanation of the polar magnetic signal

    International Nuclear Information System (INIS)

    Pope, T.

    1975-01-01

    The appearance of the Hα fibrils suggests the presence of magnetic fields inclined at noticeably non-radial angles in the Sun's chromosphere. Evidence is presented to suggest that these angles continue into the photosphere. The presence even of small non-radial inclinations can significantly affect the appearance of regions observed by a longitudinal mangetograph. In particular, a simple bipolar loop can appear unbalanced when viewed near the limb. It is suggested that the observed polar signal may be nothing more than a geometric effect arising when a balanced but systematically aligned array of bipolar pairs is viewed at an angle. (Auth.)

  11. Hybrid silicon mode-locked laser with improved RF power by impedance matching

    Science.gov (United States)

    Tossoun, Bassem; Derickson, Dennis; Srinivasan, Sudharsanan; Bowers, John

    2015-02-01

    We design and discuss an impedance matching solution for a hybrid silicon mode-locked laser diode (MLLD) to improve peak optical power coming from the device. In order to develop an impedance matching solution, a thorough measurement and analysis of the MLLD as a function of bias on each of the laser segments was carried out. A passive component impedance matching network was designed at the operating frequency of 20 GHz to optimize RF power delivery to the laser. The hybrid silicon laser was packaged together in a module including the impedance matching circuit. The impedance matching design resulted in a 6 dB (electrical) improvement in the detected modulation spectrum power, as well as approximately a 10 dB phase noise improvement, from the MLLD. Also, looking ahead to possible future work, we discuss a Step Recovery Diode (SRD) driven impulse generator, which wave-shapes the RF drive to achieve efficient injection. This novel technique addresses the time varying impedance of the absorber as the optical pulse passes through it, to provide optimum optical pulse shaping.

  12. Stabilization of self-mode-locked quantum dash lasers by symmetric dual-loop optical feedback

    Science.gov (United States)

    Asghar, Haroon; Wei, Wei; Kumar, Pramod; Sooudi, Ehsan; McInerney, John. G.

    2018-02-01

    We report experimental studies of the influence of symmetric dual-loop optical feedback on the RF linewidth and timing jitter of self-mode-locked two-section quantum dash lasers emitting at 1550 nm. Various feedback schemes were investigated and optimum levels determined for narrowest RF linewidth and low timing jitter, for single-loop and symmetric dual-loop feedback. Two symmetric dual-loop configurations, with balanced and unbalanced feedback ratios, were studied. We demonstrate that unbalanced symmetric dual loop feedback, with the inner cavity resonant and fine delay tuning of the outer loop, gives narrowest RF linewidth and reduced timing jitter over a wide range of delay, unlike single and balanced symmetric dual-loop configurations. This configuration with feedback lengths 80 and 140 m narrows the RF linewidth by 4-67x and 10-100x, respectively, across the widest delay range, compared to free-running. For symmetric dual-loop feedback, the influence of different power split ratios through the feedback loops was determined. Our results show that symmetric dual-loop feedback is markedly more effective than single-loop feedback in reducing RF linewidth and timing jitter, and is much less sensitive to delay phase, making this technique ideal for applications where robustness and alignment tolerance are essential.

  13. Compact mode-locked diode laser system for high precision frequency comparisons in microgravity

    Science.gov (United States)

    Christopher, H.; Kovalchuk, E. V.; Wicht, A.; Erbert, G.; Tränkle, G.; Peters, A.

    2017-11-01

    Nowadays cold atom-based quantum sensors such as atom interferometers start leaving optical labs to put e.g. fundamental physics under test in space. One of such intriguing applications is the test of the Weak Equivalence Principle, the Universality of Free Fall (UFF), using different quantum objects such as rubidium (Rb) and potassium (K) ultra-cold quantum gases. The corresponding atom interferometers are implemented with light pulses from narrow linewidth lasers emitting near 767 nm (K) and 780 nm (Rb). To determine any relative acceleration of the K and Rb quantum ensembles during free fall, the frequency difference between the K and Rb lasers has to be measured very accurately by means of an optical frequency comb. Micro-gravity applications not only require good electro-optical characteristics but are also stringent in their demand for compactness, robustness and efficiency. For frequency comparison experiments the rather complex fiber laser-based frequency comb system may be replaced by one semiconductor laser chip and some passive components. Here we present an important step towards this direction, i.e. we report on the development of a compact mode-locked diode laser system designed to generate a highly stable frequency comb in the wavelength range of 780 nm.

  14. Electrical addressing and temporal tweezing of localized pulses in passively mode-locked semiconductor lasers

    Science.gov (United States)

    Javaloyes, J.; Camelin, P.; Marconi, M.; Giudici, M.

    2017-08-01

    This work presents an overview of a combined experimental and theoretical analysis on the manipulation of temporal localized structures (LSs) found in passively Vertical-Cavity Surface-Emitting Lasers coupled to resonant saturable absorber mirrors. We show that the pumping current is a convenient parameter for manipulating the temporal Localized Structures, also called localized pulses. While short electrical pulses can be used for writing and erasing individual LSs, we demonstrate that a current modulation introduces a temporally evolving parameter landscape allowing to control the position and the dynamics of LSs. We show that the localized pulses drifting speed in this landscape depends almost exclusively on the local parameter value instead of depending on the landscape gradient, as shown in quasi-instantaneous media. This experimental observation is theoretically explained by the causal response time of the semiconductor carriers that occurs on an finite timescale and breaks the parity invariance along the cavity, thus leading to a new paradigm for temporal tweezing of localized pulses. Different modulation waveforms are applied for describing exhaustively this paradigm. Starting from a generic model of passive mode-locking based upon delay differential equations, we deduce the effective equations of motion for these LSs in a time-dependent current landscape.

  15. Picosecond pulses from wavelength-swept continuous-wave Fourier domain mode-locked lasers.

    Science.gov (United States)

    Eigenwillig, Christoph M; Wieser, Wolfgang; Todor, Sebastian; Biedermann, Benjamin R; Klein, Thomas; Jirauschek, Christian; Huber, Robert

    2013-01-01

    Ultrafast lasers have a crucial function in many fields of science; however, up to now, high-energy pulses directly from compact, efficient and low-power semiconductor lasers are not available. Therefore, we introduce a new approach based on temporal compression of the continuous-wave, wavelength-swept output of Fourier domain mode-locked lasers, where a narrowband optical filter is tuned synchronously to the round-trip time of light in a kilometre-long laser cavity. So far, these rapidly swept lasers enabled orders-of-magnitude speed increase in optical coherence tomography. Here we report on the generation of ~60-70 ps pulses at 390 kHz repetition rate. As energy is stored optically in the long-fibre delay line and not as population inversion in the laser-gain medium, high-energy pulses can now be generated directly from a low-power, compact semiconductor-based oscillator. Our theory predicts subpicosecond pulses with this new technique in the future.

  16. Monolithic mode locked DBR laser with multiple-bandgap MQW structure realized by selective area growth

    Energy Technology Data Exchange (ETDEWEB)

    Schilling, M.; Bouayad-Amine, J.; Feeser, T.; Haisch, H.; Kuehn, E.; Lach, E.; Satzke, K.; Weber, J.; Zielinski, E. [Alcatel Telecom, Stuttgart (Germany). Research Div.

    1996-12-31

    The realization of novel monolithically integrated multiple-segment pulse laser sources in InGaAsP MQW technology is reported. The MQW layers for all functional sections of these devices, the modulator, the active (gain) and the passive waveguide, as well as the Bragg section were grown in a single selective area growth (SAG) step by LP-MOVPE on SiO{sub 2} patterned 2 inch InP substrates. Due to a properly selected pattern geometry 3 different bandgap regions with smooth interfaces are thereby formed along the laser cavity. The more than 4 mm long DBR lasers which exhibit a threshold current as low as 30 mA were mode locked by an intra-cavity electroabsorption modulator applying a sinusoidal voltage at around 10 GHz. In this way an optical pulse train with pulse widths < 13 ps (measured with a streak camera) and high extinction ratio was generated. A time-bandwidth product of 0.5 close to the Fourier limit is obtained. This device is very attractive for signal generation in 40 Gb/s OTDM transmission systems at 1.55 {micro}m wavelength.

  17. Observations of the Earth's polar cleft at large radial distances with the Hawkeye 1 magnetometer

    International Nuclear Information System (INIS)

    Farrell, W.M.; Van Allen, J.A.

    1990-01-01

    Based on 364-spacecraft passes through the dayside region, the position of the polar cleft at large redial distances was determined with the magnetometer flown on Hawkeye 1. This data set represents one of the largest to investigate the high-latitude region at large radial distances, making it ideal for the study of the cusp and cleft region. Identification of the cleft depended on noting strong negative deviations of the magnetic field strength in the region from that of the dipole field. In solar magnetic coordinates, cleft observations were found between 40 degree and 70 degree latitude and ±75 degree longitude, while in geocentric magnetospheric coordinates, these observations were found between 20 degree and 75 degree latitude and ± 75 degree longitude. The extreme longitudinal extent of 150 degree is larger than those reported in some previous studies. Large magnetic depressions associated with the cleft extend out to 12 R E . Beyond this point, low model dipole field strengths make the determination of the cleft based on magnetic depressions unreliable. The cleft occurrences fall within an oval in magnetic latitude and longitude, but this oval is of a statistical nature and cannot be interpreted as the shape of the region at a given moment. As reported in other studies, the cleft was observed to shift to lower latitudes as compared to its quiet time geometry during periods when Kp was large and when the interplanetary magnetic field (IMF) pointed in a southerly direction. A southerly shift was also observed when th solar wind bulk flow speed, V sw , was large (>450 km/s), and the region might have enlarged when solar wind pressure, P sw , was large. The variation of the cleft latitude with V sw and P sw has not been thoroughly examined in previous studies

  18. Hysteresis in the tearing mode locking/unlocking due to resonant magnetic perturbations in EXTRAP T2R

    Science.gov (United States)

    Fridström, R.; Frassinetti, L.; Brunsell, P. R.

    2015-10-01

    The physical mechanisms behind the hysteresis in the tearing mode locking and unlocking to a resonant magnetic perturbation (RMP) are experimentally studied in EXTRAP T2R reversed-field pinch. The experiments show that the electromagnetic and the viscous torque increase with increasing perturbation amplitude until the mode locks to the wall. At the wall-locking, the plasma velocity reduction profile is peaked at the radius where the RMP is resonant. Thereafter, the viscous torque drops due to the relaxation of the velocity in the central plasma. This is the main reason for the hysteresis in the RMP locking and unlocking amplitude. The increased amplitude of the locked tearing mode produces further deepening of the hysteresis. Both experimental results are in qualitative agreement with the model in Fitzpatrick et al (2001 Phys. Plasmas 8 4489)

  19. Short pulse generation from a passively mode-locked fiber optical parametric oscillator with optical time-stretch.

    Science.gov (United States)

    Qiu, Yi; Wei, Xiaoming; Du, Shuxin; Wong, Kenneth K Y; Tsia, Kevin K; Xu, Yiqing

    2018-04-16

    We propose a passively mode-locked fiber optical parametric oscillator assisted with optical time-stretch. Thanks to the lately developed optical time-stretch technique, the onset oscillating spectral components can be temporally dispersed across the pump envelope and further compete for the parametric gain with the other parts of onset oscillating sidebands within the pump envelope. By matching the amount of dispersion in optical time-stretch with the pulse width of the quasi-CW pump and oscillating one of the parametric sidebands inside the fiber cavity, we numerically show that the fiber parametric oscillator can be operated in a single pulse regime. By varying the amount of the intracavity dispersion, we further verify that the origin of this single pulse mode-locking regime is due to the optical pulse stretching and compression.

  20. Wavelength-stepped, actively mode-locked fiber laser based on wavelength-division-multiplexed optical delay lines

    Science.gov (United States)

    Lee, Eunjoo; Kim, Byoung Yoon

    2017-12-01

    We propose a new scheme for an actively mode-locked wavelength-swept fiber laser that produces a train of discretely wavelength-stepped pulses from a short fiber cavity. Pulses with different wavelengths are split and combined by standard wavelength division multiplexers with fiber delay lines. As a proof of concept, we demonstrate a laser using an erbium doped fiber amplifier and commercially available wavelength-division multiplexers with wavelength spacing of 0.8 nm. The results show simultaneous mode-locking at three different wavelengths. Laser output parameters in time domain, optical and radio frequency spectral domain, and the noise characteristics are presented. Suggestions for the improved design are discussed.

  1. Structure of picosecond pulses of a Q-switched and mode-locked diode-pumped Nd:YAG laser

    Energy Technology Data Exchange (ETDEWEB)

    Donin, V I; Yakovin, D V; Gribanov, A V [Institute of Automation and Electrometry, Siberian Branch of the Russian Academy of Sciences, Novosibirsk (Russian Federation)

    2015-12-31

    The pulse duration of a diode-pumped Nd:YAG laser, in which Q-switching with mode-locking (QML regime) is achieved using a spherical mirror and a travelling-wave acousto-optic modulator, is directly measured with a streak camera. It is found that the picosecond pulses can have a non-single-pulse structure, which is explained by excitation of several competing transverse modes in the Q-switching regime with a pulse repetition rate of 1 kHz. In the case of cw mode-locking (without Q-switching), a new (auto-QML) regime is observed, in which the pulse train repetition rate is determined by the frequency of the relaxation oscillations of the laser field while the train contains single picosecond pulses. (control of laser radiation parameters)

  2. 18-THz-wide optical frequency comb emitted from monolithic passively mode-locked semiconductor quantum-well laser

    Science.gov (United States)

    Lo, Mu-Chieh; Guzmán, Robinson; Ali, Muhsin; Santos, Rui; Augustin, Luc; Carpintero, Guillermo

    2017-10-01

    We report on an optical frequency comb with 14nm (~1.8 THz) spectral bandwidth at -3 dB level that is generated using a passively mode-locked quantum-well (QW) laser in photonic integrated circuits (PICs) fabricated through an InP generic photonic integration technology platform. This 21.5-GHz colliding-pulse mode-locked laser cavity is defined by on-chip reflectors incorporating intracavity phase modulators followed by an extra-cavity SOA as booster amplifier. A 1.8-THz-wide optical comb spectrum is presented with ultrafast pulse that is 0.35-ps-wide. The radio frequency beat note has a 3-dB linewidth of 450 kHz and 35-dB SNR.

  3. Compact 84 GHz passive mode-locked fiber laser using dual-fiber coupled fused-quartz microresonator

    Science.gov (United States)

    Liu, Tze-An; Hsu, Yung; Chow, Chi-Wai; Chuang, Yi-Chen; Ting, Wei-Jo; Wang, Bo-Chun; Peng, Jin-Long; Chen, Guan-Hong; Chang, Yuan-Chia

    2017-10-01

    We propose and demonstrate a compact and portable-size 84-GHz passive mode-locked fiber laser, in which a dual-fiber coupled fused-quartz microresonator is employed as the intracavity optical comb filter as well as the optical nonlinear material for optical frequency comb generation. About eight coherent optical tones can be generated in the proposed fiber laser. The 20-dB bandwidth is larger than 588 GHz. The full-width half-maximum pulse-width of the proposed laser is 2.5 ps. We also demonstrate the feasibility of using the proposed passive mode-locked fiber laser to carry a 5-Gbit/s on-off-keying signal and transmit over 20-km standard single mode fiber. A 7% forward error correction requirement can be achieved, showing the proposed fiber laser can be a potential candidate for fiber-wireless applications.

  4. Adaptation to the edge of chaos in a self-starting Kerr-lens mode-locked laser

    Science.gov (United States)

    Hsu, C. C.; Lin, J. H.; Hsieh, W. F.

    2009-08-01

    We experimentally and numerically demonstrated that self-focusing acts as a slow-varying control parameter that suppresses the transient chaos to reach a stable mode-locking (ML) state in a self-starting Kerr-lens mode-locked Ti:sapphire laser without external modulation and feedback control. Based on Fox-Li’s approach, including the self-focusing effect, the theoretical simulation reveals that the self-focusing effect is responsible for the self-adaptation. The self-adaptation occurs at the boundary between the chaotic and continuous output regions in which the laser system begins with a transient chaotic state with fractal correlation dimension, and then evolves with reducing dimension into the stable ML state.

  5. 256 fs, 2 nJ soliton pulse generation from MoS2 mode-locked fiber laser

    Science.gov (United States)

    Jiang, Zike; Chen, Hao; Li, Jiarong; Yin, Jinde; Wang, Jinzhang; Yan, Peiguang

    2017-12-01

    We demonstrate an Er-doped fiber laser (EDFL) mode-locked by a MoS2 saturable absorber (SA), delivering a 256 fs, 2 nJ soliton pulse at 1563.4 nm. The nonlinear property of the SA prepared by magnetron sputtering deposition (MSD) is measured with a modulation depth (MD) of ∼19.48% and a saturable intensity of 4.14 MW/cm2. To the best of our knowledge, the generated soliton pulse has the highest pulse energy of 2 nJ among the reported mode-locked EDFLs based on transition metal dichalcogenides (TMDs). Our results indicate that MSD-grown SAs could offer an exciting platform for high pulse energy and ultrashort pulse generation.

  6. Mode-locking operation of a flash-lamp-pumped Nd:YAG laser at 1.064 μm with Zakharov-Manakov solitons

    International Nuclear Information System (INIS)

    Andreana, M; Tonello, A; Couderc, V; Baronio, F; Conforti, M; De Angelis, C

    2011-01-01

    We report experimental results on the mode-locked operation of a flash-lamp-pumped Nd:YAG laser at 1.064 μm. The KTP crystal, which induces passive mode-locking, exploits the existence and properties of spatial Zakharov-Manakov soliton dynamics. A train of pulses with duration close to 100 ps, repetition rate of 136 MHz and modulation depth almost 100% has been produced. The mode-locked pulses are modulated with a longer 180 ns pulse envelope with repetition rate of 10 Hz

  7. Free-standing nano-scale graphite saturable absorber for passively mode-locked erbium doped fiber ring laser

    International Nuclear Information System (INIS)

    Lin, Y-H; Lin, G-R

    2012-01-01

    The free-standing graphite nano-particle located between two FC/APC fiber connectors is employed as the saturable absorber to passively mode-lock the ring-type Erbium-doped fiber laser (EDFL). The host-solvent-free graphite nano-particles with sizes of 300 – 500 nm induce a comparable modulation depth of 54%. The interlayer-spacing and lattice fluctuations of polished graphite nano-particles are observed from the weak 2D band of Raman spectrum and the azimuth angle shift of –0.32 ° of {002}-orientation dependent X-ray diffraction peak. The graphite nano-particles mode-locked EDFL generates a 1.67-ps pulsewidth at linearly dispersion-compensated regime with a repetition rate of 9.1 MHz. The time-bandwidth product of 0.325 obtained under a total intra-cavity group-delay-dispersion of –0.017 ps 2 is nearly transform-limited. The extremely high stability of the nano-scale graphite saturable absorber during mode-locking is observed at an intra-cavity optical energy density of 7.54 mJ/cm 2 . This can be attributed to its relatively high damage threshold (one order of magnitude higher than the graphene) on handling the optical energy density inside the EDFL cavity. The graphite nano-particle with reduced size and sufficient coverage ratio can compete with other fast saturable absorbers such as carbon nanotube or graphene to passively mode-lock fiber lasers with decreased insertion loss and lasing threshold

  8. Actively mode-locked diode laser with a mode spacing stability of ∼6 × 10{sup -14}

    Energy Technology Data Exchange (ETDEWEB)

    Zakharyash, V F; Kashirsky, A V; Klementyev, V M [Institute of Laser Physics, Siberian Branch, Russian Academy of Sciences, Novosibirsk (Russian Federation)

    2015-10-31

    We have studied mode spacing stability in an actively mode-locked external-cavity semiconductor laser. It has been shown that, in the case of mode spacing pulling to the frequency of a highly stable external microwave signal produced by a hydrogen standard (stability of 4 × 10{sup -14} over an averaging period τ = 10 s), this configuration ensures a mode spacing stability of 5.92 × 10{sup -14} (τ = 10 s). (control of radiation parameters)

  9. Passive harmonic mode locking by mode selection in Fabry-Perot diode lasers with patterned effective index.

    Science.gov (United States)

    Bitauld, David; Osborne, Simon; O'Brien, Stephen

    2010-07-01

    We demonstrate passive harmonic mode locking of a quantum-well laser diode designed to support a discrete comb of Fabry-Perot modes. Spectral filtering of the mode spectrum was achieved using a nonperiodic patterning of the cavity effective index. By selecting six modes spaced at twice the fundamental mode spacing, near-transform-limited pulsed output with 2 ps pulse duration was obtained at a repetition rate of 100 GHz.

  10. Generation of bound states of pulses in a SESAM mode-locked Cr:ZnSe laser

    Science.gov (United States)

    Bu, Xiangbao; Shi, Yuhang; Xu, Jia; Li, Huijuan; Wang, Pu

    2018-06-01

    We report on the generation of bound states of pulses in a SESAM mode-locked Cr:ZnSe laser around 2415 nm. A thulium-doped double-clad fiber laser at 1908 nm was used as the pump source. Bound states with various pulse separations at different dispersion regimes were obtained. Especially, in the anomalous dispersion regime, vibrating bound state of solitons exhibiting an evolving phase was obtained.

  11. Increasing the mode-locking efficiency of a cw solid-state laser with an auxiliary cavity

    International Nuclear Information System (INIS)

    Kalashnikov, V.L.; Kalosha, V.P.; Mikhailov, V.P.; Demchuk, M.I.

    1992-01-01

    It is predicted theoretically that the efficiency of self-mode locking can be raised by means of a bleachable shutter in the main cavity or an auxiliary cavity. The laser emits a stable train of ultrashort pulses under these conditions. The theory is based on a fluctuation model of the operation of a cw solid-state laser with a linear auxiliary cavity. The increase in efficiency involves a broadening of the region of parameter values of the system in which self-mode locking occurs, a significant decrease in the threshold pump intensity, and a reduced sensitivity of the operation to the phase mismatch of the lengths of the cavities. It is shown, for the first time, that a stable train of double ultrashort pulses can be generated by a system with a shutter in the auxiliary cavity. It is also shown that a self-mode locking is possible in the case in which there is a phase mismatch of the cavity lengths and there is no phase self-modulation in the main cavity. 15 refs., 8 figs

  12. Mid-infrared supercontinuum generation in tapered ZBLAN fiber with a standard Erbium mode-locked fiber laser

    DEFF Research Database (Denmark)

    Kubat, Irnis; Moselund, Peter M.; Bang, Ole

    2013-01-01

    to generate a broadband SC using direct pumping with commercially available Erbium (Er) mode-locked fiber lasers at 1550 nm. Formation of SC is manipulated both in the UV and IR by changing the fiber dispersion and nonlinearity using tapers. This has been much studied in various silica fiber designs...... and is now also becoming used in ZBLAN [2], and other soft glasses such as chalcogenide [3] and tellurite [4]. The aim of this nummerical work is to show how pumping tapered commercially available ZBLAN fibers with an Er mode-locked fiber laser can generate a broadband SC approaching the ZBLAN long....... commercially available), core diameter Dc=7 μm, and ZDW=1.5 μm, is pumped with TFWHM=10 ps and P0=10 kW pulses from an Er mode-locked laser with a 40 MHz repetition rate and 4W average power. The resulting MIR SC seen in Fig. 1(b) is based on Modulation Instability breakup of the pump pulse, which generates...

  13. Silicon photonics WDM transmitter with single section semiconductor mode-locked laser

    Science.gov (United States)

    Müller, Juliana; Hauck, Johannes; Shen, Bin; Romero-García, Sebastian; Islamova, Elmira; Azadeh, Saeed Sharif; Joshi, Siddharth; Chimot, Nicolas; Moscoso-Mártir, Alvaro; Merget, Florian; Lelarge, François; Witzens, Jeremy

    2015-04-01

    We demonstrate a wavelength domain-multiplexed (WDM) optical link relying on a single section semiconductor mode-locked laser (SS-MLL) with quantum dash (Q-Dash) gain material to generate 25 optical carriers spaced by 60.8 GHz, as well as silicon photonics (SiP) resonant ring modulators (RRMs) to modulate individual optical channels. The link requires optical reamplification provided by an erbium-doped fiber amplifier (EDFA) in the system experiments reported here. Open eye diagrams with signal quality factors (Q-factors) above 7 are measured with a commercial receiver (Rx). For higher compactness and cost effectiveness, reamplification of the modulated channels with a semiconductor optical amplifier (SOA) operated in the linear regime is highly desirable. System and device characterization indicate compatibility with the latter. While we expect channel counts to be primarily limited by the saturation output power level of the SOA, we estimate a single SOA to support more than eight channels. Prior to describing the system experiments, component design and detailed characterization results are reported including design and characterization of RRMs, ring-based resonant optical add-drop multiplexers (RR-OADMs) and thermal tuners, S-parameters resulting from the interoperation of RRMs and RR-OADMs, and characterization of Q-Dash SS-MLLs reamplified with a commercial SOA. Particular emphasis is placed on peaking effects in the transfer functions of RRMs and RR-OADMs resulting from transient effects in the optical domain, as well as on the characterization of SS-MLLs in regard to relative intensity noise (RIN), stability of the modes of operation, and excess noise after reamplification.

  14. Comparison of the noise performance of 10 GHz repetition rate quantum-dot and quantum well monolithic mode-locked semiconductor lasers

    DEFF Research Database (Denmark)

    Carpintero, G.; Thompson, M. G.; Yvind, Kresten

    2011-01-01

    fabricated with different material gain systems, one quantum well and the other quantum dot (QD), both with a monolithic all-active two-section mode-locked structure. Two important factors are identified as having a significant effect on the noise performance, the RF linewidth of the first harmonic......Mode-locked lasers are commonly used in carrier-wave signal generation systems because of their excellent phase noise performance. Owing to the importance of this key parameter, this study presents a like-for-like comparison of the noise performance of the passive mode-locked regime of two devices...... and the shape of the noise pedestals, both depending on the passive mode-locked bias conditions. Nevertheless, the dominant contribution of the RF linewidth to the phase noise, which is significantly narrower for the QD laser, makes this material more suitable for optical generation of low-noise millimetre...

  15. Passively mode-locked 4.6 and 10.5 GHz quantum dot laser diodes around 1.55 μm with large operating regime

    NARCIS (Netherlands)

    Heck, M.J.R.; Renault, A.; Bente, E.A.J.M.; Oei, Y.S.; Smit, M.K.; Eikema, K.S.E.; Ubachs, W.; Anantathanasarn, S.; Nötzel, R.

    2009-01-01

    Passive mode-locking in two-section InAs/InP quantum dot laser diodes operating at wavelengths around 1.55 µm is reported. For a 4.6-GHz laser, a large operating regime of stable mode-locking, with RF-peak heights of over 40 dB, is found for injection currents of 750 mA up to 1.0 A and for values of

  16. Time-Gating Processes in Intra-Cavity Mode-Locking Devices Like Saturable Absorbers and Kerr Cells

    Science.gov (United States)

    Prasad, Narasimha; Roychoudhuri, Chandrasekhar

    2010-01-01

    Photons are non-interacting entities. Light beams do not interfere by themselves. Light beams constituting different laser modes (frequencies) are not capable of re-arranging their energies from extended time-domain to ultra-short time-domain by themselves without the aid of light-matter interactions with suitable intra-cavity devices. In this paper we will discuss the time-gating properties of intra-cavity "mode-locking" devices that actually help generate a regular train of high energy wave packets.

  17. Self-oscillations in cw solid-state ultrashort-pulse-generating lasers with mode locking by self-focusing

    International Nuclear Information System (INIS)

    Kalashnikov, V L; Krimer, D O; Mejid, F; Poloiko, I G; Mikhailov, V P

    1999-01-01

    Steady-state and transient regimes of ultrashort pulse generation are studied for cw solid-state lasers with mode locking by self-focusing. It is shown that the control parameter, which governs the nature of lasing, is the relationship between self-phase-modulation and the saturation intensity of an efficient shutter, induced by the Kerr self-focusing. Numerical modelling based on mapping the parameters of a quasi-soliton ultrashort pulse, considered in the aberration-free approximation, yields results in good agreement with experiments. (control of laser radiation parameters)

  18. Broadly tunable femtosecond mode-locking in a Tm:KYW laser near 2 μm.

    Science.gov (United States)

    Lagatsky, A A; Calvez, S; Gupta, J A; Kisel, V E; Kuleshov, N V; Brown, C T A; Dawson, M D; Sibbett, W

    2011-05-09

    Efficient mode-locking in a Tm:KY(WO(4))(2) laser is demonstrated by using InGaAsSb quantum-well SESAMs. Self-starting ultrashort pulse generation was realized in the 1979-2074 nm spectral region. Maximum average output power up to 411 mW was produced around 1986 nm with the corresponding pulse duration and repetition rate of 549 fs and 105 MHz respectively. Optimised pulse durations of 386 fs were produced with an average power of 235 mW at 2029 nm. © 2011 Optical Society of America

  19. Mode locking of an external cavity asymmetric quantum-well GaAs/AlGaAs semiconductor laser

    International Nuclear Information System (INIS)

    Vasil'ev, Petr P; Kan, H; Ohta, H; Hiruma, T; Tanaka, K A

    2006-01-01

    A theoretical model of the optical gain in asymmetric GaAs/AlGaAs quantum-well lasers is developed. It is demonstrated that the emission spectrum of asymmetric GaAs/AlGaAs quantum-well lasers is much broader than that of standard quantum-well lasers. The experimental samples of such lasers and superluminescent diodes with the emission bandwidth exceeding 50 nm are fabricated. Wavelength tunable ultrashort pulses with duration of 1-2 ps at repetition rates of 0.4-1 GHz are obtained by active mode locking of an external cavity laser. (lasers)

  20. Passive mode locking of a Tm,Ho:KY(WO4)2 laser around 2 microm.

    Science.gov (United States)

    Lagatsky, A A; Fusari, F; Calvez, S; Gupta, J A; Kisel, V E; Kuleshov, N V; Brown, C T A; Dawson, M D; Sibbett, W

    2009-09-01

    We report the first demonstration, to our knowledge, of passive mode locking in a Tm(3+), Ho(3+)-codoped KY(WO(4))(2) laser operating in the 2000-2060 nm spectral region. An InGaAsSb-based quantum well semiconductor saturable absorber mirror is used for the initiation and stabilization of the ultrashort pulse generation. Pulses as short as 3.3 ps were generated at 2057 nm with average output powers up to 315 mW at a pulse repetition frequency of 132 MHz for 1.15 W of absorbed pump power at 802 nm from a Ti:sapphire laser.

  1. Q-switching and mode-locking in a diode-pumped frequency-doubled Nd : YAG laser

    International Nuclear Information System (INIS)

    Donin, Valerii I; Yakovin, Dmitrii V; Gribanov, A V

    2012-01-01

    A new method for obtaining Q-switching simultaneously with mode-locking using one travelling-wave acousto-optic modulator in a frequency-doubled Nd : YAG laser cavity is described. Further shortening of output laser pulses (from 40 to 3.25 ps) is achieved by forming a Kerr lens in the frequency-doubling crystal. At an average power of ∼ 2 W and a Q-switching rate of 2 kHz, the peak power of the stably operating reached ∼ 50 MW.

  2. A SESAM passively mode-locked fiber laser with a long cavity including a band pass filter

    International Nuclear Information System (INIS)

    Song, Rui; Chen, Hong-Wei; Chen, Sheng-Ping; Hou, Jing; Lu, Qi-Sheng

    2011-01-01

    A semiconductor saturable absorber mirror (SESAM) passively mode-locked fiber laser with a long cavity length over 700 m is demonstrated. A band pass filter is inserted into the laser cavity to stabilize the lasing wavelength. Some interesting phenomena are observed and discussed. The central wavelength, repetition rate, average power and single pulse energy of the laser are 1064 nm, 281.5 kHz, 11 mW and 39 nJ, respectively. The laser operates stably without Q-switching instabilities, which greatly reduces the damage opportunities of the SESAM

  3. Kerr-Lens Mode-Locked Femtosecond Yb:GdYSiO5 Laser Directly Pumped by a Laser Diode

    Directory of Open Access Journals (Sweden)

    Jiangfeng Zhu

    2015-10-01

    Full Text Available We demonstrate the first Kerr-lens mode-locked operation in a diode-pumped Yb:GdYSiO5 oscillator. Under a diode pump power of 5 W, 141 fs pulses with an average power of 237 mW were obtained at a repetition rate of 118 MHz. The central wavelength was at 1094 nm with a bandwidth of 10.1 nm. Shorter pulses were obtained by adjusting the cavity to operate at a shorter wavelength, resulting in 55 fs pulse duration at the central wavelength of 1054 nm with a bandwidth of 23.5 nm.

  4. LD end pumped mode locked and cavity dumped Nd:YAP laser at 1.34 μm

    Science.gov (United States)

    Wang, X.; Wang, S.; Rhee, H.; Eichler, H. J.; Meister, S.

    2011-06-01

    We report a LD end pumped actively mode locked, passively Q switched and cavity dumped Nd:YAP laser at 1.34 μm. The dumped output pulse energy of 160 μJ is obtained at a repetition rate of 10 Hz. Passing through a LD end pumped, double-passed Nd:YAP amplifier the pulse energy is amplified to 1.44 mJ. The corresponding amplification factor is 9. Stimulated Raman scattering experiment is taken with a 9 mm long PbWO4 Raman crystal. Maximum of 20% Raman conversion is reached.

  5. Q-switching and mode-locking pulse generation with graphene oxide paper-based saturable absorber

    Directory of Open Access Journals (Sweden)

    Sulaiman Wadi Harun

    2015-06-01

    Full Text Available Q-switched and mode-locked erbium-doped fibre lasers (EDFLs are demonstrated by using non-conductive graphene oxide (GO paper as a saturable absorber (SA. A stable and self-starting Q-switched operation was achieved at 1534.4 nm by using a 0.8 m long erbium-doped fibre (EDF as a gain medium. The pulse repetition rate changed from 14.3 to 31.5 kHz, whereas the corresponding pulse width decreased from 32.8 to 13.8 µs as the pump power increased from 22 to 50.5 mW. A narrow spacing dual-wavelength Q-switched EDFL could also be realised by including a photonics crystal fibre and a tunable Bragg filter in the setup. It can operate at a maximum repetition rate of 31 kHz, with a pulse duration of 7.04 µs and pulse energy of 2.8 nJ. Another GOSA was used to realise mode-locked EDFL in a different cavity consisting of a 1.6 m long EDF in conjunction with 1480 nm pumping. The laser generated a soliton pulse train with a repetition rate of 15.62 MHz and pulse width of 870 fs. It is observed that the proposed fibre lasers have a low pulsing threshold pump power as well as a low damage threshold.

  6. Dynamics of a broad-band quantum cascade laser: from chaos to coherent dynamics and mode-locking

    Science.gov (United States)

    Columbo, L. L.; Barbieri, S.; Sirtori, C.; Brambilla, M.

    2018-02-01

    The dynamics of a multimode Quantum Cascade Laser, is studied in a model based on effective semiconductor Maxwell-Bloch equations, encompassing key features for the radiationmedium interaction such as an asymmetric, frequency dependent, gain and refractive index as well as the phase-amplitude coupling provided by the Henry factor. By considering the role of the free spectral range and Henry factor, we develop criteria suitable to identify the conditions which allow to destabilize, close to threshold, the traveling wave emitted by the laser and lead to chaotic or regular multimode dynamics. In the latter case our simulations show that the field oscillations are associated to self-confined structures which travel along the laser cavity, bridging mode-locking and solitary wave propagation. In addition, we show how a RF modulation of the bias current leads to active mode-locking yielding high-contrast, picosecond pulses. Our results compare well with recent experiments on broad-band THz-QCLs and may help understanding the conditions for the generation of ultrashort pulses and comb operation in Mid-IR and THz spectral regions

  7. Optically stabilized Erbium fiber frequency comb with hybrid mode-locking and a broad tunable range of repetition rate.

    Science.gov (United States)

    Yang, Honglei; Wu, Xuejian; Zhang, Hongyuan; Zhao, Shijie; Yang, Lijun; Wei, Haoyun; Li, Yan

    2016-12-01

    We present an optically stabilized Erbium fiber frequency comb with a broad repetition rate tuning range based on a hybrid mode-locked oscillator. We lock two comb modes to narrow-linewidth reference lasers in turn to investigate the best performance of control loops. The control bandwidth of fast and slow piezoelectric transducers reaches 70 kHz, while that of pump current modulation with phase-lead compensation is extended to 32 kHz, exceeding laser intrinsic response. Eventually, simultaneous lock of both loops is realized to totally phase-stabilize the comb, which will facilitate precision dual-comb spectroscopy, laser ranging, and timing distribution. In addition, a 1.8-MHz span of the repetition rate is achieved by an automatic optical delay line that is helpful in manufacturing a secondary comb with a similar repetition rate. The oscillator is housed in a homemade temperature-controlled box with an accuracy of ±0.02  K, which not only keeps high signal-to-noise ratio of the beat notes with reference lasers, but also guarantees self-starting at the same mode-locking every time.

  8. Repetitively Mode-Locked Cavity-Enhanced Absorption Spectroscopy (RML-CEAS for Near-Infrared Gas Sensing

    Directory of Open Access Journals (Sweden)

    Qixin He

    2017-12-01

    Full Text Available A Pound-Drever-Hall (PDH-based mode-locked cavity-enhanced sensor system was developed using a distributed feedback diode laser centered at 1.53 µm as the laser source. Laser temperature scanning, bias control of the piezoelectric ceramic transducer (PZT and proportional-integral-derivative (PID feedback control of diode laser current were used to repetitively lock the laser modes to the cavity modes. A gas absorption spectrum was obtained by using a series of absorption data from the discrete mode-locked points. The 15 cm-long Fabry-Perot cavity was sealed using an enclosure with an inlet and outlet for gas pumping and a PZT for cavity length tuning. The performance of the sensor system was evaluated by conducting water vapor measurements. A linear relationship was observed between the measured absorption signal amplitude and the H2O concentration. A minimum detectable absorption coefficient of 1.5 × 10–8 cm–1 was achieved with an averaging time of 700 s. This technique can also be used for the detection of other trace gas species by targeting the corresponding gas absorption line.

  9. Continuous-wave to pulse regimes for a family of passively mode-locked lasers with saturable nonlinearity

    Science.gov (United States)

    Dikandé, Alain M.; Voma Titafan, J.; Essimbi, B. Z.

    2017-10-01

    The transition dynamics from continuous-wave to pulse regimes of operation for a generic model of passively mode-locked lasers with saturable absorbers, characterized by an active medium with non-Kerr nonlinearity, are investigated analytically and numerically. The system is described by a complex Ginzburg-Landau equation with a general m:n saturable nonlinearity (i.e {I}m/{(1+{{Γ }}I)}n, where I is the field intensity and m and n are two positive numbers), coupled to a two-level gain equation. An analysis of stability of continuous waves, following the modulational instability approach, provides a global picture of the self-starting dynamics in the system. The analysis reveals two distinct routes depending on values of the couple (m, n), and on the dispersion regime: in the normal dispersion regime, when m = 2 and n is arbitrary, the self-starting requires positive values of the fast saturable absorber and nonlinearity coefficients, but negative values of these two parameters for the family with m = 0. However, when the spectral filter is negative, the laser can self-start for certain values of the input field and the nonlinearity saturation coefficient Γ. The present work provides a general map for the self-starting mechanisms of rare-earth doped figure-eight fiber lasers, as well as Kerr-lens mode-locked solid-state lasers.

  10. Dual-wavelength passive and hybrid mode-locking of 3, 4.5 and 10 GHz InAs/InP(100) quantum dot lasers.

    Science.gov (United States)

    Tahvili, M S; Du, L; Heck, M J R; Nötzel, R; Smit, M K; Bente, E A J M

    2012-03-26

    We present an investigation of passive and hybrid mode-locking in Fabry-Pérot type two-section InAs/InP(100) quantum dot lasers that show dual wavelength operation. Over the whole current and voltage range for mode-locking of these lasers, the optical output spectra show two distinct lobes. The two lobes provide a coherent bandwidth and are verified to lead to two synchronized optical pulses. The generated optical pulses are elongated in time due to a chirp which shows opposite signs over the two spectral lobes. Self-induced mode-locking in the single-section laser shows that the dual-wavelength spectra correspond to emission from ground state. In the hybrid mode-locking regime, a map of locking range is presented by measuring the values of timing jitter for several values of power and frequency of the external electrical modulating signal. An overview of the systematic behavior of InAs/InP(100) quantum dot mode-locked lasers is presented as conclusion.

  11. Mode-Locked Multichromatic X-Rays in a Seeded Free-Electron Laser for Single-Shot X-Ray Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, Dao; Ding, Yuantao; Raubenheimer, Tor; Wu, Juhao; /SLAC

    2012-05-10

    We present the promise of generating gigawatt mode-locked multichromatic x rays in a seeded free-electron laser (FEL). We show that, by using a laser to imprint periodic modulation in electron beam phase space, a single-frequency coherent seed can be amplified and further translated to a mode-locked multichromatic output in an FEL. With this configuration the FEL output consists of a train of mode-locked ultrashort pulses which span a wide frequency gap with a series of equally spaced sharp lines. These gigawatt multichromatic x rays may potentially allow one to explore the structure and dynamics of a large number of atomic states simultaneously. The feasibility of generating mode-locked x rays ranging from carbon K edge ({approx}284 eV) to copper L{sub 3} edge ({approx}931 eV) is confirmed with numerical simulation using the realistic parameters of the linac coherent light source (LCLS) and LCLS-II. We anticipate that the mode-locked multichromatic x rays in FELs may open up new opportunities in x-ray spectroscopy (i.e. resonant inelastic x-ray scattering, time-resolved scattering and spectroscopy, etc.).

  12. Passive harmonic mode-locking of Er-doped fiber laser using CVD-grown few-layer MoS2 as a saturable absorber

    International Nuclear Information System (INIS)

    Xia Han-Ding; Li He-Ping; Lan Chang-Yong; Li Chun; Deng Guang-Lei; Li Jian-Feng; Liu Yong

    2015-01-01

    Passive harmonic mode locking of an erbium-doped fiber laser based on few-layer molybdenum disulfide (MoS 2 ) saturable absorber (SA) is demonstrated. The few-layer MoS 2 is prepared by the chemical vapor deposition (CVD) method and then transferred onto the end face of a fiber connector to form a fiber-compatible MoS 2 SA. The 20th harmonic mode-locked pulses at 216-MHz repetition rate are stably generated with a pulse duration of 1.42 ps and side-mode suppression ratio (SMSR) of 36.1 dB. The results confirm that few-layer MoS 2 can serve as an effective SA for mode-locked fiber lasers. (paper)

  13. Passive mode locking of a GaSb-based quantum well diode laser emitting at 2.1 μm

    Energy Technology Data Exchange (ETDEWEB)

    Merghem, K.; Aubin, G.; Ramdane, A. [CNRS, Laboratory for Photonics and Nanostructures, Route de Nozay, 91460 Marcoussis (France); Teissier, R.; Baranov, A. N. [Institute of Electronics and Systems, CNRS UMR 5214, University of Montpellier, 34095 Montpellier (France); Monakhov, A. M. [Ioffe Institute, 194021 Saint Petersburg (Russian Federation)

    2015-09-14

    We demonstrate passive mode locking of a GaSb-based diode laser emitting at 2.1 μm. The active region of the studied device consists in two 10-nm-thick GaInSbAs/GaAlSbAs quantum wells. Passive mode locking has been achieved in a two-section laser with one of the sections used as a saturable absorber. A microwave signal at 20.6 GHz, measured in the electrical circuit of the absorber, corresponds to the fundamental photon round-trip frequency in the laser resonator. The linewidth of this signal as low as ∼10 kHz has been observed at certain operating conditions, indicating low phase noise mode-locked operation.

  14. Modal gain characteristics of a 2 μm InGaSb/AlGaAsSb passively mode-locked quantum well laser

    Science.gov (United States)

    Li, Xiang; Wang, Hong; Qiao, Zhongliang; Guo, Xin; Ng, Geok Ing; Zhang, Yu; Niu, Zhichuan; Tong, Cunzhu; Liu, Chongyang

    2017-12-01

    Passive mode locking with a fundamental repetition rate at ˜18.46 GHz is demonstrated in a two-section InGaSb/AlGaAsSb quantum well laser emitting at 2 μm. Modal gain characteristics of the laser are investigated by performing the Hakki-Paoli method to gain better insight into the impact of the absorber bias voltage (Va) on the light output. The lasing action moves to longer wavelengths markedly with increasing negative Va. The light output contains more longitudinal modes in the mode locking regime if the gain bandwidth is larger at a certain Va. Our findings provide guidelines for output characteristics of the mode-locked laser.

  15. Passive mode locking of a GaSb-based quantum well diode laser emitting at 2.1 μm

    International Nuclear Information System (INIS)

    Merghem, K.; Aubin, G.; Ramdane, A.; Teissier, R.; Baranov, A. N.; Monakhov, A. M.

    2015-01-01

    We demonstrate passive mode locking of a GaSb-based diode laser emitting at 2.1 μm. The active region of the studied device consists in two 10-nm-thick GaInSbAs/GaAlSbAs quantum wells. Passive mode locking has been achieved in a two-section laser with one of the sections used as a saturable absorber. A microwave signal at 20.6 GHz, measured in the electrical circuit of the absorber, corresponds to the fundamental photon round-trip frequency in the laser resonator. The linewidth of this signal as low as ∼10 kHz has been observed at certain operating conditions, indicating low phase noise mode-locked operation

  16. Quantum-dot saturable absorber and Kerr-lens mode-locked Yb:KGW laser with >450  kW of peak power.

    Science.gov (United States)

    Akbari, R; Zhao, H; Fedorova, K A; Rafailov, E U; Major, A

    2016-08-15

    The hybrid action of quantum-dot saturable absorber and Kerr-lens mode locking in a diode-pumped Yb:KGW laser was demonstrated. Using a quantum-dot saturable absorber with a 0.7% (0.5%) modulation depth, the mode-locked laser delivered 90 fs (93 fs) pulses with 3.2 W (2.9 W) of average power at the repetition rate of 77 MHz, corresponding to 462 kW (406 kW) of peak power and 41 nJ (38 nJ) of pulse energy. To the best of our knowledge, this represents the highest average and peak powers generated to date from quantum-dot saturable absorber-based mode-locked lasers.

  17. Heliospheric magnetic field polarity inversions driven by radial velocity field structures

    Czech Academy of Sciences Publication Activity Database

    Landi, S.; Hellinger, Petr; Velli, M.

    2006-01-01

    Roč. 33, č. 14 (2006), L14101/1-L14101/5 ISSN 0094-8276 Grant - others:European Commission(XE) HRPN-CT-2001-00310 Institutional research plan: CEZ:AV0Z30420517 Keywords : solar wind * magnetic field polarity inversions * microstreams * turbulence Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.602, year: 2006

  18. 50-fs pulse generation directly from a colliding-pulse mode-locked Ti:sapphire laser using an antiresonant ring mirror

    Science.gov (United States)

    Naganuma, Kazunori; Mogi, Kazuo

    1991-05-01

    50-fs pulses were directly generated from a colliding-pulse mode-locked Ti:sapphire laser. To achieve the colliding-pulse mode locking, a miniature antiresonant ring containing an organic saturable dye jet was employed as the end mirror for the linear cavity laser. Based on measured dispersion of intracavity elements, a prism pair was implemented to control the cavity dispersion. The generated pulses have no linear chirp but do exhibit parabolic instantaneous frequency owing to third-order dispersion introduced by the prism pair.

  19. The continuous-wave passive mode-locking operation of a diode-pumped mixed Nd:Lu0.5Y0.5VO4 laser

    International Nuclear Information System (INIS)

    Huang, H-T; Xu, J-L; He, J-L; Zhang, S-Y; Xu, J-Q; Zhao, B

    2011-01-01

    We reported a continuous-wave (CW) passively mode-locked Nd:Lu 0.5 Y 0.5 VO 4 laser at 1064 nm. A partially reflective semiconductor saturable absorber mirror was exploited in the Z-typed resonator. The Nd:Lu 0.5 Y 0.5 VO 4 laser generated CW mode-locked pulses with an average output power of 860 mW, a repetition rate of 53.7 MHz, and a pulse duration of 8.7 ps

  20. Study of simultaneous q-switching and mode-locking in ND:YVO4 laser with Cr4+:YAG crystal

    International Nuclear Information System (INIS)

    Al-Sous, M. B.

    2009-01-01

    A numerical model of rate equations for a four-level solid-state laser with Cr 4+ :YAG saturable absorber including excited state absorption ESA is presented. The cavity is divided into a large number of disks and the model is solved for each disk and its local corresponding photon flux. The flux array is shifted for each recurrence simulating the movement of photons inside the cavity during the round trip. This simulator can describe the mode locking phenomenon and can be used to simulate the simultaneous mode locking and Q-switching with a saturable absorber. (author)

  1. Passively mode-locked high power Nd:GdVO4 laser with direct in-band pumping at 912 nm

    Science.gov (United States)

    Nadimi, Mohammad; Waritanant, Tanant; Major, Arkady

    2018-01-01

    We report on the first semiconductor saturable absorber mirror mode-locked Nd:GdVO4 laser directly diode-pumped at 912 nm. The laser generated 10.14 W of averaged output power at 1063 nm with the pulse width of 16 ps at the repetition rate of 85.2 MHz. The optical-to-optical efficiency and slope efficiency in the mode-locked regime were calculated to be 49.6% and 67.4% with respect to the absorbed pump power, respectively. Due to the low quantum defect pumping the output power was limited only by the available pump power.

  2. Passive mode locking of a femtosecond Ti:sapphire laser with pulsed synchronous pumping by a finite train of picosecond pulses

    International Nuclear Information System (INIS)

    Borisevich, N A; Buganov, O V; Tikhomirov, S A; Tolstorozhev, G B; Shkred, G L

    1999-01-01

    An analysis is made, with the aid of the self-consistent nonlinear ABCD matrix method, of the specific features of the mechanism of passive mode locking of a femtosecond Ti:sapphire laser under conditions of pulsed synchronous pumping. The conditions of stable laser operation are studied. It is proposed to use an additional aperture as an element of negative feedback for the stabilisation of passive mode locking. Practical recommendations concerning the optimisation of a femtosecond laser are given. (control of laser radiation parameters)

  3. Individual optimization of InAlGaAsP-InP sections for 1.55-μm passively mode-locked lasers

    DEFF Research Database (Denmark)

    Kulkova, Irina; Larsson, David; Semenova, Elizaveta

    2012-01-01

    We present integrated single QW semiconductor optical amplifier and MQW electroabsorber modulator based on InAlGaAsP-InP materials for application in a monolithic mode-locked laser. Optimized structures with high-quality butt-joint interfaces are demonstrated.......We present integrated single QW semiconductor optical amplifier and MQW electroabsorber modulator based on InAlGaAsP-InP materials for application in a monolithic mode-locked laser. Optimized structures with high-quality butt-joint interfaces are demonstrated....

  4. Study of simulations q-switching and mode-locking in Nd:YVO4 laser with Cr4+:YAG crystal

    International Nuclear Information System (INIS)

    Al-Sous, M. B.

    2007-12-01

    A numerical model of rate equations for a four-level solid-state laser with Cr 4+ :YAG saturable absorber including excited state absorption ESA is presented. The cavity is divided into a large number of disks and the model is solved for each disk and its local corresponding photon flux. The flux array is shifted for each recurrence simulating the movement of photons inside the cavity during the round trip. This simulator can describe the mode locking phenomenon and can be used to simulate the simultaneous mode locking and Q-switching with a saturable absorber.(author)

  5. Passively mode-locked diode-pumped Tm3+:YLF laser emitting at 1.91 µm using a GaAs-based SESAM

    Science.gov (United States)

    Tyazhev, A.; Soulard, R.; Godin, T.; Paris, M.; Brasse, G.; Doualan, J.-L.; Braud, A.; Moncorgé, R.; Laroche, M.; Camy, P.; Hideur, A.

    2018-04-01

    We report on a diode-pumped Tm:YLF laser passively mode-locked with an InGaAs saturable absorber. The laser emits a train of 31 ps pulses at a wavelength of 1.91 µm with a repetition rate of 94 MHz and a maximum average power of 95 mW. A sustained and robust mode-locking with a signal-to-noise ratio of ~70 dB is obtained even at high relative air humidity, making this system attractive for applications requiring ultra-short pulses in the spectral window just below 2 µm.

  6. Real-time full-field characterization of transient dissipative soliton dynamics in a mode-locked laser

    Science.gov (United States)

    Ryczkowski, P.; Närhi, M.; Billet, C.; Merolla, J.-M.; Genty, G.; Dudley, J. M.

    2018-04-01

    Dissipative solitons are remarkably localized states of a physical system that arise from the dynamical balance between nonlinearity, dispersion and environmental energy exchange. They are the most universal form of soliton that can exist, and are seen in far-from-equilibrium systems in many fields, including chemistry, biology and physics. There has been particular interest in studying their properties in mode-locked lasers, but experiments have been limited by the inability to track the dynamical soliton evolution in real time. Here, we use simultaneous dispersive Fourier transform and time-lens measurements to completely characterize the spectral and temporal evolution of ultrashort dissipative solitons as their dynamics pass through a transient unstable regime with complex break-up and collisions before stabilization. Further insight is obtained from reconstruction of the soliton amplitude and phase and calculation of the corresponding complex-valued eigenvalue spectrum. These findings show how real-time measurements provide new insights into ultrafast transient dynamics in optics.

  7. Mode-locked thin-disk lasers and their potential application for high-power terahertz generation

    Science.gov (United States)

    Saraceno, Clara J.

    2018-04-01

    The progress achieved in the last few decades in the performance of ultrafast laser systems with high average power has been tremendous, and continues to provide momentum to new exciting applications, both in scientific research and technology. Among the various technological advances that have shaped this progress, mode-locked thin-disk oscillators have attracted significant attention as a unique technology capable of providing ultrashort pulses with high energy (tens to hundreds of microjoules) and at very high repetition rates (in the megahertz regime) from a single table-top oscillator. This technology opens the door to compact high repetition rate ultrafast sources spanning the entire electromagnetic spectrum from the XUV to the terahertz regime, opening various new application fields. In this article, we focus on their unexplored potential as compact driving sources for high average power terahertz generation.

  8. Real-time dual-comb spectroscopy with a free-running bidirectionally mode-locked fiber laser

    Science.gov (United States)

    Mehravar, S.; Norwood, R. A.; Peyghambarian, N.; Kieu, K.

    2016-06-01

    Dual-comb technique has enabled exciting applications in high resolution spectroscopy, precision distance measurements, and 3D imaging. Major advantages over traditional methods can be achieved with dual-comb technique. For example, dual-comb spectroscopy provides orders of magnitude improvement in acquisition speed over standard Fourier-transform spectroscopy while still preserving the high resolution capability. Wider adoption of the technique has, however, been hindered by the need for complex and expensive ultrafast laser systems. Here, we present a simple and robust dual-comb system that employs a free-running bidirectionally mode-locked fiber laser operating at telecommunication wavelength. Two femtosecond frequency combs (with a small difference in repetition rates) are generated from a single laser cavity to ensure mutual coherent properties and common noise cancellation. As the result, we have achieved real-time absorption spectroscopy measurements without the need for complex servo locking with accurate frequency referencing, and relatively high signal-to-noise ratio.

  9. Passive mode locking and formation of dissipative solitons in electron oscillators with a bleaching absorber in the feedback loop

    Energy Technology Data Exchange (ETDEWEB)

    Ginzburg, N. S., E-mail: ginzburg@appl.sci-nnov.ru; Kocharovskaya, E. R.; Vilkov, M. N.; Sergeev, A. S. [Russian Academy of Sciences, Institute of Applied Physics (Russian Federation)

    2017-01-15

    The mechanisms of passive mode locking and formation of ultrashort pulses in microwave electron oscillators with a bleaching absorber in the feedback loop have been analyzed. It is shown that in the group synchronism regime in which the translational velocity of particles coincides with the group velocity of the electromagnetic wave, the pulse formation can be described by the equations known in the theory of dissipative solitons. At the same time, the regimes in which the translational velocity of electrons differs from the group velocity and the soliton being formed and moving along the electron beam consecutively (cumulatively) receives energy from various electron fractions are optimal for generating pulses with the maximal peak amplitudes.

  10. Ultrafast spectral dynamics of dual-color-soliton intracavity collision in a mode-locked fiber laser

    Science.gov (United States)

    Wei, Yuan; Li, Bowen; Wei, Xiaoming; Yu, Ying; Wong, Kenneth K. Y.

    2018-02-01

    The single-shot spectral dynamics of dual-color-soliton collisions inside a mode-locked laser is experimentally and numerically investigated. By using the all-optically dispersive Fourier transform, we spectrally unveil the collision-induced soliton self-reshaping process, which features dynamic spectral fringes over the soliton main lobe, and the rebuilding of Kelly sidebands with wavelength drifting. Meanwhile, the numerical simulations validate the experimental observation and provide additional insights into the physical mechanism of the collision-induced spectral dynamics from the temporal domain perspective. It is verified that the dynamic interference between the soliton and the dispersive waves is responsible for the observed collision-induced spectral evolution. These dynamic phenomena not only demonstrate the role of dispersive waves in the sophisticated soliton interaction inside the laser cavity, but also facilitate a deeper understanding of the soliton's inherent stability.

  11. Optical and mode-locking properties of InGaN/GaN based hetero-structures

    International Nuclear Information System (INIS)

    Irshad, A.

    2011-01-01

    Short wavelength pulsed lasers are indispensable for high density and high speed optical data acquisition, storage and transfer applications. Passively mode-locked blue lasers are an attractive alternative for blue laser sources achieved by non-linear frequency conversion techniques. Although over the recent years it has been shown that InGaN/GaN based hetero-structures can be used as potential material for the fabrication of saturable absorbers, passive mode-locking in the blue spectral range has not been realized yet. The main reason for that is the complicated microscopic nature of InGaN/GaN materials and the difficulty to control the dynamics of photo-induced carriers which determine mode-locking properties of the material. In this work, we have characterized different InGaN based hetero-structures as potential saturable absorbers. Three different groups of the samples have been investigated: i) quantum well samples with different numbers of quantum wells grown under optimal conditions; ii)quantum well samples with modified optical properties due to different buffer layer thickness and postgrowth treatment; iii) a multilayered quantum dot sample. The characterized quantum well samples exhibit relatively high optical quality and sufficiently high saturable losses (which can be controlled by alternating a number of the quantum wells). Nevertheless, they have two major disadvantages as saturable absorbers, namely, a very long absorption recovery time (in the order of a few nanoseconds) and a rather high saturation fluence. The long recovery times are not desirable for achieving a stable and self-starting mode-locking without Q-switching. In order to understand the relaxation processes of photo-induced carriers that determine the absorption recovery times of the saturable absorbers, optical properties of the hetero-structures have been extensively studied by using the frequency and time resolved photo-luminescence technique. The obtained data reveal that, directly

  12. Tight focusing of a radially polarized Laguerre–Bessel–Gaussian beam and its application to manipulation of two types of particles

    International Nuclear Information System (INIS)

    Nie, Zhongquan; Shi, Guang; Li, Dongyu; Zhang, Xueru; Wang, Yuxiao; Song, Yinglin

    2015-01-01

    The intensity distributions near the focus for radially polarized Laguerre–Bessel–Gaussian beams by a high numerical aperture objective in the immersion liquid are computed based on the vector diffraction theory. We compare the focusing properties of the radially polarized Laguerre–Bessel–Gaussian beams with those of Laguerre–Gaussian and Bessel–Gaussian modes. Furthermore, the effects of the optimally designed concentric three-zone phase filters on the intensity profiles in the focal region are examined. We further analyze the radiation forces on Rayleigh particles produced by the highly focused radially polarized Laguerre–Bessel–Gaussian beams using the specially engineered three-zone phase filters. - Highlights: • The tightly focusing of radially polarized LBG beams is examined. • The focusing performances of LBG beams are preferable over that of LG and BG modes. • A bright spot and an optical cage can be formed by special phase modulation. • These special focusing patterns can stably manipulate two types of particles

  13. Observation of phase noise reduction in photonically synthesized sub-THz signals using a passively mode-locked laser diode and highly selective optical filtering

    DEFF Research Database (Denmark)

    Criado, A. R.; Acedo, P.; Carpintero, G.

    2012-01-01

    A Continuous Wave (CW) sub-THz photonic synthesis setup based on a single Passively Mode-Locked Laser Diode (PMLLD) acting as a monolithic Optical Frequency Comb Generator (OFCG) and highly selective optical filtering has been implemented to evaluate the phase noise performance of the generated sub...

  14. 1.55-μm mode-locked quantum-dot lasers with 300 MHz frequency tuning range

    Energy Technology Data Exchange (ETDEWEB)

    Sadeev, T., E-mail: tagir@mailbox.tu-berlin.de; Arsenijević, D.; Bimberg, D. [Institut für Festkörperphysik, Technische Universität Berlin, 10623 Berlin (Germany); Franke, D.; Kreissl, J.; Künzel, H. [Heinrich-Hertz-Institut, Einsteinufer 37, 10587 Berlin (Germany)

    2015-01-19

    Passive mode-locking of two-section quantum-dot mode-locked lasers grown by metalorganic vapor phase epitaxy on InP is reported. 1250-μm long lasers exhibit a wide tuning range of 300 MHz around the fundamental mode-locking frequency of 33.48 GHz. The frequency tuning is achieved by varying the reverse bias of the saturable absorber from 0 to −2.2 V and the gain section current from 90 to 280 mA. 3 dB optical spectra width of 6–7 nm leads to ex-facet optical pulses with full-width half-maximum down to 3.7 ps. Single-section quantum-dot mode-locked lasers show 0.8 ps broad optical pulses after external fiber-based compression. Injection current tuning from 70 to 300 mA leads to 30 MHz frequency tuning.

  15. Optical self-injection mode-locking of semiconductor optical amplifier fiber ring with electro-absorption modulation—fundamentals and applications

    International Nuclear Information System (INIS)

    Chi, Yu-Chieh; Lin, Gong-Ru

    2013-01-01

    The optical self-injection mode-locking of a semiconductor optical amplifier incorporated fiber ring laser (SOAFL) with spectrally sliced multi-channel carriers is demonstrated for applications. The synthesizer-free SOAFL pulse-train is delivered by optical injection mode-locking with a 10 GHz self-pulsed electro-absorption modulator (EAM). Such a coupled optical and electronic resonator architecture facilitates a self-feedback oscillation with a higher Q-factor and lower phase/intensity noises when compared with conventional approaches. The theoretical model of such an injection-mode-locking SOAFL is derived to improve the self-pulsating performance of the optical return-to-zero (RZ) carrier, thus providing optimized pulsewidth, pulse extinction ratio, effective Q-factor, frequency variation and timing jitter of 11.4 ps, 9.1 dB, 4 × 10 5 , −1 bi-directional WDM transmission network with down-stream RZ binary phase-shift keying (RZ-BPSK) and up-stream re-modulated RZ on–off-keying (RZ-OOK) formats. Under BPSK/OOK bi-directional data transmission, the self-pulsed harmonic mode-locking SOAFL simultaneously provides four to six WDM channels for down-stream RZ-BPSK and up-stream RZ-OOK formats with receiving sensitivities of −17 and −15.2 dBm at a bit error rate of 10 −9 , respectively. (paper)

  16. 110 GHz hybrid mode-locked fiber laser with enhanced extinction ratio based on nonlinear silicon-on-insulator micro-ring-resonator (SOI MRR)

    International Nuclear Information System (INIS)

    Liu, Yang; Hsu, Yung; Chow, Chi-Wai; Yang, Ling-Gang; Lai, Yin-Chieh; Yeh, Chien-Hung; Tsang, Hon-Ki

    2016-01-01

    We propose and experimentally demonstrate a new 110 GHz high-repetition-rate hybrid mode-locked fiber laser using a silicon-on-insulator microring-resonator (SOI MRR) acting as the optical nonlinear element and optical comb filter simultaneously. By incorporating a phase modulator (PM) that is electrically driven at a fraction of the harmonic frequency, an enhanced extinction ratio (ER) of the optical pulses can be produced. The ER of the optical pulse train increases from 3 dB to 10 dB. As the PM is only electrically driven by the signal at a fraction of the harmonic frequency, in this case 22 GHz (110 GHz/5 GHz), a low bandwidth PM and driving circuit can be used. The mode-locked pulse width and the 3 dB spectral bandwidth of the proposed mode-locked fiber laser are measured, showing that the optical pulses are nearly transform limited. Moreover, stability evaluation for an hour is performed, showing that the proposed laser can achieve stable mode-locking without the need for optical feedback or any other stabilization mechanism. (letter)

  17. 1.55-μm mode-locked quantum-dot lasers with 300 MHz frequency tuning range

    International Nuclear Information System (INIS)

    Sadeev, T.; Arsenijević, D.; Bimberg, D.; Franke, D.; Kreissl, J.; Künzel, H.

    2015-01-01

    Passive mode-locking of two-section quantum-dot mode-locked lasers grown by metalorganic vapor phase epitaxy on InP is reported. 1250-μm long lasers exhibit a wide tuning range of 300 MHz around the fundamental mode-locking frequency of 33.48 GHz. The frequency tuning is achieved by varying the reverse bias of the saturable absorber from 0 to −2.2 V and the gain section current from 90 to 280 mA. 3 dB optical spectra width of 6–7 nm leads to ex-facet optical pulses with full-width half-maximum down to 3.7 ps. Single-section quantum-dot mode-locked lasers show 0.8 ps broad optical pulses after external fiber-based compression. Injection current tuning from 70 to 300 mA leads to 30 MHz frequency tuning

  18. Comparison of symmetric and asymmetric double quantum well extended-cavity diode lasers for broadband passive mode-locking at 780  nm.

    Science.gov (United States)

    Christopher, Heike; Kovalchuk, Evgeny V; Wenzel, Hans; Bugge, Frank; Weyers, Markus; Wicht, Andreas; Peters, Achim; Tränkle, Günther

    2017-07-01

    We present a compact, mode-locked diode laser system designed to emit a frequency comb in the wavelength range around 780 nm. We compare the mode-locking performance of symmetric and asymmetric double quantum well ridge-waveguide diode laser chips in an extended-cavity diode laser configuration. By reverse biasing a short section of the diode laser chip, passive mode-locking at 3.4 GHz is achieved. Employing an asymmetric double quantum well allows for generation of a mode-locked optical spectrum spanning more than 15 nm (full width at -20  dB) while the symmetric double quantum well device only provides a bandwidth of ∼2.7  nm (full width at -20  dB). Analysis of the RF noise characteristics of the pulse repetition rate shows an RF linewidth of about 7 kHz (full width at half-maximum) and of at most 530 Hz (full width at half-maximum) for the asymmetric and symmetric double quantum well devices, respectively. Investigation of the frequency noise power spectral density at the pulse repetition rate shows a white noise floor of approximately 2100  Hz 2 /Hz and of at most 170  Hz 2 /Hz for the diode laser employing the asymmetric and symmetric double quantum well structures, respectively. The pulse width is less than 10 ps for both devices.

  19. Passively Q-switched mode-locked Nd3+:LuVO4 laser by LT-GaAs saturable absorber

    International Nuclear Information System (INIS)

    Li, M; Zhao, S; Li, Y; Yang, K; Li, G; Li, D; An, J; Li, T; Yu, Z

    2009-01-01

    By using LT-GaAs as saturable absorber, we have demonstrated the stable Q-switched and mode-locked (QML) Nd:LuVO 4 laser run in a Z-type folded cavity. Nearly 100% modulation depth of mode locking can be obtained as long as the pump power reaches the oscillation threshold. The repetition rate of the passively Q-switched pulse envelops ranges from 37.5 to 139 kHz as the pump power increased from 1.7 to 8.2 W. The mode-locked pulse inside the Q-switched envelop has an estimated pulse width of about 220 ps and a repetition rate of 111 MHz. Under an incident pump power of 8.2 W, the highest pulse energy of 6 μJ of each Q-switched envelope, and the highest peak power about 2.73 kW of Q-switched mode-locked pulses can be obtained

  20. Analysis of hybrid mode-locking of two-section quantum dot lasers operating at 1.5 μm

    NARCIS (Netherlands)

    Heck, M.J.R.; Salumbides, E.J.; Renault, A.; Bente, E.A.J.M.; Oei, Y.S.; Smit, M.K.; Veldhoven, van P.J.; Nötzel, R.; Eikema, K.S.E.; Ubachs, W.

    2009-01-01

    For the first time a detailed study of hybrid mode-locking in two- section InAs/InP quantum dot Fabry-Pérot-type lasers is presented. The output pulses have a typical upchirp of approximately 8 ps/nm, leading to very elongated pulses. The mechanism leading to this typical pulse shape and the phase

  1. Effect of thermal management on the properties of saturable absorber mirrors in high-power mode-locked semiconductor disk lasers

    International Nuclear Information System (INIS)

    Rantamäki, Antti; Lyytikäinen, Jari; Jari Nikkinen; Okhotnikov, Oleg G

    2011-01-01

    The thermal management of saturable absorbers is shown to have a critical impact on a high-power mode-locked disk laser. The absorber with efficient heat removal makes it possible to generate ultrashort pulses with high repetition rates and high power density.

  2. An asymmetric integrated extended cavity 20GHz mode-locked quantum well ring laser fabricated in the JePPIX technology platform

    NARCIS (Netherlands)

    Tahvili, M.S.; Barbarin, Y.; Ambrosius, H.P.M.M.; Smit, M.K.; Bente, E.A.J.M.; Leijtens, X.J.M.; Vries, de T.; Smalbrugge, E.; Bolk, J.

    2011-01-01

    In this paper, we present mode-locked operation of a monolithic 20GHz integrated extended cavity ring laser. The 4mm-long laser ring cavity incorporates a 750µm-long optical amplifier section (SOA), a separate 40µm long saturable absorber (SA) section, passive waveguide sections (shallow and deep

  3. Paraxial propagation dynamics of the radially polarized Airy beams in uniaxial crystals orthogonal to the optical axis.

    Science.gov (United States)

    Xie, Jintao; Zhang, Jianbin; Zheng, Xitao; Ye, Junran; Deng, Dongmei

    2018-04-30

    We study the paraxial propagation of the radially polarized Airy beams (RPAiBs) in uniaxial crystals orthogonal to the optical axis analytically and numerically. The propagation trajectory, the intensity and the radiation forces of the RPAiBs are investigated and the properties are elucidated by numerical examples in this paper. Results show that the RPAiBs evolve into the beams produced by the x-direction electric field (RPAiXBs) and the y-direction electric field (PRAiYBs) which are totally different in uniaxial crystals. During the propagation, the intensity of the RPAiXBs transfers from the side lobe in the x-direction to the main lobe and finally returns to the side lobe in the x-direction again, but that of the RPAiYBs transfers from the side lobe in the y-direction to the main lobe and flows to the side lobe in the x-direction at last. The effect of the intensity focusing for the RPAiXBs can be modulated by the ratio of the extraordinary index (ne) to the ordinary index (no) in anisotropic medium, which contributes to the intensity focusing of the RPAiBs in a short distance a lot. We can adjust the intensity distribution especially the focusing position, the propagation trajectory and the radiation forces distributions of the RPAiXBs through choosing an appropriate value of the ratio of ne to no to meet the actual usage accordingly.

  4. Unidirectional, dual-comb lasing under multiple pulse formation mechanisms in a passively mode-locked fiber ring laser

    Science.gov (United States)

    Liu, Ya; Zhao, Xin; Hu, Guoqing; Li, Cui; Zhao, Bofeng; Zheng, Zheng

    2016-09-01

    Dual-comb lasers from which asynchronous ultrashort pulses can be simultaneously generated have recently become an interesting research subject. They could be an intriguing alternative to the current dual-laser optical-frequency-comb source with highly sophisticated electronic control systems. If generated through a common light path traveled by all pulses, the common-mode noises between the spectral lines of different pulse trains could be significantly reduced. Therefore, coherent dual-comb generation from a completely common-path, unidirectional lasing cavity would be an interesting territory to explore. In this paper, we demonstrate such a dual-comb lasing scheme based on a nanomaterial saturable absorber with additional pulse narrowing and broadening mechanisms concurrently introduced into a mode-locked fiber laser. The interactions between multiple soliton formation mechanisms result in unusual bifurcation into two-pulse states with quite different characteristics. Simultaneous oscillation of pulses with four-fold difference in pulsewidths and tens of Hz repetition rate difference is observed. The coherence between these spectral-overlapped, picosecond and femtosecond pulses is further verified by the corresponding asynchronous cross-sampling and dual-comb spectroscopy measurements.

  5. Integrated Microwave Photonic Isolators: Theory, Experimental Realization and Application in a Unidirectional Ring Mode-Locked Laser Diode

    Directory of Open Access Journals (Sweden)

    Martijn J.R. Heck

    2015-09-01

    Full Text Available A novel integrated microwave photonic isolator is presented. It is based on the timed drive of a pair of optical modulators, which transmit a pulsed or oscillating optical signal with low loss, when driven in phase. A signal in the reverse propagation direction will find the modulators out of phase and, hence, will experience high loss. Optical and microwave isolation ratios were simulated to be in the range up to 10 dB and 20 dB, respectively, using parameters representative for the indium phosphide platform. The experimental realization of this device in the hybrid silicon platform showed microwave isolation in the 9 dB–22 dB range. Furthermore, we present a design study on the use of these isolators inside a ring mode-locked laser cavity. Simulations show that unidirectional operation can be achieved, with a 30–50-dB suppression of the counter propagating mode, at limited driving voltages. The potentially low noise and feedback-insensitive operation of such a laser makes it a very promising candidate for use as on-chip microwave or comb generators.

  6. Visualization of hair follicles using high-speed optical coherence tomography based on a Fourier domain mode locking laser

    Science.gov (United States)

    Tsai, M.-T.; Chang, F.-Y.

    2012-04-01

    In this study, a swept-source optical coherence tomography (SS-OCT) system with a Fourier domain mode locking (FDML) laser is proposed for a dermatology study. The homemade FDML laser is one kind of frequency-sweeping light source, which can provide output power of >20 mW and an output spectrum of 65 nm in bandwidth centered at 1300 nm, enabling imaging with an axial resolution of 12 μm in the OCT system. To eliminate the forward scans from the laser output and insert the delayed backward scans, a Mach-Zehnder configuration is implemented. Compared with conventional frequency-sweeping light sources, the FDML laser can achieve much higher scan rates, as high as ˜240 kHz, which can provide a three-dimensional imaging rate of 4 volumes/s. Furthermore, the proposed high-speed SS-OCT system can provide three-dimensional (3D) images with reduced motion artifacts. Finally, a high-speed SS-OCT system is used to visualize hair follicles, demonstrating the potential of this technology as a tool for noninvasive diagnosis of alopecia.

  7. Polarized radial magnetic fields and outward plasma fluxes during shallow-reversal discharges in the ZT-40M reversed-field pinch

    International Nuclear Information System (INIS)

    Jacobson, A.R.; Rusbridge, M.G.; Burkhardt, L.C.

    1984-01-01

    The characteristics of edge-region electromagnetic disturbances and of pulsed radial fluxes of plasma to the liner as well as the detailed interrelationship among these processes have been studied on the ZT-40M reversed-field pinch in its normal, shallow-reversal operating regime. The dominant magnetic disturbances are spiky (pulsewidth approx.5--10 μs) low-amplitude (Vertical BarB/sub r//B/sub theta/Vertical Bar -2 )= poloidally symmetric radial-field structures intersecting the vacuum wall and precessing toroidally in the anti-I/sub phi/ sense. The effect of even slight toroidal-field reversal (Vertical BarB/sub phi/(a)Vertical Barroughly-equalB/sub theta/(a)/10) is to polarize these radial-field spikes preferentially positive (i.e., B/sub r/>0) and to increase the speed of the minority (B/sub r/ 0) spikes. Synchronous with the polarized B/sub r/ spikes are intense radially outward fluxes of plasma (instantaneously > or approx. =10 22 m -2 s -1 ) leading to recurrent, large amplitude (Vertical BarΔn/n> or approx. =25%) depletion of the density in the outer quarter of minor radius. The resulting time-averaged global loss-rate per particle is significant (approx.10 3 s -1 )

  8. Diode-pumped passively mode-locked Nd:LuVO4 laser with LT-In0.25Ga0.75As saturable absorber

    International Nuclear Information System (INIS)

    Li, T; Zhao, S; Li, Y; Zhuo, Z; Yang, K; Li, G; Li, D; Yu, Z

    2009-01-01

    A diode pumped passively mode-locked Nd:LuVO 4 laser with a low temperature (LT) In 0.25 Ga 0.75 As absorber is realized in this paper. An In 0.25 Ga 0.75 As single-quantum-well absorber, which is grown by use of the metal-organic chemical-vapor deposition technique, acts as nonlinear absorber and output coupler simultaneously. A special cavity is designed to keep the power density on In 0.25 Ga 0.75 As under its damage threshold. Both the Q-switched and continuous-wave (cw) mode locking operation are experimentally realized. An average output power of 5.9 W with pulse width of 4.9 ps is achieved at the pump power of 22 W, corresponding to an optical conversion efficiency of 26.8%

  9. Asymmetric dual-loop feedback to suppress spurious tones and reduce timing jitter in self-mode-locked quantum-dash lasers emitting at 155 μm

    Science.gov (United States)

    Asghar, Haroon; McInerney, John G.

    2017-09-01

    We demonstrate an asymmetric dual-loop feedback scheme to suppress external cavity side-modes induced in self-mode-locked quantum-dash lasers with conventional single and dual-loop feedback. In this letter, we achieved optimal suppression of spurious tones by optimizing the length of second delay time. We observed that asymmetric dual-loop feedback, with large (~8x) disparity in cavity lengths, eliminates all external-cavity side-modes and produces flat RF spectra close to the main peak with low timing jitter compared to single-loop feedback. Significant reduction in RF linewidth and reduced timing jitter was also observed as a function of increased second feedback delay time. The experimental results based on this feedback configuration validate predictions of recently published numerical simulations. This interesting asymmetric dual-loop feedback scheme provides simplest, efficient and cost effective stabilization of side-band free optoelectronic oscillators based on mode-locked lasers.

  10. Passive mode-locking of 3.25μm GaSb-based type-I quantum-well cascade diode lasers

    Science.gov (United States)

    Feng, Tao; Shterengas, Leon; Kipshidze, Gela; Hosoda, Takashi; Wang, Meng; Belenky, Gregory

    2018-02-01

    Passively mode-locked type-I quantum well cascade diode lasers emitting in the methane absorption band near 3.25 μm were designed, fabricated and characterized. The deep etched 5.5-μm-wide single spatial mode ridge waveguide design utilizing split-contact architecture was implemented. The devices with absorber to gain section length ratios of 11% and 5.5% were studied. Lasers with the longer absorber section ( 300 μm) generated smooth bell-shape-like emission spectrum with about 30 lasing modes at full-width-at-half-maximum level. Devices with reverse biased absorber section demonstrated stable radio frequency beat with nearly perfect Lorentzian shape over four orders of magnitude of intensity. The estimated pulse-to-pulse timing jitter was about 110 fs/cycle. Laser generated average power of more than 1 mW in mode-locked regime.

  11. Observation of Q-switching and mode-locking in two-section InAs/InP (100) quantum dot lasers around 1.55 mum.

    Science.gov (United States)

    Heck, Martijn J R; Bente, Erwin A J M; Smalbrugge, Barry; Oei, Yok-Siang; Smit, Meint K; Anantathanasarn, Sanguan; Nötzel, Richard

    2007-12-10

    First observation of passive mode-locking in two-section quantum-dot lasers operating at wavelengths around 1.55 mum is reported. Pulse generation at 4.6 GHz from a 9 mm long device is verified by background-free autocorrelation, RF-spectra and real-time oscilloscope traces. The output pulses are stretched in time and heavily up-chirped with a value of 20 ps/nm, contrary to what is normally observed in passively mode-locked semiconductor lasers. The complete output spectrum is shown to be coherent over 10 nm. From a 7 mm long device Q-switching is observed over a large operating regime. The lasers have been realized using a fabrication technology that is compatible with further photonic integration. This makes the laser a promising candidate for e.g. a mode-comb generator in a complex photonic chip.

  12. Soliton rains in a graphene-oxide passively mode-locked ytterbium-doped fiber laser with all-normal dispersion

    International Nuclear Information System (INIS)

    Huang, S S; Yan, P G; Zhang, G L; Zhao, J Q; Li, H Q; Lin, R Y; Wang, Y G

    2014-01-01

    We experimentally investigated soliton rains in an ytterbium-doped fiber (YDF) laser with a net normal dispersion cavity using a graphene-oxide (GO) saturable absorber (SA). The 195 m-long-cavity, the fiber birefringence filter and the inserted 2.5 nm narrow bandwidth filter play important roles in the formation of the soliton rains. The soliton rain states can be changed by the effective gain bandwidth of the laser. The experimental results can be conducive to an understanding of dissipative soliton features and mode-locking dynamics in all-normal dispersion fiber lasers with GOSAs. To the best of our knowledge, this is the first demonstration of soliton rains in a GOSA passively mode-locked YDF laser with a net normal dispersion cavity. (letter)

  13. Generation of 103 fs mode-locked pulses by a gain linewidth-variable Nd,Y:CaF2 disordered crystal.

    Science.gov (United States)

    Qin, Z P; Xie, G Q; Ma, J; Ge, W Y; Yuan, P; Qian, L J; Su, L B; Jiang, D P; Ma, F K; Zhang, Q; Cao, Y X; Xu, J

    2014-04-01

    We have demonstrated a diode-pumped passively mode-locked femtosecond Nd,Y:CaF2 disordered crystal laser for the first time to our knowledge. By choosing appropriate Y-doping concentration, a broad fluorescence linewidth of 31 nm has been obtained from the gain linewidth-variable Nd,Y:CaF2 crystal. With the Nd,Y:CaF2 disordered crystal as gain medium, the mode-locked laser generated pulses with pulse duration as short as 103 fs, average output power of 89 mW, and repetition rate of 100 MHz. To our best knowledge, this is the shortest pulse generated from Nd-doped crystal lasers so far. The research results show that the Nd,Y:CaF2 disordered crystal will be a potential alternative as gain medium of repetitive chirped pulse amplification for high-peak-power lasers.

  14. Characterisation of the light pulses of a cavity dumped dye laser pumped by a cw mode-locked and q-switched Nd:YAG laser

    International Nuclear Information System (INIS)

    Geist, P.; Heisel, F.; Martz, A.; Miehe, J.A.; Miller, R.J.D.

    1984-01-01

    The frequency doubled pulses (of 532 nm) obtained, with the help of a KTP crystal, from those delivered by either a continuous wave mode-locked (100 MHz) or mode-locked Q-switched (0-1 KHz) Nd: YAG laser, are analyzed by means of a streak camera, operating in synchroscan or triggered mode. In the step-by-step measurements the pulse stability, concerning form and amplitude, is shown. In addition, measurements effectuated with synchronously pumped and cavity dumped dye laser (Rhodamine 6G), controlled by a Pockels cell, allows the obtention of stable and reproducible single pulses of 30 ps duration, 10 μJ energy and 500Hz frequency [fr

  15. Study of the spectral width of intermode beats and optical spectrum of an actively mode-locked three-mirror semiconductor laser

    International Nuclear Information System (INIS)

    Zakharyash, Valerii F; Kashirsky, Aleksandr V; Klementyev, Vasilii M; Kuznetsov, Sergei A; Pivtsov, V S

    2005-01-01

    Various oscillation regimes of an actively mode-locked semiconductor laser are studied experimentally. Two types of regimes are found in which the minimal spectral width (∼3.5 kHz) of intermode beats is achieved. The width of the optical spectrum of modes is studied as a function of their locking and the feedback coefficients. The maximum width of the spectrum is ∼3.7 THz. (control of laser radiation parameters)

  16. Low-timing-jitter, stretched-pulse passively mode-locked fiber laser with tunable repetition rate and high operation stability

    International Nuclear Information System (INIS)

    Liu, Yuanshan; Zhang, Jian-Guo; Chen, Guofu; Zhao, Wei; Bai, Jing

    2010-01-01

    We design a low-timing-jitter, repetition-rate-tunable, stretched-pulse passively mode-locked fiber laser by using a nonlinear amplifying loop mirror (NALM), a semiconductor saturable absorber mirror (SESAM), and a tunable optical delay line in the laser configuration. Low-timing-jitter optical pulses are stably produced when a SESAM and a 0.16 m dispersion compensation fiber are employed in the laser cavity. By inserting a tunable optical delay line between NALM and SESAM, the variable repetition-rate operation of a self-starting, passively mode-locked fiber laser is successfully demonstrated over a range from 49.65 to 50.47 MHz. The experimental results show that the newly designed fiber laser can maintain the mode locking at the pumping power of 160 mW to stably generate periodic optical pulses with width less than 170 fs and timing jitter lower than 75 fs in the 1.55 µm wavelength region, when the fundamental repetition rate of the laser is continuously tuned between 49.65 and 50.47 MHz. Moreover, this fiber laser has a feature of turn-key operation with high repeatability of its fundamental repetition rate in practice

  17. Dynamical modeling and experiment for an intra-cavity optical parametric oscillator pumped by a Q-switched self-mode-locking laser

    Science.gov (United States)

    Wang, Jing; Liu, Nianqiao; Song, Peng; Zhang, Haikun

    2016-11-01

    The rate-equation-based model for the Q-switched mode-locking (QML) intra-cavity OPO (IOPO) is developed, which includes the behavior of the fundamental laser. The intensity fluctuation mechanism of the fundamental laser is first introduced into the dynamics of a mode-locking OPO. In the derived model, the OPO nonlinear conversion is considered as a loss for the fundamental laser and thus the QML signal profile originates from the QML fundamental laser. The rate equations are solved by a digital computer for the case of an IOPO pumped by an electro-optic (EO) Q-switched self-mode-locking fundamental laser. The simulated results for the temporal shape with 20 kHz EO repetition and 11.25 W pump power, the signal average power, the Q-switched pulsewidth and the Q-switched pulse energy are obtained from the rate equations. The signal trace and output power from an EO QML Nd3+: GdVO4/KTA IOPO are experimentally measured. The theoretical values from the rate equations agree with the experimental results well. The developed model explains the behavior, which is helpful to system optimization.

  18. Effects of multiple resistive shells and transient electromagnetic torque on the dynamics of mode locking in reversed field pinch plasmas

    International Nuclear Information System (INIS)

    Guo, S.C.; Chu, M.S.

    2002-01-01

    The effects of multiple resistive shells and transient electromagnetic torque on the dynamics of mode locking in the reversed field pinch (RFP) plasmas are studied. Most RFP machines are equipped with one or more metal shells outside of the vacuum vessel. These shells have finite resistivities. The eddy currents induced in each of the shells contribute to the braking electromagnetic (EM) torque which slows down the plasma rotation. In this work we study the electromagnetic torque acting on the plasma (tearing) modes produced by a system of resistive shells. These shells may consist of several nested thin shells or several thin shells enclosed within a thick shell. The dynamics of the plasma mode is investigated by balancing the EM torque from the resistive shells with the plasma viscous torque. Both the steady state theory and the time-dependent theory are developed. The steady state theory is shown to provide an accurate account of the resultant EM torque if (dω/dt)ω -2 <<1 and the time scale of interest is much longer than the response (L/R) time of the shell. Otherwise, the transient theory should be adopted. As applications, the steady state theory is used to evaluate the changes of the EM torque response from the resistive shells in two variants of two RFP machines: (1) modification from Reversed Field Experiment (RFX) [Gnesotto et al., Fusion Eng. Des. 25, 335 (1995)] to the modified RFX: both of them are equipped with one thin shell plus one thick shell; (2) modification from Extrap T2 to Extrap T2R [Brunsell et al., Plasma Phys. Controlled Fusion 43, 1457 (2001)]: both of them are equipped with two thin shells. The transient theory has been applied numerically to study the time evolution of the EM torque during the unlocking of a locked tearing mode in the modified RFX

  19. Nanoscale charcoal powder induced saturable absorption and mode-locking of a low-gain erbium-doped fiber-ring laser

    International Nuclear Information System (INIS)

    Lin, Yung-Hsiang; Chi, Yu-Chieh; Lin, Gong-Ru

    2013-01-01

    Triturated charcoal nano-powder directly brushed on a fiber connector end-face is used for the first time as a fast saturable absorber for a passively mode-locked erbium-doped fiber-ring laser (EDFL). These dispersant-free charcoal nano-powders with a small amount of crystalline graphene phase and highly disordered carbon structure exhibit a broadened x-ray diffraction peak and their Raman spectrum shows the existence of a carbon related D-band at 1350 cm −1 and the disappearance of the 2D-band peak at 2700 cm −1 . The charcoal nano-powder exhibits a featureless linear absorbance in the infrared region with its linear transmittance of 0.66 nonlinearly saturated at 0.73 to give a ΔT/T of 10%. Picosecond mode-locking at a transform-limited condition of a low-gain EDFL is obtained by using the charcoal nano-powder. By using a commercial EDFA with a linear gain of only 17 dB at the saturated output power of 17.5 dB m required to initiate the saturable absorption of the charcoal nano-powder, the EDFL provides a pulsewidth narrowing from 3.3 to 1.36 ps associated with its spectral linewidth broadening from 0.8 to 1.83 nm on increasing the feedback ratio from 30 to 90%. This investigation indicates that all the carbon-based materials containing a crystalline graphene phase can be employed to passively mode-lock the EDFL, however, the disordered carbon structure inevitably induces a small modulation depth and a large mode-locking threshold, thus limiting the pulsewidth shortening. Nevertheless, the nanoscale charcoal passively mode-locked EDFL still shows the potential to generate picosecond pulses under a relatively low cavity gain. An appropriate cavity design can be used to compensate this defect-induced pulsewidth limitation and obtain a short pulsewidth. (letter)

  20. Polarized Source Performance and Developments at Jefferson Lab

    International Nuclear Information System (INIS)

    Matt Poelker; P. Adderley; J. Clark; A. Day; Joseph Grames; J. Hansknecht; P. Hartmann; R. Kazimi; P. Rutt; Charles Sinclair; M. Steigerwald

    2000-01-01

    The polarized photoinjector at Jefferson Lab continues to provide high average current, high polarization, high quality beam to nuclear physics Users in as many as three endstations simultaneously. Long lifetime operation has been obtained from two identical polarized guns. A new high power mode locked Ti-sapphire laser has been constructed to enhance the effective operating lifetime of the photoinjector. Efforts to enhance beam polarization and reduced helicity correlated beam systematic effects are underway

  1. Passive mode locking of 2.09 microm Cr,Tm,Ho:Y3Sc2Al3O12 laser using PbS quantum-dot-doped glass.

    Science.gov (United States)

    Denisov, Igor A; Skoptsov, Nikolai A; Gaponenko, Maxim S; Malyarevich, Alexander M; Yumashev, Konstantin V; Lipovskii, Andrei A

    2009-11-01

    Passive Q-switched mode locking of a 2.09 microm flashlamp-pumped Cr(3+),Tm(3+),Ho(3+):Y(3)Sc(2)Al(3)O(12) laser by use of a phosphate glass doped with PbS quantum dots of 5 nm in radius was demonstrated. Mode-locked pulses of 290 ps in duration and up to 0.5 mJ in energy were registered.

  2. Effect of a radial space-charge field on the movement of particles in a magneto-static field and under the influence of a circularly polarized wave

    International Nuclear Information System (INIS)

    Buffa, A.

    1967-06-01

    The effect of a circularly polarized wave on a cylindrical plasma in a axial magnetostatic field and a radial space-charge field proportional to r is studied. Single particle motion is considered. The electrostatic field produces a shift in the cyclotron resonance frequency and,in case of high charge density, a radial movement of the off-resonance particles. In these conditions a radio-frequency-particle resonance is also possible called 'drift-resonance'. The drift resonance can be produced, with whistler mode, and may be employed in ion acceleration. Afterwards parametrical resonances produced by space-charge field oscillations and collisional limits of theory are studied. Cases in which ion acceleration is possible are considered on the basis of a quantitative analysis of results. (author) [fr

  3. Current density and polarization curves for radial flow field patterns applied to PEMFCs (Proton Exchange Membrane Fuel Cells)

    International Nuclear Information System (INIS)

    Cano-Andrade, S.; Hernandez-Guerrero, A.; Spakovsky, M.R. von; Damian-Ascencio, C.E.; Rubio-Arana, J.C.

    2010-01-01

    A numerical solution of the current density and velocity fields of a 3-D PEM radial configuration fuel cell is presented. The energy, momentum and electrochemical equations are solved using a computational fluid dynamics (CFD) code based on a finite volume scheme. There are three cases of principal interest for this radial model: four channels, eight channels and twelve channels placed in a symmetrical path over the flow field plate. The figures for the current-voltage curves for the three models proposed are presented, and the main factors that affect the behavior of each of the curves are discussed. Velocity contours are presented for the three different models, showing how the fuel cell behavior is affected by the velocity variations in the radial configuration. All these results are presented for the case of high relative humidity. The favorable results obtained for this unconventional geometry seems to indicate that this geometry could replace the conventional commercial geometries currently in use.

  4. Tip-enhanced fluorescence with radially polarized illumination for monitoring loop-mediated isothermal amplification on Hepatitis C virus cDNA

    Science.gov (United States)

    Wei, Shih-Chung; Chuang, Tsung-Liang; Wang, Da-Shin; Lu, Hui-Hsin; Gu, Frank X.; Sung, Kung-Bin; Lin, Chii-Wann

    2015-02-01

    A tip nanobiosensor for monitoring DNA replication was presented. The effects of excitation power and polarization on tip-enhanced fluorescence (TEF) were assessed with the tip immersed in fluorescein isothiocyanate solution first. The photon count rose on average fivefold with radially polarized illumination at 50 mW. We then used polymerase-functionalized tips for monitoring loop-mediated isothermal amplification on Hepatitis C virus cDNA. The amplicon-SYBR Green I complex was detected and compared to real-time loop-mediated isothermal amplification. The signals of the reaction using 4 and 0.004 ng/μl templates were detected 10 and 30 min earlier, respectively. The results showed the potential of TEF in developing a nanobiosensor for real-time DNA amplification.

  5. Quasi-continuously pumped passively mode-locked 2.4% doped Nd:YAG oscillator-amplifier system in a bounce geometry

    Science.gov (United States)

    Jelínek, Michal; Kubecek, Vaclav; Cech, Miroslav; Hirsl, Petr

    2010-02-01

    We report on oscillator-amplifier system based on two highly doped 2.4 at. % crystalline Czochralski grown Nd:YAG crystals in a diode pumped bounce geometry configuration under quasi-continuous pumping. The oscillator was passively mode-locked by the semiconductor saturable absorber in transmission mode. The output pulse train consisted of 5 pulses with total energy of 270 μJ and pulse duration of 75 ps. The output train from the oscillator was amplified to the energy of 1 mJ by single pass amplifier.

  6. Intensity Correlation Analysis on Blue-Violet FemtosecondPulses from a Dispersion-Compensated GaInN Mode-LockedSemiconductor Laser Diode

    Directory of Open Access Journals (Sweden)

    Shunsuke Kono

    2015-09-01

    Full Text Available We investigated the spectral and temporal characteristics of blue-violetfemtosecond optical pulses generated by a passively mode-locked GaInN laser diode ina dispersion-compensated external cavity. The output optical pulses at 400 nm wereanalyzed in detail by intensity auto- and cross-correlation measurements using secondharmonic generation on the surface of a β-BaB2O4 crystal. The obtained results clarifiedwavelength-dependent chirp characteristics of the optical pulses. The analysis suggestedthat a large frequency shift due to saturation in the saturable absorber and gain sectionsplayed an important role in the generation of femtosecond optical pulses.

  7. Semiconductor optical amplifier-based heterodyning detection for resolving optical terahertz beat-tone signals from passively mode-locked semiconductor lasers

    International Nuclear Information System (INIS)

    Latkowski, Sylwester; Maldonado-Basilio, Ramon; Carney, Kevin; Parra-Cetina, Josue; Philippe, Severine; Landais, Pascal

    2010-01-01

    An all-optical heterodyne approach based on a room-temperature controlled semiconductor optical amplifier (SOA) for measuring the frequency and linewidth of the terahertz beat-tone signal from a passively mode-locked laser is proposed. Under the injection of two external cavity lasers, the SOA acts as a local oscillator at their detuning frequency and also as an optical frequency mixer whose inputs are the self-modulated spectrum of the device under test and the two laser beams. Frequency and linewidth of the intermediate frequency signal (and therefore, the beat-tone signal) are resolved by using a photodiode and an electrical spectrum analyzer.

  8. Passive mode locking of an in-band-pumped Ho:YLiF4 laser at 2.06 μm.

    Science.gov (United States)

    Coluccelli, Nicola; Lagatsky, Alexander; Di Lieto, Alberto; Tonelli, Mauro; Galzerano, Gianluca; Sibbett, Wilson; Laporta, Paolo

    2011-08-15

    We demonstrate the passive mode-locking operation of an in-band-pumped Ho:YLiF(4) laser at 2.06 μm using a semiconductor saturable absorber mirror based on InGaAsSb quantum wells. A transform-limited pulse train with minimum duration of 1.1 ps and average power of 0.58 W has been obtained at a repetition frequency of 122 MHz. A maximum output power of 1.7 W has been generated with a corresponding pulse duration of 1.9 ps. © 2011 Optical Society of America

  9. The simultaneous generation of soliton bunches and Q-switched-like pulses in a partially mode-locked fiber laser with a graphene saturable absorber

    Science.gov (United States)

    Wang, Zhenhong; Wang, Zhi; Liu, Yan-ge; He, Ruijing; Wang, Guangdou; Yang, Guang; Han, Simeng

    2018-05-01

    We experimentally report the coexistence of soliton bunches and Q-switched-like pulses in a partially mode-locked fiber laser with a microfiber-based graphene saturable absorber. The soliton bunches, like isolated spikes with extreme amplitude and ultrashort duration, randomly generate in the background of the Q-switched-like pulses. The soliton bunches have some pulse envelopes in which pulses operate at a fundamental repetition rate in the temporal domain. Further investigation shows that the composite pulses are highly correlated with the noise-like pulses. Our work can make a further contribution to enrich the understanding of the nonlinear dynamics in fiber lasers.

  10. Mode-locked Er-doped fiber laser based on PbS/CdS core/shell quantum dots as saturable absorber.

    Science.gov (United States)

    Ming, Na; Tao, Shina; Yang, Wenqing; Chen, Qingyun; Sun, Ruyi; Wang, Chang; Wang, Shuyun; Man, Baoyuan; Zhang, Huanian

    2018-04-02

    Previously, PbS/CdS core/shell quantum dots with excellent optical properties have been widely used as light-harvesting materials in solar cell and biomarkers in bio-medicine. However, the nonlinear absorption characteristics of PbS/CdS core/shell quantum dots have been rarely investigated. In this work, PbS/CdS core/shell quantum dots were successfully employed as nonlinear saturable absorber (SA) for demonstrating a mode-locked Er-doped fiber laser. Based on a film-type SA, which was prepared by incorporating the quantum dots with the polyvinyl alcohol (PVA), mode-locked Er-doped operation with a pulse width of 54 ps and a maximum average output power of 2.71 mW at the repetition rate of 3.302 MHz was obtained. Our long-time stable results indicate that the CdS shell can effectively protect the PbS core from the effect of photo-oxidation and PbS/CdS core/shell quantum dots were efficient SA candidates for demonstrating pulse fiber lasers due to its tunable absorption peak and excellent saturable absorption properties.

  11. Design optimization of a compact photonic crystal microcavity based on slow light and dispersion engineering for the miniaturization of integrated mode-locked lasers

    Directory of Open Access Journals (Sweden)

    Malik Kemiche

    2018-01-01

    Full Text Available We exploit slow light (high ng modes in planar photonic crystals in order to design a compact cavity, which provides an attractive path towards the miniaturization of near-infrared integrated fast pulsed lasers. By applying dispersion engineering techniques, we can design structures with a low dispersion, as needed by mode-locking operation. Our basic InP SiO2 heterostructure is robust and well suited to integrated laser applications. We show that an optimized 30 μm long cavity design yields 9 frequency-equidistant modes with a FSR of 178 GHz within a 11.5 nm bandwidth, which could potentially sustain the generation of optical pulses shorter than 700 fs. In addition, the numerically calculated quality factors of these modes are all above 10,000, making them suitable for reaching laser operation. Thanks to the use of a high group index (28, this cavity design is almost one order of magnitude shorter than standard rib-waveguide based mode-locked lasers. The use of slow light modes in planar photonic crystal based cavities thus relaxes the usual constraints that tightly link the device size and the quality (peak power, repetition rate of the pulsed laser signal.

  12. Design optimization of a compact photonic crystal microcavity based on slow light and dispersion engineering for the miniaturization of integrated mode-locked lasers

    Science.gov (United States)

    Kemiche, Malik; Lhuillier, Jérémy; Callard, Ségolène; Monat, Christelle

    2018-01-01

    We exploit slow light (high ng) modes in planar photonic crystals in order to design a compact cavity, which provides an attractive path towards the miniaturization of near-infrared integrated fast pulsed lasers. By applying dispersion engineering techniques, we can design structures with a low dispersion, as needed by mode-locking operation. Our basic InP SiO2 heterostructure is robust and well suited to integrated laser applications. We show that an optimized 30 μm long cavity design yields 9 frequency-equidistant modes with a FSR of 178 GHz within a 11.5 nm bandwidth, which could potentially sustain the generation of optical pulses shorter than 700 fs. In addition, the numerically calculated quality factors of these modes are all above 10,000, making them suitable for reaching laser operation. Thanks to the use of a high group index (28), this cavity design is almost one order of magnitude shorter than standard rib-waveguide based mode-locked lasers. The use of slow light modes in planar photonic crystal based cavities thus relaxes the usual constraints that tightly link the device size and the quality (peak power, repetition rate) of the pulsed laser signal.

  13. Influence of different approaches for dynamical performance optimization of monolithic passive colliding-pulse mode-locked laser diodes emitting around 850 nm

    Science.gov (United States)

    Prziwarka, T.; Klehr, A.; Wenzel, H.; Fricke, J.; Bugge, F.; Weyers, M.; Knigge, A.; Tränkle, G.

    2018-02-01

    Monolithic laser diodes which generate short infrared pulses in the picosecond and sub-picosecond ranges with high peak power are ideal sources for many applications like e.g. THz-time-domain spectroscopy (TDS) scanning systems. The achievable THz bandwidth is limited by the length of the optical pulses. Due to the fact that colliding-pulse mode locking (CPM) leads to the shortest pulses which could reached by passive mode locking, we experimentally investigated in detail the dynamical and electro optical performance of InGaAsP based quantum well CPM laser diodes with well-established vertical layer structures. Simple design modifications whose implementation is technically easy were realized. Improvements of the device performance in terms of pulse duration, output power, and noise properties are presented in dependence on the different adaptions. From the results we extract an optimized configuration with which we have reached pulses with durations of ≍1.5 ps, a peak power of > 1 W and a pulse-to-pulse timing jitter < 200 fs. The laser diodes emit pulses at a wavelength around 850 nm with a repetition frequency of ≍ 12.4 GHz and could be used as pump source for GaAs antennas to generate THz-radiation. Approaches for reducing pulse width, increasing output power, and improving noise performance are described.

  14. Analyzing the propagation behavior of coherence and polarization degrees of a phase-locked partially coherent radial flat-topped array laser beam in underwater turbulence.

    Science.gov (United States)

    Kashani, Fatemeh Dabbagh; Yousefi, Masoud

    2016-08-10

    In this research, based on an analytical expression for cross-spectral density (CSD) matrix elements, coherence and polarization properties of phase-locked partially coherent flat-topped (PCFT) radial array laser beams propagating through weak oceanic turbulence are analyzed. Spectral degrees of coherence and polarization are analytically calculated using CSD matrix elements. Also, the effective width of spatial degree of coherence (EWSDC) is calculated numerically. The simulation is done by considering the effects of source parameters (such as radius of the array setup's circle, effective width of the spectral degree of coherence, and wavelength) and turbulent ocean factors (such as the rate of dissipation of the turbulent kinetic energy per unit mass of fluid and relative strength of temperature and salinity fluctuations, Kolmogorov micro-scale, and rate of dissipation of the mean squared temperature) in detail. Results indicate that any change in the amount of turbulence factors that increase the turbulence power reduces the EWSDC significantly and causes the reduction in the degree of polarization, and occurs at shorter propagation distances but with smaller magnitudes. In addition, being valid for all conditions, the degradation rate of the EWSDC of Gaussian array beams are more in comparison with the PCFT ones. The simulation and calculation results are shown by graphs.

  15. Diode-pumped passively mode-locked composite crystal Nd:Lu0.15Y0.85VO4 laser at 1342.2 nm

    International Nuclear Information System (INIS)

    Qiao, Wenchao; Zhao, Shengzhi; Li, Guiqiu; Yang, Kejian; Li, Tao; Zhao, Jia; Zhao, Bin

    2015-01-01

    A diode-pumped mode-locked Nd:Lu 0.15 Y 0.85 VO 4 laser running at 1342.2 nm is firstly demonstrated with a semiconductor saturable absorber mirror (SESAM). Stable mode-locking pulses with the pulse-duration of 15.2 ps and the repetition rate of 32.8 MHz have been achieved. With a pumping power of 7.1 W, an output power of 786 mW was obtained, corresponding to an optical conversion efficiency of 11%. A maximum mode-locked pulse energy was estimated to be 23.96 nJ with a peak power of 1.58 kW. (paper)

  16. Switching between the mode-locking and Q-switching modes in two-section QW lasers upon a change in the absorber properties due to the Stark effect

    Energy Technology Data Exchange (ETDEWEB)

    Gadzhiyev, I. M., E-mail: idris.intop@mail.ru; Buyalo, M. S. [Russian Academy of Sciences, Ioffe Physical–Technical Institute (Russian Federation); Gubenko, A. E. [Innolume GmbH (Germany); Egorov, A. Yu.; Usikova, A. A.; Il’inskaya, N. D.; Lyutetskiy, A. V.; Zadiranov, Yu. M.; Portnoi, E. L. [Russian Academy of Sciences, Ioffe Physical–Technical Institute (Russian Federation)

    2016-06-15

    The passive Q-switching and mode-locking modes are implemented in two-section lasers with three quantum wells. It is demonstrated that raising the reverse bias on the absorbing section changes its spectral and dynamic properties and, accordingly, leads to a change from the Q-switching mode to mode-locking. The pulse-repetition frequency in the mode-locking mode is 75 GHz, with the product of the pulse duration by the spectrum bandwidth being 0.49, which is close to the theoretical limit. It is shown that, in structures with three quantum wells, strong absorption at the lasing wavelength gives rise to a photocurrent across a section of the saturable absorber, which is sufficient for compensation of the applied bias.

  17. Switching between the mode-locking and Q-switching modes in two-section QW lasers upon a change in the absorber properties due to the Stark effect

    International Nuclear Information System (INIS)

    Gadzhiyev, I. M.; Buyalo, M. S.; Gubenko, A. E.; Egorov, A. Yu.; Usikova, A. A.; Il’inskaya, N. D.; Lyutetskiy, A. V.; Zadiranov, Yu. M.; Portnoi, E. L.

    2016-01-01

    The passive Q-switching and mode-locking modes are implemented in two-section lasers with three quantum wells. It is demonstrated that raising the reverse bias on the absorbing section changes its spectral and dynamic properties and, accordingly, leads to a change from the Q-switching mode to mode-locking. The pulse-repetition frequency in the mode-locking mode is 75 GHz, with the product of the pulse duration by the spectrum bandwidth being 0.49, which is close to the theoretical limit. It is shown that, in structures with three quantum wells, strong absorption at the lasing wavelength gives rise to a photocurrent across a section of the saturable absorber, which is sufficient for compensation of the applied bias.

  18. Effect of beam expansion loss in a carbon nanotube-doped PVA film on passively mode-locked erbium-doped fiber lasers with different feedback ratios

    International Nuclear Information System (INIS)

    Cheng, Kuang-Nan; Chi, Yu-Chieh; Cheng, Chih-Hsien; Lin, Yung-Hsiang; Lo, Jui-Yung; Lin, Gong-Ru

    2014-01-01

    The effect of beam expansion induced divergent loss in a single-wall carbon nanotube (SWCNT) doped polyvinyl alcohol (PVA) based ultrafast saturable absorber (SA) film thickness on the passive mode-locking (PML) performances of erbium-doped fiber lasers are demonstrated. The variation on the PML pulsewidth of the EDFL is discussed by changing the SWCNT-PVA SA film thicknesses, together with adjusting the pumping power and the intra-cavity feedback ratio. An almost 6 dB increment of divergent loss when enlarging the SWCNT-PVA based SA film thickness from 30–130 µm is observed. When shrinking the SA thickness to 30 µm at the largest pumping power of 52.5 mW, the optical spectrum red-shifts to 1558.8 nm with its 3 dB spectral linewidth broadening up to 2.7 nm, while the pulse has already entered the soliton regime with multi-order Kelly sidebands aside the spectral shoulder. The soliton pulsewidth is as short as 790 fs, which is much shorter than those obtained with other thicker SWCNT doped PVA polymer film based SAs; therefore, the peak power from the output of the PML-EDFL is significantly enlarged accompanied by a completely suppressed residual continuous-wave level to achieve the largest on/off extinction ratio. The main mechanism of pulse shortening with reducing thickness of SWCNT doped PVA polymer film based SA is attributed to the limited beam expansion as well as the enlarged modulation depth, which results in shortened soliton pulsewidth with a clean dc background, and broadened spectrum with enriched Kelly sidebands. The increase of total SWCNT amount in the thicker SA inevitably causes a higher linear absorption; hence, the mode-locking threshold also rises accordingly. By enlarging pumping power from 38.5–52.5 mW, the highest ascent on pulse extinction of up to 32 dB is observed among all kinds of feedback conditions. Nevertheless, the enlargement on the extinction slightly decays with increasing the feedback ratio from 30–90

  19. Finite-difference time-domain (FDTD) analysis on the interaction between a metal block and a radially polarized focused beam.

    Science.gov (United States)

    Kitamura, Kyoko; Sakai, Kyosuke; Noda, Susumu

    2011-07-18

    Radially polarized focused beams have attracted a great deal of attention because of their unique properties characterized by the longitudinal field. Although this longitudinal field is strongly confined to the beam axis, the energy flow, i.e., the Poynting vector, has null intensity on the axis. Hence, the interaction of the focused beam and matter has thus far been unclear. We analyzed the interactions between the focused beam and a subwavelength metal block placed at the center of the focus using three-dimensional finite-difference time-domain (FDTD) calculation. We found that most of the Poynting energy propagates through to the far-field, and that a strong enhancement of the electric field appeared on the metal surface. This enhancement is attributed to the constructive interference of the symmetric electric field and the coupling to the surface plasmon mode.

  20. Gigahertz repetition rate, sub-femtosecond timing jitter optical pulse train directly generated from a mode-locked Yb:KYW laser.

    Science.gov (United States)

    Yang, Heewon; Kim, Hyoji; Shin, Junho; Kim, Chur; Choi, Sun Young; Kim, Guang-Hoon; Rotermund, Fabian; Kim, Jungwon

    2014-01-01

    We show that a 1.13 GHz repetition rate optical pulse train with 0.70 fs high-frequency timing jitter (integration bandwidth of 17.5 kHz-10 MHz, where the measurement instrument-limited noise floor contributes 0.41 fs in 10 MHz bandwidth) can be directly generated from a free-running, single-mode diode-pumped Yb:KYW laser mode-locked by single-wall carbon nanotube-coated mirrors. To our knowledge, this is the lowest-timing-jitter optical pulse train with gigahertz repetition rate ever measured. If this pulse train is used for direct sampling of 565 MHz signals (Nyquist frequency of the pulse train), the jitter level demonstrated would correspond to the projected effective-number-of-bit of 17.8, which is much higher than the thermal noise limit of 50 Ω load resistance (~14 bits).

  1. High-resolution retinal swept source optical coherence tomography with an ultra-wideband Fourier-domain mode-locked laser at MHz A-scan rates.

    Science.gov (United States)

    Kolb, Jan Philip; Pfeiffer, Tom; Eibl, Matthias; Hakert, Hubertus; Huber, Robert

    2018-01-01

    We present a new 1060 nm Fourier domain mode locked laser (FDML laser) with a record 143 nm sweep bandwidth at 2∙ 417 kHz  =  834 kHz and 120 nm at 1.67 MHz, respectively. We show that not only the bandwidth alone, but also the shape of the spectrum is critical for the resulting axial resolution, because of the specific wavelength-dependent absorption of the vitreous. The theoretical limit of our setup lies at 5.9 µm axial resolution. In vivo MHz-OCT imaging of human retina is performed and the image quality is compared to the previous results acquired with 70 nm sweep range, as well as to existing spectral domain OCT data with 2.1 µm axial resolution from literature. We identify benefits of the higher resolution, for example the improved visualization of small blood vessels in the retina besides several others.

  2. Comparison of Monolithic Optical Frequency Comb Generators Based on Passively Mode-Locked Lasers for Continuous Wave mm-Wave and Sub-THz Generation

    DEFF Research Database (Denmark)

    Criado, A. R.; de Dios, C.; Acedo, P.

    2012-01-01

    In this paper, two different Passive Mode-Locked Laser Diodes (PMLLD) structures, a Fabry–Perot cavity and a ring cavity laser are characterized and evaluated as monolithic Optical Frequency Comb Generators (OFCG) for CW sub-THz generation. An extensive characterization of the devices under study...... is carried out based on an automated measurement system that systematically evaluates the dynamic characteristics of the devices, focusing on the figures of merit that define the optimum performance of a pulsed laser source when considered as an OFCG. Sub-THz signals generated with both devices at 60 GHz...... topologies that can be used for the implementation of photonic integrated sub-THz CW generation....

  3. Transfer-free synthesis of multilayer graphene using a single-step process in an evaporator and formation confirmation by laser mode-locking

    International Nuclear Information System (INIS)

    Kim, Won-Jun; Debnath, Pulak C; Song, Yong-Won; Lee, Junsu; Lee, Ju Han; Lim, Dae-Soon

    2013-01-01

    Multilayer graphene is synthesized by a simplified process employing an evaporator in which a target substrate is deposited with a Ni catalyst layer before being heated to grow graphene directly. Carbon atoms adsorbed onto the surface of the Ni source as impurities from the atmosphere are incorporated into the catalyst layer during the deposition, and diffuse toward the catalyst/substrate interface, where they crystallize as graphene with a thickness of less than 2 nm. The need for a transfer process and external carbon supply is eliminated. The graphene is characterized by conventional analysis approaches, including nano-scale visualization and Raman spectroscopy, and utilizing photonics, graphene-functionalized passive laser mode-locking is demonstrated to confirm the successful synthesis of the graphene layer, resulting in an operating center wavelength of 1569.4 nm, a pulse duration of 1.35 ps, and a repetition rate of 31.6 MHz. (paper)

  4. Transfer of an exfoliated monolayer graphene flake onto an optical fiber end face for erbium-doped fiber laser mode-locking

    International Nuclear Information System (INIS)

    Rosa, Henrique Guimaraes; De Souza, Eunézio A Thoroh; Gomes, José Carlos Viana

    2015-01-01

    This paper presents, for the first time, the successful transfer of exfoliated monolayer graphene flake to the optical fiber end face and alignment to its core. By fabricating and optimizing a polymeric poly(methyl methacrylate) (PMMA) and polyvinyl alcohol (PVA) substrate, it is possible to obtain a contrast of up to 11% for green light illumination, allowing the identification of monolayer graphene flakes that were transferred to optical fiber samples and aligned to its core. With Raman spectroscopy, it is demonstrated that graphene flake completely covers the optical fiber core, and its quality remains unaltered after the transfer. The generation of mode-locked erbium-doped fiber laser pulses, with a duration of 672 fs, with a single-monolayer graphene flake as a saturable absorber, is demonstrated for the first time. This transfer technique is of general applicability and can be used for other two-dimensional (2D) exfoliated materials. (letter)

  5. Generation of “gigantic” ultra-short microwave pulses based on passive mode-locking effect in electron oscillators with saturable absorber in the feedback loop

    International Nuclear Information System (INIS)

    Ginzburg, N. S.; Denisov, G. G.; Vilkov, M. N.; Zotova, I. V.; Sergeev, A. S.

    2016-01-01

    A periodic train of powerful ultrashort microwave pulses can be generated in electron oscillators with a non-linear saturable absorber installed in the feedback loop. This method of pulse formation resembles the passive mode-locking widely used in laser physics. Nevertheless, there is a specific feature in the mechanism of pulse amplification when consecutive energy extraction from different fractions of a stationary electron beam takes place due to pulse slippage over the beam caused by the difference between the wave group velocity and the electron axial velocity. As a result, the peak power of generated “gigantic” pulses can exceed not only the level of steady-state generation but also, in the optimal case, the power of the driving electron beam.

  6. Comparison on exfoliated graphene nano-sheets and triturated graphite nano-particles for mode-locking the Erbium-doped fibre lasers

    Science.gov (United States)

    Yang, Chun-Yu; Lin, Yung-Hsiang; Wu, Chung-Lun; Cheng, Chih-Hsien; Tsai, Din-Ping; Lin, Gong-Ru

    2018-06-01

    Comparisons on exfoliated graphene nano-sheets and triturated graphite nano-particles for mode-locking the Erbium-doped fiber lasers (EDFLs) are performed. As opposed to the graphite nano-particles obtained by physically triturating the graphite foil, the tri-layer graphene nano-sheets is obtained by electrochemically exfoliating the graphite foil. To precisely control the size dispersion and the layer number of the exfoliated graphene nano-sheet, both the bias of electrochemical exfoliation and the speed of centrifugation are optimized. Under a threshold exfoliation bias of 3 volts and a centrifugation at 1000 rpm, graphene nano-sheets with an average diameter of 100  ±  40 nm can be obtained. The graphene nano-sheets with an area density of 15 #/µm2 are directly imprinted onto the end-face of a single-mode fiber made patchcord connector inside the EDFL cavity. Such electrochemically exfoliated graphene nano-sheets show comparable saturable absorption with standard single-graphene and perform the self-amplitude modulation better than physically triturated graphite nano-particles. The linear transmittance and modulation depth of the inserted graphene nano-sheets are 92.5% and 53%, respectively. Under the operation with a power gain of 21.5 dB, the EDFL can be passively mode-locked to deliver a pulsewidth of 454.5 fs with a spectral linewidth of 5.6 nm. The time-bandwidth product of 0.31 is close to the transform limit. The Kelly sideband frequency spacing of 1.34 THz is used to calculate the chirp coefficient as  ‑0.0015.

  7. Twist phase-induced characteristics changes of a radially polarized Gaussian Schell-Model beam in a uniaxial crystal orthogonal to the optical axis

    Science.gov (United States)

    Cao, Pengfei; Fu, Wenyu

    2017-10-01

    Based on the extended Huygens-Fresnel integral formula and unified theory of coherence and polarization, we obtained the cross-spectral density matrix elements for a radially polarized partially coherent twist (RPPCT) beam in a uniaxial crystal. Moreover, compared with free space, we explore numerically the evolution properties of a RPPCT beam in a uniaxial crystal. The calculation results show that the evolution properties of a RPPCT beam in crystals are substantially different from its properties in free space. These properties in crystals are mainly determined by the twist factor and the ratio of extraordinary index to ordinary refractive index. In a uniaxial crystal, the distribution of the intensity of a RPPCT beam all exhibits non-circular symmetry, and these distributions change with twist factor and the ratio of extraordinary index to ordinary refractive index. The twist factor affects their rotation orientation angles, and the ratio of extraordinary index to ordinary refractive index impacts their twisted levels. This novel characteristics can be used for free-space optical communications, particle manipulation and nonlinear optics, where partially coherent beam with controlled profile and twist factor are required.

  8. Polarization methods for diode laser excitation of solid state lasers

    Science.gov (United States)

    Holtom, Gary R.

    2008-11-25

    A mode-locked laser employs a coupled-polarization scheme for efficient longitudinal pumping by reshaped laser diode bars. One or more dielectric polarizers are configured to reflect a pumping wavelength having a first polarization and to reflect a lasing wavelength having a second polarization. A Yb-doped gain medium can be used that absorbs light having a first polarization and emits light having a second polarization. Using such pumping with laser cavity dispersion control, pulse durations of less than 100 fs can be achieved.

  9. Laser sources for polarized electron beams in cw and pulsed accelerators

    CERN Document Server

    Hatziefremidis, A; Fraser, D; Avramopoulos, H

    1999-01-01

    We report the characterization of a high power, high repetition rate, mode-locked laser system to be used in continuous wave and pulsed electron accelerators for the generation of polarized electron beams. The system comprises of an external cavity diode laser and a harmonically mode-locked Ti:Sapphire oscillator and it can provide up to 3.4 W average power, with a corresponding pulse energy exceeding 1 nJ at 2856 MHz repetition rate. The system is tunable between 770-785 and 815-835 nm with two sets of diodes for the external cavity diode laser. (author)

  10. Catalystlike effect of orbital angular momentum on the conversion of transverse to three-dimensional spin states within tightly focused radially polarized beams

    Science.gov (United States)

    Han, Lei; Liu, Sheng; Li, Peng; Zhang, Yi; Cheng, Huachao; Zhao, Jianlin

    2018-05-01

    We report on the catalystlike effect of orbital angular momentum (OAM) on local spin-state conversion within the tightly focused radially polarized beams associated with optical spin-orbit interaction. It is theoretically demonstrated that the incident OAM can lead to a conversion of purely transverse spin state to a three-dimensional spin state on the focal plane. This conversion can be conveniently manipulated by altering the sign and value of the OAM. By comparing the total OAM and spin angular momentum (SAM) on the incident plane to those on the focal plane, it is indicated that the incident OAM have no participation in the angular momentum intertransfer, and just play a role as a catalyst of local SAM conversion. Such an effect of OAM sheds new light on the optical spin-orbit interaction in tight-focusing processes. The resultant three-dimensional spin states may provide more degrees of freedom in optical manipulation and spin-dependent directive coupling.

  11. Optimization of InAs/GaAs quantum-dot structures and application to 1.3-μm mode-locked laser diodes

    International Nuclear Information System (INIS)

    Li Mi-Feng; Ni Hai-Qiao; Niu Zhi-Chuan; Ding Ying; David Bajek; Liang Kong; Ana Cataluna Maria

    2014-01-01

    The self-assembled growth of InAs/GaAs quantum dots by molecular beam epitaxy is conducted by optimizing several growth parameters, using a one-step interruption method after island formation. The dependence of photoluminescence on areal quantum-dot density is systematically investigated as a function of InAs deposition, growth temperature and arsenic pressure. The results of this investigation along with time-resolved photoluminescence measurements show that the combination of a growth temperature of 490 °C, with a deposition rate of 0.02 ML/s, under an arsenic pressure of 1 × 10 −6 Torr (1 Torr = 1.33322 × 10 2 Pa), provides the best compromise between high density and the photoluminescence of quantum dot structure, with a radiative lifetime of 780 ps. The applicability of this 5-layer quantum dot structure to high-repetition-rate pulsed lasers is demonstrated with the fabrication and characterization of a monolithic InAs/GaAs quantum-dot passively mode-locked laser operating at nearly 1300 nm. Picosecond pulse generation is achieved from a two-section laser, with a ∼ 19.7-GHz repetition rate. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  12. Ultrashort Generation Regimes in the All-Fiber Kerr Mode-Locked Erbium-Doped Fiber Ring Laser for Terahertz Pulsed Spectroscopy

    Directory of Open Access Journals (Sweden)

    V. S. Voropaev

    2015-01-01

    Full Text Available Many femtosecond engineering applications require for a stable generation of ultrashort pulses. Thus, in the terahertz pulsed spectroscopy a measurement error in the refractive index is strongly dependent on the pulse duration stability with allowable variation of few femtoseconds. The aim of this work is to study the ultrashort pulses (USP regimes stability in the all – fiber erbium doped ring laser with Kerr mode-locking. The study was conducted at several different values of the total resonator intra-cavity dispersion. Three laser schemes with the intra-cavity dispersion values from -1.232 ps2 to +0.008 ps2 have been studied. In the experiment there were two regimes of generation observed: the stretched pulse generation and ordinary soliton generation. Main attention is focused on the stability of regimes under study. The most stable regime was that of the stretched pulse generation with a spectrum form of sech2 , possible pulse duration of 490 fs at least, repetition rate of 2.9 MHz, and average output power of 17 mW. It is worth noting, that obtained regimes had characteristics suitable for the successful use in the terahertz pulsed spectroscopy. The results may be useful in the following areas of science and technology: a high-precision spectroscopy, optical frequency standards, super-continuum generation, and terahertz pulsed spectroscopy. The future system development is expected to stabilize duration and repetition rate of the obtained regime of ultra-short pulse generation.

  13. Asynchronous and synchronous dual-wavelength pulse generation in a passively mode-locked fiber laser with a mode-locker.

    Science.gov (United States)

    Hu, Guoqing; Pan, Yingling; Zhao, Xin; Yin, Siyao; Zhang, Meng; Zheng, Zheng

    2017-12-01

    The evolution from asynchronous to synchronous dual-wavelength pulse generation in a passively mode-locked fiber laser is experimentally investigated by tailoring the intracavity dispersion. Through tuning the intracavity-loss-dependent gain profile and the birefringence-induced filter effect, asynchronous dual-wavelength soliton pulses can be generated until the intracavity anomalous dispersion is reduced to ∼8  fs/nm. The transition from asynchronous to synchronous pulse generation is then observed at an elevated pump power in the presence of residual anomalous dispersion, and it is shown that pulses are temporally synchronized at the mode-locker in the cavity. Spectral sidelobes are observed and could be attributed to the four-wave-mixing effect between dual-wavelength pulses at the carbon nanotube mode-locker. These results could provide further insight into the design and realization of such dual-wavelength ultrafast lasers for different applications such as dual-comb metrology as well as better understanding of the inter-pulse interactions in such dual-comb lasers.

  14. 41 GHz and 10.6 GHz low threshold and low noise InAs/InP quantum dash two-section mode-locked lasers in L band

    DEFF Research Database (Denmark)

    Dontabactouny, M.; Piron, R.; Klaime, K.

    2012-01-01

    This paper reports recent results on InAs/InP quantum dash-based, two-section, passively mode-locked lasers pulsing at 41 GHz and 10.6 GHz and emitting at 1.59 mu m at 20 degrees C. The 41-GHz device (1 mm long) starts lasing at 25 mA under uniform injection and the 10.6 GHz (4 mm long) at 71 m...

  15. Singular behavior of the Laplace operator in polar spherical coordinates and some of its consequences for the radial wave function at the origin of coordinates

    International Nuclear Information System (INIS)

    Khelashvili, A.A.; Nadareishvili, T.P.

    2015-01-01

    Singular behavior of the Laplace operator in spherical coordinates is investigated. It is shown that in course of transition to the reduced radial wave function in the Schreodinger equation there appears additional term including the Dirac delta function, which was unnoted during the full history of physics and mathematics. The possibility of avoiding this contribution from the reduced radial equation is discussed. It is demonstrated that for this aim the necessary and sufficient condition is the requirement of the fast enough falling of the wave function at the origin. The result does not depend on character of potential - whether it is regular or singular. The various manifestations and consequences of this observation are considered as well. The cornerstone in our approach is the natural requirement that the solution of the radial equation at the same time must obey the full equation. [ru

  16. Effect of a radial space-charge field on the movement of particles in a magneto-static field and under the influence of a circularly polarized wave; L'effet d'un champ de charge d'espace radial sur le mouvement des particules dans un champ magnetique statique et sous l'action d'une onde polarisee circulairement

    Energy Technology Data Exchange (ETDEWEB)

    Buffa, A [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1967-06-15

    The effect of a circularly polarized wave on a cylindrical plasma in a axial magnetostatic field and a radial space-charge field proportional to r is studied. Single particle motion is considered. The electrostatic field produces a shift in the cyclotron resonance frequency and,in case of high charge density, a radial movement of the off-resonance particles. In these conditions a radio-frequency-particle resonance is also possible called 'drift-resonance'. The drift resonance can be produced, with whistler mode, and may be employed in ion acceleration. Afterwards parametrical resonances produced by space-charge field oscillations and collisional limits of theory are studied. Cases in which ion acceleration is possible are considered on the basis of a quantitative analysis of results. (author) [French] On etudie l'effet d'une onde polarisee circulairement sur un plasma cylindrique place dans un champ magnetique axial constant, en supposant etre en presence d'un, champ de charge d'espace radial proportionnel a r. L'etude est faite du point de vue de la particule individuelle. Le champ electrostatique deplace la frequence de resonance cyclotron et, dans le cas de forte densite, donne lieu a un mouvement radial des particules qui ne sont pas en resonance. Dans ces champs, il peut aussi se produire une resonance qu'on a appele 'de derive', entre un R.F. et la particule. Cette resonance peut se produire avec le mode siffleur et peut etre utilisee pour l'acceleration des ions. On considere ensuite les resonances parametriques, qui se manifestent lorsque le champ de charge d'espace oscille, et les limites a la theorie posees par les collisions. Une discussion quantitative des resultats fait ressortir les cas dans lesquels on peut accelerer les ions. (auteur)

  17. Multiple stable states of a periodically driven electron spin in a quantum dot using circularly polarized light

    Science.gov (United States)

    Korenev, V. L.

    2011-06-01

    The periodical modulation of circularly polarized light with a frequency close to the electron spin resonance frequency induces a sharp change of the single electron spin orientation. Hyperfine interaction provides a feedback, thus fixing the precession frequency of the electron spin in the external and the Overhauser field near the modulation frequency. The nuclear polarization is bidirectional and the electron-nuclear spin system (ENSS) possesses a few stable states. The same physics underlie the frequency-locking effect for two-color and mode-locked excitations. However, the pulsed excitation with mode-locked laser brings about the multitudes of stable states in ENSS in a quantum dot. The resulting precession frequencies of the electron spin differ in these states by the multiple of the modulation frequency. Under such conditions ENSS represents a digital frequency converter with more than 100 stable channels.

  18. Self-starting and overclocking a harmonically mode-locking WRC-FPLD with a dual-loop feedback controller for 10 Gb s−1 pulse-data transmission

    International Nuclear Information System (INIS)

    Lin, Chun-Ju; Chi, Yu-Chieh; Lin, Gong-Ru

    2013-01-01

    The self-starting and overclocking of a harmonically mode-locked weak-resonant-cavity Fabry–Perot laser diode (WRC-FPLD) with a dual-loop coupled optoelectronic oscillator (COEO) based feedback controller is demonstrated to perform a clock-free pulsed data transmission at 10 Gb s −1 . The WRC-FPLD is considered as the preferred candidate for harmonic mode-locking due to its highly asymmetric cavity architecture, whereby the spontaneous noise can be significantly suppressed without inducing large intra-cavity loss. With the dual-loop COEO configuration, the WRC-FPLD can be boosted to four times of its original modulation bandwidth such that the pulsed carrier quality can be refined. The structure-optimizing principle with the closed-loop model is corroborated by the effective spurious-noise-suppression. The lowest phase noises as low as −100 dBc Hz −1 at 10 kHz with corresponding RMS timing jitter of 0.67 ps are measured. This is achieved by individually inserting 100 and 120 m long single mode fiber segments into two decoupled arms, the dual-loop COEO before the optical receiver pair. The BER performance reaches a minimum with the optimized SMF segment lengths. However, the spurious peaks arise to degrade the BER performance as the phase noise and jitter are inevitably enlarged when inserting longer SMF segments. After modulating the optimized output pulse train with the pseudo-random-bit-sequence data triggered by the same COEO clock, the SNR can achieve 10.9 dB and the receiving sensitivity is −19.2 dBm. (letter)

  19. Radial nerve dysfunction

    Science.gov (United States)

    Neuropathy - radial nerve; Radial nerve palsy; Mononeuropathy ... Damage to one nerve group, such as the radial nerve, is called mononeuropathy . Mononeuropathy means there is damage to a single nerve. Both ...

  20. Single-photon emission at a rate of 143 MHz from a deterministic quantum-dot microlens triggered by a mode-locked vertical-external-cavity surface-emitting laser

    Energy Technology Data Exchange (ETDEWEB)

    Schlehahn, A.; Gschrey, M.; Schnauber, P.; Schulze, J.-H.; Rodt, S.; Strittmatter, A.; Heindel, T., E-mail: tobias.heindel@tu-berlin.de; Reitzenstein, S. [Institut für Festkörperphysik, Technische Universität Berlin, Berlin 10623 (Germany); Gaafar, M.; Vaupel, M.; Stolz, W.; Rahimi-Iman, A.; Koch, M. [Department of Physics and Materials Science Center, Philipps-Universität Marburg, 35032 Marburg (Germany)

    2015-07-27

    We report on the realization of a quantum dot (QD) based single-photon source with a record-high single-photon emission rate. The quantum light source consists of an InGaAs QD which is deterministically integrated within a monolithic microlens with a distributed Bragg reflector as back-side mirror, which is triggered using the frequency-doubled emission of a mode-locked vertical-external-cavity surface-emitting laser (ML-VECSEL). The utilized compact and stable laser system allows us to excite the single-QD microlens at a wavelength of 508 nm with a pulse repetition rate close to 500 MHz at a pulse width of 4.2 ps. Probing the photon statistics of the emission from a single QD state at saturation, we demonstrate single-photon emission of the QD-microlens chip with g{sup (2)}(0) < 0.03 at a record-high single-photon flux of (143 ± 16) MHz collected by the first lens of the detection system. Our approach is fully compatible with resonant excitation schemes using wavelength tunable ML-VECSELs, which will optimize the quantum optical properties of the single-photon emission in terms of photon indistinguishability.

  1. All-fiber interferometer-based repetition-rate stabilization of mode-locked lasers to 10-14-level frequency instability and 1-fs-level jitter over 1  s.

    Science.gov (United States)

    Kwon, Dohyeon; Kim, Jungwon

    2017-12-15

    We report on all-fiber Michelson interferometer-based repetition-rate stabilization of femtosecond mode-locked lasers down to 1.3×10 -14 frequency instability and 1.4 fs integrated jitter in a 1 s time scale. The use of a compactly packaged 10 km long single-mode fiber (SMF)-28 fiber link as a timing reference allows the scaling of phase noise at a 10 GHz carrier down to -80  dBc/Hz at 1 Hz Fourier frequency. We also tested a 500 m long low-thermal-sensitivity fiber as a reference and found that, compared to standard SMF-28 fiber, it can mitigate the phase noise divergence by ∼10  dB/dec in the 0.1-1 Hz Fourier frequency range. These results suggest that the use of a longer low-thermal-sensitivity fiber may achieve sub-femtosecond integrated timing jitter with sub-10 -14 -level frequency instability in repetition rate by a simple and robust all-fiber-photonic method.

  2. Efficient high-power narrow-linewidth all-fibred linearly polarized ytterbium laser source

    Science.gov (United States)

    Bertrand, Anthony; Liégeois, Flavien; Hernandez, Yves; Giannone, Domenico

    2012-06-01

    We report on experimental results on a high power, all-fibred, linearly polarized, mode-locked laser at 1.03 μm. The laser generates pulses of 40 ps wide at a repetition rate of 52 MHz, exhibiting 12 kW peak power. Dispersion in optical fibres is controlled to obtain both high power and narrow spectral linewidth. The average output power reached is 25 W with a spectral linewidth of 380 pm and a near diffraction limit beam (M2 < 1.2). This laser is an ideal candidate for applications like IR spectroscopy, where high peak power and narrow linewidth are required for subsequent wavelength conversion.

  3. Polarization dynamics in nonlinear anisotropic fibers

    International Nuclear Information System (INIS)

    Komarov, Andrey; Komarov, Konstantin; Meshcheriakov, Dmitry; Amrani, Foued; Sanchez, Francois

    2010-01-01

    We give an extensive study of polarization dynamics in anisotropic fibers exhibiting a third-order index nonlinearity. The study is performed in the framework of the Stokes parameters with the help of the Poincare sphere. Stationary states are determined, and their stability is investigated. The number of fixed points and their stability depend on the respective magnitude of the linear and nonlinear birefringence. A conservation relation analogous to the energy conservation in mechanics allows evidencing a close analogy between the movement of the polarization in the Poincare sphere and the motion of a particle in a potential well. Two distinct potentials are found, leading to the existence of two families of solutions, according to the sign of the total energy of the equivalent mechanical system. The mechanical analogy allows us to fully characterize the solutions and also to determine analytically the associated beat lengths. General analytical solutions are given for the two families in terms of Jacobi's functions. The intensity-dependent transmission of a fiber placed between two crossed polarizers is calculated. Optimal conditions for efficient nonlinear switching compatible with mode-locking applications are determined. The general case of a nonlinear fiber ring with an intracavity polarizer placed between two polarization controllers is also considered.

  4. A Polarization-Adjustable Picosecond Deep-Ultraviolet Laser for Spin- and Angle-Resolved Photoemission Spectroscopy

    International Nuclear Information System (INIS)

    Zhang Feng-Feng; Yang Feng; Zhang Shen-Jin; Wang Zhi-Min; Xu Feng-Liang; Peng Qin-Jun; Zhang Jing-Yuan; Xu Zu-Yan; Wang Xiao-Yang; Chen Chuang-Tian

    2012-01-01

    We report on a polarization-adjustable picosecond deep-ultraviolet (DUV) laser at 177.3 nm. The DUV laser was produced by second harmonic generation from a mode-locked laser at 355 nm in nonlinear optical crystal KBBF. The laser delivered a maximum average output power of 1.1 mW at 177.3 nm. The polarization of the 177.3 nm beam was adjusted with linear and circular polarization by means of λ/4 and λ/2 wave plates. To the best of our knowledge, the laser has been employed as the circularly polarized and linearly polarized DUV light source for a spin- and angle-resolved photoemission spectroscopy with high resolution for the first time. (fundamental areas of phenomenology(including applications))

  5. Plasma Signatures of Radial Field Power Dropouts

    International Nuclear Information System (INIS)

    Lucek, E.A.; Horbury, T.S.; Balogh, A.; McComas, D.J.

    1998-01-01

    A class of small scale structures, with a near-radial magnetic field and a drop in magnetic field fluctuation power, have recently been identified in the polar solar wind. An earlier study of 24 events, each lasting for 6 hours or more, identified no clear plasma signature. In an extension of that work, radial intervals lasting for 4 hours or more (89 in total), have been used to search for a statistically significant plasma signature. It was found that, despite considerable variations between intervals, there was a small but significant drop, on average, in plasma temperature, density and β during these events

  6. Radial nerve dysfunction (image)

    Science.gov (United States)

    The radial nerve travels down the arm and supplies movement to the triceps muscle at the back of the upper arm. ... the wrist and hand. The usual causes of nerve dysfunction are direct trauma, prolonged pressure on the ...

  7. Radial wedge flange clamp

    Science.gov (United States)

    Smith, Karl H.

    2002-01-01

    A radial wedge flange clamp comprising a pair of flanges each comprising a plurality of peripheral flat wedge facets having flat wedge surfaces and opposed and mating flat surfaces attached to or otherwise engaged with two elements to be joined and including a series of generally U-shaped wedge clamps each having flat wedge interior surfaces and engaging one pair of said peripheral flat wedge facets. Each of said generally U-shaped wedge clamps has in its opposing extremities apertures for the tangential insertion of bolts to apply uniform radial force to said wedge clamps when assembled about said wedge segments.

  8. Extension of supercontinuum spectrum, generated in polarization-maintaining photonic crystal fiber, using chirped femtosecond pulses

    Science.gov (United States)

    Vengelis, Julius; Jarutis, Vygandas; Sirutkaitis, Valdas

    2018-01-01

    We present results of experimental and numerical investigation of supercontinuum (SC) generation in polarization-maintaining photonic crystal fiber (PCF) using chirped femtosecond pulses. The initial unchirped pump pulse source was a mode-locked Yb:KGW laser generating 52-nJ energy, 110-fs duration pulses at 1030 nm with a 76-MHz repetition rate. The nonlinear medium was a 32-cm-long polarization-maintaining PCF manufactured by NKT Photonics A/S. We demonstrated the influence of pump pulse chirp on spectral characteristics of a SC. We showed that by chirping pump pulses positively or negatively one can obtain a broader SC spectrum than in the case of unchirped pump pulses at the same peak power. Moreover, the extension can be controlled by changing the amount of pump pulse chirp. Numerical simulation results also indicated that pump pulse chirp yields an extension of SC spectrum.

  9. Sirenomelia with radial dysplasia.

    Science.gov (United States)

    Kulkarni, M L; Abdul Manaf, K M; Prasannakumar, D G; Kulkarni, Preethi M

    2004-05-01

    Sirenomelia is a rare anomaly usually associated with other multiple malformations. In this communication the authors report a case of sirenomelia associated with multiple malformations, which include radial hypoplasia also. Though several theories have been proposed regarding the etiology of multiple malformation syndromes in the past, the recent theory of primary developmental defect during blastogenesis holds good in this case.

  10. Radially truncated galactic discs

    NARCIS (Netherlands)

    Grijs, R. de; Kregel, M.; Wesson, K H

    2000-01-01

    Abstract: We present the first results of a systematic analysis of radially truncatedexponential discs for four galaxies of a sample of disc-dominated edge-onspiral galaxies. Edge-on galaxies are very useful for the study of truncatedgalactic discs, since we can follow their light distributions out

  11. A nonuniform-polarization high-energy ultra-broadband laser with a long erbium-doped fiber

    International Nuclear Information System (INIS)

    Mao, Dong

    2013-01-01

    We have experimentally investigated nonuniformly polarized broadband high-energy pulses delivered from a mode-locked laser with an ultra-long erbium-doped fiber (EDF). The pulses exhibit a broadband spectrum of ∼73 nm and can avoid optical wave breaking at high-pump regimes. The polarization states of the pulses evolve from uniform to nonuniform at each round trip in the oscillator, which is distinct from other pulses. Remarkably, the output pulses broaden in anomalous- or normal-dispersion regimes while they can be shortened with an EDF amplifier external to the cavity. Our results suggest that the long EDF results in a nonuniform-polarization state and plays a decisive role in the formation of high-energy pulses. (paper)

  12. Generalized Expression for Polarization Density

    International Nuclear Information System (INIS)

    Wang, Lu; Hahm, T.S.

    2009-01-01

    A general polarization density which consists of classical and neoclassical parts is systematically derived via modern gyrokinetics and bounce-kinetics by employing a phase-space Lagrangian Lie-transform perturbation method. The origins of polarization density are further elucidated. Extending the work on neoclassical polarization for long wavelength compared to ion banana width [M. N. Rosenbluth and F. L. Hinton, Phys. Rev. Lett. 80, 724 (1998)], an analytical formula for the generalized neoclassical polarization including both finite-banana-width (FBW) and finite-Larmor-radius (FLR) effects for arbitrary radial wavelength in comparison to banana width and gyroradius is derived. In additional to the contribution from trapped particles, the contribution of passing particles to the neoclassical polarization is also explicitly calculated. Our analytic expression agrees very well with the previous numerical results for a wide range of radial wavelength.

  13. Variable stator radial turbine

    Science.gov (United States)

    Rogo, C.; Hajek, T.; Chen, A. G.

    1984-01-01

    A radial turbine stage with a variable area nozzle was investigated. A high work capacity turbine design with a known high performance base was modified to accept a fixed vane stagger angle moveable sidewall nozzle. The nozzle area was varied by moving the forward and rearward sidewalls. Diffusing and accelerating rotor inlet ramps were evaluated in combinations with hub and shroud rotor exit rings. Performance of contoured sidewalls and the location of the sidewall split line with respect to the rotor inlet was compared to the baseline. Performance and rotor exit survey data are presented for 31 different geometries. Detail survey data at the nozzle exit are given in contour plot format for five configurations. A data base is provided for a variable geometry concept that is a viable alternative to the more common pivoted vane variable geometry radial turbine.

  14. Estimation of Radial Runout

    OpenAIRE

    Nilsson, Martin

    2007-01-01

    The demands for ride comfort quality in today's long haulage trucks are constantly growing. A part of the ride comfort problems are represented by internal vibrations caused by rotating mechanical parts. This thesis work focus on the vibrations generated from radial runout on the wheels. These long haulage trucks travel long distances on smooth highways, with a constant speed of 90 km/h resulting in a 7 Hz oscillation. This frequency creates vibrations in the cab, which can be found annoying....

  15. Radial Fuzzy Systems

    Czech Academy of Sciences Publication Activity Database

    Coufal, David

    2017-01-01

    Roč. 319, 15 July (2017), s. 1-27 ISSN 0165-0114 R&D Projects: GA MŠk(CZ) LD13002 Institutional support: RVO:67985807 Keywords : fuzzy systems * radial functions * coherence Subject RIV: BA - General Mathematics OBOR OECD: Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8) Impact factor: 2.718, year: 2016

  16. Radial Field Piezoelectric Diaphragms

    Science.gov (United States)

    Bryant, R. G.; Effinger, R. T., IV; Copeland, B. M., Jr.

    2002-01-01

    A series of active piezoelectric diaphragms were fabricated and patterned with several geometrically defined Inter-Circulating Electrodes "ICE" and Interdigitated Ring Electrodes "ICE". When a voltage potential is applied to the electrodes, the result is a radially distributed electric field that mechanically strains the piezoceramic along the Z-axis (perpendicular to the applied electric field). Unlike other piezoelectric bender actuators, these Radial Field Diaphragms (RFDs) strain concentrically yet afford high displacements (several times that of the equivalent Unimorph) while maintaining a constant circumference. One of the more intriguing aspects is that the radial strain field reverses itself along the radius of the RFD while the tangential strain remains relatively constant. The result is a Z-deflection that has a conical profile. This paper covers the fabrication and characterization of the 5 cm. (2 in.) diaphragms as a function of poling field strength, ceramic thickness, electrode type and line spacing, as well as the surface topography, the resulting strain field and displacement as a function of applied voltage at low frequencies. The unique features of these RFDs include the ability to be clamped about their perimeter with little or no change in displacement, the environmentally insulated packaging, and a highly repeatable fabrication process that uses commodity materials.

  17. Perceived radial translation during centrifugation

    NARCIS (Netherlands)

    Bos, J.E.; Correia Grácio, B.J.

    2015-01-01

    BACKGROUND: Linear acceleration generally gives rise to translation perception. Centripetal acceleration during centrifugation, however, has never been reported giving rise to a radial, inward translation perception. OBJECTIVE: To study whether centrifugation can induce a radial translation

  18. Polarized neutrons

    International Nuclear Information System (INIS)

    Williams, W.G.

    1988-01-01

    The book on 'polarized neutrons' is intended to inform researchers in condensed matter physics and chemistry of the diversity of scientific problems that can be investigated using polarized neutron beams. The contents include chapters on:- neutron polarizers and instrumentation, polarized neutron scattering, neutron polarization analysis experiments and precessing neutron polarization. (U.K.)

  19. On radio frequency wave induced radial transport and wave helicity

    International Nuclear Information System (INIS)

    Petrzilka, V.

    1992-09-01

    Expressions for wave induced radial transport are derived allowing simple estimates. The transport is enhanced due to the presence of poloidal magnetostatic field and in the vicinity of the ion cyclotron resonance. The direction of the wave induced transport depends also on the wave polarization. (author) 19 refs

  20. Latitude-energy structure of multiple ion beamlets in Polar/TIMAS data in plasma sheet boundary layer and boundary plasma sheet below 6 RE radial distance: basic properties and statistical analysis

    Directory of Open Access Journals (Sweden)

    P. Janhunen

    2005-03-01

    Full Text Available Velocity dispersed ion signatures (VDIS occurring at the plasma sheet boundary layer (PSBL are a well reported feature. Theory has, however, predicted the existence of multiple ion beamlets, similar to VDIS, in the boundary plasma sheet (BPS, i.e. at latitudes below the PSBL. In this study we show evidence for the multiple ion beamlets in Polar/TIMAS ion data and basic properties of the ion beamlets will be presented. Statistics of the occurrence frequency of ion multiple beamlets show that they are most common in the midnight MLT sector and for altitudes above 4 RE, while at low altitude (≤3 RE, single beamlets at PSBL (VDIS are more common. Distribution functions of ion beamlets in velocity space have recently been shown to correspond to 3-dimensional hollow spheres, containing a large amount of free energy. We also study correlation with ~100 Hz waves and electron anisotropies and consider the possibility that ion beamlets correspond to stable auroral arcs.

  1. Radial reflection diffraction tomography

    Science.gov (United States)

    Lehman, Sean K.

    2012-12-18

    A wave-based tomographic imaging method and apparatus based upon one or more rotating radially outward oriented transmitting and receiving elements have been developed for non-destructive evaluation. At successive angular locations at a fixed radius, a predetermined transmitting element can launch a primary field and one or more predetermined receiving elements can collect the backscattered field in a "pitch/catch" operation. A Hilbert space inverse wave (HSIW) algorithm can construct images of the received scattered energy waves using operating modes chosen for a particular application. Applications include, improved intravascular imaging, bore hole tomography, and non-destructive evaluation (NDE) of parts having existing access holes.

  2. Radial semiconductor drift chambers

    International Nuclear Information System (INIS)

    Rawlings, K.J.

    1987-01-01

    The conditions under which the energy resolution of a radial semiconductor drift chamber based detector system becomes dominated by the step noise from the detector dark current have been investigated. To minimise the drift chamber dark current attention should be paid to carrier generation at Si/SiO 2 interfaces. This consideration conflicts with the desire to reduce the signal risetime: a higher drift field for shorter signal pulses requires a larger area of SiO 2 . Calculations for the single shaping and pseudo Gaussian passive filters indicate that for the same degree of signal risetime sensitivity in a system dominated by the step noise from the detector dark current, the pseudo Gaussian filter gives only a 3% improvement in signal/noise and 12% improvement in rate capability compared with the single shaper performance. (orig.)

  3. ISR Radial Field Magnet

    CERN Multimedia

    1983-01-01

    There were 37 (normal) + 3 (special) Radial Field magnets in the ISR to adjust vertically the closed orbit. Gap heights and strengths were 200 mm and .12 Tm in the normal magnets, 220 mm and .18 Tm in the special ones. The core length was 430 mm in both types. Due to their small length as compared to the gap heights the end fringe field errors were very important and had to be compensated by suitably shaping the poles. In order to save on cables, as these magnets were located very far from their power supplies, the coils of the normal type magnets were formed by many turns of solid cpper conductor with some interleaved layers of hollow conductor directly cooled by circulating water

  4. The ARCS radial collimator

    International Nuclear Information System (INIS)

    Stone, M.B.; Abernathy, D.L.; Niedziela, J.L.; Overbay, M.A.

    2015-01-01

    We have designed, installed, and commissioned a scattered beam radial collimator for use at the ARCS Wide Angular Range Chopper Spectrometer at the Spallation Neutron Source. The collimator has been designed to work effectively for thermal and epithermal neutrons and with a range of sample environments. Other design considerations include the accommodation of working within a high vacuum environment and having the ability to quickly install and remove the collimator from the scattered beam. The collimator is composed of collimating blades (or septa). The septa are 12 micron thick Kapton foils coated on each side with 39 microns of enriched boron carbide ( 10 B 4 C with 10 B > 96%) in an ultra-high vacuum compatible binder. The collimator blades represent an additional 22 m 2 of surface area. In the article we present collimator's design and performance and methodologies for its effective use

  5. Antiproton compression and radial measurements

    CERN Document Server

    Andresen, G B; Bowe, P D; Bray, C C; Butler, E; Cesar, C L; Chapman, S; Charlton, M; Fajans, J; Fujiwara, M C; Funakoshi, R; Gill, D R; Hangst, J S; Hardy, W N; Hayano, R S; Hayden, M E; Humphries, A J; Hydomako, R; Jenkins, M J; Jorgensen, L V; Kurchaninov, L; Lambo, R; Madsen, N; Nolan, P; Olchanski, K; Olin, A; Page R D; Povilus, A; Pusa, P; Robicheaux, F; Sarid, E; Seif El Nasr, S; Silveira, D M; Storey, J W; Thompson, R I; Van der Werf, D P; Wurtele, J S; Yamazaki, Y

    2008-01-01

    Control of the radial profile of trapped antiproton clouds is critical to trapping antihydrogen. We report detailed measurements of the radial manipulation of antiproton clouds, including areal density compressions by factors as large as ten, achieved by manipulating spatially overlapped electron plasmas. We show detailed measurements of the near-axis antiproton radial profile, and its relation to that of the electron plasma. We also measure the outer radial profile by ejecting antiprotons to the trap wall using an octupole magnet.

  6. All-polarization maintaining erbium fiber laser based on carbon nanowalls saturable absorber

    Science.gov (United States)

    Kurata, Shintaro; Izawa, Jun; Kawaguchi, Norihito

    2018-02-01

    We report a soliton mode locked femtosecond oscillation with all-polarization maintaining erbuim doped fiber laser based on Carbon Nanowalls saturable absorber (CNWs SA). To improve the stability and the capability of the oscillator, the all-polarization maintaining(all-PM) fiber is generally used since PM fiber is tolerant of stretches and bends. The saturable absorber is an optical device that placed in a laser cavity to suppress continuous wave operation to promote cooperation between many modes to sustain ultrashort pulse operation. We apply CNWs for the material of SAs in our oscillator. CNWs are one of the nanocarbon materials, which are a high-aspect-ratio structure in the cross-section, where, although their width and height range in a few micrometers, the thickness is as small as ten nanometers or so. A sheet of CNWs is made up of nano-size graphite grain aggregates. Then CNWs structure is expected to have a high absorption to the incident light and large modulation depth due to a small number of carbon layers as well as CNT and Graphene. With this all-PM fiber laser oscillator based on CNWs SA, the soliton mode-locked laser oscillated with 66.3MHz repetition frequency and its spectrum width is 5.6nm in FWHM. Average output power is 8.1mW with 122.5mW laser diode pump power. In addition, the laser amplification system with erbium-doped fiber is constructed and amplifies the femtosecond pulse laser into 268.2mW and 3000mW pumping power.

  7. Radial expansion and multifragmentation

    International Nuclear Information System (INIS)

    Angelique, J.C.; Bizard, G.; Bougault, R.; Brou, R.; Buta, A.; Colin, J.; Cussol, D.; Durand, D.; Kerambrun, A.; Le Brun, C.; Lecolley, J.F.; Lopez, O.; Louvel, M.; Meslin, C.; Nakagawa, T.; Patry, J.P.; Peter, J.; Popescu, R.; Regimbart, R.; Steckmeyer, J.C.; Tamain, B.; Vient, E.; Yuasa-Nakagawa, K.; Wieloch, A.

    1998-01-01

    The light systems 36 Ar + 27 Al and 64 Zn + nat Ti were measured at several bombarding energies between ∼ 35 and 95 MeV/nucleon. It was found that the predominant part of the cross section is due to binary collisions. In this paper the focus is placed on the properties of the quasi-projectile nuclei. In the central collisions the excitation energies of the quasi-projectile reach values exceeding largely 10 MeV/nucleon. The slope of the high energy part of the distribution can give only an upper limit of the apparent temperature (the average temperature along the decay chain). The highly excited quasi-projectile may get rapidly fragmented rather than sequentially. The heavy fragments are excited and can emit light particles (n, p, d, t, 3 He, α,...) what perturbs additionally the spectrum of these particles. Concerning the expansion energy, one can determine the average kinetic energies of the product (in the quasi-projectile-framework) and compare with simulation values. To fit the experimental data an additional radial expansion energy is to be considered. The average expansion energy depends slightly on the impact parameter but it increases with E * / A, ranging from 0.4 to 1,2 MeV/nucleon for an excitation energy increasing from 7 to 10.5 MeV/nucleon. This collective radial energy seems to be independent of the fragment mass, what is possibly valid for the case of larger quasi-projectile masses. The origin of the expansion is to be determined. It may be due to a compression in the interaction zone at the initial stage of the collision, which propagates in the quasi-projectile and quasi-target, or else, may be due, simply, to the increase of thermal energy leading to a rapid fragment emission. The sequential de-excitation calculation overestimates light particle emission and consequently heavy residues, particularly, at higher excitation energies. This disagreement indicates that a sequential process can not account for the di-excitation of very hot nuclei

  8. Radial gas turbine design

    Energy Technology Data Exchange (ETDEWEB)

    Krausche, S.; Ohlsson, Johan

    1998-04-01

    The objective of this work was to develop a program dealing with design point calculations of radial turbine machinery, including both compressor and turbine, with as few input data as possible. Some simple stress calculations and turbine metal blade temperatures were also included. This program was then implanted in a German thermodynamics program, Gasturb, a program calculating design and off-design performance of gas turbines. The calculations proceed with a lot of assumptions, necessary to finish the task, concerning pressure losses, velocity distribution, blockage, etc., and have been correlated with empirical data from VAT. Most of these values could have been input data, but to prevent the user of the program from drowning in input values, they are set as default values in the program code. The output data consist of geometry, Mach numbers, predicted component efficiency etc., and a number of graphical plots of geometry and velocity triangles. For the cases examined, the error in predicted efficiency level was within {+-} 1-2% points, and quite satisfactory errors in geometrical and thermodynamic conditions were obtained Examination paper. 18 refs, 36 figs

  9. Radial flow heat exchanger

    Science.gov (United States)

    Valenzuela, Javier

    2001-01-01

    A radial flow heat exchanger (20) having a plurality of first passages (24) for transporting a first fluid (25) and a plurality of second passages (26) for transporting a second fluid (27). The first and second passages are arranged in stacked, alternating relationship, are separated from one another by relatively thin plates (30) and (32), and surround a central axis (22). The thickness of the first and second passages are selected so that the first and second fluids, respectively, are transported with laminar flow through the passages. To enhance thermal energy transfer between first and second passages, the latter are arranged so each first passage is in thermal communication with an associated second passage along substantially its entire length, and vice versa with respect to the second passages. The heat exchangers may be stacked to achieve a modular heat exchange assembly (300). Certain heat exchangers in the assembly may be designed slightly differently than other heat exchangers to address changes in fluid properties during transport through the heat exchanger, so as to enhance overall thermal effectiveness of the assembly.

  10. Stability of radial swirl flows

    International Nuclear Information System (INIS)

    Dou, H S; Khoo, B C

    2012-01-01

    The energy gradient theory is used to examine the stability of radial swirl flows. It is found that the flow of free vortex is always stable, while the introduction of a radial flow will induce the flow to be unstable. It is also shown that the pure radial flow is stable. Thus, there is a flow angle between the pure circumferential flow and the pure radial flow at which the flow is most unstable. It is demonstrated that the magnitude of this flow angle is related to the Re number based on the radial flow rate, and it is near the pure circumferential flow. The result obtained in this study is useful for the design of vaneless diffusers of centrifugal compressors and pumps as well as other industrial devices.

  11. Do the radial head prosthesis components fit with the anatomical structures of the proximal radioulnar joint?

    Science.gov (United States)

    Wegmann, Kilian; Hain, Moritz K; Ries, Christian; Neiss, Wolfram F; Müller, Lars P; Burkhart, Klaus J

    2015-09-01

    The fitting accuracy of radial head components has been investigated in the capitulo-radial joint, and reduced contact after prosthetic replacement of the radial head has been observed. The kinematics of the proximal radioulnar joint (PRUJ) are affected by radial head arthroplasty as well, but have not yet been investigated in this regard. The elbow joints of 60 upper extremities of formalin-fixed body donors were disarticulated to obtain a good view of the PRUJ. Each specimen was mounted on the examining table and radial head position in the native PRUJ was assessed in neutral position, full pronation, and full supination. Measurements were repeated after implantation of mono- and bi-polar prostheses. Analysis of the distribution of the joint contacts in the compartments showed significant differences after radial head replacement. In comparison to the native joint, after bipolar and monopolar radial head replacement, the physiological shift of the proximal radius was altered. The physiological shift of the joint contact of the radial head from anterior to posterior during forearm rotation that was found in the native joint in our cadaver model was not observed after prosthetic replacement. With higher conformity and physiological kinematic of radial head prostheses, possibly lower shear forces and lower contact pressures would be generated. The tested radial head prostheses do not replicate the physiological kinematics of the radial head. Further development in the prosthesis design has to be made. The meticulous reconstruction of the annular ligament seems to be of importance to increase joint contact.

  12. Radial retinotomy in the macula.

    Science.gov (United States)

    Bovino, J A; Marcus, D F

    1984-01-01

    Radial retinotomy is an operative procedure usually performed in the peripheral or equatorial retina. To facilitate retinal attachment, the authors used intraocular scissors to perform radial retinotomy in the macula of two patients during vitrectomy surgery. In the first patient, a retinal detachment complicated by periretinal proliferation and macula hole formation was successfully reoperated with the aid of three radial cuts in the retina at the edges of the macular hole. In the second patient, an intraoperative retinal tear in the macula during diabetic vitrectomy was also successfully repaired with the aid of radial retinotomy. In both patients, retinotomy in the macula was required because epiretinal membranes, which could not be easily delaminated, were hindering retinal reattachment.

  13. Detonation in supersonic radial outflow

    KAUST Repository

    Kasimov, Aslan R.; Korneev, Svyatoslav

    2014-01-01

    We report on the structure and dynamics of gaseous detonation stabilized in a supersonic flow emanating radially from a central source. The steady-state solutions are computed and their range of existence is investigated. Two-dimensional simulations

  14. Dedicated radial ventriculography pigtail catheter

    Energy Technology Data Exchange (ETDEWEB)

    Vidovich, Mladen I., E-mail: miv@uic.edu

    2013-05-15

    A new dedicated cardiac ventriculography catheter was specifically designed for radial and upper arm arterial access approach. Two catheter configurations have been developed to facilitate retrograde crossing of the aortic valve and to conform to various subclavian, ascending aortic and left ventricular anatomies. The “short” dedicated radial ventriculography catheter is suited for horizontal ascending aortas, obese body habitus, short stature and small ventricular cavities. The “long” dedicated radial ventriculography catheter is suited for vertical ascending aortas, thin body habitus, tall stature and larger ventricular cavities. This new design allows for improved performance, faster and simpler insertion in the left ventricle which can reduce procedure time, radiation exposure and propensity for radial artery spasm due to excessive catheter manipulation. Two different catheter configurations allow for optimal catheter selection in a broad range of patient anatomies. The catheter is exceptionally stable during contrast power injection and provides equivalent cavity opacification to traditional femoral ventriculography catheter designs.

  15. Mode locking and spatiotemporal chaos in periodically driven Gunn diodes

    DEFF Research Database (Denmark)

    Mosekilde, Erik; Feldberg, Rasmus; Knudsen, Carsten

    1990-01-01

    oscillation entrains with the external signal. This produces a devil’s staircase of frequency-locked solutions. At higher microwave amplitudes, period doubling and other forms of mode-converting bifurcations can be seen. In this interval the diode also exhibits spatiotemporal chaos. At still higher microwave...

  16. Pulse properties of external cavity mode locked semiconductor lasers

    DEFF Research Database (Denmark)

    Mulet, Josep; Kroh, Marcel; Mørk, Jesper

    2006-01-01

    picosecond duration with more than 30 dB trailing pulse suppression. The limiting factors to the device performance are investigated on the basis of a fully-distributed time-domain model.We find that ultrafast gain dynamics effectively reduce the pulse-shaping strength and inhibit the generation...

  17. Renormalization, unstable manifolds, and the fractal structure of mode locking

    International Nuclear Information System (INIS)

    Cvitanovic, P.; Jensen, M.H.; Kadanoff, L.P.; Procaccia, I.

    1985-01-01

    The apparent universality of the fractal dimension of the set of quasiperiodic windings at the onset of chaos in a wide class of circle maps is described by construction of a universal one-parameter family of maps which lies along the unstable manifold of the renormalization group. The manifold generates a universal ''devil's staircase'' whose dimension agrees with direct numerical calculations. Applications to experiments are discussed

  18. Exact treatment of mode locking for a piecewise linear map

    International Nuclear Information System (INIS)

    Ding, E.J.; Hemmer, P.C.

    1987-01-01

    A piecewise linear map with one discontinuity is studied by analytic means in the two-dimensional parameter space. When the slope of the map is less than unity, periodic orbits are present, and they give the precise symbolic dynamic classification of these. The localization of the periodic domains in parameter space is given by closed expressions. The winding number forms a devil's terrace, a two-dimensional function whose cross sections are complete devil's staircases. In such a cross section the complementary set to the periodic intervals is a Cantor set with dimension D = 0

  19. Raman-Assisted Passively Mode-Locked Fiber Laser

    Science.gov (United States)

    Zhao, Lei; Yao, Pei-Jun; Gu, Chun; Xu, Li-Xin

    2018-04-01

    Not Available Supported by the National Natural Science Foundation of China under Grant No 61675188, and the Open Fund of Key Laboratory Pulse Power Laser Technology of China under Grant No SKL2016KF03.

  20. Radial lean direct injection burner

    Science.gov (United States)

    Khan, Abdul Rafey; Kraemer, Gilbert Otto; Stevenson, Christian Xavier

    2012-09-04

    A burner for use in a gas turbine engine includes a burner tube having an inlet end and an outlet end; a plurality of air passages extending axially in the burner tube configured to convey air flows from the inlet end to the outlet end; a plurality of fuel passages extending axially along the burner tube and spaced around the plurality of air passage configured to convey fuel from the inlet end to the outlet end; and a radial air swirler provided at the outlet end configured to direct the air flows radially toward the outlet end and impart swirl to the air flows. The radial air swirler includes a plurality of vanes to direct and swirl the air flows and an end plate. The end plate includes a plurality of fuel injection holes to inject the fuel radially into the swirling air flows. A method of mixing air and fuel in a burner of a gas turbine is also provided. The burner includes a burner tube including an inlet end, an outlet end, a plurality of axial air passages, and a plurality of axial fuel passages. The method includes introducing an air flow into the air passages at the inlet end; introducing a fuel into fuel passages; swirling the air flow at the outlet end; and radially injecting the fuel into the swirling air flow.

  1. Polarization coupling of vector Bessel–Gaussian beams

    International Nuclear Information System (INIS)

    Takeuchi, Ryushi; Kozawa, Yuichi; Sato, Shunichi

    2013-01-01

    We report polarization coupling of radial and azimuthal electric field components of a vector light beam as predicted by the fact that the vector Helmholtz equation is expressed as coupled differential equations in cylindrical coordinates. To clearly observe the polarization variation of a beam as it propagates, higher order transverse modes of a vector Bessel–Gaussian beam were generated by a gain distribution modulation technique, which created a narrow ring-shaped gain region in a Nd:YVO 4 crystal. The polarization coupling was confirmed by the observation that the major polarization component of a vector Bessel–Gaussian beam alternates between radial and azimuthal components along with the propagation. (paper)

  2. Self-consistent radial sheath

    International Nuclear Information System (INIS)

    Hazeltine, R.D.

    1988-12-01

    The boundary layer arising in the radial vicinity of a tokamak limiter is examined, with special reference to the TEXT tokamak. It is shown that sheath structure depends upon the self-consistent effects of ion guiding-center orbit modification, as well as the radial variation of E /times/ B-induced toroidal rotation. Reasonable agreement with experiment is obtained from an idealized model which, however simplified, preserves such self-consistent effects. It is argued that the radial sheath, which occurs whenever confining magnetic field-lines lie in the plasma boundary surface, is an object of some intrinsic interest. It differs from the more familiar axial sheath because magnetized charges respond very differently to parallel and perpendicular electric fields. 11 refs., 1 fig

  3. Cosmic ray access at polar heliographic latitudes

    International Nuclear Information System (INIS)

    Voelk, H.J.

    1976-01-01

    Based on a modified WKB analysis of the interplanetary irregularity spectra, a discussion of the radial dependence of the radial cosmic ray diffusion coefficient at polar heliographic latitudes is presented. At l-AU radial distance the parameters are taken to equal those observed in the ecliptic. In the sense of a present best estimate it is argued that relativistic nuclei should have significantly easier access to 1 AU at the pole than in the ecliptic. The reverse may very well be true for the direct access of very low rigidity particles

  4. Detonation in supersonic radial outflow

    KAUST Repository

    Kasimov, Aslan R.

    2014-11-07

    We report on the structure and dynamics of gaseous detonation stabilized in a supersonic flow emanating radially from a central source. The steady-state solutions are computed and their range of existence is investigated. Two-dimensional simulations are carried out in order to explore the stability of the steady-state solutions. It is found that both collapsing and expanding two-dimensional cellular detonations exist. The latter can be stabilized by putting several rigid obstacles in the flow downstream of the steady-state sonic locus. The problem of initiation of standing detonation stabilized in the radial flow is also investigated numerically. © 2014 Cambridge University Press.

  5. Research on generating various polarization-modes in polarized illumination system

    Science.gov (United States)

    Huang, Jinping; Lin, Wumei; Fan, Zhenjie

    2013-08-01

    With the increase of the numerical aperture (NA), the polarization of light affects the imaging quality of projection lens more significantly. On the contrary, according to the mask pattern, the resolution of projection lens can be improved by using the polarized illumination. That is to say, using the corresponding polarized beam (or polarization-mode) along with the off-axis illumination will improve the resolution and the imaging quality of the of projection lens. Therefore, the research on the generation of various polarization modes and its conversion methods become more and more important. In order to realize various polarization modes in polarized illumination system, after read a lot of references, we provide a way that fitting for the illumination system with the wavelength of 193nm.Six polarization-modes and a depolarized mode are probably considered. Wave-plate stack is used to generate linearly polarization-mode, which have a higher degree polarization. In order to generate X-Y and Y-X polarization mode, the equipment consisting of four sectors of λ/2 wave plate was used. We combined 16 sectors of λ/2 wave plate which have different orientations of the "slow" axis to generate radial and azimuthal polarization. Finally, a multi-polarization control device was designed. Using the kind of multi-polarization control device which applying this method could help to choose the polarization modes conveniently and flexibility for the illumination system.

  6. Vortex Whistle in Radial Intake

    National Research Council Canada - National Science Library

    Tse, Man-Chun

    2004-01-01

    In a radial-to-axial intake with inlet guide vanes (IGV) at the entry, a strong flow circulation Gamma can be generated from the tangential flow components created by the IGVs when their setting exceed about halfclosing (approx. 45 deg...

  7. Polarization developments

    International Nuclear Information System (INIS)

    Prescott, C.Y.

    1993-07-01

    Recent developments in laser-driven photoemission sources of polarized electrons have made prospects for highly polarized electron beams in a future linear collider very promising. This talk discusses the experiences with the SLC polarized electron source, the recent progress with research into gallium arsenide and strained gallium arsenide as a photocathode material, and the suitability of these cathode materials for a future linear collider based on the parameters of the several linear collider designs that exist

  8. Radial head dislocation during proximal radial shaft osteotomy.

    Science.gov (United States)

    Hazel, Antony; Bindra, Randy R

    2014-03-01

    The following case report describes a 48-year-old female patient with a longstanding both-bone forearm malunion, who underwent osteotomies of both the radius and ulna to improve symptoms of pain and lack of rotation at the wrist. The osteotomies were templated preoperatively. During surgery, after performing the planned radial shaft osteotomy, the authors recognized that the radial head was subluxated. The osteotomy was then revised from an opening wedge to a closing wedge with improvement of alignment and rotation. The case report discusses the details of the operation, as well as ways in which to avoid similar shortcomings in the future. Copyright © 2014 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  9. COMPLETE SUPPRESSION OF THE M/N = 2/1 NEOCLASSICAL TEARING MODE USING RADIALLY LOCALIZED ELECTRON CYCLOTRON CURRENT DRIVE ON DIII-D AND THE REQUIREMENTS FOR ITER

    International Nuclear Information System (INIS)

    LAHAYE, RJ; LUCE, TC; PETTY, CC; HUMPHREYS, DA; HYATT, AW; PERKINS, FW; PRATER, R; STRAIT, EJ; WADE, MR

    2003-01-01

    A271 COMPLETE SUPPRESSION OF THE M/N = 2/1 NEOCLASSICAL TEARING MODE USING RADIALLY LOCALIZED ELECTRON CYCLOTRON CURRENT DRIVE ON DIII-D AND THE REQUIREMENTS FOR ITER. DIII-D experiments demonstrate the first real-time feedback control of the relative location of a narrow beam of microwaves to completely suppress and eliminate a growing tearing mode at the q = 2 surface. long wavelength tearing modes such as the m/n = 2/1 instability are particularly deleterious to tokamak operation. Confinement is seriously degraded by the island, plasma rotation can cease (mode-lock) and disruption can occur. The neoclassical tearing mode (NTM) becomes unstable due to the presence of a helically-perturbed bootstrap current and can be stabilized by replacing the missing bootstrap current in the island O-point by precisely located co-electron cyclotron current drive (ECCD). The optimum position is found when the DIII-D plasma control system (PCS) is put into a search and suppress mode that makes small radial shifts (in about 1 cm steps) in the ECCD location based on minimizing the Mirnov amplitude. Requirements for ITER are addressed

  10. Neutron polarization

    International Nuclear Information System (INIS)

    Firk, F.W.K.

    1976-01-01

    Some recent experiments involving polarized neutrons are discussed; they demonstrate how polarization studies provide information on fundamental aspects of nuclear structure that cannot be obtained from more traditional neutron studies. Until recently, neutron polarization studies tended to be limited either to very low energies or to restricted regions at higher energies, determined by the kinematics of favorable (p, vector n) and (d, vector n) reactions. With the advent of high intensity pulsed electron and proton accelerators and of beams of vector polarized deuterons, this is no longer the case. One has entered an era in which neutron polarization experiments are now being carried out, in a routine way, throughout the entire range from thermal energies to tens-of-MeV. The significance of neutron polarization studies is illustrated in discussions of a wide variety of experiments that include the measurement of T-invariance in the β-decay of polarized neutrons, a search for the effects of meson exchange currents in the photo-disintegration of the deuteron, the determination of quantum numbers of states in the fission of aligned 235 U and 237 Np induced by polarized neutrons, and the double- and triple-scattering of fast neutrons by light nuclei

  11. Polarization holography

    DEFF Research Database (Denmark)

    Nikolova, L.; Ramanujam, P.S.

    Current research into holography is concerned with applications in optically storing, retrieving, and processing information. Polarization holography has many unique properties compared to conventional holography. It gives results in high efficiency, achromaticity, and special polarization...... properties. This books reviews the research carried out in this field over the last 15 years. The authors provide basic concepts in polarization and the propagation of light through anisotropic materials, before presenting a sound theoretical basis for polarization holography. The fabrication...... and characterization of azobenzene based materials, which remain the most efficient for the purpose, is described in detail. This is followed by a description of other materials that are used in polarization holography. An in-depth description of various applications, including display holography and optical storage...

  12. RADIAL STABILITY IN STRATIFIED STARS

    International Nuclear Information System (INIS)

    Pereira, Jonas P.; Rueda, Jorge A.

    2015-01-01

    We formulate within a generalized distributional approach the treatment of the stability against radial perturbations for both neutral and charged stratified stars in Newtonian and Einstein's gravity. We obtain from this approach the boundary conditions connecting any two phases within a star and underline its relevance for realistic models of compact stars with phase transitions, owing to the modification of the star's set of eigenmodes with respect to the continuous case

  13. Velocidades radiales en Collinder 121

    Science.gov (United States)

    Arnal, M.; Morrell, N.

    Se han llevado a cabo observaciones espectroscópicas de unas treinta estrellas que son posibles miembros del cúmulo abierto Collinder 121. Las mismas fueron realizadas con el telescopio de 2.15m del Complejo Astronómico El Leoncito (CASLEO). El análisis de las velocidades radiales derivadas del material obtenido, confirma la realidad de Collinder 121, al menos desde el punto de vista cinemático. La velocidad radial baricentral (LSR) del cúmulo es de +17 ± 3 km.s-1. Esta velocidad coincide, dentro de los errores, con la velocidad radial (LSR) de la nebulosa anillo S308, la cual es de ~20 ± 10 km.s-1. Como S308 se encuentra físicamente asociada a la estrella Wolf-Rayet HD~50896, es muy probable que esta última sea un miembro de Collinder 121. Desde un punto de vista cinemático, la supergigante roja HD~50877 (K3Iab) también pertenecería a Collinder 121. Basándonos en la pertenencia de HD~50896 a Collinder 121, y en la interacción encontrada entre el viento de esta estrella y el medio interestelar circundante a la misma, se estima para este cúmulo una distancia del orden de 1 kpc.

  14. Bistable polarization switching in a continuous wave ruby laser

    Science.gov (United States)

    Lawandy, N. M.; Afzal, R. Sohrab

    1988-01-01

    Bistability in the output power, polarization state, and mode volume of an argon-ion laser pumped single mode ruby laser at 6943 A has been observed. The laser operates in a radially confined mode which exhibits hysteresis and bistability only when the pump polarization is parallel to the c-axis.

  15. Nonlinear radial propagation of drift wave turbulence

    International Nuclear Information System (INIS)

    Prakash, M.

    1985-01-01

    We study the linear and the nonlinear radial propagation of drift wave energy in an inhomogeneous plasma. The drift mode excited in such a plasma is dispersive in nature. The drift wave energy spreads out symmetrically along the direction of inhomogeneity with a finite group velocity. To study the effect of the nonlinear coupling on the propagation of energy in a collision free plasma, we solve the Hasegawa-Mima equation as a mixed initial boundary-value problem. The solutions of the linearized equation are used to check the reliability of our numerical calculations. Additional checks are also performed on the invariants of the system. Our results reveal that a pulse gets distorted as it propagates through the medium. The peak of the pulse propagates with a finite velocity that depends on the amplitude of the initial pulse. The polarity of propagation depends on the initial parameters of the pulse. We have also studied drift wave propagation in a resistive plasma. The Hasegawa-Wakatani equations are used to investigate this problem

  16. Ionic polarization

    International Nuclear Information System (INIS)

    Mahan, G.D.

    1992-01-01

    Ferroelectricity occurs in many different kinds of materials. Many of the technologically important solids, which are ferroelectric, can be classified as ionic. Any microscopic theory of ferroelectricity must contain a description of local polarization forces. We have collaborated in the development of a theory of ionic polarization which is quite successful. Its basic assumption is that the polarization is derived from the properties of the individual ions. We have applied this theory successfully to diverse subjects as linear and nonlinear optical response, phonon dispersion, and piezoelectricity. We have developed numerical methods using the local Density approximation to calculate the multipole polarizabilities of ions when subject to various fields. We have also developed methods of calculating the nonlinear hyperpolarizability, and showed that it can be used to explain light scattering experiments. This paper elaborates on this polarization theory

  17. Polarization experiments

    International Nuclear Information System (INIS)

    Halzen, F.

    1977-02-01

    In a theoretical review of polarization experiments two important points are emphasized: (a) their versatility and their relevance to a large variety of aspects of hadron physics (tests of basic symmetries; a probe of strong interaction dynamics; a tool for hadron spectroscopy); (b) the wealth of experimental data on polarization parameters in pp and np scattering in the Regge language and in the diffraction language. (author)

  18. Exceptional circles of radial potentials

    International Nuclear Information System (INIS)

    Music, M; Perry, P; Siltanen, S

    2013-01-01

    A nonlinear scattering transform is studied for the two-dimensional Schrödinger equation at zero energy with a radial potential. Explicit examples are presented, both theoretically and computationally, of potentials with nontrivial singularities in the scattering transform. The singularities arise from non-uniqueness of the complex geometric optics solutions that define the scattering transform. The values of the complex spectral parameter at which the singularities appear are called exceptional points. The singularity formation is closely related to the fact that potentials of conductivity type are ‘critical’ in the sense of Murata. (paper)

  19. Polarization measurement for internal polarized gaseous targets

    International Nuclear Information System (INIS)

    Ye Zhenyu; Ye Yunxiu; Lv Haijiang; Mao Yajun

    2004-01-01

    The authors present an introduction to internal polarized gaseous targets, polarization method, polarization measurement method and procedure. To get the total nuclear polarization of hydrogen atoms (including the polarization of the recombined hydrogen molecules) in the target cell, authors have measured the parameters relating to atomic polarization and polarized hydrogen atoms and molecules. The total polarization of the target during our measurement is P T =0.853 ± 0.036. (authors)

  20. When Disorder Looks Like Order: A New Model to Explain Radial Magnetic Fields in Young Supernova Remnants

    Science.gov (United States)

    West, J. L.; Jaffe, T.; Ferrand, G.; Safi-Harb, S.; Gaensler, B. M.

    2017-11-01

    Radial magnetic fields are observed in all known young, shell-type supernova remnants in our Galaxy, including Cas A, Tycho, Kepler, and SN1006, and yet the nature of these radial fields has not been thoroughly explored. Using a 3D model, we consider the existence and observational implications of an intrinsically radial field. We also present a new explanation of the origin of the radial pattern observed from polarization data as resulting from a selection effect due to the distribution of cosmic-ray electrons (CREs). We show that quasi-parallel acceleration can concentrate CREs at regions where the magnetic field is radial, making a completely turbulent field appear ordered, when it is in fact disordered. We discuss observational properties that may help distinguish between an intrinsically radial magnetic field and the case where it only appears radial due to the CRE distribution. We also show that the case of an intrinsically radial field with a quasi-perpendicular CRE acceleration mechanism has intriguing similarities to the observed polarization properties of SN1006.

  1. When Disorder Looks Like Order: A New Model to Explain Radial Magnetic Fields in Young Supernova Remnants

    Energy Technology Data Exchange (ETDEWEB)

    West, J. L.; Gaensler, B. M. [Dunlap Institute for Astronomy and Astrophysics University of Toronto, Toronto, ON M5S 3H4 (Canada); Jaffe, T. [CRESST, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Ferrand, G. [RIKEN, Astrophysical Big Bang Laboratory, Wako, Saitama-ken (Japan); Safi-Harb, S., E-mail: jennifer.west@dunlap.utoronto.ca [Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB R3T 2N2 (Canada)

    2017-11-10

    Radial magnetic fields are observed in all known young, shell-type supernova remnants in our Galaxy, including Cas A, Tycho, Kepler, and SN1006, and yet the nature of these radial fields has not been thoroughly explored. Using a 3D model, we consider the existence and observational implications of an intrinsically radial field. We also present a new explanation of the origin of the radial pattern observed from polarization data as resulting from a selection effect due to the distribution of cosmic-ray electrons (CREs). We show that quasi-parallel acceleration can concentrate CREs at regions where the magnetic field is radial, making a completely turbulent field appear ordered, when it is in fact disordered. We discuss observational properties that may help distinguish between an intrinsically radial magnetic field and the case where it only appears radial due to the CRE distribution. We also show that the case of an intrinsically radial field with a quasi-perpendicular CRE acceleration mechanism has intriguing similarities to the observed polarization properties of SN1006.

  2. Sources of polarized neutrons

    International Nuclear Information System (INIS)

    Walter, L.

    1983-01-01

    Various sources of polarized neutrons are reviewed. Monoenergetic source produced with unpolarized or polarized beams, white sources of polarized neutrons, production by transmissions through polarized hydrogen targets and polarized thermal neutronsare discussed, with appropriate applications included. (U.K.)

  3. Radial smoothing and closed orbit

    International Nuclear Information System (INIS)

    Burnod, L.; Cornacchia, M.; Wilson, E.

    1983-11-01

    A complete simulation leading to a description of one of the error curves must involve four phases: (1) random drawing of the six set-up points within a normal population having a standard deviation of 1.3 mm; (b) random drawing of the six vertices of the curve in the sextant mode within a normal population having a standard deviation of 1.2 mm. These vertices are to be set with respect to the axis of the error lunes, while this axis has as its origins the positions defined by the preceding drawing; (c) mathematical definition of six parabolic curves and their junctions. These latter may be curves with very slight curvatures, or segments of a straight line passing through the set-up point and having lengths no longer than one LSS. Thus one gets a mean curve for the absolute errors; (d) plotting of the actually observed radial positions with respect to the mean curve (results of smoothing)

  4. Waves on radial film flows

    Science.gov (United States)

    Cholemari, Murali R.; Arakeri, Jaywant H.

    2005-08-01

    We study the stability of surface waves on the radial film flow created by a vertical cylindrical water jet striking a horizontal plate. In such flows, surface waves have been found to be unstable and can cause transition to turbulence. This surface-wave-induced transition is different from the well-known Tollmien-Schlichting wave-induced transition. The present study aims at understanding the instability and the transition process. We do a temporal stability analysis by assuming the flow to be locally two-dimensional but including spatial variations to first order in the basic flow. The waves are found to be dispersive, mostly unstable, and faster than the mean flow. Spatial variation is the major destabilizing factor. Experiments are done to test the results of the linear stability analysis and to document the wave breakup and transition. Comparison between theory and experiments is fairly good and indicates the adequacy of the model.

  5. Radial flow gas dynamic laser

    International Nuclear Information System (INIS)

    Damm, F.C.

    1975-01-01

    The unique gas dynamic laser provides outward radial supersonic flow from a toroidal shaped stacked array of a plurality of nozzles, through a diffuser having ring shaped and/or linear shaped vanes, and through a cavity which is cylindrical and concentric with the stacked array, with the resultant laser beam passing through the housing parallel to the central axis of the diffuser which is coincident with the axis of the gas dynamic laser. Therefore, greater beam extraction flexibility is attainable, because of fewer flow shock disturbances, as compared to the conventional unidirectional flow gas dynamic laser in which unidirectional supersonic flow sweeps through a rectangular cavity and is exhausted through a two-dimensional diffuser. (auth)

  6. Ulnar nerve entrapment complicating radial head excision

    Directory of Open Access Journals (Sweden)

    Kevin Parfait Bienvenu Bouhelo-Pam

    Full Text Available Introduction: Several mechanisms are involved in ischemia or mechanical compression of ulnar nerve at the elbow. Presentation of case: We hereby present the case of a road accident victim, who received a radial head excision for an isolated fracture of the radial head and complicated by onset of cubital tunnel syndrome. This outcome could be the consequence of an iatrogenic valgus of the elbow due to excision of the radial head. Hitherto the surgical treatment of choice it is gradually been abandoned due to development of radial head implant arthroplasty. However, this management option is still being performed in some rural centers with low resources. Discussion: The radial head plays an important role in the stability of the elbow and his iatrogenic deformity can be complicated by cubital tunnel syndrome. Conclusion: An ulnar nerve release was performed with favorable outcome. Keywords: Cubital tunnel syndrome, Peripheral nerve palsy, Radial head excision, Elbow valgus

  7. Stirling Engine With Radial Flow Heat Exchangers

    Science.gov (United States)

    Vitale, N.; Yarr, George

    1993-01-01

    Conflict between thermodynamical and structural requirements resolved. In Stirling engine of new cylindrical configuration, regenerator and acceptor and rejector heat exchangers channel flow of working gas in radial direction. Isotherms in regenerator ideally concentric cylinders, and gradient of temperature across regenerator radial rather than axial. Acceptor and rejector heat exchangers located radially inward and outward of regenerator, respectively. Enables substantial increase in power of engine without corresponding increase in diameter of pressure vessel.

  8. Polarization study

    International Nuclear Information System (INIS)

    Nurushev, S.B.

    1989-01-01

    Brief review is presented of the high energy polarization study including experimental data and the theoretical descriptions. The mostimportant proposals at the biggest accelerators and the crucial technical developments are also listed which may become a main-line of spin physics. 35 refs.; 10 figs.; 4 tabs

  9. Polar Stratigraphy

    Science.gov (United States)

    1999-01-01

    These three images were taken on three different orbits over the north polar cap in April 1999. Each shows a different part of the same ice-free trough. The left and right images are separated by a distance of more than 100 kilometers (62 miles). Note the similar layers in each image.

  10. Achievement of needle-like focus by engineering radial-variant vector fields.

    Science.gov (United States)

    Gu, Bing; Wu, Jia-Lu; Pan, Yang; Cui, Yiping

    2013-12-16

    We present and demonstrate a novel method for engineering the radial-variant polarization on the incident field to achieve a needle of transversally polarized field without any pupil filters. We generate a new kind of localized linearly-polarized vector fields with distributions of states of polarization (SoPs) describing by the radius to the power p and explore its tight focusing, nonparaxial focusing, and paraxial focusing properties. By tuning the power p, we obtain the needle-like focal field with hybrid SoPs and give the formula for describing the length of the needle. Experimentally, we systematically investigate both the intensity distributions and the polarization evolution of the optical needle by paraxial focusing the generated vector field. Such an optical needle, which enhances the light-matter interaction, has intriguing applications in optical microma-chining and nonlinear optics.

  11. Optical cage generated by azimuthal- and radial-variant vector beams.

    Science.gov (United States)

    Man, Zhongsheng; Bai, Zhidong; Li, Jinjian; Zhang, Shuoshuo; Li, Xiaoyu; Zhang, Yuquan; Ge, Xiaolu; Fu, Shenggui

    2018-05-01

    We propose a method to generate an optical cage using azimuthal- and radial-variant vector beams in a high numerical aperture optical system. A new kind of vector beam that has azimuthal- and radial-variant polarization states is proposed and demonstrated theoretically. Then, an integrated analytical model to calculate the electromagnetic field and Poynting vector distributions of the input azimuthal- and radial-variant vector beams is derived and built based on the vector diffraction theory of Richards and Wolf. From calculations, a full polarization-controlled optical cage is obtained by simply tailoring the radial index of the polarization, the uniformity U of which is up to 0.7748, and the cleanness C is zero. Additionally, a perfect optical cage can be achieved with U=1, and C=0 by introducing an amplitude modulation; its magnetic field and energy flow are also demonstrated in detail. Such optical cages may be helpful in applications such as optical trapping and high-resolution imaging.

  12. Radial head button holing: a cause of irreducible anterior radial head dislocation

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Su-Mi; Chai, Jee Won; You, Ja Yeon; Park, Jina [Seoul National University Seoul Metropolitan Government Boramae Medical Center, Department of Radiology, Seoul (Korea, Republic of); Bae, Kee Jeong [Seoul National University Seoul Metropolitan Government Boramae Medical Center, Department of Orthopedic Surgery, Seoul (Korea, Republic of)

    2016-10-15

    ''Buttonholing'' of the radial head through the anterior joint capsule is a known cause of irreducible anterior radial head dislocation associated with Monteggia injuries in pediatric patients. To the best of our knowledge, no report has described an injury consisting of buttonholing of the radial head through the annular ligament and a simultaneous radial head fracture in an adolescent. In the present case, the radiographic findings were a radial head fracture with anterior dislocation and lack of the anterior fat pad sign. Magnetic resonance imaging (MRI) clearly demonstrated anterior dislocation of the fractured radial head through the torn annular ligament. The anterior joint capsule and proximal portion of the annular ligament were interposed between the radial head and capitellum, preventing closed reduction of the radial head. Familiarity with this condition and imaging findings will aid clinicians to make a proper diagnosis and fast decision to perform an open reduction. (orig.)

  13. Photoelectric Radial Velocities, Paper XIX Additional Spectroscopic ...

    Indian Academy of Sciences (India)

    ian velocity curve that does justice to the measurements, but it cannot be expected to have much predictive power. Key words. Stars: late-type—stars: radial velocities—spectroscopic binaries—orbits. 0. Preamble. The 'Redman K stars' are a lot of seventh-magnitude K stars whose radial velocities were first observed by ...

  14. Radial velocities of RR Lyrae stars

    International Nuclear Information System (INIS)

    Hawley, S.L.; Barnes, T.G. III

    1985-01-01

    283 spectra of 57 RR Lyrae stars have been obtained using the 2.1-m telescope at McDonald Observatory. Radial velocities were determined using a software cross-correlation technique. New mean radial velocities were determined for 46 of the stars. 11 references

  15. Concepts of radial and angular kinetic energies

    DEFF Research Database (Denmark)

    Dahl, Jens Peder; Schleich, W.P.

    2002-01-01

    We consider a general central-field system in D dimensions and show that the division of the kinetic energy into radial and angular parts proceeds differently in the wave-function picture and the Weyl-Wigner phase-space picture, Thus, the radial and angular kinetic energies are different quantities...

  16. Polar Polygons

    Science.gov (United States)

    2005-01-01

    18 August 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows dark-outlined polygons on a frost-covered surface in the south polar region of Mars. In summer, this surface would not be bright and the polygons would not have dark outlines--these are a product of the presence of seasonal frost. Location near: 77.2oS, 204.8oW Image width: width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Spring

  17. Radial electric fields for improved tokamak performance

    International Nuclear Information System (INIS)

    Downum, W.B.

    1981-01-01

    The influence of externally-imposed radial electric fields on the fusion energy output, energy multiplication, and alpha-particle ash build-up in a TFTR-sized, fusing tokamak plasma is explored. In an idealized tokamak plasma, an externally-imposed radial electric field leads to plasma rotation, but no charge current flows across the magnetic fields. However, a realistically-low neutral density profile generates a non-zero cross-field conductivity and the species dependence of this conductivity allows the electric field to selectively alter radial particle transport

  18. Radial MR images of the knee

    International Nuclear Information System (INIS)

    Hewes, R.C.; Miller, T.R.

    1988-01-01

    To profile optimally each portion of the meniscus, the authors use the multiangle, multisection feature of a General Electric SIGNA 1.5-T imager to produce radial images centered on each meniscus. A total of 12-15 sections are imaged at 10 0 -15 0 intervals of each meniscus, yielding perpendicular images of the entire meniscus, comparable with the arthrographic tangential views. The authors review their technique and demonstrate correlation cases between the radial gradient recalled acquisition in a steady state sequences, sagittal and coronal MR images, and arthrograms. Radial images should be a routine part of knee MR imaging

  19. Radial pattern of nuclear decay processes

    International Nuclear Information System (INIS)

    Iskra, W.; Mueller, M.; Rotter, I.; Technische Univ. Dresden

    1994-05-01

    At high level density of nuclear states, a separation of different time scales is observed (trapping effect). We calculate the radial profile of partial widths in the framework of the continuum shell model for some 1 - resonances with 2p-2h nuclear structure in 16 O as a function of the coupling strength to the continuum. A correlation between the lifetime of a nuclear state and the radial profile of the corresponding decay process is observed. We conclude from our numerical results that the trapping effect creates structures in space and time characterized by a small radial extension and a short lifetime. (orig.)

  20. Strategic Polarization.

    Science.gov (United States)

    Kalai, Adam; Kalai, Ehud

    2001-08-01

    In joint decision making, similarly minded people may take opposite positions. Consider the example of a marriage in which one spouse gives generously to charity while the other donates nothing. Such "polarization" may misrepresent what is, in actuality, a small discrepancy in preferences. It may be that the donating spouse would like to see 10% of their combined income go to charity each year, while the apparently frugal spouse would like to see 8% donated. A simple game-theoretic analysis suggests that the spouses will end up donating 10% and 0%, respectively. By generalizing this argument to a larger class of games, we provide strategic justification for polarization in many situations such as debates, shared living accommodations, and disciplining children. In some of these examples, an arbitrarily small disagreement in preferences leads to an arbitrarily large loss in utility for all participants. Such small disagreements may also destabilize what, from game-theoretic point of view, is a very stable equilibrium. Copyright 2001 Academic Press.

  1. Non-linear radial spinwave modes in thin magnetic disks

    International Nuclear Information System (INIS)

    Helsen, M.; De Clercq, J.; Vansteenkiste, A.; Van Waeyenberge, B.; Gangwar, A.; Back, C. H.; Weigand, M.

    2015-01-01

    We present an experimental investigation of radial spin-wave modes in magnetic nano-disks with a vortex ground state. The spin-wave amplitude was measured using a frequency-resolved magneto-optical spectrum analyzer, allowing for high-resolution resonance curves to be recorded. It was found that with increasing excitation amplitude up to about 10 mT, the lowest-order mode behaves strongly non-linearly as the mode frequency redshifts and the resonance peak strongly deforms. This behavior was quantitatively reproduced by micromagnetic simulations. Micromagnetic simulations showed that at higher excitation amplitudes, the spinwaves are transformed into a soliton by self-focusing, and collapse onto the vortex core, dispersing the energy in short-wavelength spinwaves. Additionally, this process can lead to switching of the vortex polarization through the injection of a Bloch point

  2. Radial pseudoaneurysm following diagnostic coronary angiography

    Directory of Open Access Journals (Sweden)

    Shankar Laudari

    2015-06-01

    Full Text Available The radial artery access has gained popularity as a method of diagnostic coronary catheterization compared to femoral artery puncture in terms of vascular complications and early ambulation. However, very rare complication like radial artery pseudoaneurysm may occur following cardiac catheterization which may give rise to serious consequences. Here, we report a patient with radial pseudoaneurysm following diagnostic coronary angiography. Adequate and correct methodology of compression of radial artery following puncture for maintaining hemostasis is the key to prevention.DOI: http://dx.doi.org/10.3126/jcmsn.v10i3.12776 Journal of College of Medical Sciences-Nepal, 2014, Vol-10, No-3, 48-50

  3. Finite element modelling of radial lentotomy cuts to improve the accommodation performance of the human lens.

    Science.gov (United States)

    Burd, H J; Wilde, G S

    2016-04-01

    The use of a femtosecond laser to form planes of cavitation bubbles within the ocular lens has been proposed as a potential treatment for presbyopia. The intended purpose of these planes of cavitation bubbles (referred to in this paper as 'cutting planes') is to increase the compliance of the lens, with a consequential increase in the amplitude of accommodation. The current paper describes a computational modelling study, based on three-dimensional finite element analysis, to investigate the relationship between the geometric arrangement of the cutting planes and the resulting improvement in lens accommodation performance. The study is limited to radial cutting planes. The effectiveness of a variety of cutting plane geometries was investigated by means of modelling studies conducted on a 45-year human lens. The results obtained from the analyses depend on the particular modelling procedures that are employed. When the lens substance is modelled as an incompressible material, radial cutting planes are found to be ineffective. However, when a poroelastic model is employed for the lens substance, radial cuts are shown to cause an increase in the computed accommodation performance of the lens. In this case, radial cuts made in the peripheral regions of the lens have a relatively small influence on the accommodation performance of the lens; the lentotomy process is seen to be more effective when cuts are made near to the polar axis. When the lens substance is modelled as a poroelastic material, the computational results suggest that useful improvements in lens accommodation performance can be achieved, provided that the radial cuts are extended to the polar axis. Radial cuts are ineffective when the lens substance is modelled as an incompressible material. Significant challenges remain in developing a safe and effective surgical procedure based on this lentotomy technique.

  4. Radial transport with perturbed magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Hazeltine, R. D. [Institute for Fusion Studies, University of Texas at Austin, Austin, Texas 78712 (United States)

    2015-05-15

    It is pointed out that the viscosity coefficient describing radial transport of toroidal angular momentum is proportional to the second power of the gyro-radius—like the corresponding coefficients for particle and heat transport—regardless of any geometrical symmetry. The observation is widely appreciated, but worth emphasizing because some literature gives the misleading impression that asymmetry can allow radial moment transport in first-order.

  5. Radial transport with perturbed magnetic field

    International Nuclear Information System (INIS)

    Hazeltine, R. D.

    2015-01-01

    It is pointed out that the viscosity coefficient describing radial transport of toroidal angular momentum is proportional to the second power of the gyro-radius—like the corresponding coefficients for particle and heat transport—regardless of any geometrical symmetry. The observation is widely appreciated, but worth emphasizing because some literature gives the misleading impression that asymmetry can allow radial moment transport in first-order

  6. Polarized secondary radioactive beams

    International Nuclear Information System (INIS)

    Zaika, N.I.

    1992-01-01

    Three methods of polarized radioactive nuclei beam production: a) a method nuclear interaction of the non-polarized or polarized charged projectiles with target nuclei; b) a method of polarization of stopped reaction radioactive products in a special polarized ion source with than following acceleration; c) a polarization of radioactive nuclei circulating in a storage ring are considered. Possible life times of the radioactive ions for these methods are determined. General schemes of the polarization method realizations and depolarization problems are discussed

  7. Phase diagram of structure of radial electric field in helical plasmas

    International Nuclear Information System (INIS)

    Toda, S.; Itoh, K.

    2002-01-01

    A set of transport equations in toroidal helical plasmas is analyzed, including the bifurcation of the radial electric field. Multiple solutions of E r for the ambipolar condition induces domains of different electric polarities. A structure of the domain interface is analyzed and a phase diagram is obtained in the space of the external control parameters. The region of the reduction of the anomalous transport is identified. (author)

  8. Polar crane

    International Nuclear Information System (INIS)

    Makosinski, S.

    1981-01-01

    In many applications polar cranes have to be repeatedly positioned with high accuracy. A guidance system is disclosed which has two pairs of guides. Each guide consists of two rollers carried by a sheave rotatable mounted on the crane bridge, the rollers being locatable one on each side of a guideway, e.g. the circular track on which the bridge runs. The pairs of guides are interconnected by respective rope loops which pass around and are locked to the respective pairs of sheaves in such a manner that movement of one guide results in equal movement of the other guide in a sense to maintain the repeatability of positioning of the centre of the bridge. A hydraulically-linked guide system is also described. (author)

  9. Stability of radial and non-radial pulsation modes of massive ZAMS models

    International Nuclear Information System (INIS)

    Odell, A.P.; Pausenwein, A.; Weiss, W.W.; Hajek, A.

    1987-01-01

    The authors have computed non-adiabatic eigenvalues for radial and non-radial pulsation modes of star models between 80 and 120 M solar with composition of chi=0.70 and Z=0.02. The radial fundamental mode is unstable in models with mass greater than 95 M solar , but the first overtone mode is always stable. The non-radial modes are all stable for all models, but the iota=2 f-mode is the closest to being driven. The non-radial modes are progressively more stable with higher iota and with higher n (for both rho- and g-modes). Thus, their results indicate that radial pulsation limits the upper mass of a star

  10. 21 CFR 866.4800 - Radial immunodiffusion plate.

    Science.gov (United States)

    2010-04-01

    ...) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunology Laboratory Equipment and Reagents § 866.4800 Radial immunodiffusion plate. (a) Identification. A radial immunodiffusion plate for clinical use...

  11. Cup waveguide antenna with integrated polarizer and OMT

    Science.gov (United States)

    Acosta, Roberto J. (Inventor); Kory, Carol (Inventor); Lambert, Kevin M. (Inventor)

    2011-01-01

    A cup waveguide antenna with integrated polarizer and OMT for simultaneously communicating left and right hand circularly polarized electromagnetic waves is adjustable to obtain efficient propagation and reception of electromagnetic waves. The antenna includes a circular waveguide having an orthomode transducer utilizing first and second pins longitudinally spaced apart and oriented orthogonally with respect to each other. Six radially-oriented adjustable polarizer screws extend from the exterior to the interior of the waveguide. A septum intermediate the first and second pins is aligned with the first pin. Adjustment of the polarizer screws enables maximized propagation of and/or response to left hand circularly polarized electromagnetic waves by the first pin while simultaneously enabling maximized propagation of and/or response to right hand circularly polarized electromagnetic waves by the second pin.

  12. Ion confinement and transport in a toroidal plasma with externally imposed radial electric fields

    Science.gov (United States)

    Roth, J. R.; Krawczonek, W. M.; Powers, E. J.; Kim, Y. C.; Hong, H. Y.

    1979-01-01

    Strong electric fields were imposed along the minor radius of the toroidal plasma by biasing it with electrodes maintained at kilovolt potentials. Coherent, low-frequency disturbances characteristic of various magnetohydrodynamic instabilities were absent in the high-density, well-confined regime. High, direct-current radial electric fields with magnitudes up to 135 volts per centimeter penetrated inward to at least one-half the plasma radius. When the electric field pointed radially toward, the ion transport was inward against a strong local density gradient; and the plasma density and confinement time were significantly enhanced. The radial transport along the electric field appeared to be consistent with fluctuation-induced transport. With negative electrode polarity the particle confinement was consistent with a balance of two processes: a radial infusion of ions, in those sectors of the plasma not containing electrodes, that resulted from the radially inward fields; and ion losses to the electrodes, each of the which acted as a sink and drew ions out of the plasma. A simple model of particle confinement was proposed in which the particle confinement time is proportional to the plasma volume. The scaling predicted by this model was consistent with experimental measurements.

  13. Polarized neutron reflectometry in high magnetic fields

    International Nuclear Information System (INIS)

    Fritzsche, H.

    2005-01-01

    A simple method is described to maintain the polarization of a neutron beam on its way through the large magnetic stray fields produced by a vertical field of a cryomagnet with a split-coil geometry. The two key issues are the proper shielding of the neutron spin flippers and an additional radial field component in order to guide the neutron spin through the region of the null point (i.e., point of reversal for the vertical field component). Calculations of the neutron's spin rotation as well as polarized neutron reflectometry experiments on an ErFe 2 /DyFe 2 multilayer show the perfect performance of the used setup. The recently commissioned cryomagnet M5 with a maximum vertical field of up to 7.2 T in asymmetric mode for polarized neutrons and 9 T in symmetric mode for unpolarized neutrons was used on the C5 spectrometer in reflectometry mode, at the NRU reactor in Chalk River, Canada

  14. Anomalies of radial and ulnar arteries

    Directory of Open Access Journals (Sweden)

    Rajani Singh

    Full Text Available Abstract During dissection conducted in an anatomy department of the right upper limb of the cadaver of a 70-year-old male, both origin and course of the radial and ulnar arteries were found to be anomalous. After descending 5.5 cm from the lower border of the teres major, the brachial artery anomalously bifurcated into a radial artery medially and an ulnar artery laterally. In the arm, the ulnar artery lay lateral to the median nerve. It followed a normal course in the forearm. The radial artery was medial to the median nerve in the arm and then, at the level of the medial epicondyle, it crossed from the medial to the lateral side of the forearm, superficial to the flexor muscles. The course of the radial artery was superficial and tortuous throughout the arm and forearm. The variations of radial and ulnar arteries described above were associated with anomalous formation and course of the median nerve in the arm. Knowledge of neurovascular anomalies are important for vascular surgeons and radiologists.

  15. Nuclear polarization and neutrons

    International Nuclear Information System (INIS)

    Glaettli, H.

    1985-01-01

    Different possibilities for the use of polarized nuclei in thermal neutron scattering on condensed matter are reviewed. Highly polarized nuclei are the starting point for studying dipolar magnetic order. Systematic measurement of spin-dependent scattering lengths is possible on samples with polarized nuclei. Highly polarized hydrogen should help to unravel complicated structures in chemistry and biology. The use of polarized proton targets as an energy-independent neutron polarizer in the thermal and epithermal region should be considered afresh. (author)

  16. Physical mechanism determining the radial electric field and its radial structure in a toroidal plasma

    International Nuclear Information System (INIS)

    Ida, Katsumi; Miura, Yukitoshi; Itoh, Sanae

    1994-10-01

    Radial structures of plasma rotation and radial electric field are experimentally studied in tokamak, heliotron/torsatron and stellarator devices. The perpendicular and parallel viscosities are measured. The parallel viscosity, which is dominant in determining the toroidal velocity in heliotron/torsatron and stellarator devices, is found to be neoclassical. On the other hand, the perpendicular viscosity, which is dominant in dictating the toroidal rotation in tokamaks, is anomalous. Even without external momentum input, both a plasma rotation and a radial electric field exist in tokamaks and heliotrons/torsatrons. The observed profiles of the radial electric field do not agree with the theoretical prediction based on neoclassical transport. This is mainly due to the existence of anomalous perpendicular viscosity. The shear of the radial electric field improves particle and heat transport both in bulk and edge plasma regimes of tokamaks. (author) 95 refs

  17. Manufacturing of Precision Forgings by Radial Forging

    International Nuclear Information System (INIS)

    Wallner, S.; Harrer, O.; Buchmayr, B.; Hofer, F.

    2011-01-01

    Radial forging is a multi purpose incremental forging process using four tools on the same plane. It is widely used for the forming of tool steels, super alloys as well as titanium- and refractory metals. The range of application goes from reducing the diameters of shafts, tubes, stepped shafts and axels, as well as for creating internal profiles for tubes in Near-Net-Shape and Net-Shape quality. Based on actual development of a weight optimized transmission input shaft, the specific features of radial forging technology is demonstrated. Also a Finite Element Model for the simulation of the process is shown which leads to reduced pre-processing effort and reduced computing time compared to other published simulation methods for radial forging. The finite element model can be applied to quantify the effects of different forging strategies.

  18. Neutron polarization in polarized 3He targets

    International Nuclear Information System (INIS)

    Friar, J.L.; Gibson, B.F.; Payne, G.L.; Bernstein, A.M.; Chupp, T.E.

    1990-01-01

    Simple formulas for the neutron and proton polarizations in polarized 3 He targets are derived assuming (1) quasielastic final states; (2) no final-state interactions; (3) no meson-exchange currents; (4) large momentum transfers; (5) factorizability of 3 He SU(4) response-function components. Numerical results from a wide variety of bound-state solutions of the Faddeev equations are presented. It is found that this simple model predicts the polarization of neutrons in a fully polarized 3 He target to be 87%, while protons should have a slight residual polarization of -2.7%. Numerical studies show that this model works very well for quasielastic electron scattering

  19. The Matlab Radial Basis Function Toolbox

    Directory of Open Access Journals (Sweden)

    Scott A. Sarra

    2017-03-01

    Full Text Available Radial Basis Function (RBF methods are important tools for scattered data interpolation and for the solution of Partial Differential Equations in complexly shaped domains. The most straight forward approach used to evaluate the methods involves solving a linear system which is typically poorly conditioned. The Matlab Radial Basis Function toolbox features a regularization method for the ill-conditioned system, extended precision floating point arithmetic, and symmetry exploitation for the purpose of reducing flop counts of the associated numerical linear algebra algorithms.

  20. Radial velocity observations of VB10

    Science.gov (United States)

    Deshpande, R.; Martin, E.; Zapatero Osorio, M. R.; Del Burgo, C.; Rodler, F.; Montgomery, M. M.

    2011-07-01

    VB 10 is the smallest star known to harbor a planet according to the recent astrometric study of Pravdo & Shaklan [1]. Here we present near-infrared (J-band) radial velocity of VB 10 performed from high resolution (R~20,000) spectroscopy (NIRSPEC/KECK II). Our results [2] suggest radial velocity variability with amplitude of ~1 km/s, a result that is consistent with the presence of a massive planet companion around VB10 as found via long-term astrometric monitoring of the star by Pravdo & Shaklan. Employing an entirely different technique we verify the results of Pravdo & Shaklan.

  1. Reble, a radially converging electron beam accelerator

    International Nuclear Information System (INIS)

    Ramirez, J.J.; Prestwich, K.R.

    1976-01-01

    The Reble accelerator at Sandia Laboratories is described. This accelerator was developed to provide an experimental source for studying the relevant diode physics, beam propagation, beam energy deposition in a gas using a radially converging e-beam. The nominal parameters for Reble are 1 MV, 200 kA, 20 ns e-beam pulse. The anode and cathode are concentric cylinders with the anode as the inner cylinder. The radial beam can be propagated through the thin foil anode into the laser gas volume. The design and performance of the various components of the accelerator are presented

  2. On helicon wave induced radial plasma transport

    International Nuclear Information System (INIS)

    Petrzilka, V.

    1993-04-01

    Estimates of helicon wave induced radial plasma transport are presented. The wave induced transport grows or decreases in dependence on the sign of the azimuthal wave number; these changes in transport may play an important role in helicon wave plasma sources. (author) 5 figs., 18 refs

  3. Revealing the radial modes in vortex beams

    CSIR Research Space (South Africa)

    Sephton, Bereneice C

    2016-10-01

    Full Text Available Light beams that carry orbital angular momentum are often approximated by modulating an initial beam, usually Gaussian, with an azimuthal phase variation to create a vortex beam. Such vortex beams are well defined azimuthally, but the radial profile...

  4. Measurement of Wear in Radial Journal Bearings

    NARCIS (Netherlands)

    Ligterink, D.J.; Ligterink, D.J.; de Gee, A.W.J.

    1996-01-01

    this article, the measurement of wear in radial journal bearings is discussed, where a distinction is made between stationary and non-stationary contact conditions. Starting with Holm/Archard's wear law, equations are derived for the calculation of the specific wear rate k of the bearing material as

  5. Radial interchange motions of plasma filaments

    DEFF Research Database (Denmark)

    Garcia, O.E.; Bian, N.H.; Fundamenski, W.

    2006-01-01

    on a biperiodic domain perpendicular to the magnetic field. It is demonstrated that a blob-like plasma structure develops dipolar vorticity and electrostatic potential fields, resulting in rapid radial acceleration and formation of a steep front and a trailing wake. While the dynamical evolution strongly depends...

  6. Radial transfer effects for poloidal rotation

    Science.gov (United States)

    Hallatschek, Klaus

    2010-11-01

    Radial transfer of energy or momentum is the principal agent responsible for radial structures of Geodesic Acoustic Modes (GAMs) or stationary Zonal Flows (ZF) generated by the turbulence. For the GAM, following a physical approach, it is possible to find useful expressions for the individual components of the Poynting flux or radial group velocity allowing predictions where a mathematical full analysis is unfeasible. Striking differences between up-down symmetric flux surfaces and asymmetric ones have been found. For divertor geometries, e.g., the direction of the propagation depends on the sign of the ion grad-B drift with respect to the X-point, reminiscent of a sensitive determinant of the H-mode threshold. In nonlocal turbulence computations it becomes obvious that the linear energy transfer terms can be completely overwhelmed by the action of the turbulence. In contrast, stationary ZFs are governed by the turbulent radial transfer of momentum. For sufficiently large systems, the Reynolds stress becomes a deterministic functional of the flows, which can be empirically determined from the stress response in computational turbulence studies. The functional allows predictions even on flow/turbulence states not readily obtainable from small amplitude noise, such as certain transport bifurcations or meta-stable states.

  7. Spectral problem for the radial Schroedinger equation

    International Nuclear Information System (INIS)

    Vshivtsev, A.S.; Tatarintsev, A.V.; Prokopov, A.V.; Sorokin, V. N.

    1998-01-01

    For the first time, a procedure for determining spectra on the basis of generalized integral transformations is implemented for a wide class of radial Schroedinger equations. It is shown that this procedure works well for known types of potentials. Concurrently, this method makes it possible to obtain new analytic results for the Cornell potential. This may prove important for hadron physics

  8. Computing modal dispersion characteristics of radially Asymmetric ...

    African Journals Online (AJOL)

    We developed a matrix theory that applies to with non-circular/circular but concentric layers fibers. And we compute the dispersion characteristics of radially unconventional fiber, known as Asymmetric Bragg fiber. An attempt has been made to determine how the modal characteristics change as circular Bragg fiber is ...

  9. Polarized electron sources

    International Nuclear Information System (INIS)

    Prepost, R.

    1994-01-01

    The fundamentals of polarized electron sources are described with particular application to the Stanford Linear Accelerator Center. The SLAC polarized electron source is based on the principle of polarized photoemission from Gallium Arsenide. Recent developments using epitaxially grown, strained Gallium Arsenide cathodes have made it possible to obtain electron polarization significantly in excess of the conventional 50% polarization limit. The basic principles for Gallium and Arsenide polarized photoemitters are reviewed, and the extension of the basic technique to strained cathode structures is described. Results from laboratory measurements of strained photocathodes as well as operational results from the SLAC polarized source are presented

  10. Polarized electron sources

    Energy Technology Data Exchange (ETDEWEB)

    Prepost, R. [Univ. of Wisconsin, Madison, WI (United States)

    1994-12-01

    The fundamentals of polarized electron sources are described with particular application to the Stanford Linear Accelerator Center. The SLAC polarized electron source is based on the principle of polarized photoemission from Gallium Arsenide. Recent developments using epitaxially grown, strained Gallium Arsenide cathodes have made it possible to obtain electron polarization significantly in excess of the conventional 50% polarization limit. The basic principles for Gallium and Arsenide polarized photoemitters are reviewed, and the extension of the basic technique to strained cathode structures is described. Results from laboratory measurements of strained photocathodes as well as operational results from the SLAC polarized source are presented.

  11. Variations in the usage and composition of a radial cocktail during radial access coronary angiography procedures.

    LENUS (Irish Health Repository)

    Pate, G

    2011-10-01

    A survey was conducted of medication administered during radial artery cannulation for coronary angiography in 2009 in Ireland; responses were obtained for 15 of 20 centres, in 5 of which no radial access procedures were undertaken. All 10 (100%) centres which provided data used heparin and one or more anti-spasmodics; verapamil in 9 (90%), nitrate in 1 (10%), both in 2 (20%). There were significant variations in the doses used. Further work needs to be done to determine the optimum cocktail to prevent radial artery injury following coronary angiography.

  12. Radial wave crystals: radially periodic structures from anisotropic metamaterials for engineering acoustic or electromagnetic waves.

    Science.gov (United States)

    Torrent, Daniel; Sánchez-Dehesa, José

    2009-08-07

    We demonstrate that metamaterials with anisotropic properties can be used to develop a new class of periodic structures that has been named radial wave crystals. They can be sonic or photonic, and wave propagation along the radial directions is obtained through Bloch states like in usual sonic or photonic crystals. The band structure of the proposed structures can be tailored in a large amount to get exciting novel wave phenomena. For example, it is shown that acoustical cavities based on radial sonic crystals can be employed as passive devices for beam forming or dynamically orientated antennas for sound localization.

  13. Polarized neutron spectrometer

    International Nuclear Information System (INIS)

    Abov, Yu.G.; Novitskij, V.V.; Alfimenkov, V.P.; Galinskij, E.M.; Mareev, Yu.D.; Pikel'ner, L.B.; Chernikov, A.N.; Lason', L.; Tsulaya, V.M.; Tsulaya, M.I.

    2000-01-01

    The polarized neutron spectrometer, intended for studying the interaction of polarized neutrons with nuclei and condensed media in the area of energies from thermal up to several electron-volt, is developed at the IBR-2 reactor (JINR, Dubna). Diffraction on the Co(92%)-Fe(8%) magnetized monocrystals is used for the neutron polarization and polarization analysis. The neutron polarization within the whole energy range equals ∼ 95% [ru

  14. The Origin of Radially Aligned Magnetic Fields in Young Supernova Remnants

    Science.gov (United States)

    Inoue, Tsuyoshi; Shimoda, Jiro; Ohira, Yutaka; Yamazaki, Ryo

    2013-08-01

    It has been suggested by radio observations of polarized synchrotron emissions that downstream magnetic fields in some young supernova remnants (SNRs) are oriented radially. We study the magnetic field distribution of turbulent SNRs driven by the Richtmyer-Meshkov instability (RMI)—in other words, the effect of rippled shock—by using three-dimensional magnetohydrodynamics simulations. We find that the induced turbulence has radially biased anisotropic velocity dispersion that leads to a selective amplification of the radial component of the magnetic field. The RMI is induced by the interaction between the shock and upstream density fluctuations. Future high-resolution polarization observations can distinguish the following candidates responsible for the upstream density fluctuations: (1) inhomogeneity caused by the cascade of large-scale turbulence in the interstellar medium, the so-called big power-law in the sky; (2) structures generated by the Drury instability in the cosmic-ray modified shock; and (3) fluctuations induced by the nonlinear feedback of the cosmic-ray streaming instability.

  15. THE ORIGIN OF RADIALLY ALIGNED MAGNETIC FIELDS IN YOUNG SUPERNOVA REMNANTS

    International Nuclear Information System (INIS)

    Inoue, Tsuyoshi; Shimoda, Jiro; Ohira, Yutaka; Yamazaki, Ryo

    2013-01-01

    It has been suggested by radio observations of polarized synchrotron emissions that downstream magnetic fields in some young supernova remnants (SNRs) are oriented radially. We study the magnetic field distribution of turbulent SNRs driven by the Richtmyer-Meshkov instability (RMI)—in other words, the effect of rippled shock—by using three-dimensional magnetohydrodynamics simulations. We find that the induced turbulence has radially biased anisotropic velocity dispersion that leads to a selective amplification of the radial component of the magnetic field. The RMI is induced by the interaction between the shock and upstream density fluctuations. Future high-resolution polarization observations can distinguish the following candidates responsible for the upstream density fluctuations: (1) inhomogeneity caused by the cascade of large-scale turbulence in the interstellar medium, the so-called big power-law in the sky; (2) structures generated by the Drury instability in the cosmic-ray modified shock; and (3) fluctuations induced by the nonlinear feedback of the cosmic-ray streaming instability

  16. The impact of the biasing radial electric field on the SOL in a divertor tokamak

    International Nuclear Information System (INIS)

    Rozhansky, V.; Tendler, M.

    1993-01-01

    Strong radial electric field can be induced within the SOL in a divertor tokamak by applying a voltage to divertor plates with respect to the first wall. This biasing scheme results in the strong radial electric field which is much larger than the natural electric field, usually of the order T e /e. Experiments employing this biasing scheme were carried out on the tokamak TdeV. Many interesting effects such as - modifications of the density profile and radial transport of impurities as a function of the polarity and the magnitude of the biasing voltage, the generation of the flux surface average toroidal rotation proportional to the applied voltage, redistribution of the plasma outflow onto divertor plates and so on - were demonstrated to result from the biasing. Furthermore, in contrast to studies carried out employing a different biasing scheme which primarily results in a poloidal electric field, the strong radial electric field impacts more significantly within SOL than the poloidal electric field. Here, we aim to show that the main effects observed experimentally follow from the analysis, provided continuity and momentum balances are employed invoking anomalous viscosity and inertia. (author) 4 refs

  17. Polarized targets and beams

    International Nuclear Information System (INIS)

    Meyer, W.

    1985-01-01

    First the experimental situation of the single-pion photoproduction and the photodisintegration of the deuteron is briefly discussed. Then a description of the Bonn polarization facilities is given. The point of main effort is put on the polarized target which plays a vital role in the program. A facility for photon induced double polarization experiments at ELSA will be presented in section 4. Properties of a tensor polarized deuteron target are discussed in section 5. The development in the field of polarized targets, especially on new target materials, enables a new generation of polarized target experiments with (polarized) electrons. Some comments on the use of a polarized target in combination with electron beams will be discussed in section 6. Electron deuteron scattering from a tensor polarized deuteron target is considered and compared with other experimental possibilities. (orig./HSI)

  18. Three-dimensional orientation-unlimited polarization encryption by a single optically configured vectorial beam.

    Science.gov (United States)

    Li, Xiangping; Lan, Tzu-Hsiang; Tien, Chung-Hao; Gu, Min

    2012-01-01

    The interplay between light polarization and matter is the basis of many fundamental physical processes and applications. However, the electromagnetic wave nature of light in free space sets a fundamental limit on the three-dimensional polarization orientation of a light beam. Although a high numerical aperture objective can be used to bend the wavefront of a radially polarized beam to generate the longitudinal polarization state in the focal volume, the arbitrary three-dimensional polarization orientation of a beam has not been achieved yet. Here we present a novel technique for generating arbitrary three-dimensional polarization orientation by a single optically configured vectorial beam. As a consequence, by applying this technique to gold nanorods, orientation-unlimited polarization encryption with ultra-security is demonstrated. These results represent a new landmark of the orientation-unlimited three-dimensional polarization control of the light-matter interaction.

  19. Optical tractor Bessel polarized beams

    Science.gov (United States)

    Mitri, F. G.; Li, R. X.; Guo, L. X.; Ding, C. Y.

    2017-01-01

    Axial and transverse radiation force cross-sections of optical tractor Bessel polarized beams are theoretically investigated for a dielectric sphere with particular emphasis on the beam topological charge (or order), half-cone angle and polarization. The angular spectrum decomposition method (ASDM) is used to derive the non-paraxial electromagnetic (EM) field components of the Bessel beams. The multipole expansion method using vector spherical harmonics is utilized and appropriate beam-shape coefficients are derived in order to compute the radiation force cross-sections. The analysis has no limitation to a particular range of frequencies such that the Rayleigh, Mie or geometrical optics regimes can all be considered effectively using the present rigorous formalism. The focus of this investigation is to identify some of the tractor beam conditions so as to achieve retrograde motion of a dielectric sphere located arbitrarily in space. Numerical computations for the axial and transverse radiation force cross-sections are presented for linear, right-circular, radial, azimuthal and mixed polarizations of the individual plane waves forming the Bessel beams of zeroth- and first-order (with positive or negative helicity), respectively. As the sphere shifts off the beam's axis, the axial pulling (tractor) force is weakened. Moreover, the transverse radiation force cross-section field changes with the sphere's size factor ka (where k is the wavenumber and a is the sphere radius). Both stable and unstable equilibrium regions around the beam's axis are found, depending on the choice of ka and the half-cone angle α0. These results are particularly important in the development of emergent technologies for the photophoretic assembly of optically-engineered (meta)materials with designed properties using optical tractor (vortex) beams, particle manipulation, levitation and positioning, and other applications.

  20. WWER radial reflector modeling by diffusion codes

    International Nuclear Information System (INIS)

    Petkov, P. T.; Mittag, S.

    2005-01-01

    The two commonly used approaches to describe the WWER radial reflectors in diffusion codes, by albedo on the core-reflector boundary and by a ring of diffusive assembly size nodes, are discussed. The advantages and disadvantages of the first approach are presented first, then the Koebke's equivalence theory is outlined and its implementation for the WWER radial reflectors is discussed. Results for the WWER-1000 reactor are presented. Then the boundary conditions on the outer reflector boundary are discussed. The possibility to divide the library into fuel assembly and reflector parts and to generate each library by a separate code package is discussed. Finally, the homogenization errors for rodded assemblies are presented and discussed (Author)